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Abstract

We consider the general problem of microphone array signal processing in diffuse noise

environments. This has various applications epitomized by speech enhancement and robust

Automatic Speech Recognition (ASR) for microphone arrays. Diffuse noise arriving from

almost all directions is often encountered in the real world, and has been one of the major

obstacles against successful application of existing noise suppression and Direction-Of-Arrival

(DOA) estimation techniques. We operate in the time-frequency domain, where signal and

noise are assumed to be zero-mean Gaussian and modeled by their respective covariance

matrices.

Firstly, we introduce a general linear subspace model of the noise covariance matrix that

extends three state-of-the-art models, and introduce a fourth more flexible real-valued noise

covariance model. We experimentally assess the fit of each model to real-world noise.

Secondly, we apply this general model to the task of diffuse noise suppression with a known

target steering vector. In the state-of-the-art Wiener post-filtering approach, it is essential

to accurately estimate the target power spectrogram. We propose a unified estimation

framework applicable to the general noise model, which is based on projecting the observed

covariance matrix onto the orthogonal complement of the noise model subspace. Ideally, this

projection is noise-free, and enables accurate estimation of the target power spectrogram.

The proposed framework for noise suppression is assessed through experiments with real-

world noise.

Thirdly, we address the task of DOA estimation of multiple sources. The performance of

the state-of-the-art MUltiple SIgnal Classification (MUSIC) algorithm is known to degrade

in the presence of diffuse noise. In order to mitigate this effect, we estimate the signal

covariance matrix and subsequently apply MUSIC to it. The estimation relies on the above-

mentioned noise-free component of the observed covariance matrix and on the reconstruction

of the remaining component belonging to the noise subspace. We design two alternative

algorithms based on low-rank matrix completion and trace-norm minimization that exploit

the low-rankness and the positive semidefiniteness of the signal covariance matrix. The
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performance of the proposed method with each noise model was compared using a large

database we created.

Finally, we present a unified framework applicable to the general noise model for diffuse

noise suppression with an unknown target steering vector. This is important for effective

noise suppression in the real-world, because the steering vector is usually not accurately

known in practice. We jointly estimate the target steering vector and the target power spec-

trogram for designing the beamformer and the Wiener post-filter. The estimation is based

on rank-1 completion and Principal Component Analysis (PCA). The proposed framework

is shown to enable more effective noise suppression improving the SNR by about 7dB, com-

pared to the state-of-the-art Independent Vector Analysis (IVA).
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Notations

Scalars, vectors, and matrices

Scalars are denoted by regular lowercase letters (e.g. a), vectors by bold lowercase letters

(e.g. a), and matrices by bold uppercase letters (e.g. A).

Operators

(·)T Transposition of a vector or a matrix

(·)H Conjugate transposition of a vector or a matrix

(·)∗ Entry-wise conjugate of a scalar, a vector, or a matrix.

ℜ[·] Entry-wise real part of a scalar, a vector, or a matrix

ℑ[·] Entry-wise imaginary part of a scalar, a vector, or a matrix

| · | Absolute value of a complex number

‖ · ‖F Frobenius norm of a matrix

‖ · ‖∗ Trace norm of a matrix

‖ · ‖2 L2-norm of a vector

E [·] Expectation of a random variable, vector, or matrix

D[·] Operation of replacing the off-diagonal entries of a matrix by zeros

O[·] Operation of replacing the diagonal entries of a matrix by zeros

Indices

l Source index (from 1 to L)

m,n Microphone index (from 1 to M)

t Time

τ Frame index

ω Angular frequency

vi



Constants

e Euler’s constant

j Imaginary unit

ζp p-th imaginary root of −1 (p: integer greater than 2)

Sets

Z Set of the integers

R Set of the real numbers

R
p Set of the p-dimensional real-valued column vectors (p: positive integer)

R
p×q Set of the p × q real-valued matrices (p, q: positive integers)

C Set of the complex numbers

C
p Set of the p-dimensional complex-valued column vectors (p: positive integer)

C
p×q Set of the p × q complex-valued matrices (p, q: positive integers)

Functions

δ(·) Dirac’s delta function

sinc(·) Sine cardinal function sinc(x) ! sin x
x

J0(·) Zeroth-order Bessel function of the first kind

circ(a1, a2, . . . , ap) p × p circulant matrix whose first row is
[

a1 a2 · · · ap

]

(p: positive integer)

Other mathematical notations

φαα(τ,ω) Power spectrogram of zero-mean scalar signal α(τ,ω), φαα(τ,ω) ! E [|α(τ,ω)|2]

φαβ(τ,ω) Cross-spectrogram of zero-mean scalar signals α(τ,ω) and β(τ,ω),

φαβ(τ,ω) ! E [α(τ,ω)β∗(τ,ω)]

Φαα(τ,ω) Covariance matrix of zero-mean vector signal α(τ,ω),

Φαα(τ,ω) ! E [α(τ,ω)αH(τ,ω)]
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Abbreviations

ASR Automatic Speech Recognition

DFT Discrete Fourier Transform

DOA Direction Of Arrival

DS Delay And Sum

EVD EigenValue Decomposition

IVA Independent Vector Analysis

LMMSE Linear Minimum Mean Square Error

LS Least Squares

MUSIC MUltiple SIgnal Classification

MVDR Minimum Variance Distortionless Response

NRF Noise-Reduction Factor

PCA Principal Component Analysis

RMSE Root Mean Square Error

SDI Speech-Distortion Index

SNR Signal-to-Noise Ratio

STFT Short-Time Fourier Transform

TDOA Time Delay Of Arrival
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Chapter 1

Introduction

1.1 Motivation for noise suppression and direction-of-

arrival estimation

Humans have the excellent ability to recognize speech despite the simultaneous presence

of many sounds in our surroundings. Let us imagine an office, for example. Employees

are making sounds, while talking, walking, writing, turning pages, typing on keyboards,

speaking on the phone, and so on. Also making sounds are PC fans, air conditioners, ringing

telephones, doors, etc. Birds may be tweeting outside. Amazingly enough, you can recognize

what a colleague says even in such an adverse sound environment.

How would it help us, if we could build systems that share this human ability? You could

turn immediately the air conditioner on by using a voice command like “Air conditioner,

on”, even during a bustling home party. Discussions at meetings could be automatically

transcribed into written form, even though more than two persons may sometimes speak

simultaneously and some background noise may be present. Hearing-impaired persons could

know what a friend is saying even in a noisy street by using a smartphone application that

transcribes speech into text.

What is the difficulty in building such useful systems? ASR systems provide very accurate

speech recognition when the microphone is placed near the speaker’s mouth (close-talking

scenario) [2]. In contrast, the recognition performance degrades dramatically when the

microphone is placed far away (distant-talking scenario) [2]. Unfortunately, it is necessary

to stick to the distant-talking scenario in many applications. For instance, it would be

infeasible to always put the microphone close to the speaker’s mouth in the above example

1



2 Chapter 1 Introduction

involving the hearing impaired.

The degradation of the ASR performance in this context can be attributed to the following

two adverse effects of the increasing distance:

• an increased amount of reverberation relative to the direct sound,

• an increased amount of sounds from other sources (referred to as noise) relative to the

target speech.

Dereverberation methods for mitigating the effect of reverberation have been widely studied

in the literature (e.g. [3, 4]). In this thesis, we focus on the latter problem, namely noise.

A promising approach to making ASR systems robust against noise is to perform noise

suppression prior to ASR. Noise suppression refers to the range of techniques aiming to

recover the target speech from its noisy observation. The reduced amount of noise due to

noise suppression is expected to result in a better recognition performance [5]. Specifically,

in this paper, we focus on noise suppression with a microphone array, or collocated multiple

microphones.

Aside from ASR, noise suppression has many other applications such as hands-free telecom-

munications, videoconferencing, and hearing aids. Hands-free telephony would enable you

to make a phone call safely even during driving, but noise would degrade the speech quality

significantly. Noise suppression would enable clear communication even in such a case. The

hearing impaired have much more difficulty in understanding speech in noisy environments

than the hearing unimpaired [6]. Hearing aids combined with noise suppression can enhance

speech intelligibility for the hearing impaired.

A noise suppression method is typically based on knowledge of the direction from which

the target signal arrives (i.e. the target DOA), and its performance largely depends on the

accuracy of this knowledge. In practice, however, this information is rarely available a priori.

Therefore, estimation of the target DOAs from the observed data is another important task.

DOA estimation has also other applications such as automatic camera pointing, source

separation, etc. This would enable automatic camera steering activated by voice commands,

whereby enabling user-friendly and realistic videoconference [7].



Chapter 1 Introduction 3

1.2 Difficulty and our goal

Techniques such as adaptive signal processing are known to enable efficient noise suppres-

sion and DOA estimation, if noise is directional. Examples of such noise include speech

utterances from an interfering speaker and speech and music from a television. This kind

of noise can be dealt with by adaptively controlling the directivity (i.e. direction-dependent

gain) of a microphone array to form nulls into noise directions.

However, noise in the real world is not always directional, but often rather diffuse. Diffuse

noise refers to noise that comes from many directions and has little dependency on the

direction. For instance, we encounter such noise when many people are speaking at the same

time in the street or at a party. Another example is noise in car or on train that is caused by

the vibration of the body and the windows, which constitute surface noise sources instead

of point noise sources. Such diffuse noise cannot be suppressed sufficiently by directivity

control only, and causes errors in DOA estimation as well. For this reason, diffuse noise has

been one of the major obstacles in applying microphone array signal processing to the real

world.

This thesis aims to establish microphone array signal processing techniques that are robust

against diffuse noise, or in other words, techniques that works well even in the presence

of diffuse noise. Specifically, we focus on two tasks, namely noise suppression and DOA

estimation.

1.3 Our approach

Firstly, we introduce a general linear subspace model of the noise covariance matrix that

extends three state-of-the-art models, and introduce a fourth more flexible real-valued noise

covariance model.

Secondly, we apply this general model to the task of diffuse noise suppression with a known

target steering vector. In the state-of-the-art Wiener post-filtering approach, it is essential

to accurately estimate the target power spectrogram. We propose a unified estimation

framework applicable to the general noise model, which is based on orthogonal projection of

the observed covariance matrix onto the orthogonal complement of the noise model subspace.

Ideally, this orthogonal projection is noise-free, and enables accurate estimation of the target

power spectrogram.
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Thirdly, we address the task of DOA estimation of multiple sources. The performance of

the state-of-the-art MUltiple SIgnal Classification (MUSIC) algorithm is known to degrade

in the presence of diffuse noise. In order to mitigate this effect, we estimate the signal

covariance matrix and subsequently apply MUSIC to it. The estimation relies on the above-

mentioned noise-free component of the observed covariance matrix and on the reconstruction

of the remaining component belonging to the noise subspace. We propose two algorithms

based on different matrix completion algorithms: a first approach based on low-rank matrix

completion, which uses the knowledge on the number of sources, and a second one based on

trace norm minimization, which does not require that knowledge.

Finally, we present a unified framework applicable to the general noise model for diffuse

noise suppression with an unknown target steering vector. This is important for effective

noise suppression in the real-world, because the steering vector is usually not accurately

known in practice. We jointly estimate the target steering vector and the target power

spectrogram for designing the beamformer and the Wiener post-filter. The estimation is

based on rank-1 completion and Principal Component Analysis (PCA).

This work has led to one journal paper [8], 3 international conference papers [9, 10, 11],

and 8 domestic conference papers [12, 13, 14, 15, 16, 17, 18, 19].

1.4 Structure of the thesis

The rest of this thesis is organized as follows.

In Chapter 2, we formally define the tasks we consider in this thesis, namely noise suppres-

sion and DOA estimation in the presence of diffuse noise. We describe the standard time-

frequency domain processing of the observed signals, and introduce the notion of covariance

matrices. We then review the state of the art of noise suppression and DOA estimation, and

summarize the limitation of existing approaches.

In Chapter 3, we present the proposed unified framework for noise modeling, and show

that this includes previous noise models as special cases. Subsequently, we introduce a more

flexible real-valued noise covariance model. We experimentally assess the fit of each model

to real-world noise.

In Chapter 4, we describe the proposed unified framework for diffuse noise suppression

with a known target steering vector. We present a unified estimator of the target power

spectrogram based on the general noise model. We also derive the specific estimator for each
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noise model. We assess the proposed framework for noise suppression through experiments

with real-world noise.

In Chapter 5, we describe the proposed unified framework for DOA estimation. We design

two alternative algorithms based on low-rank matrix completion and trace-norm minimiza-

tion. Finally, we evaluate the proposed methods using a large database with real-world

noise.

In Chapter 6, we present the proposed unified framework for diffuse noise suppression

with an unknown target steering vector. We describe an icosahedral microphone array we

fabricated and the real-world data we recorded using it. Finally, we evaluate the proposed

method with the recorded data.

Finally, we conclude this thesis in Chapter 7.



Chapter 2

Tasks Considered and State of the Art

This chapter has partly been published in [8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20].

2.1 Definition of noise suppression and direction-of-

arrival estimation

Let us suppose that an array of M microphones receives L target signals emitted from

point sources in the presence of diffuse noise and/or reverberation. We denote the target

signals received by the first microphone by sl(t), l = 1, 2, . . . , L, and stack them into the

vector

s(t) !

[

s1(t) s2(t) · · · sL(t)
]T

. (2.1)

We denote the vector of signals received by the microphones and that of diffuse noise by

x(t) ∈ R
M and v(t) ∈ R

M , respectively. Assuming that the target sources are static, we can

model the signal transmission from sources to microphones by linear time-invariant mixing

filters. These filters are single shifted impulses for planewave or spherical wave propagation,

and consist of numerous impulses in reverberant rooms. Therefore, x(t) can be modeled as

follows:

x(t) =

∫ ∞

0

H(t′)s(t − t′)dt′ + v(t), (2.2)

where H(t) ∈ R
M×L is the matrix of the impulse responses of the mixing filters. This covers

a wide range of scenarios: from a single point source (L = 1) with known mixing filters to

multiple point sources (L ≥ 2) with unknown mixing filters.

6



Chapter 2 Tasks Considered and State of the Art 7

In practice, the observed signal is sampled in time. The corresponding discrete-time

version of (2.2) is given by

x[k] =
∞∑

k′=0

H [k′]s[k − k′] + v[k], (2.3)

where k ∈ Z is the time index.

Diffuse noise suppression is the task of estimating s[k] given x[k]. In the following, we

shall restrict ourselves to the single-source case (L = 1). In this case, the observation model

(2.3) reduces to

x[k] =
∞∑

k′=0

s[k − k′]h[k′] + v[k], (2.4)

where h[k] ∈ R
M is the vector of the impulse responses of the mixing filters, and s[k] the

target signal. h[k] may or may not be given, and the problem is said to be blind in the latter

case. We focus on noise suppression for one source with known h[k] first, because this is a

basic task that has been widely studied in the literature. We move to noise suppression for

one source with unknown h[k] later on. We show experimentally that the proposed method

for noise suppression with a known steering vector works even in the presence of several

sources, i.e. directional interferers.

On the other hand, DOA estimation is the task of estimating the DOAs of the target

signals given x[k]. When the target sources are in the far field of the array, their location

is specified by two parameters, namely the azimuth and the zenith angle. In this paper,

we assume that the target signal is at the same height as the microphone array, and focus

on the estimation of the azimuth for simplicity. However, the proposed technique can be

extended to the estimation of both easily. We consider the general case of an unknown H [k]

and multiple target sources (L ≥ 2). Taking into account only the direct path in H [k]

and considering the reflections on the walls to be part of noise v[k], the H [k] accounts for

planewaves and is parametrized by the azimuth.

2.2 Time-frequency domain processing and covariance

matrices

The Short-Time Fourier Transform (STFT) is commonly used for the analysis of time-

varying signals like speech. In array signal processing in this thesis, we first analyze the

observed signals by STFT, and perform processing in the time-frequency domain.
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The STFT of a signal α[k] is defined using an analysis window w[k] that has a compact

support [−K/2, K/2− 1] and tapers to zero at both ends such as the Hanning window [21]:

w[k] =
1

2

(

1 + cos
2πk

K

)

. (2.5)

The STFT of α[k] is defined as

α(τ,ω) =

τS+K/2−1
∑

k=τS−K/2

α[k]w[k − τS]e−j2πkω/ωs , (2.6)

with τ denoting the frame index, S the frame hop, ω ∈ {0, ωs

K
, . . . , (K−1)ωs

K
} the angular

frequency, and ωs the sampling angular frequency.

