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M. Michel PARROT CNRS Orléans
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m’a encouragé à démarrer une thèse de doctorat en collaboration avec le LPC2E et il m’a
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(à droite) Probabilité que ce rapport des diminutions et augmentations de
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(d’après Němec et al. (2009b)) . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Comme la Figure 3.4, mais en fonction de la profondeur des tremblements
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4.1 Spectrogramme fréquence-temps des fluctuations du champ électrique corre-
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électromagnétiques harmoniques dans la bande EBF en fonction de la
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(2009a)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5
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de la Figure 4.16. (d’après Němec et al. (2009a)) . . . . . . . . . . . . . . . 54

4.19 Analyse détaillée des ondes mesurées le Mai 16, 2005, entre 08:16:40 UT
et 08:17:55 UT. Les panneaux représentent les spectrogrammes fréquence-
temps de (de haut en bas) : la densité spectrale des fluctuations du champ
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géomagnétique. (d’après Němec et al. (2009c)) . . . . . . . . . . . . . . . . 59
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d’index Kp. Toutes les données mesurées pendant le jour et l’hiver (Octobre-
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d’index Kp. Toutes les données mesurées pendant la nuit et l’été (Mai-
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EBF. Les données ont été mesurées le 16 Mai 2005 après 15:39:31 UT. . . . 90

8



Liste des tableaux

2.1 Types possibles des spectres de l’instrument ICE en mode “Survey”, la
bande TBF (type du spectre, nombre de fréquences, résolution en fréquence,
résolution en temps, nombre de spectres ramenés à une moyenne et nombre
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HF Haute Fréquence (10 kHz – 3.175 MHz)

IAP Instrument Analyseur de Plasma

ICE Instrument Capteur Électrique

IDP Instrument Détecteur de Particules

IMSC Instrument Magnétomètre Search-Coil

ISL Instrument Sonde de Langmuir

LPC2E Laboratoire de Physique et Chimie de l’Environnement et de l’Espace

LT Temps Local (Local Time)

MLT Temps Local Magnétique (Magnetic Local Time)

MLR Magnetospheric Line Radiation

PLHR Power Line Harmonic Radiation

TBF Très Basse Fréquence (15 Hz – 17.4 kHz)

UBF Ultra Basse Fréquence (0 – 15 Hz)

UT Temps Universel (Universal Time)
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Résumé

Les résultats expérimentaux basés sur les donnés du satellite DEMETER (orbite
circulaire, altitude ≈ 700 km) sont présentés dans cette thèse. En particulier, nous nous
sommes concentrés sur l’analyse des ondes électromagnétiques dans la bande de fréquence
TBF (jusqu’à 20 kHz). Deux phénomènes différents ont été traités :

1. les effets liés á l’activité sismique

2. un type particulier d’ondes électromagnétiques – les émissions ayant des structures
fréquentielles linéaires

Le Chapitre 1 présente un bref résumé de ces effets. Un historique des connaissances
que l’on avait sur ces sujets est présenté avec des citations appropriées. Le Chapitre 2
contient la description du satellite DEMETER, en se concentrant sur les instruments et
les paramètres particuliers que nous avons utilisés.

Puis, il y a deux chapitres dans lesquels nous décrivons les résultats obtenus, un
chapitre pour chacun des deux sujets principaux. Étant donné que nous avons déjà publié
la majorité des résultats dans des journaux scientifiques, ces chapitres ne sont pas très
longs et utilisent beaucoup des citations. Tous les papiers cités sont disponibles en Annexe
E.

Finalement, le Chapitre 5 présente une liste des résultats principaux, montrant les
progrès scientifiques que nous avons fait concernant la compréhension des phénomènes
analysés.
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Chapitre 1

Connaissances sur les phénomènes
sélectionnés

1.1 Effets liés à l’activité sismique

1.1.1 Préface

Les perturbations électromagnétiques probablement connectées à l’activité sismique
sont connues depuis relativement longtemps (Milne, 1890). Mais jusqu’au début des années
80, on n’a pas prêté beaucoup d’attention à ces effets, parce que les mesures n’étaient
pas assez claires ni suffisamment décrites. Les deux papiers publiés en 1982 (Gokhberg

et al., 1982; Warwick et al., 1982) changèrent cet état d’esprit, et déclenchèrent de très
nombreuses études sur, non seulement ces effets électromagnétiques, mais aussi sur les
phénomènes qui peuvent leurs être associés (variations de paramètres atmosphériques et
ionosphériques). L’étude de ces effets est spécialement importante pour leur application car
les travaux publiés montrent qu’ils ont lieu quelques jours/heures avant le choc principal.
Il y a donc une possibilité d’application pour la prédiction des tremblements de terre à
court-terme.

L’étude des effets liés à l’activité sismique est un problème difficile – l’intensité sup-
posée des signaux correspondants est très faible et leur existence même est mise en doute
par une partie de la communauté scientifique. Le problème le plus important est l’impossi-
bilité de la répétition des mesures et donc la possibilité que les effets observés pendant (ou
peu avant) les tremblements de terre ont une origine différente, non lié à l’activité sismique.
L’approche la plus convaincante pour vérifier l’existence de ces effets est probablement
l’étude statistique en utilisant un grand nombre de tremblements de terre. Malheureuse-
ment, jusqu’à maintenant toutes les tentatives de faire cette étude comportaient un nombre
d’événements insuffisant. L’écart type des anomalies attribuées aux tremblements de terre
était ainsi trop grand, comparable ou plus grand que l’amplitude reportée des anomalies.

Dans ce chapitre nous allons décrire les mesures effectuées par des satellites dans
l’ionosphère et magnétosphère en relation avec l’activité sismique. L’avantage principale
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des satellites en comparaison avec des expériences au sol est qu’en utilisant un seul satellite
on peut couvrir la plupart des zones sismiques, arrivant ainsi à obtenir un grand nombre de
tremblements de terre, ce qui est indispensable pour une étude statistique. Une simulation
simple peut montrer que, pendant deux ans, un satellite polaire peut approcher plus de 400
tremblements de terre de magnitude plus grande que 5 et à une distance entre la projection
du satellite au sol et l’épicentre du tremblement de terre inférieure à 5 degrés en latitude
et longitude.

1.1.2 Limitations principales de cette synthèse

Nous ne nous sommes pas intéressés aux effets après les tremblements de terre (Calais

and Minster , 1995; Artru et al., 2005), parce qu’ils ne peuvent pas être utilisés pour la
prédiction.

Étant donné que les résultats présentés dans cette thèse sont expérimentaux, avec
l’idée principale de vérifier statistiquement l’existence des effets ionosphèriques liés à l’ac-
tivité sismique, nous ne nous sommes pas particulièrement intéressés aux mécanismes pos-
sibles de génération de ces effets. Quelques mécanismes capables de les expliquer ont été
proposés, mais ils manquent une validation expérimentale directe. Ces mécanismes sont
basés sur des idées diverses : la génération directe des émissions électromagnétiques dans
la lithosphère (Molchanov et al., 1995; Molchanov and Hayakawa, 1998; Frid et al., 2003),
la propagation des ondes acoustiques de gravité de l’épicentre jusqu’à l’ionosphère (Ma-

reev et al., 2002), l’influence du champ électrique unidirectionnel sur l’ionosphère (Sorokin

et al., 2001; Grimalsky et al., 2003) ou l’émanation des gaz radioactifs (Pulinets , 2004).
Une description détaillée de ces mécanismes est donnée par exemple dans les monogra-
phies (Hayakawa and Fujinawa, 1994; Hayakawa, 1999; Hayakawa and Molchanov , 2002),
les livres (Gokhberg et al., 1995; Pulinets and Boyarchuk , 2004), les éditions spéciales (Par-

rot and Johnston, 1989, 1993; Hayakawa and Ogawa, 1992; Hayakawa, 1996, 2002, 2004)
et les références contenues dans ces ouvrages.

Nous étudierons seulement les observations des ondes électromagnétiques effectuées
par le satellite DEMETER, parce que nous nous limitons exclusivement à l’étude de ce type
de phénomène. Les autres phénomènes qu’il serait possible d’étudier avec un satellite sont
par exemple les variations de la densité ou de la température du plasma ou des changements
dans la population des particules énergétiques – mais on ne va pas les discuter dans cette
thèse.

1.1.3 Synthèse sur les connaissances actuelles

Les données mesurées par beaucoup de satellites ont été utilisées pour analyser les
effets électromagnétiques liés à l’activité sismique, mais hormis le satellite DEMETER
(voir le Chapitre 2) ce n’était pas l’objectif principal de ces missions.

Gokhberg et al. (1983) ont présenté des perturbations dans l’ionosphère au-dessus de
la région épicentrale de tremblements de terre imminents. En utilisant le satellite OGO-6,
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ils ont montré que le bruit intégré dans la gamme de fréquence 100 - 500 Hz augmente quand
le satellite est près du tremblement de terre (Ms 5.4, distance < 480 km, 14 heures avant
le choc principal). En étudiant plusieurs observations faites par le satellite Intercosmos-19,
Larkina et al. (1983) ont conclus qu’il y a une augmentation de l’intensité des émissions dans
la gamme EBF/TBF entre une dizaine de minutes et plusieurs heures avant et après des
tremblements de terre. La région affectée s’étend en longitude et l’effet est plus marqué aux
environs de 15 kHz (la fréquence maximale de l’analyse). Quand le satellite est proche du
tremblement de terre, l’effet est aussi observé aux fréquences plus basses. Les émissions sont
surtout électrostatiques. Larkina et al. (1989) ont présenté une étude de quelques orbites
proche d’un tremblement de terre de magnitude 5.9. Ils ont montré que les émissions anor-
males aux fréquences 0.1 – 16 kHz se sont prolongées entre ±60◦ en longitude géographique
et ±2◦ en latitude géographique autour de l’épicentre.

Parrot and Lefeuvre (1985) ont publié une étude statistique en utilisant des données
du satellite géostationnaire GEOS-2. Dans le cas d’un satellite géostationnaire les on-
des doivent se propager à une distance plus grande, mais l’avantage principale est qu’on
peut étudier les effets en fonction du temps, comme on reste toujours à la même distance
de l’épicentre. Deux ensembles de données ont été utilisés : 1) les données électriques et
magnétiques mesurées pendant le temps des tremblements de terre de magnitude supérieure
à 4.7 et avec la longitude de l’épicentre prés du satellite 2) les données aléatoires. En util-
isant un critère basé sur l’intensité relative des ondes dans la gamme de fréquence 0.3 -
10 kHz, ils ont obtenu une corrélation positive de 44%. La même analyse pour les données
aléatoires a donné une corrélation de 41%, ce qui est très similaire. Quand la distance
en longitude avec les épicentres a été réduite, la corrélation a augmentée à 51%, pour les
épicentres au-dessus du continent à 54%. Aucune caractéristique spécifique ne fut trouvée
par Matthews and Lebreton (1985) en utilisant l’inspection visuelle et les données du même
satellite GEOS-2 dans la gamme de fréquence 0.3 - 11 Hz. Cependant, ils n’utilisèrent que
trois mois des données et tous les tremblements de terre inclus avaient des magnitudes
inférieures à 5.

Parrot and Mogilevsky (1989) et Parrot (1990) ont analysé les données du satellite
AUREOL-3 (apogée 2000 km, perigée 400 km) et ils ont montré que l’intensité des ondes
électromagnétiques aux fréquences plus basses que 800 Hz augmente près de l’épicentre
des tremblements de terre. Cependant, ces études sont seulement des études de cas – la
corrélation trouvée ne doit pas alors nécessairement résultée d’un lien causatif. En utilisant
le même satellite AUREOL-3, Gal’perin et al. (1992) ont fait des observations simultanées
d’ondes EBF et d’augmentation de la précipitation des électrons de haute énergie quand le
satellite passait au même L que l’épicentre (L est le paramètre de McIlwain – la distance
en rayons de la Terre ou une ligne de force particulière du champ magnétique terrestre
croise l’équateur magnétique).

Serebryakova et al. (1992) utilisèrent les données du satellite COSMOS-1809 (orbite
presque circulaire, altitude 970 km) dans la gamme de fréquence 140 Hz - 15 kHz pour
montrer qu’il y a des émissions intenses aux fréquences plus basses que 450 Hz quand le
satellite est au même L que le tremblement de terre et quand la distance longitudinale est
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moins que 10◦.

Aucune signature des effets liés aux tremblements de terre n’a été trouvée dans les
données mesurées par le satellite DE-2 (apogée 1300 km, perigée 300 km) par Henderson

et al. (1993). Ils ont comparé 63 “orbites sismiques” près des tremblements de terre (la pro-
jection du satellite au sol croise la latitude géographique du tremblement de terre à moins
de ±20◦ en longitude géographique) avec 61 “orbites de contrôle” (aucun tremblement de
terre près de la projection du satellite au sol, mais ayant les mêmes latitudes, longitudes,
temps locaux et activité magnétique que les orbites sismiques). L’analyse statistique a
montré qu’il y avait une émission dans les données électriques avec une amplitude plus
grande que 10 µV/m dans au moins 1 de 20 bandes de fréquence entre 4 Hz et 512 kHz
sur 40/63 orbites sismiques. Une émission d’une telle intensité fut observée aussi sur 38/61
orbites de contrôle. Il n’y avait alors aucune différence significative entre les deux. Les
auteurs ont conclu que les effets liés à l’activité sismique peuvent exister, mais qu’il est
très difficile les trouver, et que plus de données sont nécessaires.

Molchanov et al. (1993) ont utilisé les données du satellite Intercosmos-24 (apogée
2500 km, perigée 500 km) pour analyser 28 événements avec les caractéristiques suivantes :
M > 5.2, latitude invariante des données (latitude géomagnétique ou une ligne de force
particulière du champ magnétique terrestre touche la surface de la Terre) Lat.Inv. < 45◦,
différence entre la latitude invariante des données et la latitude invariante de l’épicentre
∆Lat.Inv < 10◦, la différence temporelle entre les données et le tremblement de terre
|∆t| < 48 h. Ils ont inspecté visuellement les données dans les gammes EBF et TBF.
Des sursauts d’émissions ont été observé entre −10◦ et +10◦ de la latitude géomagnétique
pour 15 événements. Ils ont conclus que les émissions sont observées dans deux gammes de
fréquence, UBF-EBF (< 1000 Hz) et TBF (10-15 kHz) et que la probabilité d’occurrence
est maximale 6-24 heures avant le choc principal. Ils ont aussi rapporté que les émissions
peuvent être présentes loin de l’épicentre, mais aux mêmes valeurs de L.

Les mesures par le satellite AUREOL-3 près de 325 tremblements de terre de M > 5.0
ont été analysées par Parrot (1994b). Les données sont traitées seulement quand leur
séparation temporelle du choc principal est inférieure à 24 heures et quand la latitude
invariante est inférieure à 45◦. L’amplitude moyenne de l’intensité des ondes est représentée
en fonction de la distance à l’épicentre (en latitude et en longitude). Les résultats indiquent
que les ondes électromagnétiques liées à l’activité sismique sont limitées en longitude, mais
sont dispersées en latitude.

Une comparaison des divers papiers décrits au-dessus a été présentée par Parrot

(1994c). Il a noté que les résultats obtenus sont significativement différents et qu’on ne peut
pas faire une conclusion claire concernant l’existence de ces effets. En plus, dans la plupart
de cas le nombre des événements considérés est trop petit pour une étude statistiquement
significative et les méthodes utilisées ne sont pas souvent optimales.

Rodger et al. (1996) ont analysé les données du satellite ISIS-2 (orbite presque circu-
laire, altitude environ 1400 km) dans un intervalle temporel de ±48 h près de 37 événements
de magnitude M > 5.0. Les tremblements de terre ont été choisis au-dessus des continents
quand le satellite passe à la latitude invariante de l’épicentre où prés de la région conjuguée.
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Aucune différence significative ne fut trouvée entre les orbites sismiques (152) et les orbites
de contrôle (143) en utilisant une inspection visuelle.

Plus récemment, Molchanov et al. (2006) ont analysé les signaux des émetteurs TBF
détectés par le satellite DEMETER. Ils ont montré qu’il y a une diminution de l’intensité
des signaux liée à l’occurrence de tremblements de terre importants. Les dimensions de
la région affectée sont assez grandes (1000 - 5000 km). Les auteurs ont proposé aussi un
modèle basé sur les ondes acoustiques de gravité et la turbulence ionosphèrique.

Finalement, il y a les articles Němec et al. (2008b, 2009b) inclus dans cette thèse
dont les résultats principaux sont décrits dans le Chapitre 3.

1.2 Émissions avec des structures fréquentielles

linéaires

1.2.1 Préface

Certaines émissions électromagnétiques observées dans la magnétosphère sont parfois
– quand elles sont représentées sous forme de spectrogramme fréquence-temps – composées
de quelques “lignes” intenses (il y a une dépendance linéaire de la fréquence en fonction
du temps). Ces lignes sont souvent presque horizontales (leur fréquence ne change pra-
tiquement pas) et leur intervalle en fréquence est quasi constant. Ces émissions s’appellent
habituellement “Magnetospheric Line Radiation” (MLR)1. On les a observées avec des
instruments placés au sol (Helliwell et al., 1975; Park and Helliwell , 1978; Matthews and

Yearby , 1981; Park and Helliwell , 1981, 1983; Yearby et al., 1983; Rodger et al., 1999a,
2000a,b; Manninen, 2005) ainsi qu’avec des satellites de faible altitude (Bell et al., 1982;
Koons et al., 1978; Tomizawa and Yoshino, 1985; Parrot , 1994a; Rodger et al., 1995; Parrot

et al., 2005, 2006a, 2007; Parrot and Němec, 2009). L’évidence de leur propagation dans
la magnétosphère a été établie, mais les observations directes par des satellites sont plutôt
rares et l’origine de ces événements n’est pas bien compris.

Dans certains cas, la séparation en fréquence des lignes qui forment les événements est
égale à 50 Hz ou 60 Hz (ou 100 Hz ou 120 Hz), correspondant ainsi à la fréquence principale
des systèmes électriques sur la surface de la Terre. On croit que ce type d’émissions est
causé par le rayonnement électromagnétique de ces systèmes (lignes électriques, usines, etc.)
et les émissions s’appellent habituellement “Power Line Harmonic Radiation” (PLHR)2.
Certains auteurs (Rodger et al., 1995; Parrot et al., 2005) ont aussi utilisé le nom “Tram
Lines” (TL) pour éviter de postuler sur l’origine de ces émissions.

L’étude de ces émissions est importante pour deux raisons principales : 1) Elles
représentent un phénomène intéressant dont l’origine n’est pas bien comprise et qui est
au moins partiellement liée à l’activité humaine. 2) Il est probable que près de l’équateur
magnétique ces ondes électromagnétiques agissent sur les particules contenues dans les cein-

1Nous utilisons l’abréviation “MLR” dans toute cette thèse.
2Nous utilisons l’abréviation “PLHR” dans toute cette thèse

19



tures de radiation, en influant sur leur distribution et en contribuant à leur précipitation.

1.2.2 Récapitulation sur les connaissances actuelles

Rodger et al. (1995) ont analysé des observations de MLR avec les satellites ISIS 1
et ISIS 2. Ils ont vérifié les fréquences des “lignes” et aussi l’intervalle de fréquence entre
ces lignes, mais ils n’ont trouvé aucune corrélation avec les multiples du 50 ou 60 Hz.
Néanmoins, ils ont rapporté l’existence d’événements de type “tram lines”, qui sont car-
actérisés par des lignes très étroites et une fréquence constante. Ces événements semblent
se trouver près des harmoniques du 50 ou 60 Hz. La même conclusion a été obtenue avec
les mesures au sol effectuées à Halley dans l’Antarctique (Rodger et al., 1999a, 2000a,b).

L’existence “d’effet du dimanche” a été rapportée par Park and Miller (1979) –
la fréquence de l’occurrence des événements PLHR a été significativement moindre les
dimanches par comparaison avec les autres jours de la semaine. En plus, l’intensité des
ondes électromagnétiques entre 2 et 4 kHz a été plus faible les dimanches. Les auteurs
ont proposé que les deux effets sont dus à la moindre consommation d’électricité pendant
les week-ends et que les événements PLHR peuvent être assez importants. Parrot (1991)
et Molchanov et al. (1991) ont attribué l’effet non seulement à la moindre consommation
d’électricité pendant les week-ends, mais aussi à une répartition différente du courant dans
les systèmes électriques.

Dans une récapitulation des observations de PLHR et MLR par des satellites aussi
bien que par des instruments au sol Bullough (1995) a discuté la possibilité que les MLR
aient comme origine les PLHR. Cette idée a été examinée plus en détail par Nunn et al.

(1999) en utilisant des simulations numériques.

Parrot (1994a) a décrit 5 observations d’événements MLR par le satellite AUREOL 3.
Dans tous les cas la séparation des lignes en fréquence était de 50 Hz (±1%). Les lignes
n’ont pas été observées aux multiples exactes du 50 Hz, mais leurs fréquences changeaient
avec le temps (1 - 8 Hz/s). Les événements ont été observés pendant une faible activité
magnétique et surtout pendant la nuit.

Quatre événements de type “tram lines” observées par le satellite DEMETER ont
été rapportés par Parrot et al. (2005). La séparation des lignes en fréquence est près de
50 Hz ou de 50/3 Hz (la fréquence du courant utilisée pour certains chemins de fer). La
fréquence des lignes était presque constante et elles ont été observées pendant une activité
magnétique moyenne. Les auteurs ont aussi utilisé l’analyse de la propagation des ondes
pour montrer que les événements viennent de la région au-dessous du satellite. L’aug-
mentation de l’intensité près de l’équateur géomagnétique est l’indication des interactions
ondes-particules.

Parrot et al. (2006a) ont présenté une étude sur les émissions électromagnétiques
harmoniques dans la bande EBF observées par le satellite DEMETER pendant des périodes
où l’activité géomagnétique est forte. Ils ont proposé que les ondes sont générées dans la
région de l’équateur géomagnétique aux harmoniques de la fréquence cyclotronique des
protons. Après la génération les ondes peuvent se propager dans la magnétosphère et –
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finalement – suivre un gradient de la densité jusqu’à l’ionosphère. Ces émissions peuvent
participer à la précipitation des électrons énergiques.

Une étude d’un événement MLR à grande échelle a été présentée par Parrot et al.

(2007). Les mesures simultanées par le satellite DEMETER et des instruments au sol
montrent la grand étendue spatiale et temporelle de l’événement (7,400,000 km2, 2 heures).
Les auteurs ont aussi proposé que l’événement MLR est dû à l’événement PLHR qui se
propage dans l’ionosphère et la magnétosphère et qui est affecté par des interactions ondes-
particules non-linéaires dans le région de l’équateur géomagnétique.

Finalement, il y a les articles Němec et al. (2006b, 2007b,c, 2008c, 2009a,c) inclus
dans cette thèse dont les résultats principaux sont décrits dans le Chapitre 4.
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Chapitre 2

Satellite DEMETER

2.1 Objectif de la mission

Dans cette thèse nous utilisons les données du satellite DEMETER (Detection
of Electro-Magnetic Emissions Transmitted from Earthquake Regions). C’est un micro-
satellite (130 kg) français développé par le CNES (Centre National d’Études Spatiales) en
coopération avec LPC2E/CNRS (Laboratoire de Physique et Chimie de l’Environnement
et de l’Espace / Centre National de la Recherche Scientifique) à Orléans. Il a été lancé le
29 juin 2004. La durée planifiée de la mission était originalement de 2 ans, mais compte
tenu du bon fonctionnement du satellite et des observations nouvelles, la durée a été pro-
longée. A ce jour (Mai 2009) le satellite est toujours en activité. L’altitude de l’orbite était
originalement 710 km, mais elle fut diminuée à environ 660 km en Décembre 2005. L’incli-
nation de l’orbite est 98◦ et le satellite fait à peu prés 14 orbites par jour. DEMETER est
un satellite quasi synchronisé avec le Soleil ; il est toujours situé dans le jour à 10 :30 LT
ou la nuit à 22 :30 LT.

Le premier objectif du satellite DEMETER est une étude des effets ionosphériques
liés aux tremblements de terre et des phénomènes qui les accompagnent. Parmi les autres
objectifs de la mission il y a l’analyse des effets ionosphériques induits par l’activité humaine
et l’acquisition des informations sur l’environnement électromagnétique de la Terre. Un
objectif ultime de ce satellite est d’aider à comprendre les mécanismes de génération de
tous ces phénomènes.

Il y a deux modes d’opération principales du satellite DEMETER. Pendant le premier,
qui s’appelle “Survey”, des données sont rassemblées au-dessus de toute la surface de
la Terre, sauf les régions avec une latitude géomagnétique plus grande que 65 degrés.
Pendant ce mode les données sont pré-analysées à bord du satellite pour réduire la quantité
des données à 25 ko/s. Dans le deuxième mode, qui s’appelle “Burst”, des données plus
détaillées sont rassemblées. La quantité totale des données dans ce mode est 1.7 Mo/s.
Le mode “Burst” est normalement actif au-dessus des régions sismiques (voir la Figure
2.1), mais on peut le changer si nécessaire. Les données sont déposées dans la mémoire du
satellite, d’ou elles sont transmises deux fois par jour à la station de réception à Toulouse. Le
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Fig. 2.1 – Carte du monde avec les régions sismiques indiquées. Le satellite implicitement
travaille en mode “Burst” au-dessus de ces régions.

centre de mission où les données sont déposées et pré-analysées est situé au LPC2E/CNRS
à Orléans.

2.2 Expériences à bord

Les instruments à bord du satellite permettent les mesures des six composantes
électromagnétiques dans une large bande de fréquences. Par ailleurs, on peut déterminer
un grand nombre de paramètres du plasma : la composition des ions, la température et la
densité des électrons et des ions et le flux des électrons énergiques. Il y a cinq instruments à
bord, tous connectés au Bôıtier d’Acquisition de Numérisation et de Traitement (BANT) :

– ICE (Instrument Capteur Électrique) – quatre sondes électriques pour la mesure
dans la gamme de fréquence jusqu’à 3,5 MHz

– IMSC (Instrument Magnétomètre Search Coil) – trois sondes magnétiques pour la
mesure dans la gamme de fréquence de quelques Hz jusqu’à 18 kHz

– IAP (Instrument Analyseur de Plasma) – analyseur des ions
– IDP (Instrument Détecteur de Particules) – détecteur des particules énergétiques
– ISL (Instrument Sonde de Langmuir) – sonde de Langmuir
Nous allons décrire plus en détail les deux premiers instruments destinés à la mesure

des champs électromagnétiques (Berthelier et al., 2006; Parrot et al., 2006b) que nous
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utilisons dans la thèse.

2.2.1 Instrument ICE

L’instrument ICE se compose de quatre sondes, un pré-amplificateur et l’électronique
associée au module BANT. En mesurant la différence des potentiels électriques entre les
deux sondes, on peut déterminer la composante électrique dans la direction définie par
eux. En utilisant les paires de sondes différentes, on peut ainsi déterminer toutes les trois
composantes du champ électrique. L’électronique se compose de la partie analogue avec
des filtres et des amplificateurs et la partie digitale pour la numérisation de la forme d’onde
et l’obtention des spectres de puissance.

Il y a quatre bandes de fréquences différentes :
– UBF (Ultra Basse Fréquence) – jusqu’à 15 Hz
– EBF (Extrême Basse Fréquence) – entre 15 Hz et 1 kHz
– TBF (Très Basse Fréquence) – entre 15 Hz et 17.4 kHz
– HF (Haute Fréquence) – entre 10 kHz et 3.175 MHz
En fonction de la bande de fréquence et du mode du satellite les données sont enreg-

istrées comme des formes d’ondes (burst) ou des spectres de puissance (burst + survey).

Bande UBF

Indépendamment du mode du satellite les signaux de toutes les quatre sondes
sont filtrées, amplifiées, numérisées et enregistrées. Nous n’employons pas cette bande de
fréquence dans la thèse.

Bande EBF

En mode “Burst”, les trois composantes du champ électrique sont mesurées. Dans
cette bande les trois composantes du champ magnétique sont aussi mesurées, ce qui permet
l’analyse détaillée de la propagation des ondes électromagnétiques.

Bande TBF

Une seule composante du champ électrique est mesurée. En mode “Survey” seulement
un spectre de puissance est obtenu. En fonction du mode d’instrument il y a trois types
possibles des spectres, décrits dans le Tableau 2.1. En mode “Burst” on obtient aussi la
forme d’onde.

Bande HF

Une seule composante du champ électrique est mesurée. Nous n’employons pas cette
bande de fréquence dans la thèse.
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Type du spectre Nf ∆f ∆t tave fave

Type 0 1024 19.531 Hz 2.048 s 40 1
Type 1 1024 19.531 Hz 0.512 s 10 1
Type 2 256 78.125 Hz 2.048 s 40 4

Tab. 2.1 – Types possibles des spectres de l’instrument ICE en mode “Survey”, la bande
TBF (type du spectre, nombre de fréquences, résolution en fréquence, résolution en temps,
nombre de spectres ramenés à une moyenne et nombre des fréquences ramenées à une
moyenne).

2.2.2 Instrument IMSC

L’instrument IMSC se compose de trois capteurs magnétiques du type “search-coil”.
Les modes de fonctionnement sont semblables à l’instrument ICE. La seule différence est
que cette fois il n’y a que deux bandes de fréquence : EBF et TBF.

2.3 Niveaux de l’analyse de données

Les données sont analysées suivant trois niveaux principaux. Le “Niveau 0” corre-
spond directement aux données mesurées, avant le calibrage. Le “Niveau 1” concernent
les données déjà calibrées et transformées en unité physique. Finalement, le “Niveau 2”
correspond aux figures générées avec ces données. À part ces trois niveaux, il y a aussi le
“Niveau 3”, correspondant aux programmes qui sont exécutés directement au centre de la
mission à Orléans.

2.4 Données utilisées

Nous avons utilisé les mesures électriques aussi bien que les mesures magnétiques.
Pour les études systématiques (l’analyse des effets liés á l’activité sismique en Chapitre
3, l’analyse systématique des événements MLR en Section 4.3) nous avons utilisâmes le
mode “Survey” et la bande TBF, parce qu’il est actif au dessus de toute la surface de
la Terre. Quand la résolution en fréquence n’était pas suffisante, nous avons utilisé le
mode “Burst” (l’analyse des événements PLHR et MLR, voir Section 4.2 et Section 4.3,
respectivement). Finalement, pour l’analyse des événements aux fréquences plus basses
nous Avons utilisé la bande EBF, parce que dans cette bande la mesure des six composants
du champ électromagnétique permet de faire l’analyse détaillée de la propagation des ondes
électromagnétiques (des émissions électromagnétiques harmoniques dans la bande EBF,
voir Section 4.4).
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Chapitre 3

Effets liés à l’activité sismique

3.1 Préface

Nous nous sommes concentrés sur l’analyse systématique des effets
électromagnétiques liés aux tremblements de terre. L’avantage principal d’utiliser
les données provenant d’un satellite est qu’il peut survoler un grand nombre de tremble-
ments de terre. Mais d’un autre côté, il y a des émissions électromagnétiques non-liées à
l’activité sismique assez importantes aux altitudes de DEMETER. Du fait que l’intensité
de ces émissions fluctue beaucoup, ils peuvent facilement cacher des effets potentiels
liés à l’activité sismique. La question essentielle à laquelle nous voulons répondre est
donc : “Est-ce qu’il y a une corrélation entre l’activité sismique et l’intensité des ondes
électromagnétiques dans l’ionosphére ?”. Pour être capable de découvrir des effets liés
aux tremblements de terre qui sont (s’ils existent) probablement très faibles, nous avons
développé une analyse des données en plusieurs étapes (Němec et al., 2008b, 2009b).

Dans la première étape nous avons construit une base de données des émissions
électromagnétiques. Elle contient la distribution normale de l’intensité des émissions
obtenue en utilisant toutes les données mesurées. Les données dans cette base sont or-
ganisées en fonction des paramètres suivants :

– fréquence (16 intervalles de 117 Hz chacun)
– latitude géomagnétique (36 intervalles de 10 degrés chacun)
– longitude géomagnétique (66 intervalles de 2 degrés chacun)
– heure locale magnétique (2 cas : le jour et la nuit)
– Kp index (3 cas : Kp 0–1o, Kp 1+ – 2+, Kp 3+ et plus)
– saison de l’année (2 cas : octobre–avril, mai-septembre)

Chaque cellule de cette base (décrite par une combinaison des paramètres ci-dessus)
contient un histogramme des intensités mesurées. L’annexe A contient un exem-
ple de la représentation graphique de cette base sous forme des cartes d’émissions
électromagnétiques (la valeur médiane de l’intensité en fonction de la latitude et la longi-
tude géomagnétiques).

Dans une deuxième étape, l’intensité des émissions électromagnétiques mesurées à
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proximité des tremblements de terre est évaluée en utilisant la base obtenue dans la
première étape. L’idée essentielle étant d’éliminer les fluctuations de l’intensité non-liées
aux tremblements de terre, nous n’avons pas utilisé pendant cette analyse l’intensité Ei

mesurée des ondes électromagnétiques, mais la valeur de la probabilité cumulative Fi définie
par :

Fi =
∫ Ei

−∞

f(E) dE (3.1)

où f(E) est la fonction de la densité de probabilité obtenue pour la même fréquence,
la même position du satellite et pendant des conditions magnétosphériques semblables.
Ainsi, on obtient une probabilité d’existence des ondes électromagnétiques ayant une in-
tensité inférieure ou égale à l’intensité mesurée. Finalement, les valeurs Fi à proximité des
tremblements de terre sont évaluées pour déterminer si elles sont différentes de la normale.
Nous avons développé deux méthodes possibles de cette évaluation. Leurs caractéristiques
et les résultats principaux sont décrits dans les Chapitres 3.2 et 3.3.
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3.2 Analyse en utilisant la méthode des époques su-

perposées (d’après Němec et al. (2008b))

Cette méthode est basée sur l’utilisation des époques superposées. On construit la
matrice en organisant les valeurs Fi en fonction des paramètres suivants :

– fréquence (16 intervalles comme dans la première étape)
– temps avant / après le tremblement de terre (48 intervalles de temps, résolution 4

heures, 5 jours avant le choc principal jusqu’à 3 jours après)
– distance entre la projection du satellite au sol et l’épicentre du tremblement de

terre (10 intervalles, résolution 1◦ ≈ 110 km)
S’il y a plus d’un tremblement de terre à proximité des données actuelles au maximum 10
degrés de séparation spatiale entre la projection du satellite au sol et l’épicentre, un choc
principal moins de 5 jours après et 3 jours avant), les données ne sont pas incluses dans
l’analyse. Cette condition revient à ne traiter que les tremblements de terre “isolés” dans
l’espace et dans le temps.

Pour chaque cellule b de la matrice (définie par les 3 paramètres au-dessus) on peut
définir “l’intensité probabiliste” Ib :

Ib =

∑Mb

i=1
Fi

Mb

− 0.5 (3.2)

où Mb est le nombre des valeurs de la probabilité cumulative Fi collectées dans la cellule b.
Si les intensités observées étaient significativement plus faibles ou plus fortes que normale-
ment, les valeurs correspondantes de la probabilité cumulative seraient significativement
différentes de 0.5 et la valeur résultante de l’intensité probabiliste serait significativement
différent de 0. On peut éliminer ainsi l’influence de la distribution d’intensité des ondes na-
turelles sur la statistique. Néanmoins, il y a toujours un problème qui doit être considéré :
quelle valeur correspond au mot “significativement” ? Pour répondre à cette question nous
utilisons les caractéristiques élémentaires de l’intensité probabiliste.

Les valeurs Fi de la probabilité cumulative calculées en utilisant toutes les données
sont distribuées uniformément entre 0 et 1. C’est une conséquence directe de leur définition
(Press et al., 1992). En les moyennant dans des cellules en fonction de la position et du
temps, on totalise beaucoup de ces valeurs. D’après le théorème de la limite centrale et
en supposant que le nombre des valeurs Mb est assez grand, les valeurs Ib ont ainsi une
distribution normale avec la valeur moyenne 0 et un écart type σb. Si toutes les valeurs Fi

étaient indépendantes, on pourrait calculer σb comme :

σb =
1√

12Mb

(3.3)

Le problème est que toutes les valeurs Fi ne sont pas indépendantes. Le calcul de σb est
ainsi un peu plus difficile et il est décrit en détail dans Němec et al. (2008b).
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En sachant l’écart type σb de l’intensité probabiliste Ib dans la cellule b, on peut
définir l’intensité probabiliste normalisée Υb :

Υb =
Ib

σb

(3.4)

L’avantage de ce concept est que nous connaissons exactement la distribution de Υb sauf
l’influence des tremblements de terre : la valeur moyenne est égale à 0 et l’écart type est
égal à 1.

Les travaux précédents ayant montré que la profondeur de l’épicentre peut être im-
portante pour les effets liés aux tremblements de terre (Rodger et al., 1999b). Suivant
ces travaux, nous avons divisé les tremblements de terre en deux groupes : les trem-
blements de terre peu profonds (profondeur moins de ou égale à 40 km) et les trem-
blements de terre profonds (profondeur plus de 40 km). En plus, les données mesurées
pendant le jour et pendant la nuit ont été traitées séparément, parce que les conditions
dans l’ionosphère sont complètement différentes. Finalement, toutes les 4 combinaisons
possibles de peu profonds/profonds tremblements de terre et jour/nuit ont été examinées
pour chercher la présence d’effets liés à l’activité sismique. Toutes les données électriques
et magnétiques dans la bande TBF mesurées par DEMETER jusqu’à février, 2007 ont
été incluses dans l’analyse, ce qui correspond à ≈ 11500 heures de mesures pendant
≈ 20000 demi-orbites. Selon le catalogue des tremblements de terre fournis par l’USGS
(http://neic.usgs.gov/neis/epic/epic global.html), ≈ 9000 tremblements de terre de mag-
nitude supérieure ou égale à 4.8 se sont produits dans tout le monde. Nous avons inclus
tous ces tremblements de terre dans l’analyse.

La Figure 3.1 représente l’intensité probabiliste normalisée obtenue pour les données
électriques mesurées pendant la nuit près de tremblements de terre peu profonds (distance
entre la projection du satellite au sol et l’épicentre d’un tremblement de terre inférieure à
330 km). Les résultats sont présentés en fonction de la fréquence et du temps relatif au choc
principal. On peut voir que peu (0 - 4 heures) avant le choc principal il y a une diminution
de l’intensité des ondes dans une gamme de fréquence 1-2 kHz. La variation correspond
à environ 3 écart type pour les tremblements de terre de magnitude supérieure à 4.8 (à
gauche) et à environ 4 écart type pour les tremblements de terre de magnitude supérieure à
5.0 (à droite). Une diminution de l’intensité des ondes a été observée aussi dans les données
magnétiques, mais elle est plus faible, probablement à cause de la sensibilité moindre de
l’instrument magnétique. Aucun effet n’a été observé pendant le jour. Aucun effet n’a été
observé pour les tremblements de terre profonds.

La Figure 3.2 montre que les dimensions spatiales de la région affectée sont environ de
350 km, correspondant ainsi à peu près aux dimensions de la zone de préparation estimée
par la formule de Dobrovolsky et al. (1979) : 140 km pour des tremblements de terre de
magnitude 5.0 et 380 km pour des tremblements de terre de magnitude 6.0.
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Fig. 3.1 – (à gauche) Spectrogramme fréquence-temps de l’intensité probabiliste normalisée
obtenu en utilisant les données électriques mesurées pendant la nuit à des distances entre la
projection du satellite au sol et l’épicentre d’un tremblement de terre inférieures à 330 km.
Seuls les tremblements de terre de magnitude supérieure ou égale à 4.8 et de profondeur
inférieure ou égale à 40 km ont été traités. Les données mesurées pour toutes les valeurs
de l’index Kp et toutes les saisons de l’année sont incluses. (à droite) Les même résultats,
mais cette fois obtenus pour les tremblements de terre de magnitude supérieure ou égale à
5.0. (d’après Němec et al. (2008b))
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Fig. 3.2 – L’intensité probabiliste normalisée (voir le texte) obtenue en utilisant les données
électriques mesurées pendant la nuit en fonction de la distance à l’épicentre et du temps
relatif au choc principal. Seuls les tremblements de terre de magnitude supérieure à 5.0 et
de profondeur inférieure à 40 km ont été traités. La bande de fréquence 1055-2383 Hz a
été utilisée. (d’après Němec et al. (2008b))
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3.3 Analyse en utilisant le test Mann-Whitney

(d’après Němec et al. (2009b))

En utilisant les résultats de Němec et al. (2008b) nous analysons seulement les
données mesurées pendant la nuit dans la gamme de fréquence 1.6 - 1.8 kHz et dans l’in-
tervalle du temps 0-4 heures avant le choc principal. Ceux sont exactement les paramètres
pour lesquels la diminution d’intensité des ondes a été observée. Nous choisissons le point
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Fig. 3.3 – (á gauche) Schéma de la géométrie utilisée pour le calcul latitude-longitude.
(à droite) Probabilité que ce rapport des diminutions et augmentations de l’intensité des
ondes soit par hasard. Les tremblements de terre de magnitude supérieure ou égale à 5.0
et de profondeur inférieure ou égale à 40 km ont été traités. (d’après Němec et al. (2009b))

P près de l’épicentre des tremblements de terre. Pour chaque demi-orbite du satellite près
de ce point (distance entre la projection du satellite au sol et le point inférieure à 3 degrés)
nous vérifions si les valeurs de la probabilité cumulative près du point P sont inférieures
ou supérieures aux valeurs normales. Pour le décider, nous utilisons le test Mann-Whitney.
C’est un test statistique non-paramétrique qui permet – au niveau de la signification de-
mandée – de décider si les deux populations X et Y ont la même valeur moyenne ou non
(Sheskin, 2000). Comme population X nous prenons les valeurs de la probabilité cumu-
lative près du point P et comme population Y nous prenons les valeurs de la probabilité
cumulative sur le reste de demi-orbite (voir la Figure 3.3, le panneau à gauche). La rai-
son de ce traitement est que les mesures pendant chaque demi-orbite du satellite durent
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seulement environ 35 minutes – c’est une période relativement courte par comparaison avec
l’échelle temporelle des changements majeurs de l’intensité des ondes dans l’ionosphère. Les
valeurs mesurées pendant la même demi-orbite sont ainsi dépendantes et il est raisonnable
de prendre les valeurs de la probabilité cumulative obtenues loin de l’épicentre pendant la
même demi-orbite comme valeurs de référence.

Finalement, on évalue l’importance statistique des résultats obtenus. Pour chaque
événement (pour chaque demi-orbite que est suffisamment près du point P ) et pour le
niveau de signification prédéfini il y a les trois possibilités suivantes :

1. Les valeurs de la probabilité cumulative près du point P sont inférieures à celles dans
le reste de la demi-orbite.

2. Les valeurs de la probabilité cumulative près du point P sont supérieures à celles
dans le reste de la demi-orbite.

3. Les valeurs de la probabilité cumulative sont presque les mêmes près du point
P et dans le reste de la demi-orbite : on ne peut pas décider qu’elles sont
inférieures/supérieures avec le niveau de signification prédéfini.

Les événements pour lesquels on ne peut pas décider au niveau de la signification prédéfini
ne sont plus considéres. Nous calculons le nombre des événements pour lesquels les valeurs
de la probabilité cumulative près du point P sont inférieures au reste de la demi-orbite
(Nd) et, de la même manière, nous calculons le nombre des événements pour lesquels
les valeurs de la probabilité cumulative près du point P sont supérieures au reste de la
demi-orbite (Ni). En utilisant directement les deux valeurs Nd et Ni on peut calculer la
probabilité de leur présence accidentelle. S’il n’y avait aucun effet lié à l’activité sismique, la
probabilité pi de l’augmentation de l’intensité près du point P serait égale à la probabilité
pd de la diminution de l’intensité près du point P et les valeurs Ni et Nd seraient ainsi
approximativement les mêmes. Si les valeurs Ni et Nd sont très différentes, l’intensité des
ondes électromagnétiques est différente près du point P en comparaison avec le reste des
orbites, indiquant ainsi l’existence des effets liés à l’activité sismique. L’évaluation de la
probabilité de la présence accidentelle est très facile. Car pi = pd pour le cas hors effets
sismiques, et nous devons simplement traiter la distribution binomiale.

Toutes les données électriques de nuit dans la bande TBF mesurées par DEMETER
jusqu’à mars, 2008 ont été incluses dans l’analyse, ce qui correspond à ≈ 9000 heures
de mesures pendant ≈ 15500 demi-orbites. Selon le catalogue des tremblements de terre
fournis par l’USGS, ≈ 9500 tremblements de terre de magnitude supérieure ou égale à 4.8
et de profondeur inférieure à 40 km se sont produits dans tout le monde. Nous avons inclus
tous ces tremblements de terre dans l’analyse. Parmi ces tremblements de terre, il y a plus
de 5500 tremblements de terre de magnitude supérieure ou égale à 5.0.

Le panneau à droite de la Figure 3.3 montre les résultats obtenus en fonction de
la position du point P relativement aux épicentres des tremblements de terre. Seuls les
tremblements de terre importants (M ≥ 5.0) et peu profonds (profondeur < 40 km) ont été
traités. L’échelle représente la probabilité de présence des valeurs Ni et Nd par hasard. On
peut voir que le seul effet exceptionnel est localisé près de l’épicentre des tremblements de
terre, déplacé d’environ 2◦ à l’ouest et aussi un peu au nord. Il représente une diminution de
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l’intensité des ondes (on ne peut pas décider du niveau, parce que l’on considère seulement
la probabilité de présence des valeurs Ni et Nd par hasard, et non l’amplitude). Un niveau
de signification de 0.01 a été utilisé, ce qui donne environ 50 événements dans chaque
celulle de la figure.
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Fig. 3.4 – (à gauche) Nombre des événements avec une augmentation de l’intensité des
ondes prés de l’épicentre des tremblements de terre (Ni) en fonction de la magnitude des
tremblements de terre. (à droite) Nombre des événements avec une diminution de l’intensité
des ondes prés de l’épicentre des tremblements de terre (Nd) en fonction de la magnitude
des tremblements de terre. (d’après Němec et al. (2009b))

De plus, nous avons vérifié la dépendance de cet effet aux paramètres suivants : le
magnitude du tremblement de terre, la profondeur du tremblement de terre et la hauteur
absolue de la surface solide au-dessus de l’hypocentre (si le tremblement de terre est au-
dessous d’un océan ou au-dessous du continent). Le niveau de signification pour le test
Mann-Whitney utilisé a toujours été 0.01.

La Figure 3.4 montre les résultats obtenus pour la dépendance avec la magnitude
des tremblements de terre. Le panneau à gauche représente la valeur Ni en fonction de la
magnitude des tremblements de terre, le panneau à droite représente la même dépendance
obtenue pour la valeur Nd. Tous les tremblements de terre peu profonds (profondeur < 40
km) ont été inclus. On peut voir que pour des magnitudes suffisamment grandes (M ≥ 5.5)
il y a presque toujours une diminution de l’intensité des ondes près des tremblements de
terre (15 événements sur 17).

La Figure 3.5 est similaire à la Figure 3.4, mais cette fois elle concerne l’effet de la
profondeur. Tous les importants (M ≥ 5.0) tremblements de terre ont été inclus. On peut
voir que pour les tremblements de terre peu profonds (profondeur < 20 km), la diminution
d’intensité des ondes près de ces tremblements de terre est plus fréquente.

La Figure 3.6 représente une combinaison des dépendances de la Figure 3.4 et de la
Figure 3.5. Elle montre le nombre relatif de la diminution d’intensité des ondes (Nd/(Nd +
Ni)) en fonction de la magnitude et de la profondeur. Un nombre relatif de la diminution
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Fig. 3.5 – Comme la Figure 3.4, mais en fonction de la profondeur des tremblements de
terre. (d’après Němec et al. (2009b))

d’intensité égal à 0.5 signifie que Nd = Ni prés des tremblements de terre, et il n’y a pas de
changement d’intensité des ondes spécifiques. Un nombre relatif de la diminution d’intensité
égal à 1 signifie que pour tous les événements les valeurs de la probabilité cumulative sont
significativement plus petits prés des tremblements de terre que dans le reste des demi-
orbites (ou il n’a pas été possible de décider en utilisant le test Mann-Whitney et le niveau
de signification choisi). Il y a environ 10 événements dans chaque celulle. On peut voir
que le nombre relatif de la diminution d’intensité est près de 0.5 pour les tremblements
de terre profonds et faibles (d ≥ 26, M < 5.0 – à gauche, dessus), montrant ainsi aucun
changement spécifique de l’intensité. Pour les tremblements de terre peu profonds et assez
grands (d ≤ 25, M > 5.4 – à droite, dessous), le nombre relatif de la diminution d’intensité
est égal à 1.

La Figure 3.7 est similaire aux Figures 3.4 et 3.5, mais cette fois les résultats ont
été obtenus pour la dépendance avec la hauteur absolue de la surface solide au-dessus
des hypocentres des tremblements de terre (magnitude ≥ 5.0). Le nombre de tremble-
ments de terre au-dessous des océans est plus grand que le nombre des tremblements de
terre au-dessous du continent, mais on n’observe aucun effet de diminution d’intensité avec
l’altitude : le ratio Nd/Ni est à peu près le même pour toutes les altitudes. Cette infor-
mation pourrait aider à comprendre les mécanismes responsables de cet effet : certains
mécanismes proposés (Parrot , 1995) peuvent exister pour des tremblements de terre au-
dessous des océans aussi bien que pour des tremblements de terre au-dessous du continent
(par exemple l’émanation des gaz radioactifs), mais d’autres peuvent exister seulement
pour des tremblements de terre au-dessous du continent.
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Fig. 3.6 – Nombre de diminutions de l’intensité des ondes prés des tremblements de terre
en fonction de leur profondeur et leur magnitude. (d’après Němec et al. (2009b))
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Fig. 3.7 – Comme la Figure 3.4, mais en fonction de l’altitude de la surface au-dessus de
l’épicentre des tremblements de terre. (d’après Němec et al. (2009b))
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3.4 Synthèse

En résumé, nous avons montré les points suivants :

1. Il y a une corrélation entre l’intensité des ondes électromagnétiques TBF dans
l’ionosphère et l’activité sismique.

2. L’effet est observé seulement pendant la nuit. Il n’y a aucun effet similaire pendant
le jour.

3. L’intensité des ondes électromagnétiques dans une gamme de fréquence 1 – 2 kHz est
plus faible que normalement peu (0 – 4 heures) avant le choc principal. Les dimensions
spatiales de la région affectée sont de quelques centaines de kilomètres.

4. L’effet est plus fort pour les tremblements de terre de forte magnitude.

5. L’effet est plus fort pour les tremblements de terre moins profonds. Aucun effet a été
observé pour les tremblements de terre très profonds (une profondeur > 40 km).

6. L’effet est observé pour les tremblements de terre sous la mer aussi bien que pour les
tremblements de terre sur les continents.

7. L’effet semble déplacé d’environ 2◦ à l’Ouest des épicentres des tremblements de terre.
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Chapitre 4

Émissions avec des structures
linéaires

4.1 Préface (d’après Němec et al. (2007b))

Nous nous sommes intéressés à l’étude systématique des événements ayant des struc-
tures fréquentielles linéaires (voir le Chapitre 1.2). En utilisant une identification automa-
tique de ces événements (Němec et al., 2006b) ainsi qu’une identification visuelle nous
avons obtenu – à notre connaissance – le plus grand ensemble d’événements observées par
des satellites jusqu’ici. Nous avons trouvé qu’il y a trois types différents d’événements :
PLHR, MLR et émissions électromagnétiques harmoniques dans la bande EBF. Dans cette
section nous allons présenter la classification de ces événements. Les trois sections qui
suivent présentent les résultats les plus importants que nous avons obtenus pour chaque
type d’émissions. Une description plus détaillée de ces résultats peut être trouvée dans les
papiers appropriés attachés en annexe.

Les émissions du type PLHR sont des événements avec une structure ayant des lignes
dont la séparation en fréquence est 50/100 Hz ou 60/120 Hz. La Figure 4.1 représente un ex-
emple de ce type d’émissions. Les données ont été mesurées en Février 1, 2006 après 19:06:32
UT quand le satellite se trouvait au-dessus des États-Unis. Trois lignes aux fréquences 2100
Hz, 2160 Hz et 2220 Hz sont clairement visibles – la séparation des lignes en fréquence est
ainsi 60 Hz. D’autres exemples d’émissions PLHR sont présentés dans l’Annexe B.

Les émissions dont la séparation en fréquence entre les lignes individuelles est
ni 50/100 Hz ni 60/120 Hz peuvent être des événements MLR ou des émissions
électromagnétiques harmoniques dans la bande EBF. La classification entre les deux n’est
pas toujours claire. La différence principale est que les événements MLR sont observés à
des fréquences plus hautes et à des latitudes plus grandes. La Figure 4.2 représente un
exemple de ces émissions de type MLR. Les données ont été mesurées le Janvier 19, 2007
après 06:26:02 UT. On peut voir beaucoup des lignes presque horizontales dans la gamme
de fréquence entre 2 et 4 kHz. Un exemple d’émission électromagnétique harmonique dans
la bande EBF est présenté dans la Figure 4.3. Les données ont été mesurées le Novembre 10,
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Fig. 4.1 – Spectrogramme fréquence-temps des fluctuations du champ électrique corre-
spondant à un événement PLHR. Les données ont été mesurées le Février 1, 2006 après
19:06:32 UT quand le satellite se trouvait au-dessus des États-Unis. Des lignes sont visibles
aux fréquences 2100 Hz, 2160 Hz et 2220 Hz, et la séparation en fréquence de ces lignes
est ainsi 60 Hz. (d’après Němec et al. (2007c))

2004 après 00:50:30 UT. La diminution d’intensité des ondes à des fréquences inférieures à
450 Hz est causée par la coupure près de la fréquence locale cyclotronique des protons (San-

toĺık et al., 2006). D’autres exemples d’émissions MLR et d’émissions électromagnétiques
harmoniques dans la bande EBF sont présentés dans les Annexes C et D.

Les Figures 4.4 et 4.5 montrent les différences principales entre les événements PLHR
(49 événements inclus) et les autres événements (la mélange de MLR et des émissions
électromagnétiques harmoniques dans la bande EBF, 23 événements en total). L’activé
géomagnétique (exprimée en utilisant la valeur de l’index Kp) pendant l’observation des
événements est vérifiée dans la Figure 4.4. On peut voir que les événements PLHR sont
observées pendant tous les niveaux de l’activité géomagnétique, il n’y a aucune différence
entre la distribution des valeurs Kp pendant l’occurrence des événements PLHR et la dis-
tribution des valeurs Kp normale. D’un autre côté, les événements MLR / les émissions
électromagnétiques harmoniques dans la bande EBF sont plus observées pendant une ac-
tivité géomagnétique soutenue.

Le panneau à gauche de la Figure 4.5 montre les fréquences centrales des émissions
PLHR en les comparant avec les émissions ayant une structure fréquencielle linéaire.
On peut voir que les événements PLHR sont plus souvent observées dans la gamme de
fréquence 2-3 kHz. Le panneau à droite de la Figure 4.5 représente l’intensité maximale
des événements, montrant que l’intensité des événements du type PLHR est assez faible en
comparaison de celles des événements MLR / émissions électromagnétiques harmoniques
dans la bande EBF (on peut aussi bien le voir dans les exemples des Figures 4.1, 4.2 et
4.3).
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Fig. 4.2 – Spectrogramme fréquence-temps des fluctuations du champ électrique corre-
spondant à un événement MLR. Les données ont été mesurées le Janvier 19, 2007 après
06:26:02 UT.

La Figure 4.6 montre bien la différence entre des événements MLR et des
émissions électromagnétiques harmoniques dans la bande EBF. Les fréquences centrales
des événements en fonction de la latitude géomagnétique forment deux groupes distincts.
La première classe comprend des événements aux fréquences inférieures à environ 1 kHz
localisées près de l’équateur magnétique (λm < 15◦) – ces événements sont les émissions
électromagnétiques harmoniques dans la bande EBF. La deuxième classe comprend des
événements aux fréquences plus hautes localisées aux latitudes plus grandes (λm > 40◦) –
ces événements sont les émissions du type MLR.
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Fig. 4.3 – Spectrogramme fréquence-temps des fluctuations du champ électrique correspon-
dant à des émissions électromagnétiques harmoniques dans la bande EBF. Les données ont
été mesurées le Novembre 10, 2004 après 00:50:30 UT.
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Fig. 4.4 – Histogrammes des indices Kp pendant l’observation des événements PLHR
(à gauche, ligne en plein) et pendant l’observation des événements MLR / des émissions
électromagnétiques harmoniques dans la bande EBF (à droite, ligne pleine). L’histogramme
de tous les indices Kp pendant la période analysée est tracé dans les deux panneaux avec
une ligne en tireté. (d’après Němec et al. (2007b))
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Fig. 4.5 – (à gauche) Histogrammes des fréquences centrales des événements PLHR
(ligne en tireté) et des événements MLR / des émissions électromagnétiques har-
moniques dans la bande EBF (ligne pleine). (à droite) Histogrammes des intensités max-
imales des événements PLHR (ligne en tireté) et des événements MLR / des émissions
électromagnétiques harmoniques dans la bande EBF (ligne pleine). (d’après Němec et al.

(2007b))
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Fig. 4.6 – Fréquences centrales des événements MLR / des émissions électromagnétiques
harmoniques dans la bande EBF en fonction de la latitude géomagnétique. (d’après Němec

et al. (2007b))
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4.2 Résultats obtenus pour PLHR (d’après Němec

et al. (2006b, 2007c, 2008c))

Tous les événements PLHR analysés ont été mesurés en mode Burst et trouvés par
une procédure automatique pour leur identification (Němec et al., 2006b). Dans la Figure
4.7 nous présentons encore un exemple de ce type d’émissions. Les données ont été mesurées
le Mars 25, 2006 après 19 :13 :32 UT quand le satellite était au-dessus de la Finlande. Le
premièr panneau représente le spectrogramme fréquence-temps des fluctuations du champ
électrique. Le deuxième panneau représente le spectre de puissance des 18 premières sec-
ondes de données. L’intensité des émissions est clairement plus forte pour les fréquences
1650 Hz, 1750 Hz, 1850 Hz, 1950 Hz, 2050 Hz et 2150 Hz. Une faible augmentation de
l’intensité des ondes est aussi visible aux fréquences 2250 Hz, 2350 Hz et 2450 Hz. La
séparation en fréquence entre les lignes individuelles est 100 Hz, ce qui correspond bien à
la fréquence principale des systèmes électriques en Finlande (50 Hz).

Les locations des émissions PLHR avec une séparation en fréquence entre les lignes in-
dividuelles de 50/100 Hz sont indiquées sur la Figure 4.8 (17 événements). Les locations des
émissions PLHR avec une séparation en fréquence entre les lignes individuelles de 60/120
Hz sont indiquées sur la Figure 4.9 (32 événements). Les lignes du champ magnétique et
les empreintes des points des observations au sol sont indiquées par des lignes et des petits
points, respectivement. Aussi, les régions avec le mode Burst toujours actif sont tracées
en gris. A partir de ces figures, on peut bien voir que les locations des événements cor-
respondent bien aux fréquences principales des systèmes électriques au-dessous du point
d’observation ou au point conjugué : les événements avec une séparation des lignes indi-
viduelles en fréquence de 50/100 Hz sont observés presque toujours au-dessus de l’Europe
et les événements avec une séparation en fréquence de 60/120 Hz au-dessus des États-Unis,
du Brésil et du Japon.

Les Figures 4.10 et 4.11 montrent les résultats de l’étude de l’intensité des lignes
individuelles que forment les événements PLHR. Sur le panneau à gauche de la Figure
4.10 on voit que l’intensité des lignes individuelles observées pendant le jour est plus faible
que l’intensité des lignes individuelles observées pendant la nuit. Pour expliquer cette
différence nous avons fait le calcul numérique “full-wave” de l’efficacité de couplage des
ondes à la surface de la Terre jusqu’à l’altitude du satellite DEMETER. Les résultats
obtenus sont tracés dans la Figure 4.11 pour la fréquence des ondes 2.5 kHz et pour
deux régions différentes (la Finlande et le Japon). On peut voir, qu’il y a une différence
énorme entre la couplage pendant le jour et pendant la nuit (la couplage est environ 5
fois plus facile pendant la nuit). En plus, le couplage est plus facile dans la région de la
Finlande que dans la région du Japon – ceci à cause de la latitude géomagnétique différente
(57.5◦ pour la Finlande, 23◦ pour le Japon). L’efficacité du couplage est meilleure aux
latitudes géomagnétiques plus grandes à cause de l’inclination magnétique plus près de 90◦

et aussi à cause du champ magnétique plus intense. Finalement, quand on utilise cette
efficacité de couplage numériquement calculée pour estimer l’intensité des événements au
sol, on obtient les résultats tracés sur le panneau à droite de la Figure 4.10. On peut voir
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que l’intensité rayonnée au sol est bien plus grande pendant le jour que pendant la nuit.
Cela correspond bien à plus de lignes individuelles observées pendant le jour, quand la
consommation d’électricité est plus grande.
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Fig. 4.7 – (dessus) Spectrogramme fréquence-temps des fluctuations du champ électrique
correspondant à un des événements ayant une séparation en fréquence entre les lignes
individuels de 50/100 Hz. Les données ont été mesurées le Mars 25, 2006 après 19:13:32
UT quand le satellite était au-dessus de la Finlande. (en bas) Spectre de puissance des 18
premières secondes de données. Les pics les plus importantes sont marqués par des flèches.
(d’après Němec et al. (2007b))
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Fig. 4.8 – arte des locations géographiques des événements PLHR avec une séparation
en fréquence des lignes individuelles de 50/100 Hz (grands points). Les lignes du champ
magnétique et les empreintes des points d’observations au sol sont représentées par les
lignes et les petits points, respectivement. Les régions avec le mode Burst toujours actif
sont tracées en gris. (d’après Němec et al. (2007c))
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Fig. 4.9 – Identique à la Figure 4.8, mais pour les événements PLHR avec une séparation
en fréquence des lignes individuelles de 60/120 Hz. (d’après Němec et al. (2007c))

47



0 5 10 15 20
MLT (hours)

10-7

10-6

10-5

D
et

ec
te

d 
P

ea
k 

P
oy

nt
in

g 
F

lu
x

(n
W

 m
-2
 H

z-1
)

0 5 10 15 20
MLT (hours)

10-6

10-5

10-4

E
st

im
at

ed
 R

ad
ia

te
d 

P
ea

k 
P

oy
nt

in
g 

F
lu

x
(n

W
 m

-2
 H

z-1
)

Fig. 4.10 – (à gauche) Densité spectrale du flux du vecteur de Poynting maximale cor-
respondant aux lignes individuelles des événements PLHR en fonction du temps local
magnétique. Les valeurs moyennes pour le jour/ la nuit et les écarts type correspondants
sont tracés avec des traits horizontaux. (à droite) Densité spectrale du flux du vecteur de
Poynting estimée pour les lignes individuelles des événements PLHR au sol en fonction
du temps local magnétique. Les valeurs moyennes pour le jour / la nuit et les écarts type
correspondants sont tracés avec des traits horizontaux. (d’après Němec et al. (2008c))
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Fig. 4.11 – Efficacité de couplage de l’onde à la fréquence 2.5 kHz en fonction de l’altitude
pour la nuit et la région de la Finlande (ligne en pointillé), la nuit et la région du Japon
(ligne en tireté-pointillé), le jour et la région de la Finlande (ligne en tireté) et le jour et
la région du Japon (ligne pleine). (d’après Němec et al. (2008c))
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4.3 Résultats obtenus pour les MLR (d’après Němec

et al. (2009a))

Nous avons analysé 657 événements du type MLR trouvés manuellement dans 3 ans
de données Survey (Němec et al., 2009a). Ces événements ont été trouvés dans 549 demi-
orbites sur 26036 vérifiées (on peut avoir deux événements MLR sur une même demi-orbite,
mais localisés aux points conjugués). Quand on vérifie le temps local magnétique pendant
l’observation des événements, on trouve que 390 événements ont été détectées pendant le
jour et 267 pendant la nuit. Cette différence est statistiquement significative (Němec et al.,
2009a).
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Fig. 4.12 – Carte d’occurrence des événements MLR en coordonnées géomagnétiques. Le
nombre des événements dans une case latitude-longitude est marqué par la couleur. (d’après
Němec et al. (2009a))

La Figure 4.12 représente la carte des positions de ces événements en coordonnées
géomagnétiques. On peut voir que la plupart des événements est localisée aux latitudes
géomagnétiques hautes (il n’y a aucun événement observés aux latitudes géomagnétiques
supérieures à 65◦ à cause de la limitation du satellite DEMETER – voir le Chapitre 2).
L’effet intéressant est qu’il y a moins d’événements au-dessus de l’Océan Atlantique. Ceci
est probablement lié à l’anomalie de l’Atlantique-Sud (Němec et al., 2009a).
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La Figure 4.13 présente les valeurs de L centrales des événements MLR en fonction
de la position de la plasmapause (Moldwin et al., 2002). Elle montre que la majorité
des événements est observée dans la plasmasphère (la partie à droite en bas). Quelques
événements semblent être observés hors de la plasmasphère, mais on peut l’expliquer plus
probablement par des imprécisions dans le modèle (Němec et al., 2009a).

Les Figures 4.14 et 4.15 montrent les résultats de la méthode des époques superposées
que nous avons utilisée pour vérifier si l’occurrence des événements MLR est connecté à l’ac-
tivité géomagnétique. La Figure 4.14 a été obtenue pour l’index de l’activité géomagnetique
Kp, la Figure 4.15 a été obtenue pour l’index de l’activité géomagnétique Dst. Le panneaux
à gauche montrent la valeur moyenne de l’index approprié en fonction du temps relatif aux
MLR, aussi bien que l’écart type. Les panneaux à droite montrent la valeur médiane en
fonction du temps relatif aux MLR. On peut voir que les événements sont observés pen-
dant (ou juste après) une activité géomagnétique non nulle. L’effet est statistiquement
bien significatif, mais l’amplitude de l’augmentation est assez faible en comparaison avec
les fluctuations normales des indices Kp et Dst (Němec et al., 2009a).

Les derniers résultats que nous présentons dans cette section concernent une
événement très intéressant dans laquelle une émission PLHR et une émission MLR sont
observées pendant la même demi-orbite. Se pose alors la question naturelle : est-ce que
cela représente un cas où les MLR sont induites par les PLHR? La Figure 4.16 représente
le spectrogramme de tout la demi-orbite. L’événement PLHR est observé environ entre
08 :01 :30 UT et 08 :04 :30 UT dans la gamme de fréquence 2800-3600 kHz. L’événement
MLR se trouve dans la région conjugué, il est observé approximativement entre 08 :31 :00
UT et 08 :36 :00 UT dans la gamme de fréquence 3200-4000 kHz. Il est bien plus intense
que l’événement PLHR, correspondant ainsi aux résultats décrits dans la Section 4.1.

Le panneau à gauche de la Figure 4.17 représente le spectrogramme fréquence-temps
détaillé de l’événement PLHR. On peut clairement voir les lignes horizontales que forment
l’événement. En plus, le mode Burst était actif, permettant ainsi de construire le spectre
de puissance détaillé. Celui-ci est représenté dans le panneau à droite de la Figure 4.17.
On peut identifier les fréquences avec l’intensité maximale : 2950 Hz, 3000 Hz, 3050 Hz,
3150 Hz, 3250 Hz, 3350 Hz, 3450 Hz, 3550 Hz et 3650 Hz, correspondant à la fréquence
principale du système électrique 50 Hz (l’événement a été observé au-dessus de la Russie.
Le spectrogramme fréquence-temps détaillé de l’événement MLR est représenté dans la
Figure 4.18.

L’idée que les MLR sont générés par les PLHR est assez vielle (Bullough, 1995; Nunn

et al., 1999), mais elle a toujours manqué de validation expérimentale – ce qui fait que
l’observation décrite au dessus a autant d’importance. Les événements sont localisés dans
des régions conjuguées et l’événement PLHR a été observé le premièr. Cette observation
ne représente pas un preuve définitive que les MLR sont générés par les PLHR, mais elle
montre que – au moins pour ce cas – les deux sont probablement connectés. En plus, on
comprend assez bien l’origine des événements PLHR (Němec et al., 2006b, 2007c, 2008c) ;
il est alors naturelle de supposer que les MLR sont affectés par les PLHR et non vice versa.
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Fig. 4.13 – (points) Valeurs de L centrales des événements MLR en fonction de la position
de la plasmapause (obtenue par un modèle). (ligne rouge) Valeurs moyennes des valeurs
de L centrales des événements MLR. (lignes verticales) Dimensions des événements MLR.
(d’après Němec et al. (2009a))
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Fig. 4.14 – (à gauche) Trait fort : La valeur moyenne d’index Kp en fonction du temps
relatif au temps d’observation des événements MLR. Trait fin : L’écart type de la valeur
moyenne. (à droite) La valeur médiane de l’index Kp en fonction du temps relatif au temps
des événements MLR. (d’après Němec et al. (2009a))
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Fig. 4.15 – (à gauche) Trait fort : La valeur moyenne de l’index Dst en fonction du temps
relatif au temps d’observation des événements MLR. Trait fin : L’écart type de la valeur
moyenne. (à droite) La valeur médiane de l’index Dst en fonction du temps relatif au temps
des événements MLR. (d’après Němec et al. (2009a))
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Fig. 4.16 – Spectrogramme fréquence-temps de l’orbite contenant un événement PLHR et
un événement MLR dans une région conjuguée. (d’après Němec et al. (2009a))
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Fig. 4.17 – (à gauche) Spectrogramme fréquence-temps détaillé correspondant à
l’événement PLHR de la Figure 4. (à droite) Le spectre de puissance correspondant à
l’événement PLHR de la Figure 4.16. (d’après Němec et al. (2009a))
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Fig. 4.18 – Spectrogramme fréquence-temps détaillé correspondant à l’événement MLR de
la Figure 4.16. (d’après Němec et al. (2009a))
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4.4 Résultats obtenus pour les émissions

électromagnétiques harmoniques dans la bande

EBF (d’après Němec et al. (2009c))

Nous avons analysé 24 événements d’émissions électromagnétiques harmoniques dans
la bande EBF mesurées pendant le mode Burst. Dans ce cas, les formes d’onde des 3
magnétiques et des 3 composants électriques sont mesurées, ce qui nous permet de faire
l’analyse détaillée de la propagation des ondes.

