
HAL Id: tel-00691175
https://theses.hal.science/tel-00691175

Submitted on 25 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Processor design-space exploration through fast
simulation

Taj Muhammad Khan

To cite this version:
Taj Muhammad Khan. Processor design-space exploration through fast simulation. Other [cs.OH].
Université Paris Sud - Paris XI, 2011. English. �NNT : 2011PA112062�. �tel-00691175�

https://theses.hal.science/tel-00691175
https://hal.archives-ouvertes.fr

UNIVERSITE PARIS-SUD

ÉCOLE DOCTORALE : Informatique de Paris-Sud
Laboratoire : ALCHEMY, INRIA Saclay - Ile de France

DISCIPLINE : Informatique

THÈSE DE DOCTORAT

soutenue le 12/05/2011

par

Taj Muhammad Khan

Processor design-space exploration through fast

simulation

Directeur de thèse : Olivier Temam
Co-directeur de thèse : Daniel Gracia-perez

Composition du jury :

Président du jury : Smail Niar

Rapporteurs : Babak Falsafi

Nigel Topham

Examinateurs : Frédéric Petrot

University of Paris Sud-11

Doctoral Thesis

Processor Design Space Exploration
Through Fast Simulation

Author:

Taj Muhammad Khan

Supervisors:

Prof. Olivier Temam

Dr. Daniel Gracia-Pérez

May 13, 2011

2

3

Abstract

Simulation is a vital tool used by architects to develop new architec-

tures. However, because of the complexity of modern architectures and

the length of recent benchmarks, detailed simulation of programs can

take extremely long times. This impedes the exploration of processor

design space which the architects need to do to find the optimal configu-

ration of processor parameters. Sampling is one technique which reduces

the simulation time without adversely affecting the accuracy of the re-

sults. Yet, most sampling techniques either ignore the warm-up issue or

require significant development effort on the part of the user.

In this thesis we tackle the problem of reconciling state-of-the-art

warm-up techniques and the latest sampling mechanisms with the triple

objective of keeping the user effort minimum, achieving good accuracy

and being agnostic to software and hardware changes. We show that both

the representative and statistical sampling techniques can be adapted to

use warm-up mechanisms which can accommodate the underlying archi-

tecture’s warm-up requirements on-the-fly. We present the experimental

results which show an accuracy and speed comparable to latest research.

Also, we leverage statistical calculations to provide an estimate of the

robustness of the final results.

4

5

Contents

1 Introduction 9

2 Related Work 21

2.1 Benchmarks . 26

2.2 Simulators (Stand-alone and Full System) and Simulation Infrastruc-

tures . 27

2.3 Design Space Exploration . 30

2.3.1 Managing the Design Space 31

2.3.2 Workload Characterization 36

2.3.3 Simulation Acceleration . 38

2.3.3.1 Direct Execution . 39

2.3.3.2 Checkpointing . 39

2.3.3.3 Parallel Simulation 40

2.3.3.4 Sampling . 41

2.3.3.4.a Representative Sampling 43

2.3.3.4.b Random Sampling 48

2.3.3.4.c Comparison of Techniques 51

2.3.3.4.d Multi-threaded Sampling 52

2.3.3.4.e Warm-up . 54

2.3.3.4.f Combining Sampling and Warm-up 58

6 CONTENTS

2.4 Conclusion . 59

3 Transparent Representative Sampling 61

3.1 Introduction . 61

3.2 Repetition of Program Behaviour . 62

3.3 Phases and Code Signatures . 64

3.4 Basic Blocks and Basic Block Vectors 65

3.5 Phase Prediction . 70

3.6 Warm-up . 75

3.7 CPI Calculation . 77

3.8 Principles . 77

3.9 Methodology . 83

3.10 Experimental Results (MiBench) . 84

3.11 Experimental Results (SPEC2K) . 89

3.12 Conclusion . 94

4 Transparent Statistical Sampling 97

4.1 Introduction . 97

4.2 Interval Selection . 98

4.2.1 Statistical Distributions . 99

4.3 Warm-up . 105

4.3.1 Implementing the Warm-up 107

4.3.2 Average Warm-up Size . 110

4.3.3 Rolling Window . 111

4.4 Methodology . 113

4.5 Experimental Results (SPEC2K) . 114

4.5.1 Simulation Time . 115

4.5.2 Warm-up length . 117

7

4.5.3 CPI Error . 117

4.5.4 Bounding the Error . 119

4.5.5 Fixed Warm-up . 120

4.5.6 Interval Size . 121

4.6 Experimental Results (MiBench) . 123

4.7 Warm-up Parameters . 125

4.7.1 Rolling Window Size . 127

4.7.2 Warm-up Threshold . 128

4.8 Conclusion . 129

5 Conclusion 133

5.1 Summing it up . 133

5.2 Future Directions . 136

8 CONTENTS

9

Chapter 1

Introduction

The ubiquity of microprocessors is witness to their indispensability in our daily lives.

They can be found in almost everything; from processors humming in our computers

(desktops, laptops, mobiles, etc.) to microcontrollers embedded in dishwashers,

airplanes, ATMs, they are impossible to avoid.

This omnipresence has generated a reliance on their use and as a result fueled

a growing number of expectations. Be it in terms of performance, power budget

or economic viability, processor makers are under continuous pressure to innovate

and improve on their offerings. This competitive nature of the market drives the

design teams to deliver more performance in very strict deadlines. The fact that a

microprocessor is a highly complex product often involving multiple teams of many

persons in a multi-stage process usually spread over a long duration does not make

things easier.

Figure 1.1 depicts a typical microprocessor design cycle in chronological order.

Based on the market expectations or the clients’ needs a chip maker gathers require-

ments for what functionality to be included in its next generation processors. This

requirements gathering can be based on market surveys (its own or third parties’) or

on clients’ feedback. A set of applications, called benchmarks are gathered to repre-

10 1. Introduction

Requirements

Design
HDL Imple-

mentation

Pre Silicon

Validation

Circuit

Layout
Fabrication

Post Silicon

Validation

Production

Figure 1.1: Processor Development Life-cycle.

sent this set of requirements and are used, from hereupon, to gauge the performance

of new architectures.

These requirements are then fed to the design team which works out the changes

to make to the existing chips to meet those specified needs. These changes may occur

in the form of modification of the existing architecture components or addition of

completely new modules. They may also happen by adding new instructions to the

existing ISA. This is an iterative phase in which new features are tried and, if found

unsuitable, modified many times. This design phase is the core phase of the process

and it is here that important decisions, about which features to include, take place.

Once the initial design has been finalised, it is implemented in a low level HDL

(Hardware Description Language), e.g., Verilog or VHDL, and tested against differ-

ent functional and timing constraints.

It is then subjected to rigorous testing using a comprehensive series of test cases

to verify that the design is always in a reliable known state starting from a viable

input. All possible combinations of inputs are tested for a step by step execution

and the state of the chip is verified after each step to ensure correctness.

Once the design is certified to pass these test cases, it is promoted to the next

stage where the layout of the different components is optimised on the die. Some

of the factors taken into consideration are: to minimize communication delay, to

minimize power consumption.

11

After the detailed design has been laid out for the chip, it is sent to the fabrication

plant where the actual die is taped out.

The actual chip prototype thus manufactured is again subjected to a thorough

testing procedure to detect any defect during the manufacturing process or in case

any bug may have escaped pre-silicon validation.

After the chip maker is sure that the resulting product is error free and meets all

the design specifications, it is produced in large quantities and sent to prospective

customers.

Manufacturing a processor is a long, involved and costly process. This is made

evident by the fact that despite a large and burgeoning market, there are only

a handful of players who can design and market a full processor and even fewer

are those having the ability to fabricate them. The complexity and the resource

requirements increase by orders of magnitude as the process advances in stages. A

bug discovered at, or after, the fabrication stage can cost a company a lot in terms

of revenue and reputation as Intel Corporation and Advanced Micro Devices, Inc.,

discovered both at their expense in 1995 [85] and in 2007 [40] respectively.

Thus simulation has emerged as a vital tool to ameliorate the design process by

testing the performance of the design at various stages and detecting and correcting

any error in the process. Depending on the abstraction level and the detail modeled,

one can have access to different kinds of information in the simulation process.

This is shown in Figure 1.2. A processor can be modeled analytically by taking a

very abstract view of its complexity and thus have a bird’s eye view of the design

landscape without bothering with the details. Or it can be tested as a prototype

made in the foundry simulating each detail exactly as it would be in the final product.

Between these two extremes lie a range of simulation methodologies offering different

capabilities that a user can choose from based on his/her needs. As depicted in

Figure 1.2 the time required to simulate a program on a given processor configuration

12 1. Introduction

Abstract Simulation

Software Simulation

FPGA Simulation

RTL Simulation

Silicon Prototype

S
im

u
la
tio

n
T
im

e

S
im

u
la
tio

n
A
ccu

r
a
cy

S
im

u
la
tio

n
C
o
s
t

Figure 1.2: Levels of Abstraction for Simulation.

increases as we try to model more and more detail and so does the simulation

cost which may be in terms of money or man-hours. Ideally, one would like to

have a simulation methodology which delivers a maximum of accurate results at a

minimum of cost and in a minimum of time. Thus the job of a simulation expert is to

minimize the cost and time functions, and increase the accuracy. This is not always

possible. Conventional wisdom in the industry says that from the three aspects of

cost, accuracy and time, one can pick only two. And it is a fact that at each level of

simulation, an architect makes a compromise on one or more of these parameters.

As the stakes are much higher in later stages of the process, it is highly desirable

to detect and correct the design flaws in the early stages of the process. Furthermore,

in the earlier stages of processor design cycle, major changes can be made easily

having far reaching effects and benefits.

Figure 1.3 takes Figure 1.1 and expands the second step. We see that during the

design phase, the specifications of the architecture are continuously being changed

based on whether it meets the desired functionality or not. Software simulators

13

Requirements

Design HDL Imple-
mentation

Pre Silicon
Validation

Circuit
Layout Fabrication

Post Silicon
Validation

Production

Input (Benchmarks,Programs) Software Simulator Output (Performance,Stats)

Parameters
Desired

Result?

No Yes

Figure 1.3: Software Simulation in the Design Process.

are the tools employed in this process to develop rapid functional prototypes of the

processors and test their functionality. A processor simulator is fed the configuration

of the architecture and the program to execute. It outputs the result in terms of the

performance achievable for those parameters. These results are used as feedback to

configure and test new architectures.

Using a software simulator, a processor can be modeled either at the functional

level, which verifies the functionality without giving any detail about the timing

information, or it can be modeled at cycle level, which models the timing and mi-

croarchitecture detail, to gain insights into the performance in terms of execution

time. While the functional simulation is faster in terms of execution, it does not give

any information about the performance metrics. We need the cycle level, also termed

as detailed, simulation for that. Note: In this document we use the terms simulation,

14 1. Introduction

cycle level simulation, detailed simulation, and performance simulation indifferently

unless stated otherwise. Functional simulation will always be mentioned explicitly

either by its own name of by referring to it as fastforwarding.

Detailed software simulation is preferable to other methods of simulation as it

can model more detail and hence be more accurate than analytical modeling at

relatively modest increase in cost and is much cheaper in terms of development

than the FPGA simulation with relatively little loss in detail. This flexibility in

development and simulation of detail comes at a price however. Software based

detailed execution driven simulation can be many orders of magnitude slower than

executing the same program on a real machine. KleinOsowski et al. [55] measured

that SimpleScalar [12] executes 3000 cycles of the host machine to simulate 1 cycle

of the simulated architecture. This made it 3 orders of magnitude slower. At this

rate they estimated that the benchmark 188.ammp would take 16 months to do a

detailed run of its ref input set.

To explore all the microarchitectural design space, the architect has to test dif-

ferent combinations of values for all of the parameters. The number of parameters

to explore and the set of values for each of them makes the design space difficult to

explore in its entirety. For each combination of parameters, the user has to run many

programs comprising the benchmark suite. Exploring all the combinations of all the

parameters for a processor may need a program to be executed millions of times.

Despite these inordinate simulation times and the immensity of the design space,

the need for simulation makes it unavoidable and thus has forced researchers to seek

methods to circumvent these seemingly insurmountable challenges. Attempts have

been made to reduce simulation times as well as to prune the design space to a

reasonable size.

Techniques to cope with intractable simulation times include data set reduction

[55], intelligently skipping the design space [17, 42] and sampling [92, 110]. All these

15

techniques are orthogonal and are usually used together to test a maximum number

of architectures in a reasonable time.

Program Execution

Functional Simulation

Detailed Simulation

Sampled Simulation

Figure 1.4: Software Simulation Techniques.

Sampling accelerates the design space exploration by reducing the execution

times of individual program simulations. Instead of measuring the performance of

the whole program in detailed simulation mode, Sampling, as the name suggests,

measures the performance only of selected portions of interest. It then tries to

reconstruct the performance of the whole program via the performance of these

“samples”.

Figure 1.4 depicts the idea of Sampling. The execution of the program is divided

into intervals of equal number of executed instructions. Both functional and detailed

simulators will execute these intervals in their respective fashions. However, for

Sampling, a simulator should be able to switch between the two. As shown in the

figure, the simulator would fast forward most of the program in functional mode and

simulate in detail only intervals which it thinks may help it calculate the performance

of the program.

:::

By
::::::::::

executing
::::::

most
:::

of
:::

the
::::::::::

program
:::

in
::::

the
::::

fast
:::::::::::

functional
:::::::

mode,
:::::::::::

Sampling
::::::::

reduces

:::

the
::::::::::::

simulation
:::::::

times
::::::::::::::

considerably.
:::::

For
:::::

this
::::::::

reason,
::::

as
:::::

well
:::

as
:::

its
:::::::::::

accuracy,
:::

it
::::

has

16 1. Introduction

::::::::

become
::::

one
:::

of
:::::

the
::::::

most
:::::::::

popular
::::::

tools
:::

in
:::::::::::

processor
::::::::

design
::::::

space
::::::::::::::

exploration.
::::

In

:::::::::

addition
:::

to
::::::

being
:::::

fast
:::::

and
::::::::::

accurate,
:::

an
::::::

ideal
::::::::::::

simulation
::::::::::::::

methodology
::::::

shall
:::::

also
:::

be

::::::::::::

transparent
:::

to
::::

the
:::::

user
:::::

and
::::::::::::

compatible
::::::

with
:::::::::

frequent
::::::::::

software
:::::::::

changes.
::::::::

While
::::

the

::::

first
:::::

two
:::::::

desired
::::::::::::

properties
:::

are
::::

the
::::::

focus
:::

of
::::::

most
::::::::

studies,
::::

we
:::::

shall
::::::::

hereby
::::::::

provide
::::

the

:::::::::::

motivation
::::

for
::::

the
::::::::::::

importance
::

of
::::

the
:::::::

latter
::::

pair
::::::

when
:::::::::::::

considering
::::

the
::::::::::::::::

state-of-the-art

:::::::::

sampling
::::::::::::

techniques.
:::::

For
:::

an
::::::::::

end-user,
:::::

who
:::::::

during
::::::::

design
::::::::::::

exploration
:::::::

would
:::::::::

simulate

::::::

many
::::::::::::::::

configurations,
::::

the
:::::::::::

simplicity
:::

of
::::

use
::

is
:::

an
::::::::::::

important
::::::

issue.

:::::::::

SimPoint
:::::

[92]
::

is
::

a
:::::::::::::

phase-based,
::::::::::::::::

representative,
::::::::::

sampling
:::::::::::

technique.
:::::::

After
::::::

doing
::

a

::::::

phase
:::::::::

analysis
::

of
::::

the
::::::::::

program
::

to
::::::::

choose
::::

the
:::::::::::::::

representative
:::::::::

samples,
::

it
::::::

then
::::::::::

simulates

:::::

them
:::

in
::

a
::::::::

second
::::

go.
:::

It
:::::

does
:::::

not
::::::::

require
::::

any
:::::::::

changes
:::

to
::::

be
::::::

made
:::

to
::::

the
:::::::::::

simulator

::

as
::::::

such
::::::::

making
:::

it
:::

an
::::::::::::

easy-to-use
::::::::::::

technique.
:::::::::::

However,
::::::::::

SimPoint
:::::

does
:::::

not
:::::

take
:::::

into

::::::::

account
::::

the
::::::

effect
:::

of
:::::

cold
::::::::::

simulator
::::::

state
:::

on
:::::::::::

Sampling.
::::::

This
:::::::

leaves
::::

the
:::::

user
:::::

with
::::

the

::::

task
:::

of
::::::::::

choosing
::::

the
::::::::::

warm-up
:::::::::::::

mechanism
:::::::

whose
::::::

effect
::::

on
::::

the
:::::::::::

simulator
::::::

speed
:::::

and

:::::::::

accuracy
:::::

can
:::

be
:::::::::::::

non-trivial.
:::::::::::

Secondly,
:::::::::

samples
:::::::::::

simulated
:::

by
:::::::::::

SimPoint
::::::::

depend
::::

on

:::

the
::::::

prior
:::::::

choice
:::

in
:::::

the
::::::

phase
:::::::::

analysis
::::::

part.
::::::

Any
::::::::::::::

modification
:::

of
::::

the
:::::::::

program
::::::

code

:::

(or
::::::::::::

sometimes
:::::

even
:::::

the
:::::::

input)
:::::::

would
:::::::

result
:::

in
::

a
::::::::::

different
:::::::

phase
:::::::::

behavior
:::::

and
:::::

will

:::::::

require
::::

the
:::::::

phase
:::::::::

analysis
:::

to
:::

be
::::::

done
:::::::

again.
::::::

This
::::::

way,
::::

the
::::::::::

SimPoint
:::::::::::::

mechanism
::

is

:::

not
:::::::::::::

transparent
:::

to
::::::::::

software
:::::::::

changes.
::::

In
:::

an
::::::::::::::

environment
:::::

with
::::::::::::

frequently
:::::::::::

modifying

:::::::::

software
::::::::::::

(embedded
::::::::::::::::::::

hardware/software
:::::::::::

co-design),
::

a
:::::::::::

simulation
:::::::::

strategy
:::::::::::::

transparent

::

to
::::::

such
:::::::::::::::

modifications
:::

is
:::::::

highly
:::::::::::

desirable.
::::::::::

Pereira
::::::

et al.
::::::

[81]
::::

try
:::

to
:::::::::

address
:::::

this

:::::

issue
::::

by
:::::::::

merging
::::

the
:::::::

phase
::::::::::

analysis
:::::

part
::::::

with
::::

the
::::::::::::

simulation
:::::

but
::::::

their
::::::::::

warm-up

::::::::::::

mechanism
::

is
:::::::::

effected
:::

by
:::::::::

changes
:::

in
::::::::::

hardware
:::::

and
::::::::::

software.

::::::::::

SMARTS
::::::

[110]
::

is
:::::::::

another
:::::::::

popular
::::::::::

sampling
:::::::::::::

mechanism.
::::::::::::

SMARTS
::::::::

chooses
::::

its

::::::::

samples
:::::::::::

randomly
:::::

and
:::::

thus
::::::

does
::::

not
:::::::::

require
::::::

prior
:::::::

phase
::::::::::

analysis.
::::::

This
:::::::

makes
:::

it

::::::::::::

transparent
:::

to
::::::::::

software
:::::::::

changes,
:::::

i.e.,
:::::::::::::::

modifications
:::

to
::::::::::

software
:::::

code
::::

do
::::

not
:::::::

affect

:::::::

sample
::::::::

choice.
:::::::::::

Secondly,
::::::::::

SMARTS
::::::::::

proposes
::

a
:::::::::

warm-up
:::::::::::::

mechanism
::::::::::::

compatible
:::::

with

:::

its
::::::::::

sampling
::::::::::

strategy.
::::

It
:::::::

warms
:::::

the
::::::

state
:::

of
::::

the
:::::::::::

simulator
::::::::

during
::::

the
::::::::::::

functional

17

::::::

mode.
::::::

This
:::::::::

renders
::::

the
::::::::::

warm-up
::::::::::::

compatible
:::::::::

changes
:::

in
:::::::::::

hardware
::::

and
::::::::::

software
:::

as

::::::::

opposed
::::

to
::::::::

on-line
::::::::::

SimPoint
:::::

[81].
:::::::::::

However
:::::::::::::::

implementing
::::

the
::::::::::::

functional
::::::::::

warm-up

:::::::

means
:::::::::::

modifying
::::

the
::::::::::::

functional
:::::::::::

simulator,
:::::

i.e.,
::::

all
::::::::::::::

state-storing
::::::::::::

structures
:::

in
::::

the

::::::::

detailed
:::::::::::

simulator
::::::

have
:::

to
::::

be
:::::::

copied
:::

in
:::::

the
:::::::::::

functional
:::::::

mode
:::::

and
::::::::::

updated.
:::::::

This

::::

can
::::::::

require
:::::::::::::

considerable
::::::

effort
:::

in
:::::::

terms
:::

of
:::::::::::::

development
::::::

from
::::

the
::::::::::::::

programmer.
::::::

This

::::

also
:::::::::

exposes
::::

the
:::::

user
:::

of
::::

the
::::::::::::

simulator,
:::::

who
:::::::

might
::::

be
:::::::::

different
::::::

from
:::

its
::::::::::::

developer,

::

to
::::

the
:::::::::

internal
::::::::

details
:::

of
::::

the
::::::::::::

simulator.
:::::::::::::

Sometimes
::

it
:::::::

might
:::::

not
:::::

even
::::

be
:::::::::

possible

::

to
:::::::

warm
::::::

some
:::::::::::

structures
:::

in
:::::::::::

functional
:::::::

mode,
:::::

i.e.,
::::::

there
::::

are
:::::::::::

structures
:::::::

which
:::::::

record

:::::::::::

time-based
:::::::::::::

information
::::::

[41].
:::

A
::::::::::::

functional
:::::::::::

simulator,
::::::::

having
::::

no
:::::::

notion
:::

of
:::::::::

elapsed

:::::

time
:::

or
:::::::

cycles,
::::::::

cannot
::::::

know
::::

the
:::::::::::::

information
::::::::

needed
:::

to
::::::::

update
:::::

such
::::::::::::

structures.
:::::

The

:::::

same
:::::::

issues
::::

are
:::::::::::

inherited
:::

by
:::::::

Kihm
:::::::

et al.
:::::

[54]
::::::

who
::::

try
:::

to
::::::::

exploit
::::::::::

program
:::::::

phase

:::::::::

behavior
::::

for
::::::::

sample
:::::::::

selection
:::::

but
:::::

keep
::::

up
::::

the
:::::::::::

functional
:::::::::::

warm-up.

::::::::

Keeping
:::

in
::::::

view
::::

the
:::::::

above
::::::::::::

discussion,
::::::

there
::

is
::

a
::::::

need
::::

for
::

a
::::::::::

sampling
:::::::::::

technique

::::

that
:::

is
:::::::::::::

transparent
::::

to
::::::

code
:::::::::

changes
::::::

(like
:::::::::::::::::

SMARTS[110])
:::::

and
:::

at
:::::

the
::::::

same
::::::

time

::::::

easier
:::

to
::::::::::::

implement
:::::

and
:::::

use,
:::::

i.e.,
:::::::::

requires
::

a
:::::::::::

minimum
:::

of
:::::::::::

simulator
:::::::::::::::

modifications

:::

(as
:::

in
:::::::::::::::

SimPoint[?]).
::::

At
::::

the
::::::

same
::::::

time
::

it
::::::::

should
:::::::

adapt
::

a
::::::::::

warm-up
:::::::::

method
:::::

that
:::

is

:::::::::::

compatible
::::::

with
:::::::::

frequent
::::::::::::::::::::

software/hardware
::::::::::

changes.

::

To
::::::

have
:

a
::::::

more
::::::::::

practical
:::::::::

warm-up
::::::::::

strategy,
:::

we
:::::::::

propose
::::::

using
::::

the
::::::::

detailed
::::::::::::

simulation

::

as
:::::::::::

warm-up.
:::::::

This
::::

has
:::::

the
:::::::::::

advantage
::::::

that
::

it
::::::::::

requires
:::

no
:::::::::::

simulator
:::::::::::::::

modifications

::::::

unlike
:::::::::::

functional
::::::::::

warm-up
::::::

[110]
::::

and
:::::

also
:::::

that
::::

the
::::::::::::

time-based
:::::::::::

structures
::::

are
:::::::::

updated

::::::::::::::

automatically
:::

as
:::::::::

detailed
:::::::::::

simulation
::::::

mode
::::::

keeps
::::::

track
:::

of
::::::

time.
:::

To
::::::

make
::::

the
::::::::::

warm-up

:::::::::::::

methodology
:::::::::::::

compatible
::::::

with
::::::::::

hardware
::::::::::

changes,
::::

we
::::

are
::::::::::

inspired
:::

by
:::::

the
:::::::::

recently

:::::::::

proposed
::::::::::

adaptive
::::::::::

warm-up
::::::::::

methods
:::::

[69].
::::

By
:::::::::

keeping
::::::

track
:::

of
:::::

how
::::::

much
::::::::::

warm-up

:::

we
:::::

need
::::::

each
:::::

time
::::

we
::::

are
:::

to
:::::

take
::

a
::::::::

sample,
::::

we
::::

not
:::::

only
:::::::

avoid
:::::::::::::

unnecessary
:::::::::

detailed

:::::::::::

simulation
::::::::

(which
::

is
:::::

time
:::::::::::::

consuming)
:::::

but
::::

also
:::::::::

achieve
::

a
::::::

good
::::::::::

accuracy.

:::

We
::::::

apply
:::::

this
:::::::::

adaptive
::::::::::

warm-up
:::::

with
:::::

both
::::

the
:::::::::::

Statistical
:::

as
:::::

well
::

as
::::::::::::::::

Representative

::::::::::

Sampling.
:::::::

The
::::::::

former,
::::

as
::::::::::

discussed
:::::::

about
:::::::::::::::::

SMARTS[110],
:::::

has
::::

the
::::::::::::

advantage
:::

of

18 1. Introduction

::::::

being
:::::::::::

unaffected
:::

by
::::

the
::::::::::

software
:::::::::::::::

modifications.
::::

To
:::::::

render
:::::::::::::::::

Representative
::::::::::

Sampling

:::::::::::

compatible
::::::

with
:::::::::

frequent
::::::::::

software
:::::::::

changes,
::::

we
::::::

adapt
::::

the
:::::::

online
:::::::

phase
::::::::::::::

classification

::::::::::

presented
:::

by
:::::::::

Pereira
::::::

et al.
:::::

[81].
::::::::

While
::

it
::::::

may
::::::::

appear,
:::

in
::::

the
:::::::

latter
::::::

case,
:::::

that
::

it
:::

is

:

a
::::::::

simple
:::::::::::::

combination
:::

of
::::::::

on-line
:::::::::::

SimPoint
::::

[81]
:::::

and
::::::

SMA
::::::

[69],
:::

we
::::::

shall
::::::

show
:::

in
::::

the

:::::::::

following
::::::::::

chapters
:::::

that
::::::

SMA
::

is
::::

not
::::::::::::

compatible
::::::

with
::::::::::

SimPoint
:::

as
::

it
::::::::

renders
::::

the
::::::

start

::

of
::::::::

sample
:::::::::

variable
:::::::

which
::

is
:::::::::::::

undesirable
:::

in
:::::::::::

SimPoint.

In both modes, we emphasize transparency to software and hardware changes

as it is an important issue when someone actually wants to use the technique. An

ideal approach should adapt itself to the characteristics of the program as well

as the architecture to report back accurate performance results with a minimum

intervention from the user. The details of our work, the experimental methodologies

and results and their analyses are described in the document that follows. It is

organised as follows:

Chapter 2 gives an overview of the field of Computer Architecture Simulation.

We expound the idea of Simulation as an important tool in the process of design

and testing new and better architectures. We detail its benefits and shortcomings.

We start with the different methods and platforms employed in the industry and

academia to simulate. A brief discussion of each is provided. We also describe a list of

simulators being used. The discussion is narrowed down to software simulation and

Sampling. Attempts to use Sampling to estimate the performance of architectures

in the past are detailed with their pros and cons. Other aspects such as warm-up

and usability are also taken under consideration.

Chapter 3 presents Transparent Representative (Stratified) Sampling. After a

brief introduction we present a discussion of related topics such as mechanisms for

Program Phase Classification, Phase Prediction and Warm-up. We then put all

the pieces together and present an overview of our Sampling mechanism. We, next,

present the platform used for experimental verification and the benchmark programs

19

used. Then follows a presentation and discussion of our results in term of Perfor-

mance Estimation Error and Percentage of Detailed Simulation, i.e., Simulation

Time.

