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Simulation is a vital tool used by architects to develop new architectures. However, because of the complexity of modern architectures and the length of recent benchmarks, detailed simulation of programs can take extremely long times. This impedes the exploration of processor design space which the architects need to do to find the optimal configuration of processor parameters. Sampling is one technique which reduces the simulation time without adversely affecting the accuracy of the results. Yet, most sampling techniques either ignore the warm-up issue or require significant development effort on the part of the user.

In this thesis we tackle the problem of reconciling state-of-the-art warm-up techniques and the latest sampling mechanisms with the triple objective of keeping the user effort minimum, achieving good accuracy and being agnostic to software and hardware changes. We show that both the representative and statistical sampling techniques can be adapted to use warm-up mechanisms which can accommodate the underlying architecture's warm-up requirements on-the-fly. We present the experimental results which show an accuracy and speed comparable to latest research. Also, we leverage statistical calculations to provide an estimate of the robustness of the final results.

Chapter 1 Introduction

The ubiquity of microprocessors is witness to their indispensability in our daily lives.

They can be found in almost everything; from processors humming in our computers (desktops, laptops, mobiles, etc.) to microcontrollers embedded in dishwashers, airplanes, ATMs, they are impossible to avoid. This omnipresence has generated a reliance on their use and as a result fueled a growing number of expectations. Be it in terms of performance, power budget or economic viability, processor makers are under continuous pressure to innovate and improve on their offerings. This competitive nature of the market drives the design teams to deliver more performance in very strict deadlines. The fact that a microprocessor is a highly complex product often involving multiple teams of many persons in a multi-stage process usually spread over a long duration does not make things easier. sent this set of requirements and are used, from hereupon, to gauge the performance of new architectures.

These requirements are then fed to the design team which works out the changes to make to the existing chips to meet those specified needs. These changes may occur in the form of modification of the existing architecture components or addition of completely new modules. They may also happen by adding new instructions to the existing ISA. This is an iterative phase in which new features are tried and, if found unsuitable, modified many times. This design phase is the core phase of the process and it is here that important decisions, about which features to include, take place.

Once the initial design has been finalised, it is implemented in a low level HDL (Hardware Description Language), e.g., Verilog or VHDL, and tested against different functional and timing constraints.

It is then subjected to rigorous testing using a comprehensive series of test cases to verify that the design is always in a reliable known state starting from a viable input. All possible combinations of inputs are tested for a step by step execution and the state of the chip is verified after each step to ensure correctness.

Once the design is certified to pass these test cases, it is promoted to the next stage where the layout of the different components is optimised on the die. Some of the factors taken into consideration are: to minimize communication delay, to minimize power consumption.

After the detailed design has been laid out for the chip, it is sent to the fabrication plant where the actual die is taped out.

The actual chip prototype thus manufactured is again subjected to a thorough testing procedure to detect any defect during the manufacturing process or in case any bug may have escaped pre-silicon validation.

After the chip maker is sure that the resulting product is error free and meets all the design specifications, it is produced in large quantities and sent to prospective customers.

Manufacturing a processor is a long, involved and costly process. This is made evident by the fact that despite a large and burgeoning market, there are only a handful of players who can design and market a full processor and even fewer are those having the ability to fabricate them. The complexity and the resource requirements increase by orders of magnitude as the process advances in stages. A bug discovered at, or after, the fabrication stage can cost a company a lot in terms of revenue and reputation as Intel Corporation and Advanced Micro Devices, Inc., discovered both at their expense in 1995 [START_REF] Price | Pentium FDIV flaw-lessons learned[END_REF] and in 2007 [START_REF] Hruska | Phantom phenom's perplexing processor problem behind product delay[END_REF] respectively.

Thus simulation has emerged as a vital tool to ameliorate the design process by testing the performance of the design at various stages and detecting and correcting any error in the process. Depending on the abstraction level and the detail modeled, one can have access to different kinds of information in the simulation process. This is shown in Figure 1.2. A processor can be modeled analytically by taking a very abstract view of its complexity and thus have a bird's eye view of the design landscape without bothering with the details. Or it can be tested as a prototype made in the foundry simulating each detail exactly as it would be in the final product.

Between these two extremes lie a range of simulation methodologies offering different capabilities that a user can choose from based on his/her needs. As depicted in increases as we try to model more and more detail and so does the simulation cost which may be in terms of money or man-hours. Ideally, one would like to have a simulation methodology which delivers a maximum of accurate results at a minimum of cost and in a minimum of time. Thus the job of a simulation expert is to minimize the cost and time functions, and increase the accuracy. This is not always possible. Conventional wisdom in the industry says that from the three aspects of cost, accuracy and time, one can pick only two. And it is a fact that at each level of simulation, an architect makes a compromise on one or more of these parameters.

As the stakes are much higher in later stages of the process, it is highly desirable to detect and correct the design flaws in the early stages of the process. Furthermore, in the earlier stages of processor design cycle, major changes can be made easily having far reaching effects and benefits. are the tools employed in this process to develop rapid functional prototypes of the processors and test their functionality. A processor simulator is fed the configuration of the architecture and the program to execute. It outputs the result in terms of the performance achievable for those parameters. These results are used as feedback to configure and test new architectures.

Using a software simulator, a processor can be modeled either at the functional level, which verifies the functionality without giving any detail about the timing information, or it can be modeled at cycle level, which models the timing and microarchitecture detail, to gain insights into the performance in terms of execution time. While the functional simulation is faster in terms of execution, it does not give any information about the performance metrics. We need the cycle level, also termed as detailed, simulation for that. Note: In this document we use the terms simulation,

1. Introduction cycle level simulation, detailed simulation, and performance simulation indifferently unless stated otherwise. Functional simulation will always be mentioned explicitly either by its own name of by referring to it as fastforwarding.

Detailed software simulation is preferable to other methods of simulation as it can model more detail and hence be more accurate than analytical modeling at relatively modest increase in cost and is much cheaper in terms of development than the FPGA simulation with relatively little loss in detail. This flexibility in development and simulation of detail comes at a price however. Software based detailed execution driven simulation can be many orders of magnitude slower than executing the same program on a real machine. KleinOsowski et al. [START_REF] Kleinosowski | MinneSPEC: A new spec benchmark workload for simulationbased computer architecture research[END_REF] measured that SimpleScalar [START_REF] Burger | Evaluating Future Microprocessors: The Sim-pleScalar Tool Set[END_REF] executes 3000 cycles of the host machine to simulate 1 cycle of the simulated architecture. This made it 3 orders of magnitude slower. At this rate they estimated that the benchmark 188.ammp would take 16 months to do a detailed run of its ref input set.

To explore all the microarchitectural design space, the architect has to test different combinations of values for all of the parameters. The number of parameters to explore and the set of values for each of them makes the design space difficult to explore in its entirety. For each combination of parameters, the user has to run many programs comprising the benchmark suite. Exploring all the combinations of all the parameters for a processor may need a program to be executed millions of times.

Despite these inordinate simulation times and the immensity of the design space, the need for simulation makes it unavoidable and thus has forced researchers to seek methods to circumvent these seemingly insurmountable challenges. Attempts have been made to reduce simulation times as well as to prune the design space to a reasonable size.

Techniques to cope with intractable simulation times include data set reduction [START_REF] Kleinosowski | MinneSPEC: A new spec benchmark workload for simulationbased computer architecture research[END_REF], intelligently skipping the design space [START_REF] Cook | Predictive design space exploration using genetically programmed response surfaces[END_REF][START_REF] Ïpek | Efficiently exploring architectural design spaces via predictive modeling[END_REF] and sampling [START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF][START_REF] Wunderlich | SMARTS: accelerating microarchitecture simulation via rigorous statistical sampling[END_REF]. All these techniques are orthogonal and are usually used together to test a maximum number of architectures in a reasonable time.

Program Execution

Functional Simulation Detailed Simulation :::::: [START_REF] Pereira | Dynamic phase analysis for cycle-close trace generation[END_REF] :::: SimPoint.

In both modes, we emphasize transparency to software and hardware changes as it is an important issue when someone actually wants to use the technique. An ideal approach should adapt itself to the characteristics of the program as well as the architecture to report back accurate performance results with a minimum intervention from the user. The details of our work, the experimental methodologies and results and their analyses are described in the document that follows. It is organised as follows:

Chapter 2 gives an overview of the field of Computer Architecture Simulation.

We expound the idea of Simulation as an important tool in the process of design and testing new and better architectures. We detail its benefits and shortcomings.

We start with the different methods and platforms employed in the industry and academia to simulate. A brief discussion of each is provided. We also describe a list of simulators being used. The discussion is narrowed down to software simulation and Sampling. Attempts to use Sampling to estimate the performance of architectures in the past are detailed with their pros and cons. Other aspects such as warm-up and usability are also taken under consideration. Chapter 2

Related Work

Moore's law [START_REF] Moore | Cramming more components onto integrated circuits[END_REF] states that the number of transistors on a processor shall double every 24 months. Based on this assertion, , for the past few decades, the leading processor manufacturers have been churning out performance-enhanced versions of their processors every year. These advances in performance stem from a research ecosystem of collaboration between the industry and the academic groups working on improving the design and performance of current and future systems. As stated in Chapter 1, the industry uses simulation as an important tool to rapidly develop and verify designs during different steps of the processor manufacturing process.

Due to lack of resources, the academic community relies even more heavily on the simulation process to test new architectural concepts. The panelists of a workshop in 2001 [START_REF] Skadron | Challenges in computer architecture evaluation[END_REF] observed that the number of simulation based papers in gives an idea of the importance of simulation in the eyes of the researchers.

A simulator tries to mimic and reproduce, as closely as possible, the behaviour

Related Work

of the machine it is imitating. Simulation has become the de facto preferred method of evaluating microarchitectures because usually the researchers: do not have access to real hardware, do not have enough money to manufacture their own products, or do not have the time or manpower to invest in a long and complicated process.

When it comes to simulation, several questions arise. How accurate is the simulator? How faithful are the performance measures reported to the actual machine performance? Though it's difficult to answer this for future architectures, there have been attempts to model existing processors and verify a simulator's correctness. Black and Shen [START_REF] Black | Calibration of microprocessor performance models[END_REF] developed a trace-driven model for the IBM/Motorola

PowerPC 604 processor and compared the performance of the simulator against that of the actual chip, measured using hardware-embedded counters. Using a series of generated test cases and a rather strict criterion of success (exact CPI match), they found that for the test suite with best results only 51% of the test cases passed initially. They qualified three sources of errors. Modeling errors resulting from a buggy implementation. Specification errors occurred when the developer was provided with or assumed wrong specifications. Abstraction errors were caused by the developer implementing a feature at a higher level of abstraction. By systematically eliminating these sources of errors and slightly relaxing the validation criterion, they were able to increase the percentage of passed test cases to 84% on average. The best test suite passed all of its test cases. Using some real-world benchmarks, they reported an error of 4% in performance estimation. A similar study was conducted by Desikan et al. [START_REF] Desikan | Measuring experimental error in microprocessor simulation[END_REF] in 2001. They modified the SimpleScalar simulator to model an Alpha 21264 processor. Using some synthetic benchmarks, they found an average discrepancy of 74% between the performance reported by the simulator and that of the real chip. A bit of reverse engineering and modeling a lot more detail helped them reduce the average error to 2%. However for real world SPEC CPU2000 benchmarks they still reported an error of 18%. Using the generic sim-outorder model, configured as closely to the Alpha 21264 parameters as possible, resulted in an error of 36% for the same benchmarks. So modeling more detail helps get a more precise picture of processor performance.

The more detailed our model, the more faithful our simulator is to the original processor. The catch is that the more detail we model, the longer get our simulation times. It is desirable, especially in the early stages of the design process, to have a fast evaluation methodology in order to explore a maximum portion of the design space. This said design space consists of all architecture models that can result by varying different values for the architectural parameters taken into consideration.

One popular simple simulator [START_REF] Burger | Evaluating Future Microprocessors: The Sim-pleScalar Tool Set[END_REF] has 40 such parameters. Assuming 2 values for each parameter will result in a space consisting of 2 40 configurations to evaluate.

Clearly, it is impossible to exhaustively search this space. Therefore, the need for a fast mechanism of exploration cannot be overstated. This brings to spotlight the basic dilemma facing every computer architect: What is the ideal compromise between the accuracy of the model and the simulation time?

In the December 2001 workshop [START_REF] Skadron | Challenges in computer architecture evaluation[END_REF] organized by the US National Science Foundation, renowned names in Computer Architecture Simulation were brought together to brainstorm on major issues in the domain. They identified problems in key areas and made suggestions to improve the situation. Absolute vs relative accuracy.

The panelists agreed that, when doing design space explorations, absolute error in performance measurement is rather less important than the relative trends in performance as we vary the parameters. As long as a simulator catches these relative changes in performance correctly, we can sacrifice the absolute accuracy for speed. In a similar gathering in ISPASS (International Symposium on Performance Analysis of Systems and Software) 2004, a panel of experts from the architecture simulation community reunited [START_REF] Yi | The future of simulation: A field of dreams[END_REF] to assess the state of the art and found the field lagging behind in several important areas. They found an increased reliance on execution driven cycle-level simulation at the expense of analytical and statistical techniques. They made five "key recommendations":

• Need to put more thrust in multiprocessor and full system simulation.

• Need to propose more efficient simulation methods.

• Need to explore fast alternatives to cycle-accurate simulation.

• Need to increase representativeness and decrease redundancy in benchmarks.

• Need to add robustness and statistical validation to simulation methodology.

Creating a detailed and validated simulator can be an arduous process. Modeling the exact detail of a chip is avoided for the following reasons: it is extremely resource consuming in terms of man-months, most manufacturers do not publish the detailed specifications of their chips for corporate strategic reasons, once modeled the simulator is difficult to modify if a user wants to adapt it to his/her purpose, and, a complicated design is difficult to validate as well. In [START_REF] Austin | Position paper for the 2001 nsf workshop on computer performance evaluation techniques[END_REF] Todd Austin tells his experience of developing an ARM [START_REF] Holdings | Advanced risc machine, arm holdings[END_REF] target for SimpleScalar [START_REF] Burger | Evaluating Future Microprocessors: The Sim-pleScalar Tool Set[END_REF] where validating the simulator took more time than developing it.

Since it is time consuming and complicated to exactly model a processor design in detail, many simulators make abstracting assumptions about different components as long as they do not violate the results too much. This has the advantage of simplicity and reduces development time. Secondly, the simplified model is easy to understand and modify facilitating adoption by the community. Another plus point is that while a specific architecture may become out of fashion with time, a generic model continues to be used and can be adopted to one's needs. This can be seen by the adoption of popular simulators [START_REF] Burger | Evaluating Future Microprocessors: The Sim-pleScalar Tool Set[END_REF][START_REF] Magnusson | Simics: A full system simulation platform[END_REF] in the research circles. SimpleScalar [START_REF] Burger | Evaluating Future Microprocessors: The Sim-pleScalar Tool Set[END_REF] tools claim, on their website, to be used for "more than one third of all papers published in top computer architecture conferences" in the year 2002.

The problem of architecture simulation is a multi-faceted one. The design space is expansive. Benchmarks multiply and increase in size as consumers demand a rich and intensive computing experience. The complexity of processors is increasing making old simulators obsolete and newer ones difficult to model and slower in execution. Lack of standard criteria and platforms makes it difficult to compare results. There is a concerted effort on the part of the researchers to tackle this problem from all its angles. Efforts are being made to reduce the design space to a manageable size and traverse the space intelligently. Benchmarks are being analyzed for redundancies and their size curtailed with minimal effect on their characteristics.

Techniques are being developed to make the simulators and simulations of individual programs go faster. After presenting an overview of benchmarks and tools used, we discuss all these efforts in the following sections.

Benchmarks

The choice of benchmark programs affects the run times and result interpretations for simulations. Simulating wrong or non-representative benchmarks can cause an architect to make design choices which will perform poorly in real world. On the other hand, executing large benchmarks with overlapping characteristics can cause redundant simulations and waste of costly time. This section presents a preview of common programs used in the research community.

Standard Performance Evaluation Corporation [START_REF]Standard performance evaluation corporation[END_REF] first released its set of SPEC CPU benchmarks in 1989. Since then, after going through five generations (1989,1992,1995,2000,2006), it has been one of the most commonly used benchmark suite in the architecture community for measuring single-threaded desktop performance. The size and diversity of the benchmarks have increased steadily reflecting the advances in CPU performance and the needs of the users. SPEC CPU89 had 10 benchmarks with an average length of 2.5 billion instructions; SPEC CPU2006 has 29 programs with an average size of 2.2 trillion instructions each. The SPEC CPU benchmarks are grouped in two main groups: the int and fp, and are representative of different fields, from business and scientific applications to quantum chromodynamics, weather prediction and linear programming.

Phansalkar et al. [START_REF] Phansalkar | Four generations of spec cpu benchmarks: what has changed and what has not[END_REF] do an analysis of SPEC CPU benchmarks over four generations, from 1989 to 2000. They characterize the benchmarks in terms of their instruction count, branch characteristics, data locality and instruction-level parallelism (ILP). They observe that though SPEC CPU has kept some of the programs same over different generations, the behaviour of these programs sometimes changes with time. In the SPEC CPU2000 suite they cite the examples of swim and applu having more conditional branches in loops and worse temporal locality, respectively, from their ancestors. They use principal component analysis (PCA) to reduce interactions between the parameters and then use k-means clustering to cluster similar applications. Redundancy in benchmark suites, different programs having same characteristics, is undesirable as simulating the same kind of applications does not furnish any additional information. They observe that over the four generations, the redundancy in SPEC CPU benchmarks has also increased. This is confirmed by [START_REF] Phansalkar | Analysis of redundancy and application balance in the spec cpu2006 benchmark suite[END_REF] who found the SPEC CPU2006 suite to be 50% redundant, i.e., one can simulate only half of the suite and have almost the same information as would be obtained by simulating the whole.

SPEC workloads are geared towards desktop and server systems. MiBench [START_REF] Guthaus | Mibench: A free, commercially representative embedded benchmark suite[END_REF] were proposed by the University of Michigan as an alternative set of benchmarks targeting embedded systems. The applications are divided into six groups targeting six segments of the embedded market, namely, automotive control, consumer devices, office automation, networking, security, and telecommunications. Guthaus et al. [START_REF] Guthaus | Mibench: A free, commercially representative embedded benchmark suite[END_REF] analyzed the characteristics of these programs and compared them to the SPEC CPU2000 ones. They noticed that these benchmarks showed much more variability than the SPEC CPU2000. This is in consistence with the difference between the nature of the two markets, the embedded one featuring many ISAs and architectures. While the branches were rather predictable for both benchmark suites, they found that MiBench programs have lower memory requirements and the percentage of cache misses drops low for cache sizes 2-4 times smaller than those of SPEC CPU2000.

Simulators (Stand-alone and Full System) and Simulation Infrastructures

The simulator finds itself at the heart of the simulation process. In the early days of architecture simulations everyone would create a simulator to publish results. But as the complexity of processors increased (out-of-order, branch prediction, etc.), so did the effort to build simulators. Furthermore, the prevalence of simulated performances created a need to compare performances. These reasons together forced the adoption of standardized and reusable platforms for publishing results.

This resulted in simulators being developed and validated by communities for the purpose of easing the simulation process. Then there are tools that are not exactly full simulators but help simulation.