When K is large enough compared to the number of taps of all mixing filters hml[k], (2.3)

is approximated by [21]:

x(τ,ω) = H(ω)s(τ,ω) + v(τ,ω), (2.7)

where H(ω) is defined by hml(ω) = F [hml[k]] (F [·]: discrete-time Fourier transform), and

x(τ,ω), s(τ,ω), and v(τ,ω) denote the STFT of x[k], s[k], and v[k], respectively. In DOA

estimation, H(ω) is parametrized by the target azimuths ξ1, . . . , ξL to be estimated. Indeed,

the l-th column of H(ω) is given by

hl(ω) = h(ω; ξl) !

[

e−jωδ1(ξl) · · · e−jωδM (ξl)

]T

, (2.8)

where the delay δm(ξl) is given by

δm(ξl) = −pT(ξl)(rm − r1)

c
, (2.9)

where rm denotes the coordinates of the m-th microphone, and p(ξ) is the unit DOA vector

of the planewave from the azimuth ξ:

p(ξ) !

[

cos ξ sin ξ 0
]T

. (2.10)

Therefore, (2.7) is written in the following form as well:

x(τ,ω) =
L∑

l=1

sl(τ,ω)h(ω; ξl) + v(τ,ω). (2.11)

Classically, s(τ,ω) and v(τ,ω) are assumed to be zero-mean Gaussian random variable,

and modeled by their respective covariance matrices [22, 23]:

x(τ,ω) ∼ N (0,Φxx(τ,ω)), (2.12)

s(τ,ω) ∼ N (0,Φss(τ,ω)), (2.13)

v(τ,ω) ∼ N (0,Φvv(τ,ω)). (2.14)
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Here, the covariance matrices are defined as

Φxx(τ,ω) ! E [x(τ,ω)xH(τ,ω)] ∈ C
M×M , (2.15)

Φss(τ,ω) ! E [s(τ,ω)sH(τ,ω)] ∈ C
L×L, (2.16)

Φvv(τ,ω) ! E [v(τ,ω)vH(τ,ω)] ∈ C
M×M . (2.17)

Note that covariance matrices are Hermitian positive semidefinite by definition. Assuming

that the signal and noise are mutually uncorrelated, we have the following relationship among

(2.15) to (2.17):

Φxx(τ,ω) = H(ω)Φss(τ,ω)HH(ω) + Φvv(τ,ω). (2.18)

Indeed,

Φxx(τ,ω) = E [x(τ,ω)xH(τ,ω)] (2.19)

= E [{H(ω)s(τ,ω) + v(τ,ω)}{H(ω)s(τ,ω) + v(τ,ω)}H] (2.20)

= H(ω)E [s(τ,ω)sH(τ,ω)]HH(ω) + H(ω)E [s(τ,ω)vH(τ,ω)] (2.21)

+ E [v(τ,ω)sH(τ,ω)]HH(ω) + E [v(τ,ω)vH(τ,ω)]

= H(ω)Φss(τ,ω)HH(ω) + Φvv(τ,ω). (2.22)

Here, E [s(τ,ω)vH(τ,ω)] and E [v(τ,ω)sH(τ,ω)] are zeros because of the uncorrelatedness of

s(τ,ω) and v(τ,ω). Especially, for the case L = 1, this reduces to

Φxx(τ,ω) = φss(τ,ω)h(ω)hH(ω) + Φvv(τ,ω), (2.23)

where

φss(τ,ω) ! E [|s(τ,ω)|2] (2.24)

denotes the power spectrogram of s(τ,ω). In practice, the short-time covariance matrix of

x(τ,ω) is computed by empirical averaging over a few consecutive frames around the frame

of interest:

Φxx(τ,ω) =
1

2Q + 1

τ ′=τ+Q
∑

τ ′=τ−Q

x(τ ′,ω)xH(τ ′,ω), (2.25)

where 2Q + 1 is the number of frames used for averaging.
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2.3 State of the art of noise suppression

2.3.1 Directivity control

Delay-and-sum beamformer [24, 25]

The most fundamental noise suppression technique is the Delay-and-Sum (DS) beam-

former. Assuming that the target signal propagates as a planewave, the DS beamformer

first shifts the observed signals so that the target signal components in these signals are

temporally aligned. The output y(τ,ω) of the DS beamformer is given by the average of

these time-aligned signals as follows:

y(τ,ω) =
1

M

M∑

m=1

ejωδmxm(τ,ω), (2.26)

where δm is the time it takes for the target signal to propagate from the first microphone

to the m-th microphone (δ1 = 0). The delays δm are assumed to be known or to have

been estimated. The target signal is summed up constructively, while signals coming from

directions other than the target direction are summed up destructively, so that the target

signal is enhanced relatively to noise. The beamformer’s power response to a planewave is

a function of its direction as shown in Fig. 2.1, which is called a directivity pattern. There

is a region with high gains around the target direction (90◦ in the figure), which is called a

beam.

The output of the DS beamformer (2.26) can be viewed as a Least-Squares (LS) estimate

of the target signal. Let us define the cost function by

‖x(τ,ω) − s(τ,ω)h(ω)‖2
2, (2.27)

and assume that the steering vector has the form corresponding to a planewave as follows:

h(ω) =
[

1 e−jωδ2 . . . e−jωδM

]T

. (2.28)

From the orthogonality principle, the solution minimizing (2.27) is given by

s(τ,ω) =
hH(ω)x(τ,ω)

‖h(ω)‖2
2

=
1

M

M∑

m=1

ejωδmxm(τ,ω). (2.29)

The downside of this technique is that it requires a large array aperture and a large

number of microphones in order to obtain a single and sharp beam at the target DOA in the

directivity pattern. Fig. 2.1 shows directivity patterns of the DS beamformer with a uniform
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R=0.1, M=2 R=0.1, M=5 R=0.1, M=20

R=1, M=2 R=1, M=5 R=1, M=20

R=5, M=2 R=5, M=5 R=5, M=20

R=10, M=2 R=10, M=5 R=10, M=20

Figure 2.1 Directivity patterns of the DS beamformer for the uniform linear array for several

values of R and M , where R ! MD
λ

is the array size MD divided by the wavelength λ, and

M the number of microphones (D: separation between adjacent microphones).

linear array for varying array sizes and varying numbers of microphones. The sharpness of

the beam in the target direction is determined by the ratio R ! MD
λ

of the array size MD

and the wavelength λ, where D denotes the distance between adjacent microphones. R must

be large for a sharp beam. Also, as seen from the figure, when D
λ

= R
M

is too large, extra

beams appear in directions other than the target direction. This is a phenomenon called

spatial aliasing. To avoid this adverse effect, we must keep D
λ

sufficiently small. In order to

make R large and make D
λ

small at the same time, we must make M large.
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Null beamformer [26]

In contrast to the DS beamformer, null beamformers are applicable to small arrays with

a few microphones. Specifically, a null beamformer can eliminate up to M − 1 directional

interferences, regardless of the array size in theory, if their steering vectors are given. It

directs nulls in the directivity pattern into the directions of the interferences by applying a

weight vector w(ω) that is orthogonal to their steering vectors.

Specifically, let us consider estimating s(τ,ω) with an estimator of the following form:

ŝ(τ,ω) ! wH(ω)x(τ,ω), (2.30)

and let h1(ω) and hl(ω), l = 2, . . . , I denote the target steering vectors and those of the

interferences to which we would like to steer nulls (I ≤ M). We assume that

h1(ω) *∈ span{hi(ω)|2 ≤ i ≤ I}, (2.31)

which is almost always the case in practice. Then, there exists w(ω) such that wH(ω)h1(ω) =

1 and wH(ω)hl(ω) = 0, l = 2, . . . , I. Such w(ω) eliminates the interferences without dis-

torting the target signal.

In practice, such w(ω) can be obtained as follows. First, we derive a vector w̃(ω) sat-

isfying w̃H(ω)hl(ω) = 0, l = 2, . . . , I, or equivalently, H̃H(ω)w̃(ω) = 0, where H̃(ω) !
[

h2(ω) . . . hI(ω)
]

. This is obtained e.g. as a right singular vector corresponding to

a zero singular value of H̃H(ω). Then, a desired w(ω) is obtained by scaling w̃(ω) by

w(ω) = w̃(ω)
[w̃H(ω)h1(ω)]∗

so that it satisfies wH(ω)h1(ω) = 1.

Although hl(ω), l = 2, . . . , I can be known, when the DOAs of the noises are known and

we assume planewave propagation, this is not always the case.

Minimum Variance Distortionless Response (MVDR) beamformer [26]

Compared to a null beamformer with known noise steering vectors, this beamformer en-

ables null steering without knowing the noise steering vectors. It is derived as the beamformer

weight that results in the minimum output power (variance) under the constraint that the

target signal is not distorted.

Specifically, we would like to solve the following optimization problem:

min
w(τ,ω)

wH(τ,ω)Φxx(τ,ω)w(τ,ω) s.t. wH(τ,ω)h(ω) = 1. (2.32)
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This optimization is attained by minimizing the following cost function:

wH(τ,ω)Φxx(τ,ω)w(τ,ω) − λ1(τ,ω){ℜ[wH(τ,ω)h(ω)] − 1}− λ2(τ,ω)ℑ[wH(τ,ω)h(ω)]

(2.33)

= wH(τ,ω)Φxx(τ,ω)w(τ,ω) −ℜ{λ(τ,ω)[wH(τ,ω)h(ω) − 1]}, (2.34)

where λ1(τ,ω),λ2(τ,ω) ∈ R are real-valued Lagrangian multipliers, and λ(τ,ω) ! λ1(τ,ω)+

jλ2(τ,ω). Differentiating this with respect to w∗(τ,ω) and equating the result to zero, we

have

Φxx(τ,ω)w(τ,ω) − 1

2
λ(τ,ω)h(ω) = 0. (2.35)

Solving this equation with respect to w(τ,ω), we obtain

w(τ,ω) =
1

2
λ(τ,ω)Φ−1

xx
(τ,ω)h(ω). (2.36)

Substituting this into the constraint as

1

2
λ∗(τ,ω)hH(ω)Φ−1

xx
(τ,ω)h(ω) = 1, (2.37)

we obtain λ(τ,ω) as follows:

λ(τ,ω) =
2

hH(ω)Φ−1
xx

(τ,ω)h(ω)
. (2.38)

Thus, the optimal weight vector is

wMVDR(τ,ω) !
Φ

−1
xx

(τ,ω)h(ω)

hH(ω)Φ−1
xx

(τ,ω)h(ω)
. (2.39)

Similarly to null beamformers, the MVDR beamformer can perfectly suppress up to M−1

directional interferences, but the suppression of diffuse noise from a large number of directions

is insufficient. Fig. 2.2 shows examples of the directivity pattern of the MVDR beamformer

(a) for directional interferences and (b) for diffuse noise. The target DOA was 90◦ in both

cases. The beamformer formed nulls in the noise directions (0◦ and 150◦) for directional

interferences, but did not manage to suppress all noise directions for diffuse noise.

2.3.2 Post-filtering

Recently, an approach of post-filtering, i.e. time-frequency masking at the output of a

beamformer, has been studied as a promising technique for diffuse noise suppression [27, 28,
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 0

 0.5

 1

 1.5

(a)

 0

 0.5

 1

 1.5

(b)

Figure 2.2 Examples of the directivity pattern of the MVDR beamformer for a target located

at 90◦ in the presence of (a) directional noise (DOAs: 0◦, 150◦) or (b) diffuse noise (spherically

isotropic noise).

29, 30, 31, 5, 32, 33, 34, 35]. The directivity control approach described in Section 2.3.1 has

only a limited ability of suppressing diffuse noise because of the limited number of nulls that

can be formed. On the other hand, time-frequency masking is based on the diversity between

the target signal and noise in the time-frequency domain rather than directional diversity.

Therefore, it can be effective even for diffuse noise. Especially, Simmer et al. [30] and Van

Trees [36] showed that the Linear Minimum Mean Square Error (LMMSE) estimator of the

target signal is obtained by the MVDR beamformer followed by a time-frequency mask called

the Wiener post-filter [30, 5, 35]:

ŝ(τ,ω) =
φss(τ,ω)

φyy(τ,ω)
·
hH(ω)Φ−1

xx
(τ,ω)x(τ,ω)

hH(ω)Φ−1
xx

(τ,ω)h(ω)
︸ ︷︷ ︸

= y(τ,ω)

. (2.40)

Here,

p(τ,ω) !
φss(τ,ω)

φyy(τ,ω)
(2.41)

is the Wiener post-filter.

Equation (2.40) constitutes the LMMSE estimator of the target signal, or the multichannel
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Wiener filter. Let us consider a linear estimator of the form

ŝ(τ,ω) ! wH(τ,ω)x(τ,ω), (2.42)

and consider minimizing the mean square error

E [|wH(τ,ω)x(τ,ω) − s(τ,ω)|2]. (2.43)

Partial differentiation of this with respect to w∗(τ,ω) leads to

ŝ(τ,ω) ! φss(τ,ω)hH(ω)Φ−1
xx

(τ,ω)x(τ,ω). (2.44)

Noting that

φyy(τ,ω) =
1

hH(ω)Φ−1
xx

(τ,ω)h(ω)
, (2.45)

we obtain (2.40).

In the design of the Wiener post-filter (2.41), it is essential to accurately estimate the target

power spectrogram or equivalently the short-time target autocorrelation function from the

noisy signals observed at the microphones. We can compute the covariance matrix Φxx(τ,ω)

of the observed signal, e.g. by (2.25), but cannot compute φss(τ,ω) in this way, because we

cannot observe s(τ,ω). Φxx(τ,ω) is linked to φss(τ,ω) as in (2.23). Therefore, for known

h(ω), we obtain φss(τ,ω), if we can eliminate some entries or components of Φvv(τ,ω) by

some transformation.

Zelinski’s design of Wiener post-filter [27]

Zelinski’s estimator of φss(τ,ω) is based on the assumption of spatially uncorrelated noise.

This assumption implies that Φvv(τ,ω) is diagonal, and φss(τ,ω) can be obtained from the

noise-free off-diagonal entries. Although Zelinski’s method was originally presented in the

time domain, we describe here its equivalence in the time-frequency domain for the ease of

comparison.

Specifically, the interchannel cross-spectra of observed signals are noise-free as follows:

φxmxn
(τ,ω) = φss(τ,ω)hm(ω)h∗

n(ω) (m *= n). (2.46)

Substituting the planewave model (2.28) to hm(ω), (2.46) becomes

φxmxn
(τ,ω) = φss(τ,ω)e−jω(δm−δn) (m *= n). (2.47)
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Solving (2.46) for φss(τ,ω) and averaging the result over the microphone pairs, we obtain

the estimator

φ̂Zel
ss (τ,ω) =

1

M(M − 1)

∑

m'=n

φxmxn
(τ,ω)ejω(δm−δn) (2.48)

=
2

M(M − 1)

∑

m<n

ℜ[φxmxn
(τ,ω)ejω(δm−δn)]. (2.49)

The cross-spectrogram φxmxn
(τ,ω) in this equation can be estimated by, for example, aver-

aging xm(τ,ω)x∗
n(τ,ω) temporally over several adjacent frames.

A detailed analysis on Zelinski’s post-filter can be found in [37].

McCowan’s design of Wiener post-filter [5]

Zelinski’s model is inappropriate for modeling diffuse noise observed by a small array,

because the noise highly correlates between microphones in that case. Instead of neglecting

inter-channel noise correlation as in Zelinski’s method, McCowan’s method is based on the

assumption that the inter-channel noise coherences are given. Here we present a slightly

modified version of McCowan’s method, which is more theoretically sound as explained

later.

The assumption is based on the fact that the noise coherences are known for some

ideal noise fields. For example, consider spherically isotropic noise, which is composed

of noise planewaves with an equal power spectrum propagating in any directions in the

three-dimensional space. In this case, the noise coherence between the m-th and the n-th

microphones is given by [38]

γvmvn
(τ,ω) !