Chapter 4 presents Transparent Random Sampling. It is organised in the same

way as the previous ones, i.e., starting with an introduction, followed by discussion

of the statistical concepts used. Later we present a discussion of sample selection

and Warm-up. We also delineate our mechanism for keeping the amount of detailed

simulation in check. After presenting our experimental platform, we detail the results

and discuss their merits.

Chapter 5 concludes this document by recapitulating the important findings and

insights gained during this work. It continues the discussion by proffering future

directions that can be pursued following this work.

20 1. Introduction

21

Chapter 2

Related Work

Moore’s law [72] states that the number of transistors on a processor shall double

every 24 months. Based on this assertion, , for the past few decades, the leading

processor manufacturers have been churning out performance-enhanced versions of

their processors every year. These advances in performance stem from a research

ecosystem of collaboration between the industry and the academic groups working

on improving the design and performance of current and future systems. As stated

in Chapter 1, the industry uses simulation as an important tool to rapidly develop

and verify designs during different steps of the processor manufacturing process.

Due to lack of resources, the academic community relies even more heavily on the

simulation process to test new architectural concepts. The panelists of a workshop

in 2001 [95] observed that the number of simulation based papers in ISCA (Inter-

national Symposium on Computer Architecture), a premier computer architecture

conference, increased from 7.1% (2 out of 28) in 1973 to 87% (27 out of 34) in

2004. They questioned the justifications for this increased reliance on simulation

and whether it was happening at the expense of other techniques. Nevertheless, this

gives an idea of the importance of simulation in the eyes of the researchers.

A simulator tries to mimic and reproduce, as closely as possible, the behaviour

22 2. Related Work

of the machine it is imitating. Simulation has become the de facto preferred method

of evaluating microarchitectures because usually the researchers: do not have access

to real hardware, do not have enough money to manufacture their own products, or

do not have the time or manpower to invest in a long and complicated process.

When it comes to simulation, several questions arise. How accurate is the sim-

ulator? How faithful are the performance measures reported to the actual machine

performance? Though it’s difficult to answer this for future architectures, there

have been attempts to model existing processors and verify a simulator’s correct-

ness. Black and Shen [10] developed a trace-driven model for the IBM/Motorola

PowerPC 604 processor and compared the performance of the simulator against

that of the actual chip, measured using hardware-embedded counters. Using a se-

ries of generated test cases and a rather strict criterion of success (exact CPI match),

they found that for the test suite with best results only 51% of the test cases passed

initially. They qualified three sources of errors. Modeling errors resulting from a

buggy implementation. Specification errors occurred when the developer was pro-

vided with or assumed wrong specifications. Abstraction errors were caused by the

developer implementing a feature at a higher level of abstraction. By systematically

eliminating these sources of errors and slightly relaxing the validation criterion, they

were able to increase the percentage of passed test cases to 84% on average. The

best test suite passed all of its test cases. Using some real-world benchmarks, they

reported an error of 4% in performance estimation. A similar study was conducted

by Desikan et al. [21] in 2001. They modified the SimpleScalar simulator to model

an Alpha 21264 processor. Using some synthetic benchmarks, they found an average

discrepancy of 74% between the performance reported by the simulator and that of

the real chip. A bit of reverse engineering and modeling a lot more detail helped

them reduce the average error to 2%. However for real world SPEC CPU2000 bench-

marks they still reported an error of 18%. Using the generic sim-outorder model,

23

configured as closely to the Alpha 21264 parameters as possible, resulted in an error

of 36% for the same benchmarks. So modeling more detail helps get a more precise

picture of processor performance.

The more detailed our model, the more faithful our simulator is to the original

processor. The catch is that the more detail we model, the longer get our simulation

times. It is desirable, especially in the early stages of the design process, to have a

fast evaluation methodology in order to explore a maximum portion of the design

space. This said design space consists of all architecture models that can result by

varying different values for the architectural parameters taken into consideration.

One popular simple simulator [12] has 40 such parameters. Assuming 2 values for

each parameter will result in a space consisting of 240 configurations to evaluate.

Clearly, it is impossible to exhaustively search this space. Therefore, the need for

a fast mechanism of exploration cannot be overstated. This brings to spotlight

the basic dilemma facing every computer architect: What is the ideal compromise

between the accuracy of the model and the simulation time?

In the December 2001 workshop [95] organized by the US National Science Foun-

dation, renowned names in Computer Architecture Simulation were brought together

to brainstorm on major issues in the domain. They identified problems in key areas

and made suggestions to improve the situation. Absolute vs relative accuracy.

The panelists agreed that, when doing design space explorations, absolute error in

performance measurement is rather less important than the relative trends in per-

formance as we vary the parameters. As long as a simulator catches these relative

changes in performance correctly, we can sacrifice the absolute accuracy for speed.

Simulators vs simulation frameworks. They unanimously favored simulation

frameworks over monolithic simulators. Their modularity and portability proper-

ties make simulation frameworks attractive to developers. Benchmarks. They

stressed the need to better characterize existing benchmarks to show how much of

24 2. Related Work

the application behavior space they actually represented. They propounded the

use of micro and synthetic benchmarks for their ability to better isolate individual

program behaviors and to be parametrized respectively. Abstractions. They ad-

vocated increased use of more abstract analytical models to help fast exploration of

design space. Evaluation metrics and validation. They emphasized the need for

new and more descriptive metrics to capture program behavior and accessible sta-

tistical tools to verify their robustness. They also lamented a lack of infrastructure

and encouragement of the replicability of the published experiments.

In a similar gathering in ISPASS (International Symposium on Performance

Analysis of Systems and Software) 2004, a panel of experts from the architecture

simulation community reunited [112] to assess the state of the art and found the

field lagging behind in several important areas. They found an increased reliance on

execution driven cycle-level simulation at the expense of analytical and statistical

techniques. They made five “key recommendations”:

• Need to put more thrust in multiprocessor and full system simulation.

• Need to propose more efficient simulation methods.

• Need to explore fast alternatives to cycle-accurate simulation.

• Need to increase representativeness and decrease redundancy in benchmarks.

• Need to add robustness and statistical validation to simulation methodology.

Creating a detailed and validated simulator can be an arduous process. Mod-

eling the exact detail of a chip is avoided for the following reasons: it is extremely

resource consuming in terms of man-months, most manufacturers do not publish the

detailed specifications of their chips for corporate strategic reasons, once modeled

the simulator is difficult to modify if a user wants to adapt it to his/her purpose,

and, a complicated design is difficult to validate as well. In [5] Todd Austin tells his

25

experience of developing an ARM [3] target for SimpleScalar [12] where validating

the simulator took more time than developing it.

Since it is time consuming and complicated to exactly model a processor design in

detail, many simulators make abstracting assumptions about different components

as long as they do not violate the results too much. This has the advantage of

simplicity and reduces development time. Secondly, the simplified model is easy to

understand and modify facilitating adoption by the community. Another plus point

is that while a specific architecture may become out of fashion with time, a generic

model continues to be used and can be adopted to one’s needs. This can be seen

by the adoption of popular simulators [12, 70] in the research circles. SimpleScalar

[12] tools claim, on their website, to be used for “more than one third of all papers

published in top computer architecture conferences” in the year 2002.

The problem of architecture simulation is a multi-faceted one. The design space

is expansive. Benchmarks multiply and increase in size as consumers demand a

rich and intensive computing experience. The complexity of processors is increasing

making old simulators obsolete and newer ones difficult to model and slower in

execution. Lack of standard criteria and platforms makes it difficult to compare

results. There is a concerted effort on the part of the researchers to tackle this

problem from all its angles. Efforts are being made to reduce the design space to a

manageable size and traverse the space intelligently. Benchmarks are being analyzed

for redundancies and their size curtailed with minimal effect on their characteristics.

Techniques are being developed to make the simulators and simulations of individual

programs go faster. After presenting an overview of benchmarks and tools used, we

discuss all these efforts in the following sections.

26 2. Related Work

2.1 Benchmarks

The choice of benchmark programs affects the run times and result interpretations

for simulations. Simulating wrong or non-representative benchmarks can cause an

architect to make design choices which will perform poorly in real world. On the

other hand, executing large benchmarks with overlapping characteristics can cause

redundant simulations and waste of costly time. This section presents a preview of

common programs used in the research community.

Standard Performance Evaluation Corporation [97] first released its set of SPEC

CPU benchmarks in 1989. Since then, after going through five generations (1989,

1992, 1995, 2000, 2006), it has been one of the most commonly used benchmark

suite in the architecture community for measuring single-threaded desktop perfor-

mance. The size and diversity of the benchmarks have increased steadily reflecting

the advances in CPU performance and the needs of the users. SPEC CPU89 had

10 benchmarks with an average length of 2.5 billion instructions; SPEC CPU2006

has 29 programs with an average size of 2.2 trillion instructions each. The SPEC

CPU benchmarks are grouped in two main groups: the int and fp, and are rep-

resentative of different fields, from business and scientific applications to quantum

chromodynamics, weather prediction and linear programming.

Phansalkar et al. [82] do an analysis of SPEC CPU benchmarks over four gen-

erations, from 1989 to 2000. They characterize the benchmarks in terms of their

instruction count, branch characteristics, data locality and instruction-level paral-

lelism (ILP). They observe that though SPEC CPU has kept some of the programs

same over different generations, the behaviour of these programs sometimes changes

with time. In the SPEC CPU2000 suite they cite the examples of swim and applu

having more conditional branches in loops and worse temporal locality, respectively,

from their ancestors. They use principal component analysis (PCA) to reduce inter-

actions between the parameters and then use k-means clustering to cluster similar

27

applications. Redundancy in benchmark suites, different programs having same

characteristics, is undesirable as simulating the same kind of applications does not

furnish any additional information. They observe that over the four generations, the

redundancy in SPEC CPU benchmarks has also increased. This is confirmed by [83]

who found the SPEC CPU2006 suite to be 50% redundant, i.e., one can simulate

only half of the suite and have almost the same information as would be obtained

by simulating the whole.

SPEC workloads are geared towards desktop and server systems. MiBench [38]

were proposed by the University of Michigan as an alternative set of benchmarks

targeting embedded systems. The applications are divided into six groups targeting

six segments of the embedded market, namely, automotive control, consumer de-

vices, office automation, networking, security, and telecommunications. Guthaus et

al. [38] analyzed the characteristics of these programs and compared them to the

SPEC CPU2000 ones. They noticed that these benchmarks showed much more vari-

ability than the SPEC CPU2000. This is in consistence with the difference between

the nature of the two markets, the embedded one featuring many ISAs and architec-

tures. While the branches were rather predictable for both benchmark suites, they

found that MiBench programs have lower memory requirements and the percent-

age of cache misses drops low for cache sizes 2-4 times smaller than those of SPEC

CPU2000.

2.2 Simulators (Stand-alone and Full System) and Sim-

ulation Infrastructures

The simulator finds itself at the heart of the simulation process. In the early days of

architecture simulations everyone would create a simulator to publish results. But

as the complexity of processors increased (out-of-order, branch prediction, etc.),

28 2. Related Work

so did the effort to build simulators. Furthermore, the prevalence of simulated

performances created a need to compare performances. These reasons together

forced the adoption of standardized and reusable platforms for publishing results.

This resulted in simulators being developed and validated by communities for the

purpose of easing the simulation process.

Simulators can either act on traces of programs or they can take a binary and

execute each instruction one by one. Trace driven simulation uses a time ordered

sequence of events generated by a prior detailed simulation. It has the advantage

of speed and the fact that a trace, once generated, can be used as many times

as needed. The drawback is that it lacks certain details. It cannot model wrong

path executions. Also, a modification of program necessitates a regeneration of the

trace. It is quite easy to instrument [78] binaries for trace generation. Execution

driven simulation, on the other hand, executes the instructions of a program as they

would be executed by a real processor. It models pipeline flushes in case of branch

mispredictions and cache pollution due to wrong path executions.

SimpleScalar tool set [12] is the most widely used simulator for simulating

single-threaded performance. SimpleScalar consists of multiple simulators and the

tools which help simulate programs on them. These tools include a compiler, an

assembler and a linker. It models the Alpha and PISA (Portable Instruction Set

Architecture) instruction sets. The simulators consist of sim-outorder (a detailed

out-of-order simulator implementing a five stage pipeline, branch prediction and

memory hierarchy), sim-cache, sim-cheetah (simulators for caches) and sim-fast (a

functional mode fast simulator). There exist numerous extensions for SimpleScalar

and, due to its simple, generic architecture, it is widely used.

SESC [75] is another more recent event driven simulator which models a MIPS

instruction set architecture. It divides the execution into an emulator and a timing

simulator. The emulator executes the instructions functionally and then sends an

29

object with relevant information to the timing simulator which then calculates how

much time this instruction would take through the pipeline. It uses MINT [106] to

emulate system calls. It can simulate multiprocessor systems with interconnection

networks.

Stand-alone simulators usually do not model the full memory/disk hierarchy and

the I/O subsystems. Full system simulators model the complexities of real world

environments and help model the operating system effects. Cain et al. [13] showed

that operating system effects can make a difference of 100% for the SPEC CPU

2000 benchmarks. Simics [70] is a full system simulation platform than can simulate

UltraSPARC, x86, PowerPC, MIPS architectures. It can boot Linux and Windows.

Simics was developed by VirtuTech which got bought by Wind River Systems which

now belongs to Intel Corporation.

COTSon [2] is another full system simulation infrastructure developed at HP

Labs. It also decouples the functional and timing simulations. For functional simu-

lation it uses AMD’s SimNow simulator. It can model multiprocessor systems with

a full unmodified operating system running on it.

The complexity of modern processors has made it difficult to model state of

the art systems while starting from scratch. The same complexity, as it translates

into coding complexity, also makes it difficult to modify existing simulators. This

has forced researchers to think in terms of modularity and code reuse. Modular

simulation environments have emerged where the user can develop only the module

that is of interest and reuse the other existing parts. ASIM [32] is such a framework

which contains modules with well defined interfaces for inter-module communication.

It also provides a set of tools to manage software components. Developers can

develop and test either stand-alone modules or plug them into the system to get an

idea of full system performance effects. The Liberty Simulation Environment (LSE)

[101] is another such environment. It lets developers map hardware components as

30 2. Related Work

software modules and define connections between them. Using already developed

modules significantly reduces development effort on the part of the user. UniSim [4]

builds on LSE proposing distributed control signals, TLM simulation and a library

of reusable components. Reduction of development effort because of module reuse

also encourages replication of results and fair comparisons. This can give surprising

results as demonstrated by Gracia Pérez et al. [37].

Then there are tools that are not exactly full simulators but help simulation.

Pin is a dynamic binary instrumentation tool which allows inserting user defined

analysis code in arbitrary locations in a program binary. This way, a user can insert

functionality to collect profile data during the runtime of a program. Wattch [11]

models power consumption in a processor core by modeling the thermal properties

of array structures, fully associative content-addressable memories, wires and com-

binational logic, and clock buffers. Similarly, Cacti [73] can model timing, area and

power aspects of modern caches.

2.3 Design Space Exploration

As stated in the introduction to this chapter, computer architecture simulation con-

sists of finding out the right values of the different parameters for all the modules

comprising the processor such that the resulting machine would execute all target

applications in optimal time. Easier said than done, the combinations of parameter

values and programs to explore skyrocket quickly. On top of this, the slow detailed

simulation speeds make the task even more daunting. Due to the immensity of the

problem, it is impossible to be tackled in its entirety. Therefore, researchers attack

it piecewise. Usually, this approach divides the problem along three broad axes,

namely, traversing the design space intelligently, reducing the number and size of

benchmarks, and accelerating individual simulation executions. This section gives a

broad view of all these aspects, especially focusing on the last one as it forms the

31

core of this thesis.

2.3.1 Managing the Design Space

A processor is composed of many modules. Each of them itself is a complex product

of many carefully tuned parameters. There is the pipeline length, buffer sizes, issue

and retire widths; memory hierarchy block sizes, associativities, latencies; bus widths

and wire delays; a horde of predictors and prefetchers with histories and table sizes.

The best configuration could be for any set of values of all these parameters. To check

them all would mean to simulate and analyze all the programs for every combination

of these parameters. Doing detailed simulations for such a design space could take

many lifetimes. The first realization which helps reduce the size of the problem is

that not all the parameters values have effects noticeable enough to be considered

important.

Sensitivity analysis. To avoid exploring design space naively, we must identify

parameters that affect most the targeted performance metric. Sensitivity analysis

consists of modifying the values of different parameters one at a time and seeing

how the change affects the final output. It can give insights about the importance

of parameters and that of their interactions. Skadron et al. [94] study the effect of

branch prediction, cache size and the instruction window size on the instructions per

cycle (IPC) of SPEC CPU95 programs on a modified version of SimpleScalar. They

found out that increasing the RUU (Register Update Unit) size beyond a certain

point has no effect on the performance because the number of instructions active at

a given time is limited by the branch predictor accuracy. They also observed that

the performance is more sensitive to instruction cache size than to data cache size.

If the size of the instruction cache is small, increasing the data cache size has no

effect.

32 2. Related Work

Statistical techniques. Statistical methods have proven to provide acceptable

solutions to untractable problems in many fields. Computer architects have not

hesitated to resort to their help whenever they could. Yi and Lilja [116] use their

knowledge of the working of the processor to form intelligent heuristics about which

parameters to remove from the sensitivity analysis. Once they have the number

of parameters reasonably reduced, they proceed to see the effect of each parameter

on the final output. They used ANOVA (analysis of variance) [67] to determine

the effect of each parameter on the final output. To identify the sensitivity of a

metric to N parameters and their interactions, the ANOVA technique requires 2N

simulations. In this way they identify the most important parameters. Once the

search space is small it can even be explored exhaustively. In [117] Yi et al. use the

Plackett and Burman statistical method to identify parameters which contribute

most to the final output of the performance. Plackett and Burman requires 2N

simulations for N parameters but fails to quantify the effect of different parameter

interactions on the performance. They identify the most important parameters by

Plackett and Burman, and then use the ANOVA technique to quantify the effect of

their interactions.

Oskin et al. [76] use HLS, a statistical modeling framework, to explore the design

space. They gather statistical profiles of application binaries by running them on a

modified SimpleScalar. These profiles consist of data about basic block size and dis-

tribution, dynamic dependence distance between instructions, cache behaviour and

branch prediction accuracy. Using this information, the framework produces syn-

thetic instruction streams whose profiles match those of the original applications.

These synthetic streams are much shorter in length and thus faster to execute. To

explore the design space, they vary the design parameters in both software (basic

block size, dynamic instruction distance) and hardware (cache miss rate, branch pre-

dictor accuracy, latencies). They found that for parts of the design space with high

33

branch predictor accuracy and high cache hit rates, the results for these synthetic

streams matched those of the full applications. On the other hand, the performance

degraded as these values got lower. They attribute this to the over simplicity of

modeling cache hit rates and branch predictor hit rates as simple normal distribu-

tions. Using averages and standard deviations ignores the dynamic behavior of these

parameters and their interactions that occur during the course of execution. Never-

theless, they recommend using the framework for a fast exploration of the ranges of

design space where it performs well.

Eeckhout et al. [29] make a case for using statistical simulation in early stages of

design space exploration. They profile the programs in terms of their instruction mix,

inter-instruction dependencies, cache, and branch predictor behaviour, and generate

a synthetic instruction stream matching the original profile. They demonstrate

that for uniprocessor performance modeling, power modeling, and system evaluation,

statistical simulation does a good job of predicting the relative performance changes

when varying architectural parameters.

Joshi et al. analyze different statistical simulation techniques to verify their

effectiveness in determining absolute and relative performances. They found that

statistical simulations can be useful to identify processor performance bottlenecks.

They also remark that while it takes a very detailed model to achieve useful absolute

accuracy, statistical simulation techniques show good relative accuracy and can be

used to track design changes. They stress the need to model data and control

dependencies to ameliorate the statistical models.

Analytical modeling. In [50] Jouppi developed a model for determining

instruction-level and machine parallelism for different programs. He partitions the

interaction between the machine parallelism (MP) and benchmark parallelism (BP)

into two areas:

if(BP > MP), performance is limited by the machine parallelism,

34 2. Related Work

if(MP > BP), performance is limited by the benchmark parallelism.

He developed a first order model to determine this parallelism but finds that using

averages for different parameters makes for poor performance. Instead he recom-

mends taking into account the non-uniform variations in benchmark and machine

parallelisms over the course of time.

In 2002 Noonberg and Shen [74] described a theoretical model for Superscalar

processor performance. They build on Jouppi’s idea of parallelism in program and

machine by using probability matrices. The probabilities are intended to capture

the variability in the program and machine parallelisms. The probabilities for the

program parallelism matrix are functions of data and control dependencies while

those of the machine parallelism take into account parallelism due to branch predic-

tion accuracy, the fetch and decode mechanism, and the processor issue width. They

model the IBM RS/6000 processor and modify the number of its functional units.

Running selected SPEC CPU92 fp and int benchmarks, their model estimates the

IPC within -0.6% and +22.0% of the real IPC.

Karkhanis and Smith [51] proposed an analytical model for a superscalar proces-

sor core. They develop a model for pipeline performance under ideal conditions i.e.,

perfect branch prediction, no cache misses, etc. This ideal performance is then aug-

mented with equations developed for penalties incurred by the branch misprediction

and cache miss events. They use trace driven simulation to calculate the distribution

of occurrence for these miss-events. Using their analytical model for the processor,

they were able to predict the performance of the SPEC int benchmarks with an

average error of 5.8%.

Predictive modeling. Machine learning techniques are also called in to help

traverse the design space. This is done by running detailed simulations for multiple

configurations. These configuration parameters and their results are then used to

train a predictor. This predictor is then used to predict the performance for new

35

configurations.

In [43], Ipek et al. use artificial neural networks (ANNs) to explore the architec-

tural design space. They devise an artificial neural network with a 16 unit hidden

layer to train on SPEC CPU2000 input programs and with only 1% simulation of

the design space claim to predict the rest of the design space for the same appli-

cations with 98-99% of accuracy. They use SimPoint to reduce the time of the

input simulations and claim that the noise-resistant nature of the neural networks

lets them perform good despite error introduced by SimPoint.

In [18] Cook and Skadron use GPRS (Genetically Programmed Response Sur-

faces) to predict the design space performances. They use genetic programming

principles to create and train non-linear polynomial approximation functions from

collected architectural performance data. These functions (GPRS) are then used to

predict the performances for new configurations. Using 1% of the design space for

training, they can predict IPC for other configurations with 2% mean percentage

error.

Khan et al. [52] take this a step further and use the ANNs trained for a set

of programs on a subset of configurations. These ANN models are combined with

simulations for a new application on the same configurations. The idea is that the

neural model will classify this new program with one of the previously seen programs

and use the training for that previous program combined with the new data to

predict the performance of the new application. Their neural network consists of

a hidden layer of 10 neurons. They use the SESC simulator with SPLASH-2 and

SPEC CPU2000 benchmarks executed in TLS (Thread Level Speculation) mode. In

predicting the energy-delay metric for a new application they report a prediction

error ranging from 3.1% to 4.9%.

Dubach et al. [24] propose an architecture-centric approach to train neural net-

works to predict performances over the design space. They use N program-specific

36 2. Related Work

predictors composed of multi-layer perceptrons with a hidden layer of 10 neurons.

They start with an off-line training phase where they recommend using 512 detailed

simulations to train each program predictor. In the second phase they use 32 simu-

lations of the new program to train its predictor and then combine the output of this

new predictor with that of the previous predictors in a linear (regression) manner.

This new function is then used to predict the performance of the new program in

the design space. They report an average error of 7% and a correlation coefficient

of 0.95. From a list of 3000 configuration they claim to find the best configuration

with only 3 more detailed simulations.

In [14] Cavazos et al. use the ANNs to predict the effect of program transforma-

tions on speed-ups. They use a multi-layer neural network with a 5 neuron hidden

layer. They use the UTDSP benchmarks to train the network. Randomly chosen

transformations are applied to each program to create 64 versions of it. These are

then used as training inputs for the neural network. Once trained, the model is

presented with a new program and its performance for 4 different transformations.

Using this limited information of 4 performances, they predict the new program’s

speed-up for the rest of the transformations with an error of 7.3% on average.

2.3.2 Workload Characterization

When doing design space exploration, it is extremely important to have a represen-

tative workload. Non-representative workloads result in loss of precious simulation

time. Normally, benchmarks are supposed to provide a maximum coverage of the

application space with a minimum of programs but that is not always the case.

When discussing workloads there are two things to consider: 1) Which benchmarks

to select and simulate, and 2) What set of inputs to use when simulating? There

have been attempts to identify the most representative program-input pairs and to

simulate them instead of all the combinations.

37

Eeckhout et al. [30] propose a method to analyze program-input pairs’ char-

acteristics and then select only the most representative ones for simulation. They

analyze some 20 program parameters consisting of instruction mix, cache misses,

branch prediction accuracy, etc, and 79 program-input pairs. They use the PCA

(Principal Component Analysis) to transform the 20 program characteristics to 2-4

components and use these components instead. They then use hierarchical cluster-

ing to group the program-input pairs into clusters based on their similarities with

respect to these components. They advocate simulating only the representatives

from each cluster.

KleinOsowski et al. [55] try to reduce the simulation times of the SPEC CPU2000

benchmarks by reducing the input dataset sizes. They reduce the datasets by: 1)

manipulating command-line parameters, 2) truncating input files, 3) creating new

input files. They compare the similarity between the new and old data sets by

comparing: 1) functional profiles of both runs, 2) the instruction mix, 3) cache miss

profiles. They found out that while the functional profile of the SPEC CPU2000

programs run with reduced data sets sometimes differed from that with ref inputs,

the instruction mix profile usually matched.

Phansalkar et al. [83] use PCA and hierarchical cluster analysis to identify the

similarities between the SPEC CPU2006 benchmark programs on four different ISAs.

They found the behaviour of the programs to be sensitive to the input sets. However,

they also found out that 14 out of 29 programs were sufficient to capture most of

the information. Seeing the lengths of SPEC CPU2006 benchmarks, it would be a

considerable waste of time to simulate all this redundant code.

Yi et al. [114] found PCA and Placket and Burman to be better methods for

benchmark subsetting than other methods. For these two methods, most of the

programs’ shortened versions estimated the CPI (cycles per instruction) and EDP

(energy delay product) with an error of less than 5%.

38 2. Related Work

Citron [15] deplores the use of partial SPEC CPU2000 benchmark suite even

in reputed conferences like ISCA and MICRO. More importantly he points out the

lack of adequate explanations for the missing benchmarks. He argues that some

benchmarks are preferred over the others because of their portability and ease of

compilation. In making some negative assumptions (slowdowns) about the missing

benchmarks, he observes that the overall speed-ups reported by the published papers

for partial subsets can be considerably reduced if the missing programs were taken

into account.

In [113] Yi and Lilja make a survey of the field of computer architecture simula-

tion. They discuss the most popular simulators and benchmarks being used by the

scientists and the methodologies to set up and analyze simulation experiments. They

also comment on the common simulation acceleration techniques stating the merits

and demerits of each. At the end of their comprehensive document they complain

about the lack of documentation on simulation methodologies in published papers

which impedes reproduction of results, and the lack of care and explanation for the

choice of simulator parameter values since they affect simulation results. They rec-

ommend more effort in improving the accuracy of the simulators and reduction of

simulation times.

2.3.3 Simulation Acceleration

In this section we detail the third main axis of faster design space exploration which

consists of reducing individual simulation times. Simulating a program on a simula-

tor can be considered as the inner most loop of the design space exploration process.

Any reduction in simulation times will have a direct impact on the processor design

space exploration times. As a result, there have been a number of tentatives to

reduce the execution times of program simulation be it by development of faster

simulators or by crafting mechanisms to make the programs go faster. Below is an

39

account of different techniques that have been developed to make the simulations

go faster.