Pin is a dynamic binary instrumentation tool which allows inserting user defined analysis code in arbitrary locations in a program binary. This way, a user can insert functionality to collect profile data during the runtime of a program. Wattch [START_REF] Brooks | Wattch: A framework for architectural-level power analysis and optimizations[END_REF] models power consumption in a processor core by modeling the thermal properties of array structures, fully associative content-addressable memories, wires and combinational logic, and clock buffers. Similarly, Cacti [START_REF] Muralimanohar | Optimizing nuca organizations and wiring alternatives for large caches with cacti 6.0[END_REF] can model timing, area and power aspects of modern caches.

Design Space Exploration

As stated in the introduction to this chapter, computer architecture simulation consists of finding out the right values of the different parameters for all the modules comprising the processor such that the resulting machine would execute all target applications in optimal time. Easier said than done, the combinations of parameter values and programs to explore skyrocket quickly. On top of this, the slow detailed simulation speeds make the task even more daunting. Due to the immensity of the problem, it is impossible to be tackled in its entirety. Therefore, researchers attack it piecewise. Usually, this approach divides the problem along three broad axes, namely, traversing the design space intelligently, reducing the number and size of benchmarks, and accelerating individual simulation executions. This section gives a broad view of all these aspects, especially focusing on the last one as it forms the core of this thesis.

Managing the Design Space

A processor is composed of many modules. Each of them itself is a complex product of many carefully tuned parameters. There is the pipeline length, buffer sizes, issue and retire widths; memory hierarchy block sizes, associativities, latencies; bus widths and wire delays; a horde of predictors and prefetchers with histories and table sizes.

The best configuration could be for any set of values of all these parameters. To check them all would mean to simulate and analyze all the programs for every combination of these parameters. Doing detailed simulations for such a design space could take many lifetimes. The first realization which helps reduce the size of the problem is that not all the parameters values have effects noticeable enough to be considered important.

Sensitivity analysis. To avoid exploring design space naively, we must identify parameters that affect most the targeted performance metric. Sensitivity analysis consists of modifying the values of different parameters one at a time and seeing how the change affects the final output. It can give insights about the importance of parameters and that of their interactions. Skadron et al. [START_REF] Skadron | Branch prediction, instructionwindow size, and cache size: Performance trade-offs and simulation techniques[END_REF] study the effect of branch prediction, cache size and the instruction window size on the instructions per cycle (IPC) of SPEC CPU95 programs on a modified version of SimpleScalar. They found out that increasing the RUU (Register Update Unit) size beyond a certain point has no effect on the performance because the number of instructions active at a given time is limited by the branch predictor accuracy. They also observed that the performance is more sensitive to instruction cache size than to data cache size.

If the size of the instruction cache is small, increasing the data cache size has no effect.

Related Work

Statistical techniques. Statistical methods have proven to provide acceptable solutions to untractable problems in many fields. Computer architects have not hesitated to resort to their help whenever they could. Yi and Lilja [START_REF] Yi | Effects of processor parameter selection on simulation results[END_REF] use their knowledge of the working of the processor to form intelligent heuristics about which parameters to remove from the sensitivity analysis. Once they have the number of parameters reasonably reduced, they proceed to see the effect of each parameter on the final output. They used ANOVA (analysis of variance) [START_REF] Lillja | Measuring Computer Performance : A Practitioner's Guide[END_REF] to determine the effect of each parameter on the final output. To identify the sensitivity of a metric to N parameters and their interactions, the ANOVA technique requires 2 N simulations. In this way they identify the most important parameters. Once the search space is small it can even be explored exhaustively. In Oskin et al. [START_REF] Oskin | Hls: combining statistical and symbolic simulation to guide microprocessor designs[END_REF] use HLS, a statistical modeling framework, to explore the design space. They gather statistical profiles of application binaries by running them on a modified SimpleScalar. These profiles consist of data about basic block size and distribution, dynamic dependence distance between instructions, cache behaviour and branch prediction accuracy. Using this information, the framework produces synthetic instruction streams whose profiles match those of the original applications.

These synthetic streams are much shorter in length and thus faster to execute. To explore the design space, they vary the design parameters in both software (basic block size, dynamic instruction distance) and hardware (cache miss rate, branch predictor accuracy, latencies). They found that for parts of the design space with high branch predictor accuracy and high cache hit rates, the results for these synthetic streams matched those of the full applications. On the other hand, the performance degraded as these values got lower. They attribute this to the over simplicity of modeling cache hit rates and branch predictor hit rates as simple normal distributions. Using averages and standard deviations ignores the dynamic behavior of these parameters and their interactions that occur during the course of execution. Nevertheless, they recommend using the framework for a fast exploration of the ranges of design space where it performs well. He developed a first order model to determine this parallelism but finds that using averages for different parameters makes for poor performance. Instead he recommends taking into account the non-uniform variations in benchmark and machine parallelisms over the course of time.

In 2002 Noonberg and Shen [START_REF] Noonburg | Theoretical modeling of superscalar processor performance[END_REF] described a theoretical model for Superscalar processor performance. They build on Jouppi's idea of parallelism in program and machine by using probability matrices. The probabilities are intended to capture the variability in the program and machine parallelisms. The probabilities for the program parallelism matrix are functions of data and control dependencies while those of the machine parallelism take into account parallelism due to branch prediction accuracy, the fetch and decode mechanism, and the processor issue width. They model the IBM RS/6000 processor and modify the number of its functional units.

Running selected SPEC CPU92 fp and int benchmarks, their model estimates the IPC within -0.6% and +22.0% of the real IPC.

Karkhanis and Smith [START_REF] Karkhanis | A first-order superscalar processor model[END_REF] proposed an analytical model for a superscalar processor core. They develop a model for pipeline performance under ideal conditions i.e., perfect branch prediction, no cache misses, etc. This ideal performance is then augmented with equations developed for penalties incurred by the branch misprediction and cache miss events. They use trace driven simulation to calculate the distribution of occurrence for these miss-events. Using their analytical model for the processor, they were able to predict the performance of the SPEC int benchmarks with an average error of 5.8%.

Predictive modeling. Machine learning techniques are also called in to help traverse the design space. This is done by running detailed simulations for multiple configurations. These configuration parameters and their results are then used to train a predictor. This predictor is then used to predict the performance for new configurations.

In [START_REF] Ïpek | Efficiently exploring architectural design spaces via predictive modeling[END_REF] Using this limited information of 4 performances, they predict the new program's speed-up for the rest of the transformations with an error of 7.3% on average.

Workload Characterization

When doing design space exploration, it is extremely important to have a representative workload. Non-representative workloads result in loss of precious simulation time. Normally, benchmarks are supposed to provide a maximum coverage of the application space with a minimum of programs but that is not always the case.

When discussing workloads there are two things to consider: benchmarks by reducing the input dataset sizes. They reduce the datasets by: 1) manipulating command-line parameters, 2) truncating input files, 3) creating new input files. They compare the similarity between the new and old data sets by comparing: 1) functional profiles of both runs, 2) the instruction mix, 3) cache miss profiles. They found out that while the functional profile of the SPEC CPU2000 programs run with reduced data sets sometimes differed from that with ref inputs, the instruction mix profile usually matched.

Phansalkar et al. [START_REF] Phansalkar | Analysis of redundancy and application balance in the spec cpu2006 benchmark suite[END_REF] use PCA and hierarchical cluster analysis to identify the similarities between the SPEC CPU2006 benchmark programs on four different ISAs.

They found the behaviour of the programs to be sensitive to the input sets. However, they also found out that 14 out of 29 programs were sufficient to capture most of the information. Seeing the lengths of SPEC CPU2006 benchmarks, it would be a considerable waste of time to simulate all this redundant code.

Yi et al. [START_REF] Yi | Evaluating benchmark subsetting approaches[END_REF] found PCA and Placket and Burman to be better methods for benchmark subsetting than other methods. For these two methods, most of the programs' shortened versions estimated the CPI (cycles per instruction) and EDP (energy delay product) with an error of less than 5%.

Related Work

Citron [START_REF] Citron | Misspeculation: partial and misleading use of spec cpu2000 in computer architecture conferences[END_REF] deplores the use of partial SPEC CPU2000 benchmark suite even in reputed conferences like ISCA and MICRO. More importantly he points out the lack of adequate explanations for the missing benchmarks. He argues that some benchmarks are preferred over the others because of their portability and ease of compilation. In making some negative assumptions (slowdowns) about the missing benchmarks, he observes that the overall speed-ups reported by the published papers for partial subsets can be considerably reduced if the missing programs were taken into account.

In [START_REF] Yi | Simulation of computer architectures: simulators, benchmarks, methodologies, and recommendations[END_REF] Yi and Lilja make a survey of the field of computer architecture simulation. They discuss the most popular simulators and benchmarks being used by the 

Simulation Acceleration

In this section we detail the third main axis of faster design space exploration which consists of reducing individual simulation times. Simulating a program on a simulator can be considered as the inner most loop of the design space exploration process.

Any reduction in simulation times will have a direct impact on the processor design space exploration times. As a result, there have been a number of tentatives to reduce the execution times of program simulation be it by development of faster simulators or by crafting mechanisms to make the programs go faster. Below is an account of different techniques that have been developed to make the simulations go faster.

Direct Execution

The fact that code is executed much faster on a real processor than on a simulator and that a simulator need not execute all of a program code makes the case for Direct Execution. Direct execution [START_REF] Krishnan | A direct-execution framework for fast and accurate simulation of superscalar processors[END_REF][START_REF] Falsafi | Direct smarts: Accelerating microarchitectural simulation through direct execution[END_REF] advocates the execution of the simulated program's code on the host machine in stead of the simulator. Chen [START_REF] Falsafi | Direct smarts: Accelerating microarchitectural simulation through direct execution[END_REF] uses it to run the fast forward portion of their program on the host machine. However, they keep a record of the instructions executed and the branch predictions to later warm up the simulator's structures before they do detailed execution. Krishnan and Torrellas [START_REF] Krishnan | A direct-execution framework for fast and accurate simulation of superscalar processors[END_REF] also use direct execution to simulate superscalar processors. They use a simulator front end and a MINT [START_REF] Veenstra | Mint: A front end for efficient simulation of shared-memory multiprocessors[END_REF] instrumented binary to execute instructions on the host processor. The instrumented binary generates information (opcode and register usage) which is logged in a 512 entry Interface Window. These events are logged until either the interface window becomes full or they encounter a mispredicted branch. At this point the simulator is invoked which updates its state based on that information. They report slowdowns of 1300x compared to native execution. Out of this, 130x is introduced by MINT instrumentation and 10x by their interfacewindow based simulator model. They also simulate a multiprocessor configuration where the slow down because of the interface window is in the high twenties. To keep the model simple, they ignore the cache pollution due to wrong path executions.

Checkpointing

To gain the time spent in doing functional simulation and also to accelerate detailed simulation, scientists use checkpointing. Checkpointing consists of dumping program and architecture state at certain points to a file during detailed execution. Next time,

to start simulation from one of those points, instead of executing the program until that point, a simulator can directly load the processor state from the checkpointed file and start executing. Disk space requirements to store the simulator state for many points can grow quite large. Schnarr and Larus [START_REF] Schnarr | Fast out-of-order processor simulation using memoization[END_REF] introduce speculative direct-execution as well as memoization in their paper. Memoization consists of storing a compressed architecture state and the following detailed simulator actions.

Next time the same state is encountered, instead of playing the instructions in detailed simulation mode, the stored actions are replayed. This results in speedup for those actions. They report that storing simulator states for one SPEC CPU95

program could require up to 900 megabytes. Barr et al. [START_REF] Barr | Accelerating multiprocessor simulation with a memory timestamp record[END_REF] recommend using the memory timestamp record which, for every block of cache in a multiprocessor system, stores the last time each processor accessed it. They propose to store this information in a checkpoint and then reconstruct the cache and directory state from it when loading the checkpoint for a detailed simulation. To reduce the size of the stored checkpoint, Biesbrouck et al. [START_REF] Van Biesbrouck | Efficient sampling startup for sampled processor simulation[END_REF] recommend using only the words of memory that will be needed (touched memory image) or only the values for the loads (load value sequence) that will be executed next. To avoid repeating checkpointing for different cache sizes, they propose the memory hierarchy state, i.e., storing the state of a large cache and then constructing the smaller caches from it.

Parallel Simulation

Checkpointing has the added advantage that once we have multiple checkpoints, we can distribute them on different processors to do simulations in parallel. Lauterbach [START_REF] Lauterbach | Accelerating architectural simulation by parallel execution of trace samples[END_REF] proposes using checkpoints to distribute traces over different machines for parallel execution. Eeckhout and Bosschere [START_REF] Eeckhout | Efficient simulation of trace samples on parallel machines[END_REF] also recommend distributing sampled traces over different machines for simulation though, instead of checkpoints, they use detailed simulation to restore cache states. Reinhardt et al. [START_REF] Reinhardt | The wisconsin wind tunnel: Virtual prototyping of parallel computers[END_REF] describe the simulation of a parallel shared memory machine on a parallel message passing machine. They distribute the target's nodes on the host machine and the host machine directly executes all the instructions that hit in the target's cache. Only instructions that miss in the target's cache are passed on to target simulator so that it can use latency and sharing information to update its state. caches.

Sampling

In the field of statistics [START_REF] R E Walpole | Probability and Statistics for Engineers and Scientists[END_REF], sampling is used to determine the characteristics of a large population by observing those characteristics for a smaller subset. The basic assumption is that a well chosen subset sample correctly reflects the population's characteristics. Sampling is popular because it reduces the cost and the effort to They recommend the use of warm-up to reduce non-sampling bias. Poursepanj [START_REF] Poursepanj | The powerpc performance modeling methodology[END_REF] uses trace driven sampling methodology to model the PowerPC 603 processor.

Martonosi et al. [START_REF] Martonosi | Effectiveness of trace sampling for performance debugging tools[END_REF] study the effect of the number of samples, warm-up and sample length on the accuracy of sampled measurements. Lauterbach [START_REF] Lauterbach | Accelerating architectural simulation by parallel execution of trace samples[END_REF] collects randomly distributed trace samples and recommends executing them in parallel to reduce simulation time.

Sampling can be divided into two types based on how the samples are selected:

random and representative sampling.

2.3.3.4.a Representative Sampling

Representative sampling consists of grouping the elements of a population based on their similarities and then choosing a representative sample for each of these groups.

Skadron et al. [START_REF] Skadron | Branch prediction, instructionwindow size, and cache size: Performance trade-offs and simulation techniques[END_REF] divide their programs into intervals of 1 million instructions each.

They then measure the branch misprediction rates for each interval. In [START_REF] Annavaram | The fuzzy correlation between code and performance predictability[END_REF], Annavaram et al. used sampled hardware program counters to make Extended Instruction Pointer Vectors (EIPVs) and try to correlate them to program performance. They found that while for some programs the EIPVs captured correctly the behaviour of the program, for others it was not the case. Lau et al.

[61] retorted that while sampled EIPVs could have a fuzzy relationship with performance, full code signatures, like BBVs, do show strong correlation to code and can help predict program performance.

In SimPoint [START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF], instead of choosing one representative, they group the generated BBVs into multiple clusters by using the k-means clustering algorithm. Then they find out the representative of each group and then use all these slices of program as representative of the whole program. They term these groups containing intervals with similar characteristics phases. In [START_REF] Sherwood | Phase tracking and prediction[END_REF] they propose a mechanism to detect and predict these phases. They show that phase prediction could be used to help value prediction and dynamic adaptation of processor width and data cache. In [START_REF] Lau | Structures for Phase Classification[END_REF], Lau et al. use and compare structures other than BBVs to compare phase classifications.

They use loop branches, procedures, opcodes, register usage, and memory address information to characterize program intervals. They found that BBVs performed the best. In [START_REF] Lau | Motivation for variable length intervals and hierarchical phase behavior[END_REF], they try variable length intervals so that they might be better aligned with basic block boundaries and code structure.

In [START_REF] Liu | EXPERT: expedited simulation exploiting program behavior repetition[END_REF] Kodakara et al. [START_REF] Kodakara | Cim: A reliable metric for evaluating program phase classifications[END_REF] observe that the CoV based classification can be inconsistent under certain conditions. They propose the CIM (confidence interval of estimated mean) as a better alternative to estimate the homogeneity of the phases.

Lau et al. [START_REF] Lau | Transition phase classification and prediction[END_REF] classify the transitional period between stable program phases as a separate phase. They take up the phase predictor from [START_REF] Sherwood | Phase tracking and prediction[END_REF] and use it to predict phase change and the ID of the next phase. They add confidence counters to these predictors to improve prediction. They also use these predictors to predict the length of the next-phase burst. In [START_REF] Vandeputte | A detailed study on phase predictors[END_REF], Vandeputte et al. examine and compare existing phase-prediction techniques. They compare the last value predictor, N-level burst predictor and N-level RLE predictor. They found that simple predictors, like, last-value predictor, perform poorly for programs with frequently changing behaviour when compared to more sophisticated predictors. Between the N-level burst predictor (which keeps the IDs of the last N distinct phases) and the N-level RLE predictor (which keeps the burst lengths in addition to the IDs of the last N predictors), they found the N-level burst predictor to perform slightly better for limited hardware budgets. They also noted that addition of confidence counters and conditional update to these predictors further decreased the misprediction rate. simulator to execute the functional part on the host machine and PTLsim [START_REF] Yourst | Ptlsim: A cycle accurate full system x86-64 microarchitectural simulator[END_REF] to simulate the timing information for samples taken. Leveraging the correlation between program performance and code metrics [START_REF] Lau | Structures for Phase Classification[END_REF], the functional simulator in the virtual machine monitors certain parameters for significant change to detect the change in program phases. These monitored parameters include code cache invalidations, code exceptions, and I/O operations. During functional execution, if the virtual machine detects that change in the monitored parameter, between two consecutive intervals, has exceeded a certain threshold, it proceeds to take a sample.

In this mode, the virtual machine generates events which are consumed by PTLsim [START_REF] Yourst | Ptlsim: A cycle accurate full system x86-64 microarchitectural simulator[END_REF] to generate timing information. Once the sampled interval is finished, the machine reverts back to the functional mode. These sampled measurements are used to estimate the full-program performance at the end. Executing the functional (major) portion of the program in a virtual machine on the host processor enhances the speed of the simulation. They compare their speedup and accuracy to SimPoint [START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF] and SMARTS [START_REF] Wunderlich | SMARTS: accelerating microarchitecture simulation via rigorous statistical sampling[END_REF]. They note that though SMARTS is the most accurate technique on average, its functional warm-up severely limits the speedup. SimPoint achieves good speedup only when we do not count the initial profiling analysis.

Dynamic Sampling provides good accuracy and speedup in general but, at the same time, they admit that the error and speedup depend on the monitored parameter and the phase-detection threshold. Monitoring code exceptions is less accurate than keeping track of the code cache invalidations and I/O operations. The worst case error for a benchmark was reported to be 8%, > 10%, and > 20% for SMARTS, Dynamic Sampling, and SimPoint respectively. This same sampling mechanism has been integrated in HP's COTSon simulation infrastructure [START_REF] Argollo | Cotson: infrastructure for full system simulation[END_REF].

In [START_REF] Isci | Phase characterization for power: evaluating control-flow-based and event-counter-based techniques[END_REF], Isci and Martonosi study the use of performance monitoring counters and basic block vectors for phase characterization of processor power behaviour. 

