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Introduction

In the last two decades, Cauchy integral equations have assumed an increasing relevance. This is due to the great variety of problems arising in sciences, engineering and technology, which can be described by such equations. Cauchy integral and Integro-dierential equations involve important mathematical techniques, because they are encountered by mathematicians, and physical and social scientists, in their investigations. These equations were described in many available books, concerning theory and applications ( cf. [START_REF] Agarwal | Integral and Integrodierential Equations[END_REF], [START_REF] Atkinson | A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind[END_REF], [START_REF] Atkinson | An Introduction to Numerical Analysis[END_REF], [START_REF] Atkinson | Theoretical Numerical Analysis: A Functional Analysis Framework[END_REF], [START_REF] Böttcher | Singular Integral Operators, Factorization and Applications[END_REF], [START_REF] Christ | Lectures on Singular Integral Operators[END_REF], [START_REF] Dzhuraev | Methods of Singular Integral Equations[END_REF], [START_REF] Estrada | Singular Integral Equations[END_REF], [START_REF] Gerasoulis | The stability of the Gauss-Chebyshev method for Cauchy singular integral equations[END_REF], [START_REF] Gong | Integrals of Cauchy Type on the Ball[END_REF], [START_REF] Ivanov | The Theory of Approximate Methods and Their Applications to the Numerical Solution of Singular Integral Equations[END_REF], [START_REF] Kaya | On the solution of integral equations with strongly singular kernels[END_REF], [START_REF] Kress | Numerical Analysis[END_REF], [START_REF] Lerer | Convolution Equations and Singular Integral Operators[END_REF], [START_REF] Mikhailov | A new class of singular integral equations and its application to dierential equations with singular coecients[END_REF], [109], [START_REF] Nazaikinskii | Elliptic Theory on Singular Manifolds: Dierential and Integral Equations and Their Applications[END_REF], [START_REF] Pipkin | A Course on Integral Equations[END_REF], [START_REF] Prössdorf | Numerical Analysis for Integral and Related Operator Equations[END_REF], [START_REF] Stein | Singular Integrals and Dierentiability Properties of Functions[END_REF], [START_REF] Vainikko | Multidimensional Weakly Singular Integral Equations[END_REF]- [START_REF] Weber | Weighted Polynomial Approximation Methods for Cauchy Singular Integral Equations in the Non-Periodic Case[END_REF] ). Several books include the latest questions related to high technology on solving very important theoretical and practical problems on solid mechanics, fracture mechanics, structural analysis, elastodynamics, uid mechanis and aerodynamics, by using singular integral equation methods ( cf. [START_REF] Agarwal | Singular Dierential and Integral Equations with Applications[END_REF], [START_REF] Bareiss | Singular Integrals and Singular Integral Equations with a Cauchy Kernel and the Method of Symmetric Pairing[END_REF], [START_REF] Ingham | Boundary Integral Equation Analyses of Singular, Potential and Biharmonic Problems[END_REF], [START_REF] Jerri | Introduction to Integral Equations with Applications[END_REF], [START_REF] Kravchenko | Introduction to the Theory of Singular Integral Operators with Shift[END_REF], [START_REF] Lifanov | Hypersingular Integral Equations and Their Applications: Dierential and Integral Equations and Their Applications[END_REF]- [START_REF] Litvinchuk | Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift[END_REF], [START_REF] Nickelson | Singular Integral Equation's Methods For The Analysis Of Microwave Structures[END_REF], [START_REF] Parton | Integral Equations in Elasticity[END_REF], [START_REF] Rahman | Integral Equations and their Applications[END_REF] ). In ( [START_REF] Vakhtang | On boundedness of singular integral operators in Lp spaces with weight[END_REF]- [START_REF] Vakhtang | Singular integral operators in weighted spaces[END_REF]), the author presented many papers relating to boundedness of singular integral operators with Cauchy kernel in weighted spaces. In ( [START_REF] Capobianco | A fast algorithm for Prandtl's integro-dierential equation[END_REF], [START_REF] Berthold | New error bounds for the quadrature method for the solution of Cauchy singular integral equations[END_REF], [START_REF] Junghanns | Optimal control for a parametrized family of nonlinear Cauchy singular integral equations[END_REF]- [START_REF] Junghanns | Numerical analysis for one-dimensional Cauchy singular integral equations[END_REF] ), the authors have studied the Cauchy integral equations in weigthted spaces of continuous functions, using Jacobi weights; they introduced a certain number of polynomial approximation spaces. In ( [START_REF] Ioakimidis | The numerical solution of crack problems in plane elasticity in the case of loading discontinuities[END_REF]- [START_REF] Ioakimidis | On the selection of collocation points for the numerical solution of singular integral equations with generalized kernels appearing in elasticity problems[END_REF] ), the authors presented analytical theories and numerical evaluation methods for solving Cauchy integral equations, in an accessible manner for a variety of applications to problems in the theory of three-dimensional elasticity. In the last decades several papers have been published on the convergence of the quadrature rules for evaluating Cauchy singular integrals, (see [START_REF] Criscuolo | On the convergence of the Gauss quadrature rules for the Cauchy principal value integrals[END_REF]- [START_REF] Criscuolo | On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals[END_REF], [START_REF] Criscuolo | Convergence of Gauss type formulas with preassigned nodes[END_REF], [START_REF] Mastroianni | On the saturation of a quadrature rule for evaluating Cauchy singular integrals[END_REF]- [START_REF] Mastroianni | Numerical methods for Cauchy singular integral equations in spaces of weighted continuous functions[END_REF]). In ( [START_REF] Karlovich | Algebras of singular integral operators with piecewise continuous coecients on reexive Orlicz spaces[END_REF]- [START_REF] Karlovich | Fredholmness of singular integral operators with piecewise continuous coecients on weighted Banach function spaces[END_REF]), the author has investigated the algebra of Cauchy integral operators with piecewise continuous coecients on reexive Orlicz spaces, and he has presented the necessary conditions for Fredholmness of singular integral operators in reexive weighted rearrangementinvariant spaces. During the last 30 years, there has been a substantial increase in interest in the numerical solution of the Fredholm singular integral and integro-dierential equations with Cauchy kernel (cf. [START_REF] Elliott | The classical collocation method for singular integral equations having a Cauchy kernel[END_REF][START_REF] Golberg | Discrete projection methods for Cauchy singular integral equations with constant coecients[END_REF][START_REF] Golberg | Numerical Solution of Integral Equations[END_REF]). These equations have important applications in mathematical physics, applied mathematics, and numerical analysis. The mathematical formulation of physical phenomena often involves Cauchy type, see, for example the excellent book by Muskhelishvili (cf. [START_REF] Mushkelishvili | Singular Integral Equations[END_REF]), and the references therein. Various of Fredholm singular integral equations with Cauchy kernel have been solved numerically in recent times by several authors using approximate methods. Recently, Chakrabarti, and Martha, have developed a straightforward method, involving expansion of the unknown function of a Fredholm integral equation of the second kind, in terms of polynomials, and have used the method of least-squares (cf. [START_REF] Chakrabarti | Approximate solutions of Fredholm integral equations of the second kind[END_REF]). Eshkuvatov et al have described a special approximate method for solving Fredholm integral equation of the rst kind, with Cauchy type (cf. [START_REF] Eshkuvatov | Approximate solution of singular integral equations of the rst kind with Cauchy kernel[END_REF]). Elliott, described a classical collocation method for singular integral equations having a Cauchy kernel, and showed that, under reasonable conditions, the approximate solutions converge to the solution of the original equation (cf. [START_REF] Elliott | The classical collocation method for singular integral equations having a Cauchy kernel[END_REF]). Golberg, analyzed and obtained convergence proofs of some numerical methods, for solving several classes of Cauchy singular integral equations (cf. [START_REF] Golberg | Discrete projection methods for Cauchy singular integral equations with constant coecients[END_REF][START_REF] Golberg | Numerical Solution of Integral Equations[END_REF][START_REF] Golberg | The convergence of a collocation method for a class of Cauchy singular integral equations[END_REF]). In 2007 Mandal and Bera employed a simple method based on polynomial approximation of a function to obtain approximate solution of a class of singular integral equations of the second kind (cf. [START_REF] Mandal | Approximate solution of a class of singular integral equations of second kind[END_REF]). Also Many dierent methods have been developed to obtain an approximate solution of these equations (cf. [START_REF] Baker | The Numerical Treatment Of Integral Equations[END_REF][START_REF] Kress | Linear Integral Equations[END_REF][START_REF] Polyanin | Handbook of iIntegral Equations[END_REF][START_REF] Tricomi | Integral Equations[END_REF]). Other techniques for solving Fredholm singular integro-dierential equations with Cauchy kernel have been presented in several works. Badr, presented a Galerkin approach for solving the linear integro-dierential equation of the second kind with Cauchy kernel by using the orthogonal basis of Legendre polynomials (cf. [START_REF] Badr | Integro-dierential equation with Cauchy kernel[END_REF]). In 2006 Maleknejad and Arzhang have presented a Taylor-series expansion method for a class of Fredholm singular integro-dierential equation with Cauchy kernel, and used the truncated Taylorseries polynomial of the unknown function and transform the integro-dierential equation into an nth order linear ordinary dierential equation with variable coecients (cf. [START_REF] Maleknejad | Numerical solution of the Fredholm singular integro-dierential equation with Cauchy kernel by using Taylor-series expansion and Galerkin method[END_REF]). In 2008 Subhra Bhattacharya, and Mandal have presented a method based on polynomial approximation using Bernstein polynomial basis, to obtain approximate numerical solutions of singular integro-dierential equations with Cauchy kernel, and compared their numerical results with those obtained by various Galerkin methods (cf. [START_REF] Mandal | Approximate solution of a class of singular integral equations of second kind[END_REF]). So the polynomial approximation play an important role in the numerical computation of the integral and integro-dierential equations (cf. [START_REF] Elliott | The classical collocation method for singular integral equations having a Cauchy kernel[END_REF][START_REF] Golberg | Discrete projection methods for Cauchy singular integral equations with constant coecients[END_REF][START_REF] Golberg | Numerical Solution of Integral Equations[END_REF][START_REF] Piessens | Computing integral transforms and solving integral equations using Chebyshev polynomial approximations[END_REF][START_REF] Piessens | On the computation of Fourier transforms of singular functions[END_REF]). The purpose of this thesis, is to develop and illustrate various new methods for solving many classes of Cauchy singular integral and integro-dierential equations. This work is organized as follows:

In the beginning, we briey recall a few basic concepts from general theoretical framework, such as bounded and compact operators, Hilbert spaces and adjoint operators, spectral theory framework, convergence of operators, approximation based on projections, and some classication of integral equations.

In chapter one, we study the successive approximation method for solving a Cauchy singular integral equations of the rst kind in the general case. We prove the convergence of the method in this general case. The proposed method has been tested for two kernels which are particularly important in practice.

In chapter two, we present two methods for solving Cauchy integral equation of the second kind: Firstly we present a collocation method based on trigonometric polynomials combined with a regularization procedure, for solving Cauchy integral equations of the second kind, in L 2 ([0, 2π] , C). A system of linear equations is involved. We prove the existence of the solution for a double projection scheme, and we perform the error analysis. Numerical examples illustrate the theoretical results. Secondly we solve directly Cauchy integral equation on the real line using Fourier expansion in Sobolev spaces.

The purpose of chapter three, is to approximate the solution of an operator equation involving a non compact bounded operator in Hilbert spaces, using projection methods. We prove the existence of the solution for the approximate equation, and we perform the error analysis. We apply the method for solving the Cauchy integral equations in L 2 (0, 1) for two cases : Galerkin projections and Kulkarni projections respectively, using a sequence of orthogonal nite rank projections. Numerical examples illustrate the theoretical results.

In chapter four, we introduce a collocation method for Cauchy integro-dierential equations, using airfoil polynomials of the rst kind. According to this method, we obtain a system of linear equations. We give some sucient conditions for the convergence of this method. In the end, we investigate the computational performance of our approach through some numerical examples. w In chapter ve, we propose two methods for solving integro-dierential equations with Cauchy kernel: First, we present a modied projection method based on Legendre polynomials. A system of linear equations is solved. Second, we present a Sloan projection method for solving integro-dierential equations with Cauchy kernel, using Legendre polynomials. We give numerical examples.

The last chapter deals with regularization for Cauchy integral equation of the second kind. We apply three projection methods to the regularized equation. First we use Kantorovich projection, and perform the error analysis. After we study the Sloan projection and prove some results about the error analysis. Finally Galerkin projection is established and its error analysis is discussed.

Preliminaries

We begin by recalling briey a few basic concepts from general theoretical framework, such as bounded and compact operators, Hilbert spaces and adjoint operators, spectral theory framework, convergence of operators, approximation based on projections, and some classication of integral equations.