2.3.3.1 Direct Execution

The fact that code is executed much faster on a real processor than on a simulator

and that a simulator need not execute all of a program code makes the case for

Direct Execution. Direct execution [57, 34] advocates the execution of the simulated

program’s code on the host machine in stead of the simulator. Chen [34] uses it to run

the fast forward portion of their program on the host machine. However, they keep a

record of the instructions executed and the branch predictions to later warm up the

simulator’s structures before they do detailed execution. Krishnan and Torrellas [57]

also use direct execution to simulate superscalar processors. They use a simulator

front end and a MINT [106] instrumented binary to execute instructions on the host

processor. The instrumented binary generates information (opcode and register

usage) which is logged in a 512 entry Interface Window. These events are logged

until either the interface window becomes full or they encounter a mispredicted

branch. At this point the simulator is invoked which updates its state based on that

information. They report slowdowns of 1300x compared to native execution. Out

of this, 130x is introduced by MINT instrumentation and 10x by their interface-

window based simulator model. They also simulate a multiprocessor configuration

where the slow down because of the interface window is in the high twenties. To keep

the model simple, they ignore the cache pollution due to wrong path executions.

2.3.3.2 Checkpointing

To gain the time spent in doing functional simulation and also to accelerate detailed

simulation, scientists use checkpointing. Checkpointing consists of dumping program

and architecture state at certain points to a file during detailed execution. Next time,

40 2. Related Work

to start simulation from one of those points, instead of executing the program until

that point, a simulator can directly load the processor state from the checkpointed

file and start executing. Disk space requirements to store the simulator state for

many points can grow quite large. Schnarr and Larus [89] introduce speculative

direct-execution as well as memoization in their paper. Memoization consists of

storing a compressed architecture state and the following detailed simulator actions.

Next time the same state is encountered, instead of playing the instructions in

detailed simulation mode, the stored actions are replayed. This results in speedup

for those actions. They report that storing simulator states for one SPEC CPU95

program could require up to 900 megabytes. Barr et al. [9] recommend using

the memory timestamp record which, for every block of cache in a multiprocessor

system, stores the last time each processor accessed it. They propose to store this

information in a checkpoint and then reconstruct the cache and directory state from

it when loading the checkpoint for a detailed simulation. To reduce the size of

the stored checkpoint, Biesbrouck et al. [103] recommend using only the words of

memory that will be needed (touched memory image) or only the values for the loads

(load value sequence) that will be executed next. To avoid repeating checkpointing

for different cache sizes, they propose the memory hierarchy state, i.e., storing the

state of a large cache and then constructing the smaller caches from it.

2.3.3.3 Parallel Simulation

Checkpointing has the added advantage that once we have multiple checkpoints, we

can distribute them on different processors to do simulations in parallel. Lauterbach

[65] proposes using checkpoints to distribute traces over different machines for par-

allel execution. Eeckhout and Bosschere [27] also recommend distributing sampled

traces over different machines for simulation though, instead of checkpoints, they

use detailed simulation to restore cache states. Reinhardt et al. [88] describe the

41

simulation of a parallel shared memory machine on a parallel message passing ma-

chine. They distribute the target’s nodes on the host machine and the host machine

directly executes all the instructions that hit in the target’s cache. Only instructions

that miss in the target’s cache are passed on to target simulator so that it can use

latency and sharing information to update its state.

::::::

Using
:

a
::::::::::

modular
:::::::::::

simulation
::::::::::::::

environment
::::::

[101],
:::::::

Penry
::::::

et al.
::::

[80]
:::::::::

propose
:::::::::

dividing

:::

the
:::::::::::

execution
:::

of
:::

a
:::::::

CMP
::::::::::

simulator
::::::

into
:::::::::

threads
:::::

and
:::::::::::

executing
::::::

these
::::::::::

threads,
:::

in

::::::::

parallel,
::::

on
::

a
::::::::::::::::::

multi-processor
:::::::

server.
::::::::

They
:::::::

report
:::

a
:::::::::::

maximum
:::::::::::

speed-up
:::

of
:::::

7.63

:::::

when
::::::::::::

simulating
::

a
:::::::

8-core
:::::::

CMP,
:::::::::::::

parallelized
:::

in
::

4
:::::::::

threads,
:::::::::

running
:::

on
::

a
:::::::::::::

4-processor

:::::::

server.
::::

As
:::

an
:::::::::::::

alternative,
::::::

they
:::::::::

propose
::::::::::

replacing
::::

the
:::::::::::

processor
:::::::::::::

components
:::

of
::::

the

::::::::::

simulator
:::::

with
:::::

their
::::::::::::::

counterparts
::::::::::::::

implemented
:::

in
::::::::::

hardware
:::

on
:::

an
::::::::

FPGA.
::::::::::::

Integrating

:::

the
:::::::::::

hardware
::::::::::::::

implemented
::::::::::

processor
::::::

cores
:::

in
::::::

their
::::::::::

simulator
::::::::

model,
:::::

they
::::::

were
:::::

able

::

to
::::::::

achieve
::

a
::::::::::

speed-up
:::

of
:::::

5.82
::::

for
:::

an
:::::::

8-way
::::::

CMP
:::::::

model
:::::

with
::::::::

perfect
:::::::

caches
:::::

and
:::::

1.31

:::

for
:::

an
:::::::

8-way
::::::

CMP
::::::

with
::::::::::::

non-perfect
::::::::

caches.

2.3.3.4 Sampling

In the field of statistics [87], sampling is used to determine the characteristics of a

large population by observing those characteristics for a smaller subset. The basic

assumption is that a well chosen subset sample correctly reflects the population’s

characteristics. Sampling is popular because it reduces the cost and the effort to

collect population data.

Due to long simulation times for detailed cycle-by-cycle execution of benchmark

programs, sampling has attracted the attention of architecture researchers as an

attractive alternative to full program simulation. The idea is that if we consider

a program execution as a population of instructions or basic blocks, observing the

performance of a subset of this population should be able to give us an accurate

picture of the performance of the whole population, i.e., the program. Relying

42 2. Related Work

on the well established and well tested theoretical background developed by the

statisticians, architects simulate most of the program in functional fast forward mode

and only a part of it in detailed performance measurement mode to get insights into

program performance. Running most of the program in fast functional mode greatly

reduces the total simulation time as it is at least an order of magnitude faster than

the detailed mode. Sampling can be applied to simulation both in trace driven mode

as well as in execution driven mode.

Earlier sampling studies [96, 77] tried to simulate one continuous chunk of the

program instruction sequence and used its performance as a replacement for that of

the program. It was found that different portions of the program could have signifi-

cantly different performances, especially the initialization phase at the beginning of

the program is quite different in performance from the rest of the program. This

was demonstrated by [16].

Laha et al. [59] provide a method to sample the memory address trace of the

program to determine the mean miss rate and the distribution of the miss rate for

processor caches. With a sample size of 35, by simulating only 7% of the trace, they

were able to show that the cache miss rate distribution of the sample matched that

of the program trace.

Conte et al. [16] use trace sampling to calculate the IPC for SPEC CPU95

programs. They decompose the source of error into sampling and non-sampling

bias. Sampling bias is inherent in the sampling process and can be indicated by the

variance of the sample. It can be alleviated by increasing the number of samples.

They recommend the use of warm-up to reduce non-sampling bias. Poursepanj

[84] uses trace driven sampling methodology to model the PowerPC 603 processor.

Martonosi et al. [71] study the effect of the number of samples, warm-up and

sample length on the accuracy of sampled measurements. Lauterbach [65] collects

randomly distributed trace samples and recommends executing them in parallel to

43

reduce simulation time.

Sampling can be divided into two types based on how the samples are selected:

random and representative sampling.

2.3.3.4.a Representative Sampling

Representative sampling consists of grouping the elements of a population based on

their similarities and then choosing a representative sample for each of these groups.

Skadron et al. [94] divide their programs into intervals of 1 million instructions each.

They then measure the branch misprediction rates for each interval. They note that

program behaviour shows phases over time. They then select a sample of 50 million

instructions which is representative of the general program behaviour. They recom-

mend skipping the initial phases of the program when selecting this window. Lafage

and Seznec [58] also divide their program into intervals of 1 million instructions but

instead of branch misprediction rates they use statistics about temporal and spatial

locality of the memory references to classify their intervals. They use hierarchical

classification to group their intervals together and then for each group they choose a

representative to simulate based on its closeness, via euclidean distance, to the cen-

ter of the group. They report simulating on average 1% of the trace and having an

absolute error less than 10% for cache miss rates. Dubey and Nair [25] propose pro-

file driven sample generation. They do a first execution of the program and save the

profile of the application in terms of the frequency of basic blocks. They instrument

the program binary for a second execution in such a way that the execution count of

each basic block is reduced by an acceleration factor. This way, the sequence of the

basic blocks executed is the same as in the original trace. The number of executions

of each basic block is reduced proportionally to shorten the trace. They report a

50% improvement in error when compared to existing techniques.

In [90], Sherwood and Calder plot the behaviour of SPEC CPU95 programs

44 2. Related Work

as a variation of time. They notice that program behaviour repeats cyclically in

terms of IPC, branch prediction, and cache performance. They show in [91] that

this repetition of program behaviour is linked to repetition in program code. They

propose to create basic block frequency vectors (BBVs) for program intervals of 100

million instructions and then find the interval whose BBV is closest to the BBV of

the whole program. They then select that interval as the representative of the whole

program for simulation.

In [1], Annavaram et al. used sampled hardware program counters to make

Extended Instruction Pointer Vectors (EIPVs) and try to correlate them to pro-

gram performance. They found that while for some programs the EIPVs captured

correctly the behaviour of the program, for others it was not the case. Lau et al.

[61] retorted that while sampled EIPVs could have a fuzzy relationship with perfor-

mance, full code signatures, like BBVs, do show strong correlation to code and can

help predict program performance.

In SimPoint [92], instead of choosing one representative, they group the generated

BBVs into multiple clusters by using the k-means clustering algorithm. Then they

find out the representative of each group and then use all these slices of program as

representative of the whole program. They term these groups containing intervals

with similar characteristics phases. In [93] they propose a mechanism to detect and

predict these phases. They show that phase prediction could be used to help value

prediction and dynamic adaptation of processor width and data cache. In [62], Lau

et al. use and compare structures other than BBVs to compare phase classifications.

They use loop branches, procedures, opcodes, register usage, and memory address

information to characterize program intervals. They found that BBVs performed

the best. In [60], they try variable length intervals so that they might be better

aligned with basic block boundaries and code structure.

In [68], Liu and Huang show that different invocations of subroutines during

45

the execution of a program show low CoV (Coefficient of Variation) percentages for

metrics like CPI, basic block size, branch prediction, memory references, and L1

cache hit rate. They partition the static code of the program into reasonable sized

subroutines. Then they try to simulate a dynamic instance of each of these code

sections. They propose two methods to do simulation. One with preprocessing where

they run the application to determine population size and then choose a systematic

sampling rate and they run it again to create checkpoints for selected samples. In the

second case they avoid the preprocessing phase and sample without prior knowledge

of the incoming code. To capture variation between successive invocations they try

to spread out the sampled invocations through out the execution. At the end of their

paper they do suggest an online method which characterizes code intervals and uses

that characterization for selective sampling on the go, but they do not implement

it.

Phase Classification and Prediction. In order to select a few representative

portions of the program to simulate, we need to group the program portions into

groups based on their similarity. Such techniques can be qualified by measuring

the homogeneity in the groups thus generated and how different they are from one

another. Dhodapkar et al. [22] compare program phase characterization techniques

such as working set signatures, basic block vectors, and conditional branch counters

in terms of phase classification accuracy, average phase length, and phase stability.

They state that phase detection when using basic block vectors performs better than

the other two techniques. Although the instruction working set technique generally

gives longer phases than the other two, there’s less stability in those phases as

compared to phases detected by BBVs. The conditional branch counters are slightly

less accurate than the other two techniques but are much easier to implement. They

note however that all the techniques agree with each other 85% of the time.

Lau et al. measure the intraphase homogeneity by using CoV (Coefficient of Vari-

46 2. Related Work

ation) for each phase to qualify the efficacy of their phase classification technique.

Kodakara et al. [56] observe that the CoV based classification can be inconsistent

under certain conditions. They propose the CIM (confidence interval of estimated

mean) as a better alternative to estimate the homogeneity of the phases.

Lau et al. [64] classify the transitional period between stable program phases

as a separate phase. They take up the phase predictor from [93] and use it to

predict phase change and the ID of the next phase. They add confidence counters

to these predictors to improve prediction. They also use these predictors to pre-

dict the length of the next-phase burst. In [105], Vandeputte et al. examine and

compare existing phase-prediction techniques. They compare the last value pre-

dictor, N-level burst predictor and N-level RLE predictor. They found that simple

predictors, like, last-value predictor, perform poorly for programs with frequently

changing behaviour when compared to more sophisticated predictors. Between the

N-level burst predictor (which keeps the IDs of the last N distinct phases) and the

N-level RLE predictor (which keeps the burst lengths in addition to the IDs of the

last N predictors), they found the N-level burst predictor to perform slightly better

for limited hardware budgets. They also noted that addition of confidence counters

and conditional update to these predictors further decreased the misprediction rate.

Duesterwald et al. [26] characterize the program behaviour with respect to metrics

like instruction mix, branch prediction accuracy, data cache miss rate, and instruc-

tions per cycle, by sampling hardware counters at regular intervals. They show

that program behaviour repeats in a synchronized manner across different metrics.

They predict the future values for different metrics by looking at their histories.

Using different sorts of predictors (last value, mode, median, exponentially weighted

moving average (EWMA), fixed-size history and run-length encoded history), they

found that for programs showing a high degree of variability, table-based predictors

like (fixed-size history and run-length encoded history predictors) perform better

47

than the statistical ones. They propose to use this prediction of program metrics to

proactively activate hardware/software optimizations to take advantage of program

phase behaviour.

Falcón et al. [33] propose Dynamic Sampling using virtual machines to fast

forward the functional portions of the program. They use the AMD’s SimNowTM

simulator to execute the functional part on the host machine and PTLsim [118]

to simulate the timing information for samples taken. Leveraging the correlation

between program performance and code metrics [62], the functional simulator in

the virtual machine monitors certain parameters for significant change to detect

the change in program phases. These monitored parameters include code cache

invalidations, code exceptions, and I/O operations. During functional execution, if

the virtual machine detects that change in the monitored parameter, between two

consecutive intervals, has exceeded a certain threshold, it proceeds to take a sample.

In this mode, the virtual machine generates events which are consumed by PTLsim

[118] to generate timing information. Once the sampled interval is finished, the

machine reverts back to the functional mode. These sampled measurements are

used to estimate the full-program performance at the end. Executing the functional

(major) portion of the program in a virtual machine on the host processor enhances

the speed of the simulation. They compare their speedup and accuracy to SimPoint

[92] and SMARTS [110]. They note that though SMARTS is the most accurate

technique on average, its functional warm-up severely limits the speedup. SimPoint

achieves good speedup only when we do not count the initial profiling analysis.

Dynamic Sampling provides good accuracy and speedup in general but, at the same

time, they admit that the error and speedup depend on the monitored parameter

and the phase-detection threshold. Monitoring code exceptions is less accurate than

keeping track of the code cache invalidations and I/O operations. The worst case

error for a benchmark was reported to be 8%, > 10%, and > 20% for SMARTS,

48 2. Related Work

Dynamic Sampling, and SimPoint respectively. This same sampling mechanism has

been integrated in HP’s COTSon simulation infrastructure [2].

In [44], Isci and Martonosi study the use of performance monitoring counters

and basic block vectors for phase characterization of processor power behaviour.

Using binary instrumentation of programs, they sample a PC address every 1 million

instructions and after every 100 million instructions they get a 32-dimension hashed

BBV. Similarly they use hardware counters to count 15 hardware events such as,

L1 and L2 access rates, bus utilizations, etc. Every 100 million instructions they

obtain a vector detailing the statistics for the previous interval. They use clustering

to classify both the BBVs and PCVs (performance counter vectors) into phases and

compared the phase classification to the power phases. They found that PCV based

phases outperformed the BBV based phases every time (33% better classification

on average). They trace this to two phenomena that the BBV code signatures

fail to capture: Operand Dependent Behaviour, where the same code execution,

when used with different arguments, result in different data locality behaviour and,

hence, different utilization of hardware resources (cache, buses, etc.) and different

power phases, and Effectively Same Execution, where different portions of executed

code, which the BBV classification mechanism qualifies as different phases, result in

same power signatures. They give examples of these two phenomena and show that

they are correctly identified by the hardware performance counter signatures. They

recommend using the PCV based phase information to effectively scale processor

voltages in view of the power consumption.

2.3.3.4.b Random Sampling

An alternative to representative sampling is statistical random sampling. This

method avoids characterizing the population beforehand and, instead, picks sam-

ples from the population in a random fashion. Random selection assumes that since

49

the selection process is free from any bias, the sampled units will reflect the char-

acteristics of the population, i.e., there will be more samples from more frequently

occurring portions and vice versa.

In [16] authors advocate the use of random sampling for program trace simulation

to avoid simulating long traces. They try to devise a methodology to limit the error

in sampled simulation by stressing on reducing both the sampling and non-sampling

bias. Lauterbach [65] also uses random sampling of program instruction traces to

measure program performance.

SMARTS [110] uses a variant of random sampling called systematic sampling.

Systematic sampling selects samples to simulate at regular intervals from the exe-

cution stream of the program. Though the regularity of occurrence is predictable in

systematic sampling, choosing the start point randomly makes each interval of the

program have an equal probability of selection. A potential problem with systematic

sampling is that if the program contains repeating behaviour whose period is a mul-

tiple of sampling frequency, then sample selection will be biased towards one kind

of behaviour. Wunderlich et al. verify that this is not the case by measuring the

homogeneity in the program via intraclass correlation coefficient. Using a sample

size of 1000 instructions SMARTS reports achieving an average CPI error of less

than 1%.

Wenisch et al. propose SimFlex [107], a statistical framework, to systematically

sample the Transaction Processing Workloads on multiprocessors. Due to the high

variation in the transaction completion rate, which makes them simulate longer

intervals, they use the retired user mode instructions per cycle (U-IPC) as their per-

formance measuring criterion. U-IPC shows much less variation than the transaction

completion rate. They first do an initial brief sampling to measure the variation in

performance; this is used to calculate the number of measurements needed to achieve

a specified confidence. As a next step they measure the detailed warming length

50 2. Related Work

needed to remove the cold state bias from their measurements. The third step is the

actual simulation phase.

In [31], Ekman and Stenstrom use matched-pair comparison to measure and

calculate the variation in differences between pairs of samples selected by running

a program on a baseline architecture as well as the architecture to be tested. The

assumption is that the variation in the difference of pair of IPCs on two architectures

is much lower than the variation in IPC over one architecture.

Azimi et al. [7] use statistical sampling of hardware performance counters to

estimate different events affecting the program’s performance. Due to the limited

number of counters, they use multiplexing of these counters to model more events.

They also propose a heuristic mechanism to attribute these events to stall cycles in

order to identify performance bottlenecks. They show that multiplexed statistical

counters can estimate the counts of hardware events within 15% of the real counts

with an implementation overhead of 2%. Using their heuristics they show that most

of the stalls result from data cache misses. They propose to use these stall sources

identified by the sampled counters to provide hints to guide the runtime optimizer

towards useful optimizations.

In [111], Wunderlich et al. try to see the effect of combining stratified sampling

with simple random sampling. In their stratified random sampling they use two

methods to classify the program behaviour into strata, basic block vectors (BBVs)

and instructions per cycles (IPC). They observe that while program classification

into BBV based strata can reduce the simulated instructions by half, the additional

complexity of profiling and clustering diminishes the gains. The second approach

was to create the IPC strata for a program by detailed simulation on an architecture

and use this information to reduce the number of randomly simulated instructions on

another architecture. They found that this approach may work only on architectures

very similar to the baseline.

51

Program Execution (Phases)

SimPoint

SMARTS

Figure 2.1: SimPoint and SMARTS mechanisms.

2.3.3.4.c Comparison of Techniques

The qualitative and quantative comparison of different simulation acceleration tech-

niques help put things into perspective. In [115] Yi et al. compare existing simula-

tion techniques like, truncated execution, input set reduction, random (SMARTS)

and representative (SimPoint) sampling, etc., based on a number of criteria. They

found the sampling based techniques to perform better than truncated execution

and reduced input sets on the accuracy front. They are also more configuration

independent than their counterparts. Secondly, SMARTS is slightly more accurate

than SimPoint but SimPoint provides better speedup. On the ease of usability (com-

plexity to implement) side, SMARTS is relatively complicated to implement as it

exposes the user to the internal details of the simulator (for functional warm-up).

Nookala [6] compares MinneSPEC and SMARTS performance for microarchitecture

aware floorplanning to get an optimal block layout for the chip. They found both

to perform almost identically for this particular problem and suggest the merger of

the two. Figure 2.1 shows how SimPoint and SMARTS sample program phases.

52 2. Related Work

2.3.3.4.d Multi-threaded Sampling

New computing systems increasingly employ multi-core processors (even in embed-

ded systems) running multi-threaded applications. So far simulation acceleration

techniques have been focused on improving the simulation times for single-threaded

applications. This surge in the use of multi-threaded applications has prompted

attempts to accelerate the simulations of such applications.

Van Biesbrouck et al. [102] extend the SimPoint [92] approach to sampling Simul-

taneous Multithreading (SMT) processors. Using detailed simulation of multiple

programs on a multi-context processor they show that though the resource con-

tention between applications affects their time-varying behaviour, they still retain

their repetitiveness of performance. They exploit this collective repeating behaviour

to reduce simulation times. They create the Phase-ID traces for each program run-

ning in isolation using SimPoint. When more than one programs run together, their

phases overlap in execution. These combinations of phases occurring together are

termed as co-phases. The basic idea is the same that once the performance for a

co-phase has been measured, the next occurrence will exhibit similar behaviour and

need not be simulated. The co-phase IDs together with their performance measures

are stored in a Co-Phase Matrix. Using the current co-phase ID and the Phase-ID

trace of each program, they can determine how many instructions they can skip

before they encounter a phase change in a thread that results in a new co-phase.

They fastforward until they arrive at a new co-phase with no entry in the Co-Phase

matrix; they simulate it in detailed mode and store its performance in the matrix

for future use. They test the mechanism on a two context SMT processor and report

an average error of 4%.

CoGS-Sim [49] combines the co-phase [102] and PGSS [54] simulation techniques

to provide an online sampling strategy for multi-context SMTs. It proposes to keep

track of the co-phases in an online scheme which hashes the branch addresses into

53

fixed size BBVs. Using pivot clustering it classifies each new co-phase into an existing

or new cluster. Additionally, upon detecting a co-phase change, it tries to obtain

a detailed simulation sample for the new co-phase. Using the SPEC CPU2000

benchmarks on a two-way SMT processor it reports an average percentage error of

15-20%. They cite lack of warm-up and statistical error as possible candidates for

sources of errors. They recommend a thorough exploration of the parameter space

to further optimize the technique.

Tawk et al. [98, 100, 99] use representative sampling to accelerate the simulation

of multi-core system on chip (MPSoC) platforms. They use SimPoint to extract a

phase profile of the simulated programs in a pre-simulation functional run. Simulat-

ing on a multiprocessor configuration they build strings of phases, being executed

in parallel for each process, and store them in a cluster table. For each unique

phase string combination, they try to sample a performance measurement. When

the combination of phases to be executed by the parallel processes already has a

performance reading in the cluster table, they skip its simulation via fastforwarding

to save time. In Adaptive Sampling [98], when a process reaches at the end of its

phase interval, it tries to estimate the time (cycles) remaining for other processes

to finish their intervals. If this time falls within its acceptable threshold, it waits

for them to finish their phases and then a performance measurement is taken for

this combination of phases. This wait lowers the IPC for that phase of the waiting

process and introduces a source of error. In multi-granularity sampling [100], they

correct this error by adjusting the IPC for that phase using empirically determined

average IPC values. In the same work, they also combine multiple consecutive in-

tervals into variable length samples in order to reduce the number of unique phase

combinations.

54 2. Related Work

2.3.3.4.e Warm-up

A sample’s performance (IPC) would depend on the performance of the underlying

components (caches, branch predictors, prefetchers) which in turn depends upon the

data present in these structures. This, together, constitute the state of the machine.

One issue with sampled simulation is having the correct architecture state before

the sampled interval. For example, consider starting the simulation of a sample with

empty (or having stale data) structures. When the code in that portion will try to

access these structures, it would incur cache-miss penalties and branch misprediction

penalties. This would result in an inflation of the CPI. If this code had been executed

in the course of regular execution of the program, these structures would have had

updated data and would not have incurred these (false) penalties. This brings us to

the problem of removing cold start bias [16] or warm-up.

Simple approaches. There have been many approaches when restoring the

state of the simulator architecture for sampling. Cold start miss considers that

all data in the cache is invalid or an empty cache and returns a miss for the first

access to every block of the cache. Cold start hit assumes the opposite and makes

every first access to a cache block a hit. It is clear that they both can result in

an over or under estimation of the CPI respectively depending on the program

nature. Tawk et al. [100] and Biesbrouck et al. [102] use the cold start hit warm-

up for their sampling experiments. Stale state advocates using data left over in

microarchitectural structures from the previously simulated-in-detail interval. This

can have mixed results depending on the distance between data reuse in a program.

Crowley [19] cites sampling traces for Windows NT applications on Intel x86

platform and using 4 methods to remove cold-start bias: cold, where there’s no

warm-up, half, where first half of each sample is used for warm-up, stitch, where the

state at the end of previous sample is used at the start of current one, and INITMR,

which estimates the miss ratio for references in the sample. He found that for large

55

caches none of these techniques performed well.

Functional warm-up. SMARTS [110] proposes using functional warm-up, i.e.,

updating the states of macroarchitectural structures between two samples during

the fast forward phase. This lets them use just a few instructions to warm-up the

microarchitectural structures before the sample. As noted by Yi [115] this shifts

the onus of modifying the functional simulator on the end user. Skadron et al.

[94] also use functional warm-up updating only the “caches, branch predictor, and

architectural state”. In [68], the authors propose using either functional warm-up

or checkpointing to attain correct architecture state before sampling.

Detailed warm-up. Detailed simulation has been suggested as an alternative

for warm-up. A portion of the program before the sample is simulated in detail with

the hope that most of the false misses would occur during this phase and would

result in correct data in architectural structures. Some studies suggest using a fixed

number of instructions in detailed mode to do the warm-up. In such situations the

problem is that a chosen fixed warm-up size may be correct for one configuration of

architecture and not for another. Haskins and Skadron [47], in presenting MRRL,

count the number of completed instructions between consecutive references to each

unique memory location. They select a warm-up length that covers the reuse for

N% of the references. This way they are able to shorten the length of detailed

simulation needed to achieve a N% warm-up for that sample. BLRL [28] is similar

to MRRL except in stead of counting the reuse latencies of all memory references,

they count them for those memory references whose consecutive accesses cross the

sample boundary. This results in shortening of the warm-up length. NSL-BLRL

[104] leverages the warm-up length reduction by BLRL to reduce the checkpoint

size by storing only information about the memory references that BLRL thought

were important. Self-Monitored Adaptive cache warm-up (SMA) [69] monitors the

accesses to cache blocks by adding a bit to it. The first access to a block is considered

56 2. Related Work

a cold one but it sets the bit. All next accesses to the same block are deemed warm.

It signals the completion of warm-up in two fashions: either a certain percentage

of cache blocks are accessed, or the percentage of warm memory accesses exceeds a

certain threshold.

Budgeted Region Sampling [35] is a technique which addresses the issues of

both sampling and warm-up. The authors divide the program intervals into regions

based on the differences in basic block reuse distance. They then use the IDDCA

[36] algorithm to cluster these regions. Then they divide a fixed detailed simulation

budget between these regions based on their relative weights. Within each region,

the allocated budget is divided between warm-up and sampling based on the length

of the region.

Kihm and Connors [53] try to use statistical sampling to determine the per-

formance of multithreaded architectures. During the fast forward phase they fast

forward each thread based on the value of its IPC seen in the last detailed simulation.

This proportional fast forwarding tries to recreate the same co-phase overlappings as

would occur in a complete detailed simulation. To recreate the system state before

each sample, they experiment with Monte Carlo warming. The problem with warm-

up of large shared structures is that we do not know how much of them was affected

by each thread. This depends on the time-based interleaving of the instructions of

the threads. Monte Carlo warming interleaves the memory and branch instructions

of the threads randomly based on their last seen IPCs. This has the effect of main-

taining cache affinities for the threads proportional to their executed instructions.

They also found that doing a functional warm-up improved the results while costing

a 16% decline in simulation speed.

