Nuages et poussières de l'atmosphère martienne: télédétection, modélisation des rétroactions climatiques et application aux paléoclimats

Thèse de doctorat de l'Université Pierre et Marie Curie présentée par :

Jean-Baptiste MADELEINE

Directeur: François FORGET

4 Février 2011

Dust and clouds on Mars: Remote sensing, modeling of climate feedbacks and paleoclimate applications

a thesis by

Jean-Baptiste MADELEINE

Advisor: François FORGET

presented in fulfillment of the requirements for the degree of Doctor of Physics at the Paris 6 university

February 4th, 2011

Mars: Main characteristics

[OSIRIS/Rosetta] True-colour image of Mars.

3396 km
227.9 10 ⁶ km
$594~\mathrm{W}~\mathrm{m}^{-2}$
210 K
95% CO ₂
6.1 hPa
25.19°
24h40
\sim 10 km
$\sim 1000~{ m km}$
\sim 1-2 days

[Read and Lewis, 2004; Leovy, 1969]

Mars: Main characteristics

[Haberle, 2000]

General circulation during northern winter.

Equatorial radius Mean distance from Sun	3396 km 227.9 10 ⁶ km
Solar constant	594 W m ⁻²
Eq. temperature $T_{\rm e}$	210 K
Atm. composition	95% CO ₂
Mean surface pressure	6.1 hPa
Obliquity ϵ	25.19°
Length of day	24h40
Scale height H_p	\sim 10 km
Deformation radius L	\sim 1000 km
Rad. time constant $ au_r$	\sim 1-2 days

[Read and Lewis, 2004; Leovy, 1969]

Mars: General circulation (MY25, $L_s = 270^{\circ}$)

Purple: 140 K – **Red**: 245 K

Mars: a strong control of atmospheric dust

Microscope image of the surface by Phoenix.

Black: pure $CO_2 - Red$: $CO_2 + solar$ abs. **Grey area**: Mariner 6 & 7 temperatures.

[Smith, 2009]

Mars: an added effect of water-ice clouds

Olympus Mons in the late afternoon.

 $[\mathsf{MOC}/\mathsf{MGS}-\mathsf{MY23},\,\mathsf{L_s}=201^\circ,\,\mathsf{LT}=17.5]$

[RS/MGS - Forget, 2001]

Mars: an added effect of water-ice clouds

Olympus Mons in the late afternoon.

 $[\mathsf{MOC}/\mathsf{MGS}-\mathsf{MY23},\,\mathsf{L_s}=201^\circ,\,\mathsf{LT}=17.5]$

[RS/MGS - Forget, 2001]

Mars: evidence for past changes

Glaciers of Deuteronilus Mensae (cliff is about 1 km high).

[CTX/MRO & MOLA/MGS – Courtesy of James Dickson]

Outstanding questions

- 1. What is the detailed impact of atmospheric dust on the martian climate?
- 2. What are the properties of water-ice clouds and how do they affect the climate?
- **3.** Under which atmospheric conditions did the observed glaciations occur?

Research methodology

Three-dimensional Global Climate Model (GCM)

Modeling of aerosol feedbacks under past and present conditions

Satellite observations

Retrieval of cloud properties using the OMEGA near-IR spectrometer

Revisiting the role of atmospheric dust

- Aerosol characterisation
- Dust in the previous version of the GCM
- Updating the radiative properties of dust
- Implementation of a semi-interactive dust scheme

Observing and modeling Mars water-ice clouds

- The Martian water cycle
- Retrieval of the cloud physical properties
- Radiatively active water-ice clouds

3 The aerosol cycles during Amazonian glaciations

- Amazonian climate cycles
- The origin of the northern mid-latitude glaciation

- Revisiting the role of atmospheric dust
 - Aerosol characterisation
 - Dust in the previous version of the GCM
 - Updating the radiative properties of dust
 - Implementation of a semi-interactive dust scheme
- Observing and modeling Mars water-ice clouds
 - The Martian water cycle
 - Retrieval of the cloud physical properties
 - Radiatively active water-ice clouds
- The aerosol cycles during Amazonian glaciations
 - Amazonian climate cycles
 - The origin of the northern mid-latitude glaciation