φvmvn
(τ,ω)

√

φvmvm
(τ,ω)

√

φvnvn
(τ,ω)

(2.50)

= sinc

(
rmnω

c

)

, (2.51)

where rmn is the distance between the microphones, and c the velocity of sound. Another

example is cylindrically isotropic noise, which is defined in the same way as spherically

isotropic noise, except that noise propagates two-dimensionally in the horizontal directions.

In this case, the noise coherence is given by [39]

γvmvn
(τ,ω) = J0

(
lmnω

c

)

. (2.52)
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Here, J0(·) is the zeroth-order Bessel function of the first kind, and lmn is the distance between

the orthogonal projections onto the horizontal plane of the m-th and the n-th microphones.

McCowan’s method also assumes that the power spectrogram of noise is identical at all

microphones, which is true for spherically/cylindrically isotropic noise:

φv1v1(τ,ω) = · · · = φvMvM
(τ,ω) =: φvv(τ,ω). (2.53)

In this case, from (2.50), we have

φvmvn
(τ,ω) = φvv(τ,ω)γvmvn

(τ,ω), (2.54)

and therefore

φxmxn
(τ,ω) = φss(τ,ω)hm(ω)h∗

n(ω) + φvv(τ,ω)γvmvn
(τ,ω). (2.55)

McCowan’s estimator of φss(τ,ω) is obtained based on solving the system of equations (2.55)

for φss(τ,ω) and averaging the result over all microphone pairs as follows:

φ̂Mc
ss (τ,ω) =

2

M(M − 1)

∑

m<n

ℜ
[

φxmxn
(τ,ω)

hm(ω)h∗
n(ω)

]

− φxmxm
(τ,ω) + φxnxn

(τ,ω)

2
ℜ

[
γvmvn

(τ,ω)

hm(ω)h∗
n(ω)

]

1 − |hm(ω)|2 + |hn(ω)|2

2
ℜ

[
γvmvn

(τ,ω)

hm(ω)h∗
n(ω)

] .

(2.56)

Let us comment here about the difference between McCowan’s original estimator and

the modified estimator (2.56). The difference lies in the term |hm(ω)|2+|hn(ω)|2

2
. In the orig-

inal estimator, the noise signals time-shifted so that the target signal is in phase, namely

vm(τ,ω)/hm(ω), is assumed to be spherically/cylindrically isotropic [40, 38]. This resulted

in

φvmvn
(τ,ω)

hm(ω)h∗
n(ω)

=







φvv(τ,ω)sinc

(
rmnω

c

)

(spherical),

φvv(τ,ω)J0

(
lmnω

c

)

(cylindrical).

(2.57)

However, the factor 1
hm(ω)h∗

n(ω)
caused by the alignment changes the phase for the planewave

case and both the phase and the magnitude in general. The modified version (2.56) mod-

els the original noise signals vm(τ,ω) as spherically/cylindrically isotropic, which results in

(2.54). Therefore, we have

φvmvn
(τ,ω) =







φvv(τ,ω)sinc

(
rmnω

c

)

(spherical),

φvv(τ,ω)J0

(
lmnω

c

)

(cylindrical).

(2.58)
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This is theoretically sounder and resulted in much better results in our preliminary experi-

ments.

In the experiment in Chapter 4.3, the cylindrically isotropic model was used as the model

of inter-channel noise coherences for McCowan’s method, because it always resulted in a

better result than the spherically isotropic model in our preliminary experiment.

2.3.3 Blind noise decorrelation

In this section, we review another relevant technique of Blind Noise Decorrelation (BND)

proposed by Shimizu et al. [41, 42, 43]. This approach models diffuse noise as isotropic,

and diagonalizes the noise covariance matrix with a constant unitary matrix exploiting sym-

metrical arrays. Shimizu et al. applied this technique to estimation of the target power

spectrogram in diffuse noise environments, but not to post-filtering. We will use it for post-

filtering and DOA estimation in Chapters 4, 5, and 6.

Zelinski [27] assumed that diffuse noise is spatially uncorrelated, but real-world diffuse

noise is highly correlated, especially for small arrays. McCowan et al. [5] assumed that

diffuse noise has known fixed coherences depending on microphone distances to take noise

correlation into account. However, the noise coherence can deviate from a nominal value

due to the geometry of noise sources and the room or the diffraction by a rigid mount.

Consequently, the assumption of explicit values of noise coherences in McCowan’s method

may be inaccurate. In comparison, Shimizu et al. showed that certain classes of symmetrical

arrays enables the diagonalization of the noise covariance matrix by a constant unitary

matrix, under the isotropic noise model defined as follows:

1) The noise power spectrogram at all microphones is identical as in Eq. (2.53).

2) The short-time noise cross-spectrogram is identical for all microphone pairs with an

equal distance:

rmn = rm′n′ ⇒ φvmvn
(τ,ω) = φv

m′vn′
(τ,ω). (2.59)

Note that the explicit value of the noise coherence is not assumed.

As an example of BND, consider a 4-element array with its microphones at the vertices of

a square (Fig. 2.3). From assumption 1), we have
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Figure 2.3 Square array. Since r12 = r23 = r34 = r41 and r13 = r24, the covariance matrix of

isotropic noise becomes circulant.

φv1v1 = φv2v2 = φv3v3 = φv4v4 =: α. (2.60)

Furthermore, we have, from assumption 2),

φv1v2 = φv2v1 = φv2v3 = φv3v2 = · · · = φv1v4 =: β, (2.61)

φv1v3 = φv3v1 = φv2v4 = φv4v2 =: γ, (2.62)

because of r12 = r23 = r34 = r41 and r13 = r24. Consequently, Φvv has the following

structure: Φvv = circ(α, β, γ, β). Here, circ(a1, a2, . . . , ap) denotes the p×p circulant matrix

whose first row is
[

a1 a2 . . . ap

]

, where p is a positive integer. Being a circulant matrix,

Φvv is diagonalized by the 4×4 Discrete Fourier Transform (DFT) matrix F4 for any values

of α, β, and γ [44].

Φvv can also be diagonalized by the following real-valued orthogonal matrix:

P =
1

2











1 1 1 1

1 −1 1 −1

1 −1 −1 1

1 1 −1 −1











. (2.63)

Indeed,

P H
ΦvvP =











α + 2β + γ 0 0 0

0 α − γ 0 0

0 0 α − γ 0

0 0 0 α − 2β + γ











. (2.64)

This means that isotropic noise is decorrelated by the basis transformation P Hv. In the limit

of small array aperture (practically, sufficiently small aperture compare to the wavelength),
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this decorrelation basis can be regarded as a transformation into the sound pressure itself

and its spatial gradients w.r.t. x, y, and both.

The array geometries for which the covariance matrix of isotropic noise is diagonalized by

a constant unitary matrix are called crystal arrays and include the polygonal, rectangular,

polyhedral, polygonal prism, and rectangular solid arrays. The proof of diagonalization and

the specific form of the diagonalization matrix for each class is given in [45, 8].

This approach is similar to the so-called phase-mode processing with spherical microphone

arrays [46, 47, 48, 49, 50], in the sense that both methods basis-transform the observed

signals into an orthonormal basis. However, their objectives are different: the BND aims

to decorrelate isotropic noise, while the phase-mode processing basically aims to make the

beamformer design independent of the array configuration. Also, there is a difference that

the basis vectors of blind noise decorrelation are discrete, whereas those of phase-mode

processing are continuous.

Note that spherically isotropic noise can be decorrelated via spherical harmonic decom-

position [51]. However noise is not always spherically isotropic, because of the distribution

of the noise sources, the room shape, the diffraction by a rigid mount, etc. In this case, the

noise correlation matrix, or the normalized noise covariance matrix, deviates from the ideal

sine cardinal form for spherically isotropic noise. In comparison, the BND can decorrelate

isotropic noise with an arbitrary coherence matrix.

BND is also related to the spatio-temporal gradient method proposed by Ando et al. [52,

53, 54]. In this approach, the sound pressure and its spatio-temporal gradients at a single

point were utilized for acquiring the geometrical information and estimating the location of

sound sources. This approach enables source localization with small array aperture and a

short observation interval. They used a square array and the same basis vectors as in (2.63)

to approximate spatial gradients. In comparison, BND exploits this basis for decorrelation

of diffuse noise.

In the next section, we will review the state of the art of direction-of-arrival estimation.
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2.4 State of the art of direction-of-arrival estimation

2.4.1 Approach based on time difference of arrival

One of the most common approaches is that based on the TDOA between microphones of

the incident wavefront, which is defined as the time it takes for the wavefront to propagate

between them. Let us assume for simplicity that the source and the microphones are on the

same plane. Given the TDOA for a microphone pair, the set of source positions explaining

this TDOA is given by a hyperbolic curve whose focal points are these microphones. There-

fore, given the TDOAs for more than two microphone pairs, the source position is determined

as the intersection of two hyperbolic curves. Specifically, when the source is in the far field of

the microphone array, the hyperbolic curve can be approximated by its asymptotic line. In

practice, these hyperbolic curves or lines do not intersect at a single point, if there are more

than two microphone pairs, due to the errors in TDOA estimation. Therefore, the source

location is determined by minimizing the squared error between the observed TDOAs and

those corresponding to the assumed source location [55, 56, 57].

The most fundamental technique for estimating TDOA between a microphone pair is

based on the cross-correlation function between microphones. Indeed, when there is only

one source and no noise, the TDOA between microphones m and n can be obtained by

picking the largest peak in the cross-correlation function of xm(t) and xn(t):

Rxmxn
(τ) ! E [xm(t)xn(t − τ)]. (2.65)

A generalized cross-correlation function [58], or the inverse Fourier transform of the cross-

spectrum φxmxn
(ω) weighted by some function G(ω), is also used aiming at robustness against

reverberation and noise:

R̃xmxn
(τ) !

1

2π

∫ ∞

−∞

G(ω)φxmxn
(ω)ejωτdω, (2.66)

where φxmxn
(ω) is the cross-spectrum of xm and xn. The main limitation of this TDOA-

based approach is that only one source is assumed, which results in degraded estimation

accuracy in the presence of multiple sources.

2.4.2 Beamforming approach

The beamforming approach is based on steering a beamformer to various directions to

obtain a steered response power, that is, the power of the beamformer output y(τ,ω) as a
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function of the beam direction (look direction). DOA estimates are obtained as largest peaks

in the steered response power. If we denote the beamformer weight corresponding to the

look direction ξ by w(ω; ξ), the steered response power is given by

φyy(ω; ξ) = E [|wH(ω; ξ)x|2] (2.67)

= wH(ω; ξ)Φxx(ω)wH(ω; ξ). (2.68)

Different designs of w(ω; ξ) lead to different methods.

Delay-and-sum beamformer

The DS beamformer is the most fundamental example, and corresponds to

w(ω; ξ) =
h(ω; ξ)

‖h(ω; ξ)‖2
2

(2.69)

from the definition of w(ω; ξ) and (2.29). Here, h(ω; ξ) depends on ξ as follows:

h(ω; ξ) =
[

1 e−jωδ2(ξ) . . . e−jωδM (ξ)

]T

, (2.70)

where δm(ξ) denotes the time it takes for a planewave from the azimuth ξ to propagate from

the first microphone to the m-th microphone. Therefore,

φyy(ω; ξ) =
hH(ω; ξ)Φxx(ω)hH(ω; ξ)

‖h(ω; ξ)‖4
2

(2.71)

=
1

M2
hH(ω; ξ)Φxx(ω)hH(ω; ξ). (2.72)

This beamformer necessitates an array with large aperture and many microphones to form

a sharp beam in the target direction without spatial aliasing as pointed out in Section 2.3.1.

Otherwise, the DOA estimate by this method becomes unreliable due to a broad beam or

the spatial aliasing.

MVDR beamformer

The MVDR beamformer (or Capon’s method), on the other hand, enables DOA estimation

with a small array with a few microphones. This is by directing nulls into the direction of

incident waves from directions other than the look direction. The weight vector is given by

w(ω; ξ) =
Φ

−1
xx

(ω)h(ω; ξ)

hH(ω; ξ)Φ−1
xx

(ω)h(ω; ξ)
. (2.73)
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This leads to

φyy(ω; ξ) =
1

hH(ω; ξ)Φ−1
xx

(ω)hH(ω; ξ)
. (2.74)

Although the MVDR beamformer can deal with multiple sources by steering nulls, diffuse

noise causes estimation errors, which cannot be eliminated by null steering.

2.4.3 MUltiple SIgnal Classification (MUSIC) [1]

The MVDR beamformer steers nulls into DOAs other than the look direction whereas

forming a beam into the look direction. By contrast, MUSIC is based on null steering into

all incident directions. This approach is applicable to multiple sources as well, and features

higher angular resolution compared to the beamforming approach.

The observation model (2.11) implies that, if there are less target sources than the micro-

phones (L < M), the target component
∑L

l=1 sl(τ,ω)h(ω; ξl) resides in the low-dimensional

space

S(ω) ! span{h(ω; ξl)}l. (2.75)

Therefore, each of the basis vectors e1(ω), . . . , eM−L(ω) of the orthogonal complement of

S(ω) forms a directivity pattern with nulls in the target directions:

|eH

i (ω)h(ω; ξ)|2
∣
∣
∣
∣
ξ=ξ1,...,ξL

= 0 (2.76)

The harmonic average of the reciprocals of these directivity patterns

fN(ω; ξ) !
1

∑M−L
i=1 |eH

i (ω)h(ω; ξ)|2
(2.77)

=
1

hH(ω; ξ)E(ω)EH(ω)h(ω; ξ)
(2.78)

attains peaks at ξ = ξ1, . . . , ξL. Here, E(ω) !

[

e1(ω) . . . eM−L(ω)
]

. In this paper, we

call fN(ω; ξ) the narrowband MUSIC spectrum.

It is important in deriving the narrowband MUSIC spectrum to identify the basis {ei}
M−L
i=1 .

When there is no noise, we can observe the target spatial covariance matrix Φcc(τ,ω) !

H(ω)Φss(τ,ω)HH(ω) in (2.18), and the basis is obtained as its null space. In the case of

spatially white noise, the basis is also obtained as the eigenspace of Φcc(τ,ω) corresponding

to the smallest eigenvalue. Even if noise is not spatially white, if the noise covariance
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matrix is known up to a scalar, the basis is obtained as the generalized eigenvectors of the

matrix pencil (Φxx(ω),Γvv(ω)) corresponding to the smallest generalized eigenvalues [1].

Here, Γvv(ω) denotes the scaled noise spatial covariance matrix. For some ideal noise fields,

Γvv(ω) is known a priori. An example is the spherically isotropic noise field [38, 5], for which

Γvv(ω) =











1 sinc(ωr12

c
) · · · sinc(ωr1M

c
)

sinc(ωr21

c
) 1 · · · sinc(ωr2M

c
)

...
...

. . .
...

sinc(ωrM1

c
) sinc(ωrM2

c
) · · · 1











. (2.79)

In practice, however, the real-world noise deviates from such ideal model as pointed out,

and the identification of {ei}
M−L
i=1 by this method can be unreliable. In such case, estimation

of Φcc(τ,ω) from the observed noisy spatial covariance matrix is important, so that we can

identify {ei}
M−L
i=1 as its null space.

In order to integrate the information at different frequencies, we average the narrowband

MUSIC spectra over frequencies. Arithmetic, geometric and harmonic averaging lead re-

spectively to [59, 60]:

fW,A(ξ) !
1

K

ωmax∑

ωmin

fN(ω; ξ) (2.80)

fW,G(ξ) !

[ωmax∏

ωmin

fN(ω; ξ)

]1/K

(2.81)

fW,H(ξ) !
K

∑ωmax

ωmin
1/fN(ω; ξ)

. (2.82)

Here [ωmin,ωmax] denotes the frequency range over which averaging is performed, and K

denotes the number of frequency bins in this range. We call fW(ξ) the wideband MUSIC

spectrum.