La Figure 4.19 présente un exemple de l’analyse détaillée de la propagation des on-
des (Santoĺık et al., 2006) mesurées le Mai 2006, entre 08:16:40 UT et 08:17:55 UT. Les
panneaux individuels tracent les spectrogrammes fréquence-temps de : la densité spec-
trale des fluctuations du champ électrique, la densité spectrale des fluctuations du champ
magnétique, l’ellipticité des fluctuations du champ magnétique EB, l’ellipticité des fluctu-
ations du champ électrique EE, l’angle polaire du vecteur d’onde θk, l’angle azimutal du
vecteur d’onde φk, l’angle polaire du vecteur de Poynting θp, l’angle azimutal du vecteur
de Poynting φp et la composant du vecteur de Poynting parallèle au champ magnétique
terrestre normalisée par l’écart type. Nous avons choisi la valeur de l’intensité minimale
pour tracer seulement les données correspondant à l’événement.

Les valeurs de l’ellipticité des fluctuations du champ magnétique EB et de l’ellipticité
des fluctuations du champ électrique EE varient entre -1 et 1. Les valeurs négatives corre-
spondent à l’onde polarisée à gauche, les valeurs positives correspondent à l’onde polarisée
à droite. La valeur absolue de l’ellipticité est égale au rapport entre l’axe de la polarisa-
tion mineure et l’axe de la polarisation majeure : la valeur 0 correspond à la polarisation
linéaire, la valeur 1 correspond à la polarisation circulaire. Dans le troisième panneau de
la Figure 4.19 on peut voir que la polarisation des fluctuations du champ magnétique est
presque linéaire. La polarisation des fluctuations du champ électrique est polarisée à droite
et elliptique. Les quatre panneaux suivants représentent les directions du vecteur d’onde
et du vecteur de Poynting. On peut voir que les deux angles polaires θk et θp sont proche
de 90 degrés, correspondant ainsi à une propagation perpendiculaire au champ magnétique
terrestre. Les angles azimutaux φk et φp sont proche de ±180 degrés, correspondant à une
propagation vers la Terre. Toutes ces caractéristiques sont en accord avec la propagation
en mode sifflement perpendiculairement au champ magnétique terrestre, avec des fluctua-
tions du champ magnétique orientées parallèlement au champ magnétique terrestre et des
fluctuations du champ électrique polarisées elliptiquement dans le plan perpendiculaire au
champ magnétique terrestre.

Un résultat très important est présenté dans le dernier panneau de la Figure 4.19 : la
composante du vecteur de Poynting parallèle au champ magnétique terrestre est orientée
dans la direction opposé au champ magnétique terrestre au Sud de l’équateur magnétique
et elle est orientée dans la direction du champ magnétique terrestre au Nord de l’équateur
magnétique. Il y a ainsi un changement de l’orientation de la composante parallèle du flux
du vecteur de Poynting près de l’équateur magnétique.
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Les Figures 4.20, 4.21 et 4.22 représentent les résultats obtenus pour les 24 événements
analysés en fonction de la latitude géomagnétique. Pour chaque événement et pour chaque
intervalle de temps (1.64 s, voir Němec et al. (2009c) pour plus de détails), nous avons
calculé la valeur moyenne du paramètre de la propagation choisie. Puis, chacune de ces
valeurs moyennes a été représentée par un point dans la figure propre.

La Figure 4.20 représente la direction du vecteur d’onde en fonction de la latitude
géomagnétique. Le panneau à droite montre que l’angle azimutal du vecteur d’onde (φk)
est presque toujours près de ±180 degrés, correspondant à une propagation vers la Terre.
Le panneau à gauche montre que la composante du vecteur d’onde parallèle au champ
magnétique terrestre est orientée dans la direction opposée au champ magnétique au Sud
de l’équateur magnétique (θk > 90◦) et elle orientée dans la direction du champ magnétique
terrestre au Nord de l’équateur magnétique (θk < 90◦). Elle est ainsi incliné “hors de
l’équateur magnétique”. A proximité de l’équateur magnétique il y a un changement de
l’orientation de la composante parallèle du flux du vecteur de Poynting et ce vecteur de
Poynting est orienté presque perpendiculairement au champ magnétique terrestre.

En plus, la dépendance de l’angle polaire correspondant au vecteur d’onde (θk) avec
la latitude géomagnétique λm est presque linéaire (un coefficient de corrélation de 0.76).
Nous pouvons ainsi développer un modèle simple en utilisant la théorie du plasma froid et
réaliser le fit linéaire suivant :

θk = 90 − 1.62λm (4.1)

où θk et λm sont en degrés. Ce fit linéaire est tracé suivant une ligne épaisse dans le panneau
à gauche de la Figure 4.20.

La Figure 4.21 représente la direction du vecteur de Poynting en fonction de la lati-
tude géomagnétique. On peut voir que le vecteur de Poynting est aussi systématiquement
orienté vers la Terre et qu’il y a une divergence positive de l’énergie près de l’équateur
géomagnétique. En utilisant un fit linéaire 4.1 et la théorie du plasma froid nous avons cal-
culé la dépendance théorique θp(λm), qui est tracé avec une ligne épaisse dans le panneau
à gauche. Les paramètres suivants ont été utilisés :

– la fréquence d’onde 500 Hz, qui est la valeur typique des émissions
électromagnétiques harmoniques dans la bande EBF (Němec et al., 2009c)

– le champ magnétique a été calculé en utilisant l’approximation du dipole
– la densité totale des particules 30000 cm−3, avec 78% d’ions oxygène, 20% d’ions

hydrogène et 2% d’ions hélium. Ces valeurs sont assez typiques aux altitudes du
satellite DEMETER Santoĺık et al. (2006)

On peut voir que la ligne théorique correspond bien à la dépendance observée, montrant
qu’ils sont consistant avec la théorie du plasma froid et la propagation dans le mode
sifflement.

Les panneaux à gauche et à droite de la Figure 4.22 représentent l’ellipticité des fluctu-
ations magnétiques en fonction de la latitude géomagnétique et l’ellipticité des fluctuations
électriques en fonction de la latitude géomagnétique, respectivement. Les lignes épaisses
représentent encore la dépendance théorique en utilisant les paramètres mentionnés au-
dessus. On peut voir que la polarisation des fluctuations magnétiques est presque linéaire
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près de l’équateur magnétique et elle devient presque circulaire, polarisé à droite, aux lati-
tudes géomagnétiques plus grandes. Les fluctuations électriques sont elliptiques, polarisées
à droite (voir la discussion plus détaillée dans Němec et al. (2009c)).

Ces caractéristiques de la propagation, aussi bien que l’occurrence des émissions près
de l’équateur géomagnétique, donnent l’idée que les émissions électromagnétiques har-
moniques dans la bande EBF peuvent être liées aux émissions du type “equatorial noise”
observées à des plus grandes distances de la Terre (par exemple par les satellites Clus-
ter, voir Santoĺık et al. (2004); Němec et al. (2005, 2006a)). Ces émissions recueillies par
DEMETER ont probablement la même origine et elles sont alors observés après propa-
gation depuis des altitudes élevées. Mais il peut aussi s’agir des mêmes émissions, mais
générées à des altitudes différentes proches de celles de DEMETER.
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Fig. 4.19 – Analyse détaillée des ondes mesurées le Mai 16, 2005, entre 08:16:40 UT et
08:17:55 UT. Les panneaux représentent les spectrogrammes fréquence-temps de (de haut
en bas) : la densité spectrale des fluctuations du champ électrique, la densité spectrale
des fluctuations du champ magnétique, l’ellipticité des fluctuations du champ magnétique,
l’ellipticité des fluctuations du champ électrique, l’angle polaire du vecteur d’onde, l’an-
gle azimutal du vecteur d’onde, l’angle polaire du vecteur de Poynting, l’angle azimu-
tal du vecteur de Poynting et la composante du vecteur de Poynting parallèle au champ
magnétique normalisée par l’écart type. (d’après Němec et al. (2009c))
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Fig. 4.20 – (à gauche) Angle polaire de la direction du vecteur d’onde en fonction de la
latitude géomagnétique. La ligne épaisse représente un fit linéaire. (à droite) Angle azimutal
de la direction du vecteur d’onde en fonction de la latitude géomagnétique. (d’après Němec

et al. (2009c))
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Fig. 4.21 – (à gauche) Angle polaire de la direction du vecteur de Poynting en fonction de
la latitude géomagnétique. La ligne épaisse représente le résultat d’un modèle en utilisant la
théorie du plasma froid (voir le texte). (à droite) Angle azimutal de la direction du vecteur
de Poynting en fonction de la latitude géomagnétique. (d’après Němec et al. (2009c))
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Fig. 4.22 – (à gauche) Ellipticité des fluctuations du champ magnétique en fonction de
la latitude géomagnétique. (à droite) Ellipticité des fluctuations du champ électrique en
fonction de la latitude géomagnétique. La ligne épaisse réprésente le résultat d’un modèle
en utilisant la théorie du plasma froid. (d’après Němec et al. (2009c))
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4.5 Synthèse

Nous avons mis en évidence les points suivants :
– PLHR (rayonnement harmonique des lignes électriques) :

1. La séparation en fréquence des lignes qui forment ces événements correspond
bien à la fréquence du système électrique au-dessous du point d’observation
(ou au point conjugué).

2. L’intensité des événements observés pendant le jour est plus faible que l’inten-
sité des événements observés pendant la nuit. On peut l’expliquer en montrant
l’efficacité du couplage des ondes électromagnétiques dans l’ionosphère.

– MLR (lignes magnétosphèriques) :

1. Il y a moins d’événements au-dessus de l’Océan Atlantique (à l’Est de l’anoma-
lie de l’Atlantique-Sud).

2. Les événements sont observés (presque) uniquement dans la plasmasphère.

3. Les événements sont observés après une augmentation de l’activité
géomagnétique. Cela montre que ces ondes sont générées par une mécanisme
d’interaction onde-particule.

– Émissions électromagnétiques harmoniques en bande EBF :

1. Les ondes proviennent de distances plus grandes que la Terre.

2. La région de génération des ondes est localisée dans le plan de l’équateur
magnétique.

3. Il est possible que ces émissions aient pour origine les émissions de “bruit
équatorial” observées à plus grande distance de la Terre – ou qu’elles soient
aussi un bruit équatorial généré par le même mécanisme mais plus près de la
Terre.
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Chapitre 5

Conclusions générales

Dans cette thèse nous avons présenté les résultats obtenus en utilisant les données
électromagnétiques mesurées par le satellite DEMETER. La plupart des résultats ont déjà
été publiés dans des journaux scientifiques ; ces papiers se trouvent en annexe.

Il y a beaucoup d’ondes électromagnétiques dans l’environnement ionisé autour de la
Terre. Leur analyse est très importante parce que dans le plasma presque non-collisionnel
ces ondes sont le seul moyen du transport de l’énergie. Dans cette thèse nous nous sommes
concentrés sur deux types des ondes assez spécifiques : les ondes liées à l’activité sismique
et les émissions avec des structures fréquentielles linéaires. Les deux correspondent bien
aux objectifs scientifiques de la mission DEMETER. L’étude des effets en liaison avec l’ac-
tivité sismique est très significative : ils sont rapportés quelques jours/heures avant le choc
principal et il y a donc une possibilité d’application pour la prédiction des tremblements de
terre à court-terme. Les émissions avec des structures fréquentielles sont très intéressantes,
parce qu’elles sont probablement lié à l’activité humaine (au moins dans certains cas) bien
que leur origine est toujours mal comprise.

Nous avons fait l’étude statistique des effets électromagnétiques liés à l’activité sis-
mique. Deux méthodes différentes ont été utilisées : la méthode des époques superposées
et la méthode qui utilise le test Mann-Whitney. Dans les deux cas, des cartes globales
d’émissions électromagnétiques furent utilisées pour éliminer l’influence de la variabilité
naturelle. Les résultats obtenus montrent que :

1. Il y a une corrélation entre l’intensité des ondes électromagnétiques TBF dans
l’ionosphère et l’activité sismique.

2. L’effet est observé seulement pendant la nuit. Il n’y a aucun effet similaire pendant
le jour.

3. L’intensité des ondes électromagnétiques dans une gamme de fréquence 1 – 2 kHz est
plus faible que normalement peu (0 – 4 heures) avant le choc principal. Les dimensions
spatiales de la région affectée sont de quelques centaines de kilomètres.

4. L’effet est plus fort pour les tremblements de terre de forte magnitude.

5. L’effet est plus fort pour les tremblements de terre moins profonds. Aucun effet a été
observé pour les tremblements de terre très profonds (une profondeur > 40 km).
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6. L’effet est observé pour les tremblements de terre sous la mer aussi bien que pour les
tremblements de terre sur les continents.

7. L’effet semble déplacé d’environ 2◦ à l’Ouest des épicentres des tremblements de terre.

Néanmoins, il est nécessaire de comprendre que cette corrélation a été trouvée seulement
en utilisant un grand nombre de données et que la situation pour un seul tremblement de
terre peut être assez différente. Nous espérons que les résultats de cette analyse aideront à
comprendre les différents effets qui accompagnent les tremblements de terre.

Il faut maintenant regarder au cas par cas les différents séismes qui ont statistique-
ment contribué à la diminution du champ électrique qui a été observé pour voir s’ils ont
des caractéristiques communes. Les autres paramètres mesurés par DEMETER comme les
densités et températures ionique et électronique doivent être aussi prises en compte. Une
piste peu venir de la fréquence à laquelle cette diminution du champ électrique a été ob-
servée. La fréquence de 1700 Hz correspond en effet à une fréquence de coupure des ondes
dans le guide Terre-ionosphère la nuit. Cette fréquence de coupure affecte les ondes qui se
réfléchissent au bas de la couche E c’est-a-dire vers 90 km d’altitude. Cela voudrait dire que
les séismes peuvent modifier l’ionosphère à cette altitude et qu’il faudrait plutôt rechercher
des perturbations de densité à cet endroit.

Nous avons fait l’étude systématique des événements électromagnétiques ayant
une structure fréquencielle linéaire. Nous avons montré qu’il y a trois types différents
d’émissions : PLHR, MLR et EM harmoniques dans la bande EBF. Plus, nous avons étudié
chaque type séparément. Les plus importants résultats que nous avons obtenus sont :

– PLHR (rayonnement harmonique des lignes électriques) :

1. La séparation en fréquence des lignes qui forment ces événements correspond
bien à la fréquence du système électrique au-dessous du point d’observation
(ou au point conjugué).

2. L’intensité des événements observés pendant le jour est plus faible que l’inten-
sité des événements observés pendant la nuit. On peut l’expliquer en utilisant
l’efficacité du couplage des ondes électromagnétiques dans l’ionosphère.

– MLR (lignes magnétosphèriques) :

1. Il y a moins d’événements au-dessus de l’Océan Atlantique (à l’Est de l’anoma-
lie de l’Atlantique-Sud).

2. Les événements sont observés (presque) uniquement dans la plasmasphère.

3. Les événements sont observés après une augmentation de l’activité
géomagnétique.

– Émissions électromagnétiques harmoniques en bande EBF :

1. Les ondes proviennent de distances plus grandes que la Terre.

2. La région de génération des ondes est localisée dans le plan de l’équateur
magnétique.

3. Il est possible que ces émissions aient pour origine les émissions de “bruit
équatorial” observées à plus grande distance de la Terre – ou qu’elles soient
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aussi un bruit équatorial généré par le même mécanisme mais plus près de la
Terre.

Les résultats que nous avons obtenus sont très intéressants parce qu’ils ont permis
une meilleure compréhension des effets étudiés. Cependant, il reste beaucoup de travail
pour le futur. Le satellite DEMETER est toujours en activité et le nombre des données
augmente chaque jour, ce qui est particulièrement important pour la statistique des effets
électromagnétiques liés à l’activité sismique. Par ailleurs, bien que nous comprenons l’orig-
ine de certains événements électromagnétiques ayant une structure fréquencielle linéaire,
l’origine des autres est toujours un mystère.

L’enjeu est de savoir si les émissions d’origine humaine aux harmoniques du 50 ou du
60 Hz interagissent avec les particules énergétiques contenues dans les ceintures de radiation
et perturbent ainsi l’équilibre de l’environnement terrestre. Pour le moment on ne voit ces
ondes à l’altitude des satellites que de manière épisodique probablement parce que leurs
amplitudes sont trop faibles (et en dessous du niveau de sensibilité des capteurs). Mais on
peut observer leurs effets quand elles déclenchent des émissions de plus forte intensité.
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dankylä Geophysical Observatory Publications, Sodankylä, Finland.
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N. Cornilleau-Wehrlin (2006a), Equatorial noise : Statistical study of its localization
and the derived number density, Adv. Space Res., 37 (3), 610–616.
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Annexe A

Cartes des émissions
électromagnétiques

Dans cette annexe nous présentons les cartes des émissions électromagnétiques
obtenues pendant des conditions ionosphèriques différentes (MLT, Kp, saison de l’année).
Toutes les cartes ont été obtenues pour la bande de fréquence 1055-2383 Hz – la bande
dans laquelle on observe l’effet en corrélation avec l’activité sismique (voir le Chapitre 3.2
et le Chapitre 3.3). Elles illustrent donc la représentation graphique de la base de données
que nous avons utilisée (voir le Chapitre 3.1).

Dans ces cartes on peut observer le mélange de deux effets principaux :
– L’influence des conditions magnétosphèriques. En particulier il y a une augmenta-

tion de l’intensité pendant le jour pour des valeurs plus grandes de Kp.
– L’influence des orages terrestres. En particulier il y a une augmentation de l’in-

tensité pendant la nuit (quand le couplage des ondes est plus facile, voir la Figure
4.11). Les orages sont plus fréquents pendant l’été local et au-dessus des continents,
ce qui explique la différence entre la Figure A.3 et la Figure A.4 : pendant l’été,
les orages se produisent plus souvent au-dessus des États-Unis, de l’Europe et de
l’Asie ; pendant l’hiver, les orages se produisent plus souvent au-dessus de l’Afrique
du Sud et de l’Australie.
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Fig. A.1 – La valeur médiane de l’intensité des fluctuations du champ électrique dans la
bande de fréquence 1055-2383 Hz en fonction de la latitude et la longitude géomagnétiques.
Les résultats sont tracés pour trois intervalles différents d’index Kp. Toutes les données
mesurées pendant le jour et l’été (Mai-Septembre) ont été incluses.
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Fig. A.2 – La valeur médiane de l’intensité des fluctuations du champ électrique dans la
bande de fréquence 1055-2383 Hz en fonction de la latitude et la longitude géomagnétiques.
Les résultats sont tracés pour trois intervalles différents d’index Kp. Toutes les données
mesurées pendant le jour et l’hiver (Octobre-Avril) ont été incluses.
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Fig. A.3 – La valeur médiane de l’intensité des fluctuations du champ électrique dans la
bande de fréquence 1055-2383 Hz en fonction de la latitude et la longitude géomagnétiques.
Les résultats sont tracés pour trois intervalles différents d’index Kp. Toutes les données
mesurées pendant la nuit et l’été (Mai-Septembre) ont été incluses.
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Fig. A.4 – La valeur médiane de l’intensité des fluctuations du champ électrique dans la
bande de fréquence 1055-2383 Hz en fonction de la latitude et la longitude géomagnétiques.
Les résultats sont tracés pour trois intervalles différents d’index Kp. Toutes les données
mesurées pendant la nuit et l’hiver (Octobre-Avril) ont été incluses.

79



80



Annexe B

Autres exemples d’émissions PLHR
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Fig. B.1 – (dessus) Spectrogramme fréquence-temps des fluctuations du champ électrique
correspondant à un événement PLHR ayant une séparation en fréquence entre les lignes
individuelles de 50/100 Hz. Les données ont été mesurées le 13 Avril 2007 après 08:02:33 UT
quand le satellite était près de la Finlande. (en bas) Spectre de puissance. Les pics sont
visibles aux fréquences 2950 Hz, (3000 Hz), 3050 Hz, 3150 Hz, 3250 Hz, 3350 Hz, 3450 Hz,
3550 Hz, (3600 Hz), 3650 Hz.
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Fig. B.2 – (dessus) Spectrogramme fréquence-temps des fluctuations du champ électrique
correspondant à un événement PLHR ayant une séparation en fréquence entre les lignes in-
dividuelles de 60/120 Hz. Les données ont été mesurées le 11 Février 2007 après 01:32:00 UT
quand le satellite était au-dessus du Japon. (en bas) Spectre de puissance. Les pics sont
visibles aux fréquences 2100 Hz, 2160 Hz, 2220 Hz, 2340 Hz, (2700 Hz), 2820 Hz, 2940 Hz.
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Fig. B.3 – (dessus) Spectrogramme fréquence-temps des fluctuations du champ électrique
correspondant à l’événement PLHR ayant une séparation en fréquence entre les lignes indi-
viduels 50/100 Hz. Les données ont été mesurées le Décembre 23, 2007 après 10:20:29 UT
quand le satellite était au-dessus de la France. (en bas) Spectre de puissance. Les pics sont
visibles aux fréquences (3050 Hz), 3150 Hz, 3250 Hz, 3350 Hz.
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Annexe C

Autres exemples d’émissions MLR

Fig. C.1 – Spectrogramme fréquence-temps de l’orbite contenant deux événements MLR
dans des régions conjuguées.
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Fig. C.2 – Spectrogramme fréquence-temps de l’orbite contenant un événement MLR.
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Fig. C.3 – Spectrogramme fréquence-temps de l’orbite contenant deux événements MLR
dans des régions conjuguées.
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Annexe D

Autres exemples d’émissions
électromagnétiques harmoniques
dans la bande EBF
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Fig. D.1 – Spectrogramme fréquence-temps des fluctuations du champ électrique corre-
spondant à des émissions électromagnétiques harmoniques dans la bande EBF. Les données
ont été mesurées le 9 Novembre 2004 après 08:19:02 UT.
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Fig. D.2 – Spectrogramme fréquence-temps des fluctuations du champ électrique corre-
spondant à des émissions électromagnétiques harmoniques dans la bande EBF. Les données
ont été mesurées le 9 Novembre 2004 après 14:59:02 UT.
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Fig. D.3 – Spectrogramme fréquence-temps des fluctuations du champ électrique corre-
spondant à des émissions électromagnétiques harmoniques dans la bande EBF. Les données
ont été mesurées le 16 Mai 2005 après 15:39:31 UT.
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Annexe E

Liste des publications

Dans cette annexe il y a toutes les publications dans les journaux scientifiques dont
je suis l’auteur ou le co-auteur : Santoĺık et al. (2004), Němec et al. (2005), Parrot et al.

(2005), Němec et al. (2006a), Němec et al. (2006b), Santoĺık et al. (2006), Němec et al.

(2007b), Němec et al. (2007c), Parrot et al. (2007), Němec et al. (2007a), Němec et al.

(2008b), Němec et al. (2008c), Němec et al. (2008a), Němec et al. (2009b), Němec et al.

(2009a), Masson et al. (2009), Parrot and Němec (2009).

91





Annales Geophysicae (2004) 22: 2587–2595
SRef-ID: 1432-0576/ag/2004-22-2587
© European Geosciences Union 2004

Annales
Geophysicae

Systematic analysis of equatorial noise below the lower hybrid
frequency
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Abstract. We report results of a systematic analysis of a
large number of observations of equatorial noise between the
local proton cyclotron frequency and the local lower hybrid
frequency. The analysis is based on the data collected by the
STAFF-SA instruments on board the four Cluster spacecraft.
The data set covers their first two years of measurement in the
equatorial magnetosphere at radial distances between 3.9 and
5 Earth radii. Inspection of 781 perigee passages shows that
the occurrence rate of equatorial noise is approximately 60%.
We identify equatorial noise by selecting data with nearly
linearly polarized magnetic field fluctuations. These waves
are found within 10◦ of the geomagnetic equator, consistent
with the published past observations. Our results show that
equatorial noise has the most intense magnetic field fluctua-
tions among all the natural emissions in the given interval
of frequencies and latitudes. Electric field fluctuations of
equatorial noise are also more intense compared to the av-
erage of all detected waves. Equatorial noise thus can play a
non-negligible role in the dynamics of the internal magneto-
sphere.

Key words. Magnetospheric physics (waves in plasma) –
Space plasma physics (waves and instabilities) – Radio sci-
ence (magnetospheric physics)

1 Introduction

Equatorial noise is an intense natural emission of electromag-
netic plasma waves observed within a few Earth radii (RE) of
geocentric radial distance, and always recorded very close to
the geomagnetic equator. Its frequency interval ranges from
a few Hertz to several hundreds of Hertz. These waves were
first observed by Russell et al. (1970) in the outer plasmas-
phere at frequencies between twice the local proton cyclotron
frequency (fH+ ) and half the lower hybrid frequency (flh).

Correspondence to:O. Santoĺık
(ondrej.santolik@mff.cuni.cz)

The observations were made within 2◦ from the equator, and
the magnetic field fluctuations carried by those waves were
found to be very close to the direction parallel to the static ter-
restrial magnetic field (B). This observed polarization corre-
sponds well to the theoretical properties of the whistler-mode
waves belowflh (e.g. Stix, 1992), assuming that the wave
vectors are very close to perpendicular toB.

Later observations (Gurnett, 1976; Perraut et al., 1982;
Laakso et al., 1990; Kasahara et al., 1994; André et al.,
2002) revealed that the equatorial noise occurs at radial dis-
tances between 2 and 7 RE, and at latitudes within 10◦ from
the magnetic equator, and that its lowest frequency could
go down to the fundamentalfH+ . Detailed time-frequency
spectrograms (Gurnett, 1976) also showed that, what ap-
pears as a noise band in the low resolution data, is in fact
a superposition of many spectral lines with different fre-
quency spacings. The term “equatorial noise” is, however,
still used even for these discrete wave phenomena, to indi-
cate the connection to the original observations of Russell et
al. (1970). The generation mechanism of these waves is most
probably connected to the ion-cyclotron harmonic interac-
tion (Gurnett, 1976), with energetic protons having ring-like
distribution functions at a pitch angle of 90◦ (Perraut et al.,
1982). After being generated at the ion Bernstein wave-mode
branches, the waves subsequently propagate in the electro-
magnetic whistler mode (also known as the extraordinary or
fast magnetosonic mode). Equatorial noise thus can be ob-
served far away from its generation region.

Multipoint observations of equatorial noise by the four
Cluster spacecraft have been presented by Cornilleau-
Wehrlin et al. (2003) and Santolı́k et al. (2002). They ad-
dressed the location of noise with respect to the equatorial
plane and the spatio-temporal structure of its frequency spec-
tra. Santoĺık et al. (2002) found these waves within 2◦ of the
magnetic equator, and Cornilleau-Wehrlin et al. (2003), in
another case, at about 3◦ of the model equator, with an exten-
sion of 0.15 RE in the direction perpendicular to the ecliptics.
Since a common feature of the equatorial noise is the pres-
ence of harmonic lines whose spacings do not match the local
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Fig. 1. Example of data collected by Cluster 4 on 17 February 2002. From the top:(a) sum of the power-spectral densities of the three
magnetic components,(b) sum of the power-spectral densities of the two electric components ;(c) ellipticity and(d) planarity are determined
using the singular value decomposition of the magnetic spectral matrix. Universal time (UT) and position of the spacecraft are given on the
bottom of the figure using the radial distance (R) in the Earth radii (RE), magnetic dipole latitude (MLat) in degrees, and magnetic local time
(MLT) in hours. Maximum possible value of the local lower hybrid frequency (flh) is plotted over the panels (a)–(d). The data in panels (c)
and (d) are not shown for weak signals below 10−9 nT2 Hz−1.

fH+ , waves have to propagate in the radial direction, in order
to move through the equatorial plane to a place with a dif-
ferent magnetic field strength. Santolı́k et al. (2002) showed
a case where the wave propagation directions have a radial
component.

This paper is also based on the data of the Cluster
project. We present the first results of our systematic anal-
ysis of a large number of observations of equatorial noise.
These emissions are, together with the whistler mode cho-
rus, among the most intense electromagnetic waves observed
in the low-latitude region of the Earth’s magnetosphere, and
their sensitivity to the variations of the geomagnetic activity
indicates their importance for the “space weather” applica-
tions, i.e. prediction of fluxes of energetic particles as a con-
sequence of variations of the solar input (André et al., 2002).
Therefore, we focus our attention on the probability densi-
ties of the wave intensity in both electric and magnetic com-

ponents. We establish a selection criterion for recognizing
the equatorial noise emissions, and compare the intensities of
equatorial noise with those of other emissions in the same in-
terval of frequencies and latitudes. In Sect. 2 we will present
the data set and, using an example case, we will describe our
analysis methods. In Sect. 3 we will show results of the sys-
tematic analysis, in Sect. 4 we will discuss these results and,
finally, in Sect. 5 we will present brief conclusions.

2 Data set and analysis methods

We use the data collected by the “spatiotemporal analy-
sis of field fluctuations” (STAFF-SA) instruments on board
the four Cluster spacecraft operated by the European Space
Agency (ESA). STAFF-SA was designed for onboard calcu-
lation of power-spectral densities, mutual phases, and coher-
ence relations of three orthogonal magnetic components and
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two electric components (Cornilleau-Wehrlin et al., 1997,
2003). The analysis is made in 27 frequency channels
between 8 Hz and 4 kHz, and the instrument has several mea-
surement modes. Of those, we only use the “normal mode”
in the present study. This mode provides us with the full
five-component analysis in the entire frequency band of the
instrument. The data are analyzed on board with the time
resolution of 1 s (for the power-spectral densities) or 4 s (for
the phases and coherence). The results are then compressed
and transmitted to the ESA receiving stations. In the sub-
sequent preprocessing phase the received data are calibrated
and organized in Hermitian spectral matrices 5×5, one ma-
trix per frequency channel, i.e. 27 matrices every 4 s. Each
spectral matrix contains the real power-spectral densities on
its main diagonal and complex cross-spectral densities as its
off-diagonal elements.

We have analyzed all the preprocessed data intervals
where the Cluster spacecraft were close to their perigee
during the first two years of operation (2001–2002). In
these portions of their orbits the spacecraft scanned the low-
latitude region of the Earth’s magnetosphere at all magnetic
local times, and at radial distances between 3.9 and 5 RE.
The preprocessed STAFF-SA data have been organized into
intervals of≈1-hour duration, and we have selected those in-
tervals where the instrument measured within≈30◦ of the
geomagnetic equator. In most cases we have joint two or
three adjacent≈1-hour intervals, to obtain a better cover-
age of the equatorial region. We have worked with the data
of each spacecraft separately, thus increasing the amount of
data intervals entering in the statistics. Discussion of this ap-
proach is presented in Sect. 4. Using that procedure, we have
collected the total number of 781 data intervals of≈1–3 h,
measured in the equatorial region close to the perigee of the
four Cluster spacecraft. To ensure the coherence of our re-
sults and to gain experience for their reasonable interpreta-
tion, we have visually inspected all the intervals before doing
the subsequent computer analysis. This inspection showed
that in 671 perigee cases the data were available in a re-
stricted interval of latitudes within 10◦ of the geomagnetic
equator where we expect equatorial noise to appear. Of those
cases, we have identified the presence of equatorial noise in
398 intervals (59%).

Figure 1 shows an example of those data intervals where
the equatorial noise emissions were present. The measure-
ments were done by Cluster 4 on 17 February 2002. The
spacecraft was close to its perigee, and we show the data
recorded in the low-latitude region within±30◦ of magnetic
equator (magnetic latitude is determined using the dipole ap-
proximation of the Earth’s magnetic field). Figures 1a and 1b
represent power-spectral densities of the magnetic and elec-
tric field, respectively. Equatorial noise is the intense electro-
magnetic emission seen on both panels close to the center of
the time interval, within a few degrees from the equator. In
the frequency domain it appears as two main peaks at≈30 Hz
and≈70 Hz. The emission is confined below the upper es-
timate of the lower hybrid frequency (flh), calculated as the
geometric average of the proton and electron cyclotron fre-

quencies. To plot this estimate in Fig. 1, we use the measure-
ments of the ambient magnetic field made on board (Balogh
et al., 2001). It represents the true value offlh only in a
dense plasma, with the plasma frequency much larger than
the electron cyclotron frequency, which is always the case in
the plasmasphere.

Multidimensional measurements of electric and magnetic
fields allow us to analyze polarization properties of equato-
rial noise emissions. EllipticityLp of polarization of the
magnetic field fluctuations is shown in Fig. 1c. We use
the singular value decomposition technique from Eq. (13)
of Santoĺık et al. (2003), definingLp=w2/w1, wherew1
andw2 are the two largest singular values of the magnetic
spectral matrix. In the idealized case of exactly planar po-
larization, the result represents the ratio of the lengths of the
minor and major axes of the polarization ellipse. It varies
between 0 (linear polarization) and 1 (circular polarization).
The equatorial noise can be easily distinguished by its po-
larization close to linear, as it was first described by Russell
et al. (1970). Very similar results have been obtained using
classical methods based on eigenvalue analysis (e.g. Samson,
1973). The abrupt change in theLp values at a constant fre-
quency of 62.5 Hz outside the equatorial noise emission is an
instrumental effect. It is connected to the boundary between
the frequency bands of the STAFF-SA instrument, where dif-
ferent averaging of measured data is done during the onboard
analysis.

Figure 1d represents the planarityF of the polarization of
magnetic field fluctuations from Eq. (12) of Santolı́k et al.
(2003). It is defined asF=1−

√
w3/

√
w1, wherew1 andw3

are, respectively, the maximum and the minimum singular
values of the magnetic spectral matrix. In an idealized case
of random fluctuations,F reflects the ratio of the shortest and
the longest axes of the 3-D polarization ellipsoid, defined by
standard deviations of magnetic noise. A value close to 0
would mean that the fluctuations appear in all three axes of
the ellipsoid with the same probability, whereas a value of
1 would represent a strict confinement of the fluctuations to
a single 2-D plane. Note that the boundary at 62.5 Hz seen
in Fig. 1d is the same instrumental effect as described in the
previous paragraph. For the equatorial noise, the value of
F ≈0.8 suggests that the magnetic field fluctuates very close
to a single plane, with a small fraction of random 3-D fluc-
tuations. Values ofF andLp are obviously interdependent
in that sense, that a givenLp sets a lower limit of possible
values ofF , 1−

√

Lp≤F≤ 1. On the other hand, a givenF
doesn’t have any implication for possible values ofLp.

3 Systematic analysis of the entire data set

The polarization analysis shown in Fig. 1 has been done with
the entire data set recorded during the perigee portions of the
781 orbits of the Cluster spacecraft. We have selected the
frequency channels between 8 Hz (the lowest frequency an-
alyzed by the STAFF-SA instrument) and 300 Hz (the upper
estimate of the maximumflh throughout the data set). This
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Fig. 2. Histograms of modified ellipticityLsLp (see text) deter-
mined using the singular value decomposition of the magnetic spec-
tral matrix. (a) Histogram of all 1.4×107 time-frequency points,
plotted in red with the left-hand-side vertical scale; and of selected
1.3×106 intense events above 10−6 nT2 Hz−1, plotted in blue, with
the right-hand-side vertical scale.(b) Normalized histogram of the
elipticity of the intense events.

means that we use only the 16 lowest frequency channels
of the instrument. The analysis has been further limited to
the data measured within±30◦ of magnetic latitude from the
magnetic equator. If this interval of latitudes is completely
covered by the data, it would, given the orbital parameters
of Cluster satellites, correspond to a time interval of approx-
imately 1 h and 40 min, i.e. with the 4-second time resolu-
tion, to 1500 measurements. Since the selected time intervals
do not always cover that total range of latitudes, the average
number in our data set is≈1100 measurements per interval.
For the 781 perigee passages, we thus have the total num-
ber of 16×1100×781≈ 1.4×107 time-frequency points. In
these points we have analyzed measured spectral matrices
which served as input data for calculations of the average
power-spectral densities of the magnetic and electric fluctua-
tions, ellipticity, and planarity (see Sect. 2).

Figure 2 shows histograms constructed from the obtained
ellipticity values. The results are now slightly modified com-
pared to the method used in Fig. 1c. The purpose is to re-
flect the sense of rotation of the wave magnetic field. We
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Fig. 3. Histograms of the planarity determined using the singular
value decomposition of the magnetic spectral matrix.(a) Histogram
for all 1.4×107 time-frequency points, plotted in red with the left-
hand-side vertical scale; and for selected 5.4×105 nearly linearly
polarized events withLp < 0.2, plotted in blue, with the right-
hand-side vertical scale.(b) A normalized histogram for the nearly
linearly polarized waves.

multiply Lp by a sign coefficientLs , which is either−1,
or +1 according to the sign of the phase shift between the
two components of magnetic fluctuations perpendicular to
B. The value of−1 represents the left-hand polarized waves
(the sense of the ion cyclotron motion) and the value of+1
represents the right-hand polarized waves, (the sense of the
electron cyclotron motion). If the polarization is linear, and
the corresponding phase shifts are either 0◦ or ±180◦, then
Lp is zero andLs may be defined as−1 or+1, with no effect
on the resulting productLsLp. Similarly, if the polarization
is close to linear,Lp is close to zero, and the influence ofLs

on the result is negligible. The valuesLsLp of ±1 then corre-
spond to exactly circular polarization (right- or left-handed),
absolute values less than 1 mean elliptic polarization, and the
value of zero still represents strictly linearly polarized waves.

To obtain the histograms in Fig. 2, the interval〈 −1, +1〉
has been divided into 100 consecutive subintervals, and the
number of cases contained in each of these subintervals has
been counted. The entire data set mainly contains right-hand,
nearly circularly polarized waves with some small fraction of
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Fig. 4. The same as in Fig. 3, but for the magnetic dipole latitude.

left-hand polarized waves (red curve in Fig. 2a). Note that
the onboard compression algorithm leads to phase quantiza-
tion effects reflected on the histogram as a set of superposed
small-amplitude peaks. If we now select just the most in-
tense waves with the magnetic spectral densities larger than
10−6 nT2 Hz−1, we obtain a non-negligible fraction of nearly
linearly polarized waves with the absolute value of elliptic-
ity below ≈0.2 (blue curve in Fig. 2a). The artifacts intro-
duced by the onboard compression are removed if we cal-
culate the relative fraction of the intense waves among all
the recorded measurements. This normalized histogram of
ellipticity (Fig. 2b) is obtained as the ratio of the blue and
red histograms from Fig. 2a. It clearly shows that the ma-
jority of nearly linearly polarized waves is more intense than
10−6 nT2 Hz−1, forming a distinct peak around zero ellip-
ticity in Fig. 2b, with a maximum close to 80%. Based
on our visual inspection of all the available data from the
perigee passages of the Cluster satellites, we can identify
those intense linearly polarized waves with the equatorial
noise emissions. As we will show next, this identification
proves true, considering our results on the magnetic latitudes
of these waves. From Fig. 2b we can also estimate a rea-
sonable threshold of 0.2 for the ellipticityLp, bounding the
peak of the intense linearly polarized waves. This threshold
will be used in the following to identify the equatorial noise
emissions.
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Fig. 5. The same as in Fig. 3, but for the sum of the power-spectral
densities of the three components of magnetic field fluctuations.

Results for the planarity of the magnetic field polarization
are shown in Fig. 3. We use the same analysis method as for
the example case in Fig. 1d. The obtained values have been
counted in 100 subintervals between 0 and 1 to construct the
histograms in Fig. 3. The histogram for all events (red curve
in Fig. 3a) shows a broad peak shifted toward lower values,
with a maximum around 0.3. For the selected nearly linearly
polarized waves withLp< 0.2 (blue curve in Fig. 3a) the
peak is clearly moved towards higher values of the planarity.
Its maximum is now slightly below 0.8. As we have shown in
Sect. 2, possible values of the planarityF are limited, given
the ellipticity Lp. For Lp< 0.2 we cannot obtainF lower
than≈0.55. Normalized histogram of the planarity values for
the nearly linearly polarized waves is shown in Fig. 3b. We
can see that 100% of the observations of high planarity val-
ues (>0.9) correspond to the nearly linearly polarized waves.
This fraction decreases toward lower planarity values down
to the cutoff atF ≈0.55.

Figure 4 presents the histograms of the magnetic dipole
latitudes of the events. To obtain these histograms, the in-
terval from−30◦ to +30◦ has been divided into 50 consec-
utive subintervals. The histogram for all events (red curve
and left-hand scale in Fig. 4a) is not a constant function of
the magnetic latitude because of the particular method we
used to select the data set. Since we always selected the data
intervals containing the measurements close to the magnetic
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Fig. 6. The same as in Fig. 3, but for the sum of the power-spectral
densities of the two measured components of electric field fluctua-
tions.

equator, the histogram shows a broad peak centered at the
zero latitude. This is therefore a purely artificial effect.

The histogram looks quite different for the waves with
Lp< 0.2 (blue curve and right-hand scale in Fig. 4a). The
maximum is again close to the equator, but the peak is now
much narrower, with the majority of events confined within
10◦ of the magnetic equator. The ratio of the two histograms,
shown in Fig. 4b, again forms a narrow peak, with approx-
imately the same width. It moreover shows that about 17%
of all events observed close to the magnetic equator is nearly
linearly polarized. This fraction decreases toward higher lat-
itudes. For latitudes to the south of−10◦ and to the north
of +10◦, it goes down to 1–2%. This residual value will be
discussed in Sect. 4. The majority of the observed nearly lin-
early polarized waves is, however, clearly concentrated close
to the equator. This further validates this selection criterion
for the equatorial noise emissions.

In the analysis presented in Fig. 2 we have used a threshold
of 10−6 nT2 Hz−1 to select intense waves. Figure 5 shows
more details on the distribution of the obtained values of
the magnetic power-spectral density. To construct the his-
tograms, the interval between 10−10 and 10−2 nT2 Hz−1 has
been divided into 100 consecutive logarithmic subintervals.
The histogram of all events (red curve and left-hand scale in
Fig. 5a) peaks close to 10−7 nT2 Hz−1, steeply decreases just

below 10−6 nT2 Hz−1, and forms a decreasing tail at higher
intensities.

The main peak is only slightly higher for the waves with
Lp< 0.2 (blue curve and right-hand scale in Fig. 5a), but
the high-intensity tail extends to significantly higher inten-
sities with a higher probability. The ratio of the two his-
tograms, shown in Fig. 5b, reveals that the linearly polarized
waves dominate the most intense emissions with the mag-
netic power-spectral density above 10−4 nT2 Hz−1, leaving
only about 20% of those intense events to waves with a dif-
ferent polarization. Oppositely, a very low relative fraction
of nearly linearly polarized waves is observed for less intense
waves below 10−6 nT2 Hz−1.

Figure 6 shows histograms of the electric power-spectral
density in a similar format as in Fig. 5. We use the inter-
val of values between 10−9 and 101 mV2 m−2 Hz−1, again
divided into 100 consecutive logarithmic subintervals. The
histogram of all events (red curve in Fig. 6a) has a peak value
close to 10−5 mV2 m−2 Hz−1, about one order of magnitude
lower than the histogram for the nearly linearly polarized
waves (blue curve). Above 10−4 mV2 m−2 Hz−1, the proba-
bility density for theLp< 0.2 subset of events is shifted by
about two orders of magnitude higher. The relative fraction
of the nearly linearly polarized waves (the ratio of the two
histograms shown in Fig. 6b) doesn’t reach such as high val-
ues as in the case of the magnetic field fluctuations. It shows
a peak fraction of about 35% for relatively intense waves
slightly below 10−2 mV2 m−2 Hz−1, but for higher intensi-
ties the relative fraction again decreases down to about 5%.
This means that other types of polarization dominate at those
extremely high intensities.

4 Discussion

The most important simplification in our analysis method
is the selection criterion we use to recognize the equatorial
noise emissions. To analyze large volumes of data it is in-
evitable to use an automatic recognition procedure, always
taking the risk that some data points are either not selected
when they should be, or selected by mistake. On the other
hand, the advantage of this approach is that the selection is
absolutely objective, based on a well-defined criterion, thus
removing all possibilities for subjective case-by-case judge-
ment which could bias the resulting statistics. In this study
we have chosen to set up a relatively simple criterion based
on the ellipticity of the magnetic field fluctuations, using
known characteristics of the equatorial noise and the visual
inspection of all the cases. To verify this approach we have
checked the resulting statistics of magnetic latitude and pla-
narity of polarization.

The only main problem of this selection criterion has been
found in the analysis of magnetic latitudes (Fig. 4b). We
have obtained a constant fraction of 1–2% of the nearly lin-
early polarized waves for magnetic latitudes below−10◦ and
above+10◦. If we have no other explanation of these waves,
it would mean that the linearly polarized equatorial noise
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extends in latitude at least 30◦ from the magnetic equator.
This would be in contradiction with the results published in
the past. An alternative explanation could be that these ob-
servations correspond to linearly polarized signals that we
wrongly classify as equatorial noise. We suppose the phe-
nomenon is connected to the low-frequency magnetic noise
of the instrument. We can see in Fig. 1c that the instrumental
noise creates patchy appearances of nearly linear polariza-
tion well outside the compact time-frequency region of the
natural equatorial noise. Since these spots of linear polar-
ization are evenly distributed at all latitudes, the result is the
observed 1–2% floor on the normalized histogram.

To test this hypothesis we have further narrowed our selec-
tion criteria to include only the most intense waves, with the
magnetic spectral density larger than 10−6 nT2 Hz−1. This
condition has been combined with the thresholdLp< 0.2. In
such a way, the influence of the weak instrumental noise has
been eliminated. The resulting normalized histogram (Fig. 7)
proves that the main peak close to the equator remains in
place as we see it in Fig. 4b but the 1–2% floor disappears.
More precisely, the main peak reaches somewhat lower val-
ues of≈10%, and the fraction becomes negligible outside
the interval of magnetic latitudes between−10◦ and+10◦.
This confirms the hypothesis that the 1–2% floor in Fig. 4b
is owing to the instrumental noise.

In the present study, we have made another simplification
in analyzing the data of the four Cluster spacecraft separately.
The approach naturally increases the volume of data entering
in the statistics by a factor of 4. However, all the spacecraft
pass through the equatorial region in relatively short inter-
vals of time, from less than one minute up to about 45 min,
depending on the actual configuration of the spacecraft or-
bits. We can then question the hypothesis of the indepen-
dence of the four data sets obtained by the different space-
craft. The geomagnetic conditions certainly are very similar
for the four spacecraft during their closely separated perigee
passages, but, nevertheless, the internal structure of the equa-
torial noise emissions can be highly variable at spatiotem-
poral scales comparable to the separation of the spacecraft
(Santoĺık et al., 2002). In our data set we can find cases
where the position of the peak intensity and the latitudinal
extent of the equatorial noise are nearly the same on the four
spacecraft, and other cases where these parameters are con-
siderably different. Detailed analysis of these differences is
beyond the scope of the present paper but for the purpose of
this discussion we can conclude that the total number of in-
dependent cases can be up to 4 times lower, if we consider
as independent only those passages separated by at least one
full orbital period of the spacecraft (2 days and 9 h). This still
does not decrease the total volume of data below any reason-
able limit of statistical reliability (recall that the total number
of time-frequency points is 1.4×107 – after using the most
severe selection criteria in Fig. 7 this number still reaches a
value of 2×105).

The analysis of the electric and magnetic power-spectral
densities is the main purpose of this work. The results show
that, without any doubt, the nearly linearly polarized emis-

-20 -10 0 10 20
Mlat (degrees)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

N
E
 / 

N

Fig. 7. The same as in Fig. 4b, but with the additional selection cri-
terion of the magnetic spectral density larger than 10−6 nT2 Hz−1.

sions are the most intense ones in the given interval of fre-
quencies and latitudes, as concerns the magnetic field fluctu-
ations. Electric field fluctuations of these emissions are also
more intense compared to the average of all detected waves
but still their relative fraction in Fig. 6b decreases at very
high intensities of more than 10−2 mV2 m−2 Hz−1. It then
appears interesting to determine what kind of waves consti-
tutes those in approximately 95% of the intense events. Here
we must take into account that the selection criterion is based
on the polarization of the magnetic fluctuations and does not
take into account the polarization of the wave electric field.
Intense electrostatic waves thus would not be selected even
if they were linearly polarized because they are not accom-
panied by a magnetic field signal. Thus, we interpret these
intense waves as broadband electrostatic noise, often occur-
ring at higher latitudes which are magnetically connected to
the Southern and Northern auroral regions. An example can
be seen in Fig. 1b where broad-band electrostatic fluctuations
are mainly observed at magnetic latitudes below−25◦ and
above+25◦. Projected along the approximately dipolar mag-
netic field lines on the Earth’s surface, these positions cor-
respond, respectively, to auroral latitudes below−65◦, and
above+65◦.

The final note of this discussion concerns the significance
of our results. We have proven that equatorial noise is the
most intense electromagnetic emission within 30◦ of the ge-
omagnetic equator, in the frequency range betweenfH+ and
flh, and in the range of radial distances between 4 and 5 RE.
As we have shown in Sect. 2, equatorial noise is detected in
approximately 60% of all passages of the Cluster spacecraft
through the equatorial region at 4–5 RE. This high occur-
rence rate, together with the relatively high observed intensi-
ties, indicate that the importance of equatorial noise may be
not as marginal, as would suggest the low number of papers
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concerning these emissions which can be found in the public
literature. Our results suggest an analogy with natural emis-
sions of whistler-mode chorus (generally observed aboveflh),
which are also very intense, and which are believed to signif-
icantly influence the dynamics of the energetic electrons in
the Earth’s outer radiation belt (Meredith et al., 2003; Horne
et al., 2003; Horne and Thorne, 2003). According to the most
accepted generation mechanism of equatorial noise (Gurnett,
1976; Perraut et al., 1982), its amplification is fed by the
free energy in the distribution functions of energetic ions,
which may be significantly influenced by interactions with
these waves.

Natural emissions of equatorial noise can thus play a non-
negligible role in the dynamics of the internal magneto-
sphere. Equatorial noise can lead to modifications of the dis-
tribution functions of energetic ions, possibly causing their
perpendicular heating or, on the other hand, phase-space dif-
fusion and eventual precipitation into the Earth’s atmosphere.
All those arguments are, however, still rather speculative, and
global effects of equatorial noise have yet to be quantitatively
determined. Our results may indicate that this future research
is worth being done.

5 Conclusions

We have described the first results of a systematic study of
equatorial noise observed by the Cluster spacecraft between
the local proton cyclotron frequency and the local lower hy-
brid frequency. This study has been based on the data mea-
sured by the STAFF-SA instrument during its first two years
of operation. We have analyzed data collected during 781
perigee intervals of the four Cluster spacecraft at radial dis-
tances between 3.9 and 5 Earth radii, and at magnetic lati-
tudes between−30◦ and+30◦. Inspection of these intervals
has shown that the occurrence rate of equatorial noise is ap-
proximately 60%.

Polarization analysis of magnetic field fluctuations has al-
lowed us to select nearly linearly polarized waves with ellip-
ticities below 0.2. These waves have been found to have the
highest planarity among all the collected wave observations.
They have been mainly found within 10◦ of the geomagnetic
equator. A small fraction of these waves observed at higher
latitudes can be explained by the influence of instrumental
noise. These results indicate, consistent with the subjective
experience gained from the visual inspection of the entire
data set, that the low-ellipticity criterion is able to identify
equatorial noise with a reasonable success.

Equatorial noise has been shown to have the most intense
magnetic field fluctuations among all the natural emissions
in the given interval of frequencies and latitudes, being de-
tected in approximately 80% of the cases where the mag-
netic power-spectral density exceeds 10−4 nT2 Hz−1. Elec-
tric field fluctuations of equatorial noise are more intense
compared to the average of all detected waves but their rel-
ative fraction decreases at very high intensities of more than

10−2 mV2 m−2 Hz−1, owing to the 95% domination of the
broad band electrostatic noise.

The relatively high observed intensities and high occur-
rence ratios of equatorial noise indicate that these natural
emissions can play a role in the dynamics of energetic ions
in the internal magnetosphere. More research is needed to
quantify their influence.
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Abstract

Initial results of a survey of equatorial noise emissions are presented. These plasma wave emissions are observed in the inner

magnetosphere close to the geomagnetic equator at frequencies below the local lower hybrid frequency. We use the data recorded by

the four Cluster spacecraft during the first 24 months of measurements. The data set was processed in three steps. First, we have

selected the data with a nearly linear polarization corresponding to the known properties of the equatorial noise. Second, we have

found parameters of a Gaussian model of the frequency-averaged power-spectral density of the selected waves as a function of the

geomagnetic latitude. Third, we have analyzed the data as a function of frequency in the latitudinal interval defined by the width of

the Gaussian model. Our results show that most intensity peaks of equatorial noise occur within 2� of the magnetic equator and the

full-width at half-maximum (FWHM) of these peaks is below 3� in the majority of cases. The most probable frequency of the

emissions is between 4 and 5 local proton cyclotron frequencies. The probability density of occurrence of the emissions then slowly

decreases toward higher frequencies. Multipoint measurements indicate that the variations of the ratios of amplitudes of the

equatorial noise emissions measured on different spacecraft do not increase at spatial scales up to 0.7 Earth radii in the equatorial

plane. On the other hand, the variations do increase with time delay between measurements in an interval from tenths to hundreds of

minutes.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Cluster; STAFF-SA; Equatorial noise

1. Introduction

Equatorial noise is an intense electromagnetic emis-

sion observed in the vicinity of the geomagnetic equator.

It occurs at radial distances of a few Earth radii and at

frequencies from a few hertz to several hundreds of

hertz. The plasma waves of this type were first observed

by Russell et al. (1970) within 2� from the equator at

frequencies between twice the local proton cyclotron

frequency (f Hþ) and half the lower hybrid frequency

(f lh). These observations showed that the equatorial

noise is an intense, almost linearly polarized emission.

Gurnett (1976) analyzed detailed time–frequency spec-

trograms recorded by the Hawkeye spacecraft. The

results showed that the apparent broadband, noise-like

spectrum observed in low-resolution spectrograms, is in

fact a system of many spectral lines with different

frequency spacings. He suggested that these lines are

created by ion cyclotron harmonic interaction in a

region where the local cyclotron frequency matches the

observed spacing. After being generated, the waves

propagate in the electromagnetic whistler mode to the

observation point, which can thus lie far away from
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their region of generation. Perraut et al. (1982) proposed

a wave generation model using ring-like distribution

functions at a pitch angle of 90�: Successive observations
(Laakso et al., 1990; Kasahara et al., 1994) revealed that

the equatorial noise occurs at radial distances between 2

and 7RE; and at latitudes within 10� from the magnetic

equator. The emissions have been detected at frequen-

cies above the local f cHþ:
Multipoint observations of equatorial noise have been

done by the four spacecraft of the Cluster project

(Cornilleau-Wehrlin et al., 2003). Santolı́k et al. (2002)

reported results of high-resolution measurement in the

morning sector, demonstrating a narrow latitudinal

extent of the emissions with a typical width of 2�;
centered near the minimum-B equator. They showed

that the wave vector had a radial component. Since the

Poynting vector also has a radial component, the waves

could propagate from a generation region where ion

cyclotron frequencies matched the observed fine struc-

ture of spectral lines. Santolı́k et al. (2004) presented a

systematic analysis of a large number of observations of

equatorial noise based on the data of the STAFF-SA

instruments (Spatio-temporal analysis of field fluctua-

tions) on board the four Cluster spacecraft. The

occurrence rate of equatorial noise was found to be

approximately 60%. Equatorial noise was identified by

selecting data with nearly linearly polarized magnetic

field fluctuations. The results showed that equatorial

noise had very intense magnetic field fluctuations and

thus could play a non-negligible role in the dynamics of

the internal magnetosphere.

This paper is also based on the data of the Cluster

project. We present results of a survey of equatorial

noise, using a Gaussian model of the distribution of the

power-spectral density as a function of latitude. In

Section 2, we will present the data set and describe our

analysis methods. In Section 3, we will describe results

of the systematic analysis, in Section 4, we will discuss

them, and, finally, in Section 5, we will present brief

conclusions.

2. Data set and processing

The data that we have used were collected during the

first 24 months of operation of the STAFF-SA

instruments on board the four Cluster spacecraft

(Cornilleau-Wehrlin et al., 1997), which are operated

at mutual separation distances of hundreds to thousands

of kilometers by the European Space Agency (ESA).

The instrument mode we use in the present study

provides us with the five-component analysis of three

magnetic and two electric components in 27 frequency

channels between 8Hz and 4 kHz. In each frequency

channel, the data are analyzed on board the spacecraft,

forming 5� 5 Hermitian spectral matrices. These

matrices are then recorded with a time resolution of

1 s for the power-spectral densities (main diagonal of the

spectral matrix), and 4 s for the phases and coherence

(off diagonal elements of the spectral matrix). We have

analyzed all the data intervals where the Cluster

spacecraft were close to the equatorial plane during

their perigee passages. These intervals contain data,

which are measured at radial distances between 3.9 and

5RE and which cover all magnetic local times.

Figs. 1 and 2 show an example of data intervals

containing equatorial noise emissions. The measure-

ments were done by Cluster 1 and 3 on November 25,

2002. Top two panels contain spectrograms representing

power-spectral densities of the magnetic and electric

field fluctuations, respectively. Equatorial noise is the

intense electromagnetic emission seen close to the center

of the time interval, within a few degrees from the

equator. The emission occurs below the upper estimate

of local lower hybrid frequency plotted in spectrograms.

This is calculated as the geometric average of the proton

and electron cyclotron frequencies.

Middle panel contains spectrogram representing

ellipticity of polarization of magnetic field fluctuations.

This is determined by the singular value decomposition

(SVD) method (Santolı́k et al., 2003) and varies between

0 (linear polarization) and 1 (circular polarization). It

can be seen, that the equatorial noise can be easily

distinguished by its polarization close to linear (Russell

et al., 1970). The fourth panel contains spectrogram

representing the planarity of magnetic field fluctuations,

which is again determined by the SVD method and

varies between 0 and 1 (a value of 1 would represent a

strict confinement of the fluctuations to a single plane).

For the equatorial noise the value of � 0:8 suggests that
the magnetic field fluctuates very close to a single plane,

with a small fraction of random 3-D fluctuations.

Bottom panel contains spectrogram representing

spectral density of the Poynting flux. These show that

equatorial noise emissions bear a relatively large amount

of energy compared, for instance, to the whistler-mode

emissions (chorus) observed at higher frequencies.

It can be seen that the characteristics of the same

equatorial noise emission observed by different Cluster

spacecraft can significantly differ (e.g. in our example

case the emission observed by Cluster 3 is almost 10

times more intense than the emission observed by

Cluster 1—see Fig. 3 for details). This difference is

caused by the time delay between the spacecraft (one

spacecraft is approaching the equatorial plane earlier

than the other one). More precise explanation of this

phenomenon will be presented at the end of Section 3

and discussed at the end of Section 4.

In order to enable identification of equatorial noise

emissions, we have processed the data in several steps.

First, we have selected the data measured within �10� of

magnetic latitude from the magnetic equator and
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frequency channels between 8 and 300Hz (the upper

estimate of the maximum f lh throughout the data set),

which represents 16 lowest frequency channels of the

instrument. Next, we have selected the data by an

ellipticity threshold. As it is discussed by Santolı́k et al.

(2004), a choice of ellipticity lower than 0.2 is a good

criterion to select equatorial noise emissions. We have

then calculated average power-spectral density from the

selected data in the selected frequency channels, and we

have found the parameters of a Gaussian model as a

function of the geomagnetic latitude l: This non-linear
least-squares procedure used a model

A ¼ A0 exp �
4 ln 2ðl� lcÞ

2

D2

� �

(1)

of the measured frequency-averaged electric and mag-

netic power-spectral densities. In Eq. (1), A is a model

power-spectral density of the electric or magnetic field

fluctuations, A0 is the value of the corresponding

intensity peak, lc is the position of this peak and D is

a full-width at half-maximum (FWHM) of the Gaussian

model. Fig. 3 shows the results of this procedure for the

example case presented in Figs. 1 and 2. The reason for

using a Gaussian model was that it is the simplest one

which describes all the properties of equatorial noise

emissions that we are interested in.

The above procedure has been done with 748 data

intervals obtained during the first 24 months of the

operation of the STAFF-SA instruments onboard all

the four Cluster spacecraft. For each of these cases, we

have visually compared the results of the Gaussian

model with the corresponding original data. We have

then decided whether the data contain an equatorial

noise emission and whether this emission is well

described by the model (whether the fit was successful).

This decision was made visually from case to case. There

were two possible options expressing the correctness of

ARTICLE IN PRESS

Fig. 1. Example of data collected by Cluster 1 on November 25, 2002. From the top: time–frequency power spectrograms of the magnetic and electric

field fluctuations, ellipticity of polarization, planarity of polarization, and spectral density of the Poynting flux. Equatorial noise is the intense

electromagnetic emission close to the center of time interval, below the local lower hybrid frequency (f lh). The equatorial noise emission can be

distinguished by a low ellipticity and high planarity. The ellipticity and planarity are determined using the singular value decomposition of the

magnetic spectral matrix.
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the fit: successful fit and bad data. Fig. 3 shows an

example of data classified as a successful fit, Fig. 4 shows

an example of data classified as bad data.

We have thus obtained 401 successful cases for the

power-spectral density of the electric field fluctuations,

and 362 cases for the power-spectral density of the

magnetic field fluctuations.

For further analysis we used results of this Gaussian

model, working again with the original frequency-

dependent data. We selected the cases where the fit
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Fig. 2. The same as in Fig. 1 but for the Cluster 3 data.
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Fig. 3. Non-linear least-squares fit of a Gaussian function on the electric (top) and magnetic (bottom) field power-spectral densities between 8 and

300Hz from Figs. 1 and 2 for Cluster 1 (left) and Cluster 3 (right). The experimental frequency-averaged power-spectral densities of selected data are

represented by points, model results are plotted by lines.
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was successful for both the electric and magnetic power-

spectral densities, obtaining 339 intervals. For each of

these cases, we have calculated a time-averaged spectral

matrix over the time interval where the spacecraft was

situated inside the latitudinal interval from lc � D to

lc þ D: The averaging was done for each of the 16 lowest
frequency channels separately.

3. Results of a systematic study

Figs. 5 and 6 show resulting model parameters for the

401 successful cases for the modeled power-spectral

density of the electric field fluctuations, and 362 cases

for the power-spectral density of the magnetic field

fluctuations. Fig. 5 presents a histogram of central

latitudes (lc in Eq. (1)) of the peak of electric and

magnetic power-spectral densities. Most central lati-

tudes occur within 2� from the geomagnetic equator.

Fig. 6 presents the histogram of the FWHM (D in

Eq. (1)) of the Gaussian model of electric and magnetic

power-spectral densities. It is below 3� in the majority of

cases. Results for both electric and magnetic field

fluctuations are very similar in Figs. 5 and 6.

Fig. 7 shows the probability density of frequencies of

equatorial noise emissions normalized to the local

proton cyclotron frequency (f cHþ). It was obtained

from the analysis of the 16� 339 time-averaged spectral

matrices mentioned above. For each of the matrices, we

know the frequency, the ellipticity of polarization of the

magnetic field component of the emission, and the

average intensity of the local magnetic field (from which

we determine f cHþ). To determine whether the equator-

ial noise occurs in a given frequency channel or not, we

have used the same ellipticity threshold as in the first

step of our data processing method. We have again

assumed, that if the value of ellipticity calculated from

the averaged spectral matrix is lower than 0.2 (polariza-

tion close to linear), observed emission is of the

equatorial noise type. Fig. 7 shows that the most

probable frequency of emissions is between 4 and

5f cHþ and the probability density slowly decreases

towards the higher frequencies. Note that the width of

the peak is probably affected by the approximately 30%

relative widths of the frequency channels of the STAFF-

SA instrument (Cornilleau-Wehrlin et al., 1997). This

finite width necessarily leads to broadening of peaks and

smoothing of gradients in the resulting spectrum.

Fig. 8 represents the comparison of the same

equatorial noise emissions observed by different Cluster

spacecraft, which follow almost the same orbits. We

have made all 6 possible combinations of the four

spacecraft for the perigee passages where successful fits

from all the spacecraft were simultaneously available,

obtaining the total number of 324 combinations in 54

passages. These combinations correspond to points

plotted in Fig. 8. Each of the points represents the ratio

of the two amplitudes A0 of the Gaussian model (1) for

ARTICLE IN PRESS

-10 -5 0 5 10

MLat (degrees)

0

2×10-8

4×10-8

6×10-8

8×10-8

nT
2  

H
z-1

Fig. 4. An example of fit classified as Bad data (there is no equatorial

emission present).

-4 -2 0 2 4 6
Central Latitude (degrees)

0

10

20

30

40

50

60

N
um

be
r 

of
 E

ve
nt

s

Fig. 5. Histogram of central latitudes of the peak of electric (dashed)

and magnetic (dotted) power-spectral densities.

0 2 4 6 8
FWHM (degrees)

0

20

40

60

80

100
N

um
be

r 
of

 E
ve

nt
s

Fig. 6. Histogram of the FWHM of the Gaussian model of electric

(dashed) and magnetic (dotted) power-spectral densities.
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the power-spectral density of the electric field fluctua-

tions, calculated from the data of two different space-

craft. When we plot all of them in one figure we can see

that the amplitude variations increase with time

difference between the spacecraft (this means the

difference between times when the peak of amplitude

was observed). This is illustrated by our example Figs. 1

and 2, where observations from Cluster 1 and 3

significantly differ. The reason is that during that

orbit Cluster 3 reaches approximately the same

point as Cluster 1 with more than 1 h delay. The

amplitude variations do not show any clear trend while

increasing the separation of the spacecraft in the

equatorial plane.

4. Discussion

The most important simplifications in our analysis

method occur during the data processing. In order to

identify the equatorial noise emissions in such a large

amount of data, it is necessary to define some universal

identification criteria. There is always a risk, that some

points, which should be selected as an equatorial noise,

will not be selected and, on the other hand, that the

points which should not be selected will be. We have

tried to overcome this problem by combining an

automatic pre-selection procedure with a visual case-

by-case identification. The automatic procedure was

used to select only the nearly linearly polarized waves

which criterion is well justified by the known properties

of the equatorial noise emissions (e.g., Russell et al.,

1970). The subsequent visual recognition always con-

tains some degree of subjective judgement but we have

not found a reliable automatic procedure which would

easily replace this step. A completely automatic equa-

torial noise recognition would probably require a much

more refined model of the intensity distributions which

is out of the scope of the present paper. We believe that

the subjective element does not bias the statistical results

we have presented.

Another problem is that our Gaussian model (as well

as any other model) is only an approximation which

simplifies the real situation. We can see in Fig. 3 that the

experimental points are rather scattered around the

model curve, indicating deviations from the model. In

some other cases we can note systematic enhancements

of the power-spectral density in the ‘‘wings’’ of the

model Gaussian function, making the real peak slightly

wider compared to the model. This problem could be

resolved by making a more complex model with

additional degrees of freedom allowing such deviations

from a simple Gaussian function. In this work, we have

chosen to keep the model as simple as possible. The

resulting parameters then have to be interpreted as

global characteristics.

The peaks of the Gaussian model are distributed

within 2� of the dipole magnetic equator. Contrary to

what could be expected, histogram of central latitudes of

the peak of electric and magnetic power-spectral

densities (Fig. 5) is not exactly symmetric around the
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zero geomagnetic latitude. We can see that the

maximum number of events is slightly moved towards

the positive latitudes. This is most probably caused

by the definition of magnetic latitude we have used.

We use the magnetic latitude related to the ideal

dipole model of the geomagnetic field. The equator in

this model is defined by a plane perpendicular to the

dipole axis. The true geomagnetic equator is, however,

defined by a point where the magnetic field is minimum

along a particular field line (min-B equator). If we use a

more realistic model of the magnetic field (e.g.,

Tsyganenko, 1989) we obtain a typical difference of

the order of one degree compared to the position of the

dipole equator (see the calculations of Santolı́k et al.,

2002). These differences approximately correspond to

the width of the peak in Fig. 5. The observed systematic

shift towards the positive latitudes is a fraction of the

total width and therefore is probably not significant. If

we used a better model compared to the dipole

approximation of the magnetic equator, we expect that

the peaks would be more confined in the equatorial

plane. Detailed analysis of this effect is under way and

will be published later.

Spatio-temporal analysis based on multi-point mea-

surements and drawn in Fig. 8 hides one basic problem,

the problem of a scale. Although multi-point measure-

ments indicate that the amplitude of emissions varies

with time rather than with the position in the equatorial

plane, the problem is that we do not have any

clear connection between scales we compare. Our results

have been obtained for separations below 0.7 Earth radii

in the equatorial plane, and for time delays between

tenths and hundreds of minutes. Extension of these

intervals will require further measurements. Our present

results could be explained by a source illuminating an

area with a linear dimension of at least 0.7 Earth radii in

the equatorial plane. Substantial time variations of such

a source would occur at scales longer than a few

minutes.

5. Conclusions

We have presented initial results of a survey study of

equatorial noise emissions observed by Cluster space-

craft between the local proton cyclotron frequency and

the local lower hybrid frequency. The data were

collected during 24 months of operation of the

STAFF-SA instruments onboard the four spacecraft.

We have analyzed measurements recorded during their

perigee intervals at magnetic latitudes between �10� and

þ10�; and at radial distances between 3.9 and 5 Earth

radii. We have identified equatorial noise emissions by a

combination of an automatic procedure based on an

ellipticity threshold and a least-squares fit of a Gaussian

model with a subsequent visual inspection.

Our results show that:

(1) Most intensity peaks of a Gaussian model of the

power-spectral density of equatorial noise occur

within 2� of the dipole magnetic equator. The

observed small systematic shift is not significant.

(2) The full-width at half-maximum (FWHM) of the

Gaussian model of the power-spectral density is

below 3� in the majority of cases.

(3) The most probable frequency of emissions is between

4 and 5 local proton cyclotron frequencies. The

probability density of occurrence of the emissions

then slowly decreases toward higher frequencies.

(4) Variations of the ratio of amplitudes of equatorial

noise increase with time delay between measure-

ments in an interval from tenths to hundreds of

minutes. These variations do not seem to increase

with separations up to 0.7 Earth radii in the

equatorial plane.
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Abstract. The influence of man-made activity on the iono-
sphere may be very important. The effects induced by the
Power Line Harmonic Radiation (PLHR) may change the
natural wave activity and/or the ionospheric plasma com-
ponents. One goal of the ionospheric satellite DEMETER
launched in June 2004 is to study the ionospheric perturba-
tions which could be related to this anthropogenic activity.
As the first step, the paper presents Tram Lines (TL) which
have been observed on board DEMETER with frequency in-
tervals close to 50 Hz or 16 Hz 2/3 (the current frequency
of the railways). When it is observable the frequency drift
of these TL is very slow. It is shown that these events oc-
cur during periods of strong or moderate magnetic activity.
A wave propagation analysis indicates that the TL observed
below the low cutoff frequency of the hiss which is simulta-
neously present are coming from a region below the satellite.
The conclusion is that these TL observed by DEMETER are
produced by PLHR or radiation of railways lines.

