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In only 3D shape-based face recognition, since 3D face data, such as facial pointclouds and facial scans, are theoretically insensitive to lighting variations and generally allow easy pose correction using an ICP-based registration step, the key problem mainly lies in how to represent 3D facial surfaces accurately and achieve matching that is robust to facial expression changes. In this thesis, we design an eective and ecient approach in only 3D shape based face recognition. For facial description, we propose a novel geometric representation based on extended Local Binary Pattern (eLBP) depth maps, and it can comprehensively describe local geometry changes of 3D facial surfaces; while a SIFT-based local matching process further improved by facial component and conguration constraints is proposed to associate keypoints between corresponding facial representations of dierent facial scans belonging to the same subject. Evaluated on the FRGC v2.0 and Gavab databases, the proposed approach proves its eectiveness. Furthermore, due to the use of local matching, it does not require registration for nearly frontal facial scans and only needs a coarse alignment for the ones with severe pose variations, in contrast to most of the related tasks that are based on a time-consuming ne registration step.

Considering that most of the current 3D imaging systems deliver 3D face models along with their aligned texture counterpart, a major trend in the literature is to adopt both the 3D shape and 2D texture based modalities, arguing that the joint use of both clues can generally provides more accurate and robust performance than utilizing only either of the single modality. Two important factors in this issue are facial representation on both types of data as well as result fusion. In this thesis, we propose a biological vision-based facial representation, named Oriented Gradient Maps (OGMs), which can be applied to both facial range and texture images. The OGMs simulate the response of complex neurons to gradient information within a given neighborhood and have properties of being highly distinctive and robust to ane illumination and geometric transformations. The previously proposed matching process is then adopted to calculate similarity measurements between probe and gallery faces. Because the biological vision-based facial representation produces an OGM for each quantized orientation of facial range and texture images, we nally use a score level fusion strategy that optimizes weights by a genetic algorithm in a learning process. The experimental results achieved on the FRGC v2.0 and 3DTEC datasets display the eectiveness of the proposed biological vision-based facial description and the optimized weighted sum fusion.

Indeed, (textured) 3D face recognition techniques also have their own downsides, and are currently limited by their high expense in data acquisition and computation. In this thesis, we present a novel framework, asymmetric 3D-2D face recognition, enrolling in textured 3D face models while performing identication only using 2D facial texture images. The motivation is to limit the use of 3D data where they really help to improve face recognition accuracy. The proposed method consists of a new preprocessing pipeline to enhance robustness to illumination and pose changes, an OGM-based facial representation to describe both local shape and texton variations of range and texture faces, as well as a twofold classication step which combines the matching between two facial texture images and the one between a facial range and texture image. The experiments carried out on the FRGC v2.0 database illustrate that the proposed method outperforms 2D intensity image based ones, and achieves comparable results as 3D data based ones do. Furthermore, it avoids the cost and inconvenience of facial data acquisition and computation in 3D based approaches. Keywords: 2D, 3D and multi-modal face recognition, asymmetric face recognition, facial representation. xii Résumé La reconnaissance faciale est l'une des meilleures modalités biométriques pour des applications liées à l'identication ou l'authentication de personnes. En eet, c'est la modalité utilisée par les humains; elle est non intrusive, et socialement bien acceptée. Malheureusement, les visages humains sont semblables et orent par conséquent une faible distinctivité par rapport à d'autres modalités biométriques, comme par exemple, les empreintes digitales et l'iris. Par ailleurs, lorsqu'il s'agit d'images de texture de visages, les variations intra-classe, dues à des facteurs aussi divers que les changements des conditions d'éclairage mais aussi de pose, sont généralement supérieures aux variations inter-classe, ce qui rend la reconnaissance faciale 2D peu able dans des conditions réelles. Récemment, les représentations 3D de visages ont été largement étudiées par la communauté scientique pour palier les problèmes non résolus dans la reconnaissance faciale 2D, qui sont notamment causés par les changements d'illumination et de pose.

Cette thèse est consacrée à la reconnaissance faciale robuste utilisant les données faciales 3D, incluant la reconnaissance de visage 3D, la reconnaissance de visage 3D texturé ainsi que la reconnaissance faciale asymétrique 3D-2D.

La reconnaissance faciale 3D, utilisant l'information géométrique 3D représentée sous forme de nuage de points 3D ou d'image de profondeur, est théoriquement non aectée par les changements dans les conditions d'illumination et peut facilement corriger, par l'application d'une approche de recalage rigide comme ICP, les changements de pose. Le principal dé réside dans la représentation, avec précision, de la surface faciale 3D, mais aussi dans le recalage robuste aux changements d'expression faciale. Dans cette thèse, nous concevons une approche ecace et performante pour la reconnaissance de visage 3D. Concernant la description du visage, nous proposons une représentation géométrique basée sur les cartes extended Local Binary Pattern (eLBP), qui décrivent de manière précise les variations de la géométrie locale de la surface faciale 3D; tandis qu'une étape combinant l'appariement local, basé SIFT, aux informations compositionnelles du visage et aux contraintes de conguration permet d'apparier des points caractéristiques, d'un même individu, entre les différentes représentations de son visage. Évaluée sur les bases de données FRGC v2.0 et Gavab DB, l'approche proposée prouve son ecacité. Par ailleurs, contrairement à la plupart des approches nécessitant une étape d'alignement précise et couteuse, notre approche, en raison de l'utilisation de l'appariement local, ne nécessite pas d'enrôlement dans des conditions de pose frontale précise et se contente seulement d'un alignement grossier.

Considérant que la plupart des systèmes actuels d'imagerie 3D permettent la capture simultanée de modèles 3D du visage ainsi que de leur texture, une tendance majeure dans la littérature scientique est d'adopter à la fois la modalité 3D et celle de texture 2D. On fait valoir que l'utilisation conjointe de ces deux types d'informations aboutit généralement à des résultats plus précis et plus robustes que ceux obtenus par l'un des deux séparément. Néanmoins, les deux facteurs clés de la réussite sont la représentation bimodale du visage ainsi que la fusion des résultats obtenus selon chaque modalité. Dans cette thèse, nous proposons une représentation bio-inspirée du visage, appelée Cartes de Gradients Orientés (Oriented Gradient Maps: OGMs), qui peut être appliqué à la fois à la modalité 3D et à celle de texture 2D. Les OGMs simulent la réponse des neurones complexes, à l'information de gradient dans un voisinage donné et ont la propriété d'être très distinctifs et robustes aux transformations anes d'illumination et géométriques. Le processus d'appariement proposé précédemment est alors adopté pour calculer les mesures de similarité entre le visage probe et les visages de galerie. Etant donné que la représentation bio-inspirée du visage produit une carte OGM pour chaque orientation quantiée de l'image de profondeur du visage et aussi celle texture, nous avons nalement utilisé une stratégie de fusion des scores, basée sur l'algorithme génétique, qui optimise les poids associés à travers un processus d'apprentissage. Les résultats expérimentaux obtenus sur les ensembles de données FRGC v2.0 et 3DTEC illustrent l'ecacité de la description bio-inspirée et de la fusion basée sur la somme pondérée optimisée.

Finalement, les techniques de reconnaissance de visage 3D ou visage 3D texturé ont aussi leurs propres inconvénients, et sont actuellement limitées par leur coût élevé d'acquisition de données et de calcul. Aussi, dans cette thèse, nous présentons un nouveau framework, asymétrique, de reconnaissance faciale 3D-2D. Dans celui-ci l'enrôlement se fait avec la modalité 3D texture alors que la reconnaissance nécessite uniquement les images de texture 2D du visage. La motivation est de limiter l'utilisation des données 3D là où elles permettent d'améliorer la précision de la reconnaissance faciale. La méthode proposée consiste en un nouveau pipeline de prétraitement, an d'améliorer la robustesse aux changements d'illumination et de pose, une représentation de visage basée sur OGM permettant de décrire à la fois les variations locales de forme 3D et de texton des images de profondeur, et de texture faciales, ainsi que d'une double étape de classication qui combine l'appariement entre deux images de texture, et celui entre une image de profondeur et une image Chapter 1 Introduction

Face Recognition

In our daily life, many practical applications such as withdrawing money from cash dispensers, security checking at train stations or airports, logging in computer systems etc., require people to provide their passwords or documents (ID cards or passports), for identication. Unfortunately, common passwords are usually dicult to remember; and documents can be easily stolen or counterfeited, which causes plenty of inconvenience and potential safety hazards. Compared with the traditional password or document based identication approaches, biometrics, which determines or veries the identity of an individual based on his or her physiological specicities (e.g. the ngerprint, iris, face, retina, palm print, hand vein, voice, ear, etc.) and biological behaviours (e.g. signature and gait), also oers good uniqueness and permanence for recognition, and meanwhile it reduces the risk of being lost or faked as well.

Fingerprint or iris recognition techniques grow mature gradually, and can achieve reliable performance. However, they demand much explicit cooperation from users.

Specically, ngerprint requires that the subject cooperate in making physical contact with the sensor surface, while iris imaging currently requires that the subject cooperate to careful position their eye relative to the sensor. Both facts raise problems of how to keep the surface clean and germ-free in a high-throughput application [START_REF] Bowyer | [END_REF]]. There hence is signicant application driven demand for improved performance in face recognition, since the face is natural, non-intrusive, and socially well accepted. Hietmeyer [Hietmeyer 2000] analyzed and compared six biometric attributes containing the face, nger, hand, voice, eye, as well as signature, and concluded that facial feature scored the highest compatibility in a Machine Readable Travel Documents (MRTD) system based on a few evaluation factors, such as enrollment, renewal, machine requirements, and public perception, as shown in Face recognition is a primary activity in everyday life, and almost all human beings distinguish from each other through it. In the past decades, machine-based face recognition has received substantial attention in the community of biometrics, pattern recognition and computer vision. This common interest among researchers working in dierent elds is motivated not only by the fundamental and challenging problems in this domain, but by its numerous potential and practical applications as well. During the development process of face recognition, various databases (e.g.

FERET [START_REF] Phillips | [END_REF] and FRGC [Phillips et al. 2005]) have been released for special research goals and several milestone algorithms have been proposed, like Principal Component Analysis (PCA) [Turk & Pentland 1991], Linear Discriminant [Li & Jain 2005] and the right one from [Hietmeyer 2000].

Analysis (LDA) [Belhumeur et al. 1997], Elastic Bunch Graph Matching (EBGM) [START_REF] Wiskott | [END_REF]], Local Binary Patterns (LBP) [START_REF] Ahonen | [END_REF]], etc. Their applied ranges have been extended in security, forensic, commercial and entertainment elds, including mugshot identication (e.g. issuing driver licenses, face sketch recognition), access control, video surveillance, human computer interface design as well as content-based image and video dataset management. Many commercial face recognition are already available and competent to meet special requirements and contribute to our society.

The general term "face recognition" refers to two main scenarios, i.e. (i) verication or authentication; (ii) recognition or identication. In either scenario, facial images with known subjects are initially enrolled into the system. This set of persons is named as "gallery", and later facial images of these or other persons are used as "probe" or "query" to match against images in the gallery based on their specic similarity measurements. The verication scenario is an one-to-one matching problem, and it compares a probe face against the one in the gallery set whose identity is being claimed. The claimed identity is taken to be authenticated if the match quality exceeds some threshold. The identication scenario involves closed-set recognition problem as well as open-set recognition problem. Closed-set recognition is a one-to-many matching problem, and it compares a probe face with all the gallery ones to determine its identity. The identication of the probe facial image is assigned by locating the facial image in the gallery with which it has the extreme similarity (highest or lowest value). While open-set recognition is more challenging, since it embeds the verication and identication scenario into the same framework which determines whether the encountered person is known or not and nds out the identity if the person is known. In order to compare with the state of the art, this thesis only discusses verication and closed set face identication. The Cumulative Match Characteristic (CMC) curve and Receiver Operating Characteristic (ROC) curve can be both used to evaluate the performance of face recognition. The former one is designed for identication experiments, and it summarizes the percentage of a set of probes that is considered to be correctly matched as a function of the match rank that is counted as a right match; the rank-one recognition rate is the most commonly stated single number from the CMC curve. The latter one is schemed for verication experiments, and it depicts the True Acceptance Rate (TAR, the percentage of a set probe faces that is correctly accepted) as a trade-o against the False Acceptance Rate (FAR, the percentage that is falsely accepted). The verication rate (TAR) at a certain value of FAR (usually pre-dened at 0.1% in face recognition) is most commonly stated single number from the ROC curve. The academic results can be presented in the context of either recognition or verication, the core representation and matching issues are essentially the same. Actually, the raw matching similarities of the CMC curve for a recognition experiment can be readily tabulated in a dierent manner to generate the ROC curve fort a verication experiment [START_REF] Bowyer | [END_REF]].

Challenges in 2D Face Recognition

The face possesses obvious advantages over other biometrics, however, it has its own problems as well. All human faces are similar and thereby oer low distinctiveness as compared with other biometrics, e.g., ngerprint and iris [START_REF] Jain | [END_REF]]. Moreover, when utilizing 2D facial images, intra-class variations, due to factors as diverse as illumination and pose changes are often greater than inter-class ones. Although a great deal of eorts has been devoted to 2D intensity based face recognition, successful experimental results reported so far still require controlled situations, making 2D face recognition challenging and far from reliable in real conditions [START_REF] Zhao | [END_REF]].

Generally, a 2D face recognition system is expected to be robust to the variations of illumination, pose, facial expression, age as well as occlusion.

Pose variations occur in a full 3D orientation and position, while incorporating additional Degrees of Freedom (DOF) including the movement of facial muscles and jaw. Pose variations convey rich and interpersonal information, unfortunately, to Illumination variations have enormously complex inuences on the image of a face appearance, because varying illumination directions leads to shifts in the location and shape of shadows, changes in highlights, and reversal of contrast gradients. Figure 1.3 shows an example of one face illuminated by dierent lighting conditions. To deal with illumination variations, thermal infrared [Socolinsky et al. 2003] [Yamaguchi et al. 1998] and near infrared (NIR) image [Li et al. 2007] based face recognition have been investigated, but the thermal image depends on the temperature of the subject reected by his or her metabolic state, and it can be regarded as a new unstable factor; while the near infrared image needs to be captured under an active NIR source with an constrained intensity, which indicates that this problem has not been fundamentally solved yet. Facial expression variations are mainly caused by the movement of facial muscles in response to a person's internal emotional state, intentions, or social communications. Facial expression contains much important information, and facial expression recognition has thus been an active research topic, in which exaggerated expressions are generally easy to recognize accurately. In contrast to this, because severe movements of facial muscles inuence the face appearance, facial expression is a negative factor to face recognition as well. Some facial images with various expressions are listed in Fig. 1.4. Face aging is generally a slow and irreversible process. During the early growth and development of the face, from birth to adulthood, the greatest change is the craniofacial growth (shape change). During adult aging, from adulthood to old age, the most perceptible change becomes skin aging (texture change) [Fu et al. 2010]. Although this factor only slightly impacts the facial appearance in a short period, the long term inuence still makes face recognition problematic. For example, we can easily gure out the aging process on the faces of Albert Einstein, as shown in Fig. 1.5. Occlusions bring another challenge into this domain, because only partial faces are available as the input for recognition. System accuracies are likely to deteriorate when the percentage of occluded facial part become larger. Common occlusions can be caused by beard, hair, hands, glasses, hats, scarfs, or even cosmetic. Figure 1.6 displays two occlusions due to sunglasses and scarf respectively. 

Face Recognition based on 3D Data

The majority of face recognition research has focused on 2D facial images which are photometric appearances in typical photographs. However, several previous studies motivated possible advantages in 3D face recognition over 2D face recognition. For example, Medioni and Waupotitsch stated in [Medioni & Waupotitsch 2003] -"because we are working in 3D, we overcome limitations due to viewpoint and lighting variations"; Hesher et al. argued -"Range images have the advantage of capturing shape variation irrespective of illumination variabilities" [START_REF] Hesher | [END_REF]]; Gordon claimed -"Depth and curvature features have several advantages over traditional intensity-based features. Specically, curvature descriptors: (1) have the potential for higher accuracy in representing surface-based events, ( 2) are better suited to describe properties of the face in the area such as the cheeks, forehead, and chin, and ( 3) are viewpoint invariant" [Gordon 1992]; etc. All theses works illustrate the general conclusion that using 3D data is a promising solution to deal with some key challenges in 2D face recognition, and the reasons are as follows:

(a) 3D face data conveys the exact shape information of facial surfaces dened (and can supposedly be acquired) independent of illumination, which is unlike photometric appearances;

(b) 3D face data allows more convenient pose correction than 2D face data;

(c) 3D face data tends to change less with variations in cosmetic use, skin coloration, similar surface reectance factors than 2D face appearance [Faltemier 2007].

Nevertheless, the further development in 3D face recognition is being impeded by two main factors, i.e. data acquisition and facial expression variations. Currently, the sensing technologies of 3D imaging systems fall into three basic categories: active, passive, and hybrid [START_REF] Bowyer | [END_REF]]. The active type consists of a camera and a light projector with a pre-dened geometric relationship. A light pattern is projected onto the scene, detected in an image acquired by the camera, and the 3D location of points can then be computed. The sensors of VIVID 910 serial production of Minolta used in [Lu & Jain 2005a, Chang et al. 2003a] would be a straightforward illustration of this type. The passive type used two cameras with a known geometric relationship to image the subject, corresponding points are found in the two images, and the 3D location of the points can be calculated. The Geometrix system [Medioni & Waupotitsch 2003] is a representative of this method. The hybrid type combines the way of the active and passive one. In this technique, a pattern is projected onto the scene and then imaged by a stereo camera rig. The projected pattern simplies the selection of corresponding points, and can improve their density in the multiple images. The 3Q "Qlonerator" system made by 3DMD exploited this type of sensor. In general, the active sensor can provide a high depth accuracy, but it is limited by the acquisition time; while the passive sensor works at a high speed, but it lacks the ability of producing dense and accurate sampling of 3D points in regions where there is not much texture. The hybrid sensor combines the advantages of the active and passive ones, and is thus considered to be the most promising way. Figure 1.7 depicts the production appearance of Minolta VIVID 910 and its working principle.

In 2006, Bowyer et al. [START_REF] Bowyer | [END_REF]] concluded that an ideal 3D sensor for face recognition applications would combine at least the following properties: (i) image acquisition time similar to that of a typical 2D camera,(ii) a large depth of eld; e.g, a meter or more in which there is essentially no loss in accuracy of depth resolution, (iii) robust operation under a range of "normal" lighting conditions, (iv) no eye safety issues arising from projected light, (v) dense sampling of depth values; perhaps 1000 × 1000, and (vi) depth resolution of better than 1 mm. Although the 3D imaging techniques have been greatly improved since then, evaluated by these criteria, existing 3D sensors are still only competent to support advanced research in this area, but cannot meet the requirements of practical application yet.

The 3D face shape is usually sensed in combination with a 2D intensity image, and 3D face can be represented as texture map (the 2D intensity image overlays on a 3D shape); range image (depth image), shaded model, wireframe and pointclound. Figure 1.8 shows an example of dierent formats of a 3D face model. Except texture map, all the other formats convey the exact shape information of 3D facial surfaces, which can drastically deform under facial expressions in a complex way, since they are driven by highly complex muscle mechanism, leading to deterioration in accuracy of 3D face recognition. Our previous studies [Ben [START_REF] Soltana | [END_REF], Huang et al. 2011b] show that facial expression even has a greater eect on 3D face recognition compared with the 2D based one. Nevertheless, expression deformations and the 3D shape of a face are more accurately captured in 3D scans, as a result, this challenge probably can be better addressed in the 3D domain than in 2D domain.

To handle facial expression changes in 3D face recognition, signicant eort has been made in the last few years. We can roughly classify them into four streams.

The rst stream focuses on the feature points or regions within facial areas where the shape changes the least with varying facial expression, and these areas are thus named as "(relatively) rigid ones". For example, the nose region is often emphasized, since it varies relatively little with expressions, while the mouth region is usually ignored, because its shape changes greatly with facial expression. However, up till now, there has been no study to show a large subset of the face that is perfectly shape invariant across all facial expression variations. The second stream concentrates on the improvement of the gallery set by enrolling dierent expressive 3D face models, aiming to reduce the dissimilarity between a probe and its enrolled samples. The problem of this approach is that the probe may still present an expression which is dierent from those contained in its face models in the gallery set, and the requirements of a great diversity of enrolled samples is unrealistic as well. The third stream relies on a generic model of 3D facial expressions, which can be applied to any 3D face models. The similarity between a probe and gallery face can be computed according to their parameters controlled by the pre-dened model. However, the same expression probably results in diverse facial shapes of dierent persons or even the same person at dierent times and cultural contexts, which indicates there likely is no general model to predict how facial expressions transfer into each other. The last stream tends to search for the facial features that are invariant or at least robust to facial expression changes, but really eective descriptors are seldom discovered. Moreover, this trend always leads to more sophisticated systems with the training process to learn the distribution of facial expression variations and/or the information fusion of dierent face modalities, i.e. 2D intensity and 3D shape.

All the facts demonstrate that more eort should be put into this issue.

Considering both the challenges in the respect of data acquisition and facial expression, it is still premature to conclude that 3D face recognition has solved the key problems in 2D face recognition.

Landscape of 3D Face Recognition

Human faces are 3D objects containing shape (3D surface) and texture (2D intensity) information, and current 3D imaging system generally deliver 3D face models along with their aligned texture counterparts, as a result, to some extent, 2D intensity image based face recognition can be regarded as a part of 3D face recognition.

According to which modality is adopted in the gallery and probe set, 3D face recognition can be carried out in several scenarios: solely 3D shape based face recognition, textured 3D (multi-modal 2D+3D) face recognition, and asymmetric (3D vs. 2D or vice versa) face recognition. Figure 1.9 shows an illustration of dierent scenarios in 3D face recognition.

In only 3D shape based face recognition, face samples in the gallery and probe sets are range images, wireframes or point-clouds all of which only convey geometry information, and such a recognition scenario is thus theoretically invariant to illumination changes and allows easy pose correction. The core problem lies in how to represent facial surfaces accurately and achieve robust matching to facial expression variations.

In textured 3D face recognition, gallery and probe face models consist of both 2D intensity and 3D shape information, and this scenario computes the similarity measurement between 2D textures as well as the one between 3D surfaces, and both scores are then combined for nal decision. Since it makes use of both clues and is thus expected to achieve more accurate and robust performance than only using either of the single modality. Textured 3D face recognition generally involves two critical issues, i.e., how to describe faces in both modalities and how to fuse their accuracies.

Recently, Asymmetric face recognition appeared as a novel topic in face recognition domain. The word "asymmetric" means that dierent types of face data are employed in the gallery and probe set respectively. For instance, 3D face models are used for enrollment, and only 2D intensity face images are taken as probes; otherwise, visa versa. Essentially, this scenario mainly concerns the matching between heterogenous face data, i.e. 3D shape vs. 2D intensity or textured 3D shape vs. 2D intensity. Indeed, when the face data in the gallery and probe set are asymmetric, we can reconstruct 3D face shapes using mutiple 2D intensity face images or produce 2D intensity face images by rendering 3D face shapes to achieve homologous matching, but both solutions fall into the above two scenarios again; therefore, we will not detailedly discussed them in this thesis.

3D Face Databases

Many 3D face datasets have been collected and released so far for public research activities, for example, FRGC v2.0 [Phillips et al. 2005], BU-3DFE [Yin et al. 2006b XM2VTS [START_REF] Messer | [END_REF]], 3D_RMA [Beumier & Acheroy 2001], Notre Dame, GavabDB [Moreno & Sanchez 2004], 3DTEC, USF 3D [Blanz & Vetter 1999], York [Heseltine 2005], FRAV3D [START_REF] Conde | [END_REF], Bosphorus [Savran et al. 2008], MPI [Troje & Bultho 1996], etc. Please see Table 1.1 for a comprehensive introduction of public 3D face databases.

From Table 1.1, we can see that each 3D face dataset was designed for one or more specic research challenges in this domain, including:

• Models of a great number and demographic variety of subjects: FRGC v2.0;

• Models of a given person at repeated intervals of time: FRGC v2.0;

• Models with substantial variations of facial expressions: BU-3DFE, Bosphorus, FRGCv2.0, GavabDB, York, etc;

• Models of twins variations: 3DTEC. In this thesis, three datasets are used for experimental evaluations and analysis on our proposed approaches, i.e. FRGC v2.0, GavabDB and 3DTEC.

The FRGC dataset

The FRGC database provides a number of experiments; however, since this thesis concentrates on face recognition based on 3D data, we mainly used the protocol of Experiment 3, that is, matching 3D faces (shape and texture) to 3D faces (shape and texture). The face data for Experiment 3 consist of 4950 3D face models along with their aligned texture counterparts acquired with the Minolta Vivid scanner 910 during 2003-2004 academic year. The spatial resolution of the scanner is 480×640, but the resolution of faces changes because they were scanned at dierent distances from the scanner. The data consists of frontal viewpoints of subjects mostly captured from the shoulder level up. Among all these subjects, 57% are male and 43% are female, with the following age distribution: 65% 18-22 years old, 18% 23-27 years old and 17% 28 years old or over. Some of the subjects have facial hair, but none of them is wearing glasses. There are minor pose variations, and major illumination as well as facial expression variations. More detailed statics on the database are given by Phillips et al. [Phillips et al. 2005].

The 3D faces (shapes) are available in the form of four matrices, each of size 480×640. The rst matrix is a binary mask indicating the valid pixels (or points) in the remaining three matrices that respectively contain the x, y, and z-coordinates of the pixels. The 2D faces (texture maps) are 480×640 color images having a oneto-one correspondence to their respective 3D face. The texture maps are correctly registered to the 3D faces in most cases, however, to a few examples, the registration between texture and shape of the same face model is incorrect. In this dataset, the original 3D face models contain noises, spikes, and holes.

All the face data are divided into three sets (based on acquisition time), namely, Spring2003, Fall2003, and Spring2004. The rst subset, Spring2003, made up of 943 3D face models with a neutral expression is also called FRGC v1.0, and the other two compose FRGC v2.0 which contains 4007 3D face models of 466 subjects. The FRGC explicitly species that FRGC v1.0 be utilized for training while FRGC v2.0 be used for validation. Figure 1.10 lists some samples of textured 3D face models in the FRGC dataset.

The GavabDB dataset

To the best of our knowledge, GavabDB is the most noise-prone dataset currently available to the public. This database consists of 549 3D facial range scans of 61 dierent subjects captured by a Minolta Vivid 700 scanner. Texture information of each vertex was eliminated to reduce the size of all these face models. The subjects, of whom 45 are male and 16 are female, are all Caucasian, and most of them are aged between 18 and 40. Each subject was scanned 9 times for dierent poses and facial expressions. The scans with pose variations contain one facial scan while looking up (+35 degree), one while looking down (-35 degree), one for the right prole (+90 degree), one for the left prole (-90 degree), as well as one with a random pose and an arbitrary facial expression. The facial scans without pose changes include four dierent nearly frontal facial scans: two of them are with a neutral expression, one with a smile, and one with an accentuated laugh. Some examples of one subject in the GavabDB database are shown in g. 1.11. The Twins Days 2010 dataset was acquired at the Twins Days Festival in Twinsburg, Ohio, USA. It contains 266 subjects and each of them has two 3D facial scans taken using a range scanner: one with a neutral expression and another with a smiling expression. There are 106 sets of identical twins, one set of triplets, and the remainder are non-twins. Three pairs of twins come in for two recording sessions and everyone else only has a single session. [START_REF] Phillips | [END_REF] provides more details about the dataset.

The 3DTEC dataset is a subset of the Twins Days dataset, which consists of 3D face scans of 107 pairs of twins (two of the triplets were included as the 107th set of twins), and where only the rst session for each person was used. To our knowledge, this is the only dataset of 3D face scans in existence that has more than a single pair of twins. The facial scans were taken with a Minolta VIVID 910 3D scanner in a controlled light setting, with the subjects posing in front of a black background. For each pair of twins, their neutral and smile images were taken in a 5 to 10 minute window of time. The 3DTEC only uses one session for each subject. Please see g. 1.12 for an illustration of two identical twins.

Figure 1.12: The images of two twins taken in a session: the top row shows the rst twin and the bottom row, the second; the texture images are brightened to increase visibility in this gure.

Thesis Contributions

This Ph.D. thesis involves three main contributions in three scenarios respectively, i.e. only 3D shape based face recognition, textured 3D face recognition, as well as asymmetric 3D-2D face recognition.

In only 3D shape-based face recognition, we present an eective and ecient approach using Multi-Scale extended Local Binary Pattern Depth Maps (MS-eLBP-DMs) along with a SIFT-based hybrid matching step. The MS-eLBP-DMs comprehensively describe local shape changes of 3D facial surfaces; while the matching process further robustly associates keypoints between corresponding facial representations of dierent facial scans belonging to the same subject. Evaluated on the FRGC v2.0 dataset, it achieves a 97.6% rank-one recognition rate and a 98.4% verication rate with a FAR at 0.001 using the neutral vs. all protocol, and displays its insensitiveness to several key factors, such as facial expression variations, noisy data, data missing, and data decimation. Moreover, since the proposed approach possesses certain tolerance to moderate pose changes due to the utilization of local matching, it does not require the generally costly registration step in data preprocessing for nearly frontal faces as the ones in FRGC. When dealing with the face models with severe pose variations, e.g. the left and right proles, in the GavabDB dataset, it only needs a coarse alignment to compute rotation and translation parameters. Both the facts are in contrast to most of the related tasks that are based on time-consuming ne registration.

In textured 3D face recognition, we propose a biological vision-based facial representation, named Oriented Gradient Maps (OGMs), which can be applied to both facial range and texture images. The OGMs simulate the response of complex neurons to gradient information within a given neighborhood and own properties of being highly distinctive and robust to ane lighting and geometric transformations. The previously proposed matching process is then adopted to calculate similarity measurements between probe and gallery faces. Because the biological vision-based facial representation produces an OGM for each quantized orientation of facial range and texture images, we nally introduced a score level fusion strategy that optimizes weights by a genetic algorithm in a learning step. The experimental results achieved on the FRGC v2.0 and 3DTEC databases clearly illustrate the eectiveness of the proposed biological vision-based facial description and the optimized weighted sum fusion.