Linear Operators

Let X be a Banach space, and let T be a linear operator dened on X. By the nullspace of T , N (T ) we mean the space of vectors annihilated by T , so

N (T ) := {ϕ ∈ X : T ϕ = 0} .
The image (or range) of T is dened by

R(T ) := {T ϕ : ϕ ∈ X} .
A linear operator T from a normed space X into a normed space Y is called bounded if there exists a positive number M such that T x ≤ M x for all x ∈ X, and

T := sup x ≤1 T x ,
is the norm of T . BL(X, Y ) will denote the space of bounded linear operators from X into Y , and BL(X) those from X into itself.

T is called compact if it maps each bounded set in

X into a relatively compact set in Y . That is T is compact if the set {T x : x ≤ 1} has compact closure in Y .
We recall that a subset U of a normed space X is called compact if every open covering of U contains a nite subcovering.

A subset of a normed space is called relatively compact if its closure is compact.

Theorem 1. A bounded subset of a nite-dimensional normed space is relatively compact.

Proof. See [START_REF] Kress | Linear Integral Equations[END_REF].

We have also:

1. Compact linear operators are bounded.

2. A linear operator T from a nite-dimensional normed space X into a normed space Y is bounded.

3. The identity operator I : X → X is compact if and only if X has nite dimension.

4.

A bounded operator T from a normed space X into a normed space Y , with nite-dimensional range T (X) is compact. Such an operator is called a niterank one.

5. Linear combinations of compact operators are compact.

If (T n

) is a sequence of compact operators and T n -T → 0 as n → ∞, then T is compact.

Theorem 2. Let X be a Banach space, and let T be a bounded linear operator from X into X, with

T < 1.
Then the I -T has a bounded inverse on X that is given by the Neumann series

(I -T ) -1 = ∞ j=0 T j ,
and satises

(I -T ) -1 ≤ 1 1 -T .
Proof. See [START_REF] Kress | Linear Integral Equations[END_REF].

A Banach space X is called a Hilbert space if the norm on X is induced by an inner product, that is, by a Hermitian positive denite sesquilinear form ., . , as follows:

x := x, x 1/2 for x ∈ X. Let X be a Hilbert space and T ∈ BL(X). The adjoint of T is the unique operator T * ∈ BL(X) such that T ϕ, ψ = ϕ, T * ψ for all ϕ, ψ ∈ X.

We say that T is normal if

T * T = T T * , and that T is selfadjoint if T * = T .
The folowing results hold in a Hilbert space X:

1. Schwarz Inequality: For all x, y ∈ X,

| x, y | ≤ x y .
2. Let T ∈ BL(X), then

T = T * T 1/2 .
3. Let T ∈ BL(X), then

N (T ) = R(T * ) ⊥ and R(T ) = N (T * ) ⊥ .
4. Suppose that T ∈ BL(X) is compact. The linear equation

(T -zI)x = y,
has a unique solution x ∈ X in the case where the corresponding homogenous equation

(T -zI)x = 0,
has only the trivial solution.

Spectral Theory Framework

Let T ∈ BL(X), we recall the following denitions:

The resolvent of T is dened by

re (T ) := {z ∈ C : T -zI is invertible} .
For z ∈ re (T ), the resolvent operator of T at z is dened by

R(T, z) := (T -zI) -1 .
The spectrum of T is the set

sp (T ) := {z ∈ C : z / ∈ re (T )} .
If X is nite dimensional, then sp (T ) consists of the eigenvalues of T . The spectral radius of T is dened by ρ(T ) := sup {|λ| : λ ∈ sp (T )} .

We have:

1. If z ∈ re (T ), then R(T, z) ∈ BL(X).
2. If T * = T , then sp (T ) ⊆ R.

If

T * = -T , then sp (T ) ⊆ iR. 4. If T ∈ BL(X) is normal, then ρ(T ) = T .
5. Let T ∈ BL(X). If z ∈ C is given, then for every y ∈ X, the linear equation

(T -zI)x = y,
has a unique solution x ∈ X determined by y if and only if z ∈ re (T ).

Sequences of Operators

Let (T n ) n≥1 be a sequence of bounded linear operators on a Banach space X. Let T ∈ BL(X). Unless otherwise mentioned, the convergence is as n → ∞.

Let us consider three well-known modes of convergence. The pointwise convergence, denoted by T n p → T :

T n x -T x → 0 for every x ∈ X.

The norm convergence, denoted by T n n → T :

T n -T → 0.
The collectively compact convergence, denoted by T n cc → T :

T n p → T , and for some positive integer n 0 , the set

∪ n≥n 0 {(T n -T )x : x ∈ X, x ≤ 1} , is a relatively compact subset of X. If T n n → T or T n cc → T , then clearly T n p → T .
But the converse is not true. In [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF], the authors have studied a new mode of convergence called: the νconvergence, denoted by T n ν → T :

( T n ) is bounded , (T n -T )T → 0, (T n -T )T n → 0. Theorem 3. 1. If T n n → T , then T n ν → T . Conversely, if 0 / ∈ sp (T ) and T n ν → T , then T n n → T . 2. If T n cc → T and T is compact, then T n ν → T . 3. Let T n ν → T and U n ν → U . Then T n +U n ν → T +U if and only if (T n -T )U n → 0.
Proof. See [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF] Approximation Based on Projections Let (π n ) be a sequence of bounded projections dened on X, that is each π n is bounded linear operator and π 2 n = π n , hence π n ≥ 1. The following three conditions are equivalent one with each other if π n is a bounded projection dened on Hilbert space X:

π * n = π n , π n ≤ 1, N (π n ) = R(π n ) ⊥ .
If one of these conditions is satised, then π n is called an orthogonal projection. Dene

T P n := π n T, T S n := T π n , T G n := π n T π n , T K n := π n T + T π n -π n T π n .
The bounded operators T P n , T S n , T G n , T K n , are known as the projection approximation of T , the Sloan approximation of T , the Galerkin approximation of T , and the Kulkarni approximation of T , respectively. Proof. See [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF] Classication of Integral Equations An integral equation is an equation for an unknown fuction ϕ, where ϕ appears also under the integral sign. The classication of integral equations centres on many basic characteristics:

Limits of integration

• Both xed: Fredholm equation.

• One variable: Volterra equation. The Volterra integral equation of the second kind is represented by

Placement of the unknown function

ϕ(s) = s a k(s, t)ϕ(t)dt + g(s), a ≤ s ≤ b.

Nature of the known function

• Identically zero: Homogeneous.

• Not identically zero: Inhomogeneous.

For example, the equation

ϕ(s) = b a k(s, t)ϕ(t)dt, a ≤ s ≤ b,
is referred to as the homogeneous Fredholm integral equation of the second kind.

Linearity:

The equation is linear with respect to the unknown function or not.

• Linear integral equations.

• Nonlinear integral equations.

For example, the equation

ϕ(s) - s a k(s, t, ϕ(t))dt = g(s), a ≤ s ≤ b,
is a nonlinear Volterra integral equation of the second kind, where k is not a linear function of its third variable.

Depending on the kind of the integral

• Regular integral equations.

• Singular integral equations. A special and important example of a singular integral equation is the Cauchy or strongly singular integral equation. In this case the integral must be understood as the Cauchy principal value.

An example of a Cauchy singular kernel is

k(s, t) = 1 s -t , s = t.
Sometimes, integral equations occur with additional derivatives of the unknown function (under the integral or ouside). In this case, the problem is called an integrodierential equation. For example, the equation

ϕ (s) + b a ϕ(t) t -s dt = f (s), a ≤ s ≤ b,
is an integro-dierential equation with Cauchy kernel.

Chapter 1

Solving Cauchy Integral Equations of the First Kind by Iterations

Introduction

The successive approximation method is applied for the rst time by N.I. Ioakimidis (cf. [START_REF] Ioakimidis | The successive approximation method for the airfoil equation[END_REF]), to solve practical cases of a Cauchy singular integral equation: the airfoil one (cf. [START_REF] Tricomi | Integral Equations[END_REF]). In this chapter we study a more general case. We prove the convergence of the method in this general case. The proposed method has been tested for two kernels which are particularly important in practice.

Cauchy singular integral equations of the rst kind are often encountered in contact and fracture problems in solid mechanics. Sokhottski, Harnack, Mushkelishvili (cf. [START_REF] Mushkelishvili | Singular Integral Equations[END_REF]), Privalov, Magnaradze, Mikhlin, Khvedelidze, Vekua, Kupradze, Gakhov, Golberg, Elliott, Srivastav, Sesko, Erdogan, Junghannes, Linz, Ioakimidis and others have investigated such type of equation. The solutions of these problems may be obtained analytically using the theory developed by Mushkelishvili. Cauchy integral equations are usually dicult to solve analytically, and it is required to obtain approximate solutions. So many dierent methods have been developed to obtain an approximate solution of a Cauchy integral equation (cf. [START_REF] Baker | The Numerical Treatment Of Integral Equations[END_REF], [START_REF] Kress | Linear Integral Equations[END_REF], [START_REF] Polyanin | Handbook of iIntegral Equations[END_REF]). In 1988, Ioakimidis solved the airfoil equation with the successive approximation method for the rst time. In this chapter this method is applied for solving a Cauchy singular integral equations of the rst kind in the general case. The convergence of the method is investigated.

Development of the Method

We consider the Cauchy integral equation of the rst kind

1 π 1 -1 v(t)ϕ(t) t -x dt = g(x), -1 < x < 1, (1.1) 
where v and g are known functions and ϕ is the unknown. We shall assume that g has derivatives of all orders on [-1, 1], and that

1 π 1 -1 v(t) t -x dt = 1, -1 < x < 1,
(1.2)

1 π 1 -1 |v(t)|dt ≤ 1, -1 < x < 1, (1.3 
)

1 π 1 -1 1 v(t)(t -x) dt = 1, -1 < x < 1, (1.4 
)

1 π 1 -1 1 |v(t)| dt ≤ 1, -1 < x < 1.
We substract the singularity of equation (1.1) at t = x as follows:

1 π 1 -1 v(t)ϕ(x) t -x dt + 1 π 1 -1 v(t) [ϕ(t) -ϕ(x)] t -x dt = g(x), -1 < x < 1.
(1.5)

Using (1.2) we rewrite equation (1.5) as:

ϕ(x) + 1 π 1 -1 v(t) [ϕ(t) -ϕ(x)] t -x dt = g(x), -1 < x < 1.
We obtain

ϕ(x) = g(x) - 1 π 1 -1 v(t) [ϕ(t) -ϕ(x)] t -x dt, -1 < x < 1.
Now, we apply to this equation the successive approximation method:

ϕ n+1 (x) = g(x) - 1 π 1 -1 v(t) [ϕ n (t) -ϕ n (x)] t -x dt, -1 < x < 1.
Using (1.2), we have:

ϕ n+1 (x) = ϕ n (x) + g(x) - 1 π 1 -1 v(t)ϕ n (t) t -x dt, -1 < x < 1, (1.6) 
where

ϕ 0 (x) = 0, -1 < x < 1. Let R n (x) = ϕ(x) -ϕ n (x) (1.7)
From (1.6) we obtain, for -1 < x < 1,

ϕ n+1 (x) -ϕ(x) = ϕ n (x) -ϕ(x) + g(x) - 1 π 1 -1 v(t) [ϕ n (t) -ϕ(t)] t -x dt - 1 π 1 -1 v(t)ϕ(t) t -x dt.
From (1.7) and (1.1),

-R n+1 (x) = -R n (x) + 1 π 1 -1 v(t)R n (t) t -x dt, -1 < x < 1. Then R n+1 (x) = R n (x) - 1 π 1 -1 v(t)R n (t) t -x dt, -1 < x < 1.
(1.8)

Now, using (1.2), equation (1.8) becomes:

R n+1 (x) = - 1 π 1 -1 v(t) [R n (t) -R n (x)] t -x dt, -1 < x < 1,
and hence

R n+1 (x) = - 1 π 1 -1 v(t) R n (t) -R n (x) -(t -x)R n (x) (t -x) 2 dt, -1 < x < 1,
But following Taylor's theorem with integral remainder,

R n (t) -R n (x) -(t -x)R n (x) = 1 0 (1 -s)R n (x + s(t -x))(t -x) 2 ds.
Hence,

R n+1 ≤ 1 2 R n .
Recursively,

R (j) n+1 ≤ 1 j + 1 R (j+1) n , j ∈ N. Thus R (j) n-j+1 ≤ 1 j + 1 R (j+1) n-j , j ∈ N.

