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CHAPTER 1
Introduction

LABS OF THE WORLD, UNITE!!! This provocative title from the article written by Cirne

et al. [Cir+06] allegorizes how the changes in computing and network in the

last years transformed the quest for more computational power at low costs into a

more collaborative endeavor.

The scientific community has today the unprecedented ability to combine different

computational resources (possibly geographically spread around the globe) into a

powerful distributed system capable of analysing massive data sets. The opportunities

(and challenges) created by the use of these new technologies on large-scale scientific

problems — usually referred as e-Science1 — is changing how researchers engage in

discovery [Fos11].

Computer science concepts, tools and theorems are now integrated on several as-

pects of the research process in several areas of knowledge. Climate and earth system

research, fluid dynamics, genomics, proteomics, theoretical chemistry, astrophysics,

nanostructure physics and high-energy physics are some examples [Emm+06] of

areas that are continuously pushing the limits of what is possible in computing.

Computer scientists have long before recognized the increasing need for higher

amounts of computational power demanded by research labs. The Condor project

1The UK National e-Science Centre defines [Tay06] e-Science as “the large scale science that
will increasingly be carried out through distributed global collaborations enabled by the Internet.
Typically, a feature of such collaborative scientific enterprises is that they will require access to very
large data collections, very large-scale computing resources and high-performance visualization back
to the individual user scientists.”

1



2 CHAPTER 1. INTRODUCTION

[LLM88] was a pioneer in this trend. It was one of the first initiatives that focused

on harvesting idle computer power on networks of workstations, aiming to deliver

large amounts of processing capacity over long periods of time (High Throughput

Computing).

With the development of networking technologies, the techniques used in Condor

were soon enhanced to work with all machines connected to the Internet. In what

was called volunteer computing [AF06] (also known as “peer-to-peer computing” or

“global computing”), researchers started to work on how to harvest the idle computer

power of these machines to solve specific problems.

Several academic and non-academic efforts explored the idea of volunteer com-

puting in its earlier stages. Projects like “The Great Internet Mersenne Prime Search”

(1996) [WK11] (that searches for Mersenne prime numbers), distributed.net (1997)

[Inc10] (which demonstrated brute-force decryption), and the SETI@home project

(1999) [And+02] (that analyzes large data sets of radio signals, searching for signs

of extra terrestrial intelligence) showed how powerful such setups could be.

SETI@home is perhaps the most emblematic of all volunteer computing projects.

Launched on May 17, 1999, SETI@home drew the attention not only from the

scientific community, but also from the public in general. The idea that anyone

in the world could collaborate to help in a scientific project has attracted over 6

million participants, located in 226 countries [Kor+11]. The project now uses the

Berkeley Open Infrastructure for Network Computing (BOINC [And04]) Framework,

a middleware for volunteer distributed computing, and is still one of the largest

supercomputers in operation, currently averaging 3.5 PFLOP of actual performance.

At about the same time, Ian Foster and Carl Kesselman envisioned the concept of

grid computing [FK04], in which computing is delivered on demand as a service. Like

in the previous projects, different organizations team up to share their computational

resources. But, in grid computing the entire platform is available as a service for

all the participants. Each participating organization can act as either producer or

consumer of resources.

As in the traditional “power grids”, where different power plants are linked

together and users get access to electricity without caring about where or how

the electricity is actually generated, grid computing platforms allow users to use

different computational resources, within and between organizations, with little or
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no knowledge where those resources are physically located.

The grid computing vision is now a reality and is being used in both academic and

commercial projects. Foster [Fos11] presented some contemporary examples that

show the magnitude of the projects using grid computing technology today. Among

the academic initiatives, we can cite the Large Hadron Collider (LHC) Computer Grid

(that regularly distributes tens of terabytes to research teams worldwide), the Earth

System Grid (that gives access to climate simulation data for more that 25,000 users),

the US InCommon trust federation (that allows more than 5 million people to access

remote resources using local credentials), among others. Among the commercial

systems, we have today commercial cloud providers delivering on-demand cycles

and storage at scales unachievable in academic settings.

Although volunteer computing and grid computing systems are very similar in

the sense that both allow the creation of a platform composed of a huge number of

computational resources, they completely differ on how the platform can be used to

execute a project.

In volunteer computing, each volunteer actually chooses the project that s/he

want to help. The execution of the project relies on the goodwill of the volunteers,

that usually do not earn anything for their help. Volunteers are usually anonymous

and cannot be made accountable for the quality of the resources or the results they

provide.

In grid computing, however, the interactions between the participants are more

complex. An organization chooses to integrate a grid computing platform not only to

contribute with its computational resources to other projects. Their users also expect

to be able to execute their own jobs more efficiently with the help of the others.

A conflict of interests may arise if the resources of the grid platform are not

shared in a fair manner. For example, if an organization presumes that less resources

are allocated to its own projects if compared to the resources allocated to the others,

then the organization may be compelled to leave the grid and to stop sharing its

resources.

Another example would be a case where one of the organizations misbehaves

somehow in order to improve the execution of its own projects. For instance, a

malicious organization could deny the execution of any project other than its own.

Such organizations must be held accountable for their misconduct. Depending on
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the circumstances, the organization could have the access to others’ shared resources

refused or even be legally charged for its misbehavior.

Large research projects like the ones cited by Foster [Fos11] can avoid these

problems by creating and operating dedicated grid infrastructures, where every

detail of the execution can be controlled. But in order to deliver a fully collaborative

grid computing platform — a platform where research teams with different budgets,

sizes and objectives can have the same advantages and competitiveness of the large

research projects — each user’s own interest must be respected.

In this thesis, we study how to encourage collaboration between such set of

heterogeneous users and organizations. We model variants of this problem as multi-

objective scheduling problems and, using different theoretical tools, we study how

the individual behaviour of these users impacts both the performance perceived by

them and the global efficiency of the platform.

1.1 Outline of the thesis and contributions

This thesis is divided in seven chapters, including this introductory chapter and a

final chapter presenting our concluding remarks. The contributions described in each

chapter can be summarized as follows.

Chapter 2 presents the formal framework used in this thesis. We define the

problem of scheduling in modern platforms with computational resources shared by

different users and organizations. We present the related works, a brief introduction

to Game Theory and to concepts of multi-objective optimization.

In Chapter 3 we consider the problem of scheduling on computing platforms

composed of several independent organizations, known in the literature as the

Multi-Organization Scheduling Problem (MOSP). We assume that each organization

provides both resources and jobs to be executed and has its own performance

objectives. We are interested in the best way to minimize the makespan on the

entire platform, while ensuring that every organization will always have incentive

to collaborate with others. We study the complexity of the MOSP problem with two

different local objectives — makespan and average completion time — and show

that, as expected, MOSP is strongly NP-Hard in both cases.
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We formally define a selfishness notion, by means of restrictions on the schedules.

We prove that selfish behavior of the organizations imposes a lower bound of 2 on

the approximation ratio for the global makespan. We present various approximation

algorithms of ratio 2 which validate selfishness restrictions. These algorithms are

experimentally evaluated through simulations, exhibiting good average performances

and presenting good fairness to organizations’ local objectives.

This joint work with Johanne Cohen and Frédéric Wagner resulted in two publi-

cations, one in the proceedings of the Euro-Par conference in 2010 and another one

as an extended journal version in 2011:

É Johanne Cohen, Daniel Cordeiro, Denis Trystram, and Frédéric Wagner. “Anal-

ysis of Multi-Organization Scheduling Algorithms”. In: The 16th International

Conference on Parallel Computing (Euro-Par). Ed. by Pasqua D’Ambra, Mario

Guarracino, and Domenico Talia. Vol. 6272. Lecture Notes in Computer Science.

Heidelberg: Springer, 2010, pp. 367–379. DOI: 10.1007/978-3-642-15291-
7_34

É Johanne Cohen, Daniel Cordeiro, Denis Trystram, and Frédéric Wagner. “Multi-

organization scheduling approximation algorithms”. In: Concurrency and Com-

putation: Practice and Experience 23 (17 2011), pp. 2220–2234. DOI: 10.1002/
cpe.1752

In Chapter 4 we study how limited cooperation can impact the quality of the

schedule obtained by multiple independent organizations in a typical grid computing

platform. In this slightly relaxed version of MOSP, we study how much the collectivity

can improve the makespan over the entire platform when each organization tolerates

a bounded degradation on the makespan of its own jobs.

More precisely, the technical contributions are the following. First, we improve

the existing inapproximation bounds for this problem proving that what was pre-

viously thought as not polynomially approximable (unless P = N P) is actually not

approximable at all. Then, we present two algorithms that solve the problem with

approximation ratios of (2; 3/2) and (3; 4/3) respectively. This means that when

using the first (second) algorithm, if an organization tolerates that the completion

time of its last job cannot exceed twice (three times) the time it would have obtained

http://dx.doi.org/10.1007/978-3-642-15291-7_34
http://dx.doi.org/10.1007/978-3-642-15291-7_34
http://dx.doi.org/10.1002/cpe.1752
http://dx.doi.org/10.1002/cpe.1752
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by itself, then the algorithm provides a solution that is a 3/2-approximation (4/3-

approximation) for the optimal global makespan. Both algorithms are efficient since

their performance ratios correspond to the Pareto optimal solutions of the previously

defined instances.

This joint work with Pierre-François Dutot and Grégory Mounié resulted in the

following publication:

É Daniel Cordeiro, Pierre-François Dutot, Grégory Mounié, and Denis Trystram.

“Tight Analysis of Relaxed Multi-Organization Scheduling Algorithms”. In:

Proceedings of the 25th IEEE International Parallel & Distributed Processing

Symposium (IPDPS). (Anchorage, AL, USA). Los Alamitos, CA, USA: IEEE

Computer Society, May 2011, pp. 1177–1186. DOI: 10.1109/IPDPS.2011.
112

Chapter 5 describes our efforts to study the members of a grid computing system

as truly independent and rational entities, capable of taking decisions that can help

the scheduler to deliver the best performance both from the local and global point of

views.

We modeled MOSP as a non-cooperative game where each agent is responsible for

assigning all jobs belonging to a particular organization to the available processors.

The local scheduling of these jobs is defined by coordination mechanisms that first

prioritize local jobs and then schedule the jobs from others according to some given

priority. When different priorities are given individually to the jobs — like in classical

scheduling algorithms such as LPT or SPT — then no pure ε-approximate equilibrium

is possible for values of ε less than 2. We also prove that even deciding whether a

given instance admits or not a pure Nash equilibrium is co-NP hard. When these

priorities are given to entire organizations, we show the existence of an algorithm

that always computes a pure ρ-approximate equilibrium using any ρ-approximation

list scheduling algorithm. Finally, we prove that the price of anarchy of the MOSP

game using this mechanism is asymptotically bounded by 2. This work resulted in

the following publication:

É Johanne Cohen, Daniel Cordeiro, Denis Trystram, and Frédéric Wagner. “Coordi-

nation Mechanisms for Selfish Multi-Organization Scheduling”. In: Proceedings

http://dx.doi.org/10.1109/IPDPS.2011.112
http://dx.doi.org/10.1109/IPDPS.2011.112
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of the 18th annual IEEE International Conference on High Performance Computing

(HiPC). (Bangalore, India). To appear. Los Alamitos, CA, USA: IEEE Computer

Society, Dec. 2011

A slightly change in the perspective is presented on Chapter 6. We explore a

different form of collaboration between users sharing a set of common resources.

We study the problem known as Multi-Users Scheduling Problem (MUSP). In this

chapter, we present a generic method to address problems where the optimization

function is monotonic with arguments that can be optimized. Essentially, the method

enumerates the frontier of best compromise solutions between these arguments and

selects the solution that brings the best value for the function to optimize. Such an

approach would be exponential in the general case. However, we show how classical

tools from the approximation theory help to address the problem in both theoretical

and practical perspective.

During this thesis, other scientific works were developed on collaboration with

members from other research teams. These works are also related with scheduling

or high performance computing on parallel platforms, but they were not included in

this text because their thematic greatly differs from the main subject of this thesis.

The first work [Kol+08] was a German-Brazilian collaboration with Mariana Kolberg

and Gerd Bohlender (Karlsruher Institut für Technologie), Luiz Gustavo Fernandes

(Pontifícia Universidade Católica do Rio Grande do Sul) and Alfredo Goldman (Uni-

versidade de São Paulo) about the efficient execution of a verified method for solving

linear systems. The second work [Cor+09; Cor+10] was an effort of researchers

from the Laboratoire d’Informatique de Grenoble — a collaboration with Grégory

Mounié, Swann Perarnau, Denis Trystram, Jean-Marc Vincent, and Frédéric Wagner —

to raise awareness among researchers working with scheduling about the importance

of the choice of the right synthetic workload for their simulations. The third work

[Pil+10; Pil+11] explores the problem of load balancing on machines NUMA (with

Non-Uniform Memory Access), a collaboration with Laércio L. Pilla and Philippe O. A.

Navaux (Universidade Federal do Rio Grande do Sul), Christiane Pousa Ribeiro and

Jean-François Méhaut (Laboratoire d’Informatique de Grenoble), Abhinav Bhatele

and Laxmikant V. Kalé (University of Illinois at Urbana-Champaign).





CHAPTER 2
Background

IN this work, we study how to encourage collaboration between organizations and

users in parallel and distributed platforms through the use of multi-objective

scheduling. This chapter introduces the theoretical framework that serves as basis

for the results presented in the next chapters.

Essentially, Section 2.1 presents a brief introduction to classical scheduling theory

and some of the well-known results in single-objective scheduling used in this work.

The definitions and results of this section are based mainly on the books from Leung

[Leu04] or Brucker [Bru07].

Section 2.2 presents basic concepts of multi-objective optimization. Based on the

surveys from [Bra+08] and [Dut+09], we briefly present the concepts that allow

us to study the trade-offs related to choosing a schedule that intents to satisfy the

different needs of each individual.

Finally, Section 2.3 present basic concepts of pure-strategy games and how the

interactions between individuals are analyzed assuming that they reason strategically.

These concepts were extracted mainly from the books by Osborne and Rubinstein

[OR94] and Nisam, Roughgarden, Tardos, and Vazirani [Nis+07].

2.1 Classical scheduling theory

Generally speaking, the problem of scheduling corresponds to the allocation of a

set of scarce resources to activities with the objective of optimizing one (or more)

9
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time
t=0 σ(i)

1

π(i) = 2

3

processors

Ji

pi

Ci Cmax

Figure 2.1: Example of a Gantt chart representing a scheduling following the LPT
rule.

performance measures.

Scheduling theory has been used in different contexts. Resources and activities

can be different according to the context. For instance, in an assembly plant the

resources can be the machines and activities one of the operations in the manufac-

turing process. On an airport, the resources can be the runways and the activities

the landings and take-offs, and so on.

In the context of parallel and distributed computing, resources are the processors

available on the platform and activities are the jobs (applications or sub-tasks) that

must be executed on these processors. We denote by m the number of processors

available at the platform and by n the number of jobs to be executed. Thus, in this

context, we say that a scheduler must allocate the set M= {1, 2, . . . , m} of available

processors to the set J= {Ji, J2, . . . , Jn} of jobs that will be executed on the platform.

A schedule is defined by a pair of functions π : J 7→ M and σ : J 7→ N, that

defines that job Ji will be executed on processor π(i), starting at time σ(i). Any

valid schedule must execute each job uninterruptedly at least one time and a given

processor cannot execute more than one job at the same time. Figure 2.1 illustrates

an example of a simple schedule represented graphically with a Gantt chart.

The different variations that a schedule problem may present can be summarized

by the three-field notation α | β | γ introduced by Graham, Lawler, Lenstra, and

Rinnooy Kan [Gra+79]. The α field characterizes the type of the resource that will

execute the activity, the β field describes details of the jobs and which scheduling

constraints characterize a valid solution, and the γ field describes the objective(s)

function(s) to be optimized.
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In our work, we focus the study on scheduling in parallel and identical machines.

This setup is represented as Pm in the α field of Graham’s notation and it means that

any job will execute exactly on the same way in any of the m available machines, i.e,

each job Ji will be executed by pi ∈ N units of time (its processing time), independently

of the processor allocated to it. The notation admits the omission of the m (notating

it only by P instead of Pm, meaning that the number of processors is arbitrary and

will be given as part of the instance description). Other common setups for parallel

and distributed systems include uniform machines (Qm), where the machines may

have different speeds, and unrelated machines (Rm), where a same job can take a

different time to execute depending on the machine that was allocated to it.

Usually we consider that all jobs are ready to run at the beginning of the execution.

If it is not the case, the presence of the notation r j (release date) at the β field indicates

that job J j cannot start its execution before time r j. Similarly, the notation d j (due

date) indicates that a job J j should not finish its execution after time d j.

Unless stated otherwise, in this work we study sequential jobs, i.e., jobs that use

only one processor at a given time. There are models in the literature for multiproces-

sor jobs. These models usually distinguish the jobs between three different kinds: (i)

rigid tasks, where the job must always use a fixed number of processors; (ii) moldable

tasks, where the number of processors that will execute the job is constant over time

and chosen at scheduling time; and (iii) malleable tasks, where the scheduler is free

to change the number of processors allocated to the job during the execution.

If all information about the jobs are known by the scheduler before a schedule

is constructed (which is the case in all problems studied in this work), then we say

that we have an offline scheduling problem. In contrast, online scheduling restricts

the problem to the case where the schedule is constructed based on the currently

available information. In particular, the jobs’ characteristics are not known until they

arrive.

Scheduling problems are studied in order to optimize some performance metric

on the obtained schedule. In parallel and distributed systems, this metric usually is a

function in terms of the completion times of the jobs that must be minimized.

The main objective functions of interest in this work are the makespan and

the average completion time. They are indicated on the γ field as Cmax and
∑

Ci,

respectively. Notating the completion time of a job Ji as Ci = σ(i)+ pi, we define the
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makespan (Cmax) as being the maxi{C1, . . . , Cn}, i.e., the completion time of the last

job to finish in the schedule. The average completion time
∑

Ci is defined as 1
n

∑

i Ci.

If f is the objective function to be minimized, we usually denote as f ∗ =
minπ,σ f (π,σ) the minimum value of the function.

Figure 2.1 illustrates the basic notation of scheduling used in this work.

Classical results in single-objective scheduling

Researchers have already studied the computational complexity and efficient algo-

rithms for many different combinations of the possible α | β | γ configurations.

Scheduling is usually a time-expensive operation. However, there are efficient

algorithms that can be used to compute a schedule with good performance in a

reasonable amount of time. The most prominent examples of such algorithms are

List Scheduling algorithms.

Introduced by Graham [Gra66], List Scheduling algorithms comprises a wide class

of algorithms used to calculate schedules aiming different performance objectives.

The basic working principle of List Scheduling algorithms is to greedily assign the

next job from an ordered list to the least loaded processor, scheduling it as earlier as

possible.

The order of the list of jobs is defined by some priority rule chosen according to

the performance objective to be optimized. Two classical algorithms that are to be

noted are the Longest Processing Time first (LPT) algorithm, where the list is created

by sorting the jobs by non-increasing processing times, and the Shortest Processing

Time first (SPT) algorithm, where jobs are sorted in non-decreasing processing times

(in both cases, ties can be broken arbitrarily).

Finding an optimal assignment that optimizes the performance objective are

computationally easier in some problems than others. For instance, the problem

P | |
∑

Ci can be solved optimally in polynomial time by the Shortest Processing Time

first algorithm.

Theorem 2.1. The SPT rule is optimal for P | |
∑

Ci.

Proof. The proof (adapted from [Pin08]) follows from the analysis of the cost

function. If we schedule all jobs J1, J2, . . . , Jn in this order on the same processor, the
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sum of completion times can be expressed as:

∑

Ci = np1+ (n− 1)p2+ (n− 2)p3+ . . .+ 2pn−1+ pn

This shows that there are n integer coefficients (n, n− 1, n− 2 . . . , 2, 1) that must

be assigned to n different processing times. In order to minimize this expression, we

must assign the highest coefficient (n) to the smallest processing time (mini pi), the

second highest coefficient (n− 1) to the second smallest processing time, and so on.

In other words, it means that if pi ≤ p2 ≤ . . . ≤ pn then the
∑

Ci is minimum. This

implies that SPT is optimal for 1 | |
∑

Ci.

In the case of m parallel machines there are m× n integer coefficients (m coeffi-

cients equal to n, m coefficients equal to n− 1, . . . , m coefficients equal to 1), and

each job must be assigned to one of these coefficients in such way that it minimizes

the sum of the products. Assume that n/m is an integer (if not, just add a number of

dummy jobs with processing time equal to zero — which does not change the value

of the
∑

Ci — that turns n/m an integer.)

It is easy to see that in order to minimize the sum of the products, we must

assign the set of m longest processing times to the m smallest coefficients (there are

m coefficients equal to one), the set of second m longest processing times must be

assigned to the second smallest coefficients (the m coefficients equal to two), and so

on. This results in m longest jobs each being processed in different machines and so

on.

This does not describes only SPT, but a class of scheduling algorithms that includes

SPT. To show that this class includes SPT, remember that the smallest job must go

to processor 1 at time zero, the second smallest one on machine 2, and so on; the

(m+1)th follows the smallest job on machine 1, (m+2)th follows the second smallest

job on machine 2 and so on. In other words, SPT maintains this “layered” structure

of the schedule and it is in the class above. It is easy to verify that SPT corresponds

to an optimal assignment of jobs to coefficients.

The scheduling problem with makespan as objective in its general form is harder.

With two identical processors, the scheduling problem P2 | | Cmax is strictly equivalent

to the PARTITION problem [GJ79], which is weakly NP-hard. If the number of

processors is fixed and given as part of the instance, then we can show that there
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exists a reduction for P | | Cmax from the 3-PARTITION problem, showing that this

scheduling problem is strongly NP-hard. Thus, unless P = NP, there is no polynomial-

time algorithm to solve this problem.

The lack of polynomial-time algorithms to these problems leads researchers to

study approximation algorithms: fast (polynomial) algorithms that produce solutions

that are provably close to optimal. An algorithm is a ρ-approximation [Hoc97] of

an objective f if the solution S returned by the algorithm respects the following

inequality: f (S)≤ ρ f ∗.

List Scheduling algorithms are an interesting class of algorithms not only because

it is usually fast to compute a solution. They are also interesting because they provide

a scheduling with a guaranteed approximation ratio for the makespan of its solutions.

Graham [Gra66] showed that:

Theorem 2.2. Any List Scheduling algorithm is a
�

2− 1
m

�

-approximation algorithm

for the P | | Cmax scheduling problem.

Proof. We want to show that the Cmax obtained by any List Scheduling algorithm,

will be at least
�

2− 1
m

�

times the value of the optimal makespan (denoted by C∗max).

First, note that if we want to minimize the makespan of a schedule, the best

case possible would to equally divide the total work to be done among the available

processors. So we have that C∗max ≥
∑

p j

m
.

Let σ be the scheduling returned by the List Scheduling algorithm and J` the

last job to finish its execution in this schedule. Then we have that the Cmax of this

schedule is given by the completion time of this job, i.e., Cσmax = σ(`) + p`. We know

that at the time that the algorithm chose to start the last job, all processors are busy

(otherwise the List Scheduling algorithm would have scheduled the last job earlier).

Since no machine is idle, we have that the total processing time of all jobs apart J`
must be at least equal to mσ(`). So we have that:

σ(`)≤
(
∑

p j − p`)

m
≤ C∗max−

p`
m

Which implies that:

Cσmax = σ(`) + p` ≤ C∗max+ p`

�

1−
1

m

�

≤
�

2−
1

m

�

C∗max
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We can show with a simple example that this bound for the approximation ratio is

tight. Take the case where we have m= 2 processors and three jobs with processing

times equal to 1, 1, and 2. The List Scheduling algorithm will schedule job 1 on

processor 1, job 2 on processor 2, and job 3 on processor 1 or 2. The obtained Cmax

is 1+ 2= 3, while a C∗max = 2 would have been obtained if we schedule jobs 1 and 2

on the same processor and job 3 in the other processor. A more complex example

can show that it is also true for any value of m.

Note that the SPT algorithm mentioned earlier is also a List Scheduling algorithm,

where the list is computed by sorting the jobs in non-decreasing processing times. This

means that the algorithm produces an optimal scheduling for the users interested in

the
∑

Ci, while, at the same, producing a
�

2− 1
m

�

-approximation for the makespan.

Graham [Gra69] also studied the approximation bounds for the Longest Process-

ing Time first (LPT) algorithm. He showed that the approximation ratio of LPT is

equal to 4
3
− 1

3m
, which is actually better than the general case for List Scheduling

algorithms. He showed that the bound for LPT is also tight.

Hochbaum and Shmoys [HS88] presented a family of polynomial time approx-

imation algorithms {Aε | ε > 0}. Each algorithm Aε generates a schedule with a

approximation ratio for the makespan of (1+ ε) and runs in time O
�

(n/ε)1/ε
2�

.

This family of algorithms is a polynomial time approximation scheme (PTAS) for the

P | | Cmax problem.