Keywords. Ionosphere (Ionospheric disturbances; Wave
propagation; Active experiments)

1 Introduction

The Power Line Harmonic Radiation (PLHR) are the ELF
and VLF waves radiated by electric power systems at the
harmonic frequencies of 50 or 60 Hz. Evidence of PLHR
propagation in the magnetosphere was first observed on the
ground (Helliwell et al., 1975; Helliwell, 1979; Park and
Helliwell, 1981; Matthews and Yearby, 1981; Yearby et al.,
1983). Park (1977) observed ground-based PLHR during a
magnetic storm. However, direct observations by satellites
are rather rare and shown in few papers (Koons et al., 1978;
Bell et al., 1982; Tomizawa and Yoshino, 1985; Parrot, 1994;
Rodger et al., 1995). Many observations show that the lines

Correspondence to:M. Parrot
(mparrot@cnrs-orleans.fr)

drift in frequencies. One must say that there is a controversy
about the origin of these lines which are observed in space or
on the ground because many of them are not separated by 50
or 60 Hz. They are called MLR (Magnetospheric Line Ra-
diation) or TL, and their generation mechanism is not well
determined, although it is most probably due to a nonlinear
interaction between electrons and the coherent waves. In
their study of ISIS2 data, Rodger et al. (1995) observed MLR
and did not find a frequency correlation with 50 or 60 Hz, or
multiples. It was the same for observations of MLR at Hal-
ley Bay (Rodger et al., 1999, 2000a, 2000b). In a review
paper concerning observations of PLHR and MLR emissions
by ground-based experiments and satellites, Bullough (1995)
discussed about the possibility that MLR are due to PLHR.
There are indications that PLHR influences the atmosphere-
ionospheremagnetosphere coupling. This problem requires
serious attention because the electrical power consumption is
always increasing in the world (Parrot and Zaslavski, 1996).
Theoretical works have been done to explain these effects.
Nonlinear interactions between electrons and PLHR can par-
ticipate in the precipitation of electrons from the slot region
in the radiation belts (Bullough et al., 1976; Tatnall et al.,
1983). Molchanov et al. (1991) have shown that the main
part of the PLHR energy dissipates in the lower ionosphere
and modifies the ionospheric currents. Simulations have also
been performed by Nunn et al. (1999) to explain ground ob-
servations of PLHR and associated triggered emissions in
Finland. Recently, Ando et al. (2002) analyzed the penetra-
tion of PLHR in the presence of an ionosphere with a single
ion and underlined the importance of the ion gyrofrequency
relative to the wave frequency of this man-made emission.

The aim of this paper is to present events recorded by
the ionospheric satellite DEMETER which was launched in
June 2004. Section 2 shortly describes the wave experiment
on board DEMETER. Four events showing ELF magneto-
spheric lines are presented in Sect. 3. Analysis and discus-
sions of these events are done in Sect. 4, whereas Sect. 5
presents conclusions.
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Fig. 1. Spectrograms of the magnetic componentBx (top panel) andEy (bottom panel) recorded on 23 July 2004 (event 1). The intensity
of the emissions is color-coded according to the color scale on the right. The vertical white lines indicate a change in the mode of the
experiment.

2 The experiment

DEMETER is a low-altitude satellite (710 km) with a polar
orbit which measures electromagnetic waves all around the
Earth, except in the auroral zones. The frequency range for
the electric field is from DC up to 3.5 MHz, and for the mag-
netic field from a few Hz up to 20 kHz. There are two sci-
entific modes: a survey mode, where spectra of one elec-
tric and one magnetic component are computed on board
up to 20 kHz, and a burst mode, where waveforms of the
6 components of the electromagnetic field are recorded up
to 1.25 kHz. The burst mode allows one to perform spectral
analysis with a better frequency resolution and to determine
propagation characteristic of the waves. There is an onboard
calibration at 625 Hz which is activated at each mode change

and after every 4, 8 or 12 mn. Details of the wave experi-
ment can be found in Parrot et al. (2005) and Berthelier et
al. (2005). Data shown in this paper have been recorded dur-
ing burst modes.

3 The data

3.1 Event 1 recorded on 23 July 2004

Figure 1 displays data recorded on 23 July 2004 between
09:12:30 UT and 09:23:34 UT by DEMETER during an
equatorial crossing. The two panels represent spectrograms
of the magnetic componentBz (top) and the electric compo-
nentEz (bottom) from 0 to 1250 Hz. Time and orbital pa-
rameters are indicated at the bottom of the figure. Data have
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Fig. 2. Spectrum of the electric componentEx . The analysis is performed between 09:14:30 and 09:16:30 UT using a 1024 point-FFT
(1f=2.44 Hz).

Fig. 3. Similar to Fig. 1 but recorded on 8 November 2004 (event 2).
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Fig. 4. Spectrum of the magnetic component calculated for the first forty seconds of Fig. 3.

Fig. 5. Same as Fig. 1 but for the event recorded on 21 January 2005 (event 3).

been recorded in the Pacific Ocean close to the Kiribati Is-
lands around the magnetic equator during a period of strong
magnetic activity (Kp=6). At this time, the satellite was still
during the commissioning phase and this is why a part of the
magnetic data is missing in the top panel. The regular verti-
cal white lines indicate changes in configuration for another
experiment. Other vertical lines represent spherics. In both
panels, a set of horizontal lines appears in a frequency range
between 310 and 650 Hz. It is observed that these lines do
not shift in frequency and that they have higher intensities
when the satellite crosses the magnetic equator. Similar ob-
servations are done for the other components of the electro-
magnetic field. It appears that the main horizontal lines are
in fact composed of many individual lines. All these lines ex-
hibit a low cutoff frequency which is below the local proton
gyrofrequency (see plots and explanation given in Sect. 4).

As this low cutoff frequency increases, some low frequency
horizontal lines disappear with the time. In order to check
the frequencies of these lines, an averaged spectrum calcu-
lated between 09:14:30 and 09:16:30 UT is represented in
Fig. 2. Seven harmonic lines are clearly observed and the
first six are separated by 50 Hz, although they are not at ex-
act multiples of 50 Hz. The center of the seventh line, which
is broader in frequency, is at a little bit more than 50 Hz.

3.2 Event 2 recorded on 8 November 2004

Figure 3 is similar to Fig. 1 and corresponds to data recorded
on 8 November 2004 between 07:23:35 and 07:27:00 UT
when the satellite was above Iran and Iraq. It was the time of
the largest magnetic storm of the year, withKp=9. A set of
horizontal lines is observed well below the cutoff frequency
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Fig. 6. Enlarged spectrogram between 0 and 900 Hz related to the event shown in Fig. 5 but with the magnetic componentBz.

of the natural hiss emission. This cutoff frequency, which is
below the proton gyrofrequency, decreases with the time. All
other magnetic and electric components show the same fea-
ture. A careful check of the spectra indicates that in fact there
are two sets of lines: a set with thin lines and another with
thick lines. The very thin line which is observed at 39 Hz has
been identified as interference. The lines are very slightly
drifting in frequency (∼1 Hz per 35 s). Figure 4 displays
the magnetic spectrum of theBx component which was ob-
tained, taking into account the first forty seconds of the con-
sidered time interval and a spectral analysis with a frequency
resolution of 1.2 Hz. The frequencies of the peaks were eval-
uated considering the half width at the half height of each
peak. It gives peak frequencies at 78.0, 95.1, 114.3, 147.3,
and 198.9 Hz, and, if we consider the first frequency interval
as the unit bin, an average frequency interval is∼17.2 Hz.

3.3 Event 3 recorded on 21 January 2005

Figure 5 is similar to Fig. 1 and corresponds to data recorded
on 21 January 2005 between 19:41:04 and 19:48:30 UT. At
this time the satellite was flying over Egypt, the Mediter-
ranean sea, and Turkey. The magnetic activity was very high
with Kp=8. As in event 2, a set of horizontal lines can be ob-
served below the cutoff frequency. Their intensities increase

between 19:43:15 and 19:45:00 UT when waves ducted by
density irregularities are observed.

Another set of lines can be distinguished at the beginning
of the plot above the cutoff frequency, as in event 1. Their
intensity is weak relatively to the other set. A more detailed
spectrogram of these lines is given in Fig. 6 for the magnetic
componentBz. It is shown that the lines are separated by
50 Hz for the two sets of lines. As in event 1, the lines are
not at an exact multiple of 50 Hz but slightly above (∼4 Hz).
There is a broadening of the lines, which are close to 150 Hz
and 200 Hz in the middle of the plot, and sidebands appear
mainly at the time of the doctal waves.

3.4 Event 4 recorded on 23 January 2005

Figure 7 is similar to Fig. 1 and represents data recorded on
23 January 2005 between 02:04:10 and 02:08:30 UT dur-
ing an equatorial crossing above the Indonesian Islands. The
magnetic activity was moderate withKp=4. TL mixed with
natural hiss noise are detected above the cutoff frequency, as
in event 1. Figure 8 displays a frequency zoom of these data
for the magnetic componentBz, and it is observed that the
intensity of the lines increases close to the magnetic equator
crossing. As in event 1, the lines are split into several ones.
On average, the frequency separation of the three main lines
is ∼31.3 Hz.
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Fig. 7. Same as Fig. 1 but for the event recorded on 23 January 2005 (event 4).

Fig. 8. Enlarged spectrogram between 0 and 700 Hz related to the data shown in the top panel of Fig. 7.

4 Analysis and discussions

It is possible to determine the propagation characteristics
of the observed waves during events 2, 3, and 4, which
were recorded during a burst mode. The data need to be
translated in a frame of reference linked to the Earth’s

magnetic field B0 and for event 1, which has been recorded
during the commissioning phase, the attitude information is
missing. The six components of the electromagnetic field
are available, and a relevant software named PRASSADCO
has been employed (Santolı́k, 2001). A preliminary version
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Fig. 9. Wave analysis of the event 2.(a) spectrogram of one magnetic component,(b) sense of polarization,(c) planarity, (d) and (e)
polar and azimuthal angles of the wave vector with the Earth’s magnetic fieldB0, (f) projection of the Poynting vector ontoB0 (see text for
explanation). The geophysical parameters at the bottom are the Universal Time (UT), the geomagnetic latitude, the Magnetic Local Time
(MLT) and the altitude.

of this software has been used to process the data of the
FREJA wave experiment (Santolı́k and Parrot, 1999). But
it was specially developed for the data analysis of the
spectral matrices computed by the STAFF experiment on
board CLUSTER (see, for example, Parrot et al., 2003;
Santoĺık et al., 2003a), and it has been adapted to process
the DEMETER data (Santolı́k et al., 2005).

The TL observations can be divided in two parts, depend-
ing on their occurrence below or above the low frequency

cutoff of the hiss, which is simultaneously observed with the
TL. The TL of events 1 and 4 are observed above, TL of
event 2 are observed below, and for event 3, two TL sets are
observed, one is above and the other below.

Figures 9, 10, and 11 are related to the wave propagation
analysis of the last 3 events. They all display the same in-
formation. The first panel shows the sum of power spectral
densities of the three magnetic components. The black line
(also shown in the other panels) indicates the local proton
gyrofrequency given by a magnetic field model. It can be
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Fig. 10. Same presentation as in Fig. 9 but for the event 3.

seen (mainly for the events 3 and 4) that the local proton
gyrofrequency is not the cutoff frequency of the hiss which
is observed simultaneously with the TL. The cutoff is at the
multi-ion cutoff frequency (see Santolı́k and Parrot, 1999 and
references therein). The second panel displays the sense of
polarization in the plane perpendicular to the field line es-
timated by the method of Santolı́k et al. (2001). A value
larger than +1 (red color) corresponds to a right-hand polar-
ization. In this panel and in the following ones, the param-
eters are color-coded only if the intensity of the magnetic
field is larger than 10−7 nT2/Hz. The third panel is related to
the planarity obtained by the Singular Value Decomposition
(SVD) method (Santolı́k et al., 2003b). A value close to 1
corresponds to the presence of a single plane wave. The two

following panels are related to the direction of propagation
of the waves. They give the polar and the azimuth angles
between the k vector and the Earth’s magnetic field B0, re-
spectively. Both angles are calculated using the SVD method
(Santoĺık et al., 2003b). The last panel is related to the esti-
mation of the component of the Poynting vectorS‖, which is
the projection of the Poynting vector ontoB0, andσS‖ is a
normalisation factor which corresponds to the standard devi-
ation ofS‖ due to the spectral analysis. A positive value close
to 2 indicates a direction of propagation which is in the di-
rection of the magnetic field, whereas a negative value close
to –2 indicates a direction which is opposite to the magnetic
field. More details about this wave analysis can be found in
Santoĺık and Parrot (1999) and references therein.
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Fig. 11. Same presentation as in Fig. 9 but for the event 4.

The TL which are observed below the cutoff frequency in
events 2 and 3 have similar properties concerning the prop-
agation characteristics. The sense of polarization indicates
that the waves are right-hand polarized. They propagate up-
wards (opposite to the magnetic field in the Northern Hemi-
sphere) with an angle relative to the Earth’s magnetic field of
around 30◦.

The TL which are observed above the proton gyrofre-
quency at the beginning of event 3 are very similar to those
from event 1. The TL intensity is certainly vanishing after
an increase around the magnetic equator. At this time, waves
which are recorded in the survey mode (not shown) present
a large intensity in this frequency range but the frequency
resolution is too poor to distinguish TL.

Events 1 and 4 are similar in the sense that they exhibit an
important growth close to the magnetic equator which is the
favoured zone for wave-particle interactions. This is further
evidence that these waves may influence the natural mecha-
nisms in the ionosphere and could contribute to the precipita-
tion of particles from the radiation belts. The wave analysis
parameters of event 4 are displayed in Fig. 11. The sense
of polarization indicates the presence of right-hand polarized
waves. These waves propagate nearly perpendicular to B0.
During event 4, the color which indicates the direction of the
Poynting vector changes when the satellite crosses the mag-
netic equator. It signifies that the direction of the hiss and of
the TL, which are observed at frequencies above the cut-off
frequency, is upgoing.
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A question is related to the origin of the frequency inter-
vals between the lines which are observed during these four
events. The 50-Hz electric current can be found in many
parts of the world, including the Pacific Islands. The other
frequency interval can be related to the electrified railways.
Many countries have standardized on 15 kV 16 2/3Hz (one-
third the normal main frequency) system as the standard for
low-frequency, high voltage electrification. All harmonics
are not often observed depending on the production system
which is used (Bullough, 1995). Then in event 4 the lines
whose frequency interval practically equals two times the
fundamental frequency may be due to the railways, as for
event 2.

Why are the TL not observed at exact harmonics of 50 Hz
or 16 2/3 Hz, and why are any sidebands observed? The
frequency shift can be explained by a whistler mode insta-
bility during a gyroresonance interaction between the coher-
ent waves and the particles in an inhomogeneous medium.
The generation mechanism of sidebands may be due to the
scattering from ionospheric irregularities which are enhanced
by the magnetic activity. All these processes have been al-
ready discussed in the past (see, for example, Brinca (1972);
Matthews et al. (1984); Bell (1985); Nunn (1986); Bell and
Ngo (1988); Shklyar et al. (1992) and references therein).

Is there a possibility to attribute these ionospheric tram
lines to natural emissions? One hypothesis is related to
waves at harmonics of ion gyrofrequencies (Liu et al., 1994)
which could be produced at much higherL values. These
waves could propagate since the source region and could be
observed at the altitude of the satellite. But in such a case the
frequency drifting of the lines would be much more impor-
tant than it is observed.

5 Conclusions

DEMETER is a low orbiting satellite devoted to the study
of ionospheric perturbations induced by geophysical activi-
ties (earthquakes, volcanoes, thunderstorms, etc.) and man-
made activities (VLF transmitters, PLHR, etc.). Therefore,
it surveys the global Earth electromagnetic environment at
ionospheric altitudes. When enough data is registered, geo-
graphic maps of wave emissions at various frequencies will
be produced, in order to compare with regions of high indus-
trial activity and to check if there is some anthropogenic in-
fluence in the ionosphere. At this time, this paper is related to
four event studies where TL have been observed. The com-
mon features of these observations are:

1. The frequency intervals between the TL are close to
50 Hz (the usual electric current system) or to 16 2/3 Hz
(the current frequency used for railways).

2. The frequency drift of the TL is very slow.

3. They are observed during periods of moderate or intense
magnetic storms. This is similar to observations per-
formed by Koons et al. (1978) with the S3-3 satellite or
by Park (1977) with a ground-based experiment.

4. The wave propagation analysis indicates that the TL be-
low the low cutoff frequency of the natural emissions
simultaneously observed are coming from a region be-
low the satellite.

5. The intensity of the TL above the low cutoff frequency
of the natural emissions is enhanced close to the mag-
netic equator. This is an indication that they interact
with particles.

Therefore, concerning these observations on DEMETER,
there is evidence to suggest a link between TL and PLHR
or radiation due to railways lines. A systematic search for
TL with harmonics at 50 and 60 Hz has been started with an
automatic software running on the DEMETER database and
results will be presented soon.
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Abstract

Results of a statistical study of equatorial noise emissions are presented. These electromagnetic emissions are observed in the

inner magnetosphere in the vicinity of the geomagnetic equator at frequencies below the lower hybrid frequency. We use the data

recorded by four Cluster spacecraft during years 2001–2003. The data set was processed in three steps. In the first one, we have

selected the data with a nearly linear polarization (ellipticity less than 0.2), corresponding to the known properties of the equatorial

noise. Secondly, we have found parameters of a Gaussian model of the frequency-averaged power-spectral density of those selected

waves as a function of the geomagnetic latitude. Finally, we have analyzed the data in the latitudinal interval defined by the width of

the Gaussian model. Our results show that most intensity peaks of equatorial noise occur exactly at the magnetic equator. Incidental

deviations are most probably caused by problems in determination of the true magnetic equator, which is shown by using different

magnetic field models. We have estimated the plasma number density at the observation points using the cold plasma theory. These

estimates are, within experimental errors, close to the values obtained from the spacecraft potential data measured by the EFW

instrument.

� 2006 Published by Elsevier Ltd on behalf of COSPAR.

Keywords: Cluster; STAFF-SA; Equatorial noise

1. Introduction

Equatorial noise (EN) is an intense electromagnetic

emission observed close to the geomagnetic equator at

radial distances of a few Earth radii and at frequencies

from a few Hertz to several hundreds of Hertz. It was

first observed on OGO 3 by Russell et al. (1970) within

2� from the equator at frequencies between twice the

local proton cyclotron frequency (fcH+) and half the

lower hybrid frequency (flh). These observations

revealed that the magnetic field fluctuations of EN are

almost linearly polarized along the local field line.

Detailed time-frequency spectrograms recorded on-

board the IMP 6 and Hawkeye spacecraft were analyzed

by Gurnett (1976). He found that the apparently broad-

band, noise-like spectrum observed in low resolution

spectrograms, is in fact a system of many spectral lines

with different frequency spacings from a few Hertz to

a few tenths of Hertz. He suggested that these lines are

created by ion cyclotron harmonic interaction in a

0273-1177/$30 � 2006 Published by Elsevier Ltd on behalf of COSPAR.

doi:10.1016/j.asr.2005.03.025

* Corresponding author. Tel.: +420 257 712 678.

E-mail addresses: nemec@matfyz.cz, Frantisek.Nemec@ruk.cuni.cz

(F. Němec).
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region where the local cyclotron frequency matches the

observed spacing. After being generated, the waves

propagate in the electromagnetic whistler mode to the

observation point, which can thus be localized far away

from their region of generation.

By analyzing GEOS wave and particle data, Perraut

et al. (1982) proposed a model whereby these waves

are generated by ions whose distribution is ring like

around 90� pitch angle. Further observations (Laakso

et al., 1990; Kasahara et al., 1994) revealed that equato-

rial noise can occur at radial distances between 2 and

7RE, and at latitudes within 10� from the magnetic equa-

tor. All the emissions have been detected at frequencies

above the local fcH+.

STAFF and WBD wave instruments onboard the

four spacecraft of the Cluster project have enabled mul-

tipoint observations of EN. Santolı́k et al. (2002) re-

ported results of high-resolution WBD measurements

in the morning sector and demonstrated a narrow latitu-

dinal extent of the emissions with a typical width of 2�,

centered near the minimum-B equator. They showed

that the wave vector had a radial component. Since

the Poynting vector also has a radial component, the

waves could propagate from a generation region where

ion cyclotron frequencies matched the observed fine

structure of spectral lines. A systematic analysis of a

large number of observations of EN based on the data

of the STAFF-SA instruments (Cornilleau-Wehrlin

et al., 2003) on board the four Cluster spacecraft was

done (Santolı́k, 2004; Němec et al., 2005). The occur-

rence rate of EN was found to be approximately 60%.

Equatorial noise was identified by selecting data with

nearly linearly polarized magnetic field fluctuations,

and using Gaussian fits of the power spectra as a func-

tion of the geomagnetic latitude. The results showed

that EN had very intense magnetic field fluctuations

and thus could play a non-negligible role in the dynam-

ics of the internal magnetosphere.

This paper is also based on the data of the Cluster

mission. We present results of a survey of equatorial

noise, using both an ellipticity threshold and a Gaussian

model of the distribution of the power-spectral density

as a function of latitude. We examine in detail the local-

ization of the EN emissions by using the models of Tsy-

ganenko (1989) and Tsyganenko and Stren (1996),

trying to prove the hypothesis that EN emissions are

centered at the minimum-B equator and observed devi-

ations are owing to the inaccurate determination of its

position. We further compare the plasma density esti-

mated from the EN measurements with the data ob-

tained from the analysis of the spacecraft potential

measured by the EFW instruments on board Cluster

(Gustafsson et al., 2001).

In Section 2 we will present the data set and describe

our analysis methods. In Sections 3 and 4 we will

describe results of the systematic analysis, in Section 5

we will discuss the results, and, finally, in Section 6 we

will present brief conclusions.

2. Data set and processing

The data that we have used were collected during 24

months in 2001–2003 by STAFF-SA (Spatio-temporal

analysis of field fluctuations) instrument on board the

four Cluster spacecraft (Cornilleau-Wehrlin et al.,

1997). The instrument mode we use provides us with

27 frequency channels logarithmically spaced between

8 Hz and 4 kHz. The data are pre-analyzed on board

the spacecraft, forming Hermitian spectral matrices

5 · 5 (3 magnetic and 2 electric components are mea-

sured) for each of the frequency channels. These are

then recorded with the time resolution of 1 s for

power-spectral density (main diagonal elements of spec-

tral matrix) and 4 s for the phases and coherence (off-

diagonal elements of spectral matrix).

We have analyzed the available data intervals where

the Cluster spacecraft were close to the equatorial plane

during the perigee passages. These intervals cover all

magnetic local times (MLT) and contain data measured

at radial distances between 3.9 and 5.0RE. An example

of the data is shown in Fig. 1.

The measurements have been made by Cluster 3

(Samba) on November 25, 2002. The two panels at the

top of Fig. 1 represent power-spectral densities of mag-

netic and electric field fluctuations, respectively. The

corresponding Poynting flux is in the panel at the bot-

tom of Fig. 1. Equatorial noise is the intense electromag-

netic emission observed close to the center of the time

interval and to the geomagnetic equator. EN occurs at

frequencies below the lower hybrid frequency (its esti-

mate, calculated as the geometric average of the proton

and electron cyclotron frequency, is plotted in the spec-

trogram). The middle panel represents ellipticity of

polarization of magnetic field fluctuations determined

by the singular value decomposition (SVD) method

(Santolı́k et al., 2003), which varies between 0 (linear

polarization) and 1 (circular polarization). It can be seen

that EN can be easily distinguished by almost linear

polarization (Russell et al., 1970). The fourth panel rep-

resents planarity of magnetic field fluctuations (again

determined by the SVD method), which varies between

0 and 1 (a value of 1 means a strict confinement of the

fluctuations to a plane). A value of �0.8 for EN suggests

fluctuations very close to a single plane, with a small

fraction of random 3-D fluctuations.

For our systematic survey of EN we have processed

the data in several steps. First, we have selected data

lying close enough to the magnetic equator (with a mag-

netic latitude within ±10� of the equator) and frequency

channels between 8 and 300 Hz (the upper estimate of

the flh throughout the data set), which represents 16
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lowest frequency channels of the instrument. Next, we

have selected the data using the ellipticity threshold

(ellipticity lower than 0.2). For each event, we have then

calculated the average power-spectral density and found

parameters for input to our model, separately for

magnetic and electric power-spectral densities, and sep-

arately for each spacecraft. The model of the power-

spectral density has been chosen as a Gaussian function

of geomagnetic latitude along the spacecraft orbit, with

a central position, a width, and an intensity as free

parameters (see Němec et al., 2005, for more details).

This procedure has been done with 748 data intervals,

resulting in 339 cases (45%) where the fits were success-

ful for both electric and magnetic field fluctuations. In

about 40% of the cases, EN emission did not occur at

all; the remaining approximately 15% are cases with

weak EN emission and unsuccessful fits. For each of

the 339 successful fits, we have calculated a time-aver-

aged spectral matrix. We have used an average over

the time interval when the EN emission occurred (when

the spacecraft was situated in the latitudinal interval gi-

ven by a full width at half maximum of the Gaussian

model), for each of the 16 lowest frequency channels

separately. We have thus obtained 16 time-averaged

spectral matrices (one per frequency channel) for each

of these cases.

3. Localization of equatorial noise

Analysis of the EN emissions using the Gaussian fits

enables us to define a localization of the emission as the

position of the intensity peak in the magnetic dipole lat-

itude. The results are quite similar for magnetic and elec-

tric field fluctuations (Němec et al., 2005). We thus

define the resulting position as their arithmetic average.

In a recent statistical study (Němec et al., 2005) we have

shown that most intensity peaks of EN occur within 2�

from the magnetic equator. However, contrary to what

could be expected, the histogram is not exactly symmet-

ric around the zero geomagnetic latitude. This could be

caused by the definition of magnetic latitude we have

used and the inhomogeneous coverage of magnetic local

times in our data set. We have used magnetic latitude re-

lated to the ideal dipole model of the geomagnetic field.

The equator in this model is defined by a plane perpen-

dicular to the dipole axis. The true geomagnetic equator

is, however, defined by a point where the magnetic field

is minimum along a particular field line (min-B equator).

We have thus used more realistic modeling of the

magnetic field (Tsyganenko, 1989; Tsyganenko and

Stren, 1996), and calculated the dipole latitude kB of

the min-B equator. The magnetic latitude km was then

corrected by subtracting kB. We have thus obtained a

Fig. 1. Example of data collected by Cluster 3 on November 25, 2002. From the top: time-frequency power spectrograms of the magnetic and electric

field fluctuations, ellipticity of polarization, planarity of polarization, and spectral density of the Poynting flux. Equatorial noise is the intense

electromagnetic emission close to the center of time interval, below the local lower hybrid frequency (flh). The EN emission can be distinguished by a

low ellipticity and high planarity. The ellipticity and planarity are determined using the singular value decomposition of the magnetic spectral matrix.
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modified latitude k
0
m ¼ km � kB which is zero at the

model min-B equator. Using this modified latitude, we

have re-calculated the histogram of central positions of

the EN intensity peaks. The results are shown in Figs.

2 and 3 (the result for a dipole model is shown as a dot-

ted line in both figures for comparison). It can be seen

that the distribution became less spread out in latitude

with most of the events located around 0� latitude (espe-

cially in the case of the Tsyganenko 89 model).

However, there are still several cases which occur

quite far from the model min-B equator. We looked at

these cases more in detail. Figs. 4 and 5 show the dis-

tance of the EN emission from the min-B equator as a

function of a model parameter (Kp index for

Tsyganenko 89 and Dst index for Tsyganenko 96,

respectively). Each of the plotted points represents one

EN case, the line is a median. These figures show that

the high distance from the equator is systematically ob-

tained when the model parameters have extreme values

(high for Kp or highly negative for Dst).

4. Estimation of the local plasma density

The ratio of the intensities of magnetic and electric

field fluctuations carries information on the plasma

medium in which the waves propagate, namely the plas-

ma density. We have used the cold plasma theory (e.g.,

Stix, 1992) to estimate the local plasma density. In

accordance with the observed polarization of magnetic

field fluctuations, we have supposed purely perpendicu-

lar propagation of whistler-mode waves. For each of the

observations of EN emission we have obtained a density

estimate as an arithmetic average of the estimated densi-

ties over the frequency bands where the EN emission

occurred.
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Fig. 2. Histogram of central positions of EN using the Tsyganenko 89

model for determination of the min-B equator. The same histogram

using a dipole model for comparison (dotted).
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Fig. 3. Histogram of central positions of EN using the Tsyganenko 96

model for determination of the min-B equator. The same histogram

using a dipole model for comparison (dotted).
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Fig. 4. Distance of EN emission from the min-B equator obtained by

the Tsyganenko 89 model, as a function of the Kp index.
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Fig. 5. Distance of EN emission from the min-B equator obtained by

the Tsyganenko 96 model, as a function of the Dst index.
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We have compared such estimated number densities

with the values determined from the spacecraft potential

data using the measurements of the EFW experiment. A

slight modification of the method of Pedersen et al.

(2001) was used to transform the measured voltage be-

tween the spacecraft body and the spherical probes to

the plasma density estimates. The method of Pedersen

et al. (2001) was improved by using more calibrated data

points from the Whisper relaxation sounder and by

improving the fit. The results are shown in Figs. 6 and

7. Fig. 6 shows the number densities nEN estimated from

the EN measurements plotted against the densities nEFW
obtained from the measured spacecraft potential. A log-

arithmic scale is used. The dotted line that is over-

plotted corresponds to identical values for both density

estimations. It shows a rough agreement between the

two methods, with a slight tendency to underestimate

the density using the EN measurements.

Fig. 7 represents a histogram of the relative differ-

ences |nEN � nEFW|/nEFW of both density estimates. It

can be seen, that the most probable relative error is

around 30%.

5. Discussion

Previous investigation of the localization of equato-

rial noise (Němec et al., 2005) has shown that the inten-

sity peak of the emission occurs within a few degrees of

the geomagnetic equator, with a typical latitudinal ex-

tent (width of a Gaussian fit) of 2�. When using a more

sophisticated model of the magnetic field than the simple

dipole model, namely the Tsyganenko 89 and Tsyganen-

ko 96 models, the position of the central peaks tend to

be closer to the min-B equator (see Figs. 2 and 3). This

is especially true in the case of the Tsyganenko 89

model. while this effect is not so important in the case

of the Tsyganenko 96 model. This is rather unexpected

because the Tsyganenko 96 model is a newer model,

which uses more parameters, and could be therefore ex-

pected to give better results. However, this model is per-

haps not so well optimized for the equatorial region at

distances of �4RE. It would be necessary to carefully

compare the results obtained from both models of the

magnetic field and measurements in this particular re-

gion, which is beyond the scope of this paper.

Even when using better models of the magnetic field,

we still obtain a fraction of cases where the central peaks

are displaced from the model min-B equator by more

than 1�. Looking at those cases in more detail (Figs. 4

and 5) we observe that they usually correspond to ex-

treme values of model parameters, i.e., high values of

the Kp index for the Tsyganenko 89 model and highly

negative values of the Dst index for the Tsyganenko 96

model. These extreme values are not encountered very of-

ten, and, as the models are empirical, they are expected to

be less accurate under such circumstances. Consequently,

those displaced cases can be most probably explained by

inaccuracies of the determination of the model min-B

equator, supposing that in fact all the cases occur at the

true min-B equator. However, we cannot completely ex-

clude the possibility that the central positions of EN are

really slightly displaced from the min-B equator under

the disturbed conditions. Note also that the latitudinal

extent (width of the Gaussian fit) of EN slightly increases

as a function of Kp but still remains less than 3� for the

majority of cases. This extent is thus usually higher than

the displacement from the min-B equator.

The next part of this paper was dedicated to the study

of a connection between the ratio of magnetic and elec-

tric power spectra and the number density at a given

place. We have used the cold plasma theory and an

assumption that the waves propagate perpendicularly

to the local magnetic field, which is consistent with the
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Fig. 6. Measured (from the EFW spacecraft potential data) and

estimated (from B/E ratio) number densities plot one against another

in a logarithmic scale.
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respect to the measured ones.
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observed polarization. To prove the validity of such an

approach as well as to verify if the cold plasma theory

can be used in such a case, we have compared the esti-

mated values of number density with the values ob-

tained from the spacecraft potential (see Figs. 6 and

7). The two density estimates correlate quite well but

their correspondence is not perfect. The relative errors

of the density estimation show a wide distribution of

values up to approximately 80%, the most probable rel-

ative error being around 30%. An important result is

that there is no clear systematic difference of the two

estimates and that the errors are rather random, except

a slight tendency to obtain lower densities from the EN

measurements. Our interpretation is that the assump-

tions we have made are roughly correct and that the cold

plasma theory can be used in such a case. The differences

are most probably connected to experimental inaccura-

cies of these indirect methods of density estimation. A

possible reason might be that only two electric compo-

nents are measured, or that the wave vector is not al-

ways exactly perpendicular to the field line. It might

be also connected to the wide relative frequency inter-

vals (�30%) where the data are integrated during the

measurement. Finally, one must keep in mind that also

the EFW method itself can be an important source of er-

ror, because we do not take into account the electron

temperature. For temperatures between 0.1 and 1 eV

the scatter of obtained densities could reach a factor

of 2–3 (Laakso and Pedersen, 1998). More work is

needed to explain the observed differences.

6. Conclusions

We have presented the results of a study of EN

emissions observed at frequencies below the lower hybrid

frequency by the Cluster spacecraft. The data were

collected during three years of operation of the

STAFF-SA instruments onboard the spacecraft. We

have analyzed data recorded during their perigee passes

at magnetic latitudes between �10� and 10�, and at

radial distances between 3.9 and 5 Earth radii. We have

used a procedure based on identifying the EN emissions

by using an ellipticity threshold and subsequent Gauss-

ian fits of the resulting power-spectra. Our results show

that:

(1) Central latitudes of EN seem to be located exactly

at the true geomagnetic equator. The observed

deviations can be most probably explained by

the inaccuracies in the model used for the determi-

nation of min-B equator, which are caused by

extreme values of the model parameters.

(2) Using the cold plasma theory, the number density

can be estimated from the ratio of magnetic and

electric power spectral density. It varies from units

to hundreds of particles per cubic centimeter. Our

estimations of the number densities are in a rough

agreement with the densities obtained from the

measurements of the spacecraft potential, indicat-

ing applicability of the cold plasma theory.
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616 F. Němec et al. / Advances in Space Research 37 (2006) 610–616

  
  
  
  
  
  
  
  
  
  
  



Power line harmonic radiation (PLHR) observed by

the DEMETER spacecraft
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[1] Results of a systematic survey of Power Line Harmonic Radiation (PLHR) observed
by a recently (June 2004) launched French spacecraft DEMETER are presented. In order
to obtain a statistically significant number of events, an automatic identification procedure
has been developed and all the available high-resolution data have been processed.
Altogether, 58 events have been found in 865 hours of data recorded during the first year
of operation. These events form three different classes: with frequency spacing of spectral
lines of 50/100 Hz (10 events), with frequency spacing of 60/120 Hz (13 events), with
other spacings/not clear cases (35 events). The first two classes of events are discussed in
detail, showing that their origin is most probably connected with the radiation from the
electric power systems which are magnetically conjugated with the place of observation.
Additionally, in more than one half of the cases, the frequencies of PLHR lines well
corresponded to the multiples of the power system frequency. The frequency drift of all
the observed events was very slow, if observable. The events occurred without any
significant preference for low or high geomagnetic activity, although more intense events
were observed during disturbed times. Simultaneous observations of electric and magnetic
components of PLHR suggest that the waves propagate in the electromagnetic right-hand
polarized whistler mode.

Citation: Němec, F., O. Santolı́k, M. Parrot, and J. J. Berthelier (2006), Power line harmonic radiation (PLHR) observed by the

DEMETER spacecraft, J. Geophys. Res., 111, A04308, doi:10.1029/2005JA011480.

1. Introduction

[2] Power Line Harmonic Radiation (PLHR) are electro-
magnetic waves radiated by electric power systems at har-
monic frequencies of 50 or 60 Hz. In frequency-time
spectrograms they usually look like a set of intense parallel
lines with mutual distances of 50/100 or 60/120 Hz because
odd/even harmonics can be strongly suppressed in some
cases. There are many observations of PLHR on the ground
[Helliwell et al., 1975; Park and Helliwell, 1978; Matthews
and Yearby, 1978; Park and Helliwell, 1981, 1983; Yearby et
al., 1983], giving evidence for its propagation through the
magnetosphere. However, direct observations by satellites
are still rather rare and described only in a few papers [Bell et
al., 1982; Koons et al., 1978; Tomizawa and Yoshino, 1985;
Rodger et al., 1995; Parrot et al., 2005]. Moreover, one must
admit that there is quite a controversy about the origin of these
events because many of the observed lines are not separated

by 50/100 or by 60/120 Hz. These are usually called Magne-
tospheric Line Radiation (MLR) and their generation mech-
anism is a matter of discussion. Rodger et al. [1995] analyzed
observations ofMLRby ISIS 1 and ISIS 2 satellites and found
no correlation with 50 or 60 Hz multiples. The same conclu-
sion was obtained for ground-based observations made at the
Halley station [Rodger et al., 1999, 2000a, 2000b]. On the
other hand, some researchers [Park and Miller, 1979] have
reported a ‘‘Sunday effect’’; they claim that the occurrence
rate was significantly lower on Sundays in comparison to
other days of week. Parrot [1991] and Molchanov et al.
[1991] attributed this reduced occurrence not only to lower
power consumption during weekends but also to different
current distribution in the power systems as compared to
weekdays. Finally, in a review paper concerning observations
of PLHR and MLR both on the ground and satellites,
Bullough [1995] discussed the possibility that MLR origi-
nates as PLHR.
[3] Results of a systematic survey of PLHR observed by

the DEMETER spacecraft are reported in this paper. In
section 2 the wave experiment on board DEMETER is
briefly introduced. In section 3 an automatic identification
of PLHR is described. An analysis of events is performed in
section 4, whereas section 5 presents the discussion of
results. Finally, section 6 contains conclusions.

2. Experiment

[4] We have used data from the French microsatellite
DEMETER, which was launched in June 2004 on a low-
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altitude (�710 km) nearly Sun-synchronous polar orbit. The
primary purpose of the DEMETER mission is to study
ionospheric effects connected with the seismic activity. The
mission also aims at the analysis of anthropogenic effects in
the ionosphere. The IMSC and ICE instruments on board
DEMETER measure electromagnetic waves at geomagnetic
latitudes less than 65 degrees. There are two principal
modes of operation: the survey mode, in which spectra of
one electric and one magnetic field component are calcu-
lated onboard in the VLF range (up to 20 kHz) and the burst
mode, in which the waveforms of one electric and one
magnetic field component are recorded in the VLF range
and a full set of three electric and three magnetic compo-
nents are measured in the ELF range (up to 1250 Hz). The
survey mode has a limited frequency resolution (worse than
19.5 Hz), which is insufficient for a study of PLHR.
Therefore we have used the burst-mode data, which are
only recorded for several minutes during each half-orbit,
mostly above seismic areas (the zones are marked by
shading in Figures 2 and 3). Besides these zones there are
about 20% of volume of the burst-mode data which are
recorded above different regions of interest which can be
added or modified during the operational phase of the
mission. Detailed descriptions of the DEMETER wave
experiments and analysis methods can be found in papers
by Berthelier et al. [2006], Parrot et al. [2006], and Santolı́k
et al. [2006].

3. Automatic Identification of PLHR Events

[5] The PLHR events are known to be very rarely
observed on spacecraft. In order to detect a reasonably high
number of such events, it is necessary to process a large
amount of data. Since a visual survey of all the data would
be very time-consuming (if not almost impossible), we have
developed a procedure for an automatic identification of
possible PLHR events. All these candidate PLHR events,
found by a computer, have been visually verified and we
have decided, if they correspond to real PLHR events.
[6] The automatic identification procedure, instead of

searching for a group of parallel equally spaced lines on a
frequency-time spectrogram (possibly drifting in frequency),
has been designed to search for a single line. This simplifi-
cation fails in the case of the spacecraft interferences.
However, the artificial interferences always occur at the
same, known, frequencies, not showing the frequency drift,
and can be therefore easily distinguished.
[7] We have used electric field data obtained during the

Burst mode in the VLF range. The main reason for using the
electric field data was that these measurements contain
significantly less interferences than the magnetic field data.
In order to easily access the entire set of the DEMETER
data files, the program for automatic identification of PLHR
events has run in the DEMETER control center in Orléans,
France as the level-3 data processing [Lagoutte et al., 2006].
[8] The waveforms are recorded with a sampling fre-

quency of 40,960 Hz. The automatic recognition procedure
starts by analysis of these data sets using the fast Fourier
transform (FFT) with 8192 data samples. Seven consecutive
spectra are then averaged with 50 percent overlapping. This
results in a frequency-time spectrogram with a frequency
resolution of 5 Hz and time resolution of 0.8 s. This seems

to be a good compromise between the required frequency
resolution (identification of narrow lines with frequency
separation of about 50 Hz), time resolution (lines are
expected to drift even several Hz per second), and statistical
errors of spectral estimates.
[9] The next step is to find frequencies with an intense

signal at a given time. We focus on a frequency interval
from 500 to 4000 Hz, because there are not many PLHR
events reported outside of this interval. For a given time, we
scan the power spectra, taking into account sets of N
consecutive frequency points. N is one of the parameters
of the method which will be discussed later. In order to
suppress systematic trends across each set of N points, a
least-squares polynomial fit of the nth degree is subtracted.
In each corrected set, we define frequencies at which the
intensity exceeds the average intensity by more than k
standard deviations (k and n are additional parameters of
the procedure). In the given frequency interval, all the
possible sets of N consecutive frequency points are pro-
cessed by the same procedure, shifting the set always by one
frequency point.
[10] The final step is to search for continuation of the

lines in the next time interval. Each of the frequency points
found by the above procedure is initially supposed to be the
beginning of a new spectral line. For each of the detected
lines we store the time of its beginning, the frequency at
which it was observed for the first time, and information on
its estimated minimum and maximum frequency drift. In the
new time interval we determine whether this line continues
by comparing the presently found frequency points to the
points that would correspond to the lines stored in the
memory. This comparison takes into account the beginning
frequency and frequency drift of each line. If the frequen-
cies match, the line continues to the next time interval. In
this case, its minimum and maximum frequency drift are
recalculated.
[11] If the next time interval does not contain any

frequency point corresponding to a given line, the line is
terminated and its duration is compared to the predefined
threshold t. If the line lasts longer than t, it is classified as a
possible PLHR event: the time and frequency of its begin-
ning are saved and a frequency-time power spectrogram
containing the line is plotted. If the line does not last long
enough, it is not taken into account.
[12] The above described algorithm contains several

crucial parameters. Their values have been defined using
test data, by requiring that 100% of the PLHR events in the
test data are identified. On the other hand, we have tried to
find parameters which minimize the number of ‘‘false
alarms.’’ The parameters used in the present study have
been defined as follows. Number of frequency points in a
set, N = 40; degree of the fitted polynomial function, n = 3;
minimum multiple of the standard deviation, k = 2.5;
minimum duration of a line, t = 5.0 s.

4. Analysis of Events

[13] We have run the described identification procedure
on the entire data set recorded by the DEMETER spacecraft
during the first year of its operation, from the beginning of
the mission in July 2004 till July 2005. Altogether, this
represents 865 hours of the burst-mode data organized into

A04308 NĚMEC ET AL.: PLHR OBSERVED BY THE DEMETER SATELLITE

2 of 7

A04308



5920 half-orbits. In this data set, possible PLHR events
have been identified in 317 half-orbits (about 5 percent).
[14] We have manually checked all these events for the

presence of PLHR. The results revealed a large number of
‘‘false alarms.’’ They were mostly caused by the presence of
a sharp cutoff below the local proton cyclotron frequency
[Santolı́k and Parrot, 1999], looking in some cases as
intense spectral line on the frequency-time spectrograms.
In the entire data set, we have found only 58 cases of
PLHR-like events which can be divided into three classes:
(1) 10 events where the frequency separation of spectral
lines is equal to 50 or 100 Hz; (2) 13 events where the
frequency separation of spectral lines is equal to 60 or
120 Hz; (3) 35 events which cannot be clearly classified
as PLHR, where only one single spectral line was detected
or, more often, where several lines were found with spacing
which is neither 50/100 nor 60/120 Hz (MLR).
[15] The origin of this last class of events is not very

clear. We believe that at least some of them can originate
from plasma instabilities in the magnetosphere because they
are mostly observed during large magnetic activities. How-
ever, a thorough discussion of these events will be the
subject of another paper. In the following, we will focus on
the analysis of PLHR events with 50/100 Hz and 60/120 Hz
spacings.
[16] Recall that these 23 recorded events have been found

by analyzing the power spectrograms of the electric field
fluctuations. We have also checked the magnetic field data
for these cases and found only six events (26%) where

similar lines in the magnetic field spectrograms were
simultaneously detectable at the same frequencies. These
six events also have the largest amplitudes of the the electric
field fluctuations among the 23 cases. The observed ratios
of magnetic to electric power spectral densities correspond
to the electron densities between 2 � 104 cm�3 and 3 �
105 cm�3, supposing that the waves propagate in the right-
hand polarized whistler mode along the magnetic field lines.
This, in turn, roughly corresponds to usual values of the
local electron density measured on board DEMETER. The
magnetic field in the remaining 17 cases is too weak to be
observable under the same hypothesis on the wave mode,
given the measured intensities of the wave electric field.
Consequently, all the recorded events are consistent with
propagation of PLHR in the right-hand polarized electro-
magnetic whistler mode.
[17] Figure 1 shows an example of an event from the

group of the six most intense cases. It is represented in
the form of the frequency-time power spectrograms of the
electric and magnetic field fluctuations. The data were
recorded on 11 November 2004 between 1400:06 UT and
1401:16 UT above Philippines where a 60-Hz electrical
network is used. A magnetically conjugated region is
located in Taiwan where a 60-Hz network is also used.
Since the magnetic field data contain spacecraft interference
signals which could be confused with PLHR, we have used
a tool for DEMETER data analysis allowing us to suppress
a part of these interferences [Santolı́k et al., 2006]. Three
lines at frequencies of 1160, 1220, and 1280 Hz can be

Figure 1. An example of (a) frequency-time spectrogram of the electric and (b) magnetic field
fluctuations corresponding to one of the analyzed events. The data were recorded on 11 November 2004,
after 1400:05 UT, when the spacecraft overflew Philippines; the frequency separation of the spectral lines
is 60 Hz.
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identified in both spectrograms, the magnetic signature
being much weaker. During the first half of the time interval
in which the event is detected, we can also recognize lines at
1200 and 1260 Hz which are, unlike the previous three
frequencies, exact multiplies of the fundamental frequency
of 60 Hz.
[18] Figures 2 and 3 show locations of PLHR events in

geographic coordinates (large points on the world maps) for
the frequency separations of 50/100 and 60/120 Hz, respec-
tively. For each of these events, the following properties
have been determined: spacecraft position in the time of

observation, duration of the event, magnetic local time, Kp
index, and the list of identified lines, which means their
frequency and maximum intensity of the electric field
fluctuations. We have also used the IGRF-10 model of the
Earth’s magnetic field implemented in the GEOPACK-2005
program (N. A. Tsyganenko, http://nssdcftp.gsfc.nasa.gov/
models/magnetospheric/tsyganenko/) to calculate the mag-
netic footprints of the point of observation by tracing the
magnetic field lines. The footprints are shown by small
points on the world maps and the projections of the
corresponding magnetic field lines on the Earth’s surface

Figure 2. Geographic locations of observed PLHR with mutual distance of lines 50/100 Hz (large
points). Magnetic field lines and footprints of the points of observations (thin lines and small points).
Seismic zones with permanently active burst-mode coverage are shown by gray shading; the operational-
phase burst-mode regions (approximately 20% of the burst-mode data volume) are not shown since their
positions vary during the time interval analyzed in this study.

Figure 3. The same as in Figure 2 but for PLHR with mutual distance of lines 60/120 Hz.
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are shown by thin lines. This indicates possible source
regions, supposing the propagation in the ducted mode.
[19] Note that the observed frequency separations of lines

correspond very well to the frequencies of electric power
systems in the possible geographic regions of generation.
Separations of 50/100 Hz are mostly observed above
Europe and Northern Africa (with a probable source region,
a footprint of magnetic field line, lying in Europe for all
these cases). One event is observed above India and one
above northeastern Asia with a magnetic conjugate point in
Australia. Separations of 60/120 Hz are observed mostly
above the USA, Brazil, and Japan. One such event has been
detected above Philippines and one above New Zealand.
This is rather surprising because New Zealand has a power
system with a frequency of 50 Hz, but we have to notice

that the magnetic conjugate point is in Alaska where the
power-system frequency is 60 Hz.
[20] Histogram of Kp indices at the time of PLHR events

is shown in Figure 4 by a solid line. A histogram of all the
Kp indices that occurred during the analyzed year (July
2004 to July 2005) is overplotted by a dashed line for
comparison. It can be seen that the PLHR events occur
during both low and high geomagnetic activity, with no
significant preference for quiet or disturbed periods.
[21] All the PLHR events have occurred at frequencies

higher than 1 kHz, not allowing us to analyze the wave
propagation using six components of the electromagnetic
field. These methods [Santolı́k et al., 2006] can be only
used in the ELF range below 1 kHz. Most of the cases have
been observed at frequencies around 2 kHz, with the
number of observations slowly decreasing towards higher
frequencies. In 15 out of 23 cases (65%), the frequencies of
observed PLHR lines have corresponded well (within the
experimental error) to the exact multiples of power system
frequency. The absolute position of spectral lines in the
frequency spectrum of the remaining eight cases appeared
to be random, with no connection to the observed line
spacings. The frequency drift of all the cases was very slow,
not observable within the experimental errors.
[22] Figures 5, 6, and 7 show the peak intensities of

observed PLHR events as a function of the Kp index,
geomagnetic latitude, and magnetic local time, respectively.
For each event, the peak intensity is defined as the intensity
of the most intense line. The events with frequencies
corresponding to the multiples of the power system fre-
quency are plotted as crosses, the events with frequencies
not corresponding to these multiples are plotted as dia-
monds. Figure 5 shows that the peak intensity of PLHR
increases with the Kp index. The peak intensity of PLHR
seems to be independent of magnetic latitude (Figure 6).
Finally, the peak intensity is higher during the night than
during the day (Figure 7). Note that the bunching of
observed events in two MLT intervals is connected to the
nearly Sun-synchronous orbit of the DEMETER spacecraft.
The MLT is thus either just before noon or just before
midnight. However, approximately 1 year of data has been
analyzed and therefore the distribution of sampled geo-

Figure 4. Histogram of Kp indices at the time of the
PLHR events (solid line). Overplotted is a histogram of all
Kp indices that occurred during the analyzed year (dashed
line).

Figure 5. Peak intensity of observed PLHR events as a
function of the Kp index. The events, whose frequencies
correspond to the multiples of the power system frequency,
are plotted as crosses. The events with frequencies not
corresponding to the multiples of the power system
frequency are plotted as diamonds. The time interval from
Figure 1 corresponds to two events, since it successively
contains both types of PLHR.

Figure 6. Peak intensity of observed PLHR events as a
function of geomagnetic latitude. The symbols are the same
as in Figure 5.
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graphical longitudes should be almost uniform all over the
Earth for both MLT intervals. No clear dependence on
whether the frequencies correspond to the multiples of
power system frequency or not (crosses versus diamonds)
has been observed.

5. Discussion

[23] The most problematic element in the presented study
is the procedure for automatic identification of PLHR events
(section 3). This procedure was needed in order to analyze a
large amount of available data. However, it is very difficult
to estimate the consequences of this step. There is no exact
way to determine the total number of PLHR events
contained in the data set. Although the parameters of the
detection procedure have been set to ensure a 100%
detection of the small set of the test PLHR data, there is
no guarantee that we have not missed an unknown fraction
of PLHR events in 865 hours of analyzed data. Another
consequence could be a possible presence of a ‘‘selection
effect.’’ That is, the detected events do not necessarily
represent a ‘‘randomly chosen’’ subset from the total set
of PLHR events contained in the data, but events with some
specific signatures could be detected with a higher proba-
bility. Although we cannot exclude the presence of this
effect, we have no indication that it significantly biases our
results.
[24] In spite of these technical difficulties, the striking

result of our study is that the occurrence frequency of PLHR
events in the topside ionosphere is probably very low.
Supposing the 100% detection probability of our procedure,
a low orbiting spacecraft would on average detect one
PLHR event per 38 hours of observations. If we miss a
fraction of events the occurrence frequency would be
correspondingly higher but, most probably, the results
would not be significantly different.
[25] Concerning the geographical coverage of our study,

recall that we have used the data obtained during the burst
mode of the DEMETER spacecraft. This mode is activated
regularly above the seismic zones but from time to time
burst mode zones have been added in different parts of the

Earth. This selection can potentially bias the analysis. The
consequences for the maps of geographic locations of
observed PLHR (Figures 2 and 3) are evident. Moreover,
results obtained at different latitudes in Figure 6 are in fact
also obtained at different longitudes. However, this proba-
bly does not strongly affect our results.
[26] Previous investigations of PLHR events have shown

contradictions concerning the level of magnetic activity
which is the most favorable for observations. Figure 4
shows that the PLHR events occur without any significant
preference for a level of geomagnetic activity, although the
number of events is not high enough to allow us to make a
clear conclusion.
[27] The observed frequency spacing of all the PLHR

events corresponds well to power system frequencies in
possible geographical regions of generation (Figures 2
and 3). This represents a good evidence for a hypothesis
that PLHR events are really caused by an electromagnetic
radiation from the ground power systems. Moreover, in 15
out of the 23 cases the frequencies of the observed PLHR
lines corresponded (within the experimental error) to the
exact multiples of the power system frequency. This is in
contradiction with previous reports [e.g., Rodger et al.,
1995]. However, these results were derived for MLR, while
our results have been obtained for PLHR (with frequency
spacing strictly 50/100 or 60/120 Hz) without any signifi-
cant frequency drift. This probably shows the crucial
difference between PLHR and MLR: while there is a strong
evidence that PLHR events are caused by radiation from
electric networks, there is no such an evidence for MLR.
The question whether MLR can be created in a completely
natural way or whether some PLHR-like emissions are
necessary as triggers, is a matter of debate and is beyond
the scope of this paper. However, it becomes clear that
PLHR and MLR have to be considered separately as two
different phenomena.
[28] The peak intensity of observed PLHR events does

not seem to vary with the geomagnetic latitude (Figure 6),
although the intensity of natural emissions is higher in
subauroral areas than close to the magnetic equator [Parrot,
1990]. However, it increases with Kp index and it is also
higher during the night (Figures 5 and 7). In this case, the
peak intensity behaves in the same way as the intensity of
natural emissions. There are two possible explanations of
these observations. (1) The PLHR events with a low
intensity compared to the natural background could be
simply too weak to be observed. The average peak intensity
of observed events would than necessarily be higher in
places with higher intensity of natural background. (2) The
electromagnetic emissions radiated by a power system
could be modulated by the plasma environment in such a
way that their intensity would become higher at places with
more intense natural background. This second possibility
seems to be more likely true. The first mechanism would,
for example, just eliminate the less intense events for high
geomagnetic activity when the natural background becomes
stronger. In that case, however, we would observe both less
intense and more intense cases at geomagnetically quiet
times. This does not seem to be the case: Figure 5 indicates
that only the less intense cases are observed at quiet times.
[29] The intensity of PLHR events is thus partially

connected to the intensity of natural background. This

Figure 7. Peak intensity of observed PLHR events as a
function of magnetic local time. The symbols are the same
as in Figure 5.
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shows that although the origin of PLHR is tied to the
radiation from electric power systems, some processes
changing its intensity according to the level of the natural
background are taking place. Moreover, these processes
must have such a behavior that in many cases the frequen-
cies of observed PLHR lines correspond to the multiples of
the fundamental power system frequency.
[30] Finally, one should keep in mind that the efficiency

of coupling through the ionosphere for ground transmitters
depends on many parameters and could possibly explain
some of the observed variations. For example, the coupling
is easier on the nightside than on the dayside ([Green et al.,
2005]).

6. Conclusions

[31] We have presented results of an initial survey of
observations of PLHR by the DEMETER spacecraft. The
data were collected during the first year of its operation and
an automatic procedure has been used to detect the PLHR
events. Altogether, 23 PLHR events (10 with 50/100 Hz
spacing and 13 with 60/120 Hz spacing) have been found in
the entire set of 865 hours of available high-resolution data.
Our results show the following.
[32] 1. PLHR events occur during both low and high

magnetic activity. No level of activity seems to be signif-
icantly preferred.
[33] 2. The observed frequency spacings of all the PLHR

events correspond well to power system frequencies in
possible geographical regions of generation.
[34] 3. The frequencies of observed PLHR lines correspond

to the multiples of power system frequency in 65% of cases.
[35] 4. The peak intensity of observed PLHR events

increases with Kp index and it is higher during the night.
The peak intensity thus seems to be partially connected to
the intensity of the natural background emissions. It sug-
gests that electromagnetic emissions radiated by a power
system are modulated by the plasma environment. Howev-
er, the day/night asymmetry of coupling of electromagnetic
waves from the ground to the ionosphere might also play a
role.
[36] 5. In 26% of most intense cases we also observe the

magnetic field component of PLHR. These observations are
consistent with propagation in the electromagnetic right-
hand polarized whistler mode.
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France. (mparrot@cnrs-orleans.fr)
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Abstract

We describe analysis methods to estimate parameters of electromagnetic waves based on the multi-component measurements of the

DEMETER spacecraft. Using the fact that the wave magnetic field is perpendicular to the wave vector, the wave normal direction can be

estimated by different methods. We use these plane-wave estimates to interpret measurements of the observed wave emissions. For

instance, we use the recently developed singular value decomposition (SVD) technique. The results of the plane-wave analysis have an

advantage that they often allow a straightforward interpretation. These different methods have been successfully tested with the data of

previous spacecraft. All these methods are also implemented in the analysis tools designed for the analysis of the DEMETER wave

measurements.

We show the first results of these analysis techniques for different types of wave emissions observed on board DEMETER. Obliquely

propagating right-hand polarized electromagnetic waves at a few hundreds of Hz are usually connected with a multi-ion mode structure

below the local proton cyclotron frequency and with a sharp lower cutoff of left-hand polarized waves, as well as with right-hand

polarized waves tunelling below the multi-ion cross-over frequency. Electron and proton whistlers are also very frequently observed on

DEMETER. An unusual narrow-band emission at 140Hz (well below the local proton cyclotron frequency) serves us as another case for

a detailed analysis. We find that these waves are right-hand polarized and obliquely propagating.

Using this example case, we also present analysis methods to estimate continuous distribution of wave energy density as a function of

wave vector directions. These techniques of wave distribution function (WDF) analysis need both wave and particle measurements. In

the analyzed case, two different methods of WDF analysis give similar results consistent with the results of the plane-wave techniques. To

identify the source region we use the backward ray-tracing method. The wave normal direction obtained by the analysis of multi-

component data is used for a simulation of wave propagation from the point of measurement. By this procedure, we obtain an inverse

trajectory of the wave ray. We can thus follow the ray path back to the anticipated source region which is in our case located a few

degrees of latitude to the South from the spacecraft position.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: DEMETER micro-satellite; Poynting flux measurements; Wave vector measurements; Wave distribution function; Ray tracing

1. Introduction

The main purpose of the scientific experiments on board

the DEMETER spacecraft is a systematic investigation of

the electromagnetic wave emissions observed during earth-

quakes and volcanic eruptions, the ionosphere and upper

atmosphere disturbances, as well as the precipitation of

associated particles (Parrot et al., 1993; Parrot, 1994).

Another scientific objective of the DEMETER program is

to survey the electromagnetic environment of the Earth, to

further investigate natural geophysical phenomena, and

estimate the impact of human activity on the ionosphere

(Parrot and Zaslavski, 1996).

The DEMETER spacecraft carries sophisticated scien-

tific instrumentation to measure fluctuations of the electric
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and magnetic fields by three magnetic and three electric

antennas. The magnetic field experiment instrument

magnetic search coil (IMSC) is described in detail by

Parrot et al. (2006), and the ICE (electric field experiment)

is described by Berthelier et al. (2006a). There are also up-

to-date particle and plasma experiments onboard DE-

METER: the ion spectrometer IAP (Berthelier et al.,

2006b), the energetic particle experiment IDP (Sauvaud

et al., 2006), and the Langmuir probe experiment ISL

(Lebreton et al., 2006). The measurements of all scientific

experiments are processed on board by the BANT device

(Boitier d’Analyse Numérique et de Traitement) which also

contains a neural network designed to study whistlers.

To maximize the scientific return of the DEMETER

mission, these state-of-the-art data need to be processed

using appropriate analysis methods. Although the use of

multiple antennas on spacecraft has been proposed

more than three decades ago by Grard (1968) and

Shawhan (1970), some of the older analysis methods

have been first developed for the ground-based geophysical

measurements (e.g. McPherron et al., 1972; Means,

1972; Samson, 1973; Arthur et al., 1976; Samson and

Olson, 1980). These methods, together with more newly

developed techniques (e.g. Storey and Lefeuvre, 1979,

1980; Delannoy and Lefeuvre, 1986; Lefeuvre et al., 1986,

1987; LaBelle and Treumann, 1992; Lagoutte et al., 1992;

Santolı́k and Parrot, 1996; Santolı́k et al., 2001a, 2003)

have been tested during analysis of data of several previous

spacecraft missions, as GEOS, Aureol 3, Freja, Polar,

Interball 2, Cluster and Double Star. The orbits of these

spacecraft are very different, but all of them have in

common that they have been equipped with devices for

multi-component measurements of the wave magnetic and

electric fields.

Consequently, although these missions were designed to

investigate different regions of the geospace, similar

analysis methods can be used for the wave measurements.

Numerous papers containing results of these analysis

methods have been published (e.g. Lefeuvre and Helliwell,

1985; Lefeuvre et al., 1986, 1992; Parrot and Lefeuvre,

1986; Storey et al., 1991; Santolı́k and Parrot, 1998, 1999;

Santolı́k et al., 2001b, 2004; Santolı́k and Gurnett, 2002;

Cornilleau-Wehrlin et al., 2003; Parrot et al., 2003, 2004b).

Analysis methods which are described in this paper, and

which we intend to use for the DEMETER multi-

component wave measurements rely on this heritage. The

purpose of this analysis will be to investigate the sources

and propagation of electromagnetic wave emissions

observed during earthquakes and volcanic eruptions, and,

generally, wave emissions in the electromagnetic environ-

ment of the Earth, including waves influenced by the

impact of human activity on the ionosphere.

The paper is organized as follows. A short description of

the analysis methods is given in Section 2. Section 3

presents analysis tools for the DEMETER wave data, and

Section 4 shows several examples of a preliminary analysis

of the first data received by the DEMETER spacecraft.

2. Analysis methods

The multi-component measurements of the wave mag-

netic and electric fields allow us to determine, for example,

the average Poynting flux. Supposing the presence of a

single plane wave, the direction of the wave vector can be

determined. For a more complex wave field we can

estimate a continuous distribution of wave energy density

with respect to wave vector directions (wave distribution

function). These results are useful for the localization of

sources of observed emissions.

2.1. Plane-wave methods

Supposing the presence of a single plane wave at a

frequency f with a wave vector k, the wave magnetic field B

as a function of time t and position x can be written as

Bðt;xÞ ¼ RfBðf ; kÞ exp½ið2pft� k � xÞ�g, (1)

where B is the ‘‘magnetic vector complex amplitude’’ for a

given frequency f and wave vector k. Under the same

circumstances, similar expression can be used for the wave

electric field E, using the ‘‘electric vector complex

amplitude’’ E instead of B.

The second Maxwell’s equation (the Faraday’s law) can

then be written as

k� E ¼ 2pfB. (2)

This implies that B is always perpendicular to both wave

vector k and E,

k �B ¼ 0, (3)

E �B ¼ 0. (4)

The first of these conditions implies

A � k ¼
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¼ 0, (5)

where the components of the Hermitian magnetic spectral

matrix Sij are obtained from the three Cartesian compo-

nents of the magnetic vector complex amplitude

B ¼ ðBx;By;BzÞ, (6)

using the relation

Sij ¼ BiB
�
j . (7)

Note that the homogeneous set of Eq. (5) can be

multiplied by any real coefficient. Consequently, this set

cannot be used to determine the modulus of the unknown

vector k. It only can determine the direction of this vector.

Note also that the set of Eq. (5) naturally contains only two

independent real equations corresponding to two original

ARTICLE IN PRESS

O. Santolı́k et al. / Planetary and Space Science 54 (2006) 512–527 513

  
  
  
  
  
  
  
  
  
  
  



real equations (3). Importance of this expansion, however,

becomes evident when it is used with experimental data.

Using the experimentally measured multi-component

signals of the wave magnetic field

B̂ ¼ ðB̂x; B̂y; B̂zÞ, (8)

we can use spectral analysis methods (for example, fast

Fourier transform or wavelet analysis) to estimate, at a

given frequency, the components of the ‘‘magnetic vector

complex amplitude’’ B̂ and, subsequently, the magnetic

spectral matrix,

Ŝij ¼ hB̂iB̂
�

j i, (9)

where h i means average value, and the indices i and j stand

for all the three orthogonal components of the wave

magnetic field x, y, and z.

The homogeneous set of six Eq. (5) can then be written

as

Â � ĵ ¼ 0, (10)

where the matrix Â is composed of the superposed

imaginary and real parts of the experimental spectral

matrix Ŝij (instead of the idealized spectral matrix Sij), and

ĵ is an unknown unit vector defining the estimate of the

wave vector direction,

ĵ ¼ k̂=jkj. (11)

Using Cartesian coordinates connected to a principal axis

of the plasma medium where the waves propagate (the

direction of the ambient stationary magnetic field B0), the

wave vector direction can be defined by two angles y and f,

where y is the deviation from the B0 direction and f is an

azimuth centered, for instance, to the plane of the local

magnetic meridian. The wave vector direction then reads

ĵ ¼ ðsin y cosf; sin y sinf; cos yÞ. (12)

The unknown unit vector ĵ thus reduces to two real

unknowns y and f. As a consequence, system (10) is over-

determined, containing six equations for two unknowns.

Generally, these six equations are independent. This is

different compared to the case of the ideal set of Eq. (5).

The reason is that the matrix Â is composed of

experimental data which can contain natural and/or

experimental noise and do not necessarily exactly corre-

spond to an ideal plane wave. Since we only have two

unknowns, a subset of any two independent equations

picked up from the set (5) is sufficient to obtain a unique

solution for y and f. This is the basis of several analysis

methods. Other methods attempt to estimate an ‘‘average’’

solution of the entire set (5) using different techniques.

The method of Means (1972) is based on imaginary parts

of three cross-spectra and the procedure is equivalent to

solving any two of the last three equations in (10). The

method of Samson and Olson (1980) (their Eq. (11)) is

equivalent to finding a unique solution from another subset

of equations selected in (10). The method of McPherron et

al. (1972) uses the first three equations and finds a unique

solution using the eigenanalysis of the real part of the

spectral matrix. Samson (1973), again using the eigenana-

lysis, presented methods of decomposition of the entire

complex spectral matrix. Santolı́k et al. (2003) used a

singular value decomposition (SVD) technique to estimate

a solution of the entire set of Eq. (10) in the ‘‘least-squares’’

sense. This method is based on the SVD algorithm which is

frequently contained in numerical libraries (e.g. Press et al.,

1992). The technique is very straightforward, simply

decomposing the spectral matrix into one diagonal and

two orthonormal matrices. From the components of these

matrices we can directly estimate the lengths and directions

of the three axes of the polarization ellipsoid.

The results of the plane-wave analysis often allow a

straightforward interpretation of results. The resulting

angles y and f can be represented in time–frequency plots

in a form similar to power spectrograms. This was found

useful, for example, in the analysis of sub-auroral ELF hiss

emissions from the measurements of the Aureol 3 and

Freja spacecraft (Lefeuvre et al., 1992; Santolı́k and Parrot,

1998, 1999). These different methods often provide us also

with estimates of the validity of the initial assumption of

the presence of a single plane wave. Different definitions of

such an estimator (‘‘degree of polarization’’, ‘‘polarization

percentage’’ or ‘‘planarity’’) have been introduced, based

on different descriptions of the coherence of the magnetic

components and their confinement to a single polarization

plane (Samson, 1973; Pinc-on et al., 1992; Santolı́k et al.,

2003). Similar techniques can also allow us to estimate the

sense of the magnetic polarization with respect to the

ambient stationary magnetic field B0. This has been used,

for example, to analyze electromagnetic emissions in the

auroral region by Lefeuvre et al. (1986, 1987); Santolı́k et

al. (2001b); Santolı́k and Gurnett (2002), using the data of

the Aureol 3, Interball 2, and Polar spacecraft.

The above mentioned SVD technique can also be used

with both the measured magnetic and electric components.

In that case, an ‘‘average’’ solution to an over-determined

set 36 equations derived from Eq. (2) is estimated. This

allows us to determine also the sign of ĵ, i.e., to distinguish

between the two antiparallel wave vector directions (for

more details, see Santolı́k et al., 2003). This technique also

allows us to estimate the validity of the plane-wave

assumption, but this time it is defined as a measure of

closeness of the observed wave fields to Eq. (2). This

determination of the ‘‘electromagnetic planarity’’ was, for

example, used by Santolı́k et al. (2004) to estimate the

dimension of the source of chorus emissions from the data

of the four Cluster spacecraft.