Multiplying memberwise for

j ∈ [[0, n ]], we get R n+1 ≤ 1 (n + 1)! R (n+1) 0 , but from (1.7), R (n+1) 0 = ϕ (n+1) . So R n ≤ 1 n! ϕ (n) , n ∈ N.
From (1.1) and by the Sohngen inversion formula,

ϕ(x) = - 1 π 1 -1 g(t) v(t) (t -x) dt, -1 < x < 1.
(1.9)

Equation (1.9) takes the form

ϕ(x) = -g(x) - 1 π 1 -1 g(t) -g(x) v(t) (t -x) dt, -1 < x < 1.
By standard calculus,

ϕ (n) ≤ g (n) + 1 n + 1 g (n+1) .
Using (1.4),

R n ≤ 1 n! g (n) + 1 (n + 1)! g (n+1) , n ∈ N.
Hence, if

lim n→∞ 1 n! g (n) + 1 (n + 1)! g (n+1) = 0,
then the successive approximation method converges.

Numerical Experiments

The proposed method has been tested for the two following kernels which are particularly important in practice:

1.3.1 Case A: Let v(t) = 1 + t 1 -t .
All the hypotheses on v are satised. From (1.6) we obtain

ϕ n+1 (x) = ϕ n (x) + g(x) - 1 π 1 -1 ϕ n (t) t -x 1 + t 1 -t dt, -1 < x < 1.
(1.10) But (cf. [START_REF] Kyhte | Computational Methods For Linear Integral Equations[END_REF]),

1 π 1 -1 ϕ(t) t -x i 1 + t 1 -t dt = m j=1 2 (1 + t j ) 2m + 1 ϕ(t j ) t j -x i ,
where the points t j and x i are given by

t j = cos 2j -1 2m + 1 π , j ∈ [[1, m ]], x i = cos 2iπ 2m + 1 , i ∈ [[1, m ]].
From (1.10),

ϕ n+1 (x i ) = ϕ n (x i ) + g(x i ) - m j=1 2 (1 + t j ) 2m + 1 ϕ n (t j ) t j -x i , i ∈ [[1, m ]], ϕ n+1 (t k ) = ϕ n (t k ) + g(t k ) - m p=1 2 (1 + x p ) 2m + 1 ϕ n (x p ) x p -t k , k ∈ [[1, m ]]. 1.3.2 Case B:
Let

v(t) = 1 -t 1 + t .
All the hypotheses on v are satised. This case has been investigated by Ioakimidis in 1988. From (1.6),

ϕ n+1 (x) = ϕ n (x) -g(x) + 1 π 1 -1 ϕ n (t) t -x 1 -t 1 + t dt, -1 < x < 1.
(1.11)

But 1 π 1 -1 ϕ(t) t -x i 1 -t 1 + t dt = n j=1 2 (1 -t j ) 2m + 1 ϕ(t j ) t j -x i ,
where the points t j and x i are given by

t j = cos 2j 2m + 1 π , j ∈ [[1, m ]], x i = cos 2i -1 2m + 1 π , i ∈ [[1, m ]].
From (1.11),

ϕ n+1 (x i ) = ϕ n (x i ) -g(x i ) + m j=1 2 (1 -t j ) 2m + 1 ϕ n (t j ) t j -x i , i ∈ [[1, m ]], ϕ n+1 (t k ) = ϕ n (t k ) -g(t k ) + m p=1 2 (1 -x p ) 2m + 1 ϕ n (x p ) x p -t k , k ∈ [[1, m ]].
Chapter 2

Fourier Expansion for Cauchy Integral Equations of the Second Kind

Introduction

In the rst section of this chapter we present a collocation method based on trigonometric polynomials combined with a regularization procedure, for solving Cauchy integral equations of the second kind, in L 2 ([0, 2π] , C). A system of linear equations is involved. We prove the existence of the solution for a double projection scheme, and we perform the error analysis. Some numerical examples illustrate the theoretical results. In second section we present a direct method for solving Cauchy integral equation on the real line.

Cauchy integral equations appear in many applications in scientic elds such as unsteady aerodynamics and aero elastic phenomena, visco elasticity, uid dynamics, electrodynamics. There is a theoretical study on some kind of Cauchy integral equations in [START_REF] Mushkelishvili | Singular Integral Equations[END_REF]. Many Cauchy integral equations are dicult to solve analytically, and it is required to obtain approximate solutions. In ( [START_REF] Sengupta | A Note On a Reduction of Cauchy Singular Integral Equation to Fredholm Equation in L p[END_REF]), the author has studied a reduction of some class of singular integral equations to regular Fredholm integral equations in L p ([-1, 1] , C). The purpose of this chapter is rstly to approximate the solution of a Cauchy integral equation of the second kind in L 2 ([0, 2π] , C), using collocation, trigonometric polynomials and a regularization procedure, secondly to solve directly Cauchy integral equation on the real line using Fourier expansion in Sobolev spaces.

Collocation Method for Cauchy Integral Equations Using Trigonometric Polynomials in

L 2 ([0, 2π] , C) 2.2.

Description of The Method

For each nonzero real constant µ, and each real function f , consider the problem of nding a function ϕ, such that

µϕ(s) - 2π 0 ϕ(t) t -s dt = f (s), 0 ≤ s ≤ 2π, (2.1) 
where the integral is understood to be the Cauchy principal value:

2π 0 ϕ(t) t -s dt = lim →0 s- 0 ϕ(t) t -s dt + 2π s+ ϕ(t) t -s dt .
Equation (2.1) is a Cauchy integral equation of the second kind. Letting

T ϕ(s) := 2π 0 ϕ(t) t -s dt, 0 ≤ s ≤ 2π, equation (2.1) reads as µϕ -T ϕ = f. Theorem 5. For each f ∈ L 2 ([0, 2π] , C), equation (2.1) has a unique solution ϕ ∈ L 2 ([0, 2π] , C
), and the Cauchy integral operator T is bounded and skew-Hermitian from L 2 ([0, 2π] , C) into itself.

Proof. See [START_REF] Porter | Integral Equations: A Practical Treatment, from Spectral Theory to Applications[END_REF].

Let X := L 2 ([0, 2π] , C), and X n denote the space spanned by the rst 2n + 1 of trigonometric polynomials. Dene σ n to be the orthogonal projection from X onto X n . Hence, for ψ ∈ X,

lim n→∞ σ n ψ -ψ 2 = 0. Let be 0 ≤ s n,1 < s n,2 < . . . < s n,2n+1 ≤ 2π. For each i ∈ [[1, 2n + 1 ]] consider the hat function e n,i in C 0 ([0, 2π] , C), such that, for each j ∈ [[1, 2n + 1 ]], e n,i (s n,j ) = δ i,j .
Let Y n be the space spanned by these hat functions, which has dimension 2n + 1.

Dene the interpolatory projection operator

π n from C 0 ([0, 2π] , C) onto Y n : π n h(s) := 2n+1 j=1 h(s n,j )e n,j (s), h ∈ C 0 ([0, 2π] , C).
We recall that (see [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF][START_REF] Atkinson | The Numerical Solution of Integral Equations of the Second Kind[END_REF]):

lim n→∞ π n h -h ∞ = 0.
Dene the regularized operator T for > 0:

T ϕ(s) := 2π 0 (t -s)ϕ(t) (t -s) 2 + 2 dt, 0 ≤ s ≤ 2π,
which is compact and skew-Hermitian from L 2 ([0, 2π] , C) into itself. Let ϕ be the solution of the regularized integral equation

(µI -T )ϕ = f,
and consider the approximate operator

T ,n := π n T σ n .
Theorem 6. For n large enough, the operator µI -T ,n is invertible, the constant

β := sup n (µI -T ,n ) -1
is nite, and the solution ψ ,n of the equation

(µI -T ,n )ψ ,n = f, converges to the solution ϕ of equation (2.1) if, rst, n → ∞ and then → 0.
Proof. Since T is compact, the theory developped in [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF][START_REF] Atkinson | The Numerical Solution of Integral Equations of the Second Kind[END_REF] shows that the inverse operator (I -T ,n ) -1 exists and is uniformly bounded for n large enough. Since

ψ ,n -ϕ = [(µI -T ,n ) -1 -(µI -T ) -1 ]f = (µI -T ,n ) -1 [T -T ,n ](µI -T ) -1 f = (µI -T ,n ) -1 [T -T ,n ]ϕ , we get ψ ,n -ϕ 2 ≤ β (T -T ,n )ϕ 2 → 0 as n → ∞. Since T is skew-Hermitian, (µI -T ) -1 ≤ 1 |µ| ,
independently of . Hence, the constant

γ := sup (µI -T ) -1
is nite and from

ϕ -ϕ = (µI -T ) -1 [T -T ]ϕ we get ϕ -ϕ 2 ≤ γ [T -T ]ϕ 2 → 0 as → 0. Hence ψ ,n -ϕ 2 ≤ ϕ -ϕ 2 + ψ ,n -ϕ 2 → 0, if, rst, n → ∞, and then → 0.
The collocation method leads to the following linear system where Si is the sine integral function, and Ci is the cosine integral function. The exact solution of equation (2.1) is then

(µI -T σ n )ψ ,n (s n,i ) = f (s n,i ), i ∈ [[1, 2n + 1 ]].
ϕ(s) := s sin s, 0 ≤ s ≤ 2π.
For the regularization process, take = 10 -4 . For the numerical approximation take n = 9, n = 23 and n = 62. The results are exhibited in gures 2.1, 2.2 and 2.3 respectively. 

Direct Solution of Cauchy Integral Equation on the Real Line

We consider the Cauchy integral equation of the second kind on the real line

ϕ(x) + 1 π +∞ -∞ ϕ(t) t -x dt = g(x), x ∈ R. (2.2) 
We assume that g is 2π-periodic. Let

φ m (t) = e imt , m ∈ Z.
Theorem 7. For m ∈ Z, we have

+∞ -∞ φ m (t) t -x dt = -iπφ m (x), x ∈ R.
Proof. We have

+∞ -∞ φ m (t) t -x dt = m +∞ -∞ φ m (t) mt -mx dt, hence +∞ -∞ φ m (t) t -x dt = +∞ -∞
e iy y -s dy.

It is well known (cf. [START_REF]Linear Integral Equations[END_REF]) that

+∞ -∞ e iy y -s dy = -iπe is , so that +∞ -∞ φ m (t) t -x dt = -iπe imx = -iπφ m (x). Let ϕ(x) = +∞ -∞ a m φ m (x). Soient p > 0 et H p ([0, 2π] , C) l'espace de Sobolev classique, for 0 ≤ p < ∞, the Sobolev space of all functions ϕ ∈ L 2 ([0, 2π] , C) such that +∞ -∞ (1 + m 2 ) p |a m | 2 < ∞.
We introduce the following norm in H p ([0, 2π] , C):

ϕ p = +∞ -∞ (1 + m 2 ) p |a m | 2 1 2
.

Let

Aϕ(x) = 1 π +∞ -∞ ϕ(t) t -x dt. Theorem 8. If p > q the operator A is bounded from H p ([0, 2π] , C) into H q ([0, 2π] , C). Proof. If ϕ(x) = +∞ -∞ a m φ m (x),
we get

Aϕ(x) = +∞ -∞ a m π +∞ -∞ φ m (t) t -x dt. But Aφ m (x) = -iφ m (x), so that Aϕ q = +∞ -∞ (1 + m 2 ) q |a m | 2 1 2
.

Since

(1 + m 2 ) q ≤ (1 + m 2 ) p , we obtain +∞ -∞ (1 + m 2 ) q |a m | 2 ≤ +∞ -∞ (1 + m 2 ) p |a m | 2 .
Thus

Aϕ q ≤ ϕ p . Theorem 9. If p > q then H p ([0, 2π] , C) is dense in H q ([0, 2π] , C), with compact imbedding from H p ([0, 2π] , C) into H q ([0, 2π] , C).
Proof. (see [START_REF] Kress | Linear Integral Equations[END_REF]).