Considering the face recognition approaches based on 3D data also have their own disadvantages, and are currently limited by their high cost of data acquisition and computation, in this thesis, we design a novel framework, namely asymmetric 3D-2D face recognition, enrolling in textured 3D face model while performing identication using only 2D facial images. The motivation is to limit the use of 3D data where it really helps to improve face recognition accuracy. The proposed method consists of a new preprocessing pipeline to enhance robustness to illumination and pose changes, an OGM-based facial representation to describe both local shape and texture variations, and a twofold classication step which combines the matching between two facial texture images and the one between a facial range and texture image. The experiments carried out on the FRGC v2.0 database demonstrate that the proposed approach outperforms 2D facial image based methods, and achieves comparable results as 3D data based ones do. Furthermore, it avoids the cost and inconvenience of facial data acquisition and computation of 3D based approaches.

Thesis Organization

The remainder of this thesis is organized as follows.

• In Chapter 2, we review the development of face recognition algorithms from 2D domain to 3D domain.

• In Chapter 3, we introduce the proposed face recognition approach using solely 3D shape, including the multi-scale eLBP based geometric facial representation, SIFT based hybrid matching process, and experimental results on the FRGC v2.0 and GavabDB databases.

• In Chapter 4, we present the biological vision based facial description, namely Oriented Gradient Maps (OGMs), the fusion strategy using genetic algorithm, their application to textured 3D face recognition, as well as the evaluation on the FRGC v2.0 and 3DTEC databases.

• In Chapter 5, we describe the novel framework of asymmetric 3D-2D face recognition involving a new preprocessing pipeline, an OGM-based facial representation applied to both facial texture and range images, and a twofold classication step. Meanwhile, according to the performance comparison with traditional 2D and 3D based methods on the FRGC v2.0 database, we analyze its eectiveness and advantages.

• In Chapter 6, we summarize our contributions and propose future directions.

Chapter 2

Literature Review: From 2D to 3D During last few decades, face recognition has been one of the most active topics in biometrics, pattern recognition and computer vision communities, and a great deal of progress has been made to improve its performance. The past years have witnessed the research attention on face recognition from 2D intensity images to (textured) 3D shape models. In this chapter, we rst review several milestone algorithms in 2D domain, then introduce the recent development of face recognition using 3D data.

Intensity Image based 2D Face Recognition

Up to now, many techniques have been proposed for face identication or verication tasks using 2D intensity facial images. They can be generally divided into two main categories: i.e. holistic and local feature based [START_REF] Zhao | [END_REF], Zou et al. 2007a]. The holistic approaches make use of the entire face region as the input data of the face recognition system, which are further projected and compared in a relatively low dimensional subspace in order to avoid the curse of dimensionality, including Principal Component Analysis (PCA) [Turk & Pentland 1991], Linear Discriminant Analysis (LDA) [Belhumeur et al. 1997], Independent Component Analysis (ICA) [START_REF] Bartlett | [END_REF], etc. While the local based ones proceed rst to locate a number of features or components from a facial image, and then classify them by combining and measuring with corresponding local statistics, such as Elastic Bunch Graph Matching (EBGM) [START_REF] Wiskott | [END_REF]], Scale-Invariant Feature Transform (SIFT) [START_REF] Bicego | [END_REF]], and Local Binary Patterns (LBP) [START_REF] Ahonen | [END_REF]]. There also exist some methods that do not belong to either of the two classes, like Active Appearance Model (AAM) [START_REF] Edwards | [END_REF]]. In the subsequent subsections, we introduce the representatives of each category in detail.

Holistic Approaches

Face recognition using holistic methods operates directly on the whole 2D facial images. These facial images can be represented as vectors, i.e., as points in a high dimensional vector space. Specically, a 2D facial image with a resolution of p × q can be mapped to a vector x ∈ R p×q by a lexicographic ordering of the pixel elements, e.g., by concatenating each row or column of the given image. Despite this high-dimensional embedding, the natural constraints of the physical world (and the imaging process) dictate that the data will in fact lie in a lower-dimensional manifold. The primary goal of subspace analysis is to identify, represent and parameterize this manifold in accordance with some optimality criteria [Moghaddam 1999].

Let X = (x 1 , x 2 , ..., x i , ..., x N ) represent a n × N data matrix, where each x i is a face vector of dimension n, concatenated from a p × q facial image; thus n = p × q.

Here n is the total number of pixels in the facial image and N is the number of face samples in the training set. The mean vector of the training images μ = 1 N N i=1 x i is subtracted from each facial image vector for normalization.

The facial images with the resolution of p × q, each pixel of which has 256 gray scale, construct a face space, and in this space, each image represented as a vector corresponds to a point. The facial images only reside a very small portion out of total 256 p×q possible instances in this space. The manifold or the distribution of all faces accounts for changes in the facial appearance. To analyze this face manifold, three classical holistic approaches, PCA, LDA, and ICA can be applied. Each method has its own representations (basis vectors) of a high dimensional face space based on dierent statistical viewpoint. By projecting facial images to the basis vectors, their corresponding coecients are regarded as the feature of each facial image.

The similarity measurement between the test facial image and training prototype is computed (e.g. Euclidean distance or the cosine of the angle) in the feature space, and a larger cosine value of the angle or a smaller Euclidean distance between their coecient vectors indicates a better matching.

All the three representations can be considered as a linear transformation from the original image vector to a projection feature vector, as dened in eq. 2.1.

Y = W T X (2.1)
where Y is a d × N feature vector matrix, d is the dimension of the feature space, and W is the transformation matrix. It should be noted that d n.

(1) PCA Principal Component Analysis (PCA) searches for Y , which is best accounts for the distribution of facial images, and Y denes the subspace of these facial images as the face space [Turk & Pentland 1991]. All faces in the training set are projected into this subspace to nd a set of weights which describes the contribution of each vector in the face space. To identify a facial image, one needs to project the test image into the face space to achieve the corresponding set of weights. By comparing the weights of the test image with the ones of the faces in the training set, the face in the test image can be identied.

The main process of PCA algorithm is based on Karhunen-Loeve transformation [START_REF] Kirby | [END_REF]]. If facial image elements are considered to be random variables, the image can be seen as a sample of a stochastic procedure. The PCA basis vectors are dened as the eigenvectors of the n × n total scatter matrix S T .

S T = N i=1 (x i -μ)(x i -μ) T (2.2)
The transformation matrix W P CA is composed of the eigenvectors corresponding to the d largest eigenvalues. The eigenvectors are also known as eigenfaces. In order to better demonstrate eigenfaces, we derive the ones corresponding to the 12 largest After applying the projection, the input facial image represented as an n dimensional vector is reduced to a feature vector in a d dimensional subspace. For most applications, the eigenvectors corresponding to very small eigenvalues are regarded as noise, and hence not taken into account during the recognition step. Figure 2.4 illustrates the eigenfaces corresponding to the smallest 12 eigenvalues.

PCA is the most descriptive representation in terms of the least square reconstruction error. Moreover it operates eciently and is easy to implement. Therefore, PCA is usually used as the baseline algorithms for face recognition. However, it is not the most discriminative in this domain.

(2) ICA Independent Component Analysis (ICA) [START_REF] Hyvarinen | [END_REF]] is quite similar to PCA, and their only dierence lies in that the distribution of the components are designed to be non-Gaussian. In general, minimizing non-Gaussianity promotes statistical independence [START_REF] Hyvarinen | [END_REF]. [START_REF] Bartlett | [END_REF] show that rst-and second-order statistics hold information only about the amplitude spectrum of an image while discard the phase spectrum, however, some experiments then brought out that the human capability in recognizing objects is mainly driven by the phase spectrum. This is also the reason that they investigated ICA as a more powerful algorithm for face recognition. Since ICA separates the high-order moments of the input image in addition to the second-order moments utilized by PCA, it can be regarded as a generalization of PCA. Furthermore, ICA allows a better characterization of data in an n dimensional space and the basis vectors found by ICA are not necessarily orthogonals so that they also reduce the reconstruction error. Nevertheless, ICA has no general closed-form solution, and needs iterative methods to obtain its representation. Bartlett et al. provided two architectures based on ICA, statistically independent basis images and a factorial code representation, for the face recognition tasks. Both the architectures display similar accuracies. The basis vectors based on fast xedpoint algorithm [Hyvarinen 1999] for ICA factorial code representation are shown in Fig. 2.5.

(3) LDA PCA and ICA are unsupervised approaches since they construct the face space without using the face class information. Unlike them, Linear Discriminant Analysis (LDA) aims to nd an "optimal" way to represent the face vector space to maximize the discrimination between dierent subjects. Exploring class information can improve the performance of identication tasks [Belhumeur et al. 1997].

LDA seeks a transformation W LDA dened as in eq. 2.3:

W LDA = arg max W W T S B W W T S W W (2.3)
where S B and S W are the between-class and within-class scatter matrix, and formally dened as in eq. 2.4 and eq. 2.5 respectively.

S B = c i=1 N i (x i -μ)(x i -μ) T
(2.4)

S W = c i=1 x k ∈X i (x k -μ i )(x k -μ i ) T (2.5)
In the above equations, N i is the number of training samples in class i; c is the total number of dierent classes; μ i is the mean vector of the samples belonging to class i; and X i represents the set of samples in class i. The LDA basis vectors are demonstrated in Fig. 2
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Unfortunately, LDA is aected by "small sample size problem", especially common in face recognition, arising from the small number of available training samples compared to the dimensionality of the sample space. An eective solution is taking PCA as the preliminary step to reduce the dimensionality of the sample space and then applying LDA to the achieved space for real classication. The Fisherface algorithm [Belhumeur et al. 1997] is a right example, derived from the Fisher Linear Discriminant (FLD), which employs specic category information. By dening dierent classes with various statistics, the facial images in the training set are rst divided into the corresponding classes. Then, techniques similar to the one applied in PCA approach are used. The Fisherface algorithm generally results in a Figure 2.6: First 12 LDA basis vectors shown as resolution p × q, where p × q = n, derived from the ATT (ORL) face dataset.

higher accuracy rate for face recognition than PCA does. In contrast, arguing that combining PCA and LDA as the way of Fisherface, discriminant information is also discarded together with redundant one, Chen et al. [Chen et al. 2000], Yu and Yang [START_REF] Yu | [END_REF] suggest that in some cases LDA should be applied directly to the input space.

Many eorts have been made to ameliorate linear subspace analysis technique since PCA, ICA and LDA were proposed for face recognition. For example, Pentland et al. [Pentland et al. 1994] modied PCA to modular eigenfaces to deal with pose variations; Probabilistic subspaces [Moghaddam 2002] was introduced to derive a more meaningful similarity measurement under the probabilistic framework; Lu et al. [Lu et al. 2003] presented an hybrid between the D-LDA (Direct LDA) and the F-LDA (Fractional LDA), an LDA variant, in which weighted functions are used to avoid the misclassication caused by output classes that are too close; Vasilescu and Terzopoulos [START_REF] Vasilescu | [END_REF] proposed an approach based on multilinear tensor decomposition of image ensembles, namely TensorFace, to resolve the confusion of multiple factors constrained in the same face recognition system, such as illumination and pose; instead of representing the facial image as a vector, Yang et al. [Yang et al. 2004a] considered an image as a 2D matrix and developed a two dimensional PCA algorithm for face recognition; similarly, Kong et al. [Kong et al. 2005] generalized the conventional LDA into 2D Fisher discriminant analysis and applied it to face recognition; etc.

Although linear subspace analysis approaches, e.g. PCA, ICA, and LDA, have signicantly advanced the development of face recognition, due to high non-linearity of the face manifolds [Li & Jain 2005], linear subspace analysis is an approximation of this non-manifold, and does not possess the modeling capacity which is powerful enough to preserve the variations of the face manifold and distinguish between individuals to achieve robust face recognition results. Recent studies in non-linear manifold analysis provide more exibility and modeling power to analyze face manifold. Its main idea is that a pattern in the original input space is rst mapped into a potentially much higher dimensional feature vector in the feature space; then perform dimensionality reduction techniques to learn the non-linear manifold, and the resulting projection coecients are used as features for face classication. How-ever, it is dicult to do so directly because it is computationally very intensive to compute the dot products in a high-dimensional feature space. Fortunately, kernel techniques can be introduced to avoid this diculty. The algorithm can be actually implemented in the input space by virtue of kernel tricks satisfying the Mercer's condition [Vapnik 1995]

K(x i , x j ) = Ψ(x i ) • Ψ(x j ) (2.6)
where the kernel function K(x i , x j ) in the input space corresponds to inner-product in the higher dimensional feature space. Common kernels include: polynomial (homogeneous), polynomial (inhomogeneous), Gaussian Radial Basis Function (RBF), hyperbolic tangent, etc. Therefore, the explicit mapping process is not required at all. For example, Yang [Yang 2002b] investigated KPCA (Kernel Principal Component Analysis) for face recognition. Unlike the traditional PCA and LDA, KPCA achieved a higher dimensionality than the input image, and provided better performance than Eigenface and Fisherface did. Liu et al. [Liu et al. 2002] proposed an face recognition approach using polynomial kernel based Fisher Discriminant Analysis (FDA, Fisherface), and claimed that it outperformed PCA and LDA. But in these kernel based methods, suitable kernels and their corresponding parameters can only be determined empirically. There also exist another two popular methods for non-linear manifold learning, i.e. ISOMAP [START_REF] Tenenbaum | [END_REF]] and Locally Linear Embedding (LLE) [START_REF] Roweis | [END_REF], which have been further applied to face recognition since they were originally proposed. Yang [Yang 2002a] introduced LDA to recognize faces using geodesic distance, which is the basis of the ISOMAP. He et al. [He et al. 2005] presented laplacianfaces based on the Locality Preserving Projections (LPP) for face subspace description. These manifold learning algorithms are quite interesting, but need to further prove their performance for robust face recognition systems.

On the other hand, the downside of the non-linear approaches is that their generalization capability is inuenced by the sample size in real conditions, i.e., small number of face images available for training compared to the large variations of facial appearance in testing, leading to overtting [Raudys & Jain 1991]. A possible solution is to use face synthesis methods to generate additional samples from available ones for training, proving helpful to enhance the accuracies of face recognition systems [Lu et al. 2004c[START_REF] Vetter | [END_REF], Zhao & Chellappa 2000]. In addition, the techniques such as classier combination [Lu & Jain 2003] and data re-sampling [Lu & Jain 2003] can also be employed for improved results.

Local Feature based Approaches

Face recognition using local feature based approaches usually consists of three major steps: i.e. alignment and partitioning, feature extraction, as well as classication and combination, as illustrated in Fig. 2.7.

As in the holistic methods, the preliminary step of most local feature based ones is to align the face images, while in contrast to the holistic ones, the aligned faces are then partitioned into local blocks for feature extraction. An common and ecient way is to align facial images into the same coordinate system by a similarity transform (translation, rotation and scaling) based on a few ducial landmark points, facial components (eyes, nose, and mouth) or even the entire face region provided by some detection techniques, e.g. AdaBoost [Viola & Jones 2004], and the face is further divided into local regions. Classication is nally carried out on the faces by comparing and combining each similarity of their local region in the given feature space. In this subsection, we discuss three typical local feature based approaches, namely, Gabor wavelets, LBP and SIFT.

(1) Gabor wavelets Gabor wavelets were applied to image analysis due to their biological relevance and computational properties [Daugman 1985, Daugman 1988, Marcelja 1980]. The Gabor wavelets, whose kernels are similar to the 2D receptive eld proles of the mammalian cortical simple cells, exhibit desirable characteristics of spatial locality and orientation selectivity, and are optimally localized in the space and frequency domains as well

The Gabor wavelets (kernels, lters) can be dened as follows [Daugman 1980, Lades et al. 1993, Marcelja 1980]:

ψ μ,ν (z) = k μ,ν 2 σ 2 exp -k μ,ν 2 z 2 2σ 2 exp (ik μ,ν z) -exp(- σ 2 2 ) (2.7)
where μ and ν denotes the orientation and scale of the Gabor kernels, z = (x, y) respectively; • is the norm operator; and the wave vector k μ,ν is dened as:

k μ,ν = k ν e iφμ (2.8)
where k ν = k max /f ν and φ μ = πμ/8. k max is the maximum frequency, and f is the spacing factor between kernels in the frequency domain [START_REF] Lades | [END_REF]]. The Gabor kernels in eq. 2.7 are all self-similar because they can be generated from one lter, the mother wavelet, by scaling and rotation through the wave vector k μ,ν . Each kernel is a product of a Gaussian envelope and a complex plane wave, while the rst term in the square brackets in eq. 2.7 determines the oscillatory part of the kernel and the second term compensates for the DC value. The eect of the (b) The magnitude of Gabor kernels at ve dierent scales. The kernels exhibit desirable characteristics of spatial frequency, spatial locality, and orientation selectivity [Liu & Wechsler 2002].

DC term becomes negligible when the parameter σ, which determines the ratio of the Gaussian window width to wavelength, has suciently large values.

In most cases, one would make use of the Gabor wavelets of ve dierent scales, ν ∈ {0,..., 4} and eight orientations, μ ∈ {0,..., 7} [Burr et al. 1989[START_REF] Field | Relations between the statistics of natural images and the response properties of cortical cells[END_REF], Jones & Palmer 1987]. Figure 2.8 shows the real part of the Gabor kernels at ve scales and eight orientations and their magnitude, with the following parameters: σ = 2π, k max = π/2, and f = √ 2. The kernels exhibit desirable characteristics of spatial frequency, spatial locality, and orientation selectivity.

The Gabor wavelet representation of an image is the convolution of the image with a family of Gabor Kernels as dened by eq. 2.7. Let I(x, y) be the gray level distribution of an image, the convolution of image I and a Gabor kernel ψ μ,ν (z) is dened as follow:

O μ,ν (z) = I (z) * ψ μ,ν (z) (2.9)
where * is the convolution operator, and O μ,ν (z) is the convolution result corresponding to the Gabor Kernel at dierent orientations and scales. As a result, the set S = {O μ,ν (z) : μ ∈ {0, ..., 7}, ν ∈ {0, ..., 4}} forms the Gabor wavelet representation of the image I(z).

According to the convolution theorem, each O μ,ν (z) can be derived from eq. 2.9 via the Fast Fourier Transform (FFT) (2.11) where and -1 denote the Fourier and inverse Fourier transform, respectively. Figure 2.9 gives an example of the Gabor wavelet representation (the real part and the magnitude) of a sample image. These achieved representation results display scale, locality, and orientation properties corresponding to those displayed by the Gabor wavelets in Fig. 2.8. To encompass dierent spatial frequencies (scales), spatial localities, and orientation selectivities, all these representation results are concatenated to derive an augmented feature vector χ.

{O μ,ν (z)} = {I (z)} {ψ μ,ν (z)} (2.10) and O μ,ν (z) = -1 { {I (z)} {ψ μ,ν (z)}}
Since Gabor lters detect amplitude-invariant spatial frequencies of pixel gray values, they are known to be robust to illumination variations, which is an important contribution to 2D face recognition. On the other hand, for each pixel of a facial image, Gabor lters tend to generate a feature vector with dozens of dimensionality, and the nal vector by concatenating the ones of each pixel will thus be classied in a rather high-dimensional feature space, leading to another diculty in this domain. Therefore, many studies have discussed how to balance its performance and computational cost in the last decade.

Wiskott et al. [START_REF] Wiskott | [END_REF]] obtained good performance with the Elastic Bunch Graph Matching (EBGM) method in the FERET test [START_REF] Phillips | [END_REF]].

The elastic bunch graph is a graph-based face model with a set of jets (represented by Gabor wavelet components) attached to each node of the graph. The algorithm recognizes new faces by rst locating a set of facial features (graph nodes) to build a graph, whose jets and topography are then used to compute the similarity. Because only the Gabor representations of a certain number of jets rather than each pixel are required to describe the variations of facial appearance, EBGM avoids the problem caused by high-dimensional space. Liu and Wechsler proposed to rst downsample each O μ,ν (z) by a pre-dened factor to reduce the space dimension and then apply Enhanced Fisher linear discriminant model (EFM) [START_REF] Liu | [END_REF]] to the augmented feature vector. Using the eigenface selectivity constraint of the EFM method, the dimensionality of the resulting vector space was further reduced to derive low-dimensional features with enhanced discriminative power for classication. To deal with the same issue that Gabor features adopted by most systems are redundant and too high dimensional, Yang et al. [Yang et al. 2004b] investigated AdaBoost to choose Gabor features, and the selected features proved not only low-dimensional but also discriminant.

(2) Local Binary Patterns (LBP) As a non-parametric algorithm, LBP summarizes local structures of images eciently by comparing each pixel with its neighbors. The most important properties of LBP are its tolerance to monotonic illumination changes and its computational simplicity. LBP was originally proposed for texture analysis [START_REF] Ojala | [END_REF], and has proved a simple yet powerful approach to describe local structures. It has been extensively exploited in many applications, for instance, face image analysis, image and video retrieval, environment modeling, visual inspection, motion analysis, biomedical and aerial image analysis, remote sensing, so forth.

The original LBP operator labels the pixels of an image with decimal numbers, called Local Binary Patterns or LBP codes, which encode the local structure around each pixel. It proceeds thus, as illustrated in Fig. 2.10: each pixel is compared with its eight neighbors in a 3×3 patch; the resulting strictly negative values are encoded with 0 and the others with 1; a binary number is obtained by concatenating all these binary codes in a clockwise direction starting from the top-left one and its corresponding decimal value is used for labeling.

One limitation of the basic LBP operator is that its small 3×3 neighborhood cannot capture the dominant features with large scale structures. The original LBP operator was later generalized to deal with dierent neighborhoods [Ojala et al. 2002]. A local neighborhood is dened as a set of sampling points evenly spaced on a circle which is centered at the pixel to be labeled, and the sampling points that do not fall within the pixels are interpolated using bilinear interpolation, thereby allowing for any radius and any number of sampling points in the neighborhood. (8, 1), (16, 2), and(24, 3) neighborhoods. Formally, given a pixel at (x c , y c ), the resulting LBP can be expressed in decimal form as:

LBP P, R (x c , y c ) = P -1 p=0 s(i P -i c )2 p (2.12)
where i c and i P are respectively gray-level values of the central pixel and P surrounding pixels in the circle neighborhood with a radius R, and function s(x) is dened as:

s(x) = 1 if x ≥ 0 0 if x < 0 (2.13)
By the denition above, the basic LBP operator is invariant to monotonic grayscale transformations preserving pixel intensity order in the local neighborhoods.

The histogram of LBP labels calculated over a region can be exploited as a texture descriptor.

The operator LBP (P,R) produces 2 p dierent output values, corresponding to 2 p dierent binary patterns formed by P pixels in the neighborhood. If the image is rotated, these surrounding pixels in each neighborhood will move correspondingly along the perimeter of the circle, resulting in a dierent LBP value, except patterns with only 1s and 0s. In order to remove rotation eect, a rotation-invariant LBP is proposed in [Ojala et al. 2002]:

LBP ri (P,R) = min{ROR(LBP (P,R) , i)|i = 0, 1, ..., P -1}
(2.14) where ROR(x, i) performs a circular bit-wise right shift on the P-bit number x i times. The LBP ri (P,R) operator quanties occurrence statistics of individual rotation invariant patterns corresponding to certain micro-features in the image; hence, the patterns can be considered as a feature detector [Ojala et al. 2002]. However, in [START_REF] Pietikainen | [END_REF], it was shown that such a rotation-invariant LBP operator does not necessarily provide discriminative information, since the occurrence frequencies of the individual patterns incorporated in LBP ri (P,R) vary greatly and the crude quantization of the angular spaces at 45 • intervals.

It has been shown that certain patterns contain more information than others [Ojala et al. 2002]. It is possible to use only a subset of 2 p binary patterns to describe the texture of images. Ojala et al. named these patterns uniform patterns, denoted LBP U 2 (P,R) . A local binary pattern is called uniform if it contains at most two bitwise transitions from 0 to 1 or vice versa when the corresponding bit string is considered circular. For instance, 00000000 (0 transitions) and 01110000 (2 transitions) are both uniform whereas 11001001 (4 transitions) and 01010011 (6 transitions) are not. It is observed that the uniform patterns account for around 90% of all the patterns in a (8,1) neighborhood and around 70% in a (16, 2) neighborhood in texture images [Ojala et al. 2002]. A similar experiment was conducted on the FERET face image database, and it was found that 90.6% of the patterns in a (8,1) neighborhood and 85.2% in a (8,2) neighborhood are uniform [START_REF] Ahonen | [END_REF]]. More recently, Shan and Gritti [START_REF] Shan | [END_REF] veried validity of uniform patterns for representing faces from the viewpoint of machine learning. Specically, they applied AdaBoost to select the discriminative patterns for facial expression recognition, and their experiments demonstrated that, using LBP (8,2) operator, 91.1% of these selected patterns are uniform. Accumulating the non-uniform patterns into a single bin yields an LBP operator with less than 2 p labels. For example, the number of labels with the neighborhood of 8 pixels is 256 for the standard LBP but only 59 for LBP U 2 .

Ahonen et al. [START_REF] Ahonen | [END_REF]] introduced LBP for face recognition in 2004, and unlike its application to texture classication, in order to make use of the spatial information of facial physical components, they proposed to rst divide face images into several local regions from which local LBP histograms can be extracted, and then to concatenate them into a single, spatially enhanced feature histogram (as illustrated in Fig. 2.12). The resulting histogram encodes both the local texture and global shape information and hence describes a face comprehensively. Since then, LBP and its variants have been extensively studied and exploited in 2D face recognition. Zhang et al. [Zhang et al. 2005] combined Gabor and LBP in a serial strategy which consists in rst applying Gabor lters and then LBP to the raw image. The Multiple Gabor feature maps (GFM) were computed by convolving input images with multi-scale and multi-orientation Gabor lters. Each GFM was divided into small non-overlapped regions from which LBP histograms were extracted and nally concatenated into a single facial feature histogram. They reported the best result on the FERET dataset at that moment. [START_REF] Tan | [END_REF] modied LBP to a version with 3-value codes, called Local Ternary Patterns (LTP), by replacing zero with a user-specied threshold to measure the dierence between the central pixel and its neighbors, claiming it is more resistant to noise and thus can improve performance of face recognition under dicult lighting conditions. In order to capture not only micro-structures but also macro-structures to enhance the discriminative power of LBP, Liao et al. [START_REF] Liao | [END_REF] proposed Multi-Block LBP (MB-LBP) which, instead of comparing pixels, compares average intensities of neighboring sub-regions, and a similar scheme was introduced in [Wolf et al. 2008]: Three-Patch LBP (TP-LBP) and Four-Patch LBP (FP-LBP) were proposed to compare distances between the whole blocks (patches) concerned for face recognition in wild. More development details of LBP on face recognition is in [Huang et al. 2011c].

(3) Scale-Invariant Feature Transform (SIFT) SIFT features have many important properties, such as invariant to image scaling and rotation, (partial) occlusion and to a certain extent also to changes in illumination and 3D camera viewpoint, which make them suitable for matching dierent images of an object or a scene. According to [Lowe 2004], the basics of the SIFT algorithm consists of four computational stages: (i) scale-space extrema detection, (ii) removal of unreliable keypoints, (iii) orientation assignment, (iv) keypoint descriptor calculation, and (v) matching.

In the rst stage, interest points (or called keypoints), are detected in the scale space searching for image locations that represent the maxima or minima of the dierence-of-Gaussian function. The scale space of an image is dened as a function L(x, y, σ), that is produced from the convolution of a variable-scale Gaussian, G(x, y, σ), with the input image, I(x, y): 

L(x, y, σ) = G(x, y, σ) * I(x, y) (2.15) with G(x, y, σ) = 1 2πσ 2 e -(x 2 +y 2 )/2σ 2 (2.16)
where σ denotes the standard deviation of the Gaussian G(x, y, σ).

The dierence-of-Gaussian function D(x, y, σ) can be computed from the dierence of Gaussians of two scales that are separated by a factor k:

D(x, y, σ) = (G(x, y, kσ) -G(x, y, σ)) * I(x, y) = L(x, y, kσ) -L(x, y, σ) (2.17)
Local maxima and minima of D(x, y, σ) are computed based on the comparison of the sample point and its eight neighbors in the current image as well as the nine neighbors in the scale above and below (See Fig. 2.13 for an illustration). If the pixel represents a local maximum or minimum, it is selected as a candidate keypoint.

The nal qualied keypoints are selected based on measurements of their stability. During the second stage low contrast points (sensitive to noise) and poorly localized points along edges (unstable) are discarded. Two criteria are utilized for the detection of unreliable keypoints. One criterion evaluates the value of |D(x, y, σ)| at each candidate keypoint. If the value is below some threshold, which means that the structure has low contrast, the keypoint is removed. Another criterion evaluates the ratio of principal curvatures of each candidate keypoint to nd out poorly dened peaks in the Dierence-of-Gaussian function. For keypoints with high edge responses, the principal curvature across the edge will be much larger than the principal curvature along it. As a result, to remove unstable edge keypoints based on the second criterion, the ratio of principal curvatures of each candidate keypoint is checked. If the ratio is below some threshold, the keypoint is kept, otherwise it is removed.

The third stage assigns an orientation to each keypoint by building a histogram of gradient orientations θ(x, y) weighted by the gradient magnitudes m(x, y) from the neighborhood of keypoint:

m(x, y) = (L(x + 1, y) -L(x -1, y)) 2 + (L(x, y + 1) -L(x, y -1)) 2 (2.18) θ(x, y) = tanh(L(x, y + 1) -L(x, y -1))/(L(x + 1, y) -L(x -1, y)) (2.19)
where L is a Gaussian smoothed image with a closest scale to that of a keypoint. By assigning a consistent orientation to each keypoint, the keypoint descriptor can be represented relative to this orientation and, therefore, invariance to image rotation is achieved.

In the fourth step, the keypoint descriptor is created by primarily computing the gradient magnitude and orientation at each image point of the 16×16 keypoint neighborhood (left side of Fig.2.14). This neighborhood is weighted by a Gaussian The coordinates of the descriptor and the gradient orientations are rotated relative to the keypoint orientation to achieve orientation invariance and the descriptor is normalized to enhance invariance to changes in illumination.