The DOA estimates {ξ̂j}
J
j=1 are obtained by picking peaks in fW(ξ), where J is the assumed

number of sources. In practice, fW(ξ) is discretized by evaluating fW(ξ) on a finite grid

{2π i
I
|i = 0, · · · , I − 1} as follows:

fW[i] = fW

(

2π
i

I

)

, i = 0, . . . , I − 1, (2.83)

where I denotes the number of points in the grid. {ξ̂j}
J
j=1 are calculated up to a minimum

angular distance ∆ by the following algorithm:

Algorithm 1. Define Ω
(0) ! {0, · · · , I − 1}. Given the number J of peaks to be selected,

iterate the following for j = 1, 2, · · · , J :
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• ξ̂j = 2π iopt
I

, where iopt denotes the index i maximizing fW[i] subject to i ∈ Ω
(j) and

fW[i − 1] < fW[i] > fW[i + 1].

• Ω
(j+1) = Ω

(j) − {i|d(2π i
I
, ξ̂j) ≤ ∆}, where d(x, y) ! min{|x − y|, 2π − |x − y|} is the

angular distance.

There is a trade-off regarding the length of the data from which the subspace E(ω) in

(2.78) is estimated. Longer data is favorable for obtaining a reliable estimate of Φxx from

which E(ω) is derived. On the other hand, the overdetermined assumption L < M is more

likely to be violated when longer data is used. We shall experimentally investigate the impact

of this data duration in Section 5.3.

2.5 Summary

Both diffuse noise suppression and DOA estimation in diffuse noise boil down to the

same problem of denoising the observed covariance matrix Φxx. Here, denoising at different

difficulty levels is required for these tasks.

The state-of-the-art Wiener post-filtering for diffuse noise suppression necessitates an ac-

curate estimation of the signal power spectrogram. The signal power spectrogram φss(τ,ω)

cannot be observed, but is linked to the observed covariance matrix Φxx(τ,ω) as follows:

Φxx(τ,ω) = φss(τ,ω)h(ω)hH(ω) + Φvv(τ,ω). (2.84)

When the steering vector h(ω) is known, we only need to estimate the scalar coefficient

φss(τ,ω) of the known matrix h(ω)hH(ω). Therefore, it suffices to eliminate some entries or

components of Φvv(τ,ω).

Regarding DOA estimation, state-of-the-art MUSIC requires the accurate identification

of the null space of the signal covariance matrix. If noise is spatially white, meaning that

the noise covariance matrix is a scalar matrix of the form σ2I, the eigenspace corresponding

to the smallest eigenvalue of the observed covariance matrix coincides with the null space.

However, spatially correlated diffuse noise makes it difficult to identify the null space from

the observed data. We tackle this identification problem by estimating the signal covariance

matrix, so that we can obtain the desired null space directly through the eigenanalysis of

the estimated matrix. The signal covariance matrix Φcc(τ,ω) is related to the observed
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covariance matrix Φxx(τ,ω) as follows:

Φxx(τ,ω) = Φcc(τ,ω) + Φvv(τ,ω). (2.85)

Since we need the recovery of the whole signal covariance matrix Φcc(τ,ω) in this case, we

need to eliminate the whole matrix Φvv(τ,ω), not only some entries or components.



Chapter 3

Unified Modeling of Noise Covariance

in Matrix Linear Space

This chapter has partly been published in [12, 13].

As pointed out in Chapter 2, both diffuse noise suppression and DOA estimation in diffuse

noise boil down to denoising of the observed covariance matrix Φxx. This chapter introduces

a unified framework for modeling the noise covariance matrix for covariance matrix denoising.

The rest of this chapter is organized as follows. In Section 3.1, we introduce the unified

model of the noise covariance matrix. In Section 3.2, we show that some conventional models

of diffuse noise are specific cases of the proposed unified model. Section 3.3 introduces the

real-valued noise covariance model. In Section 3.4, we assess the validity of different noise

models with real-world noise data.

3.1 Unified framework for modeling noise in matrix

linear space

Before formally introducing the unified noise model, let us illustrate the motivation behind

this, taking the spatially uncorrelated noise model, which assumes that the noise at different

microphones are uncorrelated to each other. In the 3-microphone case, the noise covariance

matrix is modeled as

Φvv =








α 0 0

0 β 0

0 0 γ








, (3.1)

27
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where α ≥ 0, β ≥ 0, and γ ≥ 0. This can be decomposed as

Φvv = α








1 0 0

0 0 0

0 0 0








+ β








0 0 0

0 1 0

0 0 0








+ γ








0 0 0

0 0 0

0 0 1








. (3.2)

Therefore, Φvv belongs to a matrix linear subspace V spanned by the following three matri-

ces: 






1 0 0

0 0 0

0 0 0








,








0 0 0

0 1 0

0 0 0








,








0 0 0

0 0 0

0 0 1








, (3.3)

embedded in the space H spanned by the 3 × 3 Hermitian matrices:

H ! {A ∈ C
3×3|AH = A}. (3.4)

Note here that, as Φvv is Hermitian by definition, we restrict H to the Hermitian matrices.

Indeed, Φvv does not span the whole subspace V but only the positive semidefinite matrices.

Nevertheless, this formalism leads to efficient algorithms as will be shown in Chapters 4 to

6.

Formally, our general noise model is that the noise covariance matrix Φvv(τ,ω) belongs

to a subspace V(ω) of the linear space

H ! {A ∈ C
M×M |AH = A} (3.5)

over R. Note that H does not form a linear space on C, because it is not closed under the

multiplication by a complex number. Note that we allow the noise subspace V to depend on

ω in general. H is endowed with the inner product

〈A, B〉 !

M∑

m=1

M∑

n=1

amnb
∗
mn (3.6)

= tr(ABH) (3.7)

= tr(AB) (3.8)

and the Frobenius norm

‖A‖F !
√

〈A, A〉. (3.9)

The subspace V(ω) can be characterized either by a set of basis vectors or by the orthogonal

projection operator onto V(ω). We denote the orthogonal projection operators onto V(ω)
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and its orthogonal complement V⊥(ω) by Pω and P⊥
ω respectively, and their general forms

are given by

Pω[A] !

P∑

i=1

〈A, Qi(ω)〉Qi(ω), (3.10)

P⊥
ω [A] !

M2
∑

i=P+1

〈A, Qi(ω)〉Qi(ω), (3.11)

where {Qi(ω)}P
i=1 and {Qi(ω)}M2

i=P+1 denote an orthonormal basis of V(ω) and V⊥(ω) re-

spectively, where P ! dimV(ω). Noting that H is a linear space on R, not C, we see that

its dimension is dimH = M2. Explicit forms of these projectors for specific noise models are

given in Sections 3.2 and 3.3.

This general modeling has several benefits. First, it highlights the theoretical connections

between the previous noise models to be presented in Section 3.2 and the proposed model

to be presented in Section 3.3. Second, as shown in Chapters 4 to 6, it enables the design

of new general algorithms applicable to all specific noise models, instead of multiple specific

algorithms each applicable to a single model. Third, it facilitates the design of new noise

models by restricting the search space for these models; instead of searching for arbitrary

e.g. nonlinear models, we restrict ourselves to linear subspace models.

3.2 New interpretation of conventional noise models as

subspaces

3.2.1 Spatially uncorrelated noise model

Zelinski [27] assumed that noise is uncorrelated between microphones and proposed a post-

filter design based on this assumption as described in Section 2.3.2. The noise covariance

matrix is diagonal in this case, and belongs to the M -dimensional subspace V of H spanned

by 









1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0











,











0 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 0











, · · · ,











0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 1











. (3.12)
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The orthogonal projection operators P and P⊥ are given by

P [A] = D(A), (3.13)

P⊥[A] = O(A), (3.14)

where D(·) is the operation of replacing the off-diagonal entries by zeros, and O(·) that of

replacing the diagonal entries by zeros. Indeed, any A ∈ H can be uniquely expressed as

the sum of a component belonging to V and one belonging to V⊥ as follows:

A = D(A)
︸ ︷︷ ︸

∈ V

+O(A)
︸ ︷︷ ︸

∈ V⊥

. (3.15)

3.2.2 Fixed noise coherence model

McCowan et al. [5] assumed that the noise coherence matrix is fixed, and presented a

post-filter design based on this model as described in Section 2.3.2. This model corresponds

to the subspace

V(ω) ! {kΓ(ω)|k ∈ R}, (3.16)

where Γ(ω) denotes the noise coherence matrix.

The orthogonal projection operators are given by

Pω[A] =
tr(AΓ(ω))

tr(Γ2(ω))
Γ(ω), (3.17)

P⊥
ω [A] = A − tr(AΓ(ω))

tr(Γ2(ω))
Γ(ω). (3.18)

3.2.3 Blind noise decorrelation model

Shimizu et al. [41, 42, 43] assumed that Φvv is diagonalized by a known constant unitary

matrix, and proposed a method for estimating the target power spectrogram based on this

model as described in Section 2.3.3. The assumption implies that Φvv is expressed as

Φvv = PΛP H (3.19)

for some unknown diagonal matrix Λ ∈ R
M×M and some known unitary diagonalization

matrix P ∈ C
M×M . This equation can be rewritten as

Φvv =
M∑

m=1

λmpmpH

m (3.20)
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with λm denoting m-th diagonal entry of Λ and pm the m-th column of P . This implies

that Φvv belongs to

V = span{pmpH

m}
M
m=1. (3.21)

The projectors P and P⊥ are given by

P [A] = PD(P HAP )P H, (3.22)

P⊥[A] = PO(P HAP )P H, (3.23)

because any A ∈ H can be uniquely decomposed as

A = PD(P HAP )P H

︸ ︷︷ ︸

∈ V

+ PO(P HAP )P H

︸ ︷︷ ︸

∈ V⊥

. (3.24)

3.3 Real-valued noise covariance model

The BND model in Section 3.2.3 is based on crystal arrays. In contrast, motivated by the

proposed general noise modeling framework, we propose a model applicable to arrays with

arbitrary geometries [10]. This relaxation widens the application range greatly. For example,

this enables us to utilize ready-made microphone arrays, which does not necessarily belong

to the crystal array category. Furthermore, it is often the case for consumer products that

we can only place microphones in a restricted area. The approach enables to place many

microphones in the area for a better performance, which is not the case for crystal arrays.

Instead of utilizing the symmetry of the whole array, we exploit the pair-wise symmetry.

The isotropy model in Section 3.2.3 implies

φvmvn
= φvnvm

. (3.25)

By definition of the cross-spectrum, we have

φvnvm
= φ∗

vmvn
. (3.26)

From (3.25) and (3.26), we have φvmvn
∈ R. Therefore, Φvv belongs to the following M(M +

1)/2-dimensional subspace V :

V ! {A ∈ R
M×M |AT = A} ⊂ H = {A ∈ C

M×M |AH = A}. (3.27)
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This is spanned by













1 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

0 0 · · · 0 0














, · · · ,














0 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

0 0 · · · 0 1














,
1√
2














0 1 · · · 0 0

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

0 0 · · · 0 0














, · · · ,
1√
2














0 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1

0 0 · · · 1 0














.

(3.28)

The projectors are given by

P [A] = ℜ[A], (3.29)

P⊥[A] = jℑ[A], (3.30)

because any A ∈ H is decomposed uniquely as

A = ℜ[A]
︸ ︷︷ ︸

∈ V

+ jℑ[A]
︸ ︷︷ ︸

∈ V⊥

. (3.31)

This model is more flexible than the spatially uncorrelated noise model and the fixed

noise coherence model for spherically/cylindrically isotropic noise. Indeed, these models are

real-valued, and thus subspaces of the real-valued noise covariance model.

3.4 Assessment of noise models with real-world noise

Two different aspects are important to predict the performance of a certain model:

• the number of parameters of the model (i.e. dimV(ω)) compared to the number of

observations (i.e. dimH),

• the fit between this model and real-world covariance matrices.

Ideally, for e.g. twice as many parameters, we expect the fit to increase a lot. If the fit is

only marginally better, the increased number of parameters is likely to result in a poorer

performance in a practical blind setting. These two pieces of information together hence

enable to predict the outcomes of subsequent experiments to a certain degree.

Another important issue is how much the signal covariance matrix diverge from the noise

model. If the signal covariance matrix also lies in V , this model is useless in distinguishing

between the signal and the noise.
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We conducted an experiment to investigate the fit of real-world noise covariance matrices

to the noise models presented in Sections 3.2 and 3.3 relative to the number of parameters

of the model, as well as the discrepancy of the signal covariance matrix from the model.

We used the following three data/databases we created:

• Rennes database: a database of noise recorded in Rennes, France, using a uniform

linear array with four microphones and the distance between adjacent microphones

of 0.086 m. Three noise samples are included, which are recorded in a cafeteria, on

a subway train, and in a station square. The duration of each noise sample is one

minute.

• Shinjuku database: a database of noise recorded in Shinjuku, Tokyo, using a square

array with four microphones and the diameter of 0.05 m. Four noise samples are

included, which are recorded in a station building, on a platform, on a subway train,

and in a station square. The duration of each noise sample is one minute.

• University data: noise recorded in an experiment room at the University of Tokyo,

using an icosahedral array with twelve microphones and the diameter of 0.15 m. The

windows of the room were open during the recording. The data duration is 10 s.

Each noise sample was converted into the time-frequency representation v(τ,ω) by STFT,

and an empirical noise covariance matrix Φvv(ω) was computed by long-term temporal aver-

age of v(τ,ω)vH(τ,ω) over the whole data duration. We define a measure of the discrepancy

between Φvv(ω) and the noise model V(ω) as follows. Φvv(ω) can be expressed as the sum

of two components: Pω[Φvv](ω) belonging to V(ω) and P⊥
ω [Φvv](ω) orthogonal to V(ω).

Therefore, the discrepancy between Φvv(ω) and V(ω) can be evaluated by

ǫ(ω) !
‖P⊥[Φvv](ω)‖F

‖Φvv(ω)‖F

, (3.32)

which is the distance between Φvv(ω) and V(ω) normalized by ‖Φvv(ω)‖F. Here, the nor-

malization is aimed at removing the dependency of ǫ(ω) on the scale of Φvv(ω). We can

define the discrepancy index for each database and noise model as the arithmetic average of

ǫ(ω) over the frequency and the noise samples in the database.

Fig. 3.1-3.3 two-dimensionally plots the discrepancy index of each model versus its di-

mensionality. These correspond to the Rennes database, the Shinjuku database, and the

University data, respectively. A model closer to the origin is a good model that is able to fit
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Table 3.1 The dimensions of the space H and each model subspace V(ω) as a function of the

number of microphones.

number of microphones H uncor coh BND real

M M2 M 1 M M(M + 1)/2

4 16 4 1 4 10

12 144 12 1 12 78

the real-world noise better with a smaller number of parameters. Note that the dimensions

of the space H and the model subspaces V(ω) are functions of M as shown in Table 3.1.

Having a significantly higher dimension (10 for the Rennes and Shinjuku databases; 78

for the University data) than the other models, the real-valued noise covariance model gave

the smallest discrepancy index of 0.16 to 0.27. This was smallest among all models, which

means the best fit to real-world noise. However, the high dimensionality compared to the

number of observations can lead to the overfitting to the data. The ratio (M + 1)/(2M) of

the dimension and the number of observation is larger than 0.5, and approaches 0.5 when

M → ∞.

In comparison, the BND model reduced the dimensionality significantly compared to the

real-valued noise covariance model with only a small increase in the discrepancy index. For

the Shinjuku database (resp. the University data), it has only 0.4 (resp. 0.13) time as high

a dimension as the real-valued noise covariance model, with an increase in the discrepancy

index of 0.06 (resp. 0.17). Furthermore, it gave a lower discrepancy index compared to the

spatially uncorrelated noise model and the fixed noise coherence model. Note that the BND

model was excluded from Fig. 3.1, because it is inapplicable to the linear array employed for

recording the Rennes database.

The discrepancy index of the spatially uncorrelated noise model was the largest among all

models except for the University data, for which the fixed noise coherence model failed. It

was larger than that of the BND model having the same dimensionality by 0.31-0.35 except

for the Rennes database for which the BND model was inapplicable. The poor fit is due

to the high spatial correlation of real-world noise for small microphone spacing. Indeed,

this model worked better for the Rennes database than for the other databases, for which

microphone distances were larger and thus the noise correlation was lower.

The fixed noise coherence model has dimension 1 independent of the number of micro-

phones, but nevertheless it fitted the Rennes and the Shinjuku databases reasonably well.
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Figure 3.1 The discrepancy index vs. the model dimension for each noise model for the

Rennes database.