We rewrite equation (2.2) as:

+∞ -∞ a m φ m (x) + 1 π +∞ -∞ φ m (t) t -x = g(x). Hence +∞ -∞ a m {φ m (x) -iφ m (x)} = g(x), that is +∞ -∞ a m (1 -i) φ m (x) = g(x).
On the space L 2 ([0, 2π] , C), the inner product

ϕ, ψ = 2π 0 ϕ(t)ψ(t)dt.
{φ m } m∈Z is an orthogonal system, so

+∞ -∞ a m (1 -i) φ m , φ k = g, φ k , k ∈ Z. But φ m , φ k = 2π m = k 0 otherwise. Hence a k (1 -i) φ k , φ k = g, φ k . Thus a k = 1 2π (1 -i) g, φ k .
Chapter 3

Two Projection Methods for Skew-Hermitian Operator Equations

Introduction and Mathematical Background

In this chapter we present a projection method for solving an operator equations with bounded operator in Hilbert spaces. We prove the existence of the solution for the approximate equation, and we perform the error analysis. We apply the method for solving the Cauchy integral equations in L 2 ([0, 1], C) for two cases: Galerkin projections and Kulkarni projections respectivly, using a sequence of orthogonal nite rank projections. Numerical examples illustrate the theoretical results. Since 1980, many papers have been dedicated to the numerical solution of operator equations in the compact case, using Galerkin and other projection methods. In [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF], the authors have studied some nite rank approximations using bounded nite rank projections. In [START_REF] Ahues | L p Error estimates for projection approximations[END_REF], the authors have used a projection approximation for solving weakly singular Fredholm integral equations of the second kind. In [START_REF] Kulkarni | A Superconvergence Result For Solutions of Compact Operator Equations[END_REF], the author has proposed a more accurate approximation for compact operator equations. The goal of this chapter is to apply two projection methods to an integral equation with singular kernel. The abstract framework is that of bounded but noncompact skew-Hermitian operators in a Hilbert space. The application will deal with a Cauchy integral equation in L 2 ([0, 1], C) with two discretizations: the classical Galerkin and the new Kulkarni approximations built upon a sequence of orthogonal nite rank sequence of projections.

Let H be a Hilbert space, and T a bounded operator from H into itself. For a given function f ∈ H, we consider the problem of nding a function ϕ ∈ H such that

ϕ -T ϕ = f. (3.1)
Let T * be the adjoint of T . We assume that equation (3.1) has a unique solution ϕ ∈ H, and that T is skew-Hermitian: is T * = -T . Let (T n ) n≥1 be a sequence of skew-Hermitian operators from H into itself.

Theorem 10. For all n, the operator I -T n is invertible, and

(I -T n ) -1 ≤ 1. Proof. Since (iT n ) * = -iT * n = iT n ,
the operator iT n is self-adjoint, and hence sp (T n ) ⊆ iR, where sp denotes the spectrum. This shows that 1 / ∈ sp (T n ) and hence the operator I -T n is invertible. On the other hand, for all x ∈ H,

Re (I -T n )x, x = 1 2 (I -T n )x, x + (I -T n )x, x = x, x , hence x 2 ≤ |Re (I -T n )x, x | ≤ | (I -T n )x, x | ≤ (I -T n )x x , so (I -T n ) -1 ≤ 1.

Cauchy Integral Equations of the Second Kind

Set H := L 2 ([0, 1], C), and consider the following Cauchy integral equation of the second kind

ϕ(s) - 1 0 ϕ(t) t -s dt = f (s), 0 ≤ s ≤ 1, (3.2) 
where f is a known function. The above integral is understood to be the Cauchy principal value:

1 0 ϕ(t) t -s dt = lim →0 s- 0 ϕ(t) t -s dt + 1 s+ ϕ(t) t -s dt .
Letting

T ϕ(s) := 1 0 ϕ(t) t -s dt, 0 ≤ s ≤ 1, equation (3.
2) is equivalent to the equation (3.1). We recall that for each f ∈ H, equation (3.2) has a unique solution ϕ ∈ H, and the Cauchy integral operator T is bounded from H into itself, further T * = -T (see [START_REF] Porter | Integral Equations: A Practical Treatment, from Spectral Theory to Applications[END_REF]). Let (s n,j ) n j=0 be a grid on

[0, 1] such that 0 ≤ s n,0 < s n,1 < . . . < s n,n ≤ 1. Set h n,i := s n,i -s n,i-1 , i ∈ [[1, n ]], h n := (h n,1 , h n,2 , . . . , h n,n ).
Let us consider (Π n ) n≥1 , a sequence of bounded projections each one of nite rank, such that

Π n x := n j=1
x, e n,j e n,j , where e n,j := φ n,j h n,j , φ n,j (s) := 1 for s ∈]s n,j-1 , s n,j [, 0 otherwise.

Let J n := {s n,j , j ∈ [[0, n ]]} .
Dene the modulus of continuity of the function ψ ∈ H relative to h n as follows:

ω 2 (ψ, J n ) := sup 0≤δ≤hn 1 0 |ψ(τ + δ) -ψ(τ )| 2 dτ 1 2
.

All functions are extended by 0 outside [0, 1]. We recall that

ω 2 (ψ, J n ) → 0 as n → ∞ for all ψ ∈ H,
and that, for all ψ ∈ H (cf. [START_REF] Amosov | Superconvergence of some projection approximations for weakly singular integral equations using general grids[END_REF]),

(I -Π n )ψ 2 ≤ ω 2 (ψ, J n ).
(3.3)

Galerkin Approximation

In the past two decades, several results have been established for solving compact operator equations using the Galerkin method. In this section we use the Galerkin method for approximate the solution of our bounded equation. Since

Π * n = Π n we get T * n = -T n , with T n = T G n := Π n T Π n , hence the following Galerkin approximate equation ϕ G n -T n ϕ G n = Π n f, (3.4) 
has a unique solution ϕ G n , given by

ϕ G n = n j=1
x n,j e n,j

for some scalars x n,j . Equation (3.4) reads as n j=1

x n,j [e n,j -Π n T e n,j ] = Π n f, so that n j=1

x n,j e n,j -

n i=1 T e n,j , e n,i e n,i = n i=1 f, e n,i e n,i ,
that is to say, the coecients x n,j are obtained by solving the following linear system

(I -A n )x n = b n ,
where

A n (k, j) := 1 h n,j h n,k s n,k s n,k-1 n,s j s n,j-1 dt t -s ds, b n (k) := 1 h n,k s k s k-1 f (s)ds.
Theorem 11. The following estimate holds:

ϕ G n -ϕ 2 ≤ ω 2 (f, J n ) + ω 2 (T ϕ, J n ) + πω 2 (ϕ, J n ).
Proof. In fact

ϕ G n -ϕ = (I -T G n ) -1 Π n f -(I -T ) -1 f = (I -T G n ) -1 Π n f -(I -T G n ) -1 f + (I -T G n ) -1 f -(I -T ) -1 f = (I -T G n ) -1 (Π n -I)f + (I -T G n ) -1 (I -T ) -(I -T G n ) (I -T ) -1 f = (I -T G n ) -1 (Π n -I)f + (T G n -T )ϕ . It is proved in Theorem 1 that (I -T G n ) -1 ≤ 1. Since (T G n -T )ϕ = (Π n -I)T ϕ + Π n T (Π n -I)ϕ,
and since Π n = 1 and T ≤ π (cf. [START_REF] Porter | Integral Equations: A Practical Treatment, from Spectral Theory to Applications[END_REF]), then using (3.3), we get the desired result.

Kulkarni Approximation

In [START_REF] Kulkarni | A Superconvergence Result For Solutions of Compact Operator Equations[END_REF] the author has proposed to approximate a linear operator T by the following nite rank operator

T K n := Π n T + T Π n -Π n T Π n .
Theory has been developped for the compact case. In this section, we propose to approximate our noncompact bounded operator T by this nite rank operator. Let ϕ K n be the approximate solution of the equation (3.2) using T K n . As in [START_REF] Kulkarni | A Superconvergence Result For Solutions of Compact Operator Equations[END_REF], let

u n := Π n ϕ K n .
Since Π n u n = u n , there exist scalars c n,j such that

u n = n j=1
c n,j e n,j .

Following [START_REF] Kulkarni | A Superconvergence Result For Solutions of Compact Operator Equations[END_REF], Performing the inner product with e n,i , we obtain the linear system

u n -[Π n T Π n + Π n T (I -Π n )T Π n ] u n = Π n f + Π n T (I -Π n )f, so that n j=1 c n,j [e n,j -(Π n T e n,j + Π n T (I -Π n )T e n,j )] = Π n f + Π n T (I -Π n )f,
c n,i - n j=1 c n,j [ T e n,j , e n,i + T (I -Π n )T e n,j , e n,i ] = f, e n,i + T (I -Π n )f, e n,i , i ∈ [[1, n ]],
which becomes

c n,i - n j=1
T e n,j , e n,i + T 2 e n,j , e n,i - The following computations are needed:

T e n,j , e n,i = 1 h n,j h n,i s i s i-1 s j s j-1 dt t -s ds, T 2 e n,j , e n,i = 1 h n,j h n,i s i s i-1 1 0 1 t -s s j s j-1 dτ τ -t dtds, T f, e n,i = 1 h n,i s i s i-1 1 0 f (t) t -s dtds, f, e n,i = 1 h n,i s i s i-1
f (s)ds.

Once the system (3.5) is solved, the solution ϕ K n is built through

ϕ K n = u n + (I -Π n )T u n + (I -Π n )f. Hence ϕ K n (s) = u n (s)+ 1 0 u n (t) t -s dt- n k=1 φ n,k (s) h n,k s k s k-1 1 0 u n (τ ) τ -t dτ dt+f (s)- n k=1 φ n,k (s) h n,k s k s k-1 f (t)dt.
Theorem 12. The following estimate holds:

ϕ K n -ϕ 2 ≤ 2ω 2 (ϕ, J n ) (I -Π n )T 2 (I -Π n ) ϕ 2 1 2 .
Proof. On one hand

ϕ K n -ϕ = (f + T K n ϕ K n ) -(f + T ϕ) = T K n (ϕ K n -ϕ) + (T K n -T )ϕ.
Thus

(I -T K n )(ϕ K n -ϕ) = (T K n -T )ϕ, so that ϕ K n -ϕ = (I -T K n ) -1 (T K n -T )ϕ,
which lends to

ϕ K n -ϕ 2 ≤ (I -T K n ) -1 (T K n -T )ϕ 2 .
On the other hand,

T K n -T ϕ = [Π n T (I -Π n ) -T (I -Π n )] ϕ = -(I -Π n ) T (I -Π n ) ϕ. Since (I -T K n ) -1 ≤ 1, ϕ K n -ϕ 2 ≤ (I -Π n ) T (I -Π n ) ϕ 2 ≤ ω 2 (T (I -Π n ) ϕ, J n ).
But

ω 4 2 (T (I -π n ) ϕ, J n ) = sup 0≤δ≤hn T (I -π n ) (ϕ(. + δ) -ϕ), T (I -π n ) (ϕ(. + δ) -ϕ) 2 = sup 0≤δ≤hn ϕ(. + δ) -ϕ, -(I -Π n ) T 2 (I -Π n ) [ϕ(. + δ) -ϕ] 2 ≤ sup 0≤δ≤hn 1 0 |ϕ(τ + δ) -ϕ(τ )| 2 dτ × 1 0 (I -Π n )T 2 (I -Π n ) [ϕ(τ + δ) -ϕ(τ )] 2 dτ ≤ 4ω 2 2 (ϕ, J n ) (I -Π n )T 2 (I -Π n ) ϕ 2 2 ,
and we get the desired result.

Numerical Examples

Example 3.1

We consider the following Cauchy integral equation

ϕ(s) - 1 0 ϕ(t) t -s dt = s 2 -2s + 1 2 + (s 2 -s) ln s 1 -s , 0 < s < 1.
The right hand side has been built so that the exact solution to this equation be

ϕ(s) = s 2 -s.
We present in table (3.1) the corresponding absolute errors for this example. We consider the following Cauchy integral equation

ϕ(s) - 1 0 ϕ(t) t -s dt = 4 + ln s + 2 ln 2 + πs -4 ln (1 -s) 4 (s 2 + 1) , 0 < s < 1.
The right hand side has been built so that the exact solution to this equation be

ϕ(s) = 1 s 2 + 1 .
We present in table (3.2) the corresponding absolute errors for this example. 

ϕ -ϕ G n 2 ϕ -ϕ K n 2 3 

Conclusions

This work extends the application of projection methods to singular integral equations of Cauchy type. As it has already established for suciently dierentiable kernels (see [START_REF] Kulkarni | A Superconvergence Result For Solutions of Compact Operator Equations[END_REF]), the Kulkarni approximation gives more accurate results than the classical Galerkin approximation. In exchange, from a computational point of view, the complexity of Kulkarni approximation doubles Galerkin's one since one more evaluation of the integral operator is needed to build each coecient of the matrix associated to the auxiliary linear system.