Checkpointing. Checkpointing has also been recommended as one of the meth-

ods to restore the states of caches and branch predictors, etc., before starting the

simulation. Checkpointing requires a prior simulation of the program and knowledge

57

of the position of the sample. During that prior execution, just before the start of

each sample, the simulator dumps information related to the state of the architecture

in a checkpoint file. When simulating the samples, information in these checkpointed

files is used to reconstruct the state of the architectural structures. Lauterbach [65]

proposes using checkpoints to load the simulator state when sampling traces. An

advantage of checkpointing is that since a sample needs only its checkpoint to sim-

ulate, samples can be distributed on different machines with their checkpoints to

attain parallel execution of them. The inconvenience is that storage space needed

to store multiple checkpoints for multiple programs for multiple architecture config-

urations may become excessive. Wenisch et al. provide a checkpointing mechanism

for the SMARTS [108] methodology. Tools exist [78] to instrument execution files to

generate checkpoints at specified points. Biesbrouck et al. [103] propose techniques

to reduce the size of stored checkpoints without affecting their capability to remove

cold start bias.

Functional warming [110] is done for almost 99% of the program execution and

thus any slowness in its mechanism can slow down the speed of the simulations.

In addition, functional warming depends on the length of the simulated program

and with time the lengths of the benchmark programs continue to increase; SPEC

CPU2006 programs are on average 10x larger than 2000 ones. Wenisch et al. [109]

propose a checkpointing approach to replace the functional warming. In order to

keep the size of stored checkpoints small, they propose only to store the state for

structures which have a long history of warm-up, i.e., caches, branch predictors,

etc. The small structures are updated with detailed warming. Storing the full state

for large cache-like structures can take large disk spaces. In order to counter this

problem, for each checkpoint, they propose to use the memory reference analysis

[47] and store only the information that will be accessed in the following sample.

Dispensing with the information not pertinent to the measured sample reduces the

58 2. Related Work

checkpoint size by 2-3 orders of magnitude as they use very small measurement

intervals. They try to model the effect of cache pollution by speculative execution by

maintaining branch predictor outcomes when creating their live points. By creating

independent checkpoints, they also exploit the advantage of parallel execution of

samples and report an average runtime of 91 seconds and a total checkpoint size of

12GB for the SPEC CPU2000 benchmarks.

SimFlex [107], which builds upon Simics [70], uses Simics’ checkpointing mech-

anism and live points’ approach to create flex points. They create a checkpointing

library to help simulate online transaction processing (OLTP) and web server work-

loads on a multiprocessor.

2.3.3.4.f Combining Sampling and Warm-up

While most studies consider the Sampling and Warm-up issues orthogonal and, thus,

tackle them separately, there have been attempts to graft them together to achieve

an inclusive methodology. Since we are looking for a one-pass method that does

Sampling and Warm-up on the go, these attempts deserve a mention.

In SMARTS [110], Wunderlich et al. integrates the warm-up with their sampling

strategy by proposing to update large microarchitectural structures, i.e., caches,

branch predictors, etc., during the functional phase of the simulation.

Pereira et al. [81] and Kihm et al. [54] also combine the sampling and warm-up

mechanisms at runtime. Online SimPoint [81] uses the phase tracking mechanism

of [93] to track and predict program phases online. Predicting phases makes it pos-

sible for them to anticipate the occurrence of a phase and prepare the architectural

state for sampling before this occurrence. They maintain a moving queue of a cer-

tain number of memory and branch events that occur during the functional fast

forwarding phase and then use this queue to warm up the simulator state before

sampling.

59

PGSS [54], unlike Online SimPoint [81] which predicts phases, relies on just

phase change detection. Once it has detected a new phase, it proceeds to take a

sample for that phase before the phase is over. It relies on functional warm-up, as

proposed by SMARTS [110], between two samples.

2.4 Conclusion

In this chapter we discussed the current state of the art in the field of architecture

simulation. The amount of activity going on and the amount of resources being

spent on it shows the importance of making design choices early in the processor

fabrication process and the need to do it fast. Though it is equally important to

reduce the number of design space parameters and choose the correct benchmark-

input pairs, we decided to focus on the third aspect of design space exploration

which is reducing the individual simulation times. Even within that we focus on

Sampling because it is the technique that has shown the most potential. It not only

reduces the simulation execution times (often by orders of magnitude) but also the

performances reported are very close to the real ones (sampling errors are usually

in lower single digits).

Having studied state of the art on architecture simulation and sampling tech-

niques, we found there can be improvements in certain areas: that not all state of the

art sampling techniques are transparent to architecture and software modifications,

that the best warm-up methodologies are not adaptable to sampling techniques, and

that the efforts to integrate warm-up and sampling into an online, one shot, mecha-

nism have their limitations. All these issues are important in their own right. While

previous attempts to address these issues have focused on them mostly individually,

we attempt to provide a methodology which incorporates them all. In the following

chapters we present sampling approaches which aim at tackling these issues.

60 2. Related Work

61

Chapter 3

Transparent Representative

Sampling

3.1 Introduction

Sampling relies on the assumption that most of program execution is a repetition

of parts of code so it is not necessary to performance simulate the entire execu-

tion of the program. It suffices to simulate in detail representative portions of the

program code only once and from the performance of these code segments that of

the whole program can be constructed. This idea that a program execution com-

prises repeating phases was popularised by SimPoint [92]. While SimPoint [92] et

al. [81] [54] provide good performance estimates, they ignore other issues which are

equally important. Some use a prior phase analysis to determine which portions

of the program to simulate in detail making the technique cumbersome to use in

case of frequent software modifications. At the same time, other techniques make

too simplistic assumptions about the warm-up of SRAM structures which can have

significant effect on performance measurements in case of change in architectures.

We propose a holistic approach to all these issues with equal emphasis on usability,

62 3. Transparent Representative Sampling

transparency to architecture as well as performance accuracy. This technique, which

will find the representative portions of the program and, at the same time, adjust

itself to the changes in hardware and software, we call Transparent Representative

Sampling. The core simulator implementation is called the Transparent Sampling

Engine (TSE).

3.2 Repetition of Program Behaviour

Program executions show variable behaviour over time. This behaviour may appear

different depending on the scale on which it is measured. The performance fluctuates

frantically on small scale but shows a smoother variation when measured on larger

scales.

Figure 3.1: IPC variation for MCF. Interval sizes of 10k(top) to 100 mil-
lion(bottom).

63

Whatever the scale of measurement, it can be observed that a program be-

haviour consists of repeating patterns of performance. These portions of a program

with same or similar metrics are grouped into phases [92]. A phase may recur many

times during the execution and these occurrences need not be temporally adjacent.

While each phase is distinct from others in terms of the metric measured, behaviour

within a phase is fairly homogeneous. Furthermore, these repetitive changes can be

correlated with different portions of program code. What this means is that execut-

ing the same code again at another moment in program execution timeline would

result in the same performance measurements. Since a program execution consists

of repeatedly executing same portions of code, hence the repetition in performance.

This is a key result which helps understand the program behaviour and makes it

exploitable. It opens up whole new areas in program optimisation. Once one knows

that a certain portion of code is going to repeat in future, one can study its perfor-

mance and, in reconfigurable architectures, reconfigure the processor to parameters

best suited for its performance. Calder et al. [93] study the effect of adapting the

data cache size and the processor issue width dynamically with program behaviour.

They found out that customizing the architecture to executed code can yield better

performance and can reduce energy consumption.

This result that a program execution consists of repeating phases is exploitable

in architecture simulation as well. If we know that a phase is going to execute mul-

tiple times and each execution will be resulting in the same performance behaviour,

it is redundant to simulate it each time we encounter it. Simulating it the first time

would give us the performance information about its future executions as well. This

way simulating each phase only once, not only can we estimate the performance

of the whole execution of the program but also we will reduce the simulation exe-

cution time. If a program consists of N phases, its performance can be estimated by:

64 3. Transparent Representative Sampling

CPI =
N
∑

i=1

(CPIi ×mi)

where CPIi is the performance measured by the single simulation of ith phase and

mi is the fraction its occurrence constitutes of the whole program.

Once we reach the above conclusion, it remains to classify the program execution

into phases and then selecting an instance of each phase for simulation. This is

detailed in the next section.

3.3 Phases and Code Signatures

The changes in a program phase behaviour are obvious when simulating the whole

program in detail; we can see a clear change in the performance metric. We need

a mechanism which helps detect these phases without launching the detailed sim-

ulation. There have been attempts in the past to categorize the program phases

using methods other than full detailed simulation. Dhodapkar et al. [23] show that

program phase changes are related to the instruction working sets. They concluded

that changes in program behaviour tend to coincide with the changes in working

sets. Balasubramonian et al. [8] detect changes in program phases by keeping track

of conditional branch counters for each interval in program execution. When the

difference between the conditional branch counters of two consecutive intervals ex-

ceeds a certain threshold, they signal a phase change. Sherwood et al. [91] advocate

the use of Basic Block Vector (BBV) analysis to detect program phases. Dhodap-

kar and Smith [22] did a study comparing the three approaches and found that the

Basic Block Vector approach performed better than the other two when detecting

the phases. In [63], Lau et al. compare different structures for phase classification

and concur that BBVs are one of the most accurate elements to capture the phase

behaviour of the programs. Based on these results we selected the changes in BBVs

as our criterion of choice when detecting the phases.

65

3.4 Basic Blocks and Basic Block Vectors

A Basic Block is a portion of code with one entry and one exit only. Once execution

enters a basic block, it is sure to execute the whole of the basic block before it can

exit it. These are the smallest units of code guaranteed to execute in their entirety.

Basic block boundaries are marked by control statements. Listing 3.1 shows a sim-

ple while loop in a high-level language, such as C, and the Listing 3.2 shows the

corresponding MIPS assembly code. If we see the code in Listing 3.2, we can see

that there is one point of entry in this block; this is the instruction labeled “loop”

on line 100. However, there are two exit points, namely: the branch statement on

line 103 where the program exits the loop and the jump statement on line 105 which

jumps backward to the beginning of the loop. Therefore the program execution

can follow two paths in this piece of code: it can either do from line 100-105 in

an ordinary iteration of the loop or it can execute the 100-103 instructions in the

last iteration before exiting. There are two basic blocks which are separated by the

branch instruction in the middle, i.e., line 100-103 and line 104-105.

66 3. Transparent Representative Sampling

Listing 3.1: Basic Block Example
�

whi le (A[i] = = k)

i + +;
� �

Listing 3.2: Basic Block Example
�

100 Loop : s l l $t1 , $s3 , 2

add $t1 , $t1 , $s6

102 lw $t0 , 0($t1)

bne $t0 , $s5 , Exit

104 add $s3 , $s3 , 1

j Loop

106 Exit :
� �

A Basic Block Vector (BBV) is an array whose elements contain the frequency

of basic blocks. The length of the array equals the number of total basic blocks

and each element corresponds to one of them. The value contained in a certain

element will indicate how many times that particular basic block has been seen

during execution. Thus these BBVs form the code signatures for different intervals

of the program. Changes in these BBV code signatures are used to detect changes

in program phases.

BBVs for program intervals can be collected by doing a first pass using functional

only simulation which is much faster than detailed simulation. SimPoint [92] uses

this approach. They divide the execution of the program in intervals of equal size

and analyze the code for each interval in terms of the basic block vectors. They then

group the intervals with similar BBVs together into clusters. The idea is that these

clusters are representatives of program phases and intervals within a cluster will

show similar performance because of their similarity in BBVs. To test the difference

67

between two basic block vectors they tested both the Euclidean and Manhattan

distance and found the latter to perform better in BBV classification.

EuclideanDistance =

√

√

√

√

n
∑

i=1

(ai − bi)2.

ManhattanDistance =
n
∑

i=1

|ai − bi|.

They employ this distance measure in the k-means [79] algorithm to group to-

gether intervals whose BBVs are close together. K-means is an off-line iterative al-

gorithm. It needs access to all the BBVs before it can begin the clustering process.

As mentioned earlier in the introduction, due to our usability and transparency to

hardware and software changes requirements, we want a one pass simulation mech-

anism and would not have the luxury to access all the BBVs before the end of the

execution. Therefore, we desire a scheme that performs clustering on the fly. So

we opt for a simpler scheme which, based on a distance threshold, decides whether

a BBV interval should go into one of the existing clusters or a new cluster should

be created for it. At the end of each interval we obtain the BBV for that interval.

We compare this BBV to the centers (BBVs) of all the existing clusters using the

Manhattan distance. If the distance between the new BBV and the BBVs of the

centers of all the existing clusters is superior to our threshold, we suppose that the

performance for this BBV is significantly different from all the other clusters and

create a new cluster for it with the new BBV as its center. Otherwise, we merge

this BBV in the cluster closest to it by way of the Manhattan distance and update

the latter’s center. The new center for this cluster is a BBV which averages all the

BBVs comprising this cluster including the recently added one.

It is important to carefully select the value for this BBV classification threshold

because it will directly control the number of clusters/phases formed and thus effect

68 3. Transparent Representative Sampling

the simulation time. Since ideally we would be looking for a representative for each

cluster, more number of clusters would mean that we spend more time looking for

their representatives in detailed simulation mode. At the lowest threshold, we’ll

get almost as many clusters as the intervals, except the exactly identical ones, and

end up simulating the whole program in detailed mode. On the other end, at the

highest threshold of 100% all clusters are collapsed into one big cluster completely

obfuscating the phase information of the program as no interval would be different

from the other. The effect of this BBV distance threshold has been shown in Figure

3.2. The x-axis lists the benchmarks and the y-axis shows the number of clusters

formed when we vary the classification threshold as shown in the legend. The result

supports the intuition. At the lower threshold of 0.125 (12.5%) we get the highest

number of the clusters for each benchmark and the number decreases consistently as

we move to higher thresholds. Three benchmarks stand out due to their relatively

high number of clusters: tiffdither, tiffmedian, and ispell have 200, 125, and

116 clusters respectively.

 0

 50

 100

 150

 200

 250

 300

basicm
ath

qsort

susan_sm
ooth

susan_edge

susan_corner

bfenc

bfdec

rijnenc

rijndec

dijkstra

patricia

m
ad

tiffbw
tiffrgba

tiffdither

tiffm
edian

ispell

crc
fft fftinv

avg

N
u
m

b
e
r

o
f
C

lu
s
te

rs

12.5%
25%
50%
75%

Figure 3.2: Effect of varying the BBV classification threshold on the number of
clusters.

A normal program can consist of many basic blocks. Sherwood et al. [92] found

the number of basic blocks for the SPEC2000 benchmarks ranging from 2,756 to

102038. To count the frequency of each basic block individually, the BBV dimensions

69

have to be quite large. This puts huge strain on the simulator in terms of memory

requirements and also slows down the clustering mechanism as it has to calculate

distances for each element of the vector many times. Also, with time the size of the

programs tends to increase with a corresponding increase in the number of basic

blocks. SPEC2006 programs are on average 10 times larger than the SPEC2000

ones [48] and future benchmarks are expected to grow bigger. Therefore using full

sized BBVs, especially for on-line phase classification, is quite impractical. For these

reasons the original SimPoint [92] article proposes using Random Projection [20] to

reduce the BBV dimensions. On-line SimPoint [81] and PGSS [54] propose an online

version of it. We chose to go with this approach, i.e., online dimension reduction,

because low memory and computational requirements are in accordance with our

goal of a fast simulation methodology. We use the technique used by PGSS [54]

for reducing the dimensions of our Basic Block Vectors. As mentioned earlier, basic

blocks are identified by the addresses of their terminating branches. Normally a

Basic Block Vector will contain as many dimensions as the number of basic blocks

in the program in order to record the occurrence of each. In stead of indexing the

basic block by their terminating-branch address, we randomly select a few bits from

that address and use those bits to index into the BBV. As an example, selecting 4

bits from the branch address will result in a maximum index of 15 and hence require

a Basic Block Vector of size 16. As informed readers may note that this may produce

an aliasing-like effect, i.e., merging two basic blocks with completely different actual

branch addresses and performances. In actual experiments we saw that unless the

dimension is reduced to values extremely low, this aliasing effect is tolerable. Figure

3.3 shows the effect on the number of phases detected when we vary the size of

our Basic Block Vectors. It can be noted from the figure that when we increase

the BBV size from the very low values, the number of phases/clusters increases

correspondingly most of the time, revealing that at low dimensions different phases

70 3. Transparent Representative Sampling

are forced to mix with each other. However, except a few exceptions, at higher

dimensions the number of phases does not increase by much. This is an indication

that very high BBV dimensions do not add much in terms of phase information

and slightly lesser ones can capture the same behaviour. Notable exceptions are

tiffdither and ispell where the number of clusters continue to increase with the

increase in BBV dimension. It should be noted that while we try not to reduce the

BBV dimension too much in order to retain phase information, we would also not

like it to increase too much. The reason being that larger BBV dimensions require

more calculations and result in more number of clusters. A large number of clusters

can potentially produce complex cluster sequences which make predicting the cluster

occurences hard. This mechanism of predicting the clusters (phases) of a program

is the topic of our next section.

 0

 50

 100

 150

 200

basicm
ath

qsort

susan_sm
ooth

susan_edge

susan_corner

bfenc

bfdec

rijnenc

rijndec

dijkstra

patricia

m
ad

tiffbw
tiffrgba

tiffdither

tiffm
edian

ispell

crc
fft fftinv

avg

N
u
m

b
e
r

o
f
C

lu
s
te

rs

8
16
32
64

128
256
512

Figure 3.3: Effect of varying the BBV size on the number of clusters.

3.5 Phase Prediction

Having the on-line dimension reduction and phase classification technique is not

enough. In order to be able to simulate in detail, at least once, each phase of the

program, we need information in advance of the phase occurrence. Unfortunately

the phase classification technique tells us the identity of the phase only after we

71

have finished simulating its interval, functionally or otherwise. To tackle this issue,

Sherwood et al. [93] propose a predictor mechanism which keeps track of different

phases being detected and also tries to predict their future occurrences. This way,

if predicted correctly, we can anticipate the next occurrence of a phase and start

simulating in detail as soon as it starts. They tried different predictors namely

last value predictor, which assumes the previous phase to repeat, and N-level RLE

(Run Length Encoding) predictor, which keeps a history of N previous phases and

the number of their continuous occurrences. The last value predictor was found to

perform poorly in the face of frequently changing phase behaviour. For the RLE

predictor, they found that 2-level RLE predictor gives the best trade-off between

hardware cost and prediction accuracy.

Perreira et al. [81] use the same 2-level RLE predictor. Vandeputte et al. [105]

did a comparative study of different phase predictors and concluded that though the

2-level burst predictor, which keeps only the IDs of the last 2 phases as opposed to

IDs and counts for the RLE one, performs better than the 2-level RLE predictor,

the difference is slight.

 0

 20

 40

 60

 80

 100

 120

 140

basicm
ath

qsort

susan_sm
ooth

susan_edge

susan_corner

bfenc

bfdec

rijnenc

rijndec

dijkstra

patricia

m
ad

tiffbw
tiffrgba

tiffdither

tiffm
edian

ispell

crc
fft fftinv

P
re

d
ic

ti
o
n
 A

c
c
u
ra

c
y
 %

H=1
H=2
H=3
H=4
H=5

H=10

Figure 3.4: Prediction Accuracy As The Predictor History Size Increases.

Our 2-level RLE predictor stores a hashed history of the two most recently seen

phases and their repetition counts. It looks up this hashed history in a look-up table

containing previous such combinations and the phase that followed them to predict

72 3. Transparent Representative Sampling

which phase will occur next. As such the predictor is parametrized by the length of

its history and the size of the look-up table. A longer history lets it see farther in

the past. But, at the same time, a longer history means that the number of possible

combinations to store also increases. Which means, for a given prediction table size,

there is an increased risk of histories over-writing other histories - aliasing effect.

Thus less frequently occurring patterns may evict more frequently occuring ones

and degrade prediction. Figure 3.4 shows the prediction accuracy for the N-Level

RLE predictor as we vary N, i.e., the history size of the predictor. As we move

through the history values of 1, 2, 3, 4, 5 and 10, we see that while for the most

part there is no change in prediction accuracy when we increase the history size,

there is a big imporvement in it when we increase its value from 1 to 2 in case of

mad and tiffdither. History sizes greater than 2 rarely improve the prediction

accuracy and may, on the contrary, affect it adversely e.g., in susan corner, mad

and tiffdither. This can be explained by the fact that the prediction mechanism

uses a fixed-size table of 256 entries. As we increase the number of phases kept in the

history, the number of possible history permutations increase as well. Thus when the

hashing function hashes these history values into one of the 256 indices, it is trying

to cram more information into the same number of slots. Thus some less frequently

occurring combinations do evict the more frequently occurring combinations that

are useful for predictions.

Previous phase predicting studies either did not take into account the warm-up at

all [105] or used constant functional warm-up [81]. We, for reasons of practicability,

use the detailed simulation for warm-up. Therefore our requirement differs in the

sense that we not only need the phase occurrence information in advance but much

in advance so that we can start the detailed simulation earlier in order to warm-

up the simulator for phase arrival. This causes us to predict not one but multiple

phases in future so that if we see our desired phase at the end of this prediction

73

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

P
re

d
ic

ti
o
n
 A

c
c
u
ra

c
y
 %

basicmath
bitcount

qsort
susan_smooth

susan_edge
susan_corner

bfenc
bfdec

rijnenc
rijndec
dijkstra
patricia

mad
tiffbw

tiffrgba
tiffmedian

ispell
crc
fft

Figure 3.5: Prediction Accuracy As Predictions Advance Further In Future.

chain, we could start simulating and use the first few intervals for warm-up. This

prediction length should be chosen in such a way that it accommodates the warm-up

requirements for all the phases of all the programs under consideration. At the same

time, as we try to predict farther into the future, the prediction accuracy decreases

74 3. Transparent Representative Sampling

and our predictions are more liable to be wrong.

Figure 3.5 shows what happens when we predict not one but multiple intervals

into future based on the same history. As can be seen the history is most accurate for

predicting the immediate future and as we venture predicting further, our guesses

become less and less accurate. The x-axis shows the index of the interval in the

future for which we predict the phase. The y-axis shows the percentage of times

that we predicted correctly the phase-id at that index. We see that we predict

most accurately for the first index after the history (this is the next interval to

come), less accurately for the 2nd one and it gets worse as we proceed up to the

10th interval. For some benchmarks the degradation is gradual while for others it

is pretty sharp. The prediction accuracy can be a function of the length of the

benchmark, the number of clusters formed and their patterns of occurrence. Hence

we have a benchmark with only one cluster, crc, and 100% accuracy while there are

others which have accuracy closer to 100% and maintain this accuracy even as we

predict further into future. On the other hand, there are benchmarks which have

low prediction accuracy to start with and it degrades as we venture to guess more

deep into the future.

susan corner has the lowest prediction accuracy for the first index, 46.47%,

and this drops to 32.12% as we arrive at the 10th interval in the sequence. The low

prediction accuracy for the first index is explained by the small size of the benchmark

(see Table 3.3), just 421 intervals. The predictor does not have enough time to see

different patterns repeat and train itself. The benchmark ispell undergoes the

worst degradation as we move to predict from the first to the tenth interval, from

65.46% to 29.02%. This is partly due to the complex repetition behavior manifested

by its phases.

75

3.6 Warm-up

We’ll be simulating most of our program in functional mode; only launching the

detailed mode when we want to simulate an instance of a desired phase. The func-

tional mode is a faster execution mode but it leaves out and does not simulate many

architectural details like caches, branch predictors, TLBs, etc. These structures are

not updated when simulating in the functional mode. Since the data in these mi-

croarchitectural structures have not been updated, they would be different from the

ones which would have been there if we had arrived here by way of detailed simu-

lation. This stale data causes unnecessary misses when doing simulation, falsifying

the performance measures.

The process of updating the microarchitectural structures with correct data is

termed as warm-up. While there exist different propositions for warm-up in lit-

erature, those most closely related to our requirements are proposed by SMARTS

[110] and on-line SimPoint [81]. SMARTS proposes updating large structures which

takes long to warm-up, i.e., caches, branch predictors, etc., during the functional

phase of the simulation. When it switches to the detailed simulation mode for per-

formance measurements, it uses the first few thousand instructions to warm-up the

smaller structures, i.e., pipeline, etc., and then goes ahead with the measurement.

Implementing the functional warm-up poses a few problems, namely:

• Copying all the microarchitectural structures in the functional mode requires

significant modifications to the simulator.

• Some structures, e.g., prefetchers, use temporal information for their updates.

Functional simulator having no notion of time cannot update them appropri-

ately.

• Functional simulation is fast because it ignores many details of the processor.

Adding these structures and their update mechanisms may affect the speed of

76 3. Transparent Representative Sampling

the simulator.

The other technique, proposed by on-line SimPoint, is to keep a fixed size trace

of memory and branch events at all moments during the simulation and, just before

the detailed simulation, to use this trace to update the cache and branch predictor

structures. They empirically deduced that a trace of 50000 memory and branch

events each is enough for their benchmarks. The problem with fixed warm-up, as it

is termed, is that one can under or over estimate the amount of warm-up required.

Especially in design space exploration, where one frequently varies the design param-

eters, it is difficult to find an optimum value that suits every permutation of design

parameters. A single value can be too large for a particular architecture causing

an unnecessary increase in simulation time or too small for another one incurring a

large performance estimation error.

Due to the above mentioned issues in the previous warm-up strategies, we chose

to have a warm-up scheme which adapts to architectural changes and to do it dur-

ing the detailed simulation mode in order to avoid modifications to the functional

simulator. SMA [69] is an adaptive warm-up mechanism which uses a bit for each

entry in an SRAM structure to determine if it’s warm or not. If the number of warm

entries in the structures exceeds a certain threshold, it declares the structure warm.

Though it has not previously been tested with a sampling approach, we found it to

be suitable for our dynamic adaptive warm-up approach.

We use the detailed simulation to do the warm-up. As the detailed simulation

advances, the program will access different entries in microarchitectural structures

updating them with new data and the simulator state will gradually become warm.

The idea is to start the detailed simulation sufficiently in advance of the interval

that we want to simulate for performance that by the time we arrive at that interval

the micro-architectural structures would be warm. Then we can go ahead and take

our measurement. This is the reason we predict multiple future intervals so that we

77

can “see” our desired phase far enough in future and have time to warm-up.

Each time we launch the detailed simulation, we track the caches with an SMA-

style mechanism in order to know how much time does it take to warm-up. And each

time we take our performance measurement for a phase, we note down how many

intervals it took us to warm-up for it. This value is used to update the average warm-

up length for this phase in our phase table. Next time we predict a phase sequence,

we launch the detailed simulation only if at least one of our desired phases is found

beyond its average warm-up length. In this manner we know that if we launch the

detailed simulation now, by the time we arrive at our desired phase we would have

sufficient warm-up. This way in updating the average warm-up length at runtime we

make sure that our warm-up strategy adapts itself to each architecture and what’s

more, to each program phase.

3.7 CPI Calculation

Once we have the performance samples for each part of the program, we would like to

average them to get the performance of the whole program. To do this we multiply

the average performance for each program phase with a fraction corresponding to

its frequency of occurrence. This way we give more weight to the performance of

the portions which occur more frequently as they would bear more on the actual

performance of the program.

3.8 Principles

The general concept of combining on-line sampling and adaptive warm-up is to

select not one, but multiple continuous intervals for sampling, and to flexibly allow

some to be used for warm-up rather than for sampling purposes. By using a generic

implementation of SRAM structures from which a large range of mechanisms can

78 3. Transparent Representative Sampling

be derived, the warm-up is shown to require no simulator modification whatever the

SRAM-based architecture mechanisms and the sizes of the SRAM structures, and

it solely relies on the performance simulator.

Phase identification. The program execution is divided into intervals of equal

number of instructions. Intervals with similar performance metrics are considered

belonging to a Phase. SimPoint [92] demonstrated that intervals with similar per-

formance metrics tend to have similar BBV signatures. The functional simulator

partitions the simulation into fixed-sized intervals, collects all basic block usage in-

formation for each interval and creates a basic block vector for it. It groups intervals

with similar BBV signatures into clusters hoping to catch the phase behavior. We

identify the phases on the fly, in the spirit of on-line SimPoint [81]. In order to

reduce the computational tasks of clustering BBVs on-line, we reduce the dimen-

sion of BBVs using a hashing technique. Then we compute the Manhattan distance

between each BBV and all clusters identified so far, and decide whether we create a

new cluster if the distance between the new BBV and the existing clusters is larger

than a threshold distance D, or we consider the BBV to belong to an existing clus-

ter. We adjust the weights of the clusters (numbers of intervals in each cluster)

accordingly. Each cluster corresponds to a phase. The whole process is summarized

in Figure 3.6.

