M. Batat, G. Ayar, P. M. Biomass-jayasinghearachchi, S. Sarma, A. Singh et al., Available: http://www.enpc.fr/fr/formations/ecole_virt/trav-eleves/cc/cc0304/hydrogene/H2.htm. [Accessed: 04-août-2009]. [7] J. O. Bockris, « The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment Zajic, « Continuous microbial production of hydrogen gas, Carlozzi et M. Lambardi, « Fed-batch operation for bio-H2 production by Rhodopseudomonas palustris (strain 42OL) », Renewable Energy, pp.28-30, 1982.

E. B. Mandal, W. S. Lal-harun, T. Jason, M. K. Cherrington, M. Danquah et al., Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan [14] A. Duret, C. Friedli, et F. Maréchal, « Process design of Synthetic Natural Gas(SNG) production using wood gasification Green Gas " as SNG(Synthetic Natural Gas)-A Renewable Fuel wih « Hydrogen production by biomass gasification in supercritical water: A parametric study, Fermentative hydrogen production by two novel strains of Enterobacter aerogenes HGN-2 and HT 34 isolated from sea buried crude oil pipelines Microalgal biomass as a cellulosic fermentation feedstock for13] S. Chader et H. Hacene, « Etude des procédés de production biologique de l'hydrogène », Revue des engeriges renouvelables Catalytic hydrothermal gasification of biomass Hydrothermal Gasification of Waste Biomass: Process Design and Life Cycle Asessment Conversion du glycérol en eau supercritique ». CEA Valrhô ? DTCD/SPDE/LFSM. [20] Y. Yoshida et al., « Comprehensive comparison of efficiency and CO2 emissions between biomass energy conversion technologies--position of supercritical water gasification in biomass technologies », Biomass and Bioenergy Hot compressed water as reaction medium and reactant: Properties and synthesis reactions, pp.7197-7207, 1984.

W. Wagner, A. Saul, A. L. Pruss25-]-w, E. U. Marshall, M. Franck et al., Solubility of solids and liquids in supercritical gases « Ion product of water substance000 bars New International Formulation and its background [26] P. Kritzer et E. Dinjus, « An assessment of supercritical water oxidation (SCWO): Existing problems, possible solutions and new reactor concepts Gasification and liquefaction of forest products in supercritical water Savage, « Recent advances in acid-and base-catalyzed organic synthesis in high-temperature liquid water Mas, « Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near-and supercritical water, International Equations for the Pressure Along the Melting and Along the Sublimation Curve of Ordinary Water Substance Fundamentals of Thermochemical Biomass Conversion29] W. L. Marshall et E. U. Franck, « Ion Product of Water Substance, 0-1000 C, 1-10,000 Bars. New International Formulation and Its Background, » Hydrolysis of esters in subcritical and supercritical water Diffusion of ions in supercritical water: Dependence on ion size and solvent density and roles of voids and necks Catalytic Supercritical Water Oxidation, pp.362-380, 1980.

A. Botti, F. Bruni, M. A. Ricci, and A. K. Soper, Direct Comparison between Simulation and Neutron Scattering Experiments Properties of supercritical water: an ab initio simulation, Pyridine: Comparison of Catalysts Neutron diffraction study of high density supercritical water36] A. A. Chialvo et P. T. Cummings, « Microstructure of Ambient and Supercritical Water Structural study of supercritical water. II. Computer simulations Liew, et M. Parrinello, « Water at supercritical conditions: A first principles study Bushuev et S. V. Davletbaeva, « New intermolecular interaction potential for simulation of water and aqueous solutions in a wide range of state Chapitre 1 ? Etude bibliographique 69, pp.358-367, 1994.