The previously retained descriptors are matched in the last step. When applying the SIFT algorithm to object recognition, each keypoint descriptor extracted from the query (or test) image is matched independently to the set of descriptors extracted from every image in the training set. The best match for each descriptor is found by identifying its nearest neighbor (closest descriptor) in the set of keypoint descriptors from the training image. Generally, many features from a test image do not have any correct match in the training database, because they are either not detected in the training image or they arose from background clutter. To discard keypoints whose descriptors do not have any good match to a training image, a subsequent threshold is used, which rejects matches that are too ambiguous. If the distance ratio between the closest neighbor and the second-closest neighbor is below some threshold, the match is kept; otherwise the match is rejected. The object in the database with the largest number of matching points is considered as the matched object.

Several tasks adapted SIFT to face recognition. Bicego et al. [START_REF] Bicego | [END_REF]] rst investigated the performance of SIFT in face authentication, and designed a regular grid based matching step that was claimed to be more suitable to this topic. The proposed matching process takes into account the spatial information of the keypoints detected in the face area, emphasizing the importance of matches from corresponding local patches, and hence greatly eliminated wrong matches between spatially inconsistent SIFT descriptors. [START_REF] Luo | [END_REF]] further enhanced the SIFT-based face recognition system by assigning weights to dierent facial subregions using a K-means clustering method, highlighting the matches from the areas that are more critical to improve accuracies. [START_REF] Krizaj | [END_REF]] argued that even though SIFT is regarded as one of the state-of-the-art approaches to object recognition, it has some deciencies when applied to the problem of face recognition.

Compared to general objects, there are less structures with high contrast or highedge responses in facial images. Because keypoints along edges and low-contrast keypoints are removed by the original SIFT algorithm, interest points representing distinctive facial features can also be removed. Therefore, it is of paramount importance to properly adjust the thresholds governing the process of unstable keypoint removal, when applying the SIFT technique for the task of face recognition. They suggested to extract the SIFT descriptors at xed predened image locations learned during the training stage, and by xing the keypoints to pre-dened spatial locations, they cancelled the need for threshold optimization and face image partitioning. In addition, they claimed their approach gained greater illumination invariance than other SIFT adaptations. See Fig. 2.15 for an example of SIFT matching on 2D facial images.

Other Methods

Besides the two streams of face recognition mentioned above, another one, namely statistical model based methods, has been also widely explored. A statistical model is a formalization of relationships between variables in the form of mathematical equations, and it describes how one or more random variables are related to one or more random variables. The model is regarded to be statistical as the variables are not deterministically but stochastically related. To formulate face analysis with statistical model, we wish to build models of facial appearance and its variations and learn the ways in which the shape and texture of the human face vary across a range of images. Examples of the statistical model based approaches include Active Appearance Model (AAM) [START_REF] Edwards | [END_REF]], Gaussian Mixture Model (GMM) [Cardinaux et al. 2003, Lucey & Chen 2004], 1D Hidden Markov Model (HMM) [Samaria & Harter 1994], pseudo-2D HMM [Nean & Hayes III 1999], etc. In this sub-section, as a typical representative of statistical model based techniques, AAM is introduced in detail not only due to its successful application in face recognition, but because of its fundamental contributions in facial image analysis as well.

Active Appearance Model (AAM)

An Active Appearance Model (AAM) is an integrated statistical model combining a model of shape variations with a model of appearance variations in a shapenormalized frame. It generally contains two steps: AAM building and AAM tting.

AAM can be used in many applications such as hand tracking, face recognition, facial expression analysis, etc. In this thesis, we take face as an example to illustrate the working process of AAM.

The AAM is constructed based on a training set of labeled images, where landmark points are marked on each example face at pre-dened key positions to outline the mean features (shown in Fig. 2.16). To ensure the precise location of landmarks, manual labeling is required in the current model building scheme.

The shape of a face is represented by a vector consisting of the positions of the landmarks, S = (x 1 , y 1 , x 2 , y 2 , ..., x n , y n ) T , where (x j , y j ) denotes the coordinates of the j th landmark points in the 2D facial image. All the shape vectors of the faces in the training set are normalized to a common coordinate system. PCA is applied to this set of shape vectors to construct the face shape model as:

S = S + P S B S (2.20)
where S is a shape vector; S is the mean shape; P S is a set of orthogonal modes of shape variation; and B S is a set of parameters of the shape model.

To construct the appearance model, example faces in the training set are warped to make the manually labeled control points match the mean shape. The warped region of the face image covered by the mean shape is sampled to extract the gray level intensity (texture) information. Similar to the way to build the shape model, a vector representation is generated, G = (I 1 , I 2 , ..., I m ) T , where I j denotes the intensity of the sampled pixel in the warped image. PCA is also exploited to construct a linear model:

G = G + P G B G (2.21)
where G is a texture vector; G is the mean texture; P G is a set of orthogonal modes of gray-level variation; and B G is a set of parameters of the gray-level model. Thus, the shape and texture information of any training face can be summarized by the parameter vectors B S and B G , denoted as follows:

B = W S B S B G = W S P T S (S -S) P T G (G -G) (2.22)
where W S is a diagonal matrix of weights for each shape parameter, as a normalization factor, allowing for the dierence in units between the shape and gray scale models. PCA is applied to vectors B, giving a further model:

B = QC (2.23)
where Q is the eigenvector matrix, and C is a vector of appearance parameters controlling both the shape and gray levels of the model. By the nature of its construction, C has a zero mean across the training set. Figure 2.17 shows the rst During the tting process, it measures the residual and uses this model to correct the values of current parameters, leading to a better tting result. After that many attempts were made to improve the performance of AAM [START_REF] Matthews | Active appearance models revisited[END_REF] or overcome its limitation, i.e. sensitive to occlusions [START_REF] Gross | [END_REF]]. See Fig.

for an iterative AAM tting process.

Given a facial image, its corresponding model parameter, C, can be estimated, which best match it with the model (those that synthesize a face as similar as possible to the target face). If the model is suciently complex, the parameters should summarize almost all the needed important information to describe the face and can thus be used for face interpretation. In particular, it is possible to adopt the parameters for face verication or identication. By comparing the vectors representing two images, c 1 and c 2 , we can measure how similar they are. Experiments [Kang et al. 2002] suggest that an eective measure of dierence is the normalized dot product as dened in eq. 2.24. The value of zero indicates a perfect match. This method outperforms other simple metrics such as Euclidean distance or the dot product without normalization [Kang et al. 2002]. Meanwhile, LDA can also be exploited to construct the discriminant subspace using the model parameter for face recognition.

d = 1 - c 1 |c 1 | • c 2 |c 2 |
(2.24)

Discussion

In this section, several representative algorithms belonging two main categories, i.e. holistic techniques as well as local feature based ones in intensity image based face recognition have been reviewed. Comparing these two categories, holistic methods tend to be less sensitive to noise, however, the local feature based approaches have shown their promising performance in recent years. It has been proved by Heisele et al. [Heisele et al. 2003] that the component-based face recognition approaches (local feature-based) perform better than global ones (holistic). The main reason is that holistic approaches always require facial images to be accurately normalized with regard to the factors of pose, illumination condition and scale. In addition, global features are also more sensitive to facial expression variations and occlusions.

According to its theoretical nature, AAM can also be deemed as a special example of holistic techniques, and it thus possesses both their advantages and drawbacks in face recognition. Because local feature-based techniques extract features from local points or patches, there generally remain some invariant features even in the presence of facial expression variations or occlusions, and recognition can still be done by matching these invariant features. Therefore, local feature-based methods are potentially more robust than the holistic ones to facial expression changes and occlusions. Moreover, unlike the holistic approaches, they require fewer samples for enrollment, and can even achieve an excellent accuracy only with a single facial image registered in the gallery set [START_REF] Tan | [END_REF]]. There also exist several tasks, combining holistic techniques with local feature-based ones and aiming to fuse their advantages, but at the same time they inherits their downsides from both types of categories as well.

One would further raise the question which is the best local descriptor for face recognition among LBP, SIFT and Gabor lters. [START_REF] Luo | [END_REF]] showed that SIFT is not as robust as LBP to illumination eects on the FERET dataset. Zou et al. [Zou et al. 2007a] compared Gabor wavelets and LBP using the same database, and concluded that Gabor wavelets are more insensitive to illumination changes because they detect amplitude-invariant spatial frequencies of gray values of image pixels, while LBP is greatly aected by non-monotonic gray value transformations. Ruiz-del-Solar et al. [del Solar et al. 2009] evaluated these three methods extensively not only on controlled datasets, e.g. FERET and FRGC, but also on the UCH FaceHRI database designed for Human-Robot Interaction and the LFW dataset captured in unconstrained environments. Concerning robustness to illumination variations, their study illustrated that Gabor wavelets achieve the best performance on the FERET database, LBP is not far behind; while SIFT is the last, thus supporting the previous conclusions. On the UCH FaceHRI database, the LBP approach gains the best results in all the specially-designed experiments with indoor and outdoor lighting, expression, scaling, and rotation, followed by Gabor wavelets and SIFT. On the LFW dataset, LBP and Gabor wavelets obtain a slightly better result than each other with aligned face and non-aligned face respectively, both of which surpassed that of SIFT. On the other hand, in their investigation on computation cost, LBP operates much faster than Gabor wavelet and SIFT. Based on the above facts, it is dicult to draw a general conclusion to rank them, since their performance is decided by a number of complicated factors. Which one should be selected for recognizing faces depends on the requirements of applications. Finally, their possible combinations probably contribute more to this community.

Geometric Information based 3D Face Recognition

Recently, adopting 3D face data has emerged as a major alternative to deal with the unsolved issues in 2D face recognition, i.e. lighting and pose variations, and various approaches have been investigated within this eld. Table 2.1 lists a comprehensive overview of only 3D shape based face recognition methods investigated in the past twenty years. As demonstrated in Table 2.1, the early stage of development in 3D face recognition started from 1989 and last until 2000. During that period, there were only a few scientists and researchers who was dedicating in this domain, leading to very limited amount of academic studies which used simple techniques on small databases. The traditional algorithms originally proposed for 2D face recognition (e.g. PCA, HMM [START_REF] Achermann | [END_REF]], and Hausdor Distance [START_REF] Achermann | [END_REF]) were explored, and 3D points, proles or local areas were also attempted for face matching. Meanwhile, we can notice that some features such as Extended Gaussian Image (EGI), curvature, and point signature, specic in 3D face recognition, came into use. Since 2003, scientic interest has been increased signicantly, and the number of related papers in this topic remains over 10 every year till 2010. Especially in 2005, due to the workshop on FRGC in conjunction with CVPR, this number reaches about 30. The databases exploited for technique evaluation have been greatly enlarged as well. After 2003, more and more research organizations begin to devote into this topic, and active ones include the biometrics group at MSU (USA) [Lu et al. 2004a, Lu et al. 2004b, Lu & Jain 2005a, Lu & Jain 2006[START_REF] Lu | [END_REF]; Bronstein brothers at Technion (Israel) [Bronstein et al. 2004b, Bronstein et al. 2005, Bronstein et [START_REF] Gokberk | [END_REF], LBP [Li et al. 2005b] and Gabor lters [START_REF] Xu | [END_REF], and besides them, many methods have been designed diversely to employ 3D face data. The taxonomy (holistic and local feature based) previously exploited in 2D intensity image based face recognition can be expanded to classify the techniques of 3D geometric information based recognition. Holistic matching directly operates on 3D face data (range images, meshes or point-clouds) to compute similarity scores, including Iterative Closest Point (ICP) based matching [START_REF] Lu | Matching 2.5D face scans to 3D models[END_REF]], Hausdor distance [START_REF] Achermann | [END_REF]] and so forth. While local feature-based matching compares the local descriptive points, curves, or regions of 3D facial scans in a certain feature space (coordinates, areas, distances, curvatures, shape index, as well as some more complex ones) and then combines them for decision. This category has been widely explored in several tasks in the literature, for instance, the point signature approach [Chua et al. 2000], 3D coordinate based descriptive pose invariant features [Mian et al. 2008], the region ensemble method [Faltemier et al. 2008a], iso-geodesic strips [START_REF] Berretti | [END_REF], etc. In this section, we chronologically retrospect the techniques used in 3D face recognition, and then discuss them according to the aforementioned taxonomy. The subspace based methods are generally applied to facial range images. See the last section for more of technical details. Achermann et al. [START_REF] Achermann | [END_REF]] apply the eigenface approach to 3D face recognition. They present the results for a dataset of 24 subjects each of which has 10 images, and report 100% recognition rate. Later, Hesher et al. [START_REF] Hesher | [END_REF]] explore PCA using dierent numbers of eigenvectors and image sizes. The image data used has 6 dierent facial expressions for each of 37 persons. The performance results from using multiple facial images per person in the gallery set, which eectively gives the probe image more chances to make a correct match, and is known to raise the recognition accuracy relative to having a single gallery sample per person. Heseltine et al. [Heseltine et al. 2004b] evaluate the eigenface approach with dierent distances as similarity measurement for face verication on a larger database containing 330 facial range images from 100 individuals and conclude that the lowest Equal Error Rate (EER) of 17.8% is achieved by Mahalanobis distance, better than Euclidean and Cosine distances. They [Heseltine et al. 2004a] further enlarge the test set to 1470 range images of 230 individuals and exploit LDA in the same framework, claiming that LDA performs better than PCA, and with Cosine distance, LDA obtains the lowest EER of 15.3%.

(2) Iterative Closest Point (ICP)

The ICP [Besl & McKay 1992] algorithm iteratively attempts to align two 3D surfaces represented as point-clouds or meshes. To accomplish this task, ICP rst nds the closest point in the reference surface for each of the n points in the probe one. When implemented with a k-d tree [Bentley 1975] data structure, nearest neighbor searches can each be completed in O(log(n)) time. Beginning with a starting estimate, the algorithm calculates a sequence of rigid transformations T i until there is no additional improvement in mean square distance between the two shapes. Specically, given two point-clouds or meshes, the reference surface

M Δ = {m i } Nm i=1
with N m points and the query surface

P Δ = {p i } Np i=1
with N p points, the transformation of the query shape to the reference one is assumed to be linear with a rotation matrix R and translation vector t. The goal of the ICP algorithm is to nd the transformation parameters, for which the error between the transformed query shape points and the closest points of the reference shape achieves minimal. This characteristic is described by eq. 2.25 If the initial position is not good enough, ICP probably nds a local minima that corresponds to an improper registration. For this reason, the probe and gallery centroids of 3D facial surfaces are frequently aligned before ICP is performed to ensure an accurate nal registration estimate.

ICP is widely utilized for face registration and matching in 3D face recognition. Medioni and Waupotitsch [Medioni & Waupotitsch 2003] perform 3D face recognition by using ICP to match facial surfaces. Whereas most of the works covered here use 3D shapes acquired through an active (structured-light) sensor, this work uses 3D shapes acquired by a passive stereo sensor. The database contains 100 subjects, each of which possesses 7 images sampling dierent poses. An EER of "better than 2%" is reported. Lu et al. [Lu et al. 2004b] present the results of face recognition based on an ICP-based approach. This approach assumes that the gallery face is a more complete 3D facial surface and the probe face is a frontal view that is likely a subset of the gallery face. In the experiments with models from 18 persons and multiple probe ones per person, incorporating some variation in pose and expression, a recognition rate of 97% is achieved. Wang et al. [Wang et al. 2006] modify ICP as Partial ICP, which selects a part of nearest point pairs to calculate dissimilarity measure during registration of facial surfaces, to reduce the negative eects caused by facial expression changes. The experiments on a dataset of 360 face models from 40 individuals show that the modied Partial ICP surpasses the original ICP. Besides used to compute similarity measurements, in most of the recent works, ICP is extensively introduced as a key step in preprocessing to correct 3D pose variations as in [Kakadiaris et al. 2007], [Li et al. 2009], etc. Figure 2.19 depicts an ICP based coarse to ne alignment process of 3D facial surfaces.

(3) Hausdor Distance The Hausdor distance is a measure for the similarity of two sets of points [START_REF] Huttenlocher | [END_REF]. It is very general and may be applied to a wide variety of problems. The (undirected) Hausdor distance between two sets of points, A and B, is dened as (2.26) where h(A, B) denotes the directed Hausdor distance,

H(A, B) = max(h(A, B), h(B, A))
h(A, B) = max a∈A min b∈B a -b (2.27)
and x is a norm. Usually, the well known Euclidean distance is utilized here.

The partial Hausdor distance is dened as

H LK (A, B) = max(h L (A, B), h K (B, A)) (2.28)
where the directed partial Hausdor distance is

h L (A, B) = L th a∈A min b∈B a -b (2.29) We notice that h(A, B) is small, if every point in A is near some point in B.

The same holds true for h(B, A). Moreover, H(A, B) = H(B, A) is small, if both h(A, B

) and h(B, A) are small. In the partial Hausdor distance, only the L and K best ranked points in sets A and B are taken into regard, respectively. Thus, it is possible to ignore outliers and handle cases where only part of the data ts a given model, or part of a model ts a given set of data points.

The Hausdor distance was originally used for sets of points in the 2D plane [START_REF] Huttenlocher | [END_REF]]. However, eq. 2.26 to 2.29 can be applied to points in 3D space as well, and it is necessary to preregister the two sets under comparison, i.e., to nd a translation and rotation that optimally aligns the two data sets.

Achermann and Bunke [START_REF] Achermann | [END_REF]] make use of an extension of Hausdor distance based matching for 3D face recognition. They report on experiments using 240 range images, 10 images of each of 24 persons, and achieve 100% recognition for some instances of the algorithm. Pan et al. [Pan et al. 2003c] compare a Hausdor distance approach and a PCA-based one in 3D face recognition. In experiments with images from the 3D_RMA database they report an EER in the range of 3% to 5% for the Hausdor distance approach lower than that in the range of 5% to 7% for the PCA-based approach. Lee and Shim [START_REF] Lee | [END_REF] propose a "depth-weighted Hausdor distance" to calculate the similarity score which is then fused with surface curvature information (the minimum, maximum, and Gaussian curvature) for 3D face recognition. They present the results of experiments with a dataset representing 42 persons, with two images for each person. A rank-one recognition rate is up to 98% for the best combination method investigated, whereas the plain Hausdor distance achieves less than 90%. Russ et al. [Russ et al. 2004] also explore the Hausdor matching on facial range images. In a verication experiment, (4) Deformable Model Human faces are non-rigid, and facial expression variations can dramatically deform facial surfaces, which is quite challenging to holistic face matching mentioned above, i.e. Subspace, ICP as well as Hausdor. Deformable model is proposed to be incorporated in holistic matching, aiming to better describe the non-rigid transformations of faces. Based on a training step using representative facial samples, the deformable model can be used for:

• learning the deformation quantity between various facial expressions and thus indicating whether it belongs to intra-class variations;

• learning the transformations between dierent facial expressions to enlarge the gallery set with more expressive face models or to convert an expressive probe face to a neutral one for recognition.

Lu and Jain [Lu & Jain 2005a] extend their previous work using an ICP based recognition approach [Lu et al. 2004b] to deal explicitly with variation in facial expression. The problem is solved as a rigid transformation of probe to gallery, done with ICP, along with a non-rigid deformation, done using Thin-Plate Spline (TPS) techniques. The proposed approach is evaluated using a 100-person dataset, with neutral-expression and smiling probes, matched to neutral-expression gallery images. The gallery entries are whole-head data structures, whereas all the probes are frontal views. Most errors after the rigid transformation result from smiling probes, and these errors are reduced substantially after the non-rigid deformation stage.

For the total 196 probes (98 neutral and 98 smiling), the rank-one recognition rate reaches 89%. Lu and Jain [Lu & Jain 2006[START_REF] Lu | [END_REF]] also propose another 3D face recognition method which is robust to facial expression variations. Based on the information learned using the control group, to each subject, the approach can generate dierent expressive face models from the neutral one in the gallery set.

A user-specic 3D deformable model is then built for each subject in the gallery with respect to the control group by combining the templates with synthesized deformations. By tting this generative deformable model to a test facial scan, face recognition can be achieved. Figure 2.20 gives an illustration of the entire framework. A small control group consisting of 10 subjects, each with seven expressions (neutral, happy, angry, smile, surprise, deated, and inated), is collected from the MSU dataset. While the test set contains 877 scans of 100 individuals selected from FRGC v2.0, and the experimental results show that the proposed approach is able to handle expressions changes to some extent. Wei et al. [Wei et al. 2007] investigate to adopt 3D model sequences for identication. They conduct a ne adaptation procedure [Yin et al. 2006a] in order to deform the tracking model into a non-rigid facial surface area, which is realized using the energy minimization method based on the dissimilarity (error function) between the tracking model and the face scan.

As a result, the 3D motion trajectories are estimated by vectors from the tracked points of the current frame to the corresponding points of the rst frame with a neutral expression. The mean of the features of all deformed frames within one sequence is used as nal representation for classication. This method is evaluated on 600 3D model sequences of 100 persons, the achieved accuracy is 90.7%. Wang et al. [Wang et al. 2007b] introduce a guidance-based constraint deformation model to cope with the shape distortion by expression. The basic idea is that, the face model with non-neutral expression is deformed toward its neutral one under certain constraint so that the distortion is reduced while inter-class discriminative information is preserved. This model exploits the neutral 3D face shape to guide the deformation, meanwhile brings in a rigid constraint on it. Both the steps are smoothly unied in the Poisson equation framework. The experimental results, calculated from an expressive subset of FRGC v2.0, demonstrate that this method outperforms ICP, and an EER of 6.2% is reported. Zou et al. [Zou et al. 2007b] employ a number of selected range images as example faces, and another range image is chosen as a "generic face". The generic face is then warped to match each of the example faces in the least mean square sense. Each warp is specied by a vector of displacement values. For feature extraction, when a target face image comes in, the generic face is warped to match it. The geometric transformation used in the warping is a linear combination of the example face warping vectors. The coecients in the linear combination are adjusted to minimize the root mean square error, which are further used as facial features and fed to a Mahalanobis distance based classier. The authors claim that this method is insensitive to holes, facial expression, and hair. Amberg et al. [START_REF] Amberg | [END_REF]] describe an expression-invariant method for face recognition by tting an identity/expression separated 3D Morphable Model (3DMM) [Blanz & Vetter 1999] to probe facial surface. The tting is performed with a ro- The approach is applied on the FRGC v2.0 dataset and achieves the verication rates of 98.35% and 97.73% at 0.001 FAR for scans under neutral and non-neutral expressions, respectively.

Local Feature based Matching

The techniques of local feature based matching concentrate on local descriptive points, curves, or regions of 3D facial scans and compare them in a certain feature space (e.g. original coordinates, areas, distances, angles, curvatures, and even more complex ones) for nal decision. This approach has been extensively investigated in 3D face recognition, since it generally achieves better results than holistic matching does. In this subsection, according to the utilized feature, we categorize local feature based matching into ve classes: i.e. point based, curve based, region based, general descriptor based as well as multiple shape feature fusion based.

(1) Point based Methods Point based local matching extracts distinctive information from a set of original points for matching, such as the original coordinate, the distance of an edge between two points, the area of a region composed of several points, the angle between two edges, or more complicated descriptors.

Wu et al. [START_REF] Wu | [END_REF] propose Local Shape Map (LSM) to describe a point on the facial surface, and it is represented as a 2D histogram constructed from mapping 3D coordinates of surface's points within a sphere centralized at this point into a 2D space. The correlation coecient is utilized as similarity metric to compare the LSM of every two points, and all the results are then incorporated into an ad-hoc voting method for classication. This method does not require to register two facial surfaces. With a database of 31 facial range images from 6 subjects, the EER of 2.98% is obtained, and it also proves that LSM outperforms spin image in 3D face recognition tasks. [START_REF] Mian | [END_REF] to 3D mesh, namely mesh-SIFT. Unlike the gradient information extracted by the original SIFT operator, mesh-SIFT encodes the local histogram of shape index values. Tested on the whole Bosphorus dataset, it achieves a rank-one recognition rate of 93.7%.

(2) Curve based Methods Curve based local matching compares corresponding curves from dierent 3D facial surfaces or computes similarity measurements using more robust features extracted from them.

Cartoux et al. [START_REF] Cartoux | [END_REF]] solve the problem of 3D face recognition by segmenting a facial range image based on principal curvature and nding a plane of bilateral symmetry through the face, which is used to correct pose variations. They consider approaches of matching the prole from the symmetry plane as well as of matching the facial surface, and report 100% recognition rate for either on a quite small dataset. Nagamine et al. [Nagamine et al. 1992] approach 3D face recognition by locating ve feature points and using them to standardize face pose, matching is then operated based on various curves or proles along the face data. Experiments are performed for 16 persons, with 10 images per person. The best recognition rates are achieved using vertical prole curves that pass through the central portion of the face. Wu et al. [Wu et al. 2003] introduce the method [Pan et al. 2003b] to extract the symmetry prole using along with two horizontal ones across forehead and nose respectively. The partial Hausdor distance is employed to align and compare proles. For each individual, a statistical model of facial surface is built to represent the distinct discriminative capability of the dierent parts in the facial surface, which is then incorporated into a weighted distance function to measure similarity of surfaces. An EER in the range of 1% to 5% is reported on the 3D_RMA database. Li et al. [Li et al. 2005a] recognize 3D face models based on the characterization of their contours and proles. Experiments show that the central vertical prole and the contour are both very useful features for face recognition. When combined, better recognition rates can be obtained than just using any of them alone, meanwhile the performance of this method is better than that of PCA using a database of 80 subjects. Antini et al. [START_REF] Antini | [END_REF]] encode basic traits of a face by extracting curves of salient ridges and ravines from the surface of a dense mesh. A compact graph representation is then constructed by these curves through an original modeling technique capable to quantitatively measure spatial relationships between curves in a 3D space for face matching. Experimental results on the Gavab database show that the proposed solution attains high recognition accuracy (91%) on neutral probes relative to the ones with expression and pose changes. Feng et al. [START_REF] Feng | [END_REF]] extract ane integral invariant from a set of manual landmark based facial curve, and a small subset is chosen for pose robust facial representation. The recognition procedure is based on the Discriminant Analysis and Jensen-Shannon Divergence analysis. Substantiating examples are provided with an achieved classication accuracy of 92.57% on a database of 175 facial range images from 35 individuals. Similarly, Lin et al. [START_REF][END_REF]] exploit summation invariant generated from a number of curves for 3D face recognition, and report a verication rate of 97.2% with a 0.1% FAR on the FRGC v1.0 database. Samir et al. [START_REF] Samir | [END_REF]] represent facial surfaces by unions of level curves, called facial curves of the depth function (Fig. 2.22), which are further employed to compare shapes of surfaces using a dierential geometric approach that computes geodesic lengths between closed curves on a shape manifold. With multiple gallery faces, a nearest-neighbor classier achieves accuracies of 92% and 90.4% on the FSU and UND datasets respectively. Zhang et al. [START_REF] Zhang | [END_REF]] make use of 3D face models and their mirrors to extract central symmetry proles, and based on the curvature values of the proles, three essential points are located on each facial surface. These three essential points uniquely determine a Face Intrinsic Coordinate System (FICS), which is utilized to align dierent faces. The symmetry prole, together with two transverse proles, composes a compact representation for face matching. The proposed method is tested on 382 face surfaces, coming from 166 individuals, and the EER values of face authentication for neutral and expressive scans are 0.8% and 10.8% respectively. Mahoor et al. [START_REF] Mahoor | [END_REF] introduce the principal curvature, kmax, to represent the face image as a 3D binary image called ridge image. The ridge image shows the locations of the ridge lines around the important facial regions on the face (i.e. the eyes, the nose, and the mouth). Hausdor distance is then used to match the ridge image of a given probe to the created ridge images of the subjects in the gallery. Experiments on the Gavab dataset consisting of 61 subjects resulted in 93.5% ranked one recognition rate for a neutral expression and 82.0% for the faces with a smile expression. Berretti et al. [START_REF] Berretti | [END_REF], Berretti et al. 2010] capture face shape information by iso-geodesic stripes. This information is encoded in an attributed relational graph. The similarity between two faces are computed by matching their graphs. The experiments on the Gavab dataset illustrate that this approach performs better than ICP [START_REF] Berretti | [END_REF], and comprehensive results on the SHREC and FRGC 2.0 datasets are further given in [START_REF] Berretti | [END_REF]]. Jahanbin et al. [START_REF] Jahanbin | [END_REF]] describe 3D facial surfaces by iso-depth and iso-geodesic curves. The former is produced by intersecting a facial surface with parallel planes perpendicular to the direction of gaze, at dierent depths from the nose tip. The latter is dened to be the locus of all points on the facial surface with the same geodesic distance from a given facial landmark. Once the facial curves are extracted, their characteristics are encoded by several features like simple shape descriptors (convexity, ratio of principal axes, compactness, circular variance and elliptic variance) or polar Euclidean distances from the origin. The nal step is to verify or disapprove requests from users claiming the identity of registered individuals (gallery members) by comparing their features using Euclidean distance classier or SVM. The experiments on a dataset containing 1196 models of 119 subjects prove that the performance of iso-geodesic is much better than that of iso-depth. Drira et al. [Drira et al. 2010] explore elastic radial curves to model 3D facial deformations caused by facial expression variations. They describe 3D facial surfaces by indexed collections of radial curves on them, emanating from the nose tips, and compare the facial shapes by measuring their corresponding curves. Geodesic distances between corresponding elastic curves are adopted as similarity measurements to compare facial surfaces. This technique achieves a more than 90% overall recognition rate on the complete Gavab dataset. Figure 2.23 demonstrates the matching and geodesic deforming process of radial curves.

(3) Region based Methods The entire facial surface can be segmented into relative rigid and non-rigid parts. Region based local matching directly discards non-rigid facial areas or reduce their deformation eects by assigning lower weights. The selected facial regions are then compared in a certain feature space for face recognition.