More recently, an interesting variant of LPT was studied for the case where all

jobs are available at time zero, but some machines are not. This generalization of

the problem of scheduling on multiple processors was first studied by Lee [Lee91],
when studying setups where jobs arrive in batches on a periodic basis and it is

interesting to begin scheduling each batch before the completion of the previous

batch. Lee proposed an algorithm called Modified LPT (MLPT), with a guaranteed

approximation ratio of 4
3

that was later shown [Guo98] to be tight. Kellerer [Kel98]
extended this result presenting more a sophisticated approximation algorithm with a

worst case bound of 5
4

for the problem.
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2.2 Multi-objective optimization

The problem of scheduling in collaborative platforms is naturally a multi-objective

problem. The quality of any proposed schedule must be evaluated according to the

expectations of each participant. These expectations — usually modeled as objective

functions — may be very different from participant to participant and even conflicting

with each other.

Definition 2.3 (Multi-objective optimization scheduling problem). Given a set of

jobs J to be scheduled on the available processors of the set M, the multi-objective

scheduling problem consists in finding a solution S = (π,σ) that respects some

constraints and that minimizes the functions f1(π,σ), f2(π,σ), . . . , fk(π,σ).

Multi-objective problems have a different notion of what means the optimal

solution. Typically a multi-objective problem does not have a single solution that

optimizes all objectives at once, but a multitude of solutions with different compro-

mises. In the single-objective case it is easier to compare the different solutions.

The total order induced by the single objective function is sufficient to define which

solution is better. In multi-objective problems this is not possible.

In order to capture this notion of trade-off between different objectives, we use

the concept of Pareto dominance [Voo03].

Definition 2.4 (Pareto dominance). Given S and S′ two solutions for a multi-

objective optimization problem:

S Pareto dominates S′ ⇐⇒ ∀l ∈ {1, . . . , k}, fl(S)≤ fl(S
′)

and ∃l ∈ {1, . . . , k} | fl(S)< fl(S
′)

The intuition is that a solution S Pareto dominates a solution S′ if S is at least as

good as S′ in all objectives and strictly better than S′ in at least one objective. Thus,

instead of looking for a single optimal solution, we are interested in finding solutions

that are not Pareto dominated by any other solution. Such solutions are known in

the literature as Pareto optimal (or Pareto efficient) solutions:

Definition 2.5 (Pareto optimality). A solution S is said to be Pareto optimal if and

only if there is no other solution S′ 6= S such that S′ Pareto dominates S.
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The set of Pareto optimal solutions represents the range of reasonable “optimal”

solutions in the sense that there is no better solution that improves one objective

without degrading another objective. They are precisely the optimal solutions for

all possible global “utility” functions that depend monotonically on the different

objectives [DY07]. This set of solutions is called the Pareto set (also known in the

literature as Pareto curve, Pareto front or Pareto frontier).

Definition 2.6 (Pareto set). The Pareto set P is the set of all Pareto optimal solutions

for a multi-objective problem.

Multi-objective optimization problems are usually NP-hard due to the fact that the

Pareto set is typically exponential in size even in the case of two objectives [Zar05].
Thus, in practice, multi-objective problems are treated using different approaches,

such as:

• studying approximate (guaranteed) versions of the Pareto set;

• optimizing one objective while bounding the others (constrained approach);

• normalizing the objectives, by introducing a utility (often non-linear) function

on the objectives (normalization approach);

• approximating all the objectives at once from a known (but not always feasible)

lower bound (zenith approximation) or upper bound (nadir);

The concept of approximation algorithms for multi-objective problems can be

extended from the single-objective case in a straightforward way. Instead of having

an optimal point of reference, we extend the notion by saying that an algorithm is

a ρ-approximation of a solution S if the algorithm always give solutions that are a

ρ-approximation of S.

Definition 2.7. Given S and S′ two solutions of a multi-objective problem. S is a ρ =
(ρ1,ρ2, . . . ,ρk)-approximation (∀l,ρl ≥ 1) of S′ if and only if ∀l ∈ {1, . . . , k}, fl(S)≤
ρl fl(S′).

And since it is usually not possible to enumerate all solutions on the Pareto set

because of its exponential size, we are also interested in approximations from sets of

solutions.
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Figure 2.2: Example of a Pareto set for a two-objective problem.

Definition 2.8. A set of solutions P is a ρ = (ρ1,ρ2, . . . ,ρk)-approximation (∀l,ρl ≥
1) of a set of solutions P ′ if and only if ∀S′ ∈ P ′, ∃S ∈ P | S is a ρ-approximation of

S′.

Figure 2.2 illustrates the concepts presented in this section.

2.3 Game theory

Game theory [Nis+07; OR94] comprises a large set of analytical tools designed

to study interactions between individuals free to make a set of choices in order to

pursue some specific objective. Game theory have been successfully applied in several

areas of knowledge, such as biology, computer science, economics, political sciences,

psychology, etc.

In game theory, we study problems in which these decision-makers are assumed to

be rational individuals, interested in some well-defined objective. These individuals

reason strategically, i.e., they are expected to take decisions towards their goals based

on their knowledge or expectations about the decisions taken by other decision-

makers.

We call game the set of rules that define the strategic interactions between the

players (the decision-makers). The game describes constraints on the actions that

the players can take and the players’ objectives, but it does not specify which actions

the players do take to achieve their objectives. Game theory studies the outcomes

that may result from the interactions that follow the rules defined in the game.
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More formally, a game consists of a set of n players {1,2, . . . , n}. Each player i

has its own set Si of possible strategies. To play the game, each player i selects a

strategy si ∈ Si. We will use s = (s1, . . . , sn) to denote the vector of strategies, with

the strategies selected by each player and S = ×iSi to denote all possible ways in

which players can choose strategies. We also denote by s−i the (n− 1) dimensional

vector of strategies played by all players other than i.

The vector of strategies s ∈ S selected by the players determines the outcome of

each player. Each player chooses its strategy based on a preference ordering on the

outcomes. The simplest way to specify these preferences is by assigning a value to

each outcome. It is usually done with the use a payoff function, denoted by an utility

function ui : S 7→ R or a cost (or disutility) function ci : S 7→ R, with ui(s) = −ci(s).
When convenient, we will also use the notation ui(si, s−i) (or ci(si, s−i)) to express

the payoff of player i.

It is important to note that the payoff function of player i depends not only on its

own strategy (si), but also on the strategies chosen by all players (s).

In this work, we focus on the case where strategies are selected in a deterministic

fashion by the players. A deterministic decision made by the player is called pure

strategy. We can also define randomized strategies, where each player can pick a

probability distribution over its set of possible strategies; such choice is called a mixed

strategy. From now on, unless stated otherwise, whenever we refer to “strategy” we

are referring to a “pure strategy”.

Definition 2.9 (Dominant strategy solution). We say that a game has a dominant

strategy solution if each player has a unique best strategy, independent of the strate-

gies played by the other players. More formally, a strategy vector s ∈ S is a dominant

strategy solution, if for each player i, and each alternate pure-strategy vector s′ ∈ S,

we have:

ui(si, s′−i)≥ ui(s
′
i, s′−i)

Games with dominant strategy solutions are rare. In most of the cases, we seek

for game-theoretic solutions in which individual players reach a consensus, while

optimizing their own payoff. The idea is to find solutions from which no single player
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can deviate to individually improve its welfare. This central concept in game theory

is called Nash equilibrium.

Definition 2.10 (Nash equilibrium). A strategy vector s ∈ S is said to be a Nash

equilibrium if for all players i and each alternate strategy s′i ∈ Si, we have that:

ui(si, s−i)≥ ui(s
′
i, s−i)

In other words, no player i has any incentive to change its strategy from si to s′i
in order to unilaterally improve its payoff.

It is easy to see that a dominant strategy solution is a Nash equilibrium. Moreover,

if there is a solution that switching to it always strictly improves the outcome, then

this solution is the unique Nash equilibrium of the instance. Note, however, that

some pure-strategy games may have more than one Nash equilibrium strategy or

may not have a Nash equilibrium at all1.

Finding such equilibria, even if their existence can be proved like in the case of

mixed strategies, is hard. The evidence of the intractability of this problem was first

shown by Chen and Deng [CD06]:

Theorem 2.11 ([CD06]). The problem of finding a Nash equilibrium is PPAD-complete

even for two-player games.

Being in the PPAD class (Polynomial Parity Arguments on Directed graphs)2 is a

strong evidence that no general efficient solution exists for the problem of finding

Nash equilibria in arbitrary games.

Another interesting problem studied in game theory is related to the social impact

of the selfish choices. Exactly how inefficient is a system where each selfish player

makes its own decisions if compared to an idealized situation, where all players would

collaborate selflessly, pursuing a common goal of minimizing some cost objective? In

order to measure this inefficiency, Koutsoupias and Papadimitriou [KP99] introduced

the concept of price of anarchy, which is defined as the ratio between the worst

objective function value of an equilibrium and the one of an optimal outcome.

1Nash [Nas51] proved that every mixed-strategy game with a finite set of players and strategies
has a Nash equilibrium.

2Please refer to Papadimitriou [Pap94] for a formal definition of the PPAD class.
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Definition 2.12 (Price of anarchy). Given S the set of possible strategies, E ⊆ S the

set of all Nash equilibria and C : S 7→ R a cost function that measures the inefficiency

of the system, the price of anarchy (PoA) is defined by:

PoA=
maxs∈E C(s)
mins∈S C(s)

Similarly, game theorists also study the price of stability (PoS) of games, that

measures the ratio between the best objective function value of one of its equilibrium

and that of an optimal outcome.

Definition 2.13 (Price of stability). Given S the set of possible strategies, E ⊆ S the

set of all Nash equilibria and C : S 7→ R a cost function that measures the inefficiency

of the system, the price of stability (PoS) is defined by:

PoS=
mins∈E C(s)
mins∈S C(s)

2.4 Concluding remarks

In this chapter, we presented a brief introduction to classical concepts of scheduling

theory. These concepts will be used and extended in the remaining of the text

to model the problem of collaboration on modern platforms. Some of the most

important theoretical results on single-objective scheduling were presented and

detailed.

We also presented concepts of multi-objective optimization and game theory.

These concepts will be useful to our study about relations and trade-offs among

participants sharing resources on parallel and distributed platforms.





CHAPTER 3
Multi-organization scheduling

approximation algorithms

GRID computing systems allow unprecedented computational power by combining

geographically dispersed computers into a single massively parallel distributed

system. Users of such systems contribute with computational power (multi-core

machines, clusters, etc.) and expect to be able to execute their own jobs more

efficiently by sharing their own resources with others.

The heterogeneity of the available resources, the large number of available proces-

sors and cores, and different demands from users make the problem of scheduling in

such parallel platforms really hard in practice. In order to fully exploit such systems,

we need sophisticated scheduling algorithms that encourage the users to share their

resources and, at the same time, that respect each user’s own interests.

In this chapter we present our efforts on how to deal with such issues. Our

main contribution is the extension and analysis of the problem for the case in which

sequential jobs are submitted by selfish organizations that can handle different local

objectives (namely, makespan and average completion times).

We introduce new restrictions to the schedule that take into account this concept

of selfish organizations, i.e., organizations that refuse to cooperate if their objectives

could be improved just by executing earlier one of their jobs in one of their own

machines.

A fairness study is conducted using two different fairness metrics. The objective

23
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of this study is to evaluate if the results obtained by all organizations equally improve

every organization’s local objective by constructing schedules that are considered fair

according to these metrics. Unfairness in the results obtained by each organization

could be considered a reason to make an organization stop the cooperation with the

others.

The remaining of this chapter is organized as follows. The formal description

of the problem and the notations used in this paper are described in Section 3.1.

Section 3.2 shows that any algorithm respecting our new selfishness restrictions

cannot achieve approximation ratios better than 2 and that the problem is computa-

tionally hard wherever the users are interested in minimizing their makespan or their

average completion time. 2-approximation algorithms for solving the problem are

presented in Section 3.3. The heuristics are analyzed using fairness metrics presented

in Section 3.4. Simulation experiments, discussed in Section 3.5, show the good

results obtained by our algorithms in average and how each organization perceives

the fairness of the results obtained. Some concluding remarks are presented in

Section 3.6.

3.1 The Multi-Organization Scheduling Problem

Grid computing platforms are typically organized as a federated system where users

and computational resources, belonging to different administrative domains, share

resources and exchange jobs with each other in order to simultaneously maximize

the profits of the collectivity and their own interests.

We call each participant of this federation an organization. In terms of the

governance of a grid computing platform, an organization has full control over

the management of its own resources. The organization chooses how many (and

which) resources are shared and used. Examples of such organizations are research

laboratories, universities or company departments. Figure 3.1 depicts the described

platform.

Organizations are free to join or leave the platform at any time if they feel that

their expectations are not being fulfilled. This could happen, for instance, if the

organization presumes that their jobs are not getting a fair share of the available
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(a) Organizations and their jobs

(b) Scheduling made possible by cooperation

Figure 3.1: Illustration of the target platform, showing how the scheduling of the
jobs belonging to these organizations can be improved if the computational resources
are shared with each other.
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resources or if the execution of its own jobs is being retarded because of the execution

of jobs from other organizations.

On the one hand, it is crucial to determine schedules that optimize the allocation

of the jobs for the whole platform in order to achieve good system performances.

On the other hand, it is important to guarantee the performance perceived by each

organization in order to provide incentive for all organizations to collaborate.

In order to achieve this, we study a scheduling model for the problem in which

different organizations own a physical cluster of identical machines that are intercon-

nected. All organizations intent to minimize the global makespan (i.e., the maximum

completion time in any local schedule) while they individually try to minimize their

own objectives, either the makespan or the average completion time of their own

jobs.

Although each organization accepts to cooperate with others in order to minimize

the global makespan, we assume that individually it behaves in a selfish way. An

organization can refuse to cooperate if in the final schedule one of its migrated jobs

could be executed earlier in one of the machines owned by the organization.

We start by first extending the notation for classical scheduling problems that were

described in Section 2.1, in order to consider the presence of multiple organizations

in the model. Formally, we define our target platform as a grid computing system

with N different organizations interconnected by a middleware. Each organization

O(k) (1≤ k ≤ N) has m(k) identical machines available that can be used to run jobs

submitted by users from any organization.

Each organization O(k) has n(k) jobs to execute, and the total number of jobs

is denoted by n =
∑

k n(k). Each job J (k)i (1 ≤ i ≤ n(k)) will use one processor for

exactly p(k)i units of time1. The size of the largest job from organization O(k) is

denoted as p(k)max. No preemption is allowed, i.e., after its activation, a job runs until

its completion at time C (k)i .

We denote the makespan of a particular organization O(k) by C (k)max = max
1≤i≤n(k)

(C (k)i )

and its sum of completion times as
∑

C (k)i . The global makespan for the entire grid

computing system is defined as Cmax = max
1≤k≤N

(C (k)max).

1All machines are identical, i.e., every job will be executed at the same speed independently of
the chosen machine.
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Local constraint

The Multi-Organization Scheduling Problem (MOSP), as first described in [PRT07],
consists in minimizing the global makespan (Cmax) with an additional local constraint:

at the end, no organization can have its makespan increased if compared with

the makespan that the organization could have by scheduling the jobs in its own

machines (C (k) local
max ). More formally, we call MOSP(Cmax) the following optimization

problem:

minimize Cmax such that, for all k (1≤ k ≤ N), C (k)max ≤ C (k) local
max

We also are interested in the study of the case where all organizations are locally

interested in minimizing their average completion time while minimizing the global

makespan. As in MOSP(Cmax), each organization imposes that the sum of completion

times of its jobs cannot be increased if compared with what the organization could

have obtained using only its own machines (
∑

C (k) local
i ). We denote this problem

MOSP(
∑

Ci) and the goal of this optimization problem is to:

minimize Cmax such that, for all k (1≤ k ≤ N),
∑

C (k)i ≤
∑

C (k) local
i

Selfishness

In both MOSP(Cmax) and MOSP(
∑

Ci), while the global schedule might be computed

by a central entity, the organizations keep control on the way they execute the jobs in

the end. This property means that, in theory, it is possible for organizations to cheat

the devised global schedule by re-inserting their jobs earlier in the local schedules.

In order to prevent such behavior, we define a new restriction on the sched-

ule, called selfishness restriction. The idea is that, in any schedule respecting this

restriction, no single organization can improve its local schedule by cheating.

Given a fixed schedule, let J (l)f be the first foreign job scheduled to be executed in

O(k) (or the first idle time if O(k) has no foreign job) and J (k)i any job belonging to O(k).

Then, the selfishness restriction forbids any schedule where C (l)f − p(l)f < C (k)i − p(k)i . In

other words, O(k) refuses to cooperate if one of its jobs could be executed earlier in

one of O(k) machines even if this leads to a larger global makespan.
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Related work

From the classical scheduling theory, the problem of scheduling parallel jobs is

related to the Strip packing [BCR80]. It corresponds to pack a set of rectangles

(without rotations and overlaps) into a strip of machines in order to minimize the

height used. Then, this problem was extended to the case where the rectangles were

packed into a finite number of strips [YHZ09; Zhu06]. More recently, an asymptotic

(1+ ε)-approximation AFPTAS with additive constant O(1) and with running-time

polynomial in n and in 1/ε was presented in [Bou+10].

Schwiegelshohn, Tchernykh, and Yahyapour [STY08] studied a very similar

problem, where the jobs can be scheduled in non-contiguous processors. Their

algorithm is a 3-approximation for the maximum completion time (makespan) if all

jobs are known in advance, and a 5-approximation for the makespan on the on-line,

non-clairvoyant case. A comprehensive study concerning the applicability of their

techniques were presented by Ramírez-Alcaraz et al. [Ram+11].

The Multi-Organization Scheduling Problem (MOSP) was introduced by Pascual

et al. [PRT07; PRT09] and studies how to efficiently schedule parallel jobs in new

computing platforms, while respecting users’ own selfish objectives. A preliminary

analysis of the scheduling problem on homogeneous clusters was presented with

the target of minimizing the makespan, resulting in a centralized 3-approximation

algorithm that is proven to be tight [Dut+11].

The notion of cooperation between different organizations and the study of the

impact of users’ selfish objectives are directly related to Game Theory. The relations

between MOSP and game theory will be studied in Chapter 5.

3.2 Complexity analysis

Lower bounds

The lower bound of the problem was first shown by Pascual et al. [PRT07]. They

showed with an instance composed of two organizations and two machines per

organization that every algorithm that solves MOSP (for rigid, parallel jobs and

Cmax as local objectives) has at least a 3
2
-approximation ratio when compared to the
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Figure 3.2: Ratio between global optimum makespan and the optimum makespan
that can be obtained for both MOSP(Cmax) and MOSP(

∑

Ci). Jobs owned by organi-
zation O(2) are highlighted.

optimal makespan that could be obtained without the local constraints. We show that

the same bound applies asymptotically even with a larger number of organizations.

Take the instance depicted in Figure 3.2a. O(1) initially has two jobs of size N

and all the others initially have N jobs of size 1. All organizations contribute with

only 1 machine each. The optimal makespan for this instance is N + 1 (Figure 3.2b),

nevertheless it delays jobs from O(2) and, as consequence, does not respect MOSP’s

local constraints. The best possible makespan that respects the local constraints

(whenever the local objective is the makespan or the average completion time) is 3N
2

,

as shown in Figure 3.2c.
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Selfishness and lower bounds

Although all organizations will likely cooperate with each other to achieve the best

global makespan possible, their selfish behavior will certainly impact the quality of

the best attainable global makespan.

We study here the impact of new selfishness restrictions on the quality of

the achievable schedules. We show that these restrictions impact MOSP(Cmax)

and MOSP(
∑

Ci) as compared with unrestricted schedules and, moreover, that

MOSP(Cmax) with selfishness restrictions suffers from limited performances com-

pared to MOSP(Cmax) with local constraints.

Proposition 3.1. No approximation algorithm for both MOSP(Cmax) and MOSP(
∑

Ci)

has ratio asymptotically better than to 2 regarding the optimal makespan without

constraints if all organizations behave selfishly.

Proof. We prove this result by using the example described in Figure 3.2. It is clear

from Figure 3.2b that an optimal solution for a schedule without local constraints can

be achieved in N +1. However, with added selfishness restrictions, Figure 3.2a (with

a makespan of 2N) represents the only possible valid schedule. We can, therefore,

conclude that local constraints combined with selfishness restrictions imply that no

algorithm can provide an approximation ratio asymptotically better than 2 when

compared with the problem without constraints.

Proposition 3.1 gives a ratio regarding the optimal makespan without the local

constraints imposed by MOSP. We can show that the same approximation ratio

of 2 also applies for MOSP(Cmax) regarding the optimal makespan even if MOSP

constraints are respected.

Proposition 3.2. Any approximation algorithm for MOSP(Cmax) has a ratio greater

than or equal to 2− 2
N

regarding the optimal makespan with local constraints if all

organizations behave selfishly.

Proof. Take the instance depicted in Figure 3.3a. O(1) initially has N jobs of size 1,

O(N) has two jobs of size N −1, and the remaining organizations have each one a job

of size N − 1. The optimal solution that respects MOSP local constraints is given in
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Figure 3.3: Ratio between global optimum makespan with MOSP constraints and the
makespan that can be obtained by MOSP(Cmax) with selfish organizations.

Figure 3.3b and have Cmax equal to N . Nevertheless, the best solution that respects

the selfishness restrictions is the initial instance with a Cmax equal to 2N − 2. So, the

ratio of the optimal solution with the selfishness restrictions to the optimal solution

with MOSP constraints is 2− 2
N

.

Computational complexity

This section studies how hard it is to find optimal solutions for the MOSP problem.

We consider the decision version of the MOSP defined as follows:

Instance: a set of N organizations (for 1≤ k ≤ N , organization O(k) has n(k) jobs,

m(k) identical machines, and makespan as the local objective) and an integer `.

Question: Does there exist a schedule with a makespan less than ` that respects

the local constraints?

Theorem 3.3. MOSP(Cmax) and MOSP(
∑

Ci) are strongly NP-complete.
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Figure 3.4: Direct reduction of MOSP from 3-PARTITION.

A reduction from the classical 3-PARTITION problem [GJ79] (see definition below)

to MOSP is straightforward and it is schematized in Figure 3.4. This reduction,

however, represents a degenerate case of the MOSP problem. The instance presents a

configuration where initially one organization is very loaded and some organizations

do not contribute with any work. We believe that this configuration misrepresents

the concept of cooperation introduced by the MOSP problem.

We present in this section a slightly more complex proof for the complexity

of MOSP(Cmax) and MOSP(
∑

Ci) with an instance where any organization could

potentially have its makespan improved by cooperating with others. We show that

the problem remains hard even for instances limited to two jobs per organization.

Theorem 3.4. MOSP(Cmax) and MOSP(
∑

Ci) are strongly NP-complete even if each

organization has exactly two jobs per organization.

Proof. It is straightforward to see that MOSP(Cmax) ∈ N P and MOSP(
∑

Ci) ∈ N P.

Our proof is based on a reduction from the well-known 3-PARTITION problem [GJ79]:

Instance: a bound B ∈ Z+ and a finite set A of 3m integers {a1, . . . , a3m}, such

that every element of A is strictly between B/4 and B/2 and such that
∑3m

i=1 ai = mB.
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Ci) from 3-PARTITION.

Question: can A be partitioned into m disjoint sets A1, A2, . . . , Am such that, for

all 1≤ i ≤ m,
∑

a∈Ai
a = B and Ai is composed of exactly three elements?

Given an instance of 3-PARTITION, we construct an instance of MOSP where, for

1≤ k ≤ 3m, organization O(k) initially has two jobs J (k)1 and J (k)2 with p(k)1 = (m+1)B+
11 and p(k)2 = (m+1)ak+3, and all other organizations have two jobs with processing

time equal to 1. We then set ` to be equal to (m+ 1)B+ 11. Figure 3.5 depicts the

described instance. This construction is performed in polynomial time. Now, we

prove that A can be split into m disjoint subsets A1, . . . , Am, each one summing up to

B, if and only if this instance of MOSP has a solution with Cmax ≤ (m+ 1)B+ 11.

Assume that A= {a1, . . . , a3m} can be partitioned into m disjoint subsets A1, . . . , Am,

each one summing up to B. In this case, we can build an optimal schedule for the

instance as follows:

• for 1≤ k ≤ 3m, J (k)1 is scheduled on machine k;

• for 3m+ 1≤ k ≤ 4m, J (k)1 and J (k)2 are scheduled on machine k;

• for 1 ≤ i ≤ m, let Ai = {ai1 , ai2 , ai3} ⊆ A. The jobs J
(ai1 )
2 , J

(ai2 )
2 and J

(ai3 )
2 are

scheduled on machine 3m+ i.

This construction provides a schedule where the global Cmax is the optimal one.

Also, it is easy to see that the local constraints for MOSP(Cmax) and MOSP(
∑

Ci)

are respected: for MOSP(Cmax), it is sufficient to note that no organization have

its makespan increased; for MOSP(
∑

Ci), note that each job either remains in its
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original organization and schedule (lighter colored jobs in Figure 3.5) or is migrated

to a different organization at an earlier time (darker colored jobs in Figure 3.5),

strictly decreasing the average completion time.

