B. Efron, Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics, vol.7, issue.1, pp.1-26, 1979.
DOI : 10.1214/aos/1176344552

P. Erdös and A. Rényi, On the central limit theorem for samples from a finite population, Publ. Math. Inst. Hungar. Acad. Sci, vol.4, pp.49-61, 1959.

F. Ferraty and P. Vieu, Nonparametric functional data analysis : theory and practice, 2006.

F. Ferraty and P. Vieu, Kernel regression estimation for functional data. The Oxford Handbook of Functional Data Analysis, pp.72-129, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00794727

W. A. Fuller, Sampling Statistics, 2009.
DOI : 10.1002/9780470523551

S. Gross, Median estimation in sample surveys, ASA Proceedings of Survey Research, pp.181-184, 1980.

J. Hàjek, Limiting distributions in simple random sampling from a finite population, Publ. Math. Inst. Hungar. Acad. Sci, vol.5, pp.361-374, 1960.

J. Hàjek, Asymptotic Theory of Rejective Sampling with Varying Probabilities from a Finite Population, The Annals of Mathematical Statistics, vol.35, issue.4, pp.1491-1523, 1964.
DOI : 10.1214/aoms/1177700375

P. Hall, Principal component analysis for functional data. The Oxford Handbook of Functional Data Analysis, pp.210-234, 2010.

P. Hall, H. G. Müller, and J. L. Wang, Properties of principal component methods for functional and longitudinal data analysis, The Annals of Statistics, vol.34, issue.3, pp.1493-1517, 2006.
DOI : 10.1214/009053606000000272

D. Horvitz and D. Thompson, A Generalization of Sampling Without Replacement from a Finite Universe, Journal of the American Statistical Association, vol.1, issue.260, pp.663-685, 1952.
DOI : 10.1080/01621459.1949.10483288

C. T. Isaki and W. A. Fuller, Survey Design under the Regression Superpopulation Model, Journal of the American Statistical Association, vol.38, issue.377, pp.89-96, 1982.
DOI : 10.1080/01621459.1982.10477770

G. James, Sparseness and functional data analysis. The Oxford Handbook of Functional Data Analysis, pp.298-323, 2010.

A. Kneip and K. J. Utikal, Inference for Density Families Using Functional Principal Component Analysis, Journal of the American Statistical Association, vol.96, issue.454, pp.519-542, 2001.
DOI : 10.1198/016214501753168235

D. Krewski and J. Rao, Inference From Stratified Samples: Properties of the Linearization, Jackknife and Balanced Repeated Replication Methods, The Annals of Statistics, vol.9, issue.5, pp.1010-1019, 1981.
DOI : 10.1214/aos/1176345580

H. Landau and L. A. Shepp, On the supremum of a Gaussian process, Sankhyã, vol.32, pp.369-378, 1970.

A. Mas, Testing for the Mean of Random Curves: A Penalization Approach, Statistical Inference for Stochastic Processes, pp.147-163, 2007.
DOI : 10.1007/s11203-005-0754-3

H. G. Müller and U. Stadtmüller, Generalized functional linear models, The Annals of Statistics, vol.33, issue.2, pp.774-805, 2005.
DOI : 10.1214/009053604000001156

H. G. Müller and X. Leng, Classification using functional data analysis for temporal gene expression data, Bioinformatics, vol.22, pp.68-76, 2006.

H. G. Müller and F. Yao, Functional Additive Models, Journal of the American Statistical Association, vol.103, issue.484, pp.1534-1544, 2008.
DOI : 10.1198/016214508000000751

J. Neyman, On the Two Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection, Journal of the Royal Statistical Society, vol.97, issue.4, pp.558-606, 1934.
DOI : 10.2307/2342192

J. D. Opsomer and C. P. Miller, Selecting the amount of smoothing in nonparametric regression estimation for complex surveys, Journal of Nonparametric Statistics, vol.13, issue.5, pp.593-611, 2005.
DOI : 10.1080/10485250500054642

C. Preda and G. Saporta, Régression PLS sur une processus stochastique, pp.27-45, 2002.

J. A. Rice and B. W. Silverman, Estimating the mean and covariance structure nonparametrically when the data are curves, J. Roy. Statist. Soc. Ser. B, vol.53, pp.233-243, 1991.