2.3.3.4.b Random Sampling

An alternative to representative sampling is statistical random sampling. This method avoids characterizing the population beforehand and, instead, picks samples from the population in a random fashion. Random selection assumes that since the selection process is free from any bias, the sampled units will reflect the characteristics of the population, i.e., there will be more samples from more frequently occurring portions and vice versa.

In [START_REF] Conte | Reducing State Loss For Effective Trace Sampling of Superscalar Processors[END_REF] authors advocate the use of random sampling for program trace simulation to avoid simulating long traces. They try to devise a methodology to limit the error in sampled simulation by stressing on reducing both the sampling and non-sampling bias. Lauterbach [START_REF] Lauterbach | Accelerating architectural simulation by parallel execution of trace samples[END_REF] also uses random sampling of program instruction traces to measure program performance.

SMARTS [START_REF] Wunderlich | SMARTS: accelerating microarchitecture simulation via rigorous statistical sampling[END_REF] uses a variant of random sampling called systematic sampling. In [START_REF] Ekman | Enhancing multiprocessor architecture simulation speed using matched-pair comparison[END_REF], Ekman and Stenstrom use matched-pair comparison to measure and calculate the variation in differences between pairs of samples selected by running a program on a baseline architecture as well as the architecture to be tested. The assumption is that the variation in the difference of pair of IPCs on two architectures is much lower than the variation in IPC over one architecture.

Azimi et al. [START_REF] Azimi | Online performance analysis by statistical sampling of microprocessor performance counters[END_REF] use statistical sampling of hardware performance counters to estimate different events affecting the program's performance. Due to the limited number of counters, they use multiplexing of these counters to model more events.

They also propose a heuristic mechanism to attribute these events to stall cycles in order to identify performance bottlenecks. They show that multiplexed statistical counters can estimate the counts of hardware events within 15% of the real counts with an implementation overhead of 2%. Using their heuristics they show that most of the stalls result from data cache misses. They propose to use these stall sources identified by the sampled counters to provide hints to guide the runtime optimizer towards useful optimizations.

In [START_REF] Wunderlich | Statistical sampling of microarchitecture simulation[END_REF] and representative (SimPoint) sampling, etc., based on a number of criteria. They found the sampling based techniques to perform better than truncated execution and reduced input sets on the accuracy front. They are also more configuration independent than their counterparts. Secondly, SMARTS is slightly more accurate than SimPoint but SimPoint provides better speedup. On the ease of usability (complexity to implement) side, SMARTS is relatively complicated to implement as it exposes the user to the internal details of the simulator (for functional warm-up).

Nookala [START_REF] Floorplanning | Comparing simulation techniques for[END_REF] compares MinneSPEC and SMARTS performance for microarchitecture aware floorplanning to get an optimal block layout for the chip. They found both to perform almost identically for this particular problem and suggest the merger of the two. Figure 2.1 shows how SimPoint and SMARTS sample program phases.

2.3.3.4.d Multi-threaded Sampling

New computing systems increasingly employ multi-core processors (even in embedded systems) running multi-threaded applications. So far simulation acceleration techniques have been focused on improving the simulation times for single-threaded applications. This surge in the use of multi-threaded applications has prompted attempts to accelerate the simulations of such applications.

Van Biesbrouck et al. [START_REF] Van | A co-phase matrix to guide simultaneous multithreading simulation[END_REF] extend the SimPoint [START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF] approach to sampling Simultaneous Multithreading (SMT) processors. Using detailed simulation of multiple programs on a multi-context processor they show that though the resource contention between applications affects their time-varying behaviour, they still retain their repetitiveness of performance. They exploit this collective repeating behaviour to reduce simulation times. They create the Phase-ID traces for each program running in isolation using SimPoint. When more than one programs run together, their phases overlap in execution. These combinations of phases occurring together are termed as co-phases. The basic idea is the same that once the performance for a co-phase has been measured, the next occurrence will exhibit similar behaviour and need not be simulated. The co-phase IDs together with their performance measures are stored in a Co-Phase Matrix. Using the current co-phase ID and the Phase-ID trace of each program, they can determine how many instructions they can skip before they encounter a phase change in a thread that results in a new co-phase.

They fastforward until they arrive at a new co-phase with no entry in the Co-Phase matrix; they simulate it in detailed mode and store its performance in the matrix for future use. They test the mechanism on a two context SMT processor and report an average error of 4%.

CoGS-Sim [START_REF] Joshua Kihm | Cogs-sim: Co-phase guided small-sample simulation of multithreaded and multicore architectures[END_REF] combines the co-phase [START_REF] Van | A co-phase matrix to guide simultaneous multithreading simulation[END_REF] and PGSS [START_REF] Kihm | Phase-guided small-sample simulation[END_REF] in parallel for each process, and store them in a cluster table. For each unique phase string combination, they try to sample a performance measurement. When the combination of phases to be executed by the parallel processes already has a performance reading in the cluster table, they skip its simulation via fastforwarding to save time. In Adaptive Sampling [START_REF] Tawk | Adaptive sampling for efficient mpsoc architecture simulation[END_REF], when a process reaches at the end of its phase interval, it tries to estimate the time (cycles) remaining for other processes to finish their intervals. If this time falls within its acceptable threshold, it waits for them to finish their phases and then a performance measurement is taken for this combination of phases. This wait lowers the IPC for that phase of the waiting process and introduces a source of error. In multi-granularity sampling [START_REF] Tawk | Multi-granularity sampling for simulating concurrent heterogeneous applications[END_REF], they correct this error by adjusting the IPC for that phase using empirically determined average IPC values. In the same work, they also combine multiple consecutive intervals into variable length samples in order to reduce the number of unique phase combinations.

2.3.3.4.e Warm-up

A sample's performance (IPC) would depend on the performance of the underlying components (caches, branch predictors, prefetchers) which in turn depends upon the data present in these structures. This, together, constitute the state of the machine.

One issue with sampled simulation is having the correct architecture state before the sampled interval. For example, consider starting the simulation of a sample with empty (or having stale data) structures. When the code in that portion will try to access these structures, it would incur cache-miss penalties and branch misprediction penalties. This would result in an inflation of the CPI. If this code had been executed in the course of regular execution of the program, these structures would have had updated data and would not have incurred these (false) penalties. This brings us to the problem of removing cold start bias [START_REF] Conte | Reducing State Loss For Effective Trace Sampling of Superscalar Processors[END_REF] or warm-up.

Simple approaches. Functional warm-up. SMARTS [START_REF] Wunderlich | SMARTS: accelerating microarchitecture simulation via rigorous statistical sampling[END_REF] proposes using functional warm-up, i.e., updating the states of macroarchitectural structures between two samples during the fast forward phase. This lets them use just a few instructions to warm-up the microarchitectural structures before the sample. As noted by Yi [START_REF] Yi | Characterizing and comparing prevailing simulation techniques[END_REF] this shifts the onus of modifying the functional simulator on the end user. Skadron et al.

[94] also use functional warm-up updating only the "caches, branch predictor, and architectural state". In [START_REF] Liu | EXPERT: expedited simulation exploiting program behavior repetition[END_REF], the authors propose using either functional warm-up or checkpointing to attain correct architecture state before sampling.

Detailed warm-up. Detailed simulation has been suggested as an alternative for warm-up. A portion of the program before the sample is simulated in detail with the hope that most of the false misses would occur during this phase and would result in correct data in architectural structures. Some studies suggest using a fixed number of instructions in detailed mode to do the warm-up. In such situations the problem is that a chosen fixed warm-up size may be correct for one configuration of architecture and not for another. Haskins and Skadron [START_REF] Haskins | Memory reference reuse latency: Accelerated warmup for sampled microarchitecture simulation[END_REF], in presenting MRRL, count the number of completed instructions between consecutive references to each unique memory location. They select a warm-up length that covers the reuse for N% of the references. This way they are able to shorten the length of detailed simulation needed to achieve a N% warm-up for that sample. BLRL [START_REF] Eeckhout | BLRL: Accurate and Efficient Warmup for Sampled Processor Simulation[END_REF] is similar to MRRL except in stead of counting the reuse latencies of all memory references, they count them for those memory references whose consecutive accesses cross the sample boundary. This results in shortening of the warm-up length. NSL-BLRL [START_REF] Van Ertvelde | Nsl-blrl: Efficient cache warmup for sampled processor simulation[END_REF] leverages the warm-up length reduction by BLRL to reduce the checkpoint size by storing only information about the memory references that BLRL thought were important. Self-Monitored Adaptive cache warm-up (SMA) [START_REF] Luo | Self-Monitored Adaptive Cache Warm-Up for Microprocessor Simulation[END_REF] monitors the accesses to cache blocks by adding a bit to it. The first access to a block is considered a cold one but it sets the bit. All next accesses to the same block are deemed warm.

It signals the completion of warm-up in two fashions: either a certain percentage of cache blocks are accessed, or the percentage of warm memory accesses exceeds a certain threshold.

Budgeted Region Sampling [START_REF] Gracia Pérez | Budgeted region sampling (BeeRS): do not separate sampling from warm-up, and then spend wisely your simulation budget[END_REF] is a technique which addresses the issues of both sampling and warm-up. The authors divide the program intervals into regions based on the differences in basic block reuse distance. They then use the IDDCA [START_REF] Gracia Pérez | Iddca: A new clustering approach for sampling[END_REF] algorithm to cluster these regions. Then they divide a fixed detailed simulation budget between these regions based on their relative weights. Within each region, the allocated budget is divided between warm-up and sampling based on the length of the region. They also found that doing a functional warm-up improved the results while costing a 16% decline in simulation speed.

Kihm and Connors

Checkpointing. Checkpointing has also been recommended as one of the methods to restore the states of caches and branch predictors, etc., before starting the simulation. Checkpointing requires a prior simulation of the program and knowledge of the position of the sample. During that prior execution, just before the start of each sample, the simulator dumps information related to the state of the architecture in a checkpoint file. When simulating the samples, information in these checkpointed files is used to reconstruct the state of the architectural structures. Lauterbach [START_REF] Lauterbach | Accelerating architectural simulation by parallel execution of trace samples[END_REF] proposes using checkpoints to load the simulator state when sampling traces. An advantage of checkpointing is that since a sample needs only its checkpoint to simulate, samples can be distributed on different machines with their checkpoints to attain parallel execution of them. The inconvenience is that storage space needed to store multiple checkpoints for multiple programs for multiple architecture configurations may become excessive. Wenisch et al. provide a checkpointing mechanism for the SMARTS [START_REF] Wenisch | TurboSMARTS: Accurate Microarchitecture Simulation Sampling in Minutes[END_REF] methodology. Tools exist [START_REF] Patil | Pinpointing representative portions of large intel R itanium R programs with dynamic instrumentation[END_REF] to instrument execution files to generate checkpoints at specified points. Biesbrouck et al. [START_REF] Van Biesbrouck | Efficient sampling startup for sampled processor simulation[END_REF] propose techniques to reduce the size of stored checkpoints without affecting their capability to remove cold start bias.

Functional warming [START_REF] Wunderlich | SMARTS: accelerating microarchitecture simulation via rigorous statistical sampling[END_REF] is done for almost 99% of the program execution and thus any slowness in its mechanism can slow down the speed of the simulations.

In addition, functional warming depends on the length of the simulated program and with time the lengths of the benchmark programs continue to increase; SPEC CPU2006 programs are on average 10x larger than 2000 ones. Wenisch et al. [START_REF] Wenisch | Simulation sampling with livepoints[END_REF] propose a checkpointing approach to replace the functional warming. In order to keep the size of stored checkpoints small, they propose only to store the state for structures which have a long history of warm-up, i.e., caches, branch predictors, etc. The small structures are updated with detailed warming. Storing the full state for large cache-like structures can take large disk spaces. In order to counter this problem, for each checkpoint, they propose to use the memory reference analysis [START_REF] Haskins | Memory reference reuse latency: Accelerated warmup for sampled microarchitecture simulation[END_REF] and store only the information that will be accessed in the following sample.

Dispensing with the information not pertinent to the measured sample reduces the checkpoint size by 2-3 orders of magnitude as they use very small measurement intervals. They try to model the effect of cache pollution by speculative execution by maintaining branch predictor outcomes when creating their live points. By creating independent checkpoints, they also exploit the advantage of parallel execution of samples and report an average runtime of 91 seconds and a total checkpoint size of 12GB for the SPEC CPU2000 benchmarks.

SimFlex [START_REF] Wenisch | Simflex: Statistical sampling of computer system simulation[END_REF], which builds upon Simics [START_REF] Magnusson | Simics: A full system simulation platform[END_REF], uses Simics' checkpointing mechanism and live points' approach to create flex points. They create a checkpointing library to help simulate online transaction processing (OLTP) and web server workloads on a multiprocessor.

2.3.3.4.f Combining Sampling and Warm-up

While most studies consider the Sampling and Warm-up issues orthogonal and, thus, tackle them separately, there have been attempts to graft them together to achieve an inclusive methodology. Since we are looking for a one-pass method that does

Sampling and Warm-up on the go, these attempts deserve a mention.

In SMARTS [START_REF] Wunderlich | SMARTS: accelerating microarchitecture simulation via rigorous statistical sampling[END_REF], Wunderlich et al. integrates the warm-up with their sampling strategy by proposing to update large microarchitectural structures, i.e., caches, branch predictors, etc., during the functional phase of the simulation.

Pereira et al. [START_REF] Pereira | Dynamic phase analysis for cycle-close trace generation[END_REF] and Kihm et al. [START_REF] Kihm | Phase-guided small-sample simulation[END_REF] also combine the sampling and warm-up mechanisms at runtime. Online SimPoint [START_REF] Pereira | Dynamic phase analysis for cycle-close trace generation[END_REF] uses the phase tracking mechanism of [START_REF] Sherwood | Phase tracking and prediction[END_REF] to track and predict program phases online. Predicting phases makes it possible for them to anticipate the occurrence of a phase and prepare the architectural state for sampling before this occurrence. They maintain a moving queue of a certain number of memory and branch events that occur during the functional fast forwarding phase and then use this queue to warm up the simulator state before sampling.

PGSS [START_REF] Kihm | Phase-guided small-sample simulation[END_REF], unlike Online SimPoint [START_REF] Pereira | Dynamic phase analysis for cycle-close trace generation[END_REF] which predicts phases, relies on just phase change detection. Once it has detected a new phase, it proceeds to take a sample for that phase before the phase is over. It relies on functional warm-up, as proposed by SMARTS [START_REF] Wunderlich | SMARTS: accelerating microarchitecture simulation via rigorous statistical sampling[END_REF], between two samples.

Conclusion

In this chapter we discussed the current state of the art in the field of architecture simulation. The amount of activity going on and the amount of resources being spent on it shows the importance of making design choices early in the processor fabrication process and the need to do it fast. Though it is equally important to reduce the number of design space parameters and choose the correct benchmarkinput pairs, we decided to focus on the third aspect of design space exploration which is reducing the individual simulation times. Even within that we focus on Sampling because it is the technique that has shown the most potential. It not only reduces the simulation execution times (often by orders of magnitude) but also the performances reported are very close to the real ones (sampling errors are usually in lower single digits).

Having studied state of the art on architecture simulation and sampling techniques, we found there can be improvements in certain areas: that not all state of the art sampling techniques are transparent to architecture and software modifications, that the best warm-up methodologies are not adaptable to sampling techniques, and that the efforts to integrate warm-up and sampling into an online, one shot, mechanism have their limitations. All these issues are important in their own right. While previous attempts to address these issues have focused on them mostly individually, we attempt to provide a methodology which incorporates them all. In the following chapters we present sampling approaches which aim at tackling these issues. We propose a holistic approach to all these issues with equal emphasis on usability, transparency to architecture as well as performance accuracy. This technique, which will find the representative portions of the program and, at the same time, adjust itself to the changes in hardware and software, we call Transparent Representative Sampling. The core simulator implementation is called the Transparent Sampling Engine (TSE).

Repetition of Program Behaviour

Program executions show variable behaviour over time. This behaviour may appear different depending on the scale on which it is measured. The performance fluctuates frantically on small scale but shows a smoother variation when measured on larger scales. Whatever the scale of measurement, it can be observed that a program behaviour consists of repeating patterns of performance. These portions of a program with same or similar metrics are grouped into phases [START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF]. A phase may recur many times during the execution and these occurrences need not be temporally adjacent.

While each phase is distinct from others in terms of the metric measured, behaviour within a phase is fairly homogeneous. They found out that customizing the architecture to executed code can yield better performance and can reduce energy consumption.

This result that a program execution consists of repeating phases is exploitable in architecture simulation as well. If we know that a phase is going to execute multiple times and each execution will be resulting in the same performance behaviour, it is redundant to simulate it each time we encounter it. Simulating it the first time would give us the performance information about its future executions as well. This way simulating each phase only once, not only can we estimate the performance of the whole execution of the program but also we will reduce the simulation execution time. If a program consists of N phases, its performance can be estimated by:

CP I = N i=1 (CP I i × m i )
where CP I i is the performance measured by the single simulation of ith phase and m i is the fraction its occurrence constitutes of the whole program.

Once we reach the above conclusion, it remains to classify the program execution into phases and then selecting an instance of each phase for simulation. This is detailed in the next section.

Phases and Code Signatures

The changes in a program phase behaviour are obvious when simulating the whole program in detail; we can see a clear change in the performance metric. We need a mechanism which helps detect these phases without launching the detailed simulation. There have been attempts in the past to categorize the program phases using methods other than full detailed simulation. Dhodapkar et al. [START_REF] Dhodapkar | Managing multi-configurable hardware via dynamic working set analysis[END_REF] show that 

EuclideanDistance = n i=1 (a i -b i ) 2 . M anhattanDistance = n i=1 |a i -b i |.
They employ this distance measure in the k-means [START_REF] Pelleg | X-means: Extending K-means with Efficient Estimation of the Number of Clusters[END_REF] algorithm to group together intervals whose BBVs are close together. K-means is an off-line iterative algorithm. It needs access to all the BBVs before it can begin the clustering process.

As mentioned earlier in the introduction, due to our usability and transparency to hardware and software changes requirements, we want a one pass simulation mechanism and would not have the luxury to access all the BBVs before the end of the execution. Therefore, we desire a scheme that performs clustering on the fly. So we opt for a simpler scheme which, based on a distance threshold, decides whether a BBV interval should go into one of the existing clusters or a new cluster should be created for it. At the end of each interval we obtain the BBV for that interval.

We compare this BBV to the centers (BBVs) of all the existing clusters using the Manhattan distance. If the distance between the new BBV and the BBVs of the centers of all the existing clusters is superior to our threshold, we suppose that the performance for this BBV is significantly different from all the other clusters and create a new cluster for it with the new BBV as its center. Otherwise, we merge this BBV in the cluster closest to it by way of the Manhattan distance and update the latter's center. The new center for this cluster is a BBV which averages all the BBVs comprising this cluster including the recently added one.