Revisiting the role of atmospheric dust

- Aerosol characterisation
- Dust in the previous version of the GCM
- Updating the radiative properties of dust
- Implementation of a semi-interactive dust scheme

Observing and modeling Mars water-ice clouds

- The Martian water cycle
- Retrieval of the cloud physical properties
- Radiatively active water-ice clouds

The aerosol cycles during Amazonian glaciations

- Amazonian climate cycles
- The origin of the northern mid-latitude glaciation

Aerosol characterisation

Optical depth or Opacity au_{λ}

$$\mathrm{d}\tau_{\lambda} = \frac{3}{4} \frac{Q_{\mathrm{ext}\lambda} q}{\rho_{p} r_{\mathrm{eff}} g} \mathrm{d}p$$

Aerosol characterisation

Optical depth or Opacity τ_{λ}

$$\mathrm{d}\tau_{\lambda} = \frac{3}{4} \frac{Q_{\mathrm{ext}\,\lambda} q}{\rho_{p} r_{\mathrm{eff}} g} \,\mathrm{d}p$$

Single Scattering Albedo ω_0

$$\omega_0 = \frac{Q_{
m scat}}{Q_{
m abs} + Q_{
m scat}} = \frac{Q_{
m scat}}{Q_{
m ext}}$$

Reflects the optical index of refraction n

Aerosol characterisation

Optical depth or Opacity τ_{λ}

$$\mathrm{d}\tau_{\lambda} = \frac{3}{4} \frac{Q_{\mathrm{ext}\lambda} q}{\rho_{p} r_{\mathrm{eff}} g} \mathrm{d}p$$

Single Scattering Albedo ω_0

$$\omega_0 = rac{Q_{
m scat}}{Q_{
m abs} + Q_{
m scat}} = rac{Q_{
m scat}}{Q_{
m ext}}$$

Reflects the optical index of refraction n

Asymmetry factor g_{λ}

$$g_{\lambda} = \frac{1}{2} \int_{-1}^{1} \frac{P_{\lambda}}{(\cos \Theta)} \cos \Theta \, d\cos \Theta$$

Reflects the phase function $P_{\lambda}(\theta)$

Revisiting the role of atmospheric dust

- Aerosol characterisation
- Dust in the previous version of the GCM
- Updating the radiative properties of dust
- Implementation of a semi-interactive dust scheme
- Observing and modeling Mars water-ice clouds
 - The Martian water cycle
 - Retrieval of the cloud physical properties
 - Radiatively active water-ice clouds
- The aerosol cycles during Amazonian glaciations
 - Amazonian climate cycles
 - The origin of the northern mid-latitude glaciation

Dust radiative properties: first dataset

Dust radiative properties: first dataset

Observed dust opacity

Description of the dust layer in the model

Constant size case: Analytical distribution

$$\mathrm{d} au_{\lambda} = \frac{3}{4} \frac{Q_{\mathrm{ext}\lambda} q}{\rho_{p} r_{\mathrm{eff}} g} \mathrm{d} p \to \mathrm{d} au_{\lambda} = f(p, z_{\mathrm{max}})$$

[Adapted from Forget, 2001 – Cantor, 2007]

J.-B. Madeleine (LMD / UPMC)

Dust and clouds on Mars

February 4th, 2011

Description of the dust layer in the model

Constant size case: Analytical distribution

$$\mathrm{d} au_{\lambda} = rac{3}{4}rac{Q_{\mathrm{ext}\lambda}}{
ho_{p}}rac{q}{r_{\mathrm{eff}}}\mathrm{~g}\mathrm{~d}p
ightarrow \mathrm{d} au_{\lambda} = f(p,\!\mathsf{z}_{\mathsf{max}})$$

J.-B. Madeleine (LMD / UPMC)

Dust and clouds on Mars

February 4th, 2011

Zonal mean temperature - $L_s = 270^{\circ}$

Overall warm bias

Inconsistency between the observed dust opacity and the simulated temperatures.

