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Abstract

The amount of hydrocarbon recovered can be considerably increased by finding optimal

placement of non-conventional wells. For that purpose, the use of optimization algorithms,

where the objective function is evaluated using a reservoir simulator, is needed. Further-

more, for complex reservoir geologies with high heterogeneities, the optimization problem

requires algorithms able to cope with the non-regularity of the objective function. The

goal of this thesis was to develop an efficient methodology for determining optimal well

locations and trajectories, that offers the maximum asset value using a technically feasible

number of reservoir simulations.

In this thesis, we show a successful application of the Covariance Matrix Adaptation -

Evolution Strategy (CMA-ES) which is recognized as one of the most powerful derivative-

free optimizers for continuous optimization. Furthermore, in order to reduce the number of

reservoir simulations (objective function evaluations), we design two new algorithms. First,

we propose a new variant of CMA-ES with meta-models, called the new-local-meta-model

CMA-ES (nlmm-CMA), improving over the already existing variant of the local-meta-

model CMA-ES (lmm-CMA) on most benchmark functions, in particular for population

sizes larger than the default one. Then, we propose to exploit the partial separability

of the objective function in the optimization process to define a new algorithm called the

partially separable local-meta-model CMA-ES (p-sep lmm-CMA), leading to an important

speedup compared to the standard CMA-ES.

In this thesis, we apply also the developed algorithms (nlmm-CMA and p-sep lmm-CMA)

on the well placement problem to show, through several examples, a significant reduction

of the number of reservoir simulations needed to find optimal well configurations. The

proposed approaches are shown to be promising when considering a restricted budget of

reservoir simulations, which is the imposed context in practice.

Finally, we propose a new approach to handle geological uncertainty for the well placement

optimization problem. The proposed approach uses only one realization together with

the neighborhood of each well configuration in order to estimate its objective function

instead of using multiple realizations. The approach is illustrated on a synthetic benchmark

reservoir case, and is shown to be able to capture the geological uncertainty using a reduced

number of reservoir simulations.
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Chapter 1

Introduction

“Drill for oil? You mean drill into the

ground to try and find oil? You’re crazy.” –

this was what drillers who Edwin L. Drake1

tried to enlist to his project to drill for oil

in 1859, said.

“If you can draw it (the well), I can drill

it !” – this becomes the modern refrain of a

driller.

1.1 Problem statement

The state of the art in reservoir management has been recently greatly influenced by

technologies. Nowadays, drilling technologies have made great strides with the advances

achieved in directional drilling capabilities. Hence, reservoir engineers can take advantage

from the use of different well architectures such as vertical, horizontal and more complex

configurations to enhance reservoir productivity, especially given the present price of oil

which is although continuing to fluctuate in recent years, still above the US$40/barrel

(Fig. 1.1).

Environments, work areas and conditions in which oil and gas fields are now being

discovered are much more complex and challenging. The existing fields are becoming

more depleted and, therefore, are more marginal. Unless there is a way to optimize

their productivity and to take corrective actions, it would be hard to justify to continue

1Edwin L. Drake (1819 - 1880) was an American oil driller, popularly credited with being the first to
drill for oil in the United States.

1



1.1 Problem statement

Figure 1.1: Brent crude oil price (in US dollar), Oct 2007 - Sep 2011. Reprinted from
Index Mundi website, November 9, 2011.
[http://www.indexmundi.com/commodities/?commodity=crude-oil-brent&months=60]

investing to produce these existing fields for economic reasons [14]. On the other hand,

new discoveries also need an optimal production scheme to be economically viable.

One of the most important issues that must be addressed to maximize a given project’s

asset value is to optimally decide where to drill wells. A well placement decision affects

the hydrocarbon recovery and thus the asset value of a project. In general, such a decision

is difficult to make since an optimal placement depends on a large number of parameters

such as reservoir heterogeneities, faults and fluids in place. Moreover, dealing with complex

well configurations, e.g., non-conventional wells, implies additional challenges such as the

concentration of investment and the well intervention difficulty1.

The current approach, mostly used in the industry, is based on the so-called profes-

sional judgment made by reservoir engineers –requiring the understanding of the impact of

different influencing engineering and geological parameters– and confirmed by a number

of reservoir simulation trials. However, the reservoir performance is influenced by non-

linearly correlated parameters, which may also evolve with time. Hence, the professional

judgment approach, in general, fails to predict the best well configurations.

Recently, many efforts were made to formulate the well placement decision as an opti-

mization problem: the objective function optimized, which is evaluated using a reservoir

simulator, evaluates the economics of the project; the parameters thought encode the posi-

tion of the different wells (that include locations and trajectories). We define the location

of a given well as the position of the starting point of the well, and we define the trajectory

of a given well as the positions of the mainbore and the laterals (if any). If the number of

wells to be placed and their type (injector or producer) is fixed, the parameters encoding

1Drilling a well costs in general from US$1 million to US$30 million.
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1.1 Problem statement

the well positions are real numbers and the objective function f maps a subset of R
n

where n, the number of parameters, equals the sum of the number of parameters needed

to encode each well position that need to be placed. Formally we want to find a vector of

parameter pmax ∈ R
n such that:

f(pmax) = max
p
{f(p)} , (1.1)

where p denotes the vector of parameters to be optimized encoding the positions and

trajectories of the well configuration. The vector pmax must be found using a technically

feasible number of reservoir simulations.

The well placement optimization problem is challenging as:

• The objective function, e.g., the net present value (NPV) is difficult to optimize. In

particular, it is multi-modal, i.e., with multiple local optima, non-convex and non-

smooth. An illustration can be found in [103] where the NPV of a single vertical

well placement is sampled to construct the objective function surface. The surface

is shown to be highly non-smooth and to contain several local optima. In this

illustration, the problem dimension equals two and it has thus been possible to

sample all the points from a fine grid spanning regularly the search space. However,

this becomes impossible for problem dimensions larger than 3 as the number of

points, to keep a fine discretization, would need to grow exponentially in the search

space dimension (this is referred as curse of dimensionality) rendering the search

task difficult.

• The problem is costly : a single function evaluation requires one reservoir simulation

which is often very demanding in CPU time (several minutes to several hours). The

affordable number of reservoir simulations is often then restricted.

• The problem involves in general optimizing under geological uncertainty : the prob-

lem assumes that we have already defined a (or a number of) realistic geological

model(s). Each model is obtained using history matching which consists in the ad-

justment of the reservoir model until it closely reproduces the past behavior of the

reservoir (historical production and pressures). However, history matching problem

is a mathematically ill-posed with non-unique solutions, i.e., several possible (gen-

erally equiprobable) geological models. Thus, taking into account several geological

models introduces the problem of handling geological uncertainty which adds an

other challenge to the optimization of the objective function, in particular it leads

to a large increase of the number of performed reservoir simulations. In the context

of geological uncertainty which will be addressed in Chapter 6, we will denote by

3



1.1 Problem statement

f the objective function to optimize, and let us consider a number Nr of geological

realizations denoted by (Ri)i=1,··· ,Nr
. We denote by f(p, Ri) the objective function

value on the well configuration p on the realization Ri. Thus, we want to find a

vector of parameter pmax,R ∈ R
n such that:

fR(pmax,R) = max
p

{
fR(p)

}
, (1.2)

where fR is in general an averaged sum of the objective function evaluations on the

well configuration p over all the realizations:

fR(p) =
1

Nr

Nr∑

i=1

f(p, Ri) . (1.3)

Furthermore, constraints are imposed to guarantee the physical feasibility of the so-

lution wells, and thus to avoid very long wells or wells that violate common engineering

practices (e.g., wells outside the reservoir). Therefore, a constraint optimization problem

needs to be handled. Formally, when dealing with constraints, we want to find a vector of

parameter pmax ∈ R
n such that:

{

f(pmax) = max f(p)

s.t. hi(p) ≤ di ∀i = 1, · · · ,m
, (1.4)

where m is the number of constraints, di are real numbers and hi : R
n → R are the

constraint functions that need to be satisfied.

The main objective of this thesis is to propose a procedure for solving the well place-

ment optimization problem, in particular the well locations and trajectories optimization

problem. The proposed procedure must offer the maximum asset value using a technically

feasible number of reservoir simulations. This implies to address the challenges explained

above namely:

(I) The non-smoothness, the multi-modality, the non-convexity and the high dimen-

sionality of the objective function;

(II) The expensive cost of the objective function;

(III) The geological uncertainty handling problem.

In this thesis, we will consider the well placement optimization problem as a black-box

optimization (also known as derivative-free optimization) problem. The black-box opti-

mization means that only the inputs and outputs of the objective function are observed,

and not its internal operations and processes. The black-box context is natural in our
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1.2 Literature review

context since an objective function evaluation involves a reservoir simulation which corre-

sponds in general to a commercial software, in which the internal structure and code are

often unavailable.

We now review the critical points of current knowledge and methodological approaches

related to the well placement optimization.

1.2 Literature review

Many optimization algorithms exist to address the continuous optimization problem formu-

lated in Eq. (1.1). In this section, we give a survey of the existing continuous optimization

algorithms. Only some of these algorithms will be detailed depending on their importance

for this thesis. Other algorithms will be briefly mentioned with their corresponding refer-

ences for more details. Then, a survey of studies describing existing approaches used for

the well placement optimization problem will be given. A detailed literature review for

well placement optimization under geological uncertainty formulated in Eq. (1.2) will be

provided in Chapter 6.

1.2.1 Optimization algorithms

Optimization algorithms for non-linear continuous optimization can be divided depending

on the method they use to explore the search space. In the following, we enumerate a

number of selected representative algorithms divided into four categories: deterministic

algorithms, stochastic algorithms, search algorithms using surrogates and hybrid algo-

rithms.

1.2.1.1 Deterministic methods

Deterministic algorithms include descent methods which use the explicit value of the gra-

dient or higher order derivatives of the objective function. If this information is not avail-

able, i.e., in case of black-box optimization, it can be approximated. Other deterministic

optimization techniques include trust region methods (e.g., [107]), direct pattern search

methods [80] and simplex methods [101]. A major drawback of deterministic optimization

methods is that they can easily get stuck in a local optimum.

• Descent methods: Descent methods are defined as iterative methods that need

the gradient of the objective function to search for a minimum of a given objective

function f . After fixing an initial point xk at iteration k, a new point is calculated

as follows:

xk+1 = xk + αkpk (1.5)
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1.2 Literature review

where pk is the search direction at iteration k and αk denotes the step width. The

optimization process continues until reaching the convergence criterion. The search

direction can be calculated using a linear approximation (first order) of the target

function, i.e., pk = −∇f(xk). In this case, the method is called the steepest de-

scent method. A second order approach uses a quadratic approximation and leads

to methods referred to as Newton methods. Quasi-Newton methods are based on

Newton methods, but without computing the Hessian matrix. In this case, the search

direction pk = −H̃−1
k ∇f(xk), where H̃k is an approximation of the Hessian matrix

in the current solution. The most popular quasi-Newton method is the Broyden-

Fletcher-Goldfarb-Shanno algorithm (BFGS) [31, 53, 61, 118].

If no explicit formula of the objective function is available, derivatives are in general

approximated using methods such as finite difference methods. An other way to

compute the gradients is by using adjoint methods. In contrast to finite difference

methods, where the number of objective function evaluations required to estimate

the gradients grows linearly with the number of the parameters of the problem,

adjoint methods provide the gradients in a fraction of the computational time of

objective function evaluation. However, implementing adjoint methods requires a

deep understanding of the so-called simulation code (corresponding to the objective

function evaluation) which is not usually trivial for real-world problems. It also

requires having access to the simulation code, which is not usually available for real-

world problems. Adjoint methods are widely used in aerodynamics [81]. In the oil

and gas industry, it is still difficult to apply adjoint method approaches, although

some research has already been performed in particular in the reservoir simulation

community [89].

• Trust region methods: Trust region methods, called also quadratic approximation

methods rely on an approximation of the objective function f with a quadratic

function which is supposed to be a reasonable approximation of f in a neighborhood

of the the current estimate. This neighborhood is called the trust region. A state-

of-the-art trust region method is the NEW Unconstrained Optimization Algorithm

(NEWUOA) [107] which is a derivative-free optimization method. At each iteration,

NEWUOA creates a quadratic model that interpolates the objective function f at m

points (usually m = 2n+ 1, where n is the number of parameters to be optimized).

The quadratic model is then updated by minimizing it inside the trust region. A

more detailed presentation of trust region methods can be found in [91].
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1.2 Literature review

1.2.1.2 Stochastic methods

Stochastic methods have been employed to mitigate the defect of deterministic methods

for difficult functions to solve (e.g., non-smooth and multi-modal). In particular, stochas-

tic optimization algorithms aim at being more robust when dealing with multi-modal

objective functions. These methods include methods such as simulated annealing (SA)

[88, 124], particle swarm optimization (PSO) [86], simultaneous perturbation stochastic

algorithm (SPSA) [119] and evolutionary algorithms (EA). EAs which have received an

increasing interest has mainly three origins: genetic algorithms (GA) [78, 79], evolutionary

programming (EP) [56, 56] and evolution strategies (ES) [108, 117].

• Evolutionary algorithms (EA): An overview of evolutionary algorithms is pre-

sented in [15]. EAs are stochastic optimization algorithms inspired by biological

evolution. Starting with an initial population of points called individuals and at

each iteration, candidate solutions evolve by selection, mutation and recombination

until reaching the stopping criteria with a satisfactory solution. This process is used

by the three origins of EAs, i.e., GA, EP and ES. Only two of them will be detailed

in this section: genetic algorithms and evolution strategies.

Genetic algorithms (GA) [78, 79] are stochastic search algorithms designed ini-

tially to deal with binary encoded individuals. For continuous optimization, problem

variables can either be mapped to binary strings or other encoding can be adopted

such as real encoding. However, representing real vectors as bit strings leads to poor

performance [122].

Evolution strategies (ES) [108, 117]: besides the common principles shared with

other EAs, i.e., mutation, recombination and selection, during the optimization pro-

cess, ESs sample new individuals according to a multivariate normal distribution, and

use a self-learning mechanism to adapt its parameters called adaptive search. The

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [74] is the state-of-the-

art Evolution Strategy where the multivariate normal distribution has a mean and

a covariance matrix continually updated during the optimization process. Intensive

benchmarking of several derivative-free algorithms have established that CMA-ES

is one of the most efficient method for dealing with difficult numerical optimization

problems [70]. CMA-ES has also been applied to real-world problems [18, 42, 92, 94].

More details about CMA-ES are provided in Chapter 2.

• Simulated annealing (SA) [88, 124]: The name and the inspiration of simulated

annealing comes from annealing in metallurgy, a technique involving heating and

controlled cooling of a material to increase the size of its crystals and reduce their

defects. The algorithm avoids getting trapped in local optima by allowing moves
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that may lead to a deterioration in the objective function values. The SA algorithm

is outlined as follows. Given a candidate solution s, a neighbor random solution

s′ is accepted1 if (1) s′ is better than s with respect to the objective function or

(2) with a probability that depends on the change of the corresponding objective

function values and a control parameter T , called the temperature. Otherwise, if

none of the above conditions are met, the current solution remains unchanged. The

parameter T is gradually decreased to zero in the course of the optimization according

to a deterministic “cooling schedule”. The performance of the simulated annealing

algorithm is very sensitive to the choice of the cooling schedule.

• Particle swarm optimization (PSO) [86]: PSO is an iterative population based

algorithm, inspired from movement of swarms of birds or insects searching for food

or protection. Each particle movement is influenced by its own experience (its best

found locality) and by the experience of the others (the best found locality of all

the particles). Based on these best found localities, the localities of the members

of the swarm and their velocities are adjusted. The performance of PSO are not

invariant with respect to rotations of the coordinate system, i.e., the performance of

PSO on non-separable, ill-conditioned functions declines dramatically with increasing

condition numbers [75].

• Simultaneous perturbation stochastic algorithm (SPSA) [119]: SPSA is a

stochastic gradient approximation method, in which at each iteration the parameters

are randomly perturbed, and the objective function is evaluated at the perturbed

points to estimate the gradient.

1.2.1.3 Search algorithms using surrogates

Search algorithms using surrogates, called proxy-modeling or meta-modeling in the lit-

erature, are based on approximating the objective function by a an approximate model

(called also surrogate, proxy-model or meta-model). In the context of costly objective

functions, a surrogate can be considered as a computationally cheaper replacement of the

objective function. Thus, during the optimization process the surrogate is constructed and

the objective function evaluations are replaced by evaluations on the surrogate [20, 83].

Search algorithms using surrogates needs to consider the so-called exploration-exploitation

trade-off [58], i.e., evaluating more (respectively, less) candidate solutions using the “true”

objective function implies a better (respectively, worst) quality of the surrogate but on the

other hand a higher (respectively, reduced) computational cost of the optimization.

1If a candidate solution is accepted, it replaces the current solution
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The most popular surrogate models include polynomial response surfaces, Kriging

[90, 48], support vector machines [40] and artificial neural networks [110].

1.2.1.4 Hybrid methods

Several algorithms (two or more) from different classes can be combined in order to form

the so-called hybrid methods. Hybridization aims at having a resulting algorithm which

contains the positive features of the combined algorithms. Several hybridizations have been

proposed in the literature in order to tackle specific applications. For instance, a review of

hybridization of genetic algorithms can be found in [46]. Also, a review of hybridization

of the particle swarm optimization can be found in [123].

1.2.2 Well placement optimization

Well placement optimization is a recent area of research that is gaining growing interest.

Different methodologies have been used in the literature to tackle the well placement

problem.

On the one hand, approaches based on stochastic search algorithms were used, where

minimal assumptions on the problem are needed and that are thus more robust than

deterministic methods when dealing with rugged problems such as the well placement

problem. Simulated annealing (SA) was used in [19] for well placement and scheduling,

and in [85] for well placement. Particle swarm optimization (PSO) was applied in [103] for

the determination of optima well type and position. Genetic algorithm (GA) was applied

in [98, 47, 99, 33]. Simultaneous perturbation stochastic algorithm (SPSA) was used in

[16, 17]. In particular, in [17], a comparison between three optimization algorithms is

performed: the SPSA algorithm, the very fast simulated annealing (VFSA) and the finite

difference gradient (FDG).

On the other hand, deterministic optimization methods were also used. Descent algo-

rithms were mostly used, in which adjoint methods were used for computing the gradients

[67, 114, 57, 125, 130]. Using descent methods implies that the underlying model of the

function needs to be smooth enough. In [67], the adjoint method is used to place an injec-

tor in a 2D oil-water reservoir with 4 producers already fixed in each of the four corners

grid blocks. Results show that the algorithm, as expected due to its deterministic aspect,

converges to a different local optimum for every initial well location. In [114], the wells

are defined by continuous variables and the adjoint method is tested on a few synthetic

waterflood optimization problems.

Search algorithms using surrogates, or proxy-modeling were also used in the literature.

In proxy-modeling the true objective function is replaced by a proxy-model, and different

optimization techniques are applied to the proxy. Proxy-models include least squares and
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kriging [105], radial basis functions [50], quality maps [41, 100], and multiple regression

techniques (including kriging) [1]. Although proxy-modeling is an efficient way to have an

approach with a reduced number of reservoir simulations, its application, with increasing

complexity of the solution space, is not recommended [132].

Stochastic algorithms have been combined with search algorithms using surrogates and

deterministic approaches to form hybrid algorithms: GA with a polytope algorithm and

kriging [63, 64], GA with a polytope algorithm, kriging and neural networks [65], GA with

neural networks, a hill climber and a near-well upscaling technique [129]. Results show

that a hybrid stochastic algorithm converges in general to a reasonable solution with a

reduced number of evaluations compared to a pure stochastic algorithm. The approaches

in [63, 64, 65, 129] build at each iteration a proxy-model, determine its maximum and

include the location of this maximum in the population (replacing the worst individual) if

it is better than the best individual of the current population. In [10], a GA is defined, in

which at each iteration, only a predefined percentage of the individuals, chosen according

to a set of scenario attributes, is simulated. The objective function of the non-simulated

points is estimated using a statistical proxy based on cluster analysis.

1.3 Thesis objectives and methodology

In this thesis the objective is to address the previously mentioned challenges (I), (II) and

(III) in Section 1.1, namely:

(I) The non-smoothness, the multi-modality, the non-convexity and the high dimen-

sionality of the objective function;

(II) The expensive cost of the objective function;

(III) The geological uncertainty handling problem.

Considering the state of the art in optimization, the choice of the CMA-ES algorithm

[74] seems a priori natural to address problem (I). Indeed, CMA-ES is recognized as one

of the most powerful derivative-free optimizers for continuous optimization [70]. CMA-ES

is both a fast and robust local search algorithm, exhibiting linear convergence on wide

classes of functions and a global search algorithm when playing with restart and increase

of population size. CMA-ES, in contrast to most other evolutionary algorithms, is a quasi

parameter-free algorithm1.

In the petroleum industry, CMA-ES have been applied only in two studies, to the

best of our knowledge, previous to this work: a characterization of fracture conductivities

1Only the population size is suggested to be adjusted by the user in order to account for the ruggedness
of the objective function landscape.
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from well tests inversion [32], a well placement optimization but with respect to simple at-

tributes (e.g., productivity indexes) [43]. A more recent application on the well placement

optimization was shown in [116, 115].

To tackle problem (II), we propose to investigate coupling the CMA-ES optimizer with

surrogates (or meta-models). In this context, we aim at defining an efficient variant of

CMA-ES coupled with meta-models able to reduce significantly the number of the reservoir

simulations. Furthermore, we aim at exploiting the knowledge about the optimization

problem, in particular the so-called partial separability of the objective function in order

to reduce more the number of reservoir simulations.

Finally, to tackle problem (III), we aim at defining an approach (for CMA-ES) able

to capture the geological uncertainty with a significantly reduced cost of reservoir simu-

lations. In this context, we aim at defining an approach that performs a small number

of reservoir simulations (typically one) for each well configuration instead of performing

reservoir simulations on all possible geological realizations.

1.4 Summary of contributions

The following presents a summary of the contributions of this thesis.

We have tackled the problem (I) related to the non-smoothness, the multi-modality, the

non-convexity and the high dimensionality of the objective function in the well placement

problem, and we have shown:

A first successful application of CMA-ES on the well placement problem. (Re-

sults published in [26, 24]) We propose a new methodology for well location and

trajectory optimization based on the population based stochastic search algorithm called

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [74]. We propose to use

a new adaptive penalization with rejection technique to handle constraints. Because ge-

netic algorithms are quite often the method of choice in petroleum industry, we show the

improvement of applying CMA-ES over a GA on the synthetic benchmark reservoir case

PUNQ-S3 [54]. To allow a fair comparison, both algorithms are used without parameter

tuning on the problem, standard settings are used for the GA and default settings for

CMA-ES. It is shown that our new approach outperforms the genetic algorithm: it leads

in general to both a higher net present value and a significant reduction in the number of

reservoir simulations needed to reach a good well configuration.
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After this application of CMA-ES on the well placement problem, we have tackled the

problem (II) related to the expensive cost of the objective function, and we have proposed

two new algorithms:

A new variant of CMA-ES with local meta-models. (Results published in [22])

The local-meta-model CMA-ES (lmm-CMA) [87] coupling local quadratic meta-models

with the Covariance Matrix Adaptation Evolution Strategy is investigated. The scaling

of the algorithm with respect to the population size is analyzed and limitations of the

approach for population sizes larger than the default one are shown. A new variant for

deciding when the meta-model is accepted is proposed –called the new-local-meta-model

CMA-ES (nlmm-CMA).