For these databases, it outperformed the spatially uncorrelated noise model having M times

as high a dimension. For the Rennes database, the reduction in the discrepancy index was

only 0.02, because the spatially uncorrelated noise model worked relatively well due to the

large microphone distances. In contrast, it reduced the discrepancy index compared to the

spatially uncorrelated noise model by as much as 0.21 for the Shinjuku database by taking

into account the noise correlation. However, for the University data recorded using an ar-

ray mounted on a rigid mount, it gave the highest discrepancy index of 0.82. This can be

interpreted as a result of the diffraction due to the mount.

We also evaluated the discrepancy index between the signal covariance matrix and the

noise models. Since this is expected to depend on the target DOA, we need to evaluate it for

various DOAs. To facilitate this, we utilized a theoretical signal covariance matrix under the

planewave propagation model. The steering vector of the planewave from the zenith angle

θ and the azimuth ξ is given by (2.28) with the delay δm given as a function of θ and ξ by

δm(θ, ξ) = −pT(θ, ξ)(rm − r1)

c
, (3.33)

where rm denotes the coordinates of the m-th microphone, and p(θ, ξ) is the unit DOA

vector

p(θ, ξ) !

[

sin θ cos ξ sin θ sin ξ cos θ

]T

. (3.34)
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Figure 3.2 The discrepancy index vs. the model dimension for each noise model for the

Shinjuku database.
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Figure 3.3 The discrepancy index vs. the model dimension for each noise model for the

University data.

Using this steering vector, denoted by h(ω; θ, ξ), the discrepancy index is calculated as

follows:
1

K

∑

ω

‖P⊥[h(ω; θ, ξ)hH(ω; θ, ξ)]‖F

‖h(ω; θ, ξ)hH(ω; θ, ξ)‖F

, (3.35)
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where K denotes the number of frequency bins, and the scalar φss(τ,ω) in the numerator

and the denominator has been cancelled. Ideally, for the icosahedral array, the effects of

the diffraction by the rigid mount should be taken into account, but we used the simple

planewave model here for a preliminary investigation.

We calculated the discrepancy index as a function of θ and ξ defined by (3.35) for each

noise model and each array configuration used for recording the databases (Fig. 3.4 to 3.14).

Figures 3.4 to 3.6 are the two-dimensional plot of the absolute value of the discrepancy index

as a function of θ and ξ for the uniform linear array configuration used for recording of the

Rennes database for the spatially uncorrelated noise model, the fixed noise coherence model,

and the real-valued noise covariance model, respectively. Figures 3.7 to 3.10 (resp. Figs. 3.11

to 3.14) are the results for the square (resp. icosahedral) array for the spatially uncorrelated

noise model, the fixed noise coherence model, the BND model, and the real-valued noise

covariance model, respectively.

As we see from Figs. 3.4, 3.7, and 3.11, the discrepancy index for the spatially uncorrelated

noise model was independent of θ and ξ for all array configuration. Indeed, as each entry of

h(ω; θ, ξ)hH(ω; θ, ξ) has a unit magnitude,

‖P⊥[h(ω; θ, ξ)hH(ω; θ, ξ)]‖F

‖h(ω; θ, ξ)hH(ω; θ, ξ)‖F

=
‖O[h(ω; θ, ξ)hH(ω; θ, ξ)]‖F

‖h(ω; θ, ξ)hH(ω; θ, ξ)‖F

(3.36)

=

√
M2 − M√

M2
(3.37)

=

√

M − 1

M
. (3.38)

This becomes 0.87 for M = 4, and 0.96 for M = 12.

As we see from Figs. 3.5, 3.8, and 3.12, the discrepancy index for the fixed noise coherence

model was high for all θ and ξ. The minimum and the maximum values among the evaluated

points were 0.75 and 0.84 for the uniform linear array, 0.66 and 0.75 for the square array,

and 0.85 and 0.93 for the icosahedral array.

As seen from Figs. 3.9 and 3.13, the discrepancy index for the BND model was much more

dependent on θ and ξ. For the square array, it became zero at the zenith angles of 0◦ and

180◦ corresponding to the orthogonal DOAs to the array plane. Since the signal wavefront

arrives at the microphones in phase in these cases, the signal cannot be distinguished from

diffuse noise. In contrast, for the three-dimensional icosahedral array, the discrepancy index

was high for all θ and ξ. The minimum and the maximum values among the evaluated points

were 0 and 0.72 for the square array, and 0.71 and 0.87 for the icosahedral array.
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Figure 3.4 The discrepancy index between the signal covariance matrix and the noise model

as a function of the azimuth and the zenith angle of the target DOA (uniform linear array;

spatially uncorrelated noise model).

Finally, as seen from Figs. 3.10 and 3.14, the discrepancy index for the real-valued noise

covariance model was globally lower than that for the BND model. Furthermore, for the

uniform linear array, it became zero at the zenith angles of 0◦ and 180◦ and the azimuths of

90◦ and 270◦ corresponding to the orthogonal DOAs to the array axis. Also, for the square

array, it became zero at the zenith angles of 0◦ and 180◦ corresponding to the orthogonal

DOAs to the array plane. For the three-dimensional icosahedral array, this effect was absent.

The minimum and the maximum values among the evaluated points were 0 and 0.63 for the

linear array, 0 and 0.61 for the square array, and 0.54 and 0.67 for the icosahedral array.

Figures 3.15-3.19 show the noise coherence matrices before and after the BND at the

frequency of 1 kHz. The entry in the m-th row and the n-th column of this matrix is the

correlation coefficient of the noise signals at the m-th and n-th microphones. Figures 3.15-

3.19 correspond to noise samples recorded in a station building, on a platform, on a subway

train, and in a station square (all in Shinjuku), and that recorded in an experiment room

at the University, respectively. We see that the noise correlation is quite high before BND,

especially for the Shinjuku database, for which we used a very small microphone array with

a diameter of 0.05 m. Therefore, the spatially uncorrelated noise model is far from accurate.

The proportion of the magnitude of the diagonal entries increased significantly through the

BND, verifying the BND model.
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Figure 3.5 The discrepancy index between the signal covariance matrix and the noise model

as a function of the azimuth and the zenith angle of the target DOA (uniform linear array;

fixed noise coherence model).
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Figure 3.6 The discrepancy index between the signal covariance matrix and the noise model

as a function of the azimuth and the zenith angle of the target DOA (uniform linear array;

real-valued noise covariance model).
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Figure 3.7 The discrepancy index between the signal covariance matrix and the noise model

as a function of the azimuth and the zenith angle of the target DOA (square array; spatially

uncorrelated noise model).
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Figure 3.8 The discrepancy index between the signal covariance matrix and the noise model

as a function of the azimuth and the zenith angle of the target DOA (square array; fixed

noise coherence model).
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Figure 3.9 The discrepancy index between the signal covariance matrix and the noise model

as a function of the azimuth and the zenith angle of the target DOA (square array; BND

model).
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Figure 3.10 The discrepancy index between the signal covariance matrix and the noise model

as a function of the azimuth and the zenith angle of the target DOA (square array; real-valued

noise covariance model).
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Figure 3.11 The discrepancy index between the signal covariance matrix and the noise model

as a function of the azimuth and the zenith angle of the target DOA (icosahedral array;

spatially uncorrelated noise model).
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Figure 3.12 The discrepancy index between the signal covariance matrix and the noise model

as a function of the azimuth and the zenith angle of the target DOA (icosahedral array; fixed

noise coherence model).



Chapter 3 Unified Modeling of Noise Covariance in Matrix Linear Space 43

azimuth (deg)

z
e
n
it
h
 a

n
g
le

 (
d
e
g
)

 

 

0 90 180 270 360

0

45

90

135

180 0

0.2

0.4

0.6

0.8

1

Figure 3.13 The discrepancy index between the signal covariance matrix and the noise model

as a function of the azimuth and the zenith angle of the target DOA (icosahedral array; BND

model).
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Figure 3.14 The discrepancy index between the signal covariance matrix and the noise model

as a function of the azimuth and the zenith angle of the target DOA (icosahedral array; real-

valued noise covariance model).
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(a) (b)

Figure 3.15 The noise coherence matrices (a) before BND and (b) after BND (noise environ-

ment: station building in Shinjuku).

(a) (b)

Figure 3.16 The noise coherence matrices (a) before BND and (b) after BND (noise environ-

ment: platform in Shinjuku).
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(a) (b)

Figure 3.17 The noise coherence matrices (a) before BND and (b) after BND (noise environ-

ment: subway train in Shinjuku).

(a) (b)

Figure 3.18 The noise coherence matrices (a) before BND and (b) after BND (noise environ-

ment: station square in Shinjuku).
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(a) (b)

Figure 3.19 The noise coherence matrices (a) before BND and (b) after BND (noise environ-

ment: experiment room at the University of Tokyo).



Chapter 4

Diffuse Noise Suppression for Target

Signal from Known Direction

This chapter has partly been published in [8, 10, 11, 14, 16, 17, 18, 19, 20].

We have seen in Chapter 2 that noise suppression can be addressed by MVDR beamforming

followed by Wiener post-filtering as in (2.40). In this framework, it is essential to accurately

estimate the power spectrogram φss(τ,ω) and the steering vector h(ω) from the observed

signals x(τ,ω).

In this chapter, we focus on the estimation of φss(τ,ω) given h(ω). In practice, h(ω)

can be calculated using the planewave propagation model (2.28) given the target DOA. We

describe a unified estimation framework applicable to the general noise model presented in

Chapter 3. We also derive the explicit forms of the estimator for specific noise models.

The rest of this chapter is organized as follows. Section 4.1 presents the unified framework

for the estimation of φss(τ,ω). In Section 4.2, we derive the explicit form of the estimator

for each specific noise model. In Section 4.3, we assess the noise suppression performance of

the proposed approach through simulation with real-world noise.

4.1 Unified framework for diffuse noise suppression based

on orthogonal projection in matrix linear space

The estimation of φss(τ,ω) in this chapter is based on orthogonal projection of the observed

covariance matrix in a matrix linear space. The unified noise model in Chapter 3 assumes

that the noise covariance matrix Φvv(τ,ω) belongs to a subspace V(ω) in the matrix linear

47
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space H. This implies that the orthogonal projection operation P⊥
ω onto the orthogonal

complement V⊥(ω) eliminates Φvv(τ,ω):

P⊥
ω [Φvv](τ,ω) = O. (4.1)

Therefore, we can obtain a noise-free component by applying P⊥
ω to the observed covariance

matrix Φxx(τ,ω). Specifically, applying P⊥
ω to the both sides of (2.23), we have

P⊥
ω [Φxx](τ,ω) = φss(τ,ω)P⊥

ω [h(ω)hH(ω)]. (4.2)

Here, Φxx(τ,ω) can be calculated from the data and h(ω) is assumed to be known. There-

fore, we can obtain φss(τ,ω) using (4.2). In practice, (4.2) contains some errors because of

the misestimation of Φxx(τ,ω) due to the limited data and the imperfection of the noise

model V(ω). For simplicity, we estimate φss(τ,ω) through the Least-Squares (LS) fitting.

Specifically, we minimize the following squared error of (4.2) with respect to φss(τ,ω):

J !
∑

τ

‖P⊥
ω [Φxx](τ,ω) − φss(τ,ω)P⊥

ω [h(ω)hH(ω)]‖2
F. (4.3)

From the orthogonality principle, the optimum solution φ̂ss(τ,ω) is given by

φ̂ss(τ,ω) =
〈P⊥

ω [Φxx](τ,ω),P⊥
ω [h(ω)hH(ω)]〉

‖P⊥
ω [h(ω)hH(ω)]‖2

F

. (4.4)

On the other hand, the estimate φ̂yy(τ,ω) of the beamformer output power φyy(τ,ω) in

the denominator of the Wiener post-filter is calculated by Zelinski’s estimator

φ̂Zel
yy (τ,ω) !

1

M

M∑

m=1

φxmxm
(τ,ω). (4.5)

We observed through a preliminary experiment that this estimator resulted in a higher

noise suppression performance compared to the direct calculation by averaging |y(τ,ω)|2

temporally over several adjacent frames. Consequently, the post-filter is designed as follows:

p̂(τ,ω) !
φ̂ss(τ,ω)

φ̂Zel
yy (τ,ω)

. (4.6)

Since the Wiener post-filter p(τ,ω) lies in the range 0 ≤ p(τ,ω) ≤ 1 in theory, we perform

the following simple post-processing:

p̂(τ,ω) ←







0, if p̂(τ,ω) < 0,

1, if p̂(τ,ω) > 1.

(4.7)
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Figure 4.1 Illustration of target power spectrogram estimation based on orthogonal projection

in the matrix linear space.

4.2 Application to specific noise models

In Section 4.1, we have seen that the general form of the estimator of φss(τ,ω) is given

by (4.4). In this section, we derive the specific estimator for each noise model presented in

Chapter 3.

4.2.1 Application to the spatially uncorrelated noise model

The estimator for the uncorrelated noise model is obtained by substituting (3.14) to (4.4)

as follows:

φ̂uncor
ss (τ,ω) =

〈O[Φxx](τ,ω),O[h(ω)hH(ω)]〉
‖O[h(ω)hH(ω)]‖2

F

. (4.8)

This can be rewritten more explicitly as follows:

φ̂uncor
ss (τ,ω) =

∑

m,n,m'=n

φxmxn
(τ,ω)h∗

m(ω)hn(ω)

∑

m,n,m'=n

|hm(ω)|2|hn(ω)|2
. (4.9)
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This can be seen as a generalization of Zelinski’s estimator φ̂Zel
ss (τ,ω) in (2.49) to the general

steering vector. Indeed, substituting the steering vector (2.28) of a planewave, φ̂uncor
ss (τ,ω)

coincides with φ̂Zel
ss (τ,ω).

4.2.2 Application to fixed noise coherence model

The estimator for the fixed noise coherence model is obtained by substituting (3.18) to

(4.4) as follows:

φ̂coh
ss (τ,ω) =

〈

Φxx(τ,ω) − tr[Φxx(τ,ω)Γ(ω)]

tr[Γ2(ω)]
Γ(ω), h(ω)hH(ω) − tr[h(ω)hH(ω)Γ(ω)]

tr[Γ2(ω)]
Γ(ω)

〉

∥
∥
∥
∥
h(ω)hH(ω) − tr[h(ω)hH(ω)Γ(ω)]

tr[Γ2(ω)]
Γ(ω)

∥
∥
∥
∥

2

F

.

(4.10)

This is different from McCowan’s estimator φ̂Mc
ss (τ,ω) in (2.56) based on the same noise

model, because the latter is based on a suboptimal estimator instead of LS. We compare the

performance of both estimators in the experiment in Section 4.3.

4.2.3 Application to the blind noise decorrelation model

The estimator for the BND model is obtained by substituting (3.23) to (4.4) as follows:

φ̂BND
ss (τ,ω) =

〈PO[P H
Φxx(τ,ω)P ]P H, PO[P Hh(ω)hH(ω)P ]P H〉

‖PO[P Hh(ω)hH(ω)P ]P H‖2
F

. (4.11)

Equation (4.11) can be simplified using the following properties of unitary matrices. For a

unitary matrix P ∈ C
M×M and Hermitian matrices A, B ∈ H, the following equations hold:

〈PAP H, PBP H〉 = 〈A, B〉, (4.12)

‖PAP H‖F = ‖A‖F. (4.13)

Therefore, (4.11) becomes

φ̂BND
ss (τ,ω) =

〈O[P H
Φxx(τ,ω)P ],O[P Hh(ω)hH(ω)P ]〉
‖O[P Hh(ω)hH(ω)P ]‖2

F

. (4.14)

Moreover, defining h̃(ω) ! P Hh(ω) and x̃(τ,ω) ! P Hx(τ,ω), we have

φ̂BND
ss (τ,ω) =

〈O[Φx̃x̃](τ,ω),O[h̃(ω)h̃H(ω)]〉
‖O[h̃(ω)h̃H(ω)]‖2

F

. (4.15)
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This can be rewritten more explicitly as follows [8]:

φ̂BND
ss (τ,ω) =

∑

m,n,m'=n

φx̃mx̃n
(τ,ω)h̃∗

m(ω)h̃n(ω)

∑

m,n,m'=n

|h̃m(ω)|2|h̃n(ω)|2
. (4.16)

Note that this is identical to (4.9) except that there are tildes on hm and xm. Therefore,

(4.16) can be seen as estimation by (4.9) after spatial decorrelation.