J. Rice and C. Wu, Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves, Biometrics, vol.50, issue.1, pp.253-259, 2001.
DOI : 10.1111/j.0006-341X.2001.00253.x

P. M. Robinson and C. E. Särndal, Asymptotic properties of the generalized regression estimator in probability sampling, Sankhya : The Indian Journal of Statistics, vol.45, pp.240-248, 1983.

C. E. Särndal, B. Swensson, J. Wretman, and J. , Model Assisted Survey Sampling, 1992.
DOI : 10.1007/978-1-4612-4378-6

A. Sen, On the estimate of the variance in sampling with varying probabilities, Journal of Indian Society for Agricultural Statistics, vol.5, pp.119-127, 1953.

A. Sood, G. James, and G. Tellis, Functional Regression: A New Model for Predicting Market Penetration of New Products, Marketing Science, vol.28, issue.1, pp.36-51, 2009.
DOI : 10.1287/mksc.1080.0382

Y. Tillé, Théorie des sondages : Échantillonnage et estimation en populations finies, 2001.

Y. Tillé, Sampling Algorithms, 2006.
DOI : 10.1007/978-3-642-04898-2_501

F. Yates and P. Grundy, Selection without replacement from within strata with probability proportional to size, Journal of the Royal Statistical Society, pp.15-235, 1953.

F. Yao, H. G. Müeller, and J. L. Wang, Functional Data Analysis for Sparse Longitudinal Data, Journal of the American Statistical Association, vol.100, issue.470, pp.577-590, 2005.
DOI : 10.1198/016214504000001745

R. Bickel, P. J. Freedman, and D. A. , Asymptotic Normality and the Bootstrap in Stratified Sampling, The Annals of Statistics, vol.12, issue.2, pp.470-482, 1984.
DOI : 10.1214/aos/1176346500

P. Billingsley, Convergence of Probability Measures, 1968.
DOI : 10.1002/9780470316962

F. J. Breidt and J. D. Opsomer, Local polynomial regression estimators in survey sampling, Annals of Statistics, vol.28, pp.1026-1053, 2000.

F. J. Breidt and J. D. Opsomer, Endogenous post-stratification in surveys: Classifying with a sample-fitted model, The Annals of Statistics, vol.36, issue.1, pp.403-427, 2008.
DOI : 10.1214/009053607000000703

H. Cardot, M. Chaouch, C. C. Goga, and . Labruère, Properties of design-based functional principal components analysis, Journal of Statistical Planning and Inference, vol.140, issue.1, pp.75-91, 2010.
DOI : 10.1016/j.jspi.2009.06.012

URL : https://hal.archives-ouvertes.fr/hal-00558588

J. Chen and J. N. Rao, Asymptotic normality under two-phase sampling designs, Statistica Sinica, vol.17, pp.1047-1064, 2007.

R. Chiky and G. Hébrail, Spatio-temporal sampling of distributed data streams, J. of Computing Science and Engineering, 2009.

W. G. Cochran, Sampling techniques, 1977.

D. Degras, Nonparametric estimation of a trend based upon sampled continuous processes, Comptes Rendus Mathematique, vol.347, issue.3-4, pp.191-194, 2009.
DOI : 10.1016/j.crma.2008.12.016

D. Degras, Simultaneous confidence bands for nonparametric regression with functional data, Statistica Sinica, vol.21, issue.4, 2010.
DOI : 10.5705/ss.2009.207

P. Erdös and A. Rényi, On the central limit theorem for samples from a finite population, Publ. Math. Inst. Hungar. Acad. Sci, vol.4, pp.49-61, 1959.

J. T. Faraway, Regression Analysis for a Functional Response, Technometrics, vol.57, issue.3, pp.254-261, 1997.
DOI : 10.1080/00401706.1997.10485118

W. A. Fuller, Sampling Statistics, 2009.
DOI : 10.1002/9780470523551

J. Hàjek, Limiting distributions in simple random sampling from a finite population, Publ. Math. Inst. Hungar. Acad. Sci, vol.5, pp.361-374, 1960.