It is important to carefully select the value for this BBV classification threshold because it will directly control the number of clusters/phases formed and thus effect the simulation time. Since ideally we would be looking for a representative for each cluster, more number of clusters would mean that we spend more time looking for A normal program can consist of many basic blocks. Sherwood et al. [START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF] found the number of basic blocks for the SPEC2000 benchmarks ranging from 2,756 to 102038. To count the frequency of each basic block individually, the BBV dimensions have to be quite large. This puts huge strain on the simulator in terms of memory requirements and also slows down the clustering mechanism as it has to calculate distances for each element of the vector many times. Also, with time the size of the programs tends to increase with a corresponding increase in the number of basic blocks. SPEC2006 programs are on average 10 times larger than the SPEC2000 ones [START_REF] Joshi | Applying statistical sampling for fast and efficient simulation of commercial workloads[END_REF] and future benchmarks are expected to grow bigger. Therefore using full sized BBVs, especially for on-line phase classification, is quite impractical. For these reasons the original SimPoint [START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF] article proposes using Random Projection [START_REF] Dasgupta | Experiments with random projection[END_REF] to reduce the BBV dimensions. On-line SimPoint [START_REF] Pereira | Dynamic phase analysis for cycle-close trace generation[END_REF] and PGSS [START_REF] Kihm | Phase-guided small-sample simulation[END_REF] propose an online version of it. We chose to go with this approach, i.e., online dimension reduction, because low memory and computational requirements are in accordance with our goal of a fast simulation methodology. We use the technique used by PGSS [START_REF] Kihm | Phase-guided small-sample simulation[END_REF] for reducing the dimensions of our Basic Block Vectors. As mentioned earlier, basic blocks are identified by the addresses of their terminating branches. Normally a Basic Block Vector will contain as many dimensions as the number of basic blocks in the program in order to record the occurrence of each. In stead of indexing the basic block by their terminating-branch address, we randomly select a few bits from that address and use those bits to index into the BBV. As an example, selecting 4 bits from the branch address will result in a maximum index of 15 and hence require a Basic Block Vector of size 16. As informed readers may note that this may produce an aliasing-like effect, i.e., merging two basic blocks with completely different actual branch addresses and performances. In actual experiments we saw that unless the dimension is reduced to values extremely low, this aliasing effect is tolerable. Figure 3.3 shows the effect on the number of phases detected when we vary the size of our Basic Block Vectors. It can be noted from the figure that when we increase the BBV size from the very low values, the number of phases/clusters increases correspondingly most of the time, revealing that at low dimensions different phases are forced to mix with each other. However, except a few exceptions, at higher dimensions the number of phases does not increase by much. This is an indication that very high BBV dimensions do not add much in terms of phase information and slightly lesser ones can capture the same behaviour. Notable exceptions are tiffdither and ispell where the number of clusters continue to increase with the increase in BBV dimension. It should be noted that while we try not to reduce the BBV dimension too much in order to retain phase information, we would also not like it to increase too much. The reason being that larger BBV dimensions require more calculations and result in more number of clusters. A large number of clusters can potentially produce complex cluster sequences which make predicting the cluster occurences hard. This mechanism of predicting the clusters (phases) of a program is the topic of our next section. 

Phase Prediction

Having the on-line dimension reduction and phase classification technique is not enough. In order to be able to simulate in detail, at least once, each phase of the program, we need information in advance of the phase occurrence. Unfortunately the phase classification technique tells us the identity of the phase only after we have finished simulating its interval, functionally or otherwise. To tackle this issue, Sherwood et al. [START_REF] Sherwood | Phase tracking and prediction[END_REF] propose a predictor mechanism which keeps track of different phases being detected and also tries to predict their future occurrences. This way, if predicted correctly, we can anticipate the next occurrence of a phase and start simulating in detail as soon as it starts. They tried different predictors namely last value predictor, which assumes the previous phase to repeat, and N-level RLE (Run Length Encoding) predictor, which keeps a history of N previous phases and the number of their continuous occurrences. The last value predictor was found to perform poorly in the face of frequently changing phase behaviour. For the RLE predictor, they found that 2-level RLE predictor gives the best trade-off between hardware cost and prediction accuracy. Perreira et al. [START_REF] Pereira | Dynamic phase analysis for cycle-close trace generation[END_REF] use the same 2-level RLE predictor. Vandeputte et al. [START_REF] Vandeputte | A detailed study on phase predictors[END_REF] did a comparative study of different phase predictors and concluded that though the 2-level burst predictor, which keeps only the IDs of the last 2 phases as opposed to IDs and counts for the RLE one, performs better than the 2-level RLE predictor, the difference is slight. containing previous such combinations and the phase that followed them to predict which phase will occur next. As such the predictor is parametrized by the length of its history and the size of the look-up table . A longer history lets it see farther in the past. But, at the same time, a longer history means that the number of possible combinations to store also increases. Which means, for a given prediction table size, there is an increased risk of histories over-writing other histories -aliasing effect.

Thus less frequently occurring patterns may evict more frequently occuring ones and degrade prediction. Figure 3.4 shows the prediction accuracy for the N-Level RLE predictor as we vary N, i.e., the history size of the predictor. As we move through the history values of 1, 2, 3, 4, 5 and 10, we see that while for the most part there is no change in prediction accuracy when we increase the history size, there is a big imporvement in it when we increase its value from 1 to 2 in case of mad and tiffdither. History sizes greater than 2 rarely improve the prediction accuracy and may, on the contrary, affect it adversely e.g., in susan corner, mad and tiffdither. This can be explained by the fact that the prediction mechanism uses a fixed-size table of 256 entries. As we increase the number of phases kept in the history, the number of possible history permutations increase as well. Thus when the hashing function hashes these history values into one of the 256 indices, it is trying to cram more information into the same number of slots. Thus some less frequently occurring combinations do evict the more frequently occurring combinations that are useful for predictions.

Previous phase predicting studies either did not take into account the warm-up at all [START_REF] Vandeputte | A detailed study on phase predictors[END_REF] or used constant functional warm-up [START_REF] Pereira | Dynamic phase analysis for cycle-close trace generation[END_REF]. We, for reasons of practicability, use the detailed simulation for warm-up. Therefore our requirement differs in the sense that we not only need the phase occurrence information in advance but much in advance so that we can start the detailed simulation earlier in order to warmup the simulator for phase arrival. This causes us to predict not one but multiple phases in future so that if we see our desired phase at the end of this prediction chain, we could start simulating and use the first few intervals for warm-up. This prediction length should be chosen in such a way that it accommodates the warm-up requirements for all the phases of all the programs under consideration. At the same time, as we try to predict farther into the future, the prediction accuracy decreases and our predictions are more liable to be wrong.

Figure 3.5 shows what happens when we predict not one but multiple intervals into future based on the same history. As can be seen the history is most accurate for predicting the immediate future and as we venture predicting further, our guesses become less and less accurate. The x-axis shows the index of the interval in the future for which we predict the phase. The y-axis shows the percentage of times that we predicted correctly the phase-id at that index. We see that we predict most accurately for the first index after the history (this is the next interval to come), less accurately for the 2nd one and it gets worse as we proceed up to the 10th interval. For some benchmarks the degradation is gradual while for others it is pretty sharp. The prediction accuracy can be a function of the length of the benchmark, the number of clusters formed and their patterns of occurrence. Hence we have a benchmark with only one cluster, crc, and 100% accuracy while there are others which have accuracy closer to 100% and maintain this accuracy even as we predict further into future. On the other hand, there are benchmarks which have low prediction accuracy to start with and it degrades as we venture to guess more deep into the future.

susan corner has the lowest prediction accuracy for the first index, 46.47%, and this drops to 32.12% as we arrive at the 10th interval in the sequence. The low prediction accuracy for the first index is explained by the small size of the benchmark (see Table 3.3), just 421 intervals. The predictor does not have enough time to see different patterns repeat and train itself. The benchmark ispell undergoes the worst degradation as we move to predict from the first to the tenth interval, from 65.46% to 29.02%. This is partly due to the complex repetition behavior manifested by its phases.

Warm-up

We'll be simulating most of our program in functional mode; only launching the detailed mode when we want to simulate an instance of a desired phase. The functional mode is a faster execution mode but it leaves out and does not simulate many architectural details like caches, branch predictors, TLBs, etc. These structures are not updated when simulating in the functional mode. Since the data in these microarchitectural structures have not been updated, they would be different from the ones which would have been there if we had arrived here by way of detailed simulation. This stale data causes unnecessary misses when doing simulation, falsifying the performance measures.

The process of updating the microarchitectural structures with correct data is termed as warm-up. While there exist different propositions for warm-up in literature, those most closely related to our requirements are proposed by SMARTS [START_REF] Wunderlich | SMARTS: accelerating microarchitecture simulation via rigorous statistical sampling[END_REF] and on-line SimPoint [START_REF] Pereira | Dynamic phase analysis for cycle-close trace generation[END_REF]. SMARTS proposes updating large structures which takes long to warm-up, i.e., caches, branch predictors, etc., during the functional phase of the simulation. When it switches to the detailed simulation mode for performance measurements, it uses the first few thousand instructions to warm-up the smaller structures, i.e., pipeline, etc., and then goes ahead with the measurement.

Implementing the functional warm-up poses a few problems, namely:

• Copying all the microarchitectural structures in the functional mode requires significant modifications to the simulator.

• Some structures, e.g., prefetchers, use temporal information for their updates.

Functional simulator having no notion of time cannot update them appropriately.

• Functional simulation is fast because it ignores many details of the processor.

Adding these structures and their update mechanisms may affect the speed of the simulator.

The other technique, proposed by on-line SimPoint, is to keep a fixed size trace of memory and branch events at all moments during the simulation and, just before the detailed simulation, to use this trace to update the cache and branch predictor structures. They empirically deduced that a trace of 50000 memory and branch events each is enough for their benchmarks. The problem with fixed warm-up, as it is termed, is that one can under or over estimate the amount of warm-up required.

Especially in design space exploration, where one frequently varies the design parameters, it is difficult to find an optimum value that suits every permutation of design parameters. A single value can be too large for a particular architecture causing an unnecessary increase in simulation time or too small for another one incurring a large performance estimation error.

Due to the above mentioned issues in the previous warm-up strategies, we chose to have a warm-up scheme which adapts to architectural changes and to do it during the detailed simulation mode in order to avoid modifications to the functional simulator. SMA [START_REF] Luo | Self-Monitored Adaptive Cache Warm-Up for Microprocessor Simulation[END_REF] is an adaptive warm-up mechanism which uses a bit for each entry in an SRAM structure to determine if it's warm or not. If the number of warm entries in the structures exceeds a certain threshold, it declares the structure warm.

Though it has not previously been tested with a sampling approach, we found it to be suitable for our dynamic adaptive warm-up approach.

We use the detailed simulation to do the warm-up. As the detailed simulation advances, the program will access different entries in microarchitectural structures updating them with new data and the simulator state will gradually become warm.

The idea is to start the detailed simulation sufficiently in advance of the interval that we want to simulate for performance that by the time we arrive at that interval the micro-architectural structures would be warm. Then we can go ahead and take our measurement. This is the reason we predict multiple future intervals so that we can "see" our desired phase far enough in future and have time to warm-up.

Each time we launch the detailed simulation, we track the caches with an SMAstyle mechanism in order to know how much time does it take to warm-up. And each time we take our performance measurement for a phase, we note down how many intervals it took us to warm-up for it. This value is used to update the average warmup length for this phase in our phase table. Next time we predict a phase sequence, we launch the detailed simulation only if at least one of our desired phases is found beyond its average warm-up length. In this manner we know that if we launch the detailed simulation now, by the time we arrive at our desired phase we would have sufficient warm-up. This way in updating the average warm-up length at runtime we make sure that our warm-up strategy adapts itself to each architecture and what's more, to each program phase.

CPI Calculation

Once we have the performance samples for each part of the program, we would like to average them to get the performance of the whole program. To do this we multiply the average performance for each program phase with a fraction corresponding to its frequency of occurrence. This way we give more weight to the performance of the portions which occur more frequently as they would bear more on the actual performance of the program.

Principles

The general concept of combining on-line sampling and adaptive warm-up is to select not one, but multiple continuous intervals for sampling, and to flexibly allow some to be used for warm-up rather than for sampling purposes. By using a generic implementation of SRAM structures from which a large range of mechanisms can be derived, the warm-up is shown to require no simulator modification whatever the SRAM-based architecture mechanisms and the sizes of the SRAM structures, and it solely relies on the performance simulator.

Phase identification. The program execution is divided into intervals of equal number of instructions. Intervals with similar performance metrics are considered belonging to a Phase. SimPoint [START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF] demonstrated that intervals with similar performance metrics tend to have similar BBV signatures. The functional simulator partitions the simulation into fixed-sized intervals, collects all basic block usage information for each interval and creates a basic block vector for it. It groups intervals with similar BBV signatures into clusters hoping to catch the phase behavior. We identify the phases on the fly, in the spirit of on-line SimPoint [START_REF] Pereira | Dynamic phase analysis for cycle-close trace generation[END_REF]. In order to reduce the computational tasks of clustering BBVs on-line, we reduce the dimension of BBVs using a hashing technique. Then we compute the Manhattan distance between each BBV and all clusters identified so far, and decide whether we create a new cluster if the distance between the new BBV and the existing clusters is larger than a threshold distance D, or we consider the BBV to belong to an existing cluster. We adjust the weights of the clusters (numbers of intervals in each cluster) accordingly. Each cluster corresponds to a phase. The whole process is summarized in Figure 3.6.

Predicting multiple phases. After each interval, and based on the information collected so far, the on-line sampling technique must determine when to sample next, i.e., when to switch from functional to performance simulation again. Ideally, at the end of the simulation, for each cluster, there is at least one interval/sample which was performance simulated, allowing to extrapolate these performance metrics to the whole cluster (i.e., the cluster performance is weighed by the cluster weight for computing the overall performance). Therefore, the sampling strategy should permanently monitor the set of all known clusters, and for the clusters without any performance simulated sample yet, it should predict its next occurrence (the number of instructions until an interval of that cluster occurs) and trigger performance simulation then, see Figure 3.7. It is important to understand that the cluster id of an interval is known after it has been executed, i.e., after the fact, therefore it is indeed necessary to predict the occurrence of intervals of a given cluster. The sampling strategy further privileges the clusters with the highest weight so far, i.e., the clusters with the highest number of intervals.

After each interval has been functionally simulated, instead of simply predicting the cluster corresponding to the next interval [START_REF] Pereira | Dynamic phase analysis for cycle-close trace generation[END_REF], we predict the sequence of clusters corresponding to the N next intervals.

The input of the predictor is a history of the H pairs (cluster id, # of consecutive occurrences) of the past intervals. The output of the predictor are the cluster ids of the N next intervals, see Figure 3.7.

Triggering performance simulation. We then compare this sequence to the list of clusters yet to be simulated. If we find that this sequence will deliver useful additional information, we trigger the performance simulation of that sequence.

The following conditions must all be met for triggering performance simulation: • The predicted sequence contains at least one cluster with no performance simulated interval yet, and which corresponds to a significant fraction of the program, i.e., at least a fraction F % of the instructions so far.

• At least one of these "not yet performance simulated clusters" lies beyond the estimated mean warm-up length, i.e., they are located far enough within the sequence not to be part of the warm-up phase.

Warming up. At the beginning of a valid sequence, the performance simulation is activated and the warm-up begins. The only simulator modification that we assume is that all SRAM structures are implemented with our own library component instead of the simple, usual, array declarations, see Figure 3.8. This library component adds one bit per SRAM element (a byte for memory, or any other length for a cache tag array for instance). These bits are reset upon starting a detailed simulation sequence, so that all SRAM elements appear cold in the beginning, whatever the architecture mechanisms they belong to (cache, branch predictor, write buffer, prefetch buffer, etc.). Each time an SRAM element is accessed, the cold bit is reset and a count of the total number of cold vs. warm SRAM elements is maintained.

All these operations are transparent to the user thanks to the SRAM library, and such a library is a natural extension to simulation frameworks (SystemC, ASIM, Simics,. . . ). We used our SRAM library with the SystemC simulation framework.

For each interval, the fraction of warmed access to the SRAM structure(s) is monitored, and when this fraction reaches a threshold W , the interval is deemed warm, and the performance statistics can be used, in the spirit of SMA [START_REF] Luo | Self-Monitored Adaptive Cache Warm-Up for Microprocessor Simulation[END_REF]. Unlike SMA, within a sequence of intervals, after an interval has been deemed warm, we keep monitoring the interval warm up status, and a later interval can be deemed cold (and thus its performance statistics ignored). This process is safer than simply asserting that SRAM structures are warmed up after an interval has been found to be warmed.

The warm up length for each sequence is used to compute the mean warm up length, an information used to predict which intervals in future sequences will be used for warm up and which intervals will be used for collecting performance statistics, as explained above. After the warm-up is completed, the performance statistics for all subsequent intervals in the sequence are collected.

Note that it may happen that statistics are collected for clusters that were not sought for, for instance if the warm up length was shorter than predicted. In that case, the corresponding clusters will simply have multiple representative intervals, which usually improves accuracy (we use the average of measures).

Sampling and warm-up combined. The warm up is adaptive in the sense that if larger SRAM structures are used, it will take more intervals to reach the warm up threshold W . At the same time, the sampling technique can flexibly start at any sample within the sequence. If it turns out that the target clusters have not been simulated, they will remain scored as "high priority" by the prediction strategy and a new sequence containing them will be sought for. Finally, if the mean warm-up interval turns out to exceed N , the simulation sequence is aborted and the intervals simulated are wasted. (Not having an adaptive sequence length is a limitation that we are working on. Ideally, N should be incremented so that the number of warm-up intervals remains smaller than or equal to N -1, i.e., there is at least one interval for which performance statistics can be collected in each sequence.) We discuss this at the end of the section 3.11. Parameterization. The strategy relies on a number of parameters that must be set: W the warm up threshold, N the predicted interval sequence length, F the percentage of the total program instructions below which a cluster is considered not important, H the history size used for the prediction, and D the BBV clustering threshold.

We empirically found the overall strategy to be fairly stable for the following parameters. We found that a history H = 2 was sufficient across all benchmarks.

Two related parameters are the interval length and the minimum sequence length.

Even though there is an obvious trade-off for the interval length (too small and the overhead of warming up becomes excessive, too large and not enough intervals can be collected without exceedingly increasing the number of performance simulated instructions), we found our strategy to perform well for intervals ranging from 10000 instructions to 1 million instructions, with 100000 realizing the best error/simulation time trade-off. For that interval size, we empirically found a minimum sequence length of N = 10 to be the best compromise.

Two other related parameters are the cluster distance threshold D (recall that a BBV is deemed belonging to a cluster if it differs by less than D% from that cluster), and F , the percentage of overall program instructions (known so far) that corresponds to a cluster. The smaller D, the higher the number of clusters; this can then be mitigated with parameter F , so that we collect samples only for sufficiently large clusters (accounting for more than F % of instructions). We empirically found that a good trade-off across benchmarks is D = 25%, F = 1%, in line with other studies [START_REF] Pereira | Dynamic phase analysis for cycle-close trace generation[END_REF]. However, because this pair of parameters may be sensitive to the program characteristics, we contemplate using alternative adaptive clustering strategies, such as IDDCA [START_REF] Gracia Pérez | Iddca: A new clustering approach for sampling[END_REF], which dynamically adjusts clustering to the target program characteristics.

In the end, the only parameter exposed to the user is W , the warm-up threshold for an interval. This parameter encapsulates the accuracy/simulation time trade-off which is at the core of sampling: the higher W , the higher the number of simulated instructions and the higher the accuracy. We feel the user should be empowered with setting that parameter, even though we provide a default parameter value of W = 0.1%. Our target processor was the PPC405, a 5-stage in-order embedded processor,
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see Table 4.1. The processor was implemented using the UNISIM simulation framework [START_REF] August | UNISIM: An open simulation environment and library for complex architecture design and collaborative development[END_REF]. A modified version of SimPoint [START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF]'s BBV Tracker tool is used to profile the instruction stream and characterize the basic blocks. 5 randomly chosen bits from the start address of each basic block are used as an index into a Basic Block Vector of 32 dimensions. These reduced BBVs are then clustered based on a Manhattan distance threshold (25%). A Run Length Encoding (RLE) predictor [START_REF] Sherwood | Phase tracking and prediction[END_REF] is used to hash [START_REF] Jenkins | Algorithm Alley: Hash Functions[END_REF] the last two distinct phases and their number of occurrences in order to index a 256-entry hash table and predict the next phase ID.

