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Abstract

This thesis consists of five articles mainly devoted to problems in dy-
namical systems and ergodic theory. We consider non-uniformly hyperbolic
two dimensional systems and limit distributions of point measures, which
are absolutely continuous with respect to Lebesgue measure.

Let fa0
(x) = a0−x2 be a quadratic map, where the parameter a0 ∈ (1, 2)

is chosen such that the critical point 0 is pre-periodic (but not periodic). In
Papers A and B, we study skew-products (θ, x) #→ F (θ, x) = (g(θ), fa0

(x) +
αs(θ)), (θ, x) ∈ S1 × R. The functions g : S1 → S1 and s : S1 → [−1, 1] are
the base dynamics and the coupling functions, respectively, and α is a small,
positive constant. Such quadratic skew-products are also called Viana maps.
In Papers A and B, we show for several choices of the base dynamics and the
coupling function that the map F has two positive Lyapunov exponents and
for some cases we further show that F admits also an absolutely continuous
invariant probability measure.

In Paper C we consider certain Bernoulli convolutions. By showing that
a specific transversality property is satisfied, we deduce absolute continuity
of the distributions associated to these Bernoulli convolutions.

In Papers D and E, we consider sequences of real numbers on the unit
interval and study how they are distributed. The sequences in Paper D are
given by the forward iterations of a point x ∈ [0, 1] under a piecewise ex-
panding map Ta : [0, 1] → [0, 1] depending on a parameter a contained in an
interval I. Under the assumption that each Ta admits a unique absolutely
continuous invariant probability measure µa and that some technical condi-
tions are satisfied, we show that the distribution of the forward orbit T

j
a (x),

j ≥ 1, is described by the distribution µa for Lebesgue almost every param-
eter a ∈ I. In Paper E we apply the ideas in Paper D to certain sequences,
which are equidistributed in the unit interval and give a geometrical proof
of a well-known result by Koksma from 1935.
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Sammanfattning

Denna avhandling består av fem artiklar i vilka huvudsakligen pro-
blem inom dynamiska system och ergodteori studeras. Vi behandlar icke-
likformigt hyperboliska, två dimensionella system och gränsfördelningar av
punktmassor som är absolutkontinuerliga med avseende på Lebesguemått.

Låt fa0
(x) = a0 − x2 vara en kvadratisk avbildning där parametern

a0 ∈ (1, 2) är vald sådan att den kritiska punkten 0 är preperiodisk (men
inte periodisk). I artiklarna A and B behandlar vi skevprodukter (θ, x) #→

F (θ, x) = (g(θ), fa0
(x) + αs(θ)), (θ, x) ∈ S1 × R. Funktionerna g : S1 → S1

och s : S1 → [−1, 1] benämns basavbildningen, respektive kopplingsfunktio-
nen och α är en liten, positiv konstant. Sådana kvadratiska skevprodukter
kallas också för Vianaavbildningar. I artiklarna A and B visar vi för olika
val av basfunktioner och kopplingsfunktioner att avbildningen F har två
positiva Lyapunovexponenter och i några fall visar vi dessutom att F har
ett absolutkontinuerligt invariant sannolikhetsmått.

I artikeln C studeras vissa Bernoullifaltningar. Genom att verifiera att
en speciell transversalitetsegenskap är uppfylld, visar vi att de till de Ber-
noullifaltningarna relaterade fördelningarna är absolutkontinuerliga.

I artiklarna D och E behandlar vi följder av reella tal i enhetsintervallet
och studerar hur de är fördelade. Följderna i artikeln D ges av framåtite-
rationer av en punkt x ∈ [0, 1] under en styckvist expanderande avbildning
Ta : [0, 1] → [0, 1] som är beroende av en parameter a i ett intervall I. Under
antagandet att varje avbildning Ta har ett unikt absolutkontinuerligt invari-
ant sannolikhetsmått µa och att några tekniska villkor är uppfyllda, visar vi
att fördelningen av framåtbanan T

j
a (x), j ≥ 1, är given av fördelningen µa

för Lebesgue nästan alla parametrar a ∈ I. I artikeln E tillämpar vi ideerna
i artikeln D på några följder, som är likformigt fördelade i enhetsintervallet
och vi ger ett geometriskt bevis av ett välkänt resultat av Koksma från 1935.
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Chapter 1

Introduction

1.1 Viana maps

Consider the quadratic map

x !→ f
a0

(x) = a0 − x2, x ∈ R,

where the parameter 1 < a0 < 2 is chosen such that the critical
point 0 is pre-periodic (but not periodic). It is well-known that such
a quadratic map — also called Misiurewicz-Thurston map — has a
positive Lyapunov exponent, i.e. there exists a constant λ > 0 such
that

lim inf
n→∞

1

n
log |Dfn

a0
(x)| ≥ λ,

for Lebesgue almost every x ∈ R. Consider now the situation when
we add after every iteration step a small perturbation to the obtained
value and then continue the iteration with this perturbated value. The
main question in the first two papers of this thesis is under what kind
of perturbations we still have a positive Lyapunov exponent. The per-
turbations we are considering are correlated. The i.i.d. case is done in
[BBM] and [BY]. The maximal size of the perturbation in each step
will not exceed the value α, where α is a small, positive real number.
More precisely, the maps we are considering are skew-products of the
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form

F : S1 × R → S1 × R,

(θ, x) #→ (g(θ), fa0
(x) + αs(θ)), (1.1)

where s : S1 → [−1, 1] is some coupling function and g : S1 → S1

is the base dynamics in which choice we are mainly interested in. As
the title of this section suggests, the study of the ergodic properties
of such quadratic skew-product (also called Viana maps) traces back
to a paper by Viana [Vi]. In this paper the base dynamics g is given
by the strongly expanding continuous β-transformation θ #→ dθ mod 1,
where d ≥ 16 is an integer, and the coupling function s is a C2 Morse
function, e.g., s(θ) = sin(2πθ). Provided that α is sufficiently small,
it is shown that the associated map F has almost everywhere w.r.t.
Lebesgue measure two positive Lyapunov exponents, i.e. there exists
a constant λ > 0 such that

lim inf
n→∞

1

n
log‖DF n(θ, x)v‖≥ λ,

for Lebesgue a.e. (θ, x) ∈ S1 × R and every non-zero vector v ∈ R
2.

Based on this result by Viana, Alves [Al] proved that the map F ad-
mits an absolutely continuous invariant probability measure (a.c.i.p.)
µ (this measure is unique and its basin has full Lebesgue measure in

the invariant cylinder Ĵ defined below; see [AV]).
Note that the Jacobian matrix of F n is a lower triangular matrix

with the diagonal entries

DF n(θ, x) =

(
dn 0

∗
∏

n−1

i=0
(−2xi)

)
,

where xi, i ≥ 0, is defined by (θi, xi) = F i(θ, x). Clearly, if v is a vector
in R

2 whose first component is not equal to zero, then

lim inf
n→∞

1

n
log‖DF n(θ, x)v‖≥ log d > 0,

for all (θ, x) ∈ S1×R. Hence, in order to show that F has two positive
Lyapunov exponents, it is enough to focus on the vertical Lyapunov
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exponent, i.e. it is enough to show that there exists a constant λ > 0
such that

lim inf
n→∞

1

n
log

n−1∏

i=0

2|xi| ≥ λ, (1.2)

for Lebesgue a.e. (θ, x) ∈ S1 × R. Of course, if we start with an x

far from the origin then xi tends to infinity as i → ∞ and (1.2) is
trivially satisfied. But, since a0 is strictly smaller than 2, it is easy to
check that there is an open interval (−1, 1) ⊂ I ⊂ (−2, 2) such that
F (S1×I) ⊂ S1×I, provided α is sufficiently small. Thus, it is sufficient
to consider the restriction of F to the invariant region

Ĵ = S1 × I.

The basic property of F acting on Ĵ is that the expansion in the
horizontal direction, i.e. in the θ-direction, is dominating. In other
words the endomorphism F : Ĵ → Ĵ is a partially hyperbolic system
by which we mean that there are constants λ > 0, C ≥ 1 and a
continuous decomposition T Ĵ = Ec ⊕ Eu with dim Ec = dim Eu = 1
such that

‖DF n|Eu(z)‖> C−1eλn,

and
‖DF n|Ec(z)‖< Ce−λn‖DF n|Eu(z)‖, (1.3)

for all z ∈ Ĵ and n ≥ 0. The subbundles Ec and Eu are called the
central and unstable subbundle, respectively. Since ||∂xF

n|| ≤ 4n on Ĵ

and d ≥ 16 > 4, we can choose Ec(z) ≡ {0}×R, Eu(z) ≡ R×{0}, λ =
log d and C = 1. Notice that by condition (1.3) the central subbundle
Ec is forward invariant and uniquely defined but Eu is not. One can
show that for the Viana map F , there exist constants 0 < λ < log 2
and C < ∞ (independent on d) such that ||∂xF

n|| ≤ Cenλ on Ĵ (see
Lemma 3.1 in [BST]). Hence, the system remains partially hyperbolic
if we choose d to be an integer greater or equal to 2. In [BST], Buzzi
et al showed that the corresponding map F still admits two positive
Lyapunov exponents.

In Paper A we treat non-continuous Viana maps. More precisely,
instead of a continuous base dynamics, we let g be a β-transformation
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where the expansion d is any real number d > 1 chosen so large that d
dominates the vertical expansion. Having such a non-continuous map
as the base dynamics, we show that we still have a positive vertical Lya-
punov exponent and existence of an a.c.i.p. The main technical novelty
in Paper A is that we introduce the concept of remainder intervals and
show that, roughly speaking, these intervals can be neglected. A re-
mainder interval is a monotonicity interval ω for gn : [0, 1) → [0, 1)
such that ω/dn < 1. Observe that if d is an integer then each mono-
tonicity interval ω for gn satisfies |ω| = dn, and if d is a non-integer
value then |ω|/dn may get arbitrarily small (when n increases). The
fact that we can neglect remainder intervals enables us then to prove
a positive vertical Lyapunov exponent for each considered real d. To
ensure the existence of an a.c.i.p., we have to exclude d-values for which
the remainder intervals get too small too fast. By using a result due to
Schmeling [Sch], we show that the set of d-values we have to exclude
is a Lebesgue measure zero set. In fact, in Section 5 of Paper D, we
generalize this result of Schmeling used in Paper A to more general
β-transformations. Thus, regarding the setting in Paper A, we could
even get positive Lyapunov exponents and existence of an a.c.i.p. for
certain Viana maps having a C2-version of the β-transformation as the
base dynamics (cf. summary of Paper A, Remark 2.1.4).

In Paper B we prove positive Lyapunov exponents in the case
when the base dynamics is given by a sufficiently high iteration of
a Misiurewicz-Thurston map (i.e. a quadratic map of the same type
as fa0

). More precisely, let 1 < a1 ≤ 2 be a parameter such that the
associated quadratic map fa1

is Misiurewicz-Thurston and let p1 be
the unique negative fixed point for fa1

. In Paper B we prove positive
Lyapunov exponents for the map

F : [p1,−p1] × R → [p1,−p1] × R

(θ, x) %→ (fk

a1
(θ), fa0

(x) + αs(θ)),

where k ≥ 1 is a sufficiently large integer and the coupling function s(θ)
is chosen in such a way that we can conjugate F to a map which has still
a dominating horizontal expansion (note that this makes s dependent
on the base dynamics fa1

). Already Viana [Vi] pointed out that it is
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of interest to study quadratic skew-products where the base dynamics
is given by a non-uniformly hyperbolic map. Paper B provides us with
a first example of such a system having positive Lyapunov exponents.

We will give a brief sketch of the ideas in the proofs of Papers A
and B which are in common with the ideas in [Vi] and [BST]. For
simplicity, we consider the setting in [Vi], i.e g(θ) = dθ mod 1, where
d is a large integer. The main idea in [Vi] is to make use of certain
transversality properties (caused by the Morse function sin(2πθ) and
the partial hyperbolicity) of the so-called admissible curves combined
with the mixing property of the underlying base dynamics. In short
terms, an admissible curve is a non-flat but nearly horizontal curve
defined on S1(= [0, 1)) and with image in I. More precisely, if d ≥ 16

is an integer and X̂ = graph(X) = S1 × {x}, x ∈ I, is a constant

horizontal curve in Ĵ and Ŷ = graph(Y ), Y : [0, 1) → I is one of

the dj, j ≥ 1, curves contained in the image F j(X̂), then, by the
dominating horizontal expansion, Y is almost horizontal (its slope is
smaller than α) and, in particular, the curve Y inherits the property
of the Morse function sin(2πθ), i.e. in each point θ ∈ S1 \ {0} either
its first derivative or its second derivative is bounded away from zero.
A curve with these properties is called an admissible curve.

Since every point in F (Ĵ) lies on an admissible curve, in order to
prove a positive vertical Lyapunov exponent it is sufficient to show
that there exists a constant λ > 0 such that for an arbitrary admissible
curve X̂ = graph(X), X : S1 → I,

lim inf
n→∞

1

n
log

∣∣∣DF n(θ, X(θ))

(
0
1

) ∣∣∣ ≥ λ, (1.4)

for Lebesgue a.e. θ ∈ S1. The main dynamical issue in proving (1.4)
is recurrence of criticalities, i.e. returns of the forward orbit of a point
(θ, X(θ)) close to the critical line S1 × {0}. Considering the unper-
turbed quadratic map x %→ fa0

(x), the closer some iteration of a point
x ∈ I comes to the critical point 0 the longer the subsequent iterations
of x stay close to the forward orbit of the critical point. By assumption,
the critical point of the map fa0

is eventually mapped to an expanding
periodic point. It is easy to check that this expansion gained by fol-
lowing the critical orbit in fact compensates for the loss of expansion
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coming too close to the critical point (this is the main ingredient in
the proof that the map fa0

has in Lebesgue a.e. point x ∈ I a positive
Lyapunov exponent).

As for the map F , the situation is different. After every iteration
we add a perturbation of size smaller or equal than α which causes
that even if the iteration of a point (θ, X(θ)) comes very close to the
critical line S1 × {x} it is possible that the projection to the x-axes
of the subsequent iterations of (θ, X(θ)) follow the forward orbit of
the critical point of the unperturbed map fa0

only for a number of
iterations proportional to log(1/α). Hence, the loss of expansion due
to close returns to the critical line might not be compensated by the
expansion gained by the immediate subsequent iterations. The way to
deal with this obstacle is to do a large deviation argument (see [Vi],
Section 2.4; or also [BC2]), where one makes use of the mixing property
of the base dynamics and the above described non-flatness property of
the admissible curves to give a good upper estimate of the measure of
θ-values such that the iteration of (θ, X(θ)) comes too often too close
to the critical line.)

In this paragraph we will explain roughly how the non-flatness (or
transversality) property of admissible curves and the mixing property
of the base dynamics are used in this large deviation argument. Note
that the distance between one iteration of the critical point 0 and one
iteration of the points

√
α or −

√
α by the map fa0

is α. Hence, one
can expect that if an iteration of the point (θ, X(θ)) comes not closer
than

√
α to the critical line then the loss of expansion is compensated

during the immediate subsequent iterations as it is the case for the
unperturbed map. In fact, as it is shown in the large deviation argu-
ment by Viana there exists a constant 0 < η < 1/2 such that the loss
of expansion is compensated by the immediate subsequent iterations
if an iteration comes not closer than α1−η to the critical line. On the
other hand it turns out that very close returns to the critical line can be
neglected since, by the transversality property of an admissible curve
in the image F j(X̂), only a very small fraction of this admissible curve
can lie very close to the critical line. A technical difficulty in the large
deviation argument is caused by the shallow returns, i.e. returns of
the forward orbit of a point (θ, X(θ)) roughly speaking in distance less
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or equal than α
1−η to the critical line. Recall that the absolute value

of the slope of an admissible curve is bounded from above by α and
hence it is possible that the whole of an admissible curve is in distance
less or equal than α

1−η from the critical line. To tackle this technical
difficulty, one makes use of the mixing property of the base dynamics
combined with the property of the underlying Morse function sin(2πθ).

If X̂ = graph(X), X : S1
→ I, is an admissible curve then, by the non-

flatness of sin(2πθ), one can show that at least two admissible curves

Y1 and Y2 of the d admissible curves in the image F (X̂) lie in vertical
distance a constant times α from each other. This property implies
the following. Assuming that the map F is expanding in the vertical
direction during the next m iterations, where m is a sufficiently large
integer (which on the other hand cannot be larger than a constant
times log(1/α)), then it turns out that, roughly speaking, either all

admissible curves in F m(Ŷ1) or all admissible curves in F m(Ŷ2) cannot
be closer than α

1−η to the critical line. By a repeated use of this fact
— essentially, the mixing property of the base dynamics is used here —
one can show that the fraction of an admissible curve which is mapped
by F M(α) (where M(α) is an integer proportional to log(1/α)) closer
than α

1−η to the critical line is sufficiently small to deduce a good large
deviation estimate.

While one-dimensional (non-uniformly hyperbolic) dynamical systems,
in particular the quadratic family, are quite well-studied by now, there
are still many important open questions in higher dimensional dynam-
ical systems. The probably most prominent 2-dimensional example,
where very little is known, is the family of standard maps on the two-
dimensional torus T

2:

(x, y) "→ (2x − y + κ sin(2πx), x),

where κ is a real parameter. Note that this map is area preserving,
and it is not hyperbolic nor partially hyperbolic. One open problem
for this family is if there is a positive Lebesgue measure set of param-
eters κ such that the corresponding maps have a positive Lyapunov
exponent on a positive Lebesgue measure set on T

2. More is known for
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higher dimensional dynamical systems having a certain hyperbolical
structure as, e.g., Viana maps, Hénon maps or more generally partially
hyperbolic maps (for a recent important work on partially hyperbolic
endomorphism on the torus see Tsujii [Ts]). In general it seems to be
very hard to treat higher dimensional systems without any hyperbolic
structure. Regarding the Viana maps, maybe the most interesting but
probably very hard case would be the proof of a positive vertical Lya-
punov exponent for the map F where the base dynamics is replaced by
a rotation, i.e.

F (θ, x) = (θ + β mod1, f
a0

(x) + αs(θ)),

for β some generic irrational number (for some results on this map but
where one chooses the quadratic map f

a0
to have a negative Lyapunov

exponent see [Bj]). In general, the philosophy for all skew-products of
quadratic maps considered in this section seems to be that the more
randomness in the perturbations the easier it is to prove positive Lya-
punov exponents. A probably more realistic aim than taking a rotation
as the base dynamics would be to keep the β-transformation in the base
dynamics and allow the expansion d to be greater but arbitrarily close
to the Lyapunov exponent of the unperturbed map f

a0
. Even if for

such d-values the partial hyperbolicity of the system is not any longer
guaranteed, one still can hope to make use of an asymptotic domi-
nating horizontal expansion. Furthermore, the base dynamics in this
case is still mixing which is, as we have mentioned above, an essen-
tial ingredient of the technical part in [Vi]. Paper A might provide an
important step towards the proof of positive Lyapunov exponents and
the existence of an a.c.i.p. in this setting.

Regarding non-uniformly hyperbolic base dynamics, an interesting
case which is directly related to Paper B would be to drop the depen-
dence of the coupling function on the base dynamics and therefore to
break down any possible link to partial hyperbolicity. Furthermore, one
preferably would need to have as the base dynamics a quadratic map
satisfying the Misiurewicz condition or better (even if probably much
harder) a quadratic map with Collet-Eckmann or Benedicks-Carleson
parameter.
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1.2 Transversality implies absolute

continuity

In the late 1930’s Erdös considered the random series

Yλ =
∑

n≥1

±λ
n, 0 < λ < 1,

where the signs are chosen independently with probability 1/2. A long
standing conjecture by Erdös was that, for Lebesgue almost every λ ∈

[1/2, 1), the distribution νλ of Yλ is absolutely continuous with respect
to Lebesgue measure m on R. This conjecture was finally proved to be
true by Solomyak [So] in 1995 using Fourier transform methods. One
year later in 1996, Peres and Solomyak [PS] gave a simpler proof of this
result by using differentiation of measures and by taking into account
a geometric transversality property of Yλ. We will roughly explain this
transversality property of Yλ and how it can be used to prove absolute
continuity.

Let Ω = {−1, 1}N be the sequence space equipped with the product
topology and µ the Bernoulli measure on Ω with the weights (1/2, 1/2).
For ω ∈ Ω, we set

Yλ(ω) =
∑

n≥1

ωnλ
n, (1.5)

where ωn denotes the n-th coordinate of the element ω. Clearly, νλ is
the distribution of Yλ : Ω → R. In [PS] it is shown that there exists
a constant C > 0 such that for any two different elements ω and ω

′

in Ω the following holds. If the curves λ $→ Yλ(ω) and λ $→ Yλ(ω
′),

λ ∈ [2−1, 2−2/3], intersect each other, then the absolute value of the
slope of the curve λ $→ Yλ(ω)−Yλ(ω

′) close to the line [2−1, 2−2/3]×{0}
is greater than Cλ

k, where k = max{k ≥ 1 ; ωl = ω
′
l, 1 ≤ l < k} (see

Figure 1.1). This transversality property causes that the curves Yλ(ω),
ω ∈ Ω, cannot cluster together too much in the strip [2−1, 2−2/3] ×
[−(1− 2−2/3)−1, (1− 2−2/3)−1]. In other words, if ν is the distribution:

ν(E) = (m × µ)
({

(λ, ω) ∈ [2−1, 2−2/3] × Ω ; Yλ(ω) ∈ E
})

,
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then, by the transversality property of the curves on which ν is sup-
ported, ν should have some smoothness or uniformity in the vertical
direction and, thus, the measure ν should be absolutely continuous with
respect to Lebesgue measure on R

2, which then implies that νλ is abso-
lutely continuous for a.e. λ. In fact, having verified the transversality
property, this absolute continuity can be proved by a simple argument
using differentiation of measures.
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%
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Figure 1.1: Sample of 200 randomly chosen curves λ !→ Yλ, λ ∈

[2−1, 2−2/3], and a zoom on it.

Peres and Solomyak claimed that their simplified proof in [PS]
would be better suited to analyze more general random power series.
In Paper C we have shown that, indeed, the approach of Peres and
Solomyak does apply to certain variants of the original problem —
namely, when the λn are replaced by λϕ(n) for certain well-behaved
functions ϕ : N → R. In the light of the tremendous amount of atten-
tion the

∑
±λn problems have received and continuous to receive, it

is very natural to explore variants such as the ones proposed by Paper
C.

To conclude this section, we would like to mention a recent result
by Tsujii [Ts] already referred to in Section 1.1. In [Ts], Tsujii applies
in an ingenious way the idea in Peres and Solomyak’s paper, that a
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geometric transversality condition implies absolute continuity, to par-
tially hyperbolic surface endomorphisms F : M → M , where M is, say,
the two-dimensional torus T

2 = R
2/Z

2. We call µ a physical measure
for F if the set of points x ∈ M such that

1

n

n−1∑

i=0

δF i(x)
weak-∗
−→ µ, as n → ∞,

has positive Lebesgue measure. (In the terms of Paper D, one could say
that µ is a physical measure if the set of points x ∈ M which are typical

for µ has positive Lebesgue measure.) In [Ts] it is shown that, gener-
ically, such a partially hyperbolic surface endomorphism has a finite
number of ergodic physical measures, whose basins cover Lebesgue a.e.
point of M . Furthermore — here appears essentially the idea in [PS]
— these physical measures are absolutely continuous w.r.t. Lebesgue
measure on M if the sum of their Lyapunov exponents is positive. This
is a true novelty since, usually, absolute continuity is a result of expan-
sion in all directions. To obtain absolute continuity in the case when
the central Lyapunov exponent is zero or even negative, Tsujii makes
use of a similar geometric transversality property as in [PS], which is
generically satisfied in the space of surface endomorphisms. More pre-
cisely, the intuitive picture is the following. Let F : M → M be a
partially hyperbolic surface endomorphism and ν an ergodic physical
measure with central Lyapunov exponent equal to zero or sufficiently
close to zero (it might be negative). It is shown, that, due to the
dominating expansion in the unstable directions Eu, ν is attained as a
weak-∗ limit point of the sequence

1

n

n−1∑

i=0

νγ ◦ F−i, as n → ∞,

where νγ is a smooth measure on a curve segment γ of an unstable
manifold. Zooming in on a small neighborhood of a point in the support
of ν, the image F n(γ) should roughly be comparable to the right figure
in Figure 1.1. The curves in this neighborhood would not concentrate
in the central direction strongly, as the central Lyapunov exponent is
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nearly neutral (almost everywhere w.r.t. ν). By a certain control of
the angles between intersecting curves in F n(γ) — this is generically
provided by the transversality property — Tsujii deduces that in fact
the measure ν is absolutely continuous.