4.2.4 Application to the real-valued noise covariance model

The estimator for the real-valued noise covariance model is obtained by substituting (3.30)

to (4.4) as follows [10]:

φ̂real
ss (τ,ω) =

〈jℑ[Φxx](τ,ω), jℑ[h(ω)hH(ω)]〉
‖jℑ[h(ω)hH(ω)]‖2

F

(4.17)

=

∑

m'=n

ℑ[φxmxn
(τ,ω)]ℑ[hm(ω)h∗

n(ω)]

∑

m'=n

ℑ[hm(ω)h∗
n(ω)]2

. (4.18)

Note here that the summation excludes the diagonal entries because they are real-valued by

definition.

4.3 Performance evaluation with real-world noise

To evaluate the diffuse noise suppression performance of proposed/conventional beam-

forming and post-filtering approaches, we conducted a simulation with real-world diffuse

noise. The rest of this section is organized as follows. In Section 4.3.1, we define perfor-

mance metrics. In Section 4.3.2, we describe the experimental conditions, and finally in

Section 4.3.3, we present the results.

4.3.1 Evaluation metrics

We evaluate the noise suppression performance with the following three objective metrics:

the output Signal-to-Noise Ratio (SNR), the Speech-Distortion Index (SDI), and the Noise-

Reduction Factor (NRF). This is motivated by the fact that there is a trade-off between the
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amount of noise reduction and that of target distortion in general: the more the former,

the more the latter as well. Therefore, we evaluate the overall performance with the output

SNR, and target distortion and noise reduction with the SDI and the NRF, separately.

We decompose the estimated target signal (the output of a noise suppression system) into

the sum of two components: one proportional to the target signal and one orthogonal to it.

Note that we can access to the target signal for evaluation, because we artificially mixed it

with the noise component in this simulation. More specifically, let us denote by

s′ !

[

s[0] s[1] · · · s[K − 1]
]T

, (4.19)

ŝ′ !

[

ŝ[0] ŝ[1] · · · ŝ[K − 1]
]T

(4.20)

the vectors comprised of the samples in the target signal s[k] and its estimate ŝ[k], respec-

tively. We decompose the estimated signal ŝ′ into the component ŝ′
‖ parallel to s′ and the

component ŝ′
⊥ perpendicular to it as follows:

ŝ′ = ŝ′
‖ + ŝ′

⊥, (4.21)

where

ŝ′
‖ !

ŝ′Ts′

‖s′‖2
2

s′, (4.22)

ŝ′
⊥ ! ŝ′ − ŝ′

‖. (4.23)

Then, the output SNR is defined by

output SNR ! 10 log10

‖ŝ′
‖‖2

2

‖ŝ′
⊥‖2

2

. (4.24)

A higher output SNR means a better overall noise suppression performance.

In order to calculate the NRF and the SDI, we use the output of the noise suppression

system when it processes the target or noise component separately. Note here that these

components are available for evaluation. Specifically, we denote the output of a noise sup-

pression multichannel filter w(τ,ω) in response to the target or noise component by

sout(τ,ω) ! wH(τ,ω)c(τ,ω), (4.25)

vout(τ,ω) ! wH(τ,ω)v(τ,ω), (4.26)

where c(τ,ω) is the target signal observed at the microphones. The time-domain signals

sout[k] and vout[k] are computed by the inverse STFT of these time-frequency-domain signals,
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whereby the SDI and the NRF are computed as follows [61]:

SDI ! 10 log10

K−1∑

k=0

{sout[k] − s[k]}2

N−1∑

t=0

s2[k]

, (4.27)

NRF ! 10 log10

K−1∑

k=0

v2
1[k]

N−1∑

t=0

v2
out[k]

, (4.28)

where v1[k] denotes the noise at the first microphone. A higher NRF means a better noise

reduction performance, whereas a lower SDI means a better signal preservance performance.

4.3.2 Experimental conditions

Compared methods

We compared the following six methods.

• The MVDR beamformer (2.39) (denoted by MVDR).

• The MVDR beamformer followed by the Wiener post-filter, (2.40), with φss(τ,ω) es-

timated by the proposed unified estimator for each noise model, namely φ̂uncor
ss (τ,ω),

φ̂coh
ss (τ,ω), φ̂BND

ss (τ,ω), and φ̂real
ss (τ,ω) (denoted by SV-uncor, SV-coh, SV-BND, and

SV-real). For φ̂coh
ss (τ,ω), Γ(ω) was calculated using the cylindrically isotropic noise

model (2.52), which generally resulted in a better noise suppression performance in

terms of the output SNR than the spherically isotropic noise model (2.51) in a prelimi-

nary experiment. For φ̂BND
ss (τ,ω), the 4×4 DFT matrix was used as the diagonalization

matrix P . Since h(ω) is calculated by the planewave assumption given the true DOA

in this experiment, φ̂uncor
ss (τ,ω) coincides with φ̂Zel

ss (τ,ω) in (2.49).

• The MVDR beamformer followed by the Wiener post-filter, (2.40), with McCowan’s

estimator φ̂Mc
ss (τ,ω) in (2.56) (denoted by SV-Mc).

h(ω) for MVDR beamforming and post-filtering was calculated based on the planewave

assumption as in (2.28) using the true target DOA. Φxx for MVDR beamforming was com-

puted by long-time temporal averaging of x(τ,ω)xH(τ,ω) using all time frames. On the



54Chapter 4 Diffuse Noise Suppression for Target Signal from Known Direction

other hand, Φxx(τ,ω) for post-filtering was computed by short-time temporal averaging of

x(τ,ω)xH(τ,ω) over 16 consecutive frames.

Array fabrication and generation of the observed signals

We fabricated a square array with a diameter of 5 cm, and recorded noise in the following

environments in Tokyo:

• square,

• station building,

• train,

• platform.

We used electret-type microphones (SONY ECM-C10) and a multi-channel input board with

microphone amplifiers (Tokyo Electron Device TD-BD-8CSUSB). The noise was recorded at

the sampling frequency of 44.1 kHz, and then down-sampled to 16 kHz.

The signals observed by the array, denoted by x[k] ∈ R
4, were generated by summing a

target component c[k] and a diffuse noise component v[k] as follows:

x[k] = c[k] + v[k]. (4.29)

v[k] is the recorded real-world noise. The target component c[k] was simulated under the

assumption that the planewave from the target DOA is observed by the 4-element microphone

array of the same configuration as the fabricated one. Specifically, cm[k] is calculated by

delaying c1[k] by δm, which is the time it takes for the wave to propagate from the first

microphone to the m-th microphone. Here, the subsample delay is realized by applying the

phase-shift factor e−jωδm in the DFT domain. The propagation of each speech interferences

was simulated in the same way as the target signal. v[k] was scaled so that the input SNR

at the first microphone was 0 dB. Here, the input SNR at the first microphone is defined by

the following equation:

input SNR ! 10 log10

K−1∑

k=0

c2
1[k]

K−1∑

k=0

v2
1[k]

= 10 log10

K−1∑

k=0

s2[k]

K−1∑

k=0

v2
1[k]

. (4.30)
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Note that this coincides with the SNR obtained by applying (4.24) to the observed signal at

the first microphone, x1[k], if signal and noise at the microphone are uncorrelated to each

other:
K−1∑

k=0

s[k]v1[k] = 0. (4.31)

The duration of the observed signals was 4 s, and the sampling frequency was 16 kHz.

For each envirionment, we generated 29 samples of observed signals, where the following

conditions were varied for each sample:

• the target speech file chosen from 303 files taken from the ATR Japanese speech

database [62],

• the target DOA chosen randomly,

• the noise segment chosen from those generated by dividing the recorded noise data

(duration: 4 s).

The database consists of 4 (number of environments) × 29 (number of samples of observed

signals for each environment) = 116 observed signals in total.

Conditions for processing and evaluation

The observed signals were analyzed by STFT, where the frame length and the frame shift

were 512 and 32, respectively and the Hamming window was used. For all methods, the 3

frequency bins at lowest frequencies were removed due to extremely low SNRs. The noise

suppression techniques were applied to the observed signals in the STFT domain, and the

noise suppression results were converted into the time domain by inverse STFT.

We averaged the performance measures (i.e. SNR, NRF, and SDI) over the 29 observed

signals in each database to minimize the impact of the unwanted factors.

4.3.3 Experimental results

Tables 4.1–4.3 shows the output SNR, the NRF, and the SDI of the compared methods

for different noise environments. In the tables, the bold figures show the best performance
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Table 4.1 Output SNR (dB) of the compared methods for different noise environment.

method MVDR SV-Mc SV-uncor SV-coh SV-BND SV-real

square 12.4 13.9 13.2 14.5 14.5 14.4

station building 14.3 16.5 14.9 17.0 17.0 16.9

train 12.3 13.6 13.0 14.8 14.8 14.8

platform 13.3 14.4 14.2 15.3 15.3 15.2

Table 4.2 NRF (dB) of the compared methods for different noise environment.

method MVDR SV-Mc SV-uncor SV-coh SV-BND SV-real

square 13.0 20.7 14.0 18.5 18.5 18.5

station building 14.9 21.3 15.7 20.7 20.7 20.7

train 12.6 21.9 13.4 18.5 18.5 18.5

platform 13.7 20.9 14.8 20.4 20.4 20.4

among the methods. The following relationships held betweeen the methods:

output SNR: MVDR ≺ SV-uncor ≺ SV-Mc ≺ SV-coh ≃ SV-BND ≃ SV-real, (4.32)

NRF: MVDR ≺ SV-uncor ≺ SV-coh ≃ SV-BND ≃ SV-real ≺ SV-Mc, (4.33)

SDI: MVDR ≻ SV-uncor ≻ SV-coh ≃ SV-BND ≃ SV-real ≻ SV-Mc, (4.34)

where MVDR ≺ SV-uncor means that SV-uncor outperformed MVDR for instance. The

rankings of the NRF and the SDI were inverse to each other, so the evaluation of the overall

performance by the output SNR is important. All post-filtering techniques outperformed

the beamformer in terms of the output SNR. Proposed SV-coh, SV-BND, and SV-real gave

higher output SNRs than MVDR, SV-uncor, and SV-Mc. The former three methods gave

virtually the identical output SNRs. The SNR gain of these methods compared to the

input was 14.4–17.0 dB, and that compared to SV-Mc was 0.4–1.2 dB. Note that some of

the noise environments included directional as well as diffuse noise (e.g. announcement from

loudspeakers in the platform environment). Nevertheless, the proposed method worked well,

and this showed that it was robust against the presence of directional noise to a certain

degree.

Figures 4.2–4.9 show examples of spectrograms for the noise on a train. Figures 4.2 and

4.3 show the target and the observed spectrograms at the first microphone. The SNR gain of

12.3-14.3 dB by MVDR in Table 4.1 (Fig. 4.4) can mainly be attributed to the removal of the
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Table 4.3 SDI (dB) of the compared methods for different noise environment.

method MVDR SV-Mc SV-uncor SV-coh SV-BND SV-real

square −28.5 −15.3 −25.0 −17.2 −17.2 −17.2

station building −26.7 −18.4 −25.3 −19.0 −19.0 −19.0

train −30.1 −14.5 −28.5 −17.7 −17.7 −17.7

platform −29.5 −15.7 −25.9 −16.8 −16.8 −16.8
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Figure 4.2 Spectrogram of the target signal.
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Figure 4.3 Spectrogram of the observed signal at the first microphone.

noisy three low-frequency bins and the suppression of directional noise. However, as seen in

this figure, a large amount of noise remains unsuppressed, because real-world noise is diffuse

rather than directional. SV-uncor (Fig. 4.6) reduced noise at high frequencies, but low-

frequency noise remained, because of high correlation between microphones. By contrast,

SV-Mc (Fig. 4.5) reduced noise dramatically at all frequencies. However, it caused much

distortion at low frequencies, with the first and the second partials of the speech spectrum

sometimes lost. On the other hand, proposed SV-coh, SV-BND, and SV-real suppressed

noise effectively without much speech distortion unlike SV-Mc.
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Figure 4.4 Spectrogram of the output of MVDR.
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Figure 4.5 Spectrogram of the output of SV-Mc.
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Figure 4.6 Spectrogram of the output of SV-uncor.
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Figure 4.7 Spectrogram of the output of SV-coh.
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Figure 4.8 Spectrogram of the output of SV-BND.
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Figure 4.9 Spectrogram of the output of SV-real.



Chapter 5

Noise-Robust Estimation of

Directions of Arrival of Target Signals

This chapter has partly been published in [12, 13].

This chapter aims to robustly estimate the DOAs of multiple sounds in diffuse noise. We

have seen in Chapter 2 that DOA estimation of multiple sounds can be addressed by MUSIC.

In this framework, it is essential to accurately estimate matrix E(ω) in (2.78), which boils

down to the estimation of the signal covariance matrix.

The subspace model implies that we obtain the orthogonal component of Φcc from the

data as follows:

P⊥[Φcc] = P⊥[Φxx]. (5.1)

Therefore, the problem becomes one of estimating the underlying matrix Φcc from its partial

observation in the subspace V⊥, namely P⊥[Φcc]. In the literature, matrix completion

techniques [63, 64, 65, 66] have been proposed, which aims to recover an underlying low-

rank matrix from the observation of only part of its entries. It is the low-rankness of the

underlying matrix that makes this feasible. We extend the techniques in [63, 64] so that we

can recover an underlying low-rank positive semidefinite matrix from its partial observation

in a subspace. We present two methods based on low-rank matrix completion and trace

norm minimization.

The rest of this chapter is organized as follows. In Sections 5.1 and 5.2, we present the

methods based on low-rank matrix completion and trace norm minimization, respectively.

In Section 5.3, we assess the proposed algorithms with a large database with various mixture

parameters.

60
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5.1 Unified framework based on low-rank matrix com-

pletion

The first algorithm is based on the main assumption that an upper bound of the rank

of Φcc is given. Instead of regarding P⊥[Φxx] as exactly noise-free, we leave some room

for possible errors due to the misestimation of Φxx or the imperfection of the noise model.

Specifically, of the Hermitian positive semidefinite matrices of rank no greater than R, we

seek for the one whose orthogonal projection onto V⊥ is closest to that of Φxx:

min
Φ̂cc

Ψcomp(Φ̂cc) ! ‖P⊥[Φ̂cc] − P⊥[Φxx]‖2
F

s.t. Φ̂cc: Hermitian positive semidefinite, rank(Φ̂cc) ≤ R. (5.2)

Here, the positive semidefiniteness constraint is important, because the eigenvectors of Φcc

belonging to the positive and zero eigenvalues are to be regarded as bases of the signal and

noise subspaces, respectively.

Though the constraint in (5.2) may appear complex, we can optimize Ψcomp efficiently

based on the following theorem:

Theorem 1. Let Φ̂
(0)
cc be a Hermitian positive-semidefinite matrix, and let us calculate Φ̂

(k+1)
cc

given Φ̂
(k)
cc for k = 0, 1, . . . according to the following update rules. Then, Φ̂

(k)
cc (k = 1, 2, · · · )

is also a Hermitian positive-semidefinite matrix such that rank(Φ̂
(k)
cc ) ≤ R, and the obtained

sequence of Φ̂
(k)
cc decreases Ψcomp monotonically: Ψcomp(Φ̂

(0)
cc ) ≥ Ψcomp(Φ̂

(1)
cc ) ≥ · · · .

• Calculate Y (k+1) by

Y (k+1) ! P [Φ̂(k)
cc

] + P⊥[Φxx]. (5.3)

• Calculate the eigenvalue decomposition of Y (k+1):

Y (k+1) = U (k+1)
Σ

(k+1)UH(k+1), (5.4)

where U (k+1) is unitary and Σ
(k+1) is real-valued and diagonal, where the diagonal

entries σ
(k+1)
1 , . . . , σ

(k+1)
M are arranged in decreasing order: σ

(k+1)
1 ≥ · · · ≥ σ

(k+1)
M .