We use the embedded benchmark suite MiBench [START_REF] Guthaus | Mibench: A free, commercially representative embedded benchmark suite[END_REF] with large input sets. In order to demonstrate the resilience of our technique to architectural changes, especially SRAM structures sizes, we vary the cache sizes from 4KB to 64KB. Detailed simulations of the full benchmark suite (no sampling) are used to obtain the actual performance measures, Cycles per Instruction (CPI), of the programs.

After validating the technique on the PPC405 and Mibench combination, we decided to test its resilience in the face of a different architecture/benchmark combination. This time we used the SPEC2000 benchmark suite running on the Sim-pleScalar simulator. The baseline architecture is detailed in Table 3.2. We test a smaller cache of 8KB and a larger one of 128KB as well. In the next section we detail the experimental results for MiBench. The section after that will list our findings for the SPEC2K suite.

Experimental Results (MiBench)

In this section, we evaluate the combined on-line sampling and adaptive warmup technique described in Section 3.8. The two main metrics are accuracy and simulation time. Accuracy is defined as the CPI error of the sampled simulation versus the full simulation. Simulation time is correlated to, and thus defined as, the fraction of the total instructions in the program trace that were performance 8KB is the baseline PPC405 cache size, and we also experiment with a smaller cache size (4KB) and a significantly larger one (64KB), and compare all results. We also study in more detail the warm-up length, clustering characteristics and prediction accuracy of our sampling+warm-up technique. A note on ispell. While all the benchmarks were simulated with N=10, ispell shown in these results was simulated with N=25 for the 64KB cache. The reason is since we abandon our simulation sequence without taking a sample as we reach N, for the 64KB cache, N=10 is never warm enough to take the sample. Therefore the simulation terminates with no samples. N=25 leaves sufficient room for warm-up to take a few samples.

Accuracy. The CPI error is indicated in Figure 3.9 for all benchmarks and the three aforementioned cache sizes. We first note the low average error, less than 0.82%, which is on par with the best sampling accuracy results for non-adaptive techniques [START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF] or on-line sampling techniques [START_REF] Pereira | Dynamic phase analysis for cycle-close trace generation[END_REF]. Moreover, this accuracy is stable across all three cache sizes, and does not increase with the cache size: the accuracy is 0.7% on average for 8KB and 0.37% on average for 64KB. In other words, the accuracy remains stable as an SRAM structure size increases, thanks to the combined dynamic warm-up strategy. To our knowledge, this is the first demonstration of a sampling strategy that exhibits stable accuracy as architecture characteristics change. Most programs require to performance simulate less than 1% of all their instructions.

The fraction of instructions increases with the cache size, due to the larger warmup required by the larger SRAM structures, but the increase is very moderate.

There are a few mentionable points: ispell for 64KB cache which simulates 47% in detail (even with N=25, this is explained earlier). Looking in detail shows that even N=25 is not enough for warm-up in this case most of the time. 42% of the simulation was wasted due to lack of warm-up and only 3% was used for warm-up and samples. susan corner and susan edge also exhibit relatively high performance simulation ratio, between 14% and 12%. However, these two programs are the smallest of all benchmarks (see the total number of intervals in Table 3.3), so that even a few intervals account for a large fraction of the overall simulation; it is interesting to note that the same type of algorithm (susan smooth; susan is an image recognition package with several image processing algorithms), with a larger instruction count, has low error and low performance simulation ratio. This is illustrated by the wtd avg, which is the average of the percentage of simulation time weighted by the total number of dynamic instructions in the program: 0.22% for the 4KB and 8KB caches, and 1.6% for the 64KB cache. Warm-up length. The warm-up length (in number of intervals) is analyzed in more detail in Figure 3.11. For the smallest cache size, all programs require only 1 warm-up interval. For the 8K cache, some programs require a warm-up interval of up to 2 on average. For the largest cache, while most programs accommodate a constant warm-up length of 1 interval, several programs (mad, qsort, susan edge, ispell, etc.) require more than 4 warm-up intervals on average. Especially ispell, given N=25, shows an average warm-up length of 12 for the samples it manages to take. Therefore, it is not appropriate to use a constant warm-up interval, across architecture configurations, or even across benchmarks for the same architecture configuration.

Clustering and clusters prediction. Table 3.3 shows the number of clusters found for each program and how accurately they were predicted. One can observe that the prediction accuracy is usually inversely proportional to the number of clusters. Intuitively, the larger the number of clusters in a program, the less frequently they will recur during the execution, and thus the lower the probability to find and predict them again. However, the prediction still exhibits an accuracy of 91.54% for 14.68 clusters on average.

Experimental Results (SPEC2K)

Encouraged by the small error in measuring performance and the low amount of detailed simulation (ispell notwithstanding) required to achieve this, we decided to see how the technique fared on other architectures and benchmarks. So we implemented the same mechanism in the SimpleScalar simulator and used the SPEC2000 benchmarks to test it. Using three different cache sizes of 8KB, 64KB, and 128KB, the results are describe below:

N=10. Figures 3.12, 3.13, 3.14 show the perforamnce error, percentage of detailed simulation, and the average warm-up lentgh when we apply the adaptive representative sampling to the SPEC2K benchmarks with a predicted sequence length of 10.

Now SPEC2K benchmarks are quite different from MiBench ones in terms of their size, memory footprint and phase behavior. This can be seen from Figure 3.12 which shows an average error of >5% for all cache sizes. The error for many benchmarks goes up to 10% with vpr showing the highest error of 26% for the 128KB cache size. A look at the percentage detailed simulation in Figure 3.13 reveals that while the portion of program simulated in detail remains low for 8KB and 64KB caches, for the 128KB one the average is 2.5% with three benchmarks crossing the 10% mark. This excessive amount of detailed simulation can be traced to the inflexible sequence length of N=10. Most of the detailed simulation is wasted because at the end of most sequences we abandon the detailed simulation mode, without taking a sample, because of a lack of warm-up. Table 3.4 shows the amount of detailed simulation and the wasted part of it as percentages of the whole program. We can see that whereever a benchmark shows large amount of detailed simulation, a major part of it consists of intervals wasted due to sequence termination before we could achieve our desired warm-up threshold. programs. This is because of the larger cache sizes and the larger memory footprint of the SPEC2K programs. It can also be remarked that the average number of intervals required to achieve warm-up increases with the increase in cache size. This was expected as larger caches take longer to warm up.

N=25. Since we noted that N=10 was not enough for some programs when simulating a cache size of 128KB and we had to abandon the detailed simulation sequence before we could achieve our desired warm-up, we tried to manually increase the sequence length to N=25 to see the effect on warm-up and the resulting detailed simulation percentages. The data is shown in Figures 3.15 The performance error has not changed much. This reflects the inherent difficulty in capturing the phase behavior of the SPEC2K programs which are more complex than the MiBench ones. One noticeable fact is the increase in the error for galgel.

It now shows an error of 34% compared to the previous one of 4.5% for N=10. First of all we see from Figure 3.16 that the percentage of detailed simulation is greatly reduced for most benchmarks for the 128KB cache. This is due to the fact that increasing the sequence length from 10 to 25 lets give more room to the simulator for warm-up. This results in less number of sequences being abandoned and the detailed simulation that was previously wasted is now part of the warm-up and serves to provide a sample. apsi still shows a detailed simulation percentage of 9.5% but that is because even a sequence length of 25 is not enough for its warmup. We see that the wasted simulation percentage is still 8% of the program. This highlights the difficulty of manually setting the sequence length and underscores the need for an adaptive mechanism. Table 3.5 shows the total number of intervals, the number of clusters formed, and the prediction accuracy for each of the SPEC benchmark tested. Note the difference between the prediction accuracy for the SPECINT (the first 11) and the SPECFP benchmarks. The SPECINT benchmarks exhibit a relatively complex phase behaviour -and thus have lower phase prediction accuracy -compared to the SPECFP ones which are fairly regular.

Fixed vs adaptive sequence length. As we saw for ispell in MiBench and for most of the SPEC benchmarks, fixed sequence length of N=10 was inadequate for large cache sizes. The reason is that the length of a sequence limits the number of intervals used for warm-up. As the caches grow, it takes more time to warm them up. Thus it may happen that a cache may never get warm because of a small sequence length. Secondly choosing too large a sequence length will result in doing unnecessary detailed simulation and defeat the purpose of simulation acceleration. pair. As we saw that increasing the sequence length from N=10 to N=25 did the trick for most of the SPEC2K benchmarks but still was insufficient for apsi. Therefore the need for an adaptive sequence length which adapts the length of the detailed simulation to the warm-up requirements of the program/architecture is evident.

It is also difficult to manually adjust sequence length to each architecture/program

Conclusion

In this chapter we demonstrated that representative sampling can be combined with adaptive warm-up in a sampling technique which is both user agreeable and architecture agnostic.

We demonstrated that an on-line phase detection fares well when classifying the program behaviour most of the time and that reducing the BBV dimensions to a certain limit can capture the program phase behaviour while reducing the computing cost at the same time. Secondly, we showed that we can sacrifice the accuracy of the off-line clustering mechanisms in the favor of simple on-line mechanisms with a tolerable hit on the performance accuracy while gaining on the computation side.

We also extend the phase prediction mechanism to predict over multiple future intervals. In doing so, we give our technique room for warm-up before it samples its desired interval. Though it was observed that for some benchmarks, with complex phase behavior, prediction accuracy decreases as we try to predict far in future.

We find detailed simulation a better alternative for warm-up than other methods because it avoids modifying the functional simulator and also our warm-up technique adapts to architectural needs. A related important issue is the length of prediction sequence. If the predicted sequence's length is larger than the maximum average warm-up length possible, then the warm-up will easily adapt to the program/architecture needs. But in practice we found that it was difficult to select a sequence length such that it satisfies the warm-up requirements and, at the same time, keeps the detailed simulation to a minimum. An alternative is to make the predicted sequence length variable such that it adapts to the simulator needs at run time. This is the next logical extension of this work and a focus of our ongoing efforts.

Over all we present a technique which makes it possible to do a single-run sampling performance estimation, taking into account the warm-up adaptability to architecture changes, significantly reducing the simulation times. Our technique achieves an average CPI error of less than 0.82% and requires a detailed/performance simulation of less than 1.6% of the program instructions on average, for the benchmarks and architecture configurations considered. Moreover, because our technique does not require any modification of the functional simulator, except for the generic collection of basic block vectors, it is entirely compatible with fast functional simulation techniques such as binary translation.

While the mechanism presented in this chapter works for the most part, as shown in Section 3.11, the current implementation is not always adaptable to drastic changes in architecture. The main reason is the inflexibility of prediction sequence length and the degradation of prediction accuracy as the said sequence length and the number of clusters increase. This prompted us to explore the other alternative to representative sampling i.e., statistical random sampling, which we present in the next chapter.

Chapter 4

Transparent Statistical Sampling

Introduction

In the previous chapter we discussed Representative Sampling as a mean to select the portions of the program we'd like to simulate. In this chapter we introduce Statistical Sampling as an alternative method of sample selection.

Sampling, as discussed earlier, is a common technique which uses a subset of observations within the population to predict the properties of the whole population.

Using a subset of the population is useful due to its lower cost and faster data collection. Sampling theory has proved that even a small portion of the population, if properly selected, can give a fairly accurate idea of the population properties [START_REF] Levy | Sampling of Populations: Methods and Applications[END_REF].

In our experiments we divide the instruction stream of the program into intervals of fixed length (in number of instructions). This sequence of intervals, or more exactly their cycles per instruction (CPI) values, make up our population. Keeping in line with our target of performance simulating a minimum number of instructions, we'd like to know the properties (CPI) of this population of intervals without having to performance simulate the whole instruction/interval stream. Statistical sampling theory seems to offer insights as to which intervals to simulate in detail in order to obtain a performance (CPI) estimate of the whole population (program).

A relevant question that needs attention, after the selection of intervals-tosimulate, is the state of the simulator before our sample. In order to accelerate the simulation process most of the time we would use the functional simulator to arrive at the desired point in execution. The functional simulator, in order to go fast, ignores and does not update the microarchitecture structures. As a result the data in those structures is leftover from the previous detailed simulation. This stale/false data will bias our performance measurement and affect the results. We need to warm-up these structures (fill them up with correct data) if we want our measurements to be reliable.

Again, when implementing statistical sampling, we have taken care to devise a mechanism which needs the user to intervene in a minimal fashion. Also that the system should adjust smoothly to changes in hardware and software characteristics.

Since it centers around our objective of an adaptive and usable technique, we call this approach Transparent Random Sampling and the implementation Transparent Sampling Engine (TSE).

All these issues (interval selection, warm-up, and usability) are addressed in the subsequent sections.

Interval Selection

As opposed to representative sampling, random statistical sampling advocates the use of an unbiased or random subset of observations/measurements within the population. The properties of this sample set can then be extrapolated to estimate the population characteristics. The field of statistics has well established procedures to ensure the correctness of these measures. A well chosen sample of appropriate size reflects the population properties as a whole. The goal of Sampling is to select such a representative but minimal sample.

If we consider our program execution as a series of instructions being executed one after the other and imagine this instruction stream as our population, it becomes clear how statistical sampling is applicable to our case. It would suffice to know the CPI of a few randomly selected instructions in detailed mode to calculate the CPI of the whole program. Only, the cost of switching to detailed mode is too big to incur it to simulate only one instruction. So instead of considering our execution stream being composed of individual instructions, we consider it being made up of groups of instructions called intervals. The size of all intervals is same in terms of number of instructions. Our scheme now boils down to randomly selecting and simulating in detail a minimum number of intervals from our program execution stream so that we can get an accurate estimate of the performance of the program.

A recapitulation of some basic Statistics will help clarify this process. shows their frequency of occurrence normalized to 1. As can be seen from the peak in the curve, values near the center occur most often and as we move away from the center the frequency of occurrence decreases.

Statistical Distributions

The probability distributions, with the same probability distribution function, can be characterised by their certain properties. A mean µ, also know as the average value, is the sum of observations divided by the number of observations:

µ = 1 n × n i=1 x i ,
where n is the size of the population. Also known as the expected value, in a normal distribution, values close to this value are the most probable to occur. In Figure 4.1 this is the value in the center on x-axis.

More than one normal distributions can have the same mean. In this case they can be distinguished by their variance. Variance of a distribution is given by the formula:

var = 1 n × n i=1 (x i -µ) 2 .
It defines the spread of the data around the mean. The higher the variance, the more spread the data is about the mean and the flatter the curve of the distribution and vice versa.

A related quantity is the standard deviation of the distribution. It is defined as the square root of the variance.

σ = √ var.
Normal distribution has been well studied and we know that approximately 68% of the values are found in the region within one standard deviation from the mean, 95% within 2 standard deviations and 99.7% of the values are found within 3 standard deviations from the mean. This is demonstrated by the figure. Of course, we'd be needing the values of the mean and the standard deviation for the population to make this statement meaningful. That's where sampling theory kicks in. Since, under everyday use, it's usually very difficult to obtain these values for the entire population, we use a sample subset of the population and use the mean and standard deviation of this sample as approximates of the mean and standard deviation of the population. The above equations become:

x = 1 k × k i=1 x i and var = 1 k × k i=1 (x i -x) 2 and s = √ var,
k being the number of elements in the sample.

When characterising population properties using samples, it is difficult to get them 100% right because however good a sample, it always contains less information than the whole population. Therefore instead of giving a single value for that parameter, intervals likely to contain the value of that property are usually used. A confidence interval (CI) is one such interval. It helps estimate the reliability of the measure. After a sampled measurement, the result can be usually announced as: we can say with α% confidence that the value of the parameter lies in the interval [X, Y ].

A confidence level of 95%, for a confidence interval [X, Y ], would mean that if measured a large number of times, the values of the desired property would lie within the interval [X, Y ] 95% of the time. Given the standard deviation (s), sample size (k) and the z-value (c) for a distribution, the confidence interval can be estimated by:

CI = (x -[c × s √ k ], x + [c × s √ k ]).
The z-value (c) is the number of standard deviations above or below a mean, we expect to find a given value.

The confidence interval is centered around the mean x of the sample and we expect the real mean µ of the population to lie within the boundaries of this interval.

If we knew the real mean of the population we could have calculated the error in our estimation by comparing the sample mean to the population mean:

P ercentage Error = abs(x-µ) µ × 100.
In practice we do not know the real mean CPI of the population comprising all the intervals in the program (we have no need of simulation in that case). What we do know, however, is that once we have calculated our confidence interval [X, Y ] around the sample mean x, the population mean µ should lie somewhere in that interval. Since the maximum difference this real mean can have with the sample mean is when it equals either of the boundaries X or Y , we can calculate the theoretical maximum possible error as:

Statistically Estimated Error = abs(X-x) x × 100.
What is important here to note is that since the user has no way of knowing whether his sampled measurement is correct or not, this Statistically Estimated Error provides an estimate of the reliability of his result. The larger this value, the larger is the confidence interval and the farther apart the real mean CPI µ can be from our experimentally measured CPI x. Thus large values of Statistically Estimated Error can be an indication of a less reliable result and a potentially large error.

Like other characteristics of a probability distribution, the confidence interval is also a parametric measure and makes certain assumptions about the underlying population. The above equation assumes a normal distribution and that the measurements are done completely randomly independent of each other.

Since many of the statistical parameter calculations make assumptions about the normality of the underlying populations, it's a logical move to verify those assumptions. With the execution stream of our programs divided into intervals of equal length, we simulated the SPEC2000 benchmarks in detail and noted the CPI for each interval. Using the R [START_REF]R: A Language and Environment for Statistical Computing[END_REF] programming language we built histograms for these CPI populations to see their shapes. The 

Warm-up

Having addressed the question of interval selection for detailed simulation, we turn our attention to the second question pertaining to the correctness of the microar-simulation, the data in these SRAM structures are outdated (they are the remnants of the previous performance simulation mode). Thus the first accesses to these structures would find invalid data and result in misses incurring extra cycles. This would cause an over estimation of the CPI. These structures at the end of a functional simulation, with invalid data, are referred to be in the "cold" state.

Once the performance simulation mode is launched, the accesses to these structures cause misses and result in the progressive update of the respective fields with correct data. When all the fields of a structure are updated, we consider it completely "warm". Sampling softwares try to base their measurements on warm structures as they are free of bias introduced by cold start misses and represent correctly the actual performance of the program. In order to achieve transparent sampling, we warm up using the performance simulator: by simply running, the performance simulator will progressively warm up the SRAM structures. The simulation is partitioned into fixed-size intervals of N instructions each. At any interval, we assess the degree of warm-up. For that purpose, we monitor the load/store references that access SRAM entries which are already warmed, as in SMA [START_REF] Luo | Self-Monitored Adaptive Cache Warm-Up for Microprocessor Simulation[END_REF]. So far, this warm-up technique is very similar to SMA [START_REF] Luo | Self-Monitored Adaptive Cache Warm-Up for Microprocessor Simulation[END_REF], except that we provide the library and class support. Unlike SMA, we do not use the fraction of SRAM structures which are warmed as a warm-up criterion, because we empirically observed this criterion to be highly sensitive to the program behavior. For instance, some program parts with a small workload will only warm up a fraction of the cache.