J. Teixeira, L. M. Nakahara, N. Matubayasi, C. Wakai, Y. Tsujino-leite-dos-santos et al., « Hydrogen Bond Driven Chemical Reactions: Beckmann Rearrangement of Cyclohexanone Oxime into ?-Caprolactam in Supercritical Water [46] T. Tsukahara, « 17O Chemical shift and spin-lattice relaxation measurements of water in liquid and supercritical states by using high-resolution multinuclear NMR Nakahara, « Structural study of supercritical water. I. Nuclear magnetic resonance spectroscopy Bellissent-Funel, « A quasi-elastic neutron scattering study of the dynamics of supercritical water Mesmer, « Molecular dynamics simulation of the limiting conductance of NaCl in supercritical water Dinjus, « Hot compressed water as reaction medium and reactant: Properties and synthesis reactions, Structure and dynamics of water: from ambient to supercritical45] A. G. Kalinichev, « Molecular Simulations of Liquid and Supercritical Water: Thermodynamics, Structure, and Hydrogen Bonding », Reviews in Mineralogy and Geochemistry49] I. M. Svishchev et A. Y. Plugatyr, « Hydroxyl Radical in Aqueous Solution: Computer Simulation Solvation in supercritical water », Fluid Phase Equilibria Hydrothermal solution structure: Experiments and computer simulations Aqueous Systems at Elevated Temperatures and Pressures Molecular Dynamics Simulation of Electrolyte Solutions in Ambient and Supercritical Water. 1. Ion Solvation Molecular Dynamics Simulation of Electrolyte Solutions in Ambient and Supercritical Water. 2. Relative Acidity of HCl, pp.742-750, 1992.

«. Mesmer and . Na+, Cl? ion pair association in supercritical water, Lithium chloride ionic association in dilute aqueous Chapitre 1 ? Etude bibliographique, pp.9379-70, 1995.

«. Raoux and G. K. , absorption spectroscopy studies of ionic association in aqueous solutions of zinc bromide from normal to critical conditions, J. Chem. Phys, vol.117, issue.6, p.2771, 2002.

A. T. Yagasaki, K. Iwahashi, S. Saito, I. Ohmine, H. Takahashi et al., « A theoretical study on anomalous temperature dependence of pKw of water « An application of the novel quantum mechanical/molecular mechanical method combined with the theory of energy representation: An ionic dissociation of a water molecule in the supercritical water High Pressure Chemistry: Synthetic, Mechanistic, and Supercritical Applications, Electrical conductances of aqueous solutions of inorganic nitrates at 25- 505°C and 100-490 bar Chemical processing in high-pressure aqueous environments. 1. Historical perspective and continuing developments Reactions at supercritical conditions: Applications and fundamentals ». [Online], pp.61-72, 1993.

H. Available, J. Schmieder, . L. Abeln67-]-r, . Smith, Y. Atmaji et al., « Supercritical Water Oxidation: State of the Art « Recovery of metals from simulated high-level liquid waste with hydrothermal crystallization « Hydrogen production from woody biomass over supported metal catalysts in supercritical water, Hydrothermal Production of Mono(galacturonic acid) and the Oligomers from Poly(galacturonic acid) with Water under Pressures Gasification of Model Compounds and Wood in Hot Compressed Water One-Pot Synthesis of Nickel Particles in Supercritical Water Hydrothermal biomass gasification et J. A. Dumesic, « A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts, pp.19-2009, 1997.

R. D. Cortright, R. R. Davda, J. A. Dumesic-antal, S. G. Allen, D. Schulman et al., Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water « Thermochemical biofuel production in hydrothermal media: A review of sub-and supercritical water technologies » modeling and analysis of biomass gasification for hydrogen production in supercritical water, Potic, S. R. A. Kersten, W. Prins, et W. P. M. van Swaaij, « A High- Throughput Screening Technique for Conversion in Hot Compressed Water », Industrial & Engineering Chemistry Research, pp.964-967, 2000.

Y. Matsumura, « Hydrogen production by biomass gasification in supercritical water: A systematic experimental and analytical study, Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water, pp.269-292, 2003.