Conversely, assume that MOSP has a solution with Cmax ≤ (m+1)B+11. The total

work (W ) of the jobs that must be executed is W = 3m · ((m+1)B+11)+
∑3m

i=1((m+
1)B+ ai)+m ·2 = 4m · ((m+1)B+11). Since we have exactly 4m organizations, the

solution must be the optimal solution and there are no idle times in the scheduling.

Moreover, 3m machines must execute only one job of size (m+ 1)B+ 11. W.l.o.g, we

can consider that for 3m+ 1 ≤ k ≤ 4m, machine k performs jobs of size less than

(m+ 1)B+ 11.

To prove our proposition, we first show two lemmas that characterize the structure

of the solution for the MOSP problem:

Lemma 3.5. For all 3m+ 1≤ k ≤ 4m, exactly three jobs of size not equal to 1 must be

scheduled on machine k if C (k)max = (m+ 1)B+ 11.

Proof. We proof this lemma by contradiction. First, note that for all integers from

the 3-PARTITION instance, it holds that ai > B/4.

Assume that one machine has less than three jobs of size not equal to 1. 3m

jobs of this kind must be assigned to the last m organizations (since the first 3m

organizations execute each one a large job of size (m+ 1)B+ 11). If one machine

has less than three jobs, then we must have at least one other machine with four or

more jobs of this kind assigned to it. The makespan on this other machine must be of

at least 4 · ((m+ 1)ai + 3)> 4 · ((m+ 1)B/4+ 3) = (m+ 1)B+ 12. This contradicts

the fact that C (k)max = (m+1)B+11 and shows that exactly three jobs of size not equal

to 1 must be scheduled on each machine.

Lemma 3.6. For all 3m+ 1≤ k ≤ 4m, exactly two jobs of size 1 are scheduled on each

machine if C (k)max = (m+ 1)B+ 11.

Proof. Since C (k)max = (m+1)B+11, each large job of size (m+1)B+11 must remain

in its original organization. Consequently, the 2m jobs of size 1 must be scheduled in

one of the m organizations not having a large job assigned to it. However, each of

these organizations has C (k) local
max = 2, which means that any migration that results in a
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schedule with one organization not having two jobs of size 1 will result in a schedule

that does not respect both MOSP(Cmax) and MOSP(
∑

Ci) local constraints.

From the solution for the MOSP problem, we construct m disjoint subsets

A1, A2, . . . , Am of A as follows: for all 1 ≤ i ≤ m, a j is in Ai if the job with size

(m+ 1)a j + 3 is scheduled on machine 3m+ i. Note that all elements of A belong to

one and only one set in {A1, . . . , Am}. We prove that A is a partition with the desired

properties.

We focus on organization O(3m+i), where Ai was assigned. Lemmas 3.5 and 3.6

show how the jobs will be assigned to this organization. First, Lemma 3.5 shows

that Ai is composed of exactly three jobs that will be executed on O(3m+i). Second,

Lemma 3.6 shows that exactly two jobs of size 1 will be scheduled at the beginning

of the schedule.

Since all organizations must have a local Cmax exactly equal to (m+ 1)B+ 11, we

have that C (3m+i)
max = (m+ 1)B+ 11 = 1+ 1+

∑

a j∈Ai
((m+ 1)a j + 3), which implies

that:

2+
∑

a j∈Ai

((m+ 1)a j + 3) = (m+ 1)B+ 11

⇒
∑

a j∈Ai

(m+ 1)a j = (m+ 1)B

⇒
∑

a j∈Ai

a j = B

Thus, we can deduce that Ai is composed of exactly three elements and
∑

a j∈Ai
a j =

B. In other words, {Ai, . . . , Am} is a solution for the 3-PARTITION problem.

3.3 Algorithms

In this section, we present four different heuristics to solve MOSP(Cmax) and MOSP(
∑

Ci).

All algorithms present the additional property of respecting selfishness restrictions.
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Iterative load balancing algorithm

The Iterative Load Balancing Algorithm (ILBA) [PRT09] is a heuristic that redis-

tributes the load from the most loaded organizations.

The idea is to incrementally rebalance the load without delaying any job. First

the less loaded organizations are rebalanced. Then, one-by-one, each organization

has its load rebalanced.

The heuristic works as follows. First, each organization schedules its own jobs

locally and the organizations are enumerated by non-decreasing makespans, i.e.

C (1)max ≤ C (2)max ≤ . . . ≤ C (N)max. For k = 2 until N , jobs from O(k) are rescheduled

sequentially, and assigned to the less loaded of organizations O(1) . . . O(k).

Each job is rescheduled by ILBA either earlier or at the same time that the job was

scheduled before the migration. In other words, no job is delayed by ILBA, which

guarantees that the local constraint is respected for MOSP(Cmax) and MOSP(
∑

Ci).

The ILBA algorithm has the same time complexity as any list scheduling algo-

rithm for the classical problem of minimizing the makespan. Its time complexity is

O(n log n). We recall that n is the total number of jobs.

LPT-LPT and SPT-LPT heuristics

We developed and evaluated (see Section 3.5) two new heuristics based on the classi-

cal LPT (Longest Processing Time First [Gra69]) and SPT (Smallest Processing Time

First [BCS74]) algorithms for solving MOSP(Cmax) and MOSP(
∑

Ci), respectively.

Both heuristics work in two phases. During the first phase, all organizations minimize

their own local objectives. Each organization starts applying LPT for its own jobs if

the organization is interested in minimizing its own makespan, or starts applying

SPT if the organization is interested in its own average completion time.

The second phase is when all organizations cooperatively minimize the makespan

of the entire grid computing system without worsening any local objective. This

phase works as follows: each time an organization becomes idle, i.e., it finishes the

execution of all jobs assigned to it, the longest job that does not have started yet is

migrated and executed by the idle organization. This greedy algorithm works like a

global LPT, always choosing the longest job yet to be executed among jobs from all

organizations.
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The first and second phases correspond to a list scheduling algorithm, so the total

running time of both algorithms is O(n log n).

Less Helped First heuristic

Like the previous algorithms, Less Helped First works in two phases. First, each

organization O(k) is classified according to the total work originally submitted by a

user in O(k) that was actually executed by a different organization. Locally, the order

of the jobs is arbitrary (it could be the submission order, for instance).

Second, each time a processor becomes idle, the algorithm will prioritize the

organization that received less help from the others, i.e. that had less work executed

by other organizations. The algorithm will migrate any job from the less helped

organization that has not started yet to be executed by the idle processor.

The running time of the first phase is O(n log n). During the second phase, after

each job migration, the classification of the organizations must be updated. This

update can be done in O(log n) and there are at most n migrations (one per job).

Since the number of organizations is negligible compared to the number of jobs, the

total running time of the algorithm is O(n log n).

Analysis

ILBA, LPT-LPT, SPT-LPT, and Less Helped First do not delay any of the jobs when

compared to the initial local schedule. During the rebalancing phase, all jobs either

remain in their original organization or are migrated to an organization that became

idle at a preceding time. The implications are:

• the selfishness restriction is respected — if a job is migrated, it will start before

any foreign jobs that may have been assigned to its original organization;

• if organizations’ local objective is to minimize the makespan, migrating a job

to a previous moment in time will decrease the job’s completion time and, as

consequence, it will not increase the initial makespan of the organization;

• if organizations’ local objective is to minimize the average completion time,

migrating a job from the initial organization to another that became idle at a
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previous moment in time will not increase the completion time of any job. This

means that the
∑

Ci of the jobs from the initial organization is either decreased

or remains constant;

• the rebalancing phase of all four algorithms works as the list scheduling

algorithms. Graham’s classical approximation ratio 2− 1
N

(see Theorem 2.2) of

list scheduling algorithms [Gra69] holds for all of them.

Proposition 3.1 (Section 3.2) states that no algorithm respecting selfishness re-

strictions can achieve an approximation ratio for MOSP(Cmax) better than 2 regarding

the optimal makespan without constraints. Since all our algorithms reach an approxi-

mation ratio of 2, no further enhancements are possible without removing selfishness

restrictions.

3.4 Fairness

Another form of encouragement of cooperation between the organizations is provid-

ing algorithms that equally improve their local objectives. Organizations that are not

invidious of other organizations are more likely to share their resources to the plat-

form. Selfish organizations could potentially become invidious if the results obtained

when solving the MOSP problem improve the local objectives of the organizations in

an unfair manner.

Some fairness metrics can be found on the literature — Variance, Coefficient of

Variance
�

Variance
Mean

�

, Min-Max ratio, etc. The Jain Index [JCH84] is nowadays one

of the most popular metrics used to measure fairness [LT07]. We also studied the

Stretch as an index of fairness, as we will show in the next sections.

In this section we study the fairness of the results produced by the algorithms

presented in Section 3.3. Using the same workload generated for the experimental

results shown in Section 3.5, we evaluate the fairness of these algorithms for two

important metrics: Stretch and the Jain Index.
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Stretch

Stretch is a performance metric that was extensively studied in the scheduling

literature. This performance metric can also be considered as a fairness metric. We

adapted the notion of Stretch to the MOSP problem, to measure the Stretch of an

entire organization. We define Stretch as the ratio of the local Cmax obtained by the

organization to the Cmax that the organization could have obtained if it had all the

machines available only for its jobs (denoted by C (k) alone
max ). Formally, the Stretch is

calculated as follows:

Stretch=max
k

C (k)max

C (k) alone
max

Since C (k) alone
max is bounded by the theoretical lower bound

∑

i p(k)i

N
= C (k) local

max

N
and

since MOSP(Cmax) constraint guarantees that C (k)max ≤ C (k) local
max , we have:

Stretch=max
k

C (k)max

C (k) alone
max

≤
C (k) local

max

C (k) local
max

N

≤ N

Note that this upper bound for the Stretch metric is tight. Consider the instance

with N organizations, each one having N jobs with processing times equal to 1.

C (k) alone
max is equal to one for all organization O(k), and C (k) local

max = N . There is only

one scheduling that respects MOSP(Cmax) local constraint, the one that schedules all

jobs in their original organizations.

Jain index

Originally, the Jain Index was introduced for the study of resource sharing and

allocation problems. The Jain Index of a set of n users receiving an “allocation” x i

[JCH84] is defined as:

f (x) =
(
∑n

i=1 x i)2

n
∑n

i=1 x2
i

, x i ≥ 0 (3.1)

If the values of x i follow a certain random distribution, the index is the ratio of

the first moment (the mean) to the second moment of the distribution.

The Jain Index has the following useful properties:
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• It is independent of the size of the population;

• It is independent of the scale (or metric unit) used;

• The values of the index are bounded between 1/n and 1;

• It is continuous.

We evaluated the fairness of the heuristics presented in Section 3.3 regarding

the improvements obtained on the local Cmax by each organization. We define this

improvement as the ratio of the obtained Cmax to the theoretical lower bound of each

organization over all available machines of the system. The lower bound of each

organization is calculated by:

LB(k) =max

 

∑

i

p(k)i

N
, p(k)max

!

The improvement for organization O(k) (the xk of Equation 3.1) is then defined as:
C (k)max

LB(k)
. So, the final Jain Index calculated to measure the fairness of the improvements

can be stated as follows:

Jain Index =

�

∑N
k=1

C (k)max

LB(k)

�2

N
∑N

k=1

�

C (k)max

LB(k)

�2

3.5 Experiments

We conducted an extensive series of simulations comparing ILBA, LPT-LPT, SPT-
LPT, and Less Helped First under various experimental settings. The workload was

randomly generated with parameters matching the typical environment found in

academic grid computing systems [PRT09].
We generated random workloads with N = 5, 10, and 20 organizations. For each

number of organizations, we have generated instances with different number of total

jobs (from 100 to 1,000), with sizes chosen uniformly at random from 1 to 1,000.

For each combination of these parameters, we generated 20,000 random instances.

In our tests, the number of initial jobs in each organization follows a Zipf distribution
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Figure 3.6: Mean and confidence interval of the measured C (k)max obtained by ILBA,
LPT-LPT, SPT-LPT, and Less Helped First.

with exponent equal to 1.4267, which best models virtual organizations in real-world

grid computing systems [Ios+06]. All results are presented with confidence level of

95%.

Global Cmax analysis

We are interested in the improvement of the global Cmax provided by the different

algorithms. The results are evaluated with comparison to the Cmax obtained by the

algorithms with the well-known theoretical lower bound for the scheduling problem

without constraints LB =max(
∑

i,k

p(k)i

m(k)
, pmax).

Our main conclusion is that, despite the fact that the selfishness restrictions are
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respected by all heuristics, ILBA and LPT-LPT obtained near optimal results for

most cases. This is not unusual, since it follows the patterns of experimental behavior

of standard list scheduling algorithms, in which it is easy to obtain a near optimal

schedule when the number of jobs grows large. SPT-LPT and Less Helped First
produce worse results due to the effect of the local order of the jobs. Figure 3.6

shows the average global Cmax obtained by the heuristics for instances with different

number of organizations and total number of jobs.

However, in some particular cases, in which the number of jobs is not much

larger than the number of machines available, the experiments yield more interesting

results. Figure 3.7 shows the histogram of a representative instance of such a

particular case. The histograms show the frequency of the ratio Cmax obtained to

the lower bound over 20,000 different instances with 20 organizations and 100 jobs

for ILBA, LPT-LPT, SPT-LPT, and Less Helped First. Similar results have been

obtained for many different sets of parameters. LPT-LPT outperforms ILBA (and

SPT-LPT) for most instances and its average ratio to the lower bound is less than

1.3. Less Helped First is the heuristic that produces the worst results.

Local Cmax analysis

We are also interested in the improvements obtained by each organization that our

four algorithms provide. In order to have a global view of the total improvement

obtained, we have evaluated the sum of the local makespans obtained by all organi-

zations:
∑

k C (k)max. The sum of the local makespans is important because it shows the

average results that each selfish organization obtains.

The experiments show that ILBA produces results with a lower makespan in

average. LPT-LPT, SPT-LPT, and Less Helped First produce similar results in

average. Recall from Section 3.3 that ILBA rebalances the load of all organizations,

from the less loaded to the more loaded organization. This mechanism minimizes the

makespan of the organization individually in a more aggressive way and, therefore,

produces lower average local makespans. Figure 3.8 shows the average local Cmax

obtained by all heuristics.

It is interesting to note that the gap between the average result obtained by

ILBA and the other heuristics increases as the number of organizations and the total
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(d) Less Helped First

Figure 3.7: Frequency of results obtained by ILBA, LPT-LPT, SPT-LPT, and Less
Helped First for N = 20 and n= 100.

number of jobs increase.

Fairness analysis

In the two previous sections we have analyzed the performance obtained by the

four algorithms presented in Section 3.3 for the global makespan obtained and for

the local makespan obtained by each organization. In this section we use the same

testbed to study how each organization perceives the fairness of these results. To

study the fairness, we use the Stretch and Jain Index metrics presented in Section 3.4.
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Figure 3.8: Mean and confidence interval of the measured
∑

k C (k)max obtained by ILBA,
LPT-LPT, SPT-LPT, and Less Helped First.

Stretch

We have measured the worst — i.e. maximum — Stretch (as defined in Section 3.4)

obtained during the simulations. Figure 3.9 shows how the Stretch varies according

to the total number of jobs of the system.

The results show that the Stretch increases asymptotically to the upper-bound

of the metric (i.e. the number of organizations) as the total number of jobs on the

system increases.

The Stretch obtained with our algorithms is given by the less loaded organization.

Our heuristics never migrate jobs from the organization that has the lower local

Cmax. For this organization, the C (k)max will always be equal to the C (k) local
max and the

Stretch will be higher. The Zipf distribution used to randomly assign the jobs to the
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Figure 3.9: Mean and confidence interval of the measured Stretch obtained by ILBA,
LPT-LPT, SPT-LPT, and Less Helped First.

organizations distributes more jobs to the less loaded organization when the total

number of organizations is smaller. For this reason, the average Stretch grows faster

for N = 5.

When the number of jobs is small, the performance of ILBA degrades more

slowly because ILBA rebalances first the less loaded organizations, while the others

rebalance the organizations in a dynamic order.

LPT-LPT presented the worst values for Stretch. Bigger Stretch values indicate

that organizations are more penalized by the jobs from other organizations. Recall

from Section 3.5 that LPT-LPT produces better results for the global Cmax. To achieve

these results, LPT-LPT must penalize some organizations, and Stretch measures
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Figure 3.10: Mean and confidence interval of the measured Jain Index obtained by
ILBA, LPT-LPT, SPT-LPT, and Less Helped First.

exactly this behavior.

Jain index

Jain Index and Stretch metrics measure two different forms of fairness. The former

measures how each organization perceives the improvements on its own Cmax, while

the latter shows how the Cmax of each individual organization is affected by the jobs

from other organizations.

When the number of organizations N is 5, our experiments showed that the four

heuristics provide fair results, with Jain Index higher than 0.88. Recall that the Jain

Index is bounded from 1/N (unfair) to 1 (perfect fairness).
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Figure 3.10a indicates that the ILBA heuristics have two moments. In the first,

when the number of jobs are smaller, ILBA heuristic produces more fair results than

the other heuristics. Its Jain Index varies from 0.92 up to 0.95.

During the second moment, when the number of jobs is higher, ILBA produces

the less fair results between all the four heuristics. LPT-LPT, SPT-LPT, and Less
Helped First produce results with similar fairness indices, while ILBA fairness is

clearly worse when compared to the others. Remark that the index is almost constant

when N = 5 and there are more than 300 jobs on the platform.

The experiments with N = 10 show that ILBA produces results with fairness

similar to the results with N = 5. Their Jain Index is of about 0.90. When the number

of jobs is over 700, LPT-LPT, SPT-LPT, and Less Helped First are fairer. Their Jain

Index varies between 0.79 and 0.91.

For N = 20, the difference between the performance of ILBA and the others

is higher. ILBA has Jain Index of about 0.90 while the fairness of the other three

heuristics decreases from 0.94 to 0.70. The number of jobs of the simulations shown

in Figure 3.10c was increased up to 2,000 to show that for N = 20 the results indicate

that ILBA has also two moments, like for the cases where N = 5 and N = 10.

Even if ILBA provided fairer results than the others with less jobs on the system,

all four algorithms improve the local Cmax obtained by each organization in a fair

way.

3.6 Concluding remarks

In this chapter, we have investigated the scheduling on multi-organization platforms.

We presented the MOSP(Cmax) problem from the literature and extended it to a new

related problem MOSP(
∑

Ci) with another local objective. In each case we studied

how to improve the global makespan while guaranteeing that no organization will

worsen its own results.

We showed first that both versions MOSP(Cmax) and MOSP(
∑

Ci) of the problem

are strongly NP-hard. Furthermore, we introduced the concept of selfishness in these

problems which corresponds to additional scheduling restrictions designed to reduce

the incentive for the organizations to cheat locally and disrupt the global schedule.

We proved that any algorithm respecting selfishness restrictions cannot achieve a
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better approximation ratio than 2 for MOSP(Cmax) regarding the optimal makespan

without MOSP local constraints.

Three new scheduling algorithms were proposed, namely LPT-LPT, SPT-LPT,

and Less Helped First in addition to ILBA from the literature. All these algorithms are

list scheduling, and thus achieve a 2-approximation. We provided an in-depth analysis

of these algorithms, showing that all of them respect the selfishness restrictions.

Finally, all these algorithms were implemented and analyzed through experimen-

tal simulations. The results show that when considering the global makespan, our

new LPT-LPT outperforms ILBA, and that all algorithms exhibit near optimal global

performances when the number of jobs becomes large.

Considering the local objectives, ILBA achieves better average local makespans.

ILBA also proved to present more fair results according to the Stretch metric. All the

four algorithms presented good fairness using the Jain Index, showing that the local

makespan of all organizations are equally improved.



CHAPTER 4
Relaxed multi-organization

scheduling algorithms

THE results presented in the previous chapter show that if in the one hand it is

possible for the scheduler to encourage collaboration by providing guarantees

on the performance perceived by each organization, on the other hand it also shows

that these encouragements have a cost on the global performance.

First, there is the impact of MOSP local constraints, that inflict a degradation

on the best possible global makespan. The instance depicted on Figure 3.2 showed

that any algorithm respecting MOSP local constrains has at least a 3
2
-approximation

ratio when compared to the optimal makespan that could have been obtained by

altruistic organizations (i.e., if all organizations are willing to help even if this results

in disadvantages for their own jobs).

Then, there is the influence of the selfishness constraints on the global per-

formance. Without MOSP local constraints, Proposition 3.1 showed that there is

no approximation algorithm with a ratio asymptotically better than 2. Mixing both

MOSP and selfishness constraints, we cannot have a better ratio than 2− 2
N

, according

to Proposition 3.2.

Therefore, there is a clear correlation between the guarantees that we can provide

for each organization, in order to incentive collaboration, and the guarantee we

can provide for the collectivity, in order to improve the global performance. In

this chapter we study such correlations and investigate how much the collectivity

49
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can improve the makespan over the entire platform when each organization is

neither completely selfish nor completely altruistic, but actually tolerates a bounded

degradation on the makespan of its own jobs.

The remaining of this chapter is organized as follows. Section 4.1 presents how

we model this correlation between local and global performance by presenting the

α-MOSP problem and its previously known results. In Section 4.2 we show how

we improved the existing inapproximation bounds for α-MOSP by showing that,

unlike previously thought, there is no polynomial time approximation algorithm

for these bounds even if P = N P. We also present two families of instances whose

Pareto optimal points corroborate the presented inapproximation bounds. Two new

algorithms with guaranteed performance to solve the α-MOSP problem are presented

in Section 4.3. The analysis shows that the first one achieves a 3
2
-approximation for

the obtained global makespan, while it guarantees that no organization will have its

makespan more than doubled. This solution is Pareto optimal according to [OII09].
The second one guarantees a 4

3
-approximation for the global makespan, while no

organization has its makespan more than tripled. This solution belongs to the border

of the inapproximability of the second family, and, thus, it is also Pareto optimal.

4.1 The α-Cooperative Multi-Organization

Scheduling Problem

Recall from Section 3.1 that the Multi-Organization Scheduling Problem introduces

local constraints to guarantee that all organizations will always have incentive to

cooperate. In the final schedule, no organization will have its makespan increased

when compared to the makespan that the organization could have by scheduling its

jobs alone in its own set of processors (C (k) local
max ).

By restraining the feasible schedules to the ones that respect the local constraints,

the minimum attainable global Cmax is restricted. There is a clear trade-off between

how much each organization can improve its own local makespan and how much

the global makespan can be improved.

This motivated Ooshita et al. [OII09] to study a relaxed version of the MOSP

problem called the α-Cooperative Multi-Organization Scheduling Problem (abbreviated
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by α-MOSP). Their study was conducted on the context of unrelated machines

(R | | Cmax), opposed to the previous works on MOSP that always studied the problem

of scheduling on independent machines (P | | Cmax).

In the α-MOSP problem, the local constraints imposed in the classical MOSP

problem are relaxed. Each organization allows a degradation of its initial makespan

by a factor α≥ 1 that represents the degree of cooperativeness. Ooshita et al. study

how much the global makespan can be improved if the makespan obtained by each

organization k is bounded by αC (k) local
max . When α > 1, each organization is less

selfish and is more likely to sacrifice its local objective in order to improve the global

makespan. When α = 1, the problem corresponds to the classical MOSP problem

defined in [PRT07].
The MOSP optimization problem rewritten to model the degree α of cooperative-

ness can be stated as follows:

minimize Cmax such that, for all k (1≤ k ≤ N), C (k)max ≤ α · C
(k) local
max

Their first contribution was to show that for any degree of cooperativeness α≥ 1,

there exists an instance of α-MOSP where the ratio between the makespan that

respects the degree of cooperativeness (Cαmax) and the optimal makespan without the

local constraints (C∗max) satisfies the relation
Cαmax

C∗max
≤ max

¦
∑N

l=1
1
αl ;
(α+1)
α

©

− ε. This

ratio shows that, when α = 1, the lack of cooperation can make the makespan be

N − ε times greater then it could have been with unlimited cooperation.

The authors developed an algorithm called TOMOS, which provides a way to

transform a schedule with unrestrained cooperation into one with degree of coopera-

tiveness α. The algorithm guarantees that the ratio between the Cmax of the solution

without the constraints and the solution constructed with the α-MOSP constraints is

less then or equal to
∑N

l=1
1
αl <

α

(α−1)
.

They also have studied the complexity and inapproximation bounds for the α-

MOSP problem. They have shown that the problem is strongly NP-Hard for any α > 1.

Using the arguments given in the reduction used on the proof, they have calculated

the inapproximation bounds for the problem when α < 2. Under the assumption

of P 6= NP, there is no ρ-approximation algorithm for α-MOSP for any ρ < (α+1)
α

. If

α > 2, the classical inapproximation ratio of 3
2

of the∞-MOSP problem — which is

equivalent to the classical R | | Cmax problem [LST90] on their study — holds.
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In the next sections we will present our study of algorithms with guaranteed

approximation ratios when the degree of cooperativeness is fixed. We denote the

approximation ratios by
�

α; β
�

, meaning that if an algorithm respects a degree of

cooperativeness of α, then the algorithm is a β-approximation for the global Cmax.

We start by presenting some improved inapproximability analysis for the problem.

