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Abstract 

 

Recently, a keyword of complementary metal-oxide-semiconductor (CMOS) technology 

for the higher performance, lower power consumption, larger device integration, and cost 

reduction is “down-scaling” leading low-dimensional structures. For the various applications 

with low-dimensional structures, a great deal of research is being carried out to understand 

their electrical and physical properties. Particularly, low-frequency noise in conventional 

metal-oxide-semiconductor field-effect transistors (MOSFETs) has been well known to relate 

the signal fluctuations by the carrier trapping and de-trapping at the oxide-semiconductor 

interface. However, for low-dimensional structures, the noise properties are not sufficiently 

investigated. In this dissertation, the carrier transport and low-frequency noise properties in 

low-dimensional FET structures, which are fabricated by top-down or bottom-up approach, 

are investigated depending on high-k materials, conduction mechanism, strain engineering, 

metal-semiconductor junctions, and scatterings.  

At the beginning of the dissertation, in chapter 1, the current issues of the device scaling 

in CMOS technology are reviewed and the low-dimensional structures are introduced with 

two representative approaches (i.e. top-down and bottom-up approaches). The electrical 

transport and low-frequency noise properties in low-dimensional structures are also discussed 

for the applications. In chapter 2, important device parameters of conventional FET structures 

such as threshold voltage, mobility, series resistance, subthreshold swing, and capacitance are 

defined and their practical extraction methods are presented. In chapter 3, the fundamental 

noise and representative low-frequency noise models for FET structures are introduced. One 

is the mobility fluctuation model (HMF) due to the carrier scattering and the other is the 

carrier number fluctuation model (CNF) considering the correlated mobility fluctuations 

(CMF) mainly affected by the trapping/release of charge carriers. In addition, the system 

configuration and helpful advices for the noise measurement are also discussed. 

Experimental results of the transport properties and low-frequency noise in multi-gate 

FETs (FinFET and junctionless FET), Si and SiGe core-shell nanowire gate-all-around FETs, 

multi-walled carbon nanotube devices, and graphene FET are presented from chapter 4 to 

chapter 6. First, the multi-gate FET is a noticeable device recently introduced to reduce the 

short-channel effects. In this study, two kinds of multi-gate FETs are investigated: a FinFET 

is well-known as a multi-gate FET having a surface conduction by channel inversion whereas 
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a junctionless FET is operated by the highly doped channel i.e. bulk conduction. The bulk 

conduction is expected that the noise comes from the mobility fluctuations. But, interestingly, 

the low-frequency noise in junctionless FET is also explained by the carrier number 

fluctuation model same as the FinFET. The noise origin is estimated to have different 

mechanisms. For the FinFET, it is due to the carrier trapping and de-trapping at the oxide-

semiconductor interface while the noise in junctionless FET is affected by carrier trapping at 

the boundary between the channel and depletion region (i.e. Schottky-Read-Hall generation-

recombination). 

For the nanowire and nanotube structures, the impact of channel strain and metal contact 

on the low-frequency noise is observed. Three-dimensional (3-D) stacked Si and SiGe core-

shell nanowire gate-all-around FETs were compared with compressively strained and un-

strained devices. Even though the c-strained devices have inhomogeneous trap distribution in 

long channel devices, the trap densities of both devices are similar. However, the c-strained 

ones effectively reduce the influence of correlated mobility fluctuations by the carrier 

confinement far from the oxide/Si cap interface. Next, the influence of metal-semiconductor 

junction is studied with different metal contacts based on the noise analysis. The existence of 

Schottky barrier due to the work function difference shows different relationship for the low-

frequency noise and the device resistance. It indicates that contact metal for nanowire can 

strongly affect the noise properties of low-dimensional structures. Using low-frequency noise 

measurement, the quality of metal contact on the GaN nanowire is analyzed and it shows that 

the noise measurement can be a useful tool to assessment the device quality and reliability. 

 As a perfect 2-D structure, Graphene is an interesting material having surprising high 

carrier mobility, massless electrons, and a zero band gap. However, graphene FETs fabricated 

on the substrate exhibit strongly degraded mobility due to the significant impact of carrier 

scattering. Considering the influence of substrate for the graphene channel, low-frequency 

noise in graphene FETs is investigated. The noise in single layer graphene FETs exhibits M-

shaped behavior as a function of the gate voltage and its behavior is similar to the 

transconductance variation partially limited by the scattering from the substrate. 

In conclusion, it is confirmed that low-frequency noise in FET structures are severely 

affected by the quality of gate dielectric irrespective of conduction mechanism. Nevertheless, 

it shows that the noise can be controlled and reduced by applying channel strain or using 

appropriate metal contact electrode. In the case of graphene transistors, it exhibits quite 

different noise behavior that is estimated by the carrier scattering on the substrate. Such 
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results will be helpful for the study of the carrier dynamics fundamental in low-dimensional 

structures and intense related research. Especially, the noise limits the performance of low-

noise devices or sensor applications as decreasing the device size so that the noise should be 

considered for the future study of low-dimensional structures and their applications. 

 

Keywords: low-frequency noise, 1/f noise, fluctuation, field-effect transistor, trap density, 

scattering, low-dimensional structure, top-down, bottom-up, FinFET, junctionless FET, SiGe 

nanowire, multi-walled carbon nanotube, graphene 
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Chapter 1 Introduction to low-dimensional structures 
 

 

 

1.1  Scaling overview 
 

The semiconductor technology has achieved a remarkable growth over the past half-

century since the development of “transistor” by W. Shockley, J. Bardeen, and W. Brattain in 

1947 [1] and the invention of integrated circuit (IC) by J. Kilby (1958) accelerated the growth 

of semiconductor industry and technology based on silicon. The number of transistors 

integrated on the same area dramatically increased from several tens to billions and the high-

integrated semiconductor devices lead to the miniaturization of electronic products such as 

TV/VCR, computer, mobile phone, and other e-portable products. Finally, most products use 

semiconductor devices. For the high-performance of electronic applications, transistors were 

scaled down continuously and the efforts opened the era of nano devices. Nano devices have 

many advantages over than microscale counterpart for the performance, the power 

consumption, the integration and the application. Especially, the quantum transport by the 

channel confinement and the ballistic transport in which electrons cannot be scattered owing 

to low-dimensional structures are also noteworthy [2]. 

However, the device scaling also brought new challenges to overcome in terms of 

materials, device structures, fabrication technologies, performances, noise, reliability, and so 

on. For example, the conventional planar complementary metal-oxide-semiconductor (CMOS) 

technology appeared additional problems usually called “short-channel effects” as decreasing 

the channel size. The short-channel effects are secondary effects which refer to typically the 

source/drain charge sharing, the drain-induced barrier lowering, and the subsurface 

punchthrough [3]. The impact of short-channel effects is to reduce the threshold voltage of 

the devices so that it interferes with the normal operation of the devices. The limitation of 

optical lithography technology in wavelength and the alternatives of channel and gate oxide 

materials must be considered as well.  

Figure 1.1 shows the graphical trends for the device scaling of International Technology 

Roadmap for Semiconductors (ITRS) 2010 reports [4]. The gate length of transistors should 

be sub 10 nm scales within 10 years. The gate-stack materials will maintain the use of high-k 
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materials instead of silicon oxide for better gate control and lower gate leakage current. For 

the high-speed devices, the channel has also been studied applying channel strain on silicon 

or supplanting the materials with Ge or III-V compound semiconductors that have higher 

mobility than silicon. To reduce the short-channel effects and obtain improved electrostatic 

control of devices, multi-gate structures have been proposed for the scaling away from the 

conventional planar technology [5]. Even if early multi-gate structures have been fabricated 

on the silicon on insulator (SOI) substrate, many studies are also in progress on bulk substrate 

[6], [7]. Besides studies based on silicon, there are many attempts and studies with nanowires 

and nanotubes for the next-generation semiconductor device. 

As decreasing the channel structure close to quasi one-dimensional (1-D) structures, their 

physical and electrical properties are represented based on quantum mechanics. It is also 

complicated due to the structural features such as coupling effect, electrostatic control and 

surface effect. Therefore, for the successful device scaling, low-dimensional structures should 

be understood and studied. 

 

Figure 1.1 ITRS Overall Roadmap Technology Characteristics (ORTC) graphical trends including 
overlay of 2009 industry logic “nodes” and ITRS trends for comparison [4]. 
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1.2  1-D and 2-D structures 
 

Low-dimensional structures came to the notice of the scientific community in the early 

1970s when L. Esaki and R. Tsu suggested the fabrication of superlattices by epitaxial growth 

to realize negative-differential-conductivity devices appearing Bloch oscillations [8]. In the 

case of electronic transport, low-dimensional structure refers to a system in which the charge 

carriers (e.g. electron) are constrained by potential barriers so that their motion will be 

suppressed [9]. It can be classified into two-, one- or zero-dimensional structures depending 

on whether the potential barriers confine the electrons in one-, two-, or three- dimensions, 

respectively. Figure 1.2 represents illustrations of low-dimensional structures. It is noted that 

there is no absolute value of length to define the dimensionality and the length is just related 

to determine the physical properties of dimensionality in semiconductors such as Debye 

length, scattering length and so on [9]. 

In CMOS technology, the conventional planar devices gradually changes to low-

dimensional structured devices with the downscaling of the gate length. Contrary to bulk 

structured devices, 1-D and 2-D structures have novel physical and electrical properties. 

Electrons in materials show different electrical behavior such as the insulator, the 

semiconductor, and the metal depending on the materials size because they have different 

energy spacing of the eigenstates. For this reason, low-dimensional structures have been 

concerned by many scientists for a long time. In 1991, the discovery of carbon nanotubes as a 

1-D nanostructure by S. Iigima [10] inaugurated an era of nanotechnology and accelerated it. 

In addition, metal oxide 1-D nanostructures such as ZnO, SnO2, Cu2O, Fe2O3, and CeO2 have 

Figure 1.2 Illustrations of low-dimensional structures: (a) bulk semiconductors (b) thin films, quantum 
wells (c) linear chain structures, quantum wires (d) quantum dots. A dotted line displays the freedom 
degree of carrier transport. 
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investigated for the size and dimensionality dependence of nanostructure properties for their 

applications [11]. In 2004, the electrical property of monocrystalline graphitic films, so called 

“graphene” as a 2-D nanostructure reported 

by K. S. Novoselov and A. K. Geim [12]. 

Graphene is a flat monolayer of carbon atoms 

tightly packed into a 2-D honeycomb lattice, 

and it is a basic building block for graphitic 

materials of all other dimensionalities (Figure 

1.3) [13]. More than 70 years ago, L. D. 

Landau and R. E. Peierls discussed that 

strictly 2-D crystals were thermodynamically 

unstable and could not exist owing to a 

divergent contribution of thermal fluctuations 

in low-dimensional crystal lattices [14-16]. 

Due to the difficulty of being 2-D crystals in ambient conditions, the study of 2-D structures 

was limited as a two-dimensional electron gas (2DEG) which is a gas of electrons free to 

move in two-dimensions [17]. However, various 2-D nanostructures can also be studied 

together with the successful exfoliation of graphene [18]. Recently, many studies of low-

dimensional structures such as nanowires, nanotubes, and graphene have been carried out in 

various view points for the synthesis, device fabrication, characterization, and their 

applications.  

 

1.3  Top-down vs. Bottom-up approaches 

 

To fabricate 1-D and 2-D nanostructures such as nanowires, nanotubes and graphene (or 

other 2-D metal films), there are two representative approaches: one is the ‘top-down’ 

approach and the other is the ‘bottom-up’ approach. The top-down approach stands for the 

geometrical shaping and carving of solid materials from outside to inside whereas the 

bottom-up approach represents the structure growth by the increase of anisotropy from the 

atomic scale. Figure 1.4 shows the SEM images for SiGe [19] and ZnO nanowires [20] by 

top-down and bottom-up approach. 

In detail, the top-down approach is based on the conventional semiconductor 

manufacturing processes consisting of film formation, impurity doping, lithography and 

Figure 1.3 Mother of all graphitic forms [13]. 
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etching with various mask sets on the silicon substrate and most of semiconductor devices 

have been fabricated by this approach. For the realization of 1-D and 2-D nanostructures, the 

advanced lithography techniques that can be possible to make a pattern for narrow feature 

size (i.e. nanometer scale) and improved etching methods for the various dimensional 

structures are also required in the top-down approach. For this, electron-beam (e-beam) 

lithography, X-ray lithography, or immersion lithography systems were developed for 

drawing the nm-scale pattern [21-23]. In recent years, improved lithography systems and 

etching techniques have been applied for the next-generation metal-oxide-semiconductor 

field-effect transistors (MOSFETs) such as Double-Gate (DG) MOSFETs, FinFETs, and 

Gate-All-Around (GAA) FETs equivalent to 1-D or 2-D nanostructures. The top-down 

approach for nanostructures still guarantees the mass production and the reproducibility 

without many changes of existing fabrication processes. However, it needs high processing 

cost and well-defined large space for the equipment.  

In the different point of view, the bottom-up approach generally indicates the chemically 

anisotropical growth of nanostructures 

from the atomic size. For anisotropical 

growth of crystal, the most well-known 

method in the bottom-up approach is the 

Vapor-Liquid-Solid (VLS) [24]. The VLS 

method is used for the crystal growth 

with direct adsorption of a gas phase on 

the substrate with slow chemical process 
Figure 1.5 Schematic illustration of bottom-up grown 
nanowire by Vapor-Liquid-Solid (VLS) process. 

Figure 1.4 Scanning electron microscopy (SEM) images of (a) top-down processed stacked SiGe nanowires 
[19] and (b) ZnO nanowires grown on Si (100) substrate [20]. 
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as shown in Figure 1.5. The various size and length of nanowires can be grown by VLS 

method having a single crystal structure depending on the growth conditions.  

After growth of nanowires on the substrate, the nanowire separation, purification, and 

post-growth techniques are required to select the proper size of nanowires and transfer to the 

substrate for the device fabrication through the dispersion process. And then metal electrodes 

are deposited to investigate their electrical properties. One of the difficulties for the device 

fabrication with an individual nanowire is the nanowire manipulation and accurate patterning 

for metallization because of their small size. There are some typical methods such as photo 

lithography, e-beam lithography or self-assembly technique for selective patterning [25]. E-

beam lithography is typically used for metallization even if there are some difficulties to 

make selective patterns on the nanowire precisely. But a simple selective e-beam patterning 

technique with an optical microscope or a Scanning Electron Microscope (SEM) images 

enables it easy single nanowire pattern [26]. The bottom-up approach cannot guarantee the 

mass-production and the reproducibility due to the difficulties above-mentioned. But this 

approach is favorable to study intrinsic properties of nanostructures that are more close to 1-

D or 2-D structures than ones made by a top-down technique. 

 

1.4  Electrical issues in low-dimensional structures 
 

Low-dimensional structures have some interesting electrical phenomena such as an 

electron tunneling and a quantization of electronic states. The electron tunneling is a quantum 

mechanical phenomenon where a particle (e.g. an electron) can tunnel through a potential 

barrier at the quantum scale. It is used for the tunneling diode applications. On the other hand, 

the electron and its energy state are limited and quantized by the dimensionality. Electronic 

behaviors in a solid are determined by the density of state at the Fermi energy. The energy 

Figure 1.6 Density of states (DOS) in low-dimensional (2-D, 1-D, 0-D) semiconductor structures. 
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dispersion in a bulk and low-dimensional structures are illustrated in Figure 1.6 [27]. Many 

electrical and physical properties in low-dimensional structures are expected to have better 

performances for nano electronics. To achieve low-dimensional structures by top-down or 

bottom-up approaches, there are some practical issues which should be considered. 

For low-dimensional structure devices with conventional CMOS technology, an important 

issue is short-channel effects. The short-channel effects induced a leakage current in the off-

state thereby increase the power consumption for the idle state. To reduce the short-channel 

effects and obtain the better gate control, nanowire channels with a gate-all-around structure 

are seen as an ideal transistor channel [28]. According to the device scaling, the channel is 

approaching 1-D structures which have large surface/volume ratio. The large surface/volume 

ratio is advantageous for sensor applications but it can also affects the electronic transport 

due to surface effects. The surface roughness control is one of the difficulties for 

nanostructures with top-down process and it can be a source of trapping center of charge 

carriers or mobility degradation by scatterings. The electrical noise, especially 1/f noise, is 

another issue for device scaling. As decreasing the device size, the 1/f noise is expected to 

increase because the relative noise spectral density is inversely proportional to the effective 

size of devices [29], [30]. The 1/f noise in the drain current or gate voltage of a MOSFET has 

been an important role for analog circuits and RF applications which are related to the signal 

to noise ratio (SNR) and the phase noise of oscillators, respectively [31]. Many studies for 

nanotubes and nanowires have been reported to exhibit significant current fluctuations in the 

low-frequency regime [32-39]. 

On the other hand, a Schottky barrier between the metal and semiconductor is a notable 

issue when we make a device with bottom-up growth nanowires. In general, metal electrodes 

are commonly used in a nanowire device unlike conventional MOSFETs having source/drain 

contacts with degenerated doped silicon. It is due to the difference of preferred fabrication 

process with nanowires [40]. For this reason, the existence of Schottky barrier in nanowire 

devices is inevitable. These contacts can be improved after thermal annealing process but it 

still limits the device performance and disturbs the intrinsic properties of the nanostructures.  

 

1.5  Outline of the thesis 
 

In this thesis, the electrical properties of low-dimensional FET structures are investigated 

in the view point of top-down and bottom up approaches. Especially, low-frequency noise is 
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intensively characterized along with the electrical analysis of devices. Using the low-

frequency noise characterization, the carrier dynamics that cannot be observed with normal 

electrical characterization is understood. Moreover, the low-frequency noise characterization 

is examined as a tool to determine the device quality. According to these objectives, the 

manuscript is structured as follows; 

We have introduced the recent trends of CMOS technology and the device scaling issues 

are browsed roughly. To overcome the current limits of device scaling, the low-dimensional 

FET structures are discussed for their fabrication and electrical issues. Chapter 2 introduces 

some important parameters such as the threshold voltage, the mobility, the series resistance, 

the subthreshold swing, and the capacitance to understand the transport properties of 

nanowire and nanotube devices. The low-frequency noise is introduced in chapter 3 together 

with the history, the mathematical concept, the fundamentals, and the noise measurement 

system configuration. The well-known 1/f noise models for FET structures which are the 

carrier number fluctuation and the mobility fluctuation model are presented.  

From chapter 4 to chapter 6, experimental results of static and 1/f noise properties are 

discussed for 1-D and 2-D nanostructures; Multi-gate MOSFETs (Chapter 4), Si and SiGe 

nanowire FETs and carbon nanotube devices (Chapter 5), and graphene FETs (Chapter 6). In 

chapter 4, FinFETs and junctionless FETs are examined with different channel length and 

width. The 1/f noise origin is compared between the FinFET and the junctionless FET which 

have the surface conduction and the bulk conduction, respectively. In chapter 5, the 1/f and 

RTS noise properties in Si and SiGe gate-all-around (GAA) FETs depending on the channel 

strain effect and the influence of junctions in GaN nanowire and carbon nanotubes are 

described. In chapter 6, the basic physics and 1/f noise analysis of graphene FETs are 

arranged separately because the graphene exhibits significantly different physical behaviors 

compared with other semiconductors. Finally, the summary of all experiment results is 

concluded in chapter 7. 
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Chapter 2 Electrical properties for FET structures 
 

 

 

2.1  Introduction 
 

The electrical measurement is the most-common method to understand the physical and 

electrical properties in semiconductors and their applications. Fundamentally, it has been 

understood with Ohm’s law, giving the relationship between the voltage and the current in an 

electrical conductor. In detail, the electrical behavior depends on the conductivity (or 

resistivity) which is an intrinsic property determined by electrons in a solid. So, the electrical 

measurement will be helpful to understand the carrier dynamics in solid-states and to provide 

useful information for the applications. In general, it is classified as two different standpoints: 

one is a DC (direct current) measurement directly correlated to the resistance. It is mainly 

obtained with the current-voltage (I-V) measurement. The other is an AC (alternating current) 

measurement for the electrical impedance which can be understood as a kind of the resistance 

for the AC signal. The capacitance-voltage (C-V) measurement is normally used. Based on 

Ohms’ law, the I-V measurement reveals a driving current, a conductance, a carrier mobility 

and so forth which are directly related to the device performance. On the other hand, the C-V 

measurement refers to one of the impedance spectroscopy and it can give more accurate 

information of charge carrier concentrations at the interface as well as in the bulk 

semiconductor. 

In conventional MOSFETs, the electrical characterization has been used to extract device 

parameters to confirm the device performance and to apply to the logic devices. Such 

parameters as threshold voltage, mobility, carrier concentration, interface charge, series 

resistance can be extracted. In an era of nanotechnology, the electrical characterization is still 

important and relevant even though the device dimension is decreased approaching an atomic 

scale and the electronic transport is approaching to the quantum mechanics. Moreover, the 

improved model for nano-scale devices is needed considering additional effects as reducing 

the device size. In this chapter, several important parameters for the characterization of 

MOSFET structure devices such as threshold voltage, mobility, series resistance, capacitance, 

subthreshold swing and their detailed method will be summarized. 
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2.2  Threshold voltage 
 

For understanding the MOSFET operation, threshold voltage (VTH) is the most important 

and fundamental device parameter and the precisely controlling of threshold voltage is a 

major issue in most CMOS integrated-circuit applications [3]. The definition of threshold 

voltage, firstly suggested in 1953 [41], is commonly understood as the gate voltage when the 

energy band bending at the Si-SiO2 interface is equal to twice the potential in bulk 

semiconductors [42] as shown in Figure 2.1. The surface potential ϕS on the p-type substrate 

(i.e. an n-channel MOSFET) for the threshold voltage is given by 
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where ϕF is the bulk potential, ni the intrinsic carrier density, p the hole density, and NA the 

acceptor doping density. It corresponds to the gate voltage for which the channel is opened to 

the current flow. 

In detail, the conventional enhancement-

mode n-channel MOSFET is comprised of a 

p-type silicon substrate. As increasing the gate 

voltage VGS, the electrons start to be drawn at 

oxide-semiconductor interface by the electric 

field against the holes that are away from the 

interface. As a result, the n-type channel in p-

type silicon substrate is formed if the electric 

field is sufficient. The channel region is called 

an inversion layer. Before the formation of 

sufficient inversion layer, the current cannot 

flow (i.e. turn-off) even though the current 

that is called the subthreshold current still 

exists by diffusion. Therefore, the threshold voltage determines the device operation which 

means the formation of the channel layer for the conduction. An expression for the threshold 

voltage in the n-channel MOSFET on uniformly doped substrate without any short channel or 

other effects can be derived as 

Figure 2.1 Band diagram for threshold voltage in 
enhancement-mode n-channel MOSFET. 
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where VFB is the flat-band voltage, εS the relative permittivity of silicon, ε0 the vacuum 

permittivity, COX the oxide capacitance, and VBS the substrate-source voltage. For an ideal 

MOS system (i.e. no charges at the oxide and Si-SiO2 interface), the flat-band voltage can be 

determined as 

MSSMFBV F=F−F=            (2.3) 

where ΦM is the metal work function and ΦS the semiconductor work function. However, for 

a real MOS system, the flat-band voltage is further affected by several charges at the oxide 

and interface. Therefore, Equation 2.3 becomes 
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where Qf is the fixed charge at the Si-SiO2 interface, Qit the interface trapped charge depends 

on the surface potential ϕS, ρm(x) and pot(x) are the mobile and oxide trapped charges 

distributed along the oxide. These additional charges from the oxide and the interface are 

important for the threshold voltage. In practice, the threshold voltage can be derived from the 

MOSFET characteristics through ID-VGS measurement. There are numerous methods for the 

threshold voltage extraction [42-46] and some well-known extraction methods are introduced 

in here. However, it is noted that each method is not always good for all kinds of transistors, 

particularly nano-scale transistors. Hence, to obtain more accurate value of threshold voltage, 

the threshold voltages from several methods should be compared considering the transport 

mechanism depending on the device structures and materials. 

 

2.2.1 Linear extrapolation method 

 

The most classical method is a linear extrapolation method, which is an old style but well-

known, using a linear fit at the maximum transconductance, gm, max from ID-VGS characteristics 

at the linear region. At strong inversion, the drain current can be expressed as  
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L

WI µ             (2.5) 

where W is the channel width, L the channel length, and μeff the effective mobility. If VDS is 

small enough, Equation 2.5 can be simplified to 
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At a constant of VDS, based on Equation 2.6, the current expects to appear a linear curve 

for ID-VGS characteristic but the actual curve is not linear because the effective mobility will 

be degraded at higher gate voltage. Therefore, a point to fit Equation 2.6 is the point where 

the transconductance gm (=dID/dVGS) reaches its maximum value. The threshold voltage can 

be found at the point of zero current in the linear fit drawn with the ID-VGS curves focusing on 

the gate voltage at the gm, max as illustrated in Figure 2.2. However, the linear extrapolation 

method is sensitive to the series resistance and mobility degradation.  

 

2.2.2 Second derivative method 

 

The second derivative method (also named transconductance change or transconductance 

derivative) defines the threshold voltage with a secondly derivative curve (=d2ID/dVGS
2) of the 

transconductance at small drain voltage (VDS < kT/q) [47]. In this method, the gate voltage at 

the maximum value of the second derivative transconductance indicates the threshold voltage. 

The maximum point is related to the classical threshold band-bending of ϕS = ϕF + VSB that is 

the surface inversion layer being equal to the substrate doping (where VSB is the source-

substrate voltage) [48]. The transconductance derivative method is rather simple and more 

Figure 2.2 Illustration of the linear extrapolation method for a commercial n-channel MOS transistor 
(HCF4007UB, a dual complementary pair plus inverter comprised of three n-channel and three p-channel 
enhancement type MOS transistors) at VDS = 0.1 V. 
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precise compared with linear extrapolation technique and less affected by the series resistance 

and mobility degradation. 

 

2.2.3 Y-function method 

 

The Y-function method (also called “drain current ratio” or “square root transconductance” 

method) was proposed by G. Ghibaudo in 1988 by combining the model of ID-VGS and gm-VGS 

characteristics to avoid the mobility degradation and the parasitic series resistance [46]. The 

model starts to consider the device in the linear operation at low drain voltage and the drain 

current can be expressed as Equation 2.6. Considering the dependence of the mobility on the 

gate voltage, it is represented as 
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where μ0 is the low field mobility, and θ1 the mobility attenuation coefficient. Therefore, the 

transconductance of Equation 2.7 is 
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The idea of Y-function method is the cancelation of the mobility attenuation coefficient θ1 

by dividing the current ID with the square root of the transconductance gm so that it results in 

Figure 2.3 Illustration of second derivative method for a commercial n-channel MOS transistor 
(HCF4007UB) at VDS = 0.1 V. 
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In Equation 2.9, ID/gm
1/2 should be linear as increasing gate voltage with the intercept and 

slope which indicate the threshold voltage VTH and low field mobility μ0, respectively (Figure 

2.4 (a)). After VTH extraction, the mobility attenuation coefficient θ1 can be also presented as 

shown in Figure 2.4 (b) using an expression which is given by 

)/(]1))(/([1 THGSTHGSmD VVVVgI −−−=θ       (2.10) 

or it can be simplified as 
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where Gm is defined as W/L(COX·μ0·VDS). 

 

2.3  Carrier Mobility 
 

In solid-state physics, the term ‘carrier mobility’ refers in general to the property of the 

carrier (electron or hole) to move in semiconductor (or metal) under an electric field E. It can 

be also called an electron or hole mobility according to the carrier type but the term ‘mobility’ 

is more popular for all cases. When an electric field E is applied across the conductor, 

electrons (or holes) begin to move with an average velocity which is named the drift velocity 

νd. So, the electron mobility μ is defined as 

Figure 2.4 (a) ID/gm
1/2 – VGS characteristic in a commercial n-channel MOS transistor (HCF4007UB) with 

an excellent straight fitting line (red solid line) and (b) extracted mobility attenuation coefficient θ1 from 
Y-function method. 
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Eνd µ=                    (2.12) 

and it is specified in unit of cm2/Vs. In an intrinsic semiconductor, the mobility is dependent 

on carrier scatterings by phonons, impurities, defects, or alloy disorder which affects the drift 

velocity. The approximate relationship between the mobility and scattering time is 

*m
qτm =                    (2.13) 

where q is the electronic charge, m* the effective mass of a carrier in the semiconductor, and τ 

the average carrier scattering time. If the average scattering time τi for each scattering 

mechanism is independent, the total mobility due to several scatterings can be expressed 

using the Mathiessen rule given by [49] 

∑=
i iµµ

11                    (2.14) 

where μi (=qτi/m*) is the limited mobility with the different scattering time. The Matthiessen 

rule has been used to study the influence of various scattering on the mobility in MOSFETs 

as shown in Figure 2.5 [50]. 