Heuristically, regarding the Bernoulli convolutions considered in
[PS], the numbers log 2−1 and log λ−1 correspond to the Lyapunov ex-
ponents in [Ts], where log 2−1 corresponds to the central Lyapunov
exponent (the 2 comes from the distribution of µ). Their sum is pos-
itive for λ > 2−1, in which case one has indeed almost sure absolute
continuity. On the other hand, for λ < 2−1, νλ is singular as it is
mentioned in Paper C.

1.3 Absolutely continuous limit

distributions of sums of point

measures

The results in Papers D and E are essentially inspired by the last
chapter, Chapter III, of Benedicks and Carleson’s paper [BC1] on the
quadratic map fa(x) = 1 − ax2, x ∈ (−1, 1), where they prove that
for Lebesgue almost every parameter value a in a positive Lebesgue
measure set ∆

∞
⊂ (1, 2), constructed in the previous two chapters in

[BC1], the map fa admits an a.c.i.p. µa. More precisely, in Chapters I
and II in [BC1] they construct in an inductive way a positive Lebesgue
measure Cantor set ∆

∞
of a-values such that the associated maps fa

have certain expansion properties along the forward orbit of the critical
point 0. An important ingredient of this construction is the fact that,
for j ≥ 1, the a-derivative ∂af

j
a(1) and the x-derivative ∂xf

j
a(1) are

comparable if a ∈ ∆
∞

. In Chapter III these expansion properties in
the a-direction are then used to show that for Lebesgue a.e. parameters
a ∈ ∆

∞
a limit distribution µa of the forward orbit of the critical point

exists and is absolutely continuous w.r.t. Lebesgue measure. Even if
the techniques in Chapter III of [BC1] turn out to be very powerful,
they have, to the best of the authors knowledge, not been used in other
contexts than the quadratic maps. Papers D and E provide us with
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several non-trivial, elementary, and important examples where these
techniques can be applied.

In the remaining part of this section we will present the main tech-
nical ingredient of the result in Chapter III in [BC1] — and as well
of the results in Papers D and E — by showing for the doubling map
T (x) = 2x mod1, x ∈ [0, 1], the well-known fact that for Lebesgue a.e.
point x ∈ [0, 1] the weak-∗ limit of the sequence

1

n

n
∑

j=1

δT j(x) (1.6)

exists and coincides with the Lebesgue measure m on [0, 1]. This exam-
ple provided by the doubling map can serve as a toy model for Paper D
as well as for Paper E (cf. summaries of Papers D and E below). The
Lebesgue measure m is the unique (and hence ergodic) a.c.i.p. for the
map T . Thus, the fact we are going to show with the techniques used
in [BC1] follows also straightforward from Birkhoff’s ergodic theorem.
Now, let

B :=
{

(x − r, x + r) ∩ [0, 1] ; x ∈ Q, r ∈ Q+
}

,

and for each B ∈ B consider the function

Fn(x) =
1

n

n
∑

j=1

χB(T j(x)), n ≥ 1, x ∈ [0, 1],

which counts the average number of visits to the interval B during
the first n iterations of x. The main observation is summarized in
the following lemma. Its proof is elementary (see, e.g., Lemma A.1 in
Paper E).

Lemma 1.3.1. Let B ∈ B and assume that there are positive constants

K and C such that for all h ≥ 1 there is an integer nh,B such that

∫

[0,1]

Fn(x)hdx ≤ K(C|B|)h, (1.7)
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whenever n ≥ nh,B. If the sequence nh,B can be chosen to grow at most

exponentially in h, then it follows that

lim
n→∞

Fn(x) ≤ C|B|, (1.8)

for Lebesgue a.e. x ∈ [0, 1].

If (1.8) holds for all B ∈ B, then it follows, by standard measure
theory, that for a.e. x ∈ [0, 1] every measure µx obtained as a weak-∗
limit point of

1

n

n∑
j=1

δT j(x)

has a density, which is bounded above by C and, in particular, µx is
absolutely continuous. Note that, by construction, µx is an invariant
probability measure for T . Since the Lebesgue measure m is the unique
a.c.i.p. for T , it follows that µx in fact coincides with m and that the
weak-∗ limit of (1.6) exists. Thus, we only have to show that for each
B ∈ B inequality (1.7) is satisfied where the sequence nh,B grows at
most exponentially in h. We write
∫

[0,1]

Fn(x)hdx =
∑

1≤j1,...,jh≤n

1

nh

∫
[0,1]

χB(T j1(x)) · · ·χB(T jh(x))dx. (1.9)

Assume that we have proven the following proposition.

Proposition 1.3.2. For all B ∈ B and h ≥ 1 there is an integer

nh,B, growing for fixed B at most exponentially in h, such that, for all

n ≥ nh,B and for all integer h-tuples (j1, ..., jh) with 1 ≤ j1 < j2 < ... <

jh ≤ n and jl − jl−1 ≥
√

n, l = 2, ..., h, we have

∫
[0,1]

χB(T j1(x)) · · · χB(T jh(x))dx ≤ (2|B|)h. (1.10)

Remark 1.3.3. As we are going to see in the proof of this proposition, we
could state it in a stronger version. More precisely, we could drop the
dependence of nh,B on h and, hence, it would be enough to require that
the gaps between two consecutive jl’s are larger than some constant
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only dependent on B. This is due to the very special properties of
the doubling map. However, we are not able to prove such a stronger
version in the cases considered in Papers D and E. Since we want to
refer to such a toy model as provided by this example with the doubling
map, we stated Proposition 1.3.2 in this weaker form.

From a probabilistic point of view, Proposition 1.3.2 says that if
the distances between the jl’s are sufficiently large, then the functions
χB(T jl

B (x))’s can be seen as independent random variables. In fact,
since the doubling map with the invariant measure m is exact and,
hence, mixing of all degrees, the integral in (1.10) converges to |B|h as
n tends to infinity (instead of 2 in the right hand side of (1.10), we could
take any real number strictly greater than 1). Note that, for h ≥ 2, the
number of h-tuples (j1, ..., jh) in (1.9) for which mink !=l |jk − jl| <

√
n

is bounded by 2h2nh−1/2. Hence, by Proposition 1.3.2, we obtain, for
h ≥ 1,

∫

[0,1]

Fn(x)hdx ≤ (2|B|)h +
2h2

√
n
≤ 2(2|B|)h,

if

n ≥ max

{

nh,B,

(

2h2

(2|B|)h

)2
}

.

Since both terms in this lower bound for n grow at most exponentially
in h, this concludes the proof of (1.7).

To conclude this section we prove Proposition 1.3.2.

Proof. Set τB = log(2/|B|)/ log 2, and let nh,B(= nB) be an integer
such that

√
nh,B ≥ τB. By Pj , j ≥ 1, we denote the open intervals of

monotonicity for T j : [0, 1] → [0, 1], i.e. Pj = {(k/2j, (k + 1)/2j) ; 0 ≤
k < 2j}. We set P0 = (0, 1) and if Ω is a subset of monotonicity
intervals in Pj , j ≥ 0, then we write Pj+l|Ω, l ≥ 0, for the intervals in
Pj+l, which are also contained in an interval of Ω. Set Ω0 = (0, 1) and,
for 1 ≤ l ≤ h, we define

Ωl = {ω ∈ Pjl+τB
|Ωl−1 ; T jl(ω) ∩ B (= ∅}.

Observe that the set we are interested in, i.e. the set

{x ∈ [0, 1] ; T jl(x) ∈ B, 1 ≤ l ≤ h}
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is contained in Ωh (disregarding a finite number of points). If n ≥ nh,B,
then we have jl−jl−1 ≥ τB, 2 ≤ l ≤ h, and we obtain, by the definitions
of τB and Ωl, 1 ≤ l ≤ h,

Ωl ⊂ {x ∈ Ωl−1 ; T jl(x) ∈ 2B},

where 2B denotes the interval twice as long as B and having the same
midpoint as B. Thus, by the piecewise linearity of T jl−jl−1, 1 ≤ l ≤ h

(where we set j0 = 0), we get

|Ωl| ≤ 2|B||Ωl−1|, (1.11)

which implies
|Ωh| ≤ (2|B|)h|Ω0| = (2|B|)h.

This concludes the proof of Proposition 1.3.2.
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Chapter 2

Summary

2.1 Overview of Paper A –

Non-continuous weakly expanding

skew-products of quadratic maps

with two positive Lyapunov

exponents

We will use the notions from Section 1.1 above. Regarding (1.1), we
let F be the Viana map with base dynamics g(θ) = dθ mod 1 and
coupling function s(θ) = sin(2πθ). In Paper A, instead of integer d’s,
we allow d to be any real number provided that the expansion in the
base dynamics g dominates the vertical expansion. We show that, as in
the cases considered in [Vi] and [BST], we still have positive Lyapunov
exponents.

Theorem 2.1.1. There exists R0 = R0(a0) < 2 such that for any real

number d > R0, for every sufficiently small α > 0, F has a positive

vertical Lyapunov exponent at Lebesgue almost every point in Ĵ .

Furthermore, for a full Lebesgue measure set of d’s considered in
Theorem 2.1.1, the existence of an a.c.i.p. is shown.
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Theorem 2.1.2. For Lebesgue a.e. d > R0, for every sufficiently

small α > 0, F admits a unique a.c.i.p. µ, where the basin of µ has

full Lebesgue measure in Ĵ .

The main technical novelty in Paper A is the introduction of the
concept of remainder intervals. Let g : [0, 1) → [0, 1) be the map in
the base dynamics as defined above, i.e. g(θ) = dθ mod1, and denote
by P

n
the monotonicity intervals of gn : [0, 1) → [0, 1). A remainder

interval in P
n

is a monotonicity interval of gn having not full length, i.e.
its size is smaller than d−n. The first observation, stated in Lemma 3.2
in Paper A, is that the number of remainder intervals in P

n
can grow

in n at most proportionally to the number of entire intervals in P
n
,

which are monotonicity intervals of gn of full length, i.e. their size is
equal to d−n. This implies then that there is a constant C ≥ 1 such
that, for all d > R0,

#{monotonicity intervals in P
n
} ≤ Cdn, (2.1)

for all n ≥ 1. Furthermore, this fact persists when one zooms in on a
subinterval I of [0, 1], i.e.

#{monotonicity intervals ω ∈ P
n

; ω ∩ I &= ∅} ≤ C ′dn|I|, (2.2)

for some constant C ′ ≥ 1 and provided that n is sufficiently large (see
Lemma 3.3 in Paper A). The facts (2.1) and (2.2) suggest that we can,
virtually, assume that the monotonicity intervals of gn have full length,
and, thus, we are in a very similar situation as in the case when d is
an integer.

Remark 2.1.3. The property that one can neglect too short intervals is
also used in Paper D. It is reflected in condition (III) stated in Paper D,
which the one-parameter families therein have to fulfill.

Theorem 2.1.2 follows from a result due to Alves [Al]. In [Al] it is
shown that maps contained in a certain family of piecewise expanding
maps φ : Ĵ → Ĵ , which have not a finite but a countable number of
pieces of continuity, admit an a.c.i.p. An essential property of maps φ

contained in this family is that the image by φ of a domain of continuity
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for φ should be large. Regarding the Viana map F , in [Al] a piecewise
expanding map φ is constructed in a way such that its continuity do-
mains R are of the form R = ω × I, ω ∈ Pn and I an interval, and
such that φ restricted to R is identical to the n-th iteration of F , i.e.
φ|R ≡ F n. Furthermore, the construction is made such that the ver-
tical length of φ(R) is sufficiently large. Now, the additional difficulty
for non-integer d’s is that the horizontal length of φ(R) = F n(ω × I)
is small whenever |ω| ≪ d−n. To avoid that elements ω associated
to the continuity domains of φ are too small one has to prevent that
points θ ∈ [0, 1] are too often contained in a too short monotonicity
interval of gn when n increases. For this purpose it turns out that it is
enough to have a good control of the forward orbit by g of the point 1
(see Lemma 8.3 in Paper A and its proof). Due to a result of Schmel-
ing [Sch], the distribution of the forward orbit of 1 coincides with the
a.c.i.p. of g for Lebesgue a.e. d > 1, which provides us then with a
sufficiently good information of the forward orbit of 1 — at least for
Lebesgue a.e. d > 1.

Remark 2.1.4. The key lemma in proving Theorem 2.1.2 is Lemma 8.3
in Paper A. A similar lemma could be proved for the C2-versions of
the β-transformation considered in Section 5 of Paper D. To do so, one
has to replace Lemma 8.4 in Paper A by condition (IIa) in Paper D
and Lemma 8.5 in Paper A, which is the above mentioned result due
to Schmeling [Sch], by Corollary 5.4 in Paper D, where the map X

in this corollary is taken as in its following Remark 5.5. Thus, if we
took, instead of the base dynamics g, a one-parameter family Ta as de-
scribed in Section 5 of Paper D, one could expect to get a result analog
to Theorem 2.1.2, provided of course that a corresponding version of
Theorem 2.1.1 holds. One obstacle of proving Theorem 2.1.1 in this
new setting is that one has to consider high derivatives of the admissi-
ble curves if the expansion of Ta is too weak. However, assuming that
the family Ta is strongly expanding (as it is done in [Vi]) and taking as
the coupling function the linear map θ %→ 2θ − 1, instead of sin(2πθ),
it would be sufficient, in the proof of an analog of Theorem 2.1.1, to
look only at the first derivative of an admissible curve. Combined with
standard distortion estimates for piecewise expanding interval maps,
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one should be able to derive a positive vertical Lyapunov exponent
also in the case when one has a C2-version of the β-transformation in
the base dynamics.

2.2 Overview of Paper B – Positive

Lyapunov exponents for quadratic

skew-products over a

Misiurewicz-Thurston map

We will use the same notations as in Section 1.1 above. Let 1 <

a1 ≤ 2 be a parameter such that the quadratic map fa1
(x) = a1 − x2

is Misiurewicz-Thurston. Regarding (1.1), we take the Misiurewicz-
Thurston map fa1

as the base dynamics. But in order to have a strong
enough horizontal expansion, we choose instead of fa1

a sufficiently
high iteration of fa1

, i.e. we set g(x) = fk

a1
(x) for some k ≥ 1. Let

p1 be the unique negative fixed point for fa1
. In Paper B we consider

skew-products

F : [p1,−p1] × R → [p1,−p1] × R

(θ, x) &→ (fk

a1
(θ), fa0

(x) + αs(θ)),

where α > 0 is chosen sufficiently small and the coupling function
s : [p1,−p1] → [−1, 1] is a priori not fixed. Like for the map considered
in Paper A, there is an open interval (−1, 1) ⊂ I ⊂ (−2, 2) such that
F ([p1,−p1] × I) ⊂ [p1,−p1] × I, provided α is sufficiently small. We

denote this F -invariant region [p1,−p1] × I by Ĵ . The main result in
Paper B is the following.

Theorem 2.2.1. There exist a piecewise C1 coupling function s :
[p1,−p1] → [−1, 1] and an integer k0 ≥ 1 such that, for all sufficiently

small α > 0 and all k ≥ k0, the map F : Ĵ → Ĵ :

F (θ, x) = (fk

a1
(θ), fa0

(x) + αs(θ))

admits two positive Lyapunov exponents.
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For a short illustration of the proof of Theorem 2.2.1 we consider
the situation when a1 = 2, in which case p1 = −1 and the map fa1

:
[−1, 1] → [−1, 1] is conjugated by the map ϕ(θ) = 2π−1 arcsin(θ), θ ∈

[−1, 1], to the symmetric tent map with slope 2, i.e. ϕ ◦ fa1
◦ϕ−1(θ) =

1−2|θ|. Set T (θ) = 1−2|θ| and let h : [−1, 1] → [−1, 1] be an arbitrary
C1 map whose first derivative is uniformly bounded away from 0, i.e.
there exists a constant K1 ≥ 1 such that K−1

1
≤ |h′(θ)| ≤ K1, θ ∈

[−1, 1]. Now, setting s(θ) = h(ϕ(θ)) and conjugating the associated
function F with the conjugation function Φ(θ, x) = (ϕ(θ), x), we obtain

F̃ (θ, x) = Φ ◦ F ◦ Φ
−1(θ, x) = (T k(θ), fa0

(x) + αh(θ)).

Note that if we show two positive Lyapunov exponents for the map
F̃ , then it immediately follows that F admits two positive Lyapunov
exponents. In contrast to F , the base dynamics of F̃ is now a piecewise
linear and uniformly expanding map and the coupling function h for
F̃ has bounded derivatives. This makes F̃ very similar to the systems
studied by Viana and we are able to make use of the methods in [Vi]
to prove positive Lyapunov exponents for F̃ . The fact that the deriva-
tive of h is bounded away from 0 makes it sufficient to look at the
first derivative of the admissible curves, provided that T k is strongly
expanding (which is the case if k is chosen so large that 2k ≥ 5K1 +4).

For general Misiurewicz-Thurston parameters a1 we can apply a
similar conjugation for fa1

as above to obtain in the base dynamics an
expanding map, which expansion is uniformly bounded away from 1.
The existence of such a conjugation function was firstly noted by Ognev
[Og]. In [Og] it is shown that for each Misiurewicz-Thurston parameter
a1 there exists a piecewise analytic function ϕ : [p1,−p1] → [−1, 1] such
that for every D > 1 there is an integer k0 ≥ 1 such that

|(ϕ ◦ fk

a1
◦ ϕ−1)′(θ)| ≥ D,

for all k ≥ 1 and all θ for which the derivative is defined (see Propo-
sition 2.2 in Paper B). By piecewise analytic we mean here that, dis-
regarding a finite number of points, the interval [p1,−p1] can be par-
titioned into a finite number of open intervals on each of which the
function ϕ is analytic. If a1 < 2 then the conjugated function T (θ) =
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ϕ ◦ fk

a1
◦ ϕ−1 is not any longer piecewise linear. Further, in contrast to

the case when a1 = 2, there are more than two points in [p1,−p1] such
that |ϕ′(θ)| tends to ∞ when approaching them (at least from one side).
This causes then that the derivative of T is not any longer bounded
and, thus, we have to establish appropriate distortion estimates for the
map T . Misiurewicz-Thurston or more generally Misiurewicz maps are
well-studied, going back to a fundamental paper by Misiurewicz [Mi].
In this paper we made use of some distortion estimates for Misiurewicz
maps due to van Strien [Str] (see Lemma 3.1 in Paper B).

2.3 Overview of Paper C – Almost sure

absolute continuity of Bernoulli

convolutions

This is joint work with M. Björklund. For a fixed α > 0 consider the
random series

Yλ =
∑

n≥1

±λnα

, 0 < λ < 1,

where the signs are chosen independently with probability 1/2. In
Paper C we are interested in the distribution νλ of Yλ. For the case
when 0 < α < 1/2, Wintner [Wi] considered the Fourier transform
of the measure νλ, which can be represented as a convergent infinite
product: ν̂λ(t) =

∏∞

n=1 cos(λn
α

t). Since cos(λn
α

t) ≤ 2/3, if 1 ≤ λn
α

t ≤
2, it follows that

|ν̂λ(t)| ≤ (2/3)K(t),

where K(t) = #{n ; 1 ≤ λnα

t ≤ 2}. A minor calculation yields that,
for 0 < α < 1/2, the term (2/3)K(t) decreases faster than polynomially
in t and thus, for each 0 < λ < 1 the distribution of νλ is absolutely
continuous and the density is smooth. This method seems to break
down at α = 1/2. Other easy cases are when α > 1 and λ ∈ (0, 1) or
when α = 1 and λ ∈ (0, 1/2). In these cases, the measure νλ is singular
(see [KW], criteria (10)). In contrast, the situation when α = 1 and
λ ∈ (1/2, 1) turns out to be much harder. It took over half a century
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until Solomyak [So] finally settled (with Fourier transform methods) a
conjecture by Erdös which claimed that in this case νλ is absolutely
continuous for Lebesgue a.e. λ ∈ (1/2, 1) (in [So] it is also shown that
the density of νλ is in L2). Shortly after, Peres and Solomyak [PS] gave
a simpler proof of this result. The techniques of this simpler proof
are presented in Section 1.2 above. In Paper C we make use of these
methods, developed by Peres and Solomyak, and we are able to extend
their result to more general Bernoulli convolutions Yλ. For instance,
we cover the intermediate case when 1/2 ≤ α < 1, in which case we
show that νλ is absolutely continuous and has a density in L2, for a.e.
λ ∈ (0, 1). More generally, instead of the sequence nα in the power of
λ, we consider sequences ϕ(n) of real numbers and prove the following.

Theorem 2.3.1. Let νλ be the distribution of the random series

Yλ =
∑

n≥1

±λϕ(n),

where the signs are chosen independently with probability 1/2. If

lim
n→∞

ϕ(n + 1) − ϕ(n) = 0, (2.3)

then νλ is absolutely continuous and has an L2 density, for a.e. λ ∈

(0, 1).
If there exists a constant 0 < β < ∞ such that

lim
n→∞

ϕ(n)

n
= β,

and if the sequence ϕ(n) − βn satisfies (2.3) then there exists a (non-
empty) interval I ⊂ (0, 1) such that νλ is absolutely continuous and has
an L2 density, for a.e. λ ∈ I.
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2.4 Overview of Paper D – Typical

points for one-parameter families of

piecewise expanding maps of the

interval

Let I ⊂ R be an interval and Ta : [0, 1] → [0, 1], a ∈ I, a one-parameter
family of maps of the unit interval, which are uniformly expanding and
piecewise C2 or piecewise C1 with a Lipschitz derivative. We assume
that the dependence of the family Ta on the parameter a is ’nice’. For
example, for each x ∈ [0, 1] the map a $→ Ta(x) is piecewise C1 on
the interval I. Furthermore, we assume that for each parameter a ∈ I

the map Ta has a unique absolutely continuous invariant probability
measure µa. By Birkhoff’s ergodic theorem, the distribution of the
forward orbit of µa-almost every x ∈ [0, 1] is described by the measure
µa, i.e.

1

n

n−1∑

i=0

δT i
a
(x)

weak-∗
−→ µa, as n → ∞. (2.4)

If (2.4) holds for a point x ∈ [0, 1], then we say that x is typical for
the measure µa. In Paper D we address the question whether a similar
fact, as this one derived from Birkhoff’s ergodic theorem, holds when
we fix a point x ∈ [0, 1] and vary the parameter a, i.e. whether a given
point x ∈ [0, 1] is typical for µa for Lebesgue a.e. parameter values
a ∈ I. Or more generally, if X : I → [0, 1] is a C1 map, what kind of
conditions are sufficient to put on X and Ta such that we are able to
deduce that X(a) is typical for µa, for Lebesgue a.e. a ∈ I?