Lee and Milios [Lee & Milios 1990] claim that convex facial regions are asserted to change shape less than other regions in response to variations in facial expression. This gives some ability to cope with changes in facial expression. As a result, they segment convex regions in a range image based on the sign of the mean and Gaussian curvatures, and create an extended Gaussian image (EGI) for each convex region describing the shape by the distribution of surface normal over the facial surface. A match between a region in a probe image and in a gallery image is done by correlating EGIs. Tanaka et al. [START_REF] Tanaka | [END_REF]] also perform curvature-based segmentation to distinguish convex and concave parts and represent the face using their EGI. Recognition is performed using a spherical correlation of the EGIs. Experiments are evaluated with a set of 37 images, and 100% recognition is reported. Chua et al. [Chua et al. 2000] propose point signatures to describe facial surfaces. To deal with facial expression variations, only the approximately rigid portion of the whole face from just below the nose up through the forehead is used in matching. Point signatures are applied to locate reference points in order to standardize the pose. Experiments are done using multiple facial images with dierent expressions from 6 subjects, and 100% recognition is achieved. Lee et al. [START_REF] Lee | [END_REF]] perform a set of contour lines to divide facial range image into several areas, which are further re-sampled and stored in consecutive location in feature vector. Euclidean distance is applied for classication, reporting 94% correct recognition at rank-ve on 70 images from 35 individuals. Moreno et al. [START_REF] Moreno | [END_REF]] segment facial regions based on Gaussian curvature where they then create a facial feature vector including the information of angle, distance, area, and curvature. They obtain a recognition rate of 78% on a subset composed of frontal face meshes of the Gavab database. Chang et al. [Chang et al. 2005b, Chang et al. 2005a, Chang et al. 2006] present a type of classier ensemble approach in which multiple overlapping subregions around the nose are independently matched using ICP, and the results of the multiple 3D matches are nally combined. The experimental evaluation uses essentially the FRGC v2.0 dataset, representing over 4000 images from over 400 persons. In a experiment in which one neutral-expression model is enrolled for each person, and all subsequent are as probes, performance of 92% rank-one recognition is reported. Ben Amor et al. [Ben Amor et al. 2006a] split the whole face into different regions according to their robustness to facial expression changes. Then, they apply ICP to calculate recognition score by a region-based similarity metric which takes into account labels of regions. The experiments prove that this scheme improves the accuracy when recognizing expressive facial surfaces. [START_REF] Cook | [END_REF]] assign learned weights to dierent patches of facial range images, and exploit PCA to compute similarity measurement between corresponding patches for fusion. They conclude that this strategy alleviates the performance issue related to facial expressions. Zhong et al. [START_REF] Zhong | [END_REF] propose novel learned visual codebook (LVC) for 3D face recognition. They rstly extract intrinsic discriminative information embedded in 3D faces by Gabor lters, and the generated Gabor maps are divided into a certain number of blocks. K-means clustering is then adopted to learn the centers from the lter response vectors, and LVC is built by these learned centers. The mapping vector between each 3D probe face and LVC constructed by concatenating the corresponding histograms between each local patch and its corresponding sub-codebook is nally fed into a nearest neighbor (NN) classier. This approach achieves the EER of 7.5% and 4.9% on the CASIA and FRGC v2.0 datasets respectively. Faltemier et al. [Faltemier et al. 2008a] introduce a 3D face recognition system based on the score level fusion of results from a committee of 28 small regions that have been independently matched by ICP. It achieves a rank one recognition of 97.2% and verication rates (Roc III) of 93.2% at a 0.1% false accept rate on the FRGC v2.0 dataset. Queirolo et al. [START_REF] Queirolo | [END_REF] utilize Simulated An- [START_REF] Mccool | [END_REF]] introduce an approach to 3D face verication which divides the 3D face into separate parts. This method, termed 3D free-parts, considers each part of the face independently and consequently the spatial relationship is discarded for the purpose of obtaining many observations from each face. The distribution of 2D-DCT features of dierent blocks are modeled robustly using GMM. This approach demonstrates a signicant improvement over the eigenfaces approach, lowering the false rejection rate (FRR) from 9.83% to 4.48% at a false acceptance rate of 0.1%, in tests conducted on 3D face data from FRGC. McCool et al. [McCool et al. 2010] further investigate HMM to replace GMM, and under the same framework, the EER is reduced from 0.88% for the GMM technique to 0.36% for the best HMM approach.

(4) General Descriptor based Methods To represent each vertex of a facial 3D point-cloud (mesh) or each pixel of a facial range image, general descriptor based methods locally extract shape attributes within its neighborhood. The entire face can be described by a feature vector combining the information of all vertices or pixels, and nally fed into classiers.

Gupta et al. [Gupta et al. 2007b] propose to use complex wavelet structural similarity metric (CW-SSIM) extracted from facial range images for 3D face recognition. CWSSIM is computationally ecient and is robust to small geometrical distortions.

Compared with Mean Squared Error (MSE) and Hausdor distance, CW-SSIM provides better performance on a dataset that contains 360 3D face models of 12 subjects. Huang et al. [START_REF] Huang | [END_REF]] present a 3D face recognition method based on statistics of range image dierences. Depth dierences are computed from a neighbor district instead of direct subtraction to avoid the impact of non-precise registration, and the histogram proportion of depth dierences is used to discriminate intra and inter personal dierences for 3D face recognition. An EER of 12.4% is achieved in the experiment of ROC III on the FRGC v2.0 database. Wang et al. [START_REF] Wang | [END_REF], Wang et al. 2010] employ Signed Shape Dierence Map (SSDM) computed between two aligned 3D faces as a mediate representation for facial surface comparison. Based on the SSDMs, three kinds of features (Haar, MB-LBP and Gabor) are used to encode both the local similarity and the change characteristics between facial shapes. The most discriminative local features are selected optimally by boosting and trained as weak classiers for assembling three collective strong classiers. The reported rank-one recognition rate and verication rate (Roc III) at 0.1% FAR are both up to 98.0%.

(5) Multiple Shape Feature Fusion based Methods All these local features mentioned above can be combined to improve the performance of 3D face recognition, and thus form the last category, namely multiple shape feature fusion based methods.

Gordon [Gordon 1992] begins with a curvature-based face segmentation. Then a set of features are extracted that describe both curvature and metric size properties of the face. Each face therefore becomes a point in a feature space, and Nearest Neighbor based matching is done. Experiments are carried out on a test set of three views of each of 8 faces and recognition rates as high as 100% are reported. Pan et al. [Pan et al. 2003b] present an approach for 3D face verication from range data. The method consists of prole and surface matching. The prole is extracted on the basis of symmetry of human face, and a global prole matching method based on k-th Hausdor distance is used to align and compare proles. For each individual, a statistical model of facial surface is built to represent the distinct discriminative capability of the dierent parts in the facial surface. Then the model is incorporated into a weighted distance function to measure similarity of surfaces. Finally two experts are combined to give a decision. An EER of 4.44% is obtained on the 3D_RMA database. A more comprehensive version can be found in [Pan & Wu 2005]. Xu et al. [START_REF] Xu | [END_REF]] develop a technique for 3D face recognition. The original 3D point-cloud is converted to a regular mesh. The nose region is found and used as an anchor to locate other local regions. Gaussian-Hermite (G-H) moments computed from the detected local regions along with holistic depth values are utilized as feature vectors. PCA is then applied for dimensionality reduction and Nearest Neighbor is nally employed for classication. The results achieved on the manual (30 subjects) and automatic (120 subjects) subsets of 3D_RMA are 96% and 72% respectively, but it should be noted that for each subject, 5 models are enrolled in the gallery. [START_REF] Gokberk | [END_REF]] compare ve approaches to 3D face recognition. They compare methods based on EGI, ICP matching, range prole, PCA, and LDA. Using the dataset including 571 images from 106 people, they nd that ICP and LDA oer the best results, although performance is relatively similar among all approaches but PCA. They also explore methods of fusing the results of the ve approaches and are able to achieve 99% rank-one recognition with a combination of recognizers. At that time, this work is relatively novel in comparing the performance of dierent 3D face recognition algorithms, and in documenting a performance increase by combining results of multiple algorithms. [START_REF] Koudelka | [END_REF]] introduce both radial symmetry and shape to extract ve features on 3D facial range images. These facial features determine a very small subset of discriminating points which serve as the input to a prescreening method based on a Hausdor fraction. Veried using the FRGC v1.0 dataset, and results show 97% of the extracted facial features are within 10 mm or less of manually marked ground truth, and the prescreener has a rank 6 recognition rate of 100%. Lee et al. [START_REF] Lee | [END_REF]] manually landmarked eight points, based on which two sets of facial features i.e., seven curves as well as some distance and angle values, are extracted. Dynamic programming is applied to classify the generated curves and obtains a recognition rate of 95% on a 5-individual test set; while SVM is used to classify the distance and angle values and achieves the accuracy of 96% on a 100-individual dataset. Based on pre-located eight landmarks, Moreno et al. [START_REF] Moreno | [END_REF]] calculate thirty local geometrical features containing distance, angles, area, curvatures, etc to model 3D facial surfaces. PCA and SVM are emplyed for classication, and on the Gavab dataset, they obtain results of 82.0% and 90.16% respectively when the faces are frontal views with a neutral expression, both of which are decreased to 76.2% and 77.9% under gesture and light face rotation. Li and Zhang [START_REF] Li | [END_REF]] explore the use of multiple intrinsic geometric attributes, including angles, geodesic distances, and curvatures, for 3D face recognition, where each face is represented by a triangle mesh, preprocessed to possess a uniform connectivity. They then train dierent weights to be applied to each individual attribute, as well as the weights used to combine the attributes, in order to adapt to expression variations. Using the eigenface approach based on the learned weights and a nearest neighbor classier, the results on the Gavab database and the FRGC 3D database show that the fusion improves the performance. Li et al. [Li et al. 2009] further investigate Sparse Representation Classier (SRC) for 3D face recognition using a similar feature set of geometric attribute features, and achieves more than 90% recognition rate on frontal samples using a dataset composed of 120 persons selected from the Gavab and FRGC v2.0 dataset. However, the comparison with the state of the art is not fair since they enroll ve models of each person in the gallery set. Guan and Zhang [Guan & Zhang 2008] combine Facial Structural Angle (FSA) and Local Region Map (LRM) for 3D face recognition, claiming that this strategy is robust to facial expressions.

Other Matching Methods

In addition to holistic and local feature based 3D face matching techniques, there also exist some approaches aiming to nd a point to point relationship between two 3D facial surfaces in a special mapping space and thus achieve their comparison for 3D face recognition. Considering this commonality, we categorize them as surface parameterization methods. Recently, following the research development in the respect of texture mapping, morphing, re-meshing, mesh compression etc, 3D surface parameterization methods have been gradually driving to maturity stage. A parameterization of a surface can be deemed as a one-to-one mapping from the surface to a suitable domain. In general, the domain of parameters itself will be a surface and so constructing a parameterization means mapping one surface into another. This parameterization can be summarized as an optimization problem under some constraints, e.g. isometric, conformal, equiareal. Using surface parameterazition, 3D facial surfaces that are represented as meshes can be mapped onto a regular 2D image so that more sophisticated signal processing approaches can be applied or to an expression invariant standard surface for 3D face matching.

Abate et al. [Abate et al. 2005] map 3D meshes to a 2D plane so that they can compare any two faces represented as 3D polygonal surfaces through their corresponding normal maps, a bi-dimensional array which stores local curvature (mesh normals) as RGB components of pixels in a color image. The histogram of a dierence map resulting from the comparison of normal maps, weighted by an expression mask, is utilized as facial feature for recognition.

Considering the inuences caused by facial expression changes, Bronstein et al. [START_REF] Bronstein | [END_REF]] use isometric mapping to convert expressive facial surfaces to a dened standard model, namely canonical form. It is expected that face models with various expressions of the same subject should generally possess the same canonical form. Based on this idea, they carry out experiment on a test set containing 220 face models from 30 subjects, and report 100% recognition rate. Moreover, they also claim that this method can distinguish identical twins.

Pan et al. [Pan et al. 2005] explore a Mapped Depth Image based 3D face recognition method. Using the nose tip as the center point and an axis of symmetry for alignment, the face data are mapped onto a circular range image. The PCA based approach is nally introduced for classication. The performance is reported as 95% rank-one recognition rate and 2.8% EER in a verication scenario on the FRGC v1.0 dataset.

Passalis et al. [START_REF] Passalis | [END_REF]] rstly t a pre-dened manually annotated deformable model to a given 3D facial surface so that it can be parameterized to a 2D plane to generate a color image, whose three channels contain the point coordinates of all the vertices. Wavelet transform is then applied to the achieved color image of certain individual, and corresponding coecients are adopted as feature vector for L 1 distance based classication. Tested on the FRGC v2.0 database, the experiments show that this method performs much better than FRGC based line (PCA), and it is also insensitive to expression and gender variations.

Abate et al. [Abate et al. 2006b] project the vertices of 3D facial surfaces to a 3D sphere, and thus obtain their spherical coordinates. The angles between two normal vectors of adjacent basic facets are calculated and represented in a 2D image, to achieve the property of rotation invariant out of plane. While 2D Fourier based descriptor is used to extract the in-plane rotation invariant feature from the produced 2D image for classication. About 96% accuracy at the rst rank is reported using a test set consisting of 120 individuals, each of which has 9 model.

Based on [START_REF] Passalis | [END_REF]], Kakadiaris et al. [Kakadiaris et al. 2007] further develop a more comprehensive 3D face recognition system, in which two types of wavelet transform are applied not only to geometry images, but also to normal maps. By combination the similarity measurements of separate matching step, they report a 97.0% rank-one recognition rate and a 97.0% verication rate at 0.1% FAR on the FRGC v2.0 dataset.

Llonch et al. [START_REF] Llonch | [END_REF]] address such a problem of 3D face recognition using spherical sparse representations as well. After alignment, 3D facial surfaces are represented as signals on the 2D sphere, in order to take benet of the geometry information. Simultaneous sparse approximations implement a dimensionality reduction process by subspace projection. Each face is typically described by a few spherical basis functions that are able to capture the salient facial characteristics. The dimensionality reduction step preserves the discriminant facial information and eventually permits an eective matching in the reduced space, where it can further be associated with LDA to improve recognition performance. They evaluate the algorithm on the FRGC v.1.0 database, and it outperforms applying PCA or LDA based approaches on depth facial images.

Wang et al. [Wang et al. 2007a] claim that conformal map is insensitive to facial expression variations and occlusions, therefore, they introduce conformal map to transform 3D facial surfaces to 2D images, whose pixel intensities are mean curvatures of vertices. Correlation is exploited to match faces, and it achieves a 97.3% recognition rate on 100 3D face models from a 10-person dataset. Several conformal maps are depicted in Fig. 2.25.

Discussion

After the development in the past two decades, current objective of 3D face recognition techniques is to meet the requirements of application in real condition, i.e. to provide high and robust accuracies (with one face model per subject for enrollment) while to operate eciently.

As a typical topic in the pattern recognition community, a 3D face recognition system contains the step of feature extraction and classication. Based on the taxonomy in 3D face recognition discussed above, we can come into a conclusion, which is similar in the domain of 2D intensity image based face recognition, that local feature based matching generally outperforms holistic matching, especially to deal with the problem caused by the variations in facial expression and pose. At this moment, many milestone 3D face recognition approaches based on holistic matching are usually seen as the baseline for performance comparison, such as PCA, ICP, Hausdor distance and so on. Since facial expression variation is the main factor which largely degrades the accuracy of 3D system, in order to improve the performance of local feature based matching, a commonly adopted solution is to combine multiple features Meanwhile, the preprocessing step plays an important role in face recognition.

Since 3D data convey more useful information than 2D data, preprocessing using 3D data is more convenient and accurate. Generally, in 3D face analysis, the preprocessing step involves two main parts, i.e. ducial landmark detection and facial surface registration. A few key ducial landmark points are critical to estimate the initial positions of facial surfaces or locate more complex facial features (e.g. curves and regions etc.), particularly in the early studies. Curvature analysis is a dominant manner for this issue, and at present, considerable progress has been made to ameliorate landmarking techniques. Many tasks conclude that the detection accuracy of major points, including nose tip, nose corners, inner eye corners, on nearly frontal 3D facial surfaces is almost 100% within an aordable error range [START_REF] Colbry | [END_REF], Szeptycki et al. 2009, Zhao et al. 2009, Alyuz et al. 2010], which is sucient to support the latter steps. However, to precisely detect more landmarking points on the faces under large pose variations still remains a problem. Based on the generated landmarking points, ICP based surface alignment along with a coarse to ne strategy, is usually required in the literature to correct 3D facial pose changes, but it is the most time-consuming process in 3D face recognition. Therefore, as a part of 3D face recognition system, the performance and computational expense in preprocessing should be optimized as well. On the other hand, the 3D face recognition algorithms depending on less preprocessing work should be explored.

Summary

In the rst half of this chapter, we have elaborately discussed several techniques which are regarded as milestones in 2D intensity image based face recognition, while in the latter half, we have extensively reviewed the development process formed by representative approaches in 3D model based face recognition.

In the 2D modality, almost all recent methods claim to be able to provide satisfactory recognition rates, but only when evaluated on standard databases. Actually, some fundamental challenges, i.e. illumination and pose variations, have not been solved completely. The 3D modality has the potential to boost recognition performance of 2D face recognition with respect to these challenges, and many techniques have already proved their competency in certain validation circumstances, however, several other dicult problems still require to be properly addressed, e.g. the pre-cision and speed of data acquisition, the accuracy of landmarking on partial faces (right and left face proles), the slowness of surface registration. Moreover, the 3D modality tends to be more insensitive to facial expression variations compared with the 2D based one.

As a result, besides investigating better solutions to improve the performance in each modality separately, we can also consider to make use of merits oered by both modalities so that the robustness of face recognition systems can be step up. A major trend is to achieve multi-modality face recognition (discussed in chapter 4) which combines 2D modality with 3D ones, since recent works conrm that fusing 2D and 3D approaches leads to results that overcome both 2D and 3D, in terms of recognition rate. Nevertheless, this category of systems inherits common problems of 3D processing, especially, concerning the acquisition process. Meanwhile, a smart and exible integration between the two modalities should be explored as well aiming to reduce the expenditure in 3D data acquisition and computation, such as 3D aided 2D face recognition using 3D information to normalize pose and lighting changes in facial texture images based on which identication is performed, or asymmetric 3D-2D face recognition (described in chapter 5) exploiting (textured) 3D face models for enrollment while 2D facial images for test and computing similarity scores between two dierent types of data.

Additionally, even though many datasets have been released for research activities, each of which is designed and expected to give one or more diculties, they cannot yet well simulate a more complex condition in the real world. More challenging factors including large population, diverse ethnicities, rich age distribution, low quality data, natural occlusions, make-up usage, etc. are attracting much greater scientic attention. As we discussed in the previous chapters, with the rapid development in 3D imaging systems, 2.5D and 3D facial scans have emerged as a major solution to deal with these unsolved issues in 2D intensity image based face recognition, i.e. illumination and pose changes [START_REF] Bowyer | [END_REF], Scheenstra et al. 2005]. Meanwhile, even though 3D facial scans capture exact shape information of facial surfaces and 3D face recognition methods are thereby theoretically reputed to be robust to variations of illumination, they are likely to be more sensitive to facial expression variations. Besides, they generally require an accurate registration step before shape-based 3D matching.

Generally, similar as 2D intensity image based face recognition, how to describe facial surfaces is a core topic in the 3D domain as well. "Good" geometric features of 3D facial shapes should have the following properties [START_REF] Hadid | [END_REF]]: rst, they can tolerate within-class variations while discriminating dierent classes well; second, they can easily be extracted from raw facial data to allow for fast processing; nally, they should lie in a space with moderate dimensionality in order to avoid unaordable computational expense in the matching step. As a result, existing 3D face recognition techniques can be roughly classied according to the features they use: (1) Original feature-based techniques make use of the entire face region as input to compute similarity. Several works have explored PCA directly on facial range images [START_REF] Achermann | [END_REF], Bronstein et al. 2003, Hesher et al. 2003]; while some have applied the ICP (Iterative Closest Point) algorithm [Besl & McKay 1992] or its modied version on facial point-clouds to match surfaces [Chang et al. 2005b, Lu & Jain 2006, Lu et al. 2006]. The Hausdor distance has also been explored for matching facial surfaces [START_REF] Lee | [END_REF], Russ et al. 2005]. (2) Region or point feature based methods detect representative facial points or areas to construct corresponding feature spaces. The eye and nose areas are used in [Gordon 1992]; segmented facial regions and lines are utilized in [START_REF] Moreno | [END_REF]]; anthropometric facial ducial keypoints are investigated in [Gupta et al. 2007a]. (3) Curve feature based approaches extract discriminative curves for facial surface representation. In [Nagamine et al. 1992], three facial curves were found to intersect the facial surface using horizontal, vertical planes and a cylinder; the central prole with maximal protrusion as well as two parallel proles were searched in [Beumier & Acheroy 2000]; an union of the level curves of a depth function was proposed to describe 3D facial surfaces [START_REF] Samir | [END_REF]]; (4) Shape feature based algorithms focus on the geometric attributes of local surfaces, such as curvatures [Gordon 1992], point signature [Chua et al. 2000], Extended Gaussian Image (EGI) [START_REF] Tanaka | [END_REF]], Signed Shape Dierence Map (SSDM) [START_REF] Wang | [END_REF]] etc.

3D face recognition techniques can also be categorized according to the nature of their matching strategies, i.e. holistic or local face matching, even though this is highly dependent on the facial features used. We have extended this taxonomy to 3D face recognition in the second chapter. The holistic stream contains ICP-based matching [START_REF] Lu | Matching 2.5D face scans to 3D models[END_REF]], isometry invariant description [START_REF] Bronstein | [END_REF]] etc. This matching scheme is based on holistic facial features and hence generally requires an accurate normalization step with respect to pose and scale changes. Furthermore, it has proved sensitive to expression variations and partial occlusions. The local feature-based one utilizes local features of 3D facial scans and has been explored in several works in the literature, including point signature [Chua et al. 2000], Region-ICP [START_REF] Ouji | [END_REF]] and so on. Local feature-based matching has the potential advantage of being robust to facial expression, pose and lighting changes and even to partial occlusions. The downside of this scheme is the diculty extracting sucient informative feature points from similar or smooth 3D facial surfaces.

In this chapter, we propose a novel method for 3D face recognition making use of a geometric facial description along with a local feature matching scheme. Our main contributions can be summarized as follows.

(1) Since all facial surfaces are generally smooth and similar, in order to achieve accurate representation and enhance their distinctiveness, a shape based geometric facial description, consisting of a set of Multi-Scale extended Local Binary Pattern Depth Faces (MS-eLBP-DFs), is presented.

Because of its superior performance and computational simplicity, LBP is one of the most popular and successful local descriptors for 2D intensity image based face analysis. See [Huang et al. 2011d] for a review on its application to facial image analysis. In the literature, LBP has been also investigated for 3D face recognition [Li et al. 2005b, Huang et al. 2006]. However, LBP is not so discriminative for this purpose since it cannot distinguish similar local shapes well due to its thresholding strategy. To address such a problem, two solutions are considered. First, extended LBP (eLBP), generalized from our previous work on 3DLBP [Huang et al. 2006] and capable of handling dierent numbers of sampling points and various scales, is used. It not only extracts the relative gray value dierences from the central pixel and its neighbors provided by LBP, but also focuses on their absolute dierences that prove very critical to describe range faces as well. Secondly, a multi-scale strategy is introduced to represent local surfaces to dierent extents which are then combined for a comprehensive description. In addition, previous works simply repeated the method of 2D facial analysis that divides the face into a number of sub-regions, from which LBP based histograms are extracted; then concatenates all these local histograms into a global one to form a nal facial feature. Unlike these works, we apply eLBP directly to the whole range facial area to generate Multi-Scale extended LBP Depth Faces (MS-eLBP-DFs) which retain all 2D spatial information on range faces. Finally, this method inherits the computational simplicity property from LBP and achieves fast processing.

(2) A local feature matching scheme is designed to measure similarities between gallery and probe facial scans once represented in terms of the proposed geometric facial description, i.e. MS-eLBP-DFs.

The recognition process works in a local manner by performing a feature-based matching using SIFT based features, which is further strengthened by facial component and conguration constraints. Since the proposed matching scheme possesses a certain tolerance to moderate pose changes, it enables the entire system to match nearly frontal 3D face models without generally costly registration.

(3) Most of the state of the art have proven their eectiveness over renowned databases like FRGC, but less eort has been made to analyze the robustness to quality degradations. In this chapter, we evaluate the performance of the proposed method with regard to data degradations such as Gaussian noise, decimation, and random holes etc. that are generated on a subset of FRGC.

The proposed method is evaluated on two public databases, namely FRGC v2.0 [Phillips et al. 2005] as well as Gavab DB [Moreno & Sanchez 2004]. Experimented on the FRGC v2.0 dataset for both tasks of 3D face recognition and verication, the proposed approach achieves a rank-one recognition rate of 97.6% and a 98.4% verication rate with an FAR of 0.1% respectively. Thanks to the local matching scheme, a generally costly face alignment step is not needed, because all 3D face models in the FRGC v2.0 dataset are nearly frontal, which is in contrast to most techniques so far in the literature. When it handles severe pose changes including left or right facial proles leading to self-occlusions, coarse alignment based on a few landmark points is sucient as a preprocessing step of this approach. This fact is demonstrated by the experiments on the Gavab database. Furthermore, additional results illustrate that the system is also robust to facial expression variations and data degradations such as Gaussian noise, decimation, random holes etc.

The remainder of this chapter is organized as follows. The proposed geometric facial description, MS-eLBP-DFs, is shown in section 3.2, and section 4.4 presents the local feature based matching step. Experimental results of both face recognition and verication tasks are described and analyzed in section 3.4. Section 4.7 concludes this chapter.

MS-eLBP based Facial Representation

Due to its ability to describe micro patterns and its computational simplicity, the Local Binary Patterns (LBP) technique has been widely explored in 2D face analysis [START_REF] Ahonen | [END_REF], Yan et al. 2007, Chan et al. 2007[START_REF] Shan | [END_REF], and recent investigation for 3D facial description [Li et al. 2005b, Huang et al. 2006]. However, using LBP directly on range faces does not allow accurate representation of local shape changes. In this section, we rstly analyze the descriptive ability of LBP for local facial surface representation. Then, we present extended LBP (eLBP) and the multi-scale scheme to generate a novel 3D geometric facial description, called MS-eLBP Depth Faces (MS-ELBP-DFs) that comprehensively encode local shape variations of range faces.

LBP and Its Descriptive Power for Local Shape Variations

In the second chapter, we have introduced the LBP methodology in detail. For the purpose of completeness, we briey recall its basic conception.

The original LBP operator labels each pixel of a given 2D image by thresholding in a 3×3 neighborhood. If the values of the neighboring pixels are no lower than that of the central pixel, their corresponding binary bits are assigned to 1; otherwise they are assigned to 0. A binary number is hence constructed by concatenating all the eight binary bits in a clockwise direction starting from the top-left position, and the resulting decimal value (LBP code) is used for labeling the central pixel. According to the denition of LBP, the LBP code is invariant to monotonic grayscale transformations, preserving their pixel orders in local neighborhoods. When LBP operates on the images formed by light reection, it can be used as a texture descriptor. Each of the 256 (2 8) LBP codes can be considered as a micro-texton. Local primitives codied by the bins of LBP using uniform pattern include dierent types of curved edges, spots, at areas etc. Fig. 3.1 shows some examples. Similarly, as LBP works on range images which are based on depth information, it can also describe local shape structures, such as at, concave, convex etc., as shown in Fig. Unfortunately, the direct application of LBP to depict the shapes of 3D surfaces also leads to unexpected confusion when distinguishing similar yet dierent local shapes. Fig. 3.3 illustrates two similar shapes with dierent Shape Index (SI) values [Koenderink & Doorn 1992] while indeed sharing the same LBP code: shape (A) is a spherical cap; shape (B) is a dome. This lack of descriptive power is problematic when one needs to derive a facial description to enhance distinctiveness for the task of face recognition.

To address such a problem, we propose to adopt two complementary solutions. The rst solution aims to improve the discriminative ability of LBP with the eLBP coding method, and the other one focuses on providing a more comprehensive geometric description of a given neighborhood by applying a multi-scale strategy. Each solution is discussed in the following two subsections respectively.

Extended Local Binary Patterns

The fact that LBP is not competent to distinguish between similar local shapes is due to its operation mode. It only encodes relative dierences between a central pixel and its neighboring ones. In this section, we introduce eLBP to better describe local surface properties. Instead of the original LBP operator, eLBP not only extracts the relative gray value dierence between the central pixel and its neighbors provided by LBP, but also focuses on their absolute dierences which are also important to describe local shapes. eLBP is a generalized version of our previous work on 3DLBP [Huang et al. 2006] originally proposed for histogram-based 3D face recognition.

Specically, the eLBP operator consists of several binary codes in multiple layers that encode the exact gray value dierences (GD) between the central pixel and its neighboring ones. The rst layer of eLBP is actually the original LBP code encoding the GD sign. The following layers of eLBP then encode the absolute value of GD. Basically, each absolute GD value is rst encoded in its binary representation and then all the binary values at a given layer result in an additional local binary pattern. The example of Fig. 2.10 can be expressed by eLBP as shown in Fig. 3.4. The rst layer of eLBP code is simply the original LBP code that encodes the sign of GD, thus yielding a decimal number of 211 from its binary form (11010011) 2 . The absolute values of GD, i.e. 1, 5, 3, 2, 1, 2, 3, 0, are preliminarily expressed as their binary numbers: (001) 2 , (101) 2 , (011) 2 , (010) 2 , ..., etc. Using the same weighting strategy of LBP on all the binary bits, we generate the eLBP code of its corresponding layer, e.g., L 2 is composed of (01000000) 2 and its decimal value is 64; L 3 is composed of (00110110) 2 and its decimal value is 54; nally L 4 is composed of (11101010) 2 and its decimal value is 234. As a result, as describing similar local shapes, although the rst layer LBP is not discriminative enough, the information given by the additional layers can be used to distinguish them.

Theoretically, within one image, the maximum value of GDs is up to 255 (between 0 and 255), which means that 8 additional binary units are required to code GDs (2 8 -1 = 255), and thus 7 additional layers should be produced. Nevertheless, we do not need so many layers in eLBP. Range faces are indeed very smooth; the GDs in a local surface generally do not vary dramatically. Some preliminary statistical work reveals that more than 85% GDs are smaller than 7 between points within eight pixels. Therefore, the number of added binary units, k, is determined by GD. Meanwhile k can also be exploited to control the trade-o between the description expressiveness of local shapes and the computational simplicity of eLBP. All the GDs which are larger than 2 k -1 can be assigned to 2 k -1 to decrease the com-putational cost. In this study, three additional layers are extracted and analyzed to illustrate their contributions to the nal accuracy.