In semiconductors, the most common 

scattering mechanisms are ionized impurity 

scattering and phonon scattering (precisely, 

acoustic phonon scattering). The ionized 

impurity scattering is especially important 

for highly doped semiconductors and it 

stands for the carrier scattering by 

influencing the electric field of the ionized 

impurities coming from donors and/or 

acceptors in semiconductors. The scattering 

potential of ionized impurity scattering is 

assumed similar to Coulombic scattering 

but the ionized impurity scattering attracts 

mobile carriers which screen the potential. 

For the phonon (or lattice) scattering, the semiconductor’s band structure is influenced by 

changes in lattice spacing at any temperature above 0 K. The vibration of atoms causing the 

lattice spacing creates pressure (acoustic) waves in crystal, which are called phonons 

inducing the carrier scattering. There are two kinds of phonons: one is the acoustic phonons 

Figure 2.5 Schematic diagram of the effective field 
dependence of mobility in inversion layer by three 
dominant scattering mechanisms [50]. 
 
 



Ch. 2 Electrical properties for FET structures 

29 
 

and the other is optical phonons. The acoustic phonons are the lattice spacing due to the 

displacement of neighboring atoms in the same direction whereas the optical phonons coming 

from the opposite directions [51]. Apart from these major scattering mechanisms in 

semiconductors, there are also other important scatterings such as neutral impurity scattering, 

surface roughness scattering, and defect scattering depending on materials, structures, and 

process. 

There are several mobilities in use depending on the extraction method. Representatively, 

they are conductivity mobility, Hall mobility, and MOSFET mobility for the characterization 

of semiconducting materials and devices. 

 

2.3.1 Conductivity (or drift) carrier mobility 

 

The conductivity mobility (μdrift) is derived from the simple relation between mobility and 

electrical conductivity σ that is the proportional to the product of the mobility and carrier 

concentration in semiconductor materials. The conductivity is given by 

)( ,, hdriftedrift pnq µµσ +=                    (2.15) 

where n is the electron density, μdrift,e the electron mobility, p the hole density, and μdrift,h the 

hole mobility. The conductivity mobility is simple and easy to find but the majority carrier 

density is needed to obtain the accurate conductivity mobility. It is useful to characterize for 

the intrinsic property of materials. 

 

2.3.2 Hall carrier mobility 

 

The Hall measurement is a well-common method based on Hall Effect to obtain the 

mobility, carrier type, and carrier concentration in material. The Hall Effect is a phenomenon 

to produce a potential difference (Hall voltage, VH) perpendicular to the magnetic field and 

current when the magnetic field applied to the electrical conductor perpendicular to the 

current flow direction. As shown in Figure 2.6, it shows a schematic illustration of Hall Effect 

in a p-type conductor and the force causing Hall voltage is given by the vector expression 

)( BνEF ×+= q                    (2.16) 

and Hall mobility μH is defined by 
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where RH is the Hall coefficient, B the magnetic field, I the current, and ρ the resistivity. The 

Hall mobility is trustworthy compared with the conductivity mobility but the method requires 

the sample having appropriate geometries for Hall measurement. 

 

2.3.3 MOSFET carrier mobility 

 

In general, the conductivity and Hall mobilities are for bulk. In the case of MOSFETs, the 

surface is relatively important and the mobility is easily affected by various scatterings such 

as ionized impurity scattering, phonon scattering, and so on. Considering these scatterings, 

the total mobility is limited by the lowest mobility according to Mathiessen’s rule. Therefore 

the method to extract the mobility only for MOSFET structures has been used. Effective 

mobility and Field-effect mobility are well-known terminology widely used for various 

material devices as well as silicon MOSFETs. Let consider an n-channel MOSFET of gate 

length L and width W. The drain current is simplified for the basic MOSFET operation as 

DSieffDSdD VQ
L

WVgI µ=⋅=             (2.18) 

where gd is the drain conductance, μeff the effective mobility and Qi the inversion channel 

charge density (C/cm2). To extract the exact value of effective mobility, the inversion charge 

density Qi is important and it can be determined in two different ways. One is a simple 

approximation with  

Figure 2.6 Schematic illustration of the Hall Effect in a p-type conductor [47]. 
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)( THGSOXi VVCQ −=                (2.19) 

and the other is a direct measurement of Qi from the capacitance measurement (refer Chapter 

2.6). The direct measurement of charge carriers is better than the approximation to extract the 

value of effective mobility. However, it is not convenient in many ways such as a necessity of 

additional C-V measurement and several capacitance effects (e.g. an overlap capacitance) 

depending on the device structure. For this reason, the approximation method is well used for 

the comparison for the number of devices and the capacitance measurement is recommended 

to obtain the more precise value of mobility. 

For the effective mobility, the drain voltage is typically recommended about 50~100 mV 

as small as possible considering the uniformity of inversion charge carriers from source to 

drain. The definition of effective mobility is given by  
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and the drain conductance gd is defined as 
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The ionized impurity scattering and surface roughness scattering that mainly affects the 

effective mobility depends on the substrate doping concentration and the electric field. The 

relation between the effective mobility and the surface electric field can be expressed as 
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0             (2.22) 

where α and γ are constants. In Equation 2.22, the “universal” mobility curves for the electric 

field which can be expressed as the electric field due to the space-charge region and the 

inversion layer charges [52-54]. But, the universal mobility is not good for understanding the 

device operation because the gate voltage can be measured experimentally, not the electric 

field. Therefore, the empirical relationship for the effective mobility degradation for the gate 

voltage is [55] 

2
21

0

)()(1 THGSTHGS
eff VVVV −+−+
=

θθ
µµ       (2.23) 

where θ1 and θ2 are mobility attenuation factors which are related to the series resistance and 

surface roughness, respectively [56]. In the long channel devices, the value of θ2 is negligible 

but, in the case of short channel, it may significantly affect to the mobility. 
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On the other hands, the field-effect mobility is determined using the transconductance gm 

contrary to the effective mobility for the drain conductance gd which is given by 
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and the field-effect mobility is defined as 
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The effective and field-effect mobility are widely used with little consideration for nano 

devices analysis. However, it is noted that 

there is mathematically a distinct difference 

for considering electric field dependence on 

the mobility. Figure 2.7 shows for the 

effective and field-effect mobility as a 

function of the gate voltage. The effective 

mobility is much larger than the field-effect 

mobility. It is due to the disregard of the 

electric field dependence for the mobility in 

the derivation of Equation 2.25 [57].  

 

2.4  Series and contact resistances 
 

The term “series resistance” refers to 

the additional resistance which contributes 

to the total resistance of the device. It 

comes from the electrical connections 

from leads and contacts. It could be called 

“contact resistance” but it has been used 

for the metal-semiconductor junction as a 

main contribution [58]. Firstly, the series 

resistance in CMOS technology stands for 

the parasitic source/drain (S/D) resistance 

connected to the channel in series when the device size is decreased. Therefore, the series 

resistance has been often understood the parasitic resistance. Figure 2.8 illustrates the detailed 

Figure 2.7 Comparison of the effective and field-
effect mobilities (HCF4007UB). 

Figure 2.8 Different components of parasitic S/D series 
resistance. (Rac is the accumulated-layer resistance due 
to doping gradient, Rsp the spreading resistance, Rsh the 
sheet resistance, and Rco the contact resistance) [59]. 
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schematic and the circuit model for different parasitic series resistances [59]. However, the 

resistance between source and drain is mostly classified as the source resistance RS, the drain 

resistance RD, the channel resistance Rch, and the contact resistance RC for the analysis. For 

MOSFETs, the total resistance Rtotal can be expressed a summation of Rch and RSD (=RS+RD) 

as 
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where ρch is the resistivity of the channel. The series resistance RSD can be extracted from the 

mobility attenuation factor θ1 based on Y-function method [60], 
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Using Equation 2.27 and 2.28, θ1 can 

be drawn as a linear function of β which 

is shown in Figure 2.9. The slope and the 

intercept with y axis of the plot gives the 

values of the total series resistance RSD 

and the intrinsic mobility attenuation 

factor θ1,0, respectively. Interestingly, RSD 

extraction is not affected by Leff variations 

or Leff-dependent μ0 variations.  

There is another resistance which 

called contact resistance mainly observed 

in the metal-semiconductor junctions. In 

1874, F. Braun firstly reported the asymmetrical conduction between metal points and 

crystals [61]. The rectifying properties of the metal-semiconductor contact arise from the 

existence of an electrostatic barrier so called “Schottky barrier” at the interface between the 

metal and semiconductor. Theoretically, the electrostatic barrier is due to the difference in 

work functions of two materials (Figure 2.10). If the barrier height is small, the junction 

makes an “Ohmic” contact that presents a linear curve in current-voltage relationship. 

However, for the large barrier height, it is called “Schottky” contact due to the rectifying 

Figure 2.9 Extraction of the series resistance RSD and 
mobility attenuation factor θ1 [60]. 
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behaviors. The Schottky barrier is frequently 

observed in nanowire or nanotube devices 

with bottom-up grown nanostructures and it 

is one of the important issues for nanowire 

applications. The conduction mechanisms in 

metal-semiconductor are illustrated in Figure 

2.11: thermionic emission (TE), thermionic-

field emission (TFE), and field emission (FE) 

[59]. For the evaluation of contact resistance, several methods are employed presently, such 

as transmission-line method (TLM), gated four-prove measurement, modified time-of-flight 

method, Kelvin probe force microscopy (KFM) and electric-field induced second harmonic 

generation (SHG) method [62-66].  

 

2.5  Subthreshold swing 
 

In a MOSFET, a small current exists between the source and the drain when the gate bias 

is below threshold voltage and the semiconductor surface is in weak inversion (i.e. 

subthreshold region). The current in the subthreshold region is named subthreshold current or 

a subthreshold leakage. Its behavior is similar to the exponentially increasing current of a 

forward biased diode because the subthreshold current is dominated by the diffusion current 

and not the drift current owing to lower electron charge in the channel [59]. In the 

subthreshold region (below threshold), the drain current of a MOSFET in all region can be 

expressed [67]  

Figure 2.11 Different conduction mechanisms in metal-semiconductor contacts: thermionic emission (TE), 
thermionic-field emission (TFE), and field emission (FE) [47]. 
 
 

Figure 2.10 Energy band diagram of the Schottky 
barrier [47]. 
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where ID1 depends on temperature, device dimensions, and substrate doping density and n is 

given by n=1+(Cb+Cit)/COX where Cb, Cit, and COX are respectively bulk, interface trap, and 

oxide capacitance per unit area. The subthreshold swing can be obtained from the plot of log 

(ID) versus VGS when VDS is much larger than thermal voltage (i.e. VDS >> kT/q). As shown in 

Figure 2.12, the subthreshold swing is expressed as the reciprocal of slope in linear region. It 

corresponds to the gate voltage necessary to increase the drain current by one decade. 

Therefore, the subthreshold swing is given by 
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The subthreshold swing is known to have minimum theoretical limit of 59.6 mV/decade 

(S=ln(10)kT/q) in the case of very thin Si-SiO2 interface having no traps at room temperature 

[68]. It is one of the fundamental issues 

for silicon based MOSFET scaling since 

the subthreshold swing is increased as 

decreasing the channel length. The 

subthreshold swing is related to logic 

circuits for low-power, high-speed 

applications and it is an important 

parameter to determine the device 

performance for the MOSFET 

miniaturization [69].  

 

2.6  Capacitance 
 

The capacitance-voltage (C-V) measurement is one of the most useful and common 

method to characterize electrical properties of materials and their interfaces. The C-V 

measurement is a specific technique for the impedance spectroscopy that has been used to 

investigate charge carriers in the bulk or interfacial region of any kind of solid or liquid 

material: ionic, semiconductor, mixed electronic-ionic, and dielectrics [70]. In MOSFETs, it 

has been mainly used to characterize oxide thickness, doping concentration, flat-band voltage, 

oxide charge, work function, and interface state density in MOS devices [47]. The 

Figure 2.12 Log (ID) versus VGS of 3-D stacked gate-all-
around (GAA) silicon nanowire transistor. 
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capacitance is determined with the width of space-charge (i.e. depletion) region in a 

semiconductor junction applying small amplitude of AC voltage (or current) on a DC voltage. 

Typically, the frequency of AC signal is used with 10 kHz to 1 MHz and the amplitude is 

recommended as small as possible for accurate measurements or near the thermal voltage (≈ 

25 mV) [71], [72]. But, the amplitude is used from 10 to 50 mV practically and it is 

adjustable depending on the devices.  

Figure 2.13 (a) shows a schematic of the impedance measurement method called an auto-

balancing bridge method which is adapted to conventional equipment systems [73]. To 

measure capacitance in MOSFETs, the most widely used C-V measurement technique is 

called “split C-V” technique and consists in measuring the capacitance of the gate to channel 

(source/drain) and the gate to substrate as illustrated in Figure 2.13 (b) [74]. A time-varying 

gate voltage gives rise to currents I1 and I2. With the substrate grounded, the channel 

inversion charge density Ci and the substrate depletion charge density Cb can be derived from 

I1 and I2 which is given by 
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where CGC is the gate-to-channel and CGB the gate-to-bulk capacitance per unit area. Figure 

2.14 shows the capacitance behavior of CGC and CGB from the split C-V measurements. The 

inversion charge Qi and the substrate depletion charge Qb can be obtained by the integration 

of CGC from the accumulation to the gate voltage and CGB from the flat band voltage to the 

inversion, respectively. The expressions for Qi and Qb are given by 

Figure 2.13 (a) Schematic diagram of an impedance measurement method named auto-balancing bridge 
method [73] and (b) Split C-V measurement arrangement [47]. 
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With the results of Equation 2.33 and 2.34, the effective mobility and effective field can 

be calculated as [60] 
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where εch is the permittivity of channel material and η the empirical weighting parameter, 

which is varying with device type, doping concentration and temperature [75], [76]. 

 

2.7  Summary 
 

In this chapter, the major device parameters to understand the transport properties based 

on the classical MOS transistor model were summarized together with the practical extraction 

methods. These parameters such as threshold voltage, mobility, series resistance, 

subthreshold swing, and capacitance are also useful to describe the electrical operation of 

nano-scale devices considering some fitting procedures. The parameter extractions and their 

Figure 2.14 CGC and CGB behaviors as changing the gate voltage and principle of Qi and Qb with split C-V 
measurements [60]. 
 
 



Ch. 2 Electrical properties for FET structures 

38 
 

physical meanings can help to understand the physical phenomena and optimize the materials 

and fabrication processes correlated to the efficiency of carrier transport. 
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Chapter 3 Low-frequency noise characterization 
 

 

 

3.1  Background: Definition and concepts 
 

In general, noise refers to any unwanted signal that is commonly observed in signals such 

as sounds, electronics, images, communications, and so on. For example, in communication 

systems, the noise signal blocks, changes, interferes or distorts the original messages and 

thereby the message may not deliver its meaning accurately. Similarly, noise also exists in all 

electronic devices and circuits as a result of the randomly spontaneous perturbation in the 

current (or voltage) due to the random movement of charge carriers and carrier fluctuations in 

the semiconductors by several reasons such as temperature, defects, and etc. The noise in 

electronic systems has been called “electronic noise”.  

The electronic noise can be briefly classified into two types: one is an external noise 

which is defined as a noise from other outer noise sources such as light, sound, and vibration 

and not from the electronic device itself. The external noise which is easy to observe in 

electrical measurements is the hindrance for understanding the inherent noise in electronic 

devices. However, it can be reduced or removed by some appropriate shielding techniques. In 

spite of the minimization of the external noise, on the other hand, there is still a noise due to 

an electronic device or rather a material itself like a semiconductor. It is named an internal 

noise as a unique property of the electronic device. 

Accordingly, the internal noise cannot be entirely 

eliminated unlike the external noise but it can be 

effectively reduced by proper manufacturing 

process and design for the devices and circuits. In 

general, the study of electronic noise in solid-state 

devices reveals internal noise which explains the 

phenomena of current fluctuations following in the 

semiconductor. Figure 3.1 shows an example of 

drain current signal fluctuations with different 

structures of MOSFETs [77].  
Figure 3.1 Drain current signal fluctuations 
in time domain [77]. 
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In detail, the time varying current I(t) in the semiconductor, considering the electronic 

noise, can be expressed as  

)()( 0 tiItI +=           (3.1) 

where I0 is the average value of current for a certain applied voltage and i(t) is the small-

signal variables of the randomly fluctuated currents in time variation. Since i(t) is a random 

variable, it cannot be predicted at any point in time. To characterize the noise in current signal 

I(t), one typical way is the averaging of random signals. By definition, however, the noise is 

non-deterministic as previously mentioned so that it is difficult to obtain a proper mean value 

and cannot be represented by any mathematical function. Indeed, the average of current I(t) 

which is measured for a certain time period will be always zero. For this reason, another 

mathematical quantity is required to properly represent the random noise behaviors in the 

current. In general, there are several squared quantities and one of them named the power 

spectral density (PSD) S(f) is generally used which is given by a Fourier transform method. A 

Fourier transform method is a well-known and powerful technique for the effective noise 

analysis which converts the random variables in the time domain to the frequency domain 

and it is defined as 
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where X(f) is the Fourier transform and x(t) is the inverse Fourier transform. If the Fourier 

transform decomposes the random signal into its constituent frequencies, the noise can be 

written as the sum of simple waves mathematically represented by sine and cosine. However, 

the Fourier transform is not desirable for all kinds of random signal because there is no 

inverse Fourier transforms for the conversion. To solve such mathematical problem in the 

Fourier transform, the autocorrelation function R(s), which is same process compared to the 

Fourier transform according to the Winer-Khintchine theorem, has been used [78], [79]. So, 

the PSD is given by 

∫
∞
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and it reflects how the noise power is distributed with frequency. The PSD can be obtained 

with a spectrum analyzer and the unit of PSD generally used in A2/Hz and V2/Hz for the 

noise current (SI) and noise voltage (SV), respectively. 

Noise characterization has been one of the useful techniques to characterize the device 

reliability and the failure analysis for typical microelectronic devices because the noise forms 

an intrinsic lower noise limit and depends on material and fabrication processing [47]. 
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Moreover, the noise spectroscopy has been applied to the study of deep levels in MOSFET 

like a deep-level transient spectroscopy (DLTS) [80]. Even the noise spectroscopy can be 

applied to very small area devices whereas the DLTS is impossible. Especially, for nano scale 

devices, the noise should be considered because it increases relatively as decreasing the 

current level due to the smaller size of device. Therefore the noise is getting important for 

low-dimensional structures. Why the electronic noise is important for nano scale devices? 

Basically, the resolution limit of an electronic device (e.g. a sensor) for the signal detection is 

determined by the signal to noise ratio (SNR). If the device has high signal level (i.e. high 

current), the resolution for the signal detection is generally limited by the electronic circuits 

whereas it becomes more sensitive to noise when the device has smaller current level. As a 

result, the noise restricts the minimum value of the input signal that determines the output 

signal of electronic circuits. 

 

3.2  Fundamental noise sources 
 

In the view point of physics, the electronic noise is one of carrier dynamics which is 

correlated to the scattering process in a solid-state. The scattering process is due to some 

collisions of charge carriers because of lattice vibrations during the transport or trapping/de-

trapping of charge carriers on the trap sites. It has been known that the scattering elements are 

channel defects, interface states, oxide traps or contacts. There are various kinds of noise 

sources and it represents different behaviors in the frequency domain depending on the noise 

source. In this chapter, the representative fundamental noise sources are discussed and 

described. 

 

3.2.1 Thermal noise 

 

Thermal noise (also called Johnson, Nyquist, or white noise) is caused by the random 

thermal motion of current carriers (i.e. electrons or holes) in a semiconductor. In 1906, A. 

Einstein predicted that Brownian motion of charge carriers would lead to fluctuations in the 

potential across a resistor in thermal equilibrium [81]. Later on, in 1928, J. Johnson firstly 

measured [82] and H. Nyquist theoretically explained it [83]. Thermal noise is always 

presented for every semiconductor in the absence of an electrical field to be applied. The PSD 

of thermal noise is constant over a frequency range, which is why it is called white noise. The 
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voltage PSD of thermal noise due to the Brownian motion of carriers can be expressed as 

kTRSV 4=           (3.4) 

where k is the Boltzmann constant, T the absolute temperature, and R the resistance. The 

corresponding current PSD of thermal noise is given by 
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2 ==             (3.5) 

Thermal noise always exist (except T=0 K) thereby it is frequently used for comparison 

between other noise types and thermometry purposes which provides the resistance R. For 

example, thermal noise is often used to calibrate a noise measurement system because it can 

give some value for the limits of the noise measurement system with temperature [84]. 

 

3.2.2 Shot noise 

 

Shot noise has been known as the discrete nature of charge transport. It is generally 

observed in devices having a potential barrier such as pn junctions, and Schottky diodes. In 

1918, W. Schottky firstly discovered in vacuum tubes and derived an equation shown as the 

Schottky formula [85]. The PSD of shot noise is proportional to the electronic charge q of the 

carriers and the mean current I, 

qISI 2=                  (3.6) 

There is no expression for the voltage PSD in shot noise because the current is necessary 

for the generation of shot noise. The shot noise is also called a white noise like thermal noise 

because its frequency dependence is the same as thermal noise. Thus, it cannot be 

distinguished simply due to the existence of the thermal noise. But the shot noise is generally 

much smaller than the thermal noise. Recently, shot noise becomes important in mesoscopic 

systems because the size of a mesoscopic system is comparable to some typical lengths which 

determine the level of electron correlations and the shot noise is correlated to the system 

length [86]. 

 

3.2.3 Generation-Recombination (g-r) noise 

 

Generation-recombination (g-r) noise is due to generation and recombination of charge 

carriers (i.e. electrons or holes) by trap sites which induce the conductance (or resistance) 

fluctuations. In semiconductors, the localized state cannot participate to the conduction 
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whereas the delocalized states contribute to the electron conduction. These localize states also 

named “traps” exist due to the presence of various defects or impurities in the semiconductor 

or at the interface. The PSD of g-r noise is given by a Lorentzian behavior 
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where N is the averaging number of free carriers, 2N∆ the variance of the fluctuating 

number of charge carriers, and τ the carrier relaxation time. The relaxation time τ is in the 

range of 10-6 s to 10-3 s as a characteristic of traps. The g-r noise is only valid when the Fermi 

energy level is near, within a few kT, to the trap energy level [87]. In general, the trap 

characteristics depend on the trap energy level and spatial position.  

 

3.2.4 Random-Telegraph-Signal noise 

 

Figure 3.2 illustrates a schematic description of RTS noise in a MOS structure and the 

current waveform in time domain. Random-Telegraph-Signal (RTS) noise (also called burst 

noise, popcorn noise, impulse noise, and bi-stable noise) is an unusual case of g-r noise 

involving only few traps. The level of current will be between two or more states due to the 

random trapping and de-trapping of charge carriers. A simple two-level RTS noise can be 

observed in various types of semiconductor devices. Especially, RTS noise is common in 

Figure 3.2 Schematic description of RTS noise in a MOS structure and a waveform of current in time 
domain [87]. 
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small area MOS transistors and is correlated to individual carrier trapping at the silicon-oxide 

interface [88-90]. Likewise g-r noise, the PSD of RTS noise is a Lorentzian type and derived 

as  
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where τl and τh are the time constant in the lower state and higher state, respectively and ΔI is 

the difference of current between those two states (Figure 3.2). This type of noise is a good 

for study of a single trap activity in a system with few free carriers.  

 

3.2.5 1/f noise 

 

1/f noise is generally also named flicker or excess noise with a PSD inversely proportional 

to the frequency f. It has been sometimes called low-frequency noise but it is not true strictly 

because other types of noise such as g-r or RTS noise can be observed in low-frequency 

region. Nevertheless, it is accepted since most of noise type is 1/f noise. In 1925, the 1/f noise 

was firstly found by J. Johnson in vacuum tubes and Schottky gave the first interpretation 

[91]. Since then, Christensen & Pearson found it for carbon microphones in 1936 and then 

the 1/f noise was also found in various semiconductor and semiconductor devices [92]. Up to 

now, a huge number of current noise spectra were measured with various materials such as 

semiconductors, semimetals, metals, superconductors, tunnel junctions, strongly disordered 

conductors, and etc. thereby the results, in practically all cases, appeared in a shape of an 

increase of current noise power spectrum as decreasing the frequency, 1/f. In general, 1/f 

noise is difficult to find at high frequency since it is finally hidden by thermal noise.  

Even if 1/f noise is universal for various materials, there are still some controversies for 

the origin since many decades. Some major issues are as follows [93]: 1) Mobility vs. 

Number fluctuations, 2) Superposition of RTS noise for 1/f noise, and 3) Surface vs. Bulk 

origin.  

 

1) Mobility vs. Number fluctuations: It is a well-known issue to understand the origin of 

1/f noise. The current fluctuation in materials can be understood with the conductivity 

fluctuations since the conductivity is an inherent property which determines the device 

conductance. So, the conductivity σ is defined as 

driftqnµσ =            (3.9) 
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where n is the charge carrier density and μdrift is the drift mobility. From the idea of 

conductance fluctuations, two representative models are presented. From a physical 

view point, the number fluctuation model is based on the charge trapping/release of 

carriers into the oxide or at the interface states whereas the mobility fluctuation 

model is due to phonon scattering in the solid [94]. In conventional MOSFETs, the 

main 1/f noise source has been generally explained by the number fluctuation model. 

But there are other devices where noise is explained by the mobility fluctuation 

model. For instance, for 0.35 μm p-type FETs, the mobility fluctuation model 

dominates in reason of the buried architecture of the channel [95]. On the other hand, 

some results support the mobility fluctuation [96], [97]. In carbon nanotubes, the 

number fluctuation with charge trapping at the interface does not work and the other 

explanation is suggested such as diffusion or electron-phonon interaction. The 

electron-phonon interaction is strongly supported by the result which is the 

temperature dependence of 1/f noise in single-walled carbon nanotubes [97]. These 

results show that the noise can be changed depending on the devices architecture or 

conduction mechanism. 

 

2) Superposition of Lorentzian noise for 1/f noise  

 

The idea of superposition of Lorentzian noise to obtain the 1/f behavior has been 

suggested by J. Bernamont [98] and M. Surdin [99]. The power spectra of g-r and 

RTS noise show Lorentzian curves, which are explained with the trap time constant 

[100-102]. If the traps having various 

time constants are independent, the 

superposition of Lorentzian curves 

looks like 1/f behavior as shown in 

Figure 3.3. The idea has been well 

explained in small area as well as in 

large area MOS devices. However, 

there are some criticisms that RTS 

noise is not a fundamental source of 

1/f noise because 1/f noise still exists 

in the absence of the RTS noise. 
Figure 3.3 Superposition of several Lorentzians 
giving a 1/f noise. 
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3) Surface vs. Bulk origin 

 

The arguments of the surface or bulk effect on the 1/f noise basically is coming from a 

controversy of the mobility and number fluctuation model. Two competing theories 

have been proposed: the McWhorter number fluctuation theory which considers the 

surface effect and the Hooge mobility fluctuation theory for homogeneous bulk such 

as metals and semiconductors [103]. Both theories are supported with experimental 

evidence. The general belief is surface or bulk noise or both of them depending on the 

device structures. In nanowire structures, the surface/volume ratio is increased as 

decreasing the channel diameter. It is noted that the surface effect due to the smaller 

size might be important for the 1/f noise behavior in nanowire structures.  

 

3.3  1/f noise models for FET structures 
 

3.3.1 Hooge mobility fluctuation model 

 

The mobility fluctuation model is an empirical relation between the magnitude of the 1/f 

noise and the number of free charge carriers proposed by Hooge in 1972 [104]. It is simply 

given by 
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== 22              (3.10) 

where N is the total number of free carriers and αH is dimensionless constant, called Hooge 

constant. At first, the Hooge constant has been known to be a universal constant having the 

value of 2×10-3 for all materials but it becomes known to be wrong later. Hooge proposed the 

model for homogeneous bulk systems. Later on, the Hooge mobility fluctuation model 

distinguished from the mobility fluctuations by the scatterings due to trapped charge carrier at 

the oxide-semiconductor interface. Physically, the Hooge mobility fluctuation model 

explained the 1/f noise is due to the current fluctuations resulting from the mobility scattering 

by phonon (or lattice) vibrations. Unfortunately, the Hooge model cannot provide a further 

explanation for the 1/f noise even though it is well fitted empirically. For the Hooge constant, 

it has been known that there is no physical meaning. Nevertheless, it has been used to 

compare the noise between different devices or materials.  
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I. Hafez et al. proposed the Hooge mobility fluctuation model for the Ohmic and non-

linear region of MOSFETs [105] and it can be defined involving the total number of carriers 

is given by N=WLQi/q, 
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where Qi is the inversion charge per unit area. And the input gate voltage noise in Ohmic 

operation is 
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where θ1 is the mobility attenuation coefficient as shown in Equation 2.7. In the same manner, 

in non-linear region MOSFETs, the model can be expressed considering the non-uniform 

inversion layer along the channel as 
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where <μeff> is the average mobility along the channel. Regardless of the Ohmic and non-

linear regions of MOSFETs, the normalized drain current noise is inversely proportional to 

the drain current (i.e. SId/ID
2~1/ID). 