A new variant of CMA-ES with local meta-models for partially separable func-

tions. (Results published in [23]) We propose a new variant of the covariance matrix

adaptation evolution strategy with local meta-models for optimizing partially separable

functions –called the partially separable local-meta-model CMA-ES (p-sep lmm-CMA).

We propose to exploit partial separability by building at each iteration a meta-model for

each element function (or sub-function) using a full quadratic local model. Our results

demonstrate that exploiting partial separability leads to an important speedup compared

to the standard CMA-ES. We show on the tested functions that the speedup increases

with increasing dimensions for a fixed dimension of the element function. On the stan-

dard Rosenbrock function the maximum speedup of λ is reached in dimension 40 using

element functions of dimension 2, where λ is the population size. We show also that higher

speedups can be achieved by increasing the population size.

Now, we have applied the two new proposed algorithms on the well placement problem

to achieve:

A significant reduction of the number of reservoir simulations for the well

placement problem. (Results published in [26, 24, 25]) We propose to apply

CMA-ES with local meta-models (nlmm-CMA) on the well placement problem, where

for each well configuration in the population, an approximate convex quadratic model is

built using true objective function evaluations collected during the optimization process.

Coupling CMA-ES with a meta-model leads to a significant improvement, which was

around 20% for the synthetic benchmark reservoir case PUNQ-S3.

Moreover, we propose also to apply p-sep lmm-CMA on the well placement problem,

by building partially separated meta-models for each well or set of wells, which results in a

more accurate modeling. Results show that taking advantage of the partial separability of
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the objective function leads to a significant decrease in the number of reservoir simulations

needed to find the “optimal” well configuration, given a restricted budget of reservoir

simulations.

We have also tackled the problem (III) related to the geological uncertainty handling,

and we have proposed:

A new approach to handle geological uncertainty for the well placement prob-

lem. We propose a new approach to handle geological uncertainty for the well placement

problem with a reduced number of reservoir simulations. We propose to use only one re-

alization together with the neighborhood of each well configuration in order to estimate

its objective function instead of using multiple realizations. The approach is applied on

the synthetic benchmark reservoir case PUNQ-S3 and shown to be able to capture the

geological uncertainty using a reduced number of reservoir simulations.

1.5 Dissertation road-map

This thesis is structured as follows. Chapter 2 gives a “theoretical” overview of the opti-

mization method used in this thesis: the Covariance Matrix Adaptation Evolution Strategy

(CMA-ES). An adaptive penalization technique to handle the optimization constraints is

also introduced and a combination of CMA-ES with meta-models is investigated to pro-

pose a new variant of CMA-ES with local-meta-models, called the new-local-meta-model

CMA-ES (nlmm-CMA).

In Chapter 3, the CMA-ES optimizer is applied on the well placement problem. The

improvement of applying CMA-ES over a GA on a synthetic benchmark reservoir case is

shown. In addition, the contribution of the CMA-ES with meta-models in reducing the

number of reservoir simulations is demonstrated on a number of examples.

In Chapter 4, we propose a new variant of CMA-ES with local meta-models for optimiz-

ing partially separable functions, called the partially separable local-meta-model CMA-ES

(p-sep lmm-CMA).

In Chapter 5, the resulting approach (p-sep lmm-CMA) is applied on the well placement

problem.

Finally, in Chapter 6, the problem of dealing with uncertainty in well placement is

tackled. A new approach using the neighborhood of each well configuration is proposed

and demonstrated on a synthetic benchmark reservoir case.

The thesis closes with the conclusions and a number of suggestions for future work.
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Chapter 2

CMA-ES and CMA-ES with

meta-models

This chapter is based on the paper [22]. It gives a detailed overview of the optimization

methods applied in Chapter 3 to the well placement problem. We present the CMA-ES

algorithm, a constraint handling needed for well placement and a new surrogate approach

that couples CMA-ES with meta-models. This latter approach mitigate some defects of the

local-meta-model CMA-ES (lmm-CMA). The different defined methodologies are tested

and validated on some mathematical test functions.

This chapter is structured as follows. Section 2.1 gives an overview of the optimization

algorithm CMA-ES. In Section 2.2, we propose an adaptive penalization and rejection

technique in order to handle optimization constraints. Finally in Section 2.3, the reduction

of the number of evaluations is addressed by coupling CMA-ES with meta-models.

In the following, we denote the objective function to be optimized by f : Rn → R.

2.1 Covariance Matrix Adaptation - Evolution Strategy

The Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) [74, 71] is an iterative

stochastic optimization algorithm where at each iteration, a population of candidate solu-

tions is sampled. In contrast to the classical presentation of population based stochastic

search algorithms (like genetic algorithms [78, 79]) where the different steps of the algo-

rithms are described in terms of operators acting on the population (crossover, mutation),

the natural algorithm template for CMA-ES translates the evolution of the probability

distribution used to sample points at each iteration. Indeed, the algorithm loops over the

following steps:

1. sample a population of λ candidate solutions (points of Rn)

2. evaluate the λ candidate solutions on f
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3. adapt the sampling distribution (using the feedback from f obtained at step 2.)

We see that this general template depends on a probability distribution (sampling distri-

bution) and on the update of this probability distribution. The sampling distribution in

CMA-ES is a multivariate normal distribution. In the next paragraphs we will give more

insights on multivariate normal distributions and their geometrical interpretation and then

explain how its update is performed at each iteration within CMA-ES.

Multivariate normal distributions A random vector of Rn distributed according to a

multivariate normal distribution is usually denoted by N(m,C) where m is a vector of Rn

and C an n×n symmetric positive definite matrix corresponding to the covariance matrix

of the random vector. The set of parameters (m,C) entirely determines the random vector.

Fig. 2.1 gives the geometric interpretation of a random vector N(m,C) in two dimensions.

We visualize that m is the symmetry center of the distribution and that isodensity lines

are ellipsoid centered in m with main axes corresponding to eigenvectors of C and lengths

determined by the square roots of the eigenvalues of C. Fig. 2.1 depicts also points

sampled according to a multivariate normal distribution. As expected, the spread of the

points follows the isodensity lines. A useful relation is m + N(0,C) = N(m,C) that

interprets m as the displacement from the origin 0.

In CMA-ES, the mean vector represents the favorite solution or best estimate of the

optimum, and the covariance matrix C characterizing the geometric shape of the distri-

bution defines where new solutions are sampled. Furthermore, an additional parameter is

added, which is the step-size σ used as a global scaling factor for the covariance matrix.

Overall, in step 1. for CMA-ES, points are sampled according to:

m+ σN(0,C) . (2.1)

The adaptation of m targets to find the best estimate of the optimum, the adaptation of

C aims at learning the right coordinate system of the problem (rotation and scaling of the

main axes) and the adaptation of σ aims at achieving fast convergence to an optimum and

preventing premature convergence. We will now describe how the distribution is updated,

that is how the parameters m, σ and C are updated in step 3. of the template.

Update of mean vector, covariance matrix and step-size We adopt here some

time-dependent notations. The iteration index is denoted g. Let (m(g), g ∈ N) be the

sequence of mean vectors of the multivariate normal distribution generated by CMA-

ES and let (σ(g), g ∈ N) and (C(g), g ∈ N) be respectively the sequences of step-sizes and
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Figure 2.1: Geometrical representation of a 2-dimensional multivariate normal distribution
N(m,C) where m = (2, 2)T and the covariance matrix C admits 1√

2
(1, 1) and 1√

2
(−1, 1) as

normalized eigenvectors with respective eigenvalues 16 and 1. Depicted on each plot is the
mean vector m and the ellipsoid isodentity lines defined as (x−m)TC−1(x−m) = c where
the constant c equals 1 (inner line) and 3 (outer line). The main axes of the (isodensity)
ellipsoid are carried by eigenvectors of C. The half lengths of the axis of the unit isodensity
lines ((x−m)TC−1(x−m) = 1) are the square roots of the eigenvalues of C.
Depicted on the 2nd, 3rd and 4th plots are samples among 10 (resp. 100 and 1000) samples
from N(m,C) falling into the box plot [−8, 12]× [−8, 12].
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2.1 Covariance Matrix Adaptation - Evolution Strategy

covariance matrices. Assume thatm(g), σ(g),C(g) are given, the λ new points or individuals

are sampled in step 1. according to:

x
(g)
i = m(g) + σ(g)Ni(0,C

(g))
︸ ︷︷ ︸

=yi

, for i = 1, · · · , λ . (2.2)

Those λ individuals are evaluated in step 2. and ranked according to f :

f(x
(g)
1:λ) ≤ · · · ≤ f(x

(g)
µ:λ) ≤ · · · ≤ f(x

(g)
λ:λ) , (2.3)

where we use the notation x
(g)
i:λ for ith best individual.

The mean m(g) is then updated by taking the weighted mean of the best µ individuals:

m(g+1) =

µ
∑

i=1

ωix
(g)
i:λ = m(g) + σ(g)

µ
∑

i=1

ωiyi:λ , (2.4)

where yi:λ = (x
(g)
i:λ − m(g))/σ(g). In general µ = λ

2 and (ωi)1≤i≤µ are strictly positive

and normalized weights, i.e., satisfying
µ∑

i=1
ωi = 1. This update displaces the mean vector

toward the best solutions. The increment σ(g)
∑µ

i=1 ωiyi:λ has an interpretation in terms of

(stochastic) approximation of the gradient with respect to m of a joint criterion J mapping

(m, σ,C) to R and depending on quantiles of the objective function f [9].

A measure characterizing the recombination used is called the variance effective selec-

tion mass and defined by µeff =

(
µ∑

i=1
ωi

2

)−1

. The choice of the recombination type has

an important impact on the efficiency of the algorithm [6]. The default weights are equal

to:

ωi =
ln(µ+ 1)− ln(i)

µ ln(µ+ 1)− ln(µ!)
, for i = 1, · · · , µ . (2.5)

The update of the covariance matrix C(g) uses two mechanisms. First of all the rank-

one update [74] using the so called evolution path p
(g)
c ∈ R

n whose update is given by:

p(g+1)
c =(1−cc)p

(g)
c +

√

cc(2−cc)µeff
m(g+1)−m(g)

σ(g)
, (2.6)

where cc ∈)0, 1]. For the constant cc = 1, the evolution path points toward the descent

direction m(g+1)−m(g)

σ(g) and for cc 6= 1, the vector p
(g)
c adds the steps followed by the mean

vector over the iterations using some normalization to dampen previous steps, so as not

to rely too much on old information. The vector p
(g+1)
c gives a direction where we expect

to see good solutions. From the evolution path, the rank-one matrix p
(g+1)
c p

(g+1)
c

T
is

built and added to the covariance matrix (see Eq. (2.7)). Geometrically it deforms the

ellipsoid-density in the direction p
(g+1)
c , i.e., the rank-one update increases the probability

to sample in the next iteration in the direction p
(g+1)
c .
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2.1 Covariance Matrix Adaptation - Evolution Strategy

The second mechanism is the rank-mu update [72] where the rank-mu matrix
µ∑

i=1
ωiyi:λy

T
i:λ is added to the covariance matrix. This rank-mu matrix is also the stochastic

approximation of the gradient of the joint criterion J with respect to C [9]. The update

of the covariance matrix combines rank-one and rank-mu update and reads:

C(g+1) = (1− ccov)C
(g) +

ccov
µcov

p(g+1)
c p(g+1)

c

T

︸ ︷︷ ︸

rank-one update

+ ccov

(

1−
1

µcov

)

×

µ
∑

i=1

ωiyi:λy
T
i:λ

︸ ︷︷ ︸

rank-mu update

. (2.7)

The initial evolution path p
(0)
c , cc, ccov and µcov are parameters of the algorithm. Default

values can be found in [71].

In addition to the covariance matrix adaptation, the step-size σ(g) is controlled after

every iteration. To perform the adaptation, a conjugate evolution path p
(g)
σ ∈ R

n at

generation g is updated according to:

p
(g+1)
σ = (1− cσ)p

(g)
σ

+
√

cσ(2− cσ)µeffC
(g)−

1
2 m(g+1)−m(g)

σ(g) .
(2.8)

The conjugate path differs from the evolution path in the direction of the steps added,

as in the conjugate path the normalized step m(g+1)−m(g)

σ(g) is multiplied by the matrix

C(g)−
1
2 1.

The step-size is adapted according to:

σ(g+1) = σ(g)exp

(

cσ
dσ

(

‖p
(g+1)
σ ‖

E‖N(0, I)‖
− 1

))

, (2.9)

where p
(0)
σ , cσ and dσ are parameters of the algorithm with default values defined in [71].

This update rule implements to increase the step-size when the length of the conjugate

evolution path is larger than the length it would have if selection would be random (this

length will then be equal to ‖N(0, I)‖) and decrease it otherwise.

All the updates rely on the ranking determined by Eq. (2.3) only and not on the exact

value of the objective functions making the algorithm invariant to monotonic transforma-

tions of the objective functions that preserve the ranking of solutions.

On the class of functions x 7→ gM ◦ fcq(x) where fcq is a convex quadratic function

and gM : R→ R a monotonically increasing function, the covariance matrix sequence C(g)

becomes proportional to the inverse Hessian of the function fcq(x), i.e., the algorithm is

able to learn second order information without using any derivatives.

1This difference is mainly technical in order to be able to compare the length of the conjugate path at
different iterations though the steps have been sampled with different covariance matrices [74]
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2.1 Covariance Matrix Adaptation - Evolution Strategy

Step-size adaptation is important to achieve fast convergence corresponding to linear

convergence with rates close to optimal rates that can be achieved by evolution strategies

algorithms. In combination with covariance matrix adaptation, step-size adaptation al-

lows to achieve linear convergence on a wide range of functions including ill-conditioned

problems.

CMA-ES and EnOpt The ensemble-based optimization (EnOpt) [37, 36, 131] shares

similarities with CMA-ES. In the following, we briefly present the main idea of EnOpt as

well as the similarities and differences with CMA-ES. Original notations defined in [131]

have been changed in order to be in accordance with the notations used for CMA-ES.

In EnOpt, for every iteration, an ensemble of λ points is sampled according to:

x
(g+1)
i = m(g) +Ni(0,CX) for i = 1, · · · , λ , (2.10)

where Ni(0,CX)1≤i≤λ are λ independent multivariate normal distributions with zero mean

vector and covariance matrix CX . CX is a user specified matrix, which remains constant

during the whole optimization process. Therefore, EnOpt adapts only the mean m(g) of

the distribution according to:

m(g+1) = m(g) + α(g)CXC
(g)
X,J , (2.11)

where α(g) is the step-size and C
(g)
X,J is the cross-covariance between the population and

the approximate gradient of the objective function.

Hence, while EnOpt and CMA-ES shares some similarities, CMA-ES presents three

important advantages:

• CMA-ES adapts the covariance matrix used to sample its population to the landscape

of the objective function as shown above. However, EnOpt uses the same covari-

ance matrix during the whole optimization process which may lead to difficulties in

refining the search at the end of the optimization;

• CMA-ES uses a step-size adaptation mechanism where the step-size is increased or

decreased depending on the situation which is crucial to obtain linear convergence.

However, in EnOpt, the step-size is always decreased and thus too small values at

the beginning will be very detrimental for the convergence rate. Situations where

step-size should be increased (linear environment) are also sub-optimally handled;

• CMA-ES is invariant to monotonic transformations of the objective functions that

preserve the ranking of solutions, which represents a source of robustness of the

algorithm [59]. More particularly, this invariance of CMA-ES removes the need to
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2.2 Handling constraints with CMA-ES

tune the parameters of the algorithm according to the scale of the objective function,

which is in general a challenging task. However, EnOpt uses the exact values of

the objective function to update the mean of its search distribution which leads to

breaking the invariance that comparison-based algorithms, such as CMA-ES, have.

2.2 Handling constraints with CMA-ES

Several methods are used, in the literature, to handle constraints in stochastic optimization

algorithms. In general, unfeasible individuals can be rejected, penalized or repaired. In

the following, we briefly discuss these alternatives. A more detailed study and comparison

can be found in [96].

• Rejection of unfeasible individuals: Besides its simplicity and ease of implementation,

rejecting the unfeasible individuals, also called “death penalty” does not require any

parameter to be tuned. However, ignoring unfeasible individuals can prevent the

algorithm from finding the region containing the optimum solution if it is close to

the feasible domain boundaries [95];

• Penalizing unfeasible individuals: Penalization is the most widespread approach used

to handle constraints. This method corresponds to a transformation of the optimiza-

tion problem: {

min f(x)

s.t. hi(x) ≤ di ∀i = 1, · · · ,m

⇒ min f(x) +
m∑

i=1
g(hi(x)− di) ,

(2.12)

where m is the number of constraints and g(.) is the penalty function which is

non-negative, equal to zero in R− and increasing in R+. In general, g(.) contains pa-

rameters to be tuned. These parameters depend on the problem to be optimized. A

solution to avoid the difficulty of tuning those parameters consists in using an adap-

tive penalization which does not require any user specified constant. However, pe-

nalizing all unfeasible individuals implies evaluating all unfeasible individuals which

can be costly;

• Repairing unfeasible individuals: Another popular solution to handle constraints is

to repair each unfeasible individual before evaluating it. An important parameter

to be specified is the probability of replacement of the unfeasible individual by the

repaired new feasible individual. Moreover, repairing introduces a new individual in

the population which may not obey to the adapted distribution, and hence may hold

up the optimization process of CMA-ES.
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2.2 Handling constraints with CMA-ES

Knowing the limitations of each of the constraint-handling approaches, the approach

used in the present work is a mixture between two approaches: adaptive penalization of the

marginally unfeasible individuals and rejection of only the unfeasible individuals far from

the boundaries of the feasible domain. Using this approach, rejecting only individuals far

from the feasible domain does not prevent the algorithm from finding a solution near the

feasible domain boundaries, and by using adaptive penalization, the critical penalization

coefficients are adapted automatically during the course of the search1.

A box constraint handling is presented in [73] in which the feasible space is a hypercube

defined by lower and upper boundary values for each parameter. In the following, this

approach is generalized in order to handle feasible spaces defined by lower and upper

boundary values for a sum of some of the parameters (e.g., to constrain the length of

multilateral wells).

Given an optimization problem with a dimension n, let us suppose we have m ∈ N

constraints denoted by Sj , ∀j = 1, · · · ,m. For each constraint Sj , we define Pj ⊂

{1, · · · , n} such that a vector x = (xi)1≤i≤n is feasible with respect to the constraint Sj if:

v(j,−) < qj =
∑

p∈Pj

xp < v(j,+) , (2.13)

where v(j,−) and v(j,+) are the lower and upper boundaries defining Sj . Constraints are

then handled as follows, when evaluating an individual x:

- Initializing weights: In the first generation, boundary weights γj are initialized to

γj = 0, ∀j = 1, · · · ,m ;

- Setting weights: From the second generation upwards, if the distribution mean is unfea-

sible and weights are not set yet

γj ←−
2δfit

σ2 1
n

n∑

i=1
Cii

, ∀j = 1, · · · ,m , (2.14)

where δfit is the median from the last (20 + 3n
λ ) generations of the interquartile range

of the unpenalized objective function evaluations and Cii is the ith diagonal element of

the covariance matrix. The term

(

σ2 1
n

n∑

i=1
Cii

)

represents the mean of
(
σ2Cii

)

i=1,··· ,n

which will be used in Eq. (2.16) in order to normalize the square of the distance which is

(qfeasj − qj)
2 with respect to the covariance matrix adapted by CMA-ES ;

- Increasing weights: For each constraint Sj , if the distribution mean Mj , i.e., the mean of

qj for the λ individuals of the current generation, is out-of-bounds and the distance from

Mj to the feasible domain, i.e., max(0,Mj − v(j,+)) + max(0, v(j,−) −Mj) is larger than

1The penalization method depends in general on other parameters which are on the other hand much
less critical and which are tuned beforehand to be suitable for a wide range of problems [73].
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2.3 CMA-ES with local meta-models

σ ×
√

1
card(Pj)

∑

p∈Pj

Cpp ×max(1,
√
n

µeff
) then

γj ←− γj × 1.1max(1,
µeff
10n

), ∀j = 1, · · · ,m , (2.15)

where card(Pj) denotes the cardinality of the set Pj ;

- Evaluating the individual :

f(x)←− f(x) +
1

m

m∑

j=1

γj
(qfeasj − qj)

2

ξj
, (2.16)

where qfeasj is the projection of qj on the feasible domain and ξj =

exp

(

0.9

(

1
card(Pj)

∑

p∈Pj

log(Cpp)−
1
n ×

n∑

i=1
log(Cii)

))

.

An individual x, in the following, will be rejected and resampled if |qfeasj − qj | >

p%× |v(j,+) − v(j,−)|, where p% is a parameter to be chosen. In all runs presented in the

sequel, p% is chosen to be equal to 20%.

2.3 CMA-ES with local meta-models

Many real-world optimization problems are formulated in a black-box scenario where the

objective function to optimize may have noise, multiple optima and can be computationally

expensive. For expensive objective functions–several minutes to several hours for one

evaluation–a strategy is to couple evolutionary algorithms with meta-models or surrogates:

a model of f is built, based on “true” evaluations of f , and used during the optimization

process to save evaluations of the expensive objective function [83]. One key issue when

coupling EAs and meta-models is to decide when the quality of the model is good enough to

continue exploiting this model and when new evaluations on the “true” objective functions

should be performed, i.e., the exploration-exploitation trade-off defined in Section 1.2.1.3.

Indeed, performing too few evaluations on the original objective function can result in

suboptimal solutions whereas performing too many of them can lead to a non efficient

approach.

CMA-ES was coupled with local meta-models to define the local-meta-model CMA-ES

(lmm-CMA) [87]. In the proposed algorithm, the quality of the meta-model is appraised

by tracking the change in the exact ranking of the best individuals. The lmm-CMA

algorithm has been evaluated on test functions using the default population size of CMA-

ES for unimodal functions and for some multi-modal functions and has been shown to

improve CMA-ES [87].

In this section, we review the lmm-CMA algorithm as defined in [87] in Section 2.3.1

and then we analyze the performance of lmm-CMA when using population sizes larger than
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2.3 CMA-ES with local meta-models

the default one in Section 2.3.2. We show that tracking the exact rank-change of the best

solutions to determine when to re-evaluate new solutions is a too conservative criterion

and leads to a decrease of the speedup with respect to CMA-ES when the population

size is increased. Instead we propose in Section 2.3.3 a less conservative criterion that we

evaluate on test functions to define a new variant of CMA-ES with meta-models that we

call the new-local-meta-model CMA-ES (nlmm-CMA).

2.3.1 The local-meta-model CMA-ES (lmm-CMA)

The lmm-CMA algorithm [87] combines the CMA-ES with local meta-models by exploiting

the fact that the updates of CMA-ES only rely on the ranking of the µ best solutions. An

iteration of lmm-CMA consists of one iteration of CMA-ES where the evaluation step on

the (true) objective function that usually determines the ranking of the µ best solutions

is replaced by the approximate ranking procedure that outputs an approximate ranking

of the candidate solutions and that costs maximally λ function evaluations on the (true)

objective function (the benefit of the approach comes of course when it costs less than λ).

The mean value, covariance matrix and step-size of CMA-ES are then updated according

to the update equations defined by the standard CMA-ES.