Multi-Scale Strategy

As we know, the original LBP operator was extended later with dierent sizes of local neighborhood to deal with various scales [Ojala et al. 2002]. The local neighborhood of the LBP operator is dened as a set of sampling points evenly spaced on a circle centered on the pixel to be labeled. These sampling points which do not fall exactly on the pixels are expressed using bilinear interpolation, thus allowing any radius value and any number of points in the neighborhood. The notation (P, R) denotes the neighborhood possessing P sampling points on a circle of radius R. By adopting the same protocol, the eLBP operator can also handle dierent sampling points and scales.

Several LBP histogram-based tasks changed the neighborhood of the LBP operator in order to improve their performance. By varying the value of radius R, the LBP codes of dierent resolutions are obtained. The multi-scale scheme was originally used for texture classication [Ojala et al. 2002], and it was also introduced to 2D face recognition [START_REF][END_REF], Chan et al. 2007]. In [START_REF] Shan | [END_REF], Shan and Gritti studied MS-LBP for facial expression recognition by rstly extracting MS-LBP histogram-based facial features and then using AdaBoost to learn the most discriminative bins. They pointed out that the boosted classiers of MS-LBP consistently outperform those based on single-scale LBP, and the selected LBP bins distribute at all the scales. MS-LBP can hence be deemed as an ecient approach for facial representation. When considering it in 3D face analysis, this multi-scale technique can be applied to enhance the descriptive power of LBP.

Multi-Scale Extended LBP Depth Faces (MS-eLBP-DFs)

LBP facial representation can be achieved in two ways: one is by LBP histogram, while the other is by LBP face. The general idea of the former one is that one human face can be regarded as a composition of micro-patterns described by LBP. The images are divided into a certain number of local areas, from which LBP histograms are extracted. These histograms are concatenated and thus contain both local and global information of the faces. The latter manner is to generate LBP based maps, which regards the decimal number of the LBP code as the pixel values of an LBP map, and thus produces the corresponding LBP face. Due to its own strategy, an LBP histogram loses some 2D spatial information for representing faces. In this study, the second, eLBP face, is investigated.

Given a facial range image, we generate a set of MS-eLBP-DFs for facial representation. These MS-eLBP-DFs can be achieved by varying the neighborhood size of the eLBP operator, or by rst down-sampling range faces and then adopting an eLBP operator with a xed radius. Some face samples are illustrated in Fig. 3.5. In that gure, the number of sampling points is 8, and the radius value varies from 1 pixel to 8 pixels. As we can see, the original range face is very smooth, whilst the resulting MS-eLBP-DFs contain many more details of local shape variations. 

Local Feature Matching

Once the proposed MS-eLBP-DFs have been produced, the widely-used SIFT features [Lowe 2004] are extracted from them. Then, a local matching process further improved by the facial component and conguration constraints is carried out to calculate a similarity score between two 3D facial scans.

Local Feature Extraction

The SIFT operator (more technique details are presented in the second chapter) works on each MS-eLBP-DF separately. Because MS-eLBP-DFs highlight the local shape characteristics of smooth facial range images, many more SIFT-based keypoints can be detected for the following matching step than in the original range faces. Some statistical work was done along with the experiments on the FRGC database. The average number of descriptors extracted from each of MS-eLBP-DFs is 553, while that of each original facial range image is limited to 41, and the detected keypoints are usually located on the edge of the face. Figure 3.6 shows the SIFT-based keypoints extracted from one range face image and its four associated eLBP-DFs respectively.

Local Matching Strategy

Given local facial features extracted from each MS-eLBP-DF pair of the gallery and the probe face scan respectively, two facial keypoint sets can be matched. Matching one keypoint to another is accepted only if the matching distance is less than a predened threshold, t times the distance to the second closest match. In this research, t is empirically set at 0.6 as in [Lowe 2004]. Here, N Li(P,R) denotes the number of matched keypoints in the i th layer of an eLBP-DF pair, generated by eLBP from range face images with a parameter setting of (P, R).

Facial Constraints

Unlike the samples used in object detection, all human faces have the same physical components and share a similar conguration. The local matching strategy is thus can be enhanced by holistically constraining the matched local features of the keypoints with respect to the facial components and conguration, .

(1) Facial Component Constraint: we propose to divide the entire facial range image into sub-regions, each of which contains roughly one component of nearly frontal faces, to restrict the matched keypoints of gallery and probe face scans only to those with similar physical meaning. That means the matched keypoints from the same facial part should be more important. Instead of the costly clustering process in [START_REF] Luo | [END_REF]] to automatically construct sub-regions based on keypoint locations from training samples, we simply use our common sense of facial component position, and divide the face area into 3 × 3 rectangle blocks of the same size. The similarity of the facial component constraint is dened from this facial composition scheme. A MS-eLBP-DF, I, is represented as (m 1 , m 2 , ..., m k ); k is 9 in our case and m i is the number of detected SIFT keypoints that fall within the i th component. The local SIFT-based descriptors in all the k components can be denoted by:

I = (f 1 1 , ..., f m 1 1 , f 1 2 , ..., f m 2 2 , ..., f 1 k , ..., f m k k ) (3.1)
where f j i means the j th descriptor in the i th facial component. Then the similarity between a gallery face I g and a probe face I p is computed by:

C(I p , I g ) = 1 k k i=1 (max( < f x p i , f y g i > f x p i • f y g i ))
(3.2)

where x ∈ [1, ..., m pi ]; x ∈ [1, ..., m gi ].
• denotes the inner product of two vectors, and • denotes the norm of one vector. A bigger C value indicates the most similar attributes of the two faces represented by MS-eLBP-DFs. We thus obtain similarity values, C Li(P,R) for each MS-eLBP-DF.

(2) Facial Conguration Constraint: the former constraint on facial component emphasizes the importance of the matching score between local features of the same facial component-based area in the gallery and probe set, and we further improve the constraint by facial conguration.

All the facial range images are normalized to a certain size to build a public 2D coordinate system. For each 3D facial scan, the MS-eLBP-DFs are extracted from the range image, and there is a pixel-to-pixel correspondence between these images. Therefore, all the keypoints of the proposed facial surface representations share the same XY-plane with the range face image, and the pixel values of the corresponding facial range image can be regarded as the Z-axis values of these keypoints. Hence, each keypoint has its position in 3D space. After local feature-based matching, a 3D graph is formed for each MS-eLBP-DF of a probe F p , by simply linking every two keypoints which have a matching relationship with keypoints detected on the corresponding MS-eLBP-DF of a gallery face F g . The matched keypoints of F g also construct a corresponding graph of F p . Intuitively, if faces F g and F p are from the same subject, their corresponding graphs should have similar shapes and locations in 3D space.

One similarity measure between the two graphs is

d e = 1 n e ne i=1 |d p i -d g i | (3.3)
where d pi and d gi are the lengths of corresponding edges in the probe and gallery graphs respectively. The value n e is the total number of edges. If the number of matched keypoints is n n , n e will thus be expressed as n n * (n n -1)/2. Equation 3.3 is an ecient way to measure the spatial error between the matched keypoint pairs of probe and gallery features. Another similarity between two graphs is calculated as the mean Euclidean distance d n between corresponding nodes:

d n = 1 n n nn i=1 |n p i -n g i | (3.4)
where n pi and n gi are the coordinates of corresponding keypoints in a gallery and its probe graph respectively. n n is the number of matched keypoints.

The nal similarity measurement of the facial conguration constraint is:

D = w e * d e + w n * d n (3.5)
where w e and w n are the corresponding weights of d e and d n , designated according to the scheme adopted in similarity fusion, and a smaller D value indicates the most similar attribute of two facial range images represented by the MS-eLBP-DFs. As in the facial component constraint, here, D Li(P,R) denotes the similarity score of each MS-eLBP-DF.

Similarity Fusion

In summary, the matching process of gallery and probe facial range images contains three types of similarity scores: the number of matched keypoint pairs N , similarity C of the facial component constraint and similarity D of the facial conguration constraint. Except for D, all the other similarity measures have a positive polarity (a bigger value means a better matching relationship). A range face of the probe set is matched with every face in the gallery, resulting in three vectors S N , S C and S D .

The n th element of each score vector corresponds to the similarity score between the probe and the n th gallery face. Each vector is normalized to the interval of [0, 1] using the min-max rule. Elements of S D are subtracted from 1 to reverse its polarity. The nal similarity of the probe face with the faces in the gallery set is then calculated using a basic weighted sum rule:

S = w N * S N + w C * S C + w D * (1 -S D ) (3.6)
Their corresponding weights: w N , w C , and w D are calculated dynamically during the online step using the scheme in [Mian et al. 2008]:

w S i = mean(S i ) -min 1 (S i ) mean(S i ) -min 2 (S i ) (3.7)
where i corresponds to the three similarities: N , C, and D, and operators min 1 (Si) and min 2 (Si) produce the rst and second minimum value of the vector S i . The gallery face image which has the maximum value in the vector S is declared as the identity of the probe face image when the decision is to be made on each MS-eLBP-DF independently.

Experimental Results

In order to demonstrate the eectiveness of the proposed method, we used two public databases for experiments, i.e. FRGC v2.0 [Phillips et al. 2005] as well as Gavab [Moreno & Sanchez 2004]. The rst is for evaluating performance with large number of subjects and complicated conditions; the second is to analyze the accuracy on 3D face samples with extreme pose changes (left and right proles).

Experiment Design

Most of the experiments were evaluated on the FRGC v2.0, one of the most comprehensive and popular datasets, containing 4007 3D face scans of 466 subjects. One facial range image was extracted from each 3D face model. A preprocessing step was applied to remove spikes with a median lter and ll holes using cubic interpolation. Thanks to the relative tolerance to moderate pose changes of hybrid matching, we did not perform any registration on these 3D face models, in contrast to most works such as [Kakadiaris et al. 2007, Mian et al. 2007, Faltemier et al. 2008a] etc. The facial range images were cropped by using a basic bounding box based on the mask provided by a 3D scanner indicating whether the point is valid or not in that position. Cropped faces have pose, expression changes, as well as partial occlusions caused by hair. All faces are normalized to facial range images with 150 × 150 pixels for computational simplicity.

The proposed approach was carried out on both the face recognition and verication tasks. The rst 3D facial scan with a neutral expression from each subject makes up a gallery of 466 samples. The remaining face scans (4007-466=3541) were treated as probes. The 3D facial scans in the probe set were divided into two subsets according to their expression labels to evaluate its robustness to facial expression changes. The rst subset is made up of facial scans with a neutral expression; whilst the other one with facial scans possessing only non-neutral facial expressions. Besides Neutral vs. All, two additional experiments: Neutral vs. Neutral and Neutral vs. Non-Neutral were also included to analyze its insensitiveness to facial expression variations. In the Neutral vs. Neutral and Neutral vs. Non-Neutral experiments, only the neutral and non-neutral subsets were used, respectively.

Furthermore, we tested the robustness of the proposed method to several degradations as they commonly occur in the acquisition process including Gaussian noise on depth information, decimation in terms of resolution, and random holes as data missing. In these experiments, we employed 410 persons each of which has more than one 3D model, and the other 56 with only one model per person were not considered. For each subject, the rst neutral model was used to make up the gallery set, and another model randomly picked up from each subject was taken as a probe.

To compare the performance with other approaches which require more precise preprocessing operations, in this experiment, besides removing spikes and lling holes, the nose tips of all the utilized faces were manually marked, and corresponding facial regions were cropped within a sphere of radius 100mm based on the nose-tip coordinates. Then, the probe set was altered to create degraded sets, according to the following rules (Fig. 3.7 shows examples of those degradations):

• Gaussian noise corresponds to the injection of an error with a Gaussian distribution on the Z coordinates in the depth image. This tends to emulate the behavior of electronic noise of acquisition devices, albeit a simplistic manner. We set the Root Mean Square (RMS) value of the error respectively to 0.2mm, 0.4mm and 0.8mm.

• Decimation aims at removing a number of vertices from the original facial surface. Vertices are picked up randomly and removed respectively from a ratio of ×2, ×4 and ×8. For example, ×4 means that the decimated model includes only a quarter of the vertices in the original ones.

• Holes are generated at random locations on facial surfaces. At rst, we choose a random vertex on the surface of the face. Then, we crop the hole according to a sphere with a radius value of 1 centimeter centered at the selected vertex. For each level, we produce 1, 2, 3 holes on the entire face respectively.

To analyze the performance on severe pose changes and even partially occluded 3D facial scans, we also tested our approach on the Gavab database. This database consists of Minolta Vi-700 laser facial scans of 61 dierent individuals. Each subject was scanned 9 times for dierent poses and facial expressions.

In the experiments, a similar preprocessing pipeline was utilized as in the FRGC v2.0 dataset to remove spikes and ll holes. Since the Gavab dataset contains many severe pose changes, we performed a coarse alignment based on three landmarks for all facial scans. When the two inner corners of the eyes and the nose tip of one scan are available at the same time (all face scans excluding the extreme poses such as the right and left proles), we used our previous technique [START_REF] Szeptycki | [END_REF]] to lo- cate the three landmark points automatically and computed rotation and translation parameters; while for each of these left or right proles, we manually landmarked four points, i.e., the inner and outer corner of one eye, the nose tip, and the corner of the nose, which are visible in that prole. After the coarse registration step, a facial range image is extracted from each facial scan, These range images hence only contain partial faces due to the self-occlusion caused by pose variations, and all the facial range images are further resized to 150 × 150 pixels. The rst frontal facial scan of each subject was used as the gallery; while the others were treated as probes.

We calculated rank-one face recognition rates.

Identication

The four sub-tables in Table 3.1 list the results based on depth faces of each eLBP layer with dierent parameters. Recall that P is the number of sampling points and R is the radius value.

In these sub-tables, the numbers displayed in the last row labeled as the "eLBP" performance are the fusion results according to the weighted sum rule as described in eq. 3.6 combining the similarity measurements provided by the rst three layers (L 1 , L 2 and L 3 ) using the same parameter setting; similarity scores at L 4 are omitted because of their low performance. As we can see from Table 3.1, using 8 sampling points achieves better results on L 1 , and L 2 for almost all the radius values (except R = 2, 3), respectively; whilst the setting with 16 sampling points results in better performance on L 3 (except R = 2) and L 4 , respectively. All the eLBP accuracies at dierent scales with dierent numbers of sampling points display recognition rates better than 90%.

Using the weighted sum rule described in eq. 3.6, we then fused the similarity scores of eLBP with 8 sampling points but dierent radius values from 2 to 8 pixels, and compared their rank-one face recognition rates with the state of the art as shown in Table 3.2. Except for ICP, all results are cited from the original papers.

In order to test the discriminative power of LBP and eLBP to characterize local geometric shapes, Shape Index (SI) face maps are produced and associated with the proposed local matching scheme for the task of 3D face recognition as well. With a rank-one recognition rate of 91.8% as indicated in Table 3.2, SI faces outperform any of the single scale LBP-DFs (i.e. the layer of eLBP L 1 ). Meanwhile, most of the Table 3.1: Rank-one recognition rates based on depth faces of each eLBP layer with dierent parameters in the FRGC v2.0 dataset.

(A)

P = R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8
eLBP L 81.6% 84.8% 86.9% 87.7% 87.6% 86.2% 85.9% eLBP L 75.2% 83.3% 85.7% 87.1% 87.6% 87.3% 87.0% eLBP L 76.9% 74.7% 71.6% 68.8% 67.4% 63.7% results based on single scale eLBP-DF surpass that of SI faces; furthermore, when fusing the matching scores of eLBP-DF at dierent scales to achieve MS-eLBP-DFs, the rank-one recognition rate is increased by more than 5 points, from 91.8% for SI face to 97.6% for MS-eLBP-DFs. These results clearly indicate how well Multi-Scale eLBP describes geometric shape variations.

P = R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R =
P = R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8
P = R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R =

Verication

The proposed approach was evaluated for face verication as well; the verication rate with FAR at 0.1% using the experimental protocol Neutral vs. All are given in Table 3.3. Further experiments were carried out on ROC I, ROC II, and ROC III. These three ROC curves are based on three masks provided by the FRGC v2.0 dataset. They are dened over the square similarity matrix with a dimensionality of 4007 × 4007, and they are of increasing diculty reecting the time elapsed between (3) MS-LBP-DFs 94.1% (4) Wang et al. [Wang et al. 2007b] 87.7%

(5) Chang et al. [Chang et al. 2005a] 91.9% (6) Mian et al. [Mian et al. 2008] 93.5% [START_REF] Huang | A novel geometric facial representation based on multi-scale extended local binary patterns[END_REF] Cook et al. [Cook et al. 2006a] 94.6% (8) Huang et al. [Huang et al. 2010b] 96.1% ( 9) Mian et al. [START_REF] Mian | [END_REF] 96.2% (10) Kakadiaris et al. [Kakadiaris et al. 2007] 97.0% (11) Faltemier et al. [Faltemier et al. 2008a] 98.1% (12) Maurer et al. [Maurer et al. 2005] 92.0% [START_REF] Passalis | [END_REF] 85.1% Husken et al. [Husken et al. 2005] 89.5% Cook et al. [Cook et al. 2006a] 95.8% Mian et al. [Mian et al. 2008] 97.4% [START_REF] Mian | [END_REF] 98.5% [START_REF] Wang | [END_REF] 98.6%

As we can see from Table 3.4, the performance of the proposed method on ROC I, ROC II and ROC III is slightly lower but still comparable to the best of ones in the literature. Meanwhile, it is noteworthy that the proposed approach does not require any registration for nearly frontal face scans as those in the FRGC v2.0 dataset. This is clearly in contrast to works [START_REF] Wang | [END_REF], Kakadiaris et al. 2007]. In [Kakadiaris et al. 

Evaluation on Facial Expression Variations

According to the same experimental protocol, we compared the performance of the proposed approach with the one by Mian et al. [Mian et al. 2008] and Huang et al. [Huang et al. 2010b] for robustness analysis on facial expression changes (see Table 3.5). The results of our approach are 99.2% and 95.1% for the Neutral vs. Neutral and Neutral vs. Non-Neutral experiment, respectively. The face recognition rate on Subset I is comparable to the best ones of the state-of-the-art, while signicant progress was made on subset II, i.e. Neutral vs. Non-Neutral, displaying a 95.1% rank-one recognition rate. The degradation as the samples with non-neutral facial expressions are included drops by 4.1%, not only much lower than the gure of 12.3% in [Mian et al. 2008] when only 3D shape information was utilized, but also lower than the drop of 7.3% in [Mian et al. 2008] when both shape and texture clues were combined. Moreover, Table 3.5 also indicates that the MS-eLBP-DFs outperform SI face in both the additional experiments on Subset I and II, and the performance degradation of MS-ELBP-DFs is much lower than that of SI face. These accuracies hence suggest that our approach tends to be insensitive to facial expression changes. The achieved verication rates match those in face recognition, as illustrated in Table 3.6. 

Evaluation on Data Degradation

As discussed in the subsection 3.4.1, we tested the robustness of the proposed method to some types of face data degradation, i.e., Gaussian noise, decimation, and random holes. To show the eectiveness of our approach, we compared the performance with several other tasks, including ICP, TPS, and Elastic Radial Curve Matching [Drira et al. 2010]. All the techniques were benchmarked on the subset of 410 subjects as dened previously in subsection 3.4.1 as well as various degradations. In the Figure 3.9 to 3.11, the proposed method is marked in red; ICP is marked in violet; TPS is marked in green; and Elastic Radial Curve Matching is marked in blue.

Figures 3.9 to 3.11 present the comparisons of rank-one recognition rates under Gaussian noise, decimation and missing data respectively. As we can see from these gures, to some extent, all these methods record performance drops under degra- dations in face model quality. Specically, they resist relatively well to decimation and missing data, their performance drops drastically when the noise is increased to 0.8mm. However, compared with other three methods, the proposed approach shows a better tolerance to these data degradations.

Evaluation on Occlusion

To analyze its tolerance to occlusions, we also launched experiments on the Gavab database and calculated the rank-one recognition rates. Table 3.7 shows the matching accuracies for dierent categories of probe faces: (A) displays the results without pose variations; while (B) lists those only with the facial scans with pose changes. In (A), the neutral subset contains one frontal facial scan of each subject, and the expressive subset includes a smile; accentuated laugh and random gesture (random facial expression), three facial scans of each subject. To the best of our knowledge, the work [Drira et al. 2010] is the only one that has carried out experiments on the entire Gavab database before this work. Therefore, we compared our results with theirs on the subset of four severe pose variations as well as the overall performance. It is worth noting that the dierence between their work and ours is that Drira et al. manually landmarked nose tips on all the face scans in the dataset for an ICP-based ne registration, while we only manually landmarked facial scans of right and left proles ((c) and (d) in Table 3.7 (B)), and for all the faces, only a coarse alignment step was utilized to rotate and translate them.

From Table 3.7 (A), we can see that for frontal neutral probes, the rank-one recognition rate is 100% as in [Drira et al. 2010]; while regarding expressive faces, our approach surpasses all the others. Moreover, when evaluating the robustness to severe pose variations (Table 3.7 (B)), we achieved an overall accuracy of 91.4% on these four subsets; whilst that reported by [Drira et al. 2010] is 88.9%.

To sum up, the experimental performance on the Gavab database further conrms that our approach possesses a good tolerance to large pose changes and even partial occlusions.

Computation Cost

Currently, an unoptimized implementation of our approach with MATLAB (R2010a) can perform about 330 matches between the gallery and probe faces per second using a machine using Intel(R)Core(TM) i7 CPU (3.07 GHz) and 8 GB RAM.

Summary

We have presented an eective method for 3D face recognition using a novel geometric facial representation and a local feature matching scheme. The proposed facial representation is based on MS-eLBP and allows for accurate and fast description of local shape variations, thereby enhancing the distinctiveness of generally smooth facial range images. SIFT-based local matching further improved by facial component and conguration constraints robustly associates keypoints between two faces of the same subject. The proposed method was evaluated in 3D face recognition and verication, achieving a recognition rate of 97.6% and a 98.4% verication rate with a 0.001 FAR respectively on the FRGC v2.0 database which consists of nearly frontal facial scans with rich expression changes. Experimental results on the Gavab database containing severe pose changes clearly illustrate that the entire system is also robust to partially occluded faces. Moreover, generally costly registration was not needed thanks to the relative tolerance of the proposed local matching strategy to moderate pose variations like the ones in the FRGC v2.0 dataset. When dealing with extreme poses, i.e. left or right proles, a coarse alignment step based on a few manually landmarked points was sucient in preprocessing as indicated by the experiments on the Gavab database. Finally, additional experiments demonstrate that the proposed method is not sensitive to facial expression variations and has a good tolerance to data degradations. In the previous chapter, we introduced a 3D face recognition method in order to cope with the problems usually encountered in 2D face recognition, caused by illumination and pose changes. However, even if it is so, the challenge of facial expression variations is even more dicult than in 2D modality, as 3D face models provide exact shape information of facial surfaces.

Since current 3D imaging systems generally deliver 3D face models along with their aligned texture counterpart, a major trend in the literature of face recognition is to adopt both the 3D shape and 2D texture based modalities, arguing that the joint use of these two clues can generally achieves more accurate and robust performance than using only either of the single modality. See section 4.2 for more information about the state of the art.

A majority of techniques in the literature for face recognition do not operate directly on original input facial images because all the human faces are similar and undergo the variations of illumination and pose. Instead, they try to search for an intermediate facial representation, for instance, eigenface [Turk & Pentland 1991],

sher face [Belhumeur et al. 1997], LBP face [START_REF] Ahonen | [END_REF] etc., aiming to highlight intra-class similarity and inter-class dissimilarity.

In this chapter, we propose a novel biological vision-based facial representation, namely Oriented Gradient Maps (OGMs), which is applied to both facial range and texture images for textured 3D face recognition. These OGMs simulate the response of complex neurons to gradient information in a neighborhood and own properties of being highly distinctive and robust to ane lighting and geometric transformations.

Based on this intermediate facial representation, SIFT-based local feature matching is then used to calculate similarity scores between probe and gallery faces. Because the facial representation generates an OGM for each of quantized orientations of facial range as well as texture images, we further propose a score level fusion scheme that optimizes weights by a genetic algorithm in a learning step. Evaluated on the complete FRGC v2.0 dataset, the rank-one recognition rate using only 3D or 2D modality is 95.5% and 95.9% respectively; while combining these two modalities, i.e. range-and texture-based OGMs, the nal accuracy is 98.0%, demonstrating the eectiveness of the proposed biological vision-inspired facial description and the optimized weighted sum fusion. In addition, based on the 3DTEC dataset, we also explore the capacity of the proposed method for dierential identical twins.

The remainder of this chapter is organized as: Section 4.2 depicts an extensively review on the related works. Section 4.3 introduces the biological vision-based facial representation that is applied on both facial range and texture images. The following SIFT-based local feature matching step is shown in section 4.4. Section 4.5 presents a weighted sum rule based score fusion approach optimized by a genetic algorithm from a learning database. Section 4.6 analyzes and discusses the experimental accuracies achieved on the FRGC 2.0 and 3DTEC datasets. Section 4.7 concludes the paper.

Related Works

Although the rst research work in the domain of 3D face recognition dates back to before 1990, multi-modal face recognition did not appear until the beginning of this century. Early eorts in this area investigate relatively simplistic ways to fuse the results obtained independently from 3D and 2D face data. For example, the most common approach is to apply an eigenface method to each of the 2D and 3D facial images separately, and then combine two matching measurements. More recently, a great number of studies appear to take a variety of quite dierent facial features as well as fusion schemes, and several commercial companies already have the ability to develop the software for multi-modal 2D and 3D face recognition.

Beumier and Acheroy [Beumier & Acheroy 2001] perform the multi-modal face recognition using a weighted sum rule (score level fusion). They exploit a central prole and a lateral prole, each in both 3D and 2D. They thus have a total of four classiers, and an overall decision is made using a weighted sum of the similarity metrics. In this paper, results are reported on a subset of 3D_RMA, which consists of 27-person gallery and a 29-person probe faces. An EER of 1.4% is reported for multi-modal recognition, lower than either 3D or 2D modality alone.

Wang et al. [Wang et al. 2002] make use of Gabor lter coecients in 2D and "point signatures" in 3D to achieve multi-modal face recognition. PCA is applied to each type of feature separately for dimensionality reduction. The generated 2D and 3D features together form a feature vector (feature level fusion). Classication is done by SVM. Experiments are carried out with images from 50 subjects, six images per subject, with pose and expression variations. Rank one recognition rate exceeding 90% is presented.

Chang et al. [Chang et al. 2003b] employ an eigenface based recognition to 3D and 2D images independently, their similarity scores are further combined with a weighted sum rule. The experiments tested on a 116-individual dataset show that the rank one recognition rates based on single modality are almost the same, but the fusion accuracy is much better than both of them. Chang et al. [Chang et al. 2003a] soon report another performance using the same method on a test set containing 676 probes from 200 individuals. The fusion result is up to 98.8% rank-one recognition for multi-modal; 92.8% for 3D alone; 89.5% for 2D alone. They [Chang et al. 2005c] further design a contrast test to take two 2D facial images in the gallery set, and calculate their similarity measurements with a given probe face respectively for a nal fusion, concluding that multi-modal face recognition outperforms that based on multiple 2D enrollment .

Tsalakanidou et al. [Tsalakanidou et al. 2003] also explore a PCA based method for 3D and 2D image based face recognition. Unlike other tasks, they utilize YUV components of color images instead of gray-scale ones in 2D domain and a product fusion rule to replace the sum rule for the combination of two similarity measurements. The recognition rate using images of 40 persons from the XM2VTS dataset are as high as 99% for the multi-modal algorithm, which is found to be higher than for either 3D or 2D clue alone. Bronstein et al. [Bronstein et al. 2003] investigate an isometric transformation to map 3D facial surfaces into 2D canonical images using MDS, trying to better handle changes due to facial expression. Based on the correspondence between 2D facial image pixels and 3D surface vertices, facial texture images can be projected onto the aligned canonical surface in the canonical form space as well, and attened texture is thus produced. Eigen-decomposition is applied to attened textures and canonical images for multi-modal recognition. They show examples of correct and incorrect recognition by dierent algorithms, but do not mention any overall quantitative results. Later, Bronstein et al. [Bronstein et al. 2004a] further enhance this work. Using multiple 2D facial images, they rstly reconstruct 3D facial surfaces and their albedos. With re-lighted facial texture images and generated canonical images, multi-modal face recognition can be achieved.

Papatheodorou and Rueckert [START_REF] Papatheodorou | [END_REF] propose an ICP variant based on point distances in a 4D space (x, y, z, intensity) for multi-modal face recognition. This method integrates shape and texture information at an early stage, rather than fuse them at score level or decision level. They compute results from experiments with frontal neutral-expression models of 62 subjects in the gallery, and probe sets of dierent pose and facial expressions. They report 98% to 100% correct recognition in matching frontal neutral-expression probes. Recognition drops when the expression and pose of the probe faces is varying from those of the gallery images.

Tsalakanidou et al. [Tsalakanidou et al. 2004] present a method to multi-modal face recognition based on an embedded hidden Markov model (EHMM) for each modality. Meanwhile, based on 3D face models, they synthesize facial range and texture images to enlarge the gallery set. Their experimental results prove that combining multiple modalities and increasing enrolled images are both eective solutions to improve face recognition performance. A longer version of this work appears in [START_REF] Tsalakanidou | [END_REF]]. [Malassiotis & Strintzis 2004] describe a face recognition system using a combination of color and depth images. To cope with lighting and pose variations, 3D information is used for correcting pose and recovering illumination to generate the samples with upright orientation and frontal lighting.

Malassiotis and Strintzis

Computed on a dataset containing 2200 faces from 20 individuals, the experimental results show that multi-modal performance improves the accuracy of each single modality.

Zhang et al. [Li et al. 2005b] implement a systematic framework, which extracts LBP based features from 2D and 3D modalities for a fusion at both feature and decision levels, by exploring synergies of the two modalities at these levels. A Boosting statistical learning procedure is used for feature selection and classier. Experiments are carried out on a database consisting of 252 individuals, and achieved results show that the fusion at both levels yields signicantly better performance than fusion at the decision level. Moreover, LBP features prove more discriminative than eigenface based ones.