• Calculate Φ̂
(k+1)
cc by

Φ̂
(k+1)
cc

= U (k+1)
Σ

(k+1)
R UH(k+1), (5.5)
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where

Σ
(k+1)
R ! diag

(

max{σ(k+1)
1 , 0}, . . . , max{σ(k+1)

R , 0}, 0, . . . , 0
︸ ︷︷ ︸

M−R

)

, (5.6)

with diag(α1, . . . , αM) denoting the M × M diagonal matrix composed of α1, . . . , αM ,

and max{a, b} denoting the maximum of a and b.

We propose to initialize Φ̂cc by Φ̂
(0)
cc = Φxx and iterate the updates (5.3) to (5.5) until a

preset maximum number of iteration is reached or

‖Φ̂(k+1)
cc − Φ̂

(k)
cc ‖F

‖Φ̂(k)
cc ‖F

< ǫ, (5.7)

where ǫ is a preset small constant, which means Φ̂
(k)
cc has become almost constant.

This algorithm can be regarded as a generalization of Srebro’s algorithm [63]. The gen-

eralization is twofold. First, we consider the completion of an arbitrary missing subspace

instead of missing entries. Second, we consider optimization of a complex-valued matrix

with an Hermitian positive semidefiniteness constraint instead of real-valued matrix without

such a constraint.

5.2 Unified framework based on trace-norm minimiza-

tion

While the algorithm in Section 5.1 requires an upper bound on the rank of Φ̂cc, now

we propose another algorithm that does not require that knowledge. This is advantageous

because the the upper bound is not always given in practice due to an unknown number

of sources and/or reverberation. We can construct a cost function that favors a solution of

lower rank without knowing the upper bound by using a trace norm ‖Φ̂cc‖∗. The trace norm

of a matrix is defined as the sum of the singular values (or equivalently the eigenvalues for

Hermitian positive semidefinite matrices) of this matrix, and is a convex relaxation of the

rank function [64]. Specifically, we consider the following criterion regularized by the trace

norm:

min
Φ̂cc

Ψtrace(Φ̂cc) !
1

2
‖P⊥[Φ̂cc] − P⊥[Φxx]‖2

F + µ‖Φ̂cc‖∗,

s.t. Φ̂cc : Hermitian positive semidefinite, (5.8)
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where µ is a positive regularization weight. Compared to (5.2), (5.8) does not have a rank

constraint, but a trace norm ‖Φ̂cc‖∗ in the cost function instead.

This optimization problem can be solved efficiently with the following algorithm. This is

obtained by generalizing Toh’s algorithm [64] to the optimization of a complex-valued matrix

subject to a Hermitian positive semidefiniteness constraint.

Algorithm 2.

• Set Φ̂
(0)
cc = Φ̂

(−1)
cc = Φxx.

• For k = 0, 1, . . . ,

– Z(k) ! Φ̂
(k)
cc + t(k−1)−1

t(k) (Φ̂
(k)
cc − Φ̂

(k−1)
cc ).

– Y (k) ! P [Z(k)] + P⊥[Φxx].

– Calculate the eigenvalue decomposition of Y (k): Y (k) ! U (k)
Σ

(k)U (k)H, where

U (k) is unitary and Σ
(k) is real-valued and diagonal.

– Φ̂
(k+1)
cc ! U (k) max{Σ(k) − µI, 0}U (k)H.

– t(k+1) !
1+
√

1+4t(k)2

2
.

Here, max{·, 0} denotes the operation of replacing the negative entries of a matrix with

zeros.

The following theorem guarantees that Algorithm 2 converges to a global minimum, for

the cost function is convex. It can be proven in line with [64].

Theorem 2. Let Φ̂
(k)
cc (k = −1, 0, 1, . . . ) be the sequence generated by Algorithm 2. Then,

|Ψtrace(Φ̂
(k)
cc

) − Ψtrace(Φ̂
opt
cc

)| ≤ (‖Φxx‖F + χ)2

(k + 1)2
, (5.9)

where Φ̂
opt
cc

is an optimum solution, and χ is an upper bound of the Frobenius norm of the

optimal solutions.

The stopping condition is defined in the same manner as in the algorithm in Section 5.1.

5.3 Large-scale evaluation with real-world noise

In this section, we evaluate the performance of the proposed methods for DOA estimation

using a large database with real-world noise.
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5.3.1 Created database

We created a database of multichannel speech mixtures in the presence of real-world

background noise. We used the real world noise data explained in Section 4.3.2. The

reverberant target components at the microphones were simulated and added to the noise

data. The dry speech sources were taken from the ATR Japanese database [62]. The source

images at the microphones were simulated via the image method [67] (We used a matlab

code “roomsim single.m” written by Vincent [68].), and mixtures were generated by adding

the source and the noise components together. The room dimensions were assumed to be

3.3× 7.8× 2.4 m. Fig. 5.1 illustrates the geometry of the room and the array. Compared to

simultaneously recording the target signals and noise, this is advantageous in controlling the

mixture conditions. The velocity of sound was assumed to be 340 m/s. All mixtures were

10 second long and their sampling frequency was 16 kHz.

The database was designed to evaluate the effect of the following 4 parameters:

• the number L of target sources: 2, 4, or 6,

• the angle between adjacent sources: 30◦, 60◦, or 90◦,

• the absorption coefficient of the walls: 0.4, 0.7, or 1.0 (These correspond to the rever-

beration time RT60 (i.e. the time it takes for the reverberation to decay by 60 dB) of

186, 79, or 0 ms at 500 Hz.),

• the input SNR: 10, 0, or −10 dB.

Here, the input SNR was defined as the energy ratio between a target component and

diffuse noise at the first microphone, where the energies of all sources were set to the same

value. Excluding geometrically infeasible combination of 6 sources and 90◦ angle, we have

(3 × 3 − 1) × 3 × 3 = 72 mixtures in total.

5.3.2 Methods compared and algorithmic parameters

We compared the performance of the following 10 methods:

• conventional MUSIC based on EVD of the observed covariance matrix (denoted as

conv-white),
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Figure 5.1 The array geometries in the experiment. The case of 4 sources and 60◦ angle

between adjacent sources is shown as an example.

• conventional MUSIC based on the generalized eigenvalue problem Au = αBu, with

the matrices A and B being the observed covariance matrix and the coherence matrix

for cylindrically isotropic noise (denoted as conv-coh),

• MUSIC based on EVD of the signal covariance matrix estimated by the low-rank matrix

completion algorithm with the uncorrelated noise model, the fixed noise coherence

model, the BND model, and the real-valued noise covariance model (denoted as comp-

uncor, comp-coh, comp-BND, and comp-real, respectively),

• MUSIC based on EVD of the signal covariance matrix estimated by the trace norm

minimization algorithm with the uncorrelated noise model, the fixed noise coherence



66Chapter 5 Noise-Robust Estimation of Directions of Arrival of Target Signals

model, the BND model, and the real-valued noise covariance model (denoted as trace-

uncor, trace-coh, trace-BND, trace-real, respectively).

We examined the impact of the following two algorithmic parameters:

• The assumed dimension R of the signal subspace: 1, 2, or 3

• The number B of time blocks over which the local angular spectra were calculated: 1,

4, or 16

Assuming L was known, we picked L peaks in the MUSIC spectrum. In the low-rank

approximation algorithm, the knowledge of R is used in the Φcc estimation and in the

derivation of the basis vectors of the noise subspace. On the other hand, in the trace norm

minimization algorithm and the conventional MUSIC algorithm, it is used for the latter

purpose only.

We set the minimum angular distance ∆ defined in Section 2.4.3 to ∆ = 15◦.

5.3.3 Evaluation metrics

We assess the performance of DOA estimation in terms of F-measure and Root Mean

Square Error (RMSE) [69].

We define a correct peak as one within 5◦ from a true azimuth. Let CJ denote the number

of correct peaks as a function of the number J of selected peaks. Then the precision is

defined by

PJ !
CJ

J
(5.10)

and the recall by

RJ !
CJ

L
. (5.11)

The F-measure is defined as this harmonic average as follows:

FJ !
2PJRJ

PJ + RJ

. (5.12)

Since we assume J = L, PJ = RJ = FJ . Therefore, of these three metrics, we consider only

the F-measure in the following. The RMSE is defined as the square root of the mean square

error of the correct peaks.

We extend these criteria to a set of mixtures as the arithmetic average of the criteria across

all mixtures.
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5.3.4 Experimental results

Table 5.1 shows the F-measure and the RMSE for each method averaged over all mixtures.

We set R = 2 and B = 16. The algorithms based on the fixed noise coherence model (conv-

coh, comp-coh, and trace-coh) gave higher F-measures than conv-white by 0.07-0.08. The

algorithm trace-BND gave an even higher F-measure than these methods by 0.04-0.05, and

also a lower (better) RMSE by 0.3◦-0.5◦.

The other algorithms (comp-BND, comp-uncor, trace-uncor, comp-real, and trace-real)

did not improve (or rather graded) the F-measure compared to conv-white. This implies

the inefficiency of the uncorrelated noise model and the real noise covariance model. On the

other hand, it is still under investigation why the BND model works well with the trace norm

minimization algorithm and does not with the matrix completion algorithm. The above five

algorithms shall not be considered in the rest of the experiment.

Figure 5.2 shows examples of the MUSIC spectrum. Fig. 5.2(a) corresponds to a highly

reverberant and noisy condition (absorption coefficient: 0.4; SNR: −10 dB). The number

of sources was 2, and the true DOAs were 15◦ and 315◦ as depicted by the vertical lines

in the figure. The largest peaks of conv-white are at 0◦ and 180◦. The other algorithms

resulted in less estimation error, and trace-BND resulted in the most accurate peak positions.

Fig. 5.2(b) shows another example with a large number of sources. The parameters R and B

were increased to R = 3 and B = 16 to deal with many sources. Only trace-BND managed

to accurately localize all of four sources. The DOA estimated by it least accurately was 315◦,

for which the error was about 7◦. On the other hand, the other methods resulted in an error

of more than 15◦ for at least one of the DOAs.

We observed that conv-white tended to have spurious peaks at multiples of 90◦ in diffuse

noise, especially at low SNRs. On the other hand, this effect was less prominent for conv-

coh, comp-coh, trace-coh, and trace-BND, which take the correlation of diffuse noise into

account.

Here, we would like to give some comments on the comparison of the algorithms based on

the fixed noise coherence model: conv-coh, comp-coh, and trace-coh. The algorithm trace-

coh generally gave a MUSIC spectrum very similar to that of conv-coh. In comparison, the

MUSIC spectrum of comp-coh was similar to conv-coh for R = 2, but approached that of

conv-white, when R = 3 (see Fig. 5.2). This can be understood by considering the ultimate

case of R = M = 4. In this case, Φ̂cc = Φxx is a solution to the optimization problem (5.2),
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Table 5.1 F-measure and RMSE averaged over all mixtures. We set R = 2 and B = 16.

method conventional completion trace-norm minimization

noise model white coh uncor coh BND real uncor coh BND real

F-measure 0.51 0.58 0.41 0.59 0.42 0.48 0.51 0.58 0.63 0.35

RMSE 1.4◦ 2.1◦ 1.1◦ 1.9◦ 1.2◦ 1.5◦ 1.6◦ 2.0◦ 1.6◦ 1.8◦

and the algorithm stops after one iteration with the output Φ̂cc = Φxx.

Figs. 5.3-5.6 show the impact of the mixture parameters. The algorithmic parameters

were fixed at R = 2 and B = 16. The database was subdivided into 3 groups according to

the value of the mixture parameter of interest. The performance criteria of the algorithms

were averaged over the mixtures in each group and plotted as a function of the parameter

of interest.

Figure 5.3 shows the impact of the input SNR. The F-measures decreased with decreasing

SNR. At the SNR of 10 dB, the F-measure of trace-BND was around 0.7, and comparable

to those of conv-coh, comp-coh, and trace-coh. It remained almost unchanged when the

SNR decreased from 10 dB to 0 dB, whereas the F-measures of the other three algorithms

decreased by about 0.1.

Figure 5.4 shows the measures as a function of L. The algorithm trace-BND gave high F-

measures even for very large L (e.g. about 0.6 for L = 6), whereas those of other algorithms

degraded significantly with the increase of L (e.g. a decrease by about 0.3 when L increased

from 2 to 6). Note however that the F-measure of trace-BND was slightly lower than that

of conv-white, for L = 2.

Figure 5.5 shows the measures as a function of the angle between adjacent sources. When

the angle decreased from 90◦ to 30◦, the F-measure of all methods dropped from approx-

imately 0.8 to 0.4. For the angle of 60◦, trace-BND gave a better F-measure (about 0.7),

compare to those of conv-coh, comp-coh, and trace-coh (about 0.6) and that of conv-white

(about 0.5).

Shown in Figure 5.6 is the impact of the absorption coefficient of the walls, which varies

inversely with the reverberation time. The F-measure decreased with a decreasing absorption

coefficient (i.e. increased amount of reverberation). The F-measure of trace-BND dropped

like the other methods when the coefficient decreased from 1 to 0.7, while the decrease

was much smaller compared to these methods when it decreased from 0.7 to 0.4. This

can be interpreted as follows: the algorithm was affected by the early reflections, which
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(b) L = 4; angle between adjacent sources: 60◦; absorption coefficient:

0.4; SNR: 10 dB; R = 3; B = 16.

Figure 5.2 Examples of the MUSIC spectrum. The markers are defined in the same way as

in Fig. 5.3.



70Chapter 5 Noise-Robust Estimation of Directions of Arrival of Target Signals

violate the anechoic propagation assumption employed by MUSIC, but was robust against

late reverberation, which may be regarded as diffuse noise and well explained by the BND

model.

Figures 5.7 and 5.8 shows the effects of the algorithmic parameters. The performance

criteria of the results for a fixed value of the algorithmic parameter of interest were averaged

over the mixtures, and the averaged criterion was plotted as a function of the parameter.

In Fig. 5.7, the impact of R is plotted. The F-measure increased by about 0.1-0.3 with an

increased R. Also, as shown in Fig. 5.8, the F-measure increased slightly (by about 0.1 for

conv-white and by less than 0.1 for the other methods) when B increased.
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Figure 5.3 F-measure and RMSE as a function of the SNR for the conventional and proposed

methods for R = 2 and B = 16.
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Figure 5.4 F-measure and RMSE as a function of the number of sources for the conventional

and proposed methods for R = 2 and B = 16.
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Figure 5.5 F-measure and RMSE as a function of the angle between adjacent sources for the

conventional and proposed methods for R = 2 and B = 16.
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Figure 5.6 F-measure and RMSE as a function of the absorption coefficient of the walls for

the conventional and proposed methods for R = 2 and B = 16.
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Figure 5.7 F-measure and RMSE as a function of the model rank for the conventional and

proposed methods for B = 16.



76Chapter 5 Noise-Robust Estimation of Directions of Arrival of Target Signals

1 4 16
0

0.2

0.4

0.6

0.8

1

number of blocks

F
−

m
e

a
s
u

re

 

 

conv−white

conv−coh

comp−coh

trace−coh

trace−BND

(a) F-measure

1 4 16
0

0.5

1

1.5

2.0

2.5

number of blocks

R
M

S
E

 (
d

e
g

)

 

 

conv−white

conv−coh

comp−coh

trace−coh

trace−BND

(b) RMSE

Figure 5.8 F-measure and RMSE as a function of the number of blocks for the conventional

and proposed methods for R = 2.



Chapter 6

Diffuse Noise Suppression for Target

Signal from Unknown Direction

This chapter has partly been published in [8].

In Chapter 4, we presented a method for diffuse noise suppression with a known steering

vector. However, the steering vector is not always known in practice, because the target

DOA is not necessarily known. Moreover, even if we know the target DOA, this does not

necessarily mean that we know the steering vector, because of reflections on the walls and/or

diffraction by the rigid mount of the array. Therefore, in order to obtain satisfactory noise

suppression performance in the real world, it is important to estimate the steering vector

from the observed data. In this chapter, we present a method for estimating the target

power spectrogram and the target steering vector jointly from the observed data. These

estimates can then be utilized to design the MVDR beamformer and the Wiener post-filter,

thereby enabling blind extraction of the target signal from the observed data. Furthermore,

we fabricate an icosahedral microphone array, and validate the method through a real-world

experiment using the target signal and noise recorded with the fabricated array.