«. Neuenschwander, I. G. Low, M. S. Lee, S. K. Kim, R. Pei et al., « Research on catalysts and their catalytic characteristics for hydrogen production by gasification of peanut shell in supercritical water Catalytic effects of NaOH and ZrO2 for partial oxidative gasification of n-hexadecane and lignin in supercritical water[small star Cao, et X. Guo, « Hydrogen production by biomass gasification in supercritical water with a fluidized bed reactor, Continuous reactor system results Journal of Xi'an Jiaotong University Proceedings of the Kinetics of Glucose Epimerization and Decomposition in Subcritical and Supercritical Water », Industrial & Engineering Chemistry Research86] A. Sinag, A. Kruse, et V. Schwarzkopf, « Key Compounds of the Hydropyrolysis of Glucose in Supercritical Water in the Presence of K2CO3, pp.18-2011, 1989.

A. Weiss-hortala, C. Kruse, R. Ceccarelli, M. Barna, H. Watanabe et al., Influence of phenol on glucose degradation during supercritical water gasification Hydrogen production from cellulose using a reduced nickel catalyst Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water Catalytic hydrothermal gasification of cellulose and glucose [91] O. Bobleter, « Hydrothermal degradation of polymers derived from plants « Technologies for production of biodiesel focusing on green catalytic techniques: A review, Industrial & Engineering Chemistry Research Oshima, et Y. Matsumura, « Gasification of biomass model compounds and real biomass in supercritical water Hydrogen Production from Hydrocarbon by Integration of Water?Carbon Reaction and Carbon Dioxide Removal (HyPr?RING Method) Hydrothermal gasification of biomass and organic wastes, pp.3516-3521, 1994.

. Kersten, Catalytic and Non-catalytic Supercritical Water Gasification of Microalgae and Glycerol, Ind. Eng. Chem. Res, vol.49, issue.3, pp.1113-1122, 2009.

D. Elliott, « Catalytic Hydrothermal Gasification of Lignin-Rich Biorefinery Residues and Algae, 2009.
DOI : 10.2172/968956

A. Kruse and A. Gawlik, Biomass Conversion in Water at 330???410 ??C and 30???50 MPa. Identification of Key Compounds for Indicating Different Chemical Reaction Pathways, Industrial & Engineering Chemistry Research, vol.42, issue.2, pp.267-279, 2003.
DOI : 10.1021/ie0202773

T. M. Aida, Dehydration of d-glucose in high temperature water at pressures up to 80MPa, The Journal of Supercritical Fluids, vol.40, issue.3, pp.381-388, 2007.
DOI : 10.1016/j.supflu.2006.07.027

B. Girisuta, L. P. Janssen, and H. J. , Green Chemicals, Chemical Engineering Research and Design, vol.84, issue.5, pp.339-349, 2006.
DOI : 10.1205/cherd05038

B. M. Kabyemela, T. Adschiri, R. M. Malaluan, and E. K. Arai, Glucose and Fructose Decomposition in Subcritical and Supercritical Water:?? Detailed Reaction Pathway, Mechanisms, and Kinetics, Industrial & Engineering Chemistry Research, vol.38, issue.8, pp.2888-2895, 1999.
DOI : 10.1021/ie9806390

A. Peters, « Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds, Carbohydrate Research, vol.339, issue.10, pp.1717-1726, 2004.

A. Onda, T. Ochi, K. Kajiyoshi, and E. K. Yanagisawa, A new chemical process for catalytic conversion of d-glucose into lactic acid and gluconic acid, Applied Catalysis A: General, vol.343, issue.1-2, pp.1-2, 2008.
DOI : 10.1016/j.apcata.2008.03.017

D. Klingler and H. Vogel, Influence of process parameters on the hydrothermal decomposition and oxidation of glucose in sub-and supercritical waternext term », The Journal of Supercritical Fluids, Behavior of 5-HMF in Subcritical and Supercritical Water, pp.259-270, 2008.