Godil et al. [Godil et al. 2005] make a comprehensive evaluation on the PCA based method for 3D + 2D multi-modal face recognition using the CAESAR anthropometric database, which includes 200 persons. They compare the performance of feature and score level fusion, and analyze the impact on results of two normalization methods (Max-Min and Z-Sore) as well as four fusion schemes (Sum, Max, Min, and Product Rule). Their best rank-one recognition rate reported in this paper is 82%.

Colombo et al. [START_REF] Colombo | [END_REF]] exploit a curvature based method to detect 3D faces and locate a few initial landmarks for pose correction. A PCA based holistic matching is then applied on both facial texture and rang images extracted from aligned 3D face models to achieve multi-modal face recognition. They compare the experimental results using three dierent fusion strategies, i.e. feature level fusion, score level fusion as well as decision level fusion, and point out all these three fusion accuracies are better than the ones only based on single modality. Moreover, in their case, feature level fusion outperform the other two in the scenario of verication, while score level fusion obtains the best result in identication.

Husken et al. [Husken et al. 2005] describe a system (from Viisage company) to multi-modal recognition. The 3D matching follows the style of Hierarchical Graph Matching (HGM) already implemented for 2D face recognition, which allows faster matching in comparison to the ICP method or similar iterative techniques. Combining the results from the two clues is done at the score level, and they reported a 93% verication at 0.01 FAR as multi-modal performance on the FRGC v2.0 database, which is better than either of single modality based result. In addition, they also claim that the fusion accuracy is closely related to statistical independence between the two clues. The more independent the matching scores of the algorithms are, the higher the benet of the fusion, as errors in the one algorithm can be counterbalanced by the other one.

Maurer et al. [Maurer et al. 2005] develop the Geometrix system for textured 3D face recognition. The 3D face matching builds on the method proposed by Medioni and Waupotitsch [Medioni & Waupotitsch 2003], whereas the 2D matching adopts the method of Neven Vision [Okada et al. 1998]. A weighted sum rule is then used to fuse the two similarity measurements. The system is evaluated on the FRGC v2.0 dataset. The facial expression changes are categorized into "neutral", "small", as well as "large", and results are presented separately for these three categories. Multi-modal performance for the "all versus all" matching protocol of the 4007 facial images reaches approximately 87% verication rate at 0.01 FAR. They also conclude that using both texture and shape information outperforms 3D alone by a noticeable increment, and that the verication rates for 2D alone are below those for 3D alone.

Lu and Jain [Lu & Jain 2005b] extend their earlier study for 3D facial surface matching [Lu et al. 2004a] to multi-modal 3D + 2D face recognition. In contrast to other related tasks, two modalities are operated in a serial way instead of a parallel one. The surface matching component is rstly carried out based on ICP with a coarse-to-ne strategy, and the candidate list used for 2D matching is dynamically generated based on the output of surface matching, in order to reduce the complexity of the 2D matching stage. The 3D model in the gallery is employed to synthesize new 2D facial images with pose and illumination variations that are then imported into an LDA classier. The weighted sum rule is nally applied to combine the two matching components. Experimental results are given on a database of 100 3D face models with 598 2.5D test scans acquired in dierent pose and lighting conditions, and with some smiling expression, illustrating the eectiveness of the fusion.

Cook et al. [START_REF] Cook | [END_REF] introduce Gabor lter based features to represent both facial texture and range images. Then, the PCA approach is applied to reduce their dimensionality and de-correlate the data. The scores of both modalities are nally combined for multi-modal face recognition. The UND database containing 943 individual captured from 277 subjects is taken for evaluation. The lowest EER reported in this work is 0.66%, showing that frequency bands are more discriminative than original face data and combining both clues achieves better results. Meanwhile, they also analyze the performance using some facial parts as well as that based on dierent components of the Gabor lters, such as real, mag, imag, phase and some possible combinations. In the next year, Cook et al. [Cook et al. 2006b] strengthen this method by bringing in a local matching strategy and SVM classier. Tested on the FRGC v2.0 dataset, the best verication rates (ROC III) at 0.1% FAR using 2D alone, 3D alone and multi-modal are 39.37%, 79.66%, and 82.72% respectively, all of which are based on the Mahalanobis Cosine Average (MahCosAvg) distance.

Based on the PCA algorithm, Yuan et al. [Yuan et al. 2005] also project all the 2D texture images and 3D shape images into a low-dimensional subspace. In the following step, they apply fuzzy clustering and parallel neural networks to recognize faces. Experimental results are computed on a dataset composed of 70 persons with dierent pose changes, they demonstrate that using 3D data, pose can be eciently corrected, however, they do not mention any performance to show the eectiveness of the combination of both modalities as well as the accuracy dierence between commonly used nearest neighbor based classier and the proposed neural networks.

Abate et al. [Abate et al. 2006a] address multi-modal face recognition through 3D geometry and 2D texture features by means of two dierent metrics: Augmented Normal Map and PCA. Augmented Normal Map includes shape (surface normals represented as 24 bit color pixels) and texture info (additional 8 bit for skin color) into a 32 bit image. The method operates in a hierarchical way. It rstly performs a fast one-to-many comparison of facial geometry exploiting normal map metric. Then, to further improve recognition precision and reliability, best rank faces are compared to probe by PCA resulting in a nal decision. They present preliminary experimental results on a dataset of 101 textured 3D faces.

Mian et al. [Mian et al. 2006a] combine four categories of similarity measurements to recognize textured 3D faces, i.e. eye and forehead region (3D), nose region (3D), entire range face (3D), and entire texture face (2D). The former two are computed using ICP based registration, whilst the latter two are calculated by PCA holistic matching. Product rule is adopted for nal fusion, which achieves a 100% verication rate at 0.06% FAR on the FRGC v1.0 dataset. [START_REF] Mian | [END_REF]] extend this work to a more complex and robust system as shown in Fig. 4.1. To calculate similarity scores between 3D facial surfaces, Spherical Face Representation (SFR) is proposed, which can be imagined as the quantization of 3D facial point-cloud into spherical bins centered at the nose tip. SIFT is applied directly to compute the accuracy of 2D part. A weighted sum rule is then used to fuse both measurements for a coarse classication. Possible candidates are nally veried using the previously proposed ICP based facial rigid region (eye, forehead and nose region) matching. Evaluated on the FRGC v2.0 dataset with the experimental protocol of Neutral vs. All, they report a 97.4% rank one recognition rate and a 99.3% verication rate at 0.1% FAR.

Mian et al. [Mian et al. 2008] implement another feature-based multi-modal face recognition system aiming to overcome the variations of facial expressions, illumination, pose, occlusions and make-up. For facial shape matching, they rst propose a technique which can repeatably detect keypoints at locations where shape variation is high in 3D faces, and a unique 3D coordinate basis then can be dened locally at each keypoint facilitating the extraction of highly descriptive pose invariant features. A 3D feature is extracted by tting a surface to the neighborhood of a keypoint and sampling it on a uniform grid, and features from a probe and gallery face are nally projected to the PCA subspace and matched. The set of matched keypoints are used to build two graphs from which the similarity between two faces is measured. In the 2D domain, they employ the SIFT features and performed fusion at the feature and score-level. The proposed algorithm achieved 96.1% identication rate and 98.6% verication rate at 0.1% FAR on the complete FRGC v2.0 dataset.

Dierent from most existing methods of 2D + 3D multi-modal face recognition that do fusion at the late-stage feature, score, or decision level, Kusuma and Chua [START_REF] Kusuma | [END_REF] propose an image-level fusion method that explores to reduce the dependency between modalities for face recognition. Facial cues from 2D Gokberk et al. [START_REF] Gokberk | [END_REF]] design a comprehensive system to present an extensive study of 3D face recognition algorithms and examine the benets of various score-, rank-, and decision-level fusion rules (Fig. 4.2). They discuss various feature extraction techniques applied to both texture and shape modalities, and compare dierent classier combination methods. They also present a dynamic condence estimation algorithm to boost fusion performance. In experiments performed on the FRGC v1.0 and v2.0 databases, they give answers to: 1) the relative importance of the face data format to the types of features extracted; 2) the impact of the gallery size; 3) the conditions, under which subspace methods are preferable, and the compression factor; 4) the most advantageous fusion level and fusion methods; 5) the role of condence votes in improving fusion and the style of selecting experts in the fusion; and 6) the consistency of the conclusions across dierent databases.

Xu et al. [START_REF] Xu | [END_REF]] research into the contributions that depth and intensity information makes to face recognition when facial expression and pose changes are taken into account. In their system, local facial features described by Gabor wavelets are extracted from corresponding depth and intensity images generated from 3D face models after ne alignment. Then a hierarchical selecting scheme embedded in LDA and AdaBoost is designed to select the most eective and most robust features to further construct a strong classier. Experiments are performed on the FRGC v2.0 database, and using the protocol of Neutral vs. All, a verication rate of 97.5% at 0.1% FAR is reported.

Biological Vision-based Facial Description

In order to improve the distinctiveness of human faces and oering certain tolerance to lighting and pose changes, in this section, we introduce a novel biological visionbased facial description which can be applied to both facial range and texture images.

The proposed facial representation is inspired by the study of Edelman et al.

[ [START_REF] Edelman | [END_REF], who proposed a representation concept of complex neurons in primary visual cortex. These complex neurons respond to a gradient at a particular orientation and spatial frequency, but the location of gradient is allowed to shift over a small receptive eld rather than being precisely localized. Our facial representation implements this idea into practice.

Description of The Complex Neuron Response

The proposed description aims at simulating the response of complex neurons, based on a convolution of gradients in specic orientations in a pre-dened circular neighborhood. The radius value can be varied experimentally for dierent applications.

Specically, given an input image I, a certain number of gradient maps L 1 , L 2 , ..., L o , one for each quantized direction o, are rst computed. They are dened as:

L o = ∂I ∂o + (4.1)
The "+" means that only positive values are kept to preserve the polarity of the intensity changes, while the negative ones are set to zero.

Each gradient map describes gradient norms of the input original image in an orientation o at every pixel. We then simulate the response of complex neurons by convolving its gradient maps with a Gaussian kernel G, and the standard deviation of G is proportional to the value of radius of the given neighborhood area, R, as in eq. 4.2.

ρ R o = G R * L o (4.
2)

The purpose of the convolution with Gaussian kernels is to allow the gradients to shift in a neighborhood without abrupt changes. At a given pixel location (x, y), we collect all the values of the convolved gradient maps at that location and form the vector ρ R (x, y), and it thus has a response value of complex neurons for each orientation o.

ρ R (x, y) = ρ R 1 (x, y), • • • , ρ R O (x, y) t (4.
3) This vector, ρ R (x, y), is further normalized to unit norm vector, which is called response vector and denoted by ρ R in the following parts of this chapter.

Facial Description by Response Vectors

Now facial range and texture images can be represented by their perceived values of complex neurons according to their response vectors. Specically, given a facial range or texture image I, we can generate a new Oriented Gradient Map (OGM) J o using complex neurons for each orientation o dened as: The generated OGMs potentially oer high distinctiveness because they highlight the details of local shape and texture variations. Meanwhile, they also possess the property of being robust to ane lighting and geometric transformations.

J o (x, y) = ρ R o (x, y)
As applied to facial texture images, the OGMs oer the property of being robust to ane illumination transformations. Indeed, an OGM, J o , is simply the normalized convolved gradient map of the facial image at a given orientation o according to eq. 4.4, while ane lighting variations usually add a constant intensity value on images, as a result, it does not aect the computation of gradients. On the other hand, a change of image contrast in which the intensities of all the pixels are multiplied by a constant will result in the multiplication of gradient calculation; however, this contrast change will be cancelled by the normalization of the response vector.

Similarly, the OGMs of facial range images which contain 3D shape information are also invariant to ane geometric transformation leading to certain tolerance to pose changes.

The proposed OGMs can be made even rotation invariant if we choose to quantize directions starting from the principal direction of all gradients in the neighborhood. Nevertheless, we do not perform such a rotation normalization step to save computational cost, since 3D face models are generally in an upright frontal position in user cooperative applications.

SIFT based Local Feature Matching

When the OGMs of all quantized orientations are achieved from both range and texture facial images, a local feature matching step is carried out on these widely-used SIFT based features [Lowe 2004] extracted from OGMs for similarity score calculation, since it is well known that local feature based matching scheme is generally more robust to occlusion and pose changes.

SIFT operates on each OGM separately. As OGMs highlight local texture and shape changes of generally smooth facial images, many more keypoints can be detected than the ones when we directly apply SIFT on the original facial range and texture images. On the FRGC v2.0 database, it shows that the average number of keypoint detected on original facial range and texture images are only 41 and 67 respectively; while using OGMs for keypoint detection, the average numbers rise up to 116 and 304. 

Optimized Weighted Score Sum Fusion

Given a textured 3D face model as a probe, the previous SIFT-based local matching produces a similarity measure in each orientation of both facial texture and range images in the gallery set. These similarity measurements need to be further fused to deliver a nal similarity score. In this chapter, we develop a fusion scheme by using a weighted sum rule, as score level fusion has been extensively used in the literature of 2D/3D face recognition and has proved its eciency in a number of non-trivial pattern recognition problems [START_REF] Ruta | [END_REF].

Formally, a weighted sum rule is dened as:

S = N i=1 w i * S i (4.5)
where S i is a similarity score; w i is its corresponding weight; and N is the number of modalities used for generating similarity scores. A bigger weight value indicates a higher importance; and a smaller one indicates a lower importance.

The proposed weighting strategy is learning-based, by using a genetic algorithm [Said 2005] seeking an optimal set of weights through applications of selection, mutation, and recombination of a population. The chromosomes are used to encode trial solutions in a genetic algorithm. Iterative selection, crossover, and mutation are then exploited to make evolution of the population. At each generation, a new set of chromosomes is generated based on the ttest genes of previous generation to achieve a better solution. This tness is calculated according to the produced similarity measure matrix in terms of recognition accuracy. Stochastic Universal Sampling [Baker 1987] is applied to select chromo- inhibit the possibility of converging to a local optimum, rather than the global one. The evolution operates until a desired solution is achieved, or a pre-specied number of iterations are nished. The nal solution with a higher tness represents the best vector of weights.

Experimental Results

To evaluate the eectiveness of the proposed textured 3D face recognition system, we carried out the experiments on the FRGC v2.0 [Phillips et al. 2005] and 3DTEC datasets, and their general introductions can be found in the rst chapter.

Experiment Design

The experiments were conducted mainly on FRGC v2.0, one of the most comprehensive databases. It contains 4007 textured 3D face models of 466 dierent subjects. One facial range image as well as its 2D texture counterpart were extracted from each 3D face model. For 3D face data, a preprocessing step was introduced to remove spikes with a median lter and ll holes by using cubic interpolation. For 2D facial texture images, histogram equalization was used to reduce inuence caused by non-ane lighting variations. Due to the properties of the OGMs and the use of local feature-based matching, we did not perform any registration on 3D face models since they are all in a nearly frontal pose. It is dierent from the work in [START_REF] Mian | [END_REF], Xu et al. 2009] etc. which also made use of both facial range and texture data. The faces were cropped by using a basic bounding box based on the mask provided by a 3D scanner indicating if the point is valid or not in that position.

Cropped faces thus have pose, lighting and expression changes as well as occlusions caused by hair. The FRGC v1.0 database consisting of 943 neutral expression face models was adopted by our adaptive fusion approach for training optimized weights which were then used for test stage.

In the experiments, we adopted the same protocol of the state of the art for the purpose of fair comparison. The rst 3D face model with a neutral facial expression of each subject made up a gallery set of 466 subjects. The remaining face models (4007-466=3541) were treated as probes.

We preliminarily explore the distinctiveness of some basic features extracted from 2D facial texture images or 3D face models as well as their possible complementary contribution in a fusion process for face recognition.

We further designed three experiments for the proposed OGM based method: the rst is to discuss the impact of the neighborhood area radius R on the nal performance; the second is to test the proposed approach both in face recognition and verication compared with the state of the art; the last one is to evaluate the robustness of the proposed approach to facial expression variations.

In addition, we carried out the experiments on the 3DTEC dataset to investigate the power of the proposed method in distinguishing from twins. The 3DTEC dataset consists of 107 pairs of identical twins, each of which owns two 3D face models with the same format as the ones in FRGC v2.0. The same preprocessing operations are thus adopted. We computed the performance in the scenarios of face recognition and verication as well. 4.6.2 Basic Feature Comparison In this experiment, we discuss the discriminative ability of several basic individual facial features. From 2D facial texture images, original intensity-, Gabor lter-and LBP-based features are extracted. While in 3D part, we consider geometric features containing normal, binormal, tangent vector and curvature related features which have the potential for a higher accuracy to describe surface based events and are well suited to represent the properties of facial regions, such as two cheeks, forehead, and chin. Four categories of curvature-based features are utilized. The rst two types rely on the principal directions corresponding to the maximum and minimum curvatures [START_REF] Tanaka | [END_REF]]. The latter two are their derivatives, i.e., mean (H) and Gaussian (K) curvatures [Maurer et al. 2005]. Furthermore, we study another type of 3D features based on the anthropometric approach which advocates extracting a signature from some anthropometric points considered the most relevant; these points should be stable and discriminative. Chang et al. [Chang et al. 2006] have illustrated that the face region surrounding nose was very stable. In [START_REF] Arca | [END_REF]],

Arca et al. used segments of 2D face around the eyes and nose to extract 3D proles.

Inspired by these tasks and the one by Perrot [Perrot 1996] on facial anthropometric measurements, a feature vector is generated including distance representing the edge length of every two anthropometric points; the angle formed by two edges with one same endpoint; and the ratio between horizontal nose width and vertical nose height. It is important to note that the measurements are on an absolute scale (mm) instead of a relative scale (pixels).

Since we focus on study of feature distinctiveness and the benet of their fusion for face recognition, we manually landmarked 15 ducial points onto 3D face models as accurately as possible (as shown in Fig. 4.6) to reduce the impact by erroneous registration. Based on these landmarks, a coarse to ne alignment process is used to correct 3D pose. The coarse step utilizes eleven facial landmarks located on the upper part of the face model and applies SVD to recover 3D rotation and translation in a rigid transformation. At the ne step, ICP is applied for surface matching and to improve the estimates of translation and rotation parameters.

All extracted features are then fed into Sparse Representation Classier (SRC) to calculate similarity scores. Table 4.1 lists rank-one recognition rates of individual features using SRC on the FRGC v2.0 dataset. It is worth noting that in the Gabor lters, 5 scales and 8 orientations are exploited; while in the LBP operator, we set the number of sampling points at 16 and the radius of neighborhood at 2.

From Table 4.1, we can see that all the individual 3D and 2D features do not provide enough distinctiveness for representing faces, only displaying 79.72% with the best 3D feature by tangent vectors and 77.89% with the best 2D feature by Gabor lters. Table 4.1 also displays the performance of each feature in the case of Neutral vs. Neutral. As we can see, all the features, either 3D or 2D, achieve better performance than the case of Neutral vs. All. Still, none of these 3D or 2D features reports enough distinctiveness for face recognition, and the best rank-one recognition rate is 89.64% by tangent vectors. With an average gain of about 10 percent, the most signicant improvement is achieved by 3D features, conrming the intuition that 3D facial shape descriptors are much more sensitive to facial expression variations than 2D features. This intuition is further conrmed by gures which evidences performance degradation is much greater for 3D features than the 2D ones in the case of Neutral vs. Non-Neutral.

Before fusion, it is important to normalize scores achieved by dierent types of features aiming at mapping scores into a common scale and range. Z-Score (ZS) [Godil et al. 2005] [Snelick et al. 2005] transforms all the similarity scores to a distribution with the mean of 0 and the standard deviation of 1. The operators mean(s) and std(s) denote the arithmetic mean and standard deviation respectively:

n = s -mean(s) std(s) (4.7)
Tanh (TH) [Godil et al. 2005] [Snelick et al. 2005] provided by so-called robust statistical techniques, converts matching scores to the [0, 1] range:

n = 1 2 [tanh( s -mean(s) std(s) × 0.01) + 1] (4.8)
Their combination is achieved at the score level (Sum Rule) as well as decision level, and their results are shown in Table 4.2. This result further conrms that 3D and 2D features are complementary modalities whose fusion can improve the nal decision. Unlike the previous experiment, to evaluate our proposed approach, we did not use any manual landmarks and perform registration. In this experiment, we set the radius value of OGMs at 1.0 and 1.5 for facial range and texture images respectively. In the literature, many tasks addressed the problem of 2D or 3D face recognition and used the FRGC v2.0 database for evaluation. Table 4.3 lists performance comparisons between the proposed approach and several existing features only utilizing 2D texture images for face recognition; while Table 4.4 lists a comparison between our method and the state of the art results only using facial range images or 3D face models for the same task.

It should be noted that as shown in Table 4.3, the results based on eigenface, LBP histogram, and Gabor lters are directly cited from the last experiment, which were achieved based on optimized parameters and the Sparse Representation Classier (SRC). When SIFT-based matching was directly applied on original texture images, the accuracy is 79.3%, while if we exploited the proposed OGM instead, the accuracy was improved to 95.9%, which highlights its eectiveness to describe local texture changes. We also investigated the LBP face (8 sampling points and the same radius value as in OGMs) in the same framework, but it only reported a recognition rate of 44.8%, and the reason probably lies in the fact that illumination changes add much noise which degrades the performance of LBP.

On the other hand, Table 4.4 compares our approach with several existing systems for 3D face recognition. Similarly, we also operated SIFT-based matching on raw facial range images, but it did not achieve a reasonable performance, because the detected keypoints on original range images are too limited, and usually located on the face border as shown in Figure 4.4. While, in this case, LBP face enhances the distinctiveness of facial range image, and improves the accuracy to 80.1%. As we can see in Table 4.4, the performance of the proposed approach is comparable to those of the state of the art in 3D face recognition. Table 4.3 and 4.4 both illustrate that the proposed OGMs enhanced local texture and shape variations leading to satisfying recognition results. Table 4.5 compares the proposed approach with the state of the art on both face recognition and verication tasks by using textured 3D face models. In recognition, the rank-one recognition rate of the proposed approach outperforms all the others, while in the scenario of verication, the achieved verication rate at FAR = 0.1% is only slightly weaker than that in [START_REF] Mian | [END_REF]]. However, in this work, we did not perform costly 3D face registration in the preprocessing step while an ICP based ne registration step was always required as in [START_REF] Mian | [END_REF]] etc. 

3D Approaches

Rank-One Recognition Rate Chang et al. [Chang et al. 2005a] 91.9% Cook et al. [Cook et al. 2006a] 94.6% Kakadiaris et al. [Kakadiaris et al. 2007] 97.0% [START_REF] Mian | [END_REF] 96.2% Mian et al. [Mian et al. 2008] 93.5% Huang et al. [Huang et al. 2010b] 79.3% Recall that complex neurons respond to gradient information within a given neighborhood which is dened as a circular region in our implementation. In our experiments, we tested dierent values of radius R and studied their impact on nal performance of both facial texture as well as range images. Table 4.6 and 4.7 summarizes the results with dierent radius values applied to texture OGMs and range OGMs respectively in eight orientations. Meanwhile, in order to illustrate the eectiveness of the proposed fusion scheme, we compared its results with those calculated using the technique as in [Mian et al. 2008]. In Table 4.6 and 4.7, "Fusion I" denotes the results with the weighted sum rule in [Mian et al. 2008]; while "Fusion II" lists performance using the proposed optimized weighted sum fusion strategy.

As we can see in Table 4.6 and 4.7, using the neighborhood area with a smaller radius generally achieves a better result. For facial range images, when the radius value was set at 1.0, the best performance was reached. On the other hand, for facial texture images, the highest accuracy was obtained when R = 1.5. Compared with the fusion technique marked as "Fusion I", the proposed optimized fusion (Fusion II) strategy always slightly performs better. Considering that the FRGC v1.0 dataset does not include the variations of facial expressions, which is dierent from the face models in the test set, i.e. the FRGC v2.0 dataset, the weights for combination can be further improved by using a dataset with more expressive face models.

Table 4.6: Results when using dierent neighborhood area radius R on texture faces.

Texture In this experiment, the probe face scans were divided into two subsets according to their expression labels to evaluate its insensitiveness to facial expression variations as we did in the last chapter. The rst subset contains the facial scans with the neutral expression; while the other with face scans possessing non-neutral expressions. Therefore, besides the experiment of Neutral vs. All, two additional experiments of Neutral vs. Neutral and Neutral vs. Non-Neutral were carried out as well. In the Using the same experimental protocol, we also compared the performance of the proposed method in face recognition with the one by Mian et al. [Mian et al. 2008] and Ben [START_REF] Soltana | [END_REF] for robustness analysis on expression variations (see Table 4.8). The results of our approach are 99.6% and 96.0% for Neutral vs. Neutral and Neutral vs. Non-Neutral experiment, respectively. The recognition rate on the rst subset is comparable to the state-of-the-art, while we made great progress on the second subset, displaying a rank-one recognition rate of 96.0%. The degradation when non-neutral facial expression models were included drops by 3.6%, which is much lower than 7.3% in [Mian et al. 2008] and7.9% in [Ben Soltana et al. 2010] as both shape and texture clues were combined. These results suggest that our method tends to be insensitive to facial expression changes. Table 4.9 lists the robustness comparison in face verication task, similar conclusions can be drawn. Meanwhile, the accuracies of 2D modality are always slightly better than those of 3D based one, suggesting that 2D modality tends to be more insensitive to facial expression variations than its 3D counterpart. Fig. 4.7 indicates verication rates by the ROC curves in these three experiments in Table 4.9.

R = 1.0 R = 1.5 R = 2.0 R = 2.5 R = 3.0 R = 3.
Range R = 1.0 R = 1.5 R = 2.0 R = 2.5 R = 3.0 R = 3.

Evaluation on Twins

In the 3DTEC database, we arbitrarily labelled one person in each pair of twins as Twin A and another one as Twin B, and then performed four experiments with the dierent settings of gallery and probe sets as shown in Table 4.10. Experiment I has all of the facial images with a smiling expression in the gallery and the ones with a neutral expression as the probe. Experiment II reverses these roles. We thus assessed the ability of the proposed approach to distinguish between twins in some gallery, when the probe and the gallery facial images have dierent expressions.

Experiment III has Twin A smiling and Twin B neutral in the gallery set but with Twin A neutral and Twin B smiling as the probe. Experiment IV reverses these roles. This models a scenario where the system does not control for the expressions of the subject in the gallery set and the probe has the same expression as his twin in the gallery but not the same expression as his image in the gallery. 4.12 demonstrate the accuracies of texture OGMs, range OGMs, as well as multi-modal OGMs in two scenarios respectively, i.e. face recognition and verication. In the rst two experiments in both scenarios, all subjects are enrolled with a 3D facial scan that has one expression, and all recognition attempts are made with another expression. Thus, the dierence in expression between gallery and probe is the same for all subjects. As we can see, the results of recognition and verication for twins exceed 90% for both texture and range OGMs, and texture OGMs perform better than range OGMs. While in the more challenging two of the four experiments, the facial expression diers between the gallery images and also between their probe images of the twins. In these experiments, texture OGMs still provide satisfying accuracies which are higher than 90%, but the performance of range OGMs is dramatically degraded, proving that, 3D modality is more sensitive to facial expression variations than 2D modality. When combining the two modalities, we nd that in the rst two experiments of both scenarios, the multi-modal based results are slightly improved, however, in the other two, the nal performance is not as good as that of 2D modality, since the accuracy dierences between two modality are too large, which can be regarded as a special case that combining 2D and 3D information is not always an eective way to improve system performance. As we can see, 28 pairs of keypoints are matched between the original facial texture images of the same person, while 1 pair of keypoint is matched between those from dierent persons. When using the OGMs instead of the original texture information, in each pair of corresponding OGMs from the same person, we can nd a certain number of matched keypoints, leading to a total number of 139 between the same person by summing the number achieved in each OGM pair; on the other hand, the total number of texture OGM pairs from dierent persons is only 7, illustrating that the inter-class dissimilarity is enlarged. Meanwhile, we can also see that the matched points of each OGM pair do not have the same distribution, and they thus contain complementary information to each other.

The matching examples using depth information are shown in Fig. 4.9. A similar phenomenon can be found as in Fig. 4.8. Using the OGMs to replace the original facial range images as the system input, the wrong matching relationship between original facial range images can be corrected.

Computation Cost

Because more keypoints are detected from texture OGMs than from range OGMs, the computation cost of the matching process in similarity calculation between facial texture images is higher than that between facial range images. An unoptimized implementation of the proposed approach with MATLAB (R2010a) can perform about 280 and 410 matches between texture and range face pairs per second respectively, using a machine using Intel(R)Core(TM) i7 CPU (3.07 GHz) and 8 GB RAM.

Summary

This chapter proposed a novel biological vision-inspired facial representation, namely Oriented Gradient Maps (OGMs), and we then applied it to both facial texture and range images for the issue of textured 3D face recognition. As compared with other intermediate facial description, for instance, Eigenface or Fischer face, the proposed OGMs simulate the response of complex neurons to gradient information in dierent orientations within a given neighborhood, thereby highlighting local details of facial range and texture images and increasing their distinctiveness. When compared with LBP faces that also encode the dierence between a central pixel and its neighbors, the OGMs are more informative as they take into account gradient information in several directions. The OGMs are also likely less sensitive to noise than LBP faces because gradient information is summarized within a neighborhood convolved by a Gaussian kernel. Finally, OGMs also possess the properties of being robust to ane illumination and geometric transformations. Additionally, the designed score level fusion strategy further improved the nal result when combining the results of OGMs of dierent orientations as well as fusing the accuracies of these two modalities. The experiments carried out on the FRGC v2.0 database showed the eciency of the proposed method. On the other hand, the experimental results achieved on the 3DTEC dataset illustrate that 3D modality is more sensitive than 2D based one. 3D face recognition has emerged as a major alternative to handle the unsolved issues for reliable face recognition, i.e., illumination and pose changes, and in chapter 3 and 4, we have introduced two methods for only 3D shape and textured 3D based face recognition respectively. However, 3D methods are currently limited by their data acquisition and computation cost.