Chapter 4

Collocation Method for Solving Integro-Dierential Equations with Cauchy Kernel

Introduction

This chapter investigates the numerical solution for a class of integro-dierential equations with Cauchy kernel by using airfoil polynomials of the rst kind. According to this method, we obtain a system of linear algebraic equations. We give some sucient conditions for the convergence of this method. In the end, we investigate the computational performance of our approach through some numerical examples. The last two decades have been witnessing a strong interest among physicists, engineers and mathematicians for the theory and numerical modeling of integral and integro-dierential equations. These equations are solved analytically see, for example the excellent book by Muskhelishvili (cf. [START_REF] Mushkelishvili | Singular Integral Equations[END_REF]), and the references therein. But only special cases of these equations are solved analytically, so we should solve other classes of these equations by using numerical methods, several methods have been recently developed for the numerical solution of the integro-dierential equations. Specically, in [START_REF] Badr | Integro-dierential equation with Cauchy kernel[END_REF], Badr presented a Galerkin approach for solving the integrodierential equation of the second kind with Cauchy kernel by using the orthogonal basis of Legendre polynomials. In [START_REF] Gori | Projector-splines in the numerical Solution of Integro-Dierential Equations[END_REF], the authors have considered a method based on projector-splines for the numerical solution of integro-dierential equation. In [START_REF] Maleknejad | Numerical solution of the Fredholm singular integro-dierential equation with Cauchy kernel by using Taylor-series expansion and Galerkin method[END_REF], the authors presented a Taylor-series expansion method for a class of Fredholm singular integro-dierential equation with Cauchy kernel, and used the truncated Taylor-series polynomial of the unknown function, and transform the integro-dierential equation into a linear ordinary dierential equation of order n with variable coecients. In [START_REF] Bhattacharya | Mandal Numerical solution of a singular integrodierential equation[END_REF], we nd a method based on polynomial approximation using Bernstein polynomial basis, to obtain approximate numerical solution of a singular integro-dierential equation with Cauchy kernel, and compared the numerical results obtained with those obtained by various Galerkin methods. A great deal of eort has been made in the development of numerical techniques for the approximate solution of Cauchy integral equations, (cf. [START_REF] Baker | The Numerical Treatment Of Integral Equations[END_REF], [START_REF] Chakrabarti | Approximate solutions of Fredholm integral equations of the second kind[END_REF], [START_REF] Elliott | The classical collocation method for singular integral equations having a Cauchy kernel[END_REF], [START_REF] Eshkuvatov | Approximate solution of singular integral equations of the rst kind with Cauchy kernel[END_REF], [START_REF] Golberg | Discrete projection methods for Cauchy singular integral equations with constant coecients[END_REF], [START_REF] Golberg | Numerical Solution of Integral Equations[END_REF], [START_REF] Golberg | The convergence of a collocation method for a class of Cauchy singular integral equations[END_REF], [START_REF] Golberg | The convergence of several algorithms for solving integral equations with fFinite part integrals[END_REF], [START_REF] Kress | Linear Integral Equations[END_REF], [START_REF] Kyhte | Computational Methods For Linear Integral Equations[END_REF], [START_REF] Mandal | Approximate solution of a class of singular integral equations of second kind[END_REF], [START_REF] Polyanin | Handbook of iIntegral Equations[END_REF], [START_REF] Tricomi | Integral Equations[END_REF]). Several methods use polynomial techniques, (cf. [START_REF] Atkinson | The Numerical Solution of Integral Equations of the Second Kind[END_REF], [START_REF] Elliott | The classical collocation method for singular integral equations having a Cauchy kernel[END_REF], [START_REF] Golberg | Discrete projection methods for Cauchy singular integral equations with constant coecients[END_REF], [START_REF] Golberg | The convergence of a collocation method for a class of Cauchy singular integral equations[END_REF], [START_REF] Golberg | The discrete Sloan iterate for the generalized airfoil equation[END_REF], [START_REF] Piessens | Computing integral transforms and solving integral equations using Chebyshev polynomial approximations[END_REF], [START_REF] Piessens | On the computation of Fourier transforms of singular functions[END_REF]). So dierent kinds of polynomials play an essential role in approximation theory, and have many interesting applications, particularly they may be applied to solve integro-dierential equations.

In this chapter, we will propose to employ a method based on the airfoil polynomials of the rst kind, for solving the Fredholm singular integro-dierential equation with Cauchy kernel.

The chapter is organized as follows: In the next section we will discuss airfoil polynomials and their key properties. In section 2 we give the description and development of the method, and we discuss estimates for the rate of convergence of the method. In section 3 for showing eciency of this method, we use numerical examples. Section 4 is devoted to the conclusion of this chapter.

We recall that the so-called airfoil polynomials are used as expansion functions to compute the pressure on an airfoil in steady or unsteady subsonic ow.

The airfoil polynomail t n of the rst kind is dened by

t n (x) = cos[(n + 1 2 ) arccos x] cos( 1 2 arccos x)
.

The airfoil polynomail u n of the second kind is dened by

u n (x) = sin[(n + 1 2 ) arccos x] sin( 1 2 arccos x)
.

The Approximate Solution

Given a function f and a constant λ, consider the problem of nding a function ϕ such that

ϕ (x) + λ π 1 -1 ϕ(t) t -x dt = f (x), -1 < x < 1.
(4.1)

The above equation called Fredholm integro-dierential equation with Cauchy kernel. We will propose an approximate solution for equation (4.1). For this purpose, we will introduce an approximation using the airfoil polynomials of the rst kind t n as

ϕ n (x) = ω(x) n i=0 a i t i (x),
where

ω(x) = 1 + x 1 -x .
The formula (cf. [START_REF] Desmarais | Tables of Properties of Airfoil Polynomials[END_REF])

(1 + x)t i (x) = (i + 1 2 )u i (x) - 1 2 t i (x), gives ϕ n (x) = n i=0 a i {ω (x)t i (x) + ω(x) 1 + x [(i + 1 2 )u i (x) - 1 2 t i (x)]}. (4.2)
On the other hand (cf. [START_REF] Desmarais | Tables of Properties of Airfoil Polynomials[END_REF]),

1 π 1 -1 1 + t 1 -t t i (t) t -x dt = u i (x). (4.3)
Consider the set of n + 1 collocation points x j , which are the zeros of u n+1 :

x j = -cos 2j -1 2n + 3 π, j ∈ [[0, n ]].
Let us introduce the following notations

(Aϕ)(x) := ϕ (x), -1 < x < 1. (T ϕ)(x) := λ π 1 -1 ϕ(t) t -x dt, -1 < x < 1.
Equation (4.1) can be written in the following operator form

Aϕ + T ϕ = f.
Denote by C 0,λ ([-1, 1], R) the space of all functions ϕ dened on [-1, 1] satisfying the following Hölder condition: ∃M ≥ 0 such that

∀x 1 , x 2 ∈ [-1, 1] , |ϕ(x 1 ) -ϕ(x 2 )| ≤ M |x 1 -x 2 | λ ,
where 0 < λ ≤ 1. Let

H := ϕ ∈ L 2 ([-1, 1], R) : ϕ ∈ L 2 ([-1, 1], R), ϕ(-1) = 0 .
The operator T is bounded from L 2 ([-1, 1], R) into itself and also from C 0,λ ([-1, 1], R) into itself (cf. [START_REF] Mushkelishvili | Singular Integral Equations[END_REF]). We recall that

(A -1 y)(s) = s -1 y(t)dt,
and that A -1 : L 2 [-1, 1] → H is compact (cf. [START_REF] Brezis | Analyse Fonctionnelle[END_REF]). Consider hat functions e 0 , e 1 , e 2 , . . . , e n in C 0 ([-1, 1], R) such that

e j (x k ) = δ j,k .
Dene the projection operators P n from C 0 ([-1, 1], R) into the space of continuous functions by

P n g(x) := n j=0 g(x j )e j (x).
Let us dene the operators

D n := A -1 P n T, D := A -1 T.
Consider the following approximate equation in the unknown ϕ n :

ϕ n + D n ϕ n = A -1 f. Theorem 13. Assume that f ∈ C 0 ([-1, 1], R).
There exists a positive constant M , such that

ϕ n -ϕ ∞ ≤ M D n ϕ -Dϕ ∞ .
for n large enough.

Proof. It is well-known that

P n g -g ∞ → 0, for all g ∈ C 0 ([-1, 1], R). Since A -1
is compact, it is clear that D is compact. In (cf. [START_REF] Atkinson | The Numerical Solution of Integral Equations of the Second Kind[END_REF] and [START_REF] Kress | Linear Integral Equations[END_REF]) it is shown that the inverse operator (I + D n ) -1 exists and is uniformly bounded for n large enough. On the other hand,

ϕ n -ϕ = A -1 f -D n ϕ n -A -1 f -Dϕ , hence ϕ n -ϕ = [Dϕ -D n ϕ n ] .
This leads to

ϕ n -ϕ = [(D -D n )ϕ -D n (ϕ n -ϕ)] .
Thus

(I + D n )(ϕ n -ϕ) = (D -D n )ϕ.
Consequently

ϕ n -ϕ = (I + D n ) -1 [(D -D n )ϕ] , ϕ n -ϕ ∞ ≤ M (D -D n )ϕ ∞ ,
where

M := sup n≥N (I + D n ) -1 ,
which is nite.

Finally, the following system follows:

Aϕ n (x j ) + T ϕ n (x j ) = f (x j ), j ∈ [[0, n ]].
By (4.2) and (4.3),

n i=0 a i {ω (x j )t i (x j ) + ω(x j ) 1 + x j [(i + 1 2 )u i (x j ) - 1 2 t i (x j )] + λu i (x j )} = f (x j ), j ∈ [[0, n ]].

Numerical Results and Discussion

In order to illustrate the performance of our method, we report in this section, numerical results of some examples, selected integro-dierential equations, solved by the method of this study. In these numerical computations each table shows the numerical error of our approximate solution.

x n = 5 n = 20 n = 116 -0.8 0.1640e-1 0.183e-2 0.16e-3 -0.6 0.1855e-1 0.185e-2 0.15e-3 -0.4 0.2204e-1 0.181e-2 0.2e-4 -0.2 0.2119e-1 0.184e-2 0.12e-3 0.0 0.189e-1 0.19e-2 0.2e-4 0.2 0.1856e-1 0.171e-2 0.3e-4 0.4 0.1992e-1 0.179e-2 0.8e-4 0.6 0.2044e-1 0.174e-2 0.8e-4 0.8 0.2148e-1 0.177e-2 0.9e-4 -0.8 0.737e-2 0.21001e-3 0.40012e-4 -0.6 0.927e-2 0.23e-3 0.80002e-4 -0.4 0.1439e-1 0.17e-3 0.60007e-4 -0.2 0.1171e-1 0.23001e-3 0.90003e-4 0.0 0.59827e-2 0.17379e-3 0.45706e-4 0.2 0.52100e-2 0.14001e-3 0.60001e-4 0.4 0.1147e-1 0.21004e-3 0.60024e-4 0.6 0.1616e-1 0.26002e-3 0.6e-4 0.8 0.282e-2 0.22001e-3 0.30065e-4 Let us rst consider the following integro-dierential equation

ϕ (x) + 1 π 5 1 -1 ϕ(t) t -x dt = 1 π 4 x 2 + 2( 1 π 5 + 1)x - 1 π 4
The exact solution is In this example we consider the following integro-dierential equation

ϕ(x) = x 2 -1.
ϕ (x) + 1 -1 ϕ(t) t -x dt = πx 3 -5x 2 -πx + 7 3 + (x 3 -x) ln(x + 1) -(x 3 -x) ln(x -1).
The exact solution for this equation is

ϕ(x) = -x 3 + x.
Table (4.2) shows the rate of convergence of the method. The results conrm the convergence properties proved above.

Concluding Remarks

Cauchy kernel are important in many elds of applied mathematics. The method can be developed and applied to other class of integral and integro-dierential equations. The advantage of this method is that we can eliminate the singularity, and compute an approximate solution through a system of linear equations.

Chapter 5

Projection Methods for Integro-Dierential Equations with Cauchy Kernel

Introduction and Mathematical Background

In this chapter we present two methods for solving Cauchy integro-dierential equations. First, we present a projection method based on Legendre polynomials, for solving integro-dierential equations with Cauchy kernel, in L 2 ([-1, 1], C). The proposed numerical procedure leads to solve a system of linear equations. We prove the existence of the solution for the approximate equation, and we perform the error analysis. Numerical examples illustrate the theoretical results. Next, we propose a Sloan projection method for the approximate solution of an integro-dierential equations with Cauchy kernel in L 2 ([-1, 1] × [-1, 1], C) using Legendre polynomials. A system of linear equations is to be solved. The theory of integro-dierential equations with Cauchy kernel has important applications in the mathematical modelling of many scientic elds such as uid dynamics, electrodynamics, elasticity. Many integro-dierential equations need to be solved numerically. Several authors have been studied projection approximations for solving integral equations with dierent numerical procedures, the theory of projection approximations is developed in [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF]. In [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF], the authors have studied some nite rank approximations using bounded nite rank projections. Projection approximation methods play an essential role in approximation theory, and have many interesting applications, particularly to solve integral equations. In [START_REF] Ahues | L p Error estimates for projection approximations[END_REF], the authors have used a projection approximation for solving weakly singular Fredholm integral equations of the second kind. Let H := L 2 ([-1, 1], C), be the space of complexvalued Lebesgue square integrable (classes of) functions on [-1, 1]. The purpose of this chapter is rstly to introduce a projection method based on the Legendre polynomials, for solving integro-dierential equations with Cauchy kernel in H. The purpose of the second method is to approximate the solution of integro-dierential equations with Cauchy Kernel using Sloan projection in the rst time.