Constant bias toward higher temperatures

J.-B. Madeleine (LMD / UPMC)

Revisiting the role of atmospheric dust

- Aerosol characterisation
- Dust in the previous version of the GCM
- Updating the radiative properties of dust
- Implementation of a semi-interactive dust scheme
- Observing and modeling Mars water-ice clouds
 - The Martian water cycle
 - Retrieval of the cloud physical properties
 - Radiatively active water-ice clouds
- The aerosol cycles during Amazonian glaciations
 - Amazonian climate cycles
 - The origin of the northern mid-latitude glaciation

Dust radiative properties: second dataset

Dust radiative properties: second dataset

General cooling due to increased ω_0

J.-B. Madeleine (LMD / UPMC)

General cooling due to increased ω_0

J.-B. Madeleine (LMD / UPMC)

Possible reasons for the remaining biases

- The vertical distribution of dust does not always follow the prescribed analytical function (Kahre, 2008);
- The thickness of the dust layer is highly variable and only partially represented by the z_{max} function, whose values are often too high (Basu, 2004 Wilson, 2008);
- Dust particles vary in size, and radiative properties are not constant at all (Wolff, 2006).

Revisiting the role of atmospheric dust

- Aerosol characterisation
- Dust in the previous version of the GCM
- Updating the radiative properties of dust
- Implementation of a semi-interactive dust scheme
- Observing and modeling Mars water-ice clouds
 - The Martian water cycle
 - Retrieval of the cloud physical properties
 - Radiatively active water-ice clouds
- The aerosol cycles during Amazonian glaciations
 - Amazonian climate cycles
 - The origin of the northern mid-latitude glaciation

Vertical segregation of dust particles

Sedimentation velocity depends on atmospheric pressure and particle radius.

Particle size distributions

J.-B. Madeleine (LMD / UPMC)

Two-moment scheme

Lognormal distribution

$$n(r) = \frac{N}{\sqrt{2\pi} \frac{\sigma_0}{\sigma_0} r} \exp \left[-\frac{1}{2} \left(\frac{\ln(r/r_0)}{\sigma_0} \right)^2 \right]$$

$$N, r_0, \sigma_0$$

$$\downarrow \downarrow$$

$$r_0 = f(N, q, \sigma_0)$$

N and q are transported in the GCM, and σ_0 is assumed constant.

Semi-interactive dust scheme

Computed N and **q**, constant
$$\nu_{\rm eff}$$
 $\mathbf{r}_{\rm eff} = \left(\frac{3}{4} \frac{\mathbf{q}}{\pi \rho_{
ho} \mathsf{N}}\right)^{1/3} \left(1 + \textcolor{red}{\nu_{\rm eff}}\right)$

$${\bf q}$$
 (kg kg $^{-1})$ and ${\bf r}_{\rm eff}$ $(\mu{\rm m})$

3D scattering properties

Improvement due to interactive dust cycle

Remaining biases occur during cloud season

Martian water-ice clouds

The aphelion cloud belt seen by the Mars Orbiter Camera (**left**) and by Opportunity (**right**) around $L_s = 120^{\circ}$.

Plan

- Revisiting the role of atmospheric dust
 - Aerosol characterisation
 - Dust in the previous version of the GCM
 - Updating the radiative properties of dust
 - Implementation of a semi-interactive dust scheme
- 2 Observing and modeling Mars water-ice clouds
 - The Martian water cycle
 - Retrieval of the cloud physical properties
 - Radiatively active water-ice clouds
- The aerosol cycles during Amazonian glaciations
 - Amazonian climate cycles
 - The origin of the northern mid-latitude glaciation

Plan

- Revisiting the role of atmospheric dust
 - Aerosol characterisation
 - Dust in the previous version of the GCM
 - Updating the radiative properties of dust
 - Implementation of a semi-interactive dust scheme
- 2 Observing and modeling Mars water-ice clouds
 - The Martian water cycle
 - Retrieval of the cloud physical properties
 - Radiatively active water-ice clouds
- The aerosol cycles during Amazonian glaciations
 - Amazonian climate cycles
 - The origin of the northern mid-latitude glaciation

Water cycle as observed by TES (MY26)

- Sublimation of the north polar cap during northern summer;
- 2 Advection into the overturning Hadley cell;
- 3 Formation of the aphelion cloud belt;
- Beginning of southern summer, formation of the north polar hood.