M. Watanabe, M. Mochiduki, S. Sawamoto, T. Adschiri, and E. K. Arai, Partial oxidation of n-hexadecane and polyethylene in supercritical water, The Journal of Supercritical Fluids, vol.20, issue.3, pp.257-266, 2001.
DOI : 10.1016/S0896-8446(01)00070-5

K. Kudo and K. Komatsu, Selective formation of methane in reduction of CO2 with water by Raney alloy catalyst, Journal of Molecular Catalysis A: Chemical, vol.145, issue.1-2, pp.257-264, 1999.
DOI : 10.1016/S1381-1169(99)00014-X

J. B. Gadhe and R. B. Gupta, Hydrogen Production by Methanol Reforming in Supercritical Water:?? Suppression of Methane Formation, Industrial & Engineering Chemistry Research, vol.44, issue.13, pp.4577-4585, 2005.
DOI : 10.1021/ie049268f

T. Sato, S. Kurosawa, R. L. Smith, E. K. Adschiri, and . Arai, Water gas shift reaction kinetics under noncatalytic conditions in supercritical water, The Journal of Supercritical Fluids, vol.29, issue.1-2, pp.1-2, 2004.
DOI : 10.1016/S0896-8446(03)00049-4

D. C. Elliott, R. T. Hallen, and L. J. Sealock, Aqueous catalyst systems for the water-gas shift reaction. 2. Mechanism of basic catalysis, Industrial & Engineering Chemistry Product Research and Development, vol.22, issue.3, pp.431-435, 1983.
DOI : 10.1021/i300011a009

A. Kruse, D. Meier, and P. Rimbrecht, Gasification of Pyrocatechol in Supercritical Water in the Presence of Potassium Hydroxide, Industrial & Engineering Chemistry Research, vol.39, issue.12, pp.4842-4848, 2000.
DOI : 10.1021/ie0001570

M. R. Piairie, A. Renken, J. G. Highfield, K. R. Thampi, and E. M. Graetzel, A fourier transform infrared spectroscopic study of C02 methanation on supported ruthenium, Journal of Catalysis, vol.129, issue.1, pp.130-174, 1991.
DOI : 10.1016/0021-9517(91)90017-X

D. C. Elliott, L. J. Sealock, and E. G. Baker, Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification, Industrial & Engineering Chemistry Research, vol.32, issue.8, pp.1542-1548, 1993.
DOI : 10.1021/ie00020a002

D. C. Elliott, T. R. Hart, and G. G. Neuenschwander, Chemical Processing in High-Pressure Aqueous Environments. 8. Improved Catalysts for Hydrothermal Gasification, Industrial & Engineering Chemistry Research, vol.45, issue.11, pp.3776-3781, 2006.
DOI : 10.1021/ie060031o

T. Minowa, F. Zhen, and E. T. Ogi, Cellulose decomposition in hot-compressed water with alkali or nickel catalyst, The Journal of Supercritical Fluids, vol.13, issue.1-3
DOI : 10.1016/S0896-8446(98)00059-X

P. Azadi and R. Farnood, Review of heterogeneous catalysts for sub- and supercritical water gasification of biomass and wastes, International Journal of Hydrogen Energy, vol.36, issue.16, pp.9529-9541, 2011.
DOI : 10.1016/j.ijhydene.2011.05.081

M. Osada, T. Sato, M. Watanabe, T. Adschiri, E. K. Arai et al., Low-Temperature Catalytic Gasification of Lignin and Cellulose with a Ruthenium Catalyst in Supercritical Water, Energy & Fuels, vol.18, issue.2, pp.327-333, 2004.
DOI : 10.1021/ef034026y

G. X. Hu and H. Huang, « Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent, Biomass and Bioenergy, vol.33, issue.5, pp.899-906, 2009.