4.2 Inapproximability analysis

A natural question that arises when studying a multi-objective optimization problem

— like the relaxed version of MOSP — is how to determine the Pareto set that

characterizes the set of Pareto optimal solutions1. In this section we study how to

characterize the Pareto set of MOSP. While this problem is hard (and still open), we

provide some inapproximability results that should help to better characterize the

Pareto set.

We provide in this section some families of instances that clearly show the

trade-off between the objectives being optimized. We will show through these

examples that if we bound the approximation ratio of one criteria, no scheduling

algorithm will be able to improve the approximation ratio of the other objective.

Those inapproximability results are stronger than in [OII09] because the shape of

the inapproximation curve is broader (see Family 1 of instances on Section 4.2) and

because we prove that there is no algorithm with better performance ratio (since the

Pareto optimal solutions of these instances reach these ratios). Hence, while previous

works show that no polynomial algorithms with better ratios exist unless P = N P, we

show that there are no feasible solutions with better ratios at all, which eliminates

the possibility of any further improvements even with the use of non-polynomial

algorithms.

Principle

To better understand the inapproximation ratios presented in this section, we first

start with a simple example. Let us consider an instance with N = 3 organizations
1Pareto optimality is a concept originally used in economics and now widely utilized to indicate

that a solution for a multi-objective problem cannot be improved on one objective without worsening
another objective. See Definition 2.5 (p. 16) for a formal definition.
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and four different jobs, as follows (see Figure 4.1):

O(1) : 1 organization with 2 jobs of length 1;

O(2) : 1 organization with 1 job of length 1
3
;

O(3) : 1 organization with 1 job of length 2
3
.

O(1)

O(2)

O(3)

time
1

Figure 4.1: Simple instance with 3 organizations.

First, remark that if we want to obtain a makespan strictly better than 2, then

it is impossible to schedule two jobs of organization O(1) on the same machine.

Depending on the considered objective (global makespan and respect of the degree

of cooperativeness α), a scheduling algorithm could be interested in either achieving

the optimal global makespan (Cmax = 1) or respect α-MOSP relaxed local constraints

with α= 1 (C (k)max ≤ 1 · C (k) local
max ,∀k ∈ [1; N]).

To achieve a makespan of 1, the jobs of organizations O(2) and O(3) must be

scheduled together. In the best case, the job of O(2) is scheduled before the job

of O(3) which leads to an approximation ratio of
�

3
2
; 1
�

. This means that if the

approximation ratio for the global makespan is bounded by 1, then no algorithm can

construct a solution with a degree of cooperativeness better than 3
2

(see Figure 4.2a).

On the other hand, if the schedule targets to achieve Cmax < 2 and a degree of

cooperativeness α= 1, then the jobs of O(2) and O(3) must start at time 0. Starting

the first job of O(1) at time 0, the second one can start as soon as the job of orga-

nization O(2) finishes. In this case, the approximation ratio obtained is
�

1; 4
3

�

(see

Figure 4.2b).

As these two schedules are Pareto optimal solutions for this instance, there

is no algorithm with a performance ratio strictly better than 3
2

on the degree of
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time
1

(a)
�

3
2
; 1
�

time
1

(b)
�

1; 4
3

�

Figure 4.2: The two relevant schedules.

cooperativeness and 4
3

on the makespan at the same time, as there are no solutions

for this instance with these values.

The principles demonstrated in this example can be extended with the following

instances.

Family 1

Let us consider the following instance of the MOSP problem (depicted in Figure 4.3):

• N organizations;

• O(1) has n(1) = N − 1 identical jobs of length 1;

• For 2≤ k ≤ N , O(k) has only one job of length ai =
1

N−1
.

The total work to be done is equal to
∑

k,i p(k)i = N and the optimal Cmax for this

instance without the MOSP constraints is obtained by scheduling each job of length 1

on different machines and then, scheduling all jobs of length 1
N−1

on the remaining

machine. The optimal Cmax is equal to 1 (see Figure 4.4a).

Suppose now that we want to guarantee a value 1≤ x < 2 for the approximation

ratio of the global makespan. This means that we must schedule all the jobs of O(1)

in different organizations and that they must start at most at time t = x − 1.

If we set x = 1+ 1
N−1

, then we can schedule all the jobs of length ai before the jobs

of length 1 (see Figure 4.4b). This leads to a
�

1; 1+ 1
N−1

�

-approximation. On the
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O(1)

O(2)

O(3)

O(4)

time
1

Figure 4.3: Instance of Family 1 for N = 4.

time
1

(a) (N − 1; 1)

time
1

(b)
�

1; 1+ 1
N−1

�

Figure 4.4: The two extreme Pareto optimal schedules of family 1 for N = 4.

other hand, if we set x = 1+ 1
N−1
−ε then all jobs ai must be scheduled on the machine

that does not have any job of length 1. This schedule increases the makespan of the

jobs ai by a factor of at most N−1 and we get a
�

N − 1; 1+ 1
N−1
− ε
�

-approximation.

This family of instances shows that although the guarantee
�

N − 1; 1+ 1
N−1

�

seems far from the two Pareto optimal solutions
�

1; 1+ 1
N−1

�

and (N − 1; 1), we

cannot improve simultaneously the solution for both objectives.

For N = 3,4,5 and 6, we have Pareto optimal guarantees of
�

2; 3
2

�

,
�

3; 4
3

�

,
�

4; 5
4

�

, and
�

5; 6
5

�

, respectively.
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Family 2

Now consider the family of instances of the MOSP problem described as follows. Let

j, k be integers such that j > 1 and k > j−2. We define three classes of organizations:

O(A) : ( j− 1)k organizations with only one job of length j−1
j

;

O(B) : k organizations with j− 1 jobs of length 1
j
;

O(C) : 1 organization with k+ 1 jobs of length 1.

O(A1)

O(A2)

O(A3)

O(A4)

O(B1)

O(B2)

O(C1)

time
1

Figure 4.5: Instance of Family 2 for ( j = 3; k = 2).

In order to reach the optimal makespan, each job of organization O(C) must be

scheduled alone on an organization. Each one of the jobs of O(B) must be scheduled

together with a job from O(A), in such a way that each pair is scheduled alone on

an organization and the job from O(B) is scheduled before the one from O(A). The

global makespan is optimal (Cmax = 1) and the degree of cooperativeness is equal to
j−1

j +
1
j

j−1
j

= j
j−1

(this configuration is shown in Figure 4.6a).

Proposition 4.1. To improve the degree of cooperativeness to a value better than j
j−1

,

the makespan must be at least equal to 1+ j−1
j

.
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Proof. To prove this, we need to look at what would be an implication of a lower

degree of cooperativeness. If the degree of cooperativeness is lower than j
j−1

, then

each job of a type O(A) organization has to be scheduled without any other job of

organizations O(A) or O(B). This only leaves k+ 1 machines to schedule the k( j− 1)
jobs of organizations O(B). Furthermore, if the makespan is strictly lower than 1+ j−1

j
,

only one job of O(C) and at most j − 2 jobs of O(B) can be scheduled on those k+ 1

machines (see Figure 4.6b).

However, as k > j− 2, we have:

(k+ 1)( j− 2) = k( j− 2) + j− 2< k( j− 2) + k = k( j− 1)

Therefore, if the makespan is strictly lower than 1+ j−1
j

there is at least a machine

with a job of type O(B) and one of type O(A), which leads to a cooperativeness ratio of

at least j
j−1

.

time
1

(a)
�

j
j−1

; 1
�

time
1

(b)
�

1; 1+ j−1
j

�

Figure 4.6: Two Pareto optimal schedules of Family 2 for ( j = 3; k = 2).

The Pareto optimal guarantees are then
�

j
j−1

; 1+ j−1
j

�

. For j = 2, 3, 4 and 5, we

have Pareto optimal guarantees of
�

2; 3
2

�

,
�

3
2
; 5

3

�

,
�

4
3
; 7

4

�

, and
�

5
4
; 9

5

�

, respectively.
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Summary

In this section, we have studied the trade-offs between the degree of cooperativeness

of the organizations and the best global makespan attainable that respects the relaxed

MOSP constraints. We presented two families of instances and their respective sets

of Pareto optimal approximation ratios.

The first family of instances, presented in Section 4.2, improves the previous

known bounds established by Ooshita et al. [OII09] in two distinct ways.

First, we proved that what was previously though as not polynomially approx-

imable (unless P = N P) is actually not approximable at all. We show that, for this

family of instances, it is not possible to simultaneously improve the guarantee of
�

N ; 1+ 1
N−1

�

on both criteria.

Second, despite the fact that the approximation ratios obtained in families 2

and 3 are in the curve (α+1)
α

presented in [OII09], better ratios are theoretically still

possible if only one criterion is improved. The rectangles in Figure 4.7 mark the area

that is known to be not attainable. However, points on the outline of the rectangles

(that are not covered by other rectangles) are still attainable.

The second family of instances, presented in Section 4.2, shows that ratios of

the form
�

j
j−1

; 1+ j−1
j

�

are Pareto optimal. This result also shows that for large

values of j, we have lim j→∞

�

1+ j−1
j

; j
j−1

�

= (2; 1). This means that the ratio (2; 1)
obtained with the algorithms ILBA, LPT-LPT, SPT-LPT, and Less Helped First—
presented in Section 3.3 — is also Pareto optimal.

Figure 4.7 summarizes the inapproximation bounds presented in this section.

4.3 Approximation algorithms

We have developed two algorithms that guarantees an approximation factor for the

MOSP problem with relaxed local constraints of
�

2; 3
2

�

and
�

3; 4
3

�

. It means that if

the makespan of an organization is worsened by a factor at most of 2 (respectively

3), then the global makespan is no more than 3
2

(respectively 4
3
) of the optimal.

Since the value for the optimal makespan is unknown, we use the dual approxi-

mation technique introduced by Hochbaum and Shmoys [HS88], that uses a binary

search approach to estimate the value of the optimal makespan. For the sake of
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Figure 4.7: Inapproximation bounds defined by points belonging to families 1 and 2.
The area inside the rectangles are not attainable.

clarity — and without loss of generality — we rescale the length of all jobs in such a

way that 1 is the length of optimal makespan.

Principle

The main idea of the algorithms presented in this section is to allocate optimally

all the large jobs. This placement will be used to determine where to schedule the

remaining jobs of the organizations, with respect to the relaxed local constraints.

The definition of what is a large job depends on the value of the target global

makespan. Both presented algorithms are designed on the same basic structure of

job partitioning. The principle can be decomposed into five successive phases as

follows:

1. all organizations are classified according to the value of their initial makespan

and presence of a large job;

2. an algorithm is used to determine the placement for the large jobs;
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3. some of the large jobs are used to determine where to schedule all the jobs

from their owners;

4. entire organizations are migrated to machines with total load less than the

optimal makespan;

5. finally, the remaining organizations (the ones with initial makespans too small

or too large) are allocated and the entire schedule is produced, starting all the

jobs as soon as possible in the predetermined order to remove idle times.

Algorithm 1:
�

2; 3
2

�

The first approximation algorithm presented computes a schedule that is a 3
2
-

approximation for the global makespan, while ensuring that no organization will

have its makespan more than doubled if compared with its initial makespan.

Phase 1: Classify each organization into one of the following disjoint groups:

• A= {O(k) | C (k) local
max ≤ 1

2
};

• B1 = {O(k) |
1
2
< C (k) local

max ≤ 3
4

and @ J (k)i such that p(k)i > 1
2
};

• B2 = {O(k) |
1
2
< C (k) local

max ≤ 3
4

and ∃! J (k)i such that p(k)i > 1
2
};

• C= {O(k) | C (k) local
max > 3

4
}.

This classification gathers organizations that have small initial makespans (A),

that are hard to schedule with respect to the local constraints; organizations that

are easy to schedule (C), since within the global makespan of 3
2

they will always

fufill the local constraints; and intermediate organizations (B1 and B2) that need

to be carefully scheduled. In this classification, large jobs are defined as jobs whose

processing times p(k)i are strictly greater than 1
2
.

Phase 2: We now assign all large jobs one per processor, from the end of the

schedule under construction (time= 3
2
) to the beginning (time= 0).

Phase 3: The assignment calculated is adjusted as follows. Large jobs owned by

organizations in C remain untouched, while each large job owned by an organization

in B2 is replaced by all jobs of its owner (including itself).
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Phase 4: Group all organizations from B1 and B2 into pairs (O(i) and O( j), where

C (i) local
max ≤ C ( j) local

max ) in such a way that each machine has only one pair and all

jobs from O(i) are scheduled before the jobs from O( j). If |B1|+ |B2| is odd, then

schedule the jobs from the last remaining organization on their original machines at

the beginning of the schedule.

Phase 5: Assign all jobs owned by organizations in A and the remaining jobs

from the last organization B1 (if any) into their original machines. Then, assign all

remaining jobs from organizations in C into the scheduling using any list scheduling

algorithm. Then, compact the schedule, i.e., remove any idle time by executing early

the jobs starting after an idle time.

Analysis

The Phase 2 of the algorithm presented in the previous section schedules the large

jobs, i.e. those with p(k)i > 1
2
, one per processor. The number of large jobs is limited

to N as shown in the following lemma:

Lemma 4.2. There are at most N jobs J (k)i such that p(k)i > 1
2
.

Proof. By contradiction. Suppose that there are N organizations with N + 1 large

jobs. Since the number of large jobs is larger than the number of organizations, two

large jobs with processing times p(k)i and p(l)j must be assigned to a same machine on

the optimal schedule. Then Cmax ≥ p(k)i + p(l)j > 1, which contradicts the fact that the

optimal schedule must be equal to 1.

During Phase 4, pairs of organizations from B2 have all their jobs assigned to

a same machine and they are scheduled one after the other. The following lemma

shows why stacking two organizations does respect the α-MOSP constraints.

Lemma 4.3. Given two organizations O(i) and O( j), if C (i) local
max ≤ C ( j) local

max then all jobs

from these organizations can be scheduled sequentially with respect to their relaxed local

constraints.
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Proof. If all jobs from O(i) are followed by all jobs from O( j) on the same machine,

we have C (i)max = C (i) local
max and

C ( j)max = C (i) local
max + C ( j) local

max

≤ C ( j) local
max + C ( j) local

max

= 2C ( j) local
max

At the end, organizations from B2 were coupled and assigned to machines with a

total load greater than 1 and smaller than 3
2
.

Lemma 4.4. Jobs of organizations from A always can be scheduled at the beginning of

the schedule before large jobs from organizations in C during Phase 5.

Proof. Since |A|+ |B1|+ |B2| ≤ N , it is sufficient to schedule organizations from A

on the same machines where large jobs from C were assigned. Since a large job from

C has processing time at most equal to 1, then the total load of the machine will be

less than or equal to 1
2
+ 1= 3

2
.

Theorem 4.5. The schedule generated by Algorithm 1 is a 3
2
-approximation for the

global makespan and no organization has its makespan more than doubled if compared

with its initial makespan.

Proof. First, we will show that the makespan obtained by the algorithm is a 3
2
-

approximation for the global makespan.

We start by remarking that during Phase 4, organizations from B1 and B2 are

coupled and each pair is assigned to a different machine. The total load on these

machines is strictly greater than 2 · 1
2
= 1 and less than or equal to 2 · 3

4
= 3

2
. If

|B1|+ |B2| is odd, the machine with the organization that is scheduled alone has a

total load bounded by 3
4
.

From Lemma 4.4, it is sufficient to schedule all jobs from A before the large jobs

from C. Since C (A) local
max ≤ 1

2
and maxi,k p(k)i ≤ 1, then the load on these machines are

bounded by 1
2
+ 1= 3

2
.

Finally, after Phase 5, all remaining small jobs (p(k)i ≤
1
2
) are scheduled using

any list scheduling algorithm. Since there always exists a machine with load < 1
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available (otherwise the total work to be done would be larger than N and the

optimal makespan would be larger than 1), there is always a machine in which these

jobs can be scheduled. The remaining jobs are smaller than 1
2
, therefore the load

does not exceed 1+ 1
2
= 3

2
. This finishes the proof that the schedule generated is a

3
2
-approximation for the global makespan.

Furthermore, it is easy to remark that no organization will have its makespan

more than doubled. Organizations from A will be scheduled at the beginning of the

schedule and will not be delayed at all. Organizations from B1 and B2 will remain

alone on their own machines or will be scheduled together. Lemma 4.3 guarantees

that no stacked organization will be delayed. Organizations from C can be scheduled

anywhere from t = 0 to t = 3
2
, since 2 · C (C)max ≤ 2 · 3

4
= 3

2
.

Algorithm 2:
�

3; 4
3

�

Using the same frame as in Algorithm 1, we define below a new algorithm which

achieves a 4
3
-approximation for the global makespan while guaranteeing that no

organization will have its local makespan more than tripled.

This algorithm also has five phases described below.

Phase 1: Classify each organization into one of the following disjoint groups:

• A= {O(k) | C (k) local
max ≤ 1

3
};

• B1 = {O(k) |
1
3
< C (k) local

max ≤ 4
9

and @ J (k)i such that p(k)i > 1
3
};

• B2 = {O(k) |
1
3
< C (k) local

max ≤ 4
9

and ∃! J (k)i such that p(k)i > 1
3
};

• C= {O(k) | C (k) local
max > 4

9
}.

Phase 2: We first pair all the large jobs using an LPT scheduling order. Since a

large job has p(k)i > 1
3
, we have at most 2N large jobs owned by organizations either

in B2 or C. Remark that if there are x large jobs with x ≤ N , then there will be no

pairing, and there will even be N − x machines with no large jobs.

During this phase, we first allocate jobs from B2 on their own organizations, or if

two jobs from B2 have to be scheduled together we do so on the organization with

the largest index. We place paired jobs of C (or single jobs of C) on the remaining

organizations.
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In the rest of the algorithm, we will note (B2,C) the set of pairs created in this

phase with one member of B2 and one member of C. Similarly, we will use the sets

(C,C) and (B2,B2) and if the number of large jobs is strictly lower than 2N , the sets

(B2) and (C) will denote respectively the jobs of B2 and C which were not matched

in a pair.

Phase 3: As in the previous algorithm, the assignment calculated in Phase 2 is

adjusted and each large job owned by an organization in B2 is replaced by all the

jobs of its owner (including itself). These jobs will be tied together in the rest of the

algorithm and treated as a unique job.

Phase 4: Since we have at most 2N large jobs, the schedule generated in Phase 2

can contain machines with jobs from only one B2 or C organization, or jobs from

two organizations taken in B2 or C.

As long as the set (B2,C) has at least two elements, we consider two such pairs.

Let O(i) be the organization from B2 whose job is in the first pair from (B2,C), and

O( j) be the organization from B2 whose job is in the second pair. Supposing that i > j,

we put all the jobs from O(i) and O( j) on the machine i, and the two jobs from C they

were paired with on machine j. Jobs on machine i are ordered according to their

local makespan. The sets (B2,B2), (C,C) and (B2,C) are then updated accordingly.

This leaves us with many pairs in (B2,B2) and (C,C) and at most one in (B2,C).

Remember that the sets (B2) and (C) are eventually not empty if there were less

than 2N large jobs in Phase 2. Jobs in (B2) are allocated to their own organization

machine.

Using a similar argument from Lemma 4.3 we can show that up to three organi-

zations can be scheduled sequentially if the jobs are scheduled from the organization

with smaller initial makespan to the organization with the larger makespan.

As long as there are organizations of type B1 which are unaffected, these orga-

nizations are distributed, allocating one to each pair in (B2,B2), and two to each

single organization in (B2). After this stage, if there are some organizations from B1

which are unaffected, then all the organizations from B2 are either in triplets from

B1 and B2 or in the last pair of (B2,C).

If there were strictly less than N large jobs in Phase 2, the empty machines

are filled with triplets of organizations from B1, as long as that is possible. After

this stage, either all the jobs from organizations in B1 and B2 have been allocated
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somewhere, or all the machines either have a triplet from jobs in B1 and/or B2, or

they have at least one large job from C.

Phase 5: Assign all jobs owned by organizations in A to their original machines

with an original pair of (C,C) from Phase 2 or a single job from (C) if the remaining

pairs in (C,C) are only pairs formed during Phase 4. Then, assign all remaining jobs

from organizations B1 sequentially to any machine with less than 1 unit of workload.

Finally, assign all the remaining small jobs in C to the scheduling using any list

scheduling algorithm. The jobs executions are ordered on each machine according

to their original local makespan.

Analysis

Lemma 4.6. There are at most 2N jobs J (k)i such that p(k)i > 1
3

Proof. By contradiction, similar to the proof of Lemma 4.2. Suppose that there are

N organizations with 2N + 1 large jobs. Since the number of large jobs is larger

than twice the number of organizations, three large jobs must be assigned to a same

machine on the optimal schedule. Then Cmax ≥ 3 · p(k)i > 3 · 1
3
> 1, which contradicts

the fact that the optimal schedule must be equal to 1.

Lemma 4.7. When considering a pair of (B2,C) formed in Phase 2, the length of the

jobs from C is less than 2
3
, and scheduling two such jobs together is possible within the

targeted global makespan.

Proof. By contradiction. Suppose that LPT scheduled the pair (B2,C) together and

that the lengths of the jobs from C are greater than or equal to 2
3
. Since the makespans

of organizations in B2 are greater than 1
3
, the makespan obtained on the machine

where the pair were assigned is greater than 2
3
+ 1

3
= 1, which contradicts the fact

that LPT scheduled the first two jobs optimally on each machine [Gra69].

Lemma 4.8. Scheduling all the jobs from any triplet of organizations of type B1 or B2

on a single machine is always possible within the target bounds on global makespan

and degree of cooperativeness.

Proof. Since the makespan of any organization in B1 and B2 is at most 4
9
, scheduling

a triplet of these organizations on a same machine produces a makespan of at most

3 · 4
9
= 4

3
, which respects the target bounds on global makespan.
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Similarly to Lemma 4.3, this triplet can be scheduled sequentialy while respecting

the degree of cooperativeness. Let O(i), O( j), and O(k) be the organizations from this

triplet with C (i) local
max ≤ C ( j) local

max ≤ C (k) local
max . If the organizations are scheduled from

the one with smaller initial makespan to the one with larger makespan, we have:

• C (i)max = C (i) local
max ;

• C ( j)max = C (i) local
max + C ( j) local

max ≤ 2C ( j) local
max ;

• C (k)max = C (i) local
max + C ( j) local

max + C (k) local
max ≤ 3C (k) local

max .

This shows that all organizations have their makespan at most tripled and that

the targeted degree of cooperativeness α= 3 is respected.

Lemma 4.9. There are always enough machines left to assign all the organizations of

type A to a machine where there are no jobs of type B1 or B2, and no pair of (C,C)

formed during Phase 4.

Proof. During phase 4, pairs of (C,C) are formed by splitting two pairs of (B2,C) and

creating two new pairs by grouping the two organizations of B1 in one pair and

the two organizations of C in the other. This means that the number of pairs (C,C)

generated by Phase 4 is bounded by half of the number of organizations in B2 (as

are pairs (B2,B2)) and these pairs (C,C) are actually assigned to machines originally

owned by an organization in B2. Since |A|+ |B1|+ |B2| < N , there is always a

machine to assign the jobs from A not owned by an organization from B1 or B2.

Lemma 4.10. Whenever there is a large job of C scheduled on a machine and no more

than 1 unit of workload, jobs from organizations B1 can be added to the machine while

still respecting the target bounds on global makespan and degree of cooperativeness.

Proof. First, let us prove that the bound on the global makespan is respected. Individ-

ual jobs J (k)i belonging to an organization B1 are all strictly shorter than 1
3
. Therefore,

when adding such a job to a machine with less than 1 unit of workload, the total

workload is strictly lower than 4
3
. Hence, when scheduling all the jobs without idle

time, the makespan is strictly lower than 4
3
.

Since the targeted degree of cooperativeness is 3, the inserted job J (k)i must

complete at most at time 3C (k) local
max . Since k is an organization of type B1, its local
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makespan is more than 1
3

and 3C (k) local
max is greater than 1. As there is a large job (i.e.,

of length more than 1
3
) of C on the machine, and this large job will be executed last

with a global makespan lower than 4
3
, any job scheduled on the same machine will

complete before time 1. In particular, job J (k)i will complete before time 1, which is

lower than thrice its local makespan.

Lemma 4.11. Remaining small jobs from organization C always have a machine to be

scheduled on, while still respecting the target bounds on global makespan and degree of

cooperativeness.

Proof. Within the targeted makespan of 4
3
, the degree of cooperativeness α = 3 is

always respected for any organization k in C because C (k) local
max > 4

9
⇒ 3C (k) local

max > 4
3
.

This means that the remaining small jobs from C can always be scheduled at the end

of the schedule, after all other jobs were assigned, while respecting the degree of

cooperativeness.

Since there is always a machine with load less than 1, after the addition of a

small job from C we will have a makespan smaller than 1+ 1
3
= 4

3
and, therefore, the

target bound on the global makespan is respected.

Theorem 4.12. Algorithm 2 provides a schedule which has a global makespan lower

than or equal to 4
3
, and for which each task J (k)i completes at most at time 3C (k) local

max .