Predicting multiple phases. After each interval, and based on the information

collected so far, the on-line sampling technique must determine when to sample next,

i.e., when to switch from functional to performance simulation again. Ideally, at the

end of the simulation, for each cluster, there is at least one interval/sample which

was performance simulated, allowing to extrapolate these performance metrics to

the whole cluster (i.e., the cluster performance is weighed by the cluster weight

for computing the overall performance). Therefore, the sampling strategy should

permanently monitor the set of all known clusters, and for the clusters without any

79

Figure 3.6: On-Line BBV clustering.

performance simulated sample yet, it should predict its next occurrence (the number

of instructions until an interval of that cluster occurs) and trigger performance

simulation then, see Figure 3.7. It is important to understand that the cluster

id of an interval is known after it has been executed, i.e., after the fact, therefore

it is indeed necessary to predict the occurrence of intervals of a given cluster. The

sampling strategy further privileges the clusters with the highest weight so far, i.e.,

the clusters with the highest number of intervals.

After each interval has been functionally simulated, instead of simply predicting

the cluster corresponding to the next interval [81], we predict the sequence of clusters

corresponding to the N next intervals.

The input of the predictor is a history of the H pairs (cluster id, # of consecutive

occurrences) of the past intervals. The output of the predictor are the cluster ids of

the N next intervals, see Figure 3.7.

Triggering performance simulation. We then compare this sequence to the list

of clusters yet to be simulated. If we find that this sequence will deliver useful

additional information, we trigger the performance simulation of that sequence.

The following conditions must all be met for triggering performance simulation:

80 3. Transparent Representative Sampling

Figure 3.7: Sampling strategy.

• The predicted sequence contains at least one cluster with no performance sim-

ulated interval yet, and which corresponds to a significant fraction of the pro-

gram, i.e., at least a fraction F% of the instructions so far.

• At least one of these “not yet performance simulated clusters” lies beyond the

estimated mean warm-up length, i.e., they are located far enough within the

sequence not to be part of the warm-up phase.

Warming up. At the beginning of a valid sequence, the performance simulation

is activated and the warm-up begins. The only simulator modification that we as-

sume is that all SRAM structures are implemented with our own library component

instead of the simple, usual, array declarations, see Figure 3.8. This library compo-

nent adds one bit per SRAM element (a byte for memory, or any other length for

a cache tag array for instance). These bits are reset upon starting a detailed simu-

lation sequence, so that all SRAM elements appear cold in the beginning, whatever

the architecture mechanisms they belong to (cache, branch predictor, write buffer,

prefetch buffer, etc.). Each time an SRAM element is accessed, the cold bit is reset

and a count of the total number of cold vs. warm SRAM elements is maintained.

All these operations are transparent to the user thanks to the SRAM library, and

81

Figure 3.8: SRAM library.

such a library is a natural extension to simulation frameworks (SystemC, ASIM,

Simics,. . .). We used our SRAM library with the SystemC simulation framework.

For each interval, the fraction of warmed access to the SRAM structure(s) is

monitored, and when this fraction reaches a threshold W , the interval is deemed

warm, and the performance statistics can be used, in the spirit of SMA [69]. Unlike

SMA, within a sequence of intervals, after an interval has been deemed warm, we

keep monitoring the interval warm up status, and a later interval can be deemed

cold (and thus its performance statistics ignored). This process is safer than simply

asserting that SRAM structures are warmed up after an interval has been found to

be warmed.

The warm up length for each sequence is used to compute the mean warm up

length, an information used to predict which intervals in future sequences will be used

for warm up and which intervals will be used for collecting performance statistics,

as explained above. After the warm-up is completed, the performance statistics for

all subsequent intervals in the sequence are collected.

Note that it may happen that statistics are collected for clusters that were not

sought for, for instance if the warm up length was shorter than predicted. In that

case, the corresponding clusters will simply have multiple representative intervals,

82 3. Transparent Representative Sampling

which usually improves accuracy (we use the average of measures).

Sampling and warm-up combined. The warm up is adaptive in the sense that

if larger SRAM structures are used, it will take more intervals to reach the warm

up threshold W . At the same time, the sampling technique can flexibly start at any

sample within the sequence. If it turns out that the target clusters have not been

simulated, they will remain scored as “high priority” by the prediction strategy and

a new sequence containing them will be sought for. Finally, if the mean warm-up

interval turns out to exceed N , the simulation sequence is aborted and the intervals

simulated are wasted. (Not having an adaptive sequence length is a limitation that

we are working on. Ideally, N should be incremented so that the number of warm-up

intervals remains smaller than or equal to N − 1, i.e., there is at least one interval

for which performance statistics can be collected in each sequence.) We discuss this

at the end of the section 3.11. Parameterization. The strategy relies on a number

of parameters that must be set: W the warm up threshold, N the predicted interval

sequence length, F the percentage of the total program instructions below which a

cluster is considered not important, H the history size used for the prediction, and

D the BBV clustering threshold.

We empirically found the overall strategy to be fairly stable for the following

parameters. We found that a history H = 2 was sufficient across all benchmarks.

Two related parameters are the interval length and the minimum sequence length.

Even though there is an obvious trade-off for the interval length (too small and the

overhead of warming up becomes excessive, too large and not enough intervals can

be collected without exceedingly increasing the number of performance simulated

instructions), we found our strategy to perform well for intervals ranging from 10000

instructions to 1 million instructions, with 100000 realizing the best error/simulation

time trade-off. For that interval size, we empirically found a minimum sequence

length of N = 10 to be the best compromise.

83

Two other related parameters are the cluster distance threshold D (recall that

a BBV is deemed belonging to a cluster if it differs by less than D% from that

cluster), and F , the percentage of overall program instructions (known so far) that

corresponds to a cluster. The smaller D, the higher the number of clusters; this

can then be mitigated with parameter F , so that we collect samples only for suffi-

ciently large clusters (accounting for more than F% of instructions). We empirically

found that a good trade-off across benchmarks is D = 25%, F = 1%, in line with

other studies [81]. However, because this pair of parameters may be sensitive to

the program characteristics, we contemplate using alternative adaptive clustering

strategies, such as IDDCA [36], which dynamically adjusts clustering to the target

program characteristics.

In the end, the only parameter exposed to the user is W , the warm-up threshold

for an interval. This parameter encapsulates the accuracy/simulation time trade-off

which is at the core of sampling: the higher W , the higher the number of simulated

instructions and the higher the accuracy. We feel the user should be empowered

with setting that parameter, even though we provide a default parameter value of

W = 0.1%.

3.9 Methodology

Processor PPC405, in-order

Pipeline 5 stages

DCache 8KB, 2-way
32-byte block

ICache 8KB, 2-way
32-byte block

Registers 32 integer registers

Functional Units 1 ALU, 1 LD/ST

Branch Miss Penalty 2 cycles

Table 3.1: PowerPC 405 Simulator configuration.

Our target processor was the PPC405, a 5-stage in-order embedded processor,

84 3. Transparent Representative Sampling

see Table 4.1. The processor was implemented using the UNISIM simulation frame-

work [4]. A modified version of SimPoint [92]’s BBV Tracker tool is used to profile

the instruction stream and characterize the basic blocks. 5 randomly chosen bits

from the start address of each basic block are used as an index into a Basic Block

Vector of 32 dimensions. These reduced BBVs are then clustered based on a Man-

hattan distance threshold (25%). A Run Length Encoding (RLE) predictor [93] is

used to hash [46] the last two distinct phases and their number of occurrences in

order to index a 256-entry hash table and predict the next phase ID.

We use the embedded benchmark suite MiBench [38] with large input sets. In

order to demonstrate the resilience of our technique to architectural changes, espe-

cially SRAM structures sizes, we vary the cache sizes from 4KB to 64KB. Detailed

simulations of the full benchmark suite (no sampling) are used to obtain the actual

performance measures, Cycles per Instruction (CPI), of the programs.

After validating the technique on the PPC405 and Mibench combination, we

decided to test its resilience in the face of a different architecture/benchmark com-

bination. This time we used the SPEC2000 benchmark suite running on the Sim-

pleScalar simulator. The baseline architecture is detailed in Table 3.2. We test a

smaller cache of 8KB and a larger one of 128KB as well. In the next section we detail

the experimental results for MiBench. The section after that will list our findings

for the SPEC2K suite.

3.10 Experimental Results (MiBench)

In this section, we evaluate the combined on-line sampling and adaptive warm-

up technique described in Section 3.8. The two main metrics are accuracy and

simulation time. Accuracy is defined as the CPI error of the sampled simulation

versus the full simulation. Simulation time is correlated to, and thus defined as,

the fraction of the total instructions in the program trace that were performance

85

Processor SimpleScalar, out-of-order, 4 way

RUU/LSQ Size 16/8

Pipeline 5 stages

D-Cache/I-Cache 64KB, 2-way
32-byte block

Cache/Memory Latency 2/60 cycles

Memory Ports 2

Registers 32 Int, 32 FP

Functional Units 4 I-ALU, 1 I-Mult
4 F-ALU, 1 F-Mult
4 F-ALU, 1 F-Mult

I-TLB 16 4KB 4-way assoc blocks:lru

D-TLB 32 4KB 4-way assoc blocks:lru

Branch miss penalty 3 cycles miss lat

Table 3.2: SimpleScalar Simulator configuration.

simulated (as opposed to only functionally simulated). Since one of the key purposes

of our technique is to accommodate architecture modifications, especially SRAM

structures sizes modifications, all results are provided for three different cache sizes:

8KB is the baseline PPC405 cache size, and we also experiment with a smaller cache

size (4KB) and a significantly larger one (64KB), and compare all results. We also

study in more detail the warm-up length, clustering characteristics and prediction

accuracy of our sampling+warm-up technique.

 0

 2

 4

 6

 8

 10

basicm
ath

bfdec

bfenc

crc
fft fft_inv

m
ad

patricia

qsort

rijndenc

rijnddec

susan_corner

susan_edge

susan_sm
ooth

tiffbw
tiffdither

tiffm
edian

tiffrgba

ispell

avg

C
P

I
E

rr
o
r

P
e
rc

e
n
ta

g
e

4k
8k

64k

Figure 3.9: Percentage CPI Error (100k-instruction interval, N=10(25 for ispell)).

A note on ispell. While all the benchmarks were simulated with N=10, ispell

shown in these results was simulated with N=25 for the 64KB cache. The reason is

since we abandon our simulation sequence without taking a sample as we reach N,

86 3. Transparent Representative Sampling

for the 64KB cache, N=10 is never warm enough to take the sample. Therefore the

simulation terminates with no samples. N=25 leaves sufficient room for warm-up to

take a few samples.

Accuracy. The CPI error is indicated in Figure 3.9 for all benchmarks and the

three aforementioned cache sizes. We first note the low average error, less than

0.82%, which is on par with the best sampling accuracy results for non-adaptive

techniques [92] or on-line sampling techniques [81]. Moreover, this accuracy is stable

across all three cache sizes, and does not increase with the cache size: the accuracy

is 0.7% on average for 8KB and 0.37% on average for 64KB. In other words, the

accuracy remains stable as an SRAM structure size increases, thanks to the com-

bined dynamic warm-up strategy. To our knowledge, this is the first demonstration

of a sampling strategy that exhibits stable accuracy as architecture characteristics

change.

 0

 20

 40

 60

 80

 100

basicm
ath

bfdec

bfenc

crc
fft fft_inv

m
ad

patricia

qsort

rijndenc

rijnddec

susan_corner

susan_edge

susan_sm
ooth

tiffbw
tiffdither

tiffm
edian

tiffrgba

ispell

avg
w
td_avg

P
e
rc

e
n
ta

g
e
 S

im
u
la

ti
o
n

4k
8k

64k

Figure 3.10: Percentage performance simulated instruction.

Simulation time. The percentage of simulated instructions is shown in Figure 3.10.

Most programs require to performance simulate less than 1% of all their instructions.

The fraction of instructions increases with the cache size, due to the larger warm-

up required by the larger SRAM structures, but the increase is very moderate.

There are a few mentionable points: ispell for 64KB cache which simulates 47%

in detail (even with N=25, this is explained earlier). Looking in detail shows that

87

even N=25 is not enough for warm-up in this case most of the time. 42% of the

simulation was wasted due to lack of warm-up and only 3% was used for warm-up and

samples. susan corner and susan edge also exhibit relatively high performance

simulation ratio, between 14% and 12%. However, these two programs are the

smallest of all benchmarks (see the total number of intervals in Table 3.3), so that

even a few intervals account for a large fraction of the overall simulation; it is

interesting to note that the same type of algorithm (susan smooth; susan is an

image recognition package with several image processing algorithms), with a larger

instruction count, has low error and low performance simulation ratio. This is

illustrated by the wtd avg, which is the average of the percentage of simulation time

weighted by the total number of dynamic instructions in the program: 0.22% for

the 4KB and 8KB caches, and 1.6% for the 64KB cache.

 0

 2

 4

 6

 8

 10

 12

 14

basicm
ath

bfdec

bfenc

crc
fft fft_inv

m
ad

patricia

qsort

rijndenc

rijnddec

susan_corner

susan_edge

susan_sm
ooth

tiffbw
tiffdither

tiffm
edian

tiffrgba

ispell

avg

W
a
rm

-u
p
 L

e
n
g
th

 i
n
 I
n
te

rv
a
ls

4k
8k

64k

Figure 3.11: Average number of warm-up intervals per sample.

Warm-up length. The warm-up length (in number of intervals) is analyzed in

more detail in Figure 3.11. For the smallest cache size, all programs require only

1 warm-up interval. For the 8K cache, some programs require a warm-up interval

of up to 2 on average. For the largest cache, while most programs accommodate a

constant warm-up length of 1 interval, several programs (mad, qsort, susan edge,

ispell, etc.) require more than 4 warm-up intervals on average. Especially ispell,

given N=25, shows an average warm-up length of 12 for the samples it manages to

88 3. Transparent Representative Sampling

Program # # % Hit

Intervals Clusters

basicmath 83030 8 91.04%

bfdec 20268 3 99.98%

bfenc 20300 3 99.98%

crc 68923 1 100%

fft 75196 9 99.44%

fft inv 74185 12 99.43%

mad 9562 17 87.95%

patricia 10026 1 100%

qsort 16104 10 98.91%

rijndenc 3509 1 100%

rijnddec 3399 1 100%

susan corner 421 12 47.51%

susan edge 1327 18 88.92%

susan smooth 77692 10 82.48%

tiffbw 4119 4 99.88%

tiffdither 19982 63 80.28%

tiffmedian 14351 81 98.31%

tiffrgba 3460 6 99.65%

ispell 14550 19 65.42%

avg 27389 14.68 91.54%

Table 3.3: Clustering and clusters prediction.

take. Therefore, it is not appropriate to use a constant warm-up interval, across

architecture configurations, or even across benchmarks for the same architecture

configuration.

Clustering and clusters prediction. Table 3.3 shows the number of clusters

found for each program and how accurately they were predicted. One can observe

that the prediction accuracy is usually inversely proportional to the number of clus-

ters. Intuitively, the larger the number of clusters in a program, the less frequently

they will recur during the execution, and thus the lower the probability to find and

predict them again. However, the prediction still exhibits an accuracy of 91.54% for

14.68 clusters on average.

89

3.11 Experimental Results (SPEC2K)

Encouraged by the small error in measuring performance and the low amount of

detailed simulation (ispell notwithstanding) required to achieve this, we decided

to see how the technique fared on other architectures and benchmarks. So we imple-

mented the same mechanism in the SimpleScalar simulator and used the SPEC2000

benchmarks to test it. Using three different cache sizes of 8KB, 64KB, and 128KB,

the results are describe below:

N=10. Figures 3.12, 3.13, 3.14 show the perforamnce error, percentage of detailed

simulation, and the average warm-up lentgh when we apply the adaptive represen-

tative sampling to the SPEC2K benchmarks with a predicted sequence length of

10.

Now SPEC2K benchmarks are quite different from MiBench ones in terms of

their size, memory footprint and phase behavior. This can be seen from Figure

3.12 which shows an average error of >5% for all cache sizes. The error for many

benchmarks goes up to 10% with vpr showing the highest error of 26% for the 128KB

cache size.

 0

 5

 10

 15

 20

 25

 30

 35

bzip2

crafty

gap
gcc.166

gcc.200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

fm
a3d

galgel

lucas

m
grid

sw
im

avg

C
P

I
E

rr
o
r

P
e
rc

e
n
ta

g
e

8k
64k

128k

Figure 3.12: Percentage CPI Error (100k-instruction interval, N=10).

A look at the percentage detailed simulation in Figure 3.13 reveals that while the

portion of program simulated in detail remains low for 8KB and 64KB caches, for

90 3. Transparent Representative Sampling

the 128KB one the average is 2.5% with three benchmarks crossing the 10% mark.

This excessive amount of detailed simulation can be traced to the inflexible sequence

length of N=10. Most of the detailed simulation is wasted because at the end of

most sequences we abandon the detailed simulation mode, without taking a sample,

because of a lack of warm-up. Table 3.4 shows the amount of detailed simulation

and the wasted part of it as percentages of the whole program. We can see that

whereever a benchmark shows large amount of detailed simulation, a major part of

it consists of intervals wasted due to sequence termination before we could achieve

our desired warm-up threshold.

 0

 2

 4

 6

 8

 10

 12

 14

bzip2

crafty

gap
gcc.166

gcc.200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

fm
a3d

galgel

lucas

m
grid

sw
im

avg

P
e
rc

e
n
ta

g
e
 S

im
u
la

ti
o
n

8k
64k

128k

Figure 3.13: Percentage performance simulated instruction (100k-instruction inter-
val, N=10).

 0

 2

 4

 6

 8

 10

bzip2

crafty

gap
gcc.166

gcc.200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

fm
a3d

galgel

lucas

m
grid

sw
im

avg

W
a
rm

-u
p
 L

e
n
g
th

 i
n
 I
n
te

rv
a
ls

8k
64k

128k

Figure 3.14: Average number of warm-up intervals per sample (100k-instruction
interval, N=10).

91

Program 8KB 8KB 64KB 64KB 128KB 128KB

simulated wasted simulated wasted simulated wasted

bzip2 0.02 0 0.08 0.04 5.52 5.13

crafty 0.01 0 0.01 0.01 0.01 0.01

gap 0.01 0 0.1 0.09 10.18 10.12

gcc.166 0.07 0 0.23 0.09 1.7 1.45

gcc.200 0.05 0 0.72 0.61 0.22 0.15

gzip 0.07 0 0.77 0.03 4.64 2.41

mcf 0.02 0 0.05 0.03 0.55 0.12

perlbmk 0.02 0 0.02 0 0.04 0.02

twolf 0 0 0 0 0 0

vortex 0.01 0 0.05 0.02 0.13 0.11

vpr 0.02 0 0.04 0.01 0.12 0.11

ammp 0 0 0.01 0.01 3.29 2.92

applu 0.01 0 0.01 0 0.16 0.08

apsi 0 0 7.95 7.66 13.82 13.43

art 2.41 0 2.41 0 14.3 0.89

equake 0.01 0 0.01 0 0.07 0.06

facerec 0.01 0 0.02 0.01 0.06 0.05

fma3d 0.01 0 0.01 0 0.02 0.01

galgel 0 0 0 0 0.03 0.03

lucas 0.01 0 0.09 0.08 0.83 0.75

mgrid 0 0 0 0 0 0

swim 0.01 0 0.01 0 0.18 0.16

avg 0.13 0 0.57 0.39 2.54 1.73

Table 3.4: Portion of simulation wasted.

Figure 3.14 shows the average warm-up lengths for the SPEC2K programs. We

see that in general the warm-up lengths are larger than those seen for MiBench

programs. This is because of the larger cache sizes and the larger memory footprint

of the SPEC2K programs. It can also be remarked that the average number of

intervals required to achieve warm-up increases with the increase in cache size. This

was expected as larger caches take longer to warm up.

N=25. Since we noted that N=10 was not enough for some programs when simulat-

ing a cache size of 128KB and we had to abandon the detailed simulation sequence

before we could achieve our desired warm-up, we tried to manually increase the

sequence length to N=25 to see the effect on warm-up and the resulting detailed

simulation percentages. The data is shown in Figures 3.15, 3.16, 3.17 representing

the perforamnce error, detailed simulation percentage and average warm-up length

92 3. Transparent Representative Sampling

respectively.

The performance error has not changed much. This reflects the inherent difficulty

in capturing the phase behavior of the SPEC2K programs which are more complex

than the MiBench ones. One noticeable fact is the increase in the error for galgel.

It now shows an error of 34% compared to the previous one of 4.5% for N=10.

 0

 5

 10

 15

 20

 25

 30

 35

bzip2

crafty

gap
gcc.166

gcc.200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

galgel

lucas

m
grid

sw
im

avg

C
P

I
E

rr
o
r

P
e
rc

e
n
ta

g
e

8k
64k

128k

Figure 3.15: Percentage CPI Error (100k-instruction interval, N=25).

First of all we see from Figure 3.16 that the percentage of detailed simulation

is greatly reduced for most benchmarks for the 128KB cache. This is due to the

fact that increasing the sequence length from 10 to 25 lets give more room to the

simulator for warm-up. This results in less number of sequences being abandoned

and the detailed simulation that was previously wasted is now part of the warm-up

and serves to provide a sample. apsi still shows a detailed simulation percentage of

9.5% but that is because even a sequence length of 25 is not enough for its warm-

up. We see that the wasted simulation percentage is still 8% of the program. This

highlights the difficulty of manually setting the sequence length and underscores the

need for an adaptive mechanism.

Table 3.5 shows the total number of intervals, the number of clusters formed,

and the prediction accuracy for each of the SPEC benchmark tested. Note the

difference between the prediction accuracy for the SPECINT (the first 11) and the

SPECFP benchmarks. The SPECINT benchmarks exhibit a relatively complex

93

 0

 2

 4

 6

 8

 10

 12

 14

bzip2

crafty

gap
gcc.166

gcc.200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

galgel

lucas

m
grid

sw
im

avg

P
e
rc

e
n
ta

g
e
 S

im
u
la

ti
o
n

8k
64k

128k

Figure 3.16: Percentage performance simulated instruction (100k-instruction inter-
val, N=25).

 0

 5

 10

 15

 20

 25

bzip2

crafty

gap
gcc.166

gcc.200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

galgel

lucas

m
grid

sw
im

avg

W
a
rm

-u
p
 L

e
n
g
th

 i
n
 I
n
te

rv
a
ls

8k
64k

128k

Figure 3.17: Average number of warm-up intervals per sample (100k-instruction
interval, N=25).

phase behaviour - and thus have lower phase prediction accuracy - compared to the

SPECFP ones which are fairly regular.

Fixed vs adaptive sequence length. As we saw for ispell in MiBench and for

most of the SPEC benchmarks, fixed sequence length of N=10 was inadequate for

large cache sizes. The reason is that the length of a sequence limits the number

of intervals used for warm-up. As the caches grow, it takes more time to warm

them up. Thus it may happen that a cache may never get warm because of a small

sequence length. Secondly choosing too large a sequence length will result in doing

unnecessary detailed simulation and defeat the purpose of simulation acceleration.

It is also difficult to manually adjust sequence length to each architecture/program

94 3. Transparent Representative Sampling

Program # # % Hit

Intervals Clusters

bzip2 1.09E+006 108 67.41%

crafty 1.92E+006 29 51.12%

gap 2.69E+006 68 93.96%

gcc.166 469177 207 71.75%

gcc.200 1.09E+006 364 61.3%

gzip 843673 94 68.87%

mcf 618674 47 89.73%

perlbmk 399392 37 68.33%

twolf 3.46E+006 96 99.9%

vortex 1.19E+006 21 64.68%

vpr 840687 82 42.32%

ammp 3.27E+006 84 65.71%

applu 2.24E+006 44 99.02%

apsi 3.48E+006 57 98.82%

art 417951 54 71.48%

equake 1.32E+006 36 98.75%

facerec 2.11E+006 42 76.63%

fma3d 2.68E+006 82 98.91%

galgel 4.09E+006 94 96.76%

lucas 1.42E+006 38 98.71%

mgrid 4.19E+006 41 98.59%

swim 2.26E+006 34 99.32%

avg 1.91E+006 79.95 81

Table 3.5: Clustering and clusters prediction.

pair. As we saw that increasing the sequence length from N=10 to N=25 did the trick

for most of the SPEC2K benchmarks but still was insufficient for apsi. Therefore

the need for an adaptive sequence length which adapts the length of the detailed

simulation to the warm-up requirements of the program/architecture is evident.

3.12 Conclusion

In this chapter we demonstrated that representative sampling can be combined with

adaptive warm-up in a sampling technique which is both user agreeable and archi-

tecture agnostic.

We demonstrated that an on-line phase detection fares well when classifying the

program behaviour most of the time and that reducing the BBV dimensions to a

certain limit can capture the program phase behaviour while reducing the computing

95

cost at the same time. Secondly, we showed that we can sacrifice the accuracy of

the off-line clustering mechanisms in the favor of simple on-line mechanisms with a

tolerable hit on the performance accuracy while gaining on the computation side.

We also extend the phase prediction mechanism to predict over multiple future

intervals. In doing so, we give our technique room for warm-up before it samples its

desired interval. Though it was observed that for some benchmarks, with complex

phase behavior, prediction accuracy decreases as we try to predict far in future.

We find detailed simulation a better alternative for warm-up than other methods

because it avoids modifying the functional simulator and also our warm-up technique

adapts to architectural needs. A related important issue is the length of prediction

sequence. If the predicted sequence’s length is larger than the maximum average

warm-up length possible, then the warm-up will easily adapt to the program/archi-

tecture needs. But in practice we found that it was difficult to select a sequence

length such that it satisfies the warm-up requirements and, at the same time, keeps

the detailed simulation to a minimum. An alternative is to make the predicted se-

quence length variable such that it adapts to the simulator needs at run time. This

is the next logical extension of this work and a focus of our ongoing efforts.

Over all we present a technique which makes it possible to do a single-run sam-

pling performance estimation, taking into account the warm-up adaptability to archi-

tecture changes, significantly reducing the simulation times. Our technique achieves

an average CPI error of less than 0.82% and requires a detailed/performance simu-

lation of less than 1.6% of the program instructions on average, for the benchmarks

and architecture configurations considered. Moreover, because our technique does

not require any modification of the functional simulator, except for the generic col-

lection of basic block vectors, it is entirely compatible with fast functional simulation

techniques such as binary translation.

While the mechanism presented in this chapter works for the most part, as

96 3. Transparent Representative Sampling

shown in Section 3.11, the current implementation is not always adaptable to drastic

changes in architecture. The main reason is the inflexibility of prediction sequence

length and the degradation of prediction accuracy as the said sequence length and

the number of clusters increase. This prompted us to explore the other alternative

to representative sampling i.e., statistical random sampling, which we present in the

next chapter.

97

Chapter 4

Transparent Statistical

Sampling

4.1 Introduction

In the previous chapter we discussed Representative Sampling as a mean to select

the portions of the program we’d like to simulate. In this chapter we introduce

Statistical Sampling as an alternative method of sample selection.

Sampling, as discussed earlier, is a common technique which uses a subset of

observations within the population to predict the properties of the whole population.

Using a subset of the population is useful due to its lower cost and faster data

collection. Sampling theory has proved that even a small portion of the population,

if properly selected, can give a fairly accurate idea of the population properties[66].

In our experiments we divide the instruction stream of the program into intervals

of fixed length (in number of instructions). This sequence of intervals, or more

exactly their cycles per instruction (CPI) values, make up our population. Keeping

in line with our target of performance simulating a minimum number of instructions,

we’d like to know the properties (CPI) of this population of intervals without having

98 4. Transparent Statistical Sampling

to performance simulate the whole instruction/interval stream. Statistical sampling

theory seems to offer insights as to which intervals to simulate in detail in order to

obtain a performance (CPI) estimate of the whole population (program).

A relevant question that needs attention, after the selection of intervals-to-

simulate, is the state of the simulator before our sample. In order to accelerate

the simulation process most of the time we would use the functional simulator to

arrive at the desired point in execution. The functional simulator, in order to go

fast, ignores and does not update the microarchitecture structures. As a result

the data in those structures is leftover from the previous detailed simulation. This

stale/false data will bias our performance measurement and affect the results. We

need to warm-up these structures (fill them up with correct data) if we want our

measurements to be reliable.