Water vapor column (2 PM, pr. μ m)

Cloud opacity (2 PM, 12.1 μ m)

Plan

- Revisiting the role of atmospheric dust
 - Aerosol characterisation
 - Dust in the previous version of the GCM
 - Updating the radiative properties of dust
 - Implementation of a semi-interactive dust scheme
- Observing and modeling Mars water-ice clouds
 - The Martian water cycle
 - Retrieval of the cloud physical properties
 - Radiatively active water-ice clouds
- The aerosol cycles during Amazonian glaciations
 - Amazonian climate cycles
 - The origin of the northern mid-latitude glaciation

The OMEGA near-IR imaging spectrometer

Imaging

IFOV1.2 mradResolution300 m - 4.8 kmVisible channelCCD detectorpushbroom mode

IR channel InSb linear arrays

whiskbroom mode

Spectrometry

Spectral range $0.35 - 5.1 \mu m$ Number of spectels352Spectral resolution7 - 20 nm

Photometry

S/N > 100

[Bibring, 2004]

Cloud mapping and property retrieval

Monitoring of cloud types

Four main morphologies

- Morning hazes are found at around 8 AM, form during the night, and dissipate before noon.
- Topographically controlled hazes are observed at various local times, at the beginning and end of the cloud season.
- Cumulus clouds grow in the early afternoon.
- Thick hazes grow rapidly through the afternoon.

Monitoring of cloud types: Cloud examples

Morning hazes near Pavonis Mons

Cumulus clouds ($L_s = 115.3$, LT = 10.6, orbit 3514 1)

Visible channel image (left) and cloud index (right).

1. Selection of a cloud spectrum

2. Selection of a cloud-free spectrum of the same region

3. Removal of the dust layer contribution

4.0

4. Addition of a synthetic layer of dust observed at cloud season

ORB 3276_4 , Ls=85.44.0

5. Minimization using a synthetic cloud of various r_{eff} and τ_{vis}

6a. Making sure dust opacity introduces small error

6b. Restriction to thick clouds $(\tau_{vis} > 1)$

7. End of the minimization and property retrieval

χ^2 function and minimization result

Left: True-color composition and cloud index for the two selected orbits. **Below:** The χ^2 function, which shows the accurate retrieval of $r_{\rm eff,ice}$ and $\tau_{\rm vis}$.

Retrieval of $r_{\rm eff,ice}$ over the Tharsis plateau

Search for overlapping orbits and thick clouds \$\bigsquare\$ Retrieval of

 $r_{\rm eff,ice}$ and $\tau_{\rm vis}$

Retrieved $r_{\text{eff,ice}}$ as a function of L_s and LT

Variations in ice particle size as a function of \boldsymbol{L}_s

Variations in ice particle size as a function of local time

Difficult to affirm any correlation with L_s or local time.

However, there seems to be two distinct groups of particles.

Explanation of the variations in $r_{\text{eff,ice}}$

Map of the OMEGA retrievals.

Small particles: # 7,9,10,11,12.

Largest particles are found near the volcanoes, in strong anabatic flows.

Cloud opacity (0.4-0.8 μ m) predicted by Michaels (2006).

Retrieval of cloud properties: Summary

Cumulus clouds (VIS channel)

- Ice particle sizes of thick clouds $(\tau_{vis} > 1)$ are measured, and range from **2.2 to 5.4** μ **m**;
- Ice crystals are larger near the volcanoes, probably due to enhanced cloud formation in strong anabatic flows.

Climate model validation

These observations are used to adjust the water cycle predicted by the GCM.