Proof. To prove the theorem, it is sufficient to note that:

• During Phase 1, the organizations are just structured in groups;

• During Phase 2, we pair large jobs to distribute them evenly and ensure that

the global makespan will be lower than 4
3
. We prove in Lemma 4.6 that this

pairing is possible, and at this stage the workload affected on each machine is

strictly lower than 1, as proved in [Gra69];

• During Phase 3, we add at most 1
9

units of workload to pairs (B2,C), and 2
9

units of workload to pairs (B2,B2);

• Since the organizations of type B2 have a local makespan lower than 4
9
, and as

we proved in Lemma 4.7 that we can bound the length of jobs from C paired

with a job from B2, the transformation done in Phase 4 between two pairs of



68 CHAPTER 4. RELAXED MULTI-ORGANIZATION SCHEDULING ALGORITHMS

(B2,C) into one pair of (B2,B2) and one pair of (C,C) keeps the workload of

all machines under the 4
3

bound;

• The triplets formed in the second part of Phase 4 can be scheduled within

the targeted bounds for the global makespan and degree of cooperativeness

according to Lemma 4.8;

• During Phase 5, jobs from organizations of type A are alloted to machines

with a workload lower than 1, since the pairs of (C,C) are original pairs from

Phase 2, as proved in Lemma 4.9. The workload on these machines is then

lower than or equal to 4
3
;

• In the second part of Phase 5, the remaining jobs from organizations B1 are

alloted to the least utilized machines such that they will complete before thrice

their local makespan as proved in Lemma 4.10;

• Finally, Lemma 4.11 states that all the remaining small jobs from organizations

C can be scheduled within the global makespan bound.

4.4 Concluding remarks

In this chapter we presented our study on a relaxed form of the scheduling problem

known as the Multi-Organization Scheduling Problem (MOSP). We investigated

how limited cooperation between organizations can greatly improve the global

performance of grid computing platforms. This relaxed form of MOSP is known

in the literature as the α-Cooperative Multi-Organization Scheduling Problem (α-

MOSP). It models the scheduling problem where organizations accept a limited

degradation on their perceived performance in order to improve the quality of the

global performance.

We improved the previously known inapproximation bounds for α-MOSP by

showing that it is actually not polynomially approximable even if P = N P. We

designed two families of instances whose Pareto optimal points corroborate the

presented inapproximation bounds. Then, two new algorithms with guaranteed
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Figure 4.8: Graphical summary of the results. The figure shows the points that can
be obtained by the currently known algorithms and the rectangles show the areas
that are not attainable.

performance to solve the α-MOSP problem were developed and analyzed. We showed

that the first one achieves a 3
2
-approximation for the obtained global makespan,

while it guarantees that no organization will have its makespan more than doubled.

The second one guarantees a 4
3
-approximation for the global makespan, while no

organization has its makespan more than tripled.

The results presented in this chapter are summarized in Figure 4.8. The figure

evidences the improvements of the known results and shows how close the new

approximation ratios are from the Pareto set.





CHAPTER 5
Coordination mechanisms for

selfish multi-organization
scheduling

UNTIL this point we have studied the notions of cooperation and selfishness on

the Multi-Organization Scheduling Problem using classical combinatorial opti-

mization approaches. In this chapter, we extend the notions of independence and

selfishness organizations by allowing each of them to rationally choose the best

strategy for its jobs. The goal is to study the interactions between the indepen-

dent organizations as the result of rational selfish players attempting to reach an

equilibrium.

The main contribution presented in this chapter is a game theoretic model for the

MOSP problem — contemplating the individualism and selfishness of organizations

collaborating in a grid computing system — that leads to configurations with a cost

as close as wanted to a pure Nash equilibrium, and with a bounded price of anarchy.

The idea is to study the problem as a non-cooperative game, providing coordination

mechanisms allowing each organization to continuously attempt to obtain the best

possible makespan until an equilibrium is achieved.

The remaining of the chapter is organized as follows. Section 5.1 describes our

game-theoretic model for the Multi-Organization Scheduling Problem. Section 5.2

studies a coordination mechanism based on classical scheduling algorithms, showing

71
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that these kind of mechanisms do not admit ε-approximate equilibrium for ε < 2

and that the problem of deciding whether a particular instance admits a pure Nash

equilibrium is co-NP hard. In Section 5.3 we define a new coordination mechanism

where priorities are given to organizations. We present an algorithm that constructs

pure ρ-approximate equilibria and analyze the price of anarchy. Finally, some

conclusion remarks are presented in Section 5.4.

5.1 Game-theoretic model

In the last few years, scheduling problems have been intensively studied by re-

searchers interested in both algorithms and game-theory — a branch of game theory

known as algorithmic game theory [Nis+07]. Scheduling problems are typically

modeled as selfish load balancing, non-cooperative games.

Load balancing games were first studied by Koutsoupias and Papadimitriou

[KP99]. In their seminal work, the authors studied load balancing in the form of a

routing game, consisting of two nodes connected by parallel edges with different

speeds. They were the first to formally study the inefficiency caused by the lack of co-

ordination. Their study led to the definition of price of anarchy — see Definition 2.12

(p. 21) — comparing the cost of Nash equilibria to the cost of the optimal (social

cost).

In the context of scheduling, a selfish load balancing game [Vöc07] is a game

where each player k is responsible for one job Jk. The goal of each player is to assign

its job to a processor with the lowest load possible. The load of a processor j is

defined by ` j =
∑

i|π(Ji)= j pi. Thus, the set of possible strategies for player k is the

set of available processors, i.e., Sk =M. A player can choose a strategy sk ∈ Sk that

represents one of the available processors. The cost ck for the player is the load of

the chosen machine, i.e., ck = `sk
. The social cost for the collectivity is defined as the

makespan Cmax =maxm∈M `m.

Two interesting properties of load balancing games are:

Theorem 5.1 ([Fot+02]). For parallel independent machines and uniform machines,

every instance of the load balancing game admits at least one pure Nash equilibrium.
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Theorem 5.2 ([FKS05] and [EKM07]). For parallel independent machines and uni-

form machines, it is always possible to construct a Nash equilibrium in polynomial time

for every instance of the load balancing game.

These results were further extended by other works that studied a similar game,

with one player in charge of one job, but this time with the cost function defined

to be the completion time of the player’s job (Ck). See, e.g., [Car+06; CKV02;

DT09; Imm+09; KP09; LO01; SV07]. Czumaj, Krysta, and Vöcking [CKV02] gave

tight results (Θ(log m/ log log m)) for the price of anarchy on pure Nash equilibria

using uniform parallel machines. Please refer to Dürr and Thang [DT09] for a

comprehensive summary of these results.

All these works have in common the fact that each player is in control of only one

job. The nature of the MOSP problem imposes a different setup, with each player

responsible for one or more jobs. We will see in the remaining of this chapter that

this changes considerably the properties of this scheduling game.

We associate one selfish agent with each organization, i.e., jobs originally from

organization O(k) are managed by agent k. Each agent can choose on which organi-

zation each one of its jobs will be executed, knowing that each selfish organization

will schedule first its own jobs.

In other words, a pure strategy sk for player k is a vector of n(k) elements such

that sk(i) corresponds to the organization chosen by player k for job J (k)i . As before,

we denote Sk the set of all the strategies for agent k.

A configuration (or profile) M is a vector (s1, s2, . . . , sN ) such that sk is the strategy

chosen by agent k. The cost of an agent k under configuration M — denoted by

ck(M)— corresponds to the makespan obtained by organization O(k): C (k)max.

Like we saw in Section 2.3, when all agents choose an assignment for their jobs

in such way that no agent has incentive to change its strategy, we say that this

configuration is a pure Nash equilibrium (see Definition 2.10, p. 20).

However, some games do not always feature pure Nash equilibria. Nevertheless,

these games can still have their stability studied through the concept of ε-approximate

equilibrium. In ε-approximate equilibrium, each selfish agent is satisfied when the

chosen strategy results in an approximation of its best response.

Definition 5.3 (ε-approximate equilibrium [Rad80]). A strategy vector s ∈ S is said
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to be a ε-approximate equilibrium if for all players i and each alternate strategy

s′i ∈ Si, we have that:

ci(si, s−i)≤ ε · ci(s
′
i, s−i)

Every schedule has some social cost, as well as individual costs for every agent.

The social cost of a configuration is the global makespan obtained on the system

(Cmax). Due to the lack of coordination, configurations in equilibrium may have

higher costs if compared to the global social optimum. A measure of this inefficiency

is the price of anarchy. It is defined as the ratio between the cost of the worst Nash

equilibrium and the optimal cost, which in general is not an equilibrium.

Local scheduling policy

Differently from problems like the selfish load balancing problem, the set of strategies

chosen by all agents to define where each job will be executed is not sufficient to

compute the final schedule of all jobs. We also need a way to specify how jobs

assigned to a same machine will be scheduled.

In order to study the price of anarchy in such games, Christodoulou et al. [CKN04]
introduced the notion of coordination mechanisms. A coordination mechanism is a

set of local policies, one for every machine, that specify how the jobs assigned to this

machine will be scheduled, independently of how the other jobs were assigned to

other machines.

A coordination mechanism for the MOSP game must reflect the selfish behavior

of each organization. In our study, we assume that all organizations are individualist

and selfish. We also assume that each organization has full control on the scheduling

of the jobs assigned to its machines, which means that, in theory, it is possible for

organizations to cheat the devised global schedule by re-inserting their jobs earlier

in the local schedules1.

Therefore, a coordination mechanism for the MOSP game must consider that

an organization will always prioritize the execution of its own jobs before any job

owned by other organizations, no matter how this decision will impact the makespan

1For a more detailed study about the impact on the quality of the obtained schedule caused by
this selfish behaviour, please refer to [Coh+10].
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of other organizations. In other words, each organization will apply a “my jobs first”

policy, scheduling its own jobs before jobs migrated from other organizations.

As long as the coordination mechanism schedules the local jobs at the beginning

of the schedule, the order they get scheduled will not change the makespan obtained

by the organization. The remaining (foreign) jobs must be scheduled according to

some criteria. We added to the game model the notion of job priority. Organizations

will compute the local scheduling of the foreign jobs according to their scheduling

priority. These jobs will be scheduled in decreasing priority order, i.e., jobs with higher

priority will be scheduled first and jobs with the same priority will be scheduled in

no particular order.

In the remaining sections, we study the game regarding two different priority

policies. First, we study the MOSP game with priority given to the jobs, where all jobs

have a distinct priority. Then, we study the game with priority given to organizations,

where all jobs from a same organization have the same priority, but each organization

has a distinct priority.

5.2 Game with priority to jobs

Classical scheduling algorithms usually compute the order in which the jobs will be

executed according to some rule that assigns a different priority calculated separately

for each job. For instance, the Longest Processing Time first (LPT) scheduling

algorithm prioritizes the jobs with larger processing times (the priority of each job

is its length), the Shortest Processing Time first (SPT) algorithm prioritizes the jobs

with smaller processing times, etc.

For the general scheduling problem, Immorlica et al. [Imm+09] analyzed games

with coordination mechanisms based on some classical scheduling algorithms (with

priorities given to jobs). They studied the scenario where each job is controlled by a

selfish agent that selects the machine that minimizes the expected job completion

time. Their study shows that the set of pure Nash equilibria can always be computed

by the LPT algorithm if the coordination mechanism used is to prioritize the largest

jobs (and, analogously, that the SPT algorithm calculates the set of pure Nash

equilibria if the coordination mechanism prioritizes the smallest jobs).
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Due to MOSP constraints, these results do not hold for MOSP games. With

coordination mechanisms prioritizing jobs according to a criteria that does not depend

on information about the organization that owns the jobs, the MOSP game may not

admit a pure Nash equilibrium, independently of the coordination mechanism being

used.

We start by showing that with this priority model, even if we consider the notion

of approximate equilibria, we cannot always have pure ε-approximate equilibrium

for values of ε < 2. Then we show that the decision problem of deciding whether a

particular instance admits a pure Nash equilibrium is co-NP hard.

No pure ε-approximate equilibrium for ε < 2

Theorem 5.4. MOSP games defined with a coordination mechanism that assigns

priorities to jobs independently of the owner organization do not admit a pure ε-

approximate equilibrium for values of ε < 2.

Proof. We prove this theorem using the particular instance of the MOSP game

depicted in Figure 5.1a. In this instance, organizations O(1), O(2), and O(3) have each

one a job of length equal to δ, for some arbitrarily small constant δ > 0. Organization

O(4) has two jobs of length 1+ 2δ and organization O(5) has four jobs also of length

1+ 2δ. We take an arbitrary coordination mechanism that prioritizes the jobs as

follows: jobs J (5)2 , J (4)2 , J (5)3 , and J (5)4 have priorities respectively equal to 1 (higher

priority), 2, 3, and 4 (lower priority), while the remaining jobs have priorities lower

than any of these four jobs. The priorities of these jobs are indicated in Figure 5.1.

MOSP local constraints impose that the low priority jobs J (1)1 , J (2)1 , and J (3)1 must

be scheduled in their original organizations at time t = 0 (otherwise they would

increase the makespan for their original organizations). Only organizations O(4) and

O(5) are capable of improving their local makespans by changing the strategy for the

higher priority jobs. The best makespan that organizations O(4) and O(5) can attain

(while respecting MOSP’s constraints) is equal to 1+ 3δ.

A best response policy for this game does not converge to an equilibrium. Figures

5.1d, 5.1e, and 5.1f show that both organizations can use their higher priority jobs

to produce a configuration with the optimal makespan possible (1+ 3δ) by delaying

a job from the other organization and increasing its makespan to 2+ 5δ.
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(b) C (4)max = 1+ 3δ;
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(c) C (4)max = 2+ 4δ;
C (5)max = 1+ 3δ
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(d) C (4)max = 2+ 5δ;
C (5)max = 1+ 3δ
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(e) C (4)max = 1+ 3δ;
C (5)max = 2+ 5δ
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1

(f) C (4)max = 1+ 3δ;
C (5)max = 2+ 5δ

Figure 5.1: Instance with no ε-approximate equilibrium for ε < 2.

Among all the possible configurations respecting MOSP’s constraints, no configu-

ration is a pure Nash equilibrium. Figures 5.1b and 5.1c show the only Pareto efficient

configurations for organizations O(4) and O(5), i.e., the configurations where the Cmax

of one organization cannot be improved without increasing the Cmax of the other.

When one of the organizations attain the optimal local makespan of 1+ 3δ, the best

makespan that can be obtained by the other is 2+ 4δ.

In this example, the Pareto efficient configurations give the smallest ε needed to

obtain an approximate pure equilibrium. No pure ε-approximate equilibrium exists

unless ε≥ 2+4δ
1+3δ

⇒ ε≥ 2.

This shows that MOSP games with coordination mechanisms that assign priorities

to jobs do not always admit a pure ε-approximate equilibrium if ε < 2.

Note that the result of Theorem 5.4 shows that there is a large class of different

coordination mechanisms that do not admit ε-approximate equilibrium for values

of ε < 2 for the MOSP game. Most notably, the theorem applies to games with

coordination mechanisms based on classical scheduling algorithms like LPT, SPT, etc.
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co-NP hardness

In this section, we show that deciding if a particular instance of MOSP game has a

pure Nash equilibrium is co-NP-hard.

The idea of the proof is to build an instance of the MOSP problem with three

types of jobs: (i) large jobs that cannot be scheduled on other organizations because

of MOSP local constraint; (ii) a set of n jobs with integer lengths that are associated

with the integers to be partitioned on two subsets with the same sum; (iii) three

jobs — with the three (different) smallest priorities of all jobs of the instance — that

will cause the disequilibrium when the jobs of type (ii) can be partitioned. More

formally:

Theorem 5.5. The decision problem of deciding whether MOSP has a pure Nash

equilibrium is co-NP-hard when different priorities are given to jobs.

Proof. The decision version of the problem of deciding whether a given instance of

the problem MOSP has a pure Nash equilibrium can be stated as follows:

Instance: a set of N organizations {O(1), O(2), . . . , O(k), . . . , O(N)} and their respec-

tive jobs J (k)i .

Question: does the instance admit a pure Nash equilibrium?

In order to prove the theorem, we reduce the classical PARTITION problem [GJ79],
known to be NP-complete, to the complement of the problem of deciding whether

an instance of MOSP has a pure Nash equilibrium, i.e., the problem of knowing if

the instance does not admit a pure Nash equilibrium. Remind that the PARTITION

problem can be stated as follows:

Instance: a set of n integers s1, s2, . . . , sn.

Question: does there exist a subset J ⊆ I = {1, . . . , n} such that:

∑

i∈J

si =
∑

i∈I\J

si ?

Given an instance of the PARTITION problem, we construct an instance of MOSP

problem with N = 5 organizations as follows:
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• O(1) and O(2) have each one a job with length equal to 1;

• O(3) has n+1 jobs, where job J (3)1 has length equal to
∑

i∈I

si

2
+3 and, for 1≤ i ≤ n,

job J (3)i+1 has length si;

• O(4) has 3 jobs: J (4)1 with length equal to
∑

i∈I

si

2
+ 3, J (4)2 with length equal to 1,

and J (4)3 with length 3;

• O(5) has 2 jobs J (5)1 and J (5)2 with lengths equal to
∑

i∈I

si

2
+ 3 and 2.5, respectively.

In order to simplify the notation used in the proof, we assume, without loss of

generality, that the instance of the PARTITION problem is composed of integers si such

that si ≥ 10.

We fix a policy for this MOSP game, with different priority given to the jobs, in

order to analyze the equilibria of the game. The policy used by each organization is

to first schedule its own jobs, then schedule the jobs from O(3) (in no particular order)

and finally schedule the remaining jobs in non-decreasing order of jobs’ length.

This instance is constructed in polynomial time and is depicted in Figure 5.2.

1

2.5

3

s1 sn

1

1

Σsi/2 +3

Σsi/2 +3

Σsi/2 +3

...

Figure 5.2: Instance of the MOSP problem used in the reduction.

We now prove that the PARTITION problem does have a solution if and only if the

constructed instance of MOSP does not admit a pure Nash equilibrium.

Assume that there exists a subset of indexes J that solves the PARTITION problem.

Organizations O(1) and O(2) will always leave their jobs of length 1 on their own

organizations due to the MOSP local constraint of not increasing the local makespan.

Jobs originally from organization O(3) have higher priority. Since the PARTI-

TION problem admits a solution, the best response for O(3) is to equally divide jobs

J (3)2 , . . . , J (3)n+1 among the machines of organizations O(1) and O(2), and schedule its
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∑
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si/2+ 3.5
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1

Σsi/2 +3

Σsi/2 +3

Σsi/2 +3

I \ J

J

(c) C (4)max =
∑

si/2+ 5;
C (5)max =

∑

si/2+ 3.5

Figure 5.3: Possible configurations for jobs J (4)2 , J (4)3 , and J (5)2 , showing that one
organization is always able to improve its local Cmax.

largest job J (3)1 on its own machine. The smaller jobs will be scheduled after jobs J (1)1

and J (2)1 (both of length 1), but before the jobs from any other organization.

Organizations O(4) and O(5) must also schedule their largest jobs (J (3)1 , J (4)1 , and

J (5)1 ) on their own machines because of MOSP local constraint. However, they are

free to change their strategies for jobs J (4)2 , J (4)3 , and J (5)2 (of lengths 1, 3, and 2.5).

Figure 5.3 shows that, no matter the strategy chosen, one of the organizations

can always improve its local makespan, showing that a pure Nash equilibrium cannot

be achieved for this game. In the figure, organization O(5) can improve its Cmax by

changing its strategy from the one in Figure 5.3a to the one in Figure 5.3b. After

that, O(4) can improve its Cmax by changing from the strategy 5.3b to 5.3c. Finally,

we have a loop when organization O(4) changes its strategy to the one depicted in

Figure 5.3a.

Conversely, assume that this instance of the MOSP game does not admit a pure

Nash equilibrium. We want to show that in this case the PARTITION problem has a

solution.

Suppose for contradiction that such solution for the PARTITION problem does not
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Figure 5.4: Equilibrium configuration if PARTITION does not have a solution.

exist, i.e., ∀J ⊆ I = {1, . . . , n},
∑

i∈J
si 6=

∑

i∈I\J
si.

Let J be the set of indexes that minimizes the value of α in the expression
∑

i∈J
si = α+

∑

i∈I\J
si, with α > 0.

Take the strategy depicted in Figure 5.4. Organizations O(1) and O(2) schedule

their own jobs in their own machines. Organizations O(4) and O(5) schedule their

large jobs (J (4)1 and J (5)1 ) also in their own machines.

Organization O(3) schedules its large job (J (3)1 ) on the machine of organization

O(1). The remaining jobs are scheduled according to the set J that minimizes α.

If i ∈ J , then job J (3)i+1 remains scheduled in organization O(3), otherwise the job is

scheduled in the machine of organization O(2).

Finally, jobs J (4)2 , J (5)2 , and J (4)3 are scheduled in this (non-decreasing) order on

organization O(2).

Organizations O(1) and O(2) have makespan equal to 1 and, therefore, have no

incentive to change their strategy. O(3) also does not have incentive to change its

strategy. The organization has a makespan equal to the load of the machine on

organization O(3):
∑

i∈J i

si. Moving any job from this machine to organization O(2) or

O(1) will increase the local makespan to at least
∑

i∈J i

si + 1. Jobs J (4)2 , J (5)2 , and J (4)3

finish before
∑ si

2
+ 3, therefore neither organization O(4) nor O(5) has incentive to

migrate any of these jobs to organization O(1) or to its own organization.

Since all organizations have no incentive to change their strategy, this configura-

tion is a pure Nash equilibrium, which contradicts the assumption that this instance

of the MOSP game does not admit a pure Nash equilibrium. This concludes the proof

of the theorem.

The results described in this section show that if the MOSP game is modeled with
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a coordination mechanism based on priority on jobs, then not only ε-approximate

equilibria with ε < 2 may not exist for some instances, but also it is hard to know in

advance if an instance admits at all a pure Nash equilibrium.

5.3 Game with priority to organizations

Section 5.2 showed that when priorities are given individually to jobs, some instances

may not have pure Nash equilibria, and even the existence of the “weaker” ε-

approximate equilibria is bounded to values of ε≥ 2.

In this section, we study an alternative model for the assignment of priorities,

where entire organizations are individually assigned with different scheduling priori-

ties. In this model, each organization will locally schedule first its own jobs (the “my

jobs first” policy) and then schedule the remaining jobs in non-increasing order of its

owner priority. Two or more jobs belonging to a same organization are scheduled in

no particular order.

Based on this game model, we present a parametric algorithm that computes

a ε-approximate equilibrium for an instance of the MOSP problem. Given a ρ-

approximation list scheduling algorithm, the algorithm computes a schedule that is a

ρ-approximate equilibrium.

We also study the impact on the quality of the global Cmax obtained by the

selfish organizations modeled by our game. We show that the price of anarchy is

asymptotically bounded by 2.

An algorithm to construct a pure ρ-approximate equilibrium

In this section, we present a parametric algorithm that constructs a pure ε-approximate

equilibrium for instances of the MOSP game with one processor per organization and

that has priority given to organizations. We show that using a ρ-approximation2 list

scheduling algorithm for the classical P | | Cmax scheduling problem, we can always

construct a pure ρ-approximate equilibrium configuration for the MOSP game.

2The factor ρ of the algorithm used must have been analyzed for cases where machines starting
times may be different from 0 like, for instance, Lee’s MLPT [Guo98] (Lee’s MLPT provides a 4/3-
approximation, while standard LPT provides a 3/2-approximation). Any standard list scheduling
algorithm have a guaranteed approximation ratio of 2.
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The algorithm is an adaptation of the Interactive Load Balacing Algorithm (ILBA)

presented in Section 3.3. The idea of this adapted algorithm is to rebalance the load

of the organizations from the organizations with higher priority to the organizations

with lower priority.

The construction works as follows. First, each organization schedules all its own

jobs locally using the given ρ-approximation scheduling algorithm. The organizations

are then enumerated by non-increasing priority (i.e., for any two organizations O(i)

and O( j), i < j if and only if O(i) has higher priority than O( j)).

All organizations O(1), . . . , O(N) are then rebalanced, one after the other, according

to the order defined by the enumeration. The rebalancing of an organization O(k)

is done by first unscheduling all jobs belonging to organization O(k), and then

rescheduling all of them by executing the ρ-approximation list scheduling algorithm

on all available processors on the platform. The algorithm must reassign a maximal

set of jobs to the original organization, i.e., if at a given time the algorithm can choose

between different organizations to schedule the job, then the original organization

must be chosen.

At iteration k, the ρ-approximation algorithm will calculate a strategy for O(k)’s

jobs with cost no more than ρ times the optimal solution. In particular, this means

that: ∀s ∈ S and ∀sk ∈ Sk, ck(sk, s−k)≤ ρ · ck(s), i.e., O(k) cannot improve its cost by

a factor more than ρ.

We now show that:

Theorem 5.6. The algorithm presented in this section always produces a pure ρ-

approximate equilibrium configuration for the MOSP game when priorities are given to

organizations.

Proof. We prove the theorem by induction on k (the index of the organization

being rescheduled by the algorithm). We show that after rescheduling the jobs of

organization O(k), no organization O(i) with i ≤ k can unilaterally improve its cost by

a factor greater than ρ.