2.3.1.1 Locally weighted regression

To build an approximate model of the objective function f , denoted by f̂ , we use a locally

weighted regression. During the optimization process, a database, i.e., a training set is

built by storing, after every evaluation on the true objective function, points together with

their objective function values (x, y = f(x)). Assuming that the training set contains a

sufficient number m of couples (x, f(x)), let us consider an individual denoted q ∈ R
n to

be evaluated with the approximate model, where n is the dimension of the problem. We

begin by selecting the k nearest points (xj)1≤j≤k from the training set. The distance used

for this purpose exploits the natural metric defined by the covariance matrix of CMA,

namely the Mahalanobis distance with respect to the current covariance matrix C defined

for two given points z1 ∈ R
n and z2 ∈ R

n by dC (z1, z2) =

√

(z1 − z2)
T C−1 (z1 − z2).

We build with locally weighted regression an approximate objective function using (true)

evaluations (yj)1≤j≤k corresponding to the k selected nearest points to q.

The use of a full quadratic meta-model is suggested in [87]. Hence, using a vector

β ∈ R
n(n+3)

2
+1, we define f̂ as follows:

f̂ (x, β) = βT
(
x21, · · · , x

2
n, · · · , x1x2, · · · ,

xn−1xn, x1, · · · , xn, 1)
T .

(2.17)
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2.3 CMA-ES with local meta-models

The full quadratic meta-model is built based on minimizing the following criterion with

respect to the vector of parameters β of the meta-model at q:

A(q) =
k∑

j=1

[(

f̂ (xj , β)− yj

)2
K

(
dC (xj ,q)

h

)]

. (2.18)

The kernel weighting function K (.) is defined by K(ζ) = (1−ζ2)2, and h is the bandwidth

defined by the distance of the kth nearest neighbor data point to q where k must be greater

or equal to n(n+3)
2 + 1 for a full quadratic meta-model.

2.3.1.2 Approximate ranking procedure

To incorporate the approximate model built using the locally weighted regression, we use

the approximate ranking procedure [111]. This procedure decides whether the quality of

the model is good enough in order to continue exploiting this model or new true objective

function evaluations should be performed. The resulting method is called the local-meta-

model CMA-ES (lmm-CMA) [87] and is defined as follows. For a given generation, let

us denote individuals of the current population of CMA-ES by (xi)1≤i≤λ, where λ is the

population size. The following procedure is then performed:

1. build f̂ (xi) for all individuals of the current population (xi)1≤i≤λ.

2. rank individuals according to their approximated value f̂ (xi): ranking0.

3. evaluate the best ninit individuals with the true objective function and add their

evaluations to the training set.

4. for nic from 1 to
(
λ−ninit

nb

)

, we:

(a) build f̂ (xi)1≤i≤λ.

(b) rank individuals according to their approximated value f̂ (xi)
1: rankingnic .

(c) if (rankingnic = rankingnic−1), the meta-model is accepted.

(d) if the meta-model is accepted, we break. If not, we evaluate the best nb un-

evaluated individuals with the true objective function, add their evaluations to

the training set, and loop to step 4, until reaching the acceptance criterion of

the meta-model.

5. if (nic > 2), ninit = min(ninit + nb, λ− nb) .

6. if (nic < 2), ninit = max(nb, ninit − nb) .

1Or true objective function if the individuals have been evaluated on it.
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2.3 CMA-ES with local meta-models

Table 2.1: Test functions and their corresponding initial intervals and standard deviations.
The starting point is uniformly drawn from the initialized interval.
Name Function Init. σ0

Noisy Sphere fNSphere(x) = (
n∑

i=1
x2i ) exp (ǫN(0, 1)) [−3, 7]n 5

Schwefel fSchw(x) =
n∑

i=1
(

i∑

j=1
xj)

2 [−10, 10]n 10

Schwefel1/4 fSchw1/4(x) = (fSchwefel (x))
1
4 [−10, 10]n 10

Rosenbrock fRosen (x) =
n−1∑

i=1

(

100.
(
x2i − xi+1

)2
+ (xi − 1)2

)

[−5, 5]n 5

Ackley fAck (x) = 20− 20 exp
(
−0.2

√

1
n

n∑

i=1
x2i
)

[1, 30]n 14.5

+e− exp( 1n

n∑

i=1
cos (2πxi))

Rastrigin fRast (x) = 10n+
n∑

i=1

(
x2i − 10. cos (2πxi)

)
[1, 5]n 2

This procedure heavily exploits the rank-based property of the CMA-ES algorithm.

Initially, a number ninit of best individuals based on the meta-model is evaluated using

the true objective function and then added to the training set. A batch of nb individuals

is evaluated until satisfying the meta-model acceptance criterion: keeping the ranking of

each of the µ best individuals based on the meta-model unchanged for two iteration cycles.

Hence, (ninit + nb ∗ nic) individuals are evaluated every generation where nic represents

the number of iteration cycles needed to satisfy the meta-model acceptance criterion. The

integer nb is chosen to be equal to max[1, ( λ
10)] and ninit is initialized to λ and adapted after

every generation. The minimum number of evaluations performed for a given generation,

which corresponds to the minimum value that ninit can reach, is then equal to nb.
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2.3 CMA-ES with local meta-models

Table 2.2: Success performance SP1, i.e., the average number of function evaluations
for successful runs divided by the ratio of successful runs, standard deviations of the
number of function evaluations for successful runs and speedup performance spu, to reach
fstop = 10−10 of lmm-CMA and nlmm-CMA. The ratio of successful runs is denoted
between brackets if it is < 1.0. Results with a constant dimension n = 5 and an increasing
λ are highlighted in grey.

Function n λ ǫ lmm-CMA spu nlmm-CMA spu CMA-ES

fRosen 2 6 291 ± 59 2.7 252 ± 52 3.1 779 ± 236

4 8 776 ± 102 [0.95] 2.8 719 ± 54 [0.85] 3.0 2185 ± 359 [0.95]

5 8 1131 ± 143 2.7 1014 ± 94 [0.90] 3.0 3012 ± 394 [0.90]

5 16 1703 ± 230 [0.95] 2.0 901 ± 64 3.7 3319 ± 409

5 24 2784 ± 263 1.4 1272 ± 90 [0.95] 3.0 3840 ± 256

5 32 3364 ± 221 1.3 1567 ± 159 2.9 4515 ± 275

5 48 4339 ± 223 1.3 1973 ± 144 2.9 5714 ± 297

5 96 6923 ± 322 1.2 3218 ± 132 2.5 7992 ± 428

8 10 2545 ± 233 [0.95] 2.1 2234 ± 202 [0.95] 2.4 5245 ± 644

fSchw 2 6 89 ± 9 4.3 87 ± 7 4.4 385 ± 35

4 8 166 ± 8 5.4 166 ± 6 5.4 897 ± 51

8 10 334 ± 9 6.2 333 ± 9 6.2 2078 ± 138

16 12 899 ± 40 5.9 855 ± 30 6.2 5305 ± 166

fSchw1/4 2 6 556 ± 25 2.4 413 ± 25 3.3 1343 ± 72

4 8 1715 ± 87 1.7 971 ± 36 2.9 2856 ± 135

5 8 2145 ± 69 1.6 1302 ± 31 2.7 3522 ± 136

5 16 3775 ± 137 1.3 1446 ± 31 3.4 4841 ± 127

5 24 5034 ± 142 1.2 1825 ± 45 3.4 6151 ± 252

5 32 6397 ± 174 1.2 2461 ± 43 3.2 7765 ± 227

5 48 8233 ± 190 1.2 3150 ± 58 3.2 10178 ± 202

5 96 11810 ± 177 1.2 4930 ± 94 2.9 14290 ± 252

8 10 4046 ± 127 1.5 2714 ± 41 2.2 5943 ± 133

fNSphere 2 6 0.35 124 ± 14 2.7 109 ± 12 3.1 337 ± 34

4 8 0.25 316 ± 45 2.3 236 ± 19 3.1 739 ± 30

8 10 0.18 842 ± 77 1.8 636 ± 33 2.4 1539 ± 69

16 12 0.13 2125 ± 72 1.3 2156 ± 216 1.3 2856 ± 88

fAck 2 5 302 ± 43 [0.90] 2.6 227 ± 23 3.5 782 ± 114 [0.95]

5 7 1036 ± 620 2.0 704 ± 23 [0.90] 3.0 2104 ± 117 [0.85]

10 10 2642 ± 93 [0.90] 1.4 2066 ± 119 [0.95] 1.8 3787 ± 151 [0.95]

fRast 2 50 898 ± 160 [0.95] 2.7 524 ± 48 [0.95] 4.7 2440 ± 294 [0.75]

5 70 19911 ± 599 [0.15] 0.6 9131 ± 135 [0.15] 1.3 11676 ± 711 [0.50]

5 140 6543 ± 569 [0.80] 1.6 4037 ± 209 [0.60] 2.6 10338 ± 1254 [0.85]

5 280 10851 ± 1008 [0.85] 1.3 4949 ± 425 [0.85] 2.9 14266 ± 1069

26



2.3 CMA-ES with local meta-models

8 16 24 32 48 96
0

1

2

3

4

5

Population Size

S
pe

ed
up

(a)

8 16 24 32 48 96
0

1

2

3

4

5

Population Size

S
pe

ed
up

(b)

70 140 280
0

1

2

3

4

5

Population Size

S
pe

ed
up

(c)

Figure 2.2: Speedup of nlmm-CMA (△) and lmm-CMA (�) on (a) fSchw1/4 , (b) fRosen and
(c) fRast for dimension n = 5.

2.3.2 Evaluating lmm-CMA on increasing population size

2.3.2.1 Experimental procedure

The lmm-CMA and the other variants tested in this chapter are evaluated on the objective

functions presented in Table 2.1 corresponding to the functions used in [87] except two

functions: (1) the function fSchw1/4 where we compose the convex quadratic function fSchw

by a strictly increasing mapping g : x ∈ R 7→ x1/4, introduced because we suspect that the

results on fSchw are artificial and only reflect the fact that the model used in lmm-CMA

is quadratic and (2) the noisy sphere function fNSphere whose definition has been modified

following the recommendations of [82]. We have followed the experimental procedure in

[87] and performed for each test function 20 independent runs using an implementation

of lmm-CMA based on a java code of CMA-ES1 randomly initialized from initial inter-

vals defined in Table 2.1 and with initial standard deviations σ0 in Table 2.1 and other

standard parameter settings in [71]. The algorithm performance is measured using the

success performance SP1 used in [11]. SP1 is defined as the average number of evaluations

for successful runs divided by the ratio of successful runs, where a run is considered as

successful if it succeeds in reaching fstop = 10−10. Another performance measure that

might be used was the expected running time ERT [69] which is defined as the number of

function evaluations conducted in all runs (successful and unsuccessful runs) divided by

the ratio of successful runs. In this chapter, we opt for SP1 since the stopping criteria for

unsuccessful runs were not properly tuned which can affect the performance comparison.

We have reproduced the results for the lmm-CMA presented in [87, Table 3]. Those results

are presented in Table 2.22.

1See http : //www.lri.fr/∼hansen/cmaes inmatlab.html.
2Experiments have been performed with k = n(n+3)+2 indicated in [87]. However we observed some

differences on fRosen and fSchwwith this value of k and found out that k = n(n+3)
2

+ 1 allows to obtain the
results presented in [87, Table 3]. We did backup this finding by using the Matlab code provided by Stefan
Kern.
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2.3 CMA-ES with local meta-models

2.3.2.2 Performances of lmm-CMA with increasing population size

In lmm-CMA, a meta-model is accepted if the exact ranking of the µ best individuals

remains unchanged. However, this criterion is more and more difficult to satisfy when the

population size λ and thus µ(= λ/2) increases. We suspect that this can have drastic

consequences on the performances of lmm-CMA. To test our hypothesis we perform tests

for n = 5 on fRosen, fSchw1/4 with λ = 8, 16, 24, 32, 48, 96 and for fRast for λ =

70, 140, 280. The results are presented in Fig. 2.2 and in Table 2.2 (rows highlighted in

grey). On fRosen and fSchw1/4 , we observe, as expected that the speedup with respect to

CMA-ES drops with increasing λ and is approaching 1. On fRast, we observe that the

speedup for λ = 140 is larger than for λ = 280 (respectively equal to 1.6 and 1.3).

2.3.3 A new variant of lmm-CMA

We propose now a new variant of lmm-CMA, the new-local-meta-model CMA-ES (nlmm-

CMA) that tackles the problem detected in the previous section.

2.3.3.1 A new meta-model acceptance criteria

We have seen that requiring the preservation of the exact ranking of the µ best individuals

is a too conservative criterion for population sizes larger than the default one to measure

the quality of meta-models. We therefore propose to replace this criterion by the following

one: after building the model and ranking it, a meta-model is accepted if it succeeds in

keeping, both the ensemble of µ individuals and the best individual unchanged. In this

case, we ignore any change in the rank of each individual from the best µ individuals,

except for the best individual which must be the same, as long as this individual is still an

element of the µ best ensemble. Another criterion is added to the acceptance of the meta-

model: once more than one fourth of the population is evaluated, the model is accepted if

it succeeds to keep the best individual unchanged. The proposed procedure is then defined

as follows. For a given generation, let us denote individuals of the current population of

CMA-ES by (xi)1≤i≤λ, where λ is the population size. The following new approximate

ranking procedure is then performed:

1. build f̂ (xi) for all individuals of the current population (xi)1≤i≤λ.

2. rank individuals according to their approximated value f̂ (xi) and determine the µ

best individuals set and the best individual.

3. evaluate the ninit best individuals with the true objective function and add their

evaluations to the training set.

4. for nic from 1 to
(
λ−ninit

nb

)

, we:
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2.3 CMA-ES with local meta-models

(a) build f̂ (xi)1≤i≤λ.

(b) rank individuals according to their approximated value f̂ (xi)
1 and determine

the µ best individuals set and the best individual.

(c) if less than one fourth of the population is evaluated, the meta-model is accepted

if it succeeds in keeping both the best individual and the ensemble of µ

best individuals unchanged.

(d) if more than one fourth of the population is evaluated, the meta-model is ac-

cepted if it succeeds in keeping the best individual unchanged.

(e) if the meta-model is accepted, we break. If not, we evaluate the nb best un-

evaluated individuals with the true objective function, add their evaluations to

the training set, and loop to step 4, until reaching the acceptance criterion of

the meta-model.

5. if (nic > 2), ninit = min(ninit + nb, λ− nb) .

6. if (nic < 2), ninit = max(nb, ninit − nb) .

Considering only changes in the whole parent set, without taking into account the exact

rank of each individual, and setting an upper limit on the number of true objective function

evaluations was first proposed in [13]. The new variant is called nlmm-CMA in the sequel.

2.3.3.2 Evaluation of nlmm-CMA

The performance results of nlmm-CMA are presented in Table 2.2 together with the ones of

lmm-CMA. Table 2.2 shows that on fRast, the nlmm-CMA speedup is in between 2.5 and 5

instead of 1.5 and 3 for lmm-CMA, and on fAck nlmm-CMA outperforms lmm-CMA with

speedups between 1.5 and 3.5 for nlmm-CMA and between 1.4 and 3 for lmm-CMA. On

these functions, nlmm-CMA is significantly more efficient. For the other tested functions

fRast, fSchw and fSchw1/4 , nlmm-CMA is marginally more efficient than the standard lmm-

CMA. In Fig. 2.2 and in Table 2.2 (highlighted rows), we evaluate the effect of increasing

λ on nlmm-CMA using the same setting as in Section 2.3.2.2. Using population sizes

larger than the default one, nlmm-CMA improves CMA-ES by a factor between 2.5 and

3.5 for all tested functions fRosen, fSchw1/4 and fRast. Therefore, nlmm-CMA maintains a

significant speedup for λ larger than the default one contrary to lmm-CMA which offers

a speedup approaching to 1 for fRosen and fSchw1/4 and a decreasing speedup (from 1.6 to

1.3) when λ increases (from 140 to 280) for fRast.

1Or true objective function if the individuals have been evaluated on it.
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2.3 CMA-ES with local meta-models

2.3.3.3 Impact of the recombination type

The choice of the recombination type has an important impact on the efficiency of evolution

strategies in general [6] and CMA-ES in particular [74, 71]. In the previous section, all the

runs performed use the default weighted recombination type defined by Eq. (2.5). In the

new variant of lmm-CMA, the meta-model acceptance criterion does not take into account

the exact rank of each individual except the best one. By modifying the meta-model

acceptance criteria of lmm-CMA, a possible accepted meta-model may be a meta-model

that preserves the µ best individuals set and the best individual but generates a ranking

far from the “true” ranking, i.e., the one based on the true objective function. We now

compare nlmm-CMA using weighted recombination where weights are defined in Eq. (2.5)

and intermediate recombination where weights are all equal to 1/µ: nlmm-CMAI . Results

are presented in Table 2.3. The algorithm nlmm-CMA outperforms nlmm-CMAI in all

cases suggesting that even if the exact ranking is not taken into account for assessing the

quality of the meta-model in nlmm-CMA , this ranking is not random and still has an

amount of information to guide CMA-ES.

2.3.3.4 Impact of initial parameters

In the tests presented so far, the initial parameters of the approximate ranking procedure

are defined as follows: ninit is initialized at the beginning of the optimization process to

λ, and nb is set to max[1, ( λ
10)]. Every generation g, the number of initial individuals

evaluated ninit is adapted (increased or decreased) depending on the meta-model quality

(Steps 5. and 6. in the procedure defined in Section 2.3.3.1). We denote by n
(g)
init and

n
(g)
ic the values of ninit and nic respectively at generation g. The number of evaluations

performed every generation g is (n
(g)
init + n

(g)
ic × nb). We quantify now the impact of the

initial values of (ninit and nb) on the total cost of the optimization process. The algorithm

nlmm-CMA is compared to a similar version where initial parameters are chosen as small

as possible, i.e., n
(0)
init and nb are equal to 1. Moreover, we consider two cases: (1) with

update denoted nlmm-CMA1, i.e., where initial parameters are adapted depending on the

iteration cycle number (Steps 5. and 6. in the procedure defined in Section 2.3.3.1), and

(2) without update denoted nlmm-CMA2, i.e., parameters are equal to 1 during the entire

optimization process (omitting steps 5. and 6. in the procedure defined in Section 2.3.3.1).

We note that in case (1), the number of evaluations for each generation g is
(

n
(g)
init + n

(g)
ic

)

.

In case (2), every generation g, lmm-CMA evaluates
(

1 + n
(g)
ic

)

individuals, since n
(g)
init = 1.

The results on different test functions are summarized in Table 2.3.

On the unimodal functions fSchw, fSchw1/4 , setting ninit and nb as small as possible in ev-

ery generation, is marginally more efficient than the default definition of initial parameters

on small dimensions except for dimension n = 8 and λ = 10. On fRosen, nlmm-CMA2 is
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2.3 CMA-ES with local meta-models

the most efficient compared to other approaches, except for dimension n = 8 and λ = 10

which can be justified by a higher number of unsuccessful runs compared to other ap-

proaches. On the multi-modal function fAck, modifying the initial parameter ninit does

not have an important impact on the speedup of lmm-CMA (between 1.5 and 4). However

on fRast, using a small initial ninit decreases considerably the probability of success of the

optimization, from 0.95 to between 0.35 and 0.10 for dimension n = 2 and λ = 50, and

from 0.60 to 0.10 for dimension n = 5 and λ = 140. These results confirm the initial

parameter choice suggested in [87].
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Table 2.3: SP1, standard deviations of the number of function evaluations for successful runs and speedup performance spu, to reach
fstop = 10−10 of nlmm-CMA, nlmm-CMAI (intermediate recombination and default initial parameters), nlmm-CMA1(default recombination,
initial values of ninit and nb set to 1) and nlmm-CMA2(default recombination type, ninit = 1 and nb = 1 during the whole optimization
process). The ratio of successful runs is denoted between brackets if it is < 1.0.

Function n λ ǫ nlmm-CMA spu nlmm-CMAI spu nlmm-CMA1 spu nlmm-CMA2 spu

fRosen 2 6 252 ± 52 3.1 357 ± 67 2.2 250 ± 80 3.1 229 ± 53 3.4

4 8 719 ± 54 [0.85] 3.0 833 ± 100 2.6 596 ± 55 3.7 575 ± 68 3.8

8 10 2234 ± 202 [0.95] 2.4 2804 ± 256 [0.95] 1.9 2122 ± 133 2.5 2466 ± 207 [0.85] 2.1

fSchw 2 6 87 ± 7 4.4 110 ± 10 3.5 75 ± 8 5.2 73 ± 7 5.3

4 8 166 ± 6 5.4 220 ± 15 4.1 138 ± 6 6.5 136 ± 5 6.6

8 10 333 ± 9 6.2 423 ± 15 4.9 374 ± 16 5.6 380 ± 21 5.5

16 12 855 ± 30 6.2 947 ± 24 5.6 794 ± 27 6.7 786 ± 37 6.8

fSchw1/4 2 6 413 ± 25 3.3 550 ± 29 2.4 411 ± 20 3.3 398 ± 16 3.4

4 8 971 ± 36 2.9 1320 ± 76 2.2 938 ± 32 3.1 909 ± 30 3.1

8 10 2714 ± 41 2.2 2714 ± 257 2.2 2668 ± 40 2.2 2677 ± 36 2.2

fNSphere 2 6 .35 109 ± 12 3.1 135 ± 19 2.5 92 ± 11 3.7 87 ± 9 3.9

4 8 .25 236 ± 19 3.1 306 ± 40 2.4 216 ± 16 3.4 219 ± 16 3.4

8 10 .18 636 ± 33 2.4 788 ± 47 2.0 611 ± 35 2.5 619 ± 45 2.5

16 12 .13 2156 ± 216 1.3 2690 ± 421 1.1 2161 ± 148 1.3 2195 ± 142 1.3

fAck 2 5 227 ± 23 3.5 329 ± 29 [0.85] 2.4 226 ± 21 [0.95] 3.5 208 ± 19 3.8

5 7 704 ± 23 [0.90] 3.0 850 ± 43 [0.90] 2.5 654 ± 35 [0.95] 3.2 652 ± 32 [0.95] 3.2

10 10 2066 ± 119 [0.95] 1.8 2159 ± 58 1.8 2394 ± 52 [0.80] 1.6 1925 ± 44 2.0

fRast 2 50 524 ± 48 [0.95] 4.7 796 ± 68 [0.75] 3.1 569 ± 26 [0.35] 4.3 1365 ± 28 [0.10] 1.8

5 140 4037 ± 209 [0.60] 2.6 5265 ± 313 [0.55] 2.0 13685 ± 257 [0.10] 0.8 7910 ± 82 [0.10] 1.3
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2.4 Summary and discussions

In this chapter, we have introduced the stochastic optimizer CMA-ES, as well as an adap-

tive penalization with rejection technique in order to handle the optimization constraints.

We have explained that CMA-ES exhibits many invariances, a desirable property as it

implies the generalization of results from one function to a class of functions and confer

thus robustness and wider applicability of the method. In particular, CMA-ES is a rank-

based search algorithm exploiting the objective function only through the relative ranking

of solutions within the population. The rank-based property implies invariance of the

algorithm on the class of functions class f = {g ◦ f, g : R→ R strictly increasing} for any

f : Rn → R.

In order to improve its performance when dealing with costly objective functions, the

CMA-ES algorithm has been combined with local meta-models that are constructed using

points from the archive of solutions–called the training set–evaluated on the (expensive)

original objective function. The quality of the meta-models is appraised using an ap-

proximate ranking procedure that determines if the objective function predicted by the

meta-model is good enough or more points should be evaluated on the original function.