The other option was to monitor the memory accesses during an interval and count the fraction of warm accesses. SMA combines both warm-up criteria but we found that solely using the fraction of warm accesses was more robust. We deem that all the SRAM structures are warmed when the fraction of warm accesses to each of these SRAM structures (e.g., the different caches of a memory hierarchy) is above a threshold.

However, even though our adaptive warm-up technique makes use of the aforementioned warm-up criterion, it does not rely on the variable-length warm-up interval of SMA for the following reason. We found that SMA can have a non-trivial impact on the selection of intervals used for performance measurement, the interval immediately following the warm-up intervals; more exactly, that it could shift the performance measurement intervals in a way that could be degrading the randomness of performance measurements (a key aspect of statistical sampling). Because SMA was studied as a warm-up technique alone (as opposed to a warm-up + sampling technique), it is only normal that this effect has gone unnoticed, but we found it to be severely detrimental in some cases. Consider a program where the following pattern recurs often: a region with accesses to many distinct addresses followed by one or several region(s) with repeated accesses to a few addresses. The first region is likely to breed significantly more cold accesses than the second region(s). As a result, the fraction of cold accesses in the first region will be high, and the warmup threshold won't be passed. When the program enters the second region(s), the fraction of warm accesses quickly increases because just a few addresses are being repeatedly used, and the threshold is likely to be passed. As a result, adaptive warm-up has shifted the performance measurement interval to a region with few, cold accesses. However, the majority of these cold accesses will be concentrated in the intervals occurring at beginning of our warm-up. Therefore if we calculate our percentage of warm memory accesses since the beginning of the warm-up period, they'll include these initial cold accesses and we might take a long time to achieve our warm-up threshold. Therefore instead of calculating the percentage of warm accesses since the beginning of warm-up period, we calculate them over this rolling window of latest intervals. In Figure 4.5, we see that, when the number of performance simulated intervals is equal to the size of the rolling window, i.e., the window starts rolling leaving the initial intervals behind, the fraction of warm accesses based on the rolling window intervals starts to increase faster than the fraction based on all intervals since the beginning of the sample. In other words, the large fraction of cold accesses in the first few intervals has no impact after the rolling window has shifted, and ultimately the fraction of warm accesses in the rolling window converges more quickly to 100%.

Methodology

Processor We used the SimpleScalar [START_REF] Burger | Evaluating Future Microprocessors: The Sim-pleScalar Tool Set[END_REF] 4-way out-of-order processor using the Alpha ISA, see Table 4.1. We modified the architectural structures to render it compatible with the TSE, by calling our SRAM library (which implements one bit for each line of the cache structures).

We used the SPEC2000 [START_REF] Henning | Spec cpu2000: Measuring CPU performance in the new millennium[END_REF] 

Experimental Results (SPEC2K)

In the previous sections we detailed our interval selection mechanism as well as our warm-up methodology and how we were able to combine them together. In this section we present the results when we put our transparent statistical sampling technique into practice. In this section we focus only on the SPEC2K benchmark suite and detail the results for MiBench in the next one. conducted on the platform described in the last Section 4.4.

Simulation Time

Performance simulating whole benchmarks can be excruciatingly slow. It is orders of magnitude slower than the functional simulation and much more slower than running the benchmark on a real processor. A minute of execution time on a real processor can translate into weeks of performance simulation on the fastest of the simulators.

But it's still a necessary evil as we cannot get the performance measurements without doing a detailed performance simulation. However we would like to keep the number of performance simulated instructions to a minimum as it translates directly into execution time.

In Transparent Sampling, we consider the fraction of total instructions to be simulated. The simulator starts running the program in functional mode. The simulation is partitioned in intervals of size N . At any interval, the TSE must decide if the next interval will be performance simulated (sample collected) or just functionally simulated. For that purpose, it monitors the fraction of instructions performance simulated so far F S , and the average warm-up size W S (in number of intervals). Between two samples, as instructions are only functionally simulated, F S decreases; when performance simulating instructions for a sample (warm-up and measurement), F S increases.

Let F be the fraction of performance simulated instructions that the user requested. F can be interpreted as the probability that one interval should be performance simulated. However, when sampling is triggered, on average W S + 1 intervals are performance simulated: W S for warm-up + 1 for measurement. So, assuming a uniform distribution of samples, the probability that a sample (warm-up + measurement) is collected is

F (W S +1) .
F is actually the initial probability that a sample is triggered at the next interval.

As simulation progresses, the actual fraction of performance simulated instructions F S will oscillate around F . If F S exceeds F , the number of samples should be reduced, or conversely can be increased if F S is less than F . Therefore, we use F (W S +1)

as the probability to sample at the next interval. W S is adjusted as a function of F S and hence controls the simulation probability. Since the user-specified bound is statistically enforced, the resulting number of performance simulated instructions will not exactly match the bound, but we found that this criterion allows to fall reasonably close in all cases.

Note that this sampling selection criterion is robust in spite of adaptive warm-up.

If the SRAM structures are large, W S will increase, as a result F (W S +1) will decrease resulting in fewer samples. Conversely, if the warm-up requirements are low, the number of samples will be increased which will have a positive effect on accuracy, while remaining within the simulation time bounds set by the user.

The percentage of performance simulated instructions is indicated in Figure 4.6.

Even though the TSE uses a statistical control mechanism, the percentage is successfully maintained below 1.12% for all programs. 

Warm-up length

We see in Figure 4.7 that as the size of SRAM structures increases the amount of detailed simulation required per sample also increases. The figure shows the systematic increase in the warm-up requirements of the architecture as the cache size is increased from 8KB to 128KB. This strengthens our argument that the warmup needs to be adapted at run time to the architecture/program needs. 

CPI Error

The CPI error is indicated in Figure 4.8 for all benchmarks and the three aforementioned cache sizes. We first note the low absolute average error, less than 2%, which is on par with the best sampling accuracy results [START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF][START_REF] Wunderlich | SMARTS: accelerating microarchitecture simulation via rigorous statistical sampling[END_REF]. Moreover, this accuracy is stable across all three cache sizes, and does not increase with the cache size: the accuracy is 0.91% on average for 8KB, 1.47% for 64KB and 1.93% for 128KB. In other words, the accuracy does not change much as the SRAM structure size increases. To our knowledge, this is the first demonstration of an adaptive sampling strategy that exhibits stable accuracy as architecture characteristics change. From the solid bars we see that even though the overall error is low, some programs such as vpr, apsi and gcc.166, have errors up to 7%. Note that some of these programs are almost the smallest (in numbers of instructions) in their categories (gcc.166 and vpr). If a program has significant warm-up requirements and the user has set a fixed percentage of simulation constraint, the TSE will adapt by reducing the number of samples to accommodate for the longer warm-up. If a program is small, the number of samples can become low enough to create a noticeable statistical variability.

The lines on top of the solid error bars represent the Statistically Estimated Error as described in the Section 4.2.1. This bar which represents the size of the confidence interval provides an estimate of the reliability of our measure. The confidence interval indicates the interval of the estimated CPI. The upper bound of the confidence interval thus represents the estimated maximum CPI error. In Figure 4.8, one can notice there is no line (corresponding to the confidence interval) on top of some bars, for example eon. This occurs because either the real CPI is close to the upper bound of the confidence interval, or because it is even beyond it. While the former case is just the maximum error, the latter case can occur because the confidence interval can only be estimated as explained in Section 4.2.1.

One good news is the observation that wherever the actual CPI error is high, it is bounded by the Statistically Estimated Error. Since this error is reported to the user at the end of the simulation, the user can have an idea about the correctness of his result. A very large Statistically Estimated Error probably means that the actual error is also quite high and the user needs to simulate again perhaps with increased percentage simulation to have an accurate view. This is explained in the next section. 

Bounding the Error

Interval Size

Figures 4.12 and 4.13 respectively show the CPI error and the warm-up length in number of instructions when varying the interval size from 1,000 instructions to 1,000,000 instructions for 64KB caches. The counter-intuitive best choice is to use a small interval size of 10,000 or 100,000 instructions (we use 10,000 instructions throughout this study). It is counter-intuitive because the smaller the intervals, the higher the fraction of performance simulated instructions used for warm-up rather than measurement, since the warm-up size is constrained by the SRAM structures.

However, small intervals enable to achieve higher accuracy by multiplying the number of samples. This trade-off underlines that it is necessary to dedicate most of the performance simulation time to warm-up rather than measurement. Note that the 1,000-instruction intervals provide no significant benefit in simulation time at a noticeable cost in accuracy. While the results are only shown for 64KB caches, they are consistent across all cache sizes and benchmarks.

Experimental Results (MiBench)

As described earlier, one of our goals was to develop a robust technique which performs well on all architectures. To this intent, Figures 4.14 This can be seen in the low average error rates (2.96%, 1.67%, and 1.62% for cache size of 4KB, 8KB, and 64KB respectively). A couple of benchmarks susan edge and tiffrgba show high performance estimation errors (17% and 20% for 4KB cache respectively). When we get down into details to investigate the matter, we see that the small lengths of the MiBench benchmarks play an important role. MiBench programs are more than 100x smaller than the SPEC2K ones on average. Since we try to limit the percentage of detailed simulation to within 1% of the program size, we simulate only a small amount in detail. Therefore we manage to collect only a few samples for these small-sized benchmarks. Nevertheless we try to iteratively increase the percentage of performance simulated instructions hoping to lower the statistically estimated error below 5% as we did in the previous section. Figure 4.16 shows the result. Though we succeed in most of the cases, we can still see that for susan edge and tiffrgba, even after 

Warm-up Parameters

We discussed in Section 4.3.2 the shifting effect of SMA style adaptive warm-up and how it biases the selection of performance simulated intervals towards certain portions of the program. We also described how we had to devise the method of using average warm-up length for measurements in order to avoid this. We now show the effect of this biased selection on the CPI error. The Figure 4.18 shows the CPI error for different benchmarks for all the three cache sizes when we use only SMA as our warm-up criterion without the average warm-up length. We can see that while it works for most of the benchmarks, gcc.166

shows an error of about 13% for a 64k cache and art exhibits an enormous error of 25% for an 8k cache. These two cases justify our introduction of the average warm-up length. that in the absence of a rolling window (infinite case), the effect of initial cold misses is extremely pronounced on the warm-up length. This is demonstrated by the long bars showing much longer average warm-up lengths compared to the rolling window. Indeed, the average average warm-up length is four time longer (542 intervals) than when using a rolling window of 100 (134 intervals). This results in a corresponding reduction in the number of samples and a higher error, as shown in the figure 4.20.

Rolling Window Size

One good news is that, though the increase in average warm-up length and the corresponding decrease in number of samples is manifold, the change in average performance error is not that great. This means that even with a rolling window of 100 intervals we should be able to achieve the same performance with fewer samples.

Though the smaller rolling window of 10 intervals results in low average warm-up lengths and hence more number of samples, we found that, in many cases, it was still sensitive to variations in warm-up linked to program regions and caused more error than a rolling window of 100 intervals.

Warm-up Threshold

In Section 4.3.3 we indicate that we need to attain a threshold of percentage warm accesses before we take our measurement. One criterion we considered was: when do we stop the warm-up and take the performance measurement? The obvious answer is: when the microarchitecture is completely warm and all accesses done by the program are warm accesses. The problem with this approach is that it takes much longer to achieve a complete warm-up then it takes to achieve an almost complete warm-up.

We need to know when the warm-up is finished in order to calculate the average warm-up length. We had to choose a warm-up threshold, to be attained each time we take a sample, such that it eliminated most of the bias caused by cold misses and did not cause too much performance simulation. To that purpose, we tried different warm-up thresholds. Figure 4.22 shows how the CPI error percentage for warm-up thresholds of 95%, 99.9% and 100%. As can be seen 95% of warm-up is not enough in most of the cases and causes an average error of 14% over all benchmarks. What was surprising was that a warm-up of 100% performs less than that of 99.9%. This is explained by the fact that the simulator has to simulate for a long time each time it tries to achieve the 100% threshold. This results in a longer average warm-up length. This can be seen in Figure 4.23 where a warm-up threshold of 100% causes the average warm-up length to treble as compared to that of 99.9%. Since we have a mechanism in place to regulate the number of performance simulated instructions is mentioned in Section 4.5.1, this results in fewer samples and thus the accuracy of the result is affected. The most flagrant example is perlbmk whose average warm-up length increases tenfold resulting in a corresponding 10x decrease in the number of samples and a corresponding increase in performance estimation error.

Conclusion

In this chapter, we present Transparent Statistical Sampling, a sampling technique that reconciles sampling and warm-up techniques by delivering state-of-the-art accuracy and simulation time, while remaining easily accessible to end users. The contributions of this work can be viewed from the following angles. One, it proposes to combine the statistical sampling with the latest warm-up methodology.

Secondly, in combining SMA with statistical sampling, it discovers the bias introduced by the adaptive warm-up in the selection of intervals and proposes a method to bypass this defect.

Transparent Statistical Sampling achieves a CPI error of 1.47% with 20.7 million performance simulated instructions (1%) on average for 64K caches.

We demonstrated the resilience of this technique to program and architecture changes by testing it on SimpleScalar/SPEC2K and PPC405/MiBench combinations for three different cache sizes each. Though the results for MiBench programs are slightly inferior than those for SPEC2K program, we believe that the small lengths of the MiBench programs are to blame. They do not run long enough to give us time to collect enough number of samples to do meaningful statistical calculations.

Encouraged by the results, we intend to further this work by testing its applicability on different other microarchitectural structures like branch predictors, TLBs and multi-level caches. Also, we'd like to explore the working of this technique in the context of multi-core architectures.

Chapter 5

Conclusion

In this chapter we recapitulate and conclude the discussion proffered in the preceding chapters and provide directions for future extensions in which this work can be extended.

Summing it up

As shown in previous literature and demonstrated by the discussion in this document, we conclude that Sampling indeed is an effective technique in that it manages to reduce simulation times with a minimum loss in the accuracy of the results.

Both representative and statistical sampling techniques have been shown to provide acceptable results, though the latter more so.

Representative Sampling. While the representative sampling analyzes the code to intelligently select samples from the program execution, it requires to do a pass on the executed instruction stream to identify the representative portions of the program. Attempts to do online phase classification have been less successful as they do not have the whole picture in front of them when clustering program intervals. This results in greater than optimal number of clusters and correspondingly increased detailed simulation which directly affects simulation time. The online im-plementation limitations of representative sampling encourages the need to explore other techniques, like statistical sampling.

Statistical Sampling. The ability of statistical sampling to not to require a pre-analysis makes it a strong candidate for online implementation of sampling.

Without any prior knowledge of the characteristics of program execution, in this type of sampling, intervals are selected randomly for detailed simulation. Each interval has an equal probability of selection. Another advantage of this approach is that it can rely on statistical theory to provide confidence estimates in the reliability of the results. Furthermore, these statistical measures can be tweaked to achieve a desired compromise between performance accuracy and simulation times. In our experiments we found the statistical sampling technique to deliver superior performance when compared to an online implementation of representative sampling.

Phase Prediction. While attempting to implement an online representative sampling technique, we experimented with online phase classification and prediction.

We noted that the quality of online phase characterization was inferior to that of its off-line counterpart. This was expected as the off-line analysis entails analysis of the whole program instruction stream before it starts classification whereas an online method has visibility only until the present moment. As this online classification produces too many phases, this also affects the phase prediction mechanism. Phase prediction is needed in order to prepare in advance (warm-up) for the desired interval to sample. A large number of phases detected would result in more combinatorial sequences of phases and thus make them harder to predict. Thus we were forced to use heuristics, such as to cut off phases with negligible weight, to decrease the number of phases and improve their predictability. Secondly, as we need to predict a phase many intervals before it actually occurs, we need to guess the IDs of multiple consecutive future phases. The prediction accuracy decreases as we try to predict more and more farther than our current location. Low prediction accuracies can severely degrade the simulation times as we would be simulating intervals in detail when we should not be.

Warm-up. Warm-up, achieving the correct simulator state before sampling, is still a relevant issue. Especially for small-sized intervals, we observed that not having the correct micro-architectural state can skew the performance measurements to a degree which is unacceptable. Despite recently developed good warm-up techniques (MRRL, BLRL, SMA), not all of them let themselves adaptable to online sampling techniques easily. We, ourselves, could only find SMA to suite our requirements. An often cited argument against the relevance of warm-up is that choosing sufficiently large intervals obliterates the need for warm-up at all. The case for large intervals is weakened by the observation that due to their size there has to be only a few of them in order to restrain the simulation time. This low number of simulated intervals renders the statistically calculated confidences meaningless. Therefore, instead of random selection, intervals have to be chosen intelligently for detailed simulation. This often requires a pre-analysis of program instruction stream to identify the most suitable candidates. Secondly, the effect of warm-up depends upon the architectural parameters and it is not clear how large an interval should be to nullify warmup bias for a particular architecture. Another type of warm-up, called functional warm-up, as we mentioned previously, exposes the user to implementation details.

We proposed an adaptive warm-up strategy which adjusts the detailed simulation needed for warm-up dynamically as a function of program/architecture needs.

Usability. In designing our sampling approach, the ease of use for the end user was one of our prime concerns. Figuring out parameter values for each hardware/software configuration exposes the end user to implementation details. Thus, for the architects already overwhelmed by design problems, this added complexity of using a simulation technique may prove a detriment to technique adoption. Keeping in view this requirement, we designed a sampling mechanism which adapts to a given hardware/software configuration and needs minimal user intervention. The only modification to the simulator is addition of a bit to each SRAM entry. To this end we provide a class library from which the user might inherit his structures and thats all what is needed to plug in. This one class would suffice for all SRAM based structures.

Future Directions

We propose an adaptive sampling strategy to reduce simulation times. While we have demonstrated its effectiveness in some limited scenarios, it is to be seen how far this approach can be extended. Below we discuss a few areas in which this work could be complemented and extended.

Effect of independent events. When simulating a benchmark on a simulator, sampling can effectively capture the program performance. However, a simulator may model hardware events which affect performance but which the sampling technique may not be conscious of. Examples may include DRAM refreshes which may delay the completion of memory requests or the processor being interrupted by a communicating peripheral. These events affect the program runtime but may not be captured by sampling. Representative sampling, which analyzes the executed code to identify representative intervals for simulation, is especially affected because these events occur independent of the program. The low number of intervals simulated in detail may miss these instances. Similarly for systematic sampling, if the time period of the sampling is a multiple of that of these events, it may sample too many of such events or miss them altogether thus under-or overstating the IPC. Wunderlich et al. [START_REF] Wunderlich | SMARTS: accelerating microarchitecture simulation via rigorous statistical sampling[END_REF] claim having verified that there is no such regular repetition in program characteristics but they do not take into account such events which are transparent to the executing code. In our simulations we observed that DRAM refreshes occur at regular intervals and can affect performance. We believe that random sampling, if used in such scenarios, should be an effective solution.

A related issue is that often simulated benchmarks are tested in isolation, i.e., only the benchmark is executing on the simulated processor. This is in contrast to real life scenarios where the application shares the processor with other applications and the operating system. The effect of the operating system environments [START_REF] Desikan | Measuring experimental error in microprocessor simulation[END_REF] on application performance has been documented. We intend to extend our sampling approach to full-system simulation to quantify how it performs in an environment where the applications are continuously interrupting each other and also being interrupted by peripherals.