C. T. Isaki and W. A. Fuller, Survey Design under the Regression Superpopulation Model, Journal of the American Statistical Association, vol.38, issue.377, pp.89-96, 1982.
DOI : 10.1080/01621459.1982.10477770

H. Landau and L. A. Shepp, On the supremum of a Gaussian process, Sankhyã, vol.32, pp.369-378, 1970.

H. G. Müller, Functional modelling and classification of longitudinal data (with discussions). Scand, J. Statist, vol.32, pp.223-246, 2005.

J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2005.

P. M. Robinson and C. E. Särndal, Asymptotic properties of the generalized regression estimator in probability sampling, Sankhya : The Indian Journal of Statistics, vol.45, pp.240-248, 1983.

A. W. Van-der-vaart and J. A. Wellner, Weak Convergence and Empirical Processes, 2000.
DOI : 10.1007/978-1-4757-2545-2

C. T. Isaki and W. A. Fuller, Survey Design under the Regression Superpopulation Model, Journal of the American Statistical Association, vol.38, issue.377, pp.89-96, 1982.
DOI : 10.1080/01621459.1982.10477770

T. Krivobokova, T. Kneib, and G. Claeskens, Simultaneous Confidence Bands for Penalized??Spline??Estimators, Journal of the American Statistical Association, vol.105, issue.490, pp.852-863, 2010.
DOI : 10.1198/jasa.2010.tm09165

H. Landau and L. A. Shepp, On the supremum of a Gaussian process, Sankhyã, vol.32, pp.369-378, 1970.

A. Mas, Testing for the Mean of Random Curves: A Penalization Approach, Statistical Inference for Stochastic Processes, pp.147-163, 2007.
DOI : 10.1007/s11203-005-0754-3

J. D. Opsomer and C. P. Miller, Selecting the amount of smoothing in nonparametric regression estimation for complex surveys, Journal of Nonparametric Statistics, vol.13, issue.5, pp.593-611, 2005.
DOI : 10.1080/10485250500054642

J. A. Rice and B. W. Silverman, Estimating the mean and covariance structure nonparametrically when the data are curves, J. Roy. Statist. Soc. Ser. B, vol.53, pp.233-243, 1991.

P. M. Robinson and C. E. Särndal, Asymptotic properties of the generalized regression estimator in probability sampling, Sankhya : The Indian Journal of Statistics, vol.45, pp.240-248, 1983.

J. Sun and C. R. Loader, Simultaneous Confidence Bands for Linear Regression and Smoothing, The Annals of Statistics, vol.22, issue.3, pp.1328-1345, 1994.
DOI : 10.1214/aos/1176325631

C. E. Särndal, B. Swensson, J. Wretman, and J. , Model Assisted Survey Sampling, 1992.
DOI : 10.1007/978-1-4612-4378-6

A. B. Tsybakov and J. A. Wellner, Introduction to Nonparametric Estimation Weak Convergence and Empirical Processes . With Applications to Statistics, 2000.

J. T. Zhang and J. Chen, Statistical inferences for functional data, The Annals of Statistics, vol.35, issue.3, pp.1052-1079, 2007.
DOI : 10.1214/009053606000001505

C. References, H. Chaouch, M. Goga, C. , and C. Labruère, Properties of Design-Based Functional Principal Components Analysis, J. Statist. Planning and Inference, vol.140, pp.75-91, 2010.

C. , H. Josserand, and E. , Horvitz-Thompson Estimators for Functional Data: Asymptotic Confidence Bands and Optimal Allocation for Stratified Sampling, 2009.

C. , R. Hebrail, and G. , Spatio-temporal sampling of distributed data streams, J. of Computing Science and Engineering, 2009.

C. , J. Müller, H. G. , W. , and J. L. , Functional quasi-likelihood regression models with smooth random effects, J.Roy. Statist. Soc., Ser. B, vol.65, pp.405-423, 2003.

M. , H. Yao, and F. , Functional Additive Model, J. Am. Statist. Ass, vol.103, pp.1534-1544, 2008.

S. , C. E. Swensson, B. , J. Wretman, and J. , Model Assisted Survey Sampling, 1992.

S. , C. J. Holmes, D. J. , S. , and T. M. , The Effect of Sample Design on Principal Components Analysis, J. Am. Statist. Ass, vol.81, pp.789-798, 1986.