The resulting algorithm is called the local-meta-model CMA-ES (lmm-CMA) [87] (Sec-

tion 2.3.1). In this chapter, the original acceptance criterion for the meta-models proposed

for lmm-CMA has been shown to be too conservative for increasing population sizes (Sec-

tion 2.3.2) and modified in order to maintain a reasonable speed-up when population sizes

larger than the default one are used (Section 2.3.3). The proposed new variant is called

the new-local-meta-model CMA-ES (nlmm-CMA).

In particular, we have investigated in this chapter the performances of the lmm-CMA

algorithm coupling CMA-ES with local meta-models. On fRosen and fSchw1/4 , we have

shown that the speedup of lmm-CMA with respect to CMA-ES drops to one when the

population size λ increases. This phenomenon has been explained by the too restrictive

condition used to stop evaluating new points dedicated at refining the meta-model, namely

requiring that the exact ranking of the µ = λ/2 best solutions is preserved when evaluating

a new solution on the exact objective function. To tackle this problem, we have proposed

to relax the condition to: the set of µ best solutions is preserved and the best individual

is preserved. The resulting new variant, nlmm-CMA outperforms lmm-CMA on the test

functions investigated and the speedup with CMA-ES is between 1.5 and 7. Moreover,

contrary to lmm-CMA it maintains a significant speedup, between 2.5 and 4, when increas-

ing λ on fRosen, fSchw1/4 and fRast. The study of the impact of the recombination weights

has shown that the default weights of CMA-ES are more appropriate than equal weights.

The influence of two parameters, nb and ninit, corresponding to the number of individu-

als evaluated respectively initially and in each iteration cycle has been investigated. We
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have seen that setting those parameters to 1 during the whole optimization process can

marginally improve the performances on uni-modal functions and some multi-modal test

functions. However it increases the likelihood to be stuck in local minima for the Rastrigin

function suggesting that the default parameter of lmm-CMA are still a good choice for

nlmm-CMA.
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Chapter 3

Well placement optimization with

CMA-ES and CMA-ES with

meta-models

This chapter is based on the papers [26, 24]. In this chapter, we apply the CMA-ES

algorithm to the well placement problem, with the adaptive penalization with rejection

technique (introduced in Chapter 2) to handle constraints. Because genetic algorithms are

quite often the method of choice in petroleum industry, we first show the improvement

of applying CMA-ES over a GA on the synthetic benchmark reservoir case PUNQ-S3. In

addition, because a reservoir simulation and thus the objective function is expensive, we

apply the nlmm-CMA algorithm introduced in the previous chapter in order to save a

number of evaluations by building a model of the problem. We validate the approach on

the PUNQ-S3 case.

This chapter is structured as follows. Section 3.1 describes the problem formulation.

In Section 3.2, CMA-ES is compared to a genetic algorithm on a synthetic reservoir case to

show the contribution of the proposed optimization method. In Section 3.3, the reduction

of the number of reservoir simulations is addressed by coupling CMA-ES with meta-models

and the contribution of the whole methodology, i.e., CMA-ES with meta-models is demon-

strated on a number of well location and trajectory optimization problems (with unilateral

and multilateral wells).

3.1 The well placement optimization problem formulation

In this section, we describe the well placement optimization problem and explain the

parameterization of the wells.
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3.1 The well placement optimization problem formulation

3.1.1 Objective function

The quality of a well placement decision is evaluated using an objective function that we

aim at maximizing (good solutions have a high objective function value and we aim at

finding the solution with the highest objective function value). The objective function as-

sociated with a well placement problem often evaluates the economic model of the decision

and takes into account different costs such as prices of oil and gas, costs of drilling and

costs of injection and production of water. Another alternative is to use the cumulative oil

production or the barrel of oil equivalent (BOE). In this chapter, the objective function

considered is the net present value NPV. Formally we want to find a vector of parameter

pmax such that:

NPV(pmax) = max
p
{NPV(p)} . (3.1)

The NPV of a well configuration and trajectory represented by a vector of parameter

p is calculated using two terms, the expected revenue associated to p denoted R and the

drilling and completing cost of p denoted Cd which is subtracted to the revenue term, i.e.,:

NPV(p) = R(p)− Cd(p) . (3.2)

The revenue term R is defined by summing the revenues from produced oil over all the

wells, and subtracting the costs associated to produced water and to injected water. A

discount rate –called also an annual percentage rate– is introduced to take into account the

risk and uncertainty and the time value of money, that is oil produced earlier contributes

more to the overall NPV. The detailed formula for the revenue term reads:

R =
Y∑

n=1






1

(1 + APR)n





Qn,o

Qn,g

Qn,wa





T 



Cn,o

Cn,g

Cn,wa








 , (3.3)

where Qn,p is the field production of phase ph (either oil, gas or water denoted respectively

o, g, wa) at period n and Cn,p is the profit or loss associated to this production. The annual

percentage rate is denoted APR. The integer Y is the number of discount periods (years).

For the drilling and completing cost term Cd, we use the approximate formula used in

[129] that proposes to estimate the drilling cost as the sum of two terms: the first term

is proportional to the diameter of each lateral times the length of this lateral multiplied

the logarithm of this lateral (taking into account that the cost is more than linear in the

length), the second term adds up a fixed cost per junction, i.e.,:

Cd =

Nw∑

w=1

(
Nlat∑

k=0

[A.dw. ln(lw).lw]k,w

)

+

Njun∑

m=1

[Cjun]m , (3.4)
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3.1 The well placement optimization problem formulation

Table 3.1: Constants used to define the net present value (NPV).
Constant Value

Cn,o 60 $ / barrel
Cn,wa -4 $ / barrel
Cn,g 0 $ / barrel
APR 0.1
A 1000
dw 0.1 m
Cjun 105 $

where k = 0 represents the mainbore, k > 0 represents the laterals, lw is the length of

the lateral (in ft), dw is the diameter of the mainbore (in ft), Nw is the number of wells

drilled, Nlat is the number of laterals and A is a constant specific to the considered field

containing conversion factors. Cjun is the cost of milling the junction and Njun is the

number of junctions.

For this chapter, the constants used to define the NPV in Eqs. (3.3) and (3.4) are given

in Table 3.1.

The computation of the NPV of a configuration p requires to have a prediction of the

quantity of oil, water and gas (Qn,o, Qn,wa , Qn,g) associated to p in order to compute

the revenue R given by Eq. (3.3). To compute those quantities we use a reservoir simula-

tion which represents the time consuming part in the computation of the NPV objective

function.

It is in general needed to impose different constraints on the well configuration to avoid

finding both undrillable wells and wells that violates common engineering practices. The

constraints handled in this thesis are as follows:

• maximum length of wells: lw < Lmax, for each well w to be placed;

• all wells must be inside the reservoir grid: lw = linside, for each well w to be placed,

where linside is the length of the well w inside the reservoir grid.

3.1.2 Well parameterization

In our approach, we want to be able to handle different possible configurations of multi-

lateral wells. An illustrative scheme is given in Fig. 3.1. The terminology used to define

each part of a multilateral well follows the terminology used in [77]. In general, a lateral

can be defined by a line connecting two points. The mainbore is defined through the

trajectory of its contiguous completed segments. Hence, we define a sequence of points

where a deviation occurs (Pd,i)0≤i≤Ns where Ns is the number of segments. The starting

point Pd,0 = P0 of the mainbore called the heel is represented by its Cartesian coordinates
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3.1 The well placement optimization problem formulation

   

Pd,2 (rd,2, θd,2, ϕd,2)

rb,1

rd,1

P0 (x0, y0, z0)

Pd,1 (rd,1, θd,1, ϕd,1)

lb,1

Q1

rd,2

Pb,1 (lb,1, rb,1, θb,1, ϕb,1)

Figure 3.1: An example of a single multilateral well parameterization with two segments
(Ns = 2) and one branch (Nb = 1).

(x0, y0, z0). Other intermediate points (Pd,i)1≤i≤Ns−1 and the ending point Pd,Ns called

the toe are represented by their corresponding spherical coordinate system (rd,i, θd,i, ϕd,i)

with respect to the basis (Pd,i−1, u
r
d,i, u

θ
d,i, u

ϕ
d,i). We use spherical coordinates because

they allow for straightforward control of the well lengths by imposing a box constraint

whereas it would need to be handled by imposing a non linear constraint with Cartesian

coordinates.

The wells are parameterized in a way to handle a number Nb of branches and/or

laterals as well.

The branch or lateral j ∈ [1, · · · ,Nb] is defined by locating its ending point Pb,j (lb,j,

rb,j, θb,j, ϕb,j) where (rb,j, θb,j, ϕb,j)1≤j≤Nb
represents the spherical coordinates of Pb,j with

respect to the basis (Qj, u
r
b,j, u

θ
b,j, u

ϕ
b,j), Qj is the starting point of the branch or the lateral

j, and lb,j is the distance along the well between P0 and Qj.

The dimension Dw of the representation of a well denoted by w is as follows:

Dw = 3 (1 +Nw
s ) + 4 Nw

b . (3.5)

Hence, the dimension D of the problem of placing Nw wells (wk)k=1,··· ,Nw is:

D =

Nw∑

k=1

Dwk
. (3.6)

An example of a single well parameterization is shown in Fig. 3.1. In this example,
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3.2 CMA-ES and a real-coded GA for the well placement problem

Ns is equal to two and Nb is equal to one. The mainbore is then represented by three

points P0 and (Pd,i)1≤i≤2. The branch is represented by one point Pb,1. The corresponding

dimension of the optimization problem is 13.

3.2 CMA-ES and a real-coded GA for the well placement

problem

The choice of a stochastic optimization method was motivated by the ability of this type of

algorithms to deal with non-smooth, non-convex and multi-modal functions. In addition,

stochastic optimization does not require any gradients and can be easily parallelized. So

far, the most popular stochastic approaches for tackling well placement have been genetic

algorithms encoding the real parameters to be optimized as bit-strings. However, it is know

in the stochastic algorithm community, that representing real vectors as bit strings leads to

poor performance [122]. Recently, a comparison between binary and real representations

on a well placement problem in a channelized synthetic reservoir model has been made,

showing that the continuous variant outperforms the binary one [33].

This section compares a real-coded GA with CMA-ES on a well placement problem.

To allow a fair comparison, both algorithms are used without parameter tuning. Indeed,

tuning an algorithm requires some extra objective function evaluations that would need to

be taken into account otherwise. Default parameters are used for the CMA-ES algorithm1

and typical parameter value for the GA.

3.2.1 Well placement using CMA-ES

The initial population is normally drawn using a mean vector uniformly drawn in the

reservoir. Parameters were defined according to default settings [71].

The population size λ is an important parameter of CMA-ES [71]. The default popula-

tion size value equals 4+⌊3×ln(D)⌋, whereD is the dimension of the problem. Independent

restarts with increasing population size are suggested in [12]. In this thesis, the optimal

tuning of the population size was not addressed. However, due to the difficulty of the

problem at hand, we use a population size greater than the default value.

3.2.2 Well placement using GA

Genetic algorithms [78, 79] are stochastic search algorithms that borrow some concepts

from nature. Similar to CMA-ES, GAs are based on an initial population of individuals.

Each individual represents a possible solution to the problem at hand. Starting with

1At the exception of the population size where the default setting is known to be good for non-rugged
landscapes but needs to be increased otherwise [71].
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3.2 CMA-ES and a real-coded GA for the well placement problem

Table 3.2: GA parameters: the probabilities to apply GA operators, i.e., crossover and
mutation.

Constant Value

crossprob 0.7
mutprob 0.1

an initial population of points called individuals or chromosomes, and at each iteration,

candidate solutions evolve by selection, mutation and recombination until reaching the

stopping criteria with a satisfactory solution. The correspondence between a solution

and its representation needs to be defined. In general, simple forms like an array or a

matrix of integer or bit elements are used. In this section, individuals are parameterized

as defined for CMA-ES (see Section 3.1.2). Hence, well coordinates are defined using a

real encoding. Elitism is used to make sure that the best chromosome would survive to

the next generation. The used operators are defined as follows:

• The crossover starts with two parent chromosomes causing them to unite in points

to create two new elements. The greater chromosome fitness’ rank, the higher prob-

ability it will be selected. After selecting the two parents, crossover is applied with a

probability denoted crossprob. To apply the crossover, we randomly draw an index i

between 1 and D and a number c between 0 and 1. Let us denote the two parents by

(x1,j)1≤j≤D and (x2,j)1≤j≤D, then x1,i ← c× x1,i + (1− c)× x2,i and x2,i ← c× x2,i

+ (1− c)× x1,i.

• The mutation, instead, starts with one individual and randomly changes some of

its components. Mutation is applied to all chromosomes, except the one with the

best fitness value, with a probability of mutation denoted mutprob. In this case, we

randomly draw an index i. Let us denote the selected chromosome by (xj)1≤j≤D,

then xi ← mini + c × (maxi−mini), where mini and maxi are the minimum and

the maximum values that can be taken by the ith coordinate of the chromosome and

c is a number randomly drawn between 0 and 1.

The mutation and crossover probabilities are set to typical values (see Table 3.2)1.

To handle the constraints, the genetic algorithm is combined with the Genocop III

technique (Genetic Algorithm for Numerical Optimization of Constrained Problems) [47].

This procedure maintains two separate populations. The first population called the search

population contains individuals which can be unfeasible. The second population, the

reference population, consists of individuals satisfying all constraints (linear and non-

linear), called reference individuals. Feasible search individuals and reference individuals

1A good choice of the crossover probability is said to be in between 0.4 and 0.9 [128, 39], 0.6 and 0.8
[66], 0.6 and 0.95 [51, 55], 0.6 and 0.8 [120]. A good choice of the mutation probability is said to be in
between 0.001 and 0.1 [39, 51, 55], 0.005 and 0.05 [120], 0.05 and 0.1 [128].
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3.2 CMA-ES and a real-coded GA for the well placement problem

Figure 3.2: Elevation (in meters) and geometry of the PUNQ-S3 test case.

are evaluated directly using the objective function. However, unfeasible individuals are

repaired before being evaluated. More details about Genocop III can be found in [97].

3.2.3 Well placement performance

All tests performed in the present chapter are conducted on the PUNQ-S3 test case [54].

PUNQ-S3 is a case taken from a reservoir engineering study on a real field, and qualified as

a small-size industrial reservoir model. The model grid contains 19 cells in the x-direction,

28 cells in the y-direction and 5 cells in the z-direction. The cell sizes is 180m in the x and

y directions and 18m in the z-direction. We suppose that the field does not contain any

production or injection well initially. The elevation of the field and its geometry is shown

in Fig. 3.2. We plan to drill two wells: one unilateral injector and one unilateral producer.

The dimension of the problem is then equal to 12(= 6× 2).

To compare results obtained by both CMA-ES and the genetic algorithm, 14 runs were

performed for each algorithm. A streamline simulator is used during the optimization. In

this comparison, a bottomhole pressure imposed on the producer is fixed to 80 bar, and a

bottomhole pressure imposed on the injector is fixed to 6.000 bar which is too high. This

unrealistic value was used only for the sake of comparison between the two optimization

methods.

The population size is set to 40 for both algorithms. The stopping criterion is also the

same for both of the methods: a maximum number of iterations equal to 100. The size of

the reference population for Genocop III is set to 60. Well lengths are constrained with a

maximum well length Lmax = 1000 meters.
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Figure 3.3: The mean value of NPV (in US dollar) and its corresponding standard devi-
ation for well placement optimization using CMA-ES (solid line) and GA (dashed line).
Fourteen runs are performed for each algorithm. Constraints are handled using an adaptive
penalization with rejection technique for CMA-ES and using Genocop III for GA.
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Figure 3.4: The mean number of unfeasible individuals per generation and its corre-
sponding standard deviation using CMA-ES with an adaptive penalization with rejection
technique. Here, we consider only unfeasible individuals far from the feasible domain, i.e.,
resampled individuals.
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Figure 3.5: The positions of solution wells found by 14 runs of CMA-ES projected on
the top face of the reservoir. Injectors are represented by (dashed line). Producers are
represented by (solid line).

Fig. 3.3 shows the average performance and its standard deviation of the well placement

optimization using both algorithms measured by the overall best objective function value.

It is clear that CMA-ES outperforms the GA: the genetic algorithm adds only 40% to the

best NPV obtained by a randomly sampled configuration, i.e., in the first generation of

the optimization. However, CMA-ES adds 80%.

Fig. 3.4 shows that CMA-ES handles the used constraints successfully. The number

of well configurations resampled, i.e., far from the feasible domain, approaches to 0 at the

end of the optimization. Fig. 3.4 shows that after a number of iterations, the majority of

the well configurations generated by CMA-ES are either feasible or close to the feasible

domain.

Fig. 3.5 shows the positions of “optimum” wells obtained from 14 runs using CMA-ES.

CMA-ES succeeds in defining in 11 runs of the 14 performed the same potential zone to

place the producer and the injector. This region gives an NPV between $1.99× 1010 and
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Figure 3.6: The positions of solution wells found by 14 runs of the GA projected on the top
face of the reservoir. Injectors are represented by (dashed line). Producers are represented
by (solid line).
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3.3 Application of CMA-ES with meta-models on the PUNQ-S3 case

$2.05× 1010. In the other three runs, CMA-ES finds each time a different local optimum

with NPV values equal to: $1.83× 1010, $1.95× 1010 and $2.05× 1010. Despite the large

number of local optima, CMA-ES succeeds in providing satisfactory results on 93 % of

the runs, if we consider that a run is satisfactory if it gives an NPV greater or equal to

$1.95× 1010.

For the genetic algorithm, 14 runs were performed to trace different “optimum” well

configurations in Fig. 3.6. Well configurations are not concentrated in some well-defined

regions and have an NPV mean value equal to $1.68 × 1010 with a standard deviation

equal to 1.06× 109. The GA leads to well configurations dispersed over a large zone. The

maximum value of NPV obtained by the GA is equal to $1.86 × 1010 and it corresponds

to a well configuration close to a well configuration obtained by CMA-ES with an NPV

$2.05× 1010.

Results confirm that CMA-ES is able to find in the majority of the runs a solution in

the same potential region. In 93% of the runs on the considered test case, CMA-ES finds

a well configuration with a satisfactory NPV value. However, the GA has difficulties to

define this potential region and seems to prematurely converge in different regions. Pre-

mature convergence in the GA is most certainly due to the lack of mechanisms that (1)

would play the role of the step-size mechanism in CMA-ES which is able to increase the

step-size in linear environments and (2) would play the role of the covariance matrix adap-

tation mechanism allowing to adapt the main search directions (elongate / shrink certain

directions and learn the principal axis of the problem) to solve efficiently ill-conditioned

problems. Without this latter mechanism on ill-conditioned problems, it is common to

observe premature convergence.

3.3 Application of CMA-ES with meta-models on the PUNQ-

S3 case

In this section we apply CMA-ES with meta-models on the well placement optimization

problem. The proposed approach is able to handle different possible well configurations as

defined in Section 3.1.2. The use of local meta-models instead of a global one is motivated

by the fact that we want the algorithm to be able to handle multi-modal functions or

unimodal functions where a global quadratic model would model poorly the function.

In the following, we use the variant nlmm-CMA2 defined in Section 2.3.3.4. For nlmm-

CMA2, (1 + nic) individuals are evaluated for a given generation where nic is the number

of iteration cycles needed to satisfy the meta-model acceptance criterion. In this section,

the performance of the approach is demonstrated on two cases.
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3.3 Application of CMA-ES with meta-models on the PUNQ-S3 case

Figure 3.7: The mean value of NPV (in US dollar) and its corresponding standard deviation
for well placement optimization using CMA-ES with meta-models (solid line) and CMA-
ES (dashed line). Ten runs are performed for each algorithm. Constraints are handled
using an adaptive penalization with rejection technique.

3.3.1 Placement of one unilateral producer and one unilateral injector

In this application, we consider a placement problem of one unilateral injector and one

unilateral producer on the PUNQ-S3 case. Parameters of the problem are the same as for

the example in Section 3.2.3, except for the following differences:

• a commercial reservoir simulator is used to evaluate field productions of each phase

instead of the streamline simulator;

• the bottomhole pressure imposed on the producer is fixed to 150 bar;

• the bottomhole pressure imposed on the injector is fixed to 320 bar.

To define the parameters of the meta-model, we choose k, the number of individuals

used to evaluate the meta-model, equal to 100. Meta-models are used when the training

set contains at least 160 couples of points with their evaluations. For each method, i.e.,

CMA-ES and CMA-ES with local meta-models (lmm-CMA), 10 runs were performed. The

evolution of the NPV mean value in term of the mean number of reservoir simulations is

represented in Fig. 3.7.

Fig. 3.7 shows that, for the same number of reservoir simulations, combining CMA-

ES with meta-models allows to reach higher NPV values compared to CMA-ES, given a
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Figure 3.8: The mean number of reservoir simulations needed to reach a given NPV value
using CMA-ES with meta-models (solid line) and CMA-ES (dashed line). Ten runs are
performed for each algorithm.

restricted budget of reservoir simulations. A better representation is to show the mean

number of reservoir simulations needed to reach a certain value of NPV for CMA-ES and

for CMA-ES with meta-models (Fig. 3.8). To reach an NPV value of $9× 109, lmm-CMA

requires only 659 reservoir simulations, while CMA-ES requires 880 reservoir simulations.

If we consider that an NPV equal to $9 × 109 is satisfactory, using meta-models reduces

the number of reservoir simulations by 25%. For an NPV value equal to $9.6 × 109,

the use of meta-models reduces the number of reservoir simulations by 19%. Figs. 3.7

and 3.8 highlight the contribution of meta-models in reducing the number of reservoir

simulations. Results show also that, in addition to reducing the number of objective

function evaluations, the method still succeeds in reaching high NPV values and results

are similar to those obtained by CMA-ES. As for the example in Section 3.2.3, the well

placement optimization still succeeds in identifying in the majority of the runs the same

potential region to contain optimum wells. In the following, we present detailed results

obtained only by one of the solution well configurations proposed by lmm-CMA. The

selected solution well configuration is denoted optimized config in the sequel. Optimized

config is then compared to two configurations designed after some trials in a way to

represent the decision of a reservoir engineer (denoted config.1 and config.2 ). The locations

and trajectories of the considered well configurations are shown in Fig. 3.9.

The engineer’s proposed configurations were defined according to the SoPhiH map

(Fig. 3.9) which represents the distribution of the hydrocarbon pore volume over the nlayers
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3.3 Application of CMA-ES with meta-models on the PUNQ-S3 case

Figure 3.9: The SoPhiH map, with solution well configuration obtained using CMA-ES
with meta-models (PROD-O, INJ-O) and two engineer’s proposed well configurations
(PROD-1, INJ-1 and PROD-2, INJ-2).
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Figure 3.10: Production curves for an optimized solution using CMA-ES with meta-models
(optimized config.) and two engineer’s proposed configurations (config.1 and config.2 ).
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3.3 Application of CMA-ES with meta-models on the PUNQ-S3 case

layers defined by
nlayers∑

k=1

(Hk×φ×So), where Hk is the gross thickness of the layer k, So is the

oil saturation and φ is the porosity. PROD-c and INJ-c denote respectively the producer

and the injector corresponding to the well configuration c. The well configuration is either

config.1, config.2 or optimized config denoted respectively 1, 2, O. Engineer’s proposed

wells are horizontal wells where producers (PROD-1 = PROD-2) are placed in the top

layer (k = 1) and injectors in the bottom layer (k = 5). However, producers and injectors

in optimized config are inclined wells placed in the layer (k = 3). The engineer’s proposed

producer is placed in the region with the highest SoPhiH value.