We will consider some examples. Given a map X : I → [0, 1] we
denote by xj : I → [0, 1], j ≥ 0, the map xj(a) = T j

a (X(a)). The most
simple example is the case when the family Ta is constant. Regarding
the example of the doubling map treated in Section 1.3 above, we set
for instance Ta(x) = 2x mod 1, where a is contained in some interval
I. The a.c.i.p. µa is in this case the Lebesgue measure m on the unit
interval. If x ∈ [0, 1] is a point which is not typical for m and if we
choose X(a) ≡ x, then X(a) is not typical for m for any parameter
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a ∈ I. Note that for this choice of X(a) the derivative of xj is zero
on I for all j ≥ 0. Let now X : I → [0, 1] be a map whose derivative
does not vanish on I. On the one hand, it follows directly from the
fact that a.e. x ∈ [0, 1] are typical for m that also X(a) is typical
for m for a.e. parameter a ∈ I. On the other hand, considering xj

instead of T j in Section 1.3, it is possible to show that X(a) is typical
for m for a.e. parameter a ∈ I by almost the very same proof as it
is given in Section 1.3 (one only has to replace T j : [0, 1] → [0, 1] by
xj : I → [0, 1] and adjust slightly the proof of Proposition 1.3.2). The
reason for this is that the map xj : I → [0, 1] inherits the properties
of T j

a : [0, 1] → [0, 1], by which we mean, in particular, the expanding
and the mixing properties. More precisely, one can show that if the
derivative of X is uniformly bounded away from 0 then, for j sufficiently
large, for any interval ω in I, which is mapped one-to-one onto [0, 1]
by xj , the map xj+1 ◦ xj|

−1
ω

: [0, 1] → [0, 1] is almost the doubling map
Ta itself. To make a similar kind of comparison of xj and T j

a also work
for other families, it is sufficient to require that the a-derivative and
the x-derivative of T j

a (X(a)) are comparable, i.e. we require that there
exists a constant C ≥ 1 such that

1

C
≤

|Daxj(a)|

|∂xT
j
a (X(a))|

≤ C, (2.5)

for all a ∈ I for which the derivatives are defined. This is the very
basic condition a map X : I → [0, 1] has to satisfy in Paper D in order
to obtain almost sure typicality (cf. condition (I) in Paper D).

Let us consider a first non-trivial example obtained by changing
the slopes of the doubling map. We define a family Ta : [0, 1] → [0, 1],
a ∈ (0, 1), as

Ta(x) =

{

x

a
if x < a,

x−a

1−a
otherwise.

(This example is treated in a more general form in Example 7.2 in
Paper D.) Observe that, for all a ∈ (0, 1), the a.c.i.p. µa for Ta coincides
with the Lebesgue measure on [0, 1]. Let I ⊂ (0, 1) be an interval not
adjacent to 0 nor to 1, e.g., we set I = (ε, 1 − ε) for some small ε > 0.
If X : I → [0, 1] has a non-positive derivative then it is shown in
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Example 7.2 in Paper D that (2.5) holds. Note that, considering the
map Ta, for a fixed a ∈ I, we can follow verbatim the proof given in
Section 1.3 to deduce that Lebesgue a.e. x ∈ [0, 1] are typical for µa (we
only have to replace T by Ta and set τB equal to − log(2/|B|)/ log(1−ε)
instead of log(2/|B|)/ log 2). Thus, since (2.5) holds, we can expect that
the same proof also applies for xj . Indeed, replacing T j : [0, 1] → [0, 1]
by xj : I → [0, 1] in Section 1.3, we only have to adjust slightly the
proof of Proposition 1.3.2 (by using (2.5) and by adding some simple
distortion estimates), in order to derive that X(a) is typical for µa for
Lebesgue a.e. parameter values a ∈ I. Since ε in the choice of I was
arbitrary we obtain the following result.

Proposition 2.4.1. If a C1 map X : (0, 1) → (0, 1) satisfies X ′(a) ≤ 0
then X(a) is typical for µa, for Lebesgue a.e. parameter a ∈ (0, 1).

A similar proof applies if we compose the family Ta with a C2

homeomorphism g : [0, 1] → [0, 1] such that g′(x) ≈ 1, i.e. we obtain
the same typicality result for the family Ta ◦ g, a ∈ I. Note that for
this family the a.c.i.p. µa is not anymore the Lebesgue measure on the
unit interval.

All the examples considered by now consisted of Markov maps (cf.
Section 7 in Paper D) and as it is often the case for Markov maps related
models they are easier to treat than models or maps where the Markov
property is absent. A simple example of a family Ta : [0, 1] → [0, 1]
which generically consists of non-Markov maps is given by the family
of β-transformations, i.e. Ta(x) = ax mod 1, a > 1. In Section 5 in
Paper D, we treat C2-versions of β-transformations. For instance, let
T̃a(x) = Ta ◦g(x), where g : [0, 1] → [0, 1] is a C2 homeomorphism such
that the derivative of g is, say, positive and uniformly bounded away
from zero. Let a0 ≥ 1 be so large that T̃ ′

a0
(x) ≥ 1, for all x ∈ [0, 1],

and let µ̃a, a > a0, be the a.c.i.p. for T̃a (it is straightforward to show
that µ̃a is unique). In Section 5 in Paper D, we show the following:

Theorem 2.4.2. If a C1 map X : (a0,∞) → (0, 1] satisfies X ′(a) ≥ 0,

then X(a) is typical for µ̃a, for Lebesgue a.e. parameter a > a0.

Note that we came across the family of β-transformations already
in Section 2.1 (cf. also Remark 2.1.4).
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In the remaining part of this section, we will consider another ex-
ample consisting generically of non-Markov maps. It is provided by a
family of skew tent maps. For a fixed 0 < c < 1, let T : [0, 1] → [0, 1]
be defined as

T (x) =

{

x
c

if x < c,
1−x
1−c

otherwise.

For sufficiently small, positive parameters a, we obtain from this map
a one-parameter family Ta : [0, 1] → [0, 1] by setting Ta(x) = T ◦ha(x),
where ha(x) = (1 − a)x + a maps the interval [0, 1] affinely onto [a, 1].
The slopes of Ta are (1 − a)/c and −(1 − a)/(1 − c), respectively.
Hence, in order that Ta is uniformly expanding, we require that a ∈

I = [0, min{c, 1 − c}). It is well-known that for each skew tent map
Ta, a ∈ I, there exists a unique a.c.i.p. µa (see [LaY] and [LiY]). One
main assertion of Paper D is that the turning point ca = h−1

a (c) of Ta

is typical for the a.c.i.p. µa, for a.e. a ∈ I.

Theorem 2.4.3. For Lebesgue a.e. a ∈ I, the turning point of the

skew tent map Ta is typical for µa.

We will give a brief sketch of the proof of Theorem 2.4.3. For con-
venience, we consider only the subinterval of I consisting of parameters
a such that Ta is non-renormalizable (what is meant by renormalizable
and why we can neglect renormalizable skew tent maps is explained in
detail in Section 6 in Paper D). We denote this subinterval again by
I. It is shown in Paper D that, for all a ∈ I, the support of µa is the
whole unit interval. Hence, it follows directly from Birkhoff’s ergodic
theorem that Lebesgue a.e. x ∈ [0, 1] is typical for µa. Let us consider
a sketch of the proof of this typicality result for the map Ta by the
method in Section 1.3. Until the proof of Proposition 1.3.2, the proof
is verbatim the same (just replace T by Ta). Then, after adjusting the
constant τB, we can follow the proof of Proposition 1.3.2 verbatim until
inequality (1.11). To derive an analog to inequality (1.11) in the case
of the skew tent map Ta (where a %= 0), we have to be more careful. We
proceed in two steps. Let ω ∈ Pjl−1+τB

|Ωl−1, i.e. ω is a monotonicity
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interval for T
jl−1+τB
a : Ωl−1 → [0, 1]. We have the following estimate:

|T jl−1+τB
a ({x ∈ ω ; T jl

a (x) ∈ B})|

≤ |{x ∈ [0, 1] ; T jl−jl−1−τB
a (x) ∈ B}|. (2.6)

It is shown in Subsection 6.2 in Paper D that there is a constant C ≥ 1
such that the density of µa is bounded from below by C−1 and from
above by C. Hence, we derive from the Perron Frobenius equality (see
also the paragraph of inequality (3) in Paper D) that

∑

x∈[0,1]

T
j
a (x)=y

1

|T j
a

′(x)|
≤ C2, (2.7)

for a.e. y ∈ [0, 1]. Applied to (2.6) we get

|T jl−1+τB
a ({x ∈ ω ; T jl

a (x) ∈ B})| ≤ C2|B|. (2.8)

This estimate is the first step in deriving an analog to inequality (1.11).
In the second step we want to pull back this estimate further jl−1 + τB

iterations. Assuming that |T
jl−1+τB
a (ω)| ≥ δ for some constant δ > 0,

then, by (2.8) and the linearity of T
jl−1+τB
a |ω, we obtain

|{x ∈ ω ; T jl
a (x) ∈ B}| ≤

C2

δ
|B||ω|.

If the images by T
jl−1+τB
a of all elements in Pjl−1+τB

|Ωl−1 were greater
than δ, then we would immediately get the following analog to inequal-
ity (1.11):

|Ωl| ≤
C2

δ
|B||Ωl−1|, (2.9)

which would imply then Proposition 1.3.2 (with the constant C2/δ
instead of 2). But for general skew tent maps Ta the image by T j

a of
elements in Pj can get arbitrarily small as j increases. Hence, in order
to obtain an inequality similar to (2.9), we have to show that elements
having a too small image are negligible. A sufficient assumption is
given in condition (III) in Paper D (condition (III) is formulated for
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the map xj instead of T j
a ). That condition (III) is satisfied and, hence,

that we are indeed able to neglect too small elements is verified in
Subsection 6.4 in Paper D (it is verified for the map xj). A key idea in
this verification is to make use of appropriate approximations by skew
tent maps which are Markov. This concludes a sketch of the proof that
a.e. x ∈ [0, 1] are typical for µa, by the method in Section 1.3.

Finally consider the turning point ca of Ta and set X(a) = ca. It
is shown in Subsection 6.1 of Paper D that (2.5) is satisfied for the
associated map xj : I → [0, 1]. Regarding the method of proof in
Section 1.3, as in the case for a fixed skew tent map Ta, in order to
show that X(a) is typical for µa, for a.e. a ∈ I, it is essentially left to
prove an inequality analog to (1.11). Since xj is not the j-th iteration
of a fixed map, it is not any longer possible to derive straightforward
an inequality similar to (2.7). An analog of inequality (2.7) for the
map xj is formulated in condition (II) in Paper D. The verification
that condition (II) is satisfied for the map xj is a bit cumbersome. It
is verified in Subsections 6.2 and 6.3 in Paper D (instead of verifying
condition (II) directly, the for condition (II) sufficient conditions (IIa)
and (IIb) are verified). Combined with the above mentioned good
control of too small partition intervals, this implies then almost sure
typicality for the turning point as stated in Theorem 2.4.3.

2.5 Overview of Paper E – Almost sure

equidistribution in expansive families

This is joint work with M. Björklund. Using the method presented
in Section 1.3, we give a new proof of a well-known result by Koksma
[K]. In [K], Koksma studied the distributions of certain sequences of
real numbers in the unit interval. The main result in [K] is that, for
Lebesgue a.e. θ > 1, the sequence θ

j mod1, j ≥ 1, is equidistributed
in [0, 1), i.e.

1

n

n∑

j=1

δθj mod 1

weak-∗
−→ m, as n → ∞,
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where m denotes the Lebesgue measure on [0, 1).
In Paper E, we consider one-to-one C1 functions f̃j : I → R, j ≥ 1

and I ⊂ R an interval, which are expanding , i.e. there is an at least
polynomially growing function g : N → R

+, such that, for j ≥ 1 and
k ≥ 1, we have

|f̃ ′
j+k(θ)|

|f̃ ′
j(θ)|

≥ g(k), (2.10)

for all θ ∈ I; and for which we have good distortion estimates, i.e. for
all ε > 0 there is an integer jε, such that for all j ≥ jε we have

|f̃ ′
j(θ)|

|f̃ ′
j(θ

′)|
≤ 1 + ε, (2.11)

for all θ, θ′ ∈ f̃−1

j (T ∩ f̃j(I)), where T = [l, l + 1) for some l ∈ Z. In

Paper E we prove the following. Let fj(θ) = f̃j(θ) mod 1.

Theorem 2.5.1. If the functions f̃j : I → R, j ≥ 1, satisfy (2.10) and
(2.11), then the sequence fj(θ), j ≥ 1, is equidistributed in [0, 1), for
Lebesgue a.e. θ ∈ I.

It is straightforward to check that the functions f̃j(θ) = θ
j , re-

stricted to an interval I in (1,∞) being not adjacent to 1, satisfy
(2.10) and (2.11). To include functions like f̃j(θ) = θ

√
j, it is possi-

ble to sharpen the criteria (2.10) (see condition (I) in Paper E). In
Section 1.3 above, the proof of Theorem 2.5.1 is illustrated in the case
when f̃j(θ) = 2j

θ, θ ∈ [0, 1] (just replace x by θ). Compared to Pa-
per D the situation in Paper E is much easier. The main reason for
this is that the maps fj : I → S1 are continuous while in Paper D,
after identifying the unit interval with S1, the maps xj : I → S1 can
have many discontinuities. As it is the case with Koksma’s (Fourier
analytic) method, our geometric approach generalizes to higher dimen-
sional sequences (see Theorem 2.1 in Paper E).
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Abstract. We study an extension of the Viana map where the base dynamics is

a discontinuous expanding map, and prove the existence of two positive Lyapunov

exponents.

1. Introduction

This work is essentially inspired by the results of Viana [Vi] and Buzzi et al [BST]. Viana

[Vi] and Buzzi et al [BST] deal with ergodic properties of the Viana map F : S1 × R →

S1 × R:

F(θ, x) = (g(θ), a − x2
+ α sin(2πθ)),

where g(θ) = dθ mod 1 and d ≥ 2 is an integer. α is a small positive real number, and

the parameter 1 < a < 2 is such that the map fa = a − x2 has a pre-periodic (but not

periodic) critical point. Viana [Vi] showed that, for an integer d ≥ 16, the map F has

almost everywhere with respect to Lebesgue measure two positive Lyapunov exponents.

Alves [Al] proved that F admits an absolutely continuous invariant probability measure

(a.c.i.p.). Buzzi et al [BST] demonstrate the existence of two positive Lyapunov exponents

in the more natural case where d is an integer satisfying d ≥ 2. In this case there also exists

an a.c.i.p. [Al]. The purpose of this paper is the extension of these results to the case where

d assumes non-integer values, which implies the driving map g is no longer continuous.

2. Main statements

The main result in this paper is the following theorem.

THEOREM 2.1. There exists R0 = R0(a) < 2 such that for any real number d > R0, for

every sufficiently small α > 0, F has two positive Lyapunov exponents at Lebesgue almost

every point.
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For simplicity, we write

φ(θ) = sin(2πθ),

f (θ, x) = a − x2 + αφ(θ).

For n ≥ 1, let us define fn(θ, x) by

Fn(θ, x) = (gn(θ), fn(θ, x)).

Since for d > 1, the horizontal Lyapunov exponent is obviously positive, we only have

to focus on the vertical Lyapunov exponent, i.e. we look at

1

n
log |∂x fn(θ, x)| for (θ, x) ∈ S1 × R,

as n tends to infinity. Furthermore, if p1 denotes the unique negative fixed point of fa

(p1 = (−1 −
√

1 + 4a)/2), and if we take β ∈ ]a, |p1|[, then the interval B = [−β, β]

satisfies: fa(B) ⊂ int(B) and | f ′
a | > 1 on R \ int(B). Then, writing Ĵ = S1 × B, for

sufficiently small α we have:

• F( Ĵ ) ⊂ Ĵ ; and

• |∂x f (θ, x)| > 1 outside of Ĵ .

These facts imply that, for any point (θ, x) on S1 × R, either its orbit eventually comes

into the invariant strip Ĵ or the vertical Lyapunov exponent is positive. Thus, it is enough

to consider the restriction of the map F to the cylinder Ĵ ; in other words we show that

lim inf
n→∞

1

n
log |∂x fn(θ, x)| > 0

for Lebesgue almost every (θ, x) ∈ Ĵ .

Remark 1. R0 in Theorem 2.1 is chosen to ensure that, in the invariant strip Ĵ , the

horizontal expansion dominates (after a finite number of iterations) the vertical expansion.

This enables us, as in Viana [Vi] and Buzzi et al [BST], to concentrate on nearly horizontal

curves: the so-called admissible curves. Since our driving map is not continuous those

curves are not necessarily defined on the whole of S1.

THEOREM 2.2. For Lebesgue almost every d > R0, for every sufficiently small α > 0, F

admits an a.c.i.p. µ. In fact, µ is ergodic and the basin of µ has full Lebesgue measure in

Ĵ , i.e. for Lebesgue almost every (θ, x) ∈ Ĵ

1

n

n−1∑

i=0

δF i (θ,x) → µ weakly as n → ∞.

The main part of this paper is dedicated to the proof of Theorem 2.1. In the last section

we make some comments on how we can apply the methods of Alves [Al] to show the

existence of an a.c.i.p. The ergodicity and the fact that the basin has full Lebesgue measure

in Ĵ can then be derived by applying the methods of Alves and Viana [AV, §§6 and 7]

verbatim.
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3. The base dynamics

The map we consider has three parameters 1 < a < 2, d > R0 and α > 0. We assume that

d is not an integer since the integer case has been investigated by Viana [Vi], respectively

by Buzzi et al [BST]. Henceforth, we fix the parameters a and d and, in almost any cases,

we do not specify the dependence on them. In contrast, the parameter α is not fixed but

always assumed to be sufficiently small and the dependence on it is always specified.

3.1. The constant R0. As mentioned in Remark 1 the lower bound for d , i.e. R0, should

be so large that the map F is partially hyperbolic in the cylinder Ĵ . From the proof of

Lemma 3.1 of Buzzi et al [BST] we get a bound which is sufficient for this to happen.

LEMMA 3.1. Let

R0 = R0(a) =
√

2|p1|
a/|p1|√

1 − (|p1|/2)(1 − a2/p2
1)

(<
√

2|p1|). Then, for every R1 > R0 there exists a constant K1 < ∞ such that, when α is

sufficiently small, we have

|∂x fn(θ, x)| ≤ K1 Rn
1 for all n ≥ 1, and (θ, x) ∈ Ĵ .

Of course, if fa has a pre-periodic (but not periodic) critical point, a need to be at least

bigger than the value a0 = 1.401 . . . for which fa0
has Feigenbaum combinatorics. This

yields a general lower bound for R0, and consequently also for d, which can be calculated

as

d > R0 > 1.82. (1)

3.2. Partitions of S1. We consider the sequences of partitions of S1 = [0, 1[ induced

by g:

P1 = {[θ j , θ j+1[ | 0 ≤ j ≤ [d]} where θ j =

{
j/d if j ≤ [d],

1 if j = [d] + 1,

Pn = {connected components of g−1(ω) | ω ∈ Pn−1} for n ≥ 2,

respectively, for n = 0, set P0 = S1. If I ⊂ S1 can be written as a union of elements in Pn

then we use the following notation:

Pn|I = {ω ∈ Pn | ω ⊂ I } and Pn|I c = {ω ∈ Pn | ω ⊂ S1 \ I }.

Since d is not an integer there are ω ∈ Pn , n ≥ 1, from which gn is not a bijection onto S1.

In other words, the length of the ω’s in Pn can differ. We call an element ω ∈ Pn without

full length, i.e. |ω| < d−n , a remainder interval (rem. int.). An element ω ∈ Pn , n ≥ 0,

with full length, i.e. |ω| = d−n , is referred to as entire interval (ent. int.). Let

rem1 = {d}, rem2 = {d{d}}, rem3 = {d{d{d}}}, . . . ,

where {d} denotes the fractional part of the real number d . Observe, if ω is a remainder

interval in Pn , n ≥ 1, then there exists 1 ≤ i ≤ n such that |ω| = remi d−n , and, vice versa,

if 1 ≤ i ≤ n such that remi (= 0 then there exist ω ∈ Pn such that |ω| = remi d−n . We say

that ω ∈ Pn is a remainder interval of type i , 1 ≤ i ≤ n, if |ω| = remi d−n .



248 D. Schnellmann

Remark 2. We observe the following.

(1) An entire interval in Pn , n ≥ 0, contains exactly [d] entire interval(s) and one

remainder interval of type 1 of the partition Pn+1.

(2) An arbitrary remainder interval in Pn , n ≥ 1, contains maximally one remainder

interval of the partition Pn+1.

(3) If 1.82 < d < 2 then a remainder interval of type 1 in Pn , n ≥ 1, contains exactly

one entire interval and one remainder interval of type 2 of the partition Pn+1.

(4) The set of d > 1 with remi "= 0 for all i ≥ 1 has full Lebesgue measure in ]1, ∞[

(cf. e.g. Parry [Pa]).

Actually, if in the second point of Remark 2, a remainder interval ω in Pn contains no

remainder interval of Pn+1, this means that in Pn+1, ω is an entire interval or a union of

entire intervals. d’s with such a property are called simple β-numbers (cf. e.g. Parry [Pa]).

They build a countable and dense subset in ]1, ∞[. In fact, Viana maps where d is a simple

β-number would be easier to treat, since for some integer n0 remn = 0 for all n ≥ n0, and

thus the relative sizes of the elements in Pn , n ≥ 1, are bounded. This implies that the

length of an admissible curve defined in the next section is bounded from below and this

case is very similar to that where d is an integer.

LEMMA 3.2. For n ≥ 0,

#{remainder intervals in Pn}

#{entire intervals in Pn}
≤ 2. (2)

In particular, it follows that #{ω ∈ Pn} ≤ 3#{ent. int. in Pn} ≤ 3dn .

Proof. We prove Lemma 3.2 by induction. We consider first the case if d > 2. Equation (2)

is obviously true for P0. Fix j ≥ 0. By Remark 2, we have

#{ent. int. in P j+1} ≥ [d]#{ent. int. in P j },

and

#{rem. int. in P j+1} ≤ #{rem. int. in P j } + #{ent. int. in P j }

≤ 3#{ent. int. in P j },

where in the second inequality we used the induction assumption. Since [d] ≥ 2 this shows

equation (2).

Now assume 1.82 < d < 2. Fix q ∈ {0, 1}. We do the induction considering the

partitions P2 j+q , j ≥ 0. Obviously equation (2) is true for P0 and P1. Fix j ≥ 0 and let

ei , i = 1, 2, be the number of entire intervals in P2 j+q+i which are contained in remainder

intervals in the partition P2 j+q+i−1. Hence, we can write

#{ent. int. in P2( j+1)+q} = #{ent. int. in P2 j+q} + e1 + e2.

By Remark 2, we see that, on the one hand, e2 ≥ #{ent. int. in P2 j+q} and thus

#{ent. int. in P2( j+1)+q} ≥ 2#{ent. int. in P2 j+q} + e1,
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and, on the other hand,

#{rem. int. in P2( j+1)+q} ≤ #{rem. int. in P2 j+q} + 2#{ent. int. in P2 j+q} + e1

≤ 4#{ent. int. in P2 j+q} + e1,

where in the second inequality we used the induction assumption. Altogether

#{rem. int. in P2( j+1)+q}

#{ent. int. in P2( j+1)+q}
≤

4#{ent. int. in P2 j+q} + e1

2#{ent. int. in P2 j+q} + e1
≤ 2,

which proves equation (2). !

Let I ⊂ S1 be an interval. If the size of I is large compared to an entire interval in

Pn , i.e. |I | ≫ d−n , then the following lemma says that the number of elements in Pn

intersecting I is approximately equal to

#{ω ∈ Pn} · |I |.

If d were an integer this would be obvious.

LEMMA 3.3. Let γ > 0 such that eγ < d. Fix C ′ > 0. If I ⊂ [0, 1[ is an interval with

|I | = C ′e−γ j0 , for some j0 ≤ l and l sufficiently big, then we have

#{ω ∈ Pl | ω ∩ I (= ∅} ≤ 5dlC ′e−γ j0 .

Proof. We will use the following observation.

CLAIM 1. Let n ≥ 1. If I0 ⊂ [0, 1[ is an arbitrary interval with [0, d−n[ ⊂ I0 then

#{rem. int. ω ∈ Pn | ω ∩ I0 (= ∅} + 1

#{ent. int. ω ∈ Pn | ω ⊂ I0}
≤ 3.