For k = 1, the algorithm will rebalance all jobs of organization O(1) applying the

ρ-approximation algorithm. Even if O(1) has the highest priority, the “my jobs first”

constraint does not allow any further unilateral improvement.
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Now assume that all organizations 1≤ k ≤ j−1 cannot unilaterally improve their

cost by a factor greater than ρ. We will show that after rescheduling the jobs from

organization O( j), all already rescheduled organizations will not be able to improve

their costs by a factor greater than ρ.

By contradiction, assume that an organization O(i) with i < j can improve its

makespan by a factor greater than ρ by changing only its own strategy.

First, note that O(i) must have its makespan improved by migrating some of its

jobs to organization O( j); otherwise, since O(i) has higher priority, it would have done

that on some earlier interaction, contradicting the inductive hypothesis. So we can

assume that at least one job from O(i) was migrated to O( j).

After rescheduling its jobs, if O( j) cannot improve its local makespan by migrating

any job, then its jobs remain in its own organization. This means that any job from

O(i) will start after the last job from O( j) because of the “my jobs first” constraint,

which means that O(i) could have done that on an earlier iteration, which contradicts

the inductive hypotheses.

On the other hand, if O( j) was able to improve its own makespan, then some of

its jobs were migrated to other organizations. In particular, at least one of these jobs

must have been rescheduled on a processor of a different organization to start either

earlier or at the same time of the new value for the C ( j)max; otherwise this job would

have been scheduled before at time C ( j)max. Let P be this processor. If O(i) can improve

its makespan by migrating one of its jobs to start at time at most C ( j)max on a processor

in organization O( j), then it could have improved even more if the job was migrated

to processor P in an earlier iteration, contradicting the inductive hypothesis that O(i)

cannot improve its cost by a factor greater than ρ.

These two contradictions show that O(i) with i < j cannot improve its makespan

by a factor greater than ρ by changing only its own strategy. This fact finishes

the proof of the inductive step, showing that after rescheduling O( j), no already

rescheduled organizations will be able to improve their cost by a factor more than

ρ.

Note that if the ρ-approximation algorithm given as parameter is the optimal, all

organizations O(k) have no incentive to change their strategies. In other words:
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Figure 5.5: Price of anarchy of the MOSP game with priority given to organizations.

Corollary 5.7. The MOSP game with priority given to organizations always induces a

pure Nash equilibrium.

The results presented in Chapter 3 indicate that computing the best response for

each agent is NP-complete and, therefore, computing pure Nash equilibrium for the

MOSP game remains a difficult problem.

Price of anarchy

The interest in searching configurations that result in equilibria — both pure Nash

equilibria or ε-approximate equilibria — is a consequence of the selfish behavior of

the agents. If on the one hand it guarantees that all agents are satisfied with the
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result, on the other hand, uncoordinated, selfish behavior can potentially lead to

suboptimal social outcomes (in our case, to suboptimal results for the social cost, i.e.,

the global Cmax of the system).

We measure this effect by studying the price of anarchy of our game. The price

of anarchy is defined as the ratio between the worst objective function value of an

equilibrium of a game and the one of an optimal outcome.

Theorem 5.8. The price of anarchy (PoA) of MOSP games with priorities given to

organizations is lower or equal to 2− 1
N

, and this bound is asymptotically tight.

Proof. The upper bound of the price of anarchy follows straightforwardly from the

fact that a Nash equilibrium has no idle time. Consequently, the Nash equilibrium

can be seen as a solution computed by an arbitrary list scheduling algorithm. By

Theorem 2.2, an arbitrary list scheduling algorithm is a
�

2− 1
m

�

-approximation,

where m corresponds to the number of machines.

We now show that this bound is asymptotically tight. Take the instance of the

MOSP game (with priority given to organizations) depicted in Figure 5.5a. This

game has K − 1 organizations having 2K + 1 jobs of size 1, one organization having

two jobs of size K + 1 and K, and K organizations having one job of size 1. In this

game, an organization O(i) has higher priority over an organization O( j) if i < j.

Figure 5.5b shows the optimal configuration (profile) possible. Jobs originally

starting after time K + 1 (highlighted in the figure) are migrated to the last K

organizations. On this configuration, every organization (except the last K ones)

achieves a local makespan equal to K + 1.

The worst Nash equilibrium possible is the configuration depicted in Figure 5.5c.

In this configuration, jobs starting after time K+1 from organizations O(1), . . . , O(K−1)

are rescheduled on the last K organizations in such way that a job migrating from

organization O(i) is rescheduled at time i + 1 on these machines. Different job colors

on Figure 5.5c indicate the ownership of the jobs from organizations O(1), . . . , O(K−1).

The worst local makespan is given by organization O(k) and is equal to 1+(K−1)+K =
2K .

This instance shows that the price of anarchy for the MOSP game is equal to 2K
K+1

,

which for large values of K is asymptotically equal to 2.
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At first glance, assigning different priorities to organizations seems unfair. Even if

MOSP local constraints are always respected for all organizations, an organization

may never achieve its optimal value for the local makespan because of the chosen

priorities. However, for the workloads considered in this work (composed of batches

of bags-of-tasks jobs) fairness can be achieved in practice by rotating the priorities of

each organization at each batch scheduling.

5.4 Concluding remarks

In this chapter we presented a game theoretic analysis of the Multi-Organization

Scheduling Problem. We studied how selfish organizations can individually choose

the best strategy for their jobs and still achieve a scheduling where all the organiza-

tions have incentive to cooperate with each other.

We proposed a model where each agent is responsible for all jobs belonging to a

specific organization. An agent is free to choose in which organization each of its

jobs will be executed. Unlike some previous works on selfish load balancing games,

the algorithm used locally by each organization to schedule the jobs assigned to it

is crucial in the final result obtained by each agent. In our proposed model, each

selfish organization will first prioritize its own jobs. The remaining (foreign) jobs

must be scheduled according to some given priority.

We showed that when this priority is given individually to the jobs — like in

classical scheduling algorithms such as LPT or SPT — no pure ε-approximate equi-

librium is possible for values of ε less than 2. We also proved that with this priority

policy, the decision problem of deciding whether a given instance admits a pure Nash

equilibrium is co-NP hard.

When priority is given to the organizations, however, we can show that the

MOSP game can always converge to an equilibrium state. We provided a parametric

algorithm that, given any ρ-approximation list scheduling algorithm, computes

a pure ρ-approximate equilibrium for instances of the MOSP problem with one

processor per organization — a first step towards a more general case. We also

showed that with this priority policy, the price of anarchy — the ratio between the

social cost (the global Cmax) of a worst-case Nash equilibrium and the social cost of

an optimal assignment — is asymptotically equal to 2.





CHAPTER 6
The Multi-Users Scheduling

Problem

SOMETIMES users must team-up to share computational resources that do not

necessarily belong to them individually, but to a community of users. In such

cases, the users do not have special privileges over some of the shared resources,

which differs from the MOSP problems studied in the previous chapters. Still, they

must collaborate with each other and coordinate the use of these resources in order

to achieve high performances in the most fair way possible.

One of the examples most closely related with the MOSP problem is the problem

of resource sharing in multi-users environments, like, for instance, in the context of

cluster computing [KC03]. Several users must execute their jobs in the processors of

the cluster, but none has special control over these processors.

An intricate problem that arises in these environments is how to schedule all

the jobs, from all the users, while providing performance and fairness guarantees.

More than just providing a guarantee, the scheduler should respect each user own

interest, i.e., the scheduler should optimize the performance objective intrinsic of

each user. To the best of our knowledge, this problem has not been completely solved

yet, specially under the theoretical perspective.

These performance and fairness issues appear in other real world problems as

well. Some examples are problems like bandwidth sharing in networking [MR02],
negotiation between co-owners of a factory [Agn+00], application run-time with

89
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hypergraph partitioning (partition balance and network usage) [PM07], etc.

Such optimization problems involve multiple complex parameters. To obtain

a tractable way of solving the problem, one must often consider the optimization

of a simpler objective. Sometimes, when optimizing one objective is not enough,

multi-objective optimization is used to take into account multiple parameters of

interest.

In this chapter, we present a generic method to optimize monotonic objective

functions by approximating the Pareto set of the multi-objective problem where each

parameter is an objective function. We exemplify our technique on a multi-user

scheduling problem by optimizing the fairness among users.

The remaining of the chapter is organized as follows. In Section 6.1 we present

the Multi-Users Scheduling Problem, its notations, and the previously known results

that serve as basis of the work presented in this chapter. Section 6.2 shows how to

construct Pareto approximations for some specific setups of the MUSP problem. A

technique to optimize monotonic objective functions on multi-objective problems

is presented in Section 6.3, together with a detailed description of how to apply

this technique to the MUSP problem. Finally, Section 6.4 presents our concluding

remarks.

6.1 Problem description and notations

The Multi-Users Scheduling Problem

We present in this section the approximation of multi-objective problems using the

scheduling problem known in the literature as the Multi-Users Scheduling Problem

(MUSP) [ST09].

MUSP models the scheduling problem that appears on computational platforms

where different users, having different performance objectives, compete for the

available resources in order to individually optimize their own performance. In such

platforms, each user is interested in a particular performance objective for his/her

jobs. Although each user has his/her own objective and set of jobs, the final schedule

is devised by an authoritative centralized scheduler. The goal of the centralized

scheduler is to serve the user interests as best as possible: it is never in the system
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interest to degrade the performance of a user without improving the performance of

another one. In other words, the goal of the scheduler can be modeled by a function

which is monotonic in the users’ interest.

We focus this study in the case where each user is interested in minimizing either

the average completion time or the maximum completion time of his/her jobs. We

assume the scheduling problem is offline: all the jobs are available at the beginning

of the execution and the running time of the jobs are known in advance.

We adopt the same notation used in the previous chapter for the MOSP problem.

In the Multi-Users Scheduling Problem we assume a parallel platform composed

of m identical processors, shared by a total number of k users. Each user u aims

at executing a set of n(u) jobs, where each job is denoted by J (u)i , 1 ≤ i ≤ n(u). The

processing time of J (u)i is p(u)i . A user u is interested in minimizing some objective

function denoted by f (u). The total number of jobs on the platform is n=
∑k

u=1 n(u).

A centralized scheduler will determine the starting time σ(J (u)i ) of each job,

that in turn will be executed without interruption until its completion at time

C (u)i = σ(J
(u)
i ) + p(u)i .

The makespan of user u, i.e., the maximum completion time of a job owned by

this user, is defined as C (u)max = maxn(u)
i=1 C (u)i . Likewise, the average completion time

of the jobs belonging to user u is defined as
∑

C (u)i =
1

n(u)

∑n(u)

i=1 p(u)i . We assume the

function f (u) is either C (u)max or
∑

C (u)i .

In line with MOSP, the Multi-Users Scheduling Problem with k′ users interested

in sum of completion time and k′′ users interested in the makespan, with k′+ k′′ = k,

is denoted by MUSP(k′ :
∑

Ci; k′′ : Cmax).

Problem definition

Using different setups for the MUSP problem, we study how to schedule all the jobs

from the different users in order to simultaneously minimize the set of objective

functions f (1), f (2), . . . , f (k). The problem is defined as a multi-objective optimization

problem. Potentially, all the solutions of the Pareto set are suitable. Recall that the

Pareto set (Definition 2.6, p. 17) is the set of Pareto optimal solutions, i.e., solutions

where no objective value can be improved without degrading another objective value.

Yet, the scheduler needs to select a unique schedule. Monotonic functions are
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a wide class of functions that the scheduler might be interested in optimizing.

Numerous fairness functions belong to this class. The main idea of the method we

propose is to optimize a monotonic objective function by approximating the Pareto

set of the multi-objective MUSP problem.

Several fairness functions of interest have been used in the literature [LT07]. To

measure the fairness of a set of values x = (x1, x2, . . . , xk), popular fairness functions

are:

• Arithmetic mean = 1
k

∑k
i=1 x i;

• Geometric mean = (Πk
i=1 x i)1/k (also known as proportional fairness);

• Jain index = (
∑k

i=1 x i)2

k
∑k

i=1 x2
i

;

• Lp norm, defined by ‖x‖p = (
∑k

i=1 |x i|p)1/p, for any p ≥ 1;

• Min-Max ratio = mini{x i}
max j{x j}

=mini, j

§

x i

x j

ª

;

• Variance = 1
k−1

∑k
i=1(x i −µ)2, where µ= 1

n

∑k
i=1 x i;

Note, however, that although popular fairness functions like the Jain index —

used in our analysis on Section 3.4 — may present some interesting properties like

independence on the scale and on the size of the values, continuity, etc., they may not

be monotonic. The Variance, for instance, is optimized by making all the objective

values equal, potentially worsening the performance of one user without improving

the performance of another one. Min-Max is not monotonic as well. In the following,

when discussing fairness functions, we mean a monotonic fairness function such as

the Lp norm, the Arithmetic mean or the Geometric mean.

There are many more monotonic functions that a scheduler might be interested

in optimizing. For instance, the users’ objectives could be normalized with respect to

a given configuration such as a default scheduling policy or a best case if the user

was alone in the system. The scheduler could also apply some weight to make some

users more important. Finally, financial incentive could also be modeled where the

user pays a different amount of money to the system depending on the quality of

service it receives. For example, $100 to have jobs completed before a conference
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deadline, $10 if the jobs are completed in the day of the deadline, and $0 if the

deadline is passed.

Previously known results

The Multi-Users Scheduling Problem was first studied on a single processor with two

users by Agnetis et al. [Agn+04] and on multiple processors by Saule and Trystram

[ST09].

When all users are interested in minimizing their makespan, MUSP cannot be

approximated within a ratio better than (1,2, . . . , k) [ST09]. For this case, Saule

and Trystram [ST09] presented an algorithm (called MULTICMAX) that was proven

to be a (ρ, 2ρ, . . . , kρ)-approximation of the zenith1, where ρ is the approximation

ratio of an arbitrary algorithm that minimizes the makespan for the single-user

case. They also presented an adaptation of the MULTICMAX that provides a constant

approximation of a Pareto optimal solution. Agnetis et al. [Agn+04] provided a

<1̄, 1̄>-approximation of the problem for two users on a single processor. This result

will be recalled and extended in Section 6.2.

If all users are interested in minimizing the average completion time of their

jobs, then it is known that MUSP cannot be approximated from the zenith within

a ratio better than (k, . . . , k) [ST09]. The problem has been shown to be weakly

NP-complete on a single processor with two users and an exponential dynamic

programming algorithm has been provided [Agn+04]. The MULTISUM algorithm is a

(k, . . . , k)-approximation of the zenith of the problem [ST09].

Both MULTICMAX and MULTISUM are optimal in the sense that no algorithm can

achieve better approximation ratios to the zenith solution. Although tight, the “high”

ratios guaranteed by the algorithms and their dependence on the number of users are

explained by the fact that these are approximations from the zenith point, computed

using the values for the objective function that each user could have obtained if it

was alone on the system.

For the mixed case — MUSP(k′ :
∑

Ci; k′′ : Cmax)— the MULTIMIXED algorithm

provides a (k, . . . , k)-approximation of the zenith for the k′ users interested in the
1Recall from Section 2.2 that the zenith point is the point where each objective has the minimum

possible value and the nadir point, analogously, is the point where each objective has its maximum
value.
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average completion time, and a
�

k
k′′
ρ, 2k

k′′
ρ, . . . , kρ

�

-approximation of the zenith for

the k′′ users interested in the makespan [ST09].

The problem is computationally hard even when few users are using the system.

In the simplest case, where only one user (k = 1) wants to minimize his/her

makespan using all the m available machines, the problem is equivalent to the

classical scheduling problem known as P | | Cmax. In this case, all the classical results

presented in Section 2.1 hold.

Pareto set approximation algorithm

In classical single-objective scheduling problems, we say that a schedule S is a ρ-

approximation [Hoc97] if the value of the objective function obtained with this sched-

ule f (S) is at most ρ times the optimal value f ∗ for this objective, i.e., f (S)≤ ρ f ∗.

Generally, two approaches are used to approximate multi-objective problems like

MUSP. The first one consists in approximating the zenith point (point usually not

feasible, but that gives lower bounds for the values of each objective function). In

this case, we say that a solution S is a (ρ1, . . . ,ρk)-approximation of the zenith if the

value of the objective function obtained by each user u in the schedule S is such that

f (u)(S)≤ ρu f (u)∗.

Many problems do not admit a constant zenith approximation algorithm. Actually,

there might be no solution at a constant relative distance of the zenith [GST09].
In these cases, the other approach is to find an approximation of the Pareto set.

Informally, a set of solutions P is a ρ-approximation of the Pareto set P∗ if each point

p∗ ∈ P∗ is ρ-approximated by at least a point p ∈ P. Formally:

Definition 6.1 (from [PY00]). A set of solutions P is a (ρ1, . . . ,ρk)-approximation of

the Pareto set P∗ if ∀S∗ ∈ P∗,∃S ∈ P, we have for all users u: f (u)(S)≤ ρu f (u)(S∗).

The most popular way to obtain a Pareto set approximation algorithm is to

provide an approximation algorithm for the variant of the problem where some of

the objectives are constrained by some thresholds, while some others have to be

optimized. This concept is somehow similar to the dual approximation algorithms

[HS88]. The formal approximation property is stated as follows:
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Definition 6.2 (from [JST08]). Given ω = (ωx+1, . . . ,ωk) thresholds for the val-

ues of the objective functions f (x+1), . . . , f (k), a <ρ1,ρ2, . . . ,ρx ,ρx+1,ρx+2, . . . ,ρk>-

approximation algorithm delivers a solution where f (u) ≤ ρuωu, for x + 1≤ u≤ k,

and f (u) ≤ ρu f (u)∗,ω, for 1 ≤ u ≤ x , where f (u)∗,ω is the best value possible for the

objective function given that the thresholds ω were respected. The algorithm can

return no solution if no solution that respects the constraint ω exists.

Let us assume a lower bound f (u)min and an upper bound f (u)max on the values of

the objective function of the solutions of the Pareto set are known. A simple lower

bound on the mono objective optimization problem is enough to obtain f (u)min. The

upper bound f (u)max is often obtained in scheduling by assuming all the jobs complete

at a worst case time without introducing unnecessary idle times. In MUSP, this

upper bound can be obtained by scheduling the tasks of user u after all the other

tasks. Notice that ( f (1)min, f (2)min, . . . , f (k)min) is Pareto dominated by the zenith. While

( f (1)max, f (2)max, . . . , f (k)max) is Pareto dominated by the nadir.

Papadimitriou and Yannakakis [PY00] proposed the following algorithm to find

an approximation of the Pareto set. First, each interval [ f (u)min, f (u)max] is partitioned in

intervals of geometrically increasing length2:

[ f (u)min, (1+ε) f (u)min]∪ [(1+ε) f
(u)

min, (1+ε)2 f (u)min]∪ [(1+ε)
2 f (u)min, (1+ε)3 f (u)min]∪ . . .∪ [(1+

ε)

$

log1+ε
f (u)max

f (u)min

%

f (u)min; f (u)max].
This decomposition of each interval decomposes the hyperbox delimited by

the zenith and the nadir in
∏k

u=1

�

1+
�

log1+ε
f (u)max

f (u)min

��

hyperboxes. An interesting

property of this decomposition is that the ratio between the coordinates of the nadir

and the zenith of each hyperbox is (1+ ε). Since, informally, the ε-approximate

Pareto set is a set of solutions which are not dominated by any other by a ratio of

more than 1+ ε, taking one solution from each hyperbox (if such a solution exists)

builds an ε-approximation of the Pareto set [PY00]. For a fixed number of objective

k and for most optimization problems, this approximation of the Pareto set is of

polynomial size. An example of such decomposition is presented in Figure 6.1.

However, taking a solution inside each hyperbox might not be algorithmically easy.

If one has a <ρ1,ρ2, . . . ,ρx ,ρx+1,ρx+2, . . . ,ρk>-approximation algorithm A, then it

2This decomposition assumes f (u)min is not equal to 0. This assumption is common in the theory of
approximation algorithms.
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f (x)
1

f (x)
2

1 (1+ε) (1+ε)2 (1+ε)3 (1+ε)4
1

(1+ε)

(1+ε)2

(1+ε)3

(1+ε)4

Figure 6.1: Example of an ε-approximate Pareto set computed using the algorithm
proposed by Papadimitriou and Yannakakis [PY00]. The darker points represent a
possible set of points that can be chosen by the algorithm.

is possible to compute a (ρ1, . . . ,ρk)-approximation of the nadir of the hyperboxes

that contain solutions. Since the nadir is a (1+ ε)-approximation of the zenith of the

hyperbox, A returns a ((1+ε)ρ1, . . . , (1+ε)ρk)-approximation of the zenith. And the

set of solutions returned by the procedure is a ((1+ε)ρ1, . . . , (1+ε)ρk)-approximation

of the Pareto set. Partitioning the solution space among all the objectives is not

necessary, it is sufficient to decompose the space among the objectives x + 1, . . . , k

that are constrained. This technique was used in [JST08].

6.2 Pareto approximation of MUSP

In this section, we study the Pareto approximation of the MUSP problem using

different setups for the problem. We start by giving some general properties of the

set of valid MUSP solutions.



6.2. PARETO APPROXIMATION OF MUSP 97

Proposition 6.3. In a Pareto optimal schedule, all jobs from a user interested in

minimizing his/her makespan that are assigned to a same processor are scheduled to be

executed one after the other.

Proof. Let us consider the case where user u is interested in minimizing his/her

makespan and a user u′ is interested in either makespan or average completion

time. Suppose, for contradiction, a Pareto optimal schedule where there exists at

least one job (J (u
′)) scheduled between two jobs from user u (J (u)1 and J (u)2 ) in the

same processor and that C (u)max is given by the completion time of job J (u)2 . If we

change the schedule and execute J (u
′) before J (u)1 , then user u does not have his/her

makespan changed, but user u′ is able to improve his/her objective (whenever it is

to minimize the makespan or average completion time), which contradicts the fact

that the schedule was Pareto optimal.

Proposition 6.4. In a Pareto optimal solution, the jobs of a user interested in the sum

of completion time are arranged in SPT order on a given processor.

Proof. The proof is by contradiction. Suppose a Pareto optimal schedule where a

user u, interested in the average completion time, has two jobs J (u)i and J (u)j — with

p(u)i < p(u)j — scheduled on the same processor. Suppose also that these jobs are

not scheduled in SPT order, i.e., J (u)j is scheduled in an earlier time than J (u)i . It

is easy to see that by switching jobs J (u)j and J (u)i the average completion time of

user u will decrease (by the optimality of SPT on the scheduling problem 1 | |
∑

Ci,

see Theorem 2.1, p. 12) and, since p(u)i < p(u)j , all jobs (from any user) originally

scheduled between J (u)j and J (u)i will now start at an earlier time, which means that

those users will also have their objective values improved, no matter if the objective

value is makespan or average completion time. This means that all users were able to

improve their objective values, which contradicts the fact that the original schedule

was Pareto optimal.

The core of the scheduling algorithm is to set some constraint on the objective

of some user while optimizing the other one. Setting up a constraint on a user

interested in the makespan is equivalent to trying to complete all the tasks of that

user before a given time. This relates to the problem of optimizing deadlines, which

are well-studied in the literature. However, setting a constraint on a user interested
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in the sum of completion time has a less intuitive practical meaning. Therefore,

all the presented techniques rely on setting a constraint on the users interested in

optimizing their makespan.

In the following we will present some examples of approximation algorithms

for specific setups of the MUSP problem that will be used in conjunction with the

algorithm presented in Section 6.3.

MUSP(k : Cmax) on m= 1 processor

Proposition 6.5. The Earliest Deadline First (EDF) algorithm is a <1̄, 1̄, . . . , 1̄>-

approximation algorithm for the problem MUSP(k : Cmax) on m = 1 processor and,

therefore, a (1+ ε, 1+ ε, . . . , 1+ ε)-approximation of the Pareto set.

Proof. Restrictions on the maximum completion time of each user interested in

minimizing his/her Cmax are equivalent to setting deadlines for the jobs of this user.

The Earliest Deadline First algorithm [GRS96] — a list scheduling algorithm that

always chooses the next available task with the earliest deadline to be executed

— is known to be optimal with respect of the deadlines for m = 1 processors. If

there is a feasible solution that respects all the thresholds, then EDF will produce a

<1̄, 1̄, . . . , 1̄>-approximation and, therefore a (1+ ε, 1+ ε, . . . , 1+ ε)-approximation

of the Pareto set.

Remark that Proposition 6.3 shows that, in practice, we can efficiently implement

the algorithm by considering all jobs from a particular user u as one large job with

length
∑n(u)

i=1 p(u)i .

MUSP(1 :
∑

Ci; k− 1 : Cmax) on m= 1 processor

Agnetis et al. [Agn+04] were the first to study this sub-case of the problem limited

to the case where k′ = k′′ = 1. We show with a slightly different argument that:

Proposition 6.6. The Latest Starting Time (LST) algorithm is a<1, 1̄, . . . , 1̄>-approximation

algorithm for the problem MUSP(1 :
∑

Ci; k− 1 : Cmax) on m= 1 processor.

Proof. The thresholds are given to the objectives of users interested in minimizing

their makespan. Again, this is equivalent to set deadlines for these users. Proposi-
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tion 6.3 also holds, so each user u interested in makespan can be treated as having

only one large job of length
∑n(u)

i=1 p(u)i .