D. Xu, S. Wang, X. Hu, C. Chen, and Q. Zhang, Catalytic gasification of glycine and glycerol in supercritical water, International Journal of Hydrogen Energy, vol.34, issue.13, pp.5357-5364, 2009.
DOI : 10.1016/j.ijhydene.2008.08.055

R. Hashaikeh, I. S. Butler, and J. A. Kozinski, Selective Promotion of Catalytic Reactions during Biomass Gasification to Hydrogen, Energy & Fuels, vol.20, issue.6, pp.2743-2747, 2006.
DOI : 10.1021/ef060233x

N. Boukis, V. Diem, E. Dinjus, U. Galla, and E. A. Kruse, for energy, industry and climate protection « Biomass gasification in near-and super-critical water: Status and prospects, Biomass gasification in supercritical water Proceedings of the 12th European conference on biomass, pp.396-399, 2002.

D. C. Elliott, M. R. Phelps, L. J. Sealock, and E. G. Baker, Chemical Processing in High-Pressure Aqueous Environments. 4. Continuous-Flow Reactor Process Development Experiments for Organics Destruction, Industrial & Engineering Chemistry Research, vol.33, issue.3, pp.566-574, 1994.
DOI : 10.1021/ie00027a013

T. Rogalinski, T. Ingram, and E. G. Brunner, Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures, The Journal of Supercritical Fluids, vol.47, issue.1, pp.54-63, 2008.
DOI : 10.1016/j.supflu.2008.05.003

Y. Calzavara, C. Joussot-dubien, H. Turc, and E. Fauvel, A new reactor concept for hydrothermal oxidation, The Journal of Supercritical Fluids, vol.31, issue.2, pp.195-206, 2004.
DOI : 10.1016/j.supflu.2003.11.001

F. Mancini, « Traitement des déchets issus de la biomasse pour la génération d'énergie », L'UNIVERSITE BORDEAUX I, 2006.

T. Yoshida, S. Yanachi, and Y. Matsumura, Glucose Decomposition in Water under Supercritical Pressure at 448-498 K, Journal of the Japan Institute of Energy, vol.86, issue.9, pp.700-706, 2007.
DOI : 10.3775/jie.86.700

P. and E. Bocanegra, « Gasification study of winery waste using a hydrothermal diamond anvil cell, The Journal of Supercritical Fluids, vol.53, pp.1-3, 2010.

D. Yu, M. Aihara, and M. J. , Antal, « Hydrogen production by steam reforming Chapitre, pp.1-75

M. D. Bermejo and M. J. Cocero, Supercritical water oxidation: A technical review, AIChE Journal, vol.20, issue.437, pp.3933-3951, 2006.
DOI : 10.1002/aic.10993

M. G. Goemans, F. M. Tiller, L. Li, and E. F. Gloyna, Separation of metal oxides from supercritical water by crossflow microfiltration, Journal of Membrane Science, vol.124, issue.1, pp.129-145, 1997.
DOI : 10.1016/S0376-7388(96)00237-2

«. A. Sarrade, double-wall reactor for hydrothermal oxidation with supercritical water flow across the inner porous tube, The Journal of Supercritical Fluids, vol.28, issue.1, pp.47-56, 2004.

M. J. Cocero, E. Alonso, and M. T. Sanz, Supercritical water oxidation process under energetically self-sufficient operation, The Journal of Supercritical Fluids, vol.24, issue.1, pp.37-46, 2002.
DOI : 10.1016/S0896-8446(02)00011-6

E. D. Lavric, H. Weyten, J. De-ruyck, V. Plesu, and E. V. Lavric, « Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process », Energy Conversion and Management, The first commercial supercritical water oxidation sludge processing plant, pp.9-10, 2002.

G. T. Hong, W. R. Killilea, and T. B. Thomason, « Method for solids separation in a wet oxidation type process », patent references 2474705, 19891989.

«. A. Sarrade, double-wall reactor for hydrothermal oxidation with supercritical water flow across the inner porous tube, The Journal of Supercritical Fluids, vol.28, issue.1, pp.47-56, 2004.