Proof. Assume I0 (= [0, d−n[, otherwise the claim is obvious. Let η1 ≥ 0 be the

first time when 1/d ∈ gη1(I0), j1 the maximal integer such that j1/d ∈ gη1(I0) and

I1 = I0 \ g−η1([0, j1/d[). For k ≥ 1, having defined the intervals I1, . . . , Ik and the

integers η1, . . . , ηk , let ηk+1 be the first time when 1/d ∈ gηk+1(Ik). If ηk+1 = n or

[0, d−(n−ηk−1)[ (⊂ gηk+1(Ik) we stop. Otherwise, let jk+1 be the maximal integer such

that jk+1/d ∈ gηk+1(Ik) and Ik+1 = Ik \ g−ηk+1([0, jk/d[). Note that the left endpoint of

gηk+1(Ik) is 0 and ηk+1 ≥ ηk + 1 so the stopping conditions make sense. We end up with

a finite sequence of intervals I0 ⊃ I1 ⊃ · · · ⊃ Is where ηs < n and the last interval Is is

contained in one entire or one remainder interval in Pn . Observe that, for 1 ≤ k ≤ s, gηk+1

is a jk-to-one map from Ik−1 \ Ik to S1 and the number of entire and remainder intervals

of Pn|(Ik−1 \ Ik) is in jk-to-one correspondence to the number of entire and remainder

intervals in Pn−ηk−1. Hence we have, by Lemma 3.2, a control of the proportion of the

entire intervals in Pn|(Ik−1 \ Ik):

#{rem. int. in Pn|(Ik−1 \ Ik)}/#{ent. int. in Pn|(Ik−1 \ Ik)} ≤ 2.

Summing up we get

#{rem. int. in Pn|(I0 \ Is)}/#{ent. int. in Pn|(I0 \ Is)} ≤ 2.

Now one easily sees that by attaching Is and adding 1 in the numerator we obtain the

claimed estimate. !
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Set l large such that d−l ≪ C ′e−γ l ≤ C ′e−γ j0 = |I |. Since the size of an element in

Pl is at most d−l and hence much smaller than the size of the interval I we can add to I

at the most two elements in Pl intersecting the boundary of I , which means that we can

consider I as a union of elements in Pl . We assume that the left endpoint of I is not 0

since otherwise Lemma 3.3 follows immediately from Claim 1. Moreover, we will only

consider the case where 1.82 < d < 2. The case d > 2 is similar.

Set I1 = I and η1 = min{η ≥ 0 | 1/d ∈ gη(I1)}. We distinguish between the following

two situations:

(1) #{ω ∈ (Pl−η1
|[1/d, 1[) | ω ∩ gη1(I1) (= ∅} = 1; and

(2) #{ω ∈ (Pl−η1
|[1/d, 1[) | ω ∩ gη1(I1) (= ∅} > 1.

Define the index i1 ∈ {1, 2}, where i1 = 1 means that we are in the first situation and i1 = 2

means that we are in the second situation. Let I2 ⊂ I1 such that

gη1(I2) = gη1(I1) \ [1/d, 1[.

Now we repeat the procedure with the interval I2 and continue until we obtain an interval

Is ⊂ Is−1 such that gηs (Is) ∩ [0, 1/d[ = ∅. Since the left endpoint of I1 = I was assumed

to be different from 0, we know that s is finite, in particular s < l. We obtain a sequence of

intervals Is ⊂ Is−1 ⊂ · · · ⊂ I1 = I , a sequence of integers 0 ≤ η1 < η2 < · · · < ηs < l and

a sequence of indices i1, . . . , is . Divide I = I1 into the following s disjoint intervals:

Ĩ j = I j \ I j−1, j = 1, . . . , s − 1, and Ĩs = Is .

Note that, by construction, the Ĩ j ’s can be considered as unions of elements in Pl . Let

1 ≤ j ≤ s. If i j = 2 then gη j +1( Ĩ j ) =: I0 is an interval with [0, d−(l−η j −1)[ ⊂ I0. Observe

if ω ∈ Pl | Ĩ j and ω is not the right-outermost element in Ĩ j then gη j +1 maps ω one-to-one

to an element in Pl−η j −1. Thus,

#{rem. int. in Pl | Ĩ j } ≤ #{rem. int. ω ∈ Pl−η j −1 | ω ∩ I0 (= ∅} + 1

(where the 1 on the right-hand side is added for the possibility that the right-outermost

element in Pl | Ĩ j is a remainder interval but is mapped to an entire interval in Pl−η j −1).

Applying Claim 1, we obtain

#{rem. int. in Pl | Ĩ j }
/

#{ent. int. in Pl | Ĩ j } ≤ 3.

Using this result we have, for l sufficiently large,

#{ω ∈ Pl |I } =
∑

j, i j =1

#{ω ∈ Pl | Ĩ j } +
∑

j, i j =2

#{ω ∈ Pl | Ĩ j }

≤ s +
∑

j, i j =2

4#{ent. int. in Pl | Ĩ j } ≤ l + 4#{ent. int. in Pl |I }

≤ l + 4dlC ′e−γ j0 ≤ 5dlC ′e−γ j0 . !

4. Admissible curves

We will analyse the dynamics by focusing on nearly horizontal curves, the so-called

admissible curves. Although in our case the admissible curves might be shorter, their

definition is much the same as in Buzzi et al [BST, §4].
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Choose R1 such that R0 < R1 < d and fix K1 as it is done in Lemma 3.1. We take an

integer N0 ≥ 1 such that

K1 R
N0

1 < d N0 .

Put

A0 =

(
1 −

K1 R
N0

1

d N0

)−1 ∞∑

i=0

K1 Ri
1

d i
.

Then, fix an integer ξ ≥ 2 so large that

dξ−1 > 400A0. (3)

(These constants are mainly used in the proofs of Lemmas 4.1 and 4.3.)

In the following, let T = [0, t[, 0 < t ≤ 1, denote an arbitrary half-open interval in S1

having the left endpoint at 0. Consider a curve X̂ = graph(X), X : T → B, which is Cξ on

T \ {0} and continuous to the right at 0. If X satisfies

|X (r)(θ)| ≤ 2A0(2π/d)rα for θ ∈ T and 1 ≤ r ≤ ξ, (4)

then X is called pre-admissible.

The following lemma, stated slightly differently by Buzzi et al [BST, Lemma 4.1],

allows us to define admissible curves. The proof in Buzzi et al [BST] can be adapted to

our version without any further efforts, so we will omit it.

LEMMA 4.1. Suppose α > 0 is sufficiently small. Let n ≥ N0. If X̂ = graph(X), X : T →

B, is a pre-admissible curve. Then for any interval ω̃ ⊂ T , where ω̃ is contained in an

element ω ∈ Pn , the curve Y determined by the image Ŷ = graph(Y ) = Fn(X̂ |ω̃) satisfies

property (4).

Definition. We say that a curve Ŷ = graph(Y ), Y : T → B, is an admissible curve if, for

each 0 < n ≤ N0, there exists an interval ω̃ (where ω̃ is contained in an element ω ∈ Pn)

and a pre-admissible curve X̂ = graph(X) (where ω̃ is contained in the domain of X ), such

that Ŷ = Fn(X̂ |ω̃).

The main property of this class of nearly horizontal curves is the following corollary.

COROLLARY 4.2. The curves determined by the image Fn(X̂), n ≥ 1, of an arbitrary

admissible curve X̂ = graph(X) are again admissible.

The second fundamental property of admissible curves is that their images are non-flat.

LEMMA 4.3. If X̂ = graph(X), X : T → B, is an admissible curve, then it satisfies either

|X (ξ−1)(θ)| > (π/d)ξ−1α or |X (ξ)(θ)| > (π/d)ξα

for each θ ∈ T . More precisely, T can be divided into at most four closed intervals on each

of which one of these two inequalities holds.

We can almost apply word-by-word the proof in Buzzi et al [BST, Lemma 4.4] to our

case, so we omit this proof.
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Remark 3. We observe the following.

• A flat curve X = constant is pre-admissible but not admissible.

• The image by F2N0 of a pre-admissible curve is admissible. In particular, if we look

at the invariant strip Ĵ = S1 × B, which can be considered as a union of flat curves,

every point in F2N0( Ĵ ), and hence every interesting point, lies on an admissible

curve.

• In order to prove the claim of Theorem 2.1 on the vertical Lyapunov exponent, it is

enough to show for an arbitrary admissible curve X̂ = graph(X), X : T → B, that

lim inf
n→∞

1

n
log |∂x fn(θ, X (θ))| > 0

for Lebesgue almost every θ ∈ T .

5. Critical returns

We turn now to the central fact about the returns of admissible curves to the critical line

S1 × {0}.

5.1. Statement of the main technical tool. First we recall a fact about the map fa

(which in our case satisfies the Misiurewicz condition and has no periodic attractors)

[MS, Theorem III.6.3].

LEMMA 5.1. If the parameter a is such that the critical point of fa is pre-periodic (but

not periodic) then there exist constants δ > 0, σ > 1 and µ > 0 such that |( f i
a )′(x)| ≥ µσ i

if f i
a (x) ∈ (−δ, δ).

Define the constants

M(α) =

[
|log α|

log 32

]
, η =

log σ

8 log 32
. (5)

Fix r ≥ 0, and let J (r) = {x ∈ R | |x | ≤
√

αe−r }. Denote the critical strip S1 × J (r) by

Ĵ (r).

Our main technical tool is the following proposition that corresponds to Viana

[Vi, Lemma 2.6] and Buzzi et al [BST, Proposition 5.2].

PROPOSITION 5.2. Let r0(α) = (1/2 − 2η) log(1/α). There exist C < ∞ and β > 0 such

that, for all sufficiently small α > 0, for any admissible curve Ŷ = graph(Y ), Y : T → B,

#{ω ∈ PM(α) | F M(α)(Ŷ |ω) ∩ Ĵ (r0(α) − 2) += ∅} ≤ 3d M(α)Ce−βr0(α), (6)

and for any admissible curve Ẑ = graph(Z), Z : T ′ → B, and any r ≥ (1/2 +

2η) log(1/α),

{θ ∈ T ′ | Ẑ(θ) ∈ Ĵ (r − 2)} ⊂
4·2ξ⋃

j=1

I j , (7)

where the I j are intervals in T ′ with

m(I j ) ≤ Ce−βr ,

where m denotes Lebesgue measure on S1.
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5.2. Preliminary lemmas for the proof of Proposition 5.2. The main ingredients in the

proof of Proposition 5.2 are the following two lemmas. The first is a general result on

the size of the pre-image of a small interval for Cs functions, s ≥ 1, whose sth derivative

is bounded away from zero. The second states that the images under F of two certain

components of an admissible curve, which is defined on S1, are well separated over a

certain subset of the interval where the domains of these components are mapped to.

LEMMA 5.3. Let s be a positive integer and let I ⊂ R be an interval. Suppose that

h : I → R is a Cs function such that |h(s)(θ)| ≥ δ for all θ ∈ I . Then,

m({θ ∈ I | |h(θ)| ≤ ε}) < 2s+1(ε/δ)1/s

for all ε > 0. More precisely, we have

{θ ∈ I | |h(θ)| ≤ ε} ⊂

2s
−1⋃

j=1

I j ,

where the I j are intervals with

m(I j ) ≤ 2
(ε

δ

)1/s

.

The proof is in Buzzi et al [BST, Lemma 5.3]. Together with Lemma 4.3, this immediately

implies the following corollary.

COROLLARY 5.4. Let X̂ = graph(X), X : T → B, be an admissible curve and assume

that α is sufficiently small. Then, for 0 < ǫ < α, we have

m({θ ∈ T | X̂(θ) ∈ T × (−ǫ, ǫ)}) ≤ C1 · (ǫ/α)1/ξ ,

where C1 = 4 · 2ξ+1(d/π).

The next lemma is the analog to Lemma 5.5 in Buzzi et al [BST] but, for simplicity, we

will only state and prove it in a more specific case. Let X̂ = graph(X) be an admissible

curve with domain S1. For ω ∈ P j , 1 ≤ j , we set X̂1(ω) = graph(X1(ω, ·)) = F(X̂ |ω).

Let kd = 2 if 1.82 < d < 2 and kd = 1 if d > 2.

LEMMA 5.5. Let m0 be an integer so that

dm0 > 200 dkd 2ξ+1,

and let α be sufficiently small. There exists a constant ε0 > 0 such that there are at least

two remainder intervals ω1, ω2 ∈ Pm0+1 of type kd with the property that g(ω1) = g(ω2)

and, for all θ ∈ g(ω1) = g(ω2),

|X̂1(ω1, θ) − X̂1(ω2, θ)| ≥ ε0α.

Remark 4. The reason why we consider in this lemma remainder intervals of type kd (and

not e.g. entire intervals) is that, in view of the proof of Lemma 3.2, we could take away an

arbitrary remainder interval ω of type kd (or also of a higher type) in a partitionPm , m ≥ kd ,

and be sure that we have, as in Lemma 3.2, maximally two times as many remainder

intervals as entire intervals in Pn|ωc, for all n ≥ m. We will use this fact in the proof of

Proposition 5.2.



254 D. Schnellmann

Proof. Define

j0 =

{
([d] + 1)/2 if [d] is odd,

[d]/2 otherwise.

Recall the definition of θ j , and set Ŷ = graph(Y ) = X̂1([0, 1/d[) and Ẑ = graph(Z) =

X̂1([θ j0 , θ j0+1[). Note that Y is defined on S1 and, since d > 1.82, Z is defined at least on

[0, 0.82]. We only look at the [0, 1/4] part of the domains of Y and Z (the reason for this

is that it is only important that ω1 and ω2, as sought for in Lemma 5.5, have a fixed size

independent from α but not where they are located). We are going to apply Lemma 5.3 to

the function Y (θ) − Z(θ) on the interval [0, 1/4].

Let θ ∈ [0, 1/4]. We can write Y as

Y (θ) = a − (X (θ/d))2 + αφ(θ/d),

respectively Z as

Z(θ) = a − (X (θ/d + θ j0))
2 + αφ(θ/d + θ j0).

So, for 1 ≤ r ≤ ξ , the r th derivative of Y can be expressed as

Y (r)(θ) = d−rαφ(r)(θ/d) − 2d−r X (θ/d)X (r)(θ/d) + O(α2) (8)

and a similar expression holds for the r th derivative of Z . Note that θ/d ∈ [0, 0.14] and

θ/d + θ j0 ∈ [1/3, 3/4] as long as d > 1.82 and θ ∈ [0, 1/4]. Let r = ξ or ξ − 1 be the odd

number. Then we have

|φ(r)(θ/d) − φ(r)(θ/d + θ j0)| ≥ (2π)r (cos(2π · 0.14) − cos(2π · 3/4)) > (2π)r/2.

Thus, using equation (8) and condition (3) in the choice of ξ ,

|Y (r)(θ) − Z (r)(θ)| ≥

(
2π

d

)r
α

2
− 8d−r 2A0

(
2π

d

)r

α − O(α2) >

(
2π

d

)r
α

4
.

Applying Lemma 5.3 to the function Y (θ) − Z(θ) on the interval [0, 1/4] with ε = ε0α

and δ = (2π/d)rα/4, we obtain

{θ ∈ [0, 1/4] | |Y (θ) − Z(θ)| ≤ ε0α} ⊂

2r −1⋃

j=1

I j ,

where the I j are intervals with m(I j ) ≤ (d/π)(4ε0)
1/r . We choose ε0 so small such that

m(I j ) ≤ (200 · 2ξ )−1.

By Remark 2, an entire interval in Pm0−kd
contains (exactly) one remainder interval of

type kd from the partition Pm0
. Thus, to conclude the proof of Lemma 5.5, it is enough to

show that there exists an entire interval ω0 ∈ Pm0−kd
such that ω0 ⊂ [0, 1/4] and ω0 does

not intersect any interval I j . Then, if ω ∈ Pm0
denotes the remainder interval of type kd in

ω0, we can set ω1 in the statement of Lemma 5.5 equal to g−1(ω) ∩ [0, 1/d[ and ω2 equal

to g−1(ω) ∩ [θ j0 , θ j0+1[. On the one hand, we have

#

{
ent. int. ω ∈ Pm0−kd

∣∣∣∣ ω ∩

(2r −1⋃

j=1

I j

)
'= ∅

}

≤ (2r − 1)

(
2 + max{|I j |}/d−(m0−kd )

)
≤ 2ξ

(
2 +

dm0−kd

200 · 2ξ

)
≤

dm0−kd

100
,
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where in the last inequality we used the condition in the choice of m0. On the other hand,

from the claim in Lemma 3.3, we derive

#{ent. int. ω ∈ Pm0−kd
| ω ⊂ [0, 1/4]} ≥

1

4
#{ω ∈ Pm0−kd

| ω ⊂ [0, 1/4]}

≥
dm0−kd

16
.

Comparing these two bounds, the claim follows. !

6. Proof of Proposition 5.2

To prove claim (7) notice that, for r ≥ (1/2 + 2η) log(1/α),

1/
√

α ≤ exp((1 + 4η)−1r) < exp((1 − η)r).

From Lemmas 4.3 and 5.3 it follows that for any admissible curve Ẑ = graph(Z),

Z : T ′ → B,

{θ ∈ T ′ | Ẑ(θ) ∈ Ĵ (r − 2)} ⊂
4·2ξ⋃

j=1

I j ,

where the I j are intervals with

m(I j ) ≤ 2(d/π)

(√
αe−r+2

α

)1/ξ

< 2(d/π)(e2e−ηr )1/ξ ≤ Ce−(η/ξ)r ,

which implies (7).

The remaining part is dedicated to the proof of claim (6). Since the right-hand side of

claim (6) does not depend on the size of T , without loss of generality we assume that T has

maximal size, i.e. T = S1. We may and do assume that there exists a point z0 = (θ0, x0)

on the admissible curve Ŷ such that F M(α)(z0) ∈ Ĵ (0) since, otherwise, claim (6) is trivial.

Let xi = f i
a (x0). Consider the horizontal strips

Si = S1 × [xi − 5i Lα, xi + 5i Lα], i = 0, 1, 2, . . . ,

where L = max{1, 2A0(2π/d)}. Note that these strips are defined so that the (vertical)

width |Si | satisfies

4|Si | + α ≤ |Si+1| and |Si | ≤ 2 · 5M(α)Lα <
√

α for 0 ≤ i ≤ M(α),

provided that α is sufficiently small. From the first inequality, it follows that F(Si ) ⊂ Si+1.

Since the slope of the admissible curve Ŷ is bounded by 2A0(2π/d)α ≤ Lα, we have

Ŷ ⊂ S0 and hence F i (Ŷ ) ⊂ Si for 0 ≤ i ≤ M(α).

The strips Si , 0 ≤ i ≤ M(α) − 1, do not meet the critical strip Ĵ (0). Indeed, otherwise

SM(α) would intersect both Ĵ (0) and F M(α)−i ( Ĵ (0)). However, this is impossible. In fact,

as before, we can see inductively that, for j ≥ 1, F j ( Ĵ (0)) is contained in the strip

J j = S1 × [ f
j

a (0) − 5 jα, f
j

a (0) + 5 jα].

The width of J j is bounded by
√

α for 1 ≤ j ≤ M(α). Hence, the distance between J j and

Ĵ (0) is larger than

| f
j

a (0)| − 2
√

α ≥ constant − 2
√

α >
√

α > |SM(α)|

(recall that 0 is non-recurrent for fa).
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Choosing α sufficiently small, from d(Si , S1 × {0}) >
√

α and using ∂θ∂x f = 0 and

|∂2
x f | ≤ 2, we obtain the following distortion estimate, for all 0 ≤ i ≤ M(α) − 1:

M(α)−1
∑

j=i

sup
z,z′∈S j

log

∣

∣

∣

∣

∂x f (z)

∂x f (z′)

∣

∣

∣

∣

≤ M(α)
2 · 2 · 5M(α)Lα

√
α

< log 2, (9)

which allows us to consider the maps F M(α)−i as almost linear on Si . Since | f
M(α)

a (x0)| <

| fM(α)(z0)| + |SM(α)| < 2
√

α < δ if α is sufficiently small, Lemma 5.1 gives

|∂x fM(α)−i (θ, x)| >
1

2

M(α)−i−1
∏

j=0

| f ′
a(xi+ j )| >

µσ M(α)−i

2
(10)

for any (θ, x) ∈ Si with 0 ≤ i ≤ M(α) − 1.

We introduce some more constants (for the definition of m0 and ε0 see Lemma 4.3).

• Let σ̄ =
√

σ > 1.

• Fix a constant κ > 4m0 , independent of α, so that

κε0/4 − d A0(2π/d) − 4(1 − σ̄−1)−1 > 1.

Set λ j = |∂x fM(α)− j (F j (z0))|/σ̄
(M(α)− j) for 0 ≤ j ≤ M(α) − 1. Note that we have, from

equation (10),

λ j > µσ M(α)− j/2σ̄ (M(α)− j) = (µ/2)σ̄ M(α)− j . (11)

Let 1 ≤ t1 < t2 < · · · < tq ≤ M(α) − 1 be the (finite) sequence of integers defined

inductively by

t1 = min{s | 1 ≤ s, λs ≥ λs+ j for all j ≥ 1},

ti+1 = min{s | ti < s ≤ M(α) − 1, λti ≥ κλs and λs ≥ λs+ j for all j ≥ 1}.

We have ti+1 > ti + m0, for all 1 ≤ i < q , because, by the definition of the λ j and κ ,

4m0 < κ ≤
λti

λti+1

= |∂x fti+1−ti (F ti (z0))|σ̄
ti −ti+1 < 4ti+1−ti .

Let k0(α) := max{1 ≤ i ≤ q | λti ≥ 2e−r0(α)+2/
√

α}.

CLAIM 2. We have k0(α) ≥ γ r0(α) for γ = η/ log(4κ) if α is sufficiently small.

Proof. Let α be so small such that k0(α) < q (observe that λtq < κλM(α)−1 ≤ 4κ and

2e−r0(α)+2/
√

α ∼ α−2η).

On the one hand, since λ j ≤ 4λ j+1, we have for 1 ≤ i < q , λti ≤ 4κλti+1
; hence,

λt1 ≤ (4κ)k0(α)λtk0(α)+1
. From equation (11), it follows that

λtk0(α)+1
≥ (4κ)−k0(α)λt1 ≥ (4κ)−k0(α)(µ/2)σ̄ M(α)−t1 .

On the other hand, by the definition of k0(α), λtk0(α)+1
≤ 2e−r0(α)+2/

√
α. Combining these

two bounds on λtk0(α)+1
, we derive

−r0(α) − (log α)/2 ≥ M(α) log σ̄ − k0(α) log(4κ) − C,
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where C = log(4σ̄ t1/µ) + 2 is a constant independent of α. Recall the definitions (5) and

that r0(α) = (1/2 − 2η) log(1/α). We obtain

k0(α) log(4κ) ≥ r0(α) −

(
1

2
− 4η

)
log

1

α
− C = r0(α)

(
1 −

1
2

− 4η

1
2

− 2η

)
− C

= r0(α)

(
2η

1
2

− 2η

)
− C ≥ ηr0(α),

for sufficiently small α. This proves the claim. !

Let 1 ≤ s ≤ M(α). Two intervals ω̃1 and ω̃2 in Ps are said to be incompatible if

inf{|x1 − x2| | (θ1, x1) ∈ F M(α)(Ŷ |ω̃1
), (θ2, x2) ∈ F M(α)(Ŷ |ω̃2

)} > 2e−r0(α)+2
√

α.

If ω̃1, ω̃2 ∈ Ps are incompatible then obviously either all admissible curves contained

in F M(α)(Ŷ |ω̃1
) or all admissible curves contained in F M(α)(Ŷ |ω̃2

) do not intersect

Ĵ (r0(α) − 2). We are going to establish a sufficient condition for incompatibility. Let

1 ≤ t ≤ M(α). For ω ∈ Pt and 1 ≤ j ≤ t , we set

Ŷ j (ω) = graph(Y j (ω, ·)) = F j (Ŷ |ω).