The Latest Starting Time (LST) algorithm works as follows. First, the users

interested in Cmax have their large job scheduled at the latest moment possible before

its deadline (which usually happens at time d(u)i − p(u)i , but could happen earlier if

there is another job already scheduled in the interval [d(u)i − p(u)i , d(u)i ]). Secondly,

the jobs from the user interested in
∑

Ci is scheduled in SPT order at the first idle

time where the job fits. Finally, the scheduled is compacted, shifting all jobs to start

earlier in order to leave no idle times.

It is easy to show that the approximation ratios are guaranteed. Like in the

analysis of Proposition 6.5, if all the deadlines can be met, then the 1̄, . . . , 1̄ ratio of the

constrained objectives is guaranteed for the users interested in Cmax. Proposition 6.4

and the optimality of SPT guarantee that scheduling the jobs in SPT order in the

remaining idle times is the best that one can do while respecting the constraints

given by the jobs from users interested in Cmax. Thus, the algorithm is a <1, 1̄, . . . , 1̄>-

approximation .

MUSP(k : Cmax) on m= N processors

The extension of Proposition 6.5 to the case where we have a fixed number of

processors is straightforward.

Theorem 6.7. The EDF algorithm is a <2̄, 2̄, . . . , 2̄>-approximation and therefore

leads to a (2+ ε, 2+ ε, . . . , 2+ ε)-approximation of the Pareto set.

Proof. The algorithm is very simple. Just apply the List Scheduling algorithm with

the list of jobs sorted according to the EDF rule.

The proof of the ratio follows the reasoning for proving the approximation

guarantee of List Scheduling algorithms, presented in the proof of Theorem 2.2 (p.

14). If a job ` starts after its deadline, it means that until time σ(`) all processors

were busy. Since there is no idle time, jobs with deadlines less than or equal to the

deadline of job ` represent a total work of Nσ(`). Thus, if one job starts after the

deadline, it means that it is not possible to meet all the deadlines of these jobs and
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the schedule is not feasible. If it starts before, then the 2-approximation guaranteed

by Theorem 2.2 holds.

Pareto efficient solutions does not imply fairness. Any global optimization function

can lead to solutions that can be perceived as unfair by the participants. In the next

section, we discuss how to find fair solutions between the solutions presenting good

trade-offs.

6.3 Optimizing fairness functions

In this section, we describe a novel general algorithm to optimize monotonic functions

of multiple variables, where each variable is an objective function of a multi-objective

problem. In this work, we consider the fairness function as the monotonic function of

interest. The algorithm optimizes the fairness function by approximating the Pareto

set of the multi-objective problem.

The main idea of this new algorithm is to perform a search in the k-dimensional

objective space of the multi-objective problem (the algorithm is generic, but is

explained with the MUSP(k′ :
∑

Ci; k′′ : Cmax) problem). We divide the objective

space in several hyperrectangles and, guided by the value of the fairness function

computed for the solutions inside each hyperrectangle, we either further refine the

hyperrectangle and search for solutions with better fairness — that dominate the

nadir point of the hyperrectangle — or just discard it if the fairness at the zenith

point is worse than the best fairness found so far.

In the next sections will formally describe the algorithm and provide some

examples of utilization.

Algorithm

Given an instance of the multi-objective problem, and assuming that there is a

<ρ1, . . . ,ρx ,ρx+1, . . . ,ρk>-approximation algorithm for the problem, we start by

calculating the points that will delimit the objective space of this instance to be

searched: the zenith and the nadir points.

The zenith and the nadir points define a hyperrectangle that contains the entire

attainable objective space of this instance. Notice that some problems have nadir



6.3. OPTIMIZING FAIRNESS FUNCTIONS 101

point at infinity. For instance, in a scheduling problem one can always delay some of

the tasks indefinitely. We only need the nadir to be Pareto dominated by every Pareto

optimal solution.

Starting with the hyperrectangle that covers the entire attainable objective space,

the algorithm will iteratively decompose the objective space, searching for schedules

of the multi-objective problem with better fairness.

At each iteration, for each hyperrectangle that was not discarded on the previous

iterations, the algorithm computes the <ρ1, . . . ,ρx ,ρx+1, . . . ,ρk>-approximation

algorithm constrained by the uppermost point of the hyperrectangle. The fairness

function is applied to the point in the objective space corresponding to the result

obtained by the approximation algorithm. The result with best fairness so far is

saved.

The hyperrectangle is discarded if: (i) the approximation algorithm constrained

by the uppermost point of the hyperrectangle does not produce an attainable result,

or (ii) if the fairness of the result obtained at the lowermost point is worst than or

equal to the best known fairness.

Otherwise, the non-discarded hyperrectangles are each decomposed in 2k hyper-

rectangles, by cutting each dimension x (bounded by xlow and xhigh) in the point

xmiddle such that
xhigh

xmiddle
= xmiddle

xlow
. It is the same decomposition proposed by Papadim-

itriou and Yannakakis [PY00], but with a different ratio between the zenith and the

nadir, instead of fixed ratio of (1+ ε) proposed by them.

Each iteration can potentially find a better value for the monotonic function been

optimized and the number of iterations can be chosen at will.

Example

To exemplify how the previous algorithm can be applied to a concrete multi-objective

problem, we present some simple simulations aiming to improve the fairness of some

instances of the Multi-Users Scheduling Problem.

For the purpose of this example, we narrow the possible instances of the Multi-

Users Scheduling Problem to the ones where k users — one interested in his/her

average completion time and all others interested in minimizing their makespan

— must share one single processor. We saw in Section 6.2 that for this case Propo-
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sition 6.6 guarantees that the Latest Starting Time (LST) algorithm provides a

<1, 1̄, . . . , 1̄>-approximation algorithm for these instances.

The experiments were conceived to simulate a batch scheduler that intents to

iteratively improve the fairness in a short amount of time, while the target system

is being set up to receive and execute the jobs. The jobs and users used in our

experiments were chosen to represent a workload of scientific computing. The basic

fairness function chosen is the L2 norm.

We used a public available workload of a Blue Gene/P system in production at the

Argonne National Laboratory [Fei09]. From all the jobs available on the workload

(jobs executed in the system from January 2009 to September 2009), we select the

10% largest jobs of each of the most active users.

All results presented represent the average of 30 executions of each experiment in

a standard Intel Core i5 system with 5 GB of RAM and 8 MB of cache for a simulation

period fixed in five minutes.

Figure 6.2 shows a graphical representation of the earlier stages of the execution

of our algorithm. Each figure shows an iteration of the algorithm executed for an

instance of the problem MUSP(1 :
∑

Ci; 2 : Cmax) and the respective schedule of

the solution with best fairness found so far. Since k′′ = 2 in this example, each

hyperrectangle is a two-dimensional rectangle. The third dimension — the one that

should represent the values obtained for the user interested in
∑

Ci— is not explicitly

represented in the figure since the Pareto approximation algorithm does not put

thresholds on the possible values of
∑

Ci, but it can be inferred from the values of

the other two dimensions.

For this particular case, our search algorithm will use the uppermost point of

each rectangle as different values of deadlines for the k′′ = 2 users interested in Cmax.

The search algorithm will look among these values for the ones that could lead to a

solution with better fairness. Each of these different deadlines will be used by the

LST algorithm to schedule these jobs at the latest moment possible and will schedule

the jobs from the user wanting
∑

Ci in the remaining available times (in SPT order).

Figure 6.2 also shows the schedule found for the jobs of the users interested in

Cmax on the most fair solution found at each iteration. Since, in our example, all

users will share a single processor, by Proposition 6.3 we have that the LST algorithm

will treat each user interested in its makespan as if each user have only a single large
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Figure 6.2: Decomposition of the search space during the first iterations of the
algorithm and the respective schedule found with the best fairness so far.
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job. The jobs belonging to the user wanting
∑

Ci are hidden in the figure (they fill

the entire white area) for clarity.

At the first iteration of the algorithm, the search space is delimited by the nadir

point (the uppermost point of the rectangle) and the zenith (the lowermost point).

The algorithm starts by calculating the nadir and the zenith points for this instance

of the problem. Recall that in MUSP, the nadir can be calculated by measuring the

Cmax of each user u if his/her tasks are scheduled after all the other tasks. Similarly,

the zenith can be calculated by scheduling all the tasks before the others. Figure 6.2a

depicts the rectangle that represents the entire search space.

The algorithm uses each coordinate of the nadir point as a constraint for a user

interested in Cmax. The LST algorithm calculates an approximation from the Pareto

set based on these constraints and the result (another point in the search space) is

kept as the one having the best fairness so far. Figure 6.2 depicts the point with the

best fairness found so far using the symbol and its respective schedule σ( ).

Figure 6.2b shows the result of the next iteration. The original rectangle was

divided in four rectangles. For each rectangle, the LST algorithm is applied taking

the coordinates of the uppermost point of each rectangle as constraints. The point

obtained with each rectangle is represented by the symbol . The darker rectangles

was kept for the next iteration, while the white one was discarded because the

fairness obtained using the lowermost point of this rectangle as constraints to the

LST algorithm was worst than the best known fairness.

During the second iteration (Figure 6.2c) we can see for the first time rectangles

where the point calculated by the LST lies outside the rectangle. The LST calculated

the same point for both rectangles A and B. Since the fairness obtained using the

LST taking the lowermost point as constraints is not worst than or equal to the best

known fairness, rectangle A could not be discarded yet.

Finally, figures 6.2d and 6.2f show that the refinements of the rectangles lead to

the discovery of new points of interest. The rectangles highlighted on these figures

show the new approximations of the Pareto set found. We finish the example at the

fifth iteration, but one could iterate more in order to find more points.

Our experiments showed an improvement of 27.69% on the fairness of the best

point found if compared to the fairness obtained when applying the LST algorithm to

the nadir point. Increasing the number of users to 4, 5 and 6 leads to improvements



6.4. CONCLUDING REMARKS 105

of the fairness in 23.52%, 28.12%, and 22.12%, respectively.

6.4 Concluding remarks

In this chapter, we presented a different perspective on how we can model collabora-

tion on parallel and distributed platforms. Instead of users sharing their resources,

we consider the problem of users executing jobs on a set of resources belonging to

the collectivity.

Our study is motivated by the problem known in the literature as the Multi-Users

Scheduling Problem (MUSP), where users with different performance objectives

execute their jobs in a shared set of resources.

First, we studied how to construct Pareto approximations of the MUSP problem,

studying different setups with varying number of users, objectives and resources.

Then, we presented a new method to address problems where the optimization func-

tion is monotonic and the arguments of this function can be optimized. Essentially,

the method enumerates the frontier of best compromise solutions between these

arguments and selects the solution that brings the best value for the function to

optimize.

We presented a detailed description of how the technique works by demonstrating

its application to the MUSP(1 :
∑

Ci; 2 : Cmax) problem, for which we proved that

the Latest Starting Time (LST) algorithm provides a <1, 1̄, . . . , 1̄>-approximation of

the Pareto set.

Although the algorithm is presented under the specific context of fairness opti-

mization on the MUSP problem, the technique is generic and can be applied for a

large number of multi-objective problems and monotonic functions.





CHAPTER 7
Conclusion and perspectives

COMPUTER science is deeply changing methodological aspects of the discovery

process in different areas of knowledge. Researchers have at their disposal today

new capabilities that can create novel research opportunities and also accelerate the

discovery process. The question now is how to make these new capabilities accessible

to every researcher at every level and not only to the few ones participating in bigger

(and wealthy) scientific projects.

Our work was motivated by the belief that this could be accomplished through

the collaboration between individuals and organizations, even if in practice the

participants may have different (potentially conflicting) expectations for the results

of the collaboration.

In this thesis, we studied how scheduling theory can be applied in order to create

a parallel or distributed platform where all participants always feel stimulated to

share their own computational resources in exchange of being able to execute their

own jobs more efficiently. Each chapter explored a different facet of the rules that

govern how these organizations engage in collaboration in practice and showed how

to obtain schedules with good trade-offs between the results got by the participants

under this set of rules.

The first kind of interaction was studied on Chapter 3. We studied what happens

when the participants cannot be entirely trusted in the sense that they may not exactly

follow the orders given by a central scheduler. We assumed that the participants of

the platform are organizations that act in an individualist and selfish way, capable
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of taking advantage of the fact that they have complete control over their own

resources.

We showed how a centralized scheduler can compute an execution order for the

jobs that does not allow a situation where a selfish organization could be tempted

to change the schedule devised in order to execute its own jobs more efficiently

at the expense of the others. Still, the algorithm is capable of guaranteeing a 2-

approximation for the global Cmax while ensuring that no organization will worsen

its own results by sharing its resources with the others.

The effort to ensure that the results will not be worsen if compared to what

the participant could obtain using only its resources is important to guarantee

that the participant will always have incentive to cooperate. But these individual

guarantees impose a performance penalty on the global performance of the platform.

In Chapter 4, we studied the correlation between the guarantees that we can provide

for each participant, in order to incentive collaboration, and the guarantees we can

provide for the collectivity, in order to improve the global performance.

We presented algorithms that allow more altruistic participants to tolerate a

bounded amount of degradation on their results in exchange of better global perfor-

mances. We showed that the approximation ratio for the global makespan of 2 (for

the case where no degradation is tolerated) can be improved to 3
2

if each participant

allows its makespan to be at most doubled and improved to 4
3

if each participant

allows its makespan to be at most tripled.

We also studied inapproximability bounds for the problem and showed that

the results obtained with our algorithms are not too far from the Pareto set of the

problem. The analysis suggested that algorithms with guaranteed approximation

ratios of
�

2; 4
3

�

or
�

3; 5
4

�

are still possible. The development of such algorithms is

part of the perspectives for future works.

On all situations presented above, the decision-making process is made by a

centralized agent that computes a scheduling respecting some predefined rules. In

Chapter 5 we used algorithmic game-theory to extend the notions of independence

and selfishness of each organization. We gave to the participants the freedom to

choose the best strategy for their jobs. The goal was to study the interactions between

the independent organizations as the result of rational selfish players attempting to

reach an equilibrium.
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The model represents the problem as a game, where each participant can choose

on which organization each one of its jobs will be executed. The selfishness of

each organization is expressed with coordination mechanisms that assume that each

organization will always execute its own jobs first and only after the jobs from other

organizations (that in turn will be scheduled according some predefined rule).

If the local scheduling of the foreign jobs mimics classic list scheduling algorithms,

fixing a priory for each job individually, then we found that no pure ε-approximate

equilibrium is possible for values of ε less than 2. In this case, even the problem of

determining if an instance admits a pure Nash equilibrium is co-NP hard.

If the local scheduling uses the information about the organization that own the

job to prioritize the jobs, then we can show how to make the game converge to an

equilibrium state. We presented an algorithm that can compute an approximate pure

equilibrium that produces results as close as wanted to a pure Nash equilibrium. We

also showed that with this local scheduling policy it is possible to bound the price of

anarchy — the ratio between the social cost (the global Cmax) of a worst-case Nash

equilibrium and the social cost of an optimal assignment.

This game-theoretic model opens the possibility for new future works to explore

more coordination mechanisms for the problem. It would be interesting to study new

coordination mechanisms leading to results with additional guarantees like fairness

or a better social welfare, for instance. Another interesting research opportunity is

to use this game-theoretic model to explore the more altruistic way of collaboration

studied in Chapter 4.

The last aspect of collaboration on parallel and distributed platforms studied in

this work is relative to the ownership of the resources being shared. Unlike the other

cases — where each participant contributes with a portion of the available resources

— we studied in Chapter 6 the case where the resources belong to the community

and no one has special control or privileges over them.

In this context, we have a set of different users competing for a common set

of resources in order to achieve the best performance possible. There is no “best

solution” possible, but actually a set of solutions that offer different compromises for

the users.

There are several properties on such solutions that can be of interest. One

that naturally come to light in this context is how fair are the results obtained by
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each participant. We presented a generic method to optimize monotonic objective

functions (like fairness) that depend on arguments that can be optimized. Essentially,

the method enumerates the frontier of best compromise solutions between these

arguments and selects the solution that brings the best value for the function to

optimize.

We have illustrated the use of the method on the scheduling problem where

different users — interested in minimizing either the makespan or the average

completion time of their jobs — compete for a limited set of resources. Using new

Pareto set approximations for the problem, we showed how our method can be used

to find a fair scheduling that offers a good compromise between the performance

perceived by the users.

The method can be applied to a wide variety of multi-objective problems that we

expect to explore in future works. We also hope to extend the Pareto set approxima-

tions in order to apply them for more generic instances of the problem.



Bibliography

[AF06] David P. Anderson and Gilles Fedak. “The Computational and Storage

Potential of Volunteer Computing”. In: Proceedings of the 6th IEEE Inter-

national Symposium on Cluster Computing and the Grid. (Singapore).

Los Alamitos, USA: IEEE Computer Society, May 2006, pp. 73–80. DOI:

10.1109/CCGRID.2006.101.

[Agn+00] Alessandro Agnetis, Pitu B. Mirchandani, Dario Pacciarelli, and Andrea

Pacifici. “Nondominated Schedules for a Job-Shop with Two Competing

Users”. In: Computational & Mathematical Organization Theory 6.2

(2000), pp. 191–217. DOI: 10.1023/A:1009637419820.

[Agn+04] Allesandro Agnetis, Pitu B. Mirchandani, Dario Pacciarelli, and Andrea

Pacifici. “Scheduling Problems with Two Competing Agents”. In: Oper-

ations Research 52.2 (Apr. 2004), pp. 229–242. DOI: 10.1287/opre.
1030.0092.

[And+02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan

Werthimer. “SETI@home: an experiment in public-resource comput-

ing”. In: Communications of the ACM 45 (11 Nov. 2002), pp. 56–61.

DOI: 10.1145/581571.581573.

[And04] David P. Anderson. “BOINC: A System for Public-Resource Computing

and Storage”. In: Proceedings of the 5th IEEE/ACM International Work-

shop on Grid Computing. (Pittsburgh, USA). Washington, DC, USA:

111

http://dx.doi.org/10.1109/CCGRID.2006.101
http://dx.doi.org/10.1023/A:1009637419820
http://dx.doi.org/10.1287/opre.1030.0092
http://dx.doi.org/10.1287/opre.1030.0092
http://dx.doi.org/10.1145/581571.581573


112 BIBLIOGRAPHY

IEEE Computer Society, Nov. 2004, pp. 4–10. DOI: 10.1109/GRID.
2004.14.

[BCR80] Brenda S. Baker, Edward G. Coffman Jr., and Ronald L. Rivest. “Or-

thogonal Packings in Two Dimensions”. In: SIAM Journal on Computing

9.4 (Nov. 1980), pp. 846–855. DOI: 10.1137/0209064.

[BCS74] John L. Bruno, Edward G. Coffman Jr., and Ravi Sethi. “Scheduling

independent tasks to reduce mean finishing time”. In: Communications

of the ACM 17.7 (July 1974), pp. 382–387. ISSN: 0001-0782. DOI:

10.1145/361011.361064.

[Bou+10] Marin Bougeret, Pierre-François Dutot, Klaus Jansen, Christina Otte,

and Denis Trystram. “Approximation Algorithms for Multiple Strip Pack-

ing”. In: Proceedings of the 7th International Workshop on Approxima-

tion and Online Algorithms. (Copenhagen, Denmark). Ed. by Evripidis

Bampis and Klaus Jansen. Vol. 5893. Lecture Notes in Computer Sci-

ence. Heidelberg: Springer, Sept. 2010, pp. 37–48. DOI: 10.1007/978-
3-642-12450-1_4.

[Bra+08] Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and Roman Słowiński,
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Résumé étendu en français

Introduction

LABS OF THE WORLD, UNITE ! ! ! Ce titre provocateur de l’article écrit par CIRNE et al.

[Cir+06] allégorise comment les changements récents dans l’informatique ont

transformé la quête d’une puissance de calcul toujours plus importante (à plus faible

coût) en un effort de collaboration.

Aujourd’hui, la communauté scientifique a la capacité sans précédent de combiner

des différentes ressources de calcul (éventuellement réparties autour du globe) en

un système distribué puissant, capable d’analyser des volumes massifs de données.

Les défis et opportunités créés par l’utilisation de ces nouvelles technologies dans

des projets de recherche appliquées à grande échelle — habituellement dénotés par

e-Science [Tay06]— est en train de changer la façon dont les chercheurs s’engagent

dans ce processus de découverte [Fos11].

Des concepts, outils et théorèmes de l’informatique sont maintenant intégrés

aux aspects méthodologiques dans plusieurs domaines de recherche. Climatolo-

gie, sciences de la terre, dynamique des fluides, génomique, protéomique, chimie

théorique, astrophysique et physique des hautes énergies sont quelques exemples

[Emm+06] des domaines de recherche qui poussent les limites de ce qui est possible

avec l’informatique.

Les informaticiens ont appris depuis longtemps que la nécessité pour des montants

plus élevés de puissance de calcul demandée par les laboratoires de recherche devient
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de plus en plus importante. Le projet Condor [LLM88] a joué un rôle pionnier dans

cette tendance. C’était l’une des premières initiatives axées sur l’utilisation de la

puissance de calcul vacante de nombreux ordinateurs personnels (banalisés), visant

à fournir des grandes quantités de puissance de calcul maintenue sur une longue

période de temps (High Throughput Computing).

Avec le développement des technologies des réseaux, les techniques utilisées

par le projet Condor furent rapidement adaptées pour travailler avec toutes les

machines connectées à Internet. C’est ce qui a été appelé le “calcul volontaire” —

volunteer computing [AF06], aussi connu sous le nom “calcul pair-à-pair” (peer-to-peer

computing) ou “systèmes de calcul global” (global computing) — les chercheurs ont

commencé à étudier comment utiliser la puissance de calcul non utilisée (accessible

via Internet) dans la résolution de problèmes spécifiques.

Plusieurs travaux de recherche — universitaires ou non — ont exploré l’idée de

l’utilisation de calcul volontaire dès ses premières étapes. Des projets comme “The

Great Internet Mersenne Prime Search” (1996) [WK11] (qui cherche les nombres

premiers de type Mersenne), le distributed.net (1997) [Inc10] (qui a démontré le dé-

chiffrement par brute force), et le projet SETI@home (1999) [And+02] (qui analyse

de grands ensembles de données de signaux radio, à la recherche de signes d’intelli-

gence extra-terrestre) ont montré les possibilités offertes pour de telles techniques

en terme de puissance de calcul.

SETI@home est sans doute le plus emblématique de tous les projets de calcul

volontaire. Lancé en mai 1999, SETI@home a attiré l’attention non seulement de la

communauté scientifique, mais aussi du public en général. La possibilité de collaborer

dans un projet scientifique a attiré plus de 6 millions de participants, situés dans

226 pays [Kor+11]. Le projet a évolué et il utilise aujourd’hui la plate-forme appelé

Berkeley Open Infrastructure for Network Computing (BOINC [And04]), un intergiciel

pour l’informatique volontaire distribuée. SETI@home reste encore l’un des plus

grands super-calculateurs en fonctionnement, ayant une performance moyenne de

3,5 PFLOPS.

À peu près au même moment, Ian Foster et Carl Kesselman ont développé le

concept de Grille de Calcul (grid computing) [FK04], dans lequel la puissance de cal-

cul est fournie sur demande, comme un service. Comme dans les projets précédents,

différentes organisations s’associent pour partager leurs ressources de calcul. Mais,
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désormais, dans une grille de calcul la plate-forme complète est disponible comme

un service pour tous les participants. Chaque organisation participante peut agir en

tant que producteur ou consommateur de ressources.

Comme dans les “réseaux électriques” traditionnels — où différentes centrales

électriques sont reliées de façon à ce que les utilisateurs puissent accéder à l’électricité

sans se soucier ni où, ni comment, l’électricité est générée — les plates-formes de

grille de calcul permettent aux utilisateurs d’utiliser différentes ressources de calcul,

au sein et entre les organisations, sans avoir connaissance où ces ressources se

trouvent physiquement.

La vision proposé par Foster et Kesselman est maintenant une réalité. Des plates-

formes de grille de calcul sont utilisées dans des projets académiques et commerciaux.

FOSTER [Fos11] a présenté quelques exemples contemporains qui montrent l’ampleur

des projets qu’utilisent les technologies de grille de calcul. Parmi les initiatives

académiques, on peut citer la plate-forme de grille de calcul du Large Hadron Collider

(LHC) (qui distribue régulièrement des dizaines de téraoctets à des équipes de

recherche du monde entier), la plate-forme du Earth System Grid (qui donne accès

à plus de 25.000 utilisateurs à une grande base de données des simulations de

changement climatique), le US InCommon trust federation (qui permet à plus de 5

millions de personnes d’accéder aux ressources distantes en utilisant des informations

d’identification locales), entre autres. Parmi les systèmes commerciaux nous avons

aujourd’hui les fournisseurs de cloud computing commerciales. Ces fournisseurs

offrent de la puissance de calcul et du stockage mémoire à des échelles irréalisables

dans les milieux universitaires.

Bien que le calcul volontaire et les grilles informatiques soient très semblables

dans le sens où les deux permettent la création d’une plate-forme composée d’un

grand nombre de ressources de calcul, la façon dont les projets utilisent ces plates-

formes est complètement différent.