2.2. Wave distribution function

The wave distribution function (WDF) analysis is useful

when the wave field is more complex, for example when

waves from two distant sources are simultaneously

detected by a spacecraft. The WDF, defined as a

continuous distribution of wave energy with respect to
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the wave vector direction (see a review of Storey, 1999),

was introduced by Storey and Lefeuvre (1974). The

theoretical relation of the WDF to the experimentally

measurable spectral matrix has been called the WDF direct

problem. Supposing a continuous distribution of elemen-

tary plane waves at a frequency f having no mutual

coherence and a narrow bandwidth Df , the relationship

between the spectral matrix Sijðf Þ and the WDF Gmðf ; y;fÞ
is given by

Sijðf Þ ¼
X

m

I

amijðf ; y;fÞGmðf ; y;fÞd
2
j, (13)

where m represents the different simultaneously present

wave modes. The integration is carried out over the full

solid angle of wave normal directions j, and for a given

wave mode m the integration kernels amij are calculated

from

amijðf ; y;fÞ ¼ Df
xmiðf ; y;fÞx

�
mjðf ; y;fÞ

umðf ; y;fÞ
, (14)

where xmi, xmj (complex amplitudes of the ith and jth

elementary signals of the wave electric or magnetic fields),

and um (energy density) correspond to an elementary plane

wave propagating in a mode m with a normal direction

defined by y and f. f represents the Doppler-shifted

frequency in the spacecraft frame. The complex amplitudes

of the wave electric or magnetic fields can be calculated by

considering the physical properties of the medium. This

requires the knowledge of the theoretical solutions to the

wave dispersion relation. Characteristics of the particular

wave experiment should be also taken into account.

The theory of the WDF direct problem for the cold-

plasma approximation has been developed by Storey and

Lefeuvre (1979, 1980), and revisited by Storey (1998). This

basic theory has been used by Lefeuvre (1977); Lefeuvre

and Delannoy (1979); Delannoy and Lefeuvre (1986) to

develop practical methods for estimation of the WDF from

the spacecraft measurements (the WDF inverse problem).

Using a slightly different definition of the WDF and

abandoning the explicit dependence of the WDF on the

wave frequency, Oscarsson and Rönnmark (1989) intro-

duced the hot plasma theory to the WDF reconstruction

techniques. Santolı́k and Parrot (1996) used the hot plasma

theory for the frequency-dependent WDF and further

investigated the influence of the Doppler effect. Santolı́k

and Parrot (2000) compared different techniques for

resolution of the WDF inverse problem, mainly based on

the minimization of the least-squares type merit function,

in the context of the plane-wave estimates.

The WDF techniques have been used in numerous

studies with both ground based and spacecraft data. For

instance, Lefeuvre and Helliwell (1985); Parrot and

Lefeuvre (1986); Storey et al. (1991) used the multi-

component measurements of the GEOS spacecraft to

characterize the WDF of the ELF chorus and hiss

emissions on the equatorial region. Based on the data of

the Aureol 3 and Freja spacecraft, Lefeuvre et al. (1992)

and Santolı́k and Parrot (1998, 2000), respectively,

estimated the WDF of the down-coming ELF hiss in the

sub-auroral region. The up-going funnel-shaped auroral

hiss has been investigated by Santolı́k and Gurnett (2002)

using the WDF analysis of measurements of the Polar

spacecraft. Simultaneous WDF estimation of the Z-mode

and the whistler mode in the auroral region has been done

by Santolı́k et al. (2001b), based on the data of the Interball

2 spacecraft.

2.3. Backward ray tracing

To obtain information on the sources of observed wave

emissions we can follow the corresponding rays backward

from the point of observation. The procedure can be

initialized by a wave normal direction k found experimen-

tally.

For a given dispersion relation

o ¼ oðx; ~k; tÞ, (15)

where o ¼ 2pf , we have, under the approximation of the

geometric optics,

dx

dt
¼

qo

qk
, (16)

dk

dt
¼ �

qo

qx
. (17)

These two equations can be numerically integrated to

obtain evolution of the position of the ray x and the

corresponding wave vector k as a function of the group

time t. When the ray hits a predefined boundary, for

example the approximate altitude of the ionospheric F2

layer, the procedure stops and the exit point of the ray is

obtained.

Basic limitation of the method is the Wentzel-Kram-

mers-Brillouin (WKB) approximation or limit of geometric

optics. It limits the dispersive properties of the medium to

slowly varying functions of space and time compared to the

wavelength and wave period. This approximation fails if

sharp gradients are present in the plasma and/or refractive

index rapidly changes (e.g. near cutoffs and resonances).

The method also needs a realistic description of the

medium in any point along the obtained ray, including the

model of the magnetic field, the ion composition, and the

density profile. On the practical level, we can use

procedures for the magnetic field model which have been

already adopted for the DEMETER project (Santolı́k,

2003a). The need of a realistic plasma density and

composition model is a much more complicated require-

ment, since a possible presence of density inhomogeneities

can be very important for results of the backward ray

tracing. As the first approximation we can use the diffusive

equilibrium model, and, subsequently, the cold plasma

approximation to calculate the dispersion relation (15), as

it has been implemented by Cairó and Lefeuvre (1986).

This procedure was, for instance, recently used by Parrot
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et al. (2004a,b) to analyze the sources of reflected chorus

emissions observed by the Cluster space-fleet.

3. Tools for analysis of the DEMETER data

3.1. SWAN

Software for waveform analysis (SWAN) is fully

interactive software designed for the visualization and

analysis of scientific and engineering data (Lagoutte et al.,

2000). The main objective is to facilitate satellite data

processing providing with a package of analysis tools. The

package implements a number of techniques based on

waveform signals. For example, it contains the waveform

viewer, spectrum analysis using the fast Fourier transform,

wavelet analysis (e.g. Lagoutte et al., 1992), mutual

information analysis, bi- and tri-coherence analysis, and

plane wave methods of Means (1972) and McPherron et al.

(1972) including estimators of ellipticity and degree of

polarization.

A tool dedicated to analysis of level 1 data of the

DEMETER mission (namely waveforms of the electric

and magnetic fields in physical units) has been developed.

Thanks to this tool, it is possible to select data by giving

the period of time to analyze, the sensors (electric or/

and magnetic), the bandwidths (ULF, ELF, VLF or/and

HF) for each sensor and the directory where data are

stored.

For each bandwidth, component(s) name(s), the data

coordinate system, the presence of data attitude and the

time discontinuities are described. Then, the period of time

can be chosen more precisely, for instance to select

waveforms with available data attitude. Depending on

the characteristics of the data (component name, data

coordinate system), it is possible, for instance, to improve

the calibration. This operation consists in increasing the

number of samples of the transfer function which converts

voltage components into physical values. Moreover, for

electric data, electron density and electron temperature

used to compute the transfer function can be chosen by the

user. It is also possible to change the coordinate system

(sensor, satellite or geomagnetic) if the matrices of

transformation are available.

DEMETER measurements are disturbed by onboard

electronic devices. Interferences are present at two funda-

mental frequencies, 7.33 and 19.53Hz, and their harmo-

nics. In the tool for waveform data analysis of SWAN, the

following method is used to suppress a part of these

interferences.

We consider a signal yðtÞ. For each harmonic frequency

k f 0 (where f 0 is the fundamental frequency), a comparison

between the spectrum of yðtÞ and a moving average of this

spectrum is used to determine whether an interference is

present or not. If a peak is detected, it is considered that

there is an interference that has the form of

ykðtÞ ¼ Ak cosð2pkf 0tþ FkÞ. (18)

Ak and Fk are estimated with an adaptive method based on

spectrum calculation. The corrected signal is given by

ycðtÞ ¼ yðtÞ �
X

k

Ak cosð2pkf 0tþ FkÞ. (19)

Fig. 1shows results of this analysis on an example data

interval.

3.2. PRASSADCO

Propagation analysis of STAFF-SA data with coherency

tests (PRASSADCO) is a computer program which

calculates characteristics of electromagnetic waves from

measurements of their electric and magnetic fields (Santo-

lı́k, 2003b). The original purpose of PRASSADCO was to

facilitate scientific analysis of data obtained by the STAFF-

SA devices (spatio-temporal analysis of field fluctuations,

spectrum analyzer) on board the four satellites of the

Cluster mission (Cornilleau-Wehrlin et al., 2003). The

program can however process arbitrary data containing
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Fig. 1. Example of suppression of interferences for ELF data measured

onboard DEMETER: (a) power spectrum of original signal yðtÞ; (b) power

spectrum of the corrected signal ycðtÞ.
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three-axial measurements of the magnetic field fluctuations.

It also includes methods analyzing simultaneously the

magnetic filed and electric field wave data.

It implements a number of methods used to estimate

polarization and propagation parameters, such as the

degree of polarization, planarity of polarization, sense of

elliptic polarization and axes of polarization ellipse, the

wave vector direction, electromagnetic planarity, the

Poynting vector, and the refractive index (Means, 1972;

McPherron et al., 1972; Samson, 1973; Samson and Olson,

1980; Santolı́k et al., 2003, 2001a). Tests have been made

with simulated data as well as with the received data of the

STAFF-SA instrument. The program was also used to

process the data of the MEMO (Interball), HFWR (Polar),

PWI (Cassini), and STAFF (Double Star) instruments.

Data processing is done in the frequency domain, and a

previous spectral analysis of multi-component measure-

ments is supposed. The program is designed to produce

both preview and publication-quality figures in different

formats and/or to store the results in a numerical form.

For the DEMETER project, we have designed an

interface to the DEMETER measurements of the high

resolution waveforms of the magnetic and electric compo-

nents. It is thus possible, for the data acquired during

burst-mode periods, to use the entire set of analysis

methods described by Santolı́k (2003b), including all the

plane-wave methods mentioned in Section 2.1. Using the

output of the PRASSADCO program, the WDF and

backward ray-tracing methods described in Sections 2.2

and 2.3 can be also used.

4. Examples of analysis of multi-component wave

measurements of the DEMETER spacecraft

The altitude of the DEMETER spacecraft is somewhat

lower but still similar to the altitude of the Aureol 3 and

Freja spacecraft. Results of the multi-component analysis

of ELF electromagnetic waves measured on board those

two spacecraft can be thus compared with the results

obtained from the DEMETER wave measurements.

The first example in Fig. 2 shows results of analysis of

data recorded in the ELF burst mode on 31 August 2004.

An example of line plots corresponding to a vertical cut of

Fig. 2 at 01:30 UT are shown in Fig. 3. The first two panels

2a and 2b represent the sum of the power-spectral densities

of the three magnetic and three electric components,

respectively. We can see that power spectra of both

magnetic and electric fluctuations exhibit a sharp lower

cutoff at a frequency which is by 100–150Hz lower than

the local proton cyclotron frequency (calculated from the

IGRF 2000 model (Macmillan and Quinn, 2000) and

shown by the nearly horizontal black lines plotted over the

spectrograms).

This cutoff has been explained by Gurnett and Burns

(1968) considering a mode structure connected to the

presence of multiple ion species. Downward propagating

right-hand polarized whistler-mode hiss encounters in-

creasing magnetic field strength and hence increasing

proton cyclotron frequency (fHþ). In a plasma containing

a fraction of hydrogen ions, together with other ion species,

the waves also encounter a multi-ion cross-over frequency

(f co) below f Hþ, where the polarization changes from right-

hand to left-hand (Smith and Brice, 1964). In a three-

component plasma containing the electrons, hydrogen

ions, and oxygen Oþ ions (we neglect here possible traces

of helium ions which could be present at the DEMETER

altitude), the cross-over frequency reads

f co ¼ f Hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ POðR
2
OH � 1Þ

q

ROH

, (20)

where PO is the relative fraction of oxygen ions, and ROH �

16 is the ratio of masses of oxygen to hydrogen ions.

This polarization crossover affects waves with all the

possible wave vectors directions except those directed along

the field lines. Subsequently, a left-hand mode cutoff

frequency (f L¼0) is encountered,

f L¼0 ¼ f Hþ

1þ POðROH � 1Þ

ROH

. (21)

At this cutoff frequency the left-hand polarized waves

are reflected. The majority of wave energy thus cannot

propagate below the f L¼0 frequency, forming a sharp lower

cutoff. The same cutoff has been also observed by a

number of previous low-orbiting spacecraft, for instance

Aureol 3 or Freja (Lefeuvre et al., 1992; Santolı́k and

Parrot, 1999).

As follows from Eq. (21) the position of the cutoff

frequency can be used for an independent estimate of the

ion composition. For example, at 01:30 UT we observe the

cutoff at f L¼0�355–360Hz, while the IGRF 2000 model

gives us the proton cyclotron frequency of f Hþ ¼ 459Hz.

This, using Eq. (21), corresponds to 76–77% of Oþ.

Simultaneous direct measurement of ion composition done

by the IAP instrument (Berthelier et al., 2006b) gives the

total density of 3:24� 104 cm�3 with 78% of Oþ, 20% of

Hþ, and 2% of Heþ (see Fig. 4). These results thus very

well correspond to the observed cutoff.

Fig. 2c further supports this explanation showing the

estimator of the polarization sense. A method defined in

Eq. (4) of Santolı́k et al. (2001a) has been used. It consists

of a statistical estimate of the imaginary part of the cross-

spectrum of the two magnetic components perpendicular to

B0 normalized by the standard deviation of the same cross-

spectrum. Positive values mean right-hand polarization

while negative values mean left-hand polarization. The

absolute values of the results reflect the reliability of the

estimates. The results are plotted only when the magnetic

field power spectral density is higher than 10�7 nT2 Hz�1.

The polarization is right handed in the entire time–

frequency interval where the intense waves are observed,

with an exception of a narrow frequency interval just above

the cutoff frequency. In this interval, between the f L¼0

frequency and the cross-over frequency f co we observe
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left-hand polarized waves, as it could be expected from the

above scenario. Eq. (20) gives f co ¼ 400–403Hz which well

corresponds to the observations. Similar results have been

obtained from the analysis of multi-component measure-

ments of the Aureol 3 (Lefeuvre et al., 1992) and Freja

spacecraft (Santolı́k and Parrot, 1999).

The difference compared to these measurements is that

the waves are observed at lower latitudes by DEMETER.

It has been shown (Lefeuvre et al., 1992; Santolı́k and

Parrot, 1999, 2000) that waves with a similar cutoff

signature exhibit a divergent propagation pattern. They

were observed to propagate along the magnetic field lines

downward to the Earth at magnetic latitudes between 60�

and 65�, and with inclined wave normal angles at both

higher and lower latitudes. Subsequently, reflected waves

on both poleward side and equatorward side were

observed.

The reflection process most probably still takes place at

lower magnetic latitudes between 12� and 30�, as it is

shown by low values of the SVD planarity estimator in Fig.

2d (see Section 2.1). The results are again plotted only

when the magnetic field power spectral density is higher

than 10�7 nT2Hz�1. Below the cutoff, the planarity is

approximately 0.8 which is consistent with the polarization
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Fig. 2. Example of analysis results for multi-component ELF data measured onboard DEMETER on 31 August 2004: (a) power-spectrogram of the

magnetic field fluctuations; (b) power-spectrogram of the electric field fluctuations; (c) sense of the magnetic field polarization—positive numbers mean

right-hand sense; (d) planarity of the magnetic field polarization from the SVDmethod; (e) angle between the wave vector and the stationary magnetic field

obtained by the SVD method; (f) angle azimuth of the wave vector obtained by the SVD method—0� corresponds to the local magnetic meridian plane,

outward from the Earth and 90� corresponds to the direction of increasing magnetic local time. Black lines plotted over the panels (a)–(f) between 450 and

550Hz show the local proton cyclotron frequency at the spacecraft position. Position of the spacecraft is given on the bottom. Alt—altitude in kilometers;

GeomagLat—magnetic dipole latitude in degrees; MLT—magnetic local time in hours.
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close to that of a single plane wave. Above the cutoff,

however, the planarity abruptly decreases down to values

of 0.4–0.5. These values correspond to a more complex

wave field, consistent with the simultaneous presence of

both the direct and reflected components.

The wave vector direction has been estimated from the

three-axial measurements of the magnetic field fluctuations

by the SVD method. The results are shown in Figs. 2e–f,

again only for waves that are more intense than

10�7 nT2 Hz�1. The angle deviation of the wave vector

from B0, shown in Fig. 2e, indicates very high wave normal

angles above the cutoff and, abruptly, much lower wave

normal angles below the cutoff. This can be explained by a

scenario in which the weaker right-hand polarized waves

below the cutoff originate by tunneling of the wave energy

below the cross-over frequency. Staying in the right-hand

polarized mode, they naturally penetrate also below the

f L¼0 cutoff (Santolı́k and Parrot, 1998). Fig. 2f, showing

the azimuth of the wave vector measured around the

direction of the stationary magnetic field, indicates

propagation close to the local meridian plane, both above

and below the cutoff.

Fig. 5 shows another wave phenomenon which was not

observed at higher latitudes by previous spacecraft

equipped with multi-component devices. The data have

been recorded by DEMETER on 15 September 2004, again
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Fig. 3. Example of analysis results shown as line plots as a function of frequency from measurements recorded on 31 August 2004 at 01:30 UT. The

resulting parameters plotted in panels (a)–(f) are the same as those in Fig. 2.
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during the ELF burst mode interval. Essentially the same

types of emissions have been observed as in Fig. 2,

including the right-hand polarized waves above f Hþ

propagating at high wave normal angles, the polarization

crossover and the sharp lower cutoff just below f Hþ, and,

well below f Hþ, the right-hand polarized waves at lower

wave normal angles. This type of waves, however,

manifests different properties than waves at similar

frequencies observed at higher latitudes (see a statistical

study of Santolı́k and Parrot, 1998). These first DE-

METER observations often show rather intense waves well

separated from the hiss emissions above f Hþ by a

frequency gap of decreased power. The waves propagate

in the plane of the local meridian with wave normal angles

increasing as the spacecraft moves toward the magnetic

equator. These waves can have similar origin (tunneling

below the crossover frequency) as the waves at higher

latitude. Their propagation to lower latitudes will be

investigated in detail and we will report the results in a

future paper.

Fig. 6 shows yet another wave phenomenon which is

quite often observed by DEMETER. The waves with a

sharp upper cutoff at the local f Hþ can be identified as

proton whistlers, described for the first time by Gurnett et

al. (1965). This interpretation also corresponds to their

predominantly left-hand polarization sense (Fig. 6c). The

occasional right-hand polarization sense below the local

f Hþ corresponds to the associated electron whistlers (see,

e.g., Fig. 7 of Santolı́k and Parrot, 1999). Note that only

the right-hand polarized electron whistlers are observed

above f Hþ. Both types of whistlers mainly propagate at

lower wave normal angles (Fig. 6e) in the plane of the local

magnetic meridian, with the azimuth apparently changing

by 180� between 04:45 and 04:46 UT (at geomagnetic

latitudes of �20�). This change of azimuth may correspond

to the passage through a region magnetically connected to

the ionospheric region over the thunderstorms from which

the waves propagate.

The last example are wave emissions observed on 21

January 2005 which are shown in Fig. 7. The format of this

figure is the same as for the previous cases. An emission

with a sharp lower cutoff just below the local f Hþ and also

right-hand polarized waves above 200Hz are the same

types of emissions as we have already shown in Figs. 2 and

5, except that, in this case, the wave intensity is much

weaker. From the beginning of the data record until 02:17

UT we also observe a narrow-band emission at a constant

frequency of � 140Hz. This type of waves is not usually

observed by DEMETER. This data record precedes by

nearly 3 days an earthquake of magnitude 6.2 which

occurred at a geographical latitude of 1:22�S, and longitude

of 119:8�E on 23 January, 2005 at 20:10:11 UT. Note that

there is no proof of any direct nor indirect connection of

the observed waves with this earthquake. The only

objective observation is that this DEMETER data record

coincides with the position of the earthquake activity. We

believe that only a systematic statistical analysis of a large

number of observations can give an answer to the question

if such a connection is at all possible. Although we are far

from believing that this case shows an earthquake

precursor, this example will be used to demonstrate the

some additional possibilities for a detailed analysis of the

DEMETER wave measurements.

The arrows in Fig. 7 indicate an interval selected for the

detailed analysis: in the time interval between 02:16:25 and

02:16:30 and in the frequency interval between 135 and

145Hz, the spectral matrices were averaged and the result

has been subjected to both the plane-wave and WDF

analysis. We can see in Figs. 7a–c that the narrow-band

emission is electromagnetic and right-hand polarized. Fig.

7d shows that the planarity of polarization is relatively high

(� 0:8). We can thus expect that the wave field will be close
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to that of a single plane wave. Figs. 7e and f indicate that

the wave vector of this wave is oblique with respect to B0

and that the wave propagates close to the plane of the local

magnetic meridian. The plane wave analysis of the

averaged spectral matrix gives the wave vector deviated

by y ¼ 54:2� from B0 and with an azimuth f ¼ 343:8�.
These values have been obtained by the SVD technique

(Santolı́k et al., 2003). The method of Means (1972) gives

very similar results (y ¼ 53:8�, f ¼ 342:9�), indicating a

good validity of the plane-wave assumption. Note that

these last results are based on the measured magnetic field

fluctuations and that we additionally used the simulta-

neously measured electric field data to remove the 180�

ambiguity from the determination of the wave vector

direction.

We have used the same input data for the WDF analysis

(see Section 2.2). This method is based on theoretical

calculation of the integration kernels from the parameters

of the plasma medium. We thus need to estimate the local

plasma composition and density. At 02:16:30 UT, Eq. (21)

gives 88–89% of Oþ for the observed f L¼0 ¼ 392–398Hz

and f Hþ ¼ 443Hz. This is also consistent with the

observed change of polarization sense at 416–418Hz,

obtained from Eq. (20). Indeed, direct measurements of

the ion density by the IAP instrument are consistent with

these results (Fig. 8), giving, at 02:16:30 UT, the total

density of of 2:7� 104 cm�3 with 90% of Oþ, 10% of Hþ,

and less than 0.1% of Heþ. These values are sufficient to

perform the WDF analysis based on the cold plasma

theory.

ARTICLE IN PRESS

Fig. 5. Example of analysis results for multi-component ELF data measured onboard DEMETER on 15 September 2004. The panels are the same

as in Fig. 2. The results in panels (c)–(f) are plotted only when the magnetic field power spectral density is higher than 10�7 nT2 Hz�1.
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Fig. 9 shows the results obtained by two different

techniques to estimate the WDF. For comparison, the

plane-wave SVD estimates are over-plotted as small white

squares. We have used the WDF model of one Gaussian

peak and an optimized model of discrete regions (see

Santolı́k and Parrot, 2000, for more details). Both

techniques give distributions of the wave energy density

which are strongly concentrated at wave vector directions

surrounding the plane-wave estimate. These results indeed

show that the assumption of the presence of a single plane

wave is very close to be valid. Note that we again used the

measurements of the magnetic field fluctuations. The

simultaneously measured electric field data have been used

to select the hemisphere of wave vector directions for the

analysis.

The WDF analysis can also give us an estimate of

the energy carried by the waves. The integral spectral

density of the energy density from both techniques is

u ¼ 6� 10�20 Jm�3 Hz�1. Since we know that the waves

propagate in the right-hand mode, we can, again using the

cold plasma theory, calculate the group velocity, vg ¼

3:69� 106 ms�1 for y ¼ 54�. Note that the group velocity

is for this wave vector direction much less deviated from

B0, by an angle yg ¼ 22�. The integral spectral density

of the energy flux can then be obtained,

p ¼ uvg ¼ 2:2� 10�13Wm�2 Hz�1. This is consistent with

the Poynting flux estimated from the measured field

components. With the bandwidth of the emission of

� 15Hz, the total energy flux in these waves is

P � 3:3 pWm�2.
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Fig. 6. Example of analysis results for multi-component ELF data measured onboard DEMETER on 27 September 2004. The panels are the same

as in Fig. 2. The results in panels (c)–(f) are plotted only when the magnetic field power spectral density is higher than 10�7 nT2 Hz�1.
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As these relatively weak waves are well defined by a

single wave vector, we can use its direction as an input for

the backward ray-tracing procedure described in Section

2.3. This will allow us to estimate the position of the source

of these waves. To follow the ray back toward the source

region, we need a description of the plasma parameters

along its path. As the first approximation we use the

diffusive equilibrium model calibrated using the ion

composition and plasma density measured at the spacecraft

orbit. We use the same local plasma parameters as for the

WDF analysis. For the diffusive equilibrium model, we

suppose a temperature of 1000K at 1000 km of altitude.

Fig. 10 shows the results. The geomagnetic latitude and

altitude of the ray path is plotted in the plane of the local

magnetic meridian. We integrate the ray equations from

the spacecraft position (on the top left) until the ray

reaches the ionosphere defined for this purpose as the 300-

km altitude level. This happens at a place located by � 3:5�

of magnetic latitude to the South from the spacecraft

position, and approximately on the same magnetic

meridian. At this moment the wave has propagated for

the total group time of 0.44 s and its wavelength changed

from the initial value of 12 km at the spacecraft level down

to 2.2 km in the ionosphere. The wave vector direction also

changed during the propagation, as we show by arrows

placed along the ray path at intervals of 0.1 s of the group

time. Note that these arrows indicate the wave vectors for

the original forward wave. At the 300-km level, the wave

ARTICLE IN PRESS

Fig. 7. Example of analysis results for multi-component ELF data measured onboard DEMETER on 21 January 2005. The panels are the same as in Fig.

2. The results in panels (c)–(f) are plotted only when the magnetic field power spectral density is higher than 10�7 nT2 Hz�1. Black arrow indicates wave

emission selected for further analysis (see text). In addition to the geomagnetic coordinates given already on the bottom of Fig. 2, geographic latitudes and

longitudes are shown on the bottom.
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vector is almost vertical to the Earth’s surface. This might

be consistent with propagation from a low-altitude tropo-

spheric source, where the refractive index should be close to

1. Subsequent penetration of the wave energy through the

ionosphere, where the refractive index strongly increases

(Helliwell, 1965), requires that the top-side wave vectors

are contained in the ‘‘transmission cone’’ of nearly vertical

wave vector directions. The short resulting wavelength

might also be consistent with an additional possible role of

scattering on small-scale density irregularities.

5. Conclusions

Measurements of the recently launched DEMETER

spacecraft provide us with state-of-the-art measurements of

the fluctuations of the magnetic field and the electric field.

These measurements comprise three magnetic and three

electric field components. Numerous analysis methods exist

to estimate parameters of electromagnetic waves using such

multi-component measurements. Methods based on the

assumption of the presence of a single plane wave are

useful to obtain an overview of the observed wave

phenomena. For example, the recently developed techni-

ques based on the singular value decomposition could be

easily used for the analysis of the DEMETER data. More

general WDF techniques and methods of backward ray-

tracing can be used for the detailed interpretation of

obtained results.

Basic analysis tools including these methods have been

implemented for the DEMETER wave measurements. We

ARTICLE IN PRESS

106

105

104

103

102

n 
(c

m
-3

)

2.00 2.10 2.20 2.30 2.40 2.50
Time (h)

APR 21-1-2005 1:56:41 2947-0

black=ntot, red=n0+, green=nHe+, blue=nH+

Fig. 8. Measurements of ion density onboard DEMETER on 21 January 2005: (black line) total number density, (red line) number density of Oþ ions,

(blue line) number density of Hþ ions, (green line) number density of Heþ ions. Time is given on the bottom in hours from the beginning of the day.
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estimated using the model of one Gaussian peak. On this plot, the direction of the local magnetic field B0 is in the center of the circle, y is the polar angle,

and f is the azimuth. (b) Similar plot of the WDF estimated using the model of discrete regions. Small white squares on both plots show the wave vector

direction estimated by the SVD technique.
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show the first results of these analysis techniques based on

the DEMETER data, acquired in four different ELF burst

mode intervals. The results are comparable to the

published results of previous spacecraft, for instance

Aureol-3 and Freja, that both were able to record multi-

component measurements. Slightly different wave phenom-

ena are observed on DEMETER most probably because

the measurements take place on lower latitudes.

We demonstrate three types of ELF wave phenomena

which are most frequently observed on DEMETER. The

first type of emissions are obliquely-propagating right-

hand polarized electromagnetic waves occurring at a few

hundreds of Hz. On the power spectrograms, these waves

usually show a sharp lower cutoff just below the local

proton cyclotron frequency. Analysis of wave polarization

then reveals that this cutoff is connected with a multi-ion

mode structure below the local proton cyclotron frequency

where the polarization becomes left handed at the multi-

ion cross-over frequency. The sharp lower cutoff then

corresponds to the multi-ion L ¼ 0 cutoff of left-hand

polarized waves.

The second class of wave phenomena are right-hand

polarized waves below the local proton cyclotron fre-

quency. These waves are often rather broad-band but

sometimes they also manifest narrow-banded features at

varying bandwidths and frequencies. At least a part of

these waves most probably originates by tunelling of wave

power from the above-described first type of emissions

below the multi-ion cross-over frequency. This is consistent

with the observed low angular deviations of the wave

vectors with respect to the local magnetic field line.

The third class of waves are electron and proton

whistlers which are also very frequently observed on

DEMETER. We show that these measurements have a

great potential for a detailed analysis of wave propagation

based on polarization measurements. In the future, these

results together with ground-based measurements can lead

to a better characterization of the penetration of whistlers

through the ionosphere.

We also show a detailed analysis of an unusual narrow-

band emission at a constant frequency of 140Hz, observed

very close to a place where an earthquake occurred three

days later. It is important to state that we have no reason to

believe that these waves are really directly connected to this

seismic activity. A systematic statistical study on a large

number of cases is under way to investigate if there is any

kind of connection between the ELF waves observed on

DEMETER and earthquakes. We only use here these

observations to demonstrate the possibilities of a detailed

analysis using the DEMETER data. We show that the

observed narrow-band waves propagate obliquely with

respect the ambient magnetic field. They are right-hand

polarized while their frequency is well below the local

proton cyclotron frequency. For these waves, two different

methods of WDF analysis give similar results consistent

with the results of the plane-wave techniques. The obtained

wave normal direction is used as an initial value for a

simulation of backward wave propagation from the point

of measurement. Following the ray path back toward the

Earth down to the ionospheric altitudes we find that the

waves come from a region located a few degrees of latitude

to the South from the spacecraft position. Scattering of the

wave energy by small-scale ionospheric density irregula-

rities could be a possible mechanism for penetration of

these waves from lower altitudes.

These several examples show a great potential of high

resolution measurement of the full set of 6 components of

the electric and magnetic field on board DEMETER.

Future investigation is needed to interpret the observed

wave propagation properties.
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[1] Results of a systematic search for magnetospheric line radiation (MLR) observed by
the DEMETER spacecraft since the beginning of the mission are presented. DEMETER is
a French microsatellite (altitude of orbit about 700 km, inclination 98�) designed to
study electromagnetic phenomena connected with seismic or man-made activity that has
been launched in June 2004. An automatic identification procedure of possible MLR
events has been used in order to analyze a large amount of measured data. It is shown that
there are two principally different classes of events: (1) events with frequency spacing of
50/100 or 60/120 Hz (power line harmonic radiation, PLHR) and (2) events with a
different frequency spacing. The first class of events is generated by power systems on the
Earth’s surface, with frequency spacing well corresponding to the fundamental frequency
of the radiating power system. On the other hand, the second class is most probably
generated in a completely natural way. All the detected events are thoroughly analyzed,
and different properties of the two classes are statistically demonstrated. We have
found that PLHR events occur both during low and high geomagnetic activity, with none
of them significantly preferred. However, MLR events occur more frequently under
disturbed conditions. Most of the PLHR events are observed at frequencies of 2 to 3 kHz.
On the other hand, MLR events most frequently occur at frequencies below 2 kHz and
seem to be more intense than PLHR. Additionally, PLHR events are more intense during
the night than during the day, and there is about the same number of PLHR events
observed during the day and during the night. On the contrary, no dependence of MLR
peak intensities on magnetic local time was found, and more MLR events were observed
during the day than during the night, although this difference is not statistically very
significant. Finally, there is a group of MLR events with characteristics corresponding to
the previous spacecraft observations of equatorial noise.

Citation: Němec, F., O. Santolı́k, M. Parrot, and J. J. Berthelier (2007), Comparison of magnetospheric line radiation and power line

harmonic radiation: A systematic survey using the DEMETER spacecraft, J. Geophys. Res., 112, A04301,

doi:10.1029/2006JA012134.

1. Introduction

[2] This paper deals with electromagnetic emissions
propagating through the magnetosphere that exhibit a line
structure. These emissions are usually called magnetospheric
line radiation (MLR), and in frequency-time spectrograms,
they typically look like a set of intense parallel lines whose
mutual frequency separation is often the same for all con-
secutive lines from the set. Moreover, in some cases, the

lines have a mutual distance of 50/100 or 60/120 Hz. These
are believed to be caused by electromagnetic radiation from
ground-based electric power systems and are called power
line harmonic radiation (PLHR). Both ground [Helliwell
et al., 1975; Park and Helliwell, 1978, 1981, 1983;Matthews
and Yearby, 1978; Yearby, 1982; Yearby et al., 1983; Rodger
et al., 1999, 2000a, 2000b; Manninen, 2005] and satellite
[Koons et al., 1978; Bell et al., 1982; Tomizawa and
Yoshino, 1985; Rodger et al., 1995; Parrot et al., 2005,
2006a; Němec et al., 2006b] observations of MLR-like
phenomena were reported in the past. However, direct
satellite observations of the events are rather rare, usually
reporting only a few cases. Moreover, a lot of controversy
still remains about the origin of these events. Rodger et al.
[1995] analyzed observations of MLR events by satellites
International Satellite for Ionosphere Studies (ISIS) 1 and
ISIS 2, finding no correlation between 50/60 Hz multiples
and the frequency of the observed lines. Concerning the
ground-based observations, they concluded the same after
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analyzing the data measured at Halley station [Rodger et al.,
1999, 2000a, 2000b]. Němec et al. [2006b] performed a
systematic analysis of events with frequency spacing of
50/100 or 60/120 Hz (PLHR) and found that the frequency
spacings of all the observed events correspond well to
power system frequencies in possible regions of generation.
Finally, Parrot et al. [2006a] described six storm-time
observations of MLR-like events, performing their detail
analysis and discussing a possible link to electromagnetic
ion cyclotron waves at proton cyclotron harmonics emitted
from the equatorial region. The role of PLHR in the
ionosphere could be important because they can trigger
new emissions [Nunn et al., 1999].
[3] Results of a systematic survey of MLR-like events

observed by the DEMETER spacecraft are reported in this
paper. In section 2, the wave experiment onboard DEMETER
and procedure for an automatic identification of MLR events
are briefly introduced. An analysis of the detected events is
described in section 3, whereas section 4 presents the
discussion of results. Finally, section 5 contains conclusions.

2. Experiment and Automatic Identification
of Events

[4] Wave data from the French microsatellite DEMETER
(launched in June 2004, altitude of �710 km, nearly Sun-
synchronous orbit) have been used. The primary purpose of
this spacecraft is to study ionospheric effects connected with
the seismic activity; the secondary goal of the mission is to
study man-made effects in the ionosphere. The electromag-
netic waves at geomagnetic latitudes less than 65� are
measured by the Instrument Magnetometre Search Coil
(magnetic field component) and the Instrument Champ
Electrique (electric field component) instruments onboard
DEMETER. There exist two principal modes of operation:
(1) the burst mode, active mostly above the seismic areas, in
which the waveforms of one electric and one magnetic
component in very low frequency (VLF) range (up to
20 kHz) and a full set of three electric and three magnetic

components in extremely low frequency (ELF) range (up to
1250 Hz) are recorded; and (2) the survey mode, in which
power spectra of one electric and one magnetic field
component are calculated onboard for VLF range. This
mode has a limited frequency resolution (19.5 Hz), which
is insufficient for the intended study. We are consequently
forced to use the burst mode, which is active for only a few
minutes during each half orbit, limiting our study only to
specific areas (mostly seismic ones, but about 20% of the
volume of the burst-mode data are recorded above different
regions of interest and can be added/modified during the
operational phase of the mission). More information
concerning the DEMETER mission and onboard instru-
ments can be found in the works of Berthelier et al.
[2006], Parrot et al. [2006b], and Santolı́k et al. [2006].
[5] The spacecraft observations of MLR are rather rare. In

order to detect a reasonably high number of such events, it
is therefore necessary to check a large amount of data. Since
a visual survey of all the measured data would be practically
impossible, we have developed a procedure for an automatic
identification of possible MLR. Candidate computer-found
MLR events have then been visually checked, and we have
decided if they correspond to the real MLR events or not.
The automatic identification procedure is running in the
DEMETER control center in Orléans and is described in
detail by Němec et al. [2006b]. Altogether, 1650 hours of
burst-mode data measured during the first 2 years of the
DEMETER mission has been analyzed. In this data set,
764 possible MLR events have been detected. Manual
verification of the events revealed that most of them are
‘‘false alarms,’’ finally yielding only 72 MLR-like events:
17 PLHR events with frequency spacing of 50/100 Hz,
32 PLHR events with frequency spacing of 60/120 Hz, and
23 MLR events with different frequency spacing. The
geographic locations of these events as well as the areas
with the permanently active burst-mode coverage are shown
in Figure 1. The operational phase burst-mode regions are
not shown since their positions vary during the time interval
analyzed in this study.

Figure 1. Map showing geographic locations of the observed events. PLHR events with 50/100 Hz
spacing are plotted by crosses, PLHR events with 60/120 Hz spacing are plotted by squares, and MLR
events are plotted by solid circles. Zones with the permanently active burst-mode coverage are shaded.
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[6] The first two groups of events are most probably
caused by electromagnetic radiation from power systems
(PLHR) and have been quite thoroughly analyzed by Němec
et al. [2006b]. In this paper, we compare them with the third
group of events (‘‘real MLR’’ events), showing that their
properties are substantially different.

3. Analysis of Events

[7] An example of one of the events from the first group
(frequency spacing 50/100 or 60/120 Hz) recorded on
25 March 2006 from 1913:32 UT, when the spacecraft was
flying over Finland, is shown in Figure 2. It is represented in
the form of a frequency-time spectrogram of electric field
fluctuations (top panel) together with the power spectrum
corresponding to the first 14 s of data (bottom panel). The
arrows are used to mark the most important peaks of the
spectrum located at frequencies 1650, 1750, 1850, 1950,

2050, 2150, 2250, and 2350 Hz. These peaks are separated
by 100 Hz and located exactly at 50 Hz (odd) harmonics.
Moreover, much weaker peaks can be observed at even
harmonics. The observed frequencies are in a good agree-
ment with independent ground-based measurements per-
formed by Manninen [2005]. A slowly growing intensity as
a function of frequency above 2000 Hz (bottom panel) is
caused by naturally occurring whistlers with low dispersion,
coming most probably from the lightning sources below the
spacecraft.
[8] Figure 3 represents another example of one of the

observed events, this time from the third group (frequency
spacing other than 50/100 or 60/120 Hz), recorded on
16 May 2005 between 0816:02 and 0818:42 UT when the
spacecraft was flying over the Pacific Ocean. The first two
panels represent frequency-time spectrograms of electric
and magnetic field fluctuations. Since this time the emis-
sions occurred during the burst mode in the DEMETER

Figure 2. Top: An example of frequency-time spectrogram of electric field fluctuations corresponding
to one of the analyzed PLHR events with 50/100 Hz spacing. The data were recorded on 25 March 2006
from 1913:32 UT when the spacecraft was flying over Finland. Bottom: Power spectrum of the first 18 s
of data, with the most important peaks marked by arrows.
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Figure 3. An example of a real MLR event (from the third group: frequency spacing other than 50/100
or 60/120 Hz). The data were obtained on 16 May 2005 between 0816:02 and 0818:42 UT, and the
occurrence in ELF band allowed us to perform a detail analysis. From the top: frequency-time power
spectrograms of electric and magnetic field fluctuations, of the planarity, ellipticity, and polar angle of
wave vector direction with respect to the ambient magnetic field.

Figure 4. Histograms of Kp indices (left panel) at the time of PLHR events (solid line) and (right panel)
at the time of MLR events (solid line). Histogram of all Kp indices that occurred during the analyzed year
is overplotted in both panels by dashed line.

A04301 NĚMEC ET AL.: MLR VERSUS PLHR STUDY USING DEMETER

4 of 8

A04301



ELF band, it was possible to perform a complex analysis.
An example is presented in the last three panels of Figure 3
(see description at the end of this section for more details).
[9] Figure 4 shows histograms of Kp indices that

occurred during the detected events. The left panel represents
results obtained for PLHR events (frequency spacing
50/100 or 60/120 Hz), and the right panel represents results
obtained for MLR events (different frequency spacing). It
can be seen that while the PLHR events occur during both
low and high geomagnetic activity, with no significant
preference for quiet or disturbed periods, MLR events seem
to occur more frequently under disturbed conditions.
[10] For each of the observed events, we evaluate a

central frequency and a peak intensity. The central frequency
is defined as an arithmetic average of the minimum and
maximum frequencies detected in the observed set of lines.
The peak intensity is defined by the most intense line.
Histograms of central frequencies of the observed events are
shown in the left panel of Figure 5, by a dashed line for the
PLHR events, and by a solid line for the MLR events.
Histograms of peak intensities of the observed events are
shown in the right panel of Figure 5. It can be seen that most

of the PLHR events have been observed at frequencies of
2 to 3 kHz. On the other hand, MLR events most frequently
occur at frequencies below 2 kHz, with the number of
observations slowly decreasing toward higher frequencies.
Moreover, the MLR events are more intense than PLHR.
[11] Figure 6 represents the peak intensity of the PLHR

and MLR events as a function of magnetic local time. It
shows that the peak intensity of the PLHR events is higher
during the night than during the day, although the peak
intensity of MLR does not seem to depend on the magnetic
local time. Moreover, about the same number of the PLHR
events was observed during the night (24) and during the
day (25). However, more MLR events were observed during
the day (15) than during the night (8). The bunching of the
observed events into two distinct groups is caused by the
specific Sun-synchronous orbit of DEMETER. This orbit is
reflected by two peaks in the MLT coverage, around 11 and
23 MLT, both of them containing the same number of orbits.
[12] Figure 7 shows how the central frequency of the

observed MLR events depends on the geomagnetic latitude.
It can be seen that two distinct groups of events are formed.
The first of them is observed at higher frequencies and

Figure 5. Left: Histograms of central frequencies of PLHR events (dashed line) and MLR events (solid
line). Right: Histograms of peak intensities of PLHR events (dashed line) and MLR events (solid line).

Figure 6. Left: Peak intensity of PLHR events as a function of magnetic local time. Right: Peak
intensity of MLR events as a function of magnetic local time.
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located at higher geomagnetic latitudes, while the second
group is observed close to the geomagnetic equator at
significantly lower frequencies.
[13] At frequencies below 1 kHz, we can analyze the ELF

band where all the six electromagnetic components are
measured. The analysis reveals that there is a group of
MLR events (5 out of 23) located close to the geomagnetic
equator with characteristics corresponding to recent obser-
vations of equatorial noise [Santolik et al., 2002, 2004;
Němec et al., 2005, 2006a, and references therein].
[14] A detailed analysis of one of the events that belong

to the ‘‘equatorial noise’’ group is shown in Figure 3. The
top two panels contain spectrograms representing power-
spectral densities of electric and magnetic field fluctuations,
respectively. The third panel contains a spectrogram repre-
senting the planarity of magnetic field fluctuations, which is
determined by the singular value decomposition (SVD)
method [Santolı́k et al., 2003]. It varies between 0 and 1
and describes a confinement of the fluctuations to a single
plane: a value of 1 would represent an ideal plane wave. A
value of �0.8 for the observed emissions suggests fluctua-
tions very close to a single plane, with a small fraction of
random three-dimensional fluctuations. The fourth panel
contains a spectrogram representing the ellipticity of
polarization of magnetic field fluctuations, which is again
determined by the SVD method and varies between 0 (linear
polarization) and 1 (circular polarization). It can be seen that
the emissions of the equatorial noise type have polarization
close to linear [Russel et al., 1970]. The last panel represents
a frequency-time spectrogram of polar angle of wave vector
direction with respect to the ambient magnetic field (also
determined by the SVD method). It shows that the wave
vector is perpendicular to the ambient magnetic field.

4. Discussion

[15] A surely problematic element in the presented study
is the procedure for automatic identification of MLR events.
Although this procedure was necessary in order to analyze a
large amount of data, it is practically impossible to deter-
mine all consequences of this step. Another basic limitation
of the presented study is caused by the use of burst-mode

data, which are collected only above some specific areas.
Both these complications are discussed in detail by Němec
et al. [2006b].
[16] The main purpose of this study is to demonstrate a

striking difference between the two groups of events: PLHR
(events with frequency spacing of 50/100 or 60/120 Hz) and
‘‘real MLR’’ events (with different frequency spacing).
Fundamental difference in conditions needed for their
generation is demonstrated in Figure 4. While PLHR events
occur during both low and high geomagnetic activity, with
no significant preference for any of them, MLR events
occur more likely under highly disturbed conditions. This
most probably suggests a completely different generation
mechanism for the two classes. PLHR events seem to be
electromagnetic emissions radiated by electric power sys-
tems on the ground that propagate in right-hand polarized
whistler mode and are only modified by the plasma envi-
ronment [Němec et al., 2006b]. On the other hand, we
believe that emissions that are classified as real MLR (or at
least some of them) are generated in a completely natural
way by instabilities of particle distribution functions. Dif-
ferent properties of PLHR and real MLR events are shown
in Figures 5 and 6. PLHR events are less intense than real
MLR and occur mostly at frequencies between 2 and 3 kHz,
with a clearly distinguishable peak in probability of occur-
rence. On the contrary, MLR events occur mostly at
frequencies below 2 kHz, with the probability of observa-
tion slowly decreasing toward the higher frequencies. This
is rather different from the frequencies of MLR reported by
other researchers [e.g., Rodger et al., 1995, 1999]. This can
be most probably explained by the fact that the events
observed at low frequencies are located at low geomagnetic
latitudes (see Figure 7). These low geomagnetic latitudes
have not been covered by Rodger et al. [1995, 1999].
Furthermore, the peak intensity of PLHR events is higher
during the night than during the day, but the peak intensity
of MLR events does not show this effect. This could be
explained by the fact that the Earth-ionosphere coupling is
more efficient during the night than during the day [Green
et al., 2005]. This represents further support for the idea that
PLHR and realMLRhave to be considered as two completely
different phenomena. However, this does not completely
exclude the possibility that these two classes of events may
be connected in some way; for example, some authors
suggest that PLHR can serve as a trigger for MLR [Bullough,
1995; Manninen, 2005].
[17] More MLR events were observed during the day than

during the night. This is in quite a good agreement with
ground-based observations by Rodger et al. [2000b]. We can
estimate a statistical significance of this difference. Sup-
posing that the probability of observing MLR events is the
same during the night and during the day (p = p1 = p2 = 0.5),
one can calculate the mean value and standard deviation of
the number of night/day observations. Having 23 MLR
events altogether (n = 23), the two mean values are equal,
nnight = nday = np = 11.5. The standard deviations can be then
obtained using binomial distribution of probability, s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npð1� pÞ
p

� 2.4. Consequently, it can be seen that the
difference between the mean value and the measured num-
ber of observations is only about 1.5 standard deviations and
is therefore statistically not very significant.

Figure 7. Central frequency of the observed MLR events
as a function of geomagnetic latitude.
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[18] This simple analysis arises the question, how signifi-
cant are the observed differences between PLHR and
MLR? Basically, we need to determine whether two dis-
tributions (obtained experimentally and represented in the
form of histograms in Figures 4 and 5) are significantly
different from a statistical point of view. This can be done by
the Kolmogorov–Smirnov test [Press et al., 1992], which
gives the probability of rejection of the null hypothesis of
no difference between the two data sets. Applying this
calculation to the measured data, we can conclude that the
probability of the obtained distributions being the same for
PLHR and MLR is less than 0.1% for all the presented
histograms.
[19] There are two distinct classes regarding the geomag-

netic latitude of observed MLR events: (1) events that occur
close to the geomagnetic equator and (2) events located at
relatively high geomagnetic latitudes (�50�). Moreover, the
events that belong to the first class usually occur at lower
frequencies (up to 1 kHz). This suggests that there probably
exist (at least two) different generation mechanisms of
MLR events, and a lot of attention needs to be paid when
classifying them and making general conclusions con-
cerning their properties. For instance, there are 5 events
(out of 23) with characteristics corresponding to the recent
observations of equatorial noise. These observations are
rather unique, though the altitude of the DEMETER satellite
is only about 700 km and up to now the equatorial noise
was believed to occur at radial distances between 2 and 7RE

[Laakso et al., 1990; Kasahara et al., 1994; Němec et al.,
2006b].

5. Conclusions

[20] We have presented results of a systematic survey of
observations of MLR by the DEMETER spacecraft. The
data were collected during the first 2 years of its operation.
An automatic identification procedure has been used to
detect the MLR events. Altogether, 72 events have been
found in the entire set of 1650 hours of high-resolution
data.
[21] There are two principally different classes of events:

(1) events with frequency spacing of 50/100 or 60/120 Hz
(so-called power line harmonic radiation, PLHR) and
(2) events with different frequency spacing. While the first
class of events originates from power systems on the Earth’s
surface and their frequency spacing well corresponds to the
fundamental frequency of the radiating power system, the
second class is most probably generated in a completely
natural way.
[22] While the PLHR events occur during both low and

high geomagnetic activity, with no significant preference for
quiet or disturbed periods, MLR events seem to occur
mostly under disturbed conditions. Most of the PLHR
events have been observed at frequencies of 2 to 3 kHz.
On the other hand, MLR events most frequently occur at
frequencies below 2 kHz, with the number of observations
slowly decreasing toward higher frequencies. Moreover,
MLR events are more intense than PLHR. PLHR events
are more intense during night than during the day. There is
about the same number of PLHR events observed during
day and night. In contrary, no dependence of MLR peak
intensity on magnetic local time was found. Finally, more

MLR events were observed during day than night, although
this difference is not statistically very significant. There is a
group of MLR events occurring close to the geomagnetic
equator with characteristics corresponding to emissions of
equatorial noise, known from previous spacecraft observa-
tions, but at higher radial distances.
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Abstract

We present results of a systematic survey of Power line harmonic radiation (PLHR) observed by the DEMETER spacecraft. DEME-
TER is a French micro-satellite launched in June, 2004 with an altitude of orbit of about 700 km. It is designed specifically to study
electromagnetic effects connected with seismic and man-made activity. All available high-resolution burst-mode electromagnetic data
measured since the beginning of the mission till July 2006 (altogether about 1650 h of data) have been analyzed using an automatic iden-
tification procedure. This procedure was specially developed to search for emissions of PLHR type. It is running in DEMETER control
center in Orléans, France. 49 PLHR events with frequency spacing of 50/100 or 60/120 Hz have been found, allowing us to perform a
statistical study of properties of PLHR. It is shown that for all the events, the observed frequency spacing corresponds well to the power
system frequency at anticipated source locations. Moreover, the frequency of the observed lines often (80%) corresponds to the exact
harmonics of the power system base frequency. Finally, the most intense events are observed at lower frequencies and no weak events
are observed under geomagnetically disturbed conditions.
� 2007 Published by Elsevier Ltd on behalf of COSPAR.

Keywords: Power line harmonic radiation; PLHR; Ionosphere; Man-made

1. Introduction

Power line harmonic radiation (PLHR) are electromag-
netic waves radiated by power systems on the ground at
harmonics of the base system frequency (typically 50 or
60 Hz, depending on the country). In frequency-time spec-
trograms they usually have a form of several parallel lines
with frequency spacing of 50/100 or 60/120 Hz, because in
some cases odd or even harmonics can be strongly sup-
pressed. Although ground observations of such events as
well as the evidence for their propagation through the mag-
netosphere are well documented (Helliwell et al., 1975;
Park and Helliwell, 1978; Matthews and Yearby, 1978;

Park and Helliwell, 1981; Park and Helliwell, 1983; Yearby
et al., 1983), direct observations onboard the satellites are
rather rare and usually include only a few cases (Bell
et al., 1982; Koons et al., 1978; Tomizawa and Yoshino,
1985; Rodger et al., 1995; Parrot et al., 2005; Němec
et al., 2006). Moreover, a controversy still exists concerning
the origin of the events, because in many cases the observed
frequency spacing is not 50/100, neither 60/120 Hz. These
events are usually called Magnetospheric line radiation
(MLR) and their generation mechanism and possible con-
nection to PLHR is still a matter of debate (Bullough,
1995; Rodger et al., 1995; Rodger et al., 1999; Rodger
et al., 2000a; Rodger et al., 2000b; Němec et al., 2006). A
so-called ‘‘Sunday effect’’ was reported by some authors
(Park and Miller, 1979). They observe a significantly lower
occurrence rate of the events during Sundays, attributing
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this effect to a lower power consumption. Parrot (1991) and
Molchanov et al. (1991) argued that the difference between
the weekends and weekdays can be caused not only by
lower power consumption during the weekends, but also
by the different current distribution in power systems as
compared to the weekdays. Other researchers (Rodger
et al., 2000a; Karinen et al., 2002) who searched for a
‘‘Sunday effect’’ reported that it is only a statistical fluctu-
ation. PLHR could play an important role in the iono-
sphere because they can trigger new emissions (Nunn
et al., 1999).

First results of a survey of PLHR and its properties
observed by the DEMETER spacecraft have been reported
by Němec et al. (2006). They found that the PLHR events
occur during both low and high geomagnetic activity, with
none of them significantly preferred. The observed fre-
quency spacing of all the PLHR events corresponded well
to power system frequencies in the possible geographical
regions of generation and the frequencies of the observed
lines corresponded to the multiples of power system fre-
quency in 65 percents of cases. The peak intensity of the
observed PLHR events seemed to increase with Kp index
and it was higher during the night than during the day.
In 26 percents of cases, the magnetic field component of
PLHR was observed and the observations were consistent
with propagation in the right-hand polarized whistler
mode.

Results of an extended study based on a twice larger
data set are reported in this paper. Section 2 describes
the DEMETER satellite, wave experiment onboard and
an automatic procedure used to identify PLHR events.
The events are systematically analyzed in Section 3 and
the obtained results are discussed in Section 4. Finally,
Section 5 contains conclusions.

2. Experiment and identification of events

We have used data from the French micro-satellite
DEMETER, whose mass is 130 kg. It was launched in
June, 2004 to a nearly Sun-synchroneous orbit with an
inclination of 98 degrees. The main purpose of the DEME-
TER spacecraft is to investigate electromagnetic emissions
(and possibly other ionospheric effects) connected with seis-
mic-volcanic and man-made activity. Due to the limited
capacity of the telemetry, there are two different modes
of operation. A survey mode, measuring low-resolution
data, is active during the entire orbit with an exception of
the auroral zones (geomagnetic latitudes larger than 65
degrees). In the VLF band this provides us with the power
spectrum of one electric and one magnetic field component.
However, the limited frequency resolution (19.53 Hz of the
Survey mode) is not sufficient for our purposes – the
frequency resolution better than 5 Hz is needed for both
identification and subsequent analysis of PLHR events. A
burst-mode is activated mostly over the seismic areas.
However, this may be changed using a tele-command and
new burst-mode zones can be added/removed. In the

VLF band this mode provides us with waveform of one
electric and one magnetic field component (sampling fre-
quency of 40 kHz). Altogether, about 1650 h of burst-mode
data have been collected during 2 years of measurements
between July 2004 and July 2006.

In order to identify PLHR events in such a large data
set, we have developed an automatic identification proce-
dure. It analyzes the measured data, providing us with
the beginning time and frequency of each of the PLHR
events and with the spectrogram of the surrounding
interval in the frequency-time plane. All these positively
identified events are then manually checked for the exis-
tence of PLHR to decide whether a real event was found
or if a ‘‘false alarm’’ occurred. A detailed description of
the identification procedure has been given by Němec
et al. (2006).

3. Systematic analysis of events

The above described procedure has been implemented in
the DEMETER control center in Orléans, France, in the
frame of the level 3 data processing system. All available
VLF burst-mode data have been used as the input and 49
PLHR events with frequency spacing 50/100 and
60/120 Hz have been identified. An example of one of the
observed events is shown in Fig. 1. It represents the fre-
quency-time spectrogram of electric field data measured
on February 1, when the DEMETER satellite was above
the North-Western part of the USA. Three lines with fre-
quency spacing of 60 Hz, constant in frequency and located
at 2100, 2160 and 2220 Hz can be clearly identified. More-
over, these frequencies correspond to the exact harmonics
of base frequency of 60 Hz (35th, 36th and 37th harmon-
ics). No similar signature is observed in the magnetic field
data. However, Němec et al. (2006) have shown an evi-
dence that the emissions are electromagnetic and propagate
in the right-hand polarized whistler mode, with some of the
cases being too weak to be observed in the magnetic field
data. In the same way, it is reasonable to believe that there
are more PLHR events occurring, but being too weak to be
observed in electric field data either. This idea is further
supported by the fact that the lowest observed peak inten-
sity of PLHR events is about 3 · 10�9 mV2 m�2 Hz�1,
which is quite comparable to typical intensities of back-
ground natural waves determined as the in-flight noise
floor of the ICE electric field instrument in the VLF range
(2.5 · 10�9 mV2 m�2 Hz�1) by Berthelier et al. (2006).

Geographic locations of the observed PLHR events are
shown by large points in Figs. 2 and 3 for events with
50/100 and 60/120 Hz frequency spacing, respectively.
Magnetic field lines and the footprints of the points of
observation are shown by thin lines and small points. Sup-
posing ducted propagation, these small points indicate pos-
sible generation regions. It can be seen that the base
frequency of power systems at the possible regions of gen-
eration correspond well to the observed frequency spacing.
The frequency spacing of 50/100 Hz is observed mostly on
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field lines with one of the footprints in Europe. A few of the
events are observed to the South from Africa, but with
magnetic conjugate point located again in Europe. One
of the events is observed over India and one over the
North-East part of Asia. The frequency spacing of
60/120 Hz is observed mostly over the United States of
America and Japan, a few such events are observed above
Brazil, one over Philippines and one over New Zealand.
This is surprising, because the power systems in New Zea-
land are operating at 50 Hz. Note, however that the mag-
netic conjugate point is in Alaska where the base system
frequency is 60 Hz. It is very important to note that in 39
cases (about 80% of the total number of 49 PLHR events)
not only the frequency spacing but also the frequencies of
the lines themselves corresponded to the originating power
systems. This means that the lines forming these PLHR
events occurred at exact harmonics of base power system

frequency. The typical 3 dB bandwidth of the observed
PLHR lines is less than 10 Hz, which is significantly less
than the bandwidth reported by e.g. Rodger et al. (1999)
for ground-based observations of MLR.

For each of the observed PLHR events we define the
peak intensity as an intensity of the most intense spectral
line forming the event. Fig. 4 then shows the peak intensity
of the events as a function of Kp index. It can be seen that
while both weak and intense PLHR events are observed
during geomagnetically quiet times, only PLHR events
with relatively high intensity are observed during periods
with a high geomagnetic activity (only events with peak
intensities larger than 10�6 mV2 m�2 Hz�1 have been
observed under Kp larger than 4).

The peak intensity of the observed events as a function
of geomagnetic latitude is shown in Fig. 5. The peak inten-
sity is almost independent on geomagnetic latitude, but no
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Fig. 1. Example of one of the events with 60 Hz spacing. It shows the electric field data recorded on February 1, 2006 from 19:06:32 UT, when

DEMETER was flying over the North-Western part of the USA. Three lines occur at 60 Hz harmonics.
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footprints of the points of observations are plotted by thin lines and small points, respectively. Zones with permanently active burst-mode coverage are

shown by gray shading; however, the operational-phase burst-mode regions, which form approximately 20% of the burst-mode data volume, are not

shown since their positions vary during the time interval analyzed in this study.
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intense events are observed between 15 and 35 degrees of
geomagnetic latitude.

Finally, Fig. 6 represents the peak intensity of the
observed events as a function of frequency. It can be seen
that most of the intense PLHR events (with peak intensities
larger than 10�6 mV2 m�2 Hz�1) occur at frequencies lower
than 2.5 kHz.

4. Discussion

Only 49 PLHR events have been found in the data set of
about 1650 h of data. This low number indicates that the
occurrence rate is very low. The limitation of this study is
the automatic identification procedure which may underes-
timate the number of events. Another limitation is the
usage of burst-mode data, which are received only above
specific areas. The consequences for the geographic loca-
tions of the detected events (Figs. 2 and 3) are evident.

However, one must keep in mind that the results shown
in Fig. 5 are also affected. This can possibly explain the lack
of intense events observed at geomagnetic latitudes
between 15 and 35 degrees – although quite a lot of events
occurred at this interval of geomagnetic latitudes, most of
them were measured above Japan and it is reasonable to
expect that properties of the PLHR events can slightly
change depending on the radiating region.

Geographic locations of the observed PLHR events
(Figs. 2 and 3) show a good agreement between the
observed frequency separation of the spectral lines and
the frequency of the power systems in the anticipated
regions of generation. The waves are assumed to propagate
in a ducted mode along the magnetic field lines Němec
et al., 2006, which is relatively well confirmed by our
results. Some of the cases, but not all of them, may be also
consistent with the sources located vertically below the
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Fig. 3. Same as Fig. 2, but for PLHR events with frequency separation of lines 60/120 Hz.
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Fig. 4. Peak intensity of the observed PLHR events as a function of Kp
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Fig. 5. Peak intensity of the observed PLHR events as a function of

geomagnetic latitude.
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spacecraft. The difference between the ducted propagation
and propagation vertically from the source below the satel-
lite is – especially at high geomagnetic latitudes – quite
small. Nevertheless, the difference starts to be relatively sig-
nificant at lower geomagnetic latitudes (e.g., 60 Hz cases
above Brazil seem to be most likely generated on the sea-
shore, where most of the large cities are located, consis-
tently with the ducted propagation). Finally, the
anticipated locations of generation seem to be correctly
determined in this way also for the propagation from the
opposite hemisphere (e.g., 60 Hz cases in the Pacific ocean
are traced to the USA).

Moreover, in about 80 percents of cases, the spectral
lines are observed at exact multiples of base system fre-
quencies. This suggests that the electromagnetic waves
radiated by the power systems on the ground are trans-
ported directly to the low-orbiting satellite, without any
additional non-linear plasma-wave interactions, which
would change their frequency. The same could be true
for the remaining 20 percent of cases, supposing they are
radiated by not perfectly operating power systems, i.e.,
with frequencies slightly off 50/60 Hz. The reason is that
at higher harmonics that are typically observed even a
small offset in the base frequency (too small to be seen in
the frequency spacing) leads to a significant shift in the har-
monic frequency.

Fig. 4 shows that only intense PLHR events are
observed during geomagnetically disturbed periods. This
effect has been discussed by Němec et al. (2006), who sug-
gested that plasma-wave interactions take place and change
the intensity of PLHR events in such a way that it becomes
higher in more intense electromagnetic background. The
alternative explanation proposed by Němec et al. (2006)
was that the PLHR events observed under high Kp values
are just too weak to be observed. However, the first expla-
nation seemed to be more likely true, because there were no
intense events observed under low Kp values. With more
PLHR events identified in the present study, we see that

quite intense events have been observed during geomagnet-
ically quiet periods as well. Moreover, most of the intense
events have been observed at frequencies below 2.5 kHz,
which could correspond to higher radiated power at lower
frequencies. Although a more detailed study is needed, our
results indicate that PLHR events could be propagating
from the generation region to the satellite without any
additional plasma-wave interactions which would signifi-
cantly modify the wave properties.

5. Conclusions

We have presented results of a systematic study of
PLHR using the DEMETER spacecraft. Two years of
burst-mode data (about 1650 h) have been analyzed using
an automatic identification procedure. Altogether, 49
events had frequency spacing of 50/100 or 60/120 Hz.

The power system frequency in the anticipated regions
of generation of these events (magnetic footprints of the
places of observation on the Earth’s surface) correspond
well to the frequency separation between the observed
spectral lines. Moreover, in 80 percent of the cases the lines
occur at exact harmonics of the power system frequency.
Only intense PLHR events are observed during geomagnet-
ically disturbed periods and most of the intense PLHR
events occur at frequencies below 2.5 kHz.
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[1] Very Low Frequency (VLF) spectrograms show
sometimes sets of lines called MLR (Magnetospheric Line
Radiation) with frequency spacing close to 50 or 60 Hz. It is
very tempting to attribute these MLR to Power Line
Harmonic Radiation (PLHR). PLHR are the ELF and VLF
waves radiated by electric power systems at the harmonic
frequencies of 50 or 60 Hz. Here we show for the first
time large scale MLR observed simultaneously on
ground and on board a low altitude satellite which is
flying over the same zone. This two hours event is observed
over a large area in the Northern hemisphere
(�7,400,000 km2) and in the conjugate region. It is
hypothesized that these MLR are due to PLHR
propagating in the ionosphere and the magnetosphere.
When they cross the equator, the PLHR undergo a
nonlinear interaction with particles and may play a role
in the dynamics of the radiation belts. Citation: Parrot, M.,

J. Manninen, O. Santolı́k, F. Němec, T. Turunen, T. Raita,

and E. Macúšová (2007), Simultaneous observation on board a

satellite and on the ground of large-scale magnetospheric line

radiation, Geophys. Res. Lett., 34, L19102, doi:10.1029/

2007GL030630.

1. Introduction

[2] Evidence of PLHR propagation in the magnetosphere
was first observed on ground by Helliwell et al. [1975], who
published simultaneous observations at conjugate points.
Other ground observations have been done by Matthews
and Yearby [1978], Helliwell [1979], Park and Helliwell
[1981], Yearby et al. [1983], and Manninen [2005]. Direct
observations by satellites are shown in a few papers [Koons
et al., 1978; Bell et al., 1982; Tomizawa and Yoshino, 1985;
Parrot, 1994; Rodger et al., 1995]. More recently other
observations have been done with the ionospheric satellite
DEMETER [Parrot et al., 2005; Němec et al., 2006, 2007].
They have performed a systematic analysis of MLR events
observed by the spacecraft during its first two years of
operation. They found that there are principally two differ-
ent classes of events: events with frequency spacing of 50/

100 or 60/120 Hz (PLHR) and events with different
frequency spacing. For the first class, the frequencies of
all the observed events well correspond to power system
frequencies in possible regions of generation. While the
PLHR events occur during both low and high geomagnetic
activity, with no significant preference for quiet or disturbed
periods, MLR events seem to occur mostly under disturbed
conditions. They also found that the MLR events are more
intense than PLHR.
[3] Many observations show that the MLR lines drift in

frequencies. One must say that there is a controversy about
the origin of these lines which are observed in space or on
ground because many of them are not separated by 50 or
60 Hz. For example there is a group of MLR events
observed by DEMETER close to the geomagnetic equator
with characteristics corresponding to emissions at harmon-
ics of ion gyrofrequencies, known from previous spacecraft
observations, but at higher radial distances. The generation
mechanism of the MLR observed outside the equatorial plan
is not well determined although it is most probably due to a
nonlinear interaction between electrons and the coherent
PLHR. In their study of ISIS2 data, Rodger et al. [1995]
observed MLR and did not find a frequency correlation with
50 or 60 Hz or multiples. It was the same for observations of
MLR at Halley bay [Rodger et al., 1999, 2000a, 2000b]. In
a review paper concerning observations of PLHR and MLR
emissions by ground based experiments and satellites,
Bullough [1995] discussed about the possibility that MLR
are due to PLHR. Simulations have also been performed by
Nunn et al. [1999] to explain ground observations of PLHR
and associated triggered emissions in Finland. Recently,
Ando et al. [2002] analyzed the penetration of PLHR
through the ionosphere and underlined the importance of
the ion gyrofrequency relatively to the wave frequency of
this man-made emission. This paper is related to a MLR
event simultaneously observed by the satellite DEMETER
and a ground-based experiment during a special campaign.
The satellite experiments and the ground-based experiments
will be briefly described in section 2. Section 3 will present
the MLR observation whereas discussion and conclusions
are given in section 4.

2. Satellite and Ground-Based Experiments

[4] DEMETER is a low-altitude satellite (660 km) with a
quasi sun-synchronous polar orbit which measures electro-
magnetic waves and plasma parameters all around the Earth
except in the auroral zones. The frequency range for the
electric field is from DC up to 3.5 MHz, and for the
magnetic field from a few Hz up to 20 kHz. There are
two scientific modes: a survey mode where spectra of one

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L19102, doi:10.1029/2007GL030630, 2007
Click
Here

for

Full
Article

1Laboratoire de Physique et Chimie de l’Environnement/Centre
National de la Recherche Scientifique, Orléans, France.
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electric and one magnetic component are onboard computed
up to 20 kHz and a burst mode where waveforms of two
components of the electromagnetic field (one electric and
one magnetic) are recorded up to 20 kHz. The burst mode
allows us to perform spectral analysis with better time and
frequency resolutions. Details of the wave experiment are
given by Parrot et al. [2006b] and Berthelier et al. [2006].
[5] The ground-based experiment was located at Kannus-

lehto (67.74�N, 26.27�E, L = 5.41) in Finland. The receiver
consisted of two orthogonal magnetic loop antennae with
the effective area of 1000 m2 each. The receiver has been
designed for 24-bit digital recordings. The signal from both
loops were sampled with frequency of 78.125 kHz and
saved in the same file as 32-bit words. The lowest 8 bits
were used for control information and GPS time code. Data
from two orthogonal loops are handled as complex numbers
in the analysis. The basic computation is the complex
Fourier transform and Fourier coefficients are used for
getting the estimates for signal power as a function of
frequency at different polarizations. Details of the receiver
and analysis method are given by Manninen [2005].

3. MLR Observation

[6] Figure 1 shows the data recorded at Kannuslehto
during one hour on November 28, 2006. They are repre-
sented as a spectrogram between 1 and 3 kHz. We can see
two different sets of lines which are rarely observed
simultaneously. There is a set of horizontal lines at fixed
frequencies (PLHR) with many harmonics of 100 Hz. Most
intense lines are at 1150, 1250, 2050, 2350, 2450 Hz. It is
typical of the PLHR observed in Finland which are radiated
at frequencies f = 50 (cp ± 1) Hz with p = 12 and c = 1, 2, 3,
4, . . . because the industrial plants use 12 pulse bridges to
convert 220V/3 phases to DC power [Nunn et al., 1999;
Manninen, 2005]. The other set of lines is representative of
MLR. Their frequency intervals are not equal to 50 or

100 Hz and the lines are drifting in frequency but the
frequency drift is not equal for all lines. Its average value
is �0.11 Hz/s. The experimental device allows measuring
the wave polarization and it appears that the MLR are
whistler mode waves propagating along the direction of
the Earth’s magnetic field. It means that the MLR are
coming from above towards the Earth.
[7] Ground observations are done during two hours in the

local night between 17.40 and 19.40 UT. During this event
DEMETER was close to Finland and it performed similar
observations along its orbit from 18.15.00 UT until the end
of the registration at 18.26.30 UT (see Figure 2). Figure 3
shows a spectrogram of an electric component when
DEMETER is in the burst mode. There is one minute of
data between 18.23.30 and 18.24.30 UT in the frequency
range 1–3 kHz. MLR with lines at frequency intervals not
equal to 50 or 100 Hz are observed but without PLHR as it
was the case on ground. At the beginning of the burst mode
a detailed spectral analysis indicates that the line frequency
interval varies between 52.3 and 71.6 Hz with an average
value of 59.2 Hz. The MLR are also slightly drifting in

Figure 1. Spectrogram of the signal received at Kannus-
lehto between 18.00 and 19.00 UT. The frequency range is
between 1 and 3 kHz. The signal intensity is color coded
according to the scale on the right. The horizontal lines
observed just above 1 kHz and between 2 and 3 kHz are the
PLHR which are at exact harmonics of 50 Hz. MLR with
drifting frequencies are observed between 1.2 and 2.4 kHz.