R. Berger and Y. G. , Rate of convergence for asymptotic variance of the Horvitz???Thompson estimator, Journal of Statistical Planning and Inference, vol.74, issue.1, pp.149-168, 1998.
DOI : 10.1016/S0378-3758(98)00107-4

J. G. Booth, R. W. Butler, and P. Hall, Bootstrap Methods for Finite Populations, Journal of the American Statistical Association, vol.2, issue.428, pp.1282-1289, 1994.
DOI : 10.2307/2290213

F. J. Breidt and J. D. Opsomer, Local polynomial regression estimators in survey sampling, Annals of Statistics, vol.28, pp.1026-1053, 2000.

H. Cardot, M. Chaouch, C. Goga, and C. Labruère, Properties of design-based functional principal components analysis, Journal of Statistical Planning and Inference, vol.140, issue.1, pp.75-91, 2010.
DOI : 10.1016/j.jspi.2009.06.012

URL : https://hal.archives-ouvertes.fr/hal-00558588

H. Cardot and E. Josserand, Horvitz-Thompson estimators for functional data: asymptotic confidence bands and optimal allocation for stratified sampling, Biometrika, vol.98, issue.1, pp.107-118, 2011.
DOI : 10.1093/biomet/asq070

G. Chauvet, Méthodes de Bootstrap en population finie, 2007.

D. Degras, Simultaneous confidence bands for nonparametric regression with functional data, Statistica Sinica, vol.21, issue.4, 2011.
DOI : 10.5705/ss.2009.207

A. Dessertaine, Estimation de courbes de consommation électrique à partir de mesures non synchrones, pp.353-357, 2008.

J. Faraway, Regression Analysis for a Functional Response, Technometrics, vol.57, issue.3, pp.254-261, 1997.
DOI : 10.1080/00401706.1997.10485118

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.5397

R. Helmers and M. Wegkamp, Wild Bootstrapping in Finite Populations with Auxiliary Information, Scandinavian Journal of Statistics, vol.25, issue.2, pp.383-399, 1998.
DOI : 10.1111/1467-9469.00111

C. E. Särndal, B. Swensson, J. Wretman, and J. , Model Assisted Survey Sampling, 1992.
DOI : 10.1007/978-1-4612-4378-6

R. J. Adler and J. Taylor, Random Fields and Geometry, 2007.
DOI : 10.1137/1.9780898718980

A. Baíllo, A. Cuevas, and R. Fraiman, Classification méthods for functional data. The Oxford Handbook of Functional Data Analysis, pp.259-297, 2010.

Y. G. Berger, Rate of convergence for asymptotic variance of the Horvitz???Thompson estimator, Journal of Statistical Planning and Inference, vol.74, issue.1, pp.149-168, 1998.
DOI : 10.1016/S0378-3758(98)00107-4

P. C. Besse, H. Cardot, and D. Stephenson, Autoregressive Forecasting of Some Functional Climatic Variations, Scandinavian Journal of Statistics, vol.27, issue.4, pp.673-687, 2000.
DOI : 10.1111/1467-9469.00215

P. J. Bickel and D. A. Freedman, Asymptotic Normality and the Bootstrap in Stratified Sampling, The Annals of Statistics, vol.12, issue.2, pp.470-482, 1984.
DOI : 10.1214/aos/1176346500

P. Billingsley, Convergence of Probability Measures, 1968.
DOI : 10.1002/9780470316962

J. G. Booth, R. W. Butler, and P. Hall, Bootstrap Methods for Finite Populations, Journal of the American Statistical Association, vol.2, issue.428, pp.1282-1289, 1994.
DOI : 10.2307/2290213

F. J. Breidt and J. D. Opsomer, Local polynomial regression estimators in survey sampling, Annals of Statistics, vol.28, pp.1026-1053, 2000.