Dans le calcul volontaire, chaque volontaire choisit effectivement le projet qu’il

veut aider. L’exécution du projet repose sur la bonne volonté des nœuds volontaires,

qui habituellement ne gagnent rien pour leur aide. Ils sont généralement anonymes

et ne peuvent pas être tenus responsables de la qualité des ressources ou des résultats

qu’ils fournissent.

Toutefois, dans l’informatique en grilles, les interactions entre les participants sont
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plus complexes. Une organisation choisit d’intégrer une plate-forme informatique en

grille non seulement pour contribuer avec ses ressources de calcul à d’autres projets.

Leurs utilisateurs s’attendent également à être capable d’exécuter leurs propres tâches

d’une façon plus efficace avec l’aide des autres.

On pourrait avoir un conflit d’intérêts si les ressources de la grille informatique

ne sont pas partagées de manière équitable. Par exemple, si une organisation sup-

pose que moins de ressources sont allouées à ses propres projets (par rapport aux

ressources allouées aux autres), l’organisation peut être contrainte de quitter la grille

et de cesser de partager ses ressources.

Un autre exemple serait celui où l’une des organisations se comporte mal, pour

une raison ou pour une autre, dans le but d’améliorer l’exécution de ses propres

projets. Par exemple, une organisation malveillante pourrait refuser l’exécution

d’un projet autre que ses propres projets. Ces organisations doivent être tenues

pour responsables de leur mauvaise conduite. Selon les circonstances, l’organisation

pourrait voir son accès aux ressources des autres refusé ou même avoir à répondre

légalement pour son mauvais comportement...

De grands projets de recherche tels que ceux cités par FOSTER [Fos11] peuvent

éviter ces problèmes en créant et gérant des infrastructures de grille dédiées, où

chaque détail de l’exécution peut être contrôlé. Mais afin d’offrir une plate-forme

en grille informatique vraiment collaborative — une plate-forme où les équipes de

recherche (avec des différents budgets, tailles et objectifs) peuvent avoir les mêmes

avantages et la même compétitivité que les grands projets de recherche — il faut

respecter les intérêts de chaque utilisateur.

Contenu général

Dans cette thèse, nous étudions comment encourager la collaboration entre différents

utilisateurs et organisations. Nous modélisons les variantes de ce problème comme

un problème d’ordonnancement multi-objectifs et, en utilisant des différents outils

théoriques, nous étudions comment le comportement individuel de ces utilisateurs

peut influencer à la fois la performance perçue par les composantes individuelles de

la plate-forme et l’efficacité globale de la plate-forme.
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Dans un premier temps, nous donnons le cadre théorique qui sous-tend les études

de ce travail de doctorat et le contexte général. En particulier, la Section 2.1 présente

rapidement des rappels en théorie de l’ordonnancement classique (mono-objectif).

Puis, la Section 2.2 introduit les concepts fondamentaux en optimisation multi-

objectifs. L’idée ici est de présenter les techniques qui permettent l’étude des compro-

mis pour choisir un ordonnancement qui satisfasse les différents objectifs individuels.

Finalement, la Section 2.3 présente les concepts de base de la Théorie algorith-

mique des jeux (pure-strategy games) et comment les interactions entre individus

sont analysées sous l’hypothèse qu’ils agissent de façon rationnelle.

Nous présentons dans les quatre sections suivantes un résumé des contributions

de chaque chapitre. Les détails sont disponibles en anglais dans le document complet.

Algorithmes d’approximation pour le problème

d’ordonnancement multi-organisation

Les utilisateurs de grilles de calcul contribuent à ces systèmes en fournissant de la

puissance de calcul. Ils attendent en retour que leurs propres jobs soient exécutés

plus efficacement grâce au partage de ces ressources avec les autres.

Les caractéristiques telles que l’hétérogénéité des ressources disponibles, le grand

nombre de processeurs et les différentes demandes des utilisateurs rendent difficile

le problème d’ordonnancement sur de telles plates-formes. Pour pouvoir exploiter au

mieux de tels systèmes il faut concevoir des algorithmes d’ordonnancement sophisti-

qués qui doivent à la fois encourager les utilisateurs à partager leurs ressources et

respecter les intérêts propres de chaque utilisateur.

Dans ce chapitre, nous présentons une manière de traiter ce problème. Notre

contribution principale est l’extension et l’analyse du problème dans le cas de jobs

séquentiels soumis par des organisations individuelles qui ont chacune un objectif

particulier : makespan (maximum des temps de complétion) ou mean flow time

(temps de complétions moyens).

Nous introduisons de nouvelles restrictions sur l’ordonnancement pour tenir

compte du concept d’ordonnancement égoïste (selfish organizations), c’est-à-dire,
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lorsque les organisations refusent de coopérer si leur propre objectif peuvent être

améliorés en exécutant un de leur job plus tôt sur une machine de leur organisation.

Nous proposons ici une étude de l’équité (fairness) en utilisant plusieurs métriques.

Notre but ici est d’évaluer si les résultats obtenus par les organisations améliorent

de façon égale tous les objectifs locaux en construisant des ordonnancements équi-

tables par rapport aux métriques considérés. Perdre l’équité pour une organisation

particulière peut être considéré comme une raison d’arrêter la coopération avec les

autres.

Les résultats plus précis sont les suivants : la Section 3.2 montre que n’importe

quel algorithme qui respecte les restrictions d’égoïsme ne peuvent être approximés

à mieux qu’un facteur 2 de l’optimal. de plus, ce problème est NP-difficile que

les organisations soient intéressées par minimiser leur makespan ou le temps de

complétion moyen. Puis, nous présentons plusieurs algorithmes d’approximation qui

atteignent ce rapport de 2 dans la Section 3.3. Ce algorithmes sont analysés vis à vis

des métriques d’équité dans la Section 3.4. Enfin, des expérimentations menées sur

des simulations montrent les bons résultats de ces algorithmes en moyenne et plus

particulièrement, comment chaque organisation perçoit l’équité dans la Section 3.5.

Algorithmes relâchés pour le problème

d’ordonnancement multi-organisation

Les résultats présentés au chapitre précédent montrent que d’une part, il est possible

aux ordonnancements d’encourager la coopération en garantissant des performances

pour chaque organisation indépendantes. D’autre part, ils montrent aussi que de tels

encouragements ont un impact sur la performance globale.

Tout d’abord, on distingue l’impact sur les contraintes locales qui induisent une

dégradation du makespan global. En particulier, nous avons montré (voir l’exemple

de la Figure 3.2) que tout algorithme qui respecte ces contraintes locales a au moins

un facteur d’approximation de 3
2

par rapport à l’optimum global obtenu avec des

organisations altruistes (c’est-à-dire, celles qui sont prêtes à collaborer en dégradant

leurs propres jobs).

Puis, nous étudions l’influence des contraintes d’une attitude égoïste sur la per-
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formance globale. En l’absence de telles contraintes, nous montrons à travers la

Proposition 3.1 qu’il n’existe pas d’algorithme d’approximation avec un rapport

d’approximation asymptotique meilleur que 2. Enfin, en mixant les deux types de

contraintes, il est impossible d’obtenir un rapport meilleur que 2− 2
N

, en vertus de la

Proposition 3.2.

Ainsi, il existe une corrélation claire entre les garanties que l’on peut attendre

de chaque organisation pour inciter à la collaboration et la garantie obtenue pour

l’optimisation globale. L’objectif de ce chapitre est d’étudier de telles corrélations

lorsque les organisations locales acceptent de dégrader leurs performances locales

d’un certain facteur fixé.

Plus précisément, la Section 4.1 présente comment nous avons modélisé la cor-

rélation à partir du problème MOSP relaxé (noté α-MOSP) et quelques résultats

existant autour de modèles poches. Dans la Section 4.2, nous montrons comment

améliorer la borne précédente d’inapproximation en montrant en particulier (contrai-

rement à l’intuition) il n’existe pas d’algorithmes polynomiaux pour obtenir de telles

bornes (sauf si P = N P). Nous présentons également deux familles d’instances dont

les points de Pareto optimaux atteignent les bornes d’inapproximation. Deux nou-

veaux algorithmes sont proposés et analysés dans la Section 4.3. Le premier est une
3
2
-approximation pour l’objectif global, avec la garantie qu’aucune organisation ne

dégrade son makespan de plus d’un facteur 2. Cette solution est Pareto optimale

selon [OII09]. Le second garantie une 4
3
-approximation pour le makespan global

avec une dégradation locale limitée à 3. Cette solution appartient à la frontière de la

courbe d’inapproximabilité de la seconde famille et, ainsi, est Pareto-optimale.

Mécanismes de coordination pour l’ordonnancement

multi-organisation dans un cadre égoïste

Jusqu’à présent, nous avons étudié les notions de coopération et d’égoïsme appli-

quées au problème d’ordonnancement multi-organisations en utilisant des approches

classiques de l’optimisation combinatoire. Dans ce chapitre, nous proposons une ex-

tension des notions d’indépendance et d’égoïsme des organisations en les autorisant

de choisir rationnellement la meilleure stratégie possible pour exécuter leurs jobs.
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Le but ici est d’étudier les interactions entre organisations indépendantes comme

résultat d’un jeu et la recherche d’équilibres.

La principale contribution de ce chapitre est d’avoir modéliser le problème d’or-

donnancement multi-organisation sous forme de jeu qui conduit à des configurations

qui sont aussi prêts possible d’un équilibre de Nash avec un prix de l’anarchie borné

par une constante. L’idée est d’étudier le problème comme un jeu non coopératif avec

des mécanismes de coordination qui permettent à chaque organisation de déterminer

le meilleur makespan possible jusqu’à obtenir un équilibre.

Plus précisément, le chapitre est organisé comme suit : la Section 5.1 décrit le

modèle lui-même, puis la Section 5.2 étudie le mécanisme de coordination basé

sur des résultats classiques en ordonnancement. On montre qu’utiliser ce genre de

mécanismes ne permet pas d’admettre des équilibres à ε-approximation avec ε < 2

et que décider s’il existe une instance particulière qui admet un équilibre de Nash pur

est co-NP difficile. Dans la Section 5.3, on définit un autre mécanisme de coordination

où la priorité est donnée aux organisations, et non plus aux tâches. Nous proposons

alors un algorithme qui construit une ρ-approximation d’un équilibre pur et nous

analysons le prix de l’anarchie correspondant.

Ordonnancement multi-utilisateurs

Il est fréquent que des utilisateurs doivent se regrouper pour partager leurs ressources

de calcul. Ces ressources appartiennent ainsi non plus à des utilisateurs individuels,

mais à une communauté. Dans ce cas, les utilisateurs n’ont plus de privilèges spéciaux

sur une partie de ces ressources. Ceci diffère des problèmes multi-organisations

étudiés dans les chapitres précédents. Ils doivent également collaborer et coordonner

l’utilisation de ces ressources pour atteindre les meilleures performances de façon la

plus équitable possible.

Un exemple typique de ces problèmes est l’ordonnancement multi-utilisateurs

dans les grappes de calcul [KC03], où plusieurs utilisateurs doivent exécuter leurs

jobs sur des processeurs de la grappe où aucun n’a le contrôle spécifique sur ces

machines.

Une question délicate qui se pose dans ce type d’environnements porte sur

comment ordonnancer tous les jobs en garantissant une certaine équité entre les
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utilisateurs. Plus que garantir certaines performances, l’ordonnanceur devrait pouvoir

respecter les intérêts de chacun. A notre connaissance, ce problème n’est pas résolu à

ce jour, en particulier, aucune étude théorique n’a été menée.

Ce type d’interrogation mêlant performances et équité se pose également du point

de vue plus pratique lors de l’exécution sur des plates-formes parallèles. Quelques

problèmes proches ont été étudiés, tels que le partage de la bande passante dans les

réseaux [MR02], ou la négociation entre des partenaires industriels [Agn+00], ou le

partitionnement d’applications par hyper-graphes [PM07], etc.

De tels problèmes d’optimisation mettent en jeu de nombreux paramètres com-

plexes. Pour concevoir une méthode raisonnable de résolution, on doit la plupart

du temps considérer une fonction objective plus simple. Cependant, souvent il n’est

pas suffisant d’optimiser un seul objectif. Ainsi, nous présentons dans ce chapitre

une méthode générique multi-objective pour optimiser le front de Pareto où chaque

paramètre est une fonction objectif particulière.

Cette méthode est mise en œuvre sur le problème MUSP avec optimisation de

l’équité entre utilisateurs. Plus précisément, la Section 6.1 présente le problème d’or-

donnancement multi-utilisateurs sur les mêmes bases que le multi-organisations et

les notations associées. La Section 6.2 montre comment construire des approximation

de Pareto pour des instances particulières du problème MUSP. Puis, nous introduisons

une nouvelle méthode pour optimiser des fonctions objectifs monotones pour une

formulation multi-objectifs du problème à la Section 6.3. Cette technique fonctionne

à l’aide de bornes inférieure et supérieure qui servent à guider l’espace des solutions

autour de l’ensemble de Pareto. Nous détaillons comment appliquer cette technique

pour MUSP pour trois utilisateurs.

Conclusion et perspectives

L’informatique a changé profondément les aspects méthodologiques du processus

de découverte dans les différents domaines du savoir. Les chercheurs ont à leur dis-

position aujourd’hui de nouvelles capacités qui permettent d’envisager la résolution

de nouveaux problèmes. La question que l’on se pose maintenant est de comment

rendre ces nouvelles capacités, auparavant limitée aux projets scientifiques les plus

grands (et les plus riches), à tous les chercheurs.
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Notre travail a été motivé par la conviction que cela pourrait être accompli grâce

à la collaboration entre les individus et les organisations, même si dans la pratique,

les participants peuvent avoir des besoins et attentes différentes (potentiellement

contradictoires) quant à leur niveau de coopération.

Dans ce document qui regroupe les résultats obtenus pendant cette thèse, nous

avons étudié comment la théorie de l’ordonnancement peut être appliquée afin de

créer une plate-forme parallèle ou distribuée, où tous les participants se sentent

toujours encouragés à partager leurs propres ressources de calcul en échange d’être

en mesure d’exécuter leurs propres tâches de manière plus efficace. Chaque chapitre

explore une facette différente de la façon dont les organisations s’engagent dans une

collaboration et montre comment obtenir des ordonnancements qui garantissent de

bons compromis entre les performances obtenues par chaque participant.

Le premier type d’interaction a été étudiée dans le Chapitre 3. Nous avons

étudié ce qui se passe lorsque les participants ne peuvent pas se faire confiance

mutuellement, dans le sens où ils ne peuvent pas suivre exactement les ordres

donnés par un ordonnanceur centralisé. Nous avons supposé que les participants de

la plate-forme sont des organisations qui agissent de façon individualiste et égoïste,

capable de prendre avantage du fait qu’ils ont le contrôle complet sur leurs propres

ressources.

Nous avons montré comment un ordonnanceur centralisé peut calculer un ordre

d’exécution pour les tâches qui ne permet pas une situation où une organisation

égoïste pourrait être tentée de modifier l’ordonnancement calculé afin d’exécuter

ses propres tâches plus efficacement (au détriment de la performance des autres

organisations). Néanmoins, l’algorithme est capable de garantir une 2-approximation

pour le Cmax global, tout en s’assurant qu’aucune organisation ne sera pas pénalisée

pour partager ses ressources avec les autres.

L’effort pour garantir que la performance obtenue pour une organisation n’est

pas dégradée (par rapport à celle que le participant pourrait obtenir en utilisant

seulement ses propres ressources) est très important pour garantir que le participant

aura toujours intérêt à coopérer. Mais ces garanties pour la performance individuelle

imposent une pénalité sur la performance globale de la plate-forme. Dans le Cha-

pitre 4, nous avons étudié la corrélation entre les garanties que nous pouvons offrir à

chaque participant et les garanties que nous pouvons fournir à la collectivité, afin
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d’améliorer la performances globale.

Nous avons présenté des algorithmes qui permettent aux participants plus al-

truistes de tolérer une dégradation limitée de leurs résultats en échange de meilleures

performances globales. Nous avons montré que le rapport d’approximation pour le

makespan global de 2 (pour le cas où aucune dégradation est tolérée) peut être

amélioré à 3
2

si chaque participant permet que son makespan soit au plus doublé ; et

amélioré à 4
3

si chaque participant permet que son makespan soit au plus triplé.

Nous avons également étudié de bornes d’inapproximabilité pour le problème.

Nous avons montré que les résultats obtenus avec nos algorithmes ne sont pas trop

loin de l’ensemble de Pareto du problème. L’analyse suggère que les algorithmes d’ap-

proximation avec des rapports d’approximation garanties de
�

2; 4
3

�

ou
�

3; 5
4

�

sont

encore possibles. Le développement de tels algorithmes fait partie des perspectives

pour des travaux futurs.

Dans toutes les situations présentées ci-dessus, le processus de prise de décision

est fait par un agent centralisé qui calcule un ordonnancement qui respecte certaines

règles prédéfinies. Dans le Chapitre 5, nous avons utilisé la théorie des jeux algorith-

mique afin d’étendre les notions d’indépendance et d’égoïsme de chaque organisation.

Nous avons donné aux participants la liberté de choisir la meilleure stratégie pour

leurs tâches. L’objectif était d’étudier les interactions entre les organisations indépen-

dantes comme résultat de la tentative d’atteindre une situation d’équilibre fait par

des joueurs égoïstes et rationnels.

Le modèle représente le problème comme un jeu, où chaque participant doit

choisir l’organisation où chacune de ses tâches seront exécutées. L’égoïsme de chaque

organisation est exprimée avec des mécanismes de coordination qui supposent que

chaque organisation ira toujours exécuter d’abord ses propres tâches avant celles des

d’autres organisations (qui seront ordonnancés selon une règle prédéfinie).

Si l’algorithme d’ordonnancement utilisé localement pour ordonnancer les tâches

étrangères est un algorithme d’ordonnancement de liste, alors aucun équilibre de

Nash ε-approché n’est possible pour ε < 2. Dans ce cas, même le problème de

déterminer si une instance admet un équilibre de Nash pur est co-NP dur.

Si l’algorithme d’ordonnancement utilise des informations sur l’organisation à

laquelle la tâche appartient, alors on peut montrer comment faire converger le jeu

vers un état d’équilibre. Nous avons présenté un algorithme qui peut calculer un
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équilibre approché pur qui produit des résultats aussi proches que l’on veut d’un

équilibre de Nash pur. Nous avons également montré que grâce à cette politique

d’ordonnancement local, il est possible de majorer le prix de l’anarchie — le rapport

entre le coût social (le Cmax global) du pire équilibre de Nash et le coût social d’un

ordonnancement optimal.

Ce modèle de théorie des jeux ouvre des nouvelles pistes de recherche, qui

pourront explorer d’autres mécanismes de coordination pour le problème. Il serait

intéressant d’étudier de nouveaux mécanismes de coordination menant à des résultats

avec des garanties supplémentaires telles que l’équité ou d’un meilleur Cmax global,

par exemple. Une autre possibilité de recherche intéressante est d’utiliser ce modèle

de théorie des jeux pour étudier une manière plus altruiste de collaboration, comme

cela a été étudié dans le Chapitre 4.

Le dernier aspect de la collaboration sur les plates-formes parallèles et distribués

étudiées dans ce travail est relatif à la notion de propriété des ressources qui sont

partagées. Contrairement aux cas précédents — où chaque participant contribue à

une partie des ressources disponibles — nous avons étudié dans le Chapitre 6 le cas

où les ressources appartiennent à la communauté et personne n’a de contrôle spécial

ni de privilège sur ces ressources.

Dans ce contexte, nous avons considéré un ensemble d’utilisateurs différents

qui sont en concurrence pour l’exécution de leurs tâches sur un ensemble commun

de ressources, afin d’atteindre la meilleure performance possible. Il n’y a pas de

“meilleure solution” possible, mais un ensemble de solutions qui offrent différents

compromis pour les utilisateurs.

Il y a plusieurs propriétés sur de telles solutions qui peuvent faire l’objet d’étude.

La première propriété que l’on pourrait imaginer dans ce contexte est l’équité des ré-

sultats obtenus par chaque participant. Nous avons présenté une méthode générique

pour optimiser des fonctions objectives monotones (comme, par exemple, l’équité)

qui dépendent des arguments à optimiser. Essentiellement, la méthode énumère la

frontière des solutions de meilleurs compromis entre ces arguments et sélectionne la

solution qui apporte la meilleure valeur pour la fonction à optimiser.

Nous avons illustré l’utilisation de la méthode sur le problème d’ordonnancement

où différents utilisateurs — intéressés à minimiser soit le makespan, soit la durée

moyenne du temps d’exécution de leurs tâches — sont en concurrence pour un
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nombre limité de ressources. En utilisant de nouvelles approximations de l’ensemble

de Pareto pour le problème, nous avons montré comment notre méthode peut être

utilisée pour trouver un ordonnancement équitable et qui offre un bon compromis

entre la performance perçue par les utilisateurs.

Cette méthode peut être appliquée à une grande variété de problèmes multi-

objectifs (que nous nous attendons à explorer dans des travaux futurs). Nous espérons

également d’étendre les algorithmes d’approximations de l’ensemble de Pareto afin

de les appliquer pour des cas plus génériques du problème.



Abstract

Computer science is deeply changing methodological aspects of the discovery process in different areas of
knowledge. Researchers have at their disposal new capabilities that can create novel research opportunities.
Parallel and distributed platforms composed of resources shared between different participants can make these new
capabilities accessible to every researcher at every level, delivering computational power that was restricted before
to bigger (and wealthy) scientific projects.

This work explores four different facets of the rules that govern how organizations engage in collaboration
on modern parallel and distributed platforms. Using classical combinatorial tools, multi-objective scheduling and
game-theory, we showed how to compute schedules with good trade-offs between the results got by the participants
and the global performance of the platform. By ensuring fair results and guaranteeing performance improvements
for the participants, we can create an efficient platform where everyone always feels encouraged to collaborate and
to share its resources.

First, we study the collaboration between selfish organizations. We show how the selfish behavior between the
participants imposes a lower bound on the global makespan. We present algorithms that cope with the selfishness of
the organizations and that achieve good fairness in practice.

The second study is about collaboration between organizations that can tolerate a limited degradation on their
performance if this can help ameliorate the global makespan. We improve the existing inapproximation bounds for
this problem and present new algorithms whose guarantees are close to the Pareto set.

The third form of collaboration studied is between rational participants that can independently choose the
best strategy for their jobs. We present a non-cooperative game-theoretic model for the problem and show how
coordination mechanisms allow the creation of approximate pure equilibria with bounded price of anarchy.

Finally, we study collaboration between users sharing a set of common resources. We present a method that
enumerates the frontier of best compromise solutions for the users and selects the solution that brings the best value
for the global performance function.

Résumé

L’informatique a changé profondément les aspects méthodologiques du processus de découverte dans les
différents domaines du savoir. Les chercheurs ont à leur disposition aujourd’hui de nouvelles capacités qui permettent
d’envisager la résolution de nouveaux problèmes. Les plates-formes parallèles et distribuées composées de ressources
partagées entre différents participants peuvent rendre ces nouvelles capacités accessibles à tout chercheur et offrent
une puissance de calcul qui a été limitée jusqu’à présent aux projets scientifiques les plus grands (et les plus riches).

Dans ce document qui regroupe les résultats obtenus pendant cette thèse, nous explorons quatre facettes
différentes de la façon dont les organisations s’engagent dans une collaboration sur de plates-formes parallèles
et distribuées. En utilisant des outils classiques de l’analyse combinatoire, de l’ordonnancement multi-objectif et
de la théorie des jeux, nous avons montré comment calculer des ordonnancements avec un bon compromis entre
les résultats obtenus par les participants et la performance globale de la plate-forme. En assurant des résultats
justes et en garantissant des améliorations de performance pour les différents participants, nous pouvons créer une
plate-forme efficace où chacun se sent toujours encouragé à collaborer et à partager ses ressources.

Tout d’abord, nous étudions la collaboration entre organisations égoïstes. Nous montrons que le comportement
égoïste entre les participants impose une borne inférieure sur le makespan global. Nous présentons des algorithmes
qui font face à l’égoïsme des organisations et qui présentent des résultats équitables.

La seconde étude porte sur la collaboration entre les organisations qui peuvent tolérer une dégradation limitée de
leur performance si cela peut aider à améliorer le makespan global. Nous améliorons les bornes d’inapproximabilité
connues sur ce problème et nous présentons de nouveaux algorithmes dont les garanties sont proches de l’ensemble
de Pareto (qui regroupe les meilleures solutions possibles).

La troisième forme de collaboration étudiée est celle entre des participants rationnels qui peuvent choisir la
meilleure stratégie pour leur tâches. Nous présentons un modèle de jeu non coopératif pour le problème et nous
montrons comment l’utilisation de “coordination mechanisms” permet la création d’équilibres approchés avec un prix
de l’anarchie borné.

Finalement, nous étudions la collaboration entre utilisateurs partageant un ensemble de ressources communes.
Nous présentons une méthode qui énumère la frontière des solutions avec des meilleurs compromis pour les
utilisateurs et sélectionne la solution qui apporte la meilleure performance globale.
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