Let ω0 ∈ Pti −1 be an entire interval. It follows that Ŷti −1(ω0) is defined on the whole of S1.

We are therefore in a position to apply Lemma 5.5 to this curve. We determine that there

exist two remainder intervals ω1, ω2 ∈ Pti +m0
|ω0 of type kd such that gti (ω1) = gti (ω2)

and, for all θ ∈ gti (ω1) = gti (ω2),

|Yti (ω1, θ) − Yti (ω2, θ)| ≥ ε0α.

Denote by inc(ω0) all such pairs (ω1, ω2) which satisfy the properties above.

CLAIM 3. (A sufficient condition for incompatibility) Let 1 ≤ i < k0(α), ω0 ∈ Pti −1 an

entire interval and (ω1, ω2) ∈ inc(ω0). If ω̃1 ∈ Pti+1−1|ω1 and ω̃2 ∈ Pti+1−1|ω2 such that

gti (ω̃1) = gti (ω̃2), then ω̃1 and ω̃2 are incompatible.

Proof. Since (ω1, ω2) ∈ inc(ω0) we have

|Yti (ω1, θ) − Yti (ω2, θ)| ≥ ε0α

for all θ ∈ gti (ω1) = gti (ω2). Also, since gti (ω̃1) = gti (ω̃2), we deduce from the distortion

estimate (9) that

|F(Yti+1−1(ω̃1, θ)) − F(Yti+1−1(ω̃2, θ))| ≥
1

2

λti

λti+1

ε0α

for all θ ∈ gti (ω̃1) = gti (ω̃2). Thus, the vertical distance between F(Ŷti+1−1(ω̃1)) =

F ti+1(Ŷ |ω̃1
) and F(Ŷti+1−1(ω̃2)) = F ti+1(Ŷ |ω̃2

) is bounded from below by

1

2

λti

λti+1

ε0α − d2A0(2π/d)α,

where the second term is a bound for the oscillation of the maximally [d] + 1 admissible

curves contained in each of these two images.
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For ti+1 ≤ j ≤ M(α), let

" j = inf{|x1 − x2| | (θ1, x1) ∈ F j (Ŷ |ω̃1
), (θ2, x2) ∈ F j (Ŷ |ω̃2

)}.

In other words, " j is the vertical distance between the two images F j (Ŷ |ω̃1
) and F j (Ŷ |ω̃2

).

We have

"ti+1
≥

1

2

λti

λti+1

ε0α − d2A0(2π/d)α. (12)

If we put

D j = min
(θ,x)∈S j

|∂x f (θ, x)| = min
(θ,x)∈S j

| f ′
a(x)|,

for 1 ≤ j ≤ M(α) − 1, then the distances " j satisfy

" j+1 ≥ D j" j − 2α,

where the last term 2α is the oscillation of αφ. Hence,

"M(α) ≥
(M(α)−1∏

j=ti+1

D j

)
"ti+1

−
M(α)−1∑

j=ti+1

(M(α)−1∏

l= j

Dl

)
2α.

From the definition of the λ j and the distortion estimate (9), we have

1

2
λ j σ̄

M(α)− j ≤
M(α)−1∏

l= j

Dl ≤ 2λ j σ̄
M(α)− j .

Since, by the definition of ti+1, λ j ≤ λti+1
for j ≥ ti+1, we obtain

"M(α) ≥ λti+1
σ̄ M(α)−ti+1"ti+1

/2 −
M(α)−1∑

j=ti+1

λ j σ̄
M(α)− j 4α

≥ λti+1
σ̄ M(α)−ti+1

(
"ti+1

/2 −
M(α)−1∑

j=ti+1

4ασ̄−( j−ti+1)

)

≥ λti+1
σ̄ M(α)−ti+1("ti+1

/2 − 4α(1 − σ̄−1)−1).

Recall that λti+1
≥ 2e−r0(α)+2/

√
α. Using equation (12), the definition of κ and λti /λti+1

≥ κ , we conclude that

"M(α) ≥ (2e−r0(α)+2/
√

α)(κε0α/4 − d A0(2π/d)α − 4α(1 − σ̄−1)−1)

> 2e−r0(α)+2
√

α. !

Consider an entire interval ω0 ∈ Pt1−1 and one pair (ω1, ω2) ∈ inc(ω0). Applying the

criteria for incompatibility we can build a union ũ ⊂ (ω1 ∪ ω2) of elements in Pt2−1

such that ũ contains exactly one interval of each interval pair ω̃1 ∈ Pti+1−1|ω1 and

ω̃2 ∈ Pti+1−1|ω2 with gti (ω̃1) = gti (ω̃2), such that F M(α)(Ŷ |ω) does not intersect

Ĵ (r0(α) − 2) for all ω ∈ PM(α)|ũ. Observe that

m(ũ) = m(ω1) = m(ω2) =
remkd

d t1+m0
.
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By Lemma 3.2, at least one-third of all intervals in Pt1−1 are entire intervals. Set Q0 = S1.

Building similar unions as above for each entire interval in Pt1−1 we obtain a set Q1 ⊂ Q0,

which is a union of elements in Pt2−1, such that, for all ω ∈ PM(α)|Q1, F M(α)(Ŷ |ω) does

not intersect Ĵ (r0(α) − 2) and

m(Q1) ≥
1

3
#{ω ∈ Pt1−1}

remkd

d t1+m0
≥

1

3

m(Q0)

d−(t1−1)

remkd

d t1+m0
=

remkd

3dm0+1
.

We take this set from Q0 away and continue with the remaining part Q1 = Q0 \ Q1.

Obviously,

m(Q1) ≤ m(Q0)

(
1 −

remkd

3dm0+1

)
.

As already mentioned in Remark 4 and in the induction step in the proof of Lemma 3.2,

we have not used remainder intervals of type kd . Thus, with a similar argument as in the

proof of Lemma 3.2, we see that we still have a control of the proportion of entire intervals

in Pt2−1|Q1 or, more precisely,

#{rem. int. in Pt2−1|Q1}
/

#{ent. int. in Pt2−1|Q1} ≤ 2.

In other words, at least one-third of all intervals in Pt2−1|Q1 are entire intervals. We can

therefore apply the same reasoning again and exclude a ‘good’ set Q2 ⊂ Q1, which is a

union of elements in Pt3−1, such that, for all ω ∈ PM(α)|Q2, F M(α)(Ŷ |ω) does not intersect

Ĵ (r0(α) − 2) and for Q2 = Q1 \ Q2 we have

m(Q2) ≤ m(Q1)

(
1 −

remkd

3dm0+1

)
.

We can continue this procedure a further k0(α) − 3 times, and we finally obtain a set

Qk0(α)−1 ⊂ S1 such that

m(Qk0(α)−1) ≤ m(Q0)

(
1 −

remkd

3dm0+1

)k0(α)−1

=

(
1 −

remkd

3dm0+1

)k0(α)−1

and, for all ω ∈ PM(α)|Q
c
k0(α)−1, F M(α)(Ŷ |ω) does not intersect Ĵ (r0(α) − 2). Let

Q = {ω ∈ PM(α) | F M(α)(Ŷ |ω) ∩ Ĵ (r0(α) − 2) '= ∅}. By construction, Q ⊂ Qk0(α)−1 and

#{rem. int. in PM(α)|Qk0(α)−1}
/

#{ent. int. in PM(α)|Qk0(α)−1} ≤ 2.

It follows that

#{ω ∈ PM(α)|Q} ≤ #{ω ∈ PM(α)|Qk0(α)−1} ≤ 3
m(Qk0(α)−1)

d−M(α)

≤ 3d M(α)C
(

1 −
remkd

3dm0+1

)k0(α)

.

As k0(α) ≥ γ r0(α) by Claim 2, this concludes the proof of Proposition 5.2.

7. Large deviations

To conclude the proof that the vertical Lyapunov exponent is positive and thus the proof

of Theorem 2.1 we can follow the large deviation argument by Viana [Vi, §2.4]. Only in
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estimating the measure of the set !q(ρ0, . . . , ρmq ) defined below do we have to be more

cautious. Corollary 5.4 and Proposition 5.2 which we proved here are the counterparts to

Corollary 2.3 and Lemma 2.6 in Viana [Vi]. The other results, in particular Lemmas 2.4

and 2.5 from Viana [Vi, §2.4], depend neither on the condition that d is an integer nor that

d ≥ 16; thus, they remain valid including their proofs.

In all that follows we let n ≥ 1 be fixed and sufficiently large. We define m ≥ 1

by m2 ≤ n < (m + 1)2 and also take l = 2m − M(α). Note that l/2 ≈ m ≈
√

n as long

as n ≫ log(1/α). We are considering an arbitrary admissible curve X̂0 = graph(X0),

X0 : T → B. We can assume that T has maximal measure, i.e. T = S1. Given 0 ≤ ν ≤ n

and ων+l ∈ Pν+l , we set γ = Fν(X̂0|ων+l
). Then we say that ν is:

• a In-situation for θ ∈ ων+l if γ ∩ Ĵ (0) *= ∅ but γ ∩ Ĵ (m) = ∅; and

• a IIn-situation for θ ∈ ων+l if γ ∩ Ĵ (m) *= ∅.

Note that, by Corollary 4.2, γ is the graph of a function defined on gν(ων+l) ∈ Pl

and whose derivative is bounded above by 2A0(2π/d)α. Therefore, its diameter in the

x-direction is bounded by

2A0(2π/d)αd−l ≪
√

αe−m ≤
√

α(e−(m−1) − e−m) (13)

(recall that, by condition (1), d > 1.82). This means that, whenever ν is a IIn-situation for

ων+l , γ is contained in Ĵ (m − 1). Recall that Fn(X̂0) contains maximally 3dn curves. Let

B2(n) = {θ ∈ S1 | some 0 ≤ ν ≤ n is a IIn-situation for θ}. Corollary 5.4 gives

m(B2(n)) ≤ (n + 1)3C1

(
|J (m − 1)|

α

)1/ρ

≤ const(n + 1)(e−m)1/ρ

≤ const e−
√

n/2ρ . (14)

From now on, we consider only values of θ ∈ S1 \ B2(n), that is, having no

IIn-situations in [0, n]. Let 0 ≤ ν1 < · · · < νs ≤ n be the In-situations for a θ ∈ S1 \ B2(n).

For each ν = νi we fix r = ri ∈ {1, . . . , m} minimum such that γ ∩ Ĵ (r) = ∅, and we set

G = {i | ri ≥ (1/2 − 2η) log(1/α)} (note that this set depends on θ ). Viana [Vi, §2.4]

shows that there exists a constant c > 0 such that

log |∂x fn(X̂0(θ))| ≥ cn for every θ ∈ S1 \ En, (15)

where En = B1(n) ∪ B2(n) and

B1(n) =

{
θ ∈ S1 \ B2(n)

∣∣∣∣
∑

i∈G

ri ≥ cn

}
.

In view of equation (14), we are left to prove that

m(B1(n)) ≤ const e−γ
√

n (16)

for some γ > 0. First we let 0 ≤ q ≤ 2m − 1 be fixed and denote

Gq = {i ∈ G | νi ≡ q mod 2m}.

We also take mq = max{ j | 2mj + q ≤ n} (note that 2mq ≈ m ≈
√

n) and, for each

0 ≤ j ≤ mq , we let r̂ j = ri if 2mj + q = νi , for some i ∈ Gq , and r̂ j = 0 otherwise.

Observe that Gq and the r̂ j are, in fact, functions of θ . Then we introduce

!q(ρ0, . . . , ρmq ) = {θ ∈ S1 \ B2(n) | r̂ j = ρ j for 0 ≤ j ≤ mq},
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where for each j either ρ j = 0 or ρ j ≥ (1/2 − 2η) log(1/α); we also assume that the ρ j

are not simultaneously zero. With the help of Proposition 5.2 and Lemma 3.3 we will prove

the following lemma.

LEMMA 7.1. There exists β > 0 such that

m(%q(ρ0, . . . , ρmq )) ≤ Cτ
2 exp

(
−β

mq∑

j=0

ρ j

)
,

where τ = #{ j | ρ j $= 0} and C2 = 60 · 2ξ C.

Having shown Lemma 7.1 and renaming β as 5β and C2 as C4, we can follow verbatim

the remaining large deviation argument in Viana [Vi, §2.4] which proves equation (16)

and thus the existence of a positive vertical Lyapunov exponent at Lebesgue almost every

point. So, it is only left to prove the lemma above.

Proof. We assume ρ j $= 0, for all 0 ≤ j ≤ mq . The other cases are similar. We introduce

the notation a j = 2mj + q + l, for 0 ≤ j ≤ mq . If ω ∈ Pi , i ≥ a j , then by r̂ j (ω) = ρ j we

mean that for θ ∈ ω, r̂ j = ρ j . Since %q(ρ0, . . . , ρmq ) ⊂ {ωamq
∈ Pamq

| r̂ j (ωamq
) = ρ j

∀ 0 ≤ j ≤ mq} (set a−1 = 0) we have

m(%q(ρ0, . . . , ρmq )) ≤
∑

ωa0
∈Pa0

r̂0(ωa0
)=ρ0

∑

ωa1
∈Pa1

|ωa0

r̂1(ωa1
)=ρ1

· · ·
∑

ωamq
∈Pamq

|ωamq −1

r̂mq (ωamq
)=ρmq

m(ωamq
)

≤
1

damq
·

mq∏

j=0

max
ωa j−1

∈Pa j−1

#{ω ∈ (Pa j
|ωa j−1

) | r̂ j (ω) = ρ j }︸ ︷︷ ︸
(∗)

.

Let 1 ≤ j ≤ mq . We claim that

(∗) ≤ d2mC2e−βρ j . (17)

Note that, by inequality (13), F2mj+q(X̂0|ω) ⊂ Ĵ (ρ j − 2) if ω ∈ Pa j
and r̂ j (ω) = ρ j .

Using a j − a j−1 = 2m and 2mj + q = a j−1 + M(α), it follows that

(∗) ≤ #{ω ∈ (Pa j
|ωa j−1

) | F2mj+q(X̂0|ω) ⊂ Ĵ (ρ j − 2)}

≤ #{ω ∈ P2m | F M(α)(Ŷ |ω) ⊂ Ĵ (ρ j − 2)} = (∗∗),

where Ŷ = graph(Y ) = Fa j−1(X̂0|ωa j−1
). To estimate (∗∗) we first consider the

case (1/2 − 2η) log(1/α) ≤ ρ j ≤ (1/2 + 2η) log(1/α). Recall that r0(α) = (1/2 −

2η) log(1/α) and l = 2m − M(α). From Lemma 3.2 we derive for ω′ ∈ PM(α)

#{ω ∈ P2m |ω′} ≤ #{ω ∈ Pl} ≤ 3dl .

Thus,

(∗∗) ≤ 3dl#{ω′ ∈ PM(α) | F M(α)(Ŷ |ω′) ∩ Ĵ (ρ j − 2) $= ∅}

≤ 3dl#{ω′ ∈ PM(α) | F M(α)(Ŷ |ω′) ∩ Ĵ (r0(α) − 2) $= ∅}.
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Applying claim (6) in Proposition 5.2 to the last term yields

(∗∗) ≤ 3dl3d M(α)Ce−βr0(α) ≤ d2mC2e−βr0(α) ≤ d2mC2e−(β(1/2−2η)/(1/2+2η))ρ j .

Renaming β(1/2 − 2η)/(1/2 + 2η) by β, this proves claim (17). Now we consider the

case when ( 1
2

+ 2η) log(1/α) ≤ ρ j ≤ m. Observe that F M(α)(Ŷ ) consists of maximally

3d M(α) admissible curves. We obtain

(∗∗) ≤ max
Ẑ adm. curve in F M(α)(Ŷ )

3d M(α)#{ω ∈ Pl | Ẑ |ω ⊂ Ĵ (ρ j − 2)}.

By claim (7) in Proposition 5.2 we have

{θ ∈ T ′ | Ẑ(θ) ∈ Ĵ (ρ j − 2)} ⊂

4·2ξ⋃

i=1

Ii ,

where the Ii are intervals with m(Ii ) ≤ Ce−βρ j . Applying Lemma 3.3, it follows that

#{ω ∈ Pl | Ẑ |ω ⊂ Ĵ (ρ j − 2)}

≤ 4 · 2ξ max
I⊂[0,1[ interval

m(I )=Ce
−βρ j

#{ω ∈ Pl | ω ∩ I (= ∅} ≤ 20 · 2ξ dlCe−βρ j .

Thus,

(∗∗) ≤ 3d M(α)20 · 2ξ dlCe−βρ j ≤ d2mC2e−βρ j .

With a similar argument, we obtain for j = 0 that (∗) ≤ dq+lC2e−βρ0 . (In fact, if

q < M(α), this is only true if (1/2 + 2η) log(1/α) ≤ ρ0 ≤ m. However, since n is very

large this case is negligible.) Altogether, we have

m((q(ρ0, . . . , ρmq )) ≤
1

damq
· dq+lC2e−βρ0 · d2mmq C

mq

2 exp

(
−β

mq∑

j=1

ρ j

)

= Cτ
2 exp

(
−β

mq∑

j=0

ρ j

)
. !

8. Existence of an a.c.i.p.

To show the existence of an absolutely continuous invariant probability measure we can

apply almost verbatim the methods of Alves [Al]. However, since the remainder intervals

in Pn can get arbitrarily small we have to be a bit more careful. To ensure that the remainder

intervals do not get too small too fast we will exclude, using a result by Schmeling [Sch],

a zero Lebesgue measure set of parameter values for d.

Where d is assumed to be an integer [Al], Alves constructs a ‘good’ partition R =⋃
n≥p Rn of Ĵ (mod 0), where p ≥ 1 is some fixed, large integer and each Rn consists

of finitely many partition elements R ∈ Rn which are of the form R = ω × I , where ω is

an element in Pn and I ⊂ B is some appropriate interval. It is then shown that the map

φ : Ĵ → Ĵ defined as

φ|R = Fn|R if R ∈ Rn
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admits an a.c.i.p. One important property of φ is that it is expanding on each element

R ∈ R and that the size of the images φ(R) does not fall below a fixed size. Note that if d

is an integer then, by the definition of φ, the image φ(R) is stretched along the horizontal

direction over the whole of S1. Thus, one only has to ensure that the images by φ of

the vertical lines θ × I , where R = ω × I and θ ∈ ω, are large enough. To elaborate this

expansion, an important tool is the so-called hyperbolic times for points (θ, x) ∈ Ĵ . Let c

be the constant in equation (15) and 0 < ε < c/2 fixed. We say that n ≥ 1 is a hyperbolic

time for (θ, x) ∈ Ĵ if for every 0 ≤ k < n we have∑

k≤ j<n

r̂ j (θ, x) ≤ (c + ε)(n − k),

where r̂ j (θ, x) = r if F j (θ, x) ∈ Ĵ (r − 1) \ Ĵ (r) for some r ≥ (1/2 − 2η) log(1/α) and

0 otherwise. Since almost every point in Ĵ has infinitely many hyperbolic times (cf.

Alves [Al, Proposition 2.6]) R can be constructed in a way such that every element R ∈ Rn

contains at least one point (θ, x) having a hyperbolic time at n. This is then enough to

ensure a large size of the image φ(R). The estimates obtained by showing the existence of

a positive vertical Lyapunov exponent implicate good tail estimates, i.e.

m

(
Ĵ \

n⋃

j=p

R j

)
≤ Ce−γ

√
n,

which in turn implies that the map F also admits an a.c.i.p.

If d is not an integer we have the additional problem that even if the vertical size of φ(R)

is large enough, following the construction of Alves, the horizontal size of φ(R), which

corresponds to the size of gn(ω) where R = ω × I , might be arbitrarily small. To avoid

this problem we provide another version of Proposition 2.6 in Alves [Al] on the existence

and frequency of hyperbolic times.

For θ ∈ S1, let ωn(θ) denote the element in Pn which contains θ . For 0 < δ < 1 we

define Hδ,n to be the set of all points (θ, x) ∈ Ĵ for which n is the first hyperbolic time

greater than or equal to p such that |ωn(θ)| > δd−n . The set En ⊂ Ĵ is similarly defined

as in the preceding section but with the difference that it is now defined on the whole of Ĵ

and not just on a single admissible curve.

PROPOSITION 8.1. For Lebesgue almost every d > R0 the following holds. There is a

δ = δ(ε, d) > 0 and an integer n0 = n0(p, ε, δ, d) ≥ p such that for every n ≥ n0 we have

Ĵ \ En ⊂ Hδ,p ∪ · · · ∪ Hδ,n .

Proof. We will use the following lemma due to Pliss [Pl].

LEMMA 8.2. Given A ≥ c2 > c1, let κ = (c2 − c1)/(A − c1). Then, given any real

numbers a1, . . . , an such that
n∑

j=1

a j ≥ c2n and a j ≤ A for all 1 ≤ j ≤ n,

there are l ≥ κn and 1 ≤ n1 < · · · < nl ≤ n so that
ni∑

j=k+1

a j ≥ c1(ni − k) for all 0 ≤ k < ni and i = 1, . . . , l.
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Proof. See, for example, Alves et al [ABV, Lemma 3.1]. !

Set a j = −r̂ j−1 for j ≥ 1, A = 0, c2 = −c, c1 = −(c + ε) and κ = ε/(c + ε). For

(θ, x) ∈ Ĵ \ En we have, by the definition of the set En ,

n−1∑

j=0

−r̂ j ≥ −cn = c2n.

Thus we can apply Lemma 8.2 and determine that there are l ≥ κn and 0 ≤ n1 < · · · <

nl ≤ n − 1 so that
∑

k≤ j<ni

r̂ j ≤ −c1(ni − k) = (c + ε)(ni − k),

i.e. every (θ, x) ∈ Ĵ \ En has at least κn hyperbolic times between 1 and n.

The next lemma shows that we have—for a full Lebesgue measure set of parameter

values for d—a good control of the number of times when the interval ωn(θ) gets too

small. We prove this lemma after completing the proof of Proposition 8.1.

LEMMA 8.3. There exists a set D ⊂ ]1, ∞[ having full Lebesgue measure such that the

following holds. Let d ∈ D. For all κ ′ > 0 there is a δ > 0 such that, for every θ ∈ S1 and

every n ≥ 1,

#{1 ≤ k ≤ n | |ωk(θ)| < δd−k} ≤ κ ′n.

Assuming d > R0 lies in D, fixing κ ′ < κ and choosing δ as in the lemma above we

can now obviously choose n0 so large that, for all n ≥ n0, the number of hyperbolic times

between p and n is for all (θ, x) ∈ Ĵ \ En greater than the number of times between 1 and

n, where the partition element containing θ falls below a fixed size. Hence

Ĵ \ En ⊂ Hδ,p ∪ · · · ∪ Hδ,n for all n ≥ n0.

To prove Lemma 8.3 we use the following two results. Let g0(1) = 1, g1(1) = {d} and,

for n ≥ 2, gn(1) = gn−1({d}).

LEMMA 8.4. Let d ∈ ]1, ∞[. There exists a unique (ergodic) invariant probability

measure µ for the map g(θ) = dθ mod 1 which is equivalent to the Lebesgue measure.

The density is given by h(θ) = K h̃(θ), where K is a normalizing constant and

h̃(θ) =
∑

j≥0

1

d j
χ[0,g j (1)[(θ).

Proof. See, for example, Rényi [R] and Parry [Pa]. !

Note that 1 − 1/d ≤ h(θ) ≤ d/(d − 1).

LEMMA 8.5. There exists a full Lebesgue measure set D ⊂ ]1, ∞[ such that if d ∈ D then

1

n

n∑

j=1

δg j (1) → µ weakly as n → ∞.

Proof. See Schmeling [Sch, Theorem C]. !
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Proof of Lemma 8.3. From Lemmas 8.4 and 8.5 it follows that, for κ
′ ∈ [0, 1],

lim
n→∞

1

n
#{1 ≤ k ≤ n | gk(1) ∈ [0, κ

′[} = µ([0, κ
′[) ≤

d

d − 1
κ

′.