Multicore Sampling. Computer industry has chosen the multicore road for its future, for better or for worse remains to be seen. With the advent of multicore chips, the process of porting the software to these parallel architectures has already begun. We'll be seeing more and more of parallel programs and benchmarks. The original roadmap of this thesis, unachieved due to slow progress and time constraints, included devising sampling strategies of multicore simulations. Sampling is easier to implement on single core processors because it is simple to fastforward the program execution from one point to another. Indeed, the strength of sampling lies in its ability to execute most of the program in fastforward mode. Multicore chips executing many processes/threads in parallel bring non-determinism into the equation. In During functional fastforward mode, a simulator has no idea which instructions of a thread would overlap in execution with which ones of another determining their relative execution speeds. Thus it does not know how much to fastforward each thread relative to others. This proposes an interesting problem for the implementation of sampling in multicore simulators.

Previously, there have been attempts [START_REF] Van | A co-phase matrix to guide simultaneous multithreading simulation[END_REF] to apply representative sampling to multi-context processors. The proposed co-phase scheme identifies phases individually in each thread and then tries to sample all co-occurring phase combinations among threads. It is a very limited approach. As the number of threads increases, the number of co-phases explodes. This makes trying to simulate each co-phase combination an unrealistic option. Furthermore, this approach assumes the same behaviour for each occurrence of a co-phase, however a different ordering of instructions within a co-phase can produce different results.

SimFlex [START_REF] Wenisch | Simflex: Statistical sampling of computer system simulation[END_REF] attempts the statistical sampling of parallel workloads. They attempt to randomly sample transactions and concentrate only on the user-mode instructions as their retirement rate shows less variation than the actual transaction completion rate. By ignoring the system part of the execution they are completely cutting off the effects of the operating system execution which can have a considerable effect on the performance of the system. We believe that multicore simulation presents an opportunity to test and demonstrate the usefulness of statistical sampling techniques. Enough randomly simulated samples should be able to capture all interleavings of the instructions of different processes executing in parallel. The sheer nature of the random coupling of threads and the interleavings of their instructions makes random sampling a good candidate.

Using small sized intervals permits increasing the number of samples and capture fine-grained interactions between different threads. Increased number of samples can help provide good confidence in the performance measures. It needs to be seen whether we should stop simulating when a system-wide confidence interval has been achieved or we should wait for the measurements from each thread to attain a steady state.

For the fastforwarding part, there have been heuristics, i.e. fastforward each thread based on its average or most recent IPC. These can be combined with existing techniques like direct execution to fastforward the threads by executing them on the host processors. Fastforwarding using the host processors is much faster than fastforwarding in a simulator. Thus it may help alleviate multicore simulation times.

For the warm-up part, we believe that the SMA-style warm-up applied in this work shall work fine for multicore simulations as well. The same technique of adding a warm-up bit to SRAM entries can be extended across cores. A point of discussion may be whether each thread should have its own warm-up threshold, or a systemwide warm-up threshold be used, or a combination of the two. Again, exploration has to be done to verify the effect of each of these conditions.

Another approach which can help is hardware execution. FPGAs can be of assistance in fastforwarding the portions of program which are not needed for detailed simulations. Simulators are being implemented in FPGAs such as the RAMP project at University of Texas at Austin which implements a platform to simulate multi-processor set-ups. The flexibility of the FPGAs and their clock speeds make then an interesting alternative for multicore simulators, as simulator parallelization has yet to have a break through.

Simulation acceleration. Finally, the author believes that the simulation acceleration problem is a multifaceted one. The complexity of modern architectures and the size of programs render achieving accurate estimates of performance in reasonable time much difficult. Therefore, relying on one method of simulation acceleration might not be the right choice. Instead, it is recommended to combine the strengths of different techniques in a synergistic manner. For example, sampling is good but with the increasing sizes of benchmark programs, the bottleneck will soon be the execution of the functional portion of the program. This would need faster simulators. FPGAs are a good alternative. Though having a little steep learn-

Conclusion

ing curve, they should be able to provide much faster fastforwarding than software based simulators. Similarly, there are portions of simulated architectures that are not very complex to model. Using analytical modeling techniques to model relatively simple structures would also relieve some burden from the simulators. Using random sampling is also encouraged due to its simplicity of implementation and also because statistical confidence measures are a useful indication of the correctness of the sampling process. Such a hybrid approach which draws on the strengths of all these techniques can provide a useful way to keep up with the increasing difficulty of the simulation task.
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 111 Figure 1.1 depicts a typical microprocessor design cycle in chronological order.Based on the market expectations or the clients' needs a chip maker gathers requirements for what functionality to be included in its next generation processors. This requirements gathering can be based on market surveys (its own or third parties') or on clients' feedback. A set of applications, called benchmarks are gathered to repre-
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 112 Figure 1.2 the time required to simulate a program on a given processor configuration
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 1313 Figure 1.3 takes Figure 1.1 and expands the second step. We see that during the design phase, the specifications of the architecture are continuously being changed based on whether it meets the desired functionality or not. Software simulators
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 14 Figure 1.4: Software Simulation Techniques.

Figure 1 .

 1 Figure 1.4 depicts the idea of Sampling. The execution of the program is divided into intervals of equal number of executed instructions. Both functional and detailed simulators will execute these intervals in their respective fashions. However, for Sampling, a simulator should be able to switch between the two. As shown in the figure, the simulator would fast forward most of the program in functional mode and simulate in detail only intervals which it thinks may help it calculate the performance of the program.

  ::::::::: easy-to-use :::::::::::: technique.:::::::::::

  Simulators vs simulation frameworks. They unanimously favored simulation frameworks over monolithic simulators. Their modularity and portability properties make simulation frameworks attractive to developers. Benchmarks. They stressed the need to better characterize existing benchmarks to show how much of the application behavior space they actually represented. They propounded the use of micro and synthetic benchmarks for their ability to better isolate individual program behaviors and to be parametrized respectively. Abstractions. They advocated increased use of more abstract analytical models to help fast exploration of design space. Evaluation metrics and validation. They emphasized the need for new and more descriptive metrics to capture program behavior and accessible statistical tools to verify their robustness. They also lamented a lack of infrastructure and encouragement of the replicability of the published experiments.

[ 117 ]

 117 Yi et al. use the Plackett and Burman statistical method to identify parameters which contribute most to the final output of the performance. Plackett and Burman requires 2N simulations for N parameters but fails to quantify the effect of different parameter interactions on the performance. They identify the most important parameters by Plackett and Burman, and then use the ANOVA technique to quantify the effect of their interactions.

  scientists and the methodologies to set up and analyze simulation experiments. They also comment on the common simulation acceleration techniques stating the merits and demerits of each. At the end of their comprehensive document they complain about the lack of documentation on simulation methodologies in published papers which impedes reproduction of results, and the lack of care and explanation for the choice of simulator parameter values since they affect simulation results. They recommend more effort in improving the accuracy of the simulators and reduction of simulation times.

  collect population data. Due to long simulation times for detailed cycle-by-cycle execution of benchmark programs, sampling has attracted the attention of architecture researchers as an attractive alternative to full program simulation. The idea is that if we consider a program execution as a population of instructions or basic blocks, observing the performance of a subset of this population should be able to give us an accurate picture of the performance of the whole population, i.e., the program. Relying on the well established and well tested theoretical background developed by the statisticians, architects simulate most of the program in functional fast forward mode and only a part of it in detailed performance measurement mode to get insights into program performance. Running most of the program in fast functional mode greatly reduces the total simulation time as it is at least an order of magnitude faster than the detailed mode. Sampling can be applied to simulation both in trace driven mode as well as in execution driven mode. Earlier sampling studies [96, 77] tried to simulate one continuous chunk of the program instruction sequence and used its performance as a replacement for that of the program. It was found that different portions of the program could have significantly different performances, especially the initialization phase at the beginning of the program is quite different in performance from the rest of the program. This was demonstrated by [16]. Laha et al. [59] provide a method to sample the memory address trace of the program to determine the mean miss rate and the distribution of the miss rate for processor caches. With a sample size of 35, by simulating only 7% of the trace, they were able to show that the cache miss rate distribution of the sample matched that of the program trace. Conte et al. [16] use trace sampling to calculate the IPC for SPEC CPU95 programs. They decompose the source of error into sampling and non-sampling bias. Sampling bias is inherent in the sampling process and can be indicated by the variance of the sample. It can be alleviated by increasing the number of samples.

  They note that program behaviour shows phases over time. They then select a sample of 50 million instructions which is representative of the general program behaviour. They recommend skipping the initial phases of the program when selecting this window. Lafage and Seznec[START_REF] Lafage | Choosing representative slices of program execution for microarchitecture simulations: a preliminary application to the data stream[END_REF] also divide their program into intervals of 1 million instructions but instead of branch misprediction rates they use statistics about temporal and spatial locality of the memory references to classify their intervals. They use hierarchical classification to group their intervals together and then for each group they choose a representative to simulate based on its closeness, via euclidean distance, to the center of the group. They report simulating on average 1% of the trace and having an absolute error less than 10% for cache miss rates. Dubey and Nair[START_REF] Dubey | Profile-driven generation of trace samples[END_REF] propose profile driven sample generation. They do a first execution of the program and save the profile of the application in terms of the frequency of basic blocks. They instrument the program binary for a second execution in such a way that the execution count of each basic block is reduced by an acceleration factor. This way, the sequence of the basic blocks executed is the same as in the original trace. The number of executions of each basic block is reduced proportionally to shorten the trace. They report a 50% improvement in error when compared to existing techniques.In[START_REF] Sherwood | Time varying behavior of programs[END_REF], Sherwood and Calder plot the behaviour of SPEC CPU95 programs as a variation of time. They notice that program behaviour repeats cyclically in terms of IPC, branch prediction, and cache performance. They show in[START_REF] Sherwood | Basic block distribution analysis to find periodic behavior and simulation points in applications[END_REF] that this repetition of program behaviour is linked to repetition in program code. They propose to create basic block frequency vectors (BBVs) for program intervals of 100 million instructions and then find the interval whose BBV is closest to the BBV of the whole program. They then select that interval as the representative of the whole program for simulation.

,

  Liu and Huang show that different invocations of subroutines during the execution of a program show low CoV (Coefficient of Variation) percentages for metrics like CPI, basic block size, branch prediction, memory references, and L1 cache hit rate. They partition the static code of the program into reasonable sized subroutines. Then they try to simulate a dynamic instance of each of these code sections. They propose two methods to do simulation. One with preprocessing where they run the application to determine population size and then choose a systematic sampling rate and they run it again to create checkpoints for selected samples. In the second case they avoid the preprocessing phase and sample without prior knowledge of the incoming code. To capture variation between successive invocations they try to spread out the sampled invocations through out the execution. At the end of their paper they do suggest an online method which characterizes code intervals and uses that characterization for selective sampling on the go, but they do not implement it.Phase Classification and Prediction. In order to select a few representative portions of the program to simulate, we need to group the program portions into groups based on their similarity. Such techniques can be qualified by measuring the homogeneity in the groups thus generated and how different they are from one another. Dhodapkar et al.[START_REF] Dhodapkar | Comparing program phase detection techniques[END_REF] compare program phase characterization techniques such as working set signatures, basic block vectors, and conditional branch counters in terms of phase classification accuracy, average phase length, and phase stability.They state that phase detection when using basic block vectors performs better than the other two techniques. Although the instruction working set technique generally gives longer phases than the other two, there's less stability in those phases as compared to phases detected by BBVs. The conditional branch counters are slightly less accurate than the other two techniques but are much easier to implement. They note however that all the techniques agree with each other 85% of the time. Lau et al. measure the intraphase homogeneity by using CoV (Coefficient of Vari-ation) for each phase to qualify the efficacy of their phase classification technique.

  Using binary instrumentation of programs, they sample a PC address every 1 million instructions and after every 100 million instructions they get a 32-dimension hashed BBV. Similarly they use hardware counters to count 15 hardware events such as, L1 and L2 access rates, bus utilizations, etc. Every 100 million instructions they obtain a vector detailing the statistics for the previous interval. They use clustering to classify both the BBVs and PCVs (performance counter vectors) into phases and compared the phase classification to the power phases. They found that PCV based phases outperformed the BBV based phases every time (33% better classification on average). They trace this to two phenomena that the BBV code signatures fail to capture: Operand Dependent Behaviour, where the same code execution, when used with different arguments, result in different data locality behaviour and, hence, different utilization of hardware resources (cache, buses, etc.) and different power phases, and Effectively Same Execution, where different portions of executed code, which the BBV classification mechanism qualifies as different phases, result in same power signatures. They give examples of these two phenomena and show that they are correctly identified by the hardware performance counter signatures. They recommend using the PCV based phase information to effectively scale processor voltages in view of the power consumption.

  Systematic sampling selects samples to simulate at regular intervals from the execution stream of the program. Though the regularity of occurrence is predictable in systematic sampling, choosing the start point randomly makes each interval of the program have an equal probability of selection. A potential problem with systematic sampling is that if the program contains repeating behaviour whose period is a multiple of sampling frequency, then sample selection will be biased towards one kind of behaviour. Wunderlich et al. verify that this is not the case by measuring the homogeneity in the program via intraclass correlation coefficient. Using a sample size of 1000 instructions SMARTS reports achieving an average CPI error of less than 1%. Wenisch et al. propose SimFlex [107], a statistical framework, to systematically sample the Transaction Processing Workloads on multiprocessors. Due to the high variation in the transaction completion rate, which makes them simulate longer intervals, they use the retired user mode instructions per cycle (U-IPC) as their performance measuring criterion. U-IPC shows much less variation than the transaction completion rate. They first do an initial brief sampling to measure the variation in performance; this is used to calculate the number of measurements needed to achieve a specified confidence. As a next step they measure the detailed warming length needed to remove the cold state bias from their measurements. The third step is the actual simulation phase.
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 21 Figure 2.1: SimPoint and SMARTS mechanisms.

  simulation techniques to provide an online sampling strategy for multi-context SMTs. It proposes to keep track of the co-phases in an online scheme which hashes the branch addresses into fixed size BBVs. Using pivot clustering it classifies each new co-phase into an existing or new cluster. Additionally, upon detecting a co-phase change, it tries to obtain a detailed simulation sample for the new co-phase. Using the SPEC CPU2000 benchmarks on a two-way SMT processor it reports an average percentage error of 15-20%. They cite lack of warm-up and statistical error as possible candidates for sources of errors. They recommend a thorough exploration of the parameter space to further optimize the technique. Tawk et al. [98, 100, 99] use representative sampling to accelerate the simulation of multi-core system on chip (MPSoC) platforms. They use SimPoint to extract a phase profile of the simulated programs in a pre-simulation functional run. Simulating on a multiprocessor configuration they build strings of phases, being executed

  [START_REF] Kihm | Statistical simulation of multithreaded architectures[END_REF] try to use statistical sampling to determine the performance of multithreaded architectures. During the fast forward phase they fast forward each thread based on the value of its IPC seen in the last detailed simulation. This proportional fast forwarding tries to recreate the same co-phase overlappings as would occur in a complete detailed simulation. To recreate the system state before each sample, they experiment with Monte Carlo warming. The problem with warmup of large shared structures is that we do not know how much of them was affected by each thread. This depends on the time-based interleaving of the instructions of the threads. Monte Carlo warming interleaves the memory and branch instructions of the threads randomly based on their last seen IPCs. This has the effect of maintaining cache affinities for the threads proportional to their executed instructions.

  Sampling relies on the assumption that most of program execution is a repetition of parts of code so it is not necessary to performance simulate the entire execution of the program. It suffices to simulate in detail representative portions of the program code only once and from the performance of these code segments that of the whole program can be constructed. This idea that a program execution comprises repeating phases was popularised by SimPoint[START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF]. While SimPoint[START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF] et al.[START_REF] Pereira | Dynamic phase analysis for cycle-close trace generation[END_REF] [54] provide good performance estimates, they ignore other issues which are equally important. Some use a prior phase analysis to determine which portions of the program to simulate in detail making the technique cumbersome to use in case of frequent software modifications. At the same time, other techniques make too simplistic assumptions about the warm-up of SRAM structures which can have significant effect on performance measurements in case of change in architectures.
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 31 Figure 3.1: IPC variation for MCF. Interval sizes of 10k(top) to 100 million(bottom).

A

  program phase changes are related to the instruction working sets. They concluded that changes in program behaviour tend to coincide with the changes in working sets. Balasubramonian et al.[START_REF] Balasubramonian | Memory hierarchy reconfiguration for energy and performance in general-purpose processor architectures[END_REF] detect changes in program phases by keeping track of conditional branch counters for each interval in program execution. When the difference between the conditional branch counters of two consecutive intervals exceeds a certain threshold, they signal a phase change. Sherwood et al.[START_REF] Sherwood | Basic block distribution analysis to find periodic behavior and simulation points in applications[END_REF] advocate the use of Basic Block Vector (BBV) analysis to detect program phases. Dhodapkar and Smith[START_REF] Dhodapkar | Comparing program phase detection techniques[END_REF] did a study comparing the three approaches and found that the Basic Block Vector approach performed better than the other two when detecting the phases. In[START_REF] Lau | Structures for phase classification[END_REF], Lau et al. compare different structures for phase classification and concur that BBVs are one of the most accurate elements to capture the phase behaviour of the programs. Based on these results we selected the changes in BBVs as our criterion of choice when detecting the phases. Listing 3.1: Basic Block Example § w h i l e ( A[ i ] = = k ) Basic Block Vector (BBV) is an array whose elements contain the frequency of basic blocks. The length of the array equals the number of total basic blocks and each element corresponds to one of them. The value contained in a certain element will indicate how many times that particular basic block has been seen during execution. Thus these BBVs form the code signatures for different intervals of the program. Changes in these BBV code signatures are used to detect changes in program phases.BBVs for program intervals can be collected by doing a first pass using functional only simulation which is much faster than detailed simulation. SimPoint[START_REF] Sherwood | Automatically characterizing large scale program behavior[END_REF] uses this approach. They divide the execution of the program in intervals of equal size and analyze the code for each interval in terms of the basic block vectors. They then group the intervals with similar BBVs together into clusters. The idea is that these clusters are representatives of program phases and intervals within a cluster will show similar performance because of their similarity in BBVs. To test the difference between two basic block vectors they tested both the Euclidean and Manhattan distance and found the latter to perform better in BBV classification.
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 32 Figure 3.2: Effect of varying the BBV classification threshold on the number of clusters.
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 33 Figure 3.3: Effect of varying the BBV size on the number of clusters.
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 34 Figure 3.4: Prediction Accuracy As The Predictor History Size Increases.
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 35 Figure 3.5: Prediction Accuracy As Predictions Advance Further In Future.
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 36 Figure 3.6: On-Line BBV clustering.
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 37 Figure 3.7: Sampling strategy.
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 38 Figure 3.8: SRAM library.
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 39 Figure 3.9: Percentage CPI Error (100k-instruction interval, N=10(25 for ispell)).
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 310 Figure 3.10: Percentage performance simulated instruction.
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 311 Figure 3.11: Average number of warm-up intervals per sample.
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 312 Figure 3.12: Percentage CPI Error (100k-instruction interval, N=10).
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 313 Figure 3.13: Percentage performance simulated instruction (100k-instruction interval, N=10).
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 314 Figure 3.14: Average number of warm-up intervals per sample (100k-instruction interval, N=10).