Fig. 3.10 shows the production curves of the considered well configurations. The cu-

mulative oil production for optimized config, during the 11 simulated years equals 205

MMbbl. However, config.1 offers only 119 MMbbl and config.2 offers 102 MMbbl. There-

fore, the optimization methodology adds 72% to the best considered engineer’s proposed

well configuration. Optimized config offers also the smallest water cut (0.45 for optimized

config, 0.57 for config.1 and 0.69 for config.2 ).

3.3.2 Placement of one multi-segment producer

In this application, we consider a placement problem of one multi-segment well on the

PUNQ-S3 case. We suppose that an injector is already placed in the reservoir. It corre-

sponds to the well denoted INJ-O in Fig. 3.9. We plan to drill a multi-segment well with

two completed segments. The dimension of the problem is then equal to 9(= 6 + 3). The

different parameters of the problem are the same as in the example in Section 3.3.1, except

for the population size which is equal to 30. Ten runs were performed with a maximum

number of iterations equal to 100.

Fig. 3.11 shows the evolution of the average performance of the well placement, i.e.,

NPV mean values and the corresponding standard deviation. Optimizing the placement

of one multi-segment producer offers an NPV equal to $1.10× 109 ± 4.37× 107. To reach

an NPV mean value of $1.10 × 109, the optimization process requires only 504 reservoir

simulations.

The positions of solution wells are shown in Figs. 3.12 and 3.13. In this application,

the used methodology succeeds in reaching NPV values greater than $1.09 × 109 and in

defining an “optimum” well configuration in the same potential region for all the performed

runs. Therefore, performing only one run can be conclusive and can ensure converging to

a solution well with a satisfactory NPV.
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Figure 3.11: The mean value of NPV (in US dollar) and its corresponding standard de-
viation for well placement optimization using CMA-ES with meta-models of one multi-
segment well. Ten runs are performed.
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Figure 3.12: The positions of solution multi-segment producers found by 10 runs of CMA-
ES with meta-models. A zoom on the region containing the solution wells is performed.
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Figure 3.13: The positions of solution multi-segment producers found by 10 runs of CMA-
ES with meta-models projected on the top face of the reservoir. A zoom on the region
containing the solution wells is performed.

3.4 Summary and discussions

In this chapter, the stochastic optimization method CMA-ES was applied on a well place-

ment problem. A technique based on adaptive penalization with rejection was developed

to handle well placement constraints with CMA-ES. Results showed that this technique

ensures that after a number of iterations, the majority of well configurations generated

by CMA-ES are either feasible or close to the feasible domain. The optimization with

CMA-ES was compared to a GA which is the most popular method used in well place-

ment optimization in the literature. Both algorithms were used without parameter tuning

allowing for a direct fair comparison of the results. Indeed parameter tuning requires

extra function evaluations that should be taken into account when presenting comparison

results. In addition, we think that parameter tuning should be done by the designer of

the algorithm and not the user as it is unrealistic to waste expensive function evaluations

for correcting the weakness of the design phase. The CMA-ES example shows that pro-

viding parameter-free algorithms with robust setting is possible to achieve. CMA-ES was

shown to outperform the genetic algorithm on the PUNQ-S3 case by leading to a higher

net present value (NPV). Moreover, CMA-ES was shown to be able to define potential

regions containing optimal well configurations. On the other hand, the genetic algorithm

converged to solutions located in different regions for every performed run. In addition
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those solutions are associated to much smaller NPV values than the solutions found by

CMA-ES. On the PUNQ-S3 case, the mean NPV value found by GA is $1.68×1010. How-

ever, the mean NPV value found by CMA-ES is $2.01× 1010. The ability of CMA-ES to

find much higher NPV values and to converge to the same region of the search space, has

been explained by its advanced adaptation mechanism that allows the algorithm, on ill-

conditioned non-separable problems, to adapt in an efficient way its sampling probability

distribution.

To tackle the computational issue related to the number of reservoir simulations per-

formed during the optimization, an application of nlmm-CMA algorithm is demonstrated

on the PUNQ-S3 case. The use of meta-models was shown to offer similar results (solution

well configurations and the corresponding NPV values) as CMA-ES without meta-models

and moreover to reduce the number of simulations by 19-25% to reach a satisfactory NPV.

The comparison of the obtained results with some engineer’s proposed well configura-

tions showed that the proposed optimization methodology is able to provide better well

configurations in regions that might be difficult to determine by reservoir engineers.

The results presented in this chapter has demonstrated the potential huge benefit

of applying the CMA-ES methodology over more established stochastic techniques for

reservoir applications.
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Chapter 4

Local-meta-model CMA-ES for

partially separable functions

This chapter is based on the paper [23]. In this chapter, we propose a new variant of

the covariance matrix adaptation evolution strategy with local meta-models for optimiz-

ing partially separable functions. We propose to exploit partial separability by building

at each iteration a meta-model for each element function (or sub-function) using a full

quadratic local model. The performance of the proposed algorithm is shown on a number

of mathematical test functions.

This chapter is structured as follows. Section 4.1 defines a general notion of partial

separability. In Section 4.2, we propose a new variant of CMA-ES with meta-models for

partially separable functions. The performance of this variant is evaluated in Section 4.3

on a number of partially separable test functions. The choice of the number of points used

to build the meta-model is also described and the computational cost is discussed.

In the following, we denote the objective function to be optimized by f : Rn → R.

4.1 Partial separability and problem modeling

A function f : Rn → R is partially separable if it can be written as a sum of sub-functions,

also called element functions, each depending on a fewer number of variables. Often the

particular case where each sub-function depends on a subset of variables of the original

function is defined as partial separability. For instance the Rosenbrock function in Table 4.1

writes:

f(x) =
n−1∑

i=1

h(xi, xi+1) , (4.1)

where x = (xi)1≤i≤n and h(xi, xi+1) = α(x2i − xi+1)
2 + (xi − 1)2 and is thus partially

separable with each sub-function depending on the subset of variables [(xi, xi+1)]i=1,··· ,n−1.

This particular case of partially separable function is considered for instance in [21, 38, 45].
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4.1 Partial separability and problem modeling

A more general definition, given in [102], considers that each sub-function can depend on

a number of variables that are a linear combination of a subset of variables.

In this thesis we consider a generalization of the previous definitions allowing non-

linear combinations of the subset of variables. More precisely a function f : Rn → R is

said partially separable if there exists an integer N > 1, a set of integers (ni)1≤i≤N with

ni < n, for all i = 1, · · · , N , a set of explicit functions (Φi : Rn → R
ni)1≤i≤N and a set

of functions (fi : Rni → R)1≤i≤N , such that f can be written as f(x) =
N∑

i=1
fi(Φ

i(x)).

The sub-functions or element functions (fi)1≤i≤N depend on a number ni of parameters

called element variables. The functions Φi will be called mapping functions. Note that the

setting of [102] is recovered by taking Φi = U i where U i is a linear mapping from R
n to

R
ni .

For a given partially separable function, there exists “theoretically” an infinite number

of ways to define the element functions and mapping functions. However, one has usually

a restricted knowledge about the structure of the problem that determines the modeling

choice. We can argue that we only know in general that the problem can be decomposed as

a sum of element functions depending on fewer variables, and that there is thus no reason

to encode non-linearity in the variable dependencies. However, a motivating example for

our general definition is the well placement optimization problem, in which we will show in

Chapter 5 that a suitable way to model the objective function is to suppose that the profit

corresponding to a given well depends only on its location and on the distances of this well

to the others. Using the distances between the wells as an element variable implies using

a nonlinear combination of the parameters of the problem (see Chapter 5).

In the well placement problem also, the objective function is computed using a numer-

ical software (reservoir simulator) able to simulate for a given set of well placements the

quantity of oil, water and gas that can be extracted from each well. Consequently one

has access to the function value of each element function. In the following we will also

assume not only that the function is partially separable but also that one has access to the

function value of each element function. As argued above this assumption is reasonable as

it models the case for the well placement problem. History matching is another problem in

petroleum engineering in which this assumption is reasonable. In history matching prob-

lems, we want to adjust the reservoir model until it closely reproduces the past behavior

of the reservoir (historical production and pressures). For this problem also, we can define

the objective function as a sum of a number of sub-functions defined for each well and

calculated when evaluating the objective function [44].

Exploiting partial separability or separability is a common approach to enhance perfor-

mances of optimization algorithms, in particular when dealing with large scale optimiza-

tion. For instance a trust region algorithm for minimizing partially separable functions
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4.2 lmm-CMA for partially separable functions

Table 4.1: Test functions. For the block-rotated ellipsoid, Q is a 2 × 2 rotation matrix
with each column being a uniformly distributed unit vector.

Name Function

Rosenbrock fα
Rosen (x) =

n−1∑

i=1

(

α.
(
x2i − xi+1

)2
+ (xi − 1)2

)

Rosenbrock
1
2 fα

Rosen 1
2

(x) =
n−1∑

i=1

(

α.
(
x2i − xi+1

)2
+ (xi − 1)2

) 1
2

Block-rotated fα
BlockElli−2D (x, y) =

2∑

i=1

(

α
i−1
n−1 .(Q× (x, y))2

)

ellipsoid 2D

Block-rotated fα
BlockElli (x) =

n−1∑

i=1

(
fα
BlockElli−2D (xi, xi+1)

)

ellipsoid

was proposed in [38]. Separability was also exploited within CMA-ES. A method where

the covariance matrix was constrained to be diagonal has been proposed in [109].

4.2 lmm-CMA for partially separable functions

This section introduces a new algorithm based on nlmm-CMA and exploiting the partial

separability of the objective function. This algorithm will be called the partially separable

local-meta-model CMA-ES (p-sep lmm-CMA).

In our proposed approach, the partial separability of the objective function is exploited

when building the meta-models. The optimization process defined by CMA-ES is not

altered. The idea behind exploiting the problem structure when building the meta-model,

is to improve the quality of the approximate model. Hence, the better the quality of

the model is, the easier the acceptance criteria can be satisfied, the less evaluations are

performed.

Let us consider a partially separable function f . As in Section 4.1, we consider that

f has N element functions (fi)1≤i≤N . For each element function, we associate a mapping

function Φi such that f(x) =
N∑

i=1
fi ◦ Φ

i(x). We suppose that when evaluating a point x

on f , we have access to the evaluations (fi ◦ Φ
i(x))1≤i≤N as well.

In Chapter 2, an approximate function f̂ for a given objective function f is defined

using a locally weighted regression based on the training set containing both evaluated

points and their values on f . In this chapter, we propose to build a meta-model for each

element function fi that we denote by f̂i. The meta-model f̂ of f is then defined by:

f̂ =
N∑

i=1

f̂i ◦ Φ
i . (4.2)

The meta-model f̂i of each element function fi is built in a way quite similar to the
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4.2 lmm-CMA for partially separable functions

meta-model f̂ of f defined for the (n)lmm-CMA in Section 2.3.1.1. The training set is

built by storing for every evaluated point x, Φi(x) and its corresponding values on fi, i.e.,

fi(Φ
i(x)). Let us consider an individual q for which Φi(q) ∈ R

ni has to be evaluated on

the approximate model of fi. Assuming that the training set contains a sufficient number

mi of elements, we select the ki ∈ N nearest points (Φi(xj), j = 1, · · · , ki) to Φi(q) using

the Mahalanobis distance di with respect to a matrix Ci, defined for a given point z ∈ R
n

as:

di(Φ
i(z),Φi(q))=

√

(Φi(z)−Φi(q))TCi
−1(Φi(z)−Φi(q)) , (4.3)

where Ci is an ni×ni matrix adapted to the local shape of the landscape of fi (see below).

Similarly to Section 2.3.1.1, a full quadratic meta-model is used. Using a vector βi ∈

R
ni(ni+3)

2
+1, f̂i is defined for a given point z ∈ R

n, for which we denote Φi(z) = (ũ1, · · · , ũni)

as:

f̂i
(
Φi(z), βi

)
= βT

i z̃i
T , (4.4)

where z̃i =
(
ũ21, · · · , ũ

2
ni
, ũ1ũ2, · · · , ũni−1ũni , ũ1, · · · , ũni , 1

)
. The full quadratic meta-model

is built by minimizing the following criterion with resepct to βi:

B(q) =

ki∑

j=1

[
(

f̂i
(
Φi(xj), βi

)
− fi(Φ

i(xj))
)2
×K

(

di
(
Φi(xj),Φ

i(q)
)

h

)]

. (4.5)

K(.) is the kernel weighting function defined as in Section 2.3.1.1 by K(ζ) = (1 − ζ2)2,

and h is the bandwidth defined by the distance di of the kthi nearest neighbor data point

to q. For a given element function, ki must be greater or equal to ki,min = ni(ni+3)
2 +1. ki

is chosen to be equal to 2× ki,min. The choice of ki will be discussed in Section 4.3.3. The

sufficient size of the training set denoted above by mi must be then greater or equal to ki.

Hence, the approximate function of f which corresponds to f̂(x) =
N∑

i=1
f̂i(Φ

i(x)) is

incorporated into CMA-ES using the approximate ranking procedure as detailed in Sec-

tion 2.3.

It remains now to describe how the matrices (Ci)1≤i≤N are obtained. They are built

in an iterative manner. At each iteration, after the approximate ranking procedure, each

of the λ candidate solutions denoted (Xm)1≤m≤λ and sampled according to Eq. (2.2) has

been either evaluated on f or has an associated approximate meta-models value given

by Eq. (4.2). Thus for each i, the vectors Φi(Xm) ∈ R
ni have either been evaluated on

fi or have an associated estimate of fi provided by f̂i. We then consider the vectors

Φi(Xm) ∈ R
ni for 1 ≤ m ≤ λ and rank them according to f̃i where f̃i equals fi if Xm was

evaluated on f and f̂i otherwise. The ordered µ best solutions according to f̃i are used as

input variables in Algorithm 1, to update the covariance matrix Ci.
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4.3 Evaluation of p-sep lmm-CMA

Algorithm 1: CMA-Update(x1, · · · ,xµ)

1. given parameters (ωi)1≤i≤µ, cσ, cc, ccov, µcov, dσ. Set µeff = 1/
µ∑

i=1
ωi

2

2. given m ∈ R
n, pσ ∈ R

n, pc ∈ R
n, σ ∈ R and C ∈ R

n×n from last iteration

3. m− ←m

4. m←
µ∑

i=1
ωixi

5. pσ ← (1− cσ)pσ +
√

cσ(2− cσ)µeffC
− 1

2
m−m−

σ

6. pc ← (1− cc)pc +
√

cc(2− cc)µeff
m−m−

σ

7. Cµ =
µ∑

i=1
ωi

(xi−m−)(xi−m−)
T

σ2

8. σ ← σ × exp
(

cσ
dσ

(
‖pσ‖

E‖N(0,I)‖ − 1
))

9. C← (1− ccov)C+ ccov
µcov

pcpc
T + ccov

(

1− 1
µcov

)

×Cµ
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Figure 4.1: (a) Average number of evaluations of the p-sep lmm-CMA on f100
Rosen to reach

fstop for varying population sizes λ = γ × λdefault. (b) Average number of evaluations per
generation of the p-sep lmm-CMA on f100

Rosen for varying population sizes λ = γ × λdefault.

In Algorithm 1, the parameters (ωi)1≤i≤µ, cσ, cc, ccov, µcov, dσ are chosen with default

values as defined in [71]. Initial values for pσ, pc and C used in Algorithm 1 are also set

to default as in [71]. Initial values for m and σ are set to Φi(m(0)) and σ(0) where m(0)

and σ(0) are the initial mean vector and step-size of (n)lmm-CMA. The idea behind this

adaptation procedure is the same as the one of the adaptive encoding proposed in [68].

However in adaptive encoding, step-size update is not needed and different normalizations

for the weights depending on the step-length are introduced. Though we believe that the

adaptive encoding update is more robust numerically, it has not been tested for this thesis.
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4.3 Evaluation of p-sep lmm-CMA

Table 4.2: Modeling of the partially separable functions tested.
Name nM N fi(u = (uj)1≤j≤nM) Φi(v = (vj)1≤j≤n)

Rosenbrock 2 (n− 1) fi(u) = α.
(
u21 − u2

)2
+ (u1 − 1)2 Φi(v) = (vi, vi+1)

4 n−1
3 fi(u) = α.

(
u21 − u2

)2
+ (u1 − 1)2 Φi(v) = (v3i−2, v3i−1,

+α.
(
u22 − u3

)2
+ (u2 − 1)2 v3i, v3i+1)

+α.
(
u23 − u4

)2
+ (u3 − 1)2

Rosenbrock
1
2 2 (n− 1) fi(u) =

(

α.
(
u21 − u2

)2
+ (u1 − 1)2

) 1
2

Φi(v) = (vi, vi+1)

Block-rotated 2 (n− 1) fi(u) = fα
BlockElli−2D (u1, u2) Φi(v) = (vi, vi+1)

ellipsoid

4.3 Evaluation of p-sep lmm-CMA

In this section we describe the functions used to evaluate p-sep lmm-CMA. We show

the performance of this method compared to CMA-ES. The optimal bandwidth used to

build the meta-model is also investigated and the computational cost of the approach is

discussed.

4.3.1 Test functions

The p-sep lmm-CMA is evaluated on the partially separable test functions f1
Rosen, f

100
Rosen,

f10000
Rosen, f

100
Rosen 1

2

and fBlockElli defined in Table 4.1. For the block-rotated ellipsoid, Q is a

2×2 rotation matrix sampled uniformly anew for every run performed. The performance of

the method is measured using the success performance SP1 defined as the average number

of evaluations for successful runs divided by the ratio of successful runs, needed to reach

a stopping objective value fstop = 10−10, except for fα
Rosen 1

2

for which fstop = 10−5. We

perform 20 independent runs to measure SP1. The runs are randomly initialized in the

intervals [−5, 5] for f1
Rosen, f

100
Rosen, f

10000
Rosen and f10000

Rosen 1
2

and [−10, 10] for fBlockElli. Each test

function is modeled by defining a number N of element functions, a number nM of element

variables for each element function, a set of element functions denoted by fi : R
nM → R

and a set of mapping functions Φi : R
n → R

nM , such that f =
N∑

i=1
fi ◦ Φ

i. The modeling

of each test function is shown in Table 4.2. The block-rotated ellipsoid function is defined

using quadratic element functions. For the other tested functions, the defined element

functions are not quadratic.

4.3.2 Performance of p-sep lmm-CMA

Results on the test functions are presented in Table 4.3 showing the performance of p-sep

lmm-CMA compared to CMA-ES and to some tests with nlmm-CMA. For each test, by

defining the value of nM, we refer to the corresponding modeling defined in Table 4.2. It is
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4.3 Evaluation of p-sep lmm-CMA

Table 4.3: Success performance SP1, i.e., the average number of function evaluations
for successful runs divided by the ratio of successful runs, standard deviations of the
number of function evaluations for successful runs and speedup performance spu, to reach
fstop = 10−10 of p-sep lmm-CMA, nlmm-CMA and CMA-ES (for f100

Rosen 1
2

, fstop = 10−5).

The ratio of successful runs is denoted between brackets if it is < 1.0. The number of
element variables of each element function is denoted by nM.

Function n nM λ p-sep lmm-CMA spu nlmm-CMA spu CMA-ES

f1
Rosen 4 2 8 189 ± 13 5.1 297 ± 20 3.2 964 ± 192

8 2 10 308 ± 20 6.5 932 ± 52 2.2 2006 ± 118

10 2 10 353 ± 20 6.8 1482 ± 169 1.6 2418 ± 204

16 2 12 465 ± 20 8.6 4023 ± 310

20 2 12 548 ± 34 9.1 4978 ± 374

32 2 14 755 ± 32 10.3 7777 ± 347

40 2 15 871 ± 41 11.2 9799 ± 602

f100
Rosen 4 2 8 485 ± 47 [0.80] 4.7 647 ± 67 [0.95] 3.5 2269 ± 254 [0.85]

8 2 10 910 ± 71 [0.80] 6.5 2602 ± 264 [0.85] 2.3 5883 ± 727 [0.90]

10 2 10 1006 ± 99 [0.95] 7.6 3727 ± 300 [0.90] 2.1 7644 ± 765 [0.95]

16 2 12 1834 ± 117 [0.90] 8.6 15781 ± 1360 [0.85]

16 4 12 7162 ± 1112 [0.95] 2.2 15781 ± 1360 [0.85]

20 2 12 2533 ± 361 [0.90] 10.4 26366 ± 3249 [0.85]

32 2 14 4628 ± 144 [0.95] 13.2 60948 ± 2668 [0.90]

40 2 15 6527 ± 226 [0.95] 15.2 99346 ± 3502 [0.85]

f10000
Rosen 4 2 8 1333 ± 238 [0.95] 5.3 2637 ± 715 [0.90] 2.7 7032 ± 944 [0.90]

8 2 10 2745 ± 246 6.6 10287 ± 468 [0.85] 1.8 18216 ± 1683 [0.95]

10 2 10 5552 ± 429 [0.75] 4.5 16280 ± 843 [0.85] 1.5 25037 ± 3160 [0.95]

16 2 12 10583 ± 398 [0.80] 5.9 62903 ± 4441 [0.90]

20 2 12 14749 ± 431 [0.90] 6.3 93545 ± 6566 [0.95]

f100
Rosen 1

2

4 2 8 544 ± 48 [0.70] 4.8 909 ± 75 [0.75] 2.9 2620 ± 342 [0.95]

8 2 10 1008 ± 67 [0.80] 7.0 2549 ± 262 [0.95] 2.8 7006 ± 762

10 2 10 1299 ± 178 [0.95] 10.4 4685 ± 518 [0.90] 2.9 13517 ± 1288 [0.75]

16 2 12 3346 ± 223 [0.90] 9.9 33154 ± 3568 [0.90]

20 2 12 6797 ± 878 [0.85] 10.0 68136 ± 5363 [0.80]

32 2 14 20751 ± 2116 [0.85] 14.6 302039 ± 40915 [0.65]

f10000
BlockElli 4 2 8 226 ± 11 6.6 1500 ± 89

8 2 10 392 ± 14 8.2 3220 ± 196

10 2 10 472 ± 17 8.7 4093 ± 173

16 2 12 670 ± 37 9.8 6566 ± 284
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Figure 4.2: Success performance SP1 over the dimension of the problem on fα
Rosen, with

α = 1, 102 and 104 for dimensions in between 4 and 40. The dimension of the sub-functions
nM equals 2.
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4.3 Evaluation of p-sep lmm-CMA

clear that exploiting the partial separability within CMA-ES with meta-models improves

the performance of CMA-ES with a speedup in-between 4.5 and 15.

For element functions with fixed nM equal to 2, p-sep lmm-CMA offers an increasing

speedup with increasing dimensions of the problem as shown in Fig. 4.2. The algorithm

p-sep lmm-CMA performs better with increasing dimensions since it breaks the curse of

dimensionality when building the meta-model: for a problem of dimension n, building the

meta-model is equivalent to building N meta-models of dimension nM.

Using greater number of parameters for each separated meta-model decreases the

speedup obtained by the approach. On f100
Rosen for a dimension 16, the speedup, decreases

from 8.6 to 2.2 for corresponding values of nM respectively equal to 2 and 4.