 

3.3.2 Carrier number fluctuation model 

 

In 1957, in MOS structures, the original theory for number fluctuations that is dynamic 

charge exchange between the channel and independent traps in the gate oxide has been 

worked out by A. McWhorter [106]. Since then, much work has been developed to the 

modeling for low-frequency noise in MOSFETs [107-109]. In 1990, K. K. Hung suggested a 

unified model which combined the carrier number and the mobility fluctuation approaches 

[110]. In 1992, a more popular form was proposed by G. Ghibaudo with a concept of an input 

gate voltage noise spectrum [111]. With a general description of G. Ghibaudo [111-113], the 

fluctuations of drain current stem from the fluctuations of the interface trap charge at the 

oxide-semiconductor interface. This interfacial oxide trapped charge fluctuation can be 

regarded as an oxide charge fluctuation δQOX and it can be equivalent to a fluctuation of the 

flat band voltage as  
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where COX is the gate oxide capacitance, W and L the channel width and length, respectively. 

Considering the relation between the gate voltage and the flat band voltage which is given by 
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−+= φ               (3.15) 

where VG is the gate voltage, VFB the flat band voltage, ϕS the surface potential, Qi the 

inversion charge, Qd the depletion charge, and Qit the fast interface state charge. After 

differentiation of Equation 3.15, the inversion charge fluctuations δQi can be obtained by 

linking the oxide charge fluctuations δQOX. The relationship is 

OX
iitdOX

i
i Q

CCCC
CQ dd

+++
=               (3.16) 

where Cd, Cit, and Ci is the depletion, fast interface state and inversion charge capacitance, 

respectively and they are defined as 
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In Ohmic region, the corresponding drain current fluctuation is derived by differentiating 

the drain current ID with respect to the inversion charge 
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Using Equation 3.15 and 3.16 incorporating the transconductance gm (=dID/dVG), the drain 

current fluctuation becomes 
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and the normalized drain current spectral density can be obtained as 
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From Equation 3.20, the normalized drain current noise SId/ID
2 of the carrier number 

fluctuation model is proportional to (gm/ID)2 and the curve starts from a plateau at weak 

inversion before decreasing as ID
-2 at strong inversion. Figure 3.4 exhibits the comparison 

between the carrier number fluctuation (precisely including correlated mobility fluctuations) 

and Hooge mobility fluctuation model by theoretical calculation [111]. 
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3.3.2.1 Tunneling process 

 

As mentioned previously, in the McWhorter carrier number fluctuation model, the 

fluctuation of current is due to the inversion charge fluctuations at the oxide-semiconductor 

interface. The salient assumption of this model is the tunneling process which explains the 

physical trapping mechanisms of charge carriers into the oxide. In the tunneling process, the 

trapping time constant τtunnel is given as 



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
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ττ zEτunneλ exp)(0          (3.21) 

where τ0 is the typical attempt time, taken as 10-10 s, z the distance of a trap from the interface 

(z=0), and λ the tunneling distance. The tunneling distance (or attenuation length) λ can be 

estimated by the Wentzel-Kramers-Brillouin (WKB) theory and it is defined as [114] 
1
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where ΦB is the tunneling barrier height seen by the carriers at the interface, h the Planck 

constant, and m* the effective 

mass of the charge carrier. Hence 

the values of λ are different 

depending on materials. It has 

been known as 10-8 cm (≈1 Å) for 

Figure 3.4 Theoretical variations of the normalized drain current power spectral density as given by (a) 
the carrier number fluctuation model and (b) the Hooge mobility fluctuation model for various channel 
lengths [111]. 
 
 

Table 3.1 Tunneling distance λ calculated for SiO2, HfO2 and 
Al2O3 on Si [87]. 
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Si/SiO2 system and the λ values for other major dielectrics on the Si system are summarized 

in Table 3.1. By applying the Equation 3.21, the flat-band voltage spectral density takes the 

form as 

 γ
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where f is the frequency, γ the exponent close to 1, k the Boltzmann constant, T the absolute 

temperature, and Nt is the volumetric oxide trap density (eV/cm3). For equivalent energy 

tunneling processes, the traps located within kT from the quasi-Fermi level only activate for 

the fluctuations [115]. Therefore, the spatial distribution of traps located from the interface 

determines the exponent γ. If the traps have uniform distribution then γ is a unity. If the trap 

distribution is not uniform, γ may deviate from one.  

 

3.3.2.2 Thermally activation process 

 

Another proposed mechanism for the charge carrier trapping is a thermally activated 

trapping process [116]. The trapping probability decreases exponentially with the activation 

energy Ea. The time constant τthermal for thermally activation process is given by 
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and the flat-band voltage spectral density is [113], 
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where ΔEa is the amplitude of the activation energy dispersion and Nit is the oxide trap 

surface state density (eV/cm2). The uniform trap distributions of Ea lead to the 1/f noise. If the 

trap density increases with Ea, γ becomes 

larger than 1 [117].  

In Figure 3.5, the schematic diagrams 

between two different mechanisms are 

shown. In general, the tunneling process 

well supports the experimental results but 

the thermally activation process is also 

considered for the complete description 
Figure 3.5 Schematic diagrams of (a) tunneling and (b) 
thermally activation process for the physical trapping 
mechanism [117]. 
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of the number fluctuation model. 

 

3.3.3 Carrier number fluctuation with correlated mobility fluctuation model 

 

In the previous section 3.3.2, the carrier number fluctuation model only considers that the 

drain current fluctuations are caused by the carrier trapping at the interface which induces the 

variation of carrier number in the channel. However, in a more detailed approach, the 

influence on the conduction through the Coulomb interaction of the trapped charge carriers 

should be considered because the trapped charge carriers can lead to the mobility scattering 

of charge carriers. Thus, the mobility scattering induces additional drain current fluctuations 

due to the oxide charge fluctuations. With this idea, the drain current fluctuations can be 

expressed as [111] 
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Assuming the general mobility law, 1/μeff = αCQOX + 1/μ0 where αC is the Coulomb 

scattering coefficient and it allows to obtain the drain current fluctuations as 

OXeffDCFBmD QIVgI δmαδδ −=          (3.27) 

where the negative and positive signs of the second term are used for acceptor-like traps and 

donor-like traps, respectively [110]. The Coulomb scattering coefficient αC are reported to be 

about 104 and~105 Vs/C for n- and p-type conventional MOSFETs, respectively. Based on 

Equation 3.27, the normalized drain current SId/ID
2 and equivalent input gate voltage spectral 

density SVg can be derived as 
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In Equation 3.28, the first term in the parentheses is for the carrier number fluctuations in 

the channel and the second term indicates the correlated mobility fluctuations by trapped 

charge at the interface. If the αC is zero and SVg is same to SVfb, it means that the mobility is 

independent of interface charge. On the contrary, if the αC is high enough (typically αC ≥ 104 



Ch. 3 Low-frequency noise characterization 

53 
 

Vs/C for electrons), the slope of SId/ID
2 at the high gate voltage is changed as shown in Figure 

3.6. It is due to the influence of correlated mobility scattering at strong inversion. For n-type 

MOSFETs, the values of αC, n-type are around 1×104 Vs/C while p-type MOSFETs have much 

larger values of 3~20×104 Vs/C [87]. However, the impact of correlated mobility fluctuations 

makes a small correction and it is still based on the carrier number fluctuation model. 

 

3.4  Noise measurement system configuration 
 

To characterize low-frequency noise, a well-configured measurement system is essential 

because the noise measurement is sensitive and delicate process. The system configuration 

consists of several electronic parts; a power (voltage or current) source, a pre-amplifier, a 

spectrum analyzer, and supplementary parts like a frequency filter to cut unessential external 

noise. A schematic of noise measurement system configuration is illustrated in Figure 3.7. In 

principle, the noise signal can be obtained by converting from the output signal (current or 

voltage) in time domain to the power spectral density in frequency domain through Fourier 

transform method.  

For the operation of semiconductor device, the power source is generally recommended in 

the form of a voltage or a current source only having DC signal. However, the conventional 

power source operated with AC power supply has additional AC signal at either 50 or 60 Hz 

because most electric power is generated at 50 or 60 Hz. Such signals can be easily exposed 

the noise measurement in the shape of a peak near 50 or 60 Hz. This kind of noise may not be 

crucial depending on the situations. Nevertheless, in general, batteries which have no AC 

Figure 3.6 Theoretical variations of the 
normalized drain current noise spectrum 
with drain current as given by the carrier 
number fluctuation model with (αC=104 
Vs/C) and without (αC=0 Vs/C) correlated 
mobility fluctuations [111]. 
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signals are used to obtain more clear data. Indeed, the level of noise signal in devices is quite 

small compared to the output signal (i.e. current) so that there is a need to enlarge the noise 

signal for the data acquisition. Therefore, the pre-amplifier is an essential part for the noise 

measurement and the current-voltage pre-amplifier has been well used since the input signal 

of conventional spectrum analyzer is a voltage signal in contrast to a current signal which is 

interesting for us. For the noise measurement, the pre-amplifier is required to have low noise, 

high gain and bandwidth. Figure 3.8 (a) shows an 

example of low-noise current pre-amplifier (SR570, 

Stanford Research System) which is used in these study.  

When the noise signal is sufficiently amplified, the 

last part is performed by a spectrum analyzer enabling 

to convert the discrete signal in the time domain to the 

frequency domain using the Fast Fourier Transform. 

The conventional quantity for the noise analysis, the 

power spectral density, can be usually obtained with the 

spectrum analyzer as shown in Figure 3.8 (b). In recent, 

along with the development of computer engineering, 

these conversion works with the Fourier transform can 

be proposed with a computer system with appropriate 

hardware and software. For example, the data in time 

Figure 3.7 Schematic diagram of low-frequency noise measurement system. 
 
 

Figure 3.8 Noise measurement system: 
(a) a pre-amplifier (SR570, Stanford 
Research System) and (b) a dynamic 
signal analyzer (HP3562, Agilent). 
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domain from the pre-amplifier can be directly collected into the computer through the DAQ 

product and converted into the frequency domain with proper software providing Fourier 

transform method. In this thesis, the noise measurements were performed with either a 

classical system with several equipment and a computer based system called the 

Programmable Point Probe Noise Measuring System (3PNMS, Synergie-concept). The 

3PNMS located at IMEP-LAHC is an efficient automation system for the noise measurement 

(Figure 3.9) [118].  

After the configuration of noise system, an important work is the suppression of 

background noise of both inside and outside the system for the accurate measurement. The 

system should effectively remove any external noises coming from the environment such as 

light, sound, vibration, and any other sources which can affect the measurement. If such 

external noises cannot be sufficiently removed or reduced during the noise measurement, 

inaccurate noise data will be obtained. Thus, the appropriate shielding techniques are 

important. A typical shielding method consists in isolating the sample and equipment from 

outside with a grounded metal box. With applying the enclosure, shielded cables are also 

important. Despite of the effective isolation of the sample and equipment, the noise can be 

existed due to an unexpected electric shock. Therefore, all equipment involving the enclosure, 

cables, and any other parts should be grounded. At this time, it should be noted not to make a 

ground loop which refers to an unwanted signal in a conductor connecting two points due to 

the potential differences even if they are supposed to be at the same potential. It has been 

known that the ground loops created by improperly designed and installed equipment are a 

major source of noise and interference [119]. To avoid the ground loop, it is important to 

make a single-ended ground. In Figure 3.10, the schematic diagrams involving the ground 

Figure 3.9 Computer based noise system: 3PNMS at IMEP-LAHC (Synergie-concept). 
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loop of single- and double-ended ground 

configuration are shown [120].  

If the noise from outside is properly 

suppressed with appropriate shielding and 

grounding techniques, the noise in the system 

(i.e. a system noise) has to examined and 

reduced since the system noise determines a 

limit of determination in the noise 

measurement system. The system noise is 

mainly determined by the pre-amplifier even 

though the pre-amplifier operates with 

batteries too. For this reason, a low-noise pre-

amplifier is generally used and the noise level 

of pre-amplifier is also confirmed to the system limitation. The recommended system noise 

level in current power spectrum unit is below ~ 10-26 A2/Hz. The minimum noise level of 

3PNMS and SR570 pre-amplifier are measured about 1.69×10-27 A2/Hz and 2×10-29 A2/Hz, 

respectively. Moreover, it has to be examined with different sensitivity in the amplifier 

system since the system noise can be changed with the different sensitivity.  

 

3.5  Summary 
 

In this chapter, in semiconductor devices, the theoretical background of electronic noise 

such as thermal, generation-recombination, random telegraph signal noise, and 1/f noise were 

reviewed involving their physical meanings. Especially, we focused on the study of low-

frequency noise. Among of them, 1/f noise as a universal type of noise is well observed in 

various materials and device structures. To understand the origin of low-frequency noise in 

MOS structures, herein we introduced two representative models: one is the Hooge mobility 

fluctuation model and the other is the carrier number fluctuation model which is also 

considered the correlated mobility fluctuations by the trapped charges at the interface. The 

origin of fluctuations is originated from the carrier types, device structures, interface traps, 

defects, and etc. Finally, the system configuration was presented to obtain the low-frequency 

noise in semiconductor devices. It was noted that the shielding and grounding are essentially 

required to preventing disturbance by external noise and the system noise coming from the 

Figure 3.10 Differences between single- and double-
ended ground systems to avoid the ground loop 
[120]. 
 



Ch. 3 Low-frequency noise characterization 

57 
 

equipment (e.g. low-noise amplifier) is also important.  
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Chapter 4 Multi-Gate MOSFET 
 

 

 

4.1  Background: From planar to 3-D structure 
 

A state-of-the-art planar MOS transistor is the representative device structure for CMOS 

technology based on bulk silicon and it has been in continuous efforts to decrease the device 

size and better electrostatic control. As decreasing the channel length, there are three main 

limiting factors which are the gate leakage, the source-drain leakage, and the junction 

capacitance [121]. The gate leakage is coming from the reduced thickness of silicon dioxide 

(SiO2) and the concept of equivalent oxide thickness (EOT) has been used for the comparison 

of various films and thickness. EOT is given by 

x

xSiO

k
tkEOT ×

= 2          (4.1) 

where kSiO2 is the dielectric constant of SiO2 (i.e. kSiO2 = 3.9), tx and kx the thickness and the 

dielectric constant for the film of interest, respectively. Since about 3 ~ 4 nm of oxide 

thickness is known to be a leakage current limit of SiO2, high-k materials are using for sub-

nm scale transistors. And there are several effects for the source-drain leakage, which are 

named short-channel effects implying less control of the channel region by the gate [5]. To 

reduce short-channel effects, the device structure was improved from a bulk to a fully-

Figure 4.1 Different gate configurations [5]. 
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depleted SOI (FD-SOI) having the buried oxide [122]. Nevertheless, the inconvenience of 

increased junction capacitance and body effect demands more efficient device configuration 

enabling various types of multi-gate structure as shown in Figure 4.1 [123]. The DG-

MOSFET by sandwiching a fully depleted SOI device between two gate electrodes was 

proposed by T. Sekigawa and Y. Hayashi in 1984 [124]. In 1990, D. Hisamoto presented a 

new structure named ‘fully DEpleted Lean-channel TrAnsistor (DELTA)’ [125]. The DELTA 

structure is a basis for the current FinFET structure. Gradually, the multi-gate FETs spreads to 

Π-gate, Ω-gate, and GAA FETs [28], [126], [127]. 

 

4.2  FinFETs 
 

In the section 4.2, the electrical transport and low-frequency noise characteristics in high-

k/metal-gate FinFETs, which are one of the famous multi-gate structures, were investigated 

with different channel width and length. The FinFET architecture has been proposed as a 

solution to overcome the short-channel effects together with several benefits such as steep 

subthreshold slope, low body coefficient, and high switching speed [128]. In this study, the 

FinFETs fabricated with standard silicon on insulator (SOI) process at IMEC (Leuven, 

Belgium) were used [129].  

 

4.2.1 Device structure 

 

A detailed fabrication process is as follows: the top silicon layer on SOI wafer was thinned 

down to 65 nm of thickness (TSi) and it was non-intentional by doped with background Boron 

doping of 1015 cm-3. The silicon layer was etched having multi-gate structures for the channel 

and the un-doped channel region results in less mobility degradation by reducing the impurity 

scatterings in the channel. For the gate oxide, HfSiO was deposited having 1.7 nm of 

equivalent oxide thickness by MOCVD process. A 5 nm of TiN, capped with 100 nm poly-Si, 

was used for the gate electrode. The source/drain (S/D) region for metallization was heavily 

doped with 2×1020 cm-3. Figure 4.2 (a) shows transmission electron microscope (TEM) 

images of a FinFET having HfO2 gate dielectric and TiN metal-gate from IMEC. The gate 

configuration is close to Ω-gate structure.  

3-D Schematic view and longitudinal cross section exhibiting the doping profiles of the 

FinFET was illustrated in Figure 4.2 (b) and (c), respectively. From Figure 4.2 (c), the device 
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structure is the same to the conventional enhancement-mode transistor with p-doped body 

region for channel inversion and heavily n-doped S/D region [130]. For the inversion-mode 

FinFET, the conduction will be occurred along the top surface and two sidewalls when the 

device is turn on (Figure 4.2 (d)). Therefore, it might be recalled that a FinFET has the 

surface conduction. The surface conduction in FinFETs also causes some issues [131-134]. 

For example, an early current saturation at high gate voltage can be observed in the FinFET 

and it is known to be due to the mobility degradation by the surface roughness scattering 

[132].  

 

4.2.2 Electrical characterization at the fin width variation 

 

4.2.2.1 DC characteristics 

 

The electrical measurements of FinFETs were performed at room temperature with the 

programmable point probe noise measurement system (3PNMS, Synergie-concept) that is 

enabling to measure the static and noise characteristics at the same time. The drain voltage is 

fixed at 10 mV to prevent the device deterioration. To observe the width dependence, the fin 

width (WFin) is varied with 10, 20, 40, 65, 130, 250, 500, and 1000 nm. The fin height is 

Figure 4.2 (a) Transmission electron microscope (TEM) images of high-k/metal-gate FinFET. (The images 
were obtained from IMEC for the TEM image request of our devices. Both device structures are similar.) 
(b) 3-D Schematic view of a FinFET (c) Longitudinal cross section showing the doping profiles in the 
inversion-mode FinFET (d) Electron concentration profile in the inversion-mode FinFET having surface 
conduction. 
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assumed to be 65 nm for all devices and the channel length is fixed at 1 μm that is long 

enough to be negligible for the influence of series resistance. For the narrow WFin of 10, 20, 

and 40 nm, each device has only one fin structure whereas the others have five number of fin 

structures. Therefore, the five number of fin structured devices were normalized by the fin 

number for the correct analysis. In Figure 4.3, typical ID-VGS characteristics are shown for the 

n- and p-type FinFETs with different WFin. They present a good current behavior versus width 

variation. The drain current (ID) of n-type devices is approximately three times larger than p-

type ones because the electron mobility in silicon is larger than hole mobility due to the lower 

effective mass for electrons [135], [136]. The threshold voltage (VTH) and effective mobility 

(μeff) for all devices are compared as shown in Figure 4.4. The VTH is extracted by the second 

derivative method (Section 2.2.2) and they are in the range of -0.5 ~ -0.55 V and 0.25 ~ 0.3 V 

Figure 4.3 ID-VGS characteristics for n- and p-type FinFETs at VDS=10 mV. The channel length is 1 μm and 
the fin width was defined as 10, 20, 40, 65, 130, 250, 500, and 1000 nm. 
 
 

Figure 4.4 (a) Extracted threshold voltages VTH and (b) effective mobility μeff for n- and p-type FinFETs as 
changing WFin. No VTH shift could be observed and μeff slightly increased as decreasing WFin. 
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for the p-type and n-type devices, 

respectively (Figure 4.4 (a)). There is no 

significant VTH shift as decreasing WFin 

although VTH is slightly increased at 

narrow WFin. Likewise, the μeff is also 

extracted from Equation 2.20 and they are 

shown in Figure 4.4 (b). In Figure 4.4 (b), 

an apparent increase of μeff is observed for 

p-type devices as reducing WFin but n-type 

devices show less clear variation. It has 

been known that the mobility is limited by 

the sidewall effect because of the surface conduction [137]. 

In practice, the sidewall effect is a well-known issue for manufacturing the fin structure. 

For the fin patterning, reactive ion etching process is generally used but it makes large 

surface roughness at the sidewalls with some damages while the top surface is protected by 

the mask. In other words, the current at the sidewalls is limited by the surface roughness 

scattering compared to the top surface. Thus, as decreasing WFin, the current ratio at the 

sidewalls is increased in contrast with the reduction of the top surface current. Such current 

suppression was simply comfirmed by normalizing the current with the total width Wtotal 

(=WFin+2TSi) as shown in Figure 4.5. The normalized current of the narrow channel devices 

are strongly suppressed at the high gate voltage compared to the wide channel devices. 

Recently, J. W. Lee et al. quantitatively revealed that the mobility in the FinFET structure is 

limited by the surface roughness at the sidewall using the temperature dependent analysis of 

effective mobility [128]. They found that the surface roughness scattering at the sidewalls is 

three times stronger than at the top surface for n-type FinFETs while it is smaller for p-type 

ones. 

 

4.2.2.2 LF noise characteristics 

 

For the low-frequency (LF) noise analysis, the drain current noise power spectrum (SId) 

was measured as changing VGS for each different WFin at the frequency from 10 Hz to 10 kHz. 

For the FinFET at WFin=10 nm, the power spectra as a function of the frequency are plotted 

for the different VGS as shown in Figure 4.6. They are in the combination of Lorentzian and 

Figure 4.5 ID normalized by the total channel width 
(W=WFin+2TSi) for the narrow and wide channel. 
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1/f behaviors. At the VGS < ~1.2 V, SId is 

close to Lorentzian behavior which is in 

the shape of generation-recombination 

(g-r) or random telegraph signal (RTS) 

noise but it changed to 1/f noise at 

higher VGS. It might show that the 

carrier number fluctuation (CNF) for 1/f 

noise comes from the superposition of 

RTS noise with different trap level. The 

tendencies are similar for all devices 

apart from the fin width and polarity of 

carrier.  

To understand the LF noise origin of FinFETs, the SId was normalized by ID
2. If the noise 

origin is carrier number fluctuations, SId/ID
2 will be proportional to (gm/ID)2 whereas it will 

decrease as following the inverse drain current for the Hooge mobility fluctuation (HMF) 

model. Furthermore, the total channel widths for the analysis were considered by multiplying 

the SId/ID
2 and dividing for ID since the noise and current depend on the channel width. Figure 

4.7 exhibits the normalized noise spectral densities with each different fin width for n-type 

and p-type FinFETs. For both devices, a near plateau curve is appeared below threshold and it 

dramatically decreases as increasing the current that is inversely proportional to ID
2. These 

results show that the origin of LF noise in FinFETs is due to number fluctuations at oxide-

Figure 4.6 Drain current noise power spectra (SId) as a 
function of the frequency for the 10 nm fin width FinFET 
with different gate voltages (VGS). 
 

Figure 4.7 Normalized current noise spectral densities with the drain current and total channel width 
(Wtotal=WFin+2·TSi) as a function of the total channel width normalized drain current for n- and p-type 
FinFETs. 
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semiconductor interface regardless of device type. 

As mentioned in previous chapter, the influence of surface roughness of sidewalls in the 

FinFET structure is important as decreasing the fin width. Similarly, the surface roughness 

also can affect the interface quality related to the trap density. In the previous work, K. 

Bennamane et al. studied that the impact of the top surface and sidewalls on the LF noise in 

FinFET structures by the separated extraction technique [138]. Here, with this technique, the 

variations of SId with different WFin are plotted to separate the top surface and side-wall of 

drain current noise contribution as shown in Figure 4.8. However, the linearity of extracted 

SId is not good unlike the K. Bennamane’s work and it is still not enough to fit after data 

smoothing. It is thought that the extraction technique is not good for the noise analysis 

because the noise data is rather sensitive compared to typical I-V measurement.  

Instead the trap extraction for each surface, by the CNF model, the volume trap density Nt 

can be estimated from the input-referred noise spectral density SVg at flat band, i.e. SVfb is 

given by 

Vfb
OXGtotal

t S
kTq

fCLWN
l2

2

=       (4.2) 

where SVfb is the flat band voltage noise defined as c·(SId/ID
2)·(ID/gm)2 and λ is the tunneling 

attenuation length in Equation 3.22. For the SiO2/Si system, λ is about 1×10-8 cm but it varies 

depending on the system. However, we could not find proper λ value for the HfSiO/Si system 

Figure 4.8 Drain current noise was plotted as changing the fin width to separate the influence of the top 
surface and side-wall in the FinFET. 
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so that the interface trap density Nit (=λ×Nt) is used for the comparison. Considering different 

fin number for each device, Nit was extracted with different WFin. As shown in Figure 4.9 (a), 

extracted Nit for the n-type FinFET is varied with different fin width. For the wide channel 

width, they are in the range of 2×1012 cm-2eV-1 and it decreases as reducing WFin finally 

saturates about 1×1011 cm-2eV-1 at the narrow channel width. A solid red line is a fitting line 

by the software. A logistic dose-response function is used and can be expressed as 

2
0

21

)/(1
)( A

XX
AAXf p ++

−
=           (4.3) 

where A1 and A2 are the initial and final value of Nit, X0 is the standard value for the variation 

of Nit, and p is the exponent. After the fitting process, the extracted parameters are as follows: 

A1=6.7×1010, A2=2.5×1012, X0=182, and p=2. There are similar to minimum and maximum 

values of Nit. To observe the influence between top surface and sidewalls, WFin is normalized 

with 2TSi as shown in Figure 4.9 (b). The inset indicates the maximum point of Nit variation 

rate which is at WFin=2TSi=130 nm.  

For p-type FinFETs, Nit was also extracted and such Nit variation was also observed in p-

type devices as shown in Figure 4.10 (a). It looks that Nit in the p-type devices are slightly 

larger than in the n-type ones but it is noted that the tunneling distances for electrons and 

holes are different. Since the tunneling distance for electrons is longer than for holes, the 

volume trap density for both devices might be similar. Together with Nit extraction, the 

Coulomb scattering coefficients (αC) by the carrier number fluctuation with correlated 

Figure 4.9 Interface trap densities (Nit) as a function of (a) WFin and (b) normalized WFin by the fin height 
(TSi). A red solid line is a fitting curve by the logistic function. The inset of (b) is the first derivation the Nit 
– WFin/2·TSi characteristic. 
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mobility fluctuation (CNF+CMF) model are compared in Figure 4.10 (b) and there is no 

significant αC which are in the range of 103 Vs/C. However, αC is increased as decreasing 

WFin. It might be due to the influence of trapped charge at the sidewalls. 

 

4.2.3 Electrical characterization of the length dependence 

 

4.2.3.1 DC characteristics 

 

The channel length dependence was also observed for the n-type FinFETs. For the channel 

structure, there are five numbers of fins which have WFin=130 nm and their pitch size (the 

Figure 4.10 (a) Log (Nit) vs Log (WFin) and (b) Coulomb scattering coefficient αC by the CNF+CMF model 
for n- and p-type FinFETs. 
 
 

Figure 4.11 (a) ID-VGS characteristics of FinFETs with different channel lengths at VDS=10 mV. The 
FinFETs have 5 fins and the pitch size is about 430 nm. (b) Normalized ID with LG is plotted in log scale 
and the dramatic increase of off-current as decreasing LG is observed. 
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distance from left side of first fin to next left side of second fin) is about 430 nm. The ID-VGS 

characteristics are shown in Figure 4.11 (a). As decreasing the gate channel length (LG), the 

current is increased together with growth of off-current at subthreshold (i.e. subthreshold 

leakage current). For clear understanding of the off-current transition, the drain current was 

normalized with LG and it was shown in log scale (Figure 4.11 (b)). The on-current above the 

threshold showed almost same level of drain current but the off-current was significantly 

increased when LG is reduced. Especially, below 100 nm gate cannel length, the off-current is 

drastically increased. It is one of the short-channel effects by weak electrostatic control of the 

gate electrode as decreasing LG. 

The extracted threshold voltage (VTH) 

by the second derivative method is about 

0.25 V and the low-field mobility (μ0) by 

the simple effective mobility calculation 

(Equation 2.20) is suppressed from 188 to 

146 cm2/Vs as decreasing the channel 

length. However, in the short-channel, the 

influence of series resistance cannot be 

negligible so that the VTH and μ0 were also 

calculated with the Y-function method 

which can reduce the parasitic series resistance effect. Figure 4.12 exhibits the variation of 

VTH and μ0 as changing LG. They are roughly ~ 0.3 V and ~ 200 cm2/Vs for VTH and μ0, 

respectively apart from the different LG.  