Again, when implementing statistical sampling, we have taken care to devise a

mechanism which needs the user to intervene in a minimal fashion. Also that the

system should adjust smoothly to changes in hardware and software characteristics.

Since it centers around our objective of an adaptive and usable technique, we call

this approach Transparent Random Sampling and the implementation Transparent

Sampling Engine (TSE).

All these issues (interval selection, warm-up, and usability) are addressed in the

subsequent sections.

4.2 Interval Selection

As opposed to representative sampling, random statistical sampling advocates the

use of an unbiased or random subset of observations/measurements within the pop-

ulation. The properties of this sample set can then be extrapolated to estimate the

population characteristics. The field of statistics has well established procedures to

ensure the correctness of these measures. A well chosen sample of appropriate size

99

reflects the population properties as a whole. The goal of Sampling is to select such

a representative but minimal sample.

If we consider our program execution as a series of instructions being executed

one after the other and imagine this instruction stream as our population, it becomes

clear how statistical sampling is applicable to our case. It would suffice to know the

CPI of a few randomly selected instructions in detailed mode to calculate the CPI of

the whole program. Only, the cost of switching to detailed mode is too big to incur

it to simulate only one instruction. So instead of considering our execution stream

being composed of individual instructions, we consider it being made up of groups

of instructions called intervals. The size of all intervals is same in terms of number

of instructions. Our scheme now boils down to randomly selecting and simulating

in detail a minimum number of intervals from our program execution stream so that

we can get an accurate estimate of the performance of the program.

A recapitulation of some basic Statistics will help clarify this process.

4.2.1 Statistical Distributions

Statistical calculations are based on certain assumptions about the distribution of

data in the population. Populations are classified into distributions based on the

probability of finding data in a certain position. This probability distribution function

characterises the spread of population data and distinguishes one distribution from

other.

One of the most commonly occurring distribution of data in nature is the Normal

Distribution. Figure 4.1 shows what a normal distribution looks like. It’s a bell

shaped curve with data spread out evenly on both sides around the center. The

x-axis shows the values that the data in the population can take and the y-axis

shows their frequency of occurrence normalized to 1. As can be seen from the peak

in the curve, values near the center occur most often and as we move away from the

100 4. Transparent Statistical Sampling

center the frequency of occurrence decreases.

The probability distributions, with the same probability distribution function,

can be characterised by their certain properties. A mean µ, also know as the average

value, is the sum of observations divided by the number of observations:

µ =
1

n
×

n
∑

i=1

xi,

where n is the size of the population. Also known as the expected value, in a normal

distribution, values close to this value are the most probable to occur. In Figure 4.1

this is the value in the center on x-axis.

More than one normal distributions can have the same mean. In this case they

can be distinguished by their variance. Variance of a distribution is given by the

formula:

var =
1

n
×

n
∑

i=1

(xi − µ)2.

It defines the spread of the data around the mean. The higher the variance, the

more spread the data is about the mean and the flatter the curve of the distribution

and vice versa.

A related quantity is the standard deviation of the distribution. It is defined as

the square root of the variance.

σ =
√
var.

Normal distribution has been well studied and we know that approximately

68% of the values are found in the region within one standard deviation from the

mean, 95% within 2 standard deviations and 99.7% of the values are found within

3 standard deviations from the mean. This is demonstrated by the figure.

101

Figure 4.1: Normal Distribution

With this information in hand, given a value from a normal distribution, we can

say that it has a 95% chance of being within 2 standard deviations from the mean.

Of course, we’d be needing the values of the mean and the standard deviation for

the population to make this statement meaningful. That’s where sampling theory

kicks in. Since, under everyday use, it’s usually very difficult to obtain these values

for the entire population, we use a sample subset of the population and use the mean

and standard deviation of this sample as approximates of the mean and standard

deviation of the population. The above equations become:

x =
1

k
×

k
∑

i=1

xi

and

var =
1

k
×

k
∑

i=1

(xi − x)2

and

102 4. Transparent Statistical Sampling

s =
√
var,

k being the number of elements in the sample.

When characterising population properties using samples, it is difficult to get

them 100% right because however good a sample, it always contains less informa-

tion than the whole population. Therefore instead of giving a single value for that

parameter, intervals likely to contain the value of that property are usually used. A

confidence interval (CI) is one such interval. It helps estimate the reliability of the

measure. After a sampled measurement, the result can be usually announced as: we

can say with α% confidence that the value of the parameter lies in the interval [X,Y].

A confidence level of 95%, for a confidence interval [X,Y], would mean that if mea-

sured a large number of times, the values of the desired property would lie within

the interval [X,Y] 95% of the time. Given the standard deviation (s), sample size

(k) and the z-value (c) for a distribution, the confidence interval can be estimated by:

CI = (x− [c× s
√

k
], x+ [c× s

√

k
]).

The z-value (c) is the number of standard deviations above or below a mean, we

expect to find a given value.

The confidence interval is centered around the mean x of the sample and we ex-

pect the real mean µ of the population to lie within the boundaries of this interval.

If we knew the real mean of the population we could have calculated the error in

our estimation by comparing the sample mean to the population mean:

Percentage Error = abs(x−µ)
µ

× 100.

In practice we do not know the real mean CPI of the population comprising all

the intervals in the program (we have no need of simulation in that case). What

103

we do know, however, is that once we have calculated our confidence interval [X,Y]

around the sample mean x, the population mean µ should lie somewhere in that in-

terval. Since the maximum difference this real mean can have with the sample mean

is when it equals either of the boundaries X or Y , we can calculate the theoretical

maximum possible error as:

Statistically Estimated Error = abs(X−x)
x

× 100.

What is important here to note is that since the user has no way of knowing

whether his sampled measurement is correct or not, this Statistically Estimated Error

provides an estimate of the reliability of his result. The larger this value, the larger

is the confidence interval and the farther apart the real mean CPI µ can be from our

experimentally measured CPI x. Thus large values of Statistically Estimated Error

can be an indication of a less reliable result and a potentially large error.

Like other characteristics of a probability distribution, the confidence interval

is also a parametric measure and makes certain assumptions about the underly-

ing population. The above equation assumes a normal distribution and that the

measurements are done completely randomly independent of each other.

Since many of the statistical parameter calculations make assumptions about

the normality of the underlying populations, it’s a logical move to verify those as-

sumptions. With the execution stream of our programs divided into intervals of

equal length, we simulated the SPEC2000 benchmarks in detail and noted the CPI

for each interval. Using the R [86] programming language we built histograms for

these CPI populations to see their shapes. The Figure 4.2 shows the histograms of

the CPI for two of these programs. By contrasting these shapes with the Normal

Distribution in Figure 4.1 we can observe that the distributions of the CPIs for these

programs are hardly normal. The figure for mcf exhibits two very sharp peaks side

by side while the distribution for gap is clearly skewed to the right.

104 4. Transparent Statistical Sampling

Histogram of cpi

cpi

F
re
q
u
e
n
c
y

0 5 10 15

0
5
0
0
0
0
0

1
0
0
0
0
0
0

1
5
0
0
0
0
0

(a) mcf

Histogram of cpi

cpi

F
re
q
u
e
n
c
y

0 1 2 3 4 5 6

0
.0
e
+
0
0

5
.0
e
+
0
6

1
.0
e
+
0
7

1
.5
e
+
0
7

2
.0
e
+
0
7

(b) gap

Figure 4.2: CPI distributions

The concerns caused by the programs’ CPI distributions not following the normal

distribution are allayed by the Central Limit Theorem (CLT) [45]. The Central

Limit Theorem states that the mean, or sum, of a sufficiently large number of

independent random variables, each with finite mean and variance, is approximately

normally distributed irrespective of the original distribution of the population. An

105

irregularly distributed population undermines the CI’s assumptions and prevents us

from applying the CI calculations to an individual value as that value will follow

the population’s distribution instead of the normal one. But we can apply the CI

calculations to the mean of a sample subset of the population as, according to the

CLT, the mean of sufficiently large sample will follow a normal distribution.

The CLT is a central tenet of the probability theory and helps explain the abun-

dance of the normal distribution in nature. As many natural phenomena are the

sum of unobservable random events, these sums are observed following the normal

distribution. A point of discussion in CLT has been the sample size. What does

“sufficiently large” mean? In literature we can find references which would believe a

size (k > 30) to be sufficiently large for all purposes. We decided to put this claim to

test. The benchmark gap exhibits an unusually skewed distribution of CPI. We have

plotted the CPI mean distributions for different sample sizes in figure 4.3. We start

from a sample with only 5 measurements and go up to 200. For each sample size we

take 500 samples from the original CPI distribution and then plot the distribution

of the means of these 500 samples in the figure. For small sample sizes we observe

that the distribution of sample mean follows the same skewness as observed in the

original CPI distribution. Even when the sample size exceeds 30 (k = 50), traces of

skewness remain. For this particular benchmark we observe that from a sample size

of 100 the sample mean’s distribution starts resembling the normal distribution. In

our experiments the samples always contain more than 100 measurements so we can

safely apply the confidence interval calculations assuming the normal distribution

of means.

4.3 Warm-up

Having addressed the question of interval selection for detailed simulation, we turn

our attention to the second question pertaining to the correctness of the microar-

106 4. Transparent Statistical Sampling

Sample size = 5

mean

F
re
q
u
e
n
c
y

0.5 1.0 1.5 2.0

0
1
5
0

Sample size = 10

mean

F
re
q
u
e
n
c
y

0.6 0.8 1.0 1.2 1.4 1.6 1.8

0
1
0
0

Sample size = 20

mean

F
re
q
u
e
n
c
y

0.7 0.8 0.9 1.0 1.1 1.2 1.3

0
4
0
8
0

Sample size = 30

mean

F
re
q
u
e
n
c
y

0.7 0.8 0.9 1.0 1.1 1.2 1.3

0
4
0

1
0
0

Sample size = 50

mean

F
re
q
u
e
n
c
y

0.7 0.8 0.9 1.0 1.1 1.2

0
6
0

Sample size = 100

mean

F
re
q
u
e
n
c
y

0.7 0.8 0.9 1.0

0
1
0
0

Sample size = 150

mean

F
re
q
u
e
n
c
y

0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

0
1
0
0

Sample size = 200

mean

F
re
q
u
e
n
c
y

0.75 0.80 0.85 0.90 0.95 1.00

0
6
0

Figure 4.3: Distribution of mean as a function of sample size for gap.

chitectural state of the simulator before we start the detailed simulation.

In order to accelerate benchmark simulations, Sampling techniques rely on sim-

ulating most of the program in the faster functional simulation mode and switching

to the slower performance simulation mode only when trying to take performance

measurements. During the functional simulation mode, the microarchitectural state

of the processor, i.e., caches, branch predictors, TLBs, etc., is not updated. There-

fore upon switching to the performance simulation mode after a spell of functional

107

simulation, the data in these SRAM structures are outdated (they are the remnants

of the previous performance simulation mode). Thus the first accesses to these struc-

tures would find invalid data and result in misses incurring extra cycles. This would

cause an over estimation of the CPI. These structures at the end of a functional

simulation, with invalid data, are referred to be in the “cold” state.

Once the performance simulation mode is launched, the accesses to these struc-

tures cause misses and result in the progressive update of the respective fields with

correct data. When all the fields of a structure are updated, we consider it completely

“warm”. Sampling softwares try to base their measurements on warm structures as

they are free of bias introduced by cold start misses and represent correctly the

actual performance of the program.

4.3.1 Implementing the Warm-up

:::

We
:::::

now
:::::::::

consider
:::::::

which
::::::::::

warm-up
:::::

and
::::::::::

sampling
::::::::::::

approaches
::::

are
::::::::::::

compatible
::::::::::

together.

:::

As
::::::

noted
::::::::

before,
::::::::

on-line
:::::::::::::::

representative
:::::::::::

sampling,
::::::

when
:::::::::::

combined
::::::

with
::::::

either
:::::::

static

::

or
::::::::::

adaptive
:::::::::::

warm-up,
::::::

gave
::::::::

mixed
::::::::

results.
::::::

For
:::::

this
:::::::::

reason,
::::

our
:::::::::::

approach
:::::::

titled

:::::::::::::

Transparent
:::::::::::

Statistical
::::::::::

Sampling
:::::::

(TSS)
::

is
::::::

based
:::

on
:::::::::::

statistical
::::::::::

sampling,
::::::

with
::::::::

samples

::::::::::

randomly
:::::::::

selected.

:::::::::

However,
::::

we
::::

do
:::::

not
::::::

want
::::

to
:::::::

resort
:::

to
:::::::::::::

continuous
::::::::::

warm-up
::::

as
:::

in
:::::::::::

SMARTS

::

in
:::::::

order
:::

to
:::::::

avoid
:::::::::::

functional
:::::::::::::::::

simulator-level
:::::::::::::::

modifications;
:::::

we
::::::

want
:::

to
:::::::

warm
::::

up

:::::::

SRAM
:::::::::::

structures
:::::

just
::::::

using
::::

the
:::::::::::::

performance
:::::::::::

simulator.
::::::::::::

Moreover,
:::

for
:::::::::::::::

time-sensitive

:::::::::::::

mechanisms,
::::::

such
:::

as
::::::::::::

prefetching
::::::::::

[41](e.g.,
:::

to
:::::::::::

warm-up
:::::::::

prefetch
:::::::::

buffers),
:::

it
:::::

can
:::

be

::::::::

difficult
:::

to
::::::::::::

implement
::::

the
::::::::::

warm-up
:::::::::::

altogether
::::::

since
::::

the
:::::::::::

functional
::::::::::

simulator
:::::

has
:::

no

:::::::

notion
::

of
::::::

time.

:::::::::

Fix-sized
:::::::::

detailed
::::::::::

warm-up
::::::::::::::::

methodologies
::::

are
:::::

not
:::::::::::::

transparent
:::

to
::::::::::::::

architectural

:::::::::

changes.
:::

A
:::::

fixed
:::::::::

number
::

of
:::::::::

detailed
::::::::::::::

instructions,
::::::

while
:::::

they
:::::

may
:::

be
::::::::

perfect
:::

to
::::::

warm

:

a
::::::::

certain
:::::

size
:::

of
::::::::

SRAM
::::::::::::

structures,
::::

will
:::::::

prove
::::::::::::

insufficient
::::

for
::::::

larger
:::::

and
::::

an
::::::::

overkill

108 4. Transparent Statistical Sampling

:::

for
::::::::

smaller
::::::

sizes.

:::::::::::::::

Checkpointing
::::::::::

[108][109]
:::::

and
::::::::::

adaptive
::::::::::

warm-up
::::::::::::

techniques
:::::::::

[47][28]
::::::::

require
::::

the

::::

user
:::

to
:::::::::

execute
::::

the
::::::::::

program
:::::::::

multiple
:::::::

times.
::::::

This
:::::

runs
::::::::::

contrary
:::

to
::::

our
::::::::::

principle
:::

of

:::

the
:::::

ease
:::

of
::::::::::

usability.
::::::::::::::::

Checkpointing
:::::

also
:::::

may
::::::::

require
::::::

large
:::::

disk
:::::::

space
:::

for
:::::::::

storage.

::::::::::

Therefore,
::::

we
:::::

turn
:::

to
::::::::::

SMA[69].
:::::

The
::::::::::

difficulty
:::

is
:::::

then
:::

to
:::::::

design
::

a
:::::

joint
:::::::::::

statistical

:::::::::

sampling
:::

+
::::::::::

adaptive
::::::::::

warm-up
:::::::::::

technique
:::::::

which
::::

will
::::::::

deliver
::::::

good
::::::::::::::

performance,
:::::

i.e.,

:::::

high
::::::::::

accuracy
:::::

and
::::::

small
:::::::::

fraction
:::

of
::::::

total
:::::::::::::

instructions
::::::::::::

simulated,
:::::

and
:::::

still
::::::::

remain

::::::::

entirely
::::::::::::

transparent
:::

to
::::

the
:::::

user,
:::::

i.e.,
:::

no
:::::::::::

parameter
:::

to
:::

set
:::::::

except
:::::

ones
:::::::

easily
::::::::::::::::

comprehensible

:::

by
::::

the
:::::

user.

In order to achieve transparent sampling, we warm up using the performance

simulator: by simply running, the performance simulator will progressively warm

up the SRAM structures. The simulation is partitioned into fixed-size intervals

of N instructions each. At any interval, we assess the degree of warm-up. For

that purpose, we monitor the load/store references that access SRAM entries which

are already warmed, as in SMA [69]. In order to transparently implement this

monitoring we provide a simple SRAM library (in C++ or C) on top of which any

cache or table can be easily implemented. This is the only simulator modification

required to use Transparent Sampling, and it is benign: the user only needs to

replace the classic array or object declaration used for SRAM structures with an

SRAM class instantiation (or a call to a function in C), see Figure 3.8. This SRAM

class implements a single bit per SRAM entry. This bit is reset by the Transparent

Sampling Engine (TSE) before each sample, and set at the first reference within a

sample. Thanks to this bit, it is possible to determine whether each access (e.g.,

load/store, branch prediction table access, etc.) is cold or warm without any further

simulator modification by the user.

So far, this warm-up technique is very similar to SMA [69], except that we

provide the library and class support. Unlike SMA, we do not use the fraction of

109

SRAM structures which are warmed as a warm-up criterion, because we empirically

observed this criterion to be highly sensitive to the program behavior. For instance,

some program parts with a small workload will only warm up a fraction of the cache.

The other option was to monitor the memory accesses during an interval and count

the fraction of warm accesses. SMA combines both warm-up criteria but we found

that solely using the fraction of warm accesses was more robust. We deem that all

the SRAM structures are warmed when the fraction of warm accesses to each of

these SRAM structures (e.g., the different caches of a memory hierarchy) is above a

threshold.

However, even though our adaptive warm-up technique makes use of the afore-

mentioned warm-up criterion, it does not rely on the variable-length warm-up in-

terval of SMA for the following reason. We found that SMA can have a non-trivial

impact on the selection of intervals used for performance measurement, the interval

immediately following the warm-up intervals; more exactly, that it could shift the

performance measurement intervals in a way that could be degrading the random-

ness of performance measurements (a key aspect of statistical sampling). Because

SMA was studied as a warm-up technique alone (as opposed to a warm-up + sam-

pling technique), it is only normal that this effect has gone unnoticed, but we found

it to be severely detrimental in some cases. Consider a program where the following

pattern recurs often: a region with accesses to many distinct addresses followed by

one or several region(s) with repeated accesses to a few addresses. The first region

is likely to breed significantly more cold accesses than the second region(s). As a

result, the fraction of cold accesses in the first region will be high, and the warm-

up threshold won’t be passed. When the program enters the second region(s), the

fraction of warm accesses quickly increases because just a few addresses are being

repeatedly used, and the threshold is likely to be passed. As a result, adaptive

warm-up has shifted the performance measurement interval to a region with few,

110 4. Transparent Statistical Sampling

repeated accesses. Now, the first region is likely to exhibit a higher miss rate than

the second region because a higher number of distinct addresses are accessed. As

a result, adaptive warm-up has shifted the performance measurement interval to a

region with a lower miss rate.

Note that, in a more complex case where a many-address region follows a few-

address region which follows again a many-address region, adaptive warm-up could

have the exact opposite effect and shift the performance measurement interval to

a many-address region, artificially increasing the measured miss rate. We observed

both cases. Note that these cases are not frequent, and adaptive warm-up using

only the threshold of warm accesses often works well; but in some cases, this bias

severely degrades the accuracy of sampling, making the technique less robust.

4.3.2 Average Warm-up Size

So we need to avoid the shifting effect of adaptive warm-up, but at the same time,

we do need adaptive warm-up in order to adapt to variable SRAM sizes. In order

to reconcile both constraints, we proceed as follows. At each sample we measure

the number of intervals it takes to warm-up, necessary to pass the threshold, and

using all such measurements since the beginning of the execution, at any sample,

we compute the average warm-up size. At the next sample, we use this average

warm-up size as the warm-up length, independently of the threshold. After a few

samples, the average warm-up size stabilizes, and this is almost akin to a fixed-

size warm-up. As a result, performance measurement intervals are shifted by an

almost constant number of instructions, avoiding to bias the randomness of their

selection. Even though we do not factor in the threshold for stopping the warm-

up, we monitor it. In case the warm-up threshold has still not been reached after

the performance measurement interval, we let the performance simulation carry on

until the threshold is reached, see Figure 4.4, but we do not use the corresponding

111

intervals for performance measurement nor warm-up; they are simply used to allow

us to compute the new average warm-up size.

��������	

����
���
����
���
����
���

����
�

���	
������

���������	����

����
����
�����

��������	

����
����
����� ����
����
�����

������������ �������������

Figure 4.4: Computing the average warm-up size.

We found this approach to be robust and to bring the benefits of both worlds:

the almost constant warm-up size avoids to bias the selection of performance mea-

surement intervals, but the warm up size does depend on (automatically adapts to)

the size of SRAM structures.

4.3.3 Rolling Window

In theory, the aforementioned warm-up threshold, used to decide when the SRAM

structures are warm, is potentially architecture-dependent. Thus it should normally

be exposed to the user; however, we implemented a safeguard which allows to use a

fixed threshold whatever the size and number of SRAM structures.

The safeguard is that the fraction of warmed accesses is not computed based

on all intervals since warm-up started but based on a rolling window of intervals.

When we start our warm-up, all first accesses to the SRAM structure fields are

112 4. Transparent Statistical Sampling

��������	
��
�����
����
���

��	
����
�������

�
��
�
�	
��
�
�
�
�
�
�
�

�

����

�����
����
���

���	��
����������

Figure 4.5: Warm-up with rolling window.

cold accesses. However, the majority of these cold accesses will be concentrated

in the intervals occurring at beginning of our warm-up. Therefore if we calculate

our percentage of warm memory accesses since the beginning of the warm-up period,

they’ll include these initial cold accesses and we might take a long time to achieve our

warm-up threshold. Therefore instead of calculating the percentage of warm accesses

since the beginning of warm-up period, we calculate them over this rolling window

of latest intervals. In Figure 4.5, we see that, when the number of performance

simulated intervals is equal to the size of the rolling window, i.e., the window starts

rolling leaving the initial intervals behind, the fraction of warm accesses based on

the rolling window intervals starts to increase faster than the fraction based on all

intervals since the beginning of the sample. In other words, the large fraction of cold

accesses in the first few intervals has no impact after the rolling window has shifted,

and ultimately the fraction of warm accesses in the rolling window converges more

quickly to 100%.

113

4.4 Methodology

Processor SimpleScalar, out-of-order, 4 way

RUU/LSQ Size 16/8

Pipeline 5 stages

D-Cache/I-Cache 64KB, 2-way
32-byte block

Cache/Memory Latency 2/60 cycles

Memory Ports 2

Registers 32 Int, 32 FP

Functional Units 4 I-ALU, 1 I-Mult
4 F-ALU, 1 F-Mult
4 F-ALU, 1 F-Mult

I-TLB 16 4KB 4-way assoc blocks:lru

D-TLB 32 4KB 4-way assoc blocks:lru

Branch miss penalty 3 cycles miss lat

Table 4.1: Simulator configuration.

We used the SimpleScalar [12] 4-way out-of-order processor using the Alpha

ISA, see Table 4.1. We modified the architectural structures to render it compatible

with the TSE, by calling our SRAM library (which implements one bit for each line

of the cache structures).

We used the SPEC2000 [39] benchmark suite to evaluate our sampling tech-

nique. Both SPECINT and SPECFP programs were used with ref input sets. In

order to demonstrate the resilience of our technique to architectural changes, espe-

cially SRAM structure sizes, we vary the cache sizes from 8KB to 128KB. Detailed

simulations of the full benchmark suite (no sampling) are used to obtain the actual

CPI (Cycles Per Instruction) of the programs. The benchmarks used and some of

their characteristics are listed in Table 4.2. We can see that the benchmarks have

a range of characteristics, i.e., ones with high miss rate (mcf, art) to those with

lower ones (sixtrack, gap, mesa). We also note that the miss rate decreases with

the increase in cache size.

Later we also implement and test this mechanism in a PowerPC405 4.1 simulator

running the MiBench suite (shown in Table 4.3) to test how it fares on a different

architecture.

114 4. Transparent Statistical Sampling

Program # miss rate miss rate miss rate

intervals 8k 64k 128k

bzip 1.08878e+07 0.0339 0.0214 0.0188

crafty 1.91883e+07 0.0922 0.007 0.003

eon 8.06141e+06 0.03 0.0008 0.000

gap 2.69036e+07 0.0276 0.0165 0.0155

gcc.166 4.69177e+06 0.0829 0.073 0.0721

gcc.200 1.08626e+07 0.0622 0.04 0.0329

gzip 8.43674e+06 0.1118 0.0307 0.0091

mcf 6.18675e+06 0.4109 0.3927 0.3845

perlbmk 3.99293e+06 0.0322 0.0058 0.002

twolf 3.46485e+07 0.1082 0.0793 0.0701

vortex 1.18972e+07 0.0263 0.0106 0.0072

vpr 8.40688e+06 0.0783 0.0442 0.0378

ammp 3.26549e+07 0.0898 0.0641 0.0535

applu 2.23884e+07 0.139 0.1106 0.109

apsi 3.47923e+07 0.0834 0.044 0.0405

art 4.17954e+06 0.4024 0.4007 0.3993

equake 1.31519e+07 0.1837 0.1529 0.1484

facerec 2.11027e+07 0.0462 0.0377 0.0376

fma3d 2.68368e+07 0.073 0.0414 0.0408

galgel 4.09355e+07 0.1631 0.057 0.0549

lucas 1.42399e+07 0.1661 0.165 0.1649

mesa 2.81691e+07 0.0197 0.0047 0.0036

mgrid 4.19156e+07 0.1691 0.0679 0.0667

sixtrack 4.70949e+07 0.0142 0.0041 0.0041

swim 2.25831e+07 0.173 0.1729 0.1585

wupwise 3.49624e+07 0.0345 0.0278 0.0271

Table 4.2: Benchmarks characteristics (SPEC2K).

::::::

Unless
:::::::::::

otherwise
::::::::

stated,
:::

we
::::

use
::

a
::::::::::::::::::::

rolling window size
:::

of
::::

100
:::::

and
:::

10
:::

for
::::

the
:::::::

SPEC

::::

and
::::::::::

MiBench
::::::::::

programs
::::::::::::::

respectively,
:::::

and
:::::::

target
::

a
:::::::::

detailed
:::::::::::

simulation
::::::::::::

percentage
:::

of

::::

1%.

4.5 Experimental Results (SPEC2K)

In the previous sections we detailed our interval selection mechanism as well as

our warm-up methodology and how we were able to combine them together. In

this section we present the results when we put our transparent statistical sampling

technique into practice. In this section we focus only on the SPEC2K benchmark

suite and detail the results for MiBench in the next one. The experiments have been

115

Program # miss rate miss rate miss rate

intervals 4k 8k 64k

basicmath 83030 0.005407090 0.000740895 0.000005899

bfdec 20268 0.006585790 0.000201995 0.000000546

bfenc 20300 0.006585790 0.000201993 0.000000545

crc 68923 0.000909036 0.000000071 0.000000070

fft 75196 0.001069770 0.000499319 0.000236816

fft inv 74185 0.000941445 0.000526624 0.000251666

mad 9562 0.014158300 0.003221000 0.000046522

patricia 10026 0.012848500 0.005001850 0.000404798

qsort 16104 0.003586100 0.002839120 0.001848140

rijndenc 3509 0.143746000 0.017091900 0.000003417

rijnddec 3399 0.147234000 0.020521900 0.000004706

susan corner 421 0.004778040 0.002963450 0.002723390

susan edge 1327 0.005752560 0.002422630 0.001926980

susan smooth 77692 0.000808589 0.000312058 0.000009957

tiffbw 4119 0.016397900 0.015969600 0.000442368

tiffdither 19982 0.005737980 0.002974810 0.000007013

tiffmedian 14351 0.021464200 0.020735100 0.001540190

tiffrgba 3460 0.052524200 0.052445100 0.019427500

ispell 1 4550 0.010959900 0.005893440 0.003861380

Table 4.3: Benchmarks characteristics (MiBench).

conducted on the platform described in the last Section 4.4.

4.5.1 Simulation Time

Performance simulating whole benchmarks can be excruciatingly slow. It is orders of

magnitude slower than the functional simulation and much more slower than running

the benchmark on a real processor. A minute of execution time on a real processor

can translate into weeks of performance simulation on the fastest of the simulators.