P. Whiting, Reversible flow supercritical reactor and method for operating same », U.S. Patent 5560823, 1994.

P. A. Marrone and G. T. Hong, Corrosion control methods in supercritical water oxidation and gasification processes, The Journal of Supercritical Fluids, vol.51, issue.2, pp.83-103, 2009.
DOI : 10.1016/j.supflu.2009.08.001

P. Kritzer, Corrosion in high-temperature and supercritical water and aqueous solutions: a review, The Journal of Supercritical Fluids, vol.29, issue.1-2, pp.1-2, 2004.
DOI : 10.1016/S0896-8446(03)00031-7

M. D. Bermejo, F. Fdez-polanco, and E. M. Cocero, Effect of the Transpiring Wall on the Behavior of a Supercritical Water Oxidation Reactor:?? Modeling and Experimental Results, Industrial & Engineering Chemistry Research, vol.45, issue.10, pp.3438-3446, 2006.
DOI : 10.1021/ie050655e

M. Hodes, P. A. Marrone, G. T. Hong, K. A. Smith, and J. W. , Salt precipitation and scale control in supercritical water oxidation???Part A: fundamentals and research, The Journal of Supercritical Fluids, vol.29, issue.3, pp.265-288, 2004.
DOI : 10.1016/S0896-8446(03)00093-7

E. H. Oelkers, H. C. Helgeson-]-p, J. Azadi, H. Otomo, Y. Hatano et al., temperatures: dissociation constants for supercritical alkali metal halides at temperatures from 400 to 800.degree.C and pressures from 500 to 4000 bar The Journal of Physical « Hydrogen production by catalytic near-critical water gasification and steam reforming of glucose « Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water, Gasification of Glucose in Supercritical Water Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water Adschiri, R. M. Malaluan, et K. Arai, « Kinetics of Chapitre 3 ? Production d'hydrogène à partir de solutions synthétiques de molécules modèles dans un équipement batch 142, pp.3406-3414, 2002.

D. Klingler, H. Vogel, A. Sinag, A. Kruse, E. V. Schwarzkopf et al., Compounds of the Hydropyrolysis of Glucose in Supercritical Water in the Presence of K2CO3 Biomass Conversion in Water at 330?410 oC and 30?50 MPa Influence of phenol on glucose degradation during supercritical water gasification Issues 1-3 Reaction of d-glucose in water at high temperatures (410°C) and pressures (180 MPa) for the production of dyes and nano-particles [12] I. Dybkjaer, « Tubular reforming and autothermal reforming of natural gas -an overview of available processes, « Hot compressed water as reaction medium and reactant: Properties and synthesis reactions Mas, « Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near-and supercritical water « Biomass gasification in near-and super-critical water: Status and prospects, Glucose Epimerization and Decomposition in Subcritical and Supercritical Water », Industrial & Engineering Chemistry Research Influence of the Heating Rate and the Type of Catalyst on the Formation of Key Intermediates and on the Generation of Gases During Hydropyrolysis of Glucose in Supercritical Water in a Batch Reactor », Industrial & Engineering Chemistry Research14] A. Sinag, A. Kruse, « Influence of the Heating Rate and the Type of Catalyst on the Formation of Key Intermediates and on the Generation of Gases during Hydropyrolysis of Glucose in Supercritical Water in a Batch Reactor Gasification of Model Compounds and Wood in Hot Compressed Water17] E. WEISS, « Etude cinétique de la dégradation éléctrochimique de composes organiques sur l'anode de diamant dope au bore: application à la dépollution d'effluents aqueux Hydrothermal gasification of glucose using Raney nickel and homogeneous organometallic catalysts », Fuel Processing Technology Hydrothermal gasification of biomass and organic wastes21] J. Yanik, S. Ebale, A. Kruse, M. Saglam, et M. Yüksel, « Biomass Chapitre 3 ? Production d'hydrogène à partir de solutions synthétiques de molécules modèles dans un équipement batch 143, pp.1552-1558, 1995.