Figure 2. Map showing the area where the event has been
recorded. The star indicates the position of Kannuslehto
(67.74�N, 26.27�E) in Finland. The line represents the
projection of the orbit of the satellite DEMETER (12842.1)
on November 28, 2006. The thick part shows the location
where DEMETER is in burst mode and the tick shows
where DEMETER stops to record data.
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frequency. Moreover, DEMETER also observed MLR in
the conjugate hemisphere from 17.53 until 17.59 UT in the
beginning of the same orbit and from 19.30 until 19.34 UT
in the beginning of the next orbit which is shifted westward
by 22� in longitude (not shown). But at these times
DEMETER was in survey mode and no detailed analysis
was possible. To estimate the space extension of this MLR
emission in the north hemisphere we consider that along the
orbit shown in Figure 2 DEMETER starts to record the
emission at a geographic latitude of 27� and stops at 68�.
Considering that the MLR are observed on two consecutive
orbits it roughly gives a surface of 7,400,000 km2.
[8] It is the first time where two independent measure-

ments of MLR are simultaneously done on the ground and
on board a spacecraft, and Figure 4 shows a comparison of
the lines between the two observations. It is clear that it
concerns observation of the same phenomena. Taking into
account the frequency resolution of the spectral analysis, the
lines are at the same frequency on ground and on the
satellite. They are drifting at the same rate. On the ground
and on board DEMETER the frequency drift is of the order
of 0.11 Hz/second. This is in agreement with previous
observations [see, e.g., Nunn et al., 1999].

4. Discussion and Conclusions

[9] The fact that the drifts and the frequency spacing are
identical on ground and on board the satellite indicates that
this is not due to a propagation effect. It also shows that
there is no Doppler shift induced by the satellite. It means
that this frequency shift and the frequency interval between
the lines are not induced during the propagation in a
disturbed ionosphere between the satellite and the ground.
The simultaneous observations of MLR on the ground, on
board the satellite close to Finland at an altitude of 660 km,
and in the conjugate hemisphere indicate that these waves
are propagating back and forth in the magnetosphere.

[10] Our hypothesis is that the origin of these waves is
due to the propagation of the PLHR observed on ground
because the only other possibilities concerns:
[11] 1. The electromagnetic harmonic ELF emissions

emitted in the equatorial region at the harmonics of the
proton gyrofrequency. With the frequency spacing we
observe (59.2 Hz) it would mean that these harmonic waves
would have been generated in the magnetic equatorial plane
at L = 1.95, would be propagated up to L = 5.37 (the

Figure 3. Spectrogram of the signal received by the satellite DEMETER between 18.23.30 and 18.24.30 UT at the end of
the burst zone shown in Figure 2. The signal intensity is color coded according to the scale on the right. MLR are observed
between 1.4 and 2.2 kHz. Orbital parameters are indicated at the bottom: Latitude, longitude and L value. The local time
indicates that it is a night time observation.

Figure 4. Comparison between the line frequencies
observed at Kannuslehto (in blue) and on board the satellite
(in red). The spectra are from 1200 up to 2400 Hz and their
amplitudes are normalized relative to the maximum
intensity of each spectrum. It corresponds to the time
interval 18.24.20–18.24.30 UT. It is shown that both MLR
observed at Kannuslehto and on board the satellite have
similar frequencies and that even their amplitudes at the
different frequencies follow the same variation. In addition
to the MLR, the Kannuslehto spectrum shows clear PLHR
at 1250, 1450, 1650, 1950, 2050, 2150, and 2350 Hz.
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average L value of our observations) and then down to
lower altitudes. These harmonic waves are effectively
observed by DEMETER [Parrot et al., 2006a], and even
above Finland (see the quick-look of the orbit 2957.1 on the
DEMETER web server http://demeter.cnrs-orleans.fr), but
only during very high magnetic activity (it is not the case on
Nov. 28, 2006, Kp maximum = 2+), with a completely
different duration and separation of the lines, and close to
the ionospheric trough which is not the case here.
[12] 2. ELF emissions at harmonics of ion local gyrofre-

quencies which are also observed at low altitudes by
DEMETER in the equatorial region but these waves are
only enhanced at the equator and during high magnetic
activity [Němec et al., 2006, 2007].
[13] Then the only explanation is that on the way from

the ground the PLHR undergo an interaction with particles
in the magnetic equatorial region which is the most favour-
able region for this kind of interaction. The PLHR intensi-
ties are enhanced and their frequencies are changed. This
interaction is through a cyclotron resonance mechanism.
Then the frequency change of the lines can be the result of a
nonlinear wave-particle interaction [Nunn et al., 1999;
Shklyar et al., 1992]. They are observed when the waves
are coming back in the ionosphere and the atmosphere.
[14] This event is a further evidence that some MLR

observed in space are due to PLHR. It is important to survey
these waves because the world electric power consumption
is constantly increasing and there are indications that PLHR
influences the atmosphere-ionosphere-magnetosphere cou-
pling. Nonlinear interactions between electrons and PLHR
can participate in the precipitation of electrons from the slot
region in the radiation belts [Bullough et al., 1976; Tatnall
et al., 1983].
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and the corresponding staff is deeply acknowledged. We also thank J. J.
Berthelier, who is the PI of the electric field instrument. EM, FN, and OS
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Sodankylä, Finland. (Available at http://www.sgo.fi/Publications/SGO/
thesis/ManninenJyrki.pdf.)

Matthews, J. P., and K. Yearby (1978), Magnetospheric VLF line radiation
observed at Halley, Antarctica, Planet. Space Sci., 29, 97–106.
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J. J. Berthelier

CETP/CNRS, Saint-Maur des Fossés, France.

Abstract. We present a short overview of results obtained by a systematic survey
of line radiation events observed by the DEMETER spacecraft at an altitude of
700 km. We find two different classes of events that can be easily distinguished by
the observed frequency separation of lines forming the event – if it is 50/100 Hz
or 60/120 Hz then the event is most probably caused by electromagnetic radiation
from the electric power systems on the ground (Power Line Harmonic Radiation,
PLHR). Other frequency separations correspond to waves generated in a completely
natural way (real-Magnetospheric Line Radiation, real-MLR). We show supporting
evidence and we estimate possible source locations of both PLHR and real-MLR
events. We show that the source locations of PLHR with 50/100 Hz spacing lie
mostly in Europe and that the source locations of PLHR with 60/120 Hz lie mostly
in the United States and Japan. The generation region of real-MLR events is most
probably located in or very close to the geomagnetic equator at radial distances
between 1.5 and 3 Earth radii.

Introduction

When represented in the form of frequency-time spectrogram, electromagnetic emissions
are sometimes formed by several nearly horizontal, equally-spaced intense lines. These are
usually called Magnetospheric Line Radiation (MLR) or Line Radiation (LR). The frequency
separation of the lines may significantly vary from case to case, but in some cases it exactly
(within the experimental error) corresponds to the frequency of electric power systems – it is
equal to 50 or 100 Hz (second harmonic frequency) or 60 or 120 Hz. These are usually believed
to be caused by electromagnetic radiation from power systems on the ground and they are called
Power Line Harmonic Radiation (PLHR).

MLR-like phenomena have already been reported both in ground [Helliwell et al., 1975;
Park and Helliwell, 1978; Matthews and Yearby, 1981; Park and Helliwell, 1981, 1983; Yearby
et al., 1983; Rodger et al., 1999, 2000a,b] and satellite data [Koons et al., 1978; Bell et al.,
1982; Tomizawa and Yoshino, 1985; Rodger et al., 1995; Parrot et al., 2005; Němec et al., 2006;
Parrot et al., 2006; Němec et al., 2007a,b]. However, although the amount of observed events
on the ground is relatively large, satellite observations are rather rare, usually reporting only
a few cases. Moreover, some controversy still remains about the origin of the observed events.
Rodger et al. [1995], who performed the first satellite survey with a significant number of events,
found no evidence of a relationship between magnetospheric lines and power line harmonics.
However, they briefly mentioned the existence of the second class of events (“tram lines”), which
appear close to harmonics of 50/60 Hz. The same was confirmed by ground based observations
performed at Halley station [Rodger et al., 1999, 2000a,b].
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Němec et al. [2007a] performed a systematic survey of MLR-like events observed by the
DEMETER spacecraft. They confirmed the existence of the two distinct classes of events
(PLHR and “real-MLR”) and demonstrated their different properties (intensity, frequency, most
favorable values of Kp index, bandwidth of individual lines, observed time duration). The
analysis of DEMETER observations of PLHR events [Němec et al., 2006, 2007b] has shown
that the frequency spacing of the lines corresponds well to the power system frequency at
possible generation regions. Theoretical analysis of PLHR penetration through the ionosphere
lead Ando et al. [2002] to estimation of the dimensions of the affected region. Finally, although
the role of PLHR events in the ionosphere is still questionable, it could be quite important,
because numerical simulations show that they can serve as a trigger for new emissions [Nunn
et al., 1999].

A short overview of MLR-like events observed by the DEMETER spacecraft and an esti-
mation of their possible generation regions is reported in this paper. DEMETER satellite, the
wave experiment on board and the resulting data set are described in the following section.
Next, possible source locations of PLHR and “real-MLR” events are estimated and discussed.
Finally, our results are summarized in the last section.

Data set

We have used data from the DEMETER satellite. DEMETER is a French micro-satellite
(mass 130 kg) launched in June, 2004 on a nearly circular orbit with an altitude 710 km and
inclination 98 degrees. The altitude of the orbit was changed to 660 km in December, 2005. The
primary purpose of the satellite is to study possible ionospheric effects connected with tectonic
activity, and its secondary purpose is to analyze man-made effects in the ionosphere. There are
two principal modes of operation: burst mode, active only above some specific (mostly seismic)
areas, during which more detail data are measured, and survey mode, which is active all around
the orbit except of the auroral zones.

Data from the wave instruments have been used in the present paper. In the VLF range (up
to 20 kHz), a waveform of one electric and one magnetic field component is measured during the
burst mode and a spectrum of one electric and one magnetic field component is calculated on
board (frequency resolution 19.53 Hz, time resolution 0.512 or 2.048 s, depending on the mode
of the instrument) during the survey mode. In the ELF range (up to 1250 Hz), waveforms of
all the six components of the electromagnetic field are measured during the burst mode. Since
the frequency resolution during the survey mode is insufficient for our purposes, we have only
used the burst mode data.

This represents about 2500 hours of burst mode data, which is too much to be manually
checked for the presence of MLR/PLHR events. An automatic identification procedure for
their identification has been therefore developed [Němec et al., 2006, 2007a] and run as a part
of DEMETER Level-3 data processing in the DEMETER control center in Orléans, France.
Altogether, 88 events have been found and confirmed by visual inspection. Further, we follow
the classification introduced by Němec et al. [2006] and divide the observed events into two
classes depending on the observed frequency spacing: 1) events with frequency spacing 50/100
or 60/120 Hz (PLHR, 62 events found) 2) events with other frequency spacing (“real-MLR”, 26
events found).

Possible source locations of PLHR events

Figure 1 shows locations of estimated PLHR sources in geographic coordinates. The esti-
mate was done by using an assumption that the waves propagate from their generation region
up to the DEMETER altitudes along the magnetic field lines [Němec et al., 2006, 2007b]. Geo-
graphic locations corresponding to the events with frequency spacing 50/100 Hz are plotted by
crosses, geographic locations corresponding to the events with frequency spacing 60/120 Hz are
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Figure 1. Locations of the estimated PLHR sources in geographic coordinates. The events with
frequency spacing 50/100 Hz are plotted by crosses, the events with frequency spacing 60/120
Hz are plotted by diamonds. Seismic zones with permanently active burst mode coverage are
shown by grey shading. The operational-phase burst mode regions (about 20% of the burst
mode coverage) are not shown because their position may vary during the mission.

plotted by diamonds. Areas with permanently active burst-mode coverage are shown by grey
shading. It can be seen that the frequency spacing of the observed events corresponds well to
the base frequency of the power systems in the estimated generation region – probable source
regions of events with frequency spacing 50/100 Hz are localized mostly in Europe and probable
source regions with frequency spacing 60/120 Hz are localized predominantly in Japan and in
the USA.

Moreover, in most of the cases not only the frequency spacing but also the frequencies of the
individual lines themselves correspond to the multiples of base power system frequency in the
estimated generation region. The explanation proposed by Němec et al. [2007b] can be probably
used for the remaining cases – supposing the electric power system is not perfect and its base
frequency is slightly off 50/60 Hz, this small offset is too small to be observed in frequency
spacing, but at higher harmonics (that are typically observed) it can lead to a significant shift
in frequency.

Finally, it is found that the peak intensity (that is the maximum intensity of the event)
is lower during the day than during the night by about 6 dB. This difference is statistically
quite significant (4.2 standard deviations). Full-wave numerical calculations [Nagano et al.,
1975; Bortnik and Bleier, 2004] of the wave attenuation in the ionosphere reveal that it can
be explained by the different penetration characteristics of the ionosphere during the day as
compared to those during the night [Němec et al., 2007c].

This represents a strong evidence that the PLHR events observed on board DEMETER
are really coming from electromagnetic radiation from electric power systems on the ground.
However, it is still questionable to what extent these may undergo wave-particle interactions
[Němec et al., 2007c].

Possible generation region of “real-MLR” events

Figure 2 shows an example and detail wave analysis of one of the “real-MLR” events
that occurred in the ELF range. It was measured in the northern hemisphere on November
8, 2004 between 0543:59 UT and 0547:21 UT. The meaning of the individual panels is as
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DEMETER   2004-11-08 05:43:59.257 - 2004-11-08 05:47:20.780

UT: 0544 0545 0546 0547
GeomagLat: 32.30 28.84 25.41 21.89

GeomagLon: 150.53 149.04 147.64 146.27
MLT (h): 11.35 11.27 11.19 11.12
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Figure 2. An example and detail wave analysis of a “real-MLR” event measured by DEMETER
in the northern hemisphere on November 8, 2004 between 0543:59 UT and 0547:21 UT. The
meaning of the panels is as follows: frequency-time spectrogram of electric and magnetic field
fluctuations, frequency-time plot of ellipticity, polar and azimuthal angle of the wave vector
direction with respect to the ambient magnetic field, polar and azimuthal angle of the Poynting
vector direction with respect to the ambient magnetic field.

follows. The first two panels represent frequency-time spectrograms of power spectral density
of electric and magnetic field fluctuations. The third panel represents the frequency-time plot
of ellipticity obtained from the Singular Value Decomposition (SVD) method [Santoĺık et al.,
2003, equation 13]. It ranges from -1 to 1, a sign is added to reflect the polarization sense
(positive values correspond to the right-handed polarization, negative values correspond to the
left-handed polarization). The fourth and fifth panel show the frequency-time plots of polar and
azimuthal angle of the wave vector with respect to the ambient magnetic field (determined again
by the SVD method, Santoĺık et al. [2003], equation 22). The polar angle is defined in such a
way that a value of 0 degrees means propagation along the magnetic field line, a value of 90
degrees means propagation perpendicular to the magnetic field line and a value of 180 degrees
means propagation anti-parallel to the magnetic field line. The azimuthal angle is defined in
such a way that a value of 0 degrees means propagation “away from the Earth”. Finally, the
sixth and seventh panel represent the frequency-time plots of polar and azimuthal angle of
the Poynting vector (determined directly as ~E × ~B/µ0, where µ0 is the vacuum permeability)
direction. A threshold of power spectral density of magnetic field fluctuations has been used in
order to select only the data corresponding to the event.
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It can be seen that the waves are almost right-hand circularly polarized and that both the
wave vector and Poynting vector directions are nearly parallel to the ambient magnetic field.
Moreover, there is a weak perpendicular component oriented towards the Earth (φ angle is
close to 180o), indicating that the waves propagate from larger L shells. The similar analysis
has been performed for all the cases that occurred in the ELF range [Němec et al., 2007d]. It has
been found that there is a reversal of the parallel component of the Poynting vector direction
localized practically in the equatorial plane (about ±5◦ within the geomagnetic equator). It
is oriented along the magnetic field line in the northern hemisphere, while it is oriented anti-
parallel to the magnetic field line in the southern hemisphere. Moreover, the waves observed
close to the geomagnetic equator are almost linearly polarized, while the waves observed at
larger geomagnetic latitudes are right-hand polarized.

The results strongly suggest that the generation region of the events is located in or close
to the equatorial plane at larger radial distances; after being generated the waves propagate
towards the Earth where they are detected by DEMETER. The polarization properties are in
a good agreement with the cold plasma theory and propagation in the whistler mode.

The most probable radial distance of the source region can be estimated from the frequency
spacing of the observed events, supposing that the lines are generated at multiples of local proton
cyclotron frequency. The frequency separation of the lines was checked for all the events and it
has been found to vary from 20 to 100 Hz [Němec et al., 2007d]. This corresponds to the radial
distances of the source region from about 1.5 to 3 RE.

This estimation of the possible generation region uses several basic assumptions. The
first of them is that the waves are generated in or very close to the equatorial plane. This
is well justified both by the fact that the equatorial region is the most favorable place for
wave-particle interactions [e.g., Omura et al., 1991] and, even more, by the results of the wave
propagation analysis that shows the reversal of the Poynting vector direction in the vicinity
of the geomagnetic equator. The second assumption is the generation at the multiples of the
local proton cyclotron frequency. This assumption is justified by the fact that the generation at
the multiples of the local ion cyclotron frequency in the source region (local electron cyclotron
frequency at the satellite position is by several orders of magnitude larger than the observed
frequency spacing) is the most natural way how to obtain a line structure in frequency-time
spectrum. Furthermore, the wave analysis reveals that the waves propagate towards the Earth,
that is from larger L-shells, where heavier ions are rare and in addition their local cyclotron
frequency is too low as compared to the observed frequency spacing. This justifies the generation
at multiples of local proton cyclotron frequency at the source location instead of generation at
multiples of the cyclotron frequency of heavier ions.

Conclusion

A short overview of a systematic study of observations of PLHR/MLR by the DEMETER
spacecraft has been presented. An automatic identification procedure has been applied to about
2500 hours of burst mode data and 88 events (62 PLHR events and 26 MLR events) have been
found.

It has been shown that for all of the events the frequency spacing corresponds well to
the power system frequency in the source location. Moreover, the day-night asymmetry of
the observed peak intensity can be explained by different penetration characteristics of the
ionosphere during the day as compared to those during the night. This represents a strong
evidence that the PLHR events are really caused by the electromagnetic radiation from power
systems on the ground.

Concerning the generation region of “real-MLR” events, we have shown some evidence that
it is located in or very close to the equatorial plane and that it is most probably located at
radial distances between 1.5 and 3 RE.
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Němec, F., Santoĺık, O., Parrot, M., and Berthelier, J. J., Power line harmonic radiation: A systematic

study using DEMETER spacecraft, Adv. Space Res., in press, 2007b.
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[1] Results of a statistical study of intensity of VLF
electromagnetic waves observed in the vicinity of
earthquakes are presented. A unique set of data obtained
by the micro-satellite DEMETER (altitude of about 700 km,
nearly Sun-synchronous orbit) and a robust two-step data
processing has been used. In the first step, all the measured
data are used to construct a map of electromagnetic
emissions containing a statistical description of wave
intensity at a given point of the satellite orbit under given
conditions. In the second step, the intensity measured close
to earthquakes is analyzed using the statistical distribution
of background intensity obtained in the first step. The
changes of wave intensity caused by seismic activity are
investigated and their statistical significance is evaluated.
Altogether, more than 2.5 years of satellite data have been
analyzed and about 9000 earthquakes with magnitudes
larger than or equal to 4.8 that occurred all over the world
during the analyzed period have been included in the study.
It is shown that, during the night, there is a statistically
significant decrease by 4 – 6 dB of the measured wave
intensity shortly (0–4 hours) before an intense surface
(depth less than or equal to 40 km) earthquake.
Citation: Němec, F., O. Santolı́k, M. Parrot, and J. J.

Berthelier (2008), Spacecraft observations of electromagnetic

perturbations connected with seismic activity, Geophys. Res. Lett.,

35, L05109, doi:10.1029/2007GL032517.

1. Introduction

[2] Electromagnetic perturbations possibly connected
with seismic activity have been in the recent years reported
by several authors, both from ground based measurements
[Tate and Daily, 1989; Asada et al., 2001] and from low-
altitude satellite experiments [Parrot and Mogilevsky, 1989;
Larkina et al., 1989; Molchanov et al., 1993; Parrot, 1994;
Hobara et al., 2005; Molchanov et al., 2006]. These
observations have been the subject of an intense debate in
the literature [see, e.g., Rodger et al., 1996] for two main
reasons. The first one stems from the lack of large and
reliable database: most studies in this area have been limited
by a lack of enough experimental results to conduct a
statistically significant analysis of the phenomena and
obtain firm results. In addition, the theoretical ideas

[Molchanov et al., 1995; Sorokin et al., 2001] and physical
mechanisms [Gershenzon et al., 1989; Molchanov
and Hayakawa, 1998] that have been proposed are not
convincing enough since they lack the support of reliable
experimental evidence.
[3] Using a survey of electromagnetic emissions on a

low-altitude satellite that includes the vast majority of orbits
that occurred over 2.5 years, we have been able to perform a
unique statistical study of the influence of seismic activity
on the intensity of electromagnetic waves in the ionosphere.

2. Data Set

[4] Our study is based on the data from the French micro-
satellite DEMETER, launched in June, 2004 on a quasi
helio-synchronous circular orbit (10.30–22.30 LT) with a
98� inclination and an altitude of about 700 km [Parrot et
al., 2006]. It performs 14 orbits per day and the instruments
are nearly continuously powered at geomagnetic latitudes
between �65� to +65� thus providing a very good coverage
of the Earth’s seismic zones. We have used the electric and
magnetic field data from the ICE [Berthelier et al., 2006]
and IMSC [Parrot et al., 2006; Santolı́k et al., 2006]
experiments, respectively, and, more specifically, the
measurements made in the VLF band (from 15 Hz to
17.4 kHz). Irrespective of the mode of operation of the
satellite, power spectra of one electric and one magnetic
field component are computed on-board with a frequency
resolution of 19.5 Hz and a time resolution of 2 s or 0.5 s
depending on the mode of operation. For the data set used in
this study the selected electric component is perpendicular
to the orbit plane and the magnetic field component is
inclined by 45 degrees from the velocity vector direction.
Data from more than 2.5 years of the satellite observations
have been used, altogether representing about 11500 hours
of observations organized in about 20000 half-orbits.
According to the USGS catalog (http://neic.usgs.gov/neis/
epic/epic_global.html), about 9000 earthquakes with
magnitude larger than or equal to 4.8 occurred all over
the world during the analyzed period.

3. Method of Analysis

[5] In order to search for a trend in the behavior of
electromagnetic emissions above seismic regions, it is
necessary to define the statistical distribution of the wave
intensity in absence of seismic activity. As the first step of
the data processing, we thus built a map of electromagnetic
emissions, which contains a statistical description of the
intensity of electromagnetic waves obtained from the entire
11500-hour data set. It can be represented by a 6-dimensional
matrix. Two dimensions are the geomagnetic longitude and
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latitude of the satellite with a resolution of 10 and 2 degrees,
respectively. The third dimension is the frequency. We limit
our analysis to frequency range below 10 kHz in order to
avoid frequencies of terrestrial VLF transmitters. We have
selected 16 and 13 frequency bands (117 Hz each) for the
electric and magnetic field, respectively, in such a way that
these omit spacecraft interferences and cover the entire
studied frequency range as uniformly as possible. The lower
number of chosen frequency bands for magnetic field data is
caused by a significantly larger amount of interferences,
which makes the suitable choice much more difficult. The
last 3 dimensions describe the magnetospheric conditions at
the time of observation: Kp index for the quiet (0–1o)
moderate (1+–2+) and disturbed (above 3�) geomagnetic
conditions; magnetic local time (dayside and nightside), and
season of the year (October–April, May–September). In
each cell of this matrix we accumulate a histogram of the
common logarithm of the intensity at a given place and
under given conditions, using all the available data. For a
given spacecraft location and magnetospheric conditions
this results into an estimate of the probability density
function f(E) of observing a power spectral density E.
[6] The basic idea of the second step of our procedure is

as follows. For a measured power spectral density of electric
(magnetic) field fluctuations Ei, we determine its cumulative
probability Fi as the value of the corresponding cumulative
distribution function. This can be calculated as an integral of
the probability density function fi obtained for the same
frequency and spacecraft location under similar magneto-
spheric conditions:

Fi ¼
Z Ei

�1
f Eð Þ dE ð1Þ

[7] In other words, this is the probability (a number
between 0 and 1) of occurrence of signals with an intensity
less or equal to the measured level.
[8] We calculate these cumulative probabilities for mea-

surements of wave intensity recorded during seismic events.
We select the data points for which the vertical projection of
the spacecraft position to the ground was closer than 1100 km
to the epicenter of an earthquake and which were measured
nomore than 5 days before and 3 days after the main shock. If
two or more different earthquakes occur close enough, and
therefore possibly influence the data, the measurement is not
taken into account. This condition is equivalent to taking into
account only ‘‘individually occurring’’ earthquakes, suffi-
ciently separated one from another either in time or in space.
Consequently, sequences of earthquakes occurring at about
the same time and the same location (typically themain shock
and aftershocks) are not considered and data measured in
their vicinity are not used. This is done in order to not mix
pre- and post- seismic effects.
[9] The obtained cumulative probabilities are organized

in bins as a function of: frequency (16/13 selected bands),
time to/from an earthquake (resolution of 4 hours) and
distance from an earthquake (resolution of 110 km). For a
bin b we define a ‘‘probabilistic intensity’’ as follows:

Ib ¼
PMb

i¼1 Fi

Mb

� 0:5 ð2Þ

where Mb is the number of cumulative probabilities Fi

collected in a given bin. Now, if the observed intensities
were significantly lower or larger than the usual ones, the
attributed cumulative probabilities would be significantly
different from 0.5 and the resulting probabilistic intensity
would be significantly different from 0. In this way, we
neutralize the influence of the distribution of intensities of
natural waves on the resulting statistics. However, one
problem remains: what quantitative value should we
attribute to the word ‘‘significantly’’? The answer can be
found using basic statistical properties of the probabilistic
intensity.
[10] If we calculate values of the cumulative probability

from the entire original data set (not just from the selected
earthquake cases), we obtain a large set of values which are
uniformly distributed between 0 and 1. This is a trivial
consequence of the definition of the cumulative distribution
function [Press et al., 1992]. Averaging them into the finite
bins in position and time we sum a large number of these
values. Consequently, according to the central limit theorem
and supposing that Mb is sufficiently large, values of Ib
follow the normal distribution with a mean value 0 and a
standard deviation sb. If all the values Fi were independent,
an estimate of sb would read

s0
b ¼

1
ffiffiffiffiffiffiffiffiffiffiffi

12Mb

p ð3Þ

[11] The problem when performing this calculation is that
although we know the total number of cumulative proba-
bilities in the bin Mb, we do not know how many of them
can be considered as independent. We can define this
number of independent cumulative probabilities as M0

b.
[12] An estimate of M0

b should be derived from the
number of continuous data intervals contained in a given
bin. These continuous data intervals correspond to different
half-orbits of the spacecraft. Duration of a half-orbit is about
35 minutes, which is longer than a typical time scale of
intensity changes of electromagnetic waves in the upper
ionosphere. Moreover, data from two successive orbits
cannot be contained in the same bin. The number Nb of
half-orbits contributing to a given bin could be thus con-
sidered as a lower estimate of M0

b,

M 0
b ¼

Nb

a2
; ð4Þ

where a � 1 is a positive number defining which relative
fraction of the data from a single half-orbit can be on
average considered as independent. In other words, a is the
same for all the bins and represents a measure of stability of
electromagnetic waves: the lower the a is, the more variable
is their intensity.
[13] This provides us with an estimate of sb which is

based on the known number Nb of half-orbits contributing
to a given bin,

ŝb ¼
a
ffiffiffiffiffiffiffiffiffiffiffi

12Nb

p ; ð5Þ

where a can then be estimated experimentally. The simplest
approach is to select a set of bins and to suppose that the
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standard deviation of the normalized probabilistic intensities
Ib/sb should be unity within this set of bins. Since the
mean value of Ib/sb should be zero, this leads us to an
estimate of a,

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12

Q

X

Q

b¼1

Nb I
2
b

v

u

u

t

; ð6Þ

where Q is the number of bins in the set.
[14] In the paper, the values of the normalized probabi-

listic intensity are evaluated for Q = 48 time bins going
from 5 days before an earthquake to 3 days after it, each bin
representing 4 hours of time difference. This enables us to
define a (the same for all the 48 time bins), calculate �̂b

from equation (5), and to obtain the normalized probabilistic
intensities Ib/sb for all the bins. These are then displayed in
Figures 1, 2, and 3. If systematic deviations of several

standard deviations (>3sb) are observed, we can consider
the effect to be statistically significant.
[15] The correctness of the statistical analysis is demon-

strated in Figure 1, which represents the results obtained
from randomly distributed time intervals of the DEMETER
data. Left panel shows an example frequency-time spectro-
gram of normalized probabilistic intensity in order to
demonstrate that the expected random fluctuations of nor-
malized probabilistic intensity (in the absence of seismic
effects) do not display any particular variation. A histogram
of values of normalized probabilistic intensity is plotted in
the right-hand panel. It was obtained by combining
144 plots similar to the one shown in the left-hand panel
and shows a Gaussian distribution with a mean value 0 and
a standard deviation 1. Additional tests have been
performed by applying the data processing method to
random earthquake databases constructed by: 1) keeping
real locations of earthquakes, but randomly generating their
times 2) keeping real times of earthquakes, but randomly

Figure 1. (left) Results from a superposed epoch method showing an example frequency-time spectrogram of normalized
probabilistic intensity constructed from randomly distributed time intervals. The number and length of the time intervals
corresponds to those used in the left panel of Figure 2. (right) Histogram of values of normalized probabilistic intensity
obtained from randomly distributed time intervals of DEMETER data (obtained by combining 144 plots similar to the one
shown in the left panel together). Over-plotted is a Gaussian distribution with mean value 0 and standard deviation 1 to
demonstrate that the normalized probabilistic intensity follows this distribution.

Figure 2. (left) Frequency-time spectrogram of the normalized probabilistic intensity (see text) obtained from the night-
time electric field data measured within 330 km of the earthquakes with magnitudes larger than or equal to 4.8 and depth
less than or equal to 40 km. Data measured for all Kp values and seasons have been included. (right) The same but for
earthquakes with magnitudes larger than or equal to 5.0.

L05109 NĚMEC ET AL.: SEISMO-ELECTROMAGNETIC PERTURBATIONS L05109

3 of 5



generating their positions. Again, no particular variation has
been observed.

4. Results

[16] Since it has been reported that a depth of earthquakes
can play a significant role in earthquake-related effects [e.g.,
Rodger et al. 1999], we have divided the earthquakes into
two groups: surface earthquakes (depth less than or equal to
40 km) and deep earthquakes (depth larger than 40 km).
Moreover, day-time and night-time data have been treated
separately. Finally, all 4 different combinations of surface/
deep earthquakes and day-time/night-time data have been
examined for the presence of possible seismic effects.
[17] Figure 2 shows that the normalized probabilistic

intensity obtained from the night-time electric field data is
below the ‘‘normal’’ level shortly (0–4 hours) before the
surface earthquakes at frequencies of about 1–2 kHz. The
probabilistic intensity decreases by about 3 standard devia-
tions for earthquakes with magnitudes larger than or equal
to 4.8. This effect is based on the data collected during
50 different orbits. If we consider only surface earthquakes
with magnitudes larger than or equal to 5.0, the effect
becomes stronger, with the probabilistic intensity decreasing
by about 4 standard deviations, and with 34 different orbits
contributing to the bins where the decrease is detected.
Concerning the probabilistic intensities, these correspond to
values between �0.10 and �0.15. Transforming these
values back to the corresponding power spectral density,
we obtain a decrease between �4 and �6 dB. The decrease
was observed also in the magnetic field data, but it is much
weaker and its statistical significance is questionable. This
can be probably explained by a lower sensitivity of mag-
netic field instrument and is not connected with the nature
of intensity decrease. No similar effects were observed

during the day (not shown). No effects were observed for
deep earthquakes (not shown).
[18] Figure 3 shows that the spatial scale of the affected

area is approximately 350 km (however, one should keep in
mind that the spatial resolution of our bins is only about
110 km, which place rather large uncertainties on the result).
This corresponds relatively well to the size of the earth-
quake preparation zone estimated using the Dobrovolsky et
al. [1979] formula: 140 km for earthquakes with magni-
tudes 5.0 and 380 km for earthquakes with magnitudes 6.0.

5. Discussion and Summary

[19] The presented statistical study disagrees with previ-
ous systematic studies that claimed the presence of seismic
effects since they mostly reported an increase in the ELF/
VLF activity [Larkina et al., 1989; Parrot and Mogilevsky,
1989; Serebryakova et al., 1992; Molchanov et al., 1993;
Parrot, 1994]. These studies have been critically examined
by Henderson et al. [1993], who underlined the importance
of usage of control set of data in order to estimate statistical
significance of the observed effects and who failed to
indicate any significant differences between the earthquake
and control orbits. More recently, a similar result was
obtained by Rodger et al. [1996]. However, as noted by
Parrot [1999], both these studies probably could not detect
decreases in wave activity and can be therefore considered
as being in agreement with our study.
[20] There are two basic possibilities for the explanation

of the observed decrease: naturally occurring waves are
either attenuated or diverged over earthquake epicenters
(this could be caused by a decrease of the refractive index,
as proposed by Vodyanitskii et al. [1990]). A possible
explanation of why the decrease is observed only in the
night-time data could be that during the day the ionospheric
ionization is significantly larger. Any potential changes
caused by seismic activity may be thus overwhelmed by
this stronger influence. It is also important to note that the
frequency band where the decrease is observed could be
related to the cut-off frequency of the first TM mode in the
Earth-ionosphere guide (1.7 kHz during the night-time).
Finally, our analysis shows that the effect is connected only
with surface earthquakes, as suggested by previous
researchers [see, e.g., Rodger et al., 1999, and references
therein].
[21] We have statistically demonstrated that a significant

intensity decrease is observed in night-time data shortly
before the main shock of large surface earthquakes. Further
research based on the increasing data set of DEMETER
measurements will hopefully help us to understand its
nature.

[22] Acknowledgments. FN and OS acknowledge support of the
GACR grant 205/06/1267.
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Power line harmonic radiation observed by satellite:

Properties and propagation through the ionosphere
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[1] We present results of a systematic survey of power line harmonic radiation events
observed by the low-altitude DEMETER spacecraft. Altogether, 88 events (45 with
frequency spacing 50/100 Hz and 43 with frequency spacing 60/120 Hz) have been
found by an automatic identification procedure and confirmed by visual inspection.
Frequency-Time intervals of individual lines forming the events have been found by an
automated procedure, and the corresponding frequency-time spectrograms have been
fitted by a 2d-Gaussian model. It is shown that the mean time duration of the lines
forming the events is 20 seconds, with median being 12 seconds (this corresponds to the
spatial dimensions of 156/90 km, respectively). The full width at half maximum of the
frequency range of the lines is less than 3 Hz in the majority of cases. Moreover, the lines
with larger bandwidth and the lines with the largest intensities often occur off exact
multiples of base power system frequency. This can be explained either by wave-particle
interactions that take place and modify the radiated electromagnetic wave or by the
improperly operating radiating power system. Full-wave calculation of the efficiency of
coupling of electromagnetic waves through the ionosphere has been done to show that it can
explain lower intensity of events observed by satellite during the day as compared with
those observed during the night. Estimated radiated peak power on the ground is larger for
events observed during the day than for events observed during the night, and more events
are observed during the day than during the night.

Citation: Němec, F., O. Santolı́k, M. Parrot, and J. Bortnik (2008), Power line harmonic radiation observed by satellite: Properties

and propagation through the ionosphere, J. Geophys. Res., 113, A08317, doi:10.1029/2008JA013184.

1. Introduction

[2] Power line harmonic radiation (PLHR) are electro-
magnetic waves radiated by electric power systems on the
ground at harmonic frequencies of 50 or 60 Hz, depending
on the frequency of the system. When represented in the
form of frequency-time spectrograms, they usually have a
form of intense parallel lines with mutual distances of 50/100
or 60/120 Hz, because odd/even harmonics can sometimes
be strongly suppressed. Such emissions are often observed
on the ground and evidence for their propagation through
the magnetosphere has been shown [Helliwell et al., 1975;
Park and Helliwell, 1978;Matthews and Yearby, 1981; Park
and Helliwell, 1981; Park and Helliwell, 1983; Yearby et
al., 1983; Manninen, 2005]. However, direct observations
by satellites are rather rare and with a few exceptions

[Rodger et al., 1995; Němec et al., 2006, 2007b] these
studies usually reported only a low number of events
[Koons et al., 1978; Bell et al., 1982; Tomizawa and
Yoshino, 1985; Parrot et al., 2005].
[3] Rodger et al. [1995] performed the first satellite

survey with a significant number of included events and
reported the existence of two distinct classes of events: the
first of them (‘‘Tram Lines’’, TL) consisted of events that
appeared to lie close to the harmonics of 50/60 Hz; the
second class of events (‘‘Magnetospheric Line Radiation’’,
MLR), formed by lines with larger bandwidth, did not show
any evidence of a relationship with power line harmonics.
Němec et al. [2007a] performed a systematic survey of
MLR-like events using the data from DEMETER space-
craft. They confirmed the existence of the two classes of
events (PLHR and ‘‘real-MLR’’) and demonstrated their
different properties (intensity, frequency, most favorable
values of Kp index).
[4] Němec et al. [2006] analyzed DEMETER observa-

tions of PLHR events and showed that the frequency
spacing of the lines corresponds well to the power system
frequency in possible generation regions. Moreover, they
have shown that the peak intensity of PLHR is larger during
the night than during the day, suggesting different penetra-
tion characteristics of the ionosphere as a possible explana-
tion. Ando et al. [2002] performed a theoretical analysis of
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penetration of PLHR into the ionosphere and estimated the
horizontal size of the region where the electromagnetic field
is strong to about ±200 km from the source, not extending
with higher altitude.
[5] Park and Miller [1979] reported the existence of

‘‘Sunday effect’’ – they claimed that the wave activity
during Sundays was lower that the wave activity during the
weekdays, attributing this difference to a lower power
consumption. Parrot et al. [1991] and Molchanov et al.
[1991] confirmed the existence of this effect and argued that
it can be caused not only by a lower power consumption
during the weekends as compared to the weekdays, but
also by a different current distribution in power systems.
However, other authors who searched for the existence of
the effect [Rodger et al., 2000; Karinen et al., 2002]
concluded that it is only a statistical fluctuation. The role
of PLHR in the ionosphere and magnetosphere is thus still
questionable, but it could be quite important, because they
can serve as a trigger for naturally generated whistler-
mode emissions [Nunn et al., 1999; Manninen, 2005].
Moreover, they can be also important for electron precipi-
tation [Bullough, 1995].
[6] Observations of PLHR events, some of their proper-

ties and numerical calculation of their penetration through
the ionosphere up to the DEMETER altitude are reported in
this paper. The wave experiment on board DEMETER is
briefly introduced in section 2. An automatic procedure for
identification of PLHR events and frequency-time-depen-
dent 2d-Gaussian model of individual lines that are forming
the events are described in section 3. Section 4 describes
some of the properties of the observed events, whereas
section 5 presents a calculation of penetration characteristics
of PLHR through the ionosphere. The obtained results are
discussed in section 6 and summarized in section 7.

2. Experiment

[7] We have used wave measurements from the French
micro-satellite DEMETER (altitude 700 km, inclination
98 degrees, nearly Sun-synchronous orbit, mass 130 kg,
launched in June 2004). [Berthelier et al., 2006; Parrot et
al., 2006; Santolı́k et al., 2006]. The scientific instruments
placed on board DEMETER record data during the entire
orbit with an exception of geomagnetic latitudes larger than
65 degrees. Because of the limited capacity of the telemetry,
there are two different modes of operation. A ‘‘Survey
mode’’ measuring low-resolution data provides us in VLF

range (up to 20 kHz) with power spectra of one electric and
one magnetic field component. However, the limited fre-
quency resolution (19.53 Hz) is not sufficient for our study
– both the identification of events and their subsequent
analysis require frequency resolution better than 5 Hz. We
have consequently used the ‘‘Burst mode’’, which is active
only above some specific areas of interest, but provides us
with waveforms of one electric and one magnetic field
component (at a sampling frequency of 40 kHz).

3. Automatic Identification of Events

[8] The data set that we have used is too large to be
processed manually. Instead, we have used an automatic
identification procedure described by Němec et al. [2006]. It
searches the measured data for presence of possible PLHR
events and provides us with their time, frequency and
spectrogram of the surrounding interval in the frequency-
time plane. We have then manually checked the positively
identified events and we have decided whether a real event
was found or a ‘‘false alarm’’ occurred. Within 1499 cases
identified by the automatic procedure run on the entire data
set of 3378 hours of Burst mode waveform data recorded
between 12 August 2004 and 3 February 2008, only
88 PLHR events have been found. Among these, 45 events
have the frequency spacing of 50/100 Hz and 43 events
have the frequency spacing of 60/120 Hz. This represents
about twice larger data set as compared to Němec et al.
[2007b]. Their results have been well confirmed, namely the
frequency spacing of the lines corresponds well to the
power system frequency in generation regions.
[9] An example of one of the identified events is shown

in Figure 1. It represents the frequency-time spectrogram of
power spectral density of electric field fluctuations mea-
sured on 21 September 2006 between 10:06:02 and
10:06:39 UT above the southern part of Sweden. Several
lines at constant frequencies can be clearly seen. They occur
at exact (within the experimental error) multiples of 50 Hz,
namely at frequencies: 2950 Hz, 3000 Hz, 3050 Hz,
3300 Hz, 3550 Hz and 3650 Hz.
[10] Having the manually confirmed set of PLHR events

and knowing approximately their beginning and ending
times and frequency ranges, we apply another procedure
to identify individual lines forming the events and to find
parameters of their 2d-Gaussian model in a frequency-time
plane. An input of this procedure is a frequency-time
spectrogram of a PLHR event. The length of a FFT segment

Figure 1. An example of frequency-time spectrogram of power spectral density of electric field
fluctuations corresponding to one of the identified events. The data were recorded on 21 September 2006
between 10:06:02 and 10:06:39 UT. The lines occur at exact multiples of 50 Hz.
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used in the processing is 40000 points (this gives a
frequency resolution of 1 Hz), overlapping is 75% and the
Hanning window is used. The procedure consists of the
following three steps.
[11] In the first step, peaks in the power spectrum (that is

individual lines forming the events) are found and their
central frequencies and widths are determined. A power
spectrum that corresponds to the event presented in Figure 1
is shown in the left of Figure 2. Intense peaks located at
frequencies 2950 Hz, 3000 Hz, 3050 Hz, 3300 Hz, 3550 Hz
and 3650 Hz can be seen. As well as these, much weaker
peaks can be observed also at frequencies 3150 Hz, 3250 Hz,
3400 Hz and 3600 Hz. The mean value of power spectral
density �I (marked by an arrow in the left of Figure 2) and the
standard deviation sI of the power spectral density are
calculated. Peaks are identified at frequency ranges where
the power spectral density I( f ) is larger than a threshold
value (plotted by a dashed line in the left of Figure 2)

I fð Þ > �I þ asI ð1Þ

where a is a fixed constant (a = 2). Then minimum and
maximum frequencies fmin

i and fmax
i of a peak i are the

closest adjacent frequencies where I( f ) is lower than �I and
reaches the local minimum. For an example case of the peak
located close to 2950 Hz, these are marked by vertical lines
in the Figure 3. Having found the intense peaks in power
spectrum, we perform a least-squares Gaussian fit. The
background intensity value ri of each of the peaks is
calculated as ri = (I( f min

i ) + I( f max
i ))/2. This value is

subtracted and the result is fitted by a Gaussian function
with three free parameters: the central frequency of the peak
fi, intensity of the peak Ii and the standard deviation si. The
fits corresponding to the example spectrum are shown in the
right of Figure 2, with frequencies fi of the identified peaks
being2950.7Hz,3000.8Hz,3050.6Hz,3300.8Hz,3551.1Hz
and 3650.9 Hz. Figure 3 represents a detailed view of the fit
performed on a peak located close to 2950 Hz. A solid line
shows the measured power spectrum and the least-square
Gaussian fit is over-plotted by a dashed line.
[12] The second step of the procedure consists of identi-

fication of the appropriate time intervals corresponding to

individual lines which form the PLHR event. For this
purpose, we calculate the time dependence of the average
power spectral density in the frequency interval (fi �
si

ffiffiffiffiffiffiffiffiffiffiffi

2 ln 2
p

; fi + si
ffiffiffiffiffiffiffiffiffiffiffi

2 ln 2
p

), which is the frequency interval
centered at the peak frequency of the line that has the width
equal to full width of the peak at half of its maximum
(FWHM). We then calculate the time-dependent ‘‘back-
ground value’’, which is the mean value of power spectral
density in frequency intervals outside the peak, namely in
intervals: (fi � si (4 +

ffiffiffiffiffiffiffiffiffiffiffi

2 ln 2
p

); fi � 4 si) and (fi + 4 si; fi +

si (4 +
ffiffiffiffiffiffiffiffiffiffiffi

2 ln 2
p

)). For an example case of the peak located
close to 2950 Hz, the three frequency intervals (one
corresponding to the peak and two just outside of it) are
marked by horizontal lines in Figure 3. This average back-

Figure 2. (left) Power spectrum corresponding to the event from Figure 1 used for the peak
identification procedure. The mean value is marked by an arrow, and the minimum peak value (see text)
is plotted by a dashed line. (right) Gaussian fits corresponding to the identified peaks in power spectrum.

Figure 3. A detailed view of the fit performed on the peak
located close to 2950 Hz. The measured power spectrum is
plotted by a solid line, and the least square Gaussian fit is
overplotted by a dashed line. The minimum and maximum

frequencies fmin
i and fmax

i of the peak (see text) are marked
by vertical lines. Horizontal lines mark the frequency
intervals used in the second step of the procedure for the
identification of the appropriate time interval corresponding
to the line (see text).
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ground is subtracted and a running mean over 5 seconds of
data is applied. Afterwards, starting from some manually
defined time when the line occurs, we span the time interval
until a local minimum lower than 0 is reached on both sides.
In such a way, we obtain a time interval when a given line
occurs. Figure 4 shows an example of the resulting time-
dependent average value of power spectral density obtained
for the line located close to 2950 Hz.
[13] In the last step of the procedure a frequency-time 2d-

Gaussian model is applied to the frequency-time interval
corresponding to a given line:

I f ; tð Þ ¼ I0 exp � f � f0ð Þ2

2d2

 !

exp � t � t0ð Þ2
2t2

 !

þ Ib ð2Þ

The frequency interval determined in the first step, time
interval determined in the second step and a moving average
over 5 seconds of data are used. For each of the lines, this
results in an estimate of 5 parameters: background intensity
Ib, peak intensity I0, central frequency f0, central time t0,

characteristic time duration t and characteristic frequency
range d. For the line considered in Figure 4, Figure 5 shows
an example of its frequency-time spectrogram and its 2d-
Gaussian model. All the performed fits have been visually
inspected. Among 253 lines found during the first step of
the procedure, 206 have been successfully fitted. In the
remaining 47 cases, the fit failed, usually because of strong
and varying background field intensity (typically when a
whistler occurred simultaneously, being more intense than
the PLHR line). Such cases have not been further used in
the study.

4. Properties of the Observed PLHR Events

[14] Figure 6 represents a histogram of the FWHM of
the observed time durations of individual lines forming the
PLHR events (bottom scale of the x-axis) and also the
same histogram but rescaled to the observed spatial
dimensions (upper scale of the x-axis). The observed
average FWHM of time duration is 20 seconds, with the
median value of 12 seconds. This corresponds to spatial
dimensions of 156 km/90 km, respectively. The difference
between the mean and median values is caused by a long
tail of the distribution meaning that long time durations are
possible, but improbable.
[15] Figure 7 represents a histogram of FWHM of fre-

quency ranges of individual lines forming the PLHR events.
It can be seen that the frequency range of individual lines is
less than 3 Hz in the majority of cases.
[16] Figure 8 represents the FWHM of the frequency

range of PLHR lines as a function of peak intensity. The
events with frequencies corresponding to the multiples of
the power system frequency (i.e., when frequency deviation
from the corresponding multiple is less than 3 Hz) are
plotted by crosses, the events with frequencies not
corresponding to these multiples are shown by diamonds.
It can be seen that among the most intense lines, all occur
off exact multiples of power system frequency. Moreover,
the lines with large bandwidth occur off the exact multiples
as well. This is further confirmed by Figure 9 which
represents a frequency deviation from multiples of power
system frequency as a function of the detected peak inten-
sity of the events. Triangles represent lines forming the
events with 50/100 Hz spacing and squares represent lines
forming the events with 60/120 Hz. Similar behavior is

Figure 5. (left) Frequency-Time spectrogram corresponding to the line close to 2950 Hz. (right) Result
of 2d-Gaussian fit.

Figure 4. An example of a resulting time-dependent value
of power spectral density obtained for the line located close
to 2950 Hz.
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observed for both of them. The dotted line at the frequency
deviation of 3 Hz represents the chosen threshold for lines
to be considered as occurring at ‘‘exact’’ multiple of power
system frequency, as used in section 5.

5. PLHR Propagation Through the Ionosphere

[17] In the following, we consider only the lines with
frequency deviation from multiples of power system fre-
quency less than 3 Hz and generation region located just
below the place of observation (not in the conjugate region)
were taken into account; the events with larger deviation
from multiples of power system frequency may undergo
some specific interaction with the surrounding plasma
environment and our calculation of the efficiency of cou-
pling would not be consequently valid for such cases – see
section 6. The left of Figure 10 represents the peak power
spectral density of Poynting flux of individual lines forming

the PLHR events as a function of magnetic local time.
Assuming right-handed circular polarized parallel propaga-
tion [Němec et al., 2006], it was calculated as

S ¼
1

2

n

cm0

E2 ð3Þ

where E2 is the peak power spectral density of electric field
fluctuations of a given PLHR line, m0 is a permeability of
vacuum, c is speed of light and n is the refractive index. The
refractive index has been obtained from the cold plasma
approximation, using particle concentrations from
International Reference Ionosphere model [Bilitza, 1990]
(http://modelweb.gsfc.nasa.gov/models/iri.html). Note that
bunching of the observed events into two MLT intervals is

Figure 6. (Bottom scale of the x axis) Histogram of the
FWHM of the time durations of the lines forming the PLHR
events. (Upper scale of the x axis) Histogram of the
corresponding spatial dimensions of the PLHR events.

Figure 7. Histogram of the FWHM of the frequency range
of the lines forming the PLHR events.

Figure 8. FWHM of frequency ranges of individual lines
forming the PLHR events as a function of the peak intensity.
The events with frequencies corresponding to the multiples
of the power system frequency are plotted by crosses, and
the events with frequencies not corresponding to these
multiples are shown by diamonds.

Figure 9. Frequency deviation from multiples of power
system frequency as a function of the detected peak
intensity. The lines forming events with frequency spacing
50/100 Hz are plotted by triangles, and the lines forming
events with frequency spacing 60/120 Hz are plotted by
squares.
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caused by the specific orbit of the DEMETER spacecraft.
The mean peak power spectral density of Poynting flux
observed during the day (43 events, 101 successfully fitted
lines) is (1.23 ± 0.16) � 10�6 nW m�2 Hz�1. This calculation
is valid if we consider individual lines as being independent,
even if they form the same event (that is they are observed
simultaneously, but at different frequencies). If all the lines
measured within the same event were dependent, then the
standard deviation would be 0.24 � 10�6 nW m�2 Hz�1

instead (the standard deviation s�x of the mean �x is calculated
as s�x = sx/

ffiffiffiffiffi

Nx

p
where sx is a standard deviation of a set x and

Nx is a number of independent samples in the set x). Themean
peak power spectral density of Poynting flux observed during
the night (24 events, 48 successfully fitted lines altogether) is
(2.18 ± 0.56) � 10�6 nW m�2 Hz�1, supposing the
independence of the lines within the same event. For the
case of completely dependent lines, the standard deviation
would be 0.79 � 10�6 nWm�2Hz�1. These values of standard
deviations aremarked by horizontal lines. The events observed
during the night are more intense, with the difference of
mean values being (0.95 ± 0.58) � 10�6 nW m�2 Hz�1

supposing that the lines forming one event are completely
independent. Supposing that the lines forming one event
are completely dependent, the standard deviation increases to
0.83 � 10�6 nWm�2Hz�1. This difference then corresponds to
1.6 and 1.1 standard deviation, respectively.
[18] Němec et al. [2006] suggested the efficiency of

coupling through the ionosphere as a possible explanation
for PLHR being more intense during the night than during
the day. Here we present results of a calculation of the
efficiency of coupling of electromagnetic waves through the
ionosphere. The procedure of Nagano et al. [1975] has been
followed and the full-wave code developed by Bortnik and
Bleier [2004] has been used to obtain a full-wave solution
of Maxwell’s equations in the presence of electrons and
several ion species. The medium is supposed to be hori-
zontally stratified. Cold plasma approximation [Stix, 1992]
has been used to calculate the susceptibility matrix and the

effects of collisions have been included by modifying the
mass of a particle ms0 by the collision frequency ns:

ms ¼ ms0 1� ns

w

� �

ð4Þ

To perform the calculation, the density and composition of
the electron and ion populations as a function of altitude, as
well as the magnetic field intensity and magnetic inclination
need to be known. Moreover, it is necessary to know the
collision profiles of electrons and ions since these critically
control the attenuation and mode conversion.
[19] To specify electron and ion number density as a

function of altitude at a given geographic location and time
we have used the International Reference Ionosphere
model. The collision frequency was taken from Cummer
[2000] for the low-altitude portion of both electrons and
protons (altitudes less than 300 km), where collisions with
neutrals are dominant. Above this altitude, Coulomb colli-
sions dominate and the profile from Helliwell [1965] has
been used. Magnetic field intensity was calculated using
the IGRF model at an altitude of 80 km (which is the
region where most of the attenuation takes place) and was
taken to be constant (though the medium is supposed to be
horizontally stratified and the problem is thus effectively
only 1d, we would otherwise obtain a nonphysical condi-
tion r ~B 6¼ 0).
[20] The efficiency of coupling of electromagnetic waves

through the ionosphere is for our purposes defined as a
power attenuation, that is the ratio between the final power
of the wave measured on board the spacecraft and the
incident power radiated from the electric power system on
the ground. The calculated altitudinal dependence for two
chosen geographical regions where PLHR are often ob-
served (Finland and Japan) is plotted in Figure 11, sepa-
rately for the day and the night. It can be seen that most of
the attenuation takes place at altitudes of about 70–90 km
(HF absorption observed by riometers is also maximum in
this range of altitudes). Considering the final efficiency of

Figure 10. (left) Detected peak power spectral density of Poynting flux of individual lines forming the
PLHR events as a function of the magnetic local time. The mean values for the daytime/nighttime and
corresponding standard deviations (see text) are plotted by horizontal lines. (right) Estimated radiated
peak power spectral density of Poynting flux of individual lines forming the PLHR events on the ground
surface (calculated from the observations, taking into account the numerically calculated penetration
characteristics of the ionosphere) as a function of the magnetic local time. The mean values for the
daytime/nighttime and corresponding standard deviations are again marked by horizontal lines.
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coupling at the altitude of DEMETER, it is about five times
larger during the night (value of about 0.80, dotted and
dash-dotted lines) than during the day (value of about 0.15,
dashed and solid lines). Moreover, it is larger in Finland
region (dotted and dashed lines) than in Japan region (dash-
dotted and solid lines) – see section 6.
[21] We have calculated the efficiency of coupling of

electromagnetic waves through the ionosphere for all the
individual lines from the left of Figure 10. The ionospheric
parameters, intensity of magnetic field and magnetic incli-
nation were determined separately for each of them.
[22] The right of Figure 10 shows the estimated peak

power spectral densities of Poynting fluxes on the ground
surface that correspond to the peak power spectral densities
of Poynting fluxes of individual lines measured by DEME-
TER, taking into account numerically calculated penetration
characteristics of the ionosphere. Supposing that the indi-
vidual lines are independent, the mean value of estimated
peak power spectral density of Poynting flux on the ground
during the day is (1.03 ± 0.17) � 10�5 nW m�2 Hz�1.
Supposing that the lines forming one event are completely
dependent, the standard deviation would be 0.27 � 10�5 nW
m�2 Hz�1. The mean value of estimated peak power
spectral density of Poynting flux on ground during the night
is (0.44 ± 0.12) � 10�5 nW m�2 Hz�1 and (0.44 ± 0.17) �
10�5 nW m�2 Hz�1 for completely independent lines
forming one event and completely dependent lines forming
one event, respectively. The mean values and the appropri-
ate standard deviations are again marked by horizontal lines.
The estimated radiated power is therefore lower for events
observed during the night, with the mean difference being
(�0.60 ± 0.21) � 10�5 nW m�2 Hz�1 and (�0.60 ± 0.32) �
10�5 nW m�2 Hz�1 for independent/dependent lines form-
ing one event, respectively (2.9 and 1.9 standard deviations,
respectively).

6. Discussion

[23] The basic limitation of the presented study is the
usage of the automatic procedure for an identification of

PLHR events. This issue is discussed in detail by Němec et
al. [2006], who used the same procedure and did not find
any indication that this biases the obtained results (i.e., by
the presence of a ‘‘selection effect’’).
[24] The recently developed procedure for an identifica-

tion of individual lines forming a PLHR event described in
section 3 is very simple and easy to implement. As
demonstrated by Figures 2, 3, 4 and 5, it usually performs
well as long as the peaks in the power spectrum are larger
than the minimum peak value threshold. In about one fifth
of cases (47 out of 253), the 2d-Gaussian fitting was not
successful because of strong variations in the background
field intensity. This principal limitation surely slightly
biases the results presented in Figures 6, 7, 8, 9, 10, but
the main qualitative conclusions should remain unaffected.
[25] Figure 6 shows a histogram of FWHM of the

observed time durations of individual lines forming the
PLHR events and corresponding spatial dimensions.
Although the performed measurements (one satellite only)
do not allow us to distinguish between temporal and spatial
variations of the signal, it is reasonable to suppose that the
electromagnetic radiation from the power systems on
the ground is temporarily rather stable. Consequently, the
observed time durations correspond more likely to the spatial
dimensions of individual PLHR events. The average
corresponding spatial dimension of 156 km (median 90 km)
is in a relatively good agreement with theoretically calculated
dimensions of the affected region [Ando et al., 2002].
[26] Figures 8 and 9 suggest that there is a connection

between the frequency deviation of individual lines forming
the PLHR events from the exact harmonic multiples of
power system frequency, their bandwidth and their intensity –
lines with large peak intensities have also large frequency
deviation from the appropriate harmonic. Moreover, the
lines with large bandwidth usually occur off exact multiples
of power system frequency as well. This can be caused by
two different phenomena. First, while most of the PLHR
events—after being radiated from an electric power system
on the ground—propagate up to the satellite altitudes
almost unchanged (only slightly attenuated, as shown in
the numerical simulation in section 5), some of them may
undergo interactions with the plasma environment, which
shifts their peak frequencies (originally located close to the
exact multiples of power system frequency). Such interac-
tions can predominantly occur for events with larger ob-
served intensity. They may be also responsible for larger
bandwidth of such events. The second possible explanation
is that the most intense PLHR occur due to some specific
events in power systems. During these events, larger har-
monics are present in the power system and its base
frequency may be slightly shifted off 50/60 Hz. Afterwards,
an explanation proposed by Němec et al. [2007b] could be
used for such events: a small shift of base power system
frequency off 50/60 Hz is too small to be observed in the
frequency spacing between individual lines, but at higher
harmonics (that are typically observed) it can lead to a
significant shift in frequency. Improperly operating power
systems could also explain a larger bandwidth of the
observed lines. The effect of the Doppler shift does not
play a significant role in the study; it causes shifts of
maximally about 3 Hz, usually being much lower. More-
over, a case study performed by Parrot et al. [2007] has

Figure 11. Efficiency of coupling for the frequency of
wave 2.5 kHz as a function of the altitude for nighttime
Finland region (dotted line), nighttime Japan region (dash-
dotted line), daytime Finland region (dashed line), and
daytime Japan region (solid line).
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experimentally proven that—for that particular event—the
frequencies of the lines observed simultaneously by satellite
and on the ground are not significantly different.
[27] The performed full-wave calculation reveals substan-

tial variability of the efficiency of coupling of electromag-
netic waves through the ionosphere. The power that
penetrates up to the DEMETER altitudes is about five times
less attenuated during the night than during the day.
Moreover, the efficiency of coupling is larger in the Finland
region as compared to the Japan region, even the difference
is not so striking as the day/night asymmetry (Figure 11).
This is caused by different geomagnetic latitudes of Finland
(57.5�) and Japan (23�). The electromagnetic waves pene-
trate up to the ionosphere better at larger geomagnetic
latitudes both because of magnetic inclination is closer to
90� and geomagnetic field is stronger.
[28] Comparison of the peak power spectral densities of

Poynting fluxes of individual lines forming the PLHR
events that were observed during the day and observed
during the night reveals that the lines observed during the
night are more intense than the lines observed during the
day. The difference is 1.6 standard deviation, supposing that
the lines forming one event are completely independent and
1.1 standard deviation, supposing that the lines forming one
event can be considered as completely dependent. The real
situation probably corresponds to something in between—
the lines forming the same event are dependent, but only
partially. The performed calculation of the efficiency of
coupling of electromagnetic waves through the ionosphere
seems to explain this difference completely—the estimated
radiated peak power spectral density of Poynting flux
corresponding to the events observed during the night is
lower than during the day. The difference is statistically
quite significant: 2.9 standard deviations and 1.9 standard
deviation for completely independent/completely dependent
lines forming one event, respectively. A possible explana-
tion could be that during the day a power system is more
loaded and the PLHR events are consequently stronger. This
would also explain the larger number of PLHR events
observed during the day than the night: in Figure 10 there
are 43 events and 24 events, observed respectively during
the day time and during the night time. Supposing a
binomial distribution, this corresponds to about 2.3 standard
deviations. Moreover, because of the larger efficiency of
coupling even less intense events radiated during the
nighttime are intense enough to be detected on board
DEMETER.
[29] Finally, we can compare ground levels of estimated

radiated Poynting fluxes based on DEMETER observations
with the ones deduced from the ground measurements
[Bullough, 1995, chapter 2.2]. Their estimates for Poynting
fluxes at the base of the ionosphere (before the attenuation
starts to take place) are in the range of 5.8 � 10�10 nW m�2

(Bullough [1995], page 297, table 10.2.1, Cooks Harbour
power line) up to 7.9 � 10�4 nW m�2 (Bullough [1995],
page 298, equation 2.9, Derbyshire Cement Works) in 1 kHz
frequency band around 2.5 kHz. The estimated radiated
Poynting fluxes of individual PLHR lines determined
from DEMETER data are between 5.18 � 10�7 nW m�2

and 5 � 10�4 nW m�2 and we usually observe about three
lines forming the PLHR event. One can see that the weakest
lines detected on the ground are too weak to be detected on

board DEMETER. However, our estimated values of Poynt-
ing flux are well within the range determined from ground-
based measurements.

7. Conclusions

[30] Results of a systematic study of observations of
PLHR by a low-altitude satellite have been presented.
Altogether, 88 events (45 with frequency spacing 50/100
Hz and 43 with frequency spacing 60/120 Hz) have been
found by an automatic identification procedure in about
3378 hours of Burst-mode data and statistically analyzed.
For each of the individual lines forming the events, param-
eters of frequency-time-dependent 2d-Gaussian model have
been found by an automatic procedure.
[31] Our results show that the mean FWHM of time

duration of the observed lines is on average 20 seconds
(median 12 seconds), which corresponds to average spatial
dimensions of 156 km (median 90 km). The FWHM of the
frequency range of individual lines is less than 3 Hz in the
majority of cases. The most intense lines occur off exact
multiples of base power system frequency. The lines with
larger bandwidth usually occur off exact multiples of power
system frequency as well. Full-wave calculation of efficiency
of coupling of electromagnetic waves through the ionosphere
has been done and it is shown that it can explain the lower
intensity of PLHR events observed by satellite during the day
as compared to those observed during the night. Estimated
radiated peak power on the ground is larger for events
observed during the day than for events observed during
the night and more events are observed during the day than
during the night.

[32] Acknowledgments. The authors thank J. J. Berthelier for the use
of electric field data. We thank J.-Y. Brochot of LPCE/CNRS Orléans for
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E. Macúšová (2007), Simultaneous observation on board a satellite and
on the ground of large-scale magnetospheric line radiation, Geophys.
Res. Lett., 34, L19102, doi:10.1029/2007GL030630.

Rodger, C. J., N. R. Thomson, and R. L. Dowden (1995), VLF line radia-
tion observed by satellite, J. Geophys. Res., 100(A4), 5681–5689.

Rodger, C. J., M. A. Clilverd, K. Yearby, and A. J. Smith (2000), Is
magnetospheric line radiation man-made?, J. Geophys. Res., 105(A7),
15,981–15,990.
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Abstract. We present results of a statistical study of VLF (up to 10 kHz) wave
intensity measured by a low-altitude spacecraft in the vicinity of earthquakes.
The data from the French DEMETER spacecraft (altitude about 700 km, nearly
Sun-synchronous orbit) that was specially developed for such kind of studies are
used. The recently developed two-step data processing method is briefly introduced
and the main obtained results are reviewed. Finally, a simple independent test of
the obtained results is done in order to give an additional evidence for the existence
of possible seismic-related effect. Our results indicate that there is a decrease of
power spectral density of electric field fluctuations shortly (0-4 hours) before the
time of the main shock. This decrease was observed close to surface earthquakes
(depth less than 40 km) with magnitude larger than or equal to 4.8 and only during
the night. No similar effect was observed for deep earthquakes nor during the day.

Introduction

Perturbations of the intensity of electromagnetic emissions possibly related to seismic ac-
tivity have been recently reported by several authors, using both ground based measurements
[Tate and Daily, 1989; Asada et al., 2001] and low-altitude satellite data [Parrot and Mogilevsky,
1989; Larkina et al., 1989; Molchanov et al., 1993; Parrot, 1994; Hobara et al., 2005; Molchanov
et al., 2006; Němec et al., 2008]. Such perturbations might be very important, because they are
claimed to occur even shortly before the time of the main shock and could therefore serve as
short-time precursors. However, there are two main reasons for which these observations have
been the subject of an intense debate in the literature (see for example Rodger et al. [1996]).
The first reason is that most of the performed studies included a small number of events and
the obtained results were not therefore statistically very significant. In addition, the proposed
theoretical ideas [Molchanov et al., 1995; Sorokin et al., 2001] and physical mechanisms [Ger-
shenzon et al., 1989; Molchanov and Hayakawa, 1998] are not convincing enough since they lack
the support of reliable experimental evidence.

In this paper, we present a unique statistical study of the influence of seismic activity on
the intensity of electromagnetic waves in the ionosphere.

Data set

We have used data from the French DEMETER spacecraft. DEMETER is a micro-satellite
(weight 130 kg) launched in June, 2004 with nearly Sun-synchronous circular orbit (original
altitude about 710 km, decreased to about 660 km in December, 2005). The satellite operates
in two different modes, so-called “Burst” and “Survey”. During the first of them, more detailed
data are measured, but the mode is active only above some specific, mostly seismic, areas.
The Survey mode is active all around the orbit except of the auroral zones. There are 5
different instruments placed on board: ICE (electric field instrument, operating up to 3.5 MHz),
IMSC (three search-coil magnetometers, operating up to 18 kHz), ISL (Langmuir probe), IAP
(particle analyzer, providing the plasma density and composition) and IDP (detector of energetic
particles). Among these, only electric field data in VLF range (up to 20 kHz) obtained during
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the Survey mode have been used for the present study. Altogether, data collected during
about three years of satellite operation have been used and all the earthquakes with magnitude
larger than or equal to 4.8 (according to the United States Geological Survey (USGS) catalog,
http://neic.usgs.gov/neis/epic/epic global.html) during the analyzed period have been included.

Results

The two-step data processing method developed by Němec et al. [2008] in order to look for
possible effects connected with seismic activity is based on the intuitive idea that if we want to
study some weak effect hidden in the strong and varying natural background, we need to know
what are the typical values and properties of this background.

Therefore, in the first step of the data processing a map of electromagnetic emissions
is constructed. In general, this can have arbitrary number of parameters; the parameters
introduced by Němec et al. [2008] were geomagnetic latitude, geomagnetic longitude, frequency,
Kp index, magnetic local time and season of the year. The map of electromagnetic emissions can
be represented by a matrix with number of indices equal to the chosen number of parameters.
Since the distribution of values of power spectral density of electric field fluctuations is far from
Gaussian distribution (see Figure 1), its representation by only the first few moments (e. g. by
the mean value and standard deviation) is not ideal. Consequently, a full distribution of values
represented by a histogram is stored in each bin of the matrix.
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Figure 1. Probability density function of the measured power spectral density of electric field
fluctuations (thin line) and corresponding cumulative distribution function (thick line). The
area corresponding to the values lower than the median value (about −13.8 log(V2 m−2 Hz−1))
is shaded.