But it’s still a necessary evil as we cannot get the performance measurements without

doing a detailed performance simulation. However we would like to keep the number

of performance simulated instructions to a minimum as it translates directly into

execution time.

In Transparent Sampling, we consider the fraction of total instructions to be

simulated. The simulator starts running the program in functional mode. The

simulation is partitioned in intervals of size N . At any interval, the TSE must

116 4. Transparent Statistical Sampling

decide if the next interval will be performance simulated (sample collected) or just

functionally simulated. For that purpose, it monitors the fraction of instructions

performance simulated so far FS , and the average warm-up size WS (in number of

intervals). Between two samples, as instructions are only functionally simulated,

FS decreases; when performance simulating instructions for a sample (warm-up and

measurement), FS increases.

Let F be the fraction of performance simulated instructions that the user re-

quested. F can be interpreted as the probability that one interval should be perfor-

mance simulated. However, when sampling is triggered, on average WS +1 intervals

are performance simulated: WS for warm-up + 1 for measurement. So, assum-

ing a uniform distribution of samples, the probability that a sample (warm-up +

measurement) is collected is F
(WS+1) .

F is actually the initial probability that a sample is triggered at the next interval.

As simulation progresses, the actual fraction of performance simulated instructions

FS will oscillate around F . If FS exceeds F , the number of samples should be

reduced, or conversely can be increased if FS is less than F . Therefore, we use F
(WS+1)

as the probability to sample at the next interval. WS is adjusted as a function of

FS and hence controls the simulation probability. Since the user-specified bound is

statistically enforced, the resulting number of performance simulated instructions

will not exactly match the bound, but we found that this criterion allows to fall

reasonably close in all cases.

Note that this sampling selection criterion is robust in spite of adaptive warm-up.

If the SRAM structures are large, WS will increase, as a result F
(WS+1) will decrease

resulting in fewer samples. Conversely, if the warm-up requirements are low, the

number of samples will be increased which will have a positive effect on accuracy,

while remaining within the simulation time bounds set by the user.

The percentage of performance simulated instructions is indicated in Figure 4.6.

117

Even though the TSE uses a statistical control mechanism, the percentage is suc-

cessfully maintained below 1.12% for all programs.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

bzip2

crafty

eon
gap

gcc166

gcc200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

fm
a3d

galgel

lucas

m
esa

m
grid

sixtrack

sw
im

w
upw

ise

avg

%
 p

e
rf

o
rm

a
n
c
e
 s

im
u
la

te
d
 i
n
s
ts

8k
64k

128k

Figure 4.6: % of performance simulated instructions (8KB, 64KB and 128KB
caches).

4.5.2 Warm-up length

We see in Figure 4.7 that as the size of SRAM structures increases the amount

of detailed simulation required per sample also increases. The figure shows the

systematic increase in the warm-up requirements of the architecture as the cache

size is increased from 8KB to 128KB. This strengthens our argument that the warm-

up needs to be adapted at run time to the architecture/program needs.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

bzip2

crafty

eon
gap

gcc166

gcc200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

fm
a3d

galgel

lucas

m
esa

m
grid

sixtrack

sw
im

w
upw

ise

avg

W
a
rm

-u
p
 l
e
n
g
th

 i
n
 #

 o
f
in

te
rv

a
ls

8k
64k

128k

Figure 4.7: Change in average warm-up length (8KB, 64KB and 128KB caches).

4.5.3 CPI Error

The CPI error is indicated in Figure 4.8 for all benchmarks and the three aforemen-

tioned cache sizes. We first note the low absolute average error, less than 2%, which

118 4. Transparent Statistical Sampling

is on par with the best sampling accuracy results [92, 110]. Moreover, this accuracy

is stable across all three cache sizes, and does not increase with the cache size: the

accuracy is 0.91% on average for 8KB, 1.47% for 64KB and 1.93% for 128KB. In

other words, the accuracy does not change much as the SRAM structure size in-

creases. To our knowledge, this is the first demonstration of an adaptive sampling

strategy that exhibits stable accuracy as architecture characteristics change.

 0

 2

 4

 6

 8

 10

 12

 14

bzip2

crafty

eon
gap

gcc166

gcc200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

fm
a3d

galgel

lucas

m
esa

m
grid

sixtrack

sw
im

w
upw

ise

avg

%
 C

P
I
e
rr

o
r

8k
64k

128k

Figure 4.8: CPI error (8KB, 64KB and 128KB caches).

The solid bars in the figure show the percentage CPI error. This is the percentage

difference between the CPI reported by the Transparent Sampling Engine and the

CPI for the same program when it is simulated entirely in detailed mode.

From the solid bars we see that even though the overall error is low, some pro-

grams such as vpr, apsi and gcc.166, have errors up to 7%. Note that some of

these programs are almost the smallest (in numbers of instructions) in their cate-

gories (gcc.166 and vpr). If a program has significant warm-up requirements and

the user has set a fixed percentage of simulation constraint, the TSE will adapt by

reducing the number of samples to accommodate for the longer warm-up. If a pro-

gram is small, the number of samples can become low enough to create a noticeable

statistical variability.

The lines on top of the solid error bars represent the Statistically Estimated Error

as described in the Section 4.2.1. This bar which represents the size of the confi-

dence interval provides an estimate of the reliability of our measure. The confidence

119

interval indicates the interval of the estimated CPI. The upper bound of the confi-

dence interval thus represents the estimated maximum CPI error. In Figure 4.8, one

can notice there is no line (corresponding to the confidence interval) on top of some

bars, for example eon. This occurs because either the real CPI is close to the upper

bound of the confidence interval, or because it is even beyond it. While the former

case is just the maximum error, the latter case can occur because the confidence

interval can only be estimated as explained in Section 4.2.1.

One good news is the observation that wherever the actual CPI error is high, it

is bounded by the Statistically Estimated Error. Since this error is reported to the

user at the end of the simulation, the user can have an idea about the correctness

of his result. A very large Statistically Estimated Error probably means that the

actual error is also quite high and the user needs to simulate again perhaps with

increased percentage simulation to have an accurate view. This is explained in the

next section.

4.5.4 Bounding the Error

 0

 2

 4

 6

 8

 10

bzip2

crafty

eon
gap

gcc.166

gcc.200

gzip
m

cf.source

perlbm
k

tw
olf

vortex

vpr.route

am
m

p

applu

apsi
art

equake

facerec

fm
a3d

galgel

lucas

m
esa

m
grid

sixtrack

sw
im

w
upw

ise

avg

%
 C

P
I
e
rr

o
r

2
%

1
0
%

2
%

5
%

2
%

1
.6

%

8k

5
%

2
%

1
0
%

5
%

2
%

5
%

2
%

5
%

2
.0

8
%

64k

5
%

5
%

1
0
%

1
0
%

2
%

2
%

5
%

5
%

2
%

2
.1

2
%

128k

Figure 4.9: TS after iterating, with 5% error target (% CPI error).

While it is likely that a user would start with a low percentage of performance

simulated instructions (time) objective, the user may also want to set accuracy ob-

jectives if they are not met by the initial simulation percentage. By taking advantage

of the estimated confidence interval, a user can iteratively increase the percentage

120 4. Transparent Statistical Sampling

of performance simulated instructions until the desired time/accuracy trade-off is

reached. We illustrate this process below by setting a target of 5% maximum error

for the Statically Estimated Error (10% confidence interval size), and apply this

iterative process to all benchmarks whose confidence interval with 1% simulation

was greater than 10%.

For each cache benchmark pair, we individually increase the percentage of perfor-

mance simulated instructions to 2%, 5% and 10% until our accuracy goal is reached.

In Figure 4.9, we show the resulting error and confidence interval, using 1% perfor-

mance simulated instructions and when applying the iterative process; the target

fraction of instructions used is indicated on top of each bar when it is different from

1%. We see that for gcc.166 mcf and vpr, with a simulation of 10%, 2% and 2%

respectively the confidence intervals are significantly reduced and the accuracy has

improved as well.

4.5.5 Fixed Warm-up

As mentioned in Section ??, the main other alternative to adaptive warm-up, re-

quiring no functional simulator modification, and compatible with frequent target

program modifications, would be to use a fixed warm-up combined with sampling.

In Figures 4.10 and 4.11, we evaluate three fixed warm-up sizes: 10, 100 and 1000

intervals. The x-axis of the figures show the average values first for groups of fp

and int benchmarks and then the combined average for all three cache sizes. While,

for any architecture, there exists a sweet spot where the fixed warm-up size would

realize a good accuracy/simulation time trade-off, such as 100 intervals in this case,

the approach is not robust. As the architecture characteristics change (e.g., larger

caches), the warm-up size can become underestimated and result in large CPI er-

ror. As the 10-interval warm-up results show in Figure 4.10: it performs well for

small caches (8KB), but poorly for medium and large caches (64KB and 128KB).

121

Conversely, the warm-up size can be overestimated, and significantly increase the

simulation time, as the 1000-interval warm-up results show in Figure 4.11.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

FP 8k

FP 64k

FP 128k

IN
T 8k

IN
T 64k

IN
T 128k

Avg 8k

Avg 64k

Avg 128k

%
 C

P
I

e
rr

o
r

Fixed 10
Fixed 100

Fixed 1000
TS

Figure 4.10: TS vs. fixed warm-up (% CPI error).

4.5.6 Interval Size

Figures 4.12 and 4.13 respectively show the CPI error and the warm-up length in

number of instructions when varying the interval size from 1,000 instructions to

1,000,000 instructions for 64KB caches. The counter-intuitive best choice is to use

a small interval size of 10,000 or 100,000 instructions (we use 10,000 instructions

throughout this study). It is counter-intuitive because the smaller the intervals, the

higher the fraction of performance simulated instructions used for warm-up rather

than measurement, since the warm-up size is constrained by the SRAM structures.

However, small intervals enable to achieve higher accuracy by multiplying the num-

ber of samples. This trade-off underlines that it is necessary to dedicate most of

the performance simulation time to warm-up rather than measurement. Note that

the 1,000-instruction intervals provide no significant benefit in simulation time at a

noticeable cost in accuracy. While the results are only shown for 64KB caches, they

122 4. Transparent Statistical Sampling

 0

 2

 4

 6

 8

 10

 12

 14

 16

FP 8k

FP 64k

FP 128k

IN
T 8k

IN
T 64k

IN
T 128k

Avg 8k

Avg 64k

Avg 128k

%
 p

e
rf

o
rm

a
n

c
e

 s
im

u
la

te
d

 i
n

s
ts

Fixed 10
Fixed 100

Fixed 1000
TS

Figure 4.11: TS vs. fixed warm-up (% performance simulated instructions).

Figure 4.12: Impact of interval size (% CPI error).

Figure 4.13: Impact of interval size (% performance simulated instructions).

are consistent across all cache sizes and benchmarks.

123

4.6 Experimental Results (MiBench)

As described earlier, one of our goals was to develop a robust technique which

performs well on all architectures. To this intent, Figures 4.14 and 4.15 show the re-

sult of applying the statistical representative sampling to MiBench programs on the

PPC405 simulator. The first thing to point out from Figure 4.14 is that Transparent

Statistical Sampling does a pretty good job of estimating the program performance.

This can be seen in the low average error rates (2.96%, 1.67%, and 1.62% for cache

size of 4KB, 8KB, and 64KB respectively). A couple of benchmarks susan edge and

tiffrgba show high performance estimation errors (17% and 20% for 4KB cache

respectively). When we get down into details to investigate the matter, we see that

the small lengths of the MiBench benchmarks play an important role. MiBench pro-

grams are more than 100x smaller than the SPEC2K ones on average. Since we try

to limit the percentage of detailed simulation to within 1% of the program size, we

simulate only a small amount in detail. Therefore we manage to collect only a few

samples for these small-sized benchmarks. Table 4.4 shows this by listing the total

number of intervals for each program as well as the number of samples collected for

each cache size. We see that for very few benchmarks the number of samples is more

than 100 and for some it is even in single digits. Such is the case for susan edge

and tiffrgba with 2 and 8 samples respectively. Having very few samples can

not only provided a distorted measure for program performance but also it renders

the statistical confidence interval calculations (Statistically Estimated Error) mean-

ingless. As discussed at the end of section 4.2.1 and shown in Figure 4.3, having

too few measurements to calculate the confidence interval does not satisfy the nor-

malcy assumptions of the Central Limit Theorem and therefore can give erroneous

resluts. This the reason we see absurdly high confidence intervals for susan edge

and tiffrgba. The statistically estimated error is 75% for susan edge for 4KB

cache and 52.5% and 46% for tiffrgba in 4KB and 8KB cache configurations re-

124 4. Transparent Statistical Sampling

Program intervals 4k samples 8k samples 64k samples

basicmath 83030 193 133 119

bfdec 20268 48 35 42

bfenc 20300 29 28 35

crc 68923 232 232 235

fft 75196 238 194 150

fft inv 74185 238 186 122

mad 9562 21 14 3

patricia 10026 23 10 9

qsort 16104 43 34 26

rijndenc 3509 9 6 8

rijnddec 3399 5 3 6

susan corner 421 1 1 2

susan edge 1327 2 2 2

susan smooth 77692 216 186 198

tiffbw 4119 11 7 5

tiffdither 19982 49 31 14

tiffmedian 14351 33 24 14

tiffrgba 3460 8 5 6

ispell 14550 48 24 12

avg 27389.68 76.16 60.79 53.05

Table 4.4: Number of samples for statistical sampling on MiBench.

spectively. Similarly susan corner has a confidence interval of size 0, not because

it estimates the program performance exaclty but because it has only one sample.

 0

 10

 20

 30

 40

 50

basicm
ath

bfdec

bfenc

crc
fft fft_inv

m
ad

patricia

qsort

rijndenc

rijnddec

susan_corner

susan_edge

susan_sm
ooth

tiffbw
tiffdither

tiffm
edian

tiffrgba

ispell

avg

%
 C

P
I
e
rr

o
r

4k
8k

64k

Figure 4.14: CPI error (4KB, 8KB and 64KB caches).

Nevertheless we try to iteratively increase the percentage of performance simu-

lated instructions hoping to lower the statistically estimated error below 5% as we

did in the previous section. Figure 4.16 shows the result. Though we succeed in

most of the cases, we can still see that for susan edge and tiffrgba, even after

125

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

basicm
ath

bfdec

bfenc

crc
fft fft_inv

m
ad

patricia

qsort

rijndenc

rijnddec

susan_corner

susan_edge

susan_sm
ooth

tiffbw
tiffdither

tiffm
edian

tiffrgba

ispell

avg

%
 p

e
rf

o
rm

a
n
c
e
 s

im
u
la

te
d
 i
n
s
ts

4k
8k

64k

Figure 4.15: % of performance simulated instructions (4KB, 8KB and 64KB caches).

having simulated 30% of the program in detail, we could only reduce the statistically

estimated error to 10%.

 0

 10

 20

 30

 40

 50

basicm
ath

bfdec

bfenc

crc
fft fft_inv

m
ad

patricia

qsort

rijndenc

rijnddec

susan_corner

susan_edge

susan_sm
ooth

tiffbw
tiffdither

tiffm
edian

tiffrgba

ispell

avg

%
 C

P
I
e
rr

o
r

5
%

2
0
%

2
%

3
0
%

3
0
%

5
%

4k

5
%

2
0
%

2
%

3
0
%

3
0
%

5
%

5
%

8k

1
0
%

2
%

2
%

2
%

2
0
%

3
0
%

2
%

3
.7

%

64k

Figure 4.16: CPI error after iterating (4KB, 8KB and 64KB caches).

4.7 Warm-up Parameters

We discussed in Section 4.3.2 the shifting effect of SMA style adaptive warm-up

and how it biases the selection of performance simulated intervals towards certain

portions of the program. We also described how we had to devise the method of

using average warm-up length for measurements in order to avoid this. We now

show the effect of this biased selection on the CPI error.

126 4. Transparent Statistical Sampling

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

basicm
ath

bfdec

bfenc

crc
fft fft_inv

m
ad

patricia

qsort

rijndenc

rijnddec

susan_corner

susan_edge

susan_sm
ooth

tiffbw
tiffdither

tiffm
edian

tiffrgba

ispell

avg

W
a
rm

-u
p
 l
e
n
g
th

 i
n
 #

 o
f
in

te
rv

a
ls

4k
8k

64k

Figure 4.17: Average warm-up length (4KB, 8KB and 64KB caches).

The Figure 4.18 shows the CPI error for different benchmarks for all the three

cache sizes when we use only SMA as our warm-up criterion without the average

warm-up length. We can see that while it works for most of the benchmarks, gcc.166

shows an error of about 13% for a 64k cache and art exhibits an enormous error

of 25% for an 8k cache. These two cases justify our introduction of the average

warm-up length.

 0

 2

 4

 6

 8

 10

 12

 14

bzip2

crafty

eon
gap

gcc.166

gcc.200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

fm
a3d

galgel

lucas

m
esa

m
grid

sixtrack

sw
im

w
upw

ise

avg

%
 C

P
I
e
rr

o
r

8k
64k

128k

Figure 4.18: TS using only warm-up threshold (% CPI error).

Figure 4.19 shows that the percentage of detailed simulated instructions was still

controlled to 1%.

127

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

bzip2

crafty

eon
gap

gcc.166

gcc.200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

fm
a3d

galgel

lucas

m
esa

m
grid

sixtrack

sw
im

w
upw

ise

avg

%
 p

e
rf

o
rm

a
n
c
e
 s

im
u
la

te
d
 i
n
s
ts

8k
64k

128k

Figure 4.19: TS using only warm-up threshold (% performance simulated instruc-
tions).

4.7.1 Rolling Window Size

Section 4.3.3 describes why we need to calculate the percentage of warm accesses over

a rolling window instead of since the beginning of warm-up. Achieving the warm-

up threshold faster lets us spend less time in warm-up and more time gathering

performance measurements when we are constrained by our simulation budget.

We needed to decide the length of this rolling window and decided to settle for a

rolling window of 100 intervals. Figures 4.20 and 4.21 show the effect of varying the

rolling window size on the percentage CPI error and the average warm-up length

respectively.

 0

 2

 4

 6

 8

 10

 12

 14

bzip2

crafty

eon
gap

gcc.166

gcc.200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

fm
a3d

galgel

lucas

m
esa

m
grid

sixtrack

sw
im

w
upw

ise

avg

%
 C

P
I
e
rr

o
r

10
100

10k(infinite)

Figure 4.20: Varying the size of Rolling Window (Error).

The Figure 4.21 shows the change in warm-up length for the benchmarks as we

vary the rolling window size from 10 and 100 intervals to infinite. We can clearly see

128 4. Transparent Statistical Sampling

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

bzip2

crafty

eon
gap

gcc.166

gcc.200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

fm
a3d

galgel

lucas

m
esa

m
grid

sixtrack

sw
im

w
upw

ise

avg

W
a
rm

-u
p
 l
e
n
g
th

 i
n
 #

 o
f
in

te
rv

a
ls

10
100

10k(infinite)

Figure 4.21: Varying the size of Rolling Window (Warm-up length).

that in the absence of a rolling window (infinite case), the effect of initial cold misses

is extremely pronounced on the warm-up length. This is demonstrated by the long

bars showing much longer average warm-up lengths compared to the rolling window.

Indeed, the average average warm-up length is four time longer (542 intervals) than

when using a rolling window of 100 (134 intervals). This results in a corresponding

reduction in the number of samples and a higher error, as shown in the figure 4.20.

One good news is that, though the increase in average warm-up length and the

corresponding decrease in number of samples is manifold, the change in average

performance error is not that great. This means that even with a rolling window of

100 intervals we should be able to achieve the same performance with fewer samples.

Though the smaller rolling window of 10 intervals results in low average warm-up

lengths and hence more number of samples, we found that, in many cases, it was

still sensitive to variations in warm-up linked to program regions and caused more

error than a rolling window of 100 intervals.

4.7.2 Warm-up Threshold

In Section 4.3.3 we indicate that we need to attain a threshold of percentage warm

accesses before we take our measurement. One criterion we considered was: when do

129

we stop the warm-up and take the performance measurement? The obvious answer

is: when the microarchitecture is completely warm and all accesses done by the

program are warm accesses. The problem with this approach is that it takes much

longer to achieve a complete warm-up then it takes to achieve an almost complete

warm-up.

We need to know when the warm-up is finished in order to calculate the average

warm-up length. We had to choose a warm-up threshold, to be attained each time

we take a sample, such that it eliminated most of the bias caused by cold misses and

did not cause too much performance simulation. To that purpose, we tried different

warm-up thresholds. Figure 4.22 shows how the CPI error percentage for warm-up

thresholds of 95%, 99.9% and 100%. As can be seen 95% of warm-up is not enough

in most of the cases and causes an average error of 14% over all benchmarks. What

was surprising was that a warm-up of 100% performs less than that of 99.9%. This

is explained by the fact that the simulator has to simulate for a long time each time

it tries to achieve the 100% threshold. This results in a longer average warm-up

length. This can be seen in Figure 4.23 where a warm-up threshold of 100% causes

the average warm-up length to treble as compared to that of 99.9%. Since we have

a mechanism in place to regulate the number of performance simulated instructions

is mentioned in Section 4.5.1, this results in fewer samples and thus the accuracy of

the result is affected. The most flagrant example is perlbmk whose average warm-up

length increases tenfold resulting in a corresponding 10x decrease in the number of

samples and a corresponding increase in performance estimation error.

4.8 Conclusion

In this chapter, we present Transparent Statistical Sampling, a sampling technique

that reconciles sampling and warm-up techniques by delivering state-of-the-art ac-

curacy and simulation time, while remaining easily accessible to end users.

130 4. Transparent Statistical Sampling

 0

 5

 10

 15

 20

 25

 30

bzip2

crafty

eon
gap

gcc.166

gcc.200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

fm
a3d

galgel

lucas

m
esa

m
grid

sixtrack

sw
im

w
upw

ise

avg

%
 C

P
I
e
rr

o
r

95%
99.9%
100%

Figure 4.22: Effect of varying warm-up threshold (Error).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

bzip2

crafty

eon
gap

gcc.166

gcc.200

gzip
m

cf
perlbm

k

tw
olf

vortex

vpr
am

m
p

applu

apsi
art

equake

facerec

fm
a3d

galgel

lucas

m
esa

m
grid

sixtrack

sw
im

w
upw

ise

avg

W
a
rm

-u
p
 l
e
n
g
th

 i
n
 #

 o
f
in

te
rv

a
ls

95%
99.9%
100%

Figure 4.23: Effect of varying warm-up threshold (Warm-up length).

The contributions of this work can be viewed from the following angles. One, it

proposes to combine the statistical sampling with the latest warm-up methodology.

Secondly, in combining SMA with statistical sampling, it discovers the bias intro-

duced by the adaptive warm-up in the selection of intervals and proposes a method

to bypass this defect.

Transparent Statistical Sampling achieves a CPI error of 1.47% with 20.7 million

performance simulated instructions (1%) on average for 64K caches.

We demonstrated the resilience of this technique to program and architecture

changes by testing it on SimpleScalar/SPEC2K and PPC405/MiBench combinations

for three different cache sizes each. Though the results for MiBench programs are

131

slightly inferior than those for SPEC2K program, we believe that the small lengths

of the MiBench programs are to blame. They do not run long enough to give us

time to collect enough number of samples to do meaningful statistical calculations.

Encouraged by the results, we intend to further this work by testing its applica-

bility on different other microarchitectural structures like branch predictors, TLBs

and multi-level caches. Also, we’d like to explore the working of this technique in

the context of multi-core architectures.

132 4. Transparent Statistical Sampling

133

Chapter 5

Conclusion

In this chapter we recapitulate and conclude the discussion proffered in the preceding

chapters and provide directions for future extensions in which this work can be

extended.

5.1 Summing it up

As shown in previous literature and demonstrated by the discussion in this docu-

ment, we conclude that Sampling indeed is an effective technique in that it manages

to reduce simulation times with a minimum loss in the accuracy of the results.

Both representative and statistical sampling techniques have been shown to pro-

vide acceptable results, though the latter more so.

Representative Sampling. While the representative sampling analyzes the

code to intelligently select samples from the program execution, it requires to do a

pass on the executed instruction stream to identify the representative portions of

the program. Attempts to do online phase classification have been less successful as

they do not have the whole picture in front of them when clustering program inter-

vals. This results in greater than optimal number of clusters and correspondingly

increased detailed simulation which directly affects simulation time. The online im-

134 5. Conclusion

plementation limitations of representative sampling encourages the need to explore

other techniques, like statistical sampling.

Statistical Sampling. The ability of statistical sampling to not to require

a pre-analysis makes it a strong candidate for online implementation of sampling.

Without any prior knowledge of the characteristics of program execution, in this type

of sampling, intervals are selected randomly for detailed simulation. Each interval

has an equal probability of selection. Another advantage of this approach is that it

can rely on statistical theory to provide confidence estimates in the reliability of the

results. Furthermore, these statistical measures can be tweaked to achieve a desired

compromise between performance accuracy and simulation times. In our experi-

ments we found the statistical sampling technique to deliver superior performance

when compared to an online implementation of representative sampling.

Phase Prediction. While attempting to implement an online representative

sampling technique, we experimented with online phase classification and prediction.

We noted that the quality of online phase characterization was inferior to that of its

off-line counterpart. This was expected as the off-line analysis entails analysis of the

whole program instruction stream before it starts classification whereas an online

method has visibility only until the present moment. As this online classification

produces too many phases, this also affects the phase prediction mechanism. Phase

prediction is needed in order to prepare in advance (warm-up) for the desired interval

to sample. A large number of phases detected would result in more combinatorial

sequences of phases and thus make them harder to predict. Thus we were forced

to use heuristics, such as to cut off phases with negligible weight, to decrease the

number of phases and improve their predictability. Secondly, as we need to predict a

phase many intervals before it actually occurs, we need to guess the IDs of multiple

consecutive future phases. The prediction accuracy decreases as we try to predict

more and more farther than our current location. Low prediction accuracies can

135

severely degrade the simulation times as we would be simulating intervals in detail

when we should not be.

Warm-up. Warm-up, achieving the correct simulator state before sampling, is

still a relevant issue. Especially for small-sized intervals, we observed that not having

the correct micro-architectural state can skew the performance measurements to a

degree which is unacceptable. Despite recently developed good warm-up techniques

(MRRL, BLRL, SMA), not all of them let themselves adaptable to online sampling

techniques easily. We, ourselves, could only find SMA to suite our requirements. An

often cited argument against the relevance of warm-up is that choosing sufficiently

large intervals obliterates the need for warm-up at all. The case for large intervals

is weakened by the observation that due to their size there has to be only a few of

them in order to restrain the simulation time. This low number of simulated intervals

renders the statistically calculated confidences meaningless. Therefore, instead of

random selection, intervals have to be chosen intelligently for detailed simulation.

This often requires a pre-analysis of program instruction stream to identify the most

suitable candidates. Secondly, the effect of warm-up depends upon the architectural

parameters and it is not clear how large an interval should be to nullify warm-

up bias for a particular architecture. Another type of warm-up, called functional

warm-up, as we mentioned previously, exposes the user to implementation details.

We proposed an adaptive warm-up strategy which adjusts the detailed simulation

needed for warm-up dynamically as a function of program/architecture needs.

Usability. In designing our sampling approach, the ease of use for the end user

was one of our prime concerns. Figuring out parameter values for each hardware/-

software configuration exposes the end user to implementation details. Thus, for

the architects already overwhelmed by design problems, this added complexity of

using a simulation technique may prove a detriment to technique adoption. Keep-

ing in view this requirement, we designed a sampling mechanism which adapts to

136 5. Conclusion

a given hardware/software configuration and needs minimal user intervention. The

only modification to the simulator is addition of a bit to each SRAM entry. To this

end we provide a class library from which the user might inherit his structures and

thats all what is needed to plug in. This one class would suffice for all SRAM based

structures.

5.2 Future Directions

We propose an adaptive sampling strategy to reduce simulation times. While we

have demonstrated its effectiveness in some limited scenarios, it is to be seen how

far this approach can be extended. Below we discuss a few areas in which this work

could be complemented and extended.