P. E. Akiya, . J. Savage23-]-y, L. J. Lu, C. M. Guo, X. M. Ji et al., Antal, « Hydrogen production by steam reforming glucose in supercritical water Hydrogen Production from Glucose Using Ru/Al2O3 Catalyst in Supercritical Water Calorimetric study of reactions occurring between impregnated activated fibres and hydrogen sulphide « Technologies for production of biodiesel focusing on green catalytic techniques: A reviewAilanthus altissima chips) by using Alkaline-glycerol solution », Energy Conversion and Management « Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw Catalytic gasification of glycerol in supercritical water Mas, « Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near-and supercritical water », The Journal of Supercritical Fluids Haryanto, « Hydrogen production from glycerol: An update », Energy Conversion and Management « Glycerol aqueous phase reforming for hydrogen generation over Pt catalyst -Effect of catalyst composition and reaction conditions Ding, « Thermogravimetric kinetics of crude glycerol Hydrogen and/or syngas from steam reforming of glycerol Study of platinum catalysts [10] B. Potic, « Gasification of biomass in supercritical water Heeres, « Reforming of methanol and glycerol in supercritical water « Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst « Thermodynamic analysis of supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose Catalytic gasification of glycine and glycerol in supercritical water « Biomass gasification in near-and super-critical water: Status and prospects « Flow characteristics of aqueous salt solutions for applications in supercritical water oxidation « Gasification of Pyrocatechol in Supercritical Water in the Presence of Potassium Hydroxide Compounds of the Hydropyrolysis of Glucose in Supercritical Water in the Presence of K2CO3 Dinjus, « Factors controlling corrosion in hightemperature aqueous solutions: a contribution to the dissociation and solubilitynext term data influencing corrosion processes, supercritical water: II. Effect of catalyst Roles of Water for Chemical Reactions in High- Temperature Water supercritical water: A parametric study Wauquier, Les réacteurs chimiques conception, calcul, mise en oeuvre. Paris: M. Technip Biomass Conversion in Water at 330?410 oC and 30?50 MPa. Identification of Key Compounds for Indicating Different Chemical Reaction Pathways », Industrial & Engineering Chemistry Research Hydrothermal gasification of biomass and organic wastes Solubility of Potassium Carbonate in Water between 384 and 529 K Measured Using the Synthetic Method Chemical Processing in High-Pressure Aqueous Environments. 8. Improved Catalysts for Hydrothermal Gasification Influence of phenol on glucose degradation during supercritical water gasification Matsumura, « Gasification of Cellulose, Xylan, and Lignin Mixtures in Supercritical Water Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water Matsumura et al., « Biomass gasification in near-and super-critical water: Status and prospects », Biomass and Bioenergy Hydrogen production from High-moisture content biomass in supercritical water. » Proceedings for U.S. DOE Hydrogen Program Review Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst », Fuel Thermodynamic analysis of supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose » Hot compressed water as reaction medium and reactant: Properties and synthesis reactions Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization », Energy Conversion and Management, pp.4520-4526, 1984.

L. J. Root, B. J. Berne-]-d, D. Boocock, H. Mackay, P. Franco et al., Gasification and liquefaction of forest products in supercritical water », in Fundamentals of Thermochemical Biomass Conversion « Chemical processing in highpressure aqueous environments. 2. Development of catalysts for gasification Antal, « Hydrogen production by steam reforming glucose in supercritical water « Gasification of Pyrocatechol in Supercritical Water in the Presence of Potassium Hydroxide, glycerol: A molecular dynamics investigation Direct liquefaction of wood by catalyst and water », Petroleum Science and Technology Method for the catalytic conversion of lignocellulosic materials Chemical processing in high-pressure aqueous environments. 1. Historical perspective and continuing developments Chemical Processing in High-Pressure Aqueous Environments. 4. Continuous-Flow Reactor Process Development Experiments for Organics Destruction », Industrial & Engineering Chemistry Research Chemical Processing in High-Pressure Aqueous Environments. 5. New Processing Annexe 1 ? Equipes de recherche travaillant dans le domaine de la SCWG 259, pp.4350-495, 1978.