Recall the definition of remk , k ≥ 1, in §3 and set rem0 = 1. By definition, gk(1) ∈ [0, κ
′[

if and only if remk < κ
′. Set N0 so large that

#{0 ≤ k ≤ l | remk < κ
′} ≤

2d

d − 1
κ

′l, (18)

for all l ≥ N0. Set δ = min{κ ′, min{remk | k < N0}}. By the properties of the set D,

remk (= 0 for all k ≥ 0 and therefore δ > 0.

Fix an arbitrary θ ∈ S1. By definition, if ωk(θ) is a remainder interval of type t ≥ 0

then |ωk(θ)|dk = remt (we consider here an entire interval as a remainder interval of

type 0). Furthermore, if t ≥ 1, then ωk− j (θ), j = 1, . . . , t , is a remainder interval of

type k − j . Thus, if tk(θ) denotes the remainder type of ωk(θ) then {tk(θ)}n
k=0 is a

sequence starting with zero and tk+1(θ), k ≥ 0, is either tk(θ) + 1 or 0, i.e. the sequence

is piecewise increasing where the increasing pieces always start with 0 and increase by 1

at each step. Let 0 ≤ n1 < · · · < nh = n be the times where these increasing pieces obtain

their maxima, i.e. for all i = 1, . . . , h − 1, tni +1(θ) = 0, and vice versa, if tk(θ) = 0 for

some k = 1, . . . , n then there exists i ∈ {1, . . . , h − 1} such that ni = k − 1. Observe, if

tni
(θ) < N0 then, by the definition of δ, #{0 ≤ j ≤ tni

(θ) | |ωni − j (θ)| < δd−(ni − j)} = 0.

Further, if tni
(θ) ≥ N0 then #{0 ≤ j ≤ tni

(θ) | |ωni − j (θ)| < δd−(ni − j)} is bounded by

the left-hand side of equation (18) (setting l = tni
(θ)) which is in turn bounded by

(2d/(d − 1))κ ′tni
(θ). Altogether, we obtain

#{0 ≤ k ≤ n | |ωk(θ)| < δd−k} ≤
2d

d − 1
κ

′n for all n ≥ 1.

This concludes the proof of Lemma 8.3. !

To conclude the proof of Theorem 2.2 we now only have to replace Proposition 3.6

in Alves [Al] by our Proposition 8.1, use the sets Hδ,n instead of the sets Hn for the

construction of the partition R and replace δ1 in Proposition 3.8 in Alves [Al] by δ, in

the case of δ < δ1.
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Abstract

We study a class of skew-products of quadratic maps—also called Viana maps—

where the base dynamics is given by a high enough iteration of a Misiurewicz–

Thurston quadratic map. We show that these systems admit two positive

Lyapunov exponents.

Mathematics Subject Classification: 37D99, 37E99, 37C99

1. Introduction

Viana [Vi] studied the ergodic properties of the map F : S1
× R → S1

× R:

F(θ, x) = (dθ mod 1, a0 − x2 + α sin(2πθ)),

where d ! 16 is an integer, α is a small positive real number and the parameter 1 < a0 < 2

is such that the map fa0
(x) = a0 − x2 has a pre-periodic (but not periodic) critical point.

Provided α is sufficiently small, there is an interval I ⊂ (−1, 1) such that the strip Ĵ = S1
× I

is mapped into itself, i.e. F(Ĵ ) ⊂ Ĵ (see section 2.2). Points outside Ĵ are either eventually

mapped into Ĵ or F is uniformly expanding along their orbits. Hence, from a dynamical

point of view the map F can be restricted to the invariant cylinder Ĵ where it is a partially

hyperbolic system. Viana [Vi] showed that the map F : Ĵ → Ĵ has almost everywhere w.r.t.

Lebesgue measure two positive Lyapunov exponents, and Alves [Al] proved that F admits an

absolutely continuous invariant probability measure (a.c.i.p.). These results were refined by

Buzzi et al [BST], respectively Schnellmann [Sch] to maps F as above but with d ! 2 an

integer, respectively d > 1 a real number such that the system remains partially hyperbolic in Ĵ .

Let now fa1
(θ) = a1 − θ

2 be a quadratic map of the same kind as the map fa0
above, i.e.

1 < a1 " 2 is chosen, such that the critical point is pre-periodic but not periodic. Maps with

this property are also called Misiurewicz–Thurston.

0951-7715/09/112681+15$30.00 © 2009 IOP Publishing Ltd and London Mathematical Society Printed in the UK 2681
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Remark 1.1. In contrast to a0 we allow a1 to be equal to 2 in which case the critical point is

eventually mapped to the fixed point −1. Furthermore, if a1 = 2 then fa1
: [−1, 1] → [−1, 1]

is conjugated by the conjugation map ϕ(θ) = 2π−1 arcsin(θ), θ ∈ [−1, 1], to the tent map

with slope 2, i.e. ϕ ◦ fa1
◦ ϕ−1(θ) = 1 − 2|θ |. This special case can serve as a model along

the paper.

Set S = [f 2
a1

(0), fa1
(0)], and let the base dynamics be a high enough iteration of fa1

, i.e.

θ %→ f k
a1

(θ), k ! k0, where k0 = k0(a1) ! 1 is determined later. The purpose of this paper is

to study the map F : S × R → S × R:

F(θ, x) = (f k
a1

(θ), fa0
(x) + αs(θ)),

where the coupling function s : S → [−1, 1] is chosen in such a way that we can establish two

positive Lyapunov exponents for this system. We are going to prove the following statement.

Theorem 1.2. There is a piecewise C1 function s : S → [−1, 1] and an integer k0 ! 1 such

that, for all sufficiently small α > 0 and all k ! k0, the map

F(θ, x) = (f k
a1

(θ), fa0
(x) + αs(θ))

admits two positive Lyapunov exponents.

Remark 1.3. Notice that the coupling function s is not a priori fixed. In fact it is dependent

on the base dynamics fa1
. Roughly speaking the coupling function is identical to a function

conjugating f k
a1

to a map whose absolute value of its first derivative is strictly greater than 1. For

example, in the case when a1 = 2, s(θ) can be taken as h(2π−1 arcsin(θ)), θ ∈ [−1, 1], where

h : [−1, 1] → [−1, 1] is an arbitrary C1 map whose first derivative is uniformly bounded

away from 0 (the closer |h′(θ)| comes to 0 the larger we have to take k0).

It would be interesting to drop this dependence of the coupling function on the base

dynamics. For example, if we let s to be the affine one-to-one map from S to [−1, 1], can we

still prove two positive Lyapunov exponents when the base dynamics is given by a sufficiently

high iteration of a Misiurewicz–Thurston map?

2. Preliminaries

2.1. The base dynamics

We list some facts about the Misiurewicz–Thurston map fa1
. The proofs of the statements in

this subsection can be found, e.g., in [Og]. Let bj , 0 " j " k1, be the ordered points in the

forward orbit of the critical point 0, i.e. {b0, . . . , bk1
} = {f i

a1
(0) ; i ! 1} and bj < bj+1. There

is a unique (and hence ergodic) a.c.i.p. µ for fa1
: S → S. For the density ρ of µ the following

holds. There is a constant K0 ! 1 such that, for all 0 " j < k1, ρ is analytic in (bj , bj+1),

where either ρ ≡ 0 or

1

K0

" ρ(θ) " K0

(

1
√

θ − bj

+
1

√

bj+1 − θ

)

. (1)

More precisely, there is an ε > 0 such that, for all 0 " j < k1—and by possibly increasing

the constant K0 from above—the following holds. In the intervals (bj , bj+1), where ρ > 0 we

have that, for θ ∈ (bj , bj + ε), either

1

K0

√

θ − bj

" ρ(θ) "
K0

√

θ − bj

or
1

K0

" ρ(θ) " K0; (2)
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for θ ∈ (bj+1 − ε, bj+1), either

1

K0

√

bj+1 − θ
! ρ(θ) !

K0
√

bj+1 − θ
or

1

K0

! ρ(θ) ! K0; (3)

and, for θ ∈ (bj + ε, bj+1 − ε),

1

K0

! ρ(θ) ! K0. (4)

Observe that by the definition of bj , the critical point 0 lies inside one of the intervals (bj , bj+1),

i.e. it is not a boundary point. On the interval (bj , bj+1) which contains the critical point the

density ρ is positive.

Let ϕ : S → [−1, 1] be the piecewise analytic map defined by

ϕ(θ) = 2

∫ θ

b1

ρ(t) dt − 1.

Example 2.1. If a1 = 2 then the density ρ of the a.c.i.p. of fa1
is given by

ρ(θ) =
1

π
√

1 − θ2
,

θ ∈ (−1, 1). The above definition of ϕ gives ϕ(θ) = 2π−1 arcsin(θ) which is the function

conjugating fa1
to the tent map θ %→ 1 − 2|θ |.

The inverse ϕ−1 is defined everywhere except possibly in the points ϕ(bj ), 0 ! j ! k1. For

notational reasons define ϕ−1 on the whole of [−1, 1], and in such a way that ϕ−1 : [−1, 1] → S

is say left continuous, and ϕ−1(−1) = b1(= f 2
a1

(0)). Note that the closure of the image by

ϕ−1 of [−1, 1] is the support of µ.

Proposition 2.2. The conjugated map ϕ ◦ fa1
◦ ϕ−1 fulfils

|(ϕ ◦ fa1
◦ ϕ−1)′(θ)| " 1, (5)

for all θ ∈ [−1, 1] \ {ϕ(b) ; b ∈ ∪k1

j=0f
−1
a1

{bj }}. Furthermore, for every D > 1 there is an

integer k0 " 1 such that, for all k " k0, the map ϕ ◦ f k
a1

◦ ϕ−1 satisfies

|(ϕ ◦ f k
a1

◦ ϕ−1)′(θ)| " D, (6)

for all θ ∈ [−1, 1] \ {ϕ(b) ; b ∈ ∪k1

j=0f
−k
a1

{bj }}.

Proof. See [Og]. #

Observe that g is a piecewise analytic map where the points in which g is not analytic

are contained in {ϕ(b) ; b ∈ ∪k1

j=0f
−k
a1

{bj }}. The discontinuities of g lie in the points ϕ(bj ),

1 ! j < k1, with ρ|(bj , bj+1) ≡ 0.

2.2. The map F

Let h : [−1, 1] → [−1, 1] be some fixed C1 function for which there is a constant K1 " 1

such that K−1
1 ! |h′(θ)| ! K1. Let k0 " 1 be the integer in (6), such that the expansion of the

conjugated map g = ϕ ◦ f k
a1

◦ ϕ−1, for k " k0, is at least 5K2
1 + 4, i.e.

|g′(θ)| " 5K2
1 + 4, (7)
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for all θ ∈ [−1, 1] \ {ϕ(b) ; b ∈ ∪k1

j=0f
−k
a1

{bj }}. For example, if h(θ) = θ then the expansion

of g must be at least 9. In theorem 1.2, we will choose h ◦ ϕ as the coupling function s, i.e.

s(θ) = h(ϕ(θ)). By this choice we can conjugate F to the map F̃ : [−1, 1]×R → [−1, 1]×R:

F̃ (θ, x) = (g(θ), fa0
(x) + αh(θ)),

where the conjugation function $ is given by $(θ, x) = (ϕ(θ), x), i.e. F̃ = $◦F ◦$−1. Note

that if we have showed two positive Lyapunov exponents for the map F̃ then it immediately

follows that F admits two positive Lyapunov exponents. We will restrict our consideration to

the conjugated map F̃ . This map has four parameters 1 < a0 < 2, 1 < a1 ! 2, k " k0 and

α > 0. Henceforth, we fix the parameters a0, a1 and k and we do not specify the dependence

on them. In contrast the parameter α is not fixed but always assumed to be sufficiently small

and the dependence on it is always specified.

Set f1(θ, x) = f (θ, x) = fa0
(x) + αh(θ) and, for n " 1, let us define fn(θ, x) by

F̃ n(θ, x) = (gn(θ), fn(θ, x)).

Observe that by (6) the horizontal Lyapunov exponent is obviously positive. Hence, we have

only to focus on the vertical Lyapunov exponent, i.e. we look at

1

n
log |∂xfn(θ, x)|, for (θ, x) ∈ [−1, 1] × R,

as n tends to infinity. Let p1 denote the unique negative fixed point of fa0
(p1 = (−1 −√

1 + 4a0)/2), and take a0 < β < |p1|. The interval I = [−β, β] satisfies fa0
(I ) ⊂ int(I )

and |f ′
a0

| > 1 on R \ int(I ). Writing Ĵ = [−1, 1] × I , for sufficiently small α > 0, we have

• F̃ (Ĵ ) ⊂ Ĵ ; and

• |∂xf (θ, x)| > 1 outside Ĵ .

These facts imply that, for any point (θ, x) in [−1, 1] × R, either its orbit eventually comes

into the invariant strip Ĵ or the vertical Lyapunov exponent is positive. Thus, it is enough to

consider the restriction of the map F̃ to the cylinder Ĵ , in other words we show that

lim inf
n→∞

1

n
log |∂xfn(θ, x)| > 0

for Lebesgue almost every (θ, x) ∈ Ĵ .

3. Partition and distortion

Let Bi , 1 ! i ! k2 ! k1, denote the intervals (bj , bj+1), 0 ! j < k1, on which the density ρ

does not vanish. Since fa1
is pre-periodic, these intervals build a Markov partition for fa1

. Set

Li = ϕ(Bi), 1 ! i ! k2, and define, for n " 1, the Markov partitions

Pn = {ω ⊂ (−1, 1) ; ω open interval such that there is 1 ! i ! k2

with gn : ω → Li is one-to-one}.

For n = 0, set P0 = {L1, . . . , Lk2
}. A set E ⊂ Pn, n " 0, we consider as a set of partition

elements in Pn as well as an open set in (−1, 1). If E ⊂ Pn, n " 0, we denote by Pn+m|E,

m " 0, the restriction of Pn+m to the set E, i.e. Pn+m|E = {ω ∈ Pn+m ; ω ⊂ E}. Note that for

ω ∈ Pj , j " 1, g : ω → [−1, 1] is analytic.

Misiurewicz maps (i.e. maps with non-recurrent critical points) are well studied, going

back to the fundamental paper by Misiurewicz [Mi]. We are going to use a result in [Str].
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Lemma 3.1. For the Misiurewicz–Thurston map fa1
(θ) = a1 − θ2, fa1

: S → S, there exists

a constant K ! 1 such that, for any n ! 1, the following holds. Let Sn = (pn, qn) ⊂ S be a

maximal interval for which f n
a1

|Sn is a diffeomorphism. There exist 1 " l, l̂ " 2 such that

1

K

|f n
a1

(Sn)|

|Sn|l
(θ − pn)

l−1
" |f n

a1

′(θ)| " K
|f n

a1
(Sn)|

|Sn|l
(θ − pn)

l−1,

for all θ ∈ Sn with (θ − pn) " |Sn|/2, and

1

K

|f n
a1

(Sn)|

|Sn|l̂
(qn − θ)l̂−1

" |f n
a1

′(θ)| " K
|f n

a1
(Sn)|

|Sn|l̂
(qn − θ)l̂−1,

for all θ ∈ Sn with (qn − θ) " |Sn|/2.

Proof. By the Fatou theorem the Misiurewicz–Thurston map fa1
has no periodic attractors.

Hence, lemma 3.1 follows immediately from proposition 10.1 in [Str]. #

This very precise information about the map fa1
implies the following distortion estimate

for the base dynamics g.

Lemma 3.2. There are constants κ > 0 and K2 ! 1 such that the following holds. If ω ∈ Pn,

n ! 1 and J ⊂ ω is measurable, then

1

K2

|gn(J )|1/κ |ω| " |J | " K2|g
n(J )|κ |ω|.

Proof. Recall that g = ϕ ◦ f k
a1

◦ ϕ−1. By the construction of the partitions Pn, for an

element ω ∈ Pn, n ! 1, the interval ϕ−1(ω) must not be a maximal interval for which

f nk
a1

|ϕ−1(ω) is a diffeomorphism. To be able to apply lemma 3.1, we start with a maximal

interval Snk = (pnk, qnk) ⊂ S for which f nk
a1

|Snk is a diffeomorphism, and get

|f nk(Snk)|

K
min

{

(θ − pnk)

|Snk|2
,
(qnk − θ)

|Snk|2

}

" |f nk
a1

′(θ)| " K
|f nk

a1
(Snk)|

|Snk|
,

for all θ ∈ Snk . Thus, for a measurable set J ⊂ Snk , it follows that

|f nk
a1

(J )| =

∫

J

|f nk
a1

′(θ)| dθ !
|f nk

a1
(Snk)|

K

∫ |J |/2

0

θ

|Snk|2
dθ

!
|f nk

a1
(Snk)|

8K

(

|J |

|Snk|

)2

, (8)

and

|f nk
a1

(J )| " K
|f nk

a1
(Snk)|

|Snk|
|J | " 2K

|J |

|Snk|
. (9)

Let B = mini |Bi | > 0, and note that B " |f nk
a1

(ϕ−1(ω))|, for all ω ∈ Pn. Considering the set

ϕ−1(ω), where ω ∈ Pn with ϕ−1(ω) ⊂ Snk , we have |ϕ−1(ω)| " |Snk|, and by taking ϕ−1(ω)

as the set J in (9) we get |Snk| " 2K|ϕ−1(ω)|/B. This combined with (8) and (9) implies that

for ω ∈ Pn and a measurable set J ⊂ ω,

B3

32K3

(

|ϕ−1(J )|

|ϕ−1(ω)|

)2

" |f nk
a1

(ϕ−1(J ))| " 2K
|ϕ−1(J )|

|ϕ−1(ω)|
. (10)
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Set J ′ = ϕ−1(J ) and ω′ = ϕ−1(ω). We have that ω′ ⊂ (bj , bj+1) for some 0 ! j < k1

and the density ρ is positive on (bj , bj+1). To estimate |J ′|/|ω′| we use properties (2), (3) and

(4) of the density ρ = ϕ′/2. For example, if ω′ ⊂ (bj , bj + ε), and if, for θ ∈ (bj , bj + ε),

1

K0

√
θ − bj

! ρ(θ) !
K0√

θ − bj

,

then, we have, set & = dist(ω′, bj ),

|J |

|ω|
=

|ϕ(J ′)|

|ϕ(ω′)|
=

∫
J ′ 2ρ(θ)dθ∫
ω′ 2ρ(θ)dθ

! K2
0

√
|J ′| + & −

√
&

√
|ω′| + & −

√
&

! K2
0

(
|J ′|

|ω′|

)1/2

,

where the last inequality follows by the observation that the preceding term is a decreasing

function in &. Furthermore,

|J |

|ω|
"

1

K2
0

√
|ω′| + & −

√
|ω′| − |J ′| + &

√
|ω′| + & −

√
&

"
1

K2
0

√
|ω′| −

√
|ω′| − |J ′|

√
|ω′|

"
1

2K2
0

|J ′|

|ω′|
,

where the second inequality follows by the observation that the preceding term is an increasing

function in &. For the other cases the same or better estimates hold. Combined with (10), we

obtain

1

4KK2
0

|f nk
a1

(ϕ−1(J ))||ω| ! |J | !

(
32K3K8

0

B3

)1/4

|f nk
a1

(ϕ−1(J ))|1/4|ω|.

By (1), we get

|gn(J )| = |ϕ(f nk
a1

(ϕ−1(J )))| =

∫

f nk
a1

(ϕ−1(J ))

2ρ(θ) dθ

! 8K0

∫ |f nk
a1

(ϕ−1(J ))|/2

0

1
√

θ
dθ !

16K0
√

2
|f nk

a1
(ϕ−1(J ))|1/2,

and |gn(J )| " 2
K0

|f nk
a1

(ϕ−1(J ))|.

Altogether, we conclude

1

K2

|gn(J )|1/κ |ω| ! |J | ! K2|g
n(J )|κ |ω|,

where K2 = max{(16K3K9
0 /B3)1/4, 29KK4

0 } and κ = 1/4. #

4. Admissible curves

For an interval ω ∈ P1 consider a C1 curve X̂ = graph(X), X : ω → I , which fulfils

|X′(θ)| ! α/5K1, for θ ∈ ω. Let Y : g(ω) → I be the curve determined by the image

Ŷ = graph(Y ) = F̃ (X̂|ω). Recall that, by (7), we have that |g′(θ)| " 5K2
1 + 4, θ ∈ ω. Hence,

for θ ∈ ω, on the one hand

|Y ′(g(θ))| =
1

|g′(θ)|
| − 2X(θ)X′(θ) + αh′(θ)|

!
1

5K2
1 + 4

(
4α

5K1

+ αK1

)
=

α

5K1

, (11)

and on the other hand

|Y ′(g(θ))| "
1

|g′(θ)|

(
α

K1

− 4|X′(θ)|

)
"

α

5K1|g′(θ)|
. (12)



Quadratic skew-products 2687

Definition 4.1. We say that a curve Ŷ = graph(Y ), Y : L → I , L ∈ {L1, . . . , Lk2
}, is an

admissible curve if there is a C1 curve X̂ = graph(X), X : ω → I , where ω ∈ P1 and

|X′(θ)| ! α/5K1, θ ∈ ω, such that Ŷ = F̃ (X̂|ω).

By (11), if X : L → I is an admissible curve and ω ⊂ L for an element ω in P1, then

Ŷ = F̃ (X̂|ω) is also an admissible curve. The following lemma shows that admissible curves

are non-flat.

Lemma 4.2. There is a constant δ > 0 such that if Y : L → I , L ∈ {L1, . . . , Lk2
}, is an

admissible curve then, for θ ∈ L,

|Y ′(θ)| " δ(θ − l)(r − θ)α, (13)

where l and r denote the left and right boundary point of L.

Proof. By the definition of an admissible curve, we can write Ŷ = F̃ (X̂|ω) for some curve

X : ω → I , ω ∈ P1. By (12) we have that, for θ ∈ ω,

|Y ′(g(θ))| "
α

5K1|g′(θ)|
.

Hence, we have to show that g−1 : L → ω satisfies, for θ ∈ L,

|g−1 ′(θ)| " 5K1δ(θ − l)(r − θ),

for some δ > 0. By the definition of g and by (1), we obtain

|g−1 ′(θ)| =
1

|g′(g−1(θ))|
=

1

|ϕ′(ϕ−1(θ))||f k
a1

′(ϕ−1(g−1(θ)))||ϕ−1 ′(g−1(θ))|

"
1

2ρ(ϕ−1(θ))4k(K0/2)
=

1

ρ(ϕ−1(θ))4kK0

.

Take 0 ! j < k1 such that bj = ϕ−1(l) and bj+1 = ϕ−1(r). Using (1), it follows, for

θ ∈ ϕ−1(L),

ϕ(θ) ! l + 4K0

(√
θ − bj −

√
bj+1 − θ +

√
bj+1 − bj

)
! l + 8K0

√
θ − bj .

Thus, for θ ∈ L, we derive

ϕ−1(θ) " bj +
1

64K2
0

(θ − l)2,

and a similar calculation yields

ϕ−1(θ) ! bj+1 −
1

64K2
0

(r − θ)2.

Combined with (1), this gives us

ρ(ϕ−1(θ)) ! 8K2
0

(
1

θ − l
+

1

r − θ

)
! 8K2

0

|L|

(θ − l)(r − θ)
!