 

4.2.3.2 LF noise characteristics 

 

For n-type FinFETs with channel length variation, LF noise is observed in the same 

manner as for the channel width dependence. In Figure 4.13 (a), the drain current noise 

spectrum is normalized with the drain current and the channel length. Their behaviors are 

well explained with the CNF model. Similarly, the interface trap densities for the channel 

length dependence were also extracted and they plotted in Figure 4.13 (b). The Nit is in the 

range of roughly 1010 ~ 1011 cm-2eV-1 which is similar or rather smaller than long channel 

device (LG=1 μm, 8.8×1011 cm-2eV-1) and the behavior is that Nit is decreased linearly until 70 

nm channel length, but it arises again. It is interesting behavior which might be due to the 

Figure 4.12 Extracted threshold voltage and low-field 
mobility by Y-function method. 
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influence of impurities near the source and drain. However, it is not studied in detail with 

additional analysis and measurement yet. 

 

4.2.4 Device simulation for the fin width dependence 

 

4.2.4.1 Basic concept of simulation 

 

In recent, as fabrication processes and 

devices become more complex, it is also 

becoming more complex to understanding 

the device and process behaviors. For the 

understanding the device properties such as 

electrical, optical, and thermal behaviors, 

doing the experiments is a best solution 

obviously but it supplementally demands 

much higher costs for the experiments with 

number of possible variations. For this 

reason, a simulation work has been widely used for predicting and understanding the device 

properties. There are two kinds of simulation methods. If we can find appropriate 

mathematical models for the device properties, we can easily obtain the results after the 

mathematical calculation. It is an analytic method. However, the device structure becomes 

Figure 4.13 (a) Normalized current noise spectral densities with the drain current and channel length as a 
function of the channel length normalized drain current for n-type FinFETs. The channel length is varied 
from 250 nm to 55 nm. (b) Extracted interface trap density for each channel length. 
 

Figure 4.14 Simulation example of 3-D SiGe HBT 
structure (Synopsis). 
 



Ch. 4 Multi-Gate MOSFET 

72 
 

more complex so that it is getting difficult to find the proper expressions for the devices. In 

this case, the analytic method is impossible. In contrast, a numerical method is a more useful 

and popular technique for the simulation of complex devices and depends on the computing 

power generally. It is based on calculating properties at a number of points or nodes in the 

device region by splitting the small spaces as shown in Figure 4.14. The device simulation 

can provide information the device properties in both steady state and during transient 

conditions. In general, the models are based on the solution of Poisson’s equation and 

continuity equations.  

In this section, we did the device simulation for the FinFET structure with the channel 

width variation by a FlexPDE (PDE Solution Inc.). The FlexPDE is a general-purpose tool 

for obtaining numerical solutions based on the finite element method [139]. The finite 

element method is a numerical technique for finding solutions of partial differential equations 

[140]. 

 

4.2.4.2 Results of 2-D simulation 

 

The simulation results for the conductance variation and the LF noise of FinFETs with fin 

width variation were obtained by solving Poisson equation across a two-dimensional section 

of the structure and coupling it to the drift-diffusion equation. The device parameters such as 

channel doping concentration, low-field mobility, and volume trap density are used based on 

the experimental parameters of a certain device. In same conditions, the simulations were 

performed as changing the fin width. Figure 4.15 exhibits the simulation results of ID-VGS 

Figure 4.15 Simulation results of ID-VGS characteristics for FinFETs with the fin width (WFin) variations in 
(a) linear and (b) log plot. Symbols are measured data and lines are simulated curves. The inset is the 
meshed structure of FinFET at WFin=20 nm. 
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characteristics in (a) linear and (b) log plot for all devices. The detailed FlexPDE simulation 

script for 20 nm FinFET structure simulation is presented in an appendix III. The symbols are 

the measured data and the lines are the simulated curves. They are well fitted with the 

practical results. In detail, for WFin=20 nm, the simulations of ID and SId/ID
2 are shown in 

Figure 4.16.  

 

 

 

  

Figure 4.16 Comparison between the simulation and data of drain current and normalized drain current 
noise for 20 nm FinFET. 
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4.3  Junctionless FETs 
 

Recently, in 2009, J. P. Colinge and his co-workers at Tyndall National Institute of 

University College Cork proposed a novel multi-gate structure device having no junctions 

between the channel and the source (and the drain), called a junctionless multi-gate transistor 

[141]. The basic idea started from a patent by Lilienfield in 1925 [142]. A Lilienfield device 

is a field-effect device like conventional MOSFETs except the one difference which is a 

heavily doped channel including the source and the drain. It is a resistor having a gate 

electrode so called ‘gated resistor’. The junctionless transistor is basically equal to an 

accumulation-mode transistor which a channel doping concentration is same for the source 

and the drain.  

The junctionless FET is fully depleted below threshold. If the cross section of the channel 

is small enough, the gate can deplete the channel entirely (i.e. off-state) due to the difference 

of work function between the channel and the gate electrode. Above the threshold voltage, the 

current flows though the bulk of silicon which is in the center of channel, and an accumulated 

channel can be formed if the gate voltage is increased to sufficiently large values. Therefore, 

it has some advantages over surface-conduction devices such as less degradation of the 

mobility and the near-ideal subthreshold swing [143-146]. The conduction is mainly limited 

by the bulk region unlike the conventional inversion-mode MOSFETs (see Figure 4.17 (c)). 

From the noise modeling viewpoint, the bulk conduction in junctionless FETs is expected to 

affect the low-frequency noise with different noise source compared to the surface 

conduction. 

 

4.3.1 Device structure 

 

The junctionless FETs in this study were fabricated on a standard Unibond® silicon-on-

insulator substrate at Tyndall University, Ireland. The top silicon layer was thinned down to a 

thickness of 5~10 nm and the multi-gate structured nanowires were patterned by an electron-

beam lithography process. The fin widths of nanowires were firstly defined 30, 40, and 50 nm. 

Next, a 10 nm-thick SiO2 gate oxide was then thermally grown so that each fin width was 

decreased by roughly 10 nm to values of 20, 30, and 40 nm. The nanowires including channel, 

source, and drain were uniformly n+ doped with 1~2 × 1019 cm-3 of doping concentration by 

ion implantation. For the device off-state, a p+ poly-silicon gate electrode (the work function 
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is estimated about 5.25 eV) was deposited and it could be enable to make the fully depletion 

of channel region. The channel length for all junctionless devices is 1 μm. After the etching 

and oxidation process, the junctionless devices have an omega-gate structure as shown in 

Figure 4.17 (a). Figure 4.17 (b) and (c) shows a schematic diagram of the junctionless FETs 

and the cross sectional view for the bulk conduction, respectively.  

 

4.3.2 DC characteristics 

 

The measurement of ID-VGS characteristics in junctionless FET were performed in a dark 

box at room temperature. A drain voltage of 50 mV is applied in the linear regime and the 

back-gate (substrate) was grounded. There are 4~5 number of devices for each different WFin 

and their ID-VGS characteristics are plotted in Figure 4.18 (a), (b), and (c). From the figures, a 

large variation for ID-VGS characteristics was observed despite of same dimension. It might be 

due to non-stabilized fabrication process. First of all, all devices were fabricated on a 4-inch 

SOI substrate having the non-uniform thickness of top silicon layer, and thereby they have 

different channel thickness depending on the devices. Another possible reason is the different 

channel cross-section mainly by e-beam lithography. The cross-sectional shape can be such as 

triangular, tetragonal, or distorted during the device manufacturing process. As a result, these 

Figure 4.17 (a) Transmission electron microscope (TEM) images of junctionless multi-gate transistors. (b) 
Schematic diagram showing the doping profiles and (c) Electron concentration profile in the junctionless 
FETs having bulk conduction. 
 
 



Ch. 4 Multi-Gate MOSFET 

76 
 

variations of channel dimension give rise to different transfer characteristics. The threshold 

voltage of all devices was extracted by secondary derivative method and compared in Figure 

4.18 (d). The result is also similar to one by Y-function method.  

The extracted effective mobility and subthreshold swing for all devices are summarized in 

Table 4.1. The effective mobility is decreased from ~150 cm2/Vs to ~64 cm2/Vs as increasing 

the fin width and the subthreshold swing is observed ~70 mV/decade regardless of the fin 

width. The overall value of effective mobility is somewhat lower than in the inversion-mode 

FETs because the junctionless FETs have heavily doped channels in which the mobility is 

mainly limited by impurity scattering [147]. 

 

Table 4.1 Extracted effective mobility and subthreshold swing of junctionless FETs with different fin 
width. 

Figure 4.18 Typical ID-VGS characteristics of several junctionless FETs having different WFin: (a) 20 nm, 
(b) 30 nm, and (c) 40 nm. (d) Comparison of extracted threshold voltage depending on the samples 
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Considering the results of threshold voltage, the specific devices having similar transfer 

curve for each different WFin were chosen for the width dependence as shown in Figure 4.19 

(a). The inset in Figure 4.19 (a) is ID-VDS characteristics as changing of VGS. As previously 

mentioned, the junctionless FET mainly consists of a heavily n-doped channel and a p+ doped 

gate electrode and a difference of work function between the channel and the gate electrode 

can make a fully depleted channel for the off-state. The work function difference is seen to be 

the flat-band voltage (VFB), which is given by 

q
EE

V gateFchannelF
FB

,, −
=       (4.4) 

where EF, channel and EF, gate are the Fermi-level of channel and gate electrode, respectively. The 

VFB is estimated about 1 ~ 1.1 V. The off-state is decided according to the width of depletion 

layer in channel. The depletion width xd can be expressed as  

d

biSi
d qN

V
x

εε 02
=         (4.5) 

where ε0 is the vacuum permittivity, εSi the relative permittivity of silicon, Vbi the built-in 

voltage that is also seen to be VFB, and Nd the doping concentration by donors. Assuming the 

channel doping with 1 × 1019 cm-3 of a junctionless FET, the depletion width can be estimated 

about ~10 nm with VFB from Equation 4.5. It means that the channel dimension should be 

roughly below ~10 nm to achieve the off-state. In the case of our devices, it is reasonable 

value for the device operation since the thickness of silicon layer is 5~10 nm. 

When VGS is increased, the depletion region in the channel is gradually removed and an 

Figure 4.19 (a) ID-VG characteristics in log-linear plot for the junctionless FETs as changing WFin. The 
inset shows ID-VD curves as increasing VG. (b) Electron concentration contour plot in an n-type 
junctionless FET [142]. 
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un-depleted (neutral) n+ doped channel is formed in the center of the device. In practice, the 

position of un-depleted channel is a bit lower than exactly the center, but not at the bottom 

interface because the device structure is close to a Π-gate or Ω-gate configuration (Figure 

4.17 (a)). Moreover, when VGS is larger than VFB, an accumulation channel is added to the 

total conduction. Hence, the largest part of the current in the junctionless FETs is based on 

the bulk conduction, but the surface conduction by the accumulation channel also contributes 

the total conduction at high gate voltage. Figure 4.19 (b) illustrated the channel formation of 

an n-type junctionless FET with electron concentration.  

One of the advantages in junctionless 

FETs is a reduction of short-channel effects. 

The short-channel effects are secondary 

effects as decreasing the channel length in 

conventional inversion-mode transistor (n+-p-

n+). Among them, drain induced barrier 

lowering (DIBL) is a well-known short-

channel effect referring to a reduction of 

threshold voltage at higher drain voltage. It is 

due to the influence of the drain voltage on 

the barrier to electron flow at the np junction 

near the oxide surface at the source. The subthreshold current is also sensitive to DIBL. For 

the junctionless FET (n+-n+-n+), DIBL, which is defined as the difference in threshold 

voltage when the drain voltage is increased from 0.05 V to 1.0 V (DIBL = VTH(VDS=0.05 V) ˗ 

VTH(VDS=1 V)), was shown in Figure 4.20. 

 

4.3.3 LF noise characteristics 

 

4.3.3.1 Surface noise in bulk conduction 

 

In MOSFETs, which are generally operated in inversion-mode (surface conduction), the 

carrier number fluctuations stem from carrier trapping/release at oxide-semiconductor 

interface, whereas the HMFs could prevail for bulk operated devices [111], [148], [149]. In 

the junctionless FET, it is previously mentioned that the conduction is dominated by the bulk 

in the channel. Owing to the outstanding difference of the conduction mechanism, it is 

Figure 4.20 ID-VG characteristics of junctionless 
devices when VDS is increased from 0.05 V to 1.0 V. 
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expected to have the 1/f noise originated from mobility fluctuations by the carrier scattering 

in the channel. However, the junctionless FET has also an additional surface conduction 

when the gate voltage is larger than the flat-band voltage. Moreover, it has been well known 

that the nanostructured devices have a large surface to volume ratio and it indicates the 

importance of the surface effect [150].  

The drain current noise power spectrum SId of the junctionless FET was measured as 

changing the gate voltage from 0 V to 2.0 V between 10 Hz and 10 kHz as shown in Figure 

4.21. Depending on the samples, SId was exhibited 1/f like (Figure 4.21 (a)) or Lorentzian 

(Figure 4.21 (b) behavior in subthreshold region, converging to essentially 1/f noise above the 

threshold region. Using the empirical noise model proposed by Hooge (Equation 3.10) [151], 

the scaling exponents for the current and frequency, β and γ were estimated to be 2 and the 

unity, respectively. 

Drain current in junctionless FET can be defined as [143] 

2L
VqNI DSbulkC

D
µ

=            (4.6) 

where NC is the total number of charge carriers in the channel, μbulk the bulk mobility, and L 

the channel length. Based on Equation 4.6, the Hooge mobility fluctuation (HMF) model for 

the junctionless FET is derived as  

22
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D

Id µαα
==       (4.7) 

To understand the origin of 1/f noise in the junctionless FET, SId/ID
2 has been plotted in a 

log-log scale as a function of ID as shown in Figure 4.22 (a). The noise spectrum predicted by 

Figure 4.21 Drain current noise power spectrums (SId) as a function of the frequency for the gate voltage 
(VGS) varying from 0.2 to 2.0 V. They exhibit (a) 1/f-like or (b) Lorentzian noise depending on the devices. 
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the number fluctuations with correlated mobility fluctuations (CNF+CMF) model which is 

verified over a large current range, both below and above threshold. The noise predicted by 

the HMF model is also shown by the straight dashed line but it is obviously not able to 

explain the low-frequency noise dependence on the drain current from below to above 

threshold. Therefore, Figure 4.22 (a) clearly indicates that the noise in junctionless FETs is 

affected by trapping/release of carriers even though the conduction takes mostly place in the 

bulk of the devices. 

Based on the CNF+CMF model, the volume trap density Nt and the Coulomb scattering 

coefficient αC can be calculated, providing the information on the quality of the oxide 

interface and the correlated mobility fluctuations by the trapped charges, respectively (Figure 

4.22 (b)). The extracted Nt are from 6×1016 to 3×1017 cm-3eV-1 with applying oxide tunneling 

length λ = 1×10-8 cm for the silicon dioxide [102]. These are similar to those typical in state 

of the art bulk transistors and considerably smaller than in high-k MOSFETs where Nt=1019 ~ 

1020 cm-3eV-1 [113], [152], [153]. The value of αC ranges from 1.1×104 to 5.1×105 Vs/C, 

indicating that correlated mobility fluctuations play an important role in the high current 

region [87]. It can be assumed that these mobility fluctuations are due to Coulombic 

scattering by charged traps. 

 

4.3.3.2 Schottky-Read-Hall recombination 

 

Despite of the good interpretation of the CNF+CMF model for the junctionless FETs, it is 

difficult to understand the effect of traps at the oxide-semiconductor interface in subthreshold 

Figure 4.22 (a) log (SId/ID
2) – log (ID) was compared with the CNF+CMF and HMF model for WFin=20 nm. 

(b) Extracted volume trap density Nt of junctionless FETs with different WFin. 
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region. Because the silicon-gate oxide interfaces are depleted in that regime, and the 

conduction path is in the center of the nanowire, away from the gate oxide interfaces. A 

possible explanation is the fluctuation of the channel thickness in subthreshold when the 

device is partially depleted. This effect arises from the presence of Shockley–Read–Hall 

(SRH) generation/recombination centers in the Debye transition region between the neutral 

channel and the depletion region [154]. This effect has been also observed in junction FETs 

or in four-gate FETs (G4-FETs) [155], [156]. 

The fluctuations of depleted region can 

give rise to the generation-recombination 

(g-r) noise that is characterized by a 

Lorentzian spectral distribution. When the 

noise power (=SId·f) plotted as a function of 

VGS, the g-r noise component reaches a peak 

near threshold as shown in Figure 4.23 

[157], [158]. When VGS is larger than VFB, 

on the other hands, the depletion region 

disappears which will decrease the g-r noise 

in spite of the presence of a surface 

accumulation channel [159]. The accumulation channel contributes to the total noise as a 

result of fluctuations at the oxide-semiconductor interface. The peak at threshold disappears 

in wide devices, which might be due to the larger size of the bulk conduction region. In 

Figure 4.24 (a), low-frequency noise by the depletion and accumulation are compared for the 

different values of drain voltage. At VDS=50 mV, the noise power increases as the square of 

drain current below the threshold, however, it rises again for large gate voltages after the 

small reduction of noise, as it does in Figure 4.24 due to conduction in the surface 

accumulation. Such behavior is not observed for the case of VDS=1 V because there is only 

partial depletion of the silicon near the drain and no accumulation layer is formed near the 

drain. Hence, the noise originating from the surface conduction could not be observable. 

In conclusion, the low-frequency noise in junctionless FETs was well explained by the 

CNF+CMF model indicating the trapping and de-trapping of charge carriers. The junctionless 

FET exhibits two kinds of noise sources as far as CNFs are concerned: one is due to channel 

thickness fluctuations in the depletion region and the other is due to carrier concentration 

fluctuation at the oxide-semiconductor interface in the accumulation region. The relative 

Figure 4.23 Drain current noise power (SId·f) as a 
function of the gate voltage at VDS=50 mV. 
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contribution of the noise sources in junctionless FETs might be a diagnostic index for the 

quality of the junctionless FETs such as the uniformity of the line width of the channel. 

 

  

Figure 4.24 (a) Drain current noise power as a function of the drain current for the drain voltage is 50 mV 
and 1 V. (b) Schematic for the influence of traps at the oxide-semiconductor interface and in depletion 
region according to the conduction mode. 
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4.4  Summary: Surface vs. Bulk conduction 
 

From chapter 4.2 and 4.3, the electrical and LF noise properties were studied for the 

multi-gate structured FETs. In the FinFET, the conduction arises at the oxide-semiconductor 

interface, i.e. the surface conduction and their transport and LF noise are influenced by the 

surface effect. In contrast, the junctionless FET has a similar structure to the FinFET but its 

conduction is limited by the bulk region, i.e. the bulk conduction. The electrical behaviors 

and LF noise are not seriously affected by the surface. For LF noise characteristics, both 

devices appear in the shape of 1/f noise but their different noise origin turns out. In Figure 

4.25, ID-VGS and LF noise characteristics are experimentally compared with similar geometric 

device size for both devices. The ID in the FinFET has much larger than the junctionless FET 

but the current suppression is observed at high current due to the surface roughness. It proves 

that the bulk conduction in the junctionless FET becomes free from the surface roughness 

effect compared to the FinFET.  

Similarly, LF noise in the junctionless FET is expected to originate from the mobility 

fluctuations but it is not. As shown in Figure 4.25 (b), the LF noise behaviors are compared as 

changing the drain current (left) and the gate voltage (right). Both devices are well 

understood with the number fluctuations model (concretely, CNF+CMF model) due to the 

trapping and de-trapping of charge carriers at the semiconductor-oxide interface. Using 

Equation 3.28, the mobility fluctuation coefficient αC was extracted to 1.7×103 and 3.8×104 

Vs/C for the FinFET and the junctionless FET, respectively. A relatively large value of αC in 

the junctionless FET indicates larger Coulomb scattering of charge carriers. These mobility 

Figure 4.25 (a) Transfer characteristics of the FinFET and junctionless FET. (b) Left figure is the total 
width normalized noise as a function of the current. A solid line is a fitting curves as (gm/ID)2. Right one is 
drain current noise variation for the gate voltage. 
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fluctuations might be due to the traps near the Si/SiO2 interface and/or in the depletion region 

of junctionless FET channel even if the silicon oxide typically has lower trap density than 

high-k materials. For the volume trap density Nt, the FinFET has about 8.3×1018 cm-3eV-1 

whereas the junctionless FET has 1.2×1017 cm-3eV-1. The FinFET has one order of higher 

than the junctionless FET but is rather smaller compared to conventional high-k devices. In 

spite of same interpretation by the carrier number fluctuation model for both devices, the 

noise behaviors are different. As shown in the right plot of Figure 4.25 (b), for the FinFET, SId 

gradually decreases as increasing VGS. It represents a relationship between SId and the current 

saturation due to the surface effect. On the other hand, the junctionless FET exhibits a noise 

peak near the threshold voltage that is related to the g-r noise due to the Schottky-Read-Hall 

generation-recombination. Afterward, the drain current noise increases again as increasing 

VGS with the formation of accumulated channel at the surface.  

In conclusion, the role of the conduction mechanism for LF noise is investigated with the 

electrical and noise analysis in multi-gate structure FETs. LF noises in both devices are well 

explained with the CNF model but it turns out that the origin is different. In the FinFET, the 

LF noise is originated from the carrier trapping and de-trapping at the oxide-semiconductor 

interface as in the case of conventional inversion mode transistors. However, in the 

junctionless FET, it might be due to the charge generation-recombination on the boundary 

between the channel region and depletion region. For the better understanding, the different 

noise mechanisms in the FinFET and the junctionless FET are illustrated in Figure 4.26.  

  

Figure 4.26 Schematic illustrations for the trapping and de-trapping of charge carriers in the FinFET and 
the junctionless FET. 
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Chapter 5 Nanowire and Nanotube 
 

 

 

5.1  Background: Toward 1-D structures 
 

Recently, from conventional state-of-art Si CMOS technology, one-dimensional structures 

(1-D) or nanostructures defined as having at least between 1 and 100 nm have received great 

interests owing to their peculiar and fascinating properties, and applications. The interesting 

phenomena are, for instance, size-dependent excitation [160-162], ballistic transport [163], 

Coulomb blockade [164-166], and metal-insulator transition [167] that are associated with 

their nano-scale size. Also, the quantum confinement of electrons by the potential wells of 1-

D structures provides the opportunity to control the electrical, optical, magnetic, and 

thermoelectric properties in solid-state materials [168]. In addition to these physical potential 

in 1-D structures, their smaller size can effectively contribute for the large scale integration 

and low-power consumption. However, there are still difficulties for the applications. Indeed, 

based on bottom-up nanostructures, a lack of appropriate large-scale integration techniques 

has been an obstacle and the top-down nanostructures have complexities for manufacturing 

process. Nevertheless, many studies have been continued using 1-D structures from the 

perspectives between top-down and bottom-up approaches.  

 

5.2  3-D stacked Si and SiGe nanowires 
 

Based on top-down approach, Gate-all-around (GAA) nanowire (NW) transistors are 

promising candidates in the advanced MOS technology. 

They offer several advantages such as improved 

electrostatic performance overcoming the short channel 

effects with a better integration density due to the three-

dimensional (3-D) stacking structure [169-171]. Moreover, 

the device performance can also be enhanced by 

introducing structural strain. Indeed, in compressively 

strained (c-strained) SiGe NWs, the hole mobility 

Figure 5.1 3-D view of stacked gate-
all-around (GAA) nanowire FETs 
[169]. 
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increases by reducing both the effective hole mass and the inter-sub band scattering [172], 

[173]. However, GAA NW devices could suffer from the higher impact of interface quality 

on their operation due to the larger interface/volume ratio compared with planar structures 

[40]. Low-frequency noise is a powerful technique to characterize the electronic devices, 

providing relevant information about the defect density in the active regions [174]. Very few 

studies have been dedicated to LF noise in Si NWs [175-177].  

In the section “3-D stacked Si and SiGe nanowires”, the electrical properties and low-

frequency noise characterization of high-k/metal gated 3-D stacked Si (NMOS) and SiGe 

(PMOS) nanowire transistors coming from the CEA-LETI (France) will be presented. They 

were fabricated based on the top-down technology as a combination of anisotropic and 

isotropic etchings during gate patterning. To improve the device performance, some devices 

were applied the channel strain or annealed by H2 gas.  

 

5.2.1 Mobility enhancement – strain effect 

 

Recently, the output current of a MOS device which determines the device performance is 

getting smaller as decreasing the device size and it is limited by some physical limitations 

such as off-state leakage current and power density. To continue CMOS device performance 

improvement with device scaling, the mobility enhancement technique is concerned starting 

with the 90-nm technology generation [178-180]. The mobility enhancement technique is that 

applying physical stress induce the appropriate strain in the channel region of devices 

increases both electron and hole mobilities in the strained channel [181]. The physics of 

strained Si or SiGe can be figured out with the carrier mobility which is given by 

*m
qτm =           (5.1) 

where q is the electronic charge, 1/τ the average scattering rate, and m* the effective mass of 

semiconductor. The physical mechanism of strain is that the mobility is improved by reducing 

the effective mass and/or the scattering rate [182]. For electrons, both changes of effective 

mass and scattering are generally accepted as important for the mobility enhancement [183] 

but only effective mass change due to band warping plays a significant role for hole [184].  

There are two techniques for the implementation of strain on MOSFETs [185]. A global 

strain technique is by inducing the stress across the entire substrate and a local strain 

technique is engineered into the device by means of epitaxial layers and/or high-stress nitride 
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capping layers. There are some local techniques such as the Contact Etch Stop Liners (CESL) 

and the uniaxial stress induced by source and drain stressors. First works on strained Si 

MOSFETs has focused on biaxial stress using a substrate but the industry is adopting process 

induced uniaxial stress. Because the uniaxial stress can be pursued larger hole mobility 

enhancement at low strain and smaller threshold voltage shift [184]. To realize the strain, Si 

and Ge are generally used for a full range of composition with the lattice mismatch of ~4.2 % 

[186]. When a Si1-xGex thin film having a larger lattice constant is grown on a Si substrate 

with smaller constant, the Si1-xGex film retains the in-plane lattice constant of the substrate 

and is under a biaxially compressive strain as shown in Figure 5.2 (a). In addition, there is a 

band offset of ~7 meV/Ge% between the strained Si1-xGex film and the relaxed Si substrate 

and the band diagram is illustrated in Figure 5.2 (b) [187]. The band offset exists typically on 

valence bands, thereby the hole mobility will be improved. The reason why improve the hole 

mobility in c-strained SiGe devices is due to an energy gap between heavy hole and light hole 

band energies and it induces band mixing. This leads to smaller hole effective mass in the 

lower energy band and reduced inter-band scattering between the two mixed bands [188]. 

 

For the mobility enhancement by the strain, the influence of dopant diffusion should be 

also considered. In practice, the c-strained SiGe is used for p-type transistors due to higher 

hole mobility and a major dopant in p-type devices is Boron. In the case of Boron, the relaxed 

(i.e. tensile) SiGe increases the diffusion coefficient while the c-strained one retards it since 

the presence of Ge increase the concentration of both vacancies and interstitials and dopants 

Figure 5.2 (a) Schematic diagram of lattice arrangement of the strained Si1-xGex grown in Si substrate and 
(b) the corresponding band alignment. As increasing x (i.e. % of Ge) in Si1-xGex film, the band offset is 
increased with a ratio of ~7 meV. 
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are expected to diffuse faster in relaxed SiGe layers [189-192]. It can affect several device 

parameters such as the threshold voltage shift or the subthreshold swing [193]. 

 

5.2.2 Device structure 

 

3-D stacked Si (NMOS) and SiGe (PMOS) 

nanowire transistors with high-k/metal gate 

stacks were fabricated in CEA-LETI (France) 

by K. Tachi et al [194]. The process flow of 3-D 

Si and SiGe nanowire devices is shown in 

Figure 5.3. For Si and c-strained SiGe nanowire 

transistors, SOI (001) wafers were used while 

tensile-strained (1.3 GPa) SOI (001) wafer were 

used for un-strained SiGe ones. Si/Si0.8Ge0.2 

superlattices were epitaxially grown on the 

wafers by the reduced pressure chemical vapor 

deposition. After SiN hard mask layer deposition, a hybrid deep ultraviolet/e-beam 

lithography and resist trimming were combined to define narrow lines. A damascene process 

was used; cavities were patterned by anisotropic dry plasma etching with various lengths. The 

same reactive ion etching reactor was used to remove the Si (or SiGe) isotropically. A 2 nm 

thickness of Si capping layer was grown at 650 °C on the liberated SiGe nanowires to 

achieve higher mobility. An HfO2 (3 nm) / TiN (10 nm) / Poly-Si gate stack was sequentially 

Figure 5.3 Process flows of 3-D stacked Si and 
SiGe nanowires. H2 annealing is performed at 
750 °C. 
 

Figure 5.4 Cross-sectional TEM images of 3-D stacked Si nanowire transistors with high-k/metal gate 
stacks; (a) 3-D stacked nanowires, (b) enlarged image of a rectangular nanowire, (c) a circular nanowire 
by H2 annealing, (d) regularly arrayed 5nm-diameter transistors, and (e) detailed 5nm nanowire. The 
crystalline quality of those circular nanowires is confirmed by high-resolution TEM image in (f). 
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deposited on nanowires. The gate is overlapped on source/drain (S/D) regions which have 

SiN hard masks on top of the Si/SiGe superlattices. After the gate patterning, the S/D 

implantation (Boron doping, 1020 cm-3), the spacer formation, and the top of S/D were 

silicided for the activation of the dopants. The fabrication was completed with a standard 

back-end of line process. Figure 5.4 shows a representative cross-sectional transmission 

electron microscopy (TEM) picture of 3-D stacked Si nanowire transistors with high-k/metal 

gate stacks.  