Let the universe of our discours be the Hilbert space H. Set and consider the integro-dierential equation with Cauchy kernel

ϕ (s) + 1 -1 ϕ(t) t -s dt = f (s), -1 < s < 1, (5.1)
where the integral is understood as the Cauchy principal value:

1 -1 ϕ(t) t -s dt = lim →0 s- -1 x(t) t -s dt + 1 s+ x(t) t -s dt .
Letting

T ϕ(s) := 1 -1 ϕ(t) t -s dt, -1 < s < 1, Aϕ(s) := ϕ (s), -1 < s < 1,
the operator T is bounded from H into itself and

A -1 y(s) = s -1 y(t)dt, -1 < s < 1,
is compact. Equation (5.1) can be rewritten as

ϕ + A -1 T ϕ = A -1 f. Let K := A -1 T
which is compact. We assume that -1 is not an eigenvalue of K.

Let (L n ) n≥0 be the sequence of Legendre polynomials which is an orthogonal basis for H:

L j , L k = δ jk 2 2j + 1
, and

e j := 2j + 1 2 L j ,
the corresponding normalized sequence. Let (π n ) n≥0 be the sequence of bounded nite rank orthogonal projections dened by

π n x := n-1 j=0
x, e j e j .

Hence, for ψ ∈ H,

lim n→∞ π n ψ -ψ = 0.

A Projection Method for Integro-Dierential Equations with Cauchy Kernel

Let H n denote the space spanned by the rst n of Legendre polynomials. It is clear that

A -1 (H n ) = H n+1 .
The approximate problem is the following equation for ϕ n :

ϕ n + A -1 π n T ϕ n = A -1 π n f.
Clearly ϕ n ∈ D ∩ H n+1 . We introduce the following notations:

K := A -1 T, K n := A -1 π n T, g := A -1 f, g n := A -1 π n f,
and we assume that -1 is not an eigenvalue of K. Hence the equation

(I + K) ϕ = g,
is approximated by

(I + K n ) ϕ n = g n .
For all x ∈ H,

lim n→∞ K n x -Kx = 0,
and since A -1 is compact,

lim n→∞ (K n -K) K = 0, lim n→∞ (K n -K) K n = 0.
Writing

ϕ n = n j=0
x n,j e j , the n + 1 unknowns x n (j) solve n j=0

x n (j) e j + π n T e j = π n f, n j=0

x n (j)e j (-1) = 0.

This leads to a linear system

A n x n = b n ,
where,

for i ∈ [[0, n -1 ]] and j ∈ [[0, n ]], A n (i, j) := 2i + 1 2 2j + 1 2 1 -1 L j (s)L i (s)ds + 1 -1 ( 1 -1 L j (τ ) τ -s dτ )L i (s)ds , A n (n, j) := e j (-1), b n (i) := 2i + 1 2 1 -1 f (s)L i (s)ds, b n (n) := 0.
Since K is compact, the theory developped in [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF] shows that for n large enough, the operator I + K n is invertible, and its inverse is uniformly bounded with respect to n.

Let s > 0 and H s ([-1, 1], C) be the classical Sobolev space, and let . s denote its norm. (For details, see [START_REF] Atkinson | Theoretical Numerical Analysis: A Functional Analysis Framework[END_REF].) Remark that

(I + A -1 T )(H s ([-1, 1], C)) = H s ([-1, 1], C).
We recall that (cf. [START_REF] Atkinson | Theoretical Numerical Analysis: A Functional Analysis Framework[END_REF]) there exists c > 0 such that, for all ψ ∈ H s ([-1, 1], C),

(I -π n )ψ ≤ cn -s ψ s .
(5.2) Theorem 14. Assume that f ∈ H s ([-1, 1], C) for some s > 0. Then, there exists

α > 0 such that ϕ n -ϕ ≤ α[n 1-s T ϕ s-1 + n -s f s ].
Proof. We have

ϕ n -ϕ = (I + K n ) -1 g n -(I + K) -1 g + (I + K n ) -1 g -(I + K n ) -1 g = (I + K n ) -1 [(K -K n ) ϕ + g n -g] ,
and hence

ϕ n -ϕ ≤ C (K -K n ) ϕ + A -1 (I -π n ) f .
On the other hand,

(K -K n ) ϕ = A -1 (I -π n ) T ϕ. But f ∈ H s ([-1, 1], C), so ϕ ∈ H s ([-1, 1], C) and T ϕ ∈ H s-1 ([-1, 1], C). Using (5.
2), the desired result follows.

Sloan Projection Method

Consider the approximate problem of nding ϕ S n ∈ D such that

ϕ S n + Kπ n ϕ S n = A -1 f. (5.3) 
Clearly, if such a function exists, it belongs to D.

Applying the operator π n to both sides of equation ( 5.3) we get

π n ϕ S n + π n Kπ n ϕ S n = π n A -1 f, or, equivalently, n-1 j=0 ϕ S n , e j e j + n-1 j=0 ϕ S n , e j π n Ke j = n-1 j=0 A -1 f, e j e j ,
and performing the inner product with e i we get the following system:

ϕ S n , e i + n-1 j=0 ϕ S n , e j π n Ke j , e i = A -1 f, e i , i ∈ [[0, n -1 ]].
Since π * n = π n , and

π n e i = e i , ϕ S n , e i + n-1 j=0 ϕ S n , e j Ke j , e i = A -1 f, e i , i ∈ [[0, n -1 ]].
(5.4)

Since K is compact, (I n + A n ) -1 exists for n large enough (see [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF]). Once the system (5.4) is solved, ϕ S n is recovered as

ϕ S n (s) = s -1 f (t)dt - n-1 j=0 x n (j) 2j + 1 2 s -1 1 -1 L j (τ ) τ -t dτ dt.
Let

M := sup n≥N (I + Kπ n ) -1 ,
which is nite.

Theorem 15. Assume that f ∈ H s ([-1, 1], C) for some s > 0. Then, there exists

β > 0 such that ϕ S n -ϕ ≤ M β K n -s ϕ s .
Proof. We have

ϕ S n -ϕ = A -1 f -Kπ n ϕ S n -A -1 f -Kϕ = K (I -π n ) ϕ + Kπ n ϕ -ϕ S n ,
and hence

ϕ S n -ϕ = (I + Kπ n ) -1 K (I -π n ) ϕ. But f ∈ H s ([-1, 1], C), so ϕ ∈ H s ([-1, 1], C). Using (5.
2), the desired result follows.

Numerical Example

In this section, we present a numerical example to illustrate the theoretical results obtained in the above sections. Tables 5.1 shows the absolute error as a function of n.

Example 5.1

Let f be dened so that the exact solution be In this chapter, we derived the regularization to the solution of Cauchy integral equation, and we apply the projection to the obtained equation. First we us Kantorovich projection, and we perform the error analysis. After we study the Sloan projection and we prove some results about the error analysis. In the end of this chapter Galerkin projection is estabished and its error analysis is discussed.

ϕ(s) = s + 1 s 2 + 1 . n ϕ -ϕ n 2 ϕ -ϕ S n 2 4 2.40e-2 2.15e-2 5 9.88e-3 7.92e-3 6 4.08e-3 2.59e-3 7 1.68e-3 9.85e 
Let C 0,α ([-1, 1] , C), 0 < α ≤ 1
be the space of all α-Hölder continuous functions. Let us denote by H * ([-1, 1] , C), 0 < α ≤ 1 the space of all functions ϕ which satisfy the following conditions:

• ϕ is α-Hölder continuous on every closed subinterval of (-1, 1),

• ϕ(t) = ϕ * (t) (t -c) µ , 0 ≤ µ < 1, near c = ±1. ϕ * is Hölder continuous function.
Consider the following Cauchy integral equation of the second kind

aϑ(x) + b π 1 -1 ϑ(t) t -x dt -µ 1 -1 k(x, t)ϑ(t)dt = g(x), -1 < x < 1, (6.1) 
where a, b are constants, such that a 2 +b 2 = 1. We assume that g ∈ C 0,α ([-1, 1] , C).

Following [START_REF] Mushkelishvili | Singular Integral Equations[END_REF],

ϑ(x) = ω(x)ϕ(x),
where the function ϕ is a Hölder continuous function, and ω is a weight function dened as

ω(x) := (1 -x) α (1 + x) β ,
where α and β are given by

α := 1 2πi log a -ib a + ib + ν, β := - 1 2πi log a -ib a + ib + ν , -1 < α, β < 1.
ν and ν are integers related to the following index

κ := -(α + β) = -(ν + ν ).
Hence

aω(x)ϕ(x) + b π 1 -1 ω(t)ϕ(t) t -x dt -µ 1 -1 k(x, t)ω(t)ϕ(t)dt = g(x), -1 < x < 1.
Let K 0 be the operator dened by

K 0 φ(x) := aω(x)φ(x) + b π 1 -1 ω(t)φ(t) t -x dt, φ ∈ C 0,α ([-1, 1] , C), -1 < x < 1,
and K 1 be the operator dened by

K 1 φ(x) := 1 -1 k(x, t)ω(t)φ(t)dt, φ ∈ C 0,α ([-1, 1] , C), -1 < x < 1.
First, we will discuss the solution of the following Cauchy integral equation of the rst kind

K 0 ϕ(x) = h(x), h ∈ C 0,α ([-1, 1] , C), -1 < x < 1.
The solution of this equation has the following boundary behavior in [-1, 1]:

• If -1 < α < 0 and 0 < β < 1 : The solution is continuous in (-1, 1), bounded at x = -1 and may have a weak singularity at x = 1.

• If 0 < α < 1 and -1 < β < 0 : The solution is continuous in (-1, 1), bounded at x = 1 and may have a weak singularity at x = -1.

• If 0 < α < 1 and 0 < β < 1 : The solution is continuous in (-1, 1), and bounded at both ends x = -1 and x = 1.

• If -1 < α < 0 and -1 < β < 0 : The solution is continuous in (-1, 1), and may have a weak singularities both at x = -1 and x = -1.

According to [START_REF] Guessous | Numerical solution of a Cauchy singular integral equation by iterative methods[END_REF], the Cauchy integral equation of the rst kind has the solution

ϕ(x) = a h(x) ω(x) - b π 1 -1 h(t) ω(t) dt t -x + b π C,

where

• For κ = 1, the solution is unbounded at both ends x = -1 and x = 1, and not unique since C is an arbitrary constant.

• For κ = 0, the solution is unique since C = 0.

• For κ = -1, the equation has a solution if and only if

1 -1 h(t) ω(t) dt = 0,
and in this case the solution is unique with C = 0.

Let K be the operator dened by

Kφ(x) := aω * (x)φ(x) - b π 1 -1 ω * (t)φ(t) t -x dt, φ ∈ C 0,α ([-1, 1] , C), -1 < x < 1,
where

ω * (x) := 1 ω(x)
.

If

h := g + µK 1 φ,
then we get the following equivalent equation with a similar discussion as above

ϕ -µKK 1 ϕ = Kg + b π C.
Let

f := -1 µ (Kg + b π C), λ := 1 µ , T := KK 1 .
Then ϕ solves

(T -λI)ϕ = f. (6.2)
Using the Proposition 1.1.2 in [START_REF] Guessous | Numerical solution of a Cauchy singular integral equation by iterative methods[END_REF], if we assume

that k ∈ C 1 ([-1, 1] 2 , C), g ∈ C 1 ([-1, 1] , C), then the operator T is compact from X := C 0 ([-1, 1] , C) into X.