Figure 3 .

 3 Figure 3.14 shows the average warm-up lengths for the SPEC2K programs. We see that in general the warm-up lengths are larger than those seen for MiBench

  , 3.16, 3.17 representing the perforamnce error, detailed simulation percentage and average warm-up length respectively.
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 315 Figure 3.15: Percentage CPI Error (100k-instruction interval, N=25).
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 316 Figure 3.16: Percentage performance simulated instruction (100k-instruction interval, N=25).
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 317 Figure 3.17: Average number of warm-up intervals per sample (100k-instruction interval, N=25).

  Statistical calculations are based on certain assumptions about the distribution of data in the population. Populations are classified into distributions based on the probability of finding data in a certain position. This probability distribution function characterises the spread of population data and distinguishes one distribution from other. One of the most commonly occurring distribution of data in nature is the Normal Distribution.

Figure 4 .

 4 [START_REF] Annavaram | The fuzzy correlation between code and performance predictability[END_REF] shows what a normal distribution looks like. It's a bell shaped curve with data spread out evenly on both sides around the center. The x-axis shows the values that the data in the population can take and the y-axis
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 41 Figure 4.1: Normal Distribution

Figure 4 .

 4 2 shows the histograms of the CPI for two of these programs. By contrasting these shapes with the Normal Distribution in Figure 4.1 we can observe that the distributions of the CPIs for these programs are hardly normal. The figure for mcf exhibits two very sharp peaks side by side while the distribution for gap is clearly skewed to the right.
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 42 Figure 4.2: CPI distributions
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 45 Figure 4.5: Warm-up with rolling window.
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 46 Figure 4.6: % of performance simulated instructions (8KB, 64KB and 128KB caches).
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 47 Figure 4.7: Change in average warm-up length (8KB, 64KB and 128KB caches).
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 48 Figure 4.8: CPI error (8KB, 64KB and 128KB caches).
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 410 Figure 4.10: TS vs. fixed warm-up (% CPI error).
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 411 Figure 4.11: TS vs. fixed warm-up (% performance simulated instructions).
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 412 Figure 4.12: Impact of interval size (% CPI error).
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 413 Figure 4.13: Impact of interval size (% performance simulated instructions).

  and 4.15 show the result of applying the statistical representative sampling to MiBench programs on the PPC405 simulator. The first thing to point out from Figure 4.14 is that Transparent Statistical Sampling does a pretty good job of estimating the program performance.
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 414 Figure 4.14: CPI error (4KB, 8KB and 64KB caches).
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 415 Figure 4.15: % of performance simulated instructions (4KB, 8KB and 64KB caches).
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 417 Figure 4.17: Average warm-up length (4KB, 8KB and 64KB caches).
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 418 Figure 4.18: TS using only warm-up threshold (% CPI error).
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 4419 Figure 4.19 shows that the percentage of detailed simulated instructions was still controlled to 1%.

Section 4 .

 4 3.3 describes why we need to calculate the percentage of warm accesses over a rolling window instead of since the beginning of warm-up. Achieving the warmup threshold faster lets us spend less time in warm-up and more time gathering performance measurements when we are constrained by our simulation budget.We needed to decide the length of this rolling window and decided to settle for a rolling window of 100 intervals.Figures 4.20 

  and 4.21 show the effect of varying the rolling window size on the percentage CPI error and the average warm-up length respectively.
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 420421 Figure 4.20: Varying the size of Rolling Window (Error).
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 422 Figure 4.22: Effect of varying warm-up threshold (Error).
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 423 Figure 4.23: Effect of varying warm-up threshold (Warm-up length).

  detailed cycle accurate mode, different portions of concurrent threads can overlap with each other in different ways causing different access pattern contentions and result in different performances. A slight difference in the ordering of instructions can result in another thread taking hold of the mutex/lock first, changing the entire flow of execution after that point. This may completely alter the performance seen.

  We then put all the pieces together and present an overview of our Sampling mechanism. We, next, present the platform used for experimental verification and the benchmark programs used. Then follows a presentation and discussion of our results in term of Performance Estimation Error and Percentage of Detailed Simulation, i.e., Simulation

	Time.
	Chapter 4 presents Transparent Random Sampling. It is organised in the same
	way as the previous ones, i.e., starting with an introduction, followed by discussion
	of the statistical concepts used. Later we present a discussion of sample selection
	and Warm-up. We also delineate our mechanism for keeping the amount of detailed
	simulation in check. After presenting our experimental platform, we detail the results
	and discuss their merits.

Chapter 3 presents Transparent Representative (Stratified) Sampling. After a brief introduction we present a discussion of related topics such as mechanisms for Program Phase Classification, Phase Prediction and Warm-up. Chapter 5 concludes this document by recapitulating the important findings and insights gained during this work. It continues the discussion by proffering future directions that can be pursued following this work.

  , Ipek et al. use artificial neural networks (ANNs) to explore the architec-

	predictors composed of multi-layer perceptrons with a hidden layer of 10 neurons.
	They start with an off-line training phase where they recommend using 512 detailed
	tural design space. They devise an artificial neural network with a 16 unit hidden simulations to train each program predictor. In the second phase they use 32 simu-
	layer to train on SPEC CPU2000 input programs and with only 1% simulation of lations of the new program to train its predictor and then combine the output of this
	the design space claim to predict the rest of the design space for the same appli-new predictor with that of the previous predictors in a linear (regression) manner.
	cations with 98-99% of accuracy. They use SimPoint to reduce the time of the This new function is then used to predict the performance of the new program in
	input simulations and claim that the noise-resistant nature of the neural networks the design space. They report an average error of 7% and a correlation coefficient
	lets them perform good despite error introduced by SimPoint. of 0.95. From a list of 3000 configuration they claim to find the best configuration
	In [18] Cook and Skadron use GPRS (Genetically Programmed Response Sur-with only 3 more detailed simulations.
	faces) to predict the design space performances. They use genetic programming In [14] Cavazos et al. use the ANNs to predict the effect of program transforma-
	principles to create and train non-linear polynomial approximation functions from tions on speed-ups. They use a multi-layer neural network with a 5 neuron hidden
	collected architectural performance data. These functions (GPRS) are then used to layer. They use the UTDSP benchmarks to train the network. Randomly chosen
	predict the performances for new configurations. Using 1% of the design space for transformations are applied to each program to create 64 versions of it. These are
	training, they can predict IPC for other configurations with 2% mean percentage then used as training inputs for the neural network. Once trained, the model is
	error. presented with a new program and its performance for 4 different transformations.
	Khan et al. [52] take this a step further and use the ANNs trained for a set
	of programs on a subset of configurations. These ANN models are combined with
	simulations for a new application on the same configurations. The idea is that the
	neural model will classify this new program with one of the previously seen programs
	and use the training for that previous program combined with the new data to
	predict the performance of the new application. Their neural network consists of
	a hidden layer of 10 neurons. They use the SESC simulator with SPLASH-2 and
	SPEC CPU2000 benchmarks executed in TLS (Thread Level Speculation) mode. In
	predicting the energy-delay metric for a new application they report a prediction
	error ranging from 3.1% to 4.9%.
	Dubach et al. [24] propose an architecture-centric approach to train neural net-
	works to predict performances over the design space. They use N program-specific

  half, where first half of each sample is used for warm-up, stitch, where the state at the end of previous sample is used at the start of current one, and INITMR, which estimates the miss ratio for references in the sample. He found that for large caches none of these techniques performed well.

There have been many approaches when restoring the state of the simulator architecture for sampling. Cold start miss considers that all data in the cache is invalid or an empty cache and returns a miss for the first access to every block of the cache. Cold start hit assumes the opposite and makes every first access to a cache block a hit. It is clear that they both can result in an over or under estimation of the CPI respectively depending on the program nature. Tawk et al.

[START_REF] Tawk | Multi-granularity sampling for simulating concurrent heterogeneous applications[END_REF] 

and Biesbrouck et al.

[START_REF] Van | A co-phase matrix to guide simultaneous multithreading simulation[END_REF] 

use the cold start hit warmup for their sampling experiments. Stale state advocates using data left over in microarchitectural structures from the previously simulated-in-detail interval. This can have mixed results depending on the distance between data reuse in a program.

Crowley

[START_REF] Crowley | On the use of trace sampling for architectural studies of desktop applications[END_REF] 

cites sampling traces for Windows NT applications on Intel x86 platform and using 4 methods to remove cold-start bias: cold, where there's no warm-up,

  Furthermore, these repetitive changes can be correlated with different portions of program code. What this means is that executing the same code again at another moment in program execution timeline would result in the same performance measurements. Since a program execution consists of repeatedly executing same portions of code, hence the repetition in performance.

This is a key result which helps understand the program behaviour and makes it exploitable. It opens up whole new areas in program optimisation. Once one knows that a certain portion of code is going to repeat in future, one can study its performance and, in reconfigurable architectures, reconfigure the processor to parameters best suited for its performance. Calder et al.

[START_REF] Sherwood | Phase tracking and prediction[END_REF] 

study the effect of adapting the data cache size and the processor issue width dynamically with program behaviour.

Table 3 . 1 :

 31 PowerPC 405 Simulator configuration.

Table 3 . 2 :

 32 SimpleScalar Simulator configuration.

simulated (as opposed to only functionally simulated). Since one of the key purposes of our technique is to accommodate architecture modifications, especially SRAM structures sizes modifications, all results are provided for three different cache sizes:

Table 3 .

 3 

3: Clustering and clusters prediction.

Table 3 .

 3 

4: Portion of simulation wasted.

Table 3 .

 3 

	Program #	#	% Hit
		Intervals	Clusters	
	bzip2	1.09E+006	108	67.41%
	crafty	1.92E+006	29	51.12%
	gap	2.69E+006	68	93.96%
	gcc.166	469177	207	71.75%
	gcc.200	1.09E+006	364	61.3%
	gzip	843673	94	68.87%
	mcf	618674	47	89.73%
	perlbmk	399392	37	68.33%
	twolf	3.46E+006	96	99.9%
	vortex	1.19E+006	21	64.68%
	vpr	840687	82	42.32%
	ammp	3.27E+006	84	65.71%
	applu	2.24E+006	44	99.02%
	apsi	3.48E+006	57	98.82%
	art	417951	54	71.48%
	equake	1.32E+006	36	98.75%
	facerec	2.11E+006	42	76.63%
	fma3d	2.68E+006	82	98.91%
	galgel	4.09E+006	94	96.76%
	lucas	1.42E+006	38	98.71%
	mgrid	4.19E+006	41	98.59%
	swim	2.26E+006	34	99.32%
	avg	1.91E+006 79.95	81

5: Clustering and clusters prediction.

Table 4 . 1 :

 41 Simulator configuration.

Table 4 . 2 :

 42 benchmark suite to evaluate our sampling technique. Both SPECINT and SPECFP programs were used with ref input sets. In order to demonstrate the resilience of our technique to architectural changes, especially SRAM structure sizes, we vary the cache sizes from 8KB to 128KB. Detailed simulations of the full benchmark suite (no sampling) are used to obtain the actual CPI (Cycles Per Instruction) of the programs. The benchmarks used and some of their characteristics are listed in Table4.2. We can see that the benchmarks have a range of characteristics, i.e., ones with high miss rate (mcf, art) to those with lower ones (sixtrack, gap, mesa). We also note that the miss rate decreases with the increase in cache size. Benchmarks characteristics (SPEC2K).

	Later we also implement and test this mechanism in a PowerPC405 4.1 simulator
	running the MiBench suite (shown in Table 4.3) to test how it fares on a different
	architecture.

Table 4 . 3 :

 43 The experiments have been Benchmarks characteristics (MiBench).

	Program	#	miss rate	miss rate	miss rate
		intervals 4k	8k	64k
	basicmath	83030	0.005407090 0.000740895 0.000005899
	bfdec	20268	0.006585790 0.000201995 0.000000546
	bfenc	20300	0.006585790 0.000201993 0.000000545
	crc	68923	0.000909036 0.000000071 0.000000070
	fft	75196	0.001069770 0.000499319 0.000236816
	fft inv	74185	0.000941445 0.000526624 0.000251666
	mad	9562	0.014158300 0.003221000 0.000046522
	patricia	10026	0.012848500 0.005001850 0.000404798
	qsort	16104	0.003586100 0.002839120 0.001848140
	rijndenc	3509	0.143746000 0.017091900 0.000003417
	rijnddec	3399	0.147234000 0.020521900 0.000004706
	susan corner 421	0.004778040 0.002963450 0.002723390
	susan edge	1327	0.005752560 0.002422630 0.001926980
	susan smooth 77692	0.000808589 0.000312058 0.000009957
	tiffbw	4119	0.016397900 0.015969600 0.000442368
	tiffdither	19982	0.005737980 0.002974810 0.000007013
	tiffmedian	14351	0.021464200 0.020735100 0.001540190
	tiffrgba	3460	0.052524200 0.052445100 0.019427500
	ispell 1	4550	0.010959900 0.005893440 0.003861380

  Conversely, the warm-up size can be overestimated, and significantly increase the simulation time, as the 1000-interval warm-up results show in Figure4.11.
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	While it is likely that a user would start with a low percentage of performance
	simulated instructions (time) objective, the user may also want to set accuracy ob-
	jectives if they are not met by the initial simulation percentage. By taking advantage
	of the estimated confidence interval, a user can iteratively increase the percentage

Table 4 .

 4 [START_REF] August | UNISIM: An open simulation environment and library for complex architecture design and collaborative development[END_REF] shows this by listing the total number of intervals for each program as well as the number of samples collected for each cache size. We see that for very few benchmarks the number of samples is more than 100 and for some it is even in single digits. Such is the case for susan edge and tiffrgba with 2 and 8 samples respectively. Having very few samples can not only provided a distorted measure for program performance but also it renders the statistical confidence interval calculations (Statistically Estimated Error) meaningless. As discussed at the end of section 4.2.1 and shown in Figure4.3, having too few measurements to calculate the confidence interval does not satisfy the normalcy assumptions of the Central Limit Theorem and therefore can give erroneous resluts. This the reason we see absurdly high confidence intervals for susan edge and tiffrgba. The statistically estimated error is 75% for susan edge for 4KB cache and 52.5% and 46% for tiffrgba in 4KB and 8KB cache configurations re-

	Program	intervals	4k samples 8k samples 64k samples
	basicmath	83030	193	133	119
	bfdec	20268	48	35	42
	bfenc	20300	29	28	35
	crc	68923	232	232	235
	fft	75196	238	194	150
	fft inv	74185	238	186	122
	mad	9562	21	14	3
	patricia	10026	23	10	9
	qsort	16104	43	34	26
	rijndenc	3509	9	6	8
	rijnddec	3399	5	3	6
	susan corner 421	1	1	2
	susan edge	1327	2	2	2
	susan smooth 77692	216	186	198
	tiffbw	4119	11	7	5
	tiffdither	19982	49	31	14
	tiffmedian	14351	33	24	14
	tiffrgba	3460	8	5	6
	ispell	14550	48	24	12
	avg	27389.68	76.16	60.79	53.05

Table 4 . 4 :

 44 Number of samples for statistical sampling on MiBench.
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spectively. Similarly susan corner has a confidence interval of size 0, not because it estimates the program performance exaclty but because it has only one sample.

Related Work

Basic Blocks and Basic Block Vectors

A Basic Block is a portion of code with one entry and one exit only. Once execution enters a basic block, it is sure to execute the whole of the basic block before it can exit it. These are the smallest units of code guaranteed to execute in their entirety.

Basic block boundaries are marked by control statements. Listing 3.1 shows a simple while loop in a high-level language, such as C, and the Listing 3.2 shows the corresponding MIPS assembly code. If we see the code in Listing 3.2, we can see that there is one point of entry in this block; this is the instruction labeled "loop" on line 100. However, there are two exit points, namely: the branch statement on chitectural state of the simulator before we start the detailed simulation.

In order to accelerate benchmark simulations, Sampling techniques rely on simulating most of the program in the faster functional simulation mode and switching to the slower performance simulation mode only when trying to take performance measurements. During the functional simulation mode, the microarchitectural state of the processor, i.e., caches, branch predictors, TLBs, etc., is not updated. Therefore upon switching to the performance simulation mode after a spell of functional repeated accesses. Now, the first region is likely to exhibit a higher miss rate than the second region because a higher number of distinct addresses are accessed. As a result, adaptive warm-up has shifted the performance measurement interval to a region with a lower miss rate.

Note that, in a more complex case where a many-address region follows a fewaddress region which follows again a many-address region, adaptive warm-up could have the exact opposite effect and shift the performance measurement interval to a many-address region, artificially increasing the measured miss rate. We observed both cases. Note that these cases are not frequent, and adaptive warm-up using only the threshold of warm accesses often works well; but in some cases, this bias severely degrades the accuracy of sampling, making the technique less robust.

Average Warm-up Size

So we need to avoid the shifting effect of adaptive warm-up, but at the same time, we do need adaptive warm-up in order to adapt to variable SRAM sizes. In order to reconcile both constraints, we proceed as follows. At each sample we measure the number of intervals it takes to warm-up, necessary to pass the threshold, and using all such measurements since the beginning of the execution, at any sample, we compute the average warm-up size. At the next sample, we use this average warm-up size as the warm-up length, independently of the threshold. After a few samples, the average warm-up size stabilizes, and this is almost akin to a fixedsize warm-up. As a result, performance measurement intervals are shifted by an almost constant number of instructions, avoiding to bias the randomness of their selection. Even though we do not factor in the threshold for stopping the warmup, we monitor it. In case the warm-up threshold has still not been reached after the performance measurement interval, we let the performance simulation carry on until the threshold is reached, see Figure 4.4, but we do not use the corresponding intervals for performance measurement nor warm-up; they are simply used to allow us to compute the new average warm-up size. We found this approach to be robust and to bring the benefits of both worlds:

the almost constant warm-up size avoids to bias the selection of performance measurement intervals, but the warm up size does depend on (automatically adapts to) the size of SRAM structures.

Rolling Window

In theory, the aforementioned warm-up threshold, used to decide when the SRAM structures are warm, is potentially architecture-dependent. Thus it should normally be exposed to the user; however, we implemented a safeguard which allows to use a fixed threshold whatever the size and number of SRAM structures.

The safeguard is that the fraction of warmed accesses is not computed based on all intervals since warm-up started but based on a rolling window of intervals.

When we start our warm-up, all first accesses to the SRAM structure fields are of performance simulated instructions until the desired time/accuracy trade-off is reached. We illustrate this process below by setting a target of 5% maximum error for the Statically Estimated Error (10% confidence interval size), and apply this iterative process to all benchmarks whose confidence interval with 1% simulation was greater than 10%.

For each cache benchmark pair, we individually increase the percentage of performance simulated instructions to 2%, 5% and 10% until our accuracy goal is reached.

In Figure 4.9, we show the resulting error and confidence interval, using 1% performance simulated instructions and when applying the iterative process; the target fraction of instructions used is indicated on top of each bar when it is different from 1%. We see that for gcc.166 mcf and vpr, with a simulation of 10%, 2% and 2% respectively the confidence intervals are significantly reduced and the accuracy has improved as well.

Fixed Warm-up

As mentioned in Section ??, the main other alternative to adaptive warm-up, requiring no functional simulator modification, and compatible with frequent target program modifications, would be to use a fixed warm-up combined with sampling.

In Figures 4.10