For SiGe nanowires, the cross-sectional shape as shown in Figure 5.5 was hexagonal with 

{111} facetted sidewalls most likely due to the thermal budget used during the Si capping 

layer formation. It is also notable that a lower-k SiO2-like interfacial layer (TIL: 1.5 ~ 2 nm) 

grew because of the non-optimized thermal process. For the long-channel devices, the 

channels of c-strained nanowires were bended (Figure 5.5 (c)) whereas the short-channel 

SiGe ones are straight (Figure 5.5 (d)). On the other hand, the cross-sectional TEM images of 

un-strained SiGe were shown in Figure 5.5 (f), (g), and (h). According to the comparison of 

Figure 5.5 (b) and (h), the c-strained nanowires have more {111} facetted sidewalls than un-

Figure 5.5 (a) Cross-sectional TEM images of 3-D stacked compressively strained (c-strained) SiGe 
nanowires and (b) enlarged images of one nanowire. Top-view of c-strained SiGe nanowire with (c) L=600 
nm and (d) L=250 nm compared with (e) long-channel un-strained nanowires. Cross-sectional TEM 
images of un-strained nanowires are in (f) ~ (h). 
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strained ones. But, in here, the effect of different orientation is not addressed. For all devices, 

total number of nanowires has 150 nanowires in parallel (3 × 50 = 150 wires). So, total width 

for c-strained and un-strained devices is estimated about 12.008 and 12.320 μm, respectively. 

 

5.2.3 C-strained and un-strained SiGe nanowire p-type FETs 

 

5.2.3.1 DC characteristics 

 

Typical ID-VGS characteristics of c-strained and un-strained SiGe nanowire p-type FETs 

with different channel lengths are shown in Figure 5.6 (a) and (b). The drain currents of c-

strained SiGe devices are much larger than those of un-strained SiGe ones since the 

compressively strain improve the hole mobility in SiGe. As decreasing the channel length, the 

drain current is generally increased but both device of 85 nm channel length appears different 

behavior. The transfer curves were also drawn in log (ID)-VGS plot in Figure 5.6 (c) and (d) 

and large gate leakage currents in c-strained SiGe devices were observed.  

Figure 5.6 Typical ID-VGS characteristics of c-strained and un-strained SiGe core-shell nanowire p-type 
transistors with different channel lengths. Linear plots: (a) and (b) and Log plots: (c) and (d). For the c-
strained SiGe devices, large gate leakage currents were observed whereas there were no leakage currents 
in un-strained SiGe ones. 
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The impact of strain on threshold voltage (VTH) and low field mobility (μ0) parameters 

was analyzed using the Y-function method [46]. Each Y-function (=ID/gm
1/2) of both devices 

was shown in Figure 5.7. The non-linearity of Y-function was observed for all devices owing 

to the strong impact of the surface roughness (i.e. θ2 effect as shown in Equation 2.23) on the 

electrical transport in thin gate oxide MOSFETs [195-197]. Instead of non-consideration of θ2 

effect, herein the results of extracted VTH from Y-function method were compared with the 

secondary derivative method. As shown in Figure 5.8, the voltage difference of VTH between 

both methods (|ΔVTH| = VTH, Y-function – VTH, second derivative) is about 50 mV and it can be 

negligible. The VTH is around -0.3 V, showing 

VTH roll-off for the c-strained SiGe NWs 

[198], [199]. However, no VTH shift was 

observed for all channel un-strained devices. 

For the low-field mobility, the extracted 

values of the c-strained SiGe NWs is in the 

range of 110 ~ 120 cm2/Vs, which is three 

times higher than in the un-strained SiGe 

NWs, where μ0 = 40 ~ 50 cm2/Vs. In the 

same way, using the Y-function method, the 

series resistance and effective length were 

also estimated. The values of series resistance for the c-strained and un-strained SiGe NWs 

are about ~150 Ω and ~250 Ω, respectively. Hence, the series resistance is small enough and 

any effective effects from the series resistance were not observed for the noise analysis.  

Figure 5.7 ID/gm
1/2 characteristics as a function of VGS using Y-function method. 

 
 

Figure 5.8 Comparison of extracted threshold 
voltages by the Y-function and secondary derivative 
method. 
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Using the Y-function method, the effective 

channel length (Leff = L - ΔL) was calculated as 

shown in Figure 5.9. 1/GM defined with β from 

Equation 2.28 as [196] 

OXM CW
LL

G 0

1
µ

∆−
=       (5.2) 

where ΔL is - 42±5 and - 8±5 nm for c-strained 

and un-strained SiGe devices, respectively. But 

the points of 1/GM in 85 nm devices strayed 

from the linear fit. According to the unusual 

results of previous MOS parameter extractions 

such as the threshold voltage, low-field mobility, and effective channel length, the 85 nm 

length devices were decided that the devices have some errors in here. Hence, it was 

disregarded for the noise analysis. And the subthreshold swing (SS) for all gate lengths was 

calculated and they are around 69 mV/decade for all c-strained devices, whereas SS ≈ 80 

mV/decade for 100 nm un-strained SiGe NWs, indicating that GAA NW transistors 

effectively sustain short channel effects. 

 

5.2.3.2 Capacitance behaviors on the strain effect 

 

The channel strain effect between the c-strained and un-strained SiGe NWs is confirmed 

using the split C-V measurement. To observe the variation of the inversion charge density Qi, 

the gate to channel (connecting to source and drain) capacitance CGC was measured. The 

oscillation frequency and level are fixed at 1 MHz and 50 mV, respectively. For the c-strained 

SiGe NWs, a significant hump exists in the C-V curves as the gate voltage is swept from the 

accumulation to inversion whereas the un-strained ones have rather not showing up. Figure 

5.10 exhibits the clear differences between both devices with CGC differentiated by the gate 

voltage. For the hump in C-V curves, there are two kinds of possible explanations. One is due 

to the carrier (in here, hole) confinement phenomenon induced by the band gap discontinuity 

where holes are confined between the Si cap and strained SiGe heterostructure. Another is 

due to the traps located at the heterointerface. It is not clear which one is the origin but the 

obvious difference between the c-strained and un-strained SiGe NWs with Si capping layer is 

observed with the C-V measurement. 

Figure 5.9 Effective length extractions for c-
strained and un-strained SiGe NWs. The inset 
indicates the gate area of device. 
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5.2.3.3 Inhomogeneous oxide trap distribution 

 

To analyze the noise properties between the c-strained and un-strained SiGe NWs, the 

low-frequency (LF) noise measurements were performed between 10 Hz and 10 kHz at fixed 

drain voltage of 50 mV. Their typical drain current noise spectra between the c-strained and 

un-strained devices are compared between 600 and 100 nm channel length. As shown in 

Figure 5.11, for the 600 nm c-strained SiGe NWs, the spectrum shows non-1/f behavior 

(close to Lorentzian behavior) in the subthreshold and near threshold region whereas the un-

strained and the 100 nm c-strained devices appeared obviously 1/f behaviors for the whole 

region apart from the channel strain. Based on the Hooge empirical relation (Equation 3.10), 

the drain current noise spectrum is proportional to the reciprocal frequency with the exponent 

γ as 

γf
SId

1
∝                (5.3) 

where the exponent γ is normally the unity for 1/f noise and it can be extracted from the 

slopes of current noise power spectrum. All extracted values of γ of all SiGe NWs were 

extracted as changing the gate voltage and shown in Figure 5.12. The large variations of γ 

were observed in the c-strained SiGe NWs especially for 250 and 600 nm channel length but 

short-channel c-strained (85 and 100 nm) and un-strained devices were not shown. Below 

100 Hz, the γ is smaller than the unity whereas it is larger above 1 kHz. It might be due to the 

Figure 5.10 CGC differentiated by VGS for the (a) c-strained and (b) un-strained SiGe NWs with Si capping 
layer. Insets are simple schematic diagram for the band structure. C-strained SiGe NWs appears explicit 
hump due to the strain effect compared to the un-strained ones. 
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physical channel bending for the long-channel c-strained SiGe NWs coming from the strain 

effect. The evidence of channel bending can be confirmed by SEM images in Figure 5.5 (c), 

(d), and (e). In Figure 5.5 (d), for the 250 nm c-strained SiGe NWs, the bending is invisible to 

the naked eye but it is predicted that there is weak physical bending to affect the frequency 

dependence on the noise.  

 

Figure 5.11 Comparison of drain current noise spectra between the c-strained and un-strained SiGe NWs. 
 
 

Figure 5.12 Distribution of γ as a function of the gate voltage (a) below 100 Hz and (b) over 1 kHz. 
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5.2.3.4 Influence of strain effect on the LF noise 

 

To decide whether the HMF or the CNF is the more appropriate model for interpreting the 

LF noise results, it was worth plotting the normalized drain current noise SId/ID
2 as a function 

of the drain current in log-log scale as discussed in chapter 3. As it is shown in Figure 5.13, 

the overall pattern of normalized drain current noise varied according to the gm/ID
2 

characteristic of the transistor and not as the reciprocal of the drain current (1/ID). This clearly 

suggests that the LF noise in c-strained and un-strained SiGe nanowire FETs does basically 

stem from CNF model and not from HMF model. Interestingly, un-strained SiGe nanowire 

FETs are well-fitted together with the correlated mobility fluctuation (CMF) model is 

considered whereas the c-strained SiGe devices is enough with normal CNF model. It should 

also be noted that, at high drain current, the normalized current noise decreases less 

drastically than gm/ID
2 due to the presence of additional correlated mobility fluctuations. It 

means that there is some different effect for the influence of trapped charge in the channel 

between c-strained and un-strained devices. 

Based on CNF model, the volume trap density Nt (cm-3eV-1) can be extracted from the 

flat-band voltage fluctuations SVfb as  

2

2

OX

t
Vfb fWLC

NkTqS λ
=               (5.4) 

where q is the electric charge, k the Boltzmann constant, T the absolute temperature, λ the 

Figure 5.13 Drain current noise power spectrum normalized by the drain current and the channel length 
of (a) c-strained SiGe NWs and (b) un-strained SiGe NWs for VDS=50 mV and f=20 Hz. Solid lines (pink 
color) are fitting curves for 600 nm channel length devices. 
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oxide tunneling distance, f the frequency, W 

the channel width, and L the channel length. 

The extracted Nt are in the range of 2.9×1018 

to 4.3×1019 cm−3eV−1 for both devices. The 

tunneling distance λ was used 1.4×10−8 cm for 

the Si/HfO2 system [200] in spite of the 

existence of Si capping layer at the interface. 

The extracted values of Nt are comparable to 

those obtained in high-k MOS planar devices 

[152], both of which are 10 to 50 times larger 

than in bulk silicon MOSFETs with SiO2 gate 

oxide. As shown in Figure 5.14, in the case of the un-strained SiGe NWs, Nt is three to four 

times larger in short channel than in long devices, whereas for c-strained SiGe NWs, it is 

slightly reduced. This difference between un-strained and c-strained NWs could be attributed 

to retarded boron diffusion in c-strained devices that could induce different defect profile near 

S/D junctions for un-strained ones [201], [202]. 

To confirm the influence of correlated mobility fluctuations, the Coulomb scattering 

coefficient αC associated to the CNF+CMF model have been extracted specifically by 

plotting the squared root of the normalized input gate voltage noise given by [174], 

m

D
effOXC

Vfb

Vg

g
IC

S
S

⋅⋅⋅+= mα1        (5.5) 

where SVg is the input gate voltage noise obtained by SId/gm
2. Figure 5.15 (a) shows the 

estimation of αC verified experimentally by Equation 5.5, allowing to be extracted from the 

slope of the observed straight lines. In Figure 5.15 (b), the extracted values of αC are 

distributed as a function of gate length. For un-strained SiGe NWs, is roughly over 4×104 

Vs/C, whereas, for c-strained SiGe NWs, is typically around 4×103 Vs/C, indicating that the 

CMF are significantly reduced in c-strained NWs. This feature could likely be attributed to 

the fact that, for c-strained channels, there is a better carrier confinement in the SiGe core-

shell than in the un-strained ones. Indeed, for 20% Ge content, an additional 100 meV strain-

induced valence band offset is expected [187]. As a result, un-strained devices present more 

surface mode operation than c-strained ones, rendering more efficient the remote Coulomb 

scattering from oxide/Si cap interface charges and thereby increasing the coefficient in CMF 

process. According to the remote Coulomb scattering theory [203], a reduction in one decade 

Figure 5.14 Extracted volume trap density Nt as a 
function of channel length. 
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of corresponds to about 1.7 nm additional remoteness for c-strained NWs, which is in 

agreement with the effect of silicon cap around 1 ~ 1.5 nm. 

In order to confirm this analysis, we have examined the mobility behavior for c-strained 

and un-strained devices in strong inversion region where surface roughness scattering 

prevails. To this end, the effective mobility was evaluated from the ID-VGS characteristics at 

strong inversion using the following standard approximation:  

DSTHGSOX

D
eff VVVWC

LI
)( −

=µ        (5.6) 

Then, the surface roughness limited mobility component μSR was deduced from the slope 

of the derivative of the reciprocal effective mobility at high gate voltage drive as [204] 

0
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θθµ THGS
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D −+

==         (5.7) 

In Figure 5.16, the extracted surface roughness limited mobility are plotted as a function 

of channel length at VGS = -2 V. It appears that the un-strained SiGe NWs show three times 

smaller surface roughness limited mobility than c-strained SiGe NWs, revealing that the 

surface roughness scattering is much larger in un-strained NWs, which is likely due to the 

enhanced carrier confinement closer to the oxide/Si cap interface. This is consistent with the 

conclusion drawn from the CNF+CMF noise analysis showing an attenuation of the Coulomb 

scattering coefficient for c-strained NWs. 

In summary, LF noise was compared in c-strained and un-strained SiGe core-shell NW p-

MOS devices. We found that, in both devices, LF noise can be well interpreted by the 

Figure 5.15 (a) Normalized input gate voltage noise ( ) at 600 nm length and (b) extracted 

Coulomb scattering coefficient αc as a function of channel length. 
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CNF+CMF model. The un-strained SiGe 

NWs showed much larger Coulomb 

scattering coefficient and much lower 

surface roughness limited mobility. These 

features clearly indicate that the un-strained 

NWs operate more on the surface than the 

c-strained devices do, which makes the un-

strained devices more susceptible to the 

Coulomb and surface roughness scatterings. 

In contrast, the c-strained NWs fully benefit 

from the core-shell architecture, which 

allows the carriers to remain more confined farther from the oxide/Si cap interface.  

 

5.2.3.5 RTS noise analysis in gate leakage current 

 

In long-channel (600 nm) c-strained SiGe NW FETs, the random telegraph signal (RTS) 

noise from the gate leakage current was partially observed depending on samples. It was 

obviously shown in off-state of a device at low drain voltage. Figure 5.17 (a) exhibits the 

variation of SId as changing from 0 V to 0.5 V in the gate voltage. At VGS=0.5 V, the noise 

spectrum is similar to Lorentzian with 1/f2 behavior. In this region, such noise spectra should 

be not appeared because the device is fully turned off (i.e. no current). But the noise is caused 

by the gate leakage current. To confirm the RTS noise displayed as discrete switching events 

in the time domain, the gate leakage current was measured for ~ 20 seconds as shown in 

Figure 5.17 (a) Noise spectrum from the gate leakage current and (b) typical time domain plot of the gate 
current for RTS noise. 

Figure 5.16 Surface roughness limited mobility (μSR) 
as a function of the channel length. 
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Figure 5.17 (b). The behavior is somehow close to the RTS noise but it is not obvious.  

For clear understanding of RTS noise, the noise scattering pattern (NSP) method [205] 

and histogram of the current amplitude [113] were used. For the NSP method, the sequence 

of time domain data z[n] (n=1, 2, ... N) is plotted with two subsequences x[i] (i=1, 2, ... N/2) 

and y[j] (j=(N/2)+1, ... N) as shown in Figure 5.18 (a). The noise pattern with two 

subsequences exhibits the two-level RTS noise. Similarly, Figure 5.18 (b) shows the two-

level RTS noise with the histogram of the gate current amplitudes and the histogram provides 

the average gate current RTS amplitude ΔIG. The gate leakage current spectral density of a 

RTS exhibits a Lorentzian spectrum  

])2()/1/1)[((
)(4)( 22
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=          (5.8) 

where τl and τh are the transition time for the low (or capture) and high (or emission) level, 

respectively. The fitting results of RTS noise 

with two-level traps were illustrated in Figure 

5.19. The time constant property of two 

different trap components in the oxide for long-

channel c-strained SiGe NWs was estimated. 

For the first trap, its transition times for the low 

and high level are same value of 1 ms and the 

other trap has 0.09 ms and 0.9 ms, respectively.  

 

Figure 5.18 (a) Noise distribution by the noise scattering pattern (NSP) method and (b) histogram of 
current amplitude in time domain. 
 
 

Figure 5.19 Curve fitting of RTS noise in the 
gate leakage current. 
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5.2.4 Noise comparison between Si and SiGe nanowire n-type FETs 

 

Next, the noise level was compared mainly in the n-type Si nanowire FETs also with a c-

strained SiGe device and a fully-depleted SOI (FD-SOI) FET according to the channel strain 

or H2 annealing process. The detailed specifications for the comparison are summarized in 

Table 5.1. As shown in Figure 5.4, the cross-sectional TEM image of normal Si nanowire 

shows a rectangular structure (Figure 5.4 (b)) while H2 annealed Si nanowire has a circular 

cross-sectional TEM image (Figure 5.4 (c)). In 2009, K. Tachi et al. [194] reported that the 

electron mobility of the rectangular Si nanowire FET is degraded as decreasing the channel 

width of nanowire on account of the impact of the lower electron mobility on (110) sidewalls. 

On the other hand, in circular shaped Si nanowire (annealed by H2), the mobility is clearly 

degraded compared to the rectangular one. It is due to the mobility degradation at low 

inversion charge density. For both devices, the mobility at high inversion charge density is 

degraded compared to the FD-SOI FET owing to the higher surface roughness effect. 

However, the circular nanowire improves the mobility at high inversion charge region by 

reducing the surface roughness with H2 annealing.  

As shown in Figure 5.20, typical ID-VGS characteristics and the transconductances gm for 

all devices are measured experimentally. On the whole, the FD-SOI FET shows the best 

device characteristics. The Si nanowires (rectangular) have the better performances compared 

to other nanowires and the H2 annealed Si nanowires (circular) shows weird curve. It might 

be due to metal contact damage after the annealing process because the metal contact 

electrodes were dirty with the microscopic images. To confirm the differences of noise for Si 

and SiGe nanowires, the noise measurements were performed in the same way. The nanowire 

Figure 5.20 Drain current (ID) and transconductance (gm) curves as a function of the gate voltage between  
Si (rectangular), H2 annealed Si (circular), SiGe, c-strained Si nanowires and FD-SOI FETs. 
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channel width was measured by TEM images. Because the total channel width and length of 

devices are different depending on samples, the normalized drain current noise (SId/ID
2) is 

normalized again with the channel width and length. And the drain current also normalized 

with the channel width and length.  

Hence, the results are shown in Figure 5.21 (a). The noise level in H2 annealed (circular) 

and strained Si nanowires are much higher than other devices and Si nanowire (rectangular) 

reveals lowest noise. In detail, extracted volume trap densities Nt are compared and 

summarized in Figure 5.21 (b). The Nt for SiGe nanowire is about 3 times higher than for 

normal Si nanowires and other treatment such as channel strain or H2 annealing for Si 

nanowires cause huge traps in the oxide or at the interface. 

 

  

Table 5.1 Device specifications of n-type Si and SiGe nanowire FETs. 

Figure 5.21 (a) Normalized LF noise power spectrum for Si and SiGe nanowires FETs depending on the 
channel strain and H2 annealing process. And c-strained SiGe nanowire and FD-SOI FET are also 
compared. (b) Comparison of extracted volume trap densities. 
 
 



Ch. 5 Nanowire and nanotube 

103 
 

5.3  Nanotubes and nanowires based on Bottom-up approach 
 

In the section “Nanotubes and nanowires based on Bottom-up approach”, the electrical 

properties and LF noise in junctions such as metal-semiconductor junctions in the carbon 

nanotube and GaN nanowire devices will be presented. The devices were fabricated based on 

the Bottom-up technology with colleagues in KRISS (Korea Research Institute of Standard 

and Science), Yonsei University, and KIST (Korea Institute of Science and Technology). In 

here, we will show that the noise characterization can be a valuable tool to decide good 

contacts in fabricating nano scale devices together with the importance of junctions. 

 

5.3.1 Metal-semiconductor junctions in multi-walled carbon nanotubes 

 

Since discovery of carbon nanotubes (CNTs) [10], nanotube devices have been attracted 

great attention to supplement the conventional CMOS technology. However, the reliability 

and reproducibility of nanotube devices hinder systematic study. Even though many studies 

for nanotube devices have been continued, the different experimental results despite of same 

kind of devices are embarrassed for the applications. This implies a delicate change of the 

electrical properties in nanotube devices by the metal-nanotube contacts, tube-tube junctions, 

defects in the narrow channel, or various geometric shapes [206-208]. Moreover, a large 1/f 

noise in CNTs has been reported in individual or network structures and the origins of the 

noise were attributed to small defects in narrow channels, ambient gas adsorption/desorption 

conditions and charge traps in the oxide layer [32-34], [209], [210]. In here, LF noise in 

individual multi-walled carbon nanotubes (MWNTs) was investigated with different metal 

electrodes. As the electrical transport of nanotube devices gets closer to quasi-ballistic 

transport, the noise becomes more sensitive to the resistance of the devices. This means that 

there is a significant influence of the electrical contacts on the electrical noise, suggesting the 

importance of a criterion for deciding good contacts in fabricating nanotube devices. 

Devices were fabricated on the silicon oxide substrate in a two-probe configuration with 

different metal electrodes using MWNTs (Sigma-Aldrich), of which the diameter is ~25 nm 

(see reference [211] for details). A simple selective electron beam technique was used to form 

the individual contact on MWNTs [26]. For the metal contact, Ti/Au, Cr/Au, Pd/Au, and 

Pt/Au (20/50 nm), were deposited by e-gun evaporation. To make better metal contact, a 

rapid thermal annealing (RTA) process was performed at 300 °C during 30 seconds. Each 



Ch. 5 Nanowire and nanotube 

104 
 

work-function of different metals is summarized in 

Table 5.2. The work-functions of multi- and single-

walled carbon nanotubes have been known to be 4.95 

and 5.05 eV, respectively [212]. The difference of 

work-function with Ti or Cr metals is larger than with 

Pd or Pt so that Ti- or Cr-contacted nanotube devices 

will be significantly influenced by the formation of the shallow Schottky barriers.  

The static and noise measurements were performed in a dark box and ambient gas 

conditions at room temperature. Most devices show linear I-V characteristics by two-probe 

measurement including the contact resistance of the electrode metals, reflecting the validity 

of the comparison of the I-V characteristics even in a two-probe configuration. Specifically, 

representative I-V characteristics of MWNT devices with different metal contacts are plotted 

as shown in Figure 5.22. For the sample A (Pd), B (Cr), and C (Ti) exhibit an Ohmic behavior 

different from the sample D (Ti). The 

resistances of sample A, B and C were 

expressed as 1.0R0, 2.0R0 and 23.6R0, 

respectively, where R0 is the quantum 

resistance given by the relation of 

R0=h/2q2=12.9 kΩ, which can be a 

criterion for a ballistic conductor or a 

diffusive conductor. Considering the 

small resistance of sample A, of the 

order of a quantum resistance, the Pd 

contacted device (sample A) may be 

ballistic, but we regarded it as quasi-

ballistic owing to the possibility of 

several conduction paths in MWNTs. On the other hand, the Cr or Ti contacts show 

characteristics of diffusive transports, which have bigger resistance than the quantum 

resistance. 

The electrical noise of MWNTs was measured as a function of the frequency, ranging 

from 10 Hz to 1 kHz, at different current levels. Between two difference noise models, the 

Hooge mobility fluctuation (HMF) model is known to be appropriate for condensed materials 

like metal and bulk semiconductors. For an intuitive comparison, the current noise of MWNT 

Figure 5.22 I-V characteristics of individual multi-walled 
nanotube devices with different metal contacts at room 
temperature. 
 

Table 5.2 Work-function of metals 
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devices was analyzed with the HMF model, 

γβ

α
NfI

S HI =              (5.9) 

where αH is the Hooge parameter depending on the defect condition of the materials, N the 

total number of carriers in the channel, and β, γ are the scaling exponents with the current and 

the frequency respectively. The frequency exponent γ was calculated to be 1.06±0.1 including 

the non-Ohmic devices (sample D) and the current exponent β of Ohmic samples (A, B, and 

C) were estimated to be about 2 whereas the sample D was 1.56. Irrespective of the kind of 

metals, smaller β was observed in every sample with the non-Ohmic characteristics. This can 

be explained by the component of the diode noise characteristics with the exponential 

dependence originating from the formation of Schottky contacts with lower work-function 

than that of carbon nanotubes [213]. 

 

In Figure 5.23 (a), the noise amplitude αH/N was used for the comparison between 

different metal contacts because it was difficult to estimate the total carrier number N in 

MWNTs. The noise amplitude of Ohmic contacts was constant owing to no gate dependence 

of the metallic MWNTs. In the case of the sample D, there is a slight slope with the increase 

of the current, which is attributed to the different current dependence for the noise. The Pd 

contacted devices having a quasi-ballistic conductance exhibits the lowest noise amplitude, 

10−10, but Cr or Ti contacts appears quite high noise amplitudes, 10−7 or 10−5, which are in the 

range of the previous reports [214]. In the comparison between the Pd-contacted and Cr-

contacted MWNTs, the difference of the resistance was only twofold, but the noise of the Cr-

Figure 5.23 Noise amplitude as a function of (a) the current and (b) the resistance of individual MWNTs 
with different metal electrodes. 
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contacted MWNT was surprisingly 1000 times larger than the Pd-contacted one, as shown in 

Figure 5.23 (a). The remarkable difference can be noticed in Figure 5.23 (b), which shows the 

noise amplitude as a function of the resistance of MWNT with different metal electrodes. For 

the devices with Cr and Ti contacts, the noise amplitude follows 10-10.2R1.05, in agreement 

with previous report [32]. Considering the noise source of the network comes from the inter-

connection between the nanotubes, the contact property between MWNTs and the metal 

electrodes can mainly affect the noise patterns, in the case of Cr and Ti electrodes. However, 

for Pd and Pt contacts, the noise falls rapidly with the decrease of the resistance, following 

10-26.3R3.9. The large exponent, 3.9, is similar to the exponents Q of 2-D metal films, Q (≡∂ 

(log SR)/∂(log R)), ranging from 4 to 8 [215]. From Figure 5.23 (b), the Q value of MWNT 

devices with Pd and Pt electrodes was extracted to be 5.9, which is similar to the results in the 

thin metal film or the graphene treated by sandblasting and oxygen plasma [216]. Because the 

electrical contacts by Pd or Pt showed characteristics of quasi-ballistic conduction, the 

influence of contacts on the noise should be much smaller than the case of Cr or Ti, indicating 

the dominance of the channel part for the Pd or Pt cases [217]. Finally, it is confirmed that the 

noises of MWNTs with Pd and Pt electrodes reflect the influence of the channel with a high 

resistance exponent of the noise power spectrum, different from Ti and Cr electrodes with the 

extra contribution of the contact potentials resulting in the smaller exponent. The noise was 

clearly observed to have 1/ f shape irrespective of the different metals or the Ohmic behavior. 

 

5.3.2 Quality index for metal contacts – GaN nanowire 

 

GaN nanowires have drawn much attention in the view point of nano-electronics and 

photonic devices. They exhibited good switching behaviors with very large conductance 

swings and rectifying electrical properties for devices and logic circuits [218-220]. In 

addition, they can be used as a light source having various wavelengths in photonic system 

[221]. However, like all other nanowire structures, the metal-semiconductor contacts play an 

important role for the limitation of the device performances. Depending on the device 

applications like a diode or a transistor, for example, the linear or non-linear electrical 

behaviors have been demanded with the metal contact. The appropriate metallization can be 

achieved using the work-function calculation between metal and nanowire but cannot be 

controlled its quality during the process. In particular, it is hard to quantitatively determine 

the quality of metal-semiconductor contact using the conventional DC measurement. Since it 
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has been known that the metal contacts also affect the noise, herein the quality of metal 

contact on the GaN nanowire was investigated using the low-frequency noise measurement 

[211].  

The GaN device was fabricated on the p+ doped 

Si substrate having 500 nm SiO2 film by co-

workers at Yonsei University and KIST. Sub 100 

nm Cu-doped GaN nanowire was used and it was 

expected to be heavily doped by n-type. It was 

confirmed that there is no gate dependence in spite 

of thick oxide layer (not shown in here). For 

metallization, Ti and Au were deposited with 

thickness of 10 and 80 nm, respectively. Figure 

5.24 shows the device schematic and top-view 

images of GaN device.  