More recently, asymmetric 3D-2D face recognition has attracted increasing interests [START_REF] Riccio | [END_REF], Rama et al. 2006, Yang et al. 2008, Huang et al. 2009, Huang et al. 2010a], because it is expected to limit the use of 3D face data where it really helps to improve face recognition performance. In contrast to these traditional 2D, 3D and multi-modal face recognition techniques that require gallery and probe data to possess similar properties: e.g. 2D/3D, color/gray, or even to be captured by the same type of camera sensors, the asymmetric 3D-2D face recognition approaches assume that the gallery set contains 3D face data, but the probe set only consists of 2D facial images, which makes them more likely to be used in real-time environment than 3D based ones. Meanwhile, several novel applications, namely asymmetric [START_REF] Riccio | [END_REF], Huang et al. 2009, Huang et al. 2010a] or heterogeneous [START_REF] Wang | [END_REF], Liao et al. 2009] facial image analysis, match faces between dierent types of data, which can be related by applying techniques [Reiter et al. 2006[START_REF] Lei | [END_REF]]. Therefore, it is possible to obtain the relationship between 2D and 3D face data.

Up to now, few tasks in the literature have addressed such a problem on asymmetric 3D-2D face recognition. Rama et al. [Rama et al. 2006] proposed the Partial Principle Component Analysis (P 2 CA) for feature extraction and dimensionality reduction on both the cylindrical texture representation (3D) in the gallery set and 2D images in the probe set. However, the 3D face data utilized still conveyed texture information rather than shape clues. In [START_REF] Riccio | [END_REF], Riccio et al. used pre-dened control points to compute several geometrical invariants for 2D/3D face recognition. But it is really dicult to accurately locate these keypoints on both 2D and 3D facial data. More recently, Yang et al. [START_REF][END_REF] proposed a patch based Kernel CCA to learn mappings between facial range and texture images. Yet, their results still can be improved if we can represent both texture and range faces more comprehensively. Furthermore, all the tasks above partially relied on 2D faces; nevertheless, none of them provided reliable performance when lighting condition or pose status changes.

This chapter introduces an asymmetric 3D-2D face recognition approach, aiming to achieve better performance than 2D based methods and comparable accuracies as 3D based ones do while keeping computational cost under control. The experimental results on the entire FRGC v2.0 database clear illustrate that the eectiveness of the proposed method.

The contributions of this study are vefold:

(1) A novel framework for asymmetric 3D-2D face recognition is proposed. It uses textured 3D face models for enrollment, whilst only 2D facial images for identication. Compared with the state of the art which only exploited single type of 3D data in the gallery set such as cylindrical texture images and facial range images, this framework considers more clues to improve system performance;

(2) We investigate to encode local texture and shape variations into Multi-Scale Local Binary Patterns (MS-LBP) space, where the relationship between 2D and 3D information can be better established;

(3) A new biological vision-based facial representation, namely Oriented Gradient Maps (OGMs), is further employed to represent local texture changes of 2D faces and local geometric variations of 3D faces simultaneously and comprehensively;

(4) An eective preprocessing pipeline is introduced to deal with illumination and pose changes based on Logarithmic Total variation (LTV) [Chen et al. 2006] and Active Appearance Model (AAM) [START_REF] Cootes | [END_REF]] respectively, which greatly improves the robustness of the entire asymmetric face recognition system;

(5) To the best of our knowledge, almost all the methods for asymmetric 3D-2D face recognition were evaluated either on a small private database or a subset of a public one; therefore, it is very dicult to compare their performance and test their robustness when a comprehensive database is utilized. All the experiments in this chapter are carried out on the complete FRGC v2.0 dataset [Phillips et al. 2005] for later possible comparisons.

The remainder of this chapter is organized as follows. The overall framework of both the training and test stages in the proposed method is presented in section 5.2. Section 5.3 introduces the preprocessing pipeline, and section 5.4 describes the MS-LBP and the biological vision-based facial representations. Section 5.5 depicts the asymmetric face recognition approach in detail. Experimental results are discussed and analyzed in section 5.6. Section 5.7 concludes this chapter.

Method Overview

The training and test stage frameworks are illustrated in Figure 5.1 and Figure 5.2 respectively.

At the training stage (Fig. 5.1), textured 3D face models, each of which contains a densely registered facial texture image and 3D facial point-cloud, are required. For each face model, there are totally 64 manually landmarked ducial points. In 2D phase, AAM is constructed using illumination normalized 2D facial texture images; while in 3D phase, all point-clouds are rst registered to a selected reference 3D face model, and then facial range images are extracted. According to these corresponding manual landmarks, all the texture and range faces are transformed to the mean face shape generated by AAM. The local texture changes of resulted 2D faces and local shape variations of 3D ones are accurately represented by Oriented Gradient Maps (OGMs). Four PCA based subspaces are further produced from the sample sets of facial texture images, facial range images, as well as their dierent OGMs. In the end, Canonical Correlation Analysis (CCA) [START_REF] Hardoon | Canonical correlation analysis: an overview with application to learning methods[END_REF]] is introduced to learn the mapping between corresponding PCA subspaces of the OGMs belonging to 2D and 3D data respectively. 

Data Preprocessing

In the process of asymmetric 3D-2D face recognition, both the 2D and 3D face data are utilized. In this section, we propose an eective pipeline for data preprocessing, containing illumination normalization and pose correction. The former part is only designed for 2D facial images, while the latter is for both 2D and 3D face data.

2D Preprocessing

LTV [Chen et al. 2006] is applied to normalize illumination variations since it works on any single image without any prior information about 3D face geometry or lighting sources. LTV not only inherits the ability from the TV-L1 model to decompose a facial image f into a large-scale output u and a small-scale output v, but also has its properties of edge-preserving and multi-scale additive signal decomposition.

The LTV model is based on a general multiplicative lighting reectance theory:

I(x, y) = ρ(x, y) • S(x, y)
(5.1) where I is the reected light intensity, ρ is the surface albedo, and S is the lighting amount. Using logarithm transform on eq. 5.1, the LTV model can be described as follows:

f (x, y) = log(I(x, y)) = log(ρ(x, y)) + log(S(x, y))

(5.2)

u * = arg min{ |∇u| + λ f -u L } (5.3) v * = f -u *
(5.4) where |∇u| is the total variation of u, and λ is a scalar threshold on scale. In eq. 5.3, minimizing |∇u| would make the level sets of u have simple boundaries and minimizing fu L would ensure the approximation of u to f . S and ρ can thus be approximately estimated by solving eq. 5.5:

S ≈ exp(u * ), ρ ≈ exp(v * ) (5.5)
The middle row of Figure 5.3 shows several LTV based illumination normalized samples of 2D facial images.

After the step of the LTV based illumination normalization, AAM is applied to correct pose variations of 2D facial images. A training set is required to produce an AAM. The AAM tting approach referred to [START_REF] Matthews | Active appearance models revisited[END_REF]; and its implementation is achieved thanks to the source code provided by DTU [DTU-AAM ]. The bottom row of Fig. 5.3 lists several face samples after pose correction. 

Facial Description

When all face data are preprocessed, to use both the 2D and 3D data suciently, we encode both of them into certain facial feature space to highlight their distinctiveness. In this section, we present two approaches to describe local texton variations of 2D facial images as well as local geometry variations of 3D based ones, namely Local Binary Patterns(LBP) and Oriented Gradient Maps (OGMs).

LBP Face based

The LBP methodology has been detailedly introduced in the second chapter. Recall that there are two ways to adopt LBP for facial representation, i.e. LBP histogram based and LBP image based. The general concept for the former one is that a facial image can be considered as a composition of micro-patterns provided by LBP. But In 2D-2D face matching, we follow the way for traditional 2D face recognition as did in [START_REF] Ahonen | [END_REF], and thus LBP histogram based facial representation is employed; while in 3D-2D face matching, LBP image based one is utilized. Moreover, to further improve the performance of 3D-2D matching, LBP is used to extract local texture and shape information within the neighborhood with varying sizes, and the information of dierent local regions is then combined to achieve a more comprehensive Multi-Scale LBP (MS-LBP) description. See Figure 5.5 for an illustration of LBP faces of facial texture and range images output by the preprocessing pipeline using dierent neighborhoods. OGMs simulate the responses of complex neurons to gradient information within a pre-dened neighborhood, and hence can represent both the local texture changes of 2D faces and local geometric variations of 3D faces simultaneously and comprehensively. More technical instructions have been described in detail in section 4. 3. Fig. 5.6 shows the examples of the OGMs of facial texture and range images output by the preprocessing pipeline.

Asymmetric Face Recognition

The proposed asymmetric face recognition makes use of two types of face data, i.e. facial range images and their corresponding 2D facial images in the gallery set; while only 2D facial images are taken as probes. Therefore, two independent face matching steps are contained: 3D-2D and 2D-2D. After facial representation, each range and texture faces are described in their LBP feature space, denoted as {L R 1 , J R 2 , ..., J Rn } and {J T 1 , J T 2 , ..., J Tn }; where n is the number of dierent neighborhoods, or in their OGM feature space, denoted as {J R 1 , J R 2 , ..., J Ro } and {J T 1 , J T 2 , ..., J To }; where o is the number of quantized orientations.

3D-2D Face Matching

In this step, we compute similarity measurements between probe facial texture images and gallery facial range images in the LBP image or OGM based feature space. Specically, if using LBP images, to one 2D probe facial image P T , its similarity with a gallery range face G T is calculated by rstly computing the matching score S Asy L i between each LBP image pair within dierent neighborhoods: L P T i and L G R i , i = {1, 2,..., n}, independently, and then combining them with a fusion scheme.

Similarly, the matching scores S Asy J i can also be calculated between each OGM pair of certain quantized direction: J P T i and J G R i , i = {1, 2,..., o}, respectively, which are nally fused to give an overall result of 3D-2D face matching.

CCA [START_REF] Hardoon | Canonical correlation analysis: an overview with application to learning methods[END_REF]] is a powerful analysis algorithm especially useful for relating two sets of variables, by maximizing correlation in the CCA subspace. In this chapter, it is introduced to learn the mapping between each range and texture LBP image pair (J T i and J R i ) or OGM pair (J T i and J R i ).

Given N pairs of sample data (x i , y i ) of (X, Y ), i = 1, 2, ..., N , where X ∈ L T or J T , Y ∈ L R or J R , with the mean value of zero. The goal of CCA is to learn a pair of directions w x and w y to maximize correlation between x = w T x X and y = w T y Y . In the context of CCA, two projections: x and y are also referred to as canonical variants. Formally, the directions can be calculated as the maxima of the function: .6) where E[f (x, y)] denotes empirical expectation of f (x, y). The covariance matrix of (X, Y ) is AW = BW λ (5.11) To test new pairs of variables, we project them into CCA subspace: x = w T x X and y = w T y Y ; and their similarity is calculated by eq. 5.12, and a bigger value of the measure indicates a higher similarity.

ρ = E[w T x XY T w y ] E[w T x XX T w x ]E[w T y Y Y T w y ] (5 
C(X, Y ) = E X Y X Y T = E C XX C XY C Y X C Y Y T ( 5 

S(x , y ) = x • y x y

(5.12)

2D-2D Face Matching

In this step, facial texture images in the probe set are matched with the ones in the gallery set.

Considering that the similarity measurement of 3D-2D matching and the one of 2D-2D matching will be further combined for nal decision, the scores of both parts are expected to be complementary to each other. Since the similarity score achieved in 3D-2D face matching is computed in a holistic way, in this subsection, we exploit a feature-based approach, LBP histogram based technique, for face matching.

For LBP based asymmetric face recognition, in this step, LBP histogram based features are extracted from facial texture images in the gallery and probe set respectively, which are further compared the similarity score of 2D-2D face matching. For OGM based asymmetric face recognition, LBP histogram based features are extracted from the OGMs of original texture facial images for similarity computation. The similarity score of each OGM, S Sym J i , is calculated based on LBP features of J P T i and J G T i , i = {1, 2,..., o} independently, and then all of them are combined with a fusion scheme. Moreover, We employ Sparse Representation Classier (SRC) [START_REF] Wright | [END_REF]] instead of Chi-square distance to compare LBP histogram based features of two faces.

Sparse representation for signal classication (SRSC) [Huang & Aviyente 2006] was rstly proposed to incorporate reconstruction properties, discriminative power as well as sparsity for robust classication. A general classication SRC for 2D face recognition was presented using sparse representation calculated by L1-minimization [START_REF] Wright | [END_REF]]. It usually achieves high accuracy when illumination variations and occlusions occur.

k classes and n i feature vectors, v i,j ∈ R m are used for training from the i th class, i = 1, 2, ..., k and j is the index of the training sample, j = 1, 2, ..., n i . All training data from the i th class are placed in a matrix A i = [v i,1 , v i,2 , ..., v i,n i ] ∈ R m×n i . A dictionary matrix A for k classes is developed by concatenating A i , and a new test pattern y can be represented as a linear combination of all the n training samples (n = n i × k): y = Ax (5.13) where x is an unknown coecient vector; from eq. 5.13, it is straightforward that only entries of x that are non-zero correspond to the class of y. Equation 5.13 can be solved according to compressed sensing as long as its solution is known suciently sparse. An equivalent L1-norm minimization:

(L1) : x 1 = arg min x 1 ; Ax = y (5.14) can be solved as a good approximation to eq. 5.13. With the solution x 1 of eq. 5.14, we can compute the residual between a given probe face and each individual gallery face as:

R i = y - k j=1
x 1 i,j v i,j 2 (5.15) The identity of a given probe face is then determined as the one with the smallest residual R.

Score Fusion

Because the OGM based facial representation has o quantized gradient orientations, either for 2D-2D or 3D-2D matching, the similarity measurement F S Sym J or F S Asy J combines the ones of all OGMs (S Sym J i or S Asy J i ). Meanwhile, in 3D-2D face matching, when applying LBP images, we calculate similarity scores for dierent neighborhoods, which are further combined to generate the MS-LBP based score F S Asy L . The nal similarity measurement of asymmetric 3D-2D face recognition, F L or F J , is achieved by further fusing F S Sym L and F S Asy L or by fusing F S Sym J and F S Asy J . All the fusion steps in this chapter are computed according to a simple sum rule. Before that, all the scores are normalized to the interval of [0, 1] by using min-max normalization and dierent polarities should be reversed.

Experimental Results

The experiments were evaluated on the FRGC v2.0 dataset [Phillips et al. 2005]. It is one of the most comprehensive and popular databases, made up of 4007 textured 3D face models of 466 subjects. After the preprocessing pipeline, all the facial range and texture images were converted to a pre-dened mean shape, which were further cropped to 175×190 pixels as the input of the subsequent experiments.

Experiment Design

The rst 3D face model containing one facial texture and range image with a neutral expression from each subject formed a gallery set of 466 samples. The remaining texture faces (4007-466=3541) were treated as probes.

We designed four special experiments: the rst one is to discuss the eectiveness of the preprocessing pipeline; the second is to test the proposed facial representation, i.e. LBP and OGM, both in 2D-2D and 3D-2D face matching; the third one is to analyze the impact of the neighborhood area radius R of OGMs on nal performance; and the last is to show the results of the asymmetric 3D-2D face recognition when combining the two separate matching steps.

The Eectiveness of Preprocessing Pipeline

To illustrate the eectiveness of our preprocessing pipeline, we launched experiments on cropped facial images without the preprocessing pipeline for both 2D-2D matching and 3D-2D matching. Specically, for 2D-2D matching, a holistic method, PCA, and a feature-based one, LBP, were used for feature extraction, followed by SRC for classication. While for 3D-2D matching, CCA was employed to classify PCA and LBP based features. In the LBP operator, we set the number of sampling points at 8 and the distance between the central pixel and its neighbors at 2; meanwhile the strategy of uniform pattern was adopted.

From Table 5.1, we can see that for both types of facial features, the proposed preprocessing pipeline is eective to improve the performance in 2D-2D face matching. The improvement on LBP-based histograms is not as great as that based on As regarding the eectiveness of the preprocessing pipeline in 3D-2D matching, the conclusion accords with that in the step of 2D-2D face matching and Table 5.2 clearly demonstrates that it largely improves the results of both types of features.

To sum up, the proposed preprocessing method is eective to improve the results of the PCA and LBP based facial features in both 2D-2D and 3D-2D face matching.

The Performance of Individual Matching Steps

In this experiment, we executed both 2D-2D and 3D-2D face matching on the LBP and OGM features of facial range and texture images to observe and compare their performance.

Using LBP features, in the step of 2D-2D face matching, we set the number of sampling points in the LBP operator at 8, and the radius value varied from 1 to 8 pixels. These LBP operators were directly applied to facial texture images. While in 3D-2D matching, using the same LBP operators as in 2D-2D matching, Multi-Scale LBP images were generated from the original texture and range images respectively.

Employing OGM features, each facial range or texture image was represented by a set of OGMs; therefore, as described in Section 5.4, both 2D-2D and 3D-2D face matching were applied to OGMs of facial range and texture images instead of the original ones. To calculate OGMs, we set the radius value of OGMs at 1 and the number of orientations at 8. In its 2D-2D matching step, only the operator LBP U 2 (8,2) was utilized, and we did not perform MS-LBP in order to save computational cost.

Table 5.4 shows that in 2D-2D face matching, OGM based result (Sym26) which combines the information of eight orientations is much better than the ones based on 5.6.4 Radius Analysis of OGM Neighborhood

In our experiments, we evaluated dierent values of radius R and studied its impacts on the performance of both 2D-2D and 3D-2D face matching. In 2D-2D matching, the PCA approach was applied to OGMs for feature extraction, and SRC was further utilized for classication. In 3D-2D face matching, CCA was introduced to calculate the similarity scores.

From Fig. 5.7, it is obvious that in both steps of 2D-2D and 3D-2D face matching, when we increase the radius value of the OGM neighborhood, the performance of each OGM and their fusion degrades. The best results are achieved as the radius value is set at 1 in both the matching steps. Table 5.5 and 5.6 list the exact accuracies of each OGM using dierent values of radius in 2D-2D matching and 3D-2D matching respectively. Table 5.5: Results when using dierent sizes of OGM neighborhood in 2D-2D face matching.

2D-2D R = 1.0 R = 1.5 R = 2.0 R = 2.5 R = 3.0 R = 3.5 OGM 1 88.79% 88.76% 87.55% 86.28% 85.03% 83.93% OGM 2 89.24% 88.65% 87.94% 85.88% 84.72% 83.06% OGM 3 88.34% 87.21% 86.59% 85.43% 84.24% 83.00% OGM 4 87.43% 87.12% 86.42% 85.65% 84.04% 82.52% OGM 5 87.72% 87.24% 86.47% 85.77% 84.50% 83.17% OGM 6 88.48% 88.45% 87.43% 86.81% 85.63% 84.19% OGM 7 85.77% 85.40% 84.78% 83.37% 82.86% 82.18% OGM 8 87.86% 87.24% 85.99% 85.37% 84.72% 82.97% Fusion 93.65% 93.56% 93.50% 93.48% 92.74% 92.40% Table 5.6: Results when using dierent sizes of OGM neighborhood in 3D-2D face matching.

3D-2D R = 1.0 R = 1.5 R = 2.0 R = 2.5 R = 3.0 R = 3.5 OGM 1 87.72% 86.84% 85.00% 83.99% 79.07% 75.85% OGM 2 87.26% 86.98% 85.26% 80.63% 77.80% 75.01% OGM 3 85.82% 84.72% 83.87% 81.73% 77.89% 74.36% OGM 4 86.44% 85.15% 83.20% 80.88% 79.55% 76.62% OGM 5 86.30% 85.26% 84.64% 80.68% 78.14% 74.61% OGM 6 86.90% 86.56% 83.39% 82.49% 80.06% 76.84% OGM 7 84.21% 82.94% 80.74% 78.68% 75.57% 72.61% OGM 8 85.82% 85.40% 84.55% 80.68% 79.70% 77.69% Fusion 94.04% 93.67% 93.19% 92.83% 91.36% 90.26% In order to achieve the overall performance of the proposed asymmetric 3D-2D face recognition, the similarity measurements of the two separate matching steps, i.e., 2D-2D and 3D-2D matching, are nally fused. The accuracies of dierent combinations are listed in Table 5.7: in both the steps of 2D-2D and 3D-2D face matching, (F01) denotes that PCA based features are used; (F02) denotes MS-LBP based features are used; (F03) denotes OGM features are used.

As we can see from Table 5.7 the best performance is achieved by fusing (Sym25) and (Asy17). Specically, the result of (Sym25) is based on the LBP histogram based facial features extracted from OGMs for 2D-2D matching, and (Asy17) is computed by CCA using the OGMs of facial range and texture images. The MS-LBP based accuracy is in the second place. These facts clearly prove that both LBP and OGM based facial description is eective to improve the distinctiveness of original texture or depth faces. Furthermore, to OGMs, two dierent types of facial features in two face matching steps, i.e. (1) local ones, LBP histograms in 2D-2D matching and (2) holistic ones, PCA in 3D -2D matching are complementary to each other, and their fusion result is better than either of them.

According to the experimental results, the proposed OGM-based method is competent in representing 2D and 3D facial images, leading to satisfying performance in both 2D-2D and 3D-2D matching. Meanwhile, the rank-one recognition rate of the entire asymmetric face recognition system is up to 95.4% obtained on the entire FRGC v2.0 database, which is better than those of most 2D-2D face recognition techniques, and not far behind 3D-3D based ones (about 97%).

Summary

This chapter presented a novel scenario for face recognition, asymmetric 3D-2D face recognition, making use of textured 3D face models for enrollment while only 2D facial images as probes. It consists of two separate face matching steps, i.e. 2D-2D and 3D-2D face matching, and their fusion. To describe local texton as well as shape variations of textured 3D face models, we rstly investigated Multi-Scale LBP (MS-LBP) based facial representation. Specically, in 2D-2D face matching, MS-LBP histogram based features were extracted and then fed into SRC for classication, while in 3D-2D face matching, CCA was applied to learn the mapping between MS-LBP images of range and texture faces. Then, we improved its performance by a biological vision-based facial description, namely OGMs. It simulates the response of complex neurons to gradient information within a pre-dened neighborhood, and thus can describe local texture changes of 2D faces and local shape variations of 3D faces. Due to its property of being highly distinctive, OGMs improve the results of both matching steps of asymmetric face recognition, i.e. (1) 3D-2D matching using CCA; (2) 2D-2D matching using LBP histogram based features and SRC. Some comparative experiments were carried out on the complete FRGC v2.0 database, and the results clearly demonstrate that the asymmetric face recognition outperforms the traditional 2D intensity image based techniques, while achieves comparable results to 3D face model based ones but with computational cost under control. Moreover, the performance also highlights the eectiveness of MS-LBP and OGM for facial representation and their successful application to asymmetric face recognition.

an intermediate facial representation, SIFT-based matching is further carried out to calculate similarity scores between a given probe face and the gallery ones. Because the facial representation generates an OGM for each quantized gradient orientation of facial range and texture images, we then introduce a score level fusion strategy which optimizes the weights using a genetic algorithm in a learning step. Tested on the entire FRGC v2.0 database, the rank-one recognition rate using only 3D or 2D modality is 95.5% and 95.9%, respectively; while fusing both modalities, i.e. range and texture-based OGMs, the nal accuracy is 98.0%, demonstrating the eectiveness of the biological vision-based facial description and the optimized weighted sum fusion. Moreover, the experiment on the 3DTEC database proves that 3D modality is more sensitive to facial expression variations than 2D modality.

Asymmetric 3D-2D Face Recognition

In order to limit the use of 3D data where they really help to improve the accuracy of face recognition and thereby avoid the high cost in data acquisition and computation, we design a novel scenario for face recognition, namely asymmetric 3D-2D face recognition, making use of textured 3D face models in the gallery set while only 2D facial images as probes. According to such a protocol, this scenario consists of two separate face matching steps, i.e. 2D-2D and 3D-2D face matching, and their combination. To describe local texton and geometry variations of textured 3D face models, we rst investigate Multi-Scale LBP (MS-LBP) based facial representation. Specically, in 2D-2D matching, MS-LBP histogram based features are extracted from original facial texture images and then fed into SRC for classication, while in 3D-2D matching, CCA is applied to learn the mapping between corresponding MS-LBP images of range and texture faces. We then improve its performance by OGMs. Since they simulate the response of complex neurons to gradient information within a given neighborhood, they thus can well describe local texton changes of texture faces and local shape variations of range faces. Due to its property of being highly distinctive, OGMs improve the results in both matching steps of asymmetric face recognition, i.e. (1) 3D-2D matching exploiting CCA; (2) 2D-2D matching using LBP histogram based features and SRC. Some comparative experiments are carried out on the complete FRGC v2.0 database, and the performance clearly demonstrates that the proposed asymmetric face recognition outperforms the traditional 2D intensity image based techniques, while achieves comparable results to 3D face model based ones but with computational cost under control. Moreover, these experiments also highlight the eectiveness of MS-LBP and OGM for facial representation and their successful application to asymmetric face recognition.

Discussions on Dierent Scenarios

As presented in this thesis, we proposed three approaches in three scenarios of face recognition respectively, i.e. only 3D shape based face recognition, textured 3D face recognition, and asymmetric face recognition. They make use of dierent types of 3D data either in the oine enrollment step (gallery set) or the online identication step (probe set). We compare their performance in the application of face recognition on the FRGC v2.0 database. From Table 6.1, we can see that textured 3D face recognition achieves the best result because it exploits both the texture and shape clues, and according to the experiments conducted on the FRGC v2.0 database, we can draw the conclusion that textured 3D face recognition provides more accurate decisions. While by calculating similarity scores using geometric information, 3D shape based face recognition takes the second place, and the performance is only slightly inferior to that of the proposed multi-modal face recognition system. The asymmetric 3D-2D face recognition does not work as well as the other two, but its accuracy is not very far behind them.

When considering the eciency of these three scenarios, although the computational cost of only shape based face recognition and textured 3D face recognition can be largely reduced based on the parallel system design, e.g. GPU computing, they are also limited by the high expenditure of data acquisition and even preprocessing operations. With out a breakthrough of hardware, they cannot be implemented in real time (response time less than 1 second) in the near further. In contrast to them, asymmetric 3D-2D face recognition depending only on 2D facial images for online identication probably gives an alternative solution which utilizes 3D information but keep the cost under control.

Perspectives for Future Work

In this section, possible extensions of this thesis that we envisage are presented.

Advances in 3D Landmarking

Facial landmarks are points of correspondence on faces that matches between and within populations, and they are expected to possess consistent reproducibility even in adverse situations such as facial expression and occlusions. These facial landmarks generally include nose tip, inner eye corners, outer eye corners, mouth corners, etc. Locating landmarks on 3D faces is a fundamental step in 3D face analysis, especially for 3D face recognition and 3D facial expression recognition. Most techniques of 3D face recognition demand a certain number of landmark points to provide a good initial condition for an ICP-like surface registration.

Even though, the methods of (textured) 3D face recognition proposed in this the-sis do not require any registration for nearly frontal faces, they need a coarse alignment when facial scans have severe pose changes, and three landmarks (nose tip and inner eye corners) should be located before that. The method [START_REF] Szeptycki | [END_REF] is applied for this aim, and it is eective when all these landmarks are available at the same time. To some facial scans with extreme pose variations, i.e. left and right proles, we still have to manually landmarked several points to roughly correct their pose.

Current landmarking solutions are mainly based on curvature or symmetry analysis of facial surfaces, which enable at least nding out the positions of three most stable points: nose tip and inner eye corners with an excellent precision (above 98% accuracy within error of 10mm). However, operating on the proles, they always fail, because half of the facial surface is missing, its symmetry disappears, and the ear region also brings in some points whose curvature values are similar to the target ones. Both the reasons impede the accurate landmarking result. Therefore, a more powerful technique should be explored to precisely landmark on facial proles.

Importance Analysis of Facial Regions

It has been investigated in several tasks that dierent facial regions are of dierent importance to the face recognition accuracy, because some of them are relative rigid to facial expression variations while some of them are not. Base on this conclusion, we can thereby improve the performance of the rst two scenarios in 3D face recognition explored in this thesis, i.e. only 3D shape based face recognition and textured 3D face recognition.

These impacts of dierent facial regions on face recognition results can be measured by corresponding weights learned from a special database which contains rich facial expression variations, such as the BU-3DFE [Yin et al. 2006b] and Bosphorus [Savran et al. 2008] datasets. For the SIFT-based local matching used in these two applications, we can assign dierent weights to the matches between keypoints from dierent facial regions to see whether it will lead to an improvement in performance.

Further Investigation in Asymmetric Face Recognition

In the framework of asymmetric face recognition, we apply AAM based pose correction to facial texture images in the probe set, which is especially critical to the step of 3D-2D face matching. In our case, considering that the AAM model is built using nearly frontal faces, the following AAM tting process is only evaluated on the same type of facial texture images with good resolutions, which is an ideal condition for carrying out experiments.

When implement it in the real world, e.g. to identify faces captured by cameras designed for video surveillance or internet surng, we will denitely encounter two main diculties: i.e. pose (yaw and pitch) changes as well as low resolutions. For the former one, a potential solution is to construct several individual AAMs in dierent poses pre-dened to cover a comprehensive distribution of pose variations similar to the approach in [START_REF] Ramnath | [END_REF]; while to address the latter one, the quality of 2D facial images output by the previous detection step should be assessed to make
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 1 Figure 1.1: A scenario of using biometric MRTD systems for passport control (left), and a comparison of diverse biometric features based on MRTD compatibility (the left picture from[Li & Jain 2005] and the right one from[Hietmeyer 2000].
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 12 Figure 1.2: The left image: the three DOF of a human head can be described by the egocentric rotation angles pitch, roll, and yaw [Murphy-Chutorian & Trivedi 2009]; the right one: some face examples under pose variations [Beymer 1994].
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 13 Figure 1.3: Facial appearances of one subject under dierent lighting conditions, and the face data are taken from CAS-PEAL dataset [Gao et al. 2008].
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 14 Figure 1.4: Facial appearances of one subject with dierent expressions (The image is collected from Internet).