At each iteration at least nb function evaluations are performed on the true function in

order to check the accuracy of the meta-models. The parameter nb is set to max[1, ( λ
10)].

This setting is introduced in order to be able to add a significant amount of information

at each iteration by enriching the training set. It is in particular important when dealing

with large population sizes. For increasing population sizes λ, i.e., for increasing values of

µ, we need an increasing number of points evaluated at each iteration cycle to be able to

have a significant impact on the ranking of population.

Moreover, a better setting of nb would also depend on the dimension of the problem

as for increasing dimensions, i.e., for increasing numbers k (or ki) of points to build the

meta-model, we need an increasing number of points evaluated at each iteration cycle to

be able to change significantly the meta-model and then the ranking of the population.

The minimum number of evaluations performed at each iteration nb limits the speedup

that can be achieved by our approach. We show that for some test functions, we are able

to reach this maximum speedup of λ/nb. For f100
Rosen with n = 40 and for f100

Rosen 1
2

with

n = 20, we reach a speedup equal to λ since nb is equal to 1 in these tests.

Since we reach the maximal speedup allowed by the approach on the Rosenbrock

function, we asked ourselves whether we can further reduce the number of overall function

evaluations needed to reach a target by increasing the population size λ. The default

population size denoted λdefault value equals 4+⌊3× ln(n)⌋. Fig. 4.1(a) shows the influence

of the population size on the performance of p-sep lmm-CMA. We perform 20 independent

runs on f100
Rosen for dimensions n = 4, 8, 10 and 16, and nM = 2 with fstop = 10−10. The

tested population sizes are written as λ = γ × λdefault where γ is in-between 1 and 10.

Tests were performed with similar parameters: ninit initialized to λdefault and nb equal to

max[1, (λdefault
10 )]. A training set containing ki elements randomly sampled is loaded at the

beginning of every run in order to use the meta-models from the first generation, for all

the tests. Results show that λ = 4× λdefault gives the minimum number of evaluations to

reach fstop and improves the performance by a factor between 1.5 and 2 over the default
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Figure 4.3: Average speedup with respect to CMA-ES to reach fstop with a varying number

of points used to build the meta-model ki = β × ki,min where ki,min = ni(ni+3)
2 + 1. Each

point corresponds to 20 runs performed.

population size. For γ > 4, the performance of p-sep lmm-CMA stagnates. We observe in

Fig. 4.1(b) that the number of evaluations per generation increases linearly for increasing

population sizes.

4.3.3 Optimal bandwidth for building partially separated meta-models

Let us consider an element function fi with a number of element variables ni. The optimal

bandwidth depends on the number of points ki used to build the meta-model. As shown

in Section 4.2, ki must be greater or equal to ki,min = ni(ni+3)
2 + 1. In this section,

we investigate the influence of the choice of ki on the performance of p-sep lmm-CMA.

We perform 20 independent runs on fα
Rosen for α = 1, 102, 104 and f100

Rosen 1
2

for different

dimensions in-between 4 and 40. Results are shown in Fig. 4.3, where ki is written as

ki = β × ki,min for β = 1, 2, 3, 4 and 5. We find that for 14 tests over the 23 tests

performed on the test functions with different dimensions, a good estimate of the optimal

β is equal to 2. Moreover, for the other tests, choosing a value of β equal to 2 is a
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4.4 Summary and discussions

reasonable choice since it offers a speedup close to best one found, except for f100
Rosen with

dimensions 10 and 16.

4.3.4 Computational cost

The internal cost of the optimization procedure is dominated by the evaluation of the

objective function and the construction of the meta-model.

For p-sep lmm-CMA, building a meta-model consists in finding in the training set

the ki sorted nearest points to the point to be evaluated and then solving Eq. (4.5). Let

us consider a training set with a size m. To find and sort the best ki points, we begin

by sorting the first ki points of the training set using a heapsort algorithm which has

a complexity of kilogki. Then, we compare the other (m − ki) points with the selected

ki points until finding its position which adds at worst a complexity of (m − ki) × ki.

Thus, finding and sorting the best ki points needs O(kilogki + (m − ki)ki) = O(m × ki).

According to Section 4.3.3, the optimal bandwidth ki is equal to ni(ni + 3) + 2. Thus,

finding and sorting the points to evaluate the meta-model needs O(m × n2
i ). Moreover,

solving Eq. (4.5) is dominated by a ki × ki matrix inversion and thus has a complexity of

n6
i .

Let us denote by Ne the number of evaluations on the true objective function and by

ce the complexity of one single objective function evaluation. Let us denote also by Nm

the number of built meta-models. The complexity of p-sep lmm-CMA is then equal to:

Ne ce +Nm n2
i (m+ n4

i ).

4.4 Summary and discussions

In this chapter we have investigated the exploitation of partial separability of the objective

function to enhance the performances of CMA-ES coupled with local meta-models. We

have defined p-sep lmm-CMA, a new variant of CMA-ES with meta-models for partially

separable functions. In this variant, we build separate meta-models for each element

function, instead of building one meta-model for the whole objective function. We have

shown that the speedup of p-sep lmm-CMA with respect to CMA-ES is in-between 4.5

and 15 for the tested functions. For f100
Rosen with a dimension 40 and for f100

Rosen 1
2

with a

dimension 20, we reach a speedup equal to λ which corresponds to the theoretical maximum

speedup allowed by the approach. In general, the maximum speedup that can be achieved

equals λ/nb as at least nb evaluations on the true function are performed at each iteration.

We have shown on the standard Rosenbrock function that increasing the population size

allows to decrease significantly (by a factor between 1.5 and 2) the number of evaluations
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to reach a given target. The optimal population size on the Rosenbrock function is shown

to be equal to 4 × λdefault.
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Chapter 5

Partially separated meta-models

with CMA-ES for well placement

optimization

This chapter is based on the paper [25]. In the well placement optimization problem, the

objective function (e.g., the NPV) can usually be split into local components referring

to each of the wells that moreover depends in general on a smaller number of principal

parameters, and thus can be modeled as a partially separable function. In this chapter,

we propose to apply p-sep lmm-CMA (defined in Chapter 4) on the well placement prob-

lem, i.e., to exploit the partial separability of the objective function when using CMA-ES

coupled with meta-models, by building partially separated meta-models. Thus, differ-

ent meta-models are built for each well or set of wells, which results in a more accurate

modeling. The approach is shown on the PUNQ-S3 case.

This chapter is structured as follows. Section 5.1 defines p-sep lmm-CMA for the

well placement problem. In Section 5.2, we demonstrate the contribution of the proposed

approach in reducing the number of reservoir simulations on the synthetic benchmark

reservoir case PUNQ-S3 [54].

5.1 p-sep lmm-CMA for well placement optimization

In this chapter, we propose to build a meta-model for each well or set of wells to be placed,

instead of one meta-model for all the wells.

In order to apply p-sep lmm-CMA (defined in Chapter 4), we need to define the different

element functions and their corresponding dependencies. As mentioned in Chapter 4, for

a given partially separable function, there exists “theoretically” an infinite number of

ways to define the element functions and mapping functions. However in this chapter, we
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5.1 p-sep lmm-CMA for well placement optimization

propose to investigate building one meta-model for each well (already drilled and to be

drilled) approximating its NPV.

Let us consider a reservoir case with a number Nw of wells to be drilled. We sup-

pose that we have also Nwd wells already drilled. We denote by (NPVi)1≤i≤Nw the NPVs

corresponding to the wells to be drilled and by (NPVi)(Nw+1)≤i≤(Nw+Nwd) the NPVs cor-

responding to the wells already drilled.

Therefore, the objective function corresponding to the NPV of the field is equal to

the sum of the different element functions corresponding to the NPV of each well, i.e.,

(NPVi)1≤i≤(Nw+Nwd).

Let us denote by {m1, · · · ,mNw} the number of parameters defining the position of

the wells to be placed, and by (Wj ∈ R
mj )1≤j≤Nw these parameters. Thus, the NPV, as

well as the NPVs corresponding to each well depends on (Wj)1≤j≤Nw :

NPV =

Nw+Nwd∑

i=1

NPVi , (5.1)

NPV
(
(Wj)1≤j≤Nw

)
=

Nw+Nwd∑

i=1

NPVi

(
(Wj)1≤j≤Nw

)
. (5.2)

As reflected in the previous equation, in general, the NPVi of a given well i depends

on all the wells1, however, in order to use the p-sep lmm-CMA, we will assume that the

NPVi of a well essentially depends on a fewer number of parameters.

In this chapter, we will assume that the NPVi of a given well essentially depends on

the considered well and that the impact of other wells is represented only by distances

between the considered well and the others. For each well denoted by i, we define the

following parameters:

• dpi: the minimum distance between the well i and the other producers;

• dii: the minimum distance between the well i and the other injectors.

The minimum distance between two wells is defined by the minimum Euclidean distance

between the two trajectories of the considered wells. In order to calculate the meta-

model, we now suppose that the NPVs of the wells to be drilled, i.e., (NPVi)1≤i≤Nw can

be approximated using only the parameters defining the location and trajectory of the

considered well and its corresponding dpi and dii. The NPV of the well already drilled,

i.e., (NPVi)(Nw+1)≤i≤(Nw+Nwd) can be approximated using only two parameters: dpi and

dii.

1Except when dealing with non-communicating reservoir regions, and if each of the wells has to be
placed in one of these regions
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Therefore, the built meta-model ˆNPV can be written as follows:

ˆNPV
(
(Wj)1≤j≤Nw

)
=

Nw∑

i=1

ˆNPVi (Wi, dpi, dii)
︸ ︷︷ ︸

∈Rmi×R×R

+

Nw+Nwd∑

i=Nw+1

ˆNPVi (dpi, dii) , (5.3)

where ˆNPVi denotes the meta-model approximating NPVi.

After that, to incorporate the built meta-model ˆNPV into CMA-ES, we use the approx-

imate ranking procedure as described in the variant nlmm-CMA2 defined in Section 2.3.3.4

with only one difference related to the acceptance criterion of the meta-model: in this case,

we use a less conservative criterion in which the meta-model is accepted if it succeeds in

keeping only the best well configuration unchanged.

In the next section, we will see how the approach can be applied for a well placement

problem and the number of function evaluations that can be saved in the optimization

process.

5.2 Application of p-sep lmm-CMA on the PUNQ-S3 case

This section shows an application of p-sep lmm-CMA on the benchmark reservoir case

PUNQ-S3 [54]. This application is compared to the CMA-ES optimizer and to the variant

of CMA-ES with meta-models (nlmm-CMA)1. As shown in previous examples, the model

contains 19×28×5 grid blocks. The elevation of the field is shown in Fig. 3.2. An injection

well denoted I1 is already drilled. Fig. 5.1 represents the SoPhiH map which represents

the distribution of the hydrocarbon pore volume over the nlayers layers, and defined by
nlayers∑

k=1

(Hk × φ× So), where Hk is the gross thickness of the layer k, So is the oil saturation

and φ is the porosity. The location of I1 is also shown in Fig. 5.1, where I1 is an inclined

well drilled in the layer 3.

We propose to drill 3 unilateral producers (denoted P1, P2 and P3) to maximize the

NPV. The dimension of the problem is then equal to: 6 × 3 = 18. A producer limit

bottomhole pressure is fixed to 150 bar, and an injector limit bottomhole pressure is fixed

to 320 bar. A maximum length of 1000 m is imposed on the 3 producers to be drilled.

The population size λ is set, for all the methods used, to 60. The different optimizers are

run with a stopping criterion corresponding to a maximum number of reservoir simulations

equal to 1000. Other parameters of the optimization method were set to default settings.

As shown in Section 5.1, the built meta-model for the element functions (NPVi)i=1,··· ,3

will only depend on eight parameters (compared to eighteen if we would use all the original

variables), and the meta-model for the element function NPV4 will only depend on a single

1In this chapter, we use the variant nlmm-CMA2 (defined in Section 2.3.3.4), as used in Chapter 3.
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Figure 5.1: The SoPhiH map with the location of the injector already drilled I1.
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5.2 Application of p-sep lmm-CMA on the PUNQ-S3 case
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Figure 5.2: The mean value of NPV (in US dollars) for well placement optimization
using CMA-ES with partially separated meta-models denoted p-sep lmm-CMA (solid line),
CMA-ES with meta-models denoted lmm-CMA (dash line) and CMA-ES (△). Ten runs
are performed for each method.

parameter1:

ˆNPV(P1,P2,P3) = ˆNPV1(P1, dp1, di1) + ˆNPV2(P2, dp2, di2)

+ ˆNPV3(P3, dp3, di3) + ˆNPV4(dp4) ,
(5.4)

where Pi ∈ R
6 denotes the vector of parameters defining the position of the well Pi.

The number of points used to build the partially separated meta-models, is chosen to be

equal to 90 (according to Section 4.3.3), and the meta-model is used when the training set

(storing the performed evaluations) contains at least 150 elements, i.e., before performing

150 simulations, all the points are evaluated with the true objective function, and the

partially separated meta-model is not used.

Fig. 5.2 shows the average performance of the proposed method, i.e., CMA-ES with

partially separated meta-models (p-sep lmm-CMA). Results are reported together with

those obtained using CMA-ES and CMA-ES with meta-models (nlmm-CMA). The per-

formance of each method is evaluated on ten independent runs, where for each run, we

report the best obtained NPV value after each generation. These values correspond to

true values of the objective function, i.e., obtained with a reservoir simulation2.

1Here, we have only one single parameter dpi, since the only injector we have is the considered injector.
2The CMA-ES with meta-models method ensures by construction that at least each generation the best
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During the first iterations of the optimization, the performance of the 3 used algorithms

is equivalent. For p-sep lmm-CMA, the meta-model is used if the training set contains

at least 150 performed reservoir simulation results. Therefore, at the beginning of the

optimization, the meta-model is not used which justifies the equivalent results for the

three optimizers.

For nlmm-CMA, building the meta-model requires more reservoir simulations com-

pared to partially separated meta-models. Non-partially separated meta-models depend

on 18 parameters. In the performed runs, the meta-model is built using 300 performed

reservoir simulations (k = 300) and used when the training set contains at least 350 ob-

jective function evaluations. Hence, before reaching 350 simulations, nlmm-CMA and

CMA-ES are equivalent.

Except at the beginning of the optimization in which all the optimizers are equiva-

lent, it is clear that CMA-ES with partially separated meta-models outperforms the other

methods, when considering a restricted budget of 1000 reservoir simulations. The context

of restricted budget of simulations is imposed to consider real applications in which the

number of simulations is generally limited to several hundreds or at most a few thousands,

due to the CPU time required by a simulation.

For a given number of reservoir simulations equal to 600, p-sep lmm-CMA is able to

find a well configuration with an NPV equal to $1.26 × 1010. However, CMA-ES reaches

only an NPV equal to $1.17× 1010 and nlmm-CMA offers only a maximum NPV equal to

$1.21×1010. As a conclusion, using a restricted budget of reservoir simulations, exploiting

the partial separability allows reaching greater NPV values compared to CMA-ES and

nlmm-CMA.

To reach a value of NPV equal to $1.20×1010, CMA-ES with partially separated meta-

models requires 370 reservoir simulations. However, to reach the same value of NPV, using

standard meta-models requires 510 reservoir simulations, and when using CMA-ES without

meta-models, we need 930 reservoir simulations. Therefore, using partially separated

meta-models saves 60% of the number of reservoir simulations compared to CMA-ES

(without meta-models). The contribution of exploiting the partial separability is shown

when comparing p-sep lmm-CMA with nlmm-CMA. Exploiting the partial separability

of the objective function saves 28% of the number of reservoir simulations compared to

CMA-ES with standard meta-models approach.

Fig. 5.3 shows one of the obtained solution well configurations, with an NPV value

equal to $1.38×1010. Although, each of the performed runs proposes in general a different

solution, the majority of the solution well configurations are located in the same regions.

point is evaluated with the true objective function, i.e., each iteration, the best obtained well configuration
is evaluated using a reservoir simulation.
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Figure 5.3: The SoPhiH map with the location of the injector already drilled I1, and
solution producers (P1, P2 and P3).
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5.3 Summary and discussions

Fig. 5.4 shows a typical optimization process performed using CMA-ES with separated

meta-models, i.e., with p-sep lmmCMA. Fig. 5.4 shows the evolution of the NPV (the best

at each generation and the overall best) as well as the evolution of the parameters encoding

the three wells.

5.3 Summary and discussions

In this chapter we have shown on the synthetic benchmark reservoir case PUNQ-S3 that

using p-sep lmm-CMA algorithm leads to an important reduction of the number of reservoir

simulations (around 60%) compared to the optimizer CMA-ES. The important savings in

the number of reservoir simulations are justified by the reduced number of parameters

required to build the meta-model of the element functions.

The proposed approach exploiting the partial separability of the objective function can

also be combined with any other stochastic optimizer, in order to reduce the computational

cost of the optimization.
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Figure 5.4: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with partially separated meta-model, i.e., p-sep lmmCMA. The three
figures depict one of the ten performed runs of p-sep lmm-CMA. In (a), the evolution of
the best overall NPV value (in red) and the best NPV obtained each generation (in blue)
is depicted. In (b), the evolution of the well trajectory parameters, where each well is
plotted using a different color representing three group of parameters is depicted. The
group of angles encoding each well is shown in the lower part of the figure (values below
10). The group of well lengths is shown in the intermediate part of the figure (the three
curves with values around 500). The group of Cartesian coordinates of the wells is shown
in the upper part of the figure. In (c) the evolution of the well trajectory parameters on
the log-scale is depicted.

74

Chapter4/Chapter4Figs/EPS/plotFitness.eps
Chapter4/Chapter4Figs/EPS/plotThreeTrajectoriesnonlog.eps
Chapter4/Chapter4Figs/EPS/plotThreeTrajectorieslog.eps


Chapter 6

Well placement optimization

under geological uncertainty

In the well placement problem, as well as in many other field development optimization

problems, geological uncertainty is considered as a key source of risk affecting the viability

of field development projects. The problem arises when we have multiple possible geological

realizations of the reservoir. The multiple realizations are generated using geostatistical

techniques and in general deemed equiprobable. Let us consider an objective function to

optimize denoted by f and a number Nr of geological realizations denoted by (Ri)i=1,··· ,Nr
.

The key issue here is that for each scenario, i.e., for each well configuration when optimizing

well placement, we haveNr possible values of the objective function, one for each realization

where each will be denoted for a given well configuration x by f(x, Ri) corresponding to

a given realization Ri.

This chapter addresses the problem of how to define the objective function to opti-

mize when dealing with uncertainty for well placement and whether we should perform

evaluations on all the possible realizations in order to define the objective function.

This chapter is structured as follows. Section 6.1 provides a detailed literature review

for well placement optimization under geological uncertainty. Section 6.2 defines a new

approach to handle geological uncertainty for well placement using the neighborhood. In

Section 6.3, we demonstrate the contribution of the proposed approach in capturing the

geological uncertainty and in reducing the number of reservoir simulations on the synthetic

benchmark reservoir case PUNQ-S3 [54].

6.1 Optimization under uncertainty: a literature review

The problem of optimization under geological uncertainty shares many similarities with

the problem of optimizing noisy functions.
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A function f : R
n → R is said to be noisy if the only measurable value of f on

x ∈ R
n is a random variable that can be written as F(f(x), z) where f is a time-invariant

function and z is a noise often assumed to be normally distributed with a zero mean and

variance σ2, and denoted by N(0, σ2). The noise can be also defined differently (e.g.,

Cauchy distributed), and can be either additive or multiplicative. A common approach to

optimize noisy functions is to estimate the fitness function by the expected value defined

as follows:

f(x) =

∫ +∞

−∞
[F(f(x), z)] p(z) dz , (6.1)

where p(z) is the probability density function of the noise. Thus, a common way to ap-

proximate the expected fitness function is by averaging over a number of random samples:

f(x) ≃
1

Ns

Ns∑

i=1

[F(f(x), zi)] , (6.2)

where Ns denotes the number of samples called also the sample size.

In the context of field development optimization under geological uncertainty, we are

dealing with a finite number of realizations, and the measurable fitness values correspond

to the values f(x, Ri)i=1,··· ,Nr . Therefore, the objective function corresponds in general to:

f(x) =
1

Nr

Nr∑

i=1

[f(x, Ri)] . (6.3)

However due to the expensive computational effort required to evaluate the objective

function over one realization Ri, the expected fitness function is often approximated in

a way to use a fewer number of samples instead of using all the realizations. Thus, one

common way to approximate the expected objective function here is again by averaging

over a number of samples Ns ≤ Nr.

In the following, we briefly review the existing approaches often used in optimization

under uncertainty. On the one hand we review the approaches defined by the optimiza-

tion community mainly to cope with noise but that can be extended to the different field

development optimization under geological uncertainty. On the other hand we review the

approaches already applied in the petroleum community to cope with geological uncer-

tainty.

6.1.1 Optimization community

This section summarizes the different ways to handle uncertainty within the evolution-

ary optimization community. A detailed overview of the existing approaches addressing

uncertainties in evolutionary optimization is presented in [84]. Let us suppose in this sec-

76



6.1 Optimization under uncertainty: a literature review

tion then that the function f to optimize is a noisy function. The approaches to handle

uncertainty can be mainly divided into two categories.

6.1.1.1 Explicit Averaging

Using mean of several samples for each individual The simplest and the most

common way to address the uncertainty issue is to define the objective function for each

point by averaging over a number of samples (Eq. (6.2)). Increasing the sample size Ns is

equivalent to reducing the variance of estimating the objective function.

In general, the objective function is defined using an averaged sum of a constant sample

size. In this case, for each single evaluation of the expected objective function, one needs

to evaluate the objective function on Ns samples.

In the context of costly objective functions, depending on the number of samples, there

is a compromise between the computational cost of the optimization and the accuracy of

the estimation of the objective function. Increasing (respectively, decreasing) the number

of samples tends to improve (respectively, worsen) the accuracy of the estimated objective

function, but on the other hand it tends also to increase (respectively, reduce) the com-

putational cost of the optimization. The idea of using an adapted sample size during the

optimization was first proposed in [3, 4]. In [4], it is shown that adapting the number of

samples performs better than using constant sample sizes, and it is suggested to increase

the sample size with the generation number and to use a higher number of samples for

individuals with higher estimated variance. An other way to adapt the sample size is

based on an individual’s probability to be among a number of the best individuals [121].

Recently, an other approach relying on the rank based selection operators was proposed in

[73]. In [76], an adaptive uncertainty handling procedure is proposed, based on selection

races [93].

Using the neighborhood for each individual An alternative approach to defining

the objective function as an averaged sum of a number of samples (constant or adapted) is

to define the objective function using the neighborhood points already evaluated [106, 29,

28, 27, 112, 113]. The general idea has first been suggested in [27] in which it is suggested

to estimate the fitness as a weighted average of the neighborhood with a linearly decreasing

weight function up to some fixed maximum distance. In [106, 28, 29], a locally weighted

regression is used for estimation. This technique is shown to be a good solution to improve

the accuracy of the estimated objective function without increasing the computational cost.
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6.1.1.2 Implicit Averaging

When increasing the population size, the probability to obtain similar points is higher.

Thus, a way to cope with noise is to simply increase the population size [52]. In this case,

with a large population size, the influence of noise on a given point can be reduced due to

the evaluations on other similar points. Conflicting conclusions [52, 7, 8, 60] were shown

in the literature when comparing explicit averaging and implicit averaging.