Finite Rank Approximations and Regularization

In this section we introduce a grid (x n,j ) n j=0 on [-1, 1] such that

-1 < x n,0 < x n,1 < . . . < x n,n-1 < x n,n < 1.
Consider hat functions e 0 , e 1 , e 2 , . . . , e n in C 0 ([-1, 1] , C) such that We recall that by [START_REF] Ahues | Spectral Computations for Bounded Operators[END_REF][START_REF] Atkinson | The Numerical Solution of Integral Equations of the Second Kind[END_REF] 

lim n→∞ π n g -g ∞ = 0.
The solution ϕ of (6.2) satises

ϕ = 1 λ (T ϕ -f ).
Let

ψ := T ϕ = λϕ + f.
We get

ϕ = 1 λ (ψ -f ), so that ψ = 1 λ (T ψ -T f ). (6.3) 
Hence

π n ψ = 1 λ (π n T ψ -π n T f ). (6.4) 
Let us approximate the solution of (6.3) by ψ P n (P for Kantorovich) such that

ψ P n = 1 λ (π n T ψ P n -π n T f ). (6.5) 
Theorem 16. The inverse operator (I -1 λ π n T ) -1 exists and it is uniformly bounded for n large enough, and

ψ -ψ P n ≤ M 0 ψ -π n ψ .
Proof. In fact

(I - 1 λ π n T )(ψ -ψ P n ) = ψ - 1 λ π n T ψ -ψ P n + 1 λ π n T ψ P n .
From (6.5),

(I - 1 λ π n T )(ψ -ψ P n ) = ψ - 1 λ π n T ψ + 1 λ π n T f. Thus (I - 1 λ π n T )(ψ -ψ P n ) = ψ - 1 λ (π n T ψ -π n T f ).
Using (6.4), we get

(I - 1 λ π n T )(ψ -ψ P n ) = ψ -π n ψ,
and the resulat follows, with

M 0 := sup n (I - 1 λ π n T ) -1 .
Since T is compact, lim n→∞ π n T -T ∞ = 0, and hence M 0 < ∞.

Let

φP n := 1 λ (ψ P n -f ).
Theorem 17. The iterated approximation φP n satises

φP n -ϕ ≤ C 1 T -π n T . φP n -ϕ ≤ M 0 |λ| ψ -π n ψ .
Proof. We have

(π n T -λI) φP n = 1 λ (π n T -λI)(ψ P n -f ), so (π n T -λI) φP n = 1 λ (π n T ψ P n -λψ P n -π n T f + λf ).
But (6.5) implies

π n T ψ P n -λψ P n = π n T f.
Hence

(π n T -λI) φP n = f.
Thus

φP n -ϕ = (π n T -λI) -1 f -(T -λI) -1 f = (π n T -λI) -1 (T -λI) -1 [(T -λI) -(π n T -λI)] f = (π n T -λI) -1 (T -λI) -1 [T -π n T ] f.
Finally, we have

φP n -ϕ ≤ C 1 T -π n T .
Where

C 0 := sup n (π n T -λI) -1 , C 1 := (T -λI) -1 f C 0 . Also φP n -ϕ = 1 λ (ψ P n -f ) - 1 λ (ψ -f ) = 1 λ (ψ P n -ψ).
Using the above Theorem we get the desired bound.

Sloan Projection

Using (6.3),

ψ S n = 1 λ (T π n ψ S n -T f ). (6.6) 
Theorem 18. The inverse operator (T π n -λI) -1 exists, it is uniformaly bounded for n large enough, and

ψ -ψ S n ≤ M 1 T π n ψ -ψ ,
where

M 1 := sup n (T π n -λI) -1 .
Proof. We remark that

(T π n -λI)(ψ -ψ S n ) = T π n ψ -λψ -T π n ψ S n + λψ S n .
It follows from (6.6) that

(T π n -λI)(ψ -ψ S n ) = T π n ψ -λψ -T f.
By (6.6),

(T π n -λI)(ψ -ψ S n ) = T π n ψ -T ψ,
and the result follows. Since T is compact, lim n→∞ π n T -T ∞ = 0, and hence M 1 is nite.

Galerkin Projection

By using Galerkin projection from (6.3),

ψ G n = 1 λ (π n T π n ψ G n -π n T f ) (6.7) 
Theorem 19. The inverse operator (I -1 λ π n T ) -1 exists and it is uniformaly bounded for n large enough, and Proof. We have

ψ -ψ G n ≤ γ (π n ψ -ψ ,
(I - 1 λ π n T )(ψ -π n ψ G n ) = ψ - 1 λ π n T ψ -π n ψ G n + 1 λ π n T ψ G n .
From (6.7),

(I - 1 λ π n T )(ψ -π n ψ G n ) = ψ - 1 λ π n T ψ + 1 λ π n T f = ψ - 1 λ (π n T ψ -π n T f ).
By (6.4),

(I - 1 λ π n T )(ψ -π n ψ G n ) = ψ -π n ψ.
Hence,

ψ -π n ψ G n = (I - 1 λ π n T ) -1 (ψ -π n ψ),
and we get the desired result. Since T is compact, lim n→∞ π n T -T ∞ = 0, and hence γ < ∞. Le domaine des équations intégrales, aussi vaste qu'il le soit, a connu ces dernières années une attention considérable. En eet, les équations intégrales interviennent dans le traitement de diérents problèmes apparraissant dans les domaines des sciences physiques et de la technologie tels que: le transfert radiatif, la diusion, l'élasticité, où les équations intégrales singulières à noyau Cauchy trouvent leur place.

Concernant notre thème: équations intégrales singulières à noyau Cauchy, on s'intéresse à la résolution de ce type d'équations par diérentes méthodes telles que celles de projection et collocation.

On vise en premier lieu à généraliser une méthode des approximations successives pour résoudre une équation intégrale singulière à noyau de Cauchy de première espèce, appliquée à deux cas d'intérêt pratique.

Puis, en se servant des méthodes de projection, on traite des équations fonctionnelles avec des opérateurs bornés (non compacts); notamment la méthode de Galerkin et la méthode de Kulkarni.

D'autre part on traite les équations intégro-diérentielles à noyau de Cauchy via la méthode de collocation et la méthode de projection.

Un autre objectif réalisé est le traitement des équations intégrales singulières à noyau de Cauchy de deuxième espèce en utilisant les polynômes trigonométriques et une procédure de régularisation.

Le présent travail est organisé comme suit: On commence par un rappel général de la théorie des opérateurs bornés, puis un rappel de théorie spectrale, enn on donne brièvement une classication des équations intégrales et une introduction à notre thème.

Dans le premier chapitre on traite une équation intégrale singulière à noyau de Cauchy de première espèce, en utilisant la méthode des approximations successives.

Soit l'équation intégrale singulière à noyau de Cauchy de première espèce

1 π 1 -1 v(t)ϕ(t) t -x dt = g(x), -1 < x < 1, 1 
où v et g sont deux fonctions connues, et ϕ est l'inconnue. On suppose que

1 π 1 -1 v(t) t -x dt = 1, -1 < x < 1, 1 π 1 -1 |v(t)|dt ≤ 1, -1 < x < 1, 1 π 1 -1 1 v(t)(t -x) dt = 1, -1 < x < 1, 1 π 1 -1 1 |v(t)| dt ≤ 1, -1 < x < 1.
Par la méthode des approximations successives on obtient

ϕ n+1 (x) = g(x) - 1 π 1 -1 v(t) [ϕ n (t) -ϕ n (x)] t -x dt, -1 < x < 1. Considérons R n (x) = ϕ(x) -ϕ n (x).
On a

R n ≤ 1 n! g (n) + 1 (n + 1)! g (n+1) , n ∈ N. Si lim n→∞ 1 n! g (n) + 1 (n + 1)! g (n+1) = 0,
alors la méthode des approximations successives converge. La méthode proposée a été testée pour les deux cas suivants:

v(t) = 1 + t 1 -t , et v(t) = 1 -t 1 + t , respéctivement.
Le deuxième chapitre traite des equations intégrales singulières à noyau de Cauchy de deuxième éspèce en utilisant les polynômes trigonométriques. Ce chapitre contient deux sections:

Dans la première section, nous présentons une méthode de collocation basée sur les polynômes trigonométriques combinée à une procédure de régularisation, pour résoudre l'équation intégrale de Cauchy de seconde espèce

µϕ(s) - 2π 0 ϕ(t) t -s dt = f (s), 0 ≤ s ≤ 2π.
Cette équation s'écrit

µϕ -T ϕ = f, où T ϕ(s) := 2π 0 ϕ(t) t -s dt, 0 ≤ s ≤ 2π.
Soient X := L 2 ([0, 2π] , C), et X n l'espace engendré par les polynômes trigonométriques de degré ≤ 2n + 1. Soit σ n la projection orthogonale de X sur X n . Alors, pour tout ψ ∈ X,

lim n→∞ σ n ψ -ψ 2 = 0. Soient 0 ≤ s n,1 < s n,2 < . . . < s n,2n+1 ≤ 2π. Pour tout i ∈ [[1, 2n + 1 ]] considérons la fonction chapeau e n,i dans C 0 ([0, 2π] , C), telle que, pour chaque j ∈ [[1, 2n + 1 ]],
e n,i (s n,j ) = δ i,j .

Soit Y n l'espace engendré par ces fonctions chapeau, qui est de dimension 2n + 1. Nous dénissons la projection interpolation π n de C 0 ([0, 2π] , C) sur Y n :

π n h(s) := 2n+1 j=1 h(s n,j )e n,j (s), h ∈ C 0 ([0, 2π] , C).
Dénissons l'opérateur de régularisation T pour > 0:

T ϕ(s) := 2π 0 (t -s)ϕ(t) (t -s) 2 + 2 dt, 0 ≤ s ≤ 2π,
qui est compact et sesqui-hermitien de X dans lui-même. Soit ϕ la solution de l'équation intégrale régularisée:

(µI -T )ϕ = f, et considérons l'opérateur d'approximation

T ,n := π n T σ n .
Théorème 0.1 Pour n assez grand, l'operateur µI -T ,n est inversible, la constante

β := sup n (µI -T ,n ) -1
est nie et la solution ψ ,n de l'equation

(µI -T ,n )ψ ,n = f,
converge vers la solution ϕ si, en premier lieu, n → ∞ puis → 0.

La méthode de collocation conduit au système linéaire

(µI -T σ n )ψ ,n (s n,i ) = f (s n,i ), i ∈ [[1, 2n + 1 ]].
Dans la deuxième section, nous présentons une méthode directe basée sur les polynômes trigonométriques pour résoudre l'équation intégrale singulière de Cauchy de deuxième espèce

ϕ(x) + 1 π +∞ -∞ ϕ(t) t -x dt = g(x), x ∈ R.
Supposons que g est 2π-periodique. Soit

φ m (t) = e imt , m ∈ Z. Alors ϕ(x) = +∞ -∞ a m φ m (x), où a k = 1 2π (1 -i) g, φ k .
Dans le troisième chapitre on applique les méthodes de projection à des opérateurs bornés non compacts. Soit H un espace de Hilbert, et T un opérateur borné de H dans lui-même. Pour une fonction donnée f ∈ H, le problème est de trouver une fonction ϕ ∈ H telle que ϕ -T ϕ = f. On suppose que cette équation admet une solution unique ϕ ∈ H, et que T est sesqui-hermitien: i.e T * = -T . Soit (T n ) n≥1 une suite d'opérateurs sesqui-hermitiens de H dans lui-même. Théorème 0.2 Pour tout n, l'opérateur I -T n est inversible et

(I -T n ) -1 ≤ 1. Soit H := L 2 ([0, 1], C), considérons l'équation intégrale singulière de Cauchy ϕ(s) - 1 0 ϕ(t) t -s dt = f (s), 0 ≤ s ≤ 1,
où f est une fonction connue. Cette équation s'écrit sous la forme:

(I -T )ϕ = f, où T ϕ(s) := 1 0 ϕ(t) t -s dt, 0 ≤ s ≤ 1.
Rappelons que pour tout f ∈ H, cette équation admet une solution unique ϕ ∈ H, et l'opérateur intégral T est borné de H dans lui-même, de plus T * = -T .

Soit (s n,j ) n j=0 une grille sur [0, 1] telle que

0 ≤ s n,0 < s n,1 < . . . < s n,n ≤ 1. Posons h n,i := s n,i -s n,i-1 , i ∈ [[1, n ]], h n := (h n,1 , h n,2 , . . . , h n,n ).
Considérons la suite (Π n ) n≥1 , des projections bornées et de rang ni, telle que

Π n x := n j=1
x, e n,j e n,j , où e n,j := φ n,j h n,j , φ n,j (s) :=

1 si s ∈]s n,j-1 , s n,j [, 0 sinon. Soit J n := {s n,j , j ∈ [[0, n ]]} .
Nous dénissons le module de L 2 -intégrabilité de la fonction ψ ∈ H par rapport à h n comme suit:

ω 2 (ψ, J n ) := sup 0≤δ≤ hn ∞ 1 0 |ψ(τ + δ) -ψ(τ )| 2 dτ 1 2
.

Toutes les fonctions sont prolongées par 0 en dehors de [0, 1]. Nous rappelons que

lim n→∞ h n = 0 =⇒ lim n→∞ ω 2 (ψ, J n ) = 0 pour tout ψ ∈ H, et que, pour tout ψ ∈ H, (I -Π n )ψ 2 ≤ ω 2 (ψ, J n ).
Dans un premier temps considérons la projection de Galerkin

T n = T G n := Π n T Π n ,
alors l'equation d'approximation de Galerkin suivante:

ϕ G n -T n ϕ G n = Π n f, admet une solution unique ϕ G n , donnée par ϕ G n = n j=1
x n (j)e n,j .