At the first, the GaN device had a four-probe 

configuration but one metal contact was broken 

during the measurement. For this reason, the I-V measurement was performed between other 

three electrodes. As shown in Figure 5.25 (a), they exhibits nearly linear (Ohmic) behaviors 

in I-V characteristic and the length dependence is also observed. Since the Cu-doped GaN 

nanowire is heavily doped, the Ohmic behavior is predicted. For each channel length between 

the metal electrodes, the conductance and resistance is summarized in the inset of Figure 5.25 

(a). To confirm the linearity of conductance strictly, the current is differentiated with the 

voltage. As shown in 5.25 (b), it appears some weak non-linear properties depending on the 

electrodes. It might be due to a weak Schottky barrier of the metal/nanowire junction or poor 

Figure 5.24 GaN device: (a) schematic and 
(b) top-view images 
 

Figure 5.25 (a) I-V characteristics of each electrodes having different channel length in a two-probe 
configuration. (b) Differentiated conductance as a function of the voltage. 
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contact quality. 

The current noise power spectrum (SI) for each electrode was measured as changing the 

voltage as shown in Figure 5.26. At lower voltage, the slope of SI is proportional to 1/f1.34~1.39 

but it has become slow about 1/f1.21~1.23 as increasing the voltage. These values are similar to 

the previous report for GaN nanowires [222]. And the noise is also proportional to I2. In this 

device, it cannot be proper with CNF model because the nanowire is heavily doped and there 

is no interaction between the channel and the oxide layer. Before the comparison of noise 

level between electrodes, the noise and current should be normalized. For the current relation 

with the channel length is  

V
L

A
R
VI

ρ
==              (5.10) 

where ρ is the resistivity and A is the channel area. For the SI, the total carrier number N is 

estimated with n=L/qμAR as 

Rq
LN
µ

2

=                 (5.11) 

Therefore, the current normalized noise is 

Figure 5.26 Current noise power spectra as 
changing the voltage for the each electrode 2-3 
(500 nm), 3-4 (800 nm), and 2-4 (1300 nm). The 
behavior is close to 1/f1.5 not 1/f shape. 
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In Figure 5.27 (a), the normalized current is compared considering the different channel 

length. The noise for the electrode 2-3 is much lower than the others but the electrodes 3-4 

and 2-4 are similar together. It means that the total noise of 2-4 might be mainly limited by 

the electrode 4 since the noise in electrode 2-3 is lower than 2-4. It is thought that the 

electrode 4 has poor quality compared to the others. The origin of different noise level for the 

poor contact was observed with an atomic force microscopy (AFM) as shown in Figure 5.27 

(b). The broken nanowire between the electrode 1 and 2 can be confirmed. In the case of 

electrode 4, the metal made a contact formation at the end of nanowire. In general, the 

synthesized nanowire has a particle such as a catalyst on either end of nanowire. This particle 

may be affected the contact quality. The result shows that low-frequency noise measurement 

technique can be a tool to access the quality of metal contact for the nano devices even if 

there are some works to find the clear understanding the mechanism. 

 

  

Figure 5.27 (a) Normalized noise comparison between different electrodes. (b) AFM image of Cu-doped 
GaN device. 
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5.4  Summary: Impact of channel strain and metal contact 
 

Nanowire and nanotube structures are representative materials for the nano technology 

due to their interesting physical and electrical properties. However, there are also some limits 

for the reproducibility, the control, and the device performance because of the smaller size 

which is defined at least between 1 and 100 nm. To overcome these issues, the study of the 

nanowires and nanotubes has been performed from the perspective of both sides between the 

top-down and bottom-up approaches. 

Si and SiGe nanowires by top-down fabrication process are interesting for the GAA 

structured MOS devices providing better gate control. In addition, the 3-D stacked structure 

and the channel strain technique compensate the small output current of nanowires due to its 

size. For other nanowires or nanotubes fabricated by the bottom-up process, the metal-

semiconductor junction is also important because the junction induces the energy barrier such 

as Schottky barrier. In the chapter 5, the impact of channel strain and metal-semiconductor 

junction for nanowires and nanotubes was studied based on the LF noise analysis. For the LF 

noise between c-strained and un-strained SiGe p-type FETs, it is mainly originated from the 

carrier number fluctuations and their volume trap densities are similar. However, the un-

strained SiGe devices appear larger influence of correlated mobility fluctuations coming from 

the trapped charge carriers and it is due to the channel strain. The result indicates that the c-

strained SiGe devices have some advantages for the current boost and the LF noise reduction 

even if the noise level mostly depends on the oxide traps. The LF noise also is changed 

depending on materials and annealing processes. From the studies of metal-semiconductor 

junctions with nanowires and nanotubes, it shows that the LF noise is affected by the 

Schottky barrier and it can be a useful to determine the quality of metal contact. 
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Chapter 6 Graphene 
 

 

 

6.1  Physical Backgrounds 
 

6.1.1 Electronic structure and carrier transport 

 

Since the successful separation of a single layer graphene from graphite using a simple 

mechanical exfoliation technique in 2004 [12], it arose enormous interests and fervent 

activities on graphene research. The graphene is a 2-D material containing carbon atoms 

tightly bonded together in a honeycomb lattice. Unlike a conventional 2-D system that is 

formed at the buried semiconductor interfaces like a two-dimensional electron gas (2DEG), 

the graphene is an ideal 2-D system. It is due to the non-interacting π and π* states by carbon 

atoms in single atom thickness. The unique band structure was firstly estimated by P. R. 

Wallace in 1947 [223]. The graphene consists of π-states from the valence band and π* states 

for the conduction band and these two bands touch at six points which called Dirac point 

(EDirac) or neutral point as shown in Figure 6.1 (b) [224]. It notes that these bands touch at 

EDirac indicates a zero band-gap in graphene. For this reason, it is generally accepted a zero-

gap semiconductor or a semi-metal. The band structure of graphene having a linear dispersion 

is symmetric so that electrons and holes in ideal graphene (pure and free-standing) should 

have the same properties (Figure 6.1 (c)). The linear dispersion is reminiscent of the 

dispersion of light 

kcE =                (6.1) 

where c is the light velocity. In addition, there are two sub-lattices, A and B (Figure 6.1 (a)), 

in the structure of graphene allows the Hamiltonian describing it to be written in the form of a 

relativistic Dirac Hamiltonian 

kσ ⋅= FH ν              (6.2) 

where σ is a spinor-like wave function, νF the Fermi velocity of graphene, and k the wave 

vector of the electron. Since there are two atoms in the unit cell of graphene, it causes the 

spinor character of the graphene wave function (not from spin) [225].  

The electrons of graphene can be described as relativistic particles which is given by 
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2242
pppp cpcmE +=         (6.3) 

where mp is the rest mass, pp the momentum, and cp the velocity of the particle. In graphene, 

electrons behave as zero rest-mass, relativistic Dirac Fermions due to the linear dispersive 

energy bands. Therefore, Equation 6.3 can be expressed  

pE FGraphene n=               (6.4) 

These are major features to separate out compared to conventional semiconductors and it 

causes outstanding transport properties of graphene such as ballistic transport, quantum 

electrodynamics, chiral quantum Hall effects (QHE), minimum quantum conductivity, and so 

on [13]. For example, graphene exhibits an ambipolar transport such that charge carriers can 

be changed continuously between electrons and holes. The mobility can be up to 200,000 

cm2/Vs in the case of suspended, exfoliated graphene eliminating the interactions with the 

substrate [226], [227]. In ballistic regime, carriers move with a Fermi velocity of νF ≈ 106 m/s 

as expressed in Equation 6.4. Moreover, even at room temperature, the QHE can be observed 

in graphene. Another interesting point is that there is a zero-field conductivity close to the 

integer quantum conductivity experimentally (=4q2/h) [228]. Particularly, these unique 

natures of charge carriers in graphene are well described with the Dirac equation rather than 

the Schrodinger equation that is a base in most condensed matter physics. 

Nevertheless, these interesting electronic properties of graphene are mainly limited by 

scattering for applications. Indeed, the long channel graphene results in a diffusive transport 

by the elastic and inelastic collisions of carriers. The mechanisms for the elastic scattering are 

suggested as Coulomb scattering by charged impurities (primarily trapped charges in the 

substrate), short-range scatterers (e.g. defects), and surface roughness or ripples of the 

Figure 6.1 Hexagonal honeycomb lattice of graphene with two atoms (A and B) per unit cell. (b) 3-D 
electronic dispersion in the honeycomb lattice of graphene. (c) Energy band close to one of the Dirac 
points. 
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graphene structure [224], [229], [230]. On the other hand, the inelastic scattering has been 

known to come from the phonons of graphene containing the surface phonons of a polar 

substrate [231], [232]. Hence, the mobility in single layer graphene typically decreased as 

increasing the carrier density due to the scattering [233]. For this reason, the mobility of 

graphene is reduced to 1,000 ~ 10,000 cm2/Vs depending on the nature and purity of the 

substrate. 

 

6.1.2 Research trends of graphene 

 

As previously mentioned, graphene was first obtained by mechanical exfoliation method 

from graphite but this method provided only a small piece of graphene (i.e. a graphene flake) 

which is suitable for the fundamental study. In practice, it is slow and tough work to find a 

graphene flake after transfer process because the graphene flake is too thin and small on the 

substrate. Fortunately, graphene crystallites can be visualized on a certain thickness of SiO2 

(~ 300 nm) substrate using an optical microscopy [234]. Another difficulty is a geometrical 

shape of graphene with the method. Figure 6.2 shows various thicknesses of graphene and 

their geometric patterns. It is important to have appropriate shaped channel of graphene for 

the experimental purposes and it can be usually achieved by oxygen plasma [216]. However, 

for the large-area fabrication, graphene flake is as small as ever. Recently, there are several 

studies to synthesize graphene sheets for their cost, throughput, and size such as liquid-phase 

exfoliation, epitaxial growth by thermal desorption of Si atoms from the SiC surface, 

epitaxial growth by chemical vapor deposition (CVD) on transition metals, unzipping carbon 

nanotubes, and so on [235-239]. Among them, the CVD-based graphene is interesting for the 

Figure 6.2 Graphene flakes on a surface of SiO2/Si substrate. The different colors correspond to the 
thickness of graphene. 
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large-area fabrications. 

Many studies of graphene are being in many fields such as electronics, chemical/bio 

sensors, transparent conducting films, optical devices, ultra capacitors, batteries, and etc. For 

high-frequency applications, graphene can be suggested. Indeed, Y. M. Lin et al. reported that 

the current gain and power gain in graphene transistors were achieved at frequencies as high 

as 100 GHz and below 14 GHz, respectively [240]. However, the existence of minimum 

conductivity leads to high leakage current in the off-state and it is limited for integrated 

circuits. For this, a band-gap engineering technique by quantum confinement or Coulomb 

blockade has been suggested to make low-dimensional graphene nanostructures such as 

graphene nanoribbons (GNR), quantum dots, and single electron transistors [241]. It is also 

mentioned for ultimately sensitive gas detectors [242] and ultrafast photo detectors [243]. In 

2011, A. Vakil et al. noted that graphene can be metamaterials and transformation optics by 

designing and manipulating spatial patterns of graphene [244]. 

Despite of potential in graphene, its electrical and physical properties have not been 

understood clearly. There are many factors to dominate the properties such as scattering, 

flatness, edge effect, and domain size. Among them, the scattering is correlated to the noise 

properties. In the point of low-frequency (LF) noise, graphene which observed 1/f noise is 

also interesting. Beginning with a report for the suppression of 1/f noise in bilayer graphene 

devices by Y. M. Lin in 2008 [245], enormous studies have been achieved for three years as 

summarized in Table 6.1. They are much larger in a short period compared to other nano 

materials such as carbon nanotubes and nanowires and it proves their interests for the 

Table 6.1 Low-frequency noise reports for graphene devices for 3 years (2008 – 2010). 
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graphene. The noise study in graphene devices has been typically performed for the number 

of layers or device structures. The noise in single layer graphene devices decreases with 

increasing carrier density whereas bi and multilayer graphene devices behave oppositely by a 

suppression in noise by more than two orders [246]. In 2010, G. Xu et al. reported the 

inhomogeneous spatial charge effect on 1/f noise in graphene [247]. They reported that an M-

shaped noise behavior was observed as changing the gate voltage in single layer graphene 

whereas bilayer graphene showed V-shaped noise behavior. On the other hand, I. Heller et al. 

suggested augmented charge noise model by J. Tersoff [29] considering fluctuations in close 

proximity of graphene sheet [248]. Since graphene is much sensitive to scattering effect in 

many reasons including a substrate, the LF noise study may help to understand the electrical 

and physical properties for graphene applications.  

 

6.2  Device structure of graphene field effect transistors 
 

In here, we will report the study of electrical and noise properties in graphene field-effect 

transistors (G-FETs) with single layer and bilayer 

graphene by the mechanical exfoliation and CVD 

growth method at Samsung Advanced Institute of 

Technology (SAIT).  

The G-FETs with the mechanical exfoliation 

method was fabricated on a heavily p-doped Si 

substrate having 300 nm SiO2 layer and Ti and Au 

metals were used for the electrode. In general, the 

number of graphene layer is confirmed with Raman 

spectroscopy [249]. In Raman spectrum, there are 

important peaks commonly which observed in 

graphene and graphite structure and they are called 

G (at 1580 cm-1) and 2D (at 2700 cm-1) peak as 

shown in Figure 6.3 (a). These peaks vary as 

changing the number of graphene layer (Figure 6.3 

(b)). A G peak is increased as increasing the number 

of layer until a certain numbers and then it is 

Figure 6.3 (a) Raman spectra for bulk 
graphite and graphene and (b) evolution of 
G and 2D band as functions of the number 
of graphene layers [249]. 
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decreased. In the 2D band, it shows a Lorentzian lineshape in single layer and narrow peak 

width whereas the shape is changed to mixture of several peaks as increasing layer. Figure 

6.4 shows the optical images, Raman spectra, and ID-VGS characteristics of single and bilayer 

G-FETs using mechanical exfoliation method. As shown in figures, the channel has a 

geometric shape so that it cannot define the channel dimension. From ID-VGS characteristics, 

their ambipolar behavior and Dirac voltage (VDirac) were confirmed. At first, VDirac of single 

and bilayer graphene was estimated about 3.2 V and 8.3 V, respectively but it sometimes 

changed. It might be due to the revealed channel region for the ambient condition.  

On the other hand, G-FETs with CVD grown graphene were also measured. The devices 

were fabricated in 6-inch wafer scale manufacturing process. The n+-doped Si substrate with 

100 nm thickness of SiO2 layer was used for the bottom-gate electrode. The CVD graphene 

was put on the 6-inch wafer using transfer method. For the electrodes, 100 nm thickness of 

Au metal was deposited on the graphene without photo-resist (PR) coating process for 

preventing the influence of residual PR but the contact quality is not good. The various 

Figure 6.4 Optical images, Raman spectra (at SAIT), and ID-VGS characteristics of (a) single layer 
graphene and (b) bilayer graphene FETs.  
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micro-scale channel widths and lengths were 

defined using plasma etching process. The channel 

regions including contacts were passivated with 

Al2O3 deposition. Figure 6.5 shows a device 

schematic and top-view optical image of G-FETs 

with CVD graphene. 

The transfer characteristics were measured by a 

two-probe configuration measurement as changing 

the channel length and width. Depending on devices, 

VDirac is different despite of Al2O3 passivation. The 

length and width dependence are not clear due to 

the influence of large contact resistance. The results 

show that graphene is very sensitive to influence of 

surroundings. The detailed electrical and LF noise 

characterizations of G-FETs were performed with 

near 0 V of VDirac. 

 

6.3  Electrical properties and low-frequency noise in G-FETs 
 

6.3.1 Typical I-V characteristics & Length dependence 

 

 All measurements of G-FETs were performed in a metal box at room temperature. As 

shown in Figure 6.6, most of devices show the linear curves in ID-VDS characteristics with 

different gate voltage (Figure 6.6 (a)) and their ambipolar behaviors in ID-VGS characteristics 

are symmetric depending on the drain voltage (Figure 6.6 (b)). In ID-VGS characteristics, they 

exhibit an asymmetry between hole and electron conductions due to the pinning of the charge 

density at the graphene/metal interface [250-252]. In n-type conduction regime of G-FETs, a 

p-n-p structure forms along the graphene channel whereas a p-n junction in the p-type 

conduction regimes. 

From Figure 6.6, the VDirac is estimated about 4 V and the minimum current (or maximum 

resistance) also exists about 0.35 μA. In general, the shift of VDirac has been well observed 

during the measurement of graphene devices originated by the adsorption of H2O molecules 

on the substrate or on the graphene sheet [253]. Depending on the samples, there are some 

Figure 6.5 Schematic of a G-FET with CVD 
graphene and its optic image. 
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variation for the VDirac and minimum current in spite of channel passivation by Al2O3 film. On 

the other hand, the length dependence of G-FETs is 

also observed with same channel width of 4 μm and 

the channel length is varying from 4, 5, 6, 7, 8, 10, 

and 12 μm. However, they show irregular behaviors 

as shown in Figure 6.7. It might be due the contact 

resistance becoming the major limiting factor for the 

graphene applications [254-256]. Therefore, an 

individual G-FET was selected for the detailed 

analysis. 

 

6.3.2 Mobility scatterings on the SiO2 substrate 

 

For the detailed analysis of a G-FET, one 

graphene device was chosen which have near-

ideal VDirac with the drain voltage of 50 mV. The 

channel width and length is 4 and 7 μm. At first, 

the gate voltage was swept between -50 and 50 V 

to confirm the hysteresis. Figure 6.8 exhibits raw 

data and smoothed curve of an ID-VGS 

characteristic which has VDirac of 0 V and an inset 

represents the gate hysteresis of the G-FET. The 

Figure 6.6 ID-VDS and ID-VGS characteristics of CVD growth graphene FETs. 
 
 

Figure 6.7 ID-VGS characteristics of G-FETs 
with different channel length. 

Figure 6.8 Single ID-VGS characteristic and 
hysteresis of a G-FET.  
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VDirac and the minimum current is extracted about -0.5 V and 8.13×10-7 A, respectively. The 

Ion/Ioff ratio is estimated about 1 due to the existence of the minimum current and it is 

disturbing for the digital switching applications. Even though many studies report the 

physical model for understanding the graphene, there is no general electrical model for the 

graphene FETs. Herein, the electrical characterization of G-FET is performed based on the 

conventional electrical model for MOS structure which is defined as  
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where μeff is the effective mobility, QG is the charge carriers in the graphene, and CG is the 

total gate capacitance. In practice, the total gate capacitance CG should be considered as the 

series combination of the oxide capacitance 

COX and the quantum capacitance CQ of 

graphene, i.e., CG=CQCOX/(CQ+COX) [257]. 

The CQ is related to the density of states of 

graphene near the Dirac point [258]. But, in 

this analysis with Equation 6.5, the CG is 

assumed to be COX, i.e. CG≈COX since the 

quantum capacitance measurement is not 

performed yet.  

The transport properties in the G-FET 

are confirmed between ID-VGS and gm-VGS 

curves as shown in Figure 6.9. The gmʹ 

(=∂gm/∂VGS) is a reference to determine the 

slope of gm at higher gate voltage. From the 

gm-VGS curve, the gm first increases linearly 

(Region II) starting from the Dirac point 

(Region I) at lower gate voltage and then 

begins to decrease in reverse (Region III) at higher voltage (8 and -12 V for electron and hole, 

respectively). Interestingly, it is same for both of electron and hole carriers. The gm at higher 

gate voltage is also linearly decreased as shown in gmʹ-VGS curve. In graphene, the carrier 

concentration can be determined from the integration of the density of states which increases 

Figure 6.9 ID, gm, and gmʹ(=∂gm/∂VGS) as a function of 
VGS in the single layer G-FET. 
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linearly with energy by the Fermi-Dirac distribution. In detail, based on Boltzmann theory, 

the conductivity σG for single-layer graphene is given by [259] 

2/)(22 τνµσ FFG EDqqν ==        (6.6) 

where q is the electric charge, n is the carrier density, μ is the low-field mobility, νF is the 

Fermi velocity (≈ 106 m/s), D(EF) is the density of states, and τ is the scattering time. The 

density of states D(EF) for single layer graphene is proportional to EF 
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F
F
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νπ 

=             (6.7) 

where EF is the Fermi energy is defined as nE FF πn≈  for single layer graphene. Hence, 

the charge carriers in single layer graphene QG should be increased as increasing the gate 

voltage. Despite of increase of carrier density at higher gate voltage, the reduction of current 

seems to be the mobility degradation limited by carrier scattering as already announced [225]. 

From this, it can be classified to three types of conduction variation region: Region I for the 

minimum current at the Dirac voltage, Region II for the linear increase in current region, and 

Region III for the mobility degradation region.  

To observe the mobility behavior, the field-effect mobility defined as μFE=gmL/(WCOXVDS) 

was obtained the gm and the effective mobility μeff is also calculated with the assumption for 

threshold voltage that is considered the VDirac as 
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=µ          (6.8) 

The comparison between the field-effect mobility and effective mobility is shown in 

Figure 6.10. The μeff is much larger value than the μFE and the maximum value of μeff is 

Figure 6.10 (a) Field-effect and effective mobility for G-FET. (b) Channel length dependence of μeff. 
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estimated about 1514 cm2/Vs which is a similar value for other graphene devices on the 

substrate [260]. However, the mobility is dramatically degraded as increasing the gate voltage 

in proportional to 1/(VGS-VDirac)0.97 and 1/(VGS-VDirac)0.35. The behavior is appeared in same for 

different channel length as shown in Figure 6.10 (b). The mobility in single layer graphene is 

limited several scatterings which are mainly an acoustic phonon scattering and a substrate 

surface polar phonon scattering at room temperature. Using the Matthiessen rule, for the 

single layer graphene, the mobility can be expressed as [261] 

OXACsrCSingle µµµµµ
11111

+++≈          (6.8) 

where μC is the Coulomb scattering, μsr the short-range scattering, μAC the acoustic phonon 

scattering, and μOX the substrate surface polar phonon scattering. Among them, the μC and μsr 

are the effective parameters at 4.2 K. The μAC and μOX are known to be in proportion to 1/nT 

and 1/n1/2, respectively where n is the carrier concentration [262]. For the surface polar 

phonon scattering, meanwhile it is less important in conventional MOSFETs but much more 

prominent in graphene due to the much smaller vertical dimension of the devices [259]. It is 

thought that the experimental results of mobility are similar to the theoretical dependence for 

the mobility scattering but it is not confirmed yet in here.  

 

6.3.3 LF noise characteristics 

 

Low-frequency noise in the G-FET was measured with different gate voltage. They show 

a general 1/f behavior for all different gate voltage and it is sensitive to the contact quality. If 

Figure 6.11 Drain current noise spectrum at VDS=50 mV as a function of the frequency for the G-FET 
(W=4 μm, L=7 μm). The smoothed data appear the 1/f shape and the insets indicate the exponent of β and 
γ which are defined as SId ~ ID

β/f γ. 
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a probe does not make a good contact during the measurement, it exhibits a peculiar noise. In 

Figure 6.11, the raw and smoothed data of typical drain current noise power spectrum is 

shown. The insets show the extracted values of γ and β which are defined as ID
β/f γ. For the γ, 

it is about 0.96 and the noise SId is increased as proportional to IDS
2 as changing the drain 

voltage since the drain current is linear to the drain voltage. 

To confirm the noise origin, in the n-type region of G-FET, the normalized current noise 

was compared with the carrier number fluctuation (CNF) and the Hooge mobility fluctuation 

(HMF) model as shown in Figure 6.12 (a). The fitting curve of CNF model is made with the 

relation of (gm/ID)2 from the ID-VGS characteristics but it is completely disagreed for the noise 

behavior in graphene. It exhibits that the noise is not originated from the carrier trapping and 

de-trapping at the graphene-oxide interface. On the other hand, the HMF model is also not 

fitted for whole region but it is partially fitted in the specific region that is away from the 

Dirac point. In Figure 6.12 (B), the noise behavior is compared to the behavior of gm. Away 

from the Dirac point, the SId/ID
2 is reduced as following 1/VGS similar to the region III of gm. 

However, near the Dirac point, it does not show a clear relation compared to the gm.  

As shown in Figure 6.13, the overall behaviors of the normalized noise involving both of 

n- and p-type region show the appearance of a M-shape that is similar to the previous reports 

[247], [248]. The M-shape behavior is a unique noise behavior only shown in single layer 

graphene. The drain current noise SId is incerased as increasing the gate voltage (i.e. carrier 

concentration) wheareas the normalized drain current noise SId/ID
2 is decreased. Interestingly, 

the M-shape is similar to the behavior of gm more clearly and the reduction of SId/ID
2 show 

like the mobility degradation. In contrast, for multi layer graphene, it has been reported that 

Figure 6.12 Comparison for the normalized drain current noise behavior in the G-FET (a) with the CNF 
and HMF model and (b) the transconductance gm. 
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the normalized noise shows a V-shape as increasing the carrier concentration [247] and the 

mobility is also increased [261]. These difference trends for the mobility between single and 

multi layer graphene are due to the differences of density of states and the additional 

screening of the electric field of substrate surface polar phonons in multi layer graphene [261]. 

Away from the Dirac point, it seems that the 1/f noise in graphene is strongly correlated to the 

mobility scattering depending on the number of layer. It supports the partially fitted region by 

the HMF model. However, near the Dirac point, the noise origin is speculated to be same for 

single and multi layer graphene but it is not clear. The effect of spatial charge inhomogeneity 

near Dirac point is proposed [247]. 

 

6.4  Summary 
 

Nowadays, graphene has been strongly interesting for various nanostructure applications 

due to its unique electronic structure and carrier transport. However, since the graphene has a 

zero band gap, there is no possibility for the conventional switching devices which have 

higher on/off ratio of the current by using graphene. Instead of that, the graphene is suggested 

as an ideal material for the radio frequency analog electronics, conducting transparent film, or 

photonic devices. Nevertheless, the field effect device structure with graphene is useful to 

understand the inherent transport properties of graphene and the impact on the environments 

such as the supporting substrate and the metal contact. 

It has been well known that the carrier transport of graphene is strongly affected by elastic 

and inelastic scatterings. To understand these scattering mechanisms, various measurement 

Figure 6.13 Drain current noise SId and the normalized drain current noise SId/ID
2 for G-FETs. The 

behavior of SId/ID
2 shows M-shape. 
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techniques are required such as the low-temperature, or Hall measurement. Low-frequency 

noise can be also a useful tool to help for understanding because the scattering is also one of 

important factors for the conductivity fluctuation. Therefore, in this section, the single layer 

graphene FETs based on the mechanical exfoliation and the CVD growth processes were 

studied using DC and LF noise measurement. Their electrical properties were analyzed with 

the electronic model for MOS structure. The G-FETs exhibit three kinds of different transport 

depending on the carrier concentration and the noise in low-frequency region appears in the 

shape of 1/f. The noise was tried to be understood with the CNF and HMF model as changing 

the gate voltage so that it is partially fitted with the HMF model. It is not clear but LF noise 

in graphene might be deeply correlated to the mobility behavior and its scattering compared 

to the previous studied for the mobility in graphene. 
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Chapter 7 Conclusions & Perspectives 
 

 

 

As the message that is given by R. Feynman, ‘There is plenty of room at the bottom’, low-

dimensional structures opened up many possibilities for the micro and nano world with 

amazing physical properties ruled by the quantum mechanics. Recently, many studies for the 

low-dimensional structures have been performed to understand the transport properties and 

related effects for electronic applications by its electrical measurements such as I-V or C-V 

measurement. On the other hand, low-frequency noise generally observed in most of 

electronic devices is known to relate the carrier dynamics and the characterization has been 

used to give some information for the traps at the oxide. Even though the noise origin is not 

clear in all cases, there are well-known models to explain the noise based on conventional 

MOSFETs. In here, low-dimensional structures such as nanowires, nanotubes, and graphene 

were investigated in terms of transport properties and low-frequency noise characteristics for 

the FET structure. At first, the theoretical background for the study is summarized in previous 

three chapters and the experimental results is shown later.  

As the beginning of theoretical background, in chapter 1, the current issues for device 

scaling in CMOS technology are written for understanding the low-dimensional structures 

about the meaning and necessity. Metal-oxide nanowires, carbon nanotubes, and graphene as 

well-known 1-D and 2-D structures are introduced and two representative approaches (top-

down and bottom-up ones) for low-dimensional structures are compared. Their electrical 

issues in the viewpoint of transport and low-frequency noise are discussed for device 

applications. 