D. C. Elliott, G. G. Neuenschwander, M. R. Phelps, T. R. Hart, A. H. Zacher et al., « Chemical Processing in High-Pressure Aqueous Environments. 6. Demonstration of Catalytic Gasification for Chemical Manufacturing Wastewater Cleanup in Industrial Plants « Chemical Processing in High-Pressure Aqueous Environments. 8. Improved Catalysts for Hydrothermal Gasification Antal, « Effects of reactor severity on the gas-phase pyrolysis of cellulose-and kraft lignin-derived volatile matter « Cellulose Pyrolysis Kinetics: The Current State of Knowledge, Concepts », Industrial & Engineering Chemistry Research Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass Feedstocks Industrial & Engineering Chemistry Product Research and Development Hydrogen production from high-moisture content biomass in supercritical water », presented at the Proc. US DOE Hydrogen Program Review Carbon-Catalyzed Gasification of Organic Feedstocks in Supercritical Water ? » Cellulose decomposition in hot-compressed water with alkali or nickel catalyst, pp.4111-4118, 1983.

]. T. Yoshida, Y. Oshima, Y. Matsumura, M. Osada, T. Sato et al., Temperature Catalytic Gasification of Lignin and Cellulose with a Ruthenium Catalyst in Supercritical Water, Gasification of biomass model compounds and real biomass in supercritical water », Biomass and Bioenergy Hydrogen Production from Hydrocarbon by Integration of Water?Carbon Reaction and Carbon Dioxide Removal (HyPr?RING Method) », Energy & Fuels Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water », Biomass and Bioenergy, pp.253-259, 1998.

N. Boukis, V. Diem, E. Dinjus, U. Galla, E. A. Kruse-boukis et al., Advances with the process of biomass gasification in supercritical water Biomass gasification in supercritical water The method and continuous equipment of hydrogen production in supercritical water by organic solid material « Reaction kinetics analysis of hydrogen production by biomass gasification in supercritical water, « Hydrogen production from Co-gasification of coal and biomass in supercritical water by continuous flow thermal catalytic reaction system », Annexe 1 ? Equipes de recherche travaillant dans le domaine de la SCWG 260 Influence of the Heating Rate and the Type of Catalyst on the Formation of Key Intermediates and on the Generation of Gases during Hydropyrolysis of Glucose in Supercritical Water in a Batch Reactor 4th International Symposium on High Pressure Technology and Chemical Engineering Proceedings of the 12th European conference on biomass for energy, industry and climate protection Chinese patent02114529.6 Hydrogen production by biomass gasification in supercritical water: A parametric study Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water, pp.145-153, 2000.

B. V. Swaaij, D. C. Beld, G. G. Elliott, A. Neuenschwander, M. J. Kruse et al., « Hydrogen production by biomass gasification in supercritical water with a fluidized bed reactor « Method for solids separation in a wet oxidation type process », United States Patent 4822497, 18-avr-1989 Tester, « Salt precipitation and scale control in supercritical water oxidation--part B: commercial/full-scale applications Application to industrial wastewater treatment « Cool wall reactor for supercritical water oxidation: Modelling and operation results, Hydrothermal oxidation of Navy excess hazardous materials », Waste Management Supercritical water oxidation: A technical review Cocero, « 9.4 Supercritical water oxidation (SCWO) High Pressure Process Technology: Fundamentals and Applications The destruction of industrial aqueous waste containing biocides in supercritical water--development of the SUWOX process for the technical application Calzavara, C. Joussot-Dubien, H.-A. Turc, E. Fauvel, et S. Sarrade, « A new reactor concept for hydrothermal oxidation The Journal of Supercritical Annexe 2 ? Procédés fonctionnant en eau supercritique 267, pp.269-292, 1998.

«. A. Sarrade, N. Boukis, N. Claussen, K. Ebert, R. Janssen et al., « Corrosion screening tests of high-performance ceramics in supercritical water containing oxygen and hydrochloric acid, Boukis, et E. Dinjus, « Corrosion of alumina ceramics in acidic aqueous solutions at high temperatures and pressures14] P. Whiting, « Reversible flow supercritical reactor and method for operating same », U.S. Patent, pp.47-56, 1996.