The results obtained in the first step of data processing are used in the second step in order
to define a “probabilistic intensity”. This is in fact a value of cumulative distribution function
appropriate to the measured value of power spectral density of electric field fluctuations at the
given place under the given natural conditions – see Figure 1 for more details. Probabilistic
intensity is therefore a uniformly (simple consequence of its definition) distributed number
between 0 and 1. Larger the value is, larger is the measured power spectral density with
respect to the normally measured one under the similar conditions. The values of probabilistic
intensities in the vicinity of earthquakes have been then evaluated and it has been shown that
during the night time the average probabilistic intensity is significantly lower than expected
close to surface earthquakes (depth less than 40 km). The effect was limited to about 0–4 hours
before the time of the main shock and the affected area was estimated to be approximately
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300 km within the epicenter. No similar effects have been observed for deep earthquakes (depth
larger than 40 km) nor during the day time.
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Figure 2. (left) Results for earthquakes with magnitudes larger than or equal to 4.8. (right)
Results for earthquakes with magnitudes larger than or equal to 5.0. Upper thin line and
the scale on the right: number of earthquakes in whose vicinity the intensity was lower than
median. Bottom thin line and the scale on the right: number of earthquakes in whose vicinity
the intensity was larger than median. Thick line and the scale on the left: difference expressed
in number of standard deviations, supposing a binomial distribution.

Encouraged by the above mentioned results obtained by Němec et al. [2008], we tried a very
simple test in order to check whether the power spectral density of electric field fluctuations
is really lower than expected close to the earthquakes. This test is based simply on checking
whether the measured intensity is lower than or larger than the median value obtained from
all the data set. We have used all the data measured since the beginning of the mission till
March, 2008 (more than 3.5 years). All strong enough surface earthquakes in USGS catalog
that the satellite encountered close enough (distance less than 3 degrees to the epicenter) in the
appropriate time (0-4 hours before the time of the main shock) were selected. Finally, we have
checked whether the mean intensity in the vicinity of earthquake (distance between satellite
and epicenter less than 3 degrees) is lower than or larger than the median value.

The results obtained close to the earthquakes with magnitudes larger than or equal to 4.8
and close to the earthquakes with magnitudes larger than or equal to 5.0 are plotted in the left
and right panels of Figure 2, respectively. Thin lines and the scale on the right mark the number
of events with the intensity lower than the median value (top line) and number of events with
the intensity larger than the median value (bottom line). Thick lines and the scale on the left
represent difference expressed in number of standard deviations. This is calculated simply as
a difference between number of events with the intensity larger than the median value and the
expected number of such events divided by the value of standard deviation obtained supposing
the binomial distribution.

It can be seen that the number of events with the intensity lower than median is larger
than the number of events with the intensity larger than median all over the studied frequency
band. At frequencies around 1 kHz the difference is larger than 3 standard deviations and
is therefore statistically significant. Relative number of orbits with the intensity lower than
median is about 60% in the vicinity of earthquakes with magnitudes larger than or equal to 4.8.
Moreover, relative number of orbits with the intensity lower than median is about 65% in the
vicinity of earthquakes with magnitudes larger than or equal to 5.0.

Conclusion

Following Němec et al. [2008], we have analyzed all the night time DEMETER measure-
ments performed in the vicinity (distance less than 3 degrees) of surface (depth less than 40
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km) earthquakes with magnitudes larger than or equal to 4.8. For each of the earthquakes, we
have performed a very simple test by checking whether the intensity observed nearby is larger
than or lower than the median value. It has been demonstrated that the number of cases with
intensity lower than the median value is larger than the number of cases with intensity larger
than the median value all over the studied frequency band. The difference is most striking at
frequencies around 1 kHz and is statistically significant. These results are in a complete agree-
ment with Němec et al. [2008] and they are important for the two following reasons: 1) they
were obtained by using a significantly larger data set (more than 3.5 years data as compared to
about 2.5 year data in the previous study) 2) the test performed in this study is much simpler
and consequently much more persuading and easier to understand.
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Decrease of intensity of ELF/VLF waves observed in the upper

ionosphere close to earthquakes: A statistical study
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[1] We present results of a systematic study of intensity of VLF electromagnetic
waves observed by the DEMETER spacecraft in the upper ionosphere (altitude
700 km). We focus on the detailed analysis of the previously reported decrease
of wave intensity shortly before the main shock during the nighttime. Using a
larger set of data (more than 3.5 years of measurements) and a newly developed data
processing method, we confirm the existence of a very small but statistically significant
decrease of wave intensity 0–4 hours before the time of the main shock at frequencies
of about 1.7 kHz. It is shown that the decrease does not occur directly above the
earthquake epicenter but is shifted about 2� in the westward direction. Moreover,
it is demonstrated that the decrease occurs more often close to shallower earthquakes
and close to earthquakes with larger magnitudes, as it is ‘‘intuitively’’ expected,
representing an additional proof of validity of the obtained results. Finally, no dependence
has been found on the occurrence of the earthquake below the ocean or below the
continents.

Citation: Němec, F., O. Santolı́k, and M. Parrot (2009), Decrease of intensity of ELF/VLF waves observed in the upper ionosphere

close to earthquakes: A statistical study, J. Geophys. Res., 114, A04303, doi:10.1029/2008JA013972.

1. Introduction

[2] The idea of additional electromagnetic phenomena
accompanying earthquakes is rather old [Milne, 1890].
These might be of a large importance, because some of
them are claimed to occur shortly (up to several days)
before the time of the main shock and could therefore
potentially serve as short-time precursors. Among other
reported precursors (changes in temperature and concentra-
tion, resistivity changes, etc.), electromagnetic perturbations
possibly connected with seismic activity have been recently
discussed by several authors, both using ground-based [Tate
and Daily, 1989; Asada et al., 2001; Bortnik et al., 2008]
and satellite data [Parrot and Mogilevsky, 1989; Larkina
et al., 1989; Molchanov et al., 1993, 2006; Parrot, 1994;
Hobara et al., 2005; Němec et al., 2008]. The reported
electromagnetic effects span over the large range of fre-
quencies (from DC up to visible light), timescales (from
several minutes up to a few months) and may be of various
nature (enhancement of wave intensity, attenuation of wave
intensity, modification of wave characteristics). On the other
hand, there is a number of studies that reveal no or only a
very weak correlation between the seismic activity and
observed effects [Henderson et al., 1993; Rodger et al.,

1996; Clilverd et al., 1999]. These negative results might
possibly be due to the fact that any potential precursors are
very weak and could be therefore easily hidden in the
common variations of the natural background. In addition,
it is quite complicated to compare the different performed
studies, because they often use very different data set and data
processing methods. Finally, theoretical models that have
been developed in order to explain the precursory phenomena
are numerous [Gershenzon et al., 1989;Molchanov et al., 1995,
2001; Molchanov and Hayakawa, 1998; Sorokin et al., 2001;
Pulinets et al., 2003; Freund, 2007], but they mostly represent
only physical ideas. The mechanisms that are responsible for
potential earthquake precursors are still understood very poorly.
[3] The presented paper closely follows a study by Němec

et al. [2008], where we systematically investigated a large
set of satellite data (more than 2.5 years) and showed that
during the night there is a small but statistically significant
decrease of wave intensity in the vicinity of large shallow
earthquakes shortly (0–4 hours) before the time of the main
shock. The observed effect was strongest for earthquakes
with magnitudes larger than or equal to 5.0 and depths
lower than 40 km. No effect was observed during the day
nor for deep earthquakes.
[4] In the first part of the present paper we analyze a

larger data set (more than 3.5 years) by using the same data
processing method as formerly used by Němec et al. [2008].
Then, we apply a newly developed data processing and
study the observed effect more in detail, focusing namely on
its variation with different earthquake parameters: magni-
tude, depth, altitude of the solid surface above the hypo-
center (whether the earthquake occurred below the ocean or
below the continent). Data set that we have used for the
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study is presented in section 2. Section 3 presents results of
the data processing method introduced by Němec et al.
[2008] applied on the substantially extended data set. The
newly developed data processing method is described in
section 4, whereas section 5 presents the obtained results.
These are discussed in section 6 and summarized in section 7.

2. Data Set

[5] For this study, data from the French spacecraft
DEMETER have been used. DEMETER is a microsatellite
launched in June 2004 on a circular quasi sun-synchronous
orbit (10.30 and 22.30 LT) with an altitude of about 700 km
[Parrot, 2006] and inclination 98�. The altitude was
changed to about 660 km in December, 2005. The satellite
performs 14 orbits per day and measures continuously
between �65� and +65� of geomagnetic latitude, providing
thus a very good coverage of the Earth’s seismic zones.
Among several instruments placed on board, we have
focused on the analysis of electric field data measured by
the ICE instrument [Berthelier et al., 2006]. Irrespective of
the mode, this provides us with on-board calculated power
spectrum of one electric field component. The frequency
resolution is 19.5 Hz and time resolution is 2 s or 0.5 s
depending on the mode of operation. For the data set used in
this study the selected electric component is perpendicular
to the orbit plane. Altogether, we have used data from more
than 3.5 years of the satellite measurements, representing
about 9000 hours of nighttime data in about 15500 orbits.
During the analyzed period about 9500 large shallow earth-
quakes with magnitude larger than or equal to 4.8 and depth
less than 40 km occurred all over the world according to
the USGS catalog (http://neic.usgs.gov/neis/epic/epic_
global.html). Among these, there are more than 5500 earth-
quakes with magnitude larger than or equal to 5.0.

3. Verification of Results of Němec et al. [2008]
Using a Larger Data Set

[6] We have used a larger data set (46 months as
compared to 30 months of Němec et al. [2008]) and verified
the existence of the previously reported effect [Němec et al.,
2008]. In order to enable a direct comparison with the

formerly obtained results, we have used exactly the same
data processing method (see Appendices A and B for a
detailed description). We have focused on a specific fre-
quency-time interval and a range of earthquake parameters
for which the effect has been found; we have analyzed only
the nighttime data and the 200 Hz wide frequency band
centered at 1.7 kHz. Moreover, we have limited our study
only to earthquakes with magnitudes larger than or equal to
5.0 and with depths shallower than 40 km.
[7] The results that we have obtained for distances less

than 3� from the epicenters of earthquakes are represented
in Figure 1. It shows the normalized probabilistic intensity
as a function of the time relative to the time of the main
shock, spanning from 5 days before to 3 days after. The time
resolution is 4 hours. It can be seen that the normalized
probabilistic intensity, normally fluctuating between �2 s
and 2 s (s being the standard deviation), decreases shortly
before the time of the main shock to less than �3 s. There
are about 70 events included in each of the bins. The
decrease occurs 0–4 hours before the time of the main
shock and is formed by 2068 points coming from 64 different
events. The mean value of probabilistic intensity in this bin
(see Appendix B) is �0.083, corresponding to a decrease of
wave intensity equal to about �2.4 dB. The median value of
probabilistic intensity in this bin is�0.126, corresponding to
a decrease of wave intensity equal to about �3.6 dB.
Although these values represent a small but significant
decrease of wave intensity as compared to the normal values,
the absolute value of this decrease is somewhat smaller than
the one reported by Němec et al. [2008] (see a detailed
discussion in section 6).
[8] A distribution of all the cumulative probabilities that

contribute to the bin where a decrease of wave intensity is
observed is shown by a solid line in Figure 2. The mean/
median value is marked by dotted/dashed line, respectively.
If there were no effects connected with the seismic activity,
the distribution should be approximately uniform (see
Appendix A), which is not the case; lower values of cumu-
lative probability clearly occur more often, corresponding to
a decrease of wave intensity. For comparison, we show by a
dash-dotted line a distribution of cumulative probabilities in
all bins but the one where the effect is observed.

4. New Data Processing Method

[9] We have developed a new data processing method
designed specifically to check for the presence of seismic-
related effects in a given frequency and time (relative to the
time of the main shock) intervals. Following the conclu-
sions of Němec et al. [2008], we have focused solely on the
analysis of the nighttime data, 200 Hz wide frequency band
centered at 1.7 kHz and time interval 0–4 hours before the
time of the main shock. These are exactly the same
parameters, for which a decrease of wave intensity has been
previously reported.
[10] The applied data processing can be divided into 4 steps,

among which the first two are analogical to those previously
introduced by Němec et al. [2008]; see Appendix A.
[11] The third level of data processing is different: we

select a point P within ±10� in latitude and ±10� in
longitude from the earthquake epicenter. For each of the
orbits that enters a circle with a radius of 3� from the point P

Figure 1. Normalized probabilistic intensity as a function
of the time relative to the time of the main shock (see text).
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we check whether the values of the cumulative probability
(that means the ‘‘normalized’’ intensities) are lower than or
larger than normal ones close to the point. In order to do
this, we take advantage of the Mann-Whitney U test
[Sheskin, 2000]. This is a statistical test that enables, on a
given level of significance, a check to see if two populations
X and Y have the same mean of distribution or not. The
reason for using the Mann-Whitney U test instead of the
more traditional Student t test [Sheskin, 2000] is that we
deal with non-Gaussian distributions. This does not repre-
sent a problem for the Mann-Whitney U test, which is a
nonparametric test. As a population X we take the cumula-
tive probabilities close to the point P and as a population Y
we take the cumulative probabilities in the rest of the same
half-orbit. The reason for this treatment is that each half-
orbit lasts for only about 35 minutes, which is a relatively
short time as compared to the timescale of major changes of
intensity of electromagnetic waves in the upper ionosphere.
The values measured all over the half-orbit are therefore
dependent and it is reasonable to take as normal ‘‘back-
ground’’ values the values of cumulative probabilities in the
rest of a given half-orbit.
[12] The fourth step consists of a simple statistical eval-

uation of the obtained results. For each of the events (that is
for each of the orbits that encounters the point P sufficiently
close at the given time) and a predefined level of signifi-
cance there are three possibilities: (1) cumulative probabil-
ities close to the point P are lower than in the rest of the
half-orbit, (2) cumulative probabilities close to the point P
are larger than in the rest of the half-orbit, and (3) cumu-
lative probabilities are about the same close to the point P
and in the rest of half-orbit; at a predefined level of
significance it is not possible to decide which of them are
lower.
[13] The events for which it is not possible to draw a clear

conclusion using the Mann-Whitney test are not taken into
account in the further data processing. We calculate the
number of events for which the values of cumulative

probabilities close to the point P are lower than in the rest
of the half-orbit (Nd) and, in the same way, we calculate the
number of events for which the values of cumulative
probabilities close to the point P are larger than in the rest
of the half-orbit (Ni). Directly from these two values we can
calculate the probability of their random occurrence. If we
suppose no effect connected with the seismic activity, the
probability pi of an increase of intensity close to the point P
would be the same as the probability pd of a decrease of
intensity close to the point P and the numbers Ni and Nd

would be consequently about the same. If the numbers Ni

and Nd are significantly different, it means that the wave
intensity is different close to the point P than in the rest of
the half-orbits, indicating the existence of a seismic-related
effect. The subsequent evaluation of the probability of
occurrence is very trivial: since pi = pd for an unperturbed
case, all that we have to deal with is a simple binomial
distribution.

5. Results

[14] A left panel of Figure 3 represents a schematic view
of the geometry used for construction of latitude-longitude
plot. There is an epicenter of the earthquake in the middle of
Figure 3 and longitudinal/latitudinal distances from it are
plotted on the horizontal and vertical axis, respectively. A
dashed line represents a part of the satellite orbit and a cross
in the upper right part of Figure 3 represents an arbitrary
example point: we want to check whether the emissions in
its vicinity have unusually large or low intensity. Conse-
quently, we simply compare the cumulative probabilities
measured close to the point (closer than 3�, following
Němec et al. [2008], inner part of the marked circle)
with the cumulative probabilities measured during the same
half-orbit farther than 3� from the point using the Mann-
Whitney test and use the data processing described above in
section 4.
[15] The right panel of Figure 3 shows the results

obtained for the latitude-longitude plot. Only sufficiently
large (magnitude � 5.0) and shallow (depth < 40 km)
earthquakes have been used for its construction. The longi-
tudinal and latitudinal distances from earthquakes are plot-
ted on the horizontal and vertical axis, respectively. The
color scale represents the probability of random occurrence.
It can be seen that the only exceptional effect is located
close to the epicenter of earthquakes, shifted by about 2� in
the Westward direction and also slightly to the North. It
represents a decrease of the wave intensity. Note that this
cannot be determined from the plotted color scale, because
it represents only a probability that such values Nd and Ni

could occur randomly, not which of them is larger. We have
used the significance level for the Mann-Whitney test equal
to 0.01, leading to about 50 events per each bin of the
resulting plot. However, the results are independent of this
threshold (see section 6 for more discussion).
[16] Having observed a decrease of the wave intensity

close to the earthquakes, we have focused on its further
analysis. More specifically, we were interested how it
depends on various parameters. In order to do so, we have
compared the data in a 3� radius around the point located 2�
to the West from the epicenter (that is approximately the
area where the decrease is observed) and the rests of the

Figure 2. (solid line) Distribution of all the cumulative
probabilities that contribute to the observed decrease of
wave intensity. Mean/median value is plotted by a dotted/
dashed line, respectively. (dash-dotted line) Distribution of
cumulative probabilities in all bins, but the one wherein the
effect is observed.
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half-orbits, using the data processing described in section 4.
Afterward, we have checked how Nd and Ni depend on the
magnitude of the earthquake, depth of the earthquake and
altitude of the solid surface above the hypocenter (whether
the earthquake occurred below the ocean or below the
continent). The level of significance used for the Mann-
Whitney test was again 0.01, as it is throughout the present
paper.
[17] The results that we have obtained for the dependence

on the magnitude of the earthquakes are shown in Figure 4.
In Figure 4 we have slightly decreased the threshold of
magnitude down to 4.8. The left panel represents Ni as a
function of the magnitude of the earthquakes, while the
right panel represents the same dependence of Nd. All
shallow (depth < 40 km) earthquakes were taken into
account when constructing the plot. As expected, weaker
earthquakes occur more often and the wave intensity in their
vicinity can both increase or decrease. We expect that for
even lower magnitudes (<4.8) the decreases and increases
would occur with about the same probability. It can be seen
that for sufficiently large earthquakes (magnitude � 5.5)
there is almost always a decrease of wave intensity close to
the earthquakes (15 events out of 17). Please note that the
peak in the magnitude range 5.4–5.7 is most probably just a
random fluctuation caused by a low number of events.
[18] Figure 5 is similar as Figure 4, but this time we have

focused on the dependence of the observed effect on the
depth of the earthquakes. All large (magnitude � to 5.0)
earthquakes were taken into account when constructing the
plot. It can be seen that for very shallow earthquakes (depth
< 20 km), decrease of wave intensity close to earthquake
occurs more often. Please note that the large number of
included earthquakes with depths about 10 km is already

contained in the used USGS catalog, which attributes this
depth to a very large number of events.
[19] After having investigated a dependence on the mag-

nitude (Figure 4) and depth (Figure 5) of the earthquake
separately, we combined them into a single plot, which is
shown in Figure 6. It represents color-coded relative number
of decreases (that is Nd/(Nd + Ni)) as a function of magni-
tude (horizontal axis) and depth of the earthquake (vertical
axis). Relative number of decreases equal to 0.5 means that
the number of decreases of the wave intensity close to
earthquakes is equal to the number of increases of the wave
intensity close to earthquakes, meaning thus no specific
change of wave intensity connected with the earthquakes.
On the other hand, relative number of decreases equal to 1
means that for all of the analyzed events the cumulative
probabilities were lower in the vicinity of earthquakes than
in the rest of the half-orbits (or it was not possible to decide
using the Mann-Whitney test at a given level of signifi-
cance, see section 6 for a detailed description). The used
significance level of the Mann-Whitney test equal to 0.01
resulted in about 10 events per each bin. It can be seen that
while the relative number of decreases is close to 0.5 for
deep earthquakes with low magnitude (top left corner),
meaning no change of wave intensity close to the earth-
quakes, it is equal to 1 for shallow earthquakes with large
magnitudes (bottom right part).
[20] Figure 7 represents a similar plot as Figures 4 and 5,

but this time the results were obtained for dependence on
the altitude of the solid surface above the hypocenters of the
earthquakes (magnitude � to 5.0). It can be seen that the
number of earthquakes occurring under the ocean (altitude
less than 0 km) is much larger than the number of earth-
quakes occurring under the land (altitude larger than 0 km).
However, no clear dependence of the studied effect can be

Figure 3. (left) Geometry of latitude-longitude plot: scheme of calculation. (right) Latitude-longitude
plot of probability of random occurrence of such a ratio of decreases/increases for earthquakes with
magnitudes of �5.0 and depths of <40 km.
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observed; the ratio of the number of wave intensity
decreases to the number of wave intensity increases does
not seem to depend on whether the earthquakes occur below
the ocean or below the continent.

6. Discussion

[21] Data from more than 3.5 years of measurements
performed by the DEMETER spacecraft and earthquakes
occurring all over the world have been used. This represents
a unique data set, ideal for performing large systematic
studies. However, one must keep in mind a basic limitation
of such kind of surveys: although a large number of earth-
quakes occurred during the analyzed period, there is only a
small number of them which DEMETER encountered very
close. This significantly complicates any statistical analysis
of seismic-related effects, because it is reasonable to sup-
pose the effects to be limited to some area around the
epicenter of an earthquake. Consequently, although large
volumes of data are measured, only a low number of
measurements occur in the vicinity of large earthquakes
and are potentially interesting. From this point of view the
presented data processing that takes advantage of the map of

electromagnetic emissions is optimal, because it uses these
far-from-earthquakes data at least in order to estimate
normal (that is seismically unperturbed) values of the wave
intensity.
[22] The previously reported decrease of the wave inten-

sity shortly before the time of the main shock [Němec et al.,
2008] has been confirmed when using a larger data set.
However, the amplitude of the observed effect (mean/median
value of �0.083/�0.126, respectively, corresponding to
about �2.4 dB/�3.6 dB, respectively) is weaker than the
amplitude reported by Němec et al. [2008] (mean/median
value of �0.146/�0.176, corresponding to about �4.2 dB/
�5.1 dB, respectively) using a smaller set of data. A careful
check of all the 64 events forming the decrease reveals that
this is due to a few recent events with large probabilistic
intensities, which significantly increase the resulting mean
value of the probabilistic intensity.
[23] This represents a basic constrain of the statistical

method introduced by Němec et al. [2008]: checking the
mean value of cumulative probability is a good tool for
revealing any systematic changes of wave intensity
connected with seismic activity using a large data set.
However, the effects due to the seismic activity are very

Figure 4. (left) Number of events with an increase of wave intensity close to the epicenter of earthquake
(Ni) as a function of magnitude of earthquake. (right) Number of events with a decrease of wave intensity
close to the epicenter of earthquake (Nd) as a function of magnitude of earthquake.

Figure 5. The same as Figure 4, but for the dependence on the depth of earthquakes.
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small as compared to the common natural variations of
wave intensity. For an individual event (or a small number
of events), the mean value of cumulative probability is
therefore linked to these random natural variations rather
than to seismic-related effects. A large value of the mean
cumulative probability for a single event thus does not mean
that there was an increase of wave intensity close to the
earthquake, but more likely that the wave intensity during
that time was globally larger than normal. This is a direct
consequence of comparing close-quake data to the data
measured at a given place under the similar conditions all
over the analyzed period of several years. Surely, an inverse
effect exists as well; low values of cumulative probability
can be caused by the wave-quiet period and not by seismic-
related effects.
[24] From this analysis, we can only conclude that

although the decrease of wave intensity is statistically
significant (more than 3 standard deviations), but very small

(about 3 dB) as compared to the usual natural variability
(about 11 dB).
[25] The newly developed data processing method takes

advantage of the Mann-Whitney test at a specified level of
significance. The obtained results thus necessarily depend
on this choice. In order to remain consistent, we have used
the value of 0.01 throughout the paper. However, it turns out
(not shown) that as long as the choice of the level of
significance remains ‘‘reasonable,’’ the obtained results
remain practically unchanged. If too low level of signifi-
cance is required, than the test is able to provide a clear
answer only for a small number of half-orbits and the
resulting statistics is poor. On the other hand, if the level
of significance is chosen to be too large, the test provides a
result even if it is practically impossible to decide which
cumulative probabilities are lower: many ‘‘unclear’’ events
enter the statistics and the real effects are buried in a random
noise.
[26] While in the former study the effect was found to

occur within 3� from the epicenter of an earthquake, a
newly developed data processing enables a more detailed
check of the position and shape of the affected area. It turns
out that instead of occurring directly above the epicenter of
an earthquake, the effect is shifted by about 2� to the West
and slightly to the North. The observed longitudinal shift
might possibly be caused by the Earth’s rotation and the
resulting Coriolis force: if there are, for example, aerosols
[Pulinets and Boyarchuk, 2004] propagating toward the
larger altitudes, it would always be dragged to the west.
Another possibility could be that the origin of the effect is
somehow related to the ions, which drift in the westward
direction because of the Earth’s magnetic field. Concerning
the northward drift, we do not have any explanation at this
moment.
[27] A detailed analysis of the observed effect is very

important for two reasons. First, a comprehension of prop-
erties of the observed phenomenon is crucial for under-
standing the physical mechanism which causes the effect.
Second, and at the present level of research perhaps even
more importantly, it can serve as an independent test of the
validity of the obtained results. This is possible, because at
least for some of the analyzed parameters we have a good

Figure 6. Relative number of decreases in the vicinity of
earthquakes as a function of their depth and magnitude.

Figure 7. The same as Figure 4, but for the dependence on the altitude of solid surface above
earthquake.
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‘‘intuitive’’ idea of what the dependence should look like.
For example, it is reasonable to expect that the observed
effect would be stronger for larger earthquakes. Additionally,
the effect should be stronger for shallower earthquakes: for
these, any signal propagating from the region of a future
earthquake does not have to pass that far through the
lithospheric material before reaching the satellite altitude.
Our results confirm both these ‘‘intuitive’’ expectations,
which is very important.
[28] At this place we would like to shortly comment on

the result shown in Figure 6. The reason is that although the
relative number of wave intensity decreases is equal to 1 for
large shallow earthquakes, it does not mean that the cumu-
lative probabilities are always lower close to their epicenters
than in the rest of the orbits for earthquakes with such
parameters; it can also mean that in some cases there is no
significant change of cumulative probabilities close to the
epicenters as compared to the rests of the half-orbits. In such
cases, the Mann-Whitney test cannot determine which set of
values is lower and the events are not taken into account.
For the used level of significance 0.01, there is usually
about 50% of such events. Consequently, we can only say
that if the spacecraft passes close to the large shallow
earthquake, there is either no change of cumulative proba-
bility or there is a decrease of cumulative probability.
Moreover, it should be noted that the statistics for this plot
is rather poor, there is only about 10 events in each of the
bins. Unfortunately, this cannot be improved anyhow and
represents a basic limitation of all the statistical studies of
this type.
[29] The last dependence that we have checked was

whether the observed effect depends on the altitude of the
solid surface above the hypocenter of an earthquake or not.
This could help with identification of physical mechanisms
which are causing the phenomenon: some of the proposed
mechanisms [Parrot, 1995] should work for earthquakes
below the sea level as well (e.g., radon emanation) while
others should work only for land earthquakes. Although at
the present level of knowledge we do not dare to discuss
about the possible mechanism, we believe that our finding
that there is no clear dependence of the effect on the altitude
of the solid surface above the hypocenter of an earthquake is
very important for further theoretical development.
[30] Finally, we would like to underline that although the

correlation between seismic activity and intensity of elec-
tromagnetic waves is statistically significant, it is observed
only due to the large number of the analyzed events.
Therefore even if there is on average a decrease of wave
intensity related to large surface earthquakes, individual
events may exhibit rather different behavior; the natural
fluctuations of intensity of electromagnetic waves are large
and the observed effect is relatively weak as compared to
them.

7. Conclusions

[31] We have studied the previously reported decrease of
the intensity of electromagnetic waves in the vicinity of
earthquakes [Němec et al., 2008]. We have confirmed that
during the night there is a very small but statistically
significant decrease of wave intensity observed by the
satellite close to large surface earthquakes shortly before

the time of the main shock. Using a newly developed data
processing method, we have shown that
[32] 1. the effect is stronger for larger earthquakes,
[33] 2. the effect is stronger for shallower earthquakes,
[34] 3. the effect does not seem to depend on whether the

earthquake occurs below the ocean or not,
[35] 4. the effect occurs slightly (�2�) to the west from

the epicenter of earthquakes.
[36] The first two points are in a good agreement with

what is ‘‘intuitively’’ expected. On the other hand, the last
two points might be important for understanding the physical
mechanism that is responsible for the effect.

Appendix A: Detailed Description of the First
Two Steps of the Data Processing, Based on Němec

et al. [2008]

[37] The purpose of Appendix A is to provide a detailed
description of the first part of the data processing method.
This part is common for both the method by Němec et al.
[2008] and the newly developed method described in
section 4.
[38] In the first step of the data processing, a map of

electromagnetic emissions is constructed. This is built using
all the measured data and can be represented by a six-
dimensional matrix with the indices of the following meaning:
[39] 1. frequency (any frequency bands that we are

interested in);
[40] 2. geomagnetic longitude of the satellite (longitudi-

nal resolution 10�);
[41] 3. geomagnetic latitude of the satellite (latitudinal

resolution 2�);
[42] 4. magnetic local time (daytime and nighttime; there

are no other possibilities, as described in section 2);
[43] 5. magnetospheric conditions described by the Kp

index: three bins made in such a way that there is about the
same amount of data accumulated in each of the bins (0–1o,
1+–2+, above 3�);
[44] 6. season of the year (October–April, May–September).
[45] In each cell of this matrix we accumulate a histogram

of the common logarithm of power spectral density of
electric field fluctuations. Consequently, for a given location
of the spacecraft (geomagnetic longitude and magnitude),
magnetospheric conditions (magnetic local time, Kp index,
season of the year) and frequency we obtain an estimate of
the probability density function f(E) of observing a power
spectral density of electric field fluctuations E.
[46] In the second step of the data processing, we attribute

a cumulative probability Fi to each of the measured power
spectral densities Ei. The appropriate value of the cumula-
tive probability Fi is equal to the value of cumulative
distribution function obtained for the same frequency,
spacecraft location and similar geomagnetic conditions.
This can be calculated directly as an integral of the
appropriate probability density function obtained in the first
step of the data processing:

Fi ¼
Z E1

�1

f Eð ÞdE: ðA1Þ

Therefore the cumulative probability Fi is a number
between 0 and 1 that represents the probability of
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occurrence of signals with a power spectral density lower
than or equal to the measured power spectral density of
electric field fluctuations Ei. At this point, it is important to
notice that the values of cumulative probability calculated
from the entire data set (that is the same data set as has been
used for construction of map of electromagnetic emissions)
are uniformly distributed between 0 and 1. This is a direct
consequence of the definition of cumulative probability.
[47] Figure A1 represents an example of distribution of

observed power spectral densities (thin) and also the
corresponding cumulative distribution function (bold). The
nighttime data in a frequency band centered at 1.7 kHz
measured all over the world during all the analyzed period
have been used when constructing the plot. When
performing the calculation, we have one such a plot for
each combination of frequency band, spacecraft location,
magnetic local time, geomagnetic conditions and season of
the year, which enables a direct conversion between the
power spectral density of electric field fluctuations and the
corresponding value of the cumulative distribution function
(cumulative probability).

Appendix B: Detailed Description of Data
Processing Using the Normalized Probabilistic
Intensity Based on Němec et al. [2008]

[48] The purpose of Appendix B is to provide a detailed
description of the data processing method based on the
normalized probabilistic intensity used by Němec et al.
[2008].
[49] After applying the two steps described in Appendix A,

data whose distance from the epicenter is lower than some
threshold (a threshold of 10� has been used) and which
occur in the requested time interval (a time interval from
5 days before to 3 days after the time of the main shock has
been chosen) are evaluated. If two or more earthquakes
occur in the required distance/time interval from the mea-
surement (and therefore possibly influence the data), the
measurement is not taken into account. This condition,
which is basically similar to taking into account only
‘‘individually occurring’’ earthquakes, is very important,

because otherwise it could happen that a single measure-
ment is attributed to more than one earthquake and used
more than once. Having selected the proper data that occur
close to earthquakes (both in time and space), the
corresponding cumulative probabilities are calculated.
These are then organized in bins as a function of the
following parameters:
[50] 1. time to/from the time of the main shock (resolution

of 4 hours),
[51] 2. distance from the epicenter of earthquake (resolu-

tion of 1�),
[52] 3. frequency (the same frequency bins as for the map

of electromagnetic emissions).
[53] For each of the bins we define a ‘‘probabilistic

intensity.’’ For a bin b it is calculated as follows:

Ib ¼
XMb

i¼1
Fi

Mb

� 0:5; ðB1Þ

where Mb is the number of cumulative probabilities Fi

collected in a given bin. In other words, we calculate the
mean value of cumulative probability in the bin and subtract
one half in order to obtain a number between �0.5 and 0.5
instead of between 0 and 1. Now if the observed intensities
that belong to the bin were significantly lower/larger than
the usual ones, the attributed cumulative probabilities would
be significantly lower/larger than 0.5 and the resulting
probabilistic intensity would be significantly lower/larger
than 0. The only remaining task is what quantitative value
should be attributed to the word ‘‘significantly.’’ This can be
solved using statistical properties of the probabilistic
intensity.
[54] The uniformly distributed values of probabilistic

intensity are averaged into a bin b corresponding to a given
time, position and frequency. Consequently, according to
the central limit theorem and supposing that the number of
averaged probabilistic intensities Mb is sufficiently large,
the resulting values of probabilistic intensity Ib follow a
normal distribution. The mean value of this distribution is
equal to 0 and it has some standard deviation sb. If all the
values averaged in the bin b were independent, the number
of independent data points M0

b in the bin would be equal to
the total number of the data points in the bin Mb and sb
could be calculated as:

sb ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

12Mb

p : ðB2Þ

However, a problem when performing such kind of
calculation is that although we know the total number of
cumulative probabilities Mb included in the bin b, we do not
know how many of them can be considered as independent;
we do not know the value of M0

b. Now we will show how it
can be estimated.
[55] As a lower estimate of M0

b it is reasonable to use the
number Nb of different half-orbits of the spacecraft that
contribute to the bin. This estimation is quite natural,
because a duration of a half-orbit is about 35 minutes,
which is longer than a typical timescale of intensity changes
of electromagnetic waves in the upper ionosphere. Conse-
quently, the data measured in the two different half orbits

Figure A1. Probability density of observing a given
power spectral density of electric field fluctuations (thin)
and the corresponding cumulative distribution function
(thick).
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must be independent. However, a problem is that there is
more than one data point contributing to the bin b in each of
the orbits. In order to solve this, we suppose a linear relation
between M0

b and Nb:

M 0
b ¼

Nb

a2
; ðB3Þ

where the meaning of the coefficient a is to define which
relative fraction of the data coming from the same half-orbit
can be considered as independent. Because at least each
half-orbit can be considered as independent (see above), M0

b

is larger than or equal to Nb and the coefficient a must be a
positive number lower than or equal to 1. Further, we will
suppose that, for a given frequency, a is a universal constant
that represents a measure of stability of electromagnetic
waves in the altitudes of the DEMETER spacecraft. The
lower the value of a is, the more variable is the intensity of
electromagnetic waves; the value a = 1 would mean that all
the data contributing to the bin from one half-orbit are
dependent. Consequently, a is the same for all the bins at a
given frequency and its value can be calculated directly
from the experimental data.
[56] For a given frequency, we have a set of Q bins

corresponding to different times (for our case we have Q =
48, because we take data from 5 days before to 3 days after
the quake with a 4 hours resolution). For each of them we
know the values of Ib (probabilistic intensity, a number
between �0.5 and 0.5) and Nb (number of different half-
orbits contributing to the bin). If we knew the coefficient a,
we could also calculate an estimate of standard deviation sb
using the equations (B2) and (B3):

ŝb ¼
a
ffiffiffiffiffiffiffiffiffiffi

12Nb

p : ðB4Þ

Once knowing the standard deviation sb of the probabilistic
intensity in the bin b, we could calculate the normalized
probabilistic intensity �b as:

�b ¼
Ib

sb

: ðB5Þ

The advantage of this concept is that we know exactly the
expected distribution of normalized probabilistic intensities
�: they should follow the Gaussian distribution with a mean
value 0 (the same as probabilistic intensities I), but their
standard deviation should be due to the normalization equal
to 1. Having Q values of the normalized probabilistic
intensity, we can therefore write:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Q

X

Q

b¼1

�2
b

v

u

u

t ¼ 1; ðB6Þ

which can be rewritten using equations (B4) and (B5) in
order to enable the calculation of the coefficient a:

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12

Q

X

Q

b¼1

NbI
2
b

v

u

u

t

: ðB7Þ

[57] Using the equation (B7) we can therefore calculate
the value of the coefficient a directly from the experimental
data. Then, equation (B4) is used to obtain the standard
deviation for each of the bins. Finally, normalized probabi-
listic intensities Õb are calculated according to the equation
(B5). These values represent the final results: they express a
change of power spectral density of electric field fluctua-
tions as compared to the common natural background and
its statistical significance.
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[1] Magnetospheric line radiation (MLR) events are electromagnetic waves in the
frequency range between about 1 and 8 kHz that, when presented as a frequency-time
spectrogram, take the form of nearly parallel and clearly defined lines, which sometimes
drift slightly in frequency. They have been observed both by satellites and ground-based
instruments, but their origin is still unclear. We present a survey of these MLR waves
observed by the DEMETER spacecraft (at an altitude of about 700 km). Three years of
VLF Survey mode data were manually searched for MLR events, creating the largest event
satellite database of about 650 events, which was then used to investigate the wave
properties and geographical occurrence. Finally, the most favorable geomagnetic conditions
(Kp and Dst indices) for the occurrence of MLR events have been found. It is shown that
MLR events occur mostly at L > 2 (upper limit is given by a limitation of the spacecraft),
they occur primarily inside the plasmasphere, and there is a lower number of events
occurring over the Atlantic Ocean than elsewhere on the globe. TheMLR events occur more
often during the day and usually during, or after, periods of higher magnetic activity.
Their frequencies usually lay between about 2 and 6 kHz, with the total frequency
bandwidth of an observation being below 2 kHz in the majority of cases. Moreover, it is
shown that the longitudinal dimensions of the MLR events can be as large as 100� and they
can last for up to a few hours. Finally, we discuss a possibility that MLR events may be
triggered by power line harmonic radiation (PLHR) and we report an event supporting
this hypothesis.

Citation: Němec, F., M. Parrot, O. Santolı́k, C. J. Rodger, M. J. Rycroft, M. Hayosh, D. Shklyar, and A. Demekhov (2009), Survey of

magnetospheric line radiation events observed by the DEMETER spacecraft, J. Geophys. Res., 114, A05203, doi:10.1029/2008JA014016.

1. Introduction

[2] When represented in the form of frequency-time
spectrograms, electromagnetic waves observed in the mag-
netosphere sometimes consist of several clear lines, nearly
equidistant in frequency and with a rather slow frequency
drift. Such emissions are usually called Magnetospheric Line
Radiation (MLR). They have been reported both in ground
observations [e.g., Rodger et al., 1999, 2000; Manninen,
2005] and low-altitude satellite data [e.g., Bell et al., 1982;

Rodger et al., 1995; Parrot et al., 2005; Němec et al., 2007a].
However, their origin is still unknown.
[3] A careful analysis of satellite observations of such

events with a line structure [Němec et al., 2007a] showed it
was possible to distinguish clearly a class of events called
Power Line Harmonic Radiation (PLHR). These events are
believed to be generated by electric power systems on the
ground and are quite well understood [Němec et al., 2006,
2007b, 2008]. They can be distinguished from MLR events
by their frequency spacings corresponding exactly to 50 or
60 Hz and by very small line bandwidth (less than 3 Hz in
the majority of cases, as reported by Němec et al. [2008]).
[4] Parrot et al. [2007] reported a case study of a large-

scale MLR event. They used simultaneous observations on
the ground and also on board a low altitude satellite to dem-
onstrate the enormous size (area of about 7,400,000 km2) and
time duration (2 hours) of the event. Finally, they hypothe-
sized that the MLR are due to PLHR propagating in the
ionosphere and the magnetosphere and undergoing a nonlin-
ear wave-particle interaction in the equatorial plane.
[5] Similarly, Bullough [1995] discussed the possibil-

ity that MLR originates as PLHR. This concept was fur-
ther investigated by Nunn et al. [1999] using numerical
simulations.
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[6] In this paper we report upon a survey of 657 MLR
events observed by the DEMETER spacecraft, their proper-
ties and occurrence. Section 2 describes the DEMETER
spacecraft and the wave experiment on board as well as the
method of identification of the events. The statistical results
obtained are presented in section 3. Section 4 reports an
observation of MLR and PLHR events during the same half-
orbit. The results are discussed in section 5 and summarized
in section 6.

2. Data Set and Processing

[7] Data from the DEMETER spacecraft have been used
in the present study. DEMETER is a French microsatellite
launched in late June 2004 into a nearly circular orbit with
an altitude of 710 km [Parrot, 2006]. The altitude of the
orbit was decreased to 660 km in December 2005. Due to
the sunsynchronous orbit DEMETER always records data
either around the time of the local day (10:30 LT) or local
night (22:30 LT), and for all geomagnetic latitudes lower
than 65 degrees. Among several instruments placed on
board (electric and magnetic field measurements, plasma
analyzer, energetic charged particle detector and Langmuir
probe), we have focused only on the analysis of VLF
(frequencies lower than 20 kHz) electric field data [Berthelier
et al., 2006]. The satellite’s normal Surveymode, which is the
most common operational state, provides us with power

spectrum of one electric field component computed onboard.
The frequency resolution is 19.53Hz and time resolution is 2 s
or 0.5 s, depending on the configuration of the instrument. In
the Burst mode of the satellite, which is active only above
some specific geographic areas, the electric field instrument
provides us with a waveform of one electric field component
(sampling frequency 40 kHz). The Burst mode is very useful,
because it allows us to perform a detailed analysis. However,
for a systematic survey of MLR events we are forced to use
the Survey mode, because it is used around all the orbit
(below 65 degrees geomagnetic latitude) and its occurrence
is not limited to any specific areas.
[8] An example of a frequency-time spectrogram of the

power spectral density of electric field fluctuations cor-
responding to an MLR event is shown in Figure 1. Two
MLR events can be clearly seen at frequencies between about
2.5 and 4 kHz. MLR is first observed at around an L of 2.6
in the southern hemisphere, continues to be visible as the
spacecraft moves equatorward to L= 1.2, and reappears in the
northern conjugate hemisphere at an L of about 1.2. Given
that the MLR event is seen in both hemispheres at conjugate
locations which are only separated by a small amount in
longitude and time, we assume that these twoMLR events are
due to the same source.
[9] We have analyzed the first 3 years of DEMETER data

(up to the end of July, 2007), which represents 26036 half-
orbits (each DEMETER orbit consists of two half-orbits:

Figure 1. An example of a frequency-time spectrogram of a single half-orbit used for the identification
ofMLR events. TwoMLR events at frequencies between about 2.5 and 4 kHz can be clearly seen, located in
magnetically conjugate regions.
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‘‘down’’ or ‘‘0’’ that occurs in the local day and during which
the satellite moves approximately from North to South and
‘‘up’’ or ‘‘1’’ that occurs in the local night and during which
the satellite moves approximately from South to North). For
each of the half-orbits, we have manually checked for the
presence of MLR events. In order to do so, frequency-time
spectrograms similar to the one from Figure 1 were prepared
and visually inspected. The plotted frequency range spans
from 1 to 8 kHz and the time covers all the half-orbit
(approximately 35 minutes). The color scale used ranged
between �3 and 2 log (mV2 m�2 Hz�1) (i.e., minimum to
maximum values) and was the same for all the plotted
spectrograms. For each of the identified MLR events, we
recorded its frequency-time interval (frequency resolution
200 Hz, time resolution 1 minute). MLR events have been
found in 549 half-orbits (out of the 26036 analyzed). Alto-
gether, we have identified 657 MLR events. The reason why
the total number of identified MLR events is larger than the
number of half-orbits containing these events is that there can
be two MLR events per one half-orbit, located in the con-
jugate regions (see section 5 for a more detailed discussion).
An example of this situation was shown in Figure 1.

3. Statistical Results

[10] Our large database of the MLR events enabled us to
analyze in detail their occurrence and properties. Our main
interest was to answer the following questions: Where do
the MLR events occur? When do they occur (or, in other

words, what are the most favorable conditions for them to
occur)? What are their properties?

3.1. Where Do the MLR Events Occur?

[11] We have constructed an occurrence map of the MLR
events (Figure 2), which represents positions of all the ob-
served MLR events in geomagnetic dipole coordinates. The
latitudinal resolution used was 10 degrees, being the same
as the used longitudinal resolution. The reason for using
geomagnetic coordinates is that MLR events might propa-
gate along geomagnetic field lines into the opposite hemi-
sphere. Geomagnetic coordinates allow a simple check to be
made that the regions are conjugate: they are located at the
same geomagnetic longitudes and their geomagnetic latitudes
have opposite signs. The lack of events at large geomagnetic
latitudes is caused by the fact that DEMETER does not
operate at geomagnetic latitudes larger than 65 degrees (see
section 2). It is evident that MLR events occur primarily at
larger geomagnetic latitudes and that they occur at all
geomagnetic longitudes. However, the number of MLR
events occurring over the Atlantic Ocean seems to be lower
than the number of events that occur at other geomagnetic
longitudes. One can also observe some additional features in
Figure 2. For example, there are the peaks in MLR occur-
rence over Alaska and the Eastern part of Russia. Moreover,
there is a peak of MLR occurrence over the region of
Antarctica which is the geomagnetic conjugate to North
America, but no noticeable increase in MLR occurrence is
observed above North America itself. This MLR occurrence
is discussed in section 5.

Figure 2. Map of occurrence of MLR events in geomagnetic coordinates. Shown color coded is the
number of events observed in a given latitudinal-longitudinal bin.
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[12] Figure 3 enables us to study the effect of lower
number of MLR events observed over the Atlantic Ocean in
more detail; in the left panel it shows the probability density
of occurrence of MLR events as a function of geomagnetic
longitude. The probability of occurrence at geomagnetic
longitudes of 0–100 degrees is almost half its value at other
geomagnetic longitudes. In the right panel the probability
density of occurrence of MLR events as a function of
geographic longitude is depicted.
[13] Figure 4 shows the range of L shells at which theMLR

events are observed. The left part of Figure 4 represents
the probability density of occurrence of MLR events as a
function of L shell; it shows that most of the events are
observed at L values between 2 and 5. This plot was
constructed in such a way that for each of the MLR events
a counter was increased in all the L value bins that correspond
to the range of L values of the event. The right part of the
Figure 4 represents a histogram of the extent of MLR events
expressed in L shells. It is clear that most of the MLR events
have L extent between about 1 and 3 RE. The L values were
calculated using both the internal and external magnetic field
models (N. A. Tsyganenko, http://nssdcftp.gsfc.nasa.gov/
models/magnetospheric/tsyganenko).

[14] Further, we have checked whether the L shells where
MLR events are observed correspond to the locations inside
or outside the plasmasphere. Figure 5 shows the L shells
of MLR events as a function of the model location of the
plasmapause taking into account the geomagnetic activity
[Moldwin et al., 2002] at the time of the observation. The
central L shells of the MLR events are plotted as dots and
their L extents are marked by the vertical lines. Moreover,
the mean values of the central L shells of the MLR events
for each interval of the model location of the plasmapause
are overplotted by a thick red line. Six intervals of the
model L values have been chosen, spanning from L values
of 2.5 up to 5.5. It can be seen that the MLR events occur
inside the plasmasphere (bottom right part of Figure 5,
below the thick diagonal line). Some of them seem to reach
beyond, but this could be well explained by the inaccuracies
of the model of the plasmapause location, as it is discussed
in section 5.

3.2. When Do MLR Events Occur?

[15] Further, we have analyzed when the MLR events
occur or, in other words, what are the most favored natural
conditions for their occurrence. We have checked whether

Figure 4. (left) Probability density of occurrence of MLR events as a function of L shell. (right) L extent
of the observed MLR events.

Figure 3. (left) Probability density of occurrence of MLR events as a function of geomagnetic
longitude. (right) Probability density of occurrence of MLR events as a function of geographic longitude.
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there is a difference in their occurrence rate between daytime
and nighttime (due to the specific orbit of the DEMETER
spacecraft, there are just these two possibilities, see section 2
for more details). It turns out that among the 657 observed
events, 390 events occurred during the day and 267 events
occurred during the night. Among the 549 half-orbits con-
taining MLR events, 321 were daytime half-orbits and 228
were nighttime half-orbits. Therefore the MLR events seem
to occur more frequently during the day than during the night.
We can evaluate the statistical significance of this difference
simply by using a binomial distribution. If the probability that
an MLR event occurs during the day were the same as the
probability that an MLR event occurs during the night, the
mean number of events occurring during the dayNd would be
equal to the mean number of events occurring during the
night Nn:

Nd ¼ Nn ¼ pNtotal ¼ 328:5 ð1Þ

where Ntotal = 657 is the total number of the observed MLR
events and p = 0.5 is the probability that an MLR event
occurs during the day/night supposing it is the same for the
two. The appropriate standard deviation can be calculated as
follows,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1� pð ÞNtotal

p

� 12:8: ð2Þ

The difference between the number of events that occur
during the day and the number of events that occur during the
night therefore corresponds to about 4.8 standard deviations.
If we perform the same calculation for the number of half-
orbits containing MLR events, we find out that the difference
corresponds to about 4.0 standard deviations. As such the
preference for daytime MLR events appears highly statisti-
cally significant.
[16] It is of a great importance to investigate whether the

geomagnetic conditions during the occurrence of MLR
events differ from the normal ones or not. We have therefore
used the superposed epoch analysis in order to find out what
is the dependence of the value of Kp index on the time
relative to the time of the MLR events. The time resolution
used for the analysis was set to one hour. The results are
shown in Figure 6. The left panel represents the dependence
obtained for the mean value of Kp index while the right
panel represents the same dependence obtained for its
median value. Moreover, there is a standard deviation of
the mean value sM marked by thin lines in the left panel.
This is calculated as

sM ¼ s
ffiffiffiffi

N
p ; ð3Þ

where s is the standard deviation of the distribution of Kp
values and N is the number of averaged values. It can be seen
that there is a statistically significant increase of Kp index a
few days before the time of the MLR events. However, the
absolute value of the increase is rather low, less than the
standard deviation s, and it becomes statistically signifi-
cant only due to the large number of analyzed events (see
section 5).

Figure 5. Central L shells of the MLR events (dots) as a
function of model location of the plasmapause. Mean values
of central L shells of the MLR events (thick red line) and L
extents of the MLR events (vertical lines).

Figure 6. (left) Mean value of Kp index (bold) as a function of the time relative to the time of MLR
events and standard deviation of the mean value (thin). (right) Median value of Kp index as a function of
the time relative to the time of the MLR events.
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[17] Figure 7 shows by a bold solid line a histogram of
Kp indices at the time of the maximum difference from the
normal values obtained by the superposed epoch analysis
(35 hours before the time of MLR events, mean value of
Kp 2.5). For a comparison, a histogram of Kp indices that
occurred during all the analyzed period of 3 years is plotted
by a thin dotted line. It can be seen that the histogram of Kp
indices shortly before the MLR occurrence is slightly
shifted toward the larger values.
[18] Figures 8 and 9 represent the same dependence as

Figures 6 and 7, but this time for Dst indices. From Figure 9,
it can be seen that the distribution of Dst is shifted slightly
toward lower values (17 hours before the time of MLR
events, mean value of Dst �23.7). This is further confirmed
by Figure 8 which shows that there is a decrease of the Dst
index for a few days before the time of occurrence of the
MLR events. Similarly to Figure 6, the decrease of the mean
Dst value is statistically significant, but its absolute value is
lower than the standard deviation of the distribution of Dst
indices (again, see a detailed discussion in section 5).

3.3. What Are the Properties of MLR Events?

[19] The frequencies of observed MLR events are plotted
in the left panel of Figure 10. Similarly to the left panel of
Figure 4, this plot was constructed in such a way that for
each of the MLR events we have increased a counter in all
the bins in the range of frequencies corresponding to this
event. Most of the events occurred at frequencies between 2
and 6 kHz. The frequency bandwidth of the events, shown
in the right panel of Figure 10, is less than 2 kHz in most of
the cases.
[20] Checking the number of consecutive half-orbits that

contain MLR events enables us to obtain a lower estimate of
their longitudinal dimensions, as well as a lower estimate of
their time duration (see section 5). The results are plotted in
Figure 11. Individual bins of the histogram correspond to the
1, 2, 3, 4 and 5 consecutive half-orbits of the same direction
(up or down) containing MLR events, respectively. On the
lower x axis, these are converted directly to the longitudinal
dimension, in degrees, while on the upper x axis these are
converted directly to the time duration, in hours. It can be
seen that the longitudinal dimensions may be rather large, up
to about 100 degrees, and that the events can last for a few
hours.

4. Is an MLR Event Triggered by PLHR?

[21] In this section we report on a special kind of event,
which consists of the observation of an MLR event and
Power Line Harmonic Radiation (PLHR) during the same
half-orbit, in conjugate hemispheres. The natural question
therefore arises: does this represent a case of an MLR event
triggered by PLHR? (See a more detailed discussion in
section 5). Figure 12 represents a frequency-time spectro-
gram of all the entire half-orbit. The PLHR event occurred in
the northern hemisphere and was observed approximately
between 08:01:30 UT and 08:04:30 UT at frequencies be-
tween 2800 and 3600 Hz. The MLR event occurred in the
conjugate region and was observed approximately between
08:31:00 UT and 08:36:00 UT at frequencies between 3200
and 4000 Hz. The MLR event was significantly more intense
than PLHR event, which is in a good agreement with the
statistical results reported by Němec et al. [2007a].

Figure 7. (solid) Histogram of Kp indices at the time of
the maximum difference from the normal values obtained
by the superposed epoch analysis. (dotted) Histogram of Kp
indices during all the analyzed 3 years.

Figure 8. (left) Mean value of Dst index as a function of time relative to the time of the MLR event
(bold) and standard deviation of the mean value (thin). (right) Median value of Dst index as a function of
time relative to the time of the MLR event.
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[22] The left panel of Figure 13 shows a detailed frequency-
time spectrogram of the PLHR event from Figure 12. A
set of horizontal lines can be clearly identified. Moreover,
DEMETER was in the Burst mode during the observation,
which allows us to construct a detailed power spectrum.
This is shown in the right panel of Figure 13. Several peaks
corresponding to the PLHR lines can be seen. They occur
at frequencies of: 2950 Hz, 3000 Hz, 3050 Hz, 3150 Hz,
3250 Hz, 3350 Hz, 3450 Hz, 3550 Hz and 3650 Hz, which
corresponds to the exact multiples of the fundamental
frequency of the electrical power system of 50 Hz (within
1 Hz uncertainty). This well agrees withNěmec et al. [2006,
2007b], because the PLHR event was observed above
Russia, where the frequency of the power grid systems is
50 Hz.
[23] A detailed frequency-time spectrogram of the MLR

event from Figure 12 is shown in Figure 14. A set of nearly
horizontal thick lines covered by a noisy emission can be
seen. The event seems to start at higher frequencies and
moves toward the lower frequencies later (closer to the
southern auroral zone).

[24] The idea that an MLR event can be triggered by
PLHR is rather old [Bullough, 1995; Nunn et al., 1999], but
up to now it has lacked a direct experimental verification.
This is why the unique measurement shown in Figures 12,
13 and 14 of an MLR event and a PLHR event that occurred
during the same half-orbit is important. Located in conjugate
regions, the PLHR event was detected first. Although it does
not provide definite proof that MLR events are triggered by
PLHR, it is rather clear that, at least for this particular event,
the two phenomena are connected. Moreover, because the
origin of PLHR is quite well understood [Němec et al., 2006,
2007b, 2008], it is reasonable to suppose that it is the MLR
event which is affected by the PLHR event, and not vice
versa.

5. Discussion

[25] A crucial factor when performing a systematic sur-
veys like that presented here is the method of constructing
the database of events. There are two basic possibilities for
how to identify interesting events in large data sets. The first
of them is to develop an automatic procedure for their iden-
tification using some precisely given criteria. The second
possibility is to perform a visual inspection and a manual
identification of the events. We have chosen the second
method for the two reasons: (1)MLR events are quite difficult
phenomena to describe and quantify precisely, which makes
the development of an automatic procedure very difficult, and
(2) an automatic procedure, even if developed, is unlikely to
work as well as a trained human eye and mind, and would
therefore miss many of the events. The performed manual
identification of the events is, in this sense, ideal; however, it
is based on the ‘‘individual feeling’’ of the observer and
cannot be precisely quantified. This problem was at least
partly solved by inspecting the data twice, independently,
which we believe practically excludes any false identifica-
tions. Further, a constant color scale of the power spectral
density spanning from�3 to 2 log (mV2m�2 Hz�1) has been
used in order be consistent all over the analyzed data set. The
checked frequency range was also the same for all the half-
orbits, spanning from 1 to 8 kHz. Had any events that
had occurred outside this frequency range, they would
have remained undetected. Although we do not completely

Figure 9. (solid) Histogram of Dst indices at the time of
the maximum difference from the normal values obtained
by the superposed epoch analysis. (dotted) Histogram of Dst
indices during all the analyzed 3 years.

Figure 10. (left) Frequency range of the observed MLR events. (right) Frequency bandwidth of the
observed MLR events.
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exclude the possibility that some MLR events might occur at
lower/larger frequencies, the left panel of Figure 10 strongly
suggests that, if there are any such events, there are only few
of them.
[26] MLR events have been identified in 549 half-orbits

among 26036 analyzed. Their occurrence rate is therefore
only a bit larger than 2%, meaning that MLR events are not
a common phenomenon. There can be two MLR events
occurring during a single half-orbit (located in the conjugate
regions), resulting into the total number of identified MLR
events being equal to 657. Although MLR events are

believed to propagate along geomagnetic field lines, bounc-
ing back and forth between the hemispheres, among the 549
half-orbits with MLR events there were only 108 half-orbits
with MLR events occurring in the both hemispheres. This
has two different explanations, acting simultaneously:
(1) DEMETER does not encounter the conjugate points
of exactly the same magnetic field line, so that it may miss
one MLR event, or (2) at the time when DEMETER is in
the conjugate region, the MLR event has already stopped.
[27] The three years of the data analyzed represent a suf-

ficiently large data set required to perform a systematic survey.
While there is a limitation due to the technical operation of the
DEMETER spacecraft, namely that it does not make obser-
vations at geomagnetic latitudes larger than 65 degrees,
we can see from Figure 2 and Figure 4 that the MLR events
detected are not very much affected by this limitation,
because the number of MLR events seems to be decreasing
rapidly at larger geomagnetic latitudes.
[28] The results from Figures 2 and 3 show that there is

a lower number of MLR events occurring at geomagnetic
longitudes corresponding to the Atlantic Ocean. We propose
two possible explanations for this effect. The first is that, in
the drift loss cone, East of the South Atlantic geomagnetic
anomaly, there are insufficient energetic electrons needed to
generate the MLR events. In order to support this hypoth-
esis, we can compare the probability density of occurrence
of MLR events as a function of geographic longitude shown
in the right panel of Figure 3 with electron fluxes as a func-
tion of geographic longitude obtained by Asikainen and
Mursula [2008]. It can be seen that, going from the West,
the MLR occurrence starts to decrease at about �90 degrees
of geographic longitude. This corresponds well to the area of
increasing precipitating electron flux. The MLR occurrence

Figure 11. Lower estimate of longitudinal dimension of
the observed MLR events (bottom x axis), and lower
estimate of time duration of the observed MLR events
(upper x axis).

Figure 12. Frequency-time spectrogram of a half-orbit containing a PLHR event and an MLR event in
geomagnetically conjugate regions.
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reaches its minimum between �60 and 0 degrees of geo-
graphic longitude, corresponding to the peak precipitating
electron flux. Afterward, it slowly increases up to about
120 degrees of geographic longitude, meaning that the
occurrence of MLR events seems to be affected by the South
Atlantic Anomaly much further to the East than the precip-
itating electron flux region. This could be caused by the fact
that even after the massive precipitation of electrons stopped,
it takes some time to fill-up the slot region again. The second
explanation is that at the geomagnetic longitudes of the
Atlantic Ocean there are no industrialized areas. Supposing
that the generation of MLR events needs a trigger in the
form, for instance, of PLHR, the absence of PLHR at these
longitudes would explain also the absence of MLR events.
It is even possible that both explanations are valid and act
together. However, since the area with the lower occurrence
rate of MLR events extends well into the geomagnetic
longitudes of Europe, the first explanation seems to be the
more probable.

[29] The main purpose of Figure 4 was to demonstrate the
enormous range of L shells which can be affected by MLR
emissions. Moreover, the typical range of an individual
MLR event is rather large, usually about 2 L shells, but
occasionally spanning up to more than 5 L shells. This
clearly indicates that, during the time of their existence,
MLR events could affect a huge volume of space in the
inner magnetosphere.
[30] Figure 5 shows the position of MLR events with

respect to the plasmapause. Because no direct measurements
are available, we have used the empirical model of Moldwin
et al. [2002], with two parameters (Kp, MLT), based on data
from the CRRES spacecraft. The model is based on the linear
best fit to the satellite data. Thus it expresses the average
plasmapause location, but in an individual case it can
significantly underestimate (or overestimate) the real location
(sLpp � 0.5 according toMoldwin et al. [2002]). Because the
scatter of MLR events beyond the plasmasphere observed in
Figure 5 is smaller than inaccuracies of the model Lpp, the

Figure 13. (left) Detailed frequency-time spectrogram of the PLHR event from Figure 12. (right) Power
spectrum corresponding to the PLHR event from the left part.

Figure 14. Detailed frequency-time spectrogram of the MLR event from Figure 12.
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imperfect agreement is most probably caused solely by the
inaccuracies in the used model. Moreover, a detailed exam-
ination of the events that reach beyond the model location
of the plasmasphere reveals that these occurred during low
values of the Kp index, but for which the Kp index was quite
large about twelve hours before. Since the model of the
plasmapause location takes into account the maximum value
of the Kp index in the previous 12 hours, it results in a
significantly compressed plasmasphere. However, because
the present values of Kp are low and because the large value
occurred just at the edge of the time interval taken into
account by the model, it is reasonable to suppose that the
plasmasphere in such cases is compressed much less than
predicted. Consequently, there is no strong evidence that
MLR events stretch beyond the plasmasphere; it is more
likely they are strictly limited to be within the plasmapause.
[31] Figures 6, 7, 8 and 9 show that MLR events occur

preferentially during or after periods of larger geomagnetic
activity. Although this change in average values of geomag-
netic indices (Kp, Dst) is statistically significant, its absolute
value is smaller than typical fluctuations of the indices. The
observed increase of Kp index is about 0.7, while the Kp
index commonly varies between 0 and 5 (see dotted histo-
gram in Figure 7). The observed decrease of Dst index is
about 10 nT, while Dst commonly varies between �50 and
10 nT (see dotted histogram in Figure 9). This means that,
although the occurrence of MLR events is clearly linked to
the increased geomagnetic activity, this connection has been
revealed only by using the superposed epoch analysis of a
large number of events. It is statistically significant, but for an
individual event the value of Kp/Dst can behave rather
differently. The physical explanation of this observed depen-
dence is that energetic electrons are needed in order to
generate the MLR events. This result presents an evidence
that the phenomenon is the result of a wave-particle interac-
tion, probably taking place at the geomagnetic equator
(which is the preferred region for such types of interaction
[Trakhtengerts and Rycroft, 2008] and, moreover, is well
consistent with MLR events often being observed in the
conjugate regions).
[32] From the frequency range of MLR events depicted in

the left panel of Figure 10 it can be seen that the analyzed
frequency band of 1–8 kHz was well chosen: the probabil-
ity density of occurrence of MLR events at frequencies close
to 1 kHz and 8 kHz is close to zero. This means that, although
there may be some MLR events occurring outside the
frequency band analyzed, there are probably only a few of
them. It is interesting to compare this frequency range with
the frequency range of PLHR and MLR events reported by
Němec et al. [2007a]. An automatic identification procedure
has been used to identify PLHR events in electric field burst-
mode data in the frequency range 0.5–4 kHz [Němec et al.,
2006]. This procedure was also able to identify some events
that were classified as MLR events. Altogether, 49 PLHR
events and 23MLR-like events were identified in 1650 hours
of burst-mode electric field data. It was shown [Němec et al.,
2007a] that PLHR events occur at frequencies between
about 1 and 4 kHz, being most frequent between 2 and
3 kHz. MLR-like events were reported at all frequencies
below 4 kHz, being more frequent at lower frequencies.
[33] The present study shows that the MLR events occur

most frequently at frequencies between about 2 and 4 kHz,

which are the frequencies well comparable with the typical
frequencies of PLHR. Although MLR events seem to extend
to higher frequencies than PLHR, this may be caused by the
limited frequency range analyzed by Němec et al. [2007a].
[34] There is a significant difference between the frequency

range of MLR events reported in the present study and the
frequency range of MLR-like events reported byNěmec et al.
[2007a]. This can be explained by taking into account the
Figure 7 of Němec et al. [2007a] which shows two different
classes of MLR-like events: (1) events with frequencies
below 1 kHz located close to the geomagnetic equator, and
(2) events with frequencies well comparable with PLHR
events at larger geomagnetic latitudes. Since the present
study focuses solely on the frequency band 1–8 kHz, only
the events from the second class are identified. The events
from the first class, which we believe are naturally generated
by instabilities of the ion distribution functions, will be
thoroughly discussed in a separate paper.
[35] Figure 11 shows that the longitudinal dimensions of

MLR events can reach up to about 100 degrees and that the
events can last as long as a few hours. These estimates were
determined by evaluating the number of consecutive half-
orbits containing the MLR events and so represent a lower
estimate of the longitudinal dimensions and time duration.
This is due to the fact that there can be two reasons why an
MLR event is not observed in the next half-orbit: (1) the
MLR event does not extent that far, this is the reason used to
find the longitudinal dimensions, or (2) the MLR event does
not last long enough to survive until the next DEMETER
pass, although it extended far enough during its lifetime, it
is not observed, because it had already died at the time of
the observation. This reason was used to determine the time
duration. Because in reality both these reasons are acting
simultaneously, what we obtain is a lower estimate of the
longitudinal dimension and the lower estimate of the time
duration. There might also occur the situation of two
separate MLR events extending not very far in longitude
but present at the same time. In such a situation, DEMETER
would see one of them during the first pass and the other of
them during the second; we would evaluate that situation as
an individual MLR event extending over the two half-orbits.
However, since MLR events are not so frequent and a special
configuration would be required, we can estimate that this
possibility is rather unlikely (about 0.04 percent). Finally,
we would like to underline once more that the longitudinal
and L range ofMLR events, as well as their time duration, can
be rather large; when present they could therefore represent
an important factor in determining the dynamics of the
plasmasphere.

6. Conclusions

[36] The results of a systematic study of observations of
MLR events by a low-altitude satellite have been presented.
Altogether, 657 events in 549 half-orbits have been identi-
fied. According to our knowledge, this represents the largest
satellite database of MLR events collected to date. Their
occurrence and properties have been thoroughly investigated.
[37] Our results show that MLR events occur mostly at

L > 2 and that they do not occur outside the plasmasphere.
There are fewer events at geomagnetic longitudes corre-
sponding to the Atlantic Ocean. Moreover, the MLR events
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occur slightly more often during the day than during the
night. They usually occur during or after the periods of higher
magnetic activity. Most often they are observed at frequen-
cies between 2 and 6 kHz, and their frequency bandwidth is
below 2 kHz in the majority of cases. Their longitudinal
dimensions can extend up to about 100 degrees and they can
last for as long as a few hours. Finally, we have reported the
observation of MLR and PLHR events during the same half-
orbit. This we have discussed in terms of the possibility that
PLHR may serve as a trigger for MLR.
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Němec, F., O. Santolı́k, M. Parrot, and J. J. Berthelier (2006), Power line
harmonic radiation (PLHR) observed by the DEMETER spacecraft,
J. Geophys. Res., 111, A04308, doi:10.1029/2005JA011480.
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Abstract This paper highlights significant advances in plasmaspheric wave research with
CLUSTERand IMAGE observations. This leap forward was made possible thanks to the new
observational capabilities of these space missions. On one hand, the multipoint view of the
four CLUSTER satellites, a unique capability, has enabled the estimation of wave charac-
teristics impossible to derive from single spacecraft measurements. On the other hand, the
IMAGE experiments have enabled to relate large-scale plasmaspheric density structures with
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wave observations and provide radio soundings of the plasmasphere with unprecedented de-
tails. After a brief introduction on CLUSTER and IMAGE wave instrumentation, a series of
sections, each dedicated to a specific type of plasmaspheric wave, put into context the recent
advances obtained by these two revolutionary missions.

Keywords Plasmasphere· CLUSTER · IMAGE · Waves

1 Introduction

Plasma waves play a fundamental role in our geospace environment. In particular, they are
key to understand the way mass and energy are transfered from the magnetotail to the plas-
masphere, the ionosphere and finally the atmosphere. Particles propagating in the magne-
tosphere indeed lose or gain energy via wave–particle interactions while waves are amplified
or damped. Particles can also be diffused into the loss cone and precipitate to lower altitudes.
But how much each type of wave contributes to this process and under which geophysical
conditions? In order to answer this difficult question, a complete overview on plasma waves
is needed to understand how and under which conditions waves are generated and how they
propagate from their source regions.

A key region where such waves are generated is the plasmasphere, either within it or in
its near vicinity. Various waves are found in this region from a few mHz to a few MHz, either
electrostatic or electromagnetic. Ground-based observatories and space missions since the
1950s have collected a wealth of information about them (e.g., Lemaire and Gringauz1998,
p. 94) but many questions remained open before the launch of the European Space Agency
(ESA) CLUSTERand the NASA IMAGE space missions in 2000. A review of whistler-mode
type waves observed within the plasmasphere by IMAGE and DE-1 spacecraft can be found
in Green and Fung (2005) and Green et al. (2005b).