In chapter 2, the important device parameters for FET structure such as threshold voltage, 

mobility, series resistance, subthreshold swing, and capacitance are discussed with the 

definition and practical extraction methods. For the threshold voltage, the pros and cons of 

several methods such as linear extrapolation, second derivative, and Y-function method are 

compared and the mobility is explained depending on the different physical ideas. In addition, 

other parameters to determine the device performance are introduced that are series resistance, 

subthreshold swing, and capacitance. All experimental parameters extraction and analysis 

was performed and understood based on these electrical characterization techniques.  
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The fundamentals and concepts of electronic noise are summarized for understanding 

low-frequency noise in FET structures in chapter 3. The electronic noise can be classified as 

thermal, shot, generation-recombination (g-r), random telegraph signal, and 1/f noise. Among 

them, the g-r and 1/f noise is well observed in electronic devices and the random telegraph 

signal noise especially for smaller device. They are called generally low-frequency noise 

because well observed in the low-frequency region. There are two representative noise 

models which are useful to explain the low-frequency noise for FET structure: one is the 

mobility fluctuation model suggested by Hooge and the other is the carrier number 

fluctuation model involving the correlated mobility fluctuations by trapped charge carriers at 

the interface. And then the practical system configuration and considerations for the noise 

measurement are introduced. 

From chapter 4 to chapter 6, the experimental results for the transport properties and low-

frequency noise are studied with multi-gate FETs, nanowire and nanotube devices, and 

graphene FET. The multi-gate FETs are noticeable device recently introduced to obtain the 

better gate control. A FinFET is well-known for the multi-gate structure having a surface 

conduction by channel inversion whereas a junctionless FET has a new device concept that is 

operated by the highly doped channel i.e. bulk conduction. The electrical properties and low-

frequency noise between both devices are compared. Interestingly, the low-frequency noise in 

junctionless FET is explained by the carrier number fluctuation model same as the FinFET 

but the origin is rather different. For the FinFET, the fluctuations are owing to the carrier 

trapping and de-trapping at the oxide-semiconductor interface while the junctionless FET is 

not totally. So, in the junctionless FET, it might also come from the interface between the 

doped channel and depletion region, i.e. Schottky-Read-Hall generation-recombination. 

In the case of nanowire and nanotube structures, the impact of strain and metal contact on 

the low-frequency noise is observed. First, 3-D stacked Si and SiGe nanowire gate-all-around 

FETs were compared between compressively strained and un-strained devices. Even if the c-

strained SiGe shows the inhomogeneous trap distribution in long channel devices, the trap 

density of both devices is similar. However, the c-strained SiGe FETs effectively reduce the 

influence of correlated mobility fluctuations by trapped charge carriers compared to the un-

strained ones. Moreover, the annealing process for Si nanowire FET makes it worse despite 

of the surface roughness reduction. And the influence of metal-semiconductor junction for 

noise is studied with different metal contacts based on the noise analysis. The existence of 

Schottky barrier shows different relationship between the low-frequency noise and the device 



Ch. 7 Conclusion & Perspectives 

131 
 

resistance. Hence, it indicates that contact metal for nanowire is important to understand the 

electrical properties. With low-frequency noise analysis, the quality of metal contact on the 

GaN nanowire is confirmed. It needs more studies to confirm it but it shows a potential to 

determine the device quality with low-frequency noise measurement. 

 Graphene is an interesting material that is perfect 2-D structure having surprising high 

carrier mobility, massless electrons, and a zero band gap. As focusing these transport 

properties, many researchers have studied for the applications. Even though the graphene was 

recorded a few hundred thousands of mobility, the graphene devices on the substrate 

exhibited much lower mobility due to the significant impact of scattering. Low-frequency 

noise in graphene is also discussed to understand the carrier dynamics. Indeed, since there is 

no electric model for graphene, the analysis is performed with conventional model. The LF 

noise in single layer graphene FETs exhibits M-shaped behavior of 1/f noise and it might be 

related to the transconductance variation limited by the mobility scattering. However, it still 

remains a suspect and needs more analysis with appropriate electronic model. 

In this dissertation, it is shown that low-frequency noise measurement & characterization 

can be meaningful to understand carrier dynamics and assessment device reliability for low-

dimensional structure applications. As decreasing the device size, the output current will 

decrease unquestionably but the noise is not diminished. Hence, in nano-scale devices, the 

noise study will be increasingly important for understanding and reducing. Moreover, some 

measurements (e.g. C-V measurement) are at the breaking point to understand nano-scale 

devices. Low-frequency noise in low-dimensional structures is impacted by the device 

architecture, the conduction mechanism, the channel strain engineering, and the metal-

semiconductor junctions, and the 2-D channel structure. Most of noise studies are performed 

at room temperature but the studies of low-temperature noise measurement are not sufficient 

due to the effect of additional external noise by related equipment for the low-temperature 

system. Even though the noise origin is mainly due to the carrier trapping and release at the 

interface or in the dielectric, it is impossible to ignore the effect of carrier scattering on the 

noise. Hence, the noise measurement in low-temperature is also interesting to figure out the 

influence of carrier scattering on the noise for future work.  
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Appendix I – Physical constants 
 

Electronic charge q 1.602 × 10-19 C 

Speed of light in vacuum c 2.998 × 1010 cm/s 

Permittivity of vacuum ε0 8.854 × 10-14 F/cm 

Free electron mass m0 9.11 × 10-31 kg 

Plank’s constant h 6.625 × 10-34 J s 

4.135 × 10-15 eV s 

Boltzmann’s constant k 1.38 × 10-23 J/K 

8.62 × 10-15 eV/K 

Avogadro’s number A0 6.022 × 1023 molecules 

Thermal voltage Vt 0.025860 V (300K) 

0.025256 V (293K) 

Speed of light in vacuum c 2.99792 × 1010 cm/s 
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Appendix II – Glossary & abbreviations 

 

2DEG two-dimensional electron gas 
AC alternating current 
AFM atomic force microscopy 
c velocity of light (2.998×1010 cm/s) 
cp velocity of particle (cm/s) 
c-strained compressively strained 
C capacitance (F) 
Cb bulk capacitance (F/cm2) 
Cb substrate depletion charge density (F/cm2) 
CG total gate capacitance (F/cm2) 
CGB gate-to-bulk capacitance (F/cm2) 
CGC gate-to-channel capacitance (F/cm2) 
Ci inversion charge density (F/cm2) 
Cit interface trap capacitance (F/cm2) 
COX oxide capacitance (F/cm2) 
CESL contact etch stop liners 
CMF correlated mobility fluctuation 
CMOS complementary metal-oxide-semiconductor 
CNF carrier number fluctuation 
CNF+CMF carrier number fluctuations with correlated mobility fluctuation 
CNT carbon nanotube 
CVD chemical vapor deposition 
D(EF) density of states  
DAQ data acquisition 
DC direct current 
DG-MOSFET double-gate MOSFET 
DIBL drain induced barrier lowering 
DLTS deep-level transient spectroscopy 
Ea activation energy (eV) 
Eeff effective electric field (V/cm) 
EF Fermi energy level (eV) 
EOT equivalent oxide thickness 
f frequency (Hz) 
FD-SOI fully depleted SOI 
FE field emission 
gd drain conductance 
gm transconductance 
g-r generation-recombination 
GQ quantum capacitance (F/cm2) 
G-FET graphene field-effect transistor 
G4-FET four-gate FET 
GAA FET gate-all-around FET 
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GNR graphene nanoribbons 
HMF Hooge mobility fluctuation 
i(t) small-signal variables of current (A) 
I current (A) 
I0 average value of current (A) 
ID drain current (A) 
IC integrated circuit 
ITRS international technology roadmap for semiconductors 
KFM kelvin probe force microscopy 
L channel length (cm) 
Leff effective channel length (cm) 
LG gate channel length (cm) 
LF low-frequency 
m* effective mass of charge carrier (kg) 
mp rest mass of particle (kg) 
MOSFET metal-oxide-semiconductor field-effect transistors 
MWNT multi-walled carbon nanotube 
n electron density (cm-3) 
ni intrinsic carrier density (cm-3) 
N total number of free carriers 
NA acceptor doping density (cm-3) 
NC total number of charge carrier in the channel 
Nd donor doping concentration (cm-3) 
Nit interfacial oxide trap density (cm-2eV-1) 
Nt volumetric oxide trap density (cm-3eV-1) 
NW nanowire 
p hole density (cm-3) 
pm mobile trapped charge 
pot oxide trapped charge 
pp momentum of particle 
PR photo-resist 
PSD power spectral density (A2/Hz or V2/Hz) 
q electric charge (1.6×10-19 C) 
Qb substrate depletion charge (C/cm2) 
Qd depletion charge (C/cm2) 
Qf fixed charge at the Si-SiO2 interface (C/cm2) 
QG charge carriers in the graphene (C/cm2) 
Qi inversion channel charge density (C/cm2) 
Qit interface trapped (or state) charge (C/cm2) 
QHE quantum hall effects 
R resistance (ohms) 
R0 quantum resistance (ohms) 
RC contact resistance (ohms) 
Rch channel resistance (ohms) 
RD drain resistance (ohms) 
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RH Hall coefficient (cm3/C) 
RS source resistance (ohms) 
RSD series resistance (=RS+RD) (ohms) 
Rtotal total resistance (ohms) 
RTS random telegraph signal 
S subthreshold swing (V/decade) 
S(f) power spectral density 
SI current noise power spectral density (A2/Hz) 
SId drain current noise power spectrum (A2/Hz) 
SR resistance noise power spectral density (Ω2/Hz) 
SV voltage noise power spectral density (V2/Hz) 
SVfb flat-band voltage spectral density (V2/Hz) 
SVg input gate voltage spectral density (V2/Hz) 
S/D source/drain 
SEM scanning electron microscope 
SHG second harmonic generation 
SiO2 silicon dioxide 
SNR signal to noise ratio 
SOI silicon on insulator 
SRH Shockley-Read-Hall 
T absolute temperature (K) 
TSi thickness of silicon (cm) 
TE thermionic emission 
TEM transmission electron microscope 
TFE thermionic-field emission 
TIL thickness of interfacial layer 
TLM transmission-line method 
V voltage (V) 
Vbi built-in voltage (V) 
VBS substrate-source voltage (V) 
VDirac Dirac voltage (V) 
VDS drain-source voltage (V) 
VFB flat-band voltage (V) 
VGS gate voltage (V) 
VH Hall voltage (V) 
VSB source-substrate voltage (V) 
VTH threshold voltage (V) 
VLS vapor-liquid-solid 
W channel width (cm) 
WFin fin width (cm) 
Wtotal total width (cm) 
xd depletion width (cm) 
αC Coulomb scattering coefficient (Vs/C) 
αH Hooge constant 
ε relative permittivity 
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ε0 vacuum permittivity 
εch permittivity of channel material 
θ1 mobility attenuation factor related to series resistance 
θ2 mobility attenuation factor related to surface roughness 
λ tunneling distance (or attenuation length) 
μ carrier mobility 
μ0 low field mobility 
μAC mobility limited by acoustic phonon scattering 
μbulk bulk mobility 
μC mobility limited by Coulomb scattering 
μdrift conductivity (or drift) mobility 
μeff effective mobility 
μFE field-effect mobility 
μH Hall mobility 
μOX mobility limited by substrate surface polar phonon scattering 
μSR mobility limited by surface roughness limited mobility 
μsr mobility limited by short-range scattering 
ρ resistivity 
σ conductivity 
τ average carrier scattering time (or carrier relaxation time) 
τh time constant in the higher state 
τl time constant in the lower state 
ϕF bulk potential 
ϕS surface potential 
ΦB tunneling barrier height 
ΦM work function of metal 
ΦS work function of semiconductor 
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Appendix III – FlexPDE simulation script 
 
FlexPDE source code for 20 nm FinFET structure simulation (http://www.pdesolutions.com) 

 
TITLE     {FinFET.pde – 20 nm Fin width (IMEP-LAHC)} 
 '20nm FinFET'   {Doyoung, Ghibaudo} 
  
COORDINATES 
 cartesian 
  
SELECT 
 errlim= 1e-9 
 STAGES=31 
 nodelimit=100 
  
VARIABLES 
 V 
 V1 
  
DEFINITIONS 
 q=1.6e-19 
 k=8.6e-5 
 T=300 
 kT=k*T 
  
 L=1e-4    {channel length = 1um} 
 wfin=20e-7   {fin width ~ 10 to 1000nm} 
 tsi=65e-7    {sidewall thickness = fin height = 65nm} 
  tox=1.7e-7   {equivalent oxide thickness, Si = 1.7nm (HfSiO)} 
  
   Nd=5e12                   {non-intentional doped Si channel} 
 !Ng=1e10   {gate doping} 
 Nsd=2e20   {source-drain doping} 
 ni=1.4e10   {intrinsic doping} 
  lam=1.5e-7   {quantum length} 
  
    Vbi=kT*ln(Nd*Nsd/ni^2) 
  !Vfb=-kT*ln(ni^2/Ng/Nd) 
  
 eps0=8.85e-14                  {vacuum permittitivy} 
 epssi=12*eps0                  {Si permittitivy} 
  epsox=4*eps0                  {Oxide permittitivy} 
 Cox=eps0*epsox/tox 
  
 !mun=70+1090/(1+(Nd/1.26e17)^0.8)  musd=100  
   mun=400  musd=100  
  
 eps=epssi 
  
 n0=Nd 
 p0=ni^2/Nd 
  
  s=0 
 s1=0 
  
 E=-grad(V)  
 Ex=-dx(V) 
 Emag=abs(Ex) 
  
 E1=-grad(V1) 
 Ex1=-dx(V1) 
 Emag1=abs(Ex1) 
  
 !R=(1-exp(-((tox+wfin)^2+tsi^2-x^2-y^2)/lam^2))*ustep((tox+wfin)^2+tsi^2-x^2-y^2) 
 R=1 
  
 Ec=4e7 
 Esr=3.27e13 
 !mu=mun/(1+(Emag/Ec)+(Emag^2/Esr)) 
  
 Vg=1.5*(stage-1)/30 
 Vd=0.01 
  
 lambda=1e-8 
 Nt=6e18 
 Nit=Nt*lambda 
 dQit=q*Nit 
  
 mu=mun/(1+(Emag/Ec)+(Emag^2/Esr)) 
 mu1=mun/(1+(Emag/Ec)+(Emag^2/Esr)) 
  
 n=R*n0*exp(V/kT) 
  p=R*p0*exp(-V/kT) 
  
 n1=R*n0*exp(V1/kT) 
  p1=R*p0*exp(-V1/kT) 
  
 Qi=q*integral(n,2) 
 Qi1=q*integral(n1,2) 
  
 Id=Qi*mu*Vd/L 
 Id1=Qi1*mu1*Vd/L 

http://www.pdesolutions.com/
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 RG=ln(Id1/Id)/dQit*Cox 
 freq=20 
  
 Sq=q*q*Nit*kT/freq 
 SVfb=Sq/((wfin+tsi)*L*Cox^2) 
 SIdN=RG^2*SVfb 
 SIdHooge=1e-4/(freq*Qi/q*L) 
 SIdsIdQ=(ln(Id1/Id)/dQit)^2*Sq/((wfin+tsi)*L)   ! simulated noise result 
  
  
INITIAL VALUES 
 V= 0 
 V1=0 
  
EQUATIONS 
 V: div(eps*grad(V))=s 
 V1: div(eps*grad(V1))=s1 
  
BOUNDARIES 
  
region 1      {Oxide} 
 eps=epsox  
 s=0 s1=0 
 n=1 n1=1 
  
 start  "Oxide" (-(wfin/2)-tox,0)     value(V)=Vg value(V1)=Vg 
 line to (-(wfin/2)-tox,tsi+tox)   value(V)=Vg value(V1)=Vg 
 line to ((wfin/2)+tox,tsi+tox)   value(V)=Vg value(V1)=Vg 
 line to ((wfin/2)+tox,0)   natural(V)=0 natural(V1)=0 
 line to close 
  
region 2       {Silicon} 
 eps=epssi   
 s=q*(R*n0*exp(V/kT)-R*p0*exp(-V/kT)-Nd) 
 n=R*n0*exp(V/kT) 
 mu=mun/(1+(Emag/Ec)+(Emag^2/Esr)) 
  
 s1=q*(R*n0*exp(V1/kT)-R*p0*exp(-V1/kT)-Nd) 
 n1=R*n0*exp(V1/kT) 
 mu1=mun/(1+(Emag/Ec)+(Emag^2/Esr)) 
  
  start  "Si" (-wfin/2,0)   natural(V)=0 natural(V1)=dQit     
 line to (-wfin/2,tsi)    natural(V)=0 natural(V1)=dQit  
 line to (wfin/2,tsi)    natural(V)=0 natural(V1)=dQit 
 line to (wfin/2,0)    natural(V)=0 natural(V1)=dQit 
 line to close 
  
region 3      {BOX} 
 eps=epsox  
 s=0 s1=0 
 n=1 n1=1 
  
 start  "Oxide" (-10e-7-(wfin/2),0)  natural(V)=0 natural(V1)=0 
 line to (-10e-7-(wfin/2),-5e-7)  natural(V)=0 natural(V1)=0 
 line to (10e-7+(wfin/2),-5e-7)  natural(V)=0 natural(V1)=0 
 line to (10e-7+(wfin/2),0)   natural(V)=0 natural(V1)=0 
 line to close 
  
PLOTS       
 elevation(V) from (-(wfin/2)-tox,tsi/2) to ((wfin/2)+tox,tsi/2) 
 surface (s/q) painted on region 2  
  
 contour(V) painted on region 2 
 contour(n) painted on region 2 
  
 elevation(n-n0,p-p0) from (-(wfin/2)-tox,tsi/2) to ((wfin/2)+tox,tsi/2) 
 elevation(mu,mun,0) from ((-(wfin/2)-tox)*0.99,tsi/2) to (((wfin/2)+tox)*0.99,tsi/2)   
  
 elevation(log10(n),log10(p)) from (-(wfin/2)-tox,tsi/2) to ((wfin/2)+tox,tsi/2) 
  
 elevation(s) from (-(wfin/2)-tox,tsi/2) to ((wfin/2)+tox,tsi/2)  
  
SUMMARY 
 report(Vbi)    
  
HISTORIES 
  
History(Qi) versus Vg 
History(Id) versus Vg 
History(log10(SIdN),log10(SIdsIdQ),log10(SIdHooge)) versus log10(Id) 
History(mu,mun,0) versus Vg  
History(Vg,mu) versus Vg  export format "#1  #2"      file="mu-Vg_20nm.txt" 
History(Vg,Id,SIdN) versus Vg export format "#1  #2  #3"  file="Vg-Id-SIdN_20nm.txt" 
  
  
END  23969 
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Appendix IV – Wireless diagnosis system for nano-bio 

sensors 
 

The wireless diagnosis system for nano-bio sensors is a research project that was 

performed from February to September for 8 months in 2008 with Min Kyu Joo, Yun Jeong 

Kim, and Gyu Tae Kim. A research purpose is the development of personal remote diagnosis 

system using nano-bio sensors which was fabricated with carbon nanotubes. The system will 

measure the current-voltage data of nano-bio sensors when a patient drop small amount of 

analytical reagent like saliva or blood of human body and transmit the data to mobile 

electronics such as PDA, laptop, and cellular phone for the analysis. It does not need to have 

all data to characterize the results because the data will be sent to mobile electronics and 

compare the accumulated data at the hospital or the disease center through an internet service. 

It can be able to make a portable size of remote diagnosis system which is convenient for the 

patients. In this research, the wireless diagnosis system has functions as following; 

 

 Data transmission to PDA with wireless module (Bluetooth) 

 Applying the voltage for drain and gate electrode 

 Versatility for nano-bio sensors having large resistance range (50 kΩ ~ 20 MΩ) 

 Multiple measurement for three nano-bio sensors 

 Limitation of voltage source for the sensor protection 

 

1. Hardware section of wireless diagnosis system 

 

The diagnosis system consists of two parts of hardware, one is the main system for the 

data collection/transmission of nano-bio sensors and the other is electronics such as PDA 

which can be receive the data and connect to the internet service. Figure A-IV.1 shows a 

prototype of wireless diagnosis system and a PDA having software for the data collection. HP 

IPAQ 112 Classic Handheld as the PDA part was chosen among commercial products having 

a Bluetooth module and supporting the serial communication. But the diagnosis system can 

be extended to the other commercial products such as mobile phone, laptop supporting 

Bluetooth as well as PDA. 
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For the wireless communication of main system for nano-

bio sensors, a commercial Bluetooth module (Parani ESD-

200) supporting the serial communication was also used. The 

transmission distance is about 30 m without any extra antenna 

and empowered with 3.3 V voltage source. The 

programmable voltage source for the drain and gate electrode 

of nano-bio sensors was configured with two Digital to 

Analog Converter (DAC). At first, the DAC model number 

‘DAC7512’ that can be apply positive voltage up to 3.3 V 

was chosen but it was altered to ‘MAX5312’ for higher 

positive/negative voltage supply (up to ±10 V). The output 

voltage of DAC is controlled by self-developed software so 

that the measurement condition can be tuned with a high 

accuracy in any situation. Bluetooth module and DAC are controlled by ARM7 

microcontroller and ADC in ARM7 is also used for the current measurement. In here, lower 

power consumption logic was not considered.  

Figure A-IV.2 exhibits the flowchart of wireless diagnosis system. Each module for 

applying voltage, reading current, and data transmission was organized in the first version of 

wireless diagnosis system. To optimize the system, we designed a printed circuit board (PCB) 

Figure A-IV.1 Image of prototype 
of wireless diagnosis system. 

Figure A-IV.2 Schematic of overall process for the wireless diagnosis system. The system consists of 
wireless module, voltage supply (DAC), current reading (ADC), and mobile electronics 
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which is smaller and more stable by OrCAD (Cadence). Figure A-IV.3 shows a circuit design 

for PCB version of system. 
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2. Development of software for wireless diagnosis system 

 

To communicate the manufactured 

hardware with PDA, controlling 

software is needed in the PDA system. 

For the wireless diagnosis system, two 

kinds of software were developed. One 

is for driving the system and the other is 

only for PDA (Windows Mobile). 

Figure A-IV.4 indicates the software 

framework for the wireless diagnosis system. The control software for the system was 

developed using C language because the microcontroller is optimized for the C language. The 

system software was loaded on the flash memory of controller. This kind of software cannot 

be modified easily by user because this program is low level frame and essential. But it is 

possible that the software upgrade and the extension of the function. 

Contrary to the system software, the purpose of the PDA software is the communication 

with the wireless diagnosis system. Therefore, it should have the graphical user interface 

(GUI) for sending commands and receiving data from the system. For this, LabVIEW 7.1 and 

Pocket PC PDA module are used to develop the PDA software. Figure A-IV.5 shows received 

data from the developed PDA software (left) and the other commercial serial communication 

software (right). 

In conclusion, the wireless 

diagnosis system was successfully 

demonstrated for nano-bio sensors. It 

cannot be used only for medical 

purpose but also for the research test 

in various environments using the 

wireless communication. It is 

applicable for the gas sensor without 

an additional cost.  

 

Figure A-IV.4 Software framework for wireless diagnosis 
system 

Figure A-IV.4 Software framework for wireless diagnosis 
system 
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Résumé du travail de thèse en Français 
 

 

 

I. Introduction 
 

La réduction d'échelle ('down-scaling' en anglais) est depuis toujours la force motrice de 

la technologie CMOS (complementary metal-oxide-semiconductor), en particulier en ce qui 

concerne la réduction de la consommation électrique, la largeur d'intégration des dispositifs, 

les coûts, l'accroissement de performance. Depuis peu ces réductions d'échelles on donné lieu 

à la réalisation de structures unidimensionnelles. On peut notamment mettre en avant 

différents points gouvernant cette réduction d'échelle : les dimensions, la vitesse, le rapport 

signal sur bruit. En particulier le signal de sortie des dispositifs électroniques doit être 

suffisamment important pour pouvoir le distinguer du bruit de fond. On peut ainsi noter un 

intérêt croissant dans l'étude du bruit électronique dans les structures de basse 

dimensionnalité. Dans le cas des transistors conventionnels MOSFETs (metal-oxide-

semiconductor field-effect transistors), il est bien connu que le bruit basse fréquence est lié au 

piégeage et dépiégeage des porteurs à l'interface oxyde-semi-conducteur. Toutefois, pour les 

structures de faible dimensionnalité, les propriétés de ces dispositifs en termes de bruit n'ont 

pas été suffisamment étudié. 

Dans cette thèse, nous nous intéressons aux propriétés de transport et au bruit basse 

fréquence dans des structures à effet de champ ('FET') de faible dimensionnalité fabriquées 

par des approches classique, descendantes ('top-dow'), ou des approches plus innovantes dites 

ascendantes ('bottom-up'). Nous focalisons notamment cette étude sur les diélectriques de 

forte constante diélectrique ('high-k'), les mécanismes de conduction, l'ingénierie de 

contrainte, les problématiques de contact métallique, les effets de diffusion des porteurs, 

comme schématisé sur la Figure 1. En premier lieu nous étudions deux types de transistors 

multi-grilles : le premier, le FinFET, est bien connu pour avoir une conduction de surface à 

travers l'inversion de canal, tandis que le second, de conception très récente, le transistor sans 

jonction ('junctionless FET') fonctionne sur le principe d'un canal fortement dopé, et donc par 

une conduction de volume. Pour la conduction de volume, nous pourrions nous attendre à un 

bruit provenant de fluctuations de la mobilité des porteurs. Or dans les structures sans 

jonction, nous pouvons analyser le bruit basse fréquence à partir d'un modèle basé sur la 
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fluctuation du nombre de porteurs de façon similaire à celui des transistors FinFET. Nous 

proposons différents mécanismes pour définir l'origine de ces sources de bruit. En ce qui 

concerne le FinFET, le bruit provient bien du piégeage et dépiégeage à l'interface oxyde-

semiconducteur, alors que le bruit dans le transistor sans jonction est issu du piégeage des 

porteurs à la frontière entre le canal de conduction et la région de désertion. En ce qui 

concerne les strucutres de type nanofils et les nanotubes, nous avons pu observer l'impact de 

la contrainte mécanique sur le canal de conduction, ainsi que l'influence du contact 

métallique sur le bruit basse fréquence. Nous avons aussi comparé des structures 

tridimensionnelle transistors à effet de champ avec grille enrobante constitués de nanofils de 

type cœur-coquille empilés, avec ou sans contrainte compressives. Bien que les dispositifs 

contraints aient une distribution inhomogène des pièges le long du canal, les densités de 

pièges dans les deux types de dispositifs sont très similaires. Toutefois dans le cas des 

structures contraintes on note une réduction significative de l'influence des fluctuations de 

mobilité corrélées du fait du confinement des porteurs loin de l'interface oxyde/silicium. 

Ensuite, nous avons étudié l'influence de la jonction métal-semiconducteur avec plusieurs 

contacts métalliques à partir d'une analyse du bruit basse fréquence. L’existence d'un barrière 

Schottky provenant de la différence des travaux de sortie des matériaux induit des 

caractéristiques différentes pour le bruit basse fréquence et la résistance du dispositif. Ceci 

indique que le contact métallique avec un nanofil peut fortement affecter les propriétés de 

bruit dans des strucutres de faible dimensionnalité. En utilisant des mesures de bruit basse 

fréquence, nous pouvons analyser la qualité du contact métallique dans des nanofils de GaN, 

montrant que les techniques de mesure de bruit peuvent se révéler être un outil d'un grande 

utilité pour déterminer la qualité et la fiabilité des dispositifs. Par ailleurs en tant que structure 

2D idéale, le Graphène est un matériau intéressant qui a des mobilités de porteurs 

extrêmement élevées, des masses d'électron nulles et sans bande interdite. Toutefois les 

transistors en Graphène qui sont réalisés sur substrat ont une mobilité de porteurs très 

fortement dégradée du fait de la diffusion importante des porteurs. Nous avons étudié le bruit 

basse fréquence dans ce genre de dispositifs en prenant en considération l'influence du 

substrat sur le canal de Graphène. Dans des transistors à monocouche de Graphène, le bruit a 

une caractéristique en forme de 'M' en fonction de la tension appliquée, et son comportement 

est semblable à la variation de transconductance limitée par la diffusion du substrat. 
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Figure 7 Schéma des objectifs de recherche: la compréhension de bruit à basse fréquence dans les 
nanostructures. 
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II. Propriétés de transport et bruit basse fréquence dans les transistors à 

effet de champ multigrilles : comparaison des mécanismes de 

conduction dans les FinFET et les transistors sans jonction 
 

Nous avons comparé les résultats expérimentaux des transistors FinFETs et des transistors 

sans jonction en fonction de la largeur du canal. Les deux dispositifs ont été fabriqués en 

utilisant un substrat de type silicium sur isolant. Dans le cas du FinFET, un canal de silicium 

non-intentionnellement dopé a été réalisé en réduisant l'épaisseur (TSi) à 65 nm. Les régions 

source/drain (S/D) étant dopées n+ à quelques 2×1020 cm-3. Un oxyde de grille de type HfSiO 

fa été déposé, avec une épaisseur d'oxyde équivalent de l'ordre de 1,7 nm. Une couche de 5 

nm de TiN, encapsulée par une couche de 100 nm de poly-Si, a été utilisé comme électrode 

de grille. Par contre pour le transistor sans jonction, le canal a été dopé uniformément n+ 

incluant les régions source/drain, de sorte qu'il n'y ait aucune jonction entre le canal et la 

région S/D. Dans ces structures, une couche de 10 nm de SiO2 a été obtenue par croissance 

thermique, et une couche dopée p+ de poly-Si a été utilisée comme électrode de grille. La 

Figure 2 montre une coupe longitudinale montrant le profil de dopage, les régions de 

conduction et des images par microscopie électronique à transmission (TEM) des deux types 

de dispositifs. 
 