F. J. Breidt and J. D. Opsomer, Endogenous post-stratification in surveys: Classifying with a sample-fitted model, The Annals of Statistics, vol.36, issue.1, pp.403-427, 2008.
DOI : 10.1214/009053607000000703

F. Bunea, A. Ivanescu, and M. Wegkamp, Adaptive inference for the mean of a Gaussian process in functional data, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.35, issue.4, 2011.
DOI : 10.1111/j.1467-9868.2010.00768.x

H. Cardot, F. Ferraty, and P. Sarda, Functional linear model, Statistics & Probability Letters, vol.45, issue.1, pp.11-22, 1999.
DOI : 10.1016/S0167-7152(99)00036-X

H. Cardot, R. Faivre, and M. Goulard, Functional approaches for predicting land use with the temporal evolution of coarse resolution remote sensing data, Journal of Applied Statistics, vol.43, issue.10, pp.1185-1199, 2003.
DOI : 10.1016/0034-4257(79)90013-0

H. Cardot, F. Ferraty, and P. Sarda, Spline Estimators for the Functional Linear Model, Statistica Sinica, vol.13, pp.571-591, 2003.

H. Cardot, M. Chaouch, C. C. Goga, and . Labruère, Properties of design-based functional principal components analysis, Journal of Statistical Planning and Inference, vol.140, issue.1, pp.75-91, 2010.
DOI : 10.1016/j.jspi.2009.06.012

URL : https://hal.archives-ouvertes.fr/hal-00558588

H. Cardot, A. Dessertaine, and E. Josserand, Semiparametric Models with Functional Responses in a Model Assisted Survey Sampling Setting : Model Assisted Estimation of Electricity Consumption Curves, pp.411-420, 2010.
DOI : 10.1007/978-3-7908-2604-3_39

H. Cardot and E. Josserand, Horvitz-Thompson estimators for functional data: asymptotic confidence bands and optimal allocation for stratified sampling, Biometrika, vol.98, issue.1, pp.107-118, 2011.
DOI : 10.1093/biomet/asq070

G. Chauvet, Méthodes de Bootstrap en population finie, 2007.

J. Chen and J. N. Rao, Asymptotic normality under two-phase sampling designs, Statistica Sinica, vol.17, pp.1047-1064, 2007.

R. Chiky, Résumé de flux de données distribués, 2009.

R. Chiky and G. Hébrail, Spatio-temporal sampling of distributed data streams, J. of Computing Science and Engineering, 2009.

J. M. Chiou, H. G. Müller, and J. L. Wang, Functional quasi-likelihood regression models with smooth random effects, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.93, issue.2, pp.405-423, 2003.
DOI : 10.1073/pnas.94.6.2762

G. Claeskens and I. Van-keilegom, Bootstrap confidence bands for regression curves and their derivatives, Ann. Statist, pp.31-18521884, 2003.

W. G. Cochran, Sampling techniques, 1977.

A. Cuevas, M. Febrero, and R. Fraiman, On the use of the bootstrap for estimating functions with functional data, Computational Statistics & Data Analysis, vol.51, issue.2, pp.1063-1074, 2006.
DOI : 10.1016/j.csda.2005.10.012

D. Degras, Nonparametric estimation of a trend based upon sampled continuous processes, Comptes Rendus Mathematique, vol.347, issue.3-4, pp.191-194, 2009.
DOI : 10.1016/j.crma.2008.12.016

D. Degras, Simultaneous confidence bands for nonparametric regression with functional data, Statistica Sinica, vol.21, issue.4, 2010.
DOI : 10.5705/ss.2009.207

URL : http://arxiv.org/abs/0908.1980

A. Dessertaine, Estimation de courbes de consommation électrique à partir de mesures non synchrones, pp.353-357, 2008.

J. C. Deville, M??thodes statistiques et num??riques de l'analyse harmonique, Annales de l'ins????, vol.15, issue.15, pp.3-101, 1974.
DOI : 10.2307/20075177

J. C. Deville and Y. Tillé, Balanced sampling by means of the cube method, 2000.

J. Dauxois and A. Pousse, Les analyses factorielles en calcul des probabilités et en statistiques : essai d'étude synthétique, Thèse d'état, 1976.

B. Efron, Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics, vol.7, issue.1, pp.1-26, 1979.
DOI : 10.1214/aos/1176344552

P. Erdös and A. Rényi, On the central limit theorem for samples from a finite population, Publ. Math. Inst. Hungar. Acad. Sci, vol.4, pp.49-61, 1959.