Plan

- Revisiting the role of atmospheric dust
 - Aerosol characterisation
 - Dust in the previous version of the GCM
 - Updating the radiative properties of dust
 - Implementation of a semi-interactive dust scheme
- Observing and modeling Mars water-ice clouds
 - The Martian water cycle
 - Retrieval of the cloud physical properties
 - Radiatively active water-ice clouds
- The aerosol cycles during Amazonian glaciations
 - Amazonian climate cycles
 - The origin of the northern mid-latitude glaciation

Water-ice clouds simulated by the GCM

- Coupling of the water cycle model described in Montmessin (2004) with the semi-interactive dust scheme;
- Adjustment of the unknown microphysical parameters in order to reach good agreement with the observations (including OMEGA);
- The predicted amount and size of ice particles are used to compute 3D time-dependent scattering parameters, using the model described previously.

Observed cloud opacity (12.1 μ m)

GCM cloud opacity (12.1 μ m)

Water-ice clouds simulated by the GCM

- Coupling of the water cycle model described in Montmessin (2004) with the semi-interactive dust scheme;
- Adjustment of the unknown microphysical parameters in order to reach good agreement with the observations (including OMEGA);
- The predicted amount and size of ice particles are used to compute 3D time-dependent scattering parameters, using the model described previously.

Cloud – Radiation – Temperature system

Atmospheric conditions

Humidity, temperature changes, condensation nuclei

Cloud properties

Particle size and opacity predicted by the microphysical scheme

Strongly dependent on cloud altitude and local time

Scattering parameters

1

Computed by the GCM based on the size of the crystals predicted by the microphysical scheme

Results without radiatively active clouds

Results without radiatively active clouds

Temperature without active clouds $(L_s = 90^{\circ})$

Temperature when clouds are active $(L_s = 90^{\circ})$

Results without radiatively active clouds

The bias vanishes when clouds are active

Detailed effect of clouds on temperature

a. Total impact of clouds (3D)

c. Direct radiative effect of clouds

b. Total impact without dynamics

d. Indirect effect of clouds

New questions: radiatively active clouds

When clouds are radiatively active, the water cycle is too dry by $\sim 5 \text{ pr.}\mu\text{m}$

Climate changes on Mars

Plan

- Revisiting the role of atmospheric dust
 - Aerosol characterisation
 - Dust in the previous version of the GCM
 - Updating the radiative properties of dust
 - Implementation of a semi-interactive dust scheme
- Observing and modeling Mars water-ice clouds
 - The Martian water cycle
 - Retrieval of the cloud physical properties
 - Radiatively active water-ice clouds
- 3 The aerosol cycles during Amazonian glaciations
 - Amazonian climate cycles
 - The origin of the northern mid-latitude glaciation

Plan

Revisiting the role of atmospheric dust

- Aerosol characterisation
- Dust in the previous version of the GCM
- Updating the radiative properties of dust
- Implementation of a semi-interactive dust scheme

Observing and modeling Mars water-ice clouds

- The Martian water cycle
- Retrieval of the cloud physical properties
- Radiatively active water-ice clouds

3 The aerosol cycles during Amazonian glaciations

- Amazonian climate cycles
- The origin of the northern mid-latitude glaciation

Variations in Mars orbital parameters

Large variations in Mars orbital parameters

Insolation variations are **much larger** than in terrestrial Milankovitch cycles

Many geological evidences for cyclic climate changes

Geological evidences for climate changes

Late Amazonian period (< 250-700 Myr)

- Latitude dependent mantle: meter thick layered deposits, above 50°;
- Northern mid-latitudes: valley glaciers and plateau glaciation;
- Tropical mountain glaciers: mountain glacial systems.

[Head, 2008]

Geological evidences for climate changes

Late Amazonian period (< 250-700 Myr)

- Latitude dependent mantle: meter thick layered deposits, above 50°;
- Northern mid-latitudes: valley glaciers and plateau glaciation;
- Tropical mountain glaciers: mountain glacial systems.