Figure 1 . 5 :

 15 Figure 1.5: Face aging of Albert Einstein [Fu et al. 2010].
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 17 Figure 1.7: Production appearance of Minolta VIVID 910 and its working principle.
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 18 Figure 1.8: Dierent formats of a 3D face model, and from left to right is texture map, range image, shaded model, wireframe and point-cloud respectively.
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 19 Figure 1.9: 3D face recognition scenarios.
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 110 Figure 1.10: Samples of textured 3D face models in the FRGC dataset.
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 111 Figure 1.11: Samples of 3D face models in the GavabDB dataset [Drira et al. 2010].
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 21 Figure 2.1: Face samples from the ATT (ORL) face dataset.
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 22 Figure 2.2: The mean face derived from the ATT (ORL) face dataset.
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 23 Figure 2.3: Eigenfaces (eigenvectors) of the 12 largest eigenvalues are shown as p × q resolution, where p × q = n, derived from the ATT (ORL) face dataset.
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 24 Figure 2.4: Eigenfaces (eigenvectors) of the 12 smallest eigenvalues are shown as resolution p × q, where p × q = n, derived from the ATT (ORL) face dataset.
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 25 Figure 2.5: ICA basis vectors shown as resolution p×q, where p×q = n, derived from the ATT (ORL) face dataset based on the second architecture [Bartlett et al. 2002].
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 27 Figure 2.7: The framework of local feature based methods [Zou et al. 2007a].
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 28 Figure 2.8: Gabor wavelets: (a) The real part of Gabor kernels at ve scales and eight orientations with the following parameters: σ = 2π, k max = π/2, and f = √ 2;
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 29 Figure 2.9: Gabor wavelet representation: (a) The real part of the representation; (b) The magnitude of the representation [Liu & Wechsler 2002].
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 210 Figure 2.10: An example of the basic LBP operator [Ahonen et al. 2004].

  Fig.2.11 shows some examples of the extended LBP operator, where the notation (P, R) denotes a neighborhood of P sampling points on a circle of radius of R.

Figure 2 . 11 :

 211 Figure 2.11: Some examples of the extended LBP operator [Ahonen et al. 2006]: the circular (8, 1), (16, 2), and (24, 3) neighborhoods.

Figure 2 .

 2 Figure 2.12: LBP based facial description [Shan et al. 2009].

Figure 2 .

 2 Figure2.13: Maxima and minima of the dierence-of-Gaussian images are detected by comparing a pixel (marked with '×') to its 26 neighbors in 3×3 regions at the current and adjacent scales (marked with circles)[Lowe 2004].

Figure 2 .

 2 Figure 2.14: A keypoint descriptor is created by rst computing the gradient magnitude and orientation at each image sample point in a region around the keypoint location, as shown on the left. These are weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated into orientation histograms summarizing the contents over 4×4 subregions, as shown on the right, with the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within the region. This gure shows a 2×2 descriptor array computed from an 8×8 set of samples, whereas the experiments in this paper use 4×4 descriptors computed from a 16×16 sample array.[Lowe 2004].

Figure 2 .

 2 Figure 2.15: An example of SIFT matching on 2D facial images.

Figure 2 .

 2 Figure 2.16: A labeled training facial image gives a shape free patch and a set of points [Cootes et al. 2001].

Figure 2 .

 2 Figure 2.17: Four modes of combined shape and texture model (parameters varied by ±2σ from the mean) [Li & Jain 2005].

Figure 2 . 18 :

 218 Figure 2.18: An example of AAM tting iterations [Li & Jain 2005].

  min R,t,j∈{1,2,...,Nm} ⎛ ⎝ Np i=1 Rp i + tm j ⎞ ⎠(2.25) 

Figure 2 .

 2 Figure 2.19: An ICP based coarse to ne registration process of 3D facial surfaces [Lu et al. 2006].

Figure 2 .

 2 Figure 2.20: The deformation synthesis and transfer based 3D face recognition [Lu & Jain 2008].

Figure 2 . 21 :

 221 Figure 2.21: Examples of landmark tting results on faces with dierent expressions [Daniyal et al. 2009].

  dene the vertex pair according to a distance and angle constraint, and each valid pair is used to construct a third order tensor, which records the surface area of the face crossing each bin of the given cubic grid. The gallery is built by representing each facial image with multiple tensors, while in recognition, tensors are computed from the probe and then utilized to cast votes to the tensors in the gallery set. A similarity measurement is further calculated between each probe tensor and with only those gallery tensors which receive votes above a certain threshold. The top 10 faces with the highest similarities are registered to the probe face by aligning their matching pair of tensors, and this registration is rened with ICP to nally compute the similarity measurement. They report a rank one recognition rate of 86.4% on the UND dataset comprising 953 probe and gallery faces of 277 subjects. Gupta et al. [Gupta et al. 2007a] manually labeled 25 anthropometric ducial points and calculate the Euclidean as well as geodesic distance as facial features, which are then fed into LDA for nal decision. The experiments are carried out on a dataset made up of 1128 range images from 105 subjects, showing that geodesic based result (1.3% EER) is better than Euclidean based one (1.6% EER). The accuracies using arbitrary regularly spaced facial points illustrate that incorporating domain specic knowledge about the structural diversity of human faces signicantly improves the performance of 3D face recognition. Castellani et al. [Castellani et al. 2008] introduce a generative learning method by adapting HMM to work on 3D meshes. The geometry of local area around face ducial points is modeled by training HMMs providing a robust pose invariant point signature. Such description allows the matching by comparing the signature of cor-responding points in a maximum-likelihood principle. The matching information of corresponding points are nally imported in a voting method to give the classication result. According to the preliminary performance on a small subset of FRGC v2.0, the authors claim that the proposed approach is robust to facial expression variations and works faster than the current ICP based 3D face recognition systems by maintaining a satisfactory recognition rate.Daniyal et al. [Daniyal et al. 2009] train a Point Distribution Model (PDM) using manual landmarks on 100 sample models, and automatically locate corresponding points on testing facial surfaces.All the Euclidean distances between every two points are exploited as features and classied by LDA for 3D recognition. The proposed approach is evaluated on the BU-3DFE database and achieves 96.5% recognition rate.

Figure 2 .

 2 21 gives an example of automatic landmarking results.Mayo et al. [Mayo & Zhang 2009] rotate each 3D point-cloud to represent a face around the x, y or z axes, iteratively and to project the 3D points onto multiple facial range images at each step of the rotation. Labelled keypoints are then extracted from the resulting collection of range images to describe the original facial scan and its projections in the face database.Unknown test faces are recognized by performing the same multiview keypoint extraction technique as well as weighted keypoint matching algorithm. Evaluated on the entire GavabDB database, the approach achieves up to 95% recognition rate for faces with a neutral expression only, and over 90% accuracy when expressions and random gestures appear.[START_REF] Maes | [END_REF] extend the SIFT algorithm

Figure 2 .

 2 Figure 2.22: (a) Level curves of depth function for several levels; (b) Angle functions, observed (marked) and tted (solid) for a level curve, and the corresponding curves on the facial range image [Samir et al. 2006].

Figure 2 . 23 :

 223 Figure 2.23: Matching and geodesic deforming radial curves [Drira et al. 2010].

Figure 2 . 24 :

 224 Figure 2.24: Landmark based facial segmentation [Alyuz et al. 2010].

Figure 2 . 25 :

 225 Figure 2.25: Dynamic human faces with expression variations and their conformal maps [Zeng et al. 2010].

  to represent local shapes of surfaces more comprehensively[Kakadiaris et al. 2007, Wang et al. 2010] or fuse similarity measurements computed from dierent regions [Faltemier et al. 2008a, Alyuz et al. 2010, Queirolo et al. 2010]. In addition, a training set to learn the distribution of expression changes is also useful to further enhance the results [Al-Osaimi et al. 2009, Wang et al. 2010].

Figure 3 . 1 :

 31 Figure 3.1: An example of texture patterns which can be encoded by LBP (white circles represent ones and black circles zeros).

Figure 3 . 2 :

 32 Figure 3.2: Examples of local shape patterns encoded by the original LBP operator (white circles represent ones and black circles zeros).

Figure 3 . 3 :

 33 Figure 3.3: A confusion case of LBP as it describes similar but dierent local geometric shapes.

Figure 3 . 4 :

 34 Figure 3.4: An example of the eLBP operator.

Figure 3 . 5 :

 35 Figure 3.5: MS-eLBP-DFs of a facial range image with dierent radii from 1 to 8 (from left to right).

Figure 3 . 6 :

 36 Figure 3.6: The SIFT-based keypoints detected from an original facial range image and its four associated eLBP-DFs.

Figure 3 . 7 :

 37 Figure 3.7: An example of degradations applied to one model: from left to right: the original facial surface, Gaussian noise applied, decimation applied, holes applied.

  2007], Kakadiaris et al. used ICP-based alignment with a coarse to ne strategy for preprocessing, and two kinds of features, i.e. Haar and Pyramid were extracted from normal and geometry maps. In [Wang et al. 2010], a selfdependent registration step was used, and a large training database with neutral and non-neutral facial scans was required to learn inter-class and intra-class distributions. Moreover, they fused multiple information i.e. Haar-, Gabor-and LBP-based facial features to make the nal decision.

Figure 4 .

 4 Figure 4.7 indicates the verication rates by the ROC curves in the three experiments: Neutral vs. All, Neutral vs. Neutral, as well as Neutral vs. Non-neutral.

Figure 3 . 9 :

 39 Figure 3.9: The comparison of rank-one recognition rates under Gaussian noise.

Figure 3 . 10 :

 310 Figure 3.10: The comparison of rank-one recognition rates under decimation.

Figure 3 . 11 :

 311 Figure 3.11: The comparison of rank-one recognition rates under missing data.

Figure 4 . 1 :

 41 Figure 4.1: The block diagram of the recognition algorithm proposed by Mian et al [Mian et al. 2007].

Figure 4 . 2 :

 42 Figure 4.2: Overall structure of the face recognition system proposed by Gokberk et al [Gokberk et al. 2008].

Figure 4 . 3 :

 43 Figure 4.3: An illustration of the oriented gradient map for each of the quantized orientations o.

  such a process. In our work, we generate 8 OGMs for 8 quantized directions respectively. Instead of the original facial range and texture images, the OGMs are further fed to SIFT-based local feature matching for face recognition.
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 33 The Properties of Distinctiveness and Invariance

Figure 4 . 4 :

 44 Figure 4.4: SIFT-based keypoint detection examples. The upper row lists an original facial range image and its oriented gradient range maps for the rst four orientations; while the bottom one displays an original facial texture image as well as its rst four oriented gradient texture maps.

Figure 4 .

 4 4 shows an example of SIFT-based keypoint detection.The similarity measurement based on the number of matched points between two facial range or texture OGMs, N R(R,o) or N T (R,o) , is with a positive polarity (a bigger value means a better matching).

Figure 4 .

 4 Figure 4.5 shows the process of learning optimal weighting. First, a population is created by randomly generating individual "chromosomes". The chromosome length is the same with the number of variables (weights) corresponding to the number of similarity score matrices. Given N similarity measurement matrices generated by the SIFT-based matching on dierent OGMs, each of chromosomes thus possesses N gene positions representing N dierent weights. At each iteration, a normalization process is rst carried out to keep the sum of all the weights as one.

  somes and to generate ospring. The operation of crossover leads to generate better ospring by exchanging characteristics of their parents. It enables the most ecient characteristics to be concentrated in an individual. The mutation randomly varies the genetic representation of an individual by adding a random value and tends to

Figure 4 . 5 :

 45 Figure 4.5: The process of the proposed learning strategy for optimized weighting.

Figure 4 . 6 :

 46 Figure 4.6: The preprocessed face sample with manual landmarks.

  2005] maps matching scores to the range of [0, 1]. The function max(s) and min(s) specify the maximum and minimum of the score range respectively: n =s -min(s) max(s) -min(s)(4.6) 

  B Smile A Neutral, B Neutral Exp.II A Neutral, B Neutral A Smile, B Smile Exp.III A Smile, B Neutral A Neutral, B Smile Exp.IV A Neutral, B Smile A Smile, B Neutral

Figure 4 .

 4 Figure 4.8 depicts some examples of SIFT based local face matching using texture information. As we can see, 28 pairs of keypoints are matched between the original facial texture images of the same person, while 1 pair of keypoint is matched between those from dierent persons. When using the OGMs instead of the original texture information, in each pair of corresponding OGMs from the same person, we can nd a certain number of matched keypoints, leading to a total number of 139 between the

Figure 4 . 8 :

 48 Figure 4.8: Matching examples using original facial texture images and their OGMs: (A) matching faces of the same subject; (B) matching faces of dierent subjects.

Figure 4 . 9 :

 49 Figure 4.9: Matching examples using original facial range images and their OGMs: (A) matching faces of the same subject; (B) matching faces of dierent subjects.

Figure 5 . 1 :

 51 Figure 5.1: Training stage framework.

Figure 5 . 2 :

 52 Figure 5.2: Test stage framework.

Figure 5 . 3 :

 53 Figure 5.3: The upper row presents original 2D facial images; the middle row shows illumination normalized ones; and the bottom row lists the samples after pose correction.

Figure 5 . 4 :

 54 Figure 5.4: The R-ICP based Registration (best scene in color): (a) rigid region of textured 3D data; (b) coarse step; (c) ne step.

Figure 5 . 5 :

 55 Figure 5.5: LBP faces of facial texture and range images output by the preprocessing pipeline using dierent neighborhoods: the images from left to right are LBP images generated based on the scale value from 1 to 8 pixels and 8 neighboring points.

Figure 5 . 6 :

 56 Figure 5.6: OGMs of facial texture and range images output by the preprocessing pipeline.

5. 4

 4 .2 OGM Face basedFor this application, we also investigate the Oriented Gradient Maps (OGMs) based facial representation, which has been proposed in the previous chapter for textured 3D face recognition.

. 7 )

 7 where C XX and C Y Y are within-set covariance matrices; C XY and C Y X are betweensets covariance matrices.Hence, ρ can be rewritten asρ = w T x C xy w y w Tx C xx w x w T y C yy w y shown that the solution W = (w T x , w T y ) T amounts to extremum points of the Rayleigh quotient: w x and w y can be obtained as solutions of the generalized eigenproblem:

Figure 5 . 7 :

 57 Figure 5.7: The curves of performance based on dierent radii of each OGM as well as their fusion accuracy: (a) 3D-2D matching; (b) 2D-2D matching.

Table 1 .

 1 1: A comprehensive introduction of public datasets.

	Dataset XM2VTS 3D_RMA MPI York Norte Dame Minolta Vivid 910 Device --Cyberware -GavabDB Minolta Vivid 700 BU-3DFE 3DMD Bosohorus -FRGC v2.0 Minolta Vivid 910 FRAV3D Minolta Vivid 700 3DTEC Minolta Vivid 910 USF 3D Cyberware 3030 PS BJUT-3D Cyberware 3030 PS	Sub. Num. Num./Sub. Tex. Changes 295 1 Yes -120 3 No E, P, O 200 7 --350 15 Yes E, P, R 277 Total: 953 Yes E, T 61 9 No P, E 100 4 No E 105 Total: 4666 Yes E, P, O 466 Total: 4007 Yes E, O, I 106 16 Yes E, P 214 2 Yes E, Twins 100 1 Yes -100 -Yes E
	Variation labels: (P)Pose; (E)Expression; (O)Occlusion; (I)Illumination; (T)Time.

  al. 2007]; Gang Pan together with co-workers at Zhejiang University (China) [Pan et al. 2003c, Pan et al. 2003a, Pan et al. 2003b, Pan et al. 2005, Wang et al. 2007b]; the NLPR at CAS-IA (China) [Xu et al. 2004, Zhong et al. 2007, Huang et al. 2007, Zhong et al. 2008]; the CVRL at UND (USA) [Bowyer et al. 2006, Chang et al. 2005a, Chang et al. 2006, Faltemier et al. 2008a, Faltemier et al. 2008b]; Ajmal Mian's team at UWA (Australia) [Mian et al. 2005, Mian et al. 2006a, Mian et al. 2007, Mian et al. 2008]; and the CBL at UH (USA) [Passalis et al. 2005, Passalis et al. 2007, Kakadiaris et al. 2007]; etc. More classic algorithms renowned in 2D face recognition have been investigated for direct use to recognize 3D faces, such as LDA

Table 2 .

 2 1: A comprehensive overview of face recognition algorithms solely using 3D shape information (Note: the dataset column uses the format A:B, where A denotes the number of individuals and B denotes the total number of 3D models. The sign * means 3D model sequence).

	Reference [Cartoux et al. 1989] [Lee & Milios 1990] [Gordon 1991] [Gordon 1992] [G. G. Gordon 1992] [Nagamine et al. 1992]	Dataset 5:18 6:6 8:24 8:24 8:24 16:160	Key Feature Prole EGI Depth & Curvature Depth & Curvature Depth & Curvature Multiple prole	Matching Minimum Dist. Correlation NN NN NN NN

Table 3 .

 3 2: Rank-one face recognition rate compared with the state of the art on the FRGC v2.0 dataset.

	Dierent Approaches (1) ICP (2) SI Faces	Recognition Rate 72.2% 91.8%

Table 3 . 3 :

 33 [START_REF] Wang | [END_REF] Their comparisons are shown in Table3.4. Face verication rates using the experimental protocol of Neutral vs. All at 0.1% FAR on the FRGC v2.0 dataset.

	98.4%

Table 3 .

 3 4: Comparison of verication rates at 0.1% FAR using ROC I, ROC II, ROC III and All VS. All protocol on the FRGC v2.0 dataset.

	Dierent Approaches Maurer et al. [Maurer et al. 2005] Cook et al. [Cook et al. 2006a] Husken et al. [Husken et al. 2005] Faltemier et al. [Faltemier et al. 2008a] NA ROC I ROC II ROC III All vs. All NA NA 92.0% 87.0% 93.7% 92.9% 92.0% 92.3% NA NA 89.5% NA NA 94.8% 93.2% Kakadiaris et al. [Kakadiaris et al. 2007] 97.3% 97.2% 97.0% NA Mian et al. [Mian et al. 2007] NA NA NA 86.6% Alyuz et al. [Alyuz et al. 2010] 85.4% 85.6% 85.6% NA Wang et al. [Wang et al. 2010] 98.0% 98.0% 98.0% 98.1% MS-eLBP-DFs 95.1% 95.1% 95.0% 94.2%
	Table 3.5: Rank-one face recognition rates using the facial expression protocols on
	the FRGC v2.0 dataset.
	Dierent Approaches SI Faces MS-LBP-DFs MS-eLBP-DFs Huang et al. [Huang et al. 2010b] Mian et al. only 3D [Mian et al. 2008] 99.0% Subset I Subset II Degradation 97.2% 84.1% 13.1% 97.7% 88.9% 8.8% 99.2% 95.1% 4.1% 99.1% 92.5% 6.6% 86.7% 12.3% Mian et al. 2D + 3D [Mian et al. 2008] 99.4% 92.1% 7.3%
	Subset I: Neutral vs. Neutral
	Subset II: Neutral vs. Non-neutral

Table 3 .

 3 6: Comparison of verication rates at 0.1% FAR using the facial expression protocols on the FRGC v2.0 dataset.

	Dierent Approaches SI Faces MS-LBP-DFs MS-eLBP-DFs Passalis et al. [Passalis et al. 2005] Mian et al. only 3D [Mian et al. 2008] 99.9% Subset I Subset II Degradation 98.9% 87.5% 11.4% 99.1% 91.9% 7.2% 99.6% 97.2% 2.4% 94.9% 79.4% 15.5% 92.7% 7.2% Mian et al. 2D + 3D [Mian et al. 2008] 99.9% 96.6% 3.3%
	Subset I: Neutral vs. Neutral
	Subset II: Neutral vs. Non-neutral

Table 3 .

 3 7: Comparisons of rank-one face recognition rates on the Gavab database: (A) without pose variations; (B) only with pose variations.

	Dierent Approaches Li et al. [Li et al. 2009] Moreno et al. [Moreno et al. 2005] Mahoor et al. [Mahoor & Abdel-Mottaleb 2009] 95.00% 72.00% 78.00% I. Neutr. II. Expr. I + II 96.67% 93.33% 94.68% 90.16% 77.90% NA Berretti et al. [Berretti et al. 2006] 94.00% 81.00% 84.25% Mousavi et al. [Mousavi et al. 2008] NA NA 91.00% Drira et al. [Drira et al. 2010] 100.00% NA 94.67% 100.00% 93.99% 95.49% MS-eLBP-DFs (A) Dierent Approaches (a) (b) (c) (d) (e) Mahoor et al. [Mahoor & Abdel-Mottaleb 2009] 85.30% 88.60% NA NA NA Berretti et al. [Berretti et al. 2006] 80.00% 79.00% NA NA NA Drira et al. [Drira et al. 2010] 100.00% 98.36% 70.49% 86.89% 88.94% MS-eLBP-DFs 96.72% 96.72% 78.69% 93.44% 91.39%
	(B)

Table 4 .

 4 1: Rank-one recognition rates of individual features using SRC on the FRGC v2.0 database according to three experimental protocols: (I) Neutral vs. All; (II) Neutral vs. Neutral; and (III) Neutral vs. Non-neutral. denote the raw matching similarity score as s, from a set S of scores produced by dierent features, and its corresponding normalized score as n. Three normalization approaches are explored and compared. Min-Max (MM) [Godil et al. 2005] [Mian et al. 2006b] [Snelick et al.

	Dierent Features 2D: Gabor Filters 2D: LBP 2D: Intensity Image 3D: Anthropometric Measurements 46.48% 55.99% 34.44% I II III 77.89% 84.59% 69.40% 71.82% 78.83% 63.06% 49.82% 56.85% 40.91% 3D: Gaussian Curvature 59.02% 73.67% 40.46% 3D: Mean Curvature 71.62% 85.25% 54.35% 3D: Maximum Curvature 67.81% 82.57% 49.10% 3D: Minimum Curvature 66.73% 81.05% 48.59% 3D: Binormal Vectors 70.63% 84.49% 53.07% 3D: Normal Vectors 70.01% 83.78% 52.56% 3D: Tangent Vectors 79.72% 89.64% 67.16%
	Specically, we

Table 4 .

 4 2: Rank-one recognition rates of dierent score normalization methods with dierent fusion schemes.

	Fusion Scheme Decision Level Fusion Score Level Fusion	Max-Min Z-Score Tanh 88.87% 87.49% 85.12% 86.44%
	4.6.3 Identication and Verication

Table 4 . 3 :

 43 Comparisons with the state-of-the-art using only 2D face data.

	2D Approaches Eigenface LBP Histogram Gabor Original Texture + SIFT Texture LBP Face + SIFT Texture OGMs + SIFT	Rank-One Recognition Rate 49.8% 71.8% 77.9% 79.3% 44.8% 95.9%

Table 4 .

 4 4: Comparisons with the state-of-the-art using only 3D face data.

  [START_REF] Alyuz | [END_REF] 

		97.5%
	Huang et al. [Huang et al. 2011a]	97.2%
	Original Range + SIFT	NA
	Range LBP Face + SIFT	80.1%
	Range OGMs + SIFT	95.9%
	4.6.4 Radius Analysis of Neighborhood Area	

Table 4 . 5 :

 45 Comparison with the state-of-the-arts using textured 3D face data.

	Textured 3D Systems Maurer et al. [Maurer et al. 2005] Husken et al. [Husken et al. 2005] Mian et al. [Mian et al. 2007] Mian et al. [Mian et al. 2008] Gokberk et al. [Gokberk et al. 2008] Xu et al. [Xu et al. 2009] Ben Soltana et al. [Ben Soltana et al. 2010] Texture OGM + SIFT Range OGM + SIFT Multi-Modal OGM +SIFT	Rank-one RR VR@FAR=0.1% NA 95.8% NA 97.3% 96.1% 98.6% 97.4% 99.3% 95.5% NA NA 97.5% 95.5% 97.0% 95.9% 97.3% 95.5% 97.1% 98.0% 98.9%

Table 4 .

 4 7: Results when using dierent neighborhood area radius R on range faces.

Table 4 .

 4 8: Rank-one face recognition rates using the facial expression protocol on the FRGC v2.0 dataset.

	5

Table 4 .

 4 9: Comparison of face verication rates at 0.001 FAR using the facial expression protocol on the FRGC v2.0 dataset.

	Dierent Systems Mian et al. [Mian et al. 2008] 97.4% 99.9% 92.7% VR I VR II VR III Texture OGM + SIFT 97.3% 99.7% 93.7% Range OGM + SIFT 97.1% 99.4% 93.5% Multi-Modal OGM +SIFT 98.9% 99.9% 97.1%
	VR I: Neutral vs. All VR II: Neutral vs. Neutral VR III: Neutral vs. Non-Neutral

Table 4 .

 4 10: List of experiments performed on the 3DTEC dataset.

Table 4 .

 4 11: Rank-one face recognition rates of four experiments on the 3DTEC dataset.

	Rank-one Recognition Rate RR I RR II RR III RR IV Texture OGM + SIFT 95.8% 96.3% 92.1% 92.5% Range OGM + SIFT 91.6% 93.9% 69.2% 71.0% Multi-Modal OGM +SIFT 96.3% 96.3% 88.8% 88.8%

Table 4 .

 4 12: Face verication rates of four experiments at 0.1% FAR on the 3DTEC dataset.

	Verication Rate Texture OGM + SIFT Range OGM + SIFT Multi-Modal OGM +SIFT 96.7% 96.7% 88.3% 89.7% VR I VR II VR III VR IV 96.7% 96.7% 93.0% 93.5% 94.9% 94.4% 68.7% 69.2%

Table 4 .

 4 11 and Table 

Table 5 .

 5 1: Rank-one recognition rates of 2D-2D face matching on original cropped facial images and the ones after preprocessing pipeline using PCA and LBP based feature classied by SRC.

	2D-2D Face Matching PCA LBP Histogram Original Faces 46.68% 75.74% Preprocessed Faces 78.54% 79.95%

Table 5 .

 5 2: Rank-one recognition rates of 3D-2D face matching on original cropped facial images and the ones after preprocessing pipeline using PCA and LBP based feature classied by CCA.

	3D-2D Face Matching PCA LBP Image Original Faces 36.18% 42.42% Preprocessed Faces 81.70% 76.36%
	PCA facial features, because local features generally require less normalization than the holistic ones do.

Table 5 .

 5 7: Final performance of asymmetric 3D-2D face recognition when combining 2D-2D and 3D-2D matching steps.

	Dierent Fusion	Recognition Rate
	(F01): (Sym28) + (Asy19) (F02): (Sym27) + (Asy18) (F03): (Sym25) + (Asy17)	0.8901 0.9127 0.9537
	5.6.5 Identication of Asymmetric Face Recognition

Table 6 .

 6 1: The comparison among the three proposed approaches in three dierent face recognition scenarios respectively.

	Dierent Scenarios Only 3D shape based Textured 3D Asymmetric 3D-2D Shape and Texture Gallery Shape Shape and Texture Shape and Texture 98.0% (Rank-one) Probe Recognition Rate Shape 97.6% (Rank-one) Texture 95.4% (Rank-one)

Image + PCA 0.8128 (Asy12) LBP U 2 (8,4) Image + PCA 0.8328 (Asy13) LBP U 2 (8,5) Image + PCA 0.8492 (Asy14) LBP U 2 (8,6) Image + PCA 0.8585 (Asy15) LBP U 2 (8,7) Image + PCA 0.8540 (Asy16) LBP U 2 (8,8) Image + PCA 0.8571 (Asy17) OGMs (Asy01-Asy08) 0.9404 (Asy18) MS-LBP (Asy09-Asy16) 0.8700 (Asy19) Original Face + PCA 0.8170 single LBP (Sym17-Sym24) and PCA (Sym28) features, and is even superior to that of MS-LBP by fusing all single LBP results (Sym27). Except the neighborhood of 1 pixel (Sym17) and 8 pixels (Sym24), all the other ones based single LBP histogram features (Sym18-Sym23) are still better than PCA features (Sym28) when working on well normalized facial images, and certainly, the performance of MS-LBP largely surpasses that of PCA. As applied to each OGM, the PCA based method (Sym09-Sym16) achieves better results than LBP does (Sym01-Sym08). However, when combining the similarity scores of all the eight orientations of the OGMs to calculate the nal accuracy, LBP (Sym25) slightly outperforms PCA (Sym26). To both features, i.e. PCA and LBP based ones, operating on each OGM and then fusing the similarity measurements generates much better performance than directly applying on the preprocessed faces.

In 3D-2D matching, by encoding both the local texture and geometry variations of textured 3D face models, both MS-LBP (Asy18) and OGM (Asy17) provide higher accuracies than PCA (Asy19) does. The performance combining the similarities of eight OGMs is better than the MS-LBP image-based one which fuses the scores of eight dierent scales as illustrated in Table 5.3. Once again, it proves that combining information provided by the LBP operators at various scales to achieve the MS-LBP facial representation is a promising way to improve the performance of the single scale LBP. When comparing OGM with MS-LBP, OGM works even better.

Chapter 6

Conclusions and Future Work

Contributions

Nowadays, 3D face models have emerged as a major alternative to solve the unsolved issues in 2D face recognition, i.e. illumination and pose changes, because they convey much more useful information than 2D facial images do. This Ph.D. thesis mainly concentrates on the problem of face recognition by using three dimensional data. In the rst half, we extensively review the milestone techniques in 2D intensity image based face recognition as well as the recent development in 3D domain. We further dedicate to three scenarios in face recognition, including only 3D shape based face recognition, textured 3D face recognition, and asymmetric 3D-2D face recognition. The contributions in this research work are as follows.

Only Shape based 3D Face Recognition

In only 3D shape-based face recognition, we present an eective and ecient method by using a novel geometric facial representation along with a local feature matching scheme. The proposed facial description is based on a set of facial depth maps extracted by multi-scale extended Local Binary Patterns (eLBP) and enables accurate and fast representation of local shape changes; it thus enhances the distinctiveness of generally smooth and similar facial range images. The following matching step is SIFT-based and performs in a local manner which is further improved by facial component and conguration constraints. It hence can robustly associate keypoints between two facial representations of the same individual. This approach displays a rank-one recognition rate up to 97.6% and a verication rate of 98.4% at a 0.001 FAR respectively on the FRGC v2.0 database without any registration. Furthermore, experimental results on the Gavab dataset demonstrate that the entire system is also robust to partially occluded faces when only aided by a coarse alignment process. Finally, additional experiments show that this approach is insensitive to facial expression variations and has a good tolerance to data degradations, such as Gaussian noise, decimation, and random holes. In textured 3D face recognition, we propose a novel biological vision-based facial description, namely Oriented Gradient Maps (OGMs), aiming to highlight intra-class and inter-class variations of both facial range and texture images. These generated OGMs simulate the response of complex neurons to gradient information within a pre-dened neighborhood and possess the properties of being highly distinctive and robust to ane illumination and geometric transformation as well. Based on such Chapter 7
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