R. L. Eubank and P. L. Speckman, Confidence Bands in Nonparametric Regression, Journal of the American Statistical Association, vol.5, issue.2, pp.1287-1301, 1993.
DOI : 10.1080/01621459.1993.10476410

J. T. Faraway, Regression Analysis for a Functional Response, Technometrics, vol.57, issue.3, pp.254-261, 1997.
DOI : 10.1080/00401706.1997.10485118

F. Ferraty and P. Vieu, Nonparametric functional data analysis : theory and practice, 2006.

F. Ferraty and P. Vieu, Kernel regression estimation for functional data. The Oxford Handbook of Functional Data Analysis, pp.72-129, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00794727

A. Fey, R. Van-der-hofstad, and M. Klok, Large deviations for eigenvalues of sample covariance matrices, with applications to mobile communication systems, Advances in Applied Probability, vol.25, issue.04, pp.1048-1071, 2008.
DOI : 10.1137/S003613999936372X

W. A. Fuller, Sampling Statistics, 2009.
DOI : 10.1002/9780470523551

S. Geman, A Limit Theorem for the Norm of Random Matrices, The Annals of Probability, vol.8, issue.2, pp.252-261, 1980.
DOI : 10.1214/aop/1176994775

S. Gross, Median estimation in sample surveys, ASA Proceedings of Survey Research, pp.181-184, 1980.

J. Hàjek, Limiting distributions in simple random sampling from a finite population, Publ. Math. Inst. Hungar. Acad. Sci, vol.5, pp.361-374, 1960.

J. Hàjek, Asymptotic theory of rejective sampling with varying probabilities from a finite population Limiting distributions in simple random sampling from a finite population, Annals of Mathematical Statistics Publ. Math. Inst. Hungar. Acad. Sci, vol.35, issue.5, pp.1491-1523, 1964.

P. Hall, Principal component analysis for functional data. The Oxford Handbook of Functional Data Analysis, pp.210-234, 2010.

P. Hall, H. G. Müller, and J. L. Wang, Properties of principal component methods for functional and longitudinal data analysis, The Annals of Statistics, vol.34, issue.3, pp.1493-1517, 2006.
DOI : 10.1214/009053606000000272

J. D. Hart and T. E. Wehrly, Consistency of cross-validation when the data are curves, Stochastic Processes and their Applications, vol.45, issue.2, p.351361, 1993.
DOI : 10.1016/0304-4149(93)90080-N

R. Helmers and M. Wegkamp, Wild Bootstrapping in Finite Populations with Auxiliary Information, Scandinavian Journal of Statistics, vol.25, issue.2, pp.383-399, 1998.
DOI : 10.1111/1467-9469.00111

D. Horvitz and D. Thompson, A Generalization of Sampling Without Replacement from a Finite Universe, Journal of the American Statistical Association, vol.1, issue.260, pp.663-685, 1952.
DOI : 10.1080/01621459.1949.10483288

C. T. Isaki and W. A. Fuller, Survey Design under the Regression Superpopulation Model, Journal of the American Statistical Association, vol.38, issue.377, pp.89-96, 1982.
DOI : 10.1080/01621459.1982.10477770

G. James, Sparseness and functional data analysis. The Oxford Handbook of Functional Data Analysis, pp.298-323, 2010.

J. Johannes, Nonparametric Estimation in Functional Linear Model. Functional and Operatorial Statistics, pp.215-222, 2008.

A. Kneip and K. J. Utikal, Inference for Density Families Using Functional Principal Component Analysis, Journal of the American Statistical Association, vol.96, issue.454, pp.519-542, 2001.
DOI : 10.1198/016214501753168235

D. Krewski and J. Rao, Inference From Stratified Samples: Properties of the Linearization, Jackknife and Balanced Repeated Replication Methods, The Annals of Statistics, vol.9, issue.5, pp.1010-1019, 1981.
DOI : 10.1214/aos/1176345580

T. Krivobokova, T. Kneib, and G. Claeskens, Simultaneous Confidence Bands for Penalized??Spline??Estimators, Journal of the American Statistical Association, vol.105, issue.490, pp.852-863, 2010.
DOI : 10.1198/jasa.2010.tm09165

H. Landau and L. A. Shepp, On the supremum of a Gaussian process, Sankhyã, vol.32, pp.369-378, 1970.

A. Mas, Testing for the Mean of Random Curves: A Penalization Approach, Statistical Inference for Stochastic Processes, pp.147-163, 2007.
DOI : 10.1007/s11203-005-0754-3

H. G. Müller, Functional modelling and classification of longitudinal data (with discussions). Scand, J. Statist, vol.32, pp.223-246, 2005.