This paper highlights recent advances obtained by the CLUSTERand the IMAGE missions
on plasmaspheric wave phenomena in the medium frequency (MF) range (300 kHz–3 MHz)
down to the very low frequency (VLF) range (3–30 kHz), the ultra low frequency (ULF)
range (300 Hz–3 kHz) and the extremely low frequency (ELF) range (3–30 Hz). Both mis-
sions can be seen as a step forward in our understanding of these phenomena. On one hand,
the multipoint view of the four CLUSTER satellites, a unique capability, has enabled the es-
timation of wave characteristics impossible to derive from single spacecraft measurements.
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This includes the first quantitative estimation in three dimensions of the size of wave source
regions (Sect.8), their localizations and beaming properties by triangulation (Sect.4). On
the other hand, IMAGE was the first mission dedicated to remotely study the plasmasphere.
The Radio Plasma Imager (RPI) onboard IMAGE was the first radio sounder launched above
the plasmasphere enabling the discovery of new wave echoes, the remote derivation of den-
sity profiles and the study of field-aligned irregularities in the plasmasphere with unprece-
dented details (Sects.5, 6, 7 and 11). Together with RPI, the IMAGE spacecraft carried
several imagers including an Extreme UltraViolet (EUV) imager able to capture, for the
first time, the entire plasmasphere—distribution of helium ions—in a single shot, every 10
minutes. Thus, EUV enabled for the first time to monitor changes in the plasma distribution
of the overall plasmasphere and the size and evolution of large-scale plasmaspheric struc-
tures such as notches and plumes. As described in Sect.3, plasmaspheric notches observed
by EUV have been studied with wave measurements made by GEOTAIL to learn more about
the source of kilometric continuum. Similarly, CLUSTER data have been combined with
observations from the DOUBLE STAR equatorial spacecraft TC-1, which routinely detected
chorus emissions, as well as the low altitude DEMETERspacecraft. Recent advances on plas-
maspheric hiss have also benefited from measurements of the DE-1 and CRRES satellites
(Sect.9).

This review is the result of a collective effort, gathering the contributions of several scien-
tists. A brief introduction to the CLUSTER and IMAGE instruments related to plasmaspheric
wave phenomena is given in Sect.2 (see also De Keyser et al.2009, this issue). Then a series
of nine sections describes the advances obtained on six waves and three types of sounding
echoes. These sections are organized by decreasing frequency of the waves/echoes. Section3
is dedicated to IMAGE and GEOTAIL observations of kilometric continuum (KC), the high-
frequency range of a more general wave phenomenon called non-thermal continuum (NTC).
Advances on NTC at lower frequency observed with CLUSTER are detailed in Sect.4. The
next three sections describe what has been learned so far from Z-mode (Sect.5), whistler-
mode (Sect.6) and proton cyclotron echoes (Sect.7) received by the RPI instrument. The
following three sections are dedicated to VLF and ELF waves impacting the relativistic elec-
tron content of the radiation belts, namely: chorus (Sect.8), plasmaspheric and mid-latitude
hisses (Sect.9), equatorial noise (Sect.10). The last section (Sect.11) deals with the de-
termination of the average ion mass in the plasmasphere using ground-based ULF wave
diagnostics and electron density profiles derived from RPI soundings. It is worth noting that
the locations of the source regions of most of these waves are strongly linked with the po-
sition of the plasmapause, itself strongly influenced by large-scale electric fields (Matsui et
al. 2009, this issue).

A set of acronyms is used throughout this paper. The Earth radius will be referred asRE ,
the magnetic local time as MLT and the magnetic latitude asMLAT. The localisation of
wave phenomena in the plasmasphere are often expressed in terms ofL-shell (McIlwain
1961). For example, “L = 4” describes the set of the Earth’s magnetic field lines, which
cross the magnetic equator at 4RE from the center of the Earth. The plasmasphere bound-
ary layer introduced by Carpenter and Lemaire (2004) is often abbreviated as PBL. The
acronyms of the main plasma frequencies used in this paper are the following:fpe for the
electron plasma frequency,fce for the electron cyclotron frequency also called electron gy-
rofrequency,fuh andflh for the upper and lower hybrid frequencies. Finally, the acronyms
of the CLUSTERsatellites are C1, C2, C3 and C4, conventionally color-coded as black, red,
green and magenta respectively.
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2 CLUSTER and IMAGE Wave Instrumentation

2.1 CLUSTER Wave Instruments

The four CLUSTERsatellites carry eleven identical instruments to measure the electric field,
the magnetic field and the electron and ion distribution functions (Escoubet et al.1997).
Three of them are particularly suited to study wave phenomena within or in the vicinity of
the plasmasphere (see Sects.4, 8, 9 and10):

– The Spatio-Temporal Analysis of Field Fluctuations (STAFF) instrument measures the
magnetic field between 8 Hz and 4 kHz with a three axis search coil magnetometer.
Its spectrum analyzer performs auto- and cross-correlations between the three magnetic
components estimated by the search coil and the two electric components measured by
the Electric Field and Wave (EFW) experiment (Gustafsson et al.2001). From auto-
correlations, the energy densities of electric and magnetic components are inferred, to-
gether with the electrostatic/electromagnetic nature of the observed waves. The cross-
power spectra are needed to estimate the polarization characteristics of electromagnetic
waves. The time resolution varies between 0.125 s and 4 s. For a complete description of
STAFF, see Cornilleau-Wehrlin et al. (2003).

– At higher frequencies (2–80 kHz), radio wave signals are continuously monitored by the
active soundings and passive measurements of the Waves of HIgh frequency and Sounder
for Probing of Electron density by Relaxation (WHISPER) instrument. The hardware of
WHISPER mainly consists of a pulse transmitter, a wave receiver and a wave spectrum
analyzer. Electric signals are acquired by the EFW electric antennas and only the onboard
calculated fast fourier transform of the digital electric waveforms acquired are transmitted
to the ground. A passive spectrum is recorded every 2.2 s and an active one every 52 s
in normal mode for a frequency resolution of 162 Hz. Unlike a passive receiver, such a
relaxation sounder enables to trigger plasma resonances when the medium does not show
them naturally. For a detailed description of WHISPER, see Décréau et al. (2001).

– The Wide-Band Data (WBD) experiment consists of a wide-band passive receiver, which
provides electric waveforms with high time resolution in three possible frequency bands:
100 Hz to 9.5 kHz, 100 Hz to 19 kHz and 700 Hz to 77 kHz. The first frequency band is
the one mostly operated to study plasmaspheric wave phenomena. It provides continuous
waveforms with a 27.4 kHz sampling rate. When no soundings are performed, WBD
electric data may be seen as high resolution zooms of WHISPER spectra. For a complete
description of WBD, see Gurnett et al. (2001).

2.2 IMAGE Wave Related Phenomena Instruments

IMAGE (Imager for Magnetopause to Aurora Global Exploration) was the first satellite ded-
icated to imaging the Earth’s inner magnetosphere (Burch2000). It was equipped with six
instruments, which use neutral atom, ultraviolet and radio imaging techniques. Two of these
instruments have been particularly used to study wave phenomena in the plasmasphere (see
Sects.3, 5, 6, 7 and11):

– The Extreme UltraViolet (EUV) imager was able to picture the entire plasmasphere in a
single “snapshot”. It captured the helium ion (He+) distribution outside Earth’s shadow by
measuring their emission line at 30.4 nm.He+ is the second most abundant ion species in
the plasmasphere accounting for roughly 20% of the plasma population while hydrogen
ion (H+), the most abundant one, has no optical emission. Because the plasmaspheric
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He+ emission is optically thin, the integrated column density ofHe+ along the line-of-
sight through the plasmasphere is directly proportional to the intensity of the emission.
Moreover, the 30.4 nm emission line is the brightest ion emission from the plasmasphere
and is spectrally isolated with a negligible background. For a full description of EUV, see
Sandel et al. (2000).

– The Radio Plasma Imager (RPI) was a low-power radar with three dipole antennas. The
two spin plane antennas were of lengths 370 m and 470 m tip-to-tip (Benson et al.
2003) while the one along the spin axis was 20 m long (spin rate: 0.5 rpm). The spin
plane antennae are so far the longest ever deployed in space for such an instrument.
RPI was able to locate regions of various plasma densities by observing radar echoes
from the plasma. These echoes were reflected when the radio frequency was equal to the
plasma frequency. By stepping the transmitted signal frequency through a wide frequency
range (3 kHz–3 MHz), features of various plasma densities were observed. Derived den-
sities, from those locations returning radio sounding echoes, were combined with line-of-
sight images captured by EUV to infer quantitative, global distributions of plasmaspheric
plasma. For a full description of RPI, see Reinisch et al. (2000).

3 Kilometric Continuum

3.1 Previous Observations

Low frequency non-thermal continuum radiation has been observed extending from
∼15 kHz to as high as∼300 kHz although it is rarely observed above∼90 kHz. How-
ever, Hashimoto et al. (1999) discovered a type of high frequency continuum radiation that
is observed in the 100–800 kHz frequency range and as such, will escape the magnetosphere
once it has been generated. These authors named this emission kilometric continuum (KC)
due to the fact that the emission closely resembles the discrete emission band structure of the
lower frequency non-thermal continuum in frequency–time spectrograms, has many other
similar characteristics, and is probably generated by the same mechanism. It is important to
note that KC is always observed without an accompanying lower frequency trapped compo-
nent. The discovery of this high frequency KC emission has sparked considerable interest in
further understanding various aspects of this radiation, what makes it different from its lower
frequency counterpart, and the relationship with the plasmasphere and the plasmapause.

The spectrogram on Fig.1 clearly shows the discrete emissions bands of KC extending
from 17:00 to 24:00 UT. The frequency range for KC is approximately the frequency range
of auroral kilometric radiation (AKR), but as shown in Fig.1, there are significant differ-
ences that can be used to easily distinguish between these two emissions. KC has a narrow
band structure over a number of discrete frequencies with time while AKR is observed to be
a broader band emission with emissions extending over a large frequency range sporadically

Fig. 1 A frequency–time
spectrogram of KC emissions
measured on 30 October 1995 by
the Plasma Wave Instrument
(PWI) onboard GEOTAIL.
(Adapted from Hashimoto et al.
1999)
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and can be seen from 16:00 to 17:00 UT and from 21:30 to 24:00 UT in that spectrogram.
In order to determine the source of the KC emission Hashimoto et al. (1999) performed
direction finding using spin modulation of the emission. The resulting directions (shown in
Fig. 4) with time, as correlated with the spectrogram data, indicated that the emission was
generated from a very broad source region of the plasmasphere. Due to the high emission
frequency of KC and its lack of correlation with geomagnetic activity, the source of KC was
originally believed to lie deep within the plasmasphere (Hashimoto et al.1999). Soon after
these results were published, Carpenter et al. (2000) suggested that the source region for KC
was coming from plasmaspheric cavities deep within the plasmasphere. From their analysis
of over 1764 near-equatorial electron density profiles fromCRRES, deep density troughs
or cavities were observed on∼13% of the passes (Carpenter et al.2000).

3.2 IMAGE Observations

It would take new observations of the plasmasphere from the EUV and RPI instruments
onboard IMAGE along with simultaneous observations of KC from the Plasma Wave Instru-
ment (PWI) onboard GEOTAIL to understand what plasmaspheric structures are the source
region of KC thereby reaching a new understanding of plasmaspheric structure and dy-
namics. From the perspective of the CRRES observations the results of Carpenter et al.
(2000) are compelling and appear to establish cavity-like structures in the plasmasphere. The
IMAGE observations show them as plasmaspheric notches, which are the primary sources
of KC.

Figure 2 illustrates that the location of the KC source region within a plasmaspheric
notch, and the resulting emission cone pattern of the radiation, as shown from ray tracing
calculations, is consistent with many of the previous observations. Figure2a is a frequency–
time spectrogram (passive mode) from PWI onboard GEOTAIL showing the banded structure
of KC. The slanted vertical emissions are all Type III solar radio bursts. Figure2b shows
the magnetic longitude versus the equatorial radial distance of the plasmapause (derived
from the right insert of the EUV image of the plasmasphere) and the GEOTAIL position dur-
ing the KC observations of panel (a). As observed by EUV, plasmaspheric notch are large
“bite-outs” in the plasmasphere in which plasma has largely been evacuated from a nominal
plasmapause to somewhere deep within the plasmasphere (see also Darrouzet et al.2009,
this issue). This structure is significantly different than a density cavity of some size and
depth within the plasmasphere. Figure2b, left insert, presents a ray tracing analysis show-
ing that the structure of the plasmaspheric notch has a significant effect on the shape of the
resulting emission cone through refraction of the radiation generated from a small source
region located at the magnetic equator deep within the plasmaspheric notch. The correspon-
dence of KC observations with plasmaspheric notches, as shown in Fig.2, is not an isolated
instance. Green et al. (2004) found from a year’s worth of observations of GEOTAIL KC
measurements and EUV images of plasmaspheric notches that the vast majority (94%) of
the 87 cases studied showed this correspondence. Their results also showed that a density
depletion or notch structure in the plasmasphere is typically a critical condition for the gen-
eration of KC but that the notch structures do not always provide the conditions necessary
for the generation of the emission.

If KC source regions were located deep within a plasmaspheric notch, they can be used
to further study the properties of the KC emission cone and the depth of notches. From a sta-
tistical analysis Fig.3a shows the number of occurrences of KC observed by PWI onboard
GEOTAIL, associated with plasmaspheric notches observed by EUV onboard IMAGE, with
the magnetic longitudinal extent of the emission. This analysis assumed that the plasmas-
pheric notches were corotating with the plasmasphere. From these events the median in the
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Fig. 2 (a) Kilometric continuum observations from PWI onboard GEOTAIL on 24 June 2000 from 00:00
to 06:00 UT. (b) The location of GEOTAIL during the KC observations and the extracted location of the
plasmapause from IMAGE/EUV data are plotted in magnetic longitude versus equatorial distance. Inserted
into panel (b) are model ray tracing calculations (left) and the EUV image data (right). (Adapted from Green
et al.2002, 2004)

longitudinal extent of the KC emission cone is∼44◦. Assuming an average plasmaspheric
model and that KC is generated near the upper hybrid frequency an estimation of the depth
of notch structures can be determined. Figure3b shows the number of occurrences of the
highest frequency source of the same KC events versus equatorial radial distance as an es-
timation of the deepest location of the KC source region. The distribution has a large peak
with the median and the mean of the distribution at approximately the same equatorial radial
distance of 2.4RE .

Observations of the plasmasphere and KC emissions from the IMAGE instruments pro-
vide a new perspective in which previous CRRES and GEOTAIL measurements can be
interpreted self-consistently to obtain additional insights into plasmaspheric dynamics and
structure. Figure4a shows the direction finding measurements of Hashimoto et al. (1999)
indicating an extensive emission region for KC. Figures4b–f illustrate how a small source
region of KC deep within in a plasmaspheric notch can generate an emission cone that
is also consistent with the direction finding measurements. The proposed plasmaspheric
notch and the corresponding KC emission cone all corotate with the plasmasphere and are
shown over the same 12-hour period. GEOTAIL was in the proposed emission cone and ob-
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Fig. 3 (a) Number of
occurrences of KC (observed by
PWI onboard GEOTAIL)
associated with plasmaspheric
notches (observed by EUV
onboard IMAGE) with the
magnetic longitudinal extent of
the emission. (b) Number of
occurrences of the highest
frequency source of the same KC
events versus equatorial radial
distance as an estimation of the
deepest location of the KC source

served KC radiation starting at approximately 16:00 UT until 04:00 UT of the next day.
During this time, the corotating plasmasphere sweeps the emission cone across and finally
past the GEOTAIL spacecraft in a way completely consistent with the direction finding re-
sults.

Carpenter et al. (2000) reported significant density variations or cavities in the plasma-
sphere in which KC at many times were observed. The obvious confinement of KC to a
cavity-like structure led those authors to propose that the radiation would be trapped in plas-
maspheric cavities at frequencies below the density of the outer cavity wall. With the advent
of the IMAGE mission a new interpretation has arisen to these observations as presented by
Green et al. (2002). Figure5a assumes a notch structure, like those that have been observed
by EUV, would exist at the time of the CRRES observations (1990–1991). What is also
shown is a typical CRRES orbit plotted in the same magnetic longitude andL coordinates.
By using magnetic longitude andL coordinates the orbit of CRRES is then presented in the
same reference frame as a corotating plasmasphere and notch structure. Figure5b approxi-
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Fig. 4 Direction finding measurement (a) from Hashimoto et al. (1999) of KC at 400 kHz are reinterpreted
as being completely consistent with respect to the source of KC emitted from a corotating plasmaspheric
notch (b)–(f). (Adapted from Green et al.2002)

mates the corresponding density structure that would be observed. The resulting qualitative
density structure of the plasmaspheric notch, shown in Fig.5b, is indistinguishable from the
density cavities structures reported by Carpenter et al. (2000) and delineated as the upper
hybrid resonance emissions. The CRRES observations of the confinement of KC to plas-
maspheric cavities, reported by Carpenter et al. (2000) can then alternately be interpreted as
KC radiation generated at the plasmapause, at the base of a plasmaspheric notch. Refraction
near the source region of the steep density wall of the cavity would then confine the emission
to within the notch structure as the ray tracing calculations have shown.

3.3 Conclusions

In summary, recent observations of KC from IMAGE and GEOTAIL have provided a new
opportunity to understand plasmaspheric structures and dynamics. KC is always observed
without an accompanying lower frequency trapped non-thermal continuum component but
is almost certainly generated by the same emission mechanism. Plasmaspheric notches, re-
ported earlier as deep plasmaspheric density cavities, are the source of KC. Much like the
lower frequency non-thermal continuum emissions generated at the plasmapause, it is now
well established that KC is generated at the newly established plasmapause, deep within
a notch structure, near the magnetic equator. From the KC observations, plasmaspheric
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Fig. 5 (a) A typical orbit of the CRRES spacecraft in magnetic longitude andL value plotted over a typical
plasmaspheric notch. (b) Approximate variation in density that would be observed assuming that a notch
structure like this would exist at the time of CRRES

notches are typically as deep as∼2 RE but can be deeper within the plasmasphere. The
average beam width of KC has been found to be∼44◦. The confinement of the KC emission
cone, as shown by the ray tracing calculations, due to the steep densities of the walls of
the notch structure therefore indicates that the average size of plasmaspheric notches must
also be∼44◦ in longitude. Due to the strong relationship between KC and plasmaspheric
notches, the long term set of observations of KC by GEOTAIL, extending more than 10 years
could now be use to make long-term studies that relate to plasmaspheric notch structure and
dynamics.

There are a number of outstanding questions that need to be addressed concerning the
generation and propagation of the KC emissions such as:

– Is the motion of the plasmapause inwards coupled with a sufficiently large density gradi-
ent necessary and sufficient for the generation of KC? Is the free energy source necessary
for the creation of electrostatic waves that are precursors to KC always present, or is the
free energy source dependent on the state of the magnetosphere?

– KC often exhibits a banded frequency structure consistent with(n +
1
2)fce source, but

frequently the structure appears more complex. Can density ducts near the plasmapause
explain the more complex structure or do other mechanisms need to be investigated like
dynamic motion of the plasmasphere boundary layer?

– For highly disturbed times large changes occur in the inner magnetosphere magnetic field
intensity. Can this change be detected remotely in the spectral band spacing of escaping
KC? Can the analysis of the frequency structure of escaping KC indicate the state of the
plasmasphere and the inner magnetosphere magnetic field?
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4 Non-Thermal Continuum

4.1 CLUSTER Observations

4.1.1 Assets of the CLUSTERMission

The WHISPER instrument measures electric field in a frequency range (2–80 kHz) well
adapted to study non-thermal continuum (NTC) waves, both in the trapped frequency band
(∼1–20 kHz) and in the lowest part of the escaping frequency band (∼20–200 kHz). The
WBD instrument completes the view by providing high resolution snapshots and wave forms
on a similar frequency range (0–77 kHz) when studying NTC waves. The major assets of
the CLUSTER observatory about NTC studies are four fold.

– Orbital characteristics.The satellites travel from southern to northern hemisphere and
cross or skim the plasmasphere around perigee at radial geocentric distances of∼4.3RE .
Such orbit configurations provide excellent view points on the radio beams directly emit-
ted at close distances, from equatorial plasmapause sources, when those are placed inward
from the orbit, i.e., when the plasmasphere is sufficiently contracted. The polar orbit of
CLUSTERnear its perigee is comparable to that of DE-1 near its apogee, of geocentric dis-
tance∼4.5RE . CLUSTERplatforms spin under different conditions than DE-1: Spin axis
are normal toXY GSE (geocentric solar ecliptic) plane in CLUSTER case, whereas DE-1
spins in a cartwheel manner with the spin axis parallel toXY GSE plane. CLUSTER of-
fers thus complementary views to those obtained by DE-1 in the past. As a consequence,
typical DE-1 observations of NTC beaming properties can be reinterpreted in view of
CLUSTER observations, in a similar manner IMAGE views help interpreting CRRES past
observations of KC. Away from perigee, CLUSTER offers views at large distances from
sources. The electric field measured there results often from a superposition of waves
emitted from various and multiple sources. Detailed directivity estimations, made possi-
ble thanks to good frequency and time resolutions, help to distinguish each of the main
source regions from the others.

– Instrument performances.A good time resolution (electric field spectra delivered at a rate
of ∼2 s) allows directivity measurements in 2-D (direction of the wave vector in the spin
plane) at successive positions on the orbit (∼300 km apart).

– Multipoint observations.Performances of the constellation vary according to spacecraft
separation, which is varied along the mission phase. The spatio-temporal analysis of
beam properties is made possible by comparing observations over small time intervals
and small distances in space, i.e., during mission phases at small or medium separation
(100 to 1000 km). In addition, compared wave vector directions lead to source localiza-
tion. This can be done via triangulation, either from several spacecraft illuminated by the
same beam at the same time (during mission phases at large separation), or from a single
drifting spacecraft viewpoint, after stability of the beam has been assessed from compared
observations.

– Plasma diagnostic from a relaxation sounder.In addition to spectral and geometric analy-
sis of radiated beams, CLUSTER offers the possibility of analyzing intense electrostatic
waves, which are potential sources of non-thermal radiations.

This section focuses on observations of NTC radiations (excluding trapped continuum
signatures) when CLUSTER is either in the outer plasmasphere or in the polar cap region.
The tetrahedron shape achieved at large geocentric distances turns to an elongated shape
near perigee. Figure6a displays the near Earth magnetic field configuration and the orbit
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Fig. 6 Orbit tracks and constellation produced with the Orbit Visualization Tool (OVT,http://ovt.irfu.se).
Magnetic field lines intercepting each satellite are shown, as well as a shell of outermost magnetospheric
field lines. The model field is a combination of IGRF internal field model and Tsyganenko 87 exter-
nal field model. The colour code along field line indicates magnetic field intensity. (a) 26 September
2003, 06:00–08:00 UT, small separation mission phase (200 km), solar magnetic (SM) coordinate system.
(b) 16 July 2005, 01:00–08:00 UT, multi-scale mission phase (10 000 km and 1000 km), geocentric solar
magnetospheric (GSM) coordinate system

of the four satellites in solar magnetic (SM) coordinates on 26 September 2003. The small
spacecraft separation (200 km) does not allow distinguishing the four orbits, nor the four
spacecraft, which travel from South to North. From the enlarged CLUSTER configuration
shown in an insert, C1 (black) is ahead of C3 (green), C2 (red) and C4 (magenta). Figure6b
illustrates a multi-scale configuration on 16 July 2005, when the pair C3 and C4 (1000 km
separation) is in the polar cap. At the same time, C1 is in the outer plasmasphere and C2
near the plasmapause.

4.1.2 Typical Spectral Signatures

Trapped continuum signatures are commonly observed in the low frequency range of WHIS-
PER (Décréau et al.2004). They present the smooth, large band spectral features already
reported from the first observations (Gurnett1975). It is in the “escaping continuum” fre-
quency range (>∼20 kHz) that the CLUSTER multi-view offers the best opportunities to
improve our understanding of this radio emission. In this range, NTC waves can be clas-
sified according to four main types: (i) “equatorial spots”, (ii) “narrow band elements”,
(iii) “continuum enhancements” and (iv) “wide banded emissions”. Those names refer to
spectral signatures, which depend on two elements: the source on one hand (position, beam-
ing properties and main frequencies) and the observatory on the other hand (position and
movement). When the observatory moves rapidly in the vicinity of a source, spectral sig-
natures inform about position and beaming properties of the source. In contrast, a remote
observatory can be illuminated by a large region, hence perceive movements of sources via
the spectral signatures it records. Visions about time or space in the resulting spectrograms
are thus created by one or the other of the protagonists.

The first type of NTC spectral signature, the equatorial spot, is an emission limited in
time (∼30 minutes) and frequency (∼10–30 kHz). In the spectrogram on Fig.7a, harmonics
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Fig. 7 Three main types of NTC spectral signatures (white ovals) observed with CLUSTER near perigee.
(a) 26 September 2003, “equatorial spots”; (b)–(c) 16 July 2005, “narrow band elements”; (d) 30 December
2003, “wide banded emissions”. CLUSTER constellation is shown in Fig.6a for events presented in panels
(a) and (d), in Fig. 6b for events presented in panels (b) and (c). L parameter values are calculated from the
same magnetic field model than used by the OVT tool producing displays shown in Fig.6.
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of the electron gyrofrequencyfce, triggered by regular sounding operations, appear as in-
tense electrostatic emissions (small red points at∼8–12 kHz and harmonics). Other resonant
frequencies (red points between electron gyroharmonics) are the electron plasma frequency
fpe and the upper hybrid frequencyfuh. Their frequency position follows the increase of
fpe from 10 to 35 kHz (05:00–06:55 UT), and its decrease from 35 to 15 kHz (06:55–
08:30 UT). The magnetic equator, at∼06:55 UT, can be inferred by brief encounters of
natural electrostatic emissions at(n +

1
2)fce below fpe. It is worth noting that recent ad-

vances on electrostatic wave emissions at(n +
1
2)fce in the equatorial plasmasphere have

been derived from CLUSTER data and detailed in El-Lemdani Mazouz et al. (2009). NTC
emissions (abovefpe, in the frequency range 35–80 kHz) are observed on both sides of the
equator between 06:35 and 07:10 UT. Time intervals when similar NTC spectral features are
observed correspond most often to CLUSTER located near equator. We shall call this type of
NTC emissions equatorial spot in short, standing for “near equatorial time-frequency inter-
vals of radio emissions”. This is a case when the observatory moves rapidly in the vicinity
of a source region and spectral signatures inform about beaming properties.

The second type is the classical narrow band element form (Kurth et al.1981), covering
about 1 kHz or less. Such emissions appear often in series of waves at frequencies sepa-
rated by a few kHz from each other, evolving together during time intervals of long duration
(up to several hours). Spacing between frequenciesfn of related elements are arranged in
quasi harmonic form,fn = (n + d)fce with 0 < d < 1 andn an integer,fce being inter-
preted as the gyrofrequency at the source (Kurth1982; Gough1982). Figures7b–c display
narrow band NTC elements (40–60 kHz) observed identically and simultaneously (04:45–
05:40 UT) by two different CLUSTER spacecraft located at different positions: C2 enters in
the plasmasphere, while C3 is placed in the polar cap (see Fig.6b for the configuration of
the constellation).

The third type of NTC spectral form, the continuum enhancement, has been reported for
the first time by Gough (1982). It develops after the start of an electron injection event, its
spectral shape evolving over duration of one to several hours (Kasaba et al.1998). Analysis
of one example, observed by CLUSTER in the night sector, indicates that a region source of
large dimension might be involved (Décréau et al.2004). This form has not yet been iden-
tified by CLUSTER at perigee, either because it travels too fast in comparison to the typical
time scale of the event, or because it is not placed at sufficient distance to be illuminated ade-
quately by the various sources, which are likely at play. Indeed, the continuum enhancement
scenario proposed by Gough (1982) and Kasaba et al. (1998) involves injection of electrons
followed by a plasmapause inward convection. The wave sources (which are where the in-
jection meets the plasmapause) drift likely inward and eastward. This is a case when, in
order to be illuminated by the large region engulfing all successive positions of the sources,
the observatory has to be remote. Numerous observations of continuum enhancements, of-
ten associated with AKR emissions, have been done by CLUSTER on the outermost part of
its orbit. Some observations are also available from over the polar cap.

A fourth spectral form, the wide banded emission, has been observed for the first time
with CLUSTER (Grimald et al.2008). It consists of one or several banded emissions with
a frequency separation (5–10 kHz) of the order offce values encountered at plasmapause.
When several bands are observed, they peak at harmonics of the same frequency, interpreted
to be the gyrofrequency at the source. For the event presented in Fig.7d, they appear when
the observing satellite approaches the flank of a thick plasmasphere, bounded by a narrow
plasmapause. Events of this type have been observed only a few times per year. They are
always associated with density steps of large amplitude encountered over short distances.
Some are observed on the flanks of a cusp.
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4.2 Analysis

4.2.1 Beam Stability

As noted above, the limited time duration of CLUSTER observing the equatorial spots is not
due to inherent time duration of the emission, but mainly to the time evolution of CLUSTER

view point over the source. Indeed, a satellite observes the radiation only when it is placed
inside the illumination cone formed in space by the radiated beams. From a small con-
stellation skimming the outer plasmasphere, compared wave intensities measured at fixed
frequency on the four spacecraft indicate most often that the differences observed on in-
tensity versus time profiles are simply due to time shifts between spacecraft progressing
along orbit tracks, generally close to each other. When crossing a beam illuminating a lim-
ited cone angle in space, each spacecraft observes an increase of intensity followed by a
decrease (Fig.8a). Times of maximum intensity correspond to times when the spacecraft
reaches the central part of the beam. When intensities are plotted with respect toMLAT
(Fig. 8b), their maxima are aligned with each other, indicating that the beam did not move
significantly between the first and the last crossing, which are separated by 5–10 minutes.
A different behaviour is obtained when time variations at the source are taking place, as
illustrated in Fig.9. For this event, narrow band elements contribute to an equatorial spot
observed from∼11:00 to 11:30 UT in the 60–80 kHz frequency band. The frequencies of
elements are modulated at a time period of about 6 minutes. The bottom panel of Fig.9,
comparing intensities measured by the four spacecraft at 80 kHz, indicates three consecu-
tive increases of intensity observed simultaneously on the four spacecraft in the southern
hemisphere. Such a signature indicates a temporal evolution of the radiation properties. In
contrast, intensity versus time profiles observed in the northern hemisphere (peak intensities
observed as shifted in time) correspond to a beam stable in time and space.

4.2.2 Beam Geometry

The multipoint view obtained from the CLUSTER constellation yields, at least partially, an
image of beam contours in space. This capacity enables to test one theory of NTC beam
formation, under which the beam geometry is constrained. Indeed, in the frame of the radio
window theory examined and proposed by Jones (1980), mode coupling occurs between
intense upper hybrid waves produced by a warm loss-cone component of energetic electron
distribution and the cold-plasma Z-mode branch of the dispersion relation. Propagation into

Fig. 8 Compared intensity variations at constant frequency (39.5 kHz), measured respectively by the four
CLUSTER spacecraft when progressing along their orbit on 30 December 2003, (a) as a function of UT time,
(b) as a function of magnetic latitude (constellation configuration shown atleft). The corresponding beam is
stable in space. (Adapted from Grimald et al.2008)
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Fig. 9 (Top) Dynamic time electric field spectrogram of C4 for the 14 August 2003 event. Geomagnetic
equator is crossed at about 11:15 UT (latitude is not expressed in SM coordinate system). NTC elements
(electromagnetic waves) and a local emission (electrostatic Bernstein mode) are pointed witharrows. (Bot-
tom) Compared intensity variations at a given frequency withcolour codesand constellation configuration as
for the event shown in Fig.8

a slowly varying plasma density medium allows direct coupling of energy to L-O-mode
waves, which propagate to lower density regions and beam away from the magnetic equator.
According to this theory, the inclination angle of the beam with respect to magnetic equator
is fixed by the ratiofce/fpe of characteristic frequencies at the source. The source, placed at
the equator (minimum in magnetic field value) radiates two beams, one in each hemisphere.
The cone angle attached to each beam is typically∼1–2◦ large (see Fig.10a adapted from
Jones1982).

A test of validity of radio window theory (Grimald et al.2007) has been performed in the
case event presented in Fig.7a, where the equatorial spot NTC form displays two intensity
peaks, placed symmetrically to the magnetic equator, a feature, which could be attributed
to the symmetrical beams displayed in Fig.10a. This study could not draw a definitive
conclusion about the validity of Jones theory. Indeed, the radio theory is compatible with
quantitative observed beaming properties of a selected frequency element when an ad-hoc
choice of source position in latitude is made. Although the latitude obtained thus (less than
1◦ off the equator) is in the expected range, the complete picture does not fit the narrowness
of the beam indicated by the theory. Figure10c displays orientations of the ray path of the
70 kHz NTC wave measured from intensity spin modulation at successive positions of the
observing spacecraft on their orbit (curved arrows). Ray path orientations and orbit paths
are shown projected onto theXY GSE plane, parallel to the spin plane. One insight in the
third dimension is provided by the choice of two different line colours: Ray paths obtained
from C4 in southern hemisphere are plotted in blue, whereas ray paths obtained from C2 in
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Fig. 10 Beaming properties of NTC waves: (a) configuration of NTC beams expected from the ra-
dio-window theory (adapted from Jones1982); (b) ray path directions in a meridian plane derived from
directivity measurements onboard DE-1 (adapted from Morgan and Gurnett1991); (c) ray path directions of
NTC element at 69 kHz derived from CLUSTER and drawn inbluefor C4 in the southern hemisphere, inred
for C2 in the northern hemisphere (inXY GSE plane); sketch of a possible associated plasmapause shape
(dotted line); orbit elements of C2 and C4 shown by thered andblue curveswith arrows. (Adapted from
Grimald et al.2007)

northern hemisphere are plotted in red. In this 2-D view, all ray paths point towards the same
region, but the point of view drifts from negative (∼ −4◦) to positive (∼ +4◦) latitudes along
the orbit element considered, which at the same time drifts of about 8◦ in GSE longitude (but
less, below 3◦, in SM longitude, corresponding to MLT). As a consequence, the sketch of
Fig. 10a, which represents a meridian cut at fixed MLT, cannot be directly compared to
observations. Narrow beams (of cone angle<1◦) emitted from a single source could not
be visible over such a large portion of the orbit. Furthermore, complementary observations
detailed in Grimald et al. (2007) indicate that the orbit track is illuminated by several sources
of small dimension and various frequencies, placed at different latitudes along roughly the
same magnetic field tube, hence concentrated, after projection to theXY GSE plane, within
a small area.
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4.3 Interpretation

4.3.1 Main NTC Form (Quasi Equatorial Sources)

Close up View on SourcesIntense electrostatic emissions at NTC frequencies are encoun-
tered in the plasmapause region (Kurth et al.1981). They are thus considered as potential
electrostatic sources radiating energy (likely by wave decay or linear conversion) in the
form of continuum waves of electromagnetic nature. No simultaneous observations of such
a NTC source by one CLUSTER spacecraft and of the beam emitted from that source by
another spacecraft has been found. This is due to the 3-D nature of the geometry involved,
the small size of sources and the limited extension of the beam near sources. Then, it has
not been possible so far to directly test a generation mechanism by comparing wave charac-
teristics at both ends of the process.

The spectrogram of Fig.9 provides nevertheless an insight on the frequency, size and
position of candidate electrostatic sources in the equatorial region. The magnetic equator is
crossed at 11:15 UT whenfpe (narrow feature in yellow) culminates at∼53 kHz. Above that
frequency, WHISPER observes banded electrostatic emissions displaying upper frequency
cut offs at the Bernstein frequenciesfq characteristic of the harmonic band considered.
The intense spots (in red) showing up in the spectrogram of Fig.9, one at∼64 kHz at the
equator, and two at∼55 kHz on both sides of the equator, belong to the bands associated
to Bernstein modes, the [6fce–fq6] frequency interval in the latter case and the [7fce–fq7]
interval in the former case. These spots are candidate sources, which could participate to the
generation mechanism proposed by Rönnmark (1985). Lastly, an event observed on 30 May
2003 by Canu et al. (2006), where NTC frequencies oscillate with time at similar periods
than the central frequency of local Bernstein band series, completes this view. The authors
interpretation is that Bernstein emissions probably play a role in the generation of NTC
radiations.

A striking characteristic of NTC spectral signatures observed near the plasmapause is
their splitting in fine structures. This property has been pointed out by detailed analysis of
the waves forming the equatorial spots (Grimald et al.2007). Complex spectral features of
NTC observed in Fig.9 can be interpreted as produced by a superposition of beams emitted
from many sources, placed at different locations along the plasmapause and near the equator.

Ray path observations made by DE-1 while skimming the outer plasmasphere (Mor-
gan and Gurnett1991) can be usefully compared to CLUSTER observations (Grimald et
al. 2007). Both views are complementary: DE-1 provides a view in a meridian plane and
CLUSTER in the equatorial plane. The ray path directions obtained from DE-1 are more
or less parallel to each other during intervals of significant duration, here from 23:20 to
00:20 UT (Fig.10b). This could be due to sources placed in the equatorial plane at vari-
ous geocentric distances. An alternative explanation is that the topology observed is due to
sources placed at similar geocentric distances but at different latitudes along a single flux
tube. The latter interpretation makes better sense in view of CLUSTER observations, which
indicate a source region concentrated at a single geocentric distance and emitting beams
inside a cone of large longitudinal extent,∼40◦ (Fig. 10c). Such a large extent, similar to
longitudinal cone angle of KC radiations (Fig.4), cannot be envisaged to be produced by a
plasmapause boundary smooth in azimuth. This ray path topology is not unique but repre-
sentative of similar events. It could be due to a particular shape of the plasmapause, known
to display density irregularities in azimuth (Darrouzet et al.2006). In particular, ray paths
being likely aligned with density gradients (Jones1982), a small bite-out structure, sketched
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in Fig. 10c, could act as a collimator concentrating radiations. This scenario would be sim-
ilar to the interpretation of KC emissions proposed by Green et al. (2002) and illustrated in
Fig. 2.

Propagation Effects Statistics of occurrence at CLUSTERorbit of equatorial spots and nar-
row band elements indicate that they are probably signatures of the same phenomena, ob-
served from different perspectives (Grimald2007). The underlying scenario implies wave
propagation. A ray tracing study considers the fate of waves emitted from equatorial plasma-
pause at a given inclination angle with respect to the equatorial plane, after they have been
reflected by the magnetopause density wall (Green and Boardsen1999). Ray tracing in-
dicates latitudinal confinement of NTC radiation emitted at small inclination angles, since
those waves do not move at large distance from the equatorial plane and stay trapped be-
tween the plasmapause and magnetopause density walls. In contrast, rays emitted at higher
inclination angles bounce at magnetopause, but escape a second bounce at plasmapause
as they travel above the poleward plasmasphere regions. Such a scenario explains obser-
vations of narrow band elements by C3 during the event of 16 July 2005 (spectrogram in
Fig. 7c): C3 is placed above the South Pole, Fig.6b showing CLUSTER satellites positions
at 05:00 UT. At that time, C3 observes a narrow band element at∼60 kHz, observed more
faintly by C2 at about 40◦ south latitude (Fig.7b). Directivity analysis indicates that corre-
sponding ray paths point both towards dayside magnetopause. The interpretation proposed
in Grimald (2007) is that a common source placed near equatorial plasmapause emits a
60 kHz wave in a beam of large enough latitudinal cone angle to illuminate the four CLUS-
TER spacecraft after a bounce at magnetopause (spectrograms for C1 and C4, not shown,
display similar narrow band spectral features). This case event demonstrates that narrow
band NTC elements can illuminate large regions of the magnetosphere placed at signifi-
cant distance from the equator without loosing their characteristic spectral features. The
magnetopause-magnetosheath boundary, populated by complex density structures, could
play a role in angle scattering. According to the above scenario, the cohesion in latitude
and frequency of the equatorial spots observed in the near equatorial outer plasmasphere
is lost during propagation. Only the elements emitted at highest inclination are preserved
from being trapped and superposed to radiations from other sources. Among those, only the
elements emitted at highest intensity would keep a sufficient level to be observable after
propagation.

4.3.2 Wide Banded NTC Emissions

NTC wide banded emissions (Fig.7d) display a spectral pattern shown in better details
in Fig. 11. They present two remarkable characteristic signatures, which, combined, allow

Fig. 11 WHISPER spectrogram on 30 December 2003 and individual frequency spectrum displaying four
peaks above plasma frequency. (Adapted from Grimald et al.2008)
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to propose a precise location of the corresponding radio sources. The first characteristic
signature is their frequency pattern, peaking at exact harmonics of a fundamental frequency,
which is interpreted as the gyrofrequency at the source region. The second characteristic is
the evolution of the fundamental frequency with respect to the view point of the observer,
indicating that the NTC beams are narrowly collimated. During this event, C3 travels in
the outer plasmasphere region, southern hemisphere, from 08:20 to 08:47 UT, at which
time it crosses the plasmapause (Fig.11). The other satellites cross the plasmapause within
a few minutes time span. They form together a constellation of small size, C1 and C4
being∼1200 km apart. The crossing area is placed at a∼4.85RE geocentric distance, at
MLAT ≈ 20◦ and∼04:36 MLT. Thefpe measured by C3, plotted as a white solid line over
the spectrogram, follows large density irregularities at plasmapause crossing, which can
thus be better qualified as a structured plasmasphere boundary layer, PBL (Carpenter and
Lemaire2004). NTC emissions, present from∼08:27 to 08:47 UT, form three clear bands
(a fourth one is visible after 08:40 UT). An individual spectrum is shown on the right panel,
where peaks of the four bands are labelled from 1 to 4. Compared observations of the four
satellites demonstrate that the NTC beams encountered are stable in time and confirm that
they are limited to a cone of small angle.

All peaks are placed at exact harmonics of a valuedf , which slowly decreases with
increasingMLAT of observation. The frequency pattern observed contrasts with previous
views, where frequencies emitted in a region of gyrofrequencyfce are supposed to satisfy
fn ≈ (n +

1
2)fce (Kurth 1982), notfn ≈ nfce. An additional experimental fact is the evolu-

tion of the NTC fundamental frequency encountered along the orbit element. The frequency
df of the spectral pattern is higher than local gyrofrequencies and the difference progres-
sively diminishes, untildf meets local gyrofrequency at the plasmapause. This behaviour
is the same in all observations of NTC features of the wide banded form. The spectro-
gram in Fig.7d shows indeed another example in the northern plasmapause crossing of the
same orbit. The interpretation proposed by Grimald et al. (2008) is that sources are placed
at the intersection of the plasmapause magnetic shell (atL ≈ 5.5 in this case) and of iso-
gyrofrequency surfaces, leading to source positions atMLAT ≈ 20◦. This latitude is clearly
higher than in the generally accepted view of equatorial sources. Together with the uncom-
mon spectral characteristics (wide banded emissions, peaks at exact harmonics), it is possi-
ble that the generation mechanism is specific to that particular type of continuum radiation.
A theory describing direct generation of electromagnetic O-mode emission at exact electron
gyroharmonics, via mildly energetic electron beams in highly dense and warm plasma, has
been proposed by Farrell (2001). CLUSTERobservations could be related to this mechanism,
and thus be a first confirmation of it.

5 Z-Mode

5.1 Active Z-Mode Experiments in Space Plasmas

Many spacecraft have generated Z-mode waves in the ionosphere and magnetosphere using
radio sounders, among them the ISIS satellites and the OEDIPUS sounding rockets (e.g.,
Benson et al.2006). This work has provided a powerful complement to observations of Z-
mode waves of magnetospheric origin performed on rockets and satellites using plasma
wave receivers (e.g., LaBelle and Treumann2002). In this section we describe Z-mode
experiments from IMAGE that provide new perspectives on the use of radio sounding at
altitudes exceeding those accessible to previous missions and under comparatively more
favorable conditions on transmitted frequencies and maximum observable echo delay.
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Fig. 12 Dispersion diagrams for waves in a cold plasma illustrating two conditions on the ratio of electron
plasma frequency to electron gyrofrequency: (a) fpe > fce and (b) fpe < fce . (Adapted from Goertz and
Strangeway1995)

By way of introduction to the IMAGE experiments, we show in Fig.12 a schematic di-
agram that represents the dispersion relation for waves in a cold plasma, i.e., the scalar
relation expressing the angular frequencyω in terms of the propagation vectork, which
is related to the refractive indexn by n = kc/ω. The diagrams represent two conditions
on fpe/fce, the ratio of electron plasma frequency to electron gyrofrequency. The case of
fpe > fce, represented in Fig.12a, is typical of the plasmasphere above several 1000 km
altitude, while the conditionfpe < fce, in Fig. 12b, is common at low altitudes poleward of
the plasmapause and within a limited altitude range near 2000 km in the mid-latitude topside
ionosphere.

5.2 Z-Mode Sounding from IMAGE

When the RPI instrument onboard IMAGE operates at altitudes above∼20 000 km, its entire
frequency range from 3 kHz to 3 MHz may fall within the domains of the free-space L-O
and R-X wave modes (see Fig.12). However, as the satellite moves to lower altitudes, some
part of its operating frequency range begins to fall within the Z-mode and whistler-mode
domains, and thus provides the possibility of using those wave modes to probe the plasma-
sphere and polar regions at altitudes less than∼10 000 km. In response to this opportunity,
new Z- and whistler-mode probing tools have been developed that complement the opera-
tion of RPI at higher frequencies as a conventional sounder. In this section we discuss three
basic types of Z-mode echo activity: (i) ducted waves that are presumably constrained by
field-aligned irregularities (FAI) to follow the direction of the magnetic fieldB , (ii) non-
ducted or “direct” echoes that follow ray paths extending in generally Earthward directions,
(iii) scattered echoes that are believed to return to the spacecraft following interactions with
FAI located in directions generally transverse toB from IMAGE. Comments on use of the
echoes as plasma diagnostic tools will follow. We begin with the newly discovered phenom-
enon of bidirectional sounding along geomagnetic field lines using ducted Z-mode waves
(Carpenter et al.2003).
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Fig. 13 (a) Model plot of the
variation of key plasma
parameters with geocentric
distance along polar region field
lines, showing by shading the
Z-mode propagation cavity or
trapping region. (Adapted from
Gurnett et al.1983.) (b) Number
of idealized ray paths for Z-mode
echoes in a particular case of
sounding by RPI nearL = 3 in
the plasmasphere. (Adapted from
Carpenter et al.2003)

5.2.1 Ducted Echoes and the Z-Mode Propagation “Cavity”

Since plasma parameters such asfpe andfce are known to decrease monotonically with
altitude above the peak of the ionospheric F layer, and since the cutoff frequencyfZ for
Z-mode propagation in a cold plasma is expressed in terms offce andfpe as:

fZ = (fce/2)

[

−1+

(

1+ 4
(

fpe/fce

)2
)

1
2
]

, (1)

one might expectfZ to decrease monotonically with altitude as well. This is not true, how-
ever, as a number of authors have emphasized (Gurnett et al.1983; LaBelle and Treumann
2002). In an altitude range extending from∼1500 km to above 5000 km, a Z-mode propaga-
tion “cavity” regularly exists over a wide range of latitudes. Waves originating at frequencies
“within” the cavity can return from reflection points both above and below the wave source.
This occurs in spite of the fact that the higher altitude reflection takes place in a plasma
region less dense than the one at the source.

Figure 13 illustrates the cavity effect by altitude profiles of two frequencies,fZ and
fuh, which (as shown in Fig.12) locally delimit Z-mode propagation in a cold plasma. Also
plotted versus geocentric distance are models of the plasma parametersfce andfpe. The left-
hand diagram was used in a study of natural wave activity in the auroral region, while the
right-hand diagram represents conditions encountered by RPI during sounding operations
at middle latitudes. It is clear that the curve forfZ undergoes a minimum with altitude and
that the minimum is reached within an altitude range in the topside ionosphere where the
ratio fpe/fce falls to a minimum value near or below unity. In Fig.13a, hatching shows a
range of frequencies at each altitude for which locally launched waves could be expected
to return after reflection from points both above and below the source. Figure13b shows
schematically the propagation paths of a sequence of waves launched by RPI over a range
of frequenciesfi from fZ to fuh. Waves at frequencyf1, just abovefZ , remain within the
cavity and are reflected from both above and below RPI. In contrast, frequenciesf2, f3, and
f4 exceed the upper frequency limit of the cavity and the corresponding waves reflect only
at points below the spacecraft (assuming propagation in the general direction ofB0).

Two examples of propagation within a cavity are illustrated in Figs.14a–b on plasma-
grams. On both records there is a band of no electromagnetic propagation at the lower fre-
quencies, followed by a broad belt of noise that is attributed to a combination of scattering
of RPI Z-mode pulses from irregularities located in directions generally transverse toB0
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Fig. 14 (a)–(b) RPI plasmagrams from 28 July 2001 showing echo intensity in coordinates of virtual range
(echo range at an assumed propagation velocity ofc) versus transmitted frequency. Multicomponent Z-mode
echoes are detected within the plasmasphere on successive soundings 2.5 minutes apart. (c)–(d) Interpretive
model of the echoes of panel (a) for the case of a sounder location above the minimum in Z-mode cutoff
frequency with altitude. The horizontal scale has been expanded by a factor of∼2 to facilitate comparisons
of echo delays. (Adapted from Carpenter et al.2003)

(Muldrew1969; Sonwalkar et al.2004) as well as Z-mode noise from distant sources (Ben-
son and Wong1987; Benson1993). The local Z-mode cutofffZ is found to be at or near the
low-frequency edge of this band. Clearly outlined against the background noise are patterns
of discrete echo traces that begin atfZ .

An interpretation of the propagation paths of the discrete echoes shown in Fig.14a is
presented in Figs.14c–d. Panel (c) is a rescaled tracing of the echo observed in Fig.14a,
while panel (d) shows on the same frequency scale the variation with altitude offZ in a
postulated propagation cavity. The sounding is assumed to have taken place at an altitude
above the minimum value offZ in the cavity. The upward and downward directions of
propagation are identified as D and C, respectively. As the sounder frequency steps upward
and reachesfZ at∼372 kHz, an echofi is received from a reflection altitude below IMAGE,
forming the first elements of what becomes the down-sloping C echo trace. As the sounder
continues abovefZ , echoes such asfj begin to return from both higher and lower altitudes.
The D echo forms near zero range and extends rapidly towards longer delays because of
the small spatial gradients infZ encountered in the upward direction. Finally, the sounder
frequency exceeds the peak value reached byfZ above IMAGE, after which echoes such as
fk can return from below only.

The remarkable clarity of the echo traces suggests that the signals involved were guided
or ducted by geomagnetic FAI, a phenomenon that has been found necessary to explain
ground-observed whistler-mode signals (Smith1961; Helliwell 1965). Ducting has recently
been invoked to explain discrete O- and X-mode propagation from RPI (Reinisch et al.2001;
Fung et al.2003) and was earlier identified from observations with ISIS satellites (Muldrew
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1963; Loftus et al.1966). The existence of a single discrete propagation path passing through
the satellite position is indicated by the additional components in Fig.14a identified as
C+D, C+2D, and 2C+D in Fig. 14c. Each of the higher order components consists of
some combination of the measured delays along the original C and D paths.

When RPI launches Z-mode waves from an altitude below the minimum of a Z-mode
cavity, a quite different echo pattern is detected, but again there are well defined echo com-
ponents from upward and downward directions as well as combinations of the two in the
manner of Fig.14c. Thus it was concluded that an explanation of events such as that of
Fig. 14a requires the existence of both a propagation cavity as well as the occurrence of
ducted propagation along the magnetic field (Carpenter et al.2003).

5.2.2 Remote Sensing of Density Profiles Along the Geomagnetic Field Lines Above
IMAGE

The propagation cavity is of geophysical interest for a number of reasons. In the case of the
D component in Fig.14c, representing upward propagation along the geomagnetic field from
IMAGE, an inversion technique can be applied to determine the electron density profile along
the path up to the altitude limit reached by the measured D component (for the conditions
of Fig. 13a, that limit was predicted to be∼4 RE). The inversion method, described in
Carpenter et al. (2003) was applied in the cases of Fig.14a and Fig.14b with the results
shown in Fig.15 on a plot of plasma density versusMLAT for L = 2.1 and 2.3. Density is
shown from the position of IMAGE upward to a point∼5000 km above IMAGE alongB0.
For comparison, we show a profile forL = 2.3 from an empirical model obtained by Huang
et al. (2004), based on X-mode sounding by RPI along multiple field-aligned paths on 8 June
2001. This profile (dashed curve) was scaled by a factor of 0.8 in order to show how well

Fig. 15 Plots of electron density versusMLAT at L = 2.1 and 2.3, inferred from the upward propagating
Z-mode signals illustrated in Figs.14a–b and identified as component D in Figs.14c–d. Thedashed curveis
for L = 2.3 from the Huang et al. (2004) model for a different date. That model is based upon inversion of
free-space mode echoes that propagated to RPI along multiple field-aligned paths. (Adapted from Carpenter
et al.2003)
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Fig. 16 (a) Plot of calculated Z-mode cutoff frequencyfZ versusMLAT along geomagnetic field lines at
L = 2, 3, and 4, illustrating the widespread occurrence of a low-altitude minimum infZ within the plasmas-
phere. A dipole magnetic field model and a diffusive equilibrium density model were assumed.Marks along
the curvesshow the locations of the 3000 km and 5000 km altitudes, respectively. (b) Corresponding plot for
the ratiofpe/fce . (Adapted from Carpenter et al.2003)

the curves forL = 2.3 agree. Geomagnetic conditions relevant to the X (downward) and Z
(upward) measurements ranged from calm (X profile) to quiet (Z profile) similar (nearL =

2.3, variations of 20–30% in the scale factor of the field-aligned electron density distribution
with time, longitude, and disturbance levels are common (Carpenter and Anderson1992)).

5.2.3 Remote Sensing of Plasma Composition Along the Geomagnetic Field Lines

ThefZ profile with altitude may be used as a diagnostic of plasma composition alongB0 in
the topside ionosphere region. If one assumes a three-component plasma in diffusive equi-
librium above a reference altitude, a small positive electron temperature gradient alongB0,
and a known value of electron density at the magnetic equator, one then finds that in order
to place a minimum in thefZ profile in the 3000–5000 km altitude range where it has been
observed, there are important constraints on the ion composition at the reference level.

Figure16a is a plot of calculatedfZ profiles alongB0 at threeL values (2, 3, 4), with
MLAT plotted on the vertical scale. In Fig.16b are shown corresponding plots for the ra-
tio fpe/fce. Using the empirical model of electron density at the equator of Carpenter and
Anderson (1992), an assumed ratio ofHe+ to H+ of 0.05 to 0.1 at the equator, an assumed
value of 2 for the ratio of the electron temperature at the equator to the same temperature
at the 1000 km reference level, it was found that a distribution of 82%O+, 17%He+ and
1% H+ at the reference level would predict the profiles of Fig.16a, which exhibit anfZ

minimum in the observed 3000–5000 km altitude range (Carpenter et al.2003). The alti-
tude of the minimum appeared to be sensitive to the choice of composition at the reference
level, thus suggesting that further observations of this kind could be used to investigate the
poorly known distribution of ions in the coupling region between the ionosphere and the
plasmasphere.

Since little is known of the variations of the plasma properties along the geomagnetic
field lines at altitudes below 5000 km, Z-mode probing of the kind described here can be-
come a valuable adjunct to conventional radio sounding. The RPI data offer many as yet
unexploited opportunities for application of the new method.
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5.3 Additional Diagnostics Uses of Z-Mode Echoes

5.3.1 Non-Ducted or “Direct” Earthward Propagating Z-Mode Echoes

When IMAGE operated in the plasmasphere atL < 3 near 3000–4000 km altitude, the ratio
fpe/fce was frequently>1 but not≫1, and RPI was found to produce discrete, non-ducted
echoes that followed ray paths extending generally Earthward from the satellite. Ducted
echoes of the kind described above could also be present (as often happened in the outer
plasmasphere in the case of simultaneous direct and ducted X-mode echoes). The direct Z-
mode echoes represent low to medium altitude versions of phenomena familiar from topside
sounding work (Carpenter et al.2003).

Two examples of direct echoes recorded on 6 July 2001 are shown in Figs.17a–b. They
were recorded, respectively, at 3100 km altitude,L = 2.4 and at 4100 km altitude,L = 2. On
both panels, a vertical spike identifies the localfpe. There are two discrete Z-mode echoes,
labeled Z and Z′. The Z′ trace begins at localfpe, while the main Z trace rises slowly in
travel time (range) from an origin atfZ , inferred to be off scale to the left. The Z trace
finally crosses over the Z′ trace and the two echoes then extend towards asymptotically long
delays at a maximum frequency belowfuh. This maximum is associated with a limit on
vertical incidence propagation (Jackson1969).

5.3.2 Diagnostic Uses of Direct Z-Mode Echoes

The Z′ trace, as observed on topside sounders, was interpreted by Calvert (1966) as having
propagated obliquely between the satellite and the O-mode reflection level atf = fpe. The
occurrence of two distinct Z-mode echo traces atf > fpe is a consequence of the anisotropy
of the medium, such that ray paths involving two different initial wave normal angles can
lead back to the satellite. The Z′ trace was explained by Calvert (1966) in terms of non-
vertical propagation in a horizontally stratified ionosphere. The “reflection” does not occur
at a Z-mode cutoff, but is in fact the result of refraction such that the ray path reverses di-
rection at a level wheref = fpe. The Z′ trace can be expected to provide information that is
independent of results obtained from inverting the regular Z-mode echo. Note that the trace
delays are substantially longer than those of an O echo at common frequencies, accentuated
by a Z-mode transition atfpe from a fast mode to a slow mode. These traces are therefore
more useful (given the minimum 3.2-ms RPI pulse length and receiver sampling frequency)
than the O- and X-modes of the transitional altitude region. Analysis of Z and Z′ traces for
particular RPI echo observations remain to be performed. However, the information on local
fpe provided by the Z′ trace is particularly helpful for plasma diagnostics at altitudes near
3000–5000 km in the plasmasphere, where the conditionfpe/fce ≈ 1 is common and thus
where estimates offpe based upon measurements offuh by passive probing may not provide
desired accuracy.

5.3.3 Scattered Z-Mode Echoes

In the plasmasphere at altitudes such that the Z-mode frequency domain was broad enough
to occupy a significant range of frequencies belowfuh, a background of diffuse Z-mode
echoes was almost always present, whether or not discrete echoes were received. When
discrete echoes were present, they were typically∼20 dB above the levels of the diffuse
background, as illustrated in Figs.17a–b.

Plasmagrams from the low altitude polar regions wherefpe/fce < 1 regularly exhib-
ited diffuse echoes with the forms illustrated in Figs.17c–d. Distinctive features included:
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Fig. 17 (a)–(b) RPI plasmagrams illustrating Earthward propagating discrete Z and Z′ echoes seen against a
background of diffuse Z-mode noise. (c)–(d) RPI plasmagrams typical of low altitude polar regions showing
diffuse Z-mode echo activity useful for determiningfce andfpe . (Adapted from Carpenter et al.2003)

(i) echoes with ranges substantially longer than those of order 0.5RE to be expected for
Earthward propagating O- and X-modes, (ii) echo activity extending from the lowest de-
tectable range to a maximum value that increased with sounding frequency, (iii) a gap or
weakening of the echoes at an intermediate frequency, and (iv) a relatively abrupt upper
frequency limit, inferred to befuh.

Sonwalkar et al. (2004) performed a ray tracing analysis of diffuse echo events such
as those of Figs.17c–d, finding that for Z-waves belowfce, Earthward propagation to
turning points in the generalB direction could not be excluded, but such propagation
could not explain the wide time spreading of the Z echoes and would in any case tend
to be masked by them. The authors pointed out that because of the variation with alti-
tude of the Z-mode refractive index surface, at any given frequencyf below the local
fce, Z-mode waves can spread out in all directions. Some of these waves, in particular
those propagating in directions from IMAGE that are approximately perpendicular toB0

are scattered by FAI and can return to the satellite. Meanwhile, for frequencies betweenfce

andfuh, Z-mode propagation is allowed within a resonance cone that permits propagation
in the direction roughly perpendicular toB0. These waves can also lead to echoes after
scattering from FAI, as has been documented by topside sounders (e.g., Muldrew1969;
James1979).

5.3.4 Diagnostic Uses of Scattered Z-Mode Echoes

In a case study similar to those of Figs.17c–d, Sonwalkar et al. (2004) found that the ob-
served echo delays could be explained by irregularities located within∼20 to 3000 km
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from IMAGE. The overall distribution of time delays was consistent with propagation the-
ory. For frequencies abovefpe (true of most of the observed echoes in Figs.17c–d) we have
a slow Z-mode, with group velocity decreasing and time delay increasing with frequency for
any given wave normal direction. Abovefce and close tofuh, the Z-mode becomes quasi-
electrostatic and much longer time delays are expected, as observed. The weakening of the
echoes at a frequency corresponding to localfce (Carpenter et al.2003) is believed to be
related to the change in refractive index surface from a closed to an open topology atfce, as
discussed by Gurnett et al. (1983) and LaBelle and Treumann (2002).

In the polar regions at altitudes in the 1000–4000 km range, wherefpe/fce is typically
<1, fuh as observed through passive scanning may no longer be a useful source of infor-
mation onfpe, being dominated by the value offce, and also because of interfering auroral
noise that may be present near 1 MHz. In such cases, Z-mode echoes such as those in
Figs. 17c–d can provide a useful means of measuring localfpe throughfce, indicated by
the gap in echoes, and by the upper hybrid resonance spike, which is often marked by a an
abrupt drop in intensity by∼40 dB on its high frequency side.

6 Whistler-Mode Soundings at Altitudes Below∼5000 km

New whistler-mode (WM) tools for probing at altitudes below∼5000 km have been de-
veloped during work on data from the RPI sounder onboard IMAGE (Reinisch et al.2000).
These tools are based upon various physical mechanisms involved in the reflection and re-
turn propagation to IMAGE of WM waves transmitted by RPI. As described by Sonwalkar et
al. (2009), these mechanisms include: (i) magnetospheric reflection (MR) at locations where
the wave frequency is less than or equal to the localflh, (ii) specular reflection (SR) from
the steep density gradients at the bottom side of the ionosphere, and (iii) multipath propaga-
tion and scattering due to the presence of density irregularities that are often field-aligned.
In most cases, MR- and SR-WM echoes are distinguished by the distinct upper and lower
limits on their frequencies, limits that depend on the value of the lower hybrid resonance at
the altitude of the satellite. The two echo types also differ widely in terms of their frequency-
versus-time properties, which can be separately explained through ray tracing in models of
the plasma environment below∼5000 km. Preliminary descriptions of echoes attributed to
specular reflection, multipath propagation and scattering have been provided by Sonwalkar
et al. (2009). Here we limit ourselves to a brief description of the various echoes and their
apparent diagnostic potential.

6.1 Spreading of RPI Whistler-Mode Echoes in Time Delay

Sonwalkar et al. (2009) report that the spectra of all types of WM echoes detected by RPI
are sensitive to the presence of FAI, and that they manifest this sensitivity on plasmagrams
by various amounts of spreading in travel time, varying from 5–10 ms for the most discrete
cases to 40 ms and more for the most diffuse events. The spreading can be occasioned by
propagation on multiple paths through irregular regions with cross-B0 scale sizes of the
order of 1–10 km or by forward and backward scattering from irregularities with scale sizes
of the order of 10–100 m. Scattering may involve changes in group velocity at the time
of coupling between a predominantly electromagnetic wave and a quasi-electrostatic wave
at an irregularity boundary. For convenience, MR- and SR-WM echoes have been further
classified by Sonwalkar et al. (2009) as either discrete, multipath or diffuse according to the
amount of travel time spreading.
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Fig. 18 (a) RPI plasmagram showing an MR-WM echo recorded on 23 October 2005 at 10:22:46 UT. Fixed
frequency transmitter signals (Tx) are present, as well as a cluster of proton cyclotron (PC) echoes at delays
<40 ms. (b) RPI record on 26 October 2005 at 09:32:42 UT with MR-WM echo and a well defined SR-SW
echo, as well as Tx and PC echoes. (Adapted from Sonwalkar et al.2009)

6.2 Examples of Magnetospherically Reflected and Specularly Reflected Whistler-Mode
Echoes

Examples of MR- and SR-WM echoes are shown on RPI plasmagrams in Fig.18. These
records plot echo travel time in ms versus RPI transmitter frequency, which was stepped
each 250 ms in 300 Hz increments from 6 to 63 kHz (only the range 6–30 kHz is displayed).
In Fig. 18a, recorded at∼2650 km andL ≈ 2.4, a discrete MR-WM echo appears between
∼7.5 and∼11 kHz. At ∼7.5 kHz the echo begins at the shortest delay displayed (∼4 ms)
and extends with decreased amplitude to the top of the record. Beginning at a delay of
∼80 ms, the echo branches towards higher frequencies and extends to an undefined limiting
delay at∼11 kHz. Meanwhile, ground-based transmitter signals (Tx) appear between 16
and 23 kHz, extending over the full time-delay range available. Also present at frequencies
above 8 kHz and at delays less than∼40 ms is a band of proton cyclotron (PC) echoes (see
Sect.7), which are attributed to excitation of ambient protons in the antenna sheath by the
leading edge of each 3.2-ms transmitter pulse (Carpenter et al.2007).

Figure18b, recorded at∼2550 km andL ≈ 2.3, also shows an MR-WM event, in this
case with delimiting frequencies of∼7 and∼9 kHz. Transmitter signals are again present,
although those near 16 and 23 kHz exhibit less spreading in frequency than those in Fig.18a.
A highlight of this record is a discrete SR-WM echo, which exhibits delays near 80 ms
between∼20 and 30 kHz but curves towards longer delays as it approaches the 9 kHz high
frequency limit of the MR-WM echo.

Although examples of discrete, multipath, and diffuse SR-WM echoes were shown pre-
viously by Sonwalkar et al. (2004), RPI WM-echoes have now been observed much more
extensively and categorized much more completely as a result of sounding operations at
frequencies below 60 kHz in 2004 and 2005 (Sonwalkar et al.2009).

6.3 Specularly Reflected Whistler-Mode Echoes

RPI soundings at WM frequencies regularly exhibit echoes that extend over a wide range
of frequencies and are interpreted as having reflected from the steep density gradients at the
bottom side of the ionosphere (Sonwalkar et al.2004). Such SR-WM echoes often accom-
pany MR-WM echoes, as illustrated by the example of Fig.18b. Since an SR-WM echo
provides an integral measure of the electron density between IMAGE, say at∼3000 km, and
the ionosphere at∼100 km, it is particularly sensitive to density levels at altitudes below
those reached by a simultaneous MR-WM event (∼1500 km). Thus its dispersion properties
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may be used to constrain the density/plasma composition model that is found most consis-
tent with the MR-WM event.

6.4 Magnetospherically Reflected Whistler-Mode Echoes and the Lower Hybrid
Resonance

It may be seen in Fig.12 that the Z-, O-, and X-mode dispersion diagrams each exhibit
low frequency cutoffs, at which the refractive index goes to zero and the wave is reflected.
That type of cutoff does not occur for WM waves. When the presence of ions is taken into
account, the dispersion of WM is modified (not included in Fig.12) such that WM waves,
propagating at high wave normal angles with respect toB0 can undergo magnetospheric
reflection at altitudes wheref ≈ flh. For an electron,H+, He+, andO+ plasma,flh is given
by the following equation:

1

meff(mp/mef
2
lh)

=
1

f 2
pe

+
1

f 2
ce

, (2)

wheremp/me is the proton/electron mass ratio and the effective ion massmeff is defined as:

1

meff
=

α

1
+

β

4
+

γ

16
, (3)

whereα, β andγ are, respectively, the fractional abundances ofH+, He+ andO+.
The magnetospheric reflection is actually a refraction caused by a topological change and

decrease in the size of the refractive index surface as the WM wave at large wave normal
angle propagates from a region whereflh < f to a region whereflh > f . Whenflh < f , the
refractive index surface is “open”, with a so called resonance cone (delimiting an angular
region of no propagation), and whenflh > f , it is “closed”, such that the propagation is
allowed at all angles with respect toB0 (Kimura1966).

MR-WM echoes may exhibit a variety of discrete or diffuse spectral forms. MR-WM
echoes with clearly identifiable forms, such as those illustrated in Fig.18, tend to present
a nose-like shape on plasmagrams because of extended time delays at the form’s minimum
and maximum frequencies. Those limiting frequencies, usually separated by a few kHz, are
associated, respectively, withflh at the location of the satellite (the lower frequency), often
near 6 kHz, and the maximum value offlh along the field line extending Earthward from
IMAGE (the upper frequency), often in the range 9–12 kHz.

Key formative elements in the MR-WM echo phenomenon are believed to be: (i) prop-
agation of RPI WM waves at high wave normal angles, near the so called resonance cone
around the direction of the magnetic field; (ii) reflection of the waves near an altitude where
the wave frequency is lower than but close to localflh; (iii) in the case of multipath or
diffuse MR-WM echoes, refraction or scattering of the waves through encounters with FAI
such that the echoes reach the satellite with varying time delays.

6.5 The Diagnostic Potential of Magnetospherically Reflected and Specularly Reflected
Whistler-Mode Echoes

The time-delay-versus-frequency properties of MR-WM echoes provide a measure offlh

along the field line passing through the satellite. The lower cutoff frequency of MR-WM
echo,flh at the satellite, provides a measure ofmeff at that higher altitude whereH+ and
He+ may be dominant. The upper frequency cutoff of the MR-WM echo provides a measure
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of themeff of the plasma in the important transition region (∼1000–1500 km) between the
O+ dominated lower ionosphere and theH+ dominated region at higher altitudes. This can
be seen from expressions of (2) and (3) for flh andmeff, respectively. It is clear that within
altitude ranges over, which the r.h.s. of (2) does not change appreciably, the value offlh

will be sensitive to changes inmeff (by as much as a factor of 16) associated with altitude
variations in ion composition.

Ray tracing simulations of the dispersion properties of simultaneously observed MR- and
SR-WM echoes may be used for remote sensing of the ion composition and total electron
density along a field line between the bottom of the ionosphere and the position of IMAGE

(Sonwalkar et al.2009). As noted, the MR-WM echo provides measures of the localmeff and
of meff at the altitude of the maximumflh below the satellite (in the vicinity of 1000 km).
Meanwhile, the SR-WM echo, because of its noted sensitivity to the ionospheric electron
density profile, provides an important constraint on the overall plasma density model used
in the ray tracing simulation. Assuming a diffusive equilibrium model for magnetospheric
density (see also Pierrard et al.2009, this issue), Sonwalkar et al. (2009) developed a ray
tracing method that determines the diffusive equilibrium model parameters such that the
MR- and SR-WM dispersion and frequency cutoffs calculated from ray tracing simulations
agree with those observed within experimental uncertainties. Applying this method in two
specific instances, including the case shown in Fig.18b, Sonwalkar et al. (2009) determined
within 10% the electron and ion (H+, He+, O+) densities alongB0 (L ≈ 2) passing through
the satellite between 3000 km and 90 km.