 
Figure 8 Longitudinal section transversale des profils de dopage, le profil de concentration d'électrons, et 
au microscope électronique à transmission (TEM) des images de (a) d'inversion de mode FinFET high-
k/metal-gate (limitée par conduction de surface) et (b) plusieurs junctionless TEC à grille ayant de 
conduction de volume. 

 

Pour un transistor de type FinFET, avec une largeur WFin=10 nm, nous avons obtenu, pour 

plusieurs tensions de grille VGS, le spectre de puissance en fonction de la fréquence de la 
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Figure 3 (a). Ils combinent de comportements de type Lorentzien et 1/f. Pour des tensions 

VGS < ~1.2 V, SId a un comportement proche d'une Lorentzienne qui est typique d'un bruit de 

type génération-recombinaison (g-r) ou signal télégraphique RTS (random telegraph signal), 

mais qui change pour un comportement de type bruit 1/f pour des tensions VGS plus 

importantes. Afin de mieux comprendre l'origine du bruit basse fréquence dans les transistors 

de type FinFET, la densité spectrale de puissance SId a été normalisée par ID
2. Si l'origine du 

bruit provient des fluctuations de porteurs, SId/ID
2 devrait être proportionnel à (gm/ID)2 , alors 

qu'ils doit décroître selon l'inverse du courant de drain s'il s'agit de fluctuations de mobilités 

selon le modèle de Hooge (HMF). Par ailleurs, nous avons pris en compte les largeurs totales 

de canaux de conduction dans notre analyse en multipliant SId/ID
2 et en divisant ID , puisque 

le bruit et le courant dépendent de la largeur du canal. La Figure 3 (b) montre que les densités 

spectrales de bruit normalisée pour différents transistors FinFET de type n et de type p ont 

des comportements similaires. Pour les deux dispositifs nous pouvons noter l’apparition d'un 

plateau en dessous du seuil de conduction, qui décroit fortement lorsque le courant augmente. 

Ces résultats démontrent clairement que l'origine du bruit basse fréquence dans les FinFETs 

provient de fluctuations du nombre de porteurs à l'interface oxyde-semiconducteur, quel que 

soit le type de dispositif. 

 

 
Figure 9 (a) des spectres de puissance de bruit actuel en fonction de la fréquence pour l'FinFET fonction 
de la tension de grille. (b) les densités spectrales de bruit normalisée pour différents transistors l’FinFET 
de type n et de type p ont des comportements similaires. 

 

Comme nous pouvons l'observer sur la Figure 4, nous avons pu extraire la densité de 

pièges (Nt) ainsi que le coefficient de diffusion de Coulomb (αC) en fonction de la largeur des 

dispositifs FinFETs. Pour les grandes largeurs de canal, ces densités sont de l'ordre de 2×1020 
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cm-3eV-1 et décroissent avec la réduction de WFin pour finalement saturer à quelques 1×1019 

cm-3eV-1 pour les canaux les plus étroits. Nous avons également observé une variation de Nt 

comme illustré sur la Figure 4 (a). Il semblerait que les densités de pièges Nt dans les 

dispositifs de type p soient légèrement plus importantes que pour les dispositifs de type n, 

mais les distances tunnel pour les électrons et pour les trous sont différentes. De ce fait, les 

densités de pièges pourraient être similaire si l'on considère que la distance tunnel pour les 

électrons est plus grande que pour les trous. Toutefois cela n'a pas d'impact significatif sur le 

coefficient de Coulomb αC qui est de l'ordre de 103 Vs/C, qui décroit avec la largeur du canal 

WFin. Ceci pourrait être causé par les charges piégées sur les côtés du FinFET. 

 

 
Figure 10 (a) la densité de pièges de volume et (b) coefficient de diffusion de Coulomb en fonction de la 
largeur de la nageoire FinFET sur la base du CNF + CMF. 

 

Le transistor FET sans jonction est, de manière simplifiée, équivalent à un transistor en 

mode d’accumulation avec un canal de dopage identique aux source et drain. Sous le seuil, le 

transistor FET sans jonction est régime de désertion totale. Si la section du canal est 

suffisamment étroite, la grille peut alors entièrement dépléter le canal (i.e. dans l'état 'off') du 

fait de la différence des travaux de sortie entre le canal et l'électrode de grille. Au-dessus de la 

tension de seuil, le courant circule dans le volume du silicium qui est au centre du canal, et un 

canal d'accumulation peut alors se former si la tension de grille est suffisamment augmentée. 

Ainsi ce type de transistor possède des avantages conséquents par rapport aux dispositifs de 

conduction de surface, puisqu'il est a priori moins affecté par la dégradation de mobilité et 

des pentes de sous-seuil moins dégradées. La conduction est principalement limitée à la zone 

volumique à l'inverse des MOSFETs conventionnels à mode d'inversion du canal. En ce qui 

concerne la modélisation du bruit, on peut donc s'attendre à ce que la conduction de volume 
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dans ce type de transistors sans jonction affecte différemment le bruit basse-fréquence par 

rapport aux dispositifs à conduction de surface. Toutefois les transistors sans jonction ont 

aussi un conduction de surface additionnelle lorsque la tension de grille dépasse la tension de 

bandes plates. De plus il est bien connu que dans les dispositifs nanométriques le ratio 

surface/volume est plus important que dans les dispositifs classiques, mettant alors en avant 

l'importance des effets de surface dans ce genre de structures. Nous avons étudié le bruit 1/f 

dans les transistors sans jonction en traçant en échelle log-log la densité de puissance 

normalisée SId/ID
2 en fonction du courant ID , comme représenté sur la Figure 5. Le spectre de 

bruit prédit par le modèle CNF+CMF est validé sur une large gamme de tensions, à la fois 

sous et après le seuil. Le bruit prédit par le modèle de Hooge (HMF) n'est visiblement pas en 

mesure de prédire correctement la dépendance du bruit basse-fréquence du courant de drain.  

 

 
Figure 11 (a) Comparaison des CNF + CMF et HMF modèle pour WFin = 20 nm et (b) la densité extrait 
piège volume de le transistor FET sans jonction avec WFin différente. 

 

En nous basant sur le modèle CNF+CMF nous avons pu calculer la densité de pièges Nt 

ainsi que le coefficient de Coulomb αC. Ceci permet ainsi d'apporter des éléments 

d'information intéressants sur la qualité de l'interface d'oxyde, mais aussi sur les fluctuations 

de mobilité corrélées. Nous pouvons estimer Nt à quelques 6×1016 à 3×1017 cm-3eV-1 en 

considérant une longueur tunnel dans l'oxyde de λ = 1×10-8 cm. On retrouve ainsi des valeurs 

très semblables à celles des transistors classiques, mais considérablement meilleures que 

celles des transistors à forte constante diélectrique (high-k MOSFETs) qui sont typiquement 

de l'ordre de Nt=1019 ~ 1020 cm-3eV-1. La valeur de αC se situe autour de 1.1×104 à 5.1×105 

Vs/C, indiquant que les fluctuations de mobilités corrélées jouent un roloe important dans les 

régions de fort courant. Nous pouvons supposer que ces fluctuations de mobilité sont dues à 
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des diffusions coulombiennes par les pièges chargés.  

Malgré une bonne description des caractéristiques de bruit des transistors sans jonction 

par le modèle CNF+CMF, il est difficile de comprendre l'effet des pièges à l'interface oxyde-

semiconducteur dans la région sous le seuil, car les interfaces silicium-oxyde de grille sont 

désertées dans ce régime, et les chemins de conduction se situent au centre du nanofil, loin 

des interfaces avec l'oxyde de grille. Une explication plausible est qu'il y a des fluctuations de 

l'épaisseur du canal dans le régime sous le seuil, lorsque le dispositif est partiellement déserté. 

Cet effet pourrait provenir de la présence de centres de génération/recombinaison Shockley–

Read–Hall (SRH) dans la région de transition de Debye, entre le canal neutre et la région de 

désertion. Cet effet a aussi été observé dans les transistors à jonction et dans les transistor à 

quatre grilles (G4-FETs). 

Comme illustré sur la Figure 6 pour un FinFET, la densité spectral de puissance SId 

décroit graduellement lorsque l'on accroît la tension de grille VGS. Ceci représente une 

relation entre SId et le courant de saturation dû à des effets de surface. Par ailleurs pour le 

transistor sans jonction, on observe un pic de bruit près le la tension seuil, relié au bruit G-R 

dû aux génération-recombinaison Schottky-Read-Hall. Ensuite, le bruit du courant de drain 

s’accroît à nouveau avec l'augmentation de la tension de grille VGS , avec la formation d'un 

canal d'accumulation à la surface. 

 

 
Figure 12 La densité spectral de puissance SId décroit graduellement lorsque l'on accroît la tension de 
grille VGS . 

 

En conclusion, nous avons étudié le rôle des mécanismes de conduction sur le bruit basse-

fréquence par des analyses électriques et de bruit dans des transistors FETs multigrilles. Le 

bruit basse-fréquence dans les deux types de dispositifs étudiés est bien expliqué par le 
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modèle de fluctuation de porteurs (CNF) bien leur origine soit différente. Dans le cas du 

FinFET, le bruit basse-fréquence a pour origine le piégeage et dépiégeage des porteurs à 

l'interface oxyde-semiconducteur comme dans le cas des transistors conventionnels en mode 

d'inversion. Toutefois pour les transistors sans jonction le bruit basse-fréquence pourrait 

provenir de la charge de génération-recombinaison à la frontière entre la région du canal et 

celle de la zone de désertion. 
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III. Impact de la contrainte mécanique et du contact métallique sur le 

bruit pour des dispositifs à nanofil ou nanotube 
 

A. Transistors à nanofils SiGe de type p empilés en 3D 

 

En se basant sur l'approche 'top-down', les transistors à nanofils (NW) de type grille 

enrobante (Gate-all-around ou GAA) sont des candidats prometteurs pour les technologies 

MOS avancées. Ils offrent en effet de nombreux avantages, comme l'amélioration des 

performances électrostatiques qui dominent les effets canaux courts, avec une meilleure 

intégration en termes de densité du fait de leur structure d’empilement tridimensionnelle (3D). 

Nous présentons les propriétés électriques et les caractérisation de bruit basse-fréquence de 

transistors à nanofils 3D avec une grille à isolant de forte permittivité. Ces transistors Si 

(NMOS) et SiGe (PMOS) ont été réalisés par le CEA-LETI (France), par une méthode basée 

sur une combinaison de gravures anisotropiques et isotropiques lors de la mise en forme de la 

grille. 

 

 
Figure 13 (a) schéma d'arrangement en treillis de l'tendues Si1-xGex grandi dans le substrat Si. (b) un 
décalage de la bande de valence de l'ordre de ~7 meV/Ge%. 
 

Afin d'induire une contrainte mécanique, Si et Ge sont généralement utilisés avec des 

compositions variées, et un désaccord de maille de l'ordre de ~4.2 %. Lorsqu'un film de Si1-

xGex ayant un paramètre de maille plus important que Si, est déposé sur un substrat de Si, ce 

film adopte le maillage du Si dans le plan de croissance et est alors sous une contrainte 

biaxiale compressive, comme illustré sur la Figure 7 (a). De plus, il y a un décalage de la 
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bande de valence de l'ordre de ~7 meV/Ge% comme illustré sur la Figure 7 (b), ce qui a pour 

effet d'améliorer la mobilité des trous.  

 

 
Figure 14 Images TEM et schématiques de la 3-D empilés compression tendues (c-tendues) Si / SiGe core-
shell nanofils. 
 

Pour des nanofils de SiGe, la forme est hexagonale, comme illustré sur la Figure 8, avec 

les côtés des facettes en {111}, vraisemblablement du fait du budget thermique nécessaire à 

la réalisation de la couche de Si d'encapsulation. On peut aussi noter la croissance d'une 

couche semblable à du Si02 de faible constante diélectrique d'interface (TIL: 1.5 ~ 2 nm) du 

fait que le procédé n'ait pas été optimisé. En ce qui concerne les dispositifs à canal long, 

ceux-ci sont courbés lorsqu'ils sont contraints (de manière compressive), alors que pour les 

canaux courts en SiGe, ils sont droits. Pour tous les dispositifs, le nombre total de nanofil est 

de 150 en parallèle (3 × 50 = 150). La largeur totale des dispositifs est ainsi estimée à environ 

12.008 et 12.320 μm, pour les dispositifs contraints et non contraints, respectivement. 

Sur la Figure 9, on peut remarque que la forme globale du bruit en courant normalisé 

varie en (gm/ID)2 et pas en (1/ID). Ceci montre clairement que le bruit basse-fréquence dans 

les transistors à nanofils SiGe contraints ou non, peut être modélisé par un modèle de 

fluctuation de porteurs (CNF), et non par un modèle de fluctuation de mobilité (HMF). Il est 

intéressant de noter qeu pour ce qui concerne les transistors à nanofils SiGe non contraints, 

on a un bon ajustement avec le modèle de fluctuation de mobilité corrélée (CMF), alors que 

le modèle standard CNF suffit pour les dispositifs à nanofils SiGe contraints. De plus on 

constate que pour des courants de drain élevés, le bruit en courant normalisé décrois moins 

que (gm/ID)2 du fait de la présence de fluctuation des mobilités corrélées additionnelles. Ceci 

signifie qu'il y a des effets différents qui influence le piégeage de charges dans le canal, 

suivant que les dispositifs sont contraints ou non. 
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Figure 15 La forme globale du bruit en courant normalisé varie en (gm/ID)2 et pas en (1/ID). les transistors 
à (a) nanofils SiGe contraints, (b) nanofils SiGe non contraints. 
 

Pour confirmer l'influence des fluctuations corrélées de mobilité, nous avons extrait 

spécifiquement le coefficient de diffusion de Coulomb, αC du modèle CNF+CMF en traçant 

la racine carrée du bruit de la tension de grille normalisé. Sur la Figure 10 (a), les valeurs 

extraites de αC sont données en fonctin de la longueur de grille des composants. Pour ce qui 

concerne les nanofils SiGe non contraints, ce coefficient est légèrement supérieur à 4.104 

Vs/C, tandis que pour les nanofils SiGe contraints, il est typiquement autour de 4.103 Vs/C, 

indiquant ainsi que les fluctuations de mobilités corrélées sont réduites de manière 

significative dans les nanofils contraints compressivement. Ceci pourrait sans doute provenir 

du fait que pour des canaux contraints il y a un meilleur confinement spatial des porteurs dans 

la structure SiGe cœur-coquille par rapport à une structure non contrainte. En effet pour une 

concentration de 20% de Ge on peut attendre un accroissement du décalage de la bande de 

valence de l'ordre de 100 meV. Les dispositifs non contraints ont donc un mode d'opération 

de surface plus important par rapport à ceux contraints compressivement, ce qui rend encore 

plus efficace la diffusion coulombienne, des charges à l'interface oxyde/couche 

d'encapsulation de Si, et ainsi accroît le coefficient αC du mécanisme CMF. Selon la théorie 

de la diffusion coulombienne, une réduction d'une décade correspond à une distance 

supplémentaire de l'ordre de 1,7 nm pour les nanofils contraints, ce qui est en bon accord 

avec le fait que la couche de Si d'enrobage est de l'ordre de 1 ~ 1.5 nm. 

Nous avons ensuite déduit la composante de la mobilité limitée par la rugosité de surface, 

μSR , à partir de la pente de la dérivée de l'inverse de la mobilité effective pour des tensions de 

grille importantes. Sur la Figure 10 (b), nous avons tracé les valeurs de μSR extraites en 

fonction de la longueur du canal pour une tension de grille de VGS = -2 V. On peut constater 
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que pour les nanofils SiGe non contraints, μSR est trois fois plus petit par rapport aux nanofils 

contraints compressivement, ce qui reflète que la diffusion de rugosité d'interface est bien 

plus importante pour les dispositifs non contraints, ce qui est vraisemblablement dû au 

confinement accru des porteurs à l'interface oxyde/couche d'encapsulation de Si. Cela est 

cohérent par rapport à nos conclusions dressées à partir de notre analyse CNF+CMF du bruit, 

démontrant une atténuation du coefficient de diffusion coulombienne pour les nanofils 

contraints compressivement. 

 

 
Figure 16 (a) les valeurs extraites de αC sont données en fonctin de la longueur de grille des composants. 
(b) les valeurs de μSR extraites en fonction de la longueur du canal pour une tension de grille de VGS = -2 V. 
 

En conclusion, le bruit basse-fréquence a été analysé et comparé pour des dispositifs p-

MOS à base de nanofils SiGe cœur-coquille contraints et non-contraints. Nous avons trouvé 

que pour les deux types de dispositifs le bruit basse-fréquence peut être correctement 

interprété par le modèle CNF+CMF. Les nanofils SiGe non contraints ont un coefficient de 

diffusion coulombienne plus important, et une composante de mobilité limitée par la 

diffusion de surface plus faible. Ces caractéristiques cohérentes montrent clairement que les 

dispositifs à nanofils non contraints ont une mode d'opération avec une conduction plus en 

surface que ceux à nanofils non contraints, ce qui rend ces derniers plus sujets aux diffusions 

coulombiennes et de rugosité de surface. A l'inverse, les nanofils contraints compressivement 

bénéficient de l'architecture coeur-coquille, ce qui permet aux porteurs de charge de rester 

mieux confinés spatialement, plus loin de l'interface oxyde/couche d'encapsulation de Si. 
 

B. Les jonctions métal-semiconducteur dans les dispositifs à nanotube de carbone 

multi-parois 
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Le bruit basse fréquence dans des nanofils de carbone multi-parois individuels (MWNTs) 

a été étudié pour différents types d'électrodes métalliques. Alors que le transport électronique 

dans les dispositifs à nanotubes se rapproche d'un transport quasi-balistique, le bruit devient 

prépondérant devant la résistance des dispositifs. Ceci montre qu'il y a une influence 

significative des contacts électriques sur le bruit électronique, suggérant dès lors qu'il est 

important d'établir un critère pour déterminer la qualité des contacts électriques dans les 

dispositifs à nanotubes. 

 

 
Figure 17 (a) l'amplitude du bruit αH/N avec différents contacts métalliques. (b) l'amplitude de bruit en 
fonction de la résistance des MWNTs pour différentes électrodes métalliques. 
 

Sur la Figure 11 (a), l'amplitude du bruit αH/N a été utilisée pour comparer différents 

contacts métalliques car il était difficile d'estimer le nombre total de porteurs N dans les 

MWNTs. L'amplitude du bruit dans les contacts ohmiques est constant car il n'y a pas 

d'influence de la grille sur les dispositifs à MWNTs métalliques. Dans le cas de l'échantillon 

D, il y a une légère pente qui augmente avec le courant, ce qui peut être attribué à une 

dépendance différente du bruit en fonction du courant. Les dispositifs avec un contact en Pd 

qui ont une conduction quasi-balistique ont l'amplitude de bruit la plus faible, autour de 10−10, 

alors que pour les contacts en Cr ou en Ti les amplitudes de bruit sont plus importantes, de 

l'ordre de 10−7 ou 10−5, ce qui est en bon accord avec les résultats trouvés précédemment. En 

comparant les dispositifs à MWNTs avec contacts Pd et Cr, la différence de la résistance n'est 

simplement que doublée alors que le bruit pour les contacts Cr est 1000 fois plus grand par 

rapports aux dispositifs contactés avec du Pd, comme illustré sur la Figure 11 (a). Cette 

différence notable peut être visualisée sur la Figure 11 (b), qui montre l'amplitude de bruit en 
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fonction de la résistance des MWNTs pour différentes électrodes métalliques. Pour les 

composants avec des contacts Cr ou Ti, l'amplitude de bruit varie en fonction de 10-10,2R1,05. 

Pour les contacts en Pd et Pt, le bruit chute rapidement avec la décroissance de la résistance, 

suivant une tendance en 10-26,3R3,9. Du fait que les contacts électriques en Pd ou Pt montrent 

des caractéristiques de conduction quasi-balistique, l'influence des contacts sur le bruit 

devrait être plus restreinte par rapport au cas de contacts avec du Cr ou du Ti, ce qui indique 

une domination de la contribution du canal pour les contacts Pd ou Pt. Au final, nous 

confirmons que le bruit des dispositifs MWNTs à contacts en Pd et Pt reflète bien l'influence 

du canal de conduction avec un coefficient de forte resistance pour le spectre de puissance du 

bruit, différent pour des électrodes en Ti et Cr avec une contribution supplémentaire des 

potentiels de contact du fait d'un coefficient plus faible. Par ailleurs nous avons pu observer 

que le bruit est clairement en 1/ f quel que soit la nature des métaux ou le comportement 

ohmique des contacts. 
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IV. Bruit basse-fréquence dans les structures bi-dimensionnelles : 

transistor à effet de champ avec une monocouche de graphène 
 

A. Structure et propriétés électriques d'un transistor à monocouche de graphène 

 

Nous avons étudié des G-FETs, des transistors avec un canal en Graphène obtenu par 

CVD. Les composants ont été réalisé sur des substrats industriels de 6 pouces (150mm). Le 

substrat, dopé n+ est recouvert d'une couche de 100 nm d'épaisseur de SiO2 constituant la 

grille arrière. La graphène obtenu par CVD a été déposé par une technique de transfert. Les 

électrodes sont constituées de 100nm d'Au déposé sur le Graphène sans utiliser de résine 

photosensible afin d'éliminer l'influence des résidus de résine, mais avec une moindre qualité 

du contact électrique. Les différentes dimensions de longueur et de largeur de canal ont été 

obtenues en utilisant un procédé de gravure plasma. Les régions du canal ont été passivées 

par un dépôt de Al2O3 . La Figure 12 donne une vue schématique du dispositif ainsi qu'une 

photo d'un G-FETs. 

 

 
Figure 18 La vue schématique du dispositif ainsi qu'une photo d'un G-FETs. 
 

Les propriétés classiques de transport électronique du G-FET ont été confirmées à travers 

des caractérisations ID-VGS et gm-VGS comme illustré sur la Figure 13. Nous avons déterminé 

gmʹ (=∂gm/∂VGS) comme référence pour extraire la pente de la transconductance gm pour des 

tensions de polarisation de grille importantes. A partir des courbes gm-VGS , la 

transconductance gm augmente tout d'abord linéairement en commençant par le point de 

Dirac aux faibles tensions, puis comme à décroitre pour des tensions plus importantes (8 V et 

-12 V pour les électrons et les trous, respectivement). Nous avons pu estimer la concentration 
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de porteurs dans le graphène à partir de l'intégrale de la densité d'états qui augmente 

linéairement avec l'énergie à travers une distribution de Fermi-Dirac. 

 

 
Figure 19 Les caractérisations ID-VGS et gm-VGS d'un G-FETs. 

 

B. Bruit basse-fréquence d'un transistor à mono-couche de graphène 

 

Nous avons mesuré le bruit basse-fréquence dans des G-FETs pour différentes tensions de 

grille. On observe un comportement général de type bruit en 1/f pour les différentes tensions 

de grille, mais il est sensible à la qualité des contacts. Ainsi si une pointe ne fait pas un bon 

contact lors de la mesure, on voit apparaître des caractéristiques de bruit originale. Sur la 

Figure 14, nous donnons la puissance spectrale de bruit en courant de drain pour les données 

brutes et les données lissées. Les inserts montrent les valeurs extraites γ et β définies par 

ID
β/fγ. Pour le paramètre γ, il est de l'ordre de 0.96, et le bruit SId augmente de manière 

proportionnelle à ID
2 en fonction de la tension de drain, du fait que le courant de drain est 

linéaire avec la tension de drain. 
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Figure 20 La puissance spectrale de bruit en courant de drain pour les données brutes et les données 
lissées. 
 

Dans la région de type n du G-FET, le bruit en courant normalisé est comparé aux 

mod_les de fluctuation du nombre de porteurs de charges (CNF) et au modèle de Hooge de 

fluctuation de la mobilité des porteurs (HMF), comme illustré sur la Figure 15 (a). Nous 

avons ajusté le modèle CNF à partir de la relation (gm/ID)2 des caractéristiques ID-VGS , mais 

il est en complet désaccord avec le comportement en bruit du Graphène. Ceci montre donc 

que le bruit ne provient pas du piégeage / dépiégeage des porteurs à l'interface 

Graphène/oxyde. D'un autre côté, de la même façon, le modèle HMF ne s'accorde pas 

correctement sur l'ensemble de la région étudiée, mais uniquement partiellement dans une 

région spécifique loin du point de Dirac. Sur la Figure 15 (b), la caractéristique du bruit est 

comparé au comportement de la transconductance gm . Loin du point de Dirac, SId/ID
2 suis 

une loi en 1/VGS de manière identique à la région des fortes tensions de grille. Toutefois, près 

du point de Dirac, nous ne pouvons pas établir de corrélation claire avec la transconductance 

gm . 
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Figure 21 (a) le bruit en courant normalisé est comparé aux mod_les de fluctuation du nombre de 
porteurs de charges (CNF) et au modèle de Hooge de fluctuation de la mobilité des porteurs (HMF). (b) la 
caractéristique du bruit est comparé au comportement de la transconductance gm. 
 

Comme nous pouvons le voir sur la Figure 16, le comportement du bruit normalisé qui 

inclut les régions de type n et de type p, a la forme d'un 'M'. Cette caractéristique en 'Me est 

un comportement tout à fait original, caractéristique du bruit dans une mono-couche de 

Graphène. Le bruit en courant de drain SId augmente lorsque la tension de grille (et donc la 

concentration des porteurs) augmente, alors que le bruit en courant de drain normalisé SId/ID
2 

décroit. Loin du point de Dirac point, il semblerait que le bruit en 1/f noise dans le Graphène 

est fortement corrélé avec la mobilité de diffusion selon le nombre de couches. Ceci permet 

d'étayer l'ajustement partiel du modèle HMF. Toutefois près du point de Diract, nous pouvons 

supposer que l'origine du bruit est semblable pour des mono- et des multi- couches de 

Graphène, mais ceci reste à éclaircir. Nous envisageons l'effet d'une inhomogénéité spatiale 

près du point de Dirac. 

 

 
Figure 22 Le comportement du bruit normalisé qui inclut les régions de type n et de type p, a la forme 
d'un 'M'. 
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Nous avons aussi étudié des transistors FETs à mono-couche de Graphène obtenu par 

exfoliation mécanique par des mesures DC et des mesures de bruit basse-fréquence. Leurs 

propriétés électriques ont été analysées à partir du modèle électronique du transistor MOS. 

Ces transistors G-FETs exhibent trois types différents de transport selon la concentration de 

porteurs, et le bruit dans la région des faibles fréquence a un comportement de type 1/f. Nous 

avons essayé d'analyser le bruit à partir des modèles CNF et HMF, en variant la tension de 

grille, et nous avons pu montrer que les caractéristiques de bruit sont partiellement 

modélisables par le modèle HMF. Bien que cela ne soit pas très clair, le bruit basse-fréquence 

dans le Graphène pourrait être fortement corrélé avec le comportement de la mobilité. 
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V. Conclusion 
 

Dans cette thèse, nous avons montré que les techniques de caractérisation en bruit basse-

fréquence et en courant DC sont des outils puissants pour mieux comprendre la dynamique 

des porteurs de charge pour des structures de faible dimensionnalité. En réduisant la taille des 

dispositifs, alors que le courant de sortie décroit de manière assurée, le bruit lui ne décroit pas. 

Ainsi dans les dispositifs nanométriques, les études de bruit seront de plus en plus 

importantes pour comprendre les phénomènes et permettre de poursuivre la réduction 

d'échelle. Par ailleurs, certaines techniques de mesures (comme les mesures C-V) sont au 

niveau du point de rupture car trop imprécises ou inadaptées pour faire des mesures ou 

comprendre le comportement des dispositifs nanométriques. Le bruit basse-fréquence dans 

les structures de faible dimensionalité est fortement impacté par l'architecture du dispositif, 

les mécanismes de conduction, l'ingénierie de contrainte mécanique du canal, les jonctions 

métal-semiconducteur, et les structures de canal 2-D. La plupart des études de bruit ont été 

réalisé à température ambiante, mais des études à faible température bien que potentiellement 

intéressantes sont difficiles du fait de sources de bruits additionnelles, notamment liées au 

système de refroidissement. Bien que l'origine du bruit soit principalement dû au 

piégeage/dépiégeage des porteurs à l'interface ou dans le diélectrique, il ne faut pas pour 

autant négliger l'effet de la diffusion des porteurs. Ainsi des mesures de bruit à basse 

température seraient aussi intéressantes pour estimer l'influence de la diffusion des porteurs 

sur le bruit basse-fréquence. 
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