[Head, 2008]

Slide 58

Simulation of past climates using the GCM

Modified orbital parameters (obliquity ϵ , eccentricity e and L_s of perihelion)

Present-day conditions

$$\epsilon = 25.19^{\circ} - e = 0.093$$

$$L_{\rm p}=251^{\circ}$$
 – Observed $au_{
m dust}$

High obliquity conditions

$$\epsilon = 45^{\circ}$$

$$e = 0 - \tau_{\mathsf{dust}} = 0.2$$

Origin of the Tropical Mountain Glaciers

A. Geological map, showing the glaciers in yellow

B. Net annual accumulation of ice simulated by the GCM (mm yr^{-1})

lce builds up in the right regions when obliquity is increased to 45°

Plan

Revisiting the role of atmospheric dust

- Aerosol characterisation
- Dust in the previous version of the GCM
- Updating the radiative properties of dust
- Implementation of a semi-interactive dust scheme

Observing and modeling Mars water-ice clouds

- The Martian water cycle
- Retrieval of the cloud physical properties
- Radiatively active water-ice clouds

3 The aerosol cycles during Amazonian glaciations

- Amazonian climate cycles
- The origin of the northern mid-latitude glaciation

The northern mid-latitude glaciation

Late Amazonian period (< 250-700 Myr)

- Latitude dependent mantle: meter thick layered deposits, above 50°;
- Northern mid-latitudes: valley glaciers and plateau glaciation;
- Tropical mountain glaciers: mountain glacial systems.

[Head, 2008]

The northern mid-latitude glaciation

Late Amazonian period (< 250-700 Myr)

- Latitude dependent mantle: meter thick layered deposits, above 50°;
- Northern mid-latitudes: valley glaciers and plateau glaciation;
- Tropical mountain glaciers: mountain glacial systems.

[Head, 2008]

Switching from 45° to 35° obliquity

The tropical mountain glaciers become the new source of the water cycle

High obliquity conditions

$$\epsilon = 45^{\circ}$$
 $e = 0 - \tau_{\text{dust}} = 0.2$

Intermediate obliquity

$$\epsilon = 35^{\circ} - e = 0.1$$

 $L_{\rm p} = 270^{\circ} - \tau_{\rm dust} = 2.5$

Northern mid-latitude glaciation

Changes in global water cycle

Northern mid-latitude glaciation

Changes in global water cycle

Ice accumulation rates in mm yr⁻¹

Main conclusions

- Both mineral dust and water-ice clouds play a central role in shaping the thermal structure of the Mars atmosphere.
- The climate simulated by the LMD/GCM is extremely sensitive to aerosol properties, which are now measured with sufficient accuracy to reach good agreement with the observations.
- The dust cycle is, along with orbital conditions, the main driver of the glaciations.

Questions and perspectives

Modeling of the dust cycle

- How to improve the representation of dust lifting and the prediction of dust particle sizes?
- What is the impact of dust scavenging by clouds?

Radiatively active water-ice clouds

Why do radiatively active clouds dry the whole water cycle?

Cloud property retrieval

- What are the cloud properties in other regions than Tharsis?
- How can we retrieve the properties of thinner clouds, e.g. cumulus clouds?

■ Late Amazonian glaciations

- What will be the impact of interactive dust and radiatively active clouds on the glaciations?
- What is the origin of the latitude-dependent mantle?

A treasure of the solar system

Mars is a fantastic opportunity to study major components of the terrestrial glacial climate under different conditions.

A treasure of the solar system

Thanks!

[OSIRIS/Rosetta]

Questions and perspectives

Modeling of the dust cycle

- How to improve the representation of dust lifting and the prediction of dust particle sizes?
- What is the impact of dust scavenging by clouds?

Radiatively active water-ice clouds

Why do radiatively active clouds dry the whole water cycle?

Cloud property retrieval

- What are the cloud properties in other regions than Tharsis?
- How can we retrieve the properties of thinner clouds, e.g. cumulus clouds?

■ Late Amazonian glaciations

- What will be the impact of interactive dust and radiatively active clouds on the glaciations?
- What is the origin of the latitude-dependent mantle?