There are several related researches. In a general transfer function generalized sidelobe

canceller proposed by Gannot et al. [70], normalized transfer functions are estimated on

the assumption that noise is stationary for a longer period compared to the target signal.

Methods proposed by Benesty et al. [71] and Doclo et al. [72] manage to avoid the problem by

calculating a multichannel noise suppression filter using solely the spatial covariance matrices

of the observed signals and noise in order to estimate the spatial images of the target signal.

In comparison, we focus on effective diffuse noise suppression in such a realistic scenario of

77
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an unknown steering vector.

6.1 Unified framework for diffuse noise suppression with

an unknown steering vector

In Chapter 4, we assumed that the steering vector h(ω) is given. In this case, φss(τ,ω)

minimizing the squared error cost (4.3) can be derived by differentiating (4.3) with respect

to φss(τ,ω). In comparison, here we consider both φss(τ,ω) and h(ω) to be unknown.

Since h(ω) appears in a rather complex term P⊥[h(ω)hH(ω)] in (4.3), it is difficult to de-

rive the partial derivative of (4.3) with respect to h(ω). Therefore, instead of directly

optimizing (4.3) with respect to φss(τ,ω) and h(ω), we first estimate {φss(τ,ω)}τ,ω and

{P⊥[h(ω)hH(ω)]}ω. Using the estimated projection P⊥[h(ω)hH(ω)], we can reconstruct

h(ω)hH(ω) by the low-rank matrix completion technique in Chapter 5. Finally, h(ω) can be

derived from h(ω)hH(ω) through PCA.

In order to derive the update rules for estimation of {φss(τ,ω)}τ,ω and {P⊥[h(ω)hH(ω)]}ω

in the first step, we differentiate (4.3) with respect to φss(τ,ω) and P⊥[h(ω)hH(ω)]∗. The

former leads to (4.4), and the latter gives

P⊥[h(ω)hH(ω)] =

∑

τ

φss(τ,ω)P⊥[Φxx](τ,ω)

∑

τ

φ2
ss(τ,ω)

. (6.1)

Therefore, we estimate {φss(τ,ω)}τ,ω and {P⊥[h(ω)hH(ω)]}ω by iterating (4.4) and (6.1)

alternately. {P⊥[h(ω)hH(ω)]}ω is initialized using a rough estimation of h(ω) by some of

the conventional techniques. In the experiment in Section 6.3, this rough estimation is

performed by Independent Vector Analysis (IVA) [73].

Once P⊥[h(ω)hH(ω)] has been estimated, we estimate h(ω)hH(ω) by employing the low-

rank matrix completion algorithm in Section 5.1. Let us denote the estimate ofP⊥[h(ω)hH(ω)]

by Z(ω). We would like an estimate W (ω) of h(ω)hH(ω) whose rank is no more than 1,

and whose projection P⊥[W ](ω) is close to Z(ω). This can be formulated as (5.2) with Φ̂cc

replaced by W and P⊥[Φxx] by Z(ω) and with R = 1. Therefore, W (ω) can be estimated

in the same way as in Section 5.1. W (ω) can be initialized by the minimizer of

∑

τ

‖Φxx(τ,ω) − φ̂ss(τ,ω)W (ω)‖2
F, (6.2)



Chapter 6 Diffuse Noise Suppression for Target Signal from Unknown Direction79

where φ̂ss(τ,ω) is the estimate obtained in the previous step. The minimizer is given by
∑

τ

φ̂ss(τ,ω)Φxx(τ,ω)

∑

τ

φ̂2
ss(τ,ω)

. (6.3)

After that, h(ω) is obtained as the eigenvector corresponding to the largest eigenvalue

of W (ω). Since we have chosen the first microphone as a reference, h(ω) should satisfy

h1(ω) = 1. Therefore, h(ω) and φss(τ,ω) are scaled accordingly.

The algorithm is summarized as follows:

Algorithm 3.

1. Initialize ĥ(ω).

2. Z(ω) ← P⊥[ĥ(ω)ĥH(ω)].

3. Iterate the following for a preset time:

(a) φ̂ss(τ,ω) ← 〈P⊥
ω [Φxx](τ,ω), Z(ω)〉

‖Z(ω)‖2
F

.

(b) Z(ω) ←

∑

τ

φ̂ss(τ,ω)P⊥[Φxx](τ,ω)

∑

τ

φ̂2
ss(τ,ω)

.

4. W̃ (ω) ←

∑

τ

φ̂ss(τ,ω)Φxx(τ,ω)

∑

τ

φ̂2
ss(τ,ω)

.

5. Iterate the following until
‖W̃ (ω) − W (ω)‖F

‖W (ω)‖F

< ǫ (6.4)

is satisfied for a preset positive value ǫ, or a preset maximum number of iterations is

reached.

(a) W (ω) ← W̃ (ω).

(b) Y (ω) ← P [W (ω)] + Z(ω).

(c) Update U (ω) and Σ(ω) according to the eigendecomposition of Y (ω):

Y (ω) = U (ω)Σ(ω)UH(ω), (6.5)

where U (ω) is unitary and Σ(ω) is real-valued and diagonal, where the diagonal

entries σ1(ω), . . . , σM(ω) are arranged in decreasing order: σ1(ω) ≥ · · · ≥ σM(ω).
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(d) W̃ (ω) ← max{σ1(ω), 0}u1(ω)uH

1 (ω), where u1(ω) is the first column of U (ω).

6. ĥ(ω) ← u1(ω)

u11(ω)
. φ̂ss(τ,ω) ← max{σ1(ω), 0}|u11(ω)|2.

6.2 Fabrication of a regular icosahedral array and record-

ing of real-world data

We fabricated a 12-channel icosahedral microphone array with a diameter of 15 cm (see

Fig. 6.1). The microphones were mounted on a pair of rigid hemispherical shells that were

put together with screws. The array is equipped with female screws so that it can be fixed

to a tripod. Electret-type omnidirectional microphones (SONY ECM-C10) were used.

We chose to mount the microphones on a rigid body instead of fixing them in the free

field for several reasons. First, this facilitates the accurate fixture of the microphones at the

vertices of the icosahedron. Second, it preserves the noise isotropy, whereas for a free-field

array, the microphone holders or the wires would perhaps disturb it. Third, this design is

also more beautiful.

Using this microphone array, we recorded a target speech and real-world noise to be used

for evaluation in an experiment room at the University. In Fig. 6.2, we show the layout of

the room, the microphone array, and the loudspeaker used in the experiment.

We used the following devices:

• 16-channel A/D board with microphone amplifiers (Tokyo Electron Device TD-BD-

16ADUSB),

• computer

• 4-channel D/A board (M-AUDIO Fast track pro),

• loudspeaker amplifier (BOSE 1705II),

• loudspeaker (BOSE 101MM).

We recorded the signal and noise components separately, and subsequently added them

together, because the signal component is needed as a reference in the evaluation. The target

signal was a Japanese continuous speech utterance taken from the ATR Japanese speech

database [62] and played from the loudspeaker. When recording the signal component, the
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Figure 6.1 The fabricated 12-element icosahedral microphone array with the microphones

fixed on a spherical shell rigid mount. The diameter is 15cm.

volume of the loudspeaker was set loud enough so that the other sounds from the environment

become negligible. As the noise component, we recorded the environmental sound with the

windows open. The recorded signal and noise components were downsampled from 48 kHz

to 16 kHz, and added together with the appropriate scaling so that the SNR becomes 0 dB.

The duration of the mixture was 10 s.
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Figure 6.2 The layout of the room, the microphone array, and the loudspeaker in the exper-

iment.

6.3 Real-world validation

6.3.1 Experimental conditions

We conducted an experiment to assess the method for diffuse noise suppression with an

unknown steering vector proposed in Section 6.1. The following five methods are applied to

the real-world data described in Section 6.2:

• a state-of-the-art blind source separation method called IVA [73] (baseline),

• the MVDR beamformer followed by the Wiener post-filter with the steering vector and

the target power spectrogram estimated by the iterative method in Section 6.1 using

the uncorrelated noise model, the fixed noise coherence model, the BND model, or the

real-valued noise covariance model (denoted by blind-uncor, blind-coh, blind-BND, or

blind-real).

The methods were applied to the first 8 s of the observed signals. The observed signal was

first analyzed by STFT with a frame length of 2048, a frame shift of 64, and the Hamming

window. We discarded the lower 14 frequency bins by setting them to zero, because their
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Table 6.1 SNR (dB) of the observed signal, and the target signal estimated by IVA and by

the proposed methods.

observed signal IVA blind-uncor blind-coh blind-BND blind-real

−0.2 3.0 5.1 7.7 10.1 −1.2

SNRs were extremely low. The initial value of P⊥[h(ω)hH(ω)] was calculated using h(ω)

derived from the separation matrix estimated by IVA. The observed covariance matrix for

the calculation of the target steering vector and the target power spectrogram was computed

locally by averaging over 48 consecutive frames. On the other hand, that for the MVDR

beamformer was calculated by long-term averaging as in the experiment in Chapter 4. The

observed signal was processed by the MVDR beamformer followed by the Wiener post-filter,

designed using the estimated steering vector and the power spectrogram. The waveform of

the estimated signal was obtained by the inverse STFT.

6.3.2 Experimental results

Table 6.1 shows the SNRs of the observed signal and the outputs of the compared methods

for blind signal extraction. The ranking of the performance of the compared methods was

as follows:

blind-real ≺ (observed signal) ≺ IVA ≺ blind-uncor ≺ blind-coh ≺ blind-BND (6.6)

An SNR enhancement of as much as 10.3 dB from the observed signal was gained by blind-

BND.

We also proposed a blind signal extraction method in [8]. Whereas this method is based

on the BND model and thus only applicable to the crystal arrays, the method proposed here

is applicable to the general subspace noise covariance model. We examined the performance

of the former under the same experimental conditions, and the output SNR was 10.3 dB,

which is comparable to that of the unified method proposed here (10.1 dB).
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Conclusion

This thesis aimed to propose robust methods for microphone array signal processing

against diffuse noise. We proposed a general noise model in the covariance matrix domain,

and unified frameworks for the following three tasks based on it: diffuse noise suppression

with a known target steering vector, DOA estimation of multiple sources in the presence of

diffuse noise, and diffuse noise suppression with an unknown target steering vector. These

are all applicable to the general noise model.

In Chapter 3, a unified framework for modeling the noise covariance matrix was proposed,

which is based on the notion of linear spaces spanned by Hermitian matrices. We showed

that the general model includes the following previous noise models as special cases: the

spatially uncorrelated noise model, the fixed noise coherence model, and the BND model.

Subsequently, our new more flexible real-valued noise covariance model was introduced.

Compared to the previous noise models, it is applicable to an unknown arbitrary array ge-

ometry. Finally, these noise models were compared on a database of real-world noise. The

real-valued noise covariance model fitted real-world noise best, but it has a significantly

higher dimension than the other models. In comparison, the BND model reduced the di-

mensionality essentially without a significant loss in the fit. The fixed noise coherence model

provided a reasonably good fit with only dimension 1, but failed when the microphones were

mounted on a rigid mount, which affects the noise coherence. The spatially uncorrelated

noise model did not fit the real-world noise well due to the small microphone spacing.

In Chapter 4, we described the application to diffuse noise suppression with a known tar-

get steering vector. Based on the general noise modeling in Chapter 3, we derived a general

estimator of the target power spectrogram. It is based on the orthogonal projection of the

84
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observed covariance matrix onto the orthogonal complement of the noise model subspace. We

also derived the estimators for the specific noise models by applying this general estimator

to these models. Finally, the Wiener post-filtering approach with the estimated target power

spectrogram was evaluated through an experiment with real-world noise. The best perfor-

mance was obtained with the proposed framework for the fixed noise coherence model, the

BND model, and the real-valued noise covariance model. That is, when the target steering

vector is given, these three noise models can be applied to diffuse noise suppression equally

effectively. On the other hand, the proposed framework for the spatially uncorrelated noise

model, which coincides with Zelinski’s method under the experimental condition, resulted in

the worst performance among the compared post-filtering methods for spatially correlated

real-world noise. McCowan’s method, which uses the same fixed noise coherence model as

an above-mentioned method but a different estimation scheme, gave higher SNRs than the

proposed framework for the spatially uncorrelated noise model, but lower SNRs than that

for the other noise models.

In Chapter 5, we described the application to DOA estimation of multiple sources in diffuse

noise. We proposed two algorithms based on different matrix completion algorithms: a first

approach based on low-rank matrix completion, which uses knowledge of the rank of the

signal covariance matrix, and a second one based on trace norm minimization, which does

not require that knowledge. Finally, we evaluated and compared the proposed methods for

different noise models using a large database we created with various values of the mixture

parameters. The proposed trace norm minimization algorithm for the BND model worked

best. As in noise suppression in Chapter 4, the spatially uncorrelated noise model did not

work well with spatially correlated real-world noise. In addition, in this blind setting, the

real-valued noise covariance model failed as well, which has many parameters relative to the

number of observations. The estimation performance for the fixed noise coherence model

was reasonably high, though lower than that of the trace norm minimization algorithm for

the BND model. The BND model did not work well with the low-rank matrix completion

algorithm, of which we are to investigate the reason.

In Chapter 6, we described the application to diffuse noise suppression with an unknown

target steering vector and validation with real-world data. We proposed a unified method

based on rank-1 matrix completion and PCA. We described an icosahedral microphone array

we fabricated and the real-world data we recorded using it. We evaluated the proposed

method with the recorded data. The proposed framework for the BND model resulted in
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the best performance with an SNR enhancement of as much as 10.3 dB from the observed

signal. The SNR for the fixed noise coherence model (7.7 dB) was higher than that for

the spatially uncorrelated noise model (5.1 dB), which does not take noise correlation into

account. The real-valued noise covariance model failed again in this blind scenario.

This work suggests a number of future research directions. In the short term, we plan

to conduct additional experiments on the proposed techniques. In the medium term, we

plan to investigate new noise models. Finally, in the long term, we would like to study new

estimation algorithms.

The additional experiments planned in the short term include evaluation of noise sup-

pression in terms of the ASR performance and evaluation of DOA estimation in terms of

source tracking performance. ASR is among the most important applications of noise sup-

pression techniques. We have validated the proposed noise suppression techniques in terms

of criteria such as SNR, and we would like to assess these in terms of the ASR performance

next. Source tracking is also important in practice, because real-world sound sources are

often moving, not static. We plan to apply the proposed DOA estimation techniques to

shorter data, and temporally integrate this short-time estimator via Hidden Markov Model

(HMM) and/or particle filtering techniques. The theory is not novel, but we aim to achieve

a performance breakthrough compared to existing techniques thanks to the use of a more

accurate frame-by-frame estimator.

New noise models to be studied in the medium term include models designed for symmet-

rical arrays other than the crystal arrays and learned/adaptive models. The BND model for

crystal arrays worked better than the real-valued noise covariance model for an unknown

steering vector (Chapters 5 and 6). We can interpret this as follows: although the latter is

applicable to the general array geometry, the former properly reduces the dimensionality by

exploiting the symmetry of the geometry, thereby leading to the better performance in this

blind setting. Since crystal arrays are not always available, it is beneficial to extend this

approach to symmetrical arrays other than the crystal arrays. For example, the standard

uniform linear array leads to a Toeplitz covariance matrix for isotropic noise. Although BND

is inapplicable to this geometry, the general linear-space modeling enables the exploitation of

this symmetry as well. On the other hand, in the proposed unified noise modeling framework,

the design of the noise model boils down to the design of the basis of the model subspace.

The basis vectors presented in this paper are all fixed, and a better performance would be

achieved by leaning them from a database of real-world noise or making them data-adaptive.
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In the long term, we would like to study new estimation algorithms such as one for diffuse

noise suppression for multiple sources. The proposed noise suppression techniques assume a

single target signal. Although experimental results suggested that the method for a known

steering vector in Chapter 4 is robust against multiple directional sources to a certain degree,

the method is not originally conceived for such scenario. Moreover, the blind method in

Chapter 6 is not likely to work for the case of multiple directional sources. A technique for

multiple directional sources would enable diffuse noise suppression robust against directional

interferers as well.
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