H. G. Müller and U. Stadtmüller, Generalized functional linear models, The Annals of Statistics, vol.33, issue.2, pp.774-805, 2005.
DOI : 10.1214/009053604000001156

H. G. Müller and X. Leng, Classification using functional data analysis for temporal gene expression data, Bioinformatics, vol.22, pp.68-76, 2006.

H. G. Müller and F. Yao, Functional Additive Models, Journal of the American Statistical Association, vol.103, issue.484, pp.1534-1544, 2008.
DOI : 10.1198/016214508000000751

J. Neyman, On the Two Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection, Journal of the Royal Statistical Society, vol.97, issue.4, pp.558-606, 1934.
DOI : 10.2307/2342192

J. D. Opsomer and C. P. Miller, Selecting the amount of smoothing in nonparametric regression estimation for complex surveys, Journal of Nonparametric Statistics, vol.13, issue.5, pp.593-611, 2005.
DOI : 10.1080/10485250500054642

C. Preda and G. Saporta, Régression PLS sur une processus stochastique, pp.27-45, 2002.

J. O. Ramsay and B. W. Silverman, Applied Functional Data Analysis : Methods and Case Studies, 2002.
DOI : 10.1007/b98886

J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2005.

J. A. Rice and B. W. Silverman, Estimating the mean and covariance structure nonparametrically when the data are curves, J. Roy. Statist. Soc. Ser. B, vol.53, pp.233-243, 1991.

J. Rice and C. Wu, Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves, Biometrics, vol.50, issue.1, pp.253-259, 2001.
DOI : 10.1111/j.0006-341X.2001.00253.x

P. M. Robinson and C. E. Särndal, Asymptotic properties of the generalized regression estimator in probability sampling, Sankhya : The Indian Journal of Statistics, vol.45, pp.240-248, 1983.

A. Sen, On the estimate of the variance in sampling with varying probabilities, Journal of Indian Society for Agricultural Statistics, vol.5, pp.119-127, 1953.

A. Sood, G. James, and G. Tellis, Functional Regression: A New Model for Predicting Market Penetration of New Products, Marketing Science, vol.28, issue.1, pp.36-51, 2009.
DOI : 10.1287/mksc.1080.0382

J. Sun and C. R. Loader, Simultaneous Confidence Bands for Linear Regression and Smoothing, The Annals of Statistics, vol.22, issue.3, pp.1328-1345, 1994.
DOI : 10.1214/aos/1176325631

C. E. Särndal, B. Swensson, J. Wretman, and J. , Model Assisted Survey Sampling, 1992.
DOI : 10.1007/978-1-4612-4378-6

Y. Tillé, Théorie des sondages : Échantillonnage et estimation en populations finies, 2001.

Y. Tillé, Sampling Algorithms, 2006.
DOI : 10.1007/978-3-642-04898-2_501

A. B. Tsybakov, Introduction to Nonparametric Estimation, 2009.
DOI : 10.1007/b13794

A. W. Van-der-vaart and J. A. Wellner, Weak Convergence and Empirical Processes, 2000.
DOI : 10.1007/978-1-4757-2545-2

F. Yao, H. G. Müeller, and J. L. Wang, Functional Data Analysis for Sparse Longitudinal Data, Journal of the American Statistical Association, vol.100, issue.470, pp.577-590, 2005.
DOI : 10.1198/016214504000001745

F. Yates and P. Grundy, Selection without replacement from within strata with probability proportional to size, Journal of the Royal Statistical Society, pp.15-235, 1953.

J. T. Zhang and J. Chen, Statistical inferences for functional data, The Annals of Statistics, vol.35, issue.3, pp.1052-1079, 2007.
DOI : 10.1214/009053606000001505