6.1.2 Petroleum community

Several studies in the literature have addressed the problem of optimization under geolog-

ical uncertainty not only on the well placement problem but also on other field develop-

ment optimization problems. Optimization under geological uncertainty in the petroleum

community considers always a finite number of realizations Nr and models the objective

function following Eq. (6.3). In the following we briefly review the approaches to handle

uncertainty in optimization within the petroleum community.

To the best of our knowledge, all the studies that consider a number Nr multiple possi-

ble realizations of the reservoir, use the approach “Using mean of several samples for each

individual”. Moreover, all the studies in the literature, except the approach proposed in

[126] that will be detailed later, perform Nr reservoir simulations for every single objective

function evaluation. Although sharing this common similarity, the proposed approaches

introduce different formulations of the objective function.

In [116, 115, 103, 35], the objective function is formulated as the expected value of

the net present value over all the realizations, as shown in Eq. (6.3). In [35], the authors

tackles the problem of closed-loop production optimization using the optimizer EnOpt

[37, 36] which is applied to the geological model ensemble updated by either EnKF [49] or

EnRML [62].

In [129, 2, 5], multiple geostatistical realizations of the reservoir are considered in the

formulation of the objective function:

f(x) =
1

Nr

Nr∑

i=1

[f(x, Ri)] + rσ , (6.4)

where r ∈ R is the risk factor and σ is the standard deviation of f on x over the realizations,

defined as follows:

σ =

√
√
√
√ 1

Nr

Nr∑

i=1

(f(x, Ri)− 〈f(x)〉)
2 , (6.5)

where:

〈f(x)〉 =
1

Nr

Nr∑

i=1

[f(x, Ri)] . (6.6)
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The term rσ in Eq. (6.4) is used to take into account the decision maker’s attitude

toward risk. A positive r indicates a risk-prone attitude, a negative r indicates a risk-

averse attitude and an r = 0 indicates a risk-neutral attitude. This formulation is close to

the formulations defined in [64, 104] using utility functions.

In [10], a more general formulation of the objective function is defined as follows. A

genetic algorithm is used, in which at each iteration only a predefined percentage of the

individuals, chosen according to a set of scenario attributes, is simulated. For the simulated

individuals, the authors in [10] propose to perform again Nr reservoir simulations for each

well configuration x in order to evaluate the values of f(x, Ri) on all realizations and

then to derive the cumulative distribution function cdf{f} on x. From this distribution,

the values of f10(x), f50(x) and f90(x) are determined. The value f10 on x denotes the

value of f on x corresponding to a probability of 0.1, i.e., there is a probability 0.1 that

the value of f on x will be less than f10 on x. The value f10 on x can be written as

cdf{f}−1(0.1). The values f50(x) and f90(x) are defined in a way similar to f10(x). The

objective function is then formulated as follows:

f(x) = r10f
10(x) + r50f

50(x) + r90f
90(x) , (6.7)

where the parameters r10, r50 and r90 are defined according to the decision maker’s attitude

toward risk. A risk-neutral attitude corresponds to the case where (r10, r50, r90) = (0,

1, 0) which may be similar to the definition in Eq. (6.3). However, a risk-averse investor

tends to increase the value of r10, and a risk-prone investor tends to increase the value of

r90.

Another way to formulate the objective function under geological uncertainty is to

optimize the worst case scenario using a min-max problem formulation [30]. This approach

is used in [5] to optimize smart well controls.

The only approach selecting only a number of samples instead of all the realizations

is defined in [126]. The approach is based on the so-called retrospective optimization

[34, 127] and divides the problem as a number of subproblems, where the initial solution

of the current subproblem is simply the returned solution from the previous subproblem.

Each point to be evaluated is approximated by the average over a number of realizations,

where the number of selected realizations is increased from subproblem to subproblem.

The approach implies then defining a sequence of samples. The example shown in [126]

considers a well placement problem on 104 permeability and porosity realizations and

therefore defines subproblems with a sequence {20, 15, 10, 5} of iterations and a sequence

{1, 5, 16, 21, 104} of sample sizes. Although the authors suggest further testing of the

overall framework to determine the appropriate sequence of sample sizes, an answer can
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be the work on adapting automatically the sample sizes already proposed in [121, 73] but

still demanding in the number of objective function evaluations.

6.2 Well placement under uncertainty with CMA-ES using

the neighborhood

This section proposes a new approach to handle geological uncertainty for well placement.

The proposed approach focuses on reducing the uncertainty by using the objective function

evaluations of already evaluated individuals in the neighborhood. In this section, we

propose then to apply an approach based on using the neighborhood for each individual.

We define a CMA-ES optimizing an estimated fitness defined on a given point using a

weighted average of a small number of evaluations on the considered point and a number of

evaluations already performed on the neighborhood (up to some fixed maximum distance)

with a decreasing weight function depending on the Mahalanobis distance with respect

to the covariance matrix C defined by CMA-ES. Although considering a Mahalanobis

distance with respect to σ2C is suspected to be a better choice (since we are using a fixed

maximum distance to select the neighbors), it has not been tested in this thesis.

Let us consider a well placement optimization problem with a number of wells (pro-

ducers and/or injectors) to be placed. Let us denote by n the dimension of the problem,

i.e., the number of parameters needed to encode the wells to be placed. The wells to be

placed can be parameterized as defined in Section 3.1.2. Without loss of generality, we will

consider in the sequel the NPV as the objective function that we aim to optimize, unless

otherwise explicitly stated. Thus, we want to find a vector of parameter pmax,R ∈ R
n such

that:

NPVR(pmax,R) = max
p

{
NPVR(p)

}
, (6.8)

where NPVR is the averaged sum of the NPVs of a given well configuration represented

by a vector of parameters p over all the realizations:

NPVR(p) =
1

Nr

Nr∑

i=1

NPV(p, Ri) . (6.9)

In the proposed approach, we define a so-called estimated objective function that will be

optimized instead of the true objective function NPVR defined in Eq. (6.9). The estimated

function will be denoted in the sequel by NPVE . Thus in the proposed approach, contrary

to what is shown in Eq. (6.8), we will try to find the vector of parameter pmax,E ∈ R
n

such that:

NPVE(pmax,E) = max
p

{
NPVE(p)

}
. (6.10)
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The simplest case in which solving Eq. (6.8) is equivalent to solving Eq. (6.10), is when

NPVE is a monotonic transformation of NPVR. However in this thesis, we do not aim to

define an estimated objective function NPVE such that we can prove that Eq. (6.10) is

equivalent to Eq. (6.8). Our aim is that by solving Eq. (6.10), we can propose good points

with high NPVR values (see below for the definition of NPVE).

To optimize NPVE , we propose to use the CMA-ES optimizer. During the optimization

process, we build a database –called also training set– in which after every performed

reservoir simulation for a given point x on a realization R, we store the point x together

with its corresponding evaluation NPV(x, R).

It remains now to define the estimated objective function NPVE for a given point (well

configuration) denoted by a vector of parameters p:

1. At the beginning of the optimization and until reaching a given number Nsim of

performed reservoir simulations, we define a number of reservoir simulations N1
s (≤

Nr) to be performed on p, and a set of N1
s randomly drawn integers

{
j1, · · · , jN1

s

}
⊂

{1, · · · ,Nr}. We perform then N1
s reservoir simulations on p on the realizations

(Ri)i=j1,··· ,jN1
s
, and we add each of the obtained simulation results (p, NPV(p, Ri))

to the training set.

The estimated objective function on the point p reads as follows:

NPVE(p) =
1

N1
s

N1
s∑

i=1

NPV(p, Rji) . (6.11)

In this case, the evaluation of NPVE requires a number N1
s of reservoir simulations.

2. If more than Nsim reservoir simulations are performed, we perform the following

steps.

We begin by defining a number of reservoir simulations N2
s (≤ Nr) to be performed on

p, and a set of randomly drawn integers
{
j1, · · · , jN2

s

}
⊂ {1, · · · ,Nr}. We perform

then N2
s reservoir simulations on p on the realizations (Ri)i=j1,··· ,jN2

s
, and we add

each of the obtained simulation results (p, NPV(p, Ri)) to the training set.

We also define a maximum number of neighbor points Nn,max ∈ N that can be used

in the definition of NPVE . We select then at most the Nn,max nearest points to p

from the training set. Here, we select only the points with a distance less or equal

to a given fixed distance of selection denoted by dmax. We denote by Nn the number

of selected points and by (xi)1≤i≤Nn
the selected points1. The distance used for this

1For each selected point xi for the training set, we have a corresponding evaluation on a given realiza-
tion. For the sake of notation simplicity we will denote the corresponding stored evaluation by NPV(xi, Ri)
although it is not necessarily evaluated on realization Ri.

81



6.3 Application of CMA-ES using the neighborhood approach on the
PUNQ-S3 case

purpose is the Mahalanobis distance with respect to the current covariance matrix

C of CMA-ES defined for two given points z1 ∈ R
n and z2 ∈ R

n by dC (z1, z2) =
√

(z1 − z2)
T C−1 (z1 − z2).

The estimated objective function on p reads as follows:

NPVE(p) =
1

S





N2
s∑

i=1

(piNPV(p, Rji)) +

Nn∑

i=1

(p̃iNPV(xi, Ri))



 , (6.12)

where pi = 1, p̃i =

(

1−
(
dC(xi,p)
dmax

)2
)2

and S =
∑N2

s
i=1 pi +

∑Nn
i=1 p̃i. In this case, the

evaluation of NPVE requires only a number N2
s of reservoir simulations.

The parameters Nsim, N
1
s , N

2
s and Nn,max are not meant to be in the users’ choice.

Typical values are Nn,max = 2 × Nr, Nsim = 2 × Nr, N
1
s = 1 and N2

s = 1. A users’ choice

is the maximum distance of selection for the neighborhood dmax, and which is a problem-

dependent constant. An investigation of the impact of the choice of dmax will be briefly

shown in the next section through some examples.

An estimated standard deviation can also be included in the formulation of the esti-

mated objective function NPVE . In this case, the estimated objective function, which will

not be tested in this chapter, can be formulated as follows:

NPVE(p) = mE + rσE(p) , (6.13)

where:

mE =
1

S





N2
s∑

i=1

(piNPV(p, Rji)) +

Nn∑

i=1

(p̃iNPV(xi, Ri))



 , (6.14)

and

σE(p)=

√
√
√
√
√

1

S





N2
s∑

i=1

(

pi (NPV(p, Rji)−mE)2
)

+

Nn∑

i=1

(

p̃i (NPV(xi, Ri)−mE)2
)



 . (6.15)

6.3 Application of CMA-ES using the neighborhood ap-

proach on the PUNQ-S3 case

In this section, we apply the CMA-ES using the neighborhood approach –that we will

call in the sequel the “using the neighborhood” approach– on the well placement prob-

lem on the benchmark reservoir case PUNQ-S3 [54]. As shown in previous examples in

Chapters 3 and 5, the model contains 19 × 28 × 5 grid blocks, and the elevation and the

geometry of the field is shown in Fig. 3.2. We consider 20 geological realizations that will
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Figure 6.1: The evolution of the well placement optimization process on the PUNQ-S3 case
using CMA-ES with the “using the mean of samples” approach. The best mean value of
the NPV over the 20 possible realizations, i.e., NPVR is shown. Three runs are performed.

be again denoted by (Ri)i=1,··· ,20. Each realization defines one possible porosity map and

one possible permeability map. In these examples, the number of realization Nr is then

equal to 20.

We plan to drill two wells: one unilateral injector and one unilateral producer. The

dimension of the problem is then equal to 12(= 6 × 2). In all the following applications,

we use CMA-ES as an optimization algorithm with a population size equal to 40.

As a reference approach, we perform three independent runs in which we optimize

the objective function NPVR as defined in Eq. (6.9). In this reference approach, we

perform for each well configuration to be evaluated 20 reservoir simulations. The reference

approach will be called in the sequel the “using the mean of samples” approach. Fig. 6.1

shows the evolution of the best mean value of NPVR, i.e., the NPV over the 20 possible

realizations, for the three performed runs. The “using the mean of samples” approach is

shown to be able to reach a mean value of NPVR equal to $9× 109 using 15200 reservoir

simulations. It is able also to reach a mean value of NPVR equal to $9.3×109 using 31200

reservoir simulations and a mean value of NPVR equal to $9.5× 109 using 44400 reservoir

simulations.

To evaluate the “using the neighborhood” approach, we use typical values of the param-

eters Nsim, N
1
s , N

2
s and Nn,max as defined in Section 6.2, i.e., Nn,max = 2×Nr, Nsim = 2×Nr,

N1
s = 1 and N2

s = 1. We begin by choosing the maximum distance of selection for the

neighborhood dmax equal to 4000.

Fig. 6.2 shows the evolution of the optimization process for three independent runs
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Figure 6.2: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the “using the neighborhood” approach, for three independent
runs in (a), (b) and (c). The evolutions of the best estimated objective function, i.e.,
NPVE are drawn with green lines. The evaluations on the true objective function over the
20 possible realizations, i.e., NPVR are depicted with red crosses. The maximum distance
of selection for the neighborhood dmax is equal to 4000.
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Figure 6.3: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the “using the neighborhood” approach for eight independent
runs. (a) shows the evolution of the evaluations on NPVR. (b) shows the evolution of the
best found evaluation on NPVR. The maximum distance of selection for the neighborhood
dmax is equal to 4000.
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of CMA-ES with the “using the neighborhood” approach. The evolutions of the best

estimated objective function, i.e., NPVE are drawn with green lines. During the optimiza-

tion process, each new overall best point found on NPVE , is evaluated on NPVR. The

evaluations performed on NPVR are depicted with red crosses. Fig. 6.2 shows that when

optimizing NPVE , we are able to propose good points according to NPVR (points with

an NPVR greater than $9 × 109). Moreover, NPVR tends to increase with an increasing

number of performed reservoir simulations.

Fig. 6.2(c) shows a particular run in which the best NPVE value found at the first

generation is equal to $9.7×109. This value is calculated according to Eq. (6.11), and thus

calculated using only one single reservoir simulation (with one single random realization).

Indeed, with a single reservoir simulation to evaluate one point, the estimated objective

function can not in general propose a good point according to NPVR. Consequently, the

best point found at the first generation according to NPVE has a “bad” NPVR value

equal to $5.8 × 109. Thus, the optimization process does not propose for 112 iterations

a new overall best point to be evaluated on NPVR. The performance of this run can

be avoided either by evaluating more often points using NPVR1 or simply by using more

reservoir simulations for each point to be evaluated at the beginning of the optimization,

i.e., choosing N1
s ≥ 2.

We show in Fig. 6.3 the performance of eight independent runs of CMA-ES with the

“using the neighborhood” approach. Fig. 6.3(a) shows the evolution of the evaluations

performed on NPVR. The evaluated points correspond to the best overall points found

during the optimization process of NPVE . Fig. 6.3(b) shows the evolution of the best

evaluation performed on NPVR. Seven runs out of the eight performed runs (88%) are

able to reach an NPVR value greater than to $9× 109, using a mean number of reservoir

simulations equal to 2851. Consequently the reduction of the number of reservoir simula-

tions to reach an NPVR greater than to $9×109 when using the “using the neighborhood”

approach compared to the “using the mean of samples” approach is equal to 81%. Six

runs out of eight performed runs (75%) are able to reach a value of NPVR greater than

to $9.3× 109, using a mean number of reservoir simulations equal to 4307, which offers a

reduction of the number of reservoir simulations when comparing to the “using the mean of

samples” approach equal to 86%. However, only two runs out of the eight performed runs

(25%) are able to reach a value of NPVR greater than to $9.5 × 109. The mean number

of reservoir simulations required to reach this value is 6160. Consequently the reduction

of the number of reservoir simulations to reach an NPVR greater than to $9.5× 109 when

comparing to the “using the mean of samples” approach is again equal to 86%.

1For example, one can evaluate the best found point according to NPVE
at each iteration on NPVR
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Figure 6.4: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the “using the mean of samples” approach and the “using the
neighborhood” approach. The evolution of the best found evaluation on NPVR for the
“using the neighborhood” approach is drawn with red lines. The evolution of the best
found evaluation on NPVR for the “using the mean of samples” approach is drawn with
blue lines. Three independent runs are performed for each approach. For the “using the
neighborhood” approach, the maximum distance of selection for the neighborhood dmax is
equal to 4000.
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(b)

Figure 6.5: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the “using the neighborhood” approach for four independent
runs. (a) shows the evolution of the evaluations on NPVR. (b) shows the evolution of the
best found evaluation on NPVR. The maximum distance of selection for the neighborhood
dmax is equal to 3000.
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Figure 6.6: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the “using the neighborhood” approach for four independent
runs. (a) shows the evolution of the evaluations on NPVR. (b) shows the evolution of the
best found evaluation on NPVR. The maximum distance of selection for the neighborhood
dmax is equal to 6000.

Three runs of CMA-ES with the “using the neighborhood” approach are shown together

with the three performed runs of CMA-ES with the “using the mean of samples” approach

in Fig. 6.4. Results show that although the “using the neighborhood” approach does not

guarantee finding the best values of NPVR found by the “using the mean of samples”

approach when comparing with the “using the mean of samples” approach, the number of

reservoir simulations is reduced significantly by more than 81%.

The impact of the choice of the maximum distance of selection for the neighborhood

dmax is shown in Figs. 6.5 and 6.6. Comparing the results in Figs. 6.5, 6.3 and 6.6 (with

dmax = 3000, 4000 and 6000) shows that the approach is not very sensitive to the choice

of dmax.

In the sequel, we compare the “using the neighborhood” approach with another ap-

proach in which the estimated objective function to be optimized is equal to an evaluation

on a randomly chosen realization. This approach is called the “using one realization”

approach. In this approach, we also evaluate on NPVR only the overall new best points

found on the estimated objective function. Figs. 6.7 and 6.8 show the evolution of the op-

timization process for three independent runs of CMA-ES with the “using one realization”

approach. In Fig. 6.7, the evolutions of the best estimated objective function are again

drawn with green lines. If we compare the “using the neighborhood” and the “using one

realization” approaches through Figs. 6.2 and 6.7, it is clear that contrary to the “using the

neighborhood” approach which is shown to be able to capture the geological uncertainty,

the “using one realization” approach is shown to be not able to propose good points with

high NPVR. The three performed runs with the “using one realization” approach are not

able to reach an NPVR value greater than $9× 109.
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Figure 6.7: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the “using one realization” approach, for three independent runs
in (a), (b) and (c). The evolutions of the best estimated objective function (equal to an
evaluation on a randomly chosen realization) are drawn with green lines. The evaluations
on the true objective function over the 20 possible realizations, i.e., NPVR are depicted
with blue crosses.
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Figure 6.8: The evolution of the well placement optimization process on the PUNQ-S3
case using CMA-ES with the “using one realization” approach. The best mean value of
the NPV over the 20 possible realizations, i.e., NPVR is shown. Three runs are performed.

6.4 Summary and discussions

In this chapter, we have defined a new approach to handle geological uncertainty for well

placement using the objective function evaluations of already evaluated individuals in the

neighborhood. The proposed approach is compared to a reference approach using the

mean of samples of each individual. We have shown on the synthetic benchmark reservoir

case PUNQ-S3 that although the proposed approach does not guarantee finding always

the best values found by the reference approach, the number of reservoir simulations is

reduced significantly by more than 81%.
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Chapter 7

Conclusions and perspectives

7.1 Conclusions

In this thesis, we have contributed to the research area of optimizing well placement

(locations and trajectories of the wells to be drilled) by addressing the following challenges

(presented in Section 1.3):

(I) The non-smoothness, the multi-modality, the non-convexity and the high dimen-

sionality of the objective function;

(II) The expensive cost of the objective function;

(III) The geological uncertainty handling problem.

The problem (I) was addressed in Chapter 3 by applying the stochastic optimizer CMA-

ES. We have shown that CMA-ES outperforms the genetic algorithm on the PUNQ-S3 case

by leading to a higher net present value (NPV). Moreover, CMA-ES was shown to be able

to define potential regions containing optimal well configurations. The ability of CMA-ES

to find much higher NPV values and to converge to the same region of the search space, has

been explained by its advanced adaptation mechanism that allows the algorithm, on ill-

conditioned non-separable problems, to adapt in an efficient way its sampling probability

distribution.

The problem (II) was addressed by defining two new algorithms aiming at reducing

the number of objective function evaluations, based on meta-models whose underlying

idea is to replace some (true) function evaluations during the optimization process by the

function values given by the meta-model. Meta-models can be considered as a computa-

tionally cheaper replacement of the objective function. This consideration is justified by

the context of costly objective function for the well placement problem. The new-local-

meta-model CMA-ES, denoted nlmm-CMA (Chapter 2) was proposed in order to mitigate

some defects of the already existing local-meta-model CMA-ES (lmm-CMA) when dealing

with large population sizes. The partially separable local-meta-model CMA-ES, denoted
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p-sep lmm-CMA (Chapter 4) was proposed leading to an important speedup compared

to the standard CMA-ES when dealing with partially separable functions. Exploiting the

partial separability of the objective function is motivated by the well placement problem,

in which the reservoir simulations can output the production of each single well (assumed

to be depending on a fewer parameters) though the objective is to maximize the production

of all the wells. The proposed algorithms (nlmm-CMA and p-sep lmm-CMA) were then

applied on the well placement problem in Chapters 3 and 5. Results had demonstrated

the potential huge benefit of applying the proposed algorithms in reducing the number of

objective function evaluations on the well placement problem, and which can be extended

to other reservoir applications. The use of nlmm-CMA was shown on the benchmark

reservoir case PUNQ-S3 to be able to offer similar results (solution well configurations

and the corresponding NPV values) as CMA-ES without meta-models and moreover to

reduce the number of simulations by around 20% to reach a satisfactory NPV. The use of

p-sep lmm-CMA was also shown on PUNQ-S3 to lead to an important reduction of the

number of reservoir simulations of around 60% compared to CMA-ES.

Finally, the problem (III) was addressed in Chapter 6 by defining a new approach to

optimize under geological uncertainty with a reduced number of reservoir simulations. The

approach uses the objective function evaluations of already simulated well configurations

in the neighborhood of each well configuration. The proposed approach is shown to be able

to capture the geological uncertainty using a reduced number of reservoir simulations. On

the benchmark reservoir case PUNQ-S3, the proposed approach is able to reduce signifi-

cantly the number of reservoir simulations by more than 80% compared to the reference

approach using all the possible realizations for each well configuration. The research in

the area of reducing the number of reservoir simulations when optimizing under geological

uncertainty has been relatively scarce, and it is expected that an efficient algorithm such

as the proposed one, should provide a renewed interest in this area.

7.2 Perspectives

Several extensions to the present research can be mentioned. For the two algorithms nlmm-

CMA and p-sep lmm-CMA defined respectively in Chapters 2 and 4, we have only focused

on local quadratic meta-models. However other types of meta-models could be used like

kriging and radial basis functions as we have no a priori that quadratic meta-models are

the best models to use for practical purposes.

In Chapter 4 when defining p-sep lmm-CMA, we have shown on f100
Rosen that using a

population size λ = 4 × λdefault gives the minimum number of evaluations and improves

the performance by a factor between 1.5 and 2 over the default population size. Future
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investigations are needed to define the optimal population size depending on the dimension

of the problem and the dimension of the sub-problems, over a wide range of test functions.

In Chapter 5 when applying p-sep lmm-CMA on the well placement problem, we have

assumed that each element function depends on the parameters defining the considered

well and the minimum distances between the considered well and the other wells. However,

further studies are useful in order to define the best parameters for each element function

and thus improve the accuracy of the partially separated meta-models.