16K2
0

(θ − l)(r − θ)
,

which concludes the proof by setting δ = 5K1/16K3
0 4k . #

Remark 4.3. The image by F̃ of a constant curve, i.e. F̃ (X̂), where X̂ = ω × {x0}, for some

ω ∈ P1 and x0 ∈ I , is an admissible curve. It follows that almost every point in F̃ (Ĵ ), and

hence every interesting point, lies on an admissible curve. In order to prove the claim for

theorem 1.2 on the vertical Lyapunov exponent, it is enough to show that for an arbitrary

admissible curve X̂ = graph(X), X : L → I , L ∈ {L1, . . . , Lk2
},

lim inf
n→∞

1

n
log |∂xfn(θ, X(θ))| > 0, (14)

for Lebesgue almost every θ ∈ L.
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5. Critical returns

We turn now to the central fact about the returns of admissible curves to the critical line

[−1, 1]×{0}. First we recall a fact about the mapfa0
(which in our case satisfies the Misiurewicz

condition and has no periodic attractors) from [MS, theorem III.6.3].

Lemma 5.1. If the parameter a0 is such that the critical point of fa0
(x) = a0 − x2 is pre-

periodic (but not periodic) then there exist constants δ > 0, σ > 1 and µ > 0 such that

|(f i
a0

)′(x)| ! µσ i if f i
a0

(x) ∈ (−δ, δ).

Define the constants

M(α) =

[
| log α|

log 32

]
, η =

log σ

8 log 32
. (15)

For r ! 0, let J (r) = {x ∈ R ; |x| "
√

αe−r} and denote the critical strip [−1, 1] × J (r)

by Ĵ (r).

The main technical tool in the proof of theorem 1.2 is the following proposition. It

corresponds to lemma 2.6 in [Vi].

Proposition 5.2. Let r0(α) = (1/2 − 2η) log(1/α). There exist C < ∞ and β > 0 such

that, for all sufficiently small α > 0, for any admissible curve Ŷ = graph(Y ), Y : L → I ,

L ∈ {L1, . . . , Lk2
},

|{ω ∈ PM(α)|L ; F̃M(α)(Ŷ |ω) ∩ Ĵ (r0(α) − 2) )= ∅}| " Ce−βr0(α), (16)

and furthermore, if r ! (1/2 + 2η) log(1/α),

|{θ ∈ L ; Ŷ (θ) ∈ Ĵ (r − 2)}| " Ce−βr . (17)

The proof of proposition 5.2 is given in the next section. The following lemma

will be an important ingredient in the proof of the estimate (16). Let X̂ = graph(X),

X : L → I , L ∈ {L1, . . . , Lk2
}, be an admissible curve. For ω ∈ Pt |L, t ! 1, we set

X̂j (ω) = graph(Xj (ω, ·)) = F̃ j (X̂|ω), 1 " j " t .

Lemma 5.3. Let α be sufficiently small. There exists a constant ε0 > 0 such that the following

holds. Let X̂ = graph(X), X : L → I , L ∈ {L1, . . . , Lk2
}, be an admissible curve. There is

an integer 1 " j = j (L) " k2 such that there are at least two elements ω1, ω2 ∈ Pj+k2
|L with

the property that gj (ω1) = gj (ω2) and, for all θ ∈ gj (ω1),

|Xj (ω1, θ) − Xj (ω2, θ)| ! ε0α.

Proof. Recall that the critical point 0 lies inside one of the intervals Bi , 1 " i " k2. By

the ergodicity of µ, the map fa1
acting on the Bi can be considered as an irreducible Markov

system. Hence we deduce that f k2
a1

has at least one critical point (which is a turning point)

inside every Bi . It follows that gk2 has at least one turning point inside every Li , 1 " i " k2

(instead of gk2 we could also take g[k2/k]+1).

Let 1 " j = j (L) " k2 be minimal such that gj : L → [−1, 1] has at least one turning

point. Let p be such a turning point and let ω̃1, ω̃2 ∈ Pj |L be the two (disjoint) elements

adjacent to p. Since j is minimal ω̃1 and ω̃2 are contained in the same element of the partition

Pj−1|L. Furthermore, we have that gj (ω̃1) = gj (ω̃2) = L′ for some L′ ∈ {L1, . . . , Lk2
},

sign(X′
j (ω̃1, θ)) = −sign(X′

j (ω̃2, θ)) for θ ∈ L′, and

lim
θ → g(p)

θ ∈ L′

Xj (ω̃1, θ) = lim
θ → g(p)

θ ∈ L′

Xj (ω̃2, θ),
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i.e. the graphs X̂j (ω̃1) and X̂j (ω̃2) have a common endpoint. Let l′ and r ′ be the left and right

endpoint of L′. g(p) is equal to l′ or r ′; without loss of generality assume that g(p) = l′.

From lemma 4.2 it follows that

|Xj (ω̃1, θ) − Xj (ω̃2, θ)| ! 2

∫ θ

l′
δ(u − l′)(r ′ − u)α du

!
|L′|δ

3
(θ − l′)2α =

|L′|δ

3
(θ − g(p))2α.

Since #{ω ∈ Pk2
|L′} > 1, we can fix an element ω ∈ Pk2

|L′ not adjacent to g(p). Let

ω1 = g−j {ω} ∩ ω̃1 and ω2 = g−j {ω} ∩ ω̃2. Note that ω1, ω2 ∈ Pj+k2
|L. We can now choose

an ε0 > 0 (independent of the interval L and the turning point p we started with) such that

minL′∈{L1,...,Lk2
}|L

′|δ

3
(θ − g(p))2 > ε0 for θ ∈ ω.

Thus, |Xj (ω1, θ) − Xj (ω2, θ)| ! ε0α, for all θ ∈ gj (ω1), which concludes the proof. "

6. Proof of proposition 5.2

We prove first claim (17). This is the easier part. It deals with the deep returns near the critical

line [−1, 1] × {0}. We obtain the estimate (17) almost directly from the non-flatness property

of the admissible curves provided by lemma 4.2. Let ε > 0. We want to estimate the measure

of the set {θ ∈ L ; X(θ) ∈ (−ε, ε)}. Let l and r denote the left and right boundary point of

L. By lemma 4.2, we have

|Y ′(θ)| ! δ(θ − l)(r − θ)α.

Without loss of generality we assume that sign(Y ′(θ)) = +1. We have,

Y (l + θ) ! Y (l) +

∫ θ

0

δu(|L| − u)α du ! Y (l) +
δ|L|

6
θ2α ! Y (l) + 2ε,

as soon as θ !
√

12ε/δ|L|α. Thus,

|{θ ∈ L ; Y (θ) ∈ (−ε, ε)}| #

(
12

δ|L|

)1/2 ( ε

α

)1/2

.

Now, we can take ε =
√

αe−r+2. Note that, for r ! (1/2 + 2η) log(1/α),

1/
√

α # exp((1 + 4η)−1r) < exp((1 − η)r).

Thus, we obtain

|{θ ∈ L ; Ŷ (θ) ∈ Ĵ (r − 2)}| #

(
12e2

δminL∈{L1,...,Lk2
}|L|

)1/2

e−(η/2)r ,

which implies (17).

The remaining part is dedicated to the proof of claim (16). We assume that there exists

a point z0 = (θ0, x0) on the admissible curve Ŷ such that F̃M(α)(z0) ∈ Ĵ (0) since, otherwise,

claim (16) is trivial. For i ! 0, let xi = f i
a0

(x0), and we define the horizontal strips

Si = [−1, 1] × [xi − 5iα, xi + 5iα].

We resume some facts from [BST].
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Lemma 6.1. For 0 ! i ! M(α), we have F̃ i(Ŷ ) ⊂ Si and the strips Si , 0 ! i ! M(α) − 1,

do not meet the critical strip Ĵ (0). Furthermore, for 0 ! i ! M(α) − 1, the map fM(α)−i is

in the x-direction almost linear, i.e.

M(α)−1∑

j=i

sup
(θ,x),(θ ′,x ′)∈sj

log

∣∣∣∣
∂xf (θ, x)

∂xf (θ ′, x ′)

∣∣∣∣ ! log 2, (18)

and fM(α)−i is expanding in the x-direction, i.e.

|∂xfM(α)−i(θ, x)| "
µσM(α)−i

2
(19)

for any (θ, x) ∈ Si .

Proof. Lemma 6.1 is a summary of what is written in [BST] between page 1409 line 24 and

page 1410 line 11 (the constant L in [BST] in our case is equal to 1 and S1 in our case is equal

to [−1, 1]). lemma 5.1 in [BST] is identical to our lemma 5.1. #

We introduce some more constants (see lemma 5.3 for the definition of ε0).

• Let σ̄ =
√

σ > 1.

• Fix a constant τ > 4k2 , independent of α, so that

τε0/4 − 2/5K1 − 4/(σ̄ − 1) > 1.

Put λj = |∂xfM(α)−j (F̃
j (z0))|/σ̄

(M(α)−j) for 0 ! j ! M(α)−1. Note that we have, from (19),

λj >
µσM(α)−j

2σ̄ (M(α)−j)
=

µσ̄M(α)−j

2
. (20)

Let 0 = t1 < t2 < · · · < tq ! M(α) − 1, be the (finite) sequence of integers defined

inductively by

ti+1 = min{t ; ti + k2 < t ! M(α) − 1, λti+j " τλt , 1 ! j ! k2,

and λt " λl for all l " t}.

Remark 6.2. The j in the definition of ti+1 corresponds to the j in lemma 5.3, and a ti in our

setting corresponds to a ti + 1 in the definition given in [Vi] (in [Vi] j is constantly equal to 1).

Otherwise, disregarding the requirement λti+1
" λl , for l " ti+1, which is a technical and not

an essential requirement, our definition of ti+1 and the definition given in [Vi] are the same.

We have ti+1 > ti + 2k2, for all 1 ! i < q, because, by the definition of the λj and τ ,

4k2 < τ !
λti+k2

λti+1

=
|∂xfti+1−ti−k2

(F̃ ti+k2(z0))|

σ̄ ti+1−ti−k2
< 4ti+1−ti−k2 .

Let k0(α) = max{1 ! i ! q ; λti " 2e−r0(α)+2/
√

α}.

Sublemma. We have k0(α) " γ r0(α) for γ = η/ log(4k2+1τ ) if α is sufficiently small.

Proof. Observe that λj ! 4λj+1. Let α be so small such that k0(α) < q (note that

2e−r0(α)+2/
√

α ∼ α−2η and λtq+j < τλM(α)−1 ! 4τ , for some 1 ! j ! k2, hence λtq ! 4k2+1τ ).

On the one hand, we have for 1 ! i < q, λti+ji
! 4τλti+1

, for some 1 ! ji ! k2; hence,

λ0 = λt1 ! (4k2+1τ )k0(α)λtk0(α)+1
. From (20), it follows that

λtk0(α)+1
" (4k2+1τ )−k0(α)λ0 " (4k2+1τ )−k0(α)(µ/2)σ̄M(α).
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On the other hand, by the definition of k0(α), λtk0(α)+1
! 2e−r0(α)+2/

√
α. Combining these two

bounds on λtk0(α)+1
, we derive

−r0(α) − (log α)/2 " M(α) log σ̄ − k0(α) log(4k2+1τ ) − C,

where C = log(4/µ) + 2 is a constant independent of α. Recall the definitions (15) and that

r0(α) = (1/2 − 2η) log(1/α). We obtain

k0(α) log(4k2+1τ ) " r0(α) −

(
1

2
− 4η

)
log

1

α
− C = r0(α)

(
1 −

1
2

− 4η

1
2

− 2η

)
− C

= r0(α)

(
2η

1
2

− 2η

)
− C " ηr0(α),

for sufficiently small α. This proves the claim. #

Let 1 ! t ! M(α). Two intervals ω̃1 and ω̃2 in Pt are said to be incompatible if

inf{|x1 − x2| ; (θ1, x1) ∈ F̃M(α)(Ŷ |ω̃1
), (θ2, x2) ∈ F̃M(α)(Ŷ |ω̃2

)} > 2e−r0(α)+2
√

α.

If ω̃1, ω̃2 ∈ Pt are incompatible then obviously either all admissible curves contained in

F̃M(α)(Ŷ |ω̃1
) or all admissible curves contained in F̃M(α)(Ŷ |ω̃2

) do not intersect the critical

strip Ĵ (r0(α) − 2). We are going to establish a sufficient condition for incompatibility. For

ω ∈ Pt |L, t " 0, we set Ŷj (ω) = graph(Yj (ω, ·)) = F̃ j (Ŷ |ω), 0 ! j ! t . For ω0 ∈ Pti |L,

Ŷti (ω0) is an admissible curve. So we are in a position to apply lemma 5.3 to this curve and we

deduce that there exists an integer 1 ! j = j (ω0) ! k2 and two elements ω1, ω2 ∈ Pti+j+k2
|ω0

such that gti+j (ω1) = gti+j (ω2) and, for all θ ∈ gti+j (ω1),

|Yti+j (ω1, θ) − Yti+j (ω2, θ)| " ε0α.

Denote by inc(ω0) all such triples (j, ω1, ω2) which satisfy the properties above.

Sublemma (A sufficient condition for incompatibility). Let 1 ! i < k0(α), ω0 ∈ Pti and

(j, ω1, ω2) ∈ inc(ω0). If ω̃1 ∈ Pti+1
|ω1 and ω̃2 ∈ Pti+1

|ω2 such that gti+j (ω̃1) = gti+j (ω̃2), then

ω̃1 and ω̃2 are incompatible.

Proof. Since (j, ω1, ω2) ∈ inc(ω0) we have

|Yti+j (ω1, θ) − Yti+j (ω2, θ)| " ε0α.

for all θ ∈ gti+j (ω1) = gti+j (ω2). Since gti+j (ω̃1) = gti+j (ω̃2), we deduce from the distortion

estimate (18) and from the definition of the λti that

|Yti+1
(ω̃1, θ) − Yti+1

(ω̃2, θ)| "
1

2

λti+j

λti+1

ε0α "
1

2
τε0α

for all θ ∈ gti+1(ω̃1). For ti+1 ! l ! M(α), let

)l = inf{|x1 − x2| ; (θ1, x1) ∈ F̃ l(Ŷ |ω̃1
), (θ2, x2) ∈ F̃ l(Ŷ |ω̃2

)}.

In other words, )l is the vertical distance between the two images F̃ l(Ŷ |ω̃1
) and F̃ l(Ŷ |ω̃2

).

We have

)ti+1
"

1

2
τε0α − 4

α

5K1

, (21)

where the last term is a bound for the oscillations of the two admissible curves Ŷti+1
(ω̃1) and

Ŷti+1
(ω̃2) (where the length of their domain is at most 2). If we put

Dl = min
(θ,x)∈Sl

|∂xf (θ, x)| = min
(θ,x)∈Sl

|f ′
a0

(x)|,
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for ti+1 ! l ! M(α) − 1, then the distances "l satisfy

"l+1 " Dl"l − 2α,

where the last term 2α is a bound for the oscillation of αs(θ). Hence,

"M(α) "

( M(α)−1∏

l=ti+1

Dl

)
"ti+1

−
M(α)∑

l=ti+1+1

( M(α)−1∏

m=l

Dm

)
2α.

From the definition of λl and the distortion estimate (18), we have

1

2
λl σ̄

M(α)−l
!

M(α)−1∏

m=l

Dm ! 2λl σ̄
M(α)−l .

Since, by the definition of ti+1, λl ! λti+1
for l " ti+1, we obtain

"M(α) "
1

2
λti+1

σ̄
M(α)−ti+1"ti+1

−
M(α)∑

l=ti+1+1

2λl σ̄
M(α)−l2α

" λti+1
σ̄

M(α)−ti+1

(
"ti+1

/2 − 4α

M(α)−ti+1∑

l=1

σ̄
−l

)

" λti+1
σ̄

M(α)−ti+1("ti+1
/2 − 4α/(σ̄ − 1)).

Recall that λti+1
" 2e−r0(α)+2/

√
α. Using (21) and the definition of τ , we conclude that

"M(α) " (2e−r0(α)+2/
√

α)(τε0α/4 − 2α/5K1 − 4α/(σ̄ − 1)) > 2e−r0(α)+2
√

α.

It follows that ω̃1 and ω̃2 are incompatible. #

Let E1 = L and observe that Pt1 |L = P0|L = L. Assume we have constructed

the set Ei ⊂ Pti |L, 1 ! i < k0(α). Consider an element ω0 ∈ Pti |Ei , and a triple

(j, ω1, ω2) ∈ inc(ω0). Applying the criteria for incompatibility we can build a union

ũ ⊂ (ω1 ∪ω2) of elements in Pti+1
|ω0 such that ũ contains exactly one interval of each interval

pair ω̃1 ∈ Pti+1
|ω1 and ω̃2 ∈ Pti+1

|ω2 with gti+j (ω̃1) = gti+j (ω̃2), and such that F̃M(α)(Ŷ |ω)

does not intersect Ĵ (r0(α) − 2) for all ω ∈ PM(α)|ũ. Observe that |gti+j (ũ)| = |gti+j (ω1)|.

Since ω1 ∈ Pti+j+k2
, where j ! k2 and k2 is fixed (it only depends on g) there is a positive

number q0 > 0 which is only dependent on the base dynamics g, such that

|gti (ũ)| " q0.

By lemma 3.2, we obtain the following lower bound for the measure of the set ũ ⊂ ω0 ∈ Pti |Ei :

|ũ| "
1

K2

|gti (ũ)|1/κ |ω0| "
1

K2

q
1/κ

0 |ω0|.

Building similar unions as above for each element ω0 ∈ Pti |Ei we obtain a set Ũ ⊂ Ei , which

is a union of elements in Pti+1
|Ei , such that, for all ω ∈ PM(α)|Ũ , F̃M(α)(Ŷ |ω) does not intersect

Ĵ (r0(α) − 2) and

|Ũ | "
∑

ω0∈Pti
|Ei

|ũ| "
∑

ω0∈Pti
|Ei

1

K2

q
1/κ

0 |ω0| =
1

K2

q
1/κ

0 |Ei |.

We exclude this ‘good’ set Ũ of partition elements from the partition Pti+1
|Ei and denote the

remaining partition elements by Ei+1 ⊂ Pti+1
|Ei . Obviously,

|Ei+1| !

(
1 −

q
1/κ

0

K2

)
|Ei |,
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and, thus

|Ek0(α)| !

(
1 −

q
1/κ

0

K2

)k0(α)−1

|E1| =

(
1 −

q
1/κ

0

K2

)k0(α)−1

|L|.

The set Ek0(α) ⊂ Ptk0(α)
|L is constructed in such a way that for every element ω ∈ PM(α)|L

which does not lie in PM(α)|Ek0(α), F̃M(α)(Ŷ |ω) does not intersect Ĵ (r0(α) − 2). Hence,

|{ω ∈ PM(α)|L ; F̃M(α)(Ŷ |ω) ∩ Ĵ (r0(α) − 2) %= ∅}| !

(
1 −

q
1/κ

0

K2

)k0(α)−1

|L|.

As k0(α) " γ r0(α), by the first sublemma in this section this concludes the proof of claim (16)

in proposition 5.2.

7. Large deviations

To show (14) and thus to conclude the proof that the vertical Lyapunov exponent is positive we

can follow the large deviation argument by Viana (see [Vi, section 2.4]). proposition 5.2 which

we proved here is the counterpart to corollary 2.3 and lemma 2.6 in [Vi] which were the only

parts where the properties of the base dynamics g and the coupling function s were relevant.

The ‘Building expansion’ lemmas, lemmas 2.4 and 2.5 in [Vi], remain valid including their

proofs. In the following, instead of retyping certain arguments which would be exactly the

same in our setting, we will refer to [Vi].

In all that follows let n " 1 be fixed and sufficiently large. Define m " 1 by

m2 ! n < (m + 1)2 and take l = m − M(α). Note that l ≈ m ≈
√

n as long as

n ≫ log(1/α). We are considering an arbitrary admissible curve X̂ = graph(X), X : L → I ,

where L ∈ {L1, . . . , Lk2
}. Given 0 ! ν ! n and ων+l ∈ Pν+l|L, we set γ = F̃ ν(X̂|ων+l

). Then

we say that ν is

• a In-situation for θ ∈ ων+l if γ ∩ Ĵ (0) %= ∅ but γ ∩ Ĵ (m) = ∅;

• a IIn-situation for θ ∈ ων+l if γ ∩ Ĵ (m) %= ∅.

Since the ων+l are open intervals in L there are some θ ∈ L for which In-situations and IIn-

situations are not defined. But they build a zero measure set; thus, they can be neglected. Since

γ is a piece of the graph of an admissible curve, its diameter in the x-direction is bounded by

α

5K1

|gν(ων+l)| !
α

5K1

2(5K2
1 + 4)−l ≪

√
αe−m

!
√

α(e−(m−1) − e−m). (22)

This means that, whenever ν is a IIn-situation for ων+l , γ is contained in Ĵ (m − 1). Hence, the

set A2(n) = {θ ∈ [−1, 1] ; some 0 ! ν ! n is a IIn-situation for θ}, is contained in the set

n⋃

ν=0

⋃

ω∈Pν |L

{θ ∈ ω ; F̃ ν(X̂(θ)) ∈ Ĵ (m − 1)}.

Applying the estimate (17) in proposition 5.2 to the admissible curves X̂ν(ω) =

graph(Xν(ω, ·)) = F̃ ν(X̂|ω), ω ∈ Pν |L, we obtain

|{θ ∈ gν(ω) ; X̂ν(ω, θ) ∈ Ĵ (m − 1)}| ! Ce−βm.
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Thus, by the distortion estimate in lemma 3.2,

|A2(n)| !

n∑

ν=0

∑

ω∈Pν |L

C1/κe−(β/κ)m|ω| = (n + 1)C1/κe−(β/κ)m|L| ! const e−(β/2κ)
√

n. (23)

Henceforth, we focus on the In-situations for the θ ∈ L. Let 0 ! ν1 < . . . < νt ! n be

the In-situations for a θ ∈ L, and let γi , 1 ! i ! t , be the corresponding graph pieces. For

each νi we fix ri " 1 minimal such that γi ∩ Ĵ (ri) = ∅. By the definition of In-situations,

ri ! m, 1 ! i ! t . Recall that r0(α) = (1/2 − 2η) log(1/α) and set G = {i ; ri " r0(α)}

(note that this set depends on θ ). Viana shows in section 2.4 in [Vi] that there exists a constant

c > 0 such that

log |∂xfn(X̂(θ))| " cn, for every θ ∈ L \ En, (24)

where En = A1(n) ∪ A2(n) and

A1(n) =
{
θ ∈ L ;

∑

i∈G

ri " cn
}
.

If we show that

|A1(n)| ! const e−δ
√

n (25)

for some δ > 0, then together with (23), this implies that the set E = ∩k!1 ∪n!k En has zero

Lebesgue measure and hence, we have shown (14). For the proof of (25) let 0 ! q ! m − 1

be fixed and denote Gq = {i ∈ G ; νi ≡ q mod m}. We also take mq = max{j ; mj + q ! n}

(note that mq ≈ m ≈
√

n) and, for each 0 ! j ! mq , we let r̂j = ri if mj + q = νi , for some

i ∈ Gq , and r̂j = 0 otherwise. Observe that Gq and r̂j are, in fact, functions of θ . With the

help of proposition 5.2 we will prove the following lemma.

Lemma 7.1. Let

+q(ρ0, . . . , ρmq
) = {θ ∈ L ; r̂j = ρj for 0 ! j ! mq},

where for each j either ρj = 0 or r0(α) ! ρj ! m. We have

|+q(ρ0, . . . , ρmq
)| ! 2(K2C

1/κ)τ e−(β/2κ)
∑mq

j=0 ρj ,

where τ = #{j ; ρj )= 0}.

Having shown lemma 7.1, renaming β/2κ as 5β and setting C4 = 2K2C
1/κ , we can follow

verbatim the remaining large deviation argument in [Vi, section 2.4] which proves (25) and

thus the existence of a positive vertical Lyapunov exponent at Lebesgue almost every point.

So, it is only left to prove the lemma above.