Effect of independent events. When simulating a benchmark on a simulator,

sampling can effectively capture the program performance. However, a simulator

may model hardware events which affect performance but which the sampling tech-

nique may not be conscious of. Examples may include DRAM refreshes which may

delay the completion of memory requests or the processor being interrupted by a

communicating peripheral. These events affect the program runtime but may not be

captured by sampling. Representative sampling, which analyzes the executed code

to identify representative intervals for simulation, is especially affected because these

events occur independent of the program. The low number of intervals simulated in

detail may miss these instances. Similarly for systematic sampling, if the time pe-

riod of the sampling is a multiple of that of these events, it may sample too many of

such events or miss them altogether thus under- or overstating the IPC. Wunderlich

et al. [110] claim having verified that there is no such regular repetition in program

characteristics but they do not take into account such events which are transparent

to the executing code. In our simulations we observed that DRAM refreshes occur

at regular intervals and can affect performance. We believe that random sampling,

137

if used in such scenarios, should be an effective solution.

A related issue is that often simulated benchmarks are tested in isolation, i.e.,

only the benchmark is executing on the simulated processor. This is in contrast

to real life scenarios where the application shares the processor with other applica-

tions and the operating system. The effect of the operating system environments

[21] on application performance has been documented. We intend to extend our

sampling approach to full-system simulation to quantify how it performs in an en-

vironment where the applications are continuously interrupting each other and also

being interrupted by peripherals.

Multicore Sampling. Computer industry has chosen the multicore road for

its future, for better or for worse remains to be seen. With the advent of multicore

chips, the process of porting the software to these parallel architectures has already

begun. We’ll be seeing more and more of parallel programs and benchmarks. The

original roadmap of this thesis, unachieved due to slow progress and time constraints,

included devising sampling strategies of multicore simulations. Sampling is easier to

implement on single core processors because it is simple to fastforward the program

execution from one point to another. Indeed, the strength of sampling lies in its

ability to execute most of the program in fastforward mode. Multicore chips execut-

ing many processes/threads in parallel bring non-determinism into the equation. In

detailed cycle accurate mode, different portions of concurrent threads can overlap

with each other in different ways causing different access pattern contentions and

result in different performances. A slight difference in the ordering of instructions

can result in another thread taking hold of the mutex/lock first, changing the entire

flow of execution after that point. This may completely alter the performance seen.

During functional fastforward mode, a simulator has no idea which instructions of a

thread would overlap in execution with which ones of another determining their rel-

ative execution speeds. Thus it does not know how much to fastforward each thread

138 5. Conclusion

relative to others. This proposes an interesting problem for the implementation of

sampling in multicore simulators.

Previously, there have been attempts [102] to apply representative sampling to

multi-context processors. The proposed co-phase scheme identifies phases individ-

ually in each thread and then tries to sample all co-occurring phase combinations

among threads. It is a very limited approach. As the number of threads increases,

the number of co-phases explodes. This makes trying to simulate each co-phase

combination an unrealistic option. Furthermore, this approach assumes the same

behaviour for each occurrence of a co-phase, however a different ordering of instruc-

tions within a co-phase can produce different results.

SimFlex [107] attempts the statistical sampling of parallel workloads. They

attempt to randomly sample transactions and concentrate only on the user-mode

instructions as their retirement rate shows less variation than the actual transaction

completion rate. By ignoring the system part of the execution they are completely

cutting off the effects of the operating system execution which can have a consider-

able effect on the performance of the system.

We believe that multicore simulation presents an opportunity to test and demon-

strate the usefulness of statistical sampling techniques. Enough randomly simulated

samples should be able to capture all interleavings of the instructions of different

processes executing in parallel. The sheer nature of the random coupling of threads

and the interleavings of their instructions makes random sampling a good candidate.

Using small sized intervals permits increasing the number of samples and capture

fine-grained interactions between different threads. Increased number of samples

can help provide good confidence in the performance measures. It needs to be seen

whether we should stop simulating when a system-wide confidence interval has been

achieved or we should wait for the measurements from each thread to attain a steady

state.

139

For the fastforwarding part, there have been heuristics, i.e. fastforward each

thread based on its average or most recent IPC. These can be combined with existing

techniques like direct execution to fastforward the threads by executing them on

the host processors. Fastforwarding using the host processors is much faster than

fastforwarding in a simulator. Thus it may help alleviate multicore simulation times.

For the warm-up part, we believe that the SMA-style warm-up applied in this

work shall work fine for multicore simulations as well. The same technique of adding

a warm-up bit to SRAM entries can be extended across cores. A point of discussion

may be whether each thread should have its own warm-up threshold, or a system-

wide warm-up threshold be used, or a combination of the two. Again, exploration

has to be done to verify the effect of each of these conditions.

Another approach which can help is hardware execution. FPGAs can be of

assistance in fastforwarding the portions of program which are not needed for de-

tailed simulations. Simulators are being implemented in FPGAs such as the RAMP

project at University of Texas at Austin which implements a platform to simulate

multi-processor set-ups. The flexibility of the FPGAs and their clock speeds make

then an interesting alternative for multicore simulators, as simulator parallelization

has yet to have a break through.

Simulation acceleration. Finally, the author believes that the simulation ac-

celeration problem is a multifaceted one. The complexity of modern architectures

and the size of programs render achieving accurate estimates of performance in

reasonable time much difficult. Therefore, relying on one method of simulation ac-

celeration might not be the right choice. Instead, it is recommended to combine

the strengths of different techniques in a synergistic manner. For example, sampling

is good but with the increasing sizes of benchmark programs, the bottleneck will

soon be the execution of the functional portion of the program. This would need

faster simulators. FPGAs are a good alternative. Though having a little steep learn-

140 5. Conclusion

ing curve, they should be able to provide much faster fastforwarding than software

based simulators. Similarly, there are portions of simulated architectures that are

not very complex to model. Using analytical modeling techniques to model rela-

tively simple structures would also relieve some burden from the simulators. Using

random sampling is also encouraged due to its simplicity of implementation and also

because statistical confidence measures are a useful indication of the correctness of

the sampling process. Such a hybrid approach which draws on the strengths of all

these techniques can provide a useful way to keep up with the increasing difficulty

of the simulation task.

141

Bibliography

[1] M. Annavaram, R. Rakvic, M. Polito, J. yves Bouguet, R. Hankins, and B. Davies. The

fuzzy correlation between code and performance predictability. In In Proceedings of the 37th

International Symposium on Microarchitecture (MICRO), pages 93–104, 2004.

[2] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega. Cotson: infrastructure

for full system simulation. SIGOPS Oper. Syst. Rev., 43(1):52–61, 2009.

[3] I. ARM Holdings. Advanced risc machine, arm holdings, inc. http://www.arm.com/.

[4] D. August, J. Chang, S. Girbal, D. Gracia Pérez, G. Mouchard, D. Penry, O. Temam, and

N. Vachharajani. UNISIM: An open simulation environment and library for complex architec-

ture design and collaborative development. Computer Architecture Letters (CAL), 6(2):45–48,

2007.

[5] T. Austin. Position paper for the 2001 nsf workshop on computer performance evaluation

techniques. Computer, 2001.

[6] M. aware Floorplanning, V. Nookala, D. J. Lilja, and S. S. Sapatnekar. Comparing simulation

techniques for.

[7] R. Azimi, M. Stumm, and R. W. Wisniewski. Online performance analysis by statistical

sampling of microprocessor performance counters. In ICS ’05: Proceedings of the 19th annual

international conference on Supercomputing, pages 101–110, New York, NY, USA, 2005. ACM.

[8] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas. Memory hierar-

chy reconfiguration for energy and performance in general-purpose processor architectures.

In MICRO 33: Proceedings of the 33rd annual ACM/IEEE international symposium on Mi-

croarchitecture, pages 245–257, New York, NY, USA, 2000. ACM.

[9] K. C. Barr, H. Pan, M. Zhang, and K. Asanovi. Accelerating multiprocessor simulation with

a memory timestamp record. In In ISPASS-2005, pages 66–77, 2005.

142 BIBLIOGRAPHY

[10] B. Black and J. Shen. Calibration of microprocessor performance models. Computer, 31(5):59

–65, may. 1998.

[11] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level power

analysis and optimizations. In In Proceedings of the 27th Annual International Symposium

on Computer Architecture, pages 83–94, 2000.

[12] D. Burger, T. M. Austin, and S. Bennett. Evaluating Future Microprocessors: The Sim-

pleScalar Tool Set. Technical Report CS-TR-1996-1308, 1996.

[13] H. W. Cain. Precise and accurate processor simulation, 2002.

[14] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, G. Fursin, and O. T. O. Hipeac. Automatic

performance model construction for the fast software exploration of new hardware designs.

In In ACM International Conference on Compilers, Architecture and Synthesis for Embedded

Systems, pages 24–34, 2006.

[15] D. Citron. Misspeculation: partial and misleading use of spec cpu2000 in computer architec-

ture conferences. In ISCA ’03: Proceedings of the 30th annual international symposium on

Computer architecture, pages 52–61, New York, NY, USA, 2003. ACM.

[16] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing State Loss For Effective Trace

Sampling of Superscalar Processors. In ICCD ’96: Proceedings of the 1996 International

Conference on Computer Design, VLSI in Computers and Processors, pages 468–477. IEEE

Computer Society, 1996.

[17] H. Cook and K. Skadron. Predictive design space exploration using genetically programmed

response surfaces. In DAC ’08: Proceedings of the 45th annual Design Automation Conference,

pages 960–965, New York, NY, USA, 2008. ACM.

[18] H. Cook and K. Skadron. Predictive design space exploration using genetically programmed

response surfaces. In DAC ’08: Proceedings of the 45th annual Design Automation Conference,

pages 960–965, New York, NY, USA, 2008. ACM.

[19] P. Crowley and J.-L. Baer. On the use of trace sampling for architectural studies of desktop

applications. SIGMETRICS Perform. Eval. Rev., 27(1):208–209, 1999.

[20] S. Dasgupta. Experiments with random projection. In UAI ’00: Proceedings of the 16th

Conference on Uncertainty in Artificial Intelligence, pages 143–151, San Francisco, CA, USA,

2000. Morgan Kaufmann Publishers Inc.

143

[21] R. Desikan, D. Burger, and S. W. Keckler. Measuring experimental error in microproces-

sor simulation. In ISCA ’01: Proceedings of the 28th annual international symposium on

Computer architecture, pages 266–277, New York, NY, USA, 2001. ACM.

[22] A. Dhodapkar and J. Smith. Comparing program phase detection techniques. pages 217 –

227, dec. 2003.

[23] A. S. Dhodapkar and J. E. Smith. Managing multi-configurable hardware via dynamic working

set analysis. In In 29th Annual International Symposium on Computer Architecture, pages

233–244, 2002.

[24] C. Dubach, T. Jones, and M. O’Boyle. Microarchitectural design space exploration using an

architecture-centric approach. In MICRO 40: Proceedings of the 40th Annual IEEE/ACM

International Symposium on Microarchitecture, pages 262–271, Washington, DC, USA, 2007.

IEEE Computer Society.

[25] P. K. Dubey and R. Nair. Profile-driven generation of trace samples. In ICCD ’96: Pro-

ceedings of the 1996 International Conference on Computer Design, VLSI in Computers and

Processors, pages 217–224, Washington, DC, USA, 1996. IEEE Computer Society.

[26] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and predicting program

behavior and its variability. In PACT ’03: Proceedings of the 12th International Conference

on Parallel Architectures and Compilation Techniques, page 220, Washington, DC, USA, 2003.

IEEE Computer Society.

[27] L. Eeckhout and K. De Bosschere. Efficient simulation of trace samples on parallel machines.

Parallel Comput., 30(3):317–335, 2004.

[28] L. Eeckhout, Y. Luo, K. De Bosschere, and L. K. John. BLRL: Accurate and Efficient

Warmup for Sampled Processor Simulation. The Computer Journal, 48(4):451–459, 5 2005.

[29] L. Eeckhout, S. Nussbaum, J. Smith, and K. De Bosschere. Statistical simulation: adding

efficiency to the computer designer’s toolbox. Micro, IEEE, 23(5):26 – 38, sep. 2003.

[30] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. Workload design: Selecting rep-

resentative program-input pairs. In In Proceedings of International Conference on Parallel

Architectures and Compilation Techniques, pages 83–94, 2002.

[31] M. Ekman and P. Stenstrom. Enhancing multiprocessor architecture simulation speed using

matched-pair comparison. In In Proceedings of the International Symposium on Performance

Analysis of Systems and Software, pages 89–99, 2005.

144 BIBLIOGRAPHY

[32] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S. Mukherjee, H. Patil,

S. Wallace, N. Binkert, R. Espasa, and T. Juan. Asim: A performance model framework.

Computer, 35(2):68–76, 2002.

[33] A. Falcon, P. Faraboschi, and D. Ortega. Combining simulation and virtualization through dy-

namic sampling. Performance Analysis of Systems and Software, IEEE International Symm-

posium on, 0:72–83, 2007.

[34] A. P. Falsafi, S. Chen, and S. Chen. Direct smarts: Accelerating microarchitectural simulation

through direct execution. Technical report, 2004.

[35] D. Gracia Pérez, H. Berry, and O. Temam. Budgeted region sampling (BeeRS): do not

separate sampling from warm-up, and then spend wisely your simulation budget. International

Symposium on Signal Processing and Information Technology, 0:1–6, 2005.

[36] D. Gracia Pérez, H. Berry, and O. Temam. Iddca: A new clustering approach for sampling.

In International Workshop on Modeling, Benchmarking, and Simulation (MoBS), 2005.

[37] D. Gracia Pérez, G. Mouchard, and O. Temam. MicroLib: A Case for the Quantitative

Comparison of Micro-Architecture Mechanisms. In MICRO-37: Proceedings of the 37th In-

ternational Symposium on Microarchitecture, pages 43–54. IEEE Computer Society, 2004.

[38] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.

Mibench: A free, commercially representative embedded benchmark suite. In Workload Char-

acterization, 2001. WWC-4. 2001 IEEE International Workshop on, pages 3–14, 2001.

[39] J. L. Henning. Spec cpu2000: Measuring CPU performance in the new millennium. Computer,

33:28–35, 2000.

[40] J. Hruska. Phantom phenom’s perplexing processor problem behind product delay. Ars

Technica, 3rd Dec. 2007.

[41] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the memory system: predicting and

optimizing memory behavior. In Proceedings of the 29th annual international symposium

on Computer architecture, ISCA ’02, pages 209–220, Washington, DC, USA, 2002. IEEE

Computer Society.

[42] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz. Efficiently exploring

architectural design spaces via predictive modeling. SIGOPS Oper. Syst. Rev., 40(5):195–206,

2006.

145

[43] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz. Efficiently exploring

architectural design spaces via predictive modeling. SIGOPS Oper. Syst. Rev., 40(5):195–206,

2006.

[44] C. Isci and M. Martonosi. Phase characterization for power: evaluating control-flow-based

and event-counter-based techniques. High-Performance Computer Architecture, International

Symposium on, 0:121–132, 2006.

[45] R. Jain. The art of computer systems performance analysis : techniques for experimental

design, measurement, simulation, and modeling / Raj Jain. Wiley, New York :, 1991.

[46] B. Jenkins. Algorithm Alley: Hash Functions. http://www.ddj.com/184410284.

[47] J. John W. Haskins and K. Skadron. Memory reference reuse latency: Accelerated warmup

for sampled microarchitecture simulation. ISPASS ’05: IEEE International Symposium on

Performance Analysis of Systems and Software, March 2003.

[48] A. Joshi, Y. Luo, and L. John. Applying statistical sampling for fast and efficient simulation

of commercial workloads. Computers, IEEE Transactions on, 56(11):1520 –1533, nov. 2007.

[49] D. A. C. Joshua Kihm. Cogs-sim: Co-phase guided small-sample simulation of multithreaded

and multicore architectures, 2007.

[50] N. Jouppi. The nonuniform distribution of instruction-level and machine parallelism and its

effect on performance. Computers, IEEE Transactions on, 38(12):1645 –1658, dec. 1989.

[51] T. S. Karkhanis and J. E. Smith. A first-order superscalar processor model. SIGARCH

Comput. Archit. News, 32(2):338, 2004.

[52] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra. Using predictivemodeling for cross-program

design space exploration in multicore systems. pages 327 –338, sep. 2007.

[53] J. L. Kihm and D. A. Connors. Statistical simulation of multithreaded architectures. Mod-

eling, Analysis, and Simulation of Computer Systems, International Symposium on, 0:67–74,

2005.

[54] J. L. Kihm, S. D. Strom, and D. A. Connors. Phase-guided small-sample simulation. In

ISPASS, pages 84–93. IEEE Computer Society, 2007.

[55] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new spec benchmark workload for simulation-

based computer architecture research. Computer Architecture Letters, 1, 2002.

[56] S. Kodakara, J. Kim, D. Lilja, D. Hawkins, W.-C. Hsu, and P.-C. Yew. Cim: A reliable

metric for evaluating program phase classifications. IEEE Comput. Archit. Lett., 6(1), 2007.

146 BIBLIOGRAPHY

[57] V. Krishnan and J. Torrellas. A direct-execution framework for fast and accurate simula-

tion of superscalar processors. In In International Conference on Parallel Architectures and

Compilation Techniques, pages 286–293, 1998.

[58] T. Lafage and A. Seznec. Choosing representative slices of program execution for microarchi-

tecture simulations: a preliminary application to the data stream. pages 145–163, 2001.

[59] S. Laha, J. H. Patel, and R. K. Iyer. Accurate low-cost methods for performance evaluation

of cache memory systems. IEEE Trans. Comput., 37(11):1325–1336, 1988.

[60] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder. Motivation for variable

length intervals and hierarchical phase behavior. In In IEEE International Symposium on

Performance Analysis of Systems and Software, 2005.

[61] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The strong correlation between

code signatures and performance. In ISPASS ’05: Proceedings of the IEEE International Sym-

posium on Performance Analysis of Systems and Software, 2005, pages 236–247, Washington,

DC, USA, 2005. IEEE Computer Society.

[62] J. Lau, S. Schoenmackers, and B. Calder. Structures for Phase Classification. ISPASS ’04:

IEEE International Symposium on Performance Analysis of Systems and Software, 2004.

[63] J. Lau, S. Schoenmackers, and B. Calder. Structures for phase classification, 2004.

[64] J. Lau, S. Schoenmackers, and B. Calder. Transition phase classification and prediction. In In

11th International Symposium on High Performance Computer Architecture, pages 278–289.

IEEE Computer Society, 2005.

[65] G. Lauterbach. Accelerating architectural simulation by parallel execution of trace samples.

Technical report, Mountain View, CA, USA, 1993.

[66] P. S. Levy and S. Lemeshow. Sampling of Populations: Methods and Applications. Wiley,

New York, 3 edition, 1999.

[67] D. J. Lillja. Measuring Computer Performance : A Practitioner’s Guide. Cambridge Univer-

sity Press, New York, NY, 2000. ISBN 0-521-64105-5.

[68] W. Liu and M. C. Huang. EXPERT: expedited simulation exploiting program behavior repeti-

tion. In ICS ’04: Proceedings of the 18th annual international conference on Supercomputing,

pages 126–135. ACM Press, 2004.

[69] Y. Luo, L. K. John, and L. Eeckhout. Self-Monitored Adaptive Cache Warm-Up for Mi-

croprocessor Simulation. In Proceedings of the 16th International Symposium on Computer

147

Architecture and High Performance Computing (SBAC-PAD‘04), pages 10–17, Foz do Iguacu,

PR - Brazil, 10 2004. IEEE Computer Society Press.

[70] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,

A. Moestedt, and B. Werner. Simics: A full system simulation platform. Computer, 35(2):50–

58, Feb 2002.

[71] M. Martonosi, A. Gupta, and T. Anderson. Effectiveness of trace sampling for performance

debugging tools. SIGMETRICS Perform. Eval. Rev., 21(1):248–259, 1993.

[72] G. Moore. Cramming more components onto integrated circuits. Proceedings of the IEEE,

86(1):82–85, Jan. 1998.

[73] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing nuca organizations and

wiring alternatives for large caches with cacti 6.0. In MICRO 40: Proceedings of the 40th

Annual IEEE/ACM International Symposium on Microarchitecture, pages 3–14, Washington,

DC, USA, 2007. IEEE Computer Society.

[74] D. Noonburg and J. Shen. Theoretical modeling of superscalar processor performance. pages

52 – 62, nov. 1994.

[75] P. M. Ortego and P. Sack. Sesc: Superescalar simulator. Technical report, 2004.

[76] M. Oskin, F. T. Chong, and M. Farrens. Hls: combining statistical and symbolic simulation

to guide microprocessor designs. In ISCA ’00: Proceedings of the 27th annual international

symposium on Computer architecture, pages 71–82, New York, NY, USA, 2000. ACM.

[77] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy of dynamic branch prediction

using branch correlation. In ASPLOS-V: Proceedings of the fifth international conference on

Architectural support for programming languages and operating systems, pages 76–84, New

York, NY, USA, 1992. ACM.

[78] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pinpointing rep-

resentative portions of large intel R©itanium R©programs with dynamic instrumentation. In

MICRO 37: Proceedings of the 37th annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 81–92, Washington, DC, USA, 2004. IEEE Computer Society.

[79] D. Pelleg and A. W. Moore. X-means: Extending K-means with Efficient Estimation of the

Number of Clusters. In ICML ’00: Proceedings of the Seventeenth International Conference

on Machine Learning, pages 727–734. Morgan Kaufmann Publishers Inc., 2000.

148 BIBLIOGRAPHY

[80] D. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. August, and D. Connors. Exploit-

ing parallelism and structure to accelerate the simulation of chip multi-processors. High-

Performance Computer Architecture, International Symposium on, 0:29–40, 2006.

[81] C. Pereira, J. Lau, B. Calder, and R. Gupta. Dynamic phase analysis for cycle-close trace

generation. In CODES+ISSS ’05: Proceedings of the 3rd IEEE/ACM/IFIP international

conference on Hardware/software codesign and system synthesis, pages 321–326, New York,

NY, USA, 2005. ACM.

[82] A. Phansalkar, A. Joshi, L. Eeckhout, and L. John. Four generations of spec cpu benchmarks:

what has changed and what has not. Technical report, 2004.

[83] A. Phansalkar, A. Joshi, and L. K. John. Analysis of redundancy and application balance in

the spec cpu2006 benchmark suite. In ISCA ’07: Proceedings of the 34th annual international

symposium on Computer architecture, pages 412–423, New York, NY, USA, 2007. ACM.

[84] A. Poursepanj. The powerpc performance modeling methodology. Commun. ACM, 37(6):47–

55, 1994.

[85] D. Price. Pentium FDIV flaw-lessons learned. Micro, IEEE, 15(2):86 –88, Apr. 1995.

[86] R Development Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria, 2010. ISBN 3-900051-07-0.

[87] R. H. M. R E Walpole. Probability and Statistics for Engineers and Scientists. 1993.

[88] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis, and D. A. Wood. The

wisconsin wind tunnel: Virtual prototyping of parallel computers. In In Proceedings of the

1993 ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages

48–60, 1993.

[89] E. Schnarr and J. R. Larus. Fast out-of-order processor simulation using memoization. In

ASPLOS-VIII: Proceedings of the eighth international conference on Architectural support for

programming languages and operating systems, pages 283–294, New York, NY, USA, 1998.

ACM.

[90] T. Sherwood and B. Calder. Time varying behavior of programs. Technical report, 1999.

[91] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis to find peri-

odic behavior and simulation points in applications. In PACT ’01: Proceedings of the 2001

International Conference on Parallel Architectures and Compilation Techniques, pages 3–14,

Washington, DC, USA, 2001. IEEE Computer Society.

149

[92] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing large

scale program behavior. SIGOPS Oper. Syst. Rev., 36(5):45–57, 2002.

[93] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. pages 336–347, 2003.

[94] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark. Branch prediction, instruction-

window size, and cache size: Performance trade-offs and simulation techniques. IEEE Trans.

Comput., 48(11):1260–1281, 1999.

[95] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja, and V. S. Pai. Challenges in

computer architecture evaluation. Computer, 36(8):30–36, 2003.

[96] G. S. Sohi and M. Franklin. High-bandwidth data memory systems for superscalar processors.

SIGPLAN Not., 26(4):53–62, 1991.

[97] SPEC. Standard performance evaluation corporation. http://www.spec.org.

[98] M. Tawk, K. Ibrahim, and S. Niar. Adaptive sampling for efficient mpsoc architecture simu-

lation. pages 186 –192, oct. 2007.

[99] M. Tawk, K. Ibrahim, and S. Niar. Parallel application sampling for accelerating mpsoc

simulation. Design Automation for Embedded Systems, pages 1–21, 2010. 10.1007/s10617-

010-9064-0.

[100] M. Tawk, K. Z. Ibrahim, and S. Niar. Multi-granularity sampling for simulating concurrent

heterogeneous applications. In CASES ’08: Proceedings of the 2008 international conference

on Compilers, architectures and synthesis for embedded systems, pages 217–226, New York,

NY, USA, 2008. ACM.

[101] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, S. Malik, and D. I. August.

The liberty simulation environment: A deliberate approach to high-level system modeling.

ACM Trans. Comput. Syst., 24(3):211–249, 2006.

[102] M. Van, T. Sherwood, B. Calder, M. V. Biesbrouck, and S. B. Calder. A co-phase matrix to

guide simultaneous multithreading simulation, 2004.

[103] M. Van Biesbrouck, L. Eeckhout, and B. Calder. Efficient sampling startup for sampled pro-

cessor simulation. In Proceedings of the First International Conference on High Performance

Embedded Architectures and Compilers (HiPEAC 2005), pages 47–67, Barcelona, Spain, 11

2005. Spinger Verlag.

[104] L. Van Ertvelde, F. Hellebaut, L. Eeckhout, and K. De Bosschere. Nsl-blrl: Efficient cache

warmup for sampled processor simulation. In ANSS ’06: Proceedings of the 39th annual

150 BIBLIOGRAPHY

Symposium on Simulation, pages 168–177, Washington, DC, USA, 2006. IEEE Computer

Society.

[105] F. Vandeputte, L. Eeckhout, and K. De Bosschere. A detailed study on phase predictors. In

J. C. Cunha and P. D. Medeiros, editors, Euro-Par 2005 Parallel Processing, volume 3648 of

Lecture Notes in Computer Science, pages 571–581. Springer Berlin / Heidelberg, 2005.

[106] J. Veenstra and R. J. Fowler. Mint: A front end for efficient simulation of shared-memory

multiprocessors. pages 201–207, 1994.

[107] T. Wenisch, R. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. Hoe. Simflex:

Statistical sampling of computer system simulation. Micro, IEEE, 26(4):18 –31, jul. 2006.

[108] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe. TurboSMARTS: Accurate

Microarchitecture Simulation Sampling in Minutes. SIGMETRICS ’05, June 2005.

[109] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe. Simulation sampling with live-

points. In In ISPASS 06: Proceedings of the 2006 International Symposium on Performance

Analysis of Systems and Software, pages 2–12, 2006.

[110] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: accelerating microar-

chitecture simulation via rigorous statistical sampling. In ISCA ’03: Proceedings of the 30th

annual international symposium on Computer architecture, pages 84–97. ACM Press, 2003.

[111] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. Statistical sampling of microarchi-

tecture simulation. In In 20th International Parallel and Distributed Processing Symposium

(IPDPS, 2006.

[112] J. Yi, L. Eeckhout, D. Lilja, B. Calder, L. John, and J. Smith. The future of simulation: A

field of dreams. Computer, 39(11):22 –29, nov. 2006.

[113] J. Yi and D. Lilja. Simulation of computer architectures: simulators, benchmarks, method-

ologies, and recommendations. Computers, IEEE Transactions on, 55(3):268 – 280, mar.

2006.

[114] J. Yi, R. Sendag, L. Eeckhout, A. Joshi, D. Lilja, and L. John. Evaluating benchmark

subsetting approaches. pages 93 –104, oct. 2006.

[115] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins. Characterizing and

comparing prevailing simulation techniques. In HPCA ’05: Proceedings of the 11th Interna-

tional Symposium on High-Performance Computer Architecture, pages 266–277, Washington,

DC, USA, 2005. IEEE Computer Society.

151

[116] J. J. Yi and D. J. Lilja. Effects of processor parameter selection on simulation results.

Technical report, 2002.

[117] J. J. Yi, D. J. Lilja, and D. M. Hawkins. A statistically rigorous approach for improving

simulation methodology. In HPCA ’03: Proceedings of the 9th International Symposium

on High-Performance Computer Architecture, page 281, Washington, DC, USA, 2003. IEEE

Computer Society.

[118] M. T. Yourst. Ptlsim: A cycle accurate full system x86-64 microarchitectural simulator. In

in ISPASS 07, 2007.