Moreover, the work in Chapters 4 and 5 was motivated by the fact that we need to

exploit more information on the well placement problem and that we need to incorporate

these information into the original algorithm in order to obtain consequent improvements.

Chapters 4 and 5 deal with the partial separability of the objective function. Another

approach could be to exploit some a priori information such as well allocation factors and

connectivity using the work developed in [41].

The problem of optimization under geological uncertainty remains an open research

problem. The approach proposed in Chapter 6 can be considered as an initial work to

define a robust optimization algorithm handling the uncertainty with a restricted budget

of function evaluations. This work can be extended and enhanced by numerous means,

mainly by using an adaptive strategy to define the parameters of the algorithm. Although

we suspect that the used values of the parameters defining the number of performed reser-

voir simulations N1
s and N2

s (equal to one) can be a good choice, we believe that a procedure

to adapt the number of function evaluations can improve the performance of the approach

and generalize it to a wider range of problems. Indeed, the adaptation of N1
s and N2

s

aims at controlling the quality of the estimated function and thus at deciding whether

the estimated function is sufficiently accurate or if one needs more evaluations on other

realizations to improve the quality of the estimated function. In Chapter 6, the proposed

approach is compared to a reference approach using the mean of samples of each individ-

ual. However, more comparisons with recent competing approaches is recommended, in

particular with the approach in [73].

Finally, applying the developed methods to other Geosciences optimization problems

(e.g., history matching, production optimization) is suggested since we believe that many

other Geosciences problems could be successfully handled with the developed methods.
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Nomenclature

Included in the following list are common symbols employed throughout the thesis. Other,

more specific symbols are defined as used.

C covariance matrix of a multivariate normal distribution
Cd cost of drilling
dii minimum distance between the well i and the other injectors
dpi minimum distance between the well i and the other producers
Hk gross thickness of a layer with an index k
k number of points used to build the meta-model
ki number of points used to build the sub-meta-model (approximating an element

function) with an index i
Lmax maximum well length
m mean of a multivariate normal distribution
n dimension of the problem
nb number of individuals evaluated on the meta-model each iteration cycle
nic number of iteration cycles needed to satisfy the meta-model acceptance criterion
ninit number of initial individuals evaluated on the meta-model
nlayers number of layers in the reservoir
nM number of element variables for an element function
Njun number of junctions
Nlat number of laterals
Nr number of geological realizations
Ns number of samples (sample size)
Nw number of wells
Nwd number of wells already drilled
R revenue
Ri geological realization with an index i
So oil saturation

Symbols

λ number of individuals created each generation (population size)
µ number of individuals of the current generation used to create the individuals

of the next generation
φ porosity
σ step-size; standard deviation
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Abbreviations

APR Annual Percentage Rate
BOE Barrel of Oil Equivalent
CPU Central Processing Unit
NPV Net Present Value

Superscripts

E estimated
R true
(g) at generation g
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Résumé en Français

(extended abstract in French)

L’état de l’art de la gestion des réservoirs a été récemment fortement influencé par le

développement technologique. De nos jours, les technologies de forage ont connu de grands

progrès, en particulier le forage directionnel. Par conséquent, les ingénieurs de réservoir

bénéficient de l’utilisation des différentes architectures de configurations des puits, à savoir

des architectures verticales, horizontales, ainsi que des architectures plus complexes, afin

d’améliorer la productivité du réservoir.

Les Environnements, les zones et les conditions dans lesquelles les champs de pétrole et

de gaz sont actuellement découverts, sont beaucoup plus complexes et difficiles à exploiter.

D’une part, les champs existants sont de plus en plus déplétés, et par conséquent plus

marginaux. A moins d’avoir un moyen d’optimiser leurs productivités et de prendre des

mesures correctives, il serait difficile de justifier de continuer à investir dans la production

de ces champs existants pour des raisons économiques [14]. D’autre part, les nouvelles

découvertes ont aussi besoin d’un schéma de production optimal pour être économiquement

viables.

L’un des problèmes les plus importants qui doivent être abordés afin de maximiser

la valeur liquidative d’un projet donné est de décider d’une façon optimale où forer les

puits. Une décision de placement des puits affecte considérablement la récupération des

hydrocarbures, et donc la valeur liquidative du projet. En général, une telle décision est

difficile à prendre puisqu’un placement optimal dépend d’un grand nombre de paramètres

tels que les hétérogénéités du réservoir, les failles et les fluides en place. En outre, la

complexité des configurations des puits, e.g. les puits non-conventionnels, implique des
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Figure .1: Un exemple de paramétrage d’un puits multilatéral ayant deux segments et une
branche.

difficultés supplémentaires, telles que la concentration des investissements et la difficulté

d’intervention sur les puits 1.

La décision de placement des puits est formulée comme étant un problème

d’optimisation:

• la fonction objectif à optimiser, qui est estimée en utilisant un simulateur de réservoir,

évalue les aspects économiques du projet;

• les paramètres du problème encodent les positions des différents puits (qui compor-

tent leurs emplacements et trajectoires).

Nous définissons l’emplacement d’un puits donné par la position de son point de départ,

et nous définissons la trajectoire d’un puits donné par les positions de sa bore principale

et les différents latérales (le cas échéant).

Si le nombre des puits à placer ainsi que leurs types (injecteur ou producteur) sont

fixés, les paramètres encodant les positions des puits sont des nombres réels, et la fonction

objectif f est une fonction d’un sous-ensemble de R
n, où n, qui correspond au nombre

de paramètres, est égal à la somme des nombres de paramètres nécessaires pour encoder

chaque position de puits à placer. Un exemple de paramétrage d’un puits multilatéral est

représenté dans la figure. .1.

1Le forage d’un puits coûte en général entre 1 million de dollars et 30 millions de dollars.

96

ResumeFr/ResumeFrFigs/EPS/wellexample.eps


Formellement, nous cherchons à trouver un vecteur de paramètres pmax ∈ R
n tel que:

f(pmax) = max
p
{f(p)} , (.1)

où p désigne le vecteur de paramètres à optimiser encodant les positions et les trajectoires

des configurations des puits.

L’objectif principal de cette thèse est de proposer une procédure permettant de résoudre

le problème d’optimisation de placement des puits, en particulier l’emplacement des puits

et leurs trajectoires (défini dans l’Eq. (.1)). La procédure proposée doit à la fois offrir

la valeur liquidative maximale tout en utilisant un nombre techniquement abordable de

simulations de réservoir.

Cela implique les défis suivants, à savoir:

(I) L’irrégularité, la multimodalité, la non-convexité et la dimensionnalité élevée de la

fonction objectif;

(II) Le coût élevé de la fonction objectif;

(III) Le problème de traitement des incertitudes géologiques.

Considérant l’état de l’art de l’optimisation, le choix de l’algorithme CMA-ES [74]

semble a priori adapté pour attaquer le problème (I). En effet, CMA-ES est reconnu

comme l’un des plus puissants optimiseurs sans-dérivés pour l’optimisation continue [70].

CMA-ES est à la fois un algorithme rapide et robuste de recherche locale, présentant

une convergence linéaire sur des classes larges de fonctions, et un algorithme de recherche

global, si on relançe l’algorithme tout en augmentant la taille de population. CMA-ES,

contrairement à la plupart des autres algorithmes évolutionnaires, est un algorithme quasi

sans-paramètres 1.

Dans l’industrie pétrolière, CMA-ES n’a été appliqué, au meilleur de notre connais-

sance, que dans deux études antérieure à ce travail: une caractérisation des conductivités

de fracture pour l’inversion des tests de puits [32], une optimisation de placement des

puits mais en utilisant des attributs simples (par exemple, les indices de productivité)

[43]. Une application plus récente sur l’optimisation de placement des puits a été publiée

dans [116, 115].

Pour s’attaquer au problème (II), nous proposons d’étudier le couplage de l’optimiseur

CMA-ES avec des surrogates (ou méta-modèles). Dans ce contexte, nous cherchons à

définir une variante efficace de CMA-ES couplé avec des méta-modèles, capable de réduire

significativement le nombre de simulations de réservoir. Par ailleurs, nous visons à exploiter

1Seule la taille de la population est suggéré d’être ajustée par l’utilisateur, afin de tenir compte de la
robustesse du paysage fonction objective.

97



les connaissances sur le problème d’optimisation, en particulier ladite séparabilité partielle

de la fonction objectif afin de réduire davantage le nombre de simulations de réservoir.

Enfin, pour s’attaquer au problème (III), nous visons à définir une approche (pour

CMA-ES) capable de capturer l’incertitude géologique avec un coût nettement réduit de

simulations de réservoir. Dans ce contexte, nous cherchons à définir une approche qui

utilise un nombre réduit de simulations de réservoir (typiquement un) pour chaque config-

uration des puits, au lieu d’effectuer des simulations de réservoir sur toutes les réalisations

géologiques possibles.

Résumé des contributions

Dans ce qui suit, on présente un résumé des contributions de la présente thèse.

Nous avons abordé le problème (I) lié à l’irrégularité, la multimodalité, la non-convexité

et la dimensionnalité élevée de la fonction objectif dans le problème de placement des puits,

et nous avons présenté:

Une première application réussie de CMA-ES sur le problème de placement

des puits. (Résultats publiés dans [26, 24])

Nous proposons une nouvelle méthodologie pour l’optimisation des positions et tra-

jectoires des puits. Cette méthodologie basée sur des populations est un algorithme

de recherche stochastique appelée “Covariance Matrix Adaptation - Evolution Strategy”

(CMA-ES) [74]. Nous proposons d’utiliser une nouvelle technique de pénalisation adapta-

tive avec rejet pour traiter les contraintes.

Vu que les algorithmes génétiques (AGs) sont très souvent la méthode choisie dans

l’industrie pétrolière, nous montrons la contribution de l’application de CMA-ES par rap-

port à un AG sur le cas réservoir de benchmark synthétique PUNQ-S3 [54]. Pour permettre

une comparaison équitable, les deux algorithmes sont utilisés sans réglage de paramètres

du problème, les réglages standard sont utilisés pour AG et les paramètres par défaut

pour CMA-ES. Nous montróns que notre nouvelle approche est plus performante que

l’algorithme génétique (voir figure. .2): généralement, elle conduit à la fois à une plus

grande valeur actuelle nette (NPV) et à une réduction significative du nombre de simula-

tions de réservoir nécessaire pour atteindre une bonne configuration de puits.

Après cette application de CMA-ES sur le problème de placement des puits, nous

avons abordé le problème (II) liée au coût élevé de la fonction objectif, et nous avons

proposé deux nouveaux algorithmes:
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Figure .2: Valeur moyenne du NPV (en dollars) et l’écart type correspondant pour un
problème de placement des puits utilisant CMA-ES (courbe continue) et AG (courbe dis-
continue). Quatorze tests sont effectués pour chaque algorithme.

Une nouvelle variante de CMA-ES avec des méta-modèles locaux. (Résultats

publiés dans [22])

Le local-méta-modèle CMA-ES (lmm-CMA) [87], couplant des méta-modèles locaux

quadratiques avec CMA-ES, est étudié. La dépendance de l’algorithme par rapport à la

taille de population est analysée et les limites de l’approche pour des tailles de population

plus grandes que celle par défaut, sont démontrées. Une nouvelle variante pour décider

quand le méta-modèle est accepté, est proposée - appelé le nouveau-local-méta-modèle

CMA-ES (nlmm-CMA).

Une nouvelle variante de CMA-ES avec des méta-modèles locaux pour les

fonctions partiellement séparables. (Résultats publiés dans [23])

Nous proposons une nouvelle variante de CMA-ES avec des méta-modèles locaux pour

l’optimisation des fonctions partiellement séparables - appelée la partiellement séparable

local-méta-modèle CMA-ES (p-sep lmm-CMA). Nous proposons d’exploiter la séparabilité

partielle en construisant à chaque itération un méta-modèle pour chaque fonction élément

(ou sous-fonction) en utilisant un modèle quadratique complet local. Nos résultats

démontrent que l’exploitation de la séparabilité partielle conduit à une accélération im-

portante par rapport à l’algorithme CMA-ES standard. Nous montrons sur les fonctions

testées que l’accélération augmente avec les dimensions, pour une dimension fixe de la

fonction élément. Sur la fonction Rosenbrock standard, l’accélération maximale de λ est
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Figure .3: Valeur moyenne du NPV (en dollars) et l’écart type correspondant pour un
problème de placement des puits utilisant CMA-ES avec des méta-modéles (courbe con-
tinue) et CMA-ES (courbe discontinue). Dix tests sont effectués pour chaque algorithme.

atteinte avec la dimension 40 en utilisant des fonctions éléments de dimension 2, où λ est

la taille de population. Nous montrons également que des accélérations plus importantes

peuvent être atteintes en augmentant la taille de population.

Maintenant, nous avons appliqué les deux nouveaux algorithmes proposés sur le

problème de placement des puits:

Une réduction significative du nombre de simulations de réservoir pour le

problème de placement des puits. (Résultats publiés dans [26, 24, 25])

Nous proposons d’appliquer CMA-ES avec des méta-modèles locaux (nlmm-CMA) sur

le problème de placement des puits, où pour chaque configuration de la population, un

modèle approché convexe quadratique est construit en utilisant les vraies évaluations de la

fonction objectif collectées pendant le processus d’optimisation. Le couplage de CMA-ES

avec les méta-modèles conduit à une amélioration significative, autour de 20 % pour le cas

réservoir de benchmark synthétique PUNQ-S3 (voir figure. .3).

Par ailleurs, nous proposons également d’appliquer p-sep lmm-CMA sur le problème de

placement des puits, en construisant des méta-modèles partiellement séparés pour chaque
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Figure .4: Valeur moyenne du NPV (en dollars) pour un problème de placement des
puits utilisant CMA-ES avec des méta-modéles partiellement séparés, i.e., p-sep lmm-CMA
(courbe continue), CMA-ES avec des méta-modéles, i.e., lmm-CMA (courbe discontinue)
et CMA-ES (△). Dix tests sont effectués pour chaque algorithme.

puits ou ensemble de puits, qui se traduit par une modélisation plus précise. Nos résultats

montrent qu’en exploitant la séparabilité partielle de la fonction objectif, nous obtenons

une diminution significative du nombre de simulations de réservoir nécessaire pour trouver

la configuration “optimale” des puits, en considérant un budget restreint de simulations

de réservoir (voir figure. .4).

Une nouvelle approche pour traiter l’incertitude géologique pour le problème

de placement des puits.

Nous proposons une nouvelle approche pour traiter l’incertitude géologique pour le

problème de placement des puits avec un nombre réduit de simulations de réservoir. Nous

proposons d’utiliser une seule réalisation avec le voisinage de chaque configuration des puits

afin d’estimer sa fonction objectif, au lieu d’utiliser multiples réalisations. L’approche est

appliquée sur le cas réservoir de benchmark synthétique PUNQ-S3 et démontré être ca-

pable de capturer l’incertitude géologique en utilisant un nombre réduit de simulations de

réservoir (voir figure. .5).
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Figure .5: L’évolution du meilleur NPV (en dollars) obtenu pour un problème de placement
des puits utilisant CMA-ES avec une approche utilisant la moyenne des échantillons (courbe
bleue), et avec l’approche proposée utilisant le voisinage (courbe rouge). Trois tests sont
démontrés pour chaque algorithme.
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Perspectives

Plusieurs extensions de ces travaux présentés dans cette thése peuvent être mentionnées.

Pour les deux algorithmes nlmm-CMA et p-sep-lmm CMA définies respectivement dans

les chapitres 2 et 4, nous nous sommes uniquement focalisé sur des méta-modèles quadra-

tiques locaux. Cependant, d’autres types de méta-modèles peuvent être utilisés comme le

krigeage et les fonctions à base radiale, puisque que nous n’avons aucun a priori que les

méta-modèles quadratiques sont les meilleurs modèles à utiliser dans la pratique.

Dans le chapitre 4, lors de la définition p-sep-lmm CMA, nous avons montré sur la

fonction f100
Rosen qu’une taille de population λ = 4 × λ(par defaut) offre le nombre minimum

d’évaluations, et améliore ainsi les performances de l’algorithme avec un facteur entre 1.5

et 2 par rapport à l’utilisation de la taille de population par défaut. D’autres investigations

sont nécessaires pour définir la taille de population optimale en fonction de la dimension

du problème et de la dimension des sous-problèmes, sur une large gamme de fonctions

test.

Dans le chapitre 5, lors de l’application de p-sep-lmm CMA sur le problème de place-

ment des puits, nous avons supposé que chaque élément fonction dépend des paramètres

du puits considéré, ainsi que des distances minimales entre le puits considéré et les autres

puits. Cependant, des études complémentaires sont utiles afin de définir les meilleurs

paramètres pour chaque élément fonction, et d’améliorer ainsi la précision des méta-

modèles partiellement séparés.

En outre, le travail dans les chapitres 4 et 5 a été motivé par le fait que nous avons

besoin d’exploiter le maximum possible d’informations sur le problème de placement des

puits, et que nous avons besoin d’intégrer ces informations dans l’algorithme original afin

d’obtenir des améliorations significatives. Les chapitres 4 et 5 traitent la séparabilité par-

tielle de la fonction objectif. Une autre approche pourrait consister à exploiter certaines

informations a priori comme les facteurs d’allocation des puits et la connectivité, en util-

isant les travaux développés dans [41].

Le problème d’optimisation sous incertitude géologique demeure un problème de

recherche ouvert. L’approche proposée dans le chapitre 6 peut être considéré comme

un travail initial visant à définir un algorithme d’optimisation robuste pouvant gérer les

incertitudes avec un budget restreint d’évaluations de la fonction objectif. Ce travail peut

être étendu par de nombreux moyens, notamment en utilisant une stratégie adaptative

pour définir les paramètres de l’algorithme. Bien que nous soupçonnons que les valeurs

des paramètres utilisées pour définir le nombre de simulations de réservoir réalisées N1
s

et N2
s (égal à un) peuvent représenter un bon choix, nous considérons qu’une procédure

adaptative du nombre d’évaluations de la fonction objectif peut améliorer la performance

de l’approche, et ainsi la généraliser à un plus large éventail de problèmes. En effet,
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l’adaptation de N1
s et N2

s , vise à contrôler la qualité de la fonction objectif estimée, et donc

à décider si la fonction estimée est suffisamment précise ou si des évaluations sur d’autres

réalisations sont nécessaires pour améliorer la qualité de la fonction estimée.

Enfin, l’application des méthodes développées sur d’autres problèmes d’optimisation

en Géosciences (e.g., calage d’historiques, optimisation de la production) est suggérée car

nous pensons que de nombreux autres problèmes en Géosciences pourraient être traitées

avec succès avec les méthodes mises au point dans cette thèse.
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Abstract: The amount of hydrocarbon recovered can be considerably increased by finding optimal place-
ment of non-conventional wells. For that purpose, the use of optimization algorithms, where the objective
function is evaluated using a reservoir simulator, is needed. Furthermore, for complex reservoir geologies with
high heterogeneities, the optimization problem requires algorithms able to cope with the non-regularity of the
objective function. The goal of this thesis was to develop an efficient methodology for determining optimal well
locations and trajectories, that offers the maximum asset value using a technically feasible number of reservoir
simulations.
In this thesis, we show a successful application of the Covariance Matrix Adaptation - Evolution Strategy
(CMA-ES) which is recognized as one of the most powerful derivative-free optimizers for continuous optimiza-
tion. Furthermore, in order to reduce the number of reservoir simulations (objective function evaluations), we
design two new algorithms. First, we propose a new variant of CMA-ES with meta-models, called the new-
local-meta-model CMA-ES (nlmm-CMA), improving over the already existing variant of the local-meta-model
CMA-ES (lmm-CMA) on most benchmark functions, in particular for population sizes larger than the default
one. Then, we propose to exploit the partial separability of the objective function in the optimization process
to define a new algorithm called the partially separable local-meta-model CMA-ES (p-sep lmm-CMA), leading
to an important speedup compared to the standard CMA-ES.
In this thesis, we apply also the developed algorithms (nlmm-CMA and p-sep lmm-CMA) on the well place-
ment problem to show, through several examples, a significant reduction of the number of reservoir simulations
needed to find optimal well configurations. The proposed approaches are shown to be promising when consid-
ering a restricted budget of reservoir simulations, which is the imposed context in practice.
Finally, we propose a new approach to handle geological uncertainty for the well placement optimization
problem. The proposed approach uses only one realization together with the neighborhood of each well
configuration in order to estimate its objective function instead of using multiple realizations. The approach
is illustrated on a synthetic benchmark reservoir case, and is shown to be able to capture the geological
uncertainty using a reduced number of reservoir simulations.

Résumé: La quantité d’hydrocarbures récupérés peut être considérablement augmentée si un placement op-
timal des puits non conventionnels forer, peut être trouvé. Pour cela, l’utilisation d’algorithmes d’optimisation,
où la fonction objectif est évaluée en utilisant un simulateur de réservoir, est nécessaire. Par ailleurs, pour des
réservoirs avec une géologie complexe avec des hétérogénéités élevées, le problème d’optimisation nécessite des
algorithmes capables de faire face à la non-régularité de la fonction objectif. L’objectif de cette thèse est de
développer une méthodologie efficace pour déterminer l’emplacement optimal des puits et leurs trajectoires,
qui offre la valeur liquidative maximale en utilisant un nombre techniquement abordable de simulations de
réservoir.
Dans cette thèse, nous montrons une application réussie de l’algorithme “Covariance Matrix Adaptation -
Evolution Strategy” (CMA-ES) qui est reconnu comme l’un des plus puissants optimiseurs sans-dérivés pour
l’optimisation continue. Par ailleurs, afin de réduire le nombre de simulations de réservoir (évaluations de la
fonction objectif), nous concevons deux nouveaux algorithmes. Premièrement, nous proposons une nouvelle
variante de la méthode CMA-ES avec des méta-modèles, appelé le nouveau-local-méta-modèle CMA-ES (nlmm-
CMA), améliorant la variante déjà existante de la méthode local-méta-modèle CMA-ES (lmm-CMA) sur la
plupart des fonctions de benchmark, en particulier pour des tailles de population plus grande que celle par
défaut. Ensuite, nous proposons d’exploiter la séparabilité partielle de la fonction objectif durant le processus
d’optimisation afin de définir un nouvel algorithme appelé la partiellement séparable local-méta-modèle CMA-
ES (p-sep lmm-CMA), conduisant à une réduction importante en nombre d’évaluations par rapport à la
méthode CMA-ES standard.
Dans cette thèse, nous appliquons également les algorithmes développés (nlmm-CMA et p-sep lmm-CMA) sur
le problème de placement des puits pour montrer, à travers plusieurs exemples, une réduction significative du
nombre de simulations de réservoir nécessaire pour trouver la configuration optimale des puits. Les approches
proposées sont révélées prometteuses en considérant un budget restreint de simulations de réservoir, qui est le
contexte imposé dans la pratique.
Enfin, nous proposons une nouvelle approche pour gérer l’incertitude géologique pour le problème
d’optimisation de placement des puits. L’approche proposée utilise seulement une réalisation, ainsi que le
voisinage de chaque configuration, afin d’estimer sa fonction objectif au lieu d’utiliser multiples réalisations.
L’approche est illustrée sur un cas de réservoir de benchmark, et se révèle être en mesure de capturer
l’incertitude géologique en utilisant un nombre réduit de simulations de réservoir.
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