En résolvant le système linéaire ci-dessous, on retrouve les coecients x n (j):

(I -A n )x n = b n , où A n (k, j) := 1 h n,j h n,k s n,k s n,k-1 n,sj sn,j-1 dt t -s ds, b n (k) := 1 h n,k s k s k-1 f (s)ds.
Théorème 0.3 L'estimation suivante a lieu:

ϕ G n -ϕ 2 ≤ ω 2 (f, J n ) + ω 2 (T ϕ, J n ) + πω 2 (ϕ, J n ).
En deuxième lieu considérons la projection de Kulkarni

T K n := Π n T + T Π n -Π n T Π n .
La théorie a été développée pour le cas compact. Ici, nous proposons d'approcher notre opérateur borné non compact T . Soit ϕ K n solution approchée de Kulkarni. On pose

u n := Π n ϕ K n .
Alors

u n = n j=1
c n,j e n,j .

En résolvant le système linéaire ci-dessous, on retrouve les coecients c n,j : Théorème 0.4 L'estimation suivante est vériée:

ϕ K n -ϕ 2 ≤ 2ω 2 (ϕ, J n ) (I -Π n )T 2 (I -Π n ) ϕ 2 1 2 .
Dans le quatrième chapitre, on présente la méthode de collocation en utilisant les polynomes de Tchebychev pour approcher la solution de l'équation intégro-diérentielle

ϕ (x) + λ π 1 -1 ϕ(t) t -x dt = f (x), -1 < x < 1.
où f est une fonction connue et λ est une constante. Cette équation s'écrit: Nous allons introduire une approximation en utilisant les polynômes de Tchebychev de troisième espèce t n comme suit: Nous rappelons que les polynômes de Tchebychev de troisième espèce t n sont dénis par: Considérons l'ensemble des zeros x j de u n+1 :

Aϕ + T ϕ = f,
x j := -cos 2j -1 2n + 3 π, j ∈ [[0, n ]].

Dans le cinquième chapitre nous présentons deux méthodes pour résoudre l'équation intégro-diérentielle à noyau de Cauchy ϕ (s) + Soit (L n ) n≥0 la suite des polynômes de Legendre. On pose

e j := 2j + 1 2 L j ,
Soit (π n ) n≥0 la projection orthogonale dénie par:

π n x := n-1 j=0
x, e j e j .

En premier lieu, nous présentons le problème d'approximation

ϕ n + A -1 π n T ϕ n = A -1 π n f.
Soit H n sous-espace engendré par les n premiers polynômes de Legendre. Il est clair que ϕ n ∈ D ∩ H n+1 . Cela conduit au système linéaire suivant:

A n x n = b n , où , pour i ∈ [[0, n -1 ]] et j ∈ [[0, n ]],
A n (i, j) := 2i + 1 2 2j + 1 2 On trouve l'équation suivante: On trouve

P n ψ = 1 λ (P n T ψ -P n T f ).
Soit ψ P n l'approximation de Kantorovich Les diérentes méthodes proposées dans cette thèse sont illustrées par un ensemble conséquent d'expériences numériques.
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  n,j e n,j -n k=1 ( T e n,j , e n,k + T (I -Π n )T e n,j , e n,k )e n,k = = n k=1 f, e n,k e n,k + n k=1 T (I -Π n )f, e n,k e n,k .

  n,j , e n,k T e n,k , e n,i c n,j= f, e n,i + T f, e n,i -n k=1 f, e n,k T e n,k , e n,i , i ∈ [[1, n ]].(3.5) 
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  n

e

  j (x n,k ) = δ j,k .Dene the projection πn from C 0 ([-1, 1] , C) into itself by π n g(x) := n j=0g(x n,j )e j (x).

c n,i - n j=1 T 1 f

 j=11 e n,j , e n,i + T 2 e n,j , e n,i -n k=1 T e n,j , e n,k T e n,k , e n,i c n,j = f, e n,i + T f, e n,i -n k=1 f, e n,k T e n,k , e n,i , i ∈ [[1, n ]].Rappelons queT e n,j , e n,i = 1 h n,j h n,(s)ds.La solution ϕ Kn est donnée parϕ K n = u n + (I -Π n )T u n + (I -Π n )f, et donc ϕ K n (s) = u n (s) +

où(

  Aϕ)(x) := ϕ (x), -1 < x < 1. (T ϕ)(x)

  de Tchebychev de quatrième espèce u n sont dénis par:

1 - 1 ϕ- 1 ≤ s ≤ 1 ,

 1111 (t) t -s dt = f (s), -1 ≤ s ≤ 1.Cette équation s'écritϕ + A -1 T ϕ = A -1 f, Aϕ(s) := ϕ (s), -1 ≤ s ≤ 1.

SoientH

  := L 2 ([-1, 1], R), . D := {ϕ ∈ H : ϕ ∈ H, ϕ(-1) = 0} .

1 - 1 L 1 - 1 ( 1 - 1 L 1 2 1 L 1 - 1 ϑ(t) t -x dt -µ 1 - 1 k 1 - 1 ω 1 - 1 k 1 - 1 ω

 111111111111111111 j (s)L i (s)ds + j (τ ) τ -s dτ )L i (s)ds ,A n (n, j) := e j (-1),b n (i) := 2i + Théorème 0.6 Soit f ∈ H s ([-1, 1], R) pour un certain s > 0. Alors, il existe α > 0 telle queϕ n -ϕ ≤ α[n 1-s T ϕ s-1 + n -s f s ].En deuxème lieu, nous présentons le problème d'approximation de Sloan:Trouver ϕ S n ∈ D telle que ϕ S n + Kπ n ϕ S n = A -1 f.On trouve le système linéaire(I n + A n )x n = b n , où x n (j) := ϕ S n , e j , et A n (i, j) j (τ )L i (s) Kπ n ) -1 . Théorème 0.7 Soit f ∈ H s ([-1, 1], R) pour un certain s > 0.Il existe une constante positive β > 0, telle queϕ S n -ϕ ≤ M β K n -s ϕ s ,pour n assez grand.Le dernier chapitre est consacré à une régularisation de l'équation intégraleaϑ(x) + b π (x, t)ϑ(t)dt = g(x), -1 < x < 1, où a, b sont deux contantes, telles que a 2 + b 2 = 1. On suppose que g ∈ C 0,α ([-1, 1] , C). Dans ce cas la solution s'écrit ϑ(x) = ω(x)ϕ(x),où la fonction ϕ vérie la condition de Hölder, et ω est une fonction poids dénie comme suit:ω(x) := (1 -x) α (1 + x) β , où α := 1 2πi log a -ib a + ib + ν, β := -1 2πi log a -ib a + ib + ν , -1 < α, β < 1.ν et ν sont deux entiers liés à l'indice suivant:κ := -(α + β) = -(ν + ν ).On poseK 0 φ(x) := aω(x)φ(x) + b π (t)φ(t) t -x dt, φ ∈ C 0,α ([-1, 1] , C), -1 < x < 1, K 1 φ(x) := (x, t)ω(t)φ(t)dt, φ ∈ C 0,α ([-1, 1] , C), -1 < x < 1.Kφ(x) := aω * (x)φ(x) -b π * (t)φ(t) t -x dt, φ ∈ C 0,α ([-1, 1] , C), -1 < x < 1, ω * (x) := 1 ω(x) , h := g + µK 1 φ.

ϕ -µKK 1 ϕKK 1 .

 11 On suppose quek ∈ C 1 ([-1, 1] 2 , C), g ∈ C 1 ([-1, 1] , C), alors l'opérateur T est compact de X := C 0 ([-1, 1] , C) dans X.On pose ψ := T ϕ = λϕ + f.

n 1 λ

 1 T ψ P n -P n T f ).Théorème 0.8 L'opérateur inverse (I -1 λ P n T ) -1 existe et est uniformément borné pour n assez grand. De plus il existe M 0 > 0 tel queψ -ψ P n ≤ M 0 ψ -P n ψ . -ϕ ≤ C 1 T -P n T et φP n -ϕ ≤ M 0 |λ| ψ -P n ψ . n ψ S n -T f ).Théorème 0.10 Il existe N ∈ N tel que pour tout n ≥ N , l'opérateur (T P n -λI) -1 existe, est uniformément borné etψ -ψ S n ≤ M 1 T P n ψ -ψ , où M 1 := sup n≥N (T P n -λI) T P n ψ G n -P n T f ).Théorème 0.11 Il existe N 0 ∈ N tel que pour tout n ≥ N 0 , l'opérateur I -P n T -1 existe, est uniformément borné et ψ -ψ G n ≤ γ P n ψ -ψ , où γ := sup n≥N0 (I -1 λ P n T ) -1 .
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		6.69e-2	5.83e-3
	5	3.82e-2	3.17e-3
	7	2.64e-2	2.54e-3
	15	1.17e-2	7.17e-4
	25	6.88e-3	1.75e-4
		Table 3.1: Example 3.1
	n	ϕ -ϕ G n 2	ϕ -ϕ K n 2
	4	4.04e-2	6.44e-3
	6	2.63e-2	3.12e-3
	10	1.55e-2	1.00e-3
	12	1.29e-2	9.54e-4
	20	7.70e-3	3.35e-4
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			1: Example 4.1	
	x	n = 5	n = 49	n = 135
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 ( .1) gives the numerical results for Example 4.1.

	Example 4.2

D := {ϕ ∈ H : ϕ ∈ H, ϕ(-1) = 0} ,

-1 f (s)L i (s)ds, b n (n) := 0.Soient s > 0 et H s ([-1, 1], R) l'espace de Sobolev classique, muni de la norme . s .
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Conclusions and perspectives

In this thesis, new numerical schemes based on the projection and collocation methods have been constructed and justied for approximate solutions of Cauchy integral and integro-dierential equations. We have developed a projection method for solving an operator equation with bounded noncompact operator in Hilbert spaces.

This work may be extended to other type of Cauchy integral and integro-dierential equations. RESUME L'objectif de ce travail est la résolution des équations intégrales singulières à noyau Cauchy. On y traite les équations singulières de Cauchy de première espèce par la méthode des approximations successives. On s'intéresse aussi aux équations intégrales à noyau de Cauchy de seconde espèce, en utilisant les polynômes trigonométriques et les techniques de Fourier.

Dans la même perspective, on utilise les polynômes de Tchebychev de quatrième degré pour résoudre une équation intégro-diérentielle à noyau de Cauchy.

En suite, on s'intéresse à une autre équation intégro-diérentielle à noyau de Cauchy, en utilisant les polynômes de Legendre, ce qui a donné lieu à développer deux méthodes basées sur une suite de projections qui converge simplement vers l'identité.

En outre, on exploite les méthodes de projection pour les équations intégrales avec des operateurs intégraux bornés non compacts et on a appliqué ces méthodes à l'équation intégrale singulière à noyau de Cauchy de deuxième espèce.

Mots clés: Equations intégrales, approximations successives, méthodes de projection, méthodes de collocation, noyau de Cauchy.

Summary

The purpose of this thesis is to develop and illustrate various new methods for solving many classes of Cauchy singular integral and integro-dierential equations.

We study the successive approximation method for solving Cauchy singular integral equations of the rst kind in the general case, then we develop a collocation method based on trigonometric polynomials combined with a regularization procedure, for solving Cauchy integral equations of the second kind.

In the same perspective, we use a projection method for solving operator equation with bounded noncompact operators in Hilbert spaces.

We apply a collocation and projection methods for solving Cauchy integrodierential equations, using airfoil and Legendre polynomials.

Keywords: Integral equations, successive approximations, projection methods, collocation methods, Cauchy kernel. Soit C 0,λ ([-1, 1], R) l'espace des fonctions ϕ sur [-1, 1] satisfaisant la condition de Hölder suivante: ∃M ≥ 0 telle que:

On pose

L'opérateur T est borné de L 2 ([-1, 1], R) dans lui-même et aussi de C 0,λ ([-1, 1], R) dans lui-même. Rappelons que

Considérons les fonctions chapeau e 0 , e 1 , e 2 , . . . , e n dans C 0 ([-1, 1], R) telles que

Soit la projection P n de C 0 ([-1, 1], R) sur l'espace des fonctions continues, dénie par:

g(x j )e j (x).

On pose

Considérons l'équation de l'inconnue ϕ n suivante:

Il existe une constante positive M , telle que

pour n assez grand.

On trouve, le système:

Aϕ n (x j ) + T ϕ n (x j ) = f (x j ), j ∈ [[0, n ]].

Et donc

n i=0 a i {ω (x j )t i (x j ) + ω(x j ) 1 + x j [(i + 1 2 )u i (x j ) -1 2 t i (x j )] + λu i (x j )} = f (x j ), j ∈ [[0, n ]].