7 Proton Cyclotron Echoes and a New Resonance

At altitudes ranging from∼1500 km to 20000 km in the plasmasphere, the RPI instrument
onboard IMAGE can couple strongly to protons in the immediate vicinity of the satellite as
it transmits 3.2-ms pulses and scans from 6 to 63 kHz or 20 to 326 kHz. Those soundings
also give rise to a new resonance at a frequency∼15% abovefce (Carpenter et al.2007).
The coupling to protons is revealed in echoes that arrive at multiples of the local proton
gyroperiodtp . Lower-altitude (<4000 km) versions of several of these proton cyclotron
(PC) echo forms were observed in the topside ionosphere by sounders in the ISIS satellite
era, among them discrete echoes in the WM domain belowfce and in the nominally non-
electromagnetically propagating domain abovefce (e.g., Oya1978; Horita 1987; Muldrew
1998). Also seen on ISISsatellites were spur-like broadenings of resonances such as the one
atfpe (e.g., King and Preece1967; Benson1975; Horita1987).

7.1 Thef +
ce Echo

Figure19a shows an example of what has been called anf +
ce echo, a phenomenon often

observed in the plasmasphere by RPI at frequencies from∼10 to 20% abovefce (Carpenter
et al.2007). The plasmagram presents time delay from∼40 to 100 ms versus frequency from
20 to 50 kHz. IMAGE was atL ≈ 3.7, well inside an extended plasmasphere at an altitude
of ∼14 000 km and in the mid-afternoon sector. The local electron density was∼560 cm−3.
The local value offce is well defined at∼30 kHz by a resonance spike, a type of response
that is regularly present on sounder records from the topside ionosphere (Benson1977, and
references cited therein). A band of WM noise extends upward in frequency to a relatively
sharp cutoff at∼26 kHz. This band is attributed to multi-path propagation and scattering
of a variety of WM signals, including naturally occurring wave emissions, WM emissions
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Fig. 19 (a) Portion of an RPI plasmagram showing a well defined proton cyclotron (PC) echo that exhibits
extended delays at frequencies just abovefce and then approaches a constant delay at the local value of
the proton gyroperiodtp . (b) RPI plasmagram illustrating three effects, a PC echo in the WM domain, a
resonance at a frequency just abovefce , and discrete echoes at multiples oftp . (Adapted from Carpenter et
al. 2007)

triggered by lightning, and multiple WM signals from ground-based transmitters. In the
figure, thef +

ce echo first appears at∼33 kHz,∼3 kHz abovefce, and extends to 39 kHz.
It exhibits a time-delay-versus-frequency form something like that of a hockey stick, at
first falling steeply in delay with increasing frequency and then curving to reach a constant
delay of∼61 ms. That delay corresponds closely to the localtp = 1836/fce. On IMAGE

the occurrence rates of PC echoes abovefce were highest during periods when the angleφ

between the spacecraft velocity vector and the geomagnetic fieldB0 was small, near 20◦,
but on occasion such echoes were detected whenφ approached 90◦.

7.2 Thef +
ce Resonance

A new phenomenon, called thef +
ce resonance, has been observed at a frequency∼15%

abovefce (Carpenter et al.2007). This resonance is apparently confined to altitudes above
∼7000 km. It is illustrated by the plasmagram of Fig.19b, which displays time delay from
0 to 178 ms versus frequency from 6 to 63 kHz. At the time of the figure, IMAGE was at
L ≈ 3.6 and at an altitude of∼12 000 km, well inside the plasmasphere. Three echo forms
appear, a WM echo, multiplef +

ce echoes, and anf +
ce resonance. The WM echo, extending

from ∼9 to 17 kHz at a constant delay of∼45 ms, appears as a discrete intensity enhance-
ment within the usual WM noise background. The value offce is well marked by a tapered
resonance spike at∼42 kHz. Approximately 3 kHz abovefce is anf +

ce resonance. This reso-
nance differs from the spike atfce in that it extends to the top of the record and (in this case)
is not clearly defined in the first∼30 ms after the beginning of the transmitter pulse. Along
the high-frequency side of thef +

ce resonance aref +
ce echoes that arrived at multiples oftp ,

the first at∼44.5 ms, the second at∼89 ms, and the third at∼133 ms. There are differences
in amplitude among the echo forms illustrated in Fig.19b: Portions of the WM echo near
10 kHz are∼10–15 dB stronger than thef +

ce resonance orf +
ce echoes.

7.3 Whistler-Mode Proton Cyclotron Echoes

Of special interest are exceptionally strong echoes in the WM domain near 10 kHz (Carpen-
ter et al.2007). On a given orbit, these invariably appeared at altitudes∼5000 km and below
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and could be detected at altitudes up to∼12 000 km. In some cases, the echoes appeared
on plasmagrams showing other PC echo activity (see Fig.19b). Most of the WM echoes
observed thus far were found within the plasmasphere or the PBL, atMLAT between−60◦

and+60◦. They were evident on occasion at higher latitudes and over the polar regions, but
tended to be obscured there by strong natural WM noise with power spectral density 10 dB
or more above the noise levels in the plasmasphere. Samplings showed strong WM echo
activity at several widely spaced MLT, suggesting that such echoes may occur in all local
time sectors.

At each frequency during a given sounding, WM echoes tended to repeat at time de-
lays that were multiples oftp. Figure20 displays such effects on plasmagrams recorded
on three different orbits at altitudes∼10 700,∼7700, and∼4200 km, respectively. As al-
titude decreased, the inter-echo time delay decreased accordingly. In the stronger magnetic
fields below∼3000 km altitude, the time interval at each frequency between successive
high-order echoes fell below 6.4 ms, the minimum interval allowing separation of echoes
by one 3.2-ms time delay pixel, and individual echoes could no longer be resolved. In such
cases, the echoes formed a “continuous” response extending to multiple values oftp. When

Fig. 20 RPI plasmagrams
showing PC echoes in the WM
domain, repeating at multiples of
the localtp . The examples were
recorded on three different orbits
at altitudes∼10 700 km (a),
∼7700 km (b), and
∼4200 km (c). Thevertical lines
between 16 and 24 kHz in panel
(c) represent WM transmissions
from ground transmitters.
(Adapted from Carpenter et al.
2007)
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the angleφ was near a local minimum of order 10◦, WM echoes were observed to repeat
at multiples oftp up to 15 or more. The data indicate that WM echo detection near 10 kHz
was largely confined to a region of radius∼300 m around the field line of excitation, and
that the peak excitation of the protons occurred as a transient event at the beginning of each
radio frequency (rf ) pulse.

7.4 Comments on Physical Mechanisms of Proton Cyclotron Echoes

Carpenter et al. (2007) suggest that PC echoes and the new resonance are driven by a variety
of mechanisms. Time delay measurements of WM echoes near 10 kHz indicated that the en-
ergization of the protons by a given 3.2-ms sounder pulse was essentially a transient process
that occurred at the beginning of the pulse, and to that extent did not involve replication of
therf pulse by the echo. It was inferred that there is spatial bunching of accelerated protons
during the initial formation of an electron sheath around the positive-voltage antenna ele-
ment. The gyrating protons then produce a series of electrostatic pulses at multiples oftp .
Tight bunching of accelerated protons does not occur during the remainder of a 3.2-ms pulse,
since ambient electrons never again appear close to the antenna during this period (due to
the acceleration of protons during negative half cycles, protons near the antenna have a wide
distribution of energies and thus are not subject to tight bunching during subsequent positive
half cycles).

Most WM echoes were observed when IMAGE moved at low angles toB0 and was within
a distance of∼300 m transverse to the field line of original excitation of the plasma. The
echoes showed no measurable WM propagation delay from a source, which is consistent
with the inferred electrostatic nature of the echoes and the closeness of the antenna to the
source field lines. The high intensity of the lower-order WM echoes, which regularly satu-
rated the RPI receiver near 10 kHz, as well as the lack of detectable WM echo activity above
12 000 km altitude, were attributed in part to the fact that proton energization at the leading
edge of the sounder pulse was at maximum levels when therf of the pulse was below, but
near, the local proton plasma frequencyfpp = fpe/43.fpp reaches a maximum of∼13 kHz
at the lower IMAGE altitudes, but falls below 6 kHz (the lowest sounder operating frequency)
above 12 000 km.

In contrast to WM echoes,f +
ce echoes occurred at frequencies well abovefpp and were

thus outside the range where significant transient energization was expected. Also in contrast
to WM echoes,f +

ce echoes appeared to replicate the sounder pulse frequency and in so doing
experienced large frequency-dependent increases in travel time asfce was approached from
above. This dispersion as well as a year-to-year decrease inf +

ce echo activity with increas-
ing separation of the antenna from the “excited” field lines, is consistent with an explanation
of f +

ce echoes observed in the ISIS satellites in terms of thermal-mode propagation from
a perturbed proton distribution (Muldrew1998). A possible source of energy for the com-
paratively weakf +

ce echoes is the quasi-static electric field that exists in the ion sheath that
surrounds each antenna element in the immediate aftermath of anrf pulse, as discussed in
Carpenter et al. (2007).

The new resonance abovefce suggested the existence of a ringing phenomenon in the
plasma that is unique to altitudes above∼7000 km. The resonance mechanism appears to
operate independently of thef +

ce echo mechanism, although both phenomena were found
within a similar range of frequencies abovefce. The long enduring nature of the resonances,
lasting at times for at least 300 ms, suggests that the perturbed plasma environment in which
the ringing occurred was carried with the spacecraft a kilometer or more beyond the∼300 m
transverse distance within which the WM echoes were found. The collapse of the ion sheath
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following an rf pulse may provide energy for the ringing process. This collapse may on
occasion delay the onset of the detected resonance, in the manner proposed by Muldrew
(1972), who argued that in the case of certain ionospheric resonances, the antenna sheath
may temporarily exclude very short wavelength stimulated waves.

Previously suggested processes that were considered relevant to PC echoes abovefce and
to the new resonance include: (i) coupling between an excited Z-mode wave and longitudinal
plasma waves (Benson1975), (ii) accumulation of negative charge on an electric antenna
during anrf pulse (Oya1978), and (iii) Bernstein-mode propagation to an antenna from an
excited proton population (Muldrew1998).

8 Chorus

8.1 Observations of Whistler-Mode Chorus Emissions by CLUSTER

Whistler-mode (WM) chorus emissions are electromagnetic waves in a frequency range
from a few hundreds of Hz to several kHz. Chorus was first observed on the ground (Storey
1953) but spacecraft observations in the Earth magnetosphere are also frequent. Chorus
often contains many distinct short-duration wave packets, which change their frequency at
time scales of a fraction of 1 s (see reviews by Sazhin and Hayakawa1992; Omura et al.
1991). The generation mechanism of chorus is not yet well understood. It is most often
accepted that chorus is generated by a nonlinear process (Nunn et al.1997; Trakhtengerts
1999; Trakhtengerts et al.2004), which involves the electron cyclotron resonance of WM
waves with energetic electrons.

WM chorus emissions are receiving an increased attention in connection with the accel-
eration of energetic electrons in the radiation belts (e.g., Horne et al.2005). Important new
results on chorus has been obtained with wave and particle instruments onboard CLUSTER

as well as with the DOUBLE STAR spacecraft, which routinely detects chorus emissions, and
with the low altitude DEMETERspacecraft. This research provided us with tests of the exist-
ing theories of the chorus source mechanism and particle acceleration, and further motivated
theoretical work. In the next two subsections we discuss results, which can have implica-
tions for plasmaspheric physics, i.e., results on position and size of the chorus source region
and on propagation of chorus from its source region.

8.2 Position and Size of the Chorus Source Region

During the period of very close separation distances of the CLUSTERspacecraft (of the order
of hundreds of km), very similar chorus emissions were observed in their generation region
close to the magnetic equatorial plane at a radial distance of 4.4RE (Fig. 21). Both linear
and rank correlation analysis have been used by Santolík and Gurnett (2003) and Santolík et
al. (2004a) to define perpendicular dimensions of the sources of lower-band chorus elements
below 1

2fce. Correlation was significant in the range of separation distances of up to 260 km
parallel to the field line and up to 100 km in the perpendicular plane. At these scales, the
correlation coefficient was independent on parallel separations and decreased with perpen-
dicular separation. This characteristic perpendicular scale varied between 60 and 200 km for
different data intervals inside the source region. This variation was consistent with a simulta-
neously acting effect of random positions of locations at which the individual coherent wave
packets of chorus were generated. The statistical properties of the observations were consis-
tent with a model of the source region assuming individual sources of separate wave packets
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Fig. 21 Detailed time–frequency power spectrograms of electric field fluctuations in the source region
recorded by the WBD instruments onboard the four CLUSTER spacecraft on 18 April 2002. Panels (a)–(d)
show data from C1–C4, respectively.Arrows indicate local12fce for each spacecraft.MLAT is given on the
bottom for C1. Radial distance is 4.4RE , and MLT is 21:01 during this interval. (Adapted from Santolík and
Gurnett2003)

as Gaussian peaks of power radiated from individual active areas with a common half-width
of 35 km perpendicular to the magnetic field (Santolík et al.2004a). This characteristic scale
was comparable to the wavelength of observed WM waves.

Central position of the source region from multipoint measurement of the Poynting flux
is located close to the magnetic equatorial plane (Parrot et al.2003; Santolík et al.2003,
2004b, 2005a). Observed spatio-temporal variations of the direction of the Poynting flux
consistently show that the central position of the chorus source fluctuates at time scales of
minutes within a few thousands of km of the magnetic equator (Fig.22). The typical order
of magnitude of the speed of this motion is 100 km s−1. Note that this is a global speed
of motion of the central position of the entire source region. It has been determined from
the Poynting flux measurements where we always average propagation properties of several
chorus wave packets. This speed is thus different from the speed of motion of individual
sources discussed by Inan et al. (2004), Platino et al. (2006), Breneman et al. (2007) and
Chum et al. (2007). Estimates of the electromagnetic planarity can be used to characterize
the extent of the source in the direction parallel to the field line, obtaining at a radial distance
of ∼4 RE a source extent of 3000–5000 km (Santolík et al.2004b, 2005a). This is consistent
with theoretical results (Trakhtengerts et al.2004) and with recent numerical simulations
(Omura et al.2008).

Santolík et al. (2005b) used the first measurements of the STAFF/DWP instrument on the
DOUBLE STAR TC-1 spacecraft to investigate radial variation of intensity of WM chorus for
L between 4 and 12. The chorus events showed an increased intensity atL > 6, consistent
with intensifications of chorus, which were previously observed closer to the Earth at higher
latitudes.

8.3 Propagation of Chorus From its Source Region

The four CLUSTER spacecraft observed that intense chorus waves propagate away from the
equator simultaneously with lower-intensity waves propagating towards the equator (Parrot
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Fig. 22 ZSM coordinate of the four CLUSTER spacecraft during the geomagnetic storm on 31 March 2001
as a function of time. Sign of the parallel component of the Poynting flux is shown bydownward arrows
attached to theopen symbols, and byupward arrowswith the solid symbols, for southward and northward
components, respectively. Thehalf-filled symbols with no arrowsindicate that the sign cannot be reliably
determined.Horizontal grey lineis at the magnetic equator,vertical grey lineshows the time when center of
mass of the four spacecraft crosses the equatorial plane.Shaded areasbound the regions of low values of the
electromagnetic planarity.Purple lineshows the calculated position where the Poynting flux changes its sign.
(Adapted from Santolík et al.2004b)

et al.2004a, 2004b). Using the observed wave normal directions of these waves, a backward
ray tracing study predicts that the lower-intensity waves undergo the lower hybrid resonance
(LHR) reflection at low altitudes (Parrot et al.2004a). The rays of these waves then lead us
back to their anticipated source region located close to the magnetic equator. This source
region is, however, located at a different radial distance compared to the place of observation.
The intensity ratio between magnetic component of the waves coming directly from the
equator and waves returning to the equator has been observed between 0.005 and 0.01.
The observations also show that waves returning to the equator after the magnetospherical
reflection still have a high degree of polarization, even if they started to lose the coherent
structure of the chorus elements (Parrot et al.2004b).

Chum and Santolík (2005), Santolík et al. (2006) and Bortnik et al. (2007) showed that
chorus can propagate to low altitudes towards the Earth if it is generated with Earthward
inclined wave vectors. This result can be used to explain observations of low-altitude elec-
tromagnetic ELF hiss at subauroral latitudes. Santolík et al. (2006) reported observations
of a divergent propagation pattern of these waves: They propagate with downward directed
wave vectors, which are slightly equatorward inclined at lowerMLAT and slightly poleward
inclined at higher latitudes. Reverse ray tracing using different plasma density models indi-
cated a possible source region near the magnetic equator at a radial distance between 5 and
7 RE by a mechanism acting on highly oblique wave vectors. Additionally, waveforms re-
ceived at altitudes of 700–1200 km by FREJA and DEMETER showed that low-altitude ELF
hiss contains discrete time–frequency structures resembling wave packets of WM chorus.
Detailed measurements of the CLUSTER spacecraft gave the time–frequency structure and
frequencies of chorus along the reverse raypaths of ELF hiss, which are consistent with the
hypothesis that the ELF hiss is a low-altitude manifestation of WM chorus. This propaga-
tion pattern applies mainly to the most frequently occurring dawn and dayside chorus. As
noted in the following section these waves can also be considered as a possible additional
candidate for the embryonic source of plasmaspheric hiss.
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9 Hiss

The last comprehensive review on plasmaspheric and mid-latitude hiss was done by
Hayakawa and Sazhin (1992). The following two sections are not an update to that work,
but rather tries to put into context recent advances obtained on these natural waves thanks to
the CLUSTER and IMAGE satellites.

9.1 Plasmaspheric Hiss

Plasmaspheric hiss is an electromagnetic emission confined to the plasmasphere. It occurs
at all local times but is more intense on the dayside, and further intensifies with geomagnetic
activity (Dunckel and Helliwell1969; Russell et al.1969; Thorne et al.1973). Its spectral
characteristics are similar to audible hiss: structureless and banded in frequency between
∼100 Hz and several kHz. Statistically, its intensity peaks near 500 Hz and is one order of
magnitude more intense below than above 1 kHz (Fig.23).

Fig. 23 (Top) WHISPER electric field spectrogram from C4 on 7 October 2001, from 14:45 to 18:30 UT.
A banded hiss emission is observed from 16:25 to 17:04 UT (white arrow). Theblack box(black arrow) sym-
bolizes the time period and the frequency range of the enlargement displayed in thebottom panel. (Bottom)
High-time resolution WBD electric field spectrogram measured by C4 on 7 October 2001, during 30 s from
16:00:00.024 UT. The mid-latitude hiss emission is observed just above 5 kHz, while plasmaspheric hiss is
observed from 100 Hz to 3 kHz with maximum spectral intensity below 700 Hz. (Adapted from Masson et
al. 2004)
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Plasmaspheric hiss has been studied since the late 1960s using observations from var-
ious satellites flying across the plasmasphere (Hayakawa and Sazhin1992). It was found
in particular that this emission plays a key role in the precipitation of relativistic electrons
from the plasmasphere into the atmosphere (Sect.9.1.1). However, even four decades after
its discovery, its source location and generation mechanism remain controversial topics. As
shown in Sect.9.1.2, significant progresses have been made in recent years on these issues,
thanks to data collected by several satellites including CLUSTER and IMAGE.

9.1.1 Impact on the Radiation Belts

The Van Allen radiation belts are two roughly concentric belts of energetic particles
(>100 keV) encircling the Earth. The inner belt is characterized by a fairly stable popu-
lation of high-energy protons (∼10–100 MeV), trapped betweenL = 1.25 andL = 2. The
outer belt encircles the inner belt (3< L < 7) and is characterized by a population of rela-
tivistic electrons (>1 MeV) and various ions (∼10 keV–10 MeV). However, the content of
the outer belt fluctuates widely with regards to the geomagnetic activity. Between the inner
and the outer belts (2< L < 3), the population of relativistic electrons drops down by a
factor of 10 to 100 (e.g., Brautigam et al.2004). However, during very strong geomagnetic
storms, this slot region can be filled with energetic particles. The slot region subsequently
reforms on a timescale of days to weeks.

Theoretical work by Kennel and Petschek (1966) showed that natural waves propagating
in the whistler mode are able to gain energy from a gyroresonance interaction with radiation
belt relativistic electrons near the magnetic equator, causing them to change pitch angle and
precipitate. Several types of WM waves exist in the plasmasphere (e.g., Green et al.2005a)
but plasmaspheric hiss was shown to be the dominant emission responsible for the electron
scattering in the slot region (Lyons et al.1972; Thorne et al.1973; Abel and Thorne1998).
Plasmaspheric hiss was also found to be an important loss mechanism inside plasmaspheric
plumes (Summers et al.2008), the outer radiation belt (Meredith et al.2007) and the upper
part of the inner belt (Tsurutani et al.1975) during magnetically disturbed periods.

Therefore understanding the origin of plasmaspheric hiss is of fundamental importance
to forecast the distribution of relativistic electrons and dynamics of the radiation belts elec-
trons.

9.1.2 Origin of Plasmaspheric Hiss

Over the years, two theories have emerged as the most likely candidates to explain the ori-
gin of plasmaspheric hiss. One of them considers the in situ growth and amplification of
background electromagnetic turbulence in space, driven by unstable energetic electron pop-
ulations (Thorne et al.1973). Unfortunately, typical wave growth rates estimated in the
plasmasphere are too weak to locally generate the hiss emissions with its observed power.
However, once hiss is generated, its power can be maintained thanks to the presence of these
anisotropic energetic electrons in the outer plasmasphere, via a physical process known as
cyclotron resonant instability (Church and Thorne1983).

The other theory considers terrestrial lightning strikes as the main energy source of
plasmaspheric hiss (Dowden1971; Sonwalkar and Inan1989; Draganov et al.1993;
Bortnik et al.2003). Lightning strikes trigger the emission of impulsive signals that can
reach the plasmasphere. As they propagate, they undergo dispersion as lower frequencies
travel slower than higher ones, sounding like a whistler when turned to audio. Several of
these lightning-generated whistlers can finally merge into a broadband signal that becomes
plasmaspheric hiss as originally suggested by H.C. Koons according to Storey et al. (1991).
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Using a new statistical wave-mapping technique on data collected by DE-1 and IMAGE,
Green et al. (2005a) showed that the distribution of hiss emissions in the plasmasphere at
3 kHz is similar to the geographic distribution of lightning strikes. In particular, the observed
emissions are stronger over the continents than the oceans. The 3 kHz frequency was chosen
since it is the lowest frequency of the IMAGE/RPI instrument. They claim that geographic
control of a portion of the hiss spectrum exists to some extent above∼500 Hz, although
the DE/PWI data below 1.2 kHz were only examined in a qualitative manner (Green et al.
2006). They concluded that lightning is the dominant source of plasmaspheric hiss. But this
conclusion has been called into question by Thorne et al. (2006) arguing in particular that the
intensities of the waves above 1 kHz are much smaller than the intensities of plasmaspheric
hiss below 1 kHz.

Meredith et al. (2006) subsequently analyzed the geographic distribution of hiss over a
wider frequency range (0.1–5.0 kHz) usingCRRES data. They found that the waves be-
tween 1.0 kHz and 5.0 kHz are most likely related to lightning-generated whistlers, con-
firming the results obtained by Green et al. (2005a) at 3 kHz. However, they found that
the waves at lower frequencies (0.1–1.0 kHz) are independent of lightning activity. Since
the emission power of plasmaspheric hiss below 1 kHz is statistically an order of magnitude
higher than above 1 kHz, lightning strikes are not responsible for the bulk of the wave power
of plasmaspheric hiss. As electron loss via pitch angle scattering is proportional to the wave
power, this suggests that lightning strikes is not the dominant energy source, which main-
tains the slot region in the radiation belts during quiet to moderate geomagnetic activity. In
other words, both leading models for the origin of plasmaspheric hiss are not fully backed
up by observations.

An alternative explanation for the generation of plasmaspheric hiss was proposed by
Chum and Santolík (2005) who discovered that chorus, a well-known intense electromag-
netic emission generated outside the plasmasphere, can fill the plasmasphere and might be
one of the possible sources of plasmaspheric hiss (see Sect.8). They also found that the
wave-normal angles of these waves stay far from resonance and therefore effects of Lan-
dau damping can be excluded. Additionally the wave normals are nearly field-aligned inside
the plasmasphere, consistent with previous observations of plasmaspheric hiss. This makes
possible further amplification of these waves by the cyclotron resonance (e.g., Santolík et
al. 2001). Equatorward reflected ELF hiss at low altitudes that is also most probably related
to chorus emissions might represent another simultaneously acting embryonic source (San-
tolík et al.2006). The results of Chum and Santolík (2005) were reproduced and confirmed
by Bortnik et al. (2008) who obtained the same effect and who verified the absence of Lan-
dau damping. According to this study, plasmaspheric hiss is driven by chorus emissions.
By modeling the propagation of chorus to lower altitudes, Bortnik et al. (2008) are able to
reproduce the main features of plasmaspheric hiss including its observed spectral signature,
incoherent nature and day-night asymmetry in intensity.

9.2 Mid-Latitude Hiss

9.2.1 Mid-Latitude Hiss and Auroral Hiss

Mid-latitude hiss (MLH) emissions are natural radio waves that usually appear as a band-
limited white noise with a central frequency contained between 2 and 10 kHz and a spectral
bandwidth of 1 to 2 kHz (Fig.23). Such hiss emissions were first discovered by ground-
based observatories located at mid-latitudes (30–60◦) in the 1950s and 1960s (Watts1957;
Laaspere et al.1964; Helliwell 1965). When converted to audio range, these VLF waves
(3–30 kHz) have a characteristic “hissing” sound, hence their name.

                                 

                                 

  
  
  
  
  
  
  
  
  
  
  



Advances in Plasmaspheric Wave Research

The first studies of this natural phenomenon suggested that they were just auroral hiss,
sometimes called polar hiss (Ondoh2006), propagating from auroral latitudes to mid-
latitudes within the Earth-ionosphere waveguide. This was shown to be incorrect in the
pioneering works by Harang (1968) and Hayakawa et al. (1975). Significant differences
between auroral and MLH spectral signatures were found between simultaneous measure-
ments from stations located at mid- (34.5◦) and auroral (69◦) latitudes (see Hayakawa and
Sazhin1992, for the last comprehensive review on MLH). In particular, the upper limit of
MLH spectrum could extend up to 8 kHz while the auroral hiss spectrum could extend up
to 500 kHz or even higher.

Since then, hiss events recorded at mid- or even low-latitude stations have been consid-
ered to be independent from auroral hiss. Mid- and low- latitude hisses are both named MLH
since the maximum of their occurrence was found at middle latitudes, 55◦ to 65◦ (Helliwell
1965). This latitudinal range is magnetically connected to the plasmapause location, which
explains why MLH is sometimes called narrow-band plasmapause hiss or simply plasma-
pause hiss (e.g., Ondoh2006).

Thanks to satellite measurements and theoretical studies, other fundamental differences
have been discovered between auroral and MLH, such as their source location and genera-
tion mechanism.

9.2.2 Source Location and Generation Mechanism

Ground-based direction finding performed by Hayakawa et al. (1986) revealed that MLH is
generated mainly on the inner side of the PBL. For the first time, a survey of MLH events
observed close to their source region by the CLUSTER satellites confirmed the presence of
MLH around the magnetic equator, in the PBL at around 4RE , i.e., 25 000 km altitude
(Masson et al.2004).

MLH, like chorus, is generated near the magnetic equator and propagate via the whistler
mode. Chorus often accompanies MLH and the upper cutoff of the combined band of
hiss and chorus is found to be proportional to the equatorial gyrofrequency (Dunckel
and Helliwell 1969). Both type of waves are believed to be generated by the electron
cyclotron instability, sometimes called the whistler-mode instability. Combined ground-
based and satellite measurements reveal that mid-latitude/plasmapause hiss waves are ex-
cited around the equatorial plasmapause by the cyclotron instability of electrons with en-
ergy of a few keV convected from the magnetotail (e.g., Hayakawa and Sazhin1992;
Ondoh2006, and references therein).

Unlike MLH, auroral hiss emissions are broad, intense electromagnetic emissions, which
occur over a wide frequency range from a few hundred Hz to several tens of kHz. At low
frequencies, auroral hiss occurs in a narrow latitudinal band, typically only 5–10◦ wide,
centered on the auroral zone (70–80◦). At high frequencies, the emission spreads out over
a broad region, both towards the polar cap, and to a lesser extent towards the equator. The
anisotropic character of whistler-mode propagation causes this spreading at high frequen-
cies.

Satellite data, such as those from POLAR, also revealed that auroral hiss is emitted in a
beam around an auroral magnetic field line located betweenL = 2 andL = 4. Downward
propagating auroral hiss emissions are closely correlated with intense, downgoing 100 eV to
40 keV electron beams precipitating from the plasmasheet boundary layer in geomagnetic
quiet and disturbed periods (Gurnett and Franck1972). Upward propagating auroral hiss is
correlated with upgoing∼50 eV electron beams.

All these facts confirm ground-based initial measurements: Auroral hiss and MLH are
two distinct natural phenomena.
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9.2.3 Geomagnetic Activity Impact

Several physical characteristics of MLH are affected by geomagnetic activity, starting with
their duration. During quiet geomagnetic conditions, such a band-limited white noise usu-
ally lasts for an hour. However, during active periods, MLH can last for several hours show-
ing amplitude fluctuations on a time scale of tens of minutes (see page 427 of Sonwalkar
1995).

According to Ondoh (2006), the occurrence rate of MLH is maximum under geomagnetic
quiet conditions (30 nT< AE< 200 nT) while the occurrence rate of auroral/polar hiss is
much larger in the substorm period (200 nT< AE< 924 nT). This statistical study is based
on 65 MLH and 74 polar hisses observed by the ISIS-2 satellite (1400 km altitude, polar
circular orbit) under various geomagnetic conditions.

Close to the source region, in the vicinity of the magnetic equator at 4RE , Masson et
al. (2004) showed that the central frequency of MLH (f0) is correlated with theKp index:
the higherKp, the higherf0. One possible explanation suggested in this paper assumes that
these waves are generated in the vicinity of the plasmapause, near the magnetic equator, in
a givenf/fce frequency bandwidth. At the equator near the plasmapausefce is proportional
to 1/L3

pp, whereLpp is the geocentric radial distance of the plasmapause. When geomag-
netic activity is high, the plasmasphere is compressed, the plasmapause location gets closer
to the Earth, and soLpp decreases. In this case,fce will increase, hencef0 increases too,
according to our assumption (f0/fce constant). This explanation is in agreement with theo-
retical predictions (Sazhin1989; Hayakawa and Sazhin1992) and with early ground-based
measurements, which revealed that the central frequency of hiss usually increases with de-
creasing latitude (Laaspere et al.1964). This behaviour is similar to plasmaspheric hiss,
whose wave frequencies just inside the plasmapause increase with increasingKp (Thorne et
al. 1973).

10 Equatorial Noise

10.1 Introduction

Emissions called “equatorial noise” are electromagnetic waves (the term “fast magnetosonic
waves” is also sometimes used, e.g., Horne et al.2000 2007) observed close to the mag-
netic equator (within∼ ±3◦) at frequencies betweenfce and flh and at radial distances
R = 2–7RE . They propagate in the fast magnetosonic mode coupled to the whistler mode
with wave vectors nearly perpendicular to the ambient magnetic field (B0), with magnetic
field fluctuations linearly polarized in the direction ofB0. Electric field fluctuations are el-
liptically polarized with a low ellipticity (from 0.02 to 0.11, see Santolík et al.2002), major
polarization axis being oriented along the wave vector. CLUSTERobserves emissions of this
type during perigee passes through the equatorial region (R ≈ 4 RE).

Figure24 shows an example of equatorial noise emissions recorded by C4 on 17 Feb-
ruary 2002 within approximately±30◦ of magnetic equator. Panels (a) and (b) represent
frequency–time spectrograms of power-spectral densities of the magnetic and electric field
fluctuations, respectively. Equatorial noise is the intense electromagnetic emission seen on
both panels close to the center of the time interval, within a few degrees from the mag-
netic equator. In the frequency domain it appears as two main peaks at about 30 Hz and
70 Hz. The emission is confined below the upper estimate offlh, calculated as the geomet-
ric average of the proton gyrofrequencyfcp andfce (solid line at∼300 Hz). Frequency–
time spectrogram of ellipticity of polarization of the magnetic field fluctuations is shown
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Fig. 24 STAFF data collected by C4 on 17 February 2002: (a) sum of the power-spectral densities of the
three magnetic components, (b) sum of the power-spectral densities of the two electric components, (c) ellip-
ticity and (d) planarity determined using the singular value decomposition of the magnetic spectral matrix.
Maximum possible value offlh is plotted over the panels (a)–(d). The data in panels (c) and (d) are not
shown for weak signals below 10−9 nT2 Hz−1. (Adapted from Santolík et al.2004c)

in panel (c). It varies between 0 (linear polarization) and 1 (circular polarization). Equa-
torial noise can be easily distinguished by its polarization close to linear, as it was first
described by Russell et al. (1970). Panel (d) represents the frequency–time spectrogram of
planarity of magnetic field fluctuations. A value close to 1 represents a strict confinement of
the magnetic field fluctuations to a single plane, which is obviously also true for the linear
polarization.

10.2 CLUSTER Observations

Santolík et al. (2002) performed a multipoint case study of equatorial noise by using both
STAFF and WBD instruments onboard CLUSTER. Frequency–time spectrograms of the ana-
lyzed electric field data measured by WBD instruments are shown in Fig.25. Dipole equator
and min-B equator calculated from a Tsyganenko-IGRF model (which is about 1◦ northward
from the dipole equator) are marked. It can be seen that what appears like a noise in a low
resolution data is in fact a set of many spectral lines (Gurnett1976) some of which follow
a harmonic pattern. However, all the possible fundamental frequencies were significantly
different from the localfcp and they did not match the cyclotron frequencies of heavier ions
either. The authors bring observational evidence that the waves propagate with a significant
radial component (on average the waves propagate at∼45◦ between the radial and azimuthal
directions, but the wave power spreads in a large angular interval) and can thus propagate
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Fig. 25 Frequency–time spectrograms of electric field data recorded by the WBD instrument onboard three
CLUSTER spacecraft on 4 December 2000. (Adapted from Santolík et al.2002)

from a distant generation region located at different radial distances where ion cyclotron
frequencies match the observed fine structure.

Santolík et al. (2004c) performed a systematic analysis of 2 years of STAFF data mea-
sured by CLUSTER during their perigee passes through equatorial region. A visual inspec-
tion has revealed the presence of equatorial noise in 398 of the 671 analyzed passes (each
spacecraft has been treated separately), which corresponds to about 59%. They have se-
lected 16 frequency channels between 8 Hz (the lowest frequency analyzed by the STAFF
instrument) and 300 Hz (the upper estimate of the maximumflh throughout the dataset)
and with the time resolution of 4 s evaluated the wave parameters within±30◦ of geomag-
netic latitude (altogether, about 1.4×107 frequency–time intervals). They have shown that a
value of 0.2 is a reasonable upper estimate of the ellipticity of magnetic field fluctuations of
equatorial noise and that equatorial noise has the largest power spectral density of magnetic
field fluctuations among all the natural emissions in the given interval of frequencies and
latitudes.

Němec et al. (2005) have used the same dataset, but limited to only±10◦ of geomagnetic
latitude. Following Santolík et al. (2004c) they selected the 16 lowest frequency bands and
only the frequency–time intervals during which the ellipticity was lower than 0.2. Then they
calculated average power-spectral density from the selected data in the selected frequency
channels and found parametersλc (central latitude) and∆ (full width at half of maximum,
FWHM) of a Gaussian model of the power-spectral density as a function of geomagnetic
latitude. The resulting parameters were found to be about the same for magnetic and electric
power spectral densities. Most of the central latitudes occur within 2◦ from the magnetic
equator with the FWHM lower than 3◦. From the original frequency-dependent data, they
calculated a time-averaged spectral matrix over the time interval where the spacecraft was
located inside the latitudinal interval fromλc − ∆ to λc + ∆ and obtained the probability
density of frequencies of equatorial noise emissions normalized to the localfcp. It has been
shown that the most probable frequency of emissions is between 4 and 5 localfcp, with
probability density slowly decreasing towards the higher frequencies. Finally, multipoint
measurements performed by CLUSTER were used to demonstrate that variations of the ratio
of amplitudes of equatorial noise increase with time delay between measurements in an
interval from tenths to hundreds of minutes, but these variations do not seem to increase
with separations up to 0.7RE in the equatorial plane.

Němec et al. (2006) performed the similar analysis, but used an improved magnetic field
model to determine the min-B equator (instead of a dipole magnetic field model used in
the previous study). They concluded that central latitudes of equatorial noise seem to be
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located exactly at the true magnetic equator and that the observed deviations can be most
probably explained by the inaccuracies in the model. They also used cold plasma theory to
calculate the number density from the ratio of magnetic and electric power spectral density.
The estimated values vary from units to hundreds of particles per cubic centimeter and are
in a rough agreement with the densities obtained from the measurements of the spacecraft
potential.

10.3 Generation Mechanism of Equatorial Noise and its Effects

A generation mechanism of equatorial noise (fast magnetosonic waves) is discussed by
Horne et al. (2000). They conducted a ray-tracing analysis using a density model, which
includes a plasmasphere, a plasmapause, and a radial variation in the plasma density outside
the plasmasphere, as well as the proton distribution with a thermal spread of velocities taken
from spacecraft observations, and a realistic plasma sheet electron distribution to represent
conditions outside the plasmapause. Supposing ring distribution functions (ring velocityvR)
with a thermal spread of velocities, they showed that magnetosonic waves can be generated
just outside the plasmapause and propagate well inside the plasmapause without substantial
absorption. Peak growth occurs for very large angles of propagation, and thus the waves are
confined in latitude to a few degrees about the magnetic equator. The instability analysis
shows that a good “rule of thumb” for growth of magnetosonic waves at large angles of
propagation (∼89◦) is vR > vA for growthf > 30fcp, andvR > 2vA for growthf < 30fcp

(f is the frequency of wave,vA is the Alfvén speed).
In a recent paper Horne et al. (2007) discussed potential implications of fast magne-

tosonic waves for electron populations in Van Allen radiation belts and demonstrated that
the fast magnetosonic waves can accelerate electrons between∼10 keV and a few MeV
inside the outer radiation belt. The acceleration occurs via the Landau resonance, and not
Doppler shifted cyclotron resonance, due to the wave propagation almost perpendicular to
the ambient magnetic field. Pitch angle and energy diffusion rates are comparable to those
obtained for WM chorus. This suggests that the magnetosonic waves are very important for
local electron acceleration and could play an important role in the process of energy transfer
from the ring current (where ion ring distributions are formed during magnetic storms as
a result of losses due to slow ion drift) to Van Allen radiation belts. Finally, since magne-
tosonic waves do not scatter electrons into the loss cone, the need for a continuous supply
of low energy electrons is not as stringent as it is for their acceleration by chorus, and these
waves, on their own, are not important for loss to the atmosphere.

11 ULF Resonances

11.1 Historical Description

The attempt to use pulsation data to remotely sense plasmaspheric mass properties has a long
history (Troitskaya and Gul’Elmi1969; Lanzerotti and Fukunishi1975; Webb et al.1977;
Takahashi and McPherron1982). A variety of methods have been developed to identify inner
magnetospheric field line resonances, which can arise from a driving impulse. These include
complex demodulation (Webb1979), methods of evaluating the spectral matrix (Arthur
1979), such as state vector analysis techniques (Samson1983), meridional geomagnetic gra-
dient evaluation (Baransky et al.1985), cross phase analysis techniques (Waters et al.1991),
and dynamic spectrum techniques (Menk1988). It is not always easy to determine the reso-
nant frequencies because the pulsation spectrum can be dominated by the source mechanism
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(Kurchashov et al.1987). The “gradient method” was developed by Baransky et al. (1985)
to separate the mixed driving and resonant power. Field line resonant theory predicts that
the wave power peaks at the resonant frequency and the spatial profile of the phase at the
resonant frequency changes roughly 180 degrees across the resonantL-shell (Tamao1964;
Chen and Hasegawa1974; Southwood1974). Using data from two magnetometers located
on the same magnetic longitude and closely separated in latitude, one can compare the wave
phase or amplitude seen at both stations and obtain the eigenfrequencies of the field line
midway between the two stations. The cross phase spectral technique developed by Wa-
ters et al. (1991) was used by Menk et al. (1994, 1999) to monitor the temporal evolution
of plasmaspheric properties. This is done by identifying the maximum interstation phase
difference between two closely spaced stations (few hundred km) to identify the eigenfre-
quencies of the local field line. With this diagnostic technique variations in plasmaspheric
plasma parameters (such as equatorial plasma density) can be monitored and using a latitu-
dinal array of stations, the location of the plasmapause can be determined. The techniques
of Schulz (1996) and Denton and Gallagher (2000) are used to derive the equatorial mass
density from the inferred eigenfrequency of the field line (Berube et al.2003). The tech-
niques are analogous to identifying the mass of a string by determining the sound frequency
of the plucked note. By knowing the string length (field line length), string tension (strength
of magnetic field line) and the frequency of oscillation, the density of the string (plasma)
can be inferred. Under the usual Alfvénic travel time approximations, the eigenfrequencies
can be expressed as:

ωn

2π
≈

n∆ω

2π
≈ n

(∫

ds

vA

)−1

, (4)

wherevA is the Alfvén speed,n is the harmonic number, ands is the coordinate that mea-
sures the arc length of the field line. The measure eigenfrequency is representative of the
equatorial mass density because of the slow Alfvén speed there. The ability to uniquely
identify the flux tubes eigenfrequency depends on having a solar wind or magnetospheric
driving wave. On the dayside of the Earth, ULF waves are almost continuously present
due to upstream waves impinging on the magnetopause (e.g., Yumoto1986). These driver
waves excite the field lines resonance frequency that can be separated out from the driving
frequency using such methods as the cross phase technique. Therefore one limitation of us-
ing ULF waves at the present time is that inner magnetospheric mass densities can only be
routinely measured during the daytime.

Figure26shows daily plasma mass density averages inferred from ULF resonances dur-
ing 2000–2001 atL = 1.74. The daily averages are made from hourly estimates of the
eigenfrequency. The error bars shown are representative of the variation of the mean of
the hourly estimates. The December densities are 2–3 times higher than the June densities
for both years. Typical uncertainties in determining the ULF resonant frequency, and hence
mass density is±25% (e.g., Berube et al.2003, 2005). Annual variation of the electron den-
sity has also been observed at low latitudes using VLF measurements (e.g., Clilverd et al.
1991).

11.2 IMAGE Observations

The mass density of the inner plasmasphere is difficult to measure and the few satellites ca-
pable of making measurements did not sample the inner magnetosphere well. An exception
are measurements from DE-1 (e.g., Horwitz et al.1984). Most studies found that the relative
abundances of heavy ions in the plasmasphere vary greatly. Craven et al. (1997) using data
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Fig. 26 The equatorial mass
densities atL = 1.74 computed
by a ULF resonance method.
Note the seasonal difference in
mass density. (Adapted from
Berube et al.2003)

from DE-1 foundHe+ to H+ ratios in the plasmasphere of∼0.03–0.3, implyingHe+ abun-
dances of∼3–23 percent by number, assuming no other heavy ions are present. Horwitz et
al. (1984) found that in the aftermath of a storm,O+ density could become comparable to
H+ density in the plasmasphere. The first empirical model of the equatorial mass density of
the plasmasphere was proposed by Berube et al. (2005) using ground-based ULF wave di-
agnostics. Plasmaspheric mass density betweenL = 1.7 andL = 3.2 was determined using
over 5200 hours of data from pairs of stations in the MEASURE array of ground mag-
netometers. The least squares fit to the data as a function ofL shows that mass density
falls logarithmically withL. Average ion mass as a function ofL was also estimated by
combining the mass density model with plasmaspheric electron density profiles determined
from IMAGE/RPI instrument. Additionally, the RPI electron density database was used to
examine how the average ion mass changes under different levels of geomagnetic activity.
Berube et al. (2005) report that average ion mass is greatest under the most disturbed condi-
tions. This result indicates that heavy ion concentrations (percent by number) are enhanced
during large geomagnetic disturbances. The average ion mass was also found to increase
with increasingL (below 3.2), indicating the presence of a heavy ion torus during disturbed
times. Heavy ions must play an important role in storm-time plasmaspheric dynamics. The
average ion mass was also used to constrain the concentrations ofHe+ andO+. Estimates of
the He+ concentration determined this way is useful for interpreting IMAGE/EUV images.
More details on empirical models can be found elsewhere in this issue (Reinisch et al.2009).

12 Conclusion

CLUSTER and IMAGE are pioneer space missions with regards to plasmaspheric wave phe-
nomena thanks to their new experimental capabilities. Some of the results highlighted in this
paper were considered among the science objectives of these missions such as the source lo-
cation of waves (Sects.3 and8) or the remote sensing of density profiles along geomagnetic
field lines (Sect.5). Now, CLUSTER and IMAGE have also brought or led to a wealth of
unforeseen results, just like pioneer missions do.

For instance, the database of plasmaspheric density profiles measured by IMAGE, to-
gether with ground-based ULF wave diagnostics, has helped determining the average ion
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mass as a function ofL under different levels of geomagnetic activity. Thanks to a better
knowledge of this key physical parameter, heavy ions were found to play an important role
in storm-time plasmaspheric dynamics (Sect.11).

Similarly, the IMAGE/EUV imager uncovered the presence of density bite-outs of the
plasmapause named notches. Together with local wave observations, these EUV images
have enabled to identify these notches as the source of kilometric continuum (KC); recall
that KC is the high-frequency range of a more general wave phenomenon known as the non-
thermal continuum (NTC) radiation. As KC emission cone is constrained by the geometry
of these density cavities, KC observations provide back information on this plasmaspheric
structure and its dynamics (Sect.3).

Such a link between density irregularities in azimuth and longitudinal beaming properties
of radiations is likely applicable to NTC radiations at lower frequency, linking them with
irregularities of smaller size (Sect.4). CLUSTER observations in the NTC range have also
revealed a new class of radio sources, emitting from the mid-latitude plasmapause boundary
while new radio echoes have been discovered by IMAGE (Sects.6 and7).

Another striking example concerns chorus emissions. The multipoint view of CLUSTER

near perigee has enabled a better understanding of the source location and size of these
waves and their propagation properties from their source region (Sect.8). This new knowl-
edge has triggered ray-tracing studies that led to an unforeseen conclusion: Chorus is an
embryonic source of plasmaspheric hiss, the dominant emission responsible for the scatter-
ing of MeV electrons in the electron slot region (Sect.9).

As usual, scientific discoveries lead to more questions than answers. For instance, CLUS-
TER data strongly suggest that equatorial noise plays, like chorus, a role in the acceleration
of electrons in the outskirts of the plasmasphere (Sect.10). However, a crucial limitation
of this conclusion lies in the limited range of radial distances of equatorial perigee passes
(3.9–5RE). A full assessment of the importance of these waves requires detailed analysis of
the occurrence rate of their power as a function ofL, MLT and latitude.

Overall, both missions have helped to better relate plasmaspheric wave phenomena with
plasmaspheric density structures, derive electron density profiles and heavy particles content
of the plasmasphere, better locate the source of waves and how they propagate. They have
also increased our knowledge on how electrons of magnetotail origin are accelerated up
to MeV range and how these killer electrons get scattered by waves. Last but not least,
these missions have linked wave phenomena together: Several waves are now considered
as embryonic sources of other waves and no more studied as distinct phenomena. In other
words, IMAGE and CLUSTER have helped putting the puzzle pieces together.

But the puzzle is far from being complete. Upcoming inner magnetospheric missions will
all orbit the magnetic equator and carry appropriate wave instrumentation. These missions
are the NASA’s Radiation Belt Storm Probes (RBSP) composed of two satellites (launch
planned in 2012), the ERG (Energization and Radiation in Geospace) single satellite project
from Japan and the ORBITALS (Outer Radiation Belt Injection, Transport, Acceleration and
Loss Satellite) project led by Canada. Up till the launch of RBSP and hopefully ERG and
ORBITALS, three of the NASA’s THEMIS spacecraft launched in 2007 and equipped with
search coil magnetometers will survey the inner magnetosphere together with particle in-
strumentation. In other words, the future looks bright for plasmaspheric wave research.
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F. Němec, O. Santolík, K. Gereová, E. Macúšová, H. Laakso, Y. de Conchy, M. Maksimovic, N. Cornilleau-
Wehrlin, Equatorial noise: Statistical study of its localization and the derived number density. Adv.
Space Res.37(3), 610–616 (2006)

D. Nunn, Y. Omura, H. Matsumoto, I. Nagano, S. Yagitani, The numerical simulation of VLF chorus and
discrete emissions observed on the Geotail satellite using a Vlasov code. J. Geophys. Res.102(A12),
27083–27097 (1997)

Y. Omura, H. Matsumoto, D. Nunn, M.J. Rycroft, A review of observational, theoretical and numerical studies
of VLF triggered emissions. J. Atmos. Terr. Phys.53(5), 351–368 (1991)

Y. Omura, Y. Katoh, D. Summers, Theory and simulation of the generation of whistler-mode chorus. J. Geo-
phys. Res.113, A04223 (2008)

T. Ondoh, Latitudinal changes of polar hiss and plasmapause hiss associated with magnetospheric processes.
Adv. Space Res.37(3), 581–591 (2006)

H. Oya, Generation mechanism of proton cyclotron echoes due to pulsed radio frequency waves in space
plasma. J. Geophys. Res.83(A5), 1991–2008 (1978)

M. Parrot, O. Santolík, N. Cornilleau-Wehrlin, M. Maksimovic, C.C. Harvey, Source location of chorus
emissions observed by Cluster. Ann. Geophys.22(2), 473–480 (2003)

M. Parrot, O. Santolík, N. Cornilleau-Wehrlin, M. Maksimovic, C. Harvey, Magnetospherically reflected
chorus waves revealed by ray tracing with CLUSTER data. Ann. Geophys.21(5), 1111–1120 (2004a)

M. Parrot, O. Santolík, D.A. Gurnett, J.S. Pickett, N. Cornilleau-Wehrlin, Characteristics of magnetospheri-
cally reflected chorus waves observed by CLUSTER. Ann. Geophys.22(7), 2597–2606 (2004b)

V. Pierrard, J. Goldstein, N. André, V.K. Jordanova, G.A. Kotova, J.F. Lemaire, M.W. Liemohn, H. Matsui,
Recent progress in physics-based models of the plasmasphere. Space Sci. Rev. (2009, this issue)

M. Platino, U.S. Inan, T.F. Bell, J.S. Pickett, P. Canu, Rapidly moving sources of upper band ELF/VLF chorus
near the magnetic equator. J. Geophys. Res.111, A09218 (2006)

B.W. Reinisch, D.M. Haines, K. Bibl, G. Cheney, I.A. Galkin, X. Huang, S.H. Myers, G.S. Sales, R.F. Ben-
son, S.F. Fung, J.L. Green, S. Boardsen, W.W.L. Taylor, J.-L. Bougeret, R. Manning, N. Meyer-Vernet,
M. Moncuquet, D.L. Carpenter, D.L. Gallagher, P. Reiff, The Radio Plasma Imager investigation on the
IMAGE spacecraft. Space Sci. Rev.91(1–2), 319–359 (2000)

B.W. Reinisch, X. Huang, D.M. Haines, I.A. Galkin, J.L. Green, R.F. Benson, S.F. Fung, W.W.L. Taylor,
P.H. Reiff, D.L. Gallagher, J.-L. Bougeret, R. Manning, D.L. Carpenter, S.A. Boardsen, First results
from the Radio Plasma Imager on IMAGE. Geophys. Res. Lett.28(6), 1167–1170 (2001)

B.W. Reinisch, M.B. Moldwin, R.E. Denton, D.L. Gallagher, H. Matsui, V. Pierrard, J. Tu, Augmented em-
pirical models of plasmaspheric density and electric field using IMAGE and CLUSTER data. Space Sci.
Rev. (2009, this issue)

K. Rönnmark, Genereration of magnetospheric radiation by decay of Bernstein waves. Geophys. Res. Lett.
12(10), 639–642 (1985)

C.T. Russell, R.E. Holzer, E.J. Smith, OGO 3 observations of ELF noise in the magnetosphere, 1. Spatial
extent and frequency of occurrence. J. Geophys. Res.74(3), 755–777 (1969)

C.T. Russell, R.E. Holzer, E.J. Smith, OGO 3 observations of ELF noise in the magnetosphere, 2. The nature
of the equatorial noise. J. Geophys. Res.75(4), 755–768 (1970)

J.C. Samson, The spectral matrix, eigenvalues, and principal components in the analysis of multichannel
geophysical data. Ann. Geophys.1(3), 115–119 (1983)

B.R. Sandel, A.L. Broadfoot, C.C. Curtis, R.A. King, T.C. Stone, R.H. Hill, J. Chen, O.H.W. Siegmund,
R. Raffanti, D.D. Allred, R.S. Turley, D.L. Gallagher, The Extreme Ultraviolet imager investigation for
the IMAGE mission. Space Sci. Rev.91(1–2), 197–242 (2000)

O. Santolík, D.A. Gurnett, Transverse dimensions of chorus in the source region. Geophys. Res. Lett.30(2),
1031 (2003)

O. Santolík, M. Parrot, L.R.O. Storey, J.S. Pickett, D.A. Gurnett, Propagation analysis of plasmaspheric hiss
using Polar PWI measurements. Geophys. Res. Lett.28(6), 1127–1130 (2001)

O. Santolík, J.S. Pickett, D.A. Gurnett, M. Maksimovic, N. Cornilleau-Wehrlin, Spatiotemporal variability
and propagation of equatorial noise observed by Cluster. J. Geophys. Res.107(A12), 1495 (2002)

O. Santolík, D.A. Gurnett, J.S. Pickett, M. Parrot, N. Cornilleau-Wehrlin, Spatio-temporal structure of storm-
time chorus. J. Geophys. Res.108(A7), 1278 (2003)

                                 

                                 

  
  
  
  
  
  
  
  
  
  
  



A. Masson et al.

O. Santolík, D.A. Gurnett, J.S. Pickett, Multipoint investigation of the source region of storm-time chorus.
Ann. Geophys.22(7), 2555–2563 (2004a)

O. Santolík, D.A. Gurnett, J.S. Pickett, M. Parrot, N. Cornilleau-Wehrlin, A microscopic and nanoscopic
view of storm-time chorus on 31 March 2001. Geophys. Res. Lett.31, L02801 (2004b)
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aLPC2E/CNRS, Laboratoire de Physique et Chimie de l’Environment et de l’Espace, 3A Avenue de la Recherche Scientifique, 45071 Orléans cedex 2, France
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Abstract

This paper gives an overview of different sets of new Magnetospheric Line Radiation (MLR) observed by the satellite DEMETER.
Different types of emissions have been observed: emissions called Power Line Harmonic Radiation (PLHR) with frequency lines exactly
separated by 50/100 or 60/120 Hz, emissions with frequency lines not exactly separated by 50/100 or 60/120 Hz and drifting in frequency
(MLR). By comparison with past observations one can say that some MLR events are due to man-made PLHR which may suffer a non-
linear gyro-resonant interaction at the magnetic equator. It is also shown that periodic emissions are very often associated with the MLR.
In this case the origin of these waves is natural. The lines are produced by the periodicity and the frequency band limits of the individual
elements which causes the appearance of lines on the spectrograms. Finally the paper shows that MLR can trigger emissions.
� 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Electromagnetic waves observed by a low-orbiting satel-
lite represented in the form of the frequency–time spectro-
gram sometimes consist of several nearly horizontal and
almost equidistant intense lines (Bell et al., 1982; Rodger
et al., 1995; Parrot et al., 2005, 2006a, 2007; Němec
et al., 2006b, 2007a,b, 2008, 2009). These are called Magne-
tospheric Line Radiation (MLR). They have been reported
also in the ground-based data and the evidence for their
propagation through the magnetosphere has been given
(Helliwell et al., 1975; Park and Helliwell, 1978; Matthews
and Yearby, 1981; Park and Helliwell, 1981, 1983; Yearby
et al., 1983; Rodger et al., 1999, 2000; Manninen, 2005). In
some cases, mutual frequency separation of the lines is 50/
100 or 60/120 Hz. These are usually called Power Line Har-
monic Radiation (PLHR) and are believed to be caused by

an electromagnetic radiation from electric power systems
on the ground (e.g. Němec et al., 2006b, 2007a,b, 2008).
It must be noticed that an individual PLHR line may not
be at an exact harmonic frequency of 50 or 60 Hz because
the power system may not operate at precisely the nominal
frequency. A small frequency shift cannot be recognized
when looking at frequency spacing between two lines, but
at �50th harmonic, it can easily shift the lines by several
Hz (Němec et al., 2007b). The PLHR role in the ionosphere
is still questionable, because they can serve as a trigger for
new emissions (Nunn et al., 1999; Manninen, 2005). Rodger
et al. (1995) performed a satellite survey using data from
ISIS 1 and ISIS 2 satellites and reported the existence of
two distinct classes of MLR-like events: the first of them
(‘‘Tram Lines”, TL) consisted of events that appeared to
lie close to the harmonics of 50/60 Hz; the second class
of events (‘‘Magnetospheric Line Radiation”, MLR),
formed by lines with larger bandwidth, did not show any
evidence of a relationship with power line harmonics.
This was further investigated by Němec et al. (2007a),

0273-1177/$36.00 � 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.asr.2009.07.001

* Corresponding author. Tel.: +33 238 255291; fax: +33 238 631234.
E-mail address: mparrot@cnrs-orleans.fr (M. Parrot).

www.elsevier.com/locate/asr

Available online at www.sciencedirect.com

Advances in Space Research 44 (2009) 979–986



Author's personal copy

who performed a systematic survey of MLR-like events
using the data from the DEMETER spacecraft. They con-
firmed the existence of the two classes of events (PLHR and
‘‘real-MLR”) and demonstrated their different properties
(intensity, frequency, most favourable values of Kp index).

A systematic study of satellite observations of PLHR
was performed by Němec et al. (2006b, 2007b, 2008). They
showed that the frequency spacing of the lines corresponds
well to the base power system frequency at possible gener-
ation regions. Moreover, they presented a numerical calcu-
lation of penetration characteristics of the ionosphere and
suggested that it could explain larger peak intensities of
PLHR observed during the night. Ando et al. (2002) per-
formed a theoretical analysis of penetration of PLHR into
the ionosphere and estimated the area of the affected
region. Parrot et al. (2007) showed for the first time large
scale MLR observed simultaneously on ground and on
board a low-altitude satellite which was flying over the
same zone. Parrot et al. (2006a) described six storm-time
observations of real-MLR events measured by DEMETER.
They performed a detailed analysis of the events and dis-
cussed their possible link to electromagnetic ion cyclotron
waves at proton cyclotron harmonics emitted from the
equatorial region. Němec et al. (2009) analyzed several tens
of real-MLR observations, performed a detailed analysis of
wave properties and estimated the source region to
be located in the equatorial plane at radial distances of
1.5–3.5 RE. Finally, it has been shown (Němec et al.,
2007a, 2009) that the events observed close to the geomag-
netic equator have similar properties as equatorial noise
emissions routinely observed at radial distances 2–7 Earth
radii and within 10� from the magnetic equator (Russel
et al., 1970; Gurnett, 1976; Laakso et al., 1990; Kasahara
et al., 1994; Santolı́k et al., 2002, 2004; Němec et al.,
2005, 2006a).

The purpose of this paper is to present specific new
MLR events observed by DEMETER. Some events show
associated periodic emissions and others triggered emis-
sions. Section 2 will briefly describe the wave experiment
onboard the satellite. The events will be described in Sec-
tion 3 whereas conclusions will be given in Section 4.

2. The wave experiment

DEMETER is low-altitude satellite (700 km) with a
polar circular orbit which measures electromagnetic waves
all around the Earth except in the auroral zones. The fre-
quency range for the electric field is from DC up to
3.5 MHz, and for the magnetic field from a few Hz up to
20 kHz. There are two scientific modes: a survey mode
where spectra of one electric and one magnetic component
are onboard computed up to 20 kHz and a burst mode
where waveforms of one electric field component and one
magnetic field component are recorded with a sampling fre-
quency of 40 kHz. The burst mode allows performing spec-
tral analysis with better time and frequency resolution. All
events shown in this paper have been recorded during the

burst mode of the experiment. The geographical locations
of the burst mode are mainly linked to the seismic regions
due to the main scientific objectives of the project. They
have also been put in other regions but irregularly. Details
of the wave experiment can be found in Parrot et al.
(2006b) and Berthelier et al. (2006).

3. Selection of events

Fig. 1 shows a VLF spectrogram of an electric field com-
ponent recorded on 13 August 2006 during one minute
between 21:42:30 and 21:43:30 UT. The frequency range
is between 2 and 5 kHz. A set of three lines can be observed
just above 3.5 kHz. The frequencies of lines are close to
3603, 3711, and 3808 Hz, which means that the frequency
interval is approximately equal to 100 Hz. There is no
apparent frequency shift of the lines during the observa-
tion. The event was measured close to the New Zealand
and from 21:41:30 to 21:46:00 UT when the satellite stops
the registration at high latitudes. Relatively thin lines form-
ing the event and frequency spacing close to the multiple of
base power system frequency (50 Hz at New Zealand) rep-
resent a good indication that the event is caused by PLHR.

Fig. 2 shows an event recorded on 15 September 2005
during a long time interval. It is located between the west
coast of US and Hawaii. It starts at 07:17:00 UT close to
the equator and it is not seen after 07:33:58 UT when the
satellite stops recording data above Alaska. The spectro-
grams were computed onboard with data from an electric
component (top) and a magnetic component (bottom)
between 0 and 2 kHz. A set of lines drifting in frequency
can be observed all the time both with electric and mag-
netic component showing the nature of the electromagnetic
whistler mode wave. This event is very similar to the one
described in Parrot et al. (2007). The vertical white lines
delimit the occurrence of a burst mode between 07:30:30
and 07:31:30 UT. A detailed spectral analysis indicates that
the frequency interval between the lines is �68 Hz at this
time. This event belongs to the ‘‘real-MLR” class accord-
ing to the classification introduced by Němec et al. (2007a).

Fig. 3 displays an event recorded on 18 October 2006
when the satellite was above the west coast of US.
Fig. 3a shows the spectrogram of an electric field compo-
nent from 0 up to 20 kHz, the totality of the VLF range
observed by DEMETER. From the bottom to the top we
observed the cutoff frequency of the hiss which is between
1 and 3 kHz, the set of MLR lines which are around
5 kHz, the lower hybrid frequency around 8 kHz which is
increasing in frequency with the time, a VLF wave by a
ground-based transmitter just above 15 kHz. The lines
are embedded with periodic emission. A zoom of these lines
is shown in Fig. 3b. The spectrogram is between 4 and
6 kHz. It is seen that the periodic elements start at frequen-
cies which are on a given line. These elements are not
synchronized for different starting frequency lines. The
frequency length of these rising elements is several
hundreds of Hz. It is also seen, particularly with the top
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set of periodic elements that the time interval between them
is of the order of 4 s which is the 2 hop bounce wave period
due to propagation in the magnetosphere and reflection in
the opposite hemisphere. Due to the fact that the timing of
the periodic emissions depends on the frequency of the cor-
responding line, their patterns are much more complicated.
Other MLR events similar to Fig. 3 have been observed
close to the west coast of US. A very different pattern is
observed in Fig. 4. Fig. 4 is similar to Fig. 3 but the data

are recorded on 4 April 2007. The MLR event is recorded
during an orbit which is not very far from the east coast of
Japan and ends over Kamchatka. It is observed in a fre-
quency band between 2.6 and 3.7 kHz and consists of peri-
odic falling elements with a time period of �3.4 s. Different
sets of elements with a negative slope appear because they
are not synchronized. It depends on the frequency as it is
with the periodic elements in Fig. 3. In fact in Figs. 3
and 4 MLR only appears due to the pattern displayed on

Fig. 1. Spectrogram of an electric field component recorded on 13 August 2006 between 2 and 5 kHz. The time interval (21:42:30–21:43:30 UT), the local

time (LT) the geographic position (Lat. and Long.), and the L-value are indicated below. The intensity is color-coded according to the scale on the right.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

Fig. 2. Spectrograms of an electric field component (top) and a magnetic field component (bottom) recorded on 15 September 2005 between 07:17:00 and

07:33:58 UT. The frequency range is 0–2 kHz. The universal time (UT), the local time (LT), the geographic position (Lat. and Long.), and the L-value are

indicated below. The intensities are color-coded according to the scales on the right. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this paper.)
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the spectrogram by the periodic elements. These periodic
emissions are very similar to the emissions previously
observed by Helliwell (1965) on ground. In this case the
MLR have a natural origin.

Fig. 5 displays triggered emissions related to MLR. Two
rising elements can be observed in Fig. 5a. The first one is

clearly supported by a parent line at a frequency of
�2314 Hz whereas the second appears even when the inten-
sity of the line is too low to be detected. Finally, Fig. 5b
shows rising hooks with at high frequencies several
branches of triggered emissions. They also show a nearly
4 s periodicity corresponding to bouncing waves in the

a

b

Fig. 3. (a) Two minute spectrogram of an electric field component recorded on 18 October 2006 between 2 and 5 kHz. The universal time (UT), the local

time (LT), the geographic position (Lat. and Long.), and the L-value are indicated below. The intensities are color-coded according to the scales on the

right. (b) Zoom of the spectrogram shown in (a). The frequency band is now between 4 and 6 kHz and the time interval between 19:02:00 and 19:03:20 UT.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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magnetosphere. They were recorded on 19 May 2005 above
Finland. No supporting lines can be detected but these ele-
ments are very similar to those detected on ground in the
same region some years ago (Fig. 1 of Nunn et al., 1999).
On ground the PLHR were observed but not at the altitude
of the satellite because they are too weak. It was also the
case during the event above Finland reported by Parrot
et al. (2007).

4. Conclusions

The low-orbiting satellite DEMETER is an ideal plat-
form to survey man-made waves due to the sensibility of
the wave sensors, the time and frequency resolution of
the experiment, and the data registration all around the
Earth. However, statistical survey of geographical
occurrence of the events cannot be performed because the

b

a

Fig. 4. Similar to Fig. 3 but for an event recorded on 4 April 2007.
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observations are limited by the geographical positions of
the burst mode. A variety of new MLR events recorded
by DEMETER have been presented in this paper.
The common feature is that they are observed in a
frequency band from 2 kHz up to 5 kHz. Concerning these
MLR events DEMETER observes four different kinds
of waves:

1. Emissions directly related to PLHR (Fig. 1) where the
frequency interval between the lines is a multiple of 50
or 60 Hz. The lines are observed at high frequencies
because, for example in Finland, the industrial plants
use 12 pulse bridges to convert 220 V/3 phases to DC
power, and harmonics are radiated at frequencies
f = 50 (cp ± 1) Hz with p = 12 and c = 1, 2, 3, 4,. . .

a

b

Fig. 5. Spectrograms of an electric field component recorded on 13 December 2004 (a) and on 19 May 2005 (b). The universal time (UT), the local time

(LT), the geographic position (Lat. and Long.), and the L-value are indicated below. The intensities are color-coded according to the scales on the right.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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(Nunn et al., 1999). Generally these emissions are only
observed on ground and rarely observed onboard satel-
lites because they are too weak.

2. Emissions with a line structure (Fig. 2) whose frequency
spacing is not a multiple of base power system frequency
(‘‘real-MLR” events according to the classification
introduced by Němec et al. (2007a)). By comparison
with the event reported by Parrot et al. (2007) where this
kind of emissions was observed both in the North and in
the South hemisphere, it is hypothesized that this event
is due to PLHR. The PLHR propagates in the iono-
sphere and the magnetosphere, where they may suffer
a non-linear gyro-resonant interaction with energetic
particles at the magnetic equator (the most favourable
region for this interaction). They can be enhanced, their
spectral peaks can be broadened and their frequencies
can be shifted.

3. Natural periodic emissions (Figs. 3 and 4) of which the
spectrogram presents lines because the periodic elements
are frequency limited. The periodicity of the elements
corresponds to a 2 hop bouncing wave which propagates
in the magnetosphere. These events have been classified
as ‘‘real-MLR” by Němec et al. (2007a), since they dis-
tinguished only two classes of events.

4. Triggered emissions (Fig. 5). These triggered emissions
are associated with MLR. It is shown that the periodic-
ity of the triggered elements also corresponds to a 2 hop
bouncing wave. It means that these waves influence the
particles in the radiation belts.
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Cornilleau-Wehrlin, N. Initial results of a survey of equatorial noise

emissions observed by the cluster spacecraft. Planet. Space Sci. 53,

291–298, 2005.

Němec, F., Santolı́k, O., Gereová, K., Macúšová, E., Laakso, H., de
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986 M. Parrot, F. Němec / Advances in Space Research 44 (2009) 979–986







Frantǐsek NĚMEC

Ondes électromagnétiques TBF observées par DEMETER

Résumé

Les résultats basés sur les mesures d’ondes électromagnétiques effectuées par le satel-
lite DEMETER sont présentés. Nous nous concentrons sur deux phénomènes différents : 1)
les effets liés à l’activité sismique 2) les émissions avec des structures fréquentielles linéaires.

1) Nous présentons une étude statistique de l’intensité des ondes électromagnétiques
observées à proximité des tremblements de terre. Nous montrons que pendant la nuit il y
a une diminution statistiquement significative de l’intensité des ondes peu avant le choc
principal.

2) Nous présentons une étude systématique des événements ayant des structures
fréquentielles linéaires. Un ensemble d’événements statistiquement significatif a été obtenu
en utilisant une procédure automatique ainsi qu’une inspection visuelle des données. Tous
les événements sont entièrement analysés et classifiés. Dans la gamme EBF (ou toutes les
six composantes électromagnétiques sont mesurées pendant le mode Burst), une analyse
détaillée des ondes a été faite.

Mots clés : plasma spatial, ondes électromagnétiques, effets séismo-électromagnétiques,
PLHR, MLR

VLF electromagnetic waves observed by DEMETER

Abstract

Results based on wave measurements performed by the DEMETER spacecraft are
presented. We focus on two different phenomena : 1) effects possibly connected with seismic
activity 2) emissions with a line structure.

1) We present a statistical study of intensity of electromagnetic waves observed in the
vicinity of earthquakes. It is shown that during the night there is a statistically significant
decrease of wave intensity shortly before the time of the main shock.

2) We present a survey of the events with a line structure. A statistically significant set
of events has been obtained both by using an automatic identification procedure and visual
inspection of the data. All the events are thoroughly analyzed and classified. Moreover, in
the ELF range (where all the six electromagnetic field components are measured during
the Burst mode), a detailed wave analysis has been performed.

Keywords : space plasma, electromagnetic waves, seismo-electromagnetic efects, PLHR,
MLR
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