Proof. Fix a sequence (ρ0, . . . , ρmq
) as in lemma 7.1. We assume that τ " 1, i.e. the ρj are

not simultaneously zero, otherwise the statement is trivial. Let 0 ! j1 < . . . < jτ ! mq such

that ρji
)= 0, for 1 ! i ! τ . Set +q(i) = {θ ∈ L ; r̂jk

= ρjk
for 1 ! k ! i}. Observe that,

for 1 ! i < τ , +q(i + 1) ⊂ +q(i) and +q(ρ0, . . . , ρmq
) ⊂ +q(τ ). Let ai = mji + q, for

1 ! i ! τ . We can consider +q(i) as a subset of the partition Pai+l|L. By inequality (22),

+q(i + 1) ⊂
⋃

ω∈Pai +l |+q (i)

{θ ∈ ω ; F̃ ai+1(X̂(θ)) ∈ Ĵ (ρji+1
− 2)}.

Notice that ai+1 − (ai + l) " M(α). If r0(α) ! ρji+1
! (1/2 + 2η) log(1/α), we are in

a position to apply claim (16) in proposition 5.2 to the admissible curves X̂ai+1−M(α)(ω),
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ω ∈ Pai+1−M(α)|#q(i). Together with the distortion estimate in lemma 3.2, we obtain

|#q(i + 1)| !
∑

ω∈Pai+1−M(α)|#q (i)

K2|{θ ∈ gai+1−M(α)(ω) ;

F̃M(α)(X̂ai+1−M(α)(ω, θ)) ∈ Ĵ (ρji+1
− 2)}|1/κ |ω|

! K2C
1/κe−(β/κ)r0(α)|#q(i)| ! K2C

1/κe−(β/2κ)ρji+1 |#q(i)|,

where in the last inequality we used that ρji+1
! ((1/2 + η)/(1/2 − η))r0(α) ! 2r0(α).

In the other case, when (1/2 + 2η) log(1/α) ! ρji+1
! m, claim (17) in proposition 5.2

combined with lemma 3.2 implies

|#q(i + 1)| !
∑

ω∈Pai+1
|#q (i)

K2|{θ ∈ gai+1(ω) ; X̂ai+1
(ω, θ) ∈ Ĵ (ρji+1

− 2)}|1/κ |ω|

! K2C
1/κe−(β/κ)ρji+1 |#q(i)|.

Altogether, we have

|#q(ρ0, . . . , ρmq
)| ! |#q(τ )| ! (K2C

1/κ)τ−1e−(β/2κ)
∑τ

i=2 ρji |#q(1)|.

With a similar argument we obtain |#q(1)| ! K2C
1/κe−βρj1

/2κ |L|. (In fact, if j1 = 0 and

q < M(α), this is only true if (1/2 + 2η) log(1/α) ! ρj1
! m. However, since n is very large

this is negligible.) Thus,

|#q(ρ0, . . . , ρmq
)| ! 2(K2C

1/κ)τ e−(β/2κ)
∑mq

j=0 ρj . "
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ALMOST SURE ABSOLUTE CONTINUITY OF

BERNOULLI CONVOLUTIONS

MICHAEL BJÖRKLUND AND DANIEL SCHNELLMANN

Abstract. We prove an extension of a result by Peres and Solo-

myak on almost sure absolute continuity in a class of symmetric

Bernoulli convolutions.

1. Introduction

For λ ∈ (0, 1), define the random series

Yλ =
∑

n≥1

±λn,

where the signs are chosen independently with probability 1/2. It is
easy to see that the distribution νλ of Yλ is singular for λ < 1/2, see
Kershner and Wintner [2]. Wintner [7] noted that ν1/2 is uniform on
[−1, 1]. For Lebesgue almost every 1/2 < λ < 1, Erdös conjectured
that νλ is absolutely continuous with respect to the Lebesgue measure
on R. This conjecture has attracted a lot of attention during the years,
and was finally settled by Solomyak [4] in 1995, who also proved that
the densities are in L2(R). A simpler proof was later given by Peres
and Solomyak in [3].

In this paper we discuss one of the many possible applications of the
techniques developed in the paper of Peres and Solomyak. We will show
generic absolute continuity of the distribution of the random series

Yλ =
∑

n≥1

±λϕ(n),

where, as above, the signs ± are chosen independently and with prob-
ability 1/2, and where the function ϕ : N → R is assumed to satisfy

(1) 0 ≤ lim
n→∞

ϕ(n)

n
< ∞,

and some minor technical conditions. In particular, we treat the cases
when ϕ(n) = n + r(n), where r is the logarithm of a slowly varying
function, and ϕ(n) = nα for 0 < α < 1 (see Example 1 and Example 3).

D. Schnellmann is supported by grant KAW 2005.0098 from the Knut and Alice

Wallenberg Foundation.
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If the limit in (1) is infinite it follows that the measure νλ is singular,
see e.g. [2], Criteria (10).

2. Bernoulli Convolutions and Examples

For a function ϕ : N → R and 0 < λ < 1 we consider the infinite
convolution product of (δ−λϕ(n) + δλϕ(n))/2 for n ≥ 1. This convolution
product converges to a measure νλ if and only if

(2)
∑

n≥1

λ2ϕ(n) < ∞,

and the finiteness of (2) implies furthermore that this infinite convo-
lution converges absolutely, i.e. the order of the terms in the convo-
lution is interchangeable (see e.g. Jessen and Wintner [1], Theorem 5
and Theorem 6). Let Ω = {−1, 1}N be the sequence space equipped
with the product topology and µ the Bernoulli measure on Ω with the
weights (1/2, 1/2). The measure νλ can be written as the push-forward
of µ by the random series

(3) Yλ(ω) =
∑

n≥1

ω
n
λϕ(n),

where ω
n

denotes the n-th coordinate of an element ω in Ω. We are
interested in the set of λ in the interval (0, 1) for which the measure νλ

is absolutely continuous with respect to the Lebesgue measure m on
R. Our first result deals with the class of random series where

(4) lim
n→∞

ϕ(n + 1) − ϕ(n) = 0.

Observe that for functions ϕ with the property (4), it follows that

lim
n→∞

ϕ(n)

n
= 0.

We begin by stating the following theorem.

Theorem 2.1. If ϕ : N → R satisfies property (4) and if there is a
λ1 ∈ (0, 1] such that, for all λ ∈ (0, λ1), condition (2) is fulfilled then,
for a.e. λ ∈ (0, λ1), the measure νλ induced by the random series (3)
is absolutely continuous and has an L2-density.

Example 1. If ϕ(n) = nα, 0 < α < 1, it follows immediately that the
distribution of

Yλ =
∑

n≥1

±λn
α

is absolutely continuous for a.e. λ ∈ (0, 1), and that the density is in
L2.
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Example 2. Observe that the function ϕ(n) = n/ log n fulfills (4) and
hence the distribution of

Yλ =
∑

n≥1

±λn/ log n

is absolutely continuous for a.e. λ ∈ (0, 1), and the density is in L2.

The method used by Wintner in [5], [6] and [7] gives a better result in
Example 1 in the case when 0 < α < 1/2. In fact, if 0 < α < 1/2, then
the distribution of Yλ is absolutely continuous for all λ ∈ (0, 1) and,
furthermore, the density is smooth. Wintner considered the Fourier
transform of the measure νλ which can be represented as a convergent
infinite product: ν̂λ(t) =

∏∞

n=1 cos(λϕ(n)t). Since cos(λϕ(n)t) ≤ 2/3 if
1 ≤ λϕ(n)t ≤ 2, it follows that

|ν̂λ(t)| ≤ (2/3)K(t),

where K(t) = #{n ; 1 ≤ λϕ(n)t ≤ 2}. In Example 1 a minor cal-
culation yields that, for 0 < α < 1/2, (2/3)K(t) decreases faster than
polynomially and thus, νλ is absolutely continuous and the density is
smooth. To guarantee a sufficiently fast growing of K(t), the func-
tion ϕ(n) can not grow too fast. The method seems to break down at
α = 1/2. However, by taking the slowly growing function ϕ(n) = log n,
Wintner’s method applies and one gets that the distribution of

Yα =
∑

n≥1

±
1

nα

is absolutely continuous for all α > 1/2 and the density is smooth.

3. Absolute Continuity of Bernoulli Convolutions

Theorem 2.1 will be derived from the following result.

Theorem 3.1. Suppose τ : N → R is of the form τ(n) = βn + r(n),
where the function r(n) satisfies (4). Then the measure ηλ induced by
the random series Zλ =

∑
n≥1 ±λτ(n), is absolutely continuous and has

an L2-density, for a.e. λ ∈ (2−1/β , 2−2/3β).

Example 3. If τ(n) = n + nα, 0 < α < 1, it follows from Theorem 3.1
that, for a.e. λ ∈ (2−1, 2−2/3), the distribution of

Zλ =
∑

n≥1

±λn+nα

is absolutely continuous and the density is in L2.

Proof of Theorem 2.1. Let {nj ; j ≥ 1}, be a subset of N such that
ϕ(nj+1) < ϕ(nj), j ≥ 1, and such that for every n ≥ 1 there is an
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j ≥ 1 with ϕ(n) = ϕ(nj), i.e. the sequence nj should be thought of as
the times when ϕ makes a jump. Observe that we still have

(5) lim
j→∞

ϕ(nj+1) − ϕ(nj) = 0.

Let ϕ̃ : [1,∞) → R be the continuous function which satisfies ϕ̃(j) =
ϕ(nj) and which is linear on [j, j + 1], j ≥ 1. Fix 0 < β < ∞ and set
ψ(x) = ϕ̃−1(βx). Since ϕ̃(x + 1)− ϕ̃(x) → 0 as x → ∞, we can choose
N0 such that ψ(x + 1) − ψ(x) > 1, for x ≥ N0. Let [x] denote the
integer part of the real number x. We split the random series Yλ into
two parts:

Yλ(ω) =
∑

j≥N0

ωn[ψ(j)]
λϕ̃([ψ(j)]) +

∑

n≥1
n/∈{n[ψ(j)] ; j≥N0}

ωnλ
ϕ(n)

=: Zλ(ω) + Rλ(ω).

Note that this is possible since the infinite convolution Yλ is abso-
lutely convergent. We want to apply Theorem 3.1 to the function
τ(n) = ϕ̃([ψ(n)]). Let r(n) = ϕ̃([ψ(n)]) − βn. By the definition of ψ,
r(n) = ϕ̃([ψ(n)])− ϕ̃(ψ(n)) which, by (5) tends to 0 as n → ∞. Hence,
r(n) satisfies trivially condition (4). Let ηλ be the measure induced
by the random series Zλ. It follows from Theorem 3.1, that, for a.e.
λ ∈ (2−1/β , 2−2/3β), ηλ is absolutely continuous and has an L2-density.
The random variables Zλ and Rλ are independent. Hence, for a.e.
λ ∈ (2−1/β , 2−2/3β) ∩ (0, λ1), we can write the measure νλ as a convo-
lution of two measures where one of them is an absolutely continuous
measure having an L2-density. Thus, the measure νλ itself is absolutely
continuous and the density of νλ is in L2(R). Since 0 < β < ∞ was
arbitrary we can fill out the whole interval (0, λ1), which concludes the
proof of Theorem 2.1. !

Remark 1. We have already noted that a function r : N → R sat-
isfying (4) also fulfills limn→∞ r(n)/n = 0. Observe furthermore that
property (4) implies:

lim
k→∞

r(k + j) − r(k) = 0, for all j ≥ 1,

and

lim
k→∞

supj≥1 |r(k + j) − r(k)|

k
= 0.

4. Proof of Theorem 3.1

In [3], Peres and Solomyak studied power series of the form,

g(λ) = 1 +
∑

j≥1

bjλ
j, bj ∈ {−1, 0, 1},
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for λ ∈ (0, 1), and proved the following lemma:

Lemma 4.1. Suppose g is of the above form. There is a δ > 0, such

that, if g(λ) < δ, for some λ in the interval [0, 2−2/3], then g′(λ) < −δ.

We will study slight modifications of these series. Let rk,j, k, j ≥ 1 be
any sequence of real numbers, such that, for every j ≥ 1,

(6) rk,j → 0, as k → ∞,

and

(7) lim
k→∞

log+(supj≥1 |rk,j|)

k
= 0.

Define

(8) gk(λ) = 1 +
∑

j≥1

bjλ
j+rk,j = g(λ) +

∑

j≥1

bjλ
j(λrk,j − 1),

where g(λ) = 1 +
∑

j≥1
bjλ

j . Using Lemma 4.1, we can prove:

Lemma 4.2. There is a positive constant δ′ and a positive integer K,

such that, if k ≥ K and gk(λ) < δ′ for some λ in [0, 2−2/3], then

g′
k(λ) < −δ

′.

Proof. We have

g′
k(λ) =

∑

j≥1

(j + rk,j)bjλ
j−1+rk,j

= g′(λ) +
∑

j≥1

(j + rk,j)bjλ
j−1(λrk,j − 1)) +

∑

j≥1

rk,jbjλ
j−1

Let δ be the constant in Lemma 4.1. Set δ′ = δ/2 and pick 0 < ε < δ/8.
Since λ ≤ 2−2/3 < 1 and because of (7), we can choose jε ≥ 1 such that

|
∑

j≥jε

(j + rk,j)bjλ
j−1(λrk,j − 1)| ≤ ε and |

∑

j≥jε

rk,jbjλ
j−1| ≤ ε,

and

|
∑

j≥jε

bjλ
j(λrk,j − 1)| ≤ ε,

for all k ≥ 1. Furthermore, by condition (6), we can choose Kε ≥ 1
such that

|

jε∑

j=1

(j + rk,j)bjλ
j−1(λrk,j − 1)| ≤ ε and |

jε∑

j=1

rk,jbjλ
j−1| ≤ ε,

and

|

jε∑

j=1

bjλ
j(λrk,j − 1)| ≤ ε,
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for all k ≥ Kε. Note that gk(λ) < δ′ and k ≥ Kε implies, by (8),

g(λ) ≤ δ′ + |
∑
j≥1

bjλ
j(λrk,j − 1)| ≤ δ′ + 2ε < δ.

Hence, if gk(λ) < δ′ and k ≥ Kε, by Lemma 4.1,

g′
k(λ) ≤ −δ + |

∑
j≥1

(j + rk,j)bjλ
j−1(λrk,j − 1)| + |

∑
j≥1

rk,jbjλ
k−1|

≤ −δ + 4ε < −δ′.

!

We can now finish the proof of Theorem 3.1. Let τ : N → R be as in
Theorem 3.1. We can without loss of generality assume that β = 1. The
case for general β follows immediately from a simple scaling argument.
The proof closely follows the ideas outlined in [3]. Suppose ηλ is the
push–forward of the Bernoulli measure on Ω under the map

Zλ(ω) =
∑
n≥1

ωnλ
τ(n).

Setting r(n) = τ(n) − n, we note that, by Remark 1, the sequence
rk,j = r(k + j) − r(k) satisfies condition (6) and (7). Let I denote the
interval [λ0, 2

−2/3], where 2−1 < λ0 < 2−2/3, and let K and δ′ be the
constants in Lemma 4.2. It is enough to show that the distribution of
the random series

Z̃λ(ω) =
∑
n≥K

ωnλ
τ(n)

is absolutely continuous, for a.e. λ ∈ I, and has an L2-density. Let

ΩK = {(ωK , ωK+1, ...) ; ω ∈ Ω},

and denote by µK the Bernoulli measure on ΩK . Following [3], we need
to prove that

S = lim inf
r→0+

1

r

∫
ΩK

∫
ΩK

m({λ ∈ I ; |
∑
n≥K

(ωn − ω′
n)λτ(n)| < r}) dµK(ω)dµK(ω′) < +∞.

For k ≥ K, let Ω̃k denote the subset of elements (ω, ω′) in ΩK × ΩK

such that ωj = ω′
j for all j ≤ k − 1, and ωk (= ω′

k. Note that

(µK × µK)(Ω̃k) = 2−(k+1)+K and τ(k + j) − τ(k) = j + rk,j.
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We obtain

S ≤ lim inf
r→0+

1

r

∑
k≥K

2−(k+1)+K

∫
Ω̃k

m({λ ∈ I ; |gk(λ; ω, ω′)| < r2−1
λ
−τ(k)
0 }) dµK(ω)dµK(ω′),

where

gk(λ; ω, ω′) = 1 +
∑
j≥1

bj(k; ω, ω′)λj+rk,j , bj(k; ω, ω′) ∈ {−1, 0, 1},

for (ω, ω′) ∈ Ω̃k. By Lemma 4.2, the functions gk satisfy a transversality
condition on the interval I, and thus,

m({λ ∈ I ; |gk(λ; ω, ω′)| ≤ r2−1
λ
−τ(k)
0 }) ≤ δ

′−1rλ
−τ(k)
0 .

It follows that
S ≤ δ

′−12K−1
∑
k≥K

2−k
λ
−τ(k)
0 .

Note now that the right-hand side is finite since λ0 > 1/2 and τ(k)/k →

1 as k → ∞. Hence we have proved Theorem 3.1.
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TYPICAL POINTS FOR ONE-PARAMETER FAMILIES OF

PIECEWISE EXPANDING MAPS OF THE INTERVAL

Abstract. Let I ⊂ R be an interval and Ta : [0, 1] → [0, 1], a ∈ I, a one-parameter
family of piecewise expanding maps such that for each a ∈ I the map Ta admits a
unique absolutely continuous invariant probability measure µa. We establish sufficient
conditions on such a one-parameter family such that a given point x ∈ [0, 1] is typical
for µa for a full Lebesgue measure set of parameters a, i.e.

1

n

n−1∑

i=0

δT i
a
(x)

weak-∗
−→ µa, as n → ∞,

for Lebesgue almost every a ∈ I. In particular, we consider C1,1(L)-versions of β-
transformations, skew tent maps, and Markov structure preserving one-parameter
families. For the skew tent maps we show that the turning point is almost surely
typical.

1. Introduction

Let I ⊂ R be an interval and Ta : [0, 1] → [0, 1], a ∈ I, a one-parameter family of maps
of the unit interval such that, for every a ∈ I, Ta is piecewise C

2 and infx∈[0,1] |∂xTa(x)| ≥
λ > 1, where λ is independent on a. Assume that, for all a ∈ I, Ta admits a unique (hence
ergodic) absolutely continuous invariant probability measure (a.c.i.p.) µa. According to
[8] and [9], for Lebesgue almost every x ∈ [0, 1], some iteration of x by Ta is contained
in the support of µa. From Birkhoff’s ergodic theorem we derive that Lebesgue almost
every point x ∈ [0, 1] is typical for µa, i.e.

1

n

n−1∑

i=0

δT i
a(x)

weak-∗
−→ µa, as n → ∞.

In this paper we are interested in the question if the same kind of statement holds in
the parameter space, i.e. if a chosen point x ∈ [0, 1] is typical for µa for Lebesgue a.e.
a ∈ I, or more general, if, for some given C1 map X : I → [0, 1], X(a) is typical for µa

for Lebesgue a.e. a in I. In Section 2 we try to establish some sufficient conditions on a
one-parameter family such that the following statement is true.

For Lebesgue a.e. a ∈ I, X(a) is typical for µa.

The method we use in this paper is a dynamical one. It is essentially inspired by
the result of Benedicks and Carleson [1] where they prove that for the quadratic family
fa(x) = 1 − ax2 on (−1, 1) there is a set ∆∞ ⊂ (1, 2) of a-values of positive Lebesgue
measure for which fa admits almost surely an a.c.i.p. and for which the critical point
is typical with respect to this a.c.i.p. The main tool in their work is to switch from

the parameter space to the dynamical interval by showing that the a-derivative ∂af
j
a(1)

is comparable to the x-derivative ∂xf
j
a(1). This will also be the essence of the basic

condition on our one-parameter family Ta with an associated map X, i.e. we require

that the a- and the x-derivatives of T j
a (X(a)) are comparable (see condition (I) below).
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Some typicality results related to this paper can be found in [14], [4], and [6]. The
one-parameter families Ta, a ∈ I, considered in these papers have in common that their
slopes are constant for a fixed parameter value, i.e. for each a ∈ I there is a constant
λa > 1 such that |T ′

a| ≡ λa on [0, 1]. The advantage of our method and the main novelty
of this paper is that we can drop this restriction and, thus, we are able to consider much
more general families. In the case when Ta : S1 → S1 is a smooth expanding map of the
circle, there are some recent results by Pollicott [12].
This paper consists mainly of two parts. In the first part, which corresponds to Sec-

tions 2-5, we establish a general criteria for typicality. In the second part, which cor-
responds to Sections 6-8, we apply this criteria to several well-studied one-parameter
families and derive various typicality results for these families. Some of these results are
presented in the following subsections of this introduction.
We will shortly give a motivation and an overview of our criteria for typicality. Let

B ⊂ [0, 1] be a (small) interval and set xj(a) = T
j
a (X(a)), a ∈ I, i.e. xj(a) is the forward

iteration by T
j
a of the points we are interested in. For h ≥ 1 fixed, the main estimate to

be established in the method we apply is roughly of the form:

(1)
1

|I|
|{a ∈ I ; xj1(a) ∈ B, ..., xjh(a) ∈ B}| ≤ (C|B|)h,

where 1 ≤ j1 < ... < jh ≤ n (n large) are h integers with large (≥
√
n) gaps between

each other and C ≥ 1 is some constant. Such an estimate is easier to establish for a
fixed map Ta in the family, i.e. it is easier to verify the estimate

(2) |{x ∈ [0, 1] ; T j1
a (x) ∈ B, ..., T jh

a (x) ∈ B}| ≤ (C|B|)h.

(See also inequality (12).) Hence, in order to prove (1), the main idea in the first part of
this paper is to imitate the proof of (2). This leads to three rather natural conditions,
conditions (I)-(III), on the sequence of maps xj : I → [0, 1]. Condition (I) roughly says

that T j
a and xj are comparable, i.e. there exists a constant C ≥ 1 such that

C−1 ≤
|∂xT

j
a (X(a))|

|Daxj(a)|
≤ C,

for all j ≥ 1, and a ∈ I for which the derivatives are defined. Condition (II) ensures
that estimates of the following type apply: There exists a constant C > 0 such that for
all intervals B ⊂ [0, 1] and j ≥ 1 we have

|{a ∈ I ; xj(a) ∈ B})| ≤ C|B|.

Since maps in one-parameter families of piecewise expanding maps have in general no
finite Markov partition, the image xj(ω) of a (maximal) interval of smooth monotonicity
ω for xj might be arbitrarily small. Condition (III) provides us we a certain control of
such ’too short’ intervals of smooth monotonicity.
Apart from condition (I), in order to apply our result to the examples in Sections 6-

8, we will not verify conditions (II) and (III) directly. Instead we will show that two
other conditions, conditions (IIa) and (IIb), are satisfied. Conditions (IIa) and (IIb) are
described in Section 4. Condition (IIa) should hold for general families. It only requires
that the densities for the a.c.i.p. µa are uniformly (in a) bounded above and below
away from zero. In contrast, condition (IIb) is more restrictive. It requires that there
is a kind of order relation in the one-parameter family in the sense that for each two
parameter values a, a′ ∈ I satisfying a < a′ the following holds. The symbolic dynamics
of Ta is contained in the symbolic dynamics of Ta′ and, furthermore, if ω is a (maximal)

interval of smooth monotonicity for T
j
a , then the image of the (maximal) interval of

smooth monotonicity ω′ for T j
a′ with the same combinatorics as ω contains the image of
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ω, i.e. T j
a (ω) ⊂ T j

a′(ω
′). It is interesting to find other ways of verifying conditions (II)

and (III). This might allow to treat more general examples of piecewise expanding one-
parameter families than the ones studied in Sections 6-8. The main obstacle seems
to be the verification of condition (II). As the labeling of conditions (IIa) and (IIb)
suggest, they are aimed for verifying condition (II). More or less as a byproduct they
also imply condition (III); see Section 5. For a simple example of a family not satisfying
condition (IIb), see Remark 4.1.

1.1. β-transformations. The example in Section 6 is a C1,1(L)-version of the β-trans-
formation. By saying that a function is C1,1(L), we mean that it is C1 and its derivative
is in Lip(L), i.e. its derivative is Lipschitz continuous with Lipschitz constant L. For a
sequence 0 = b0 < b1 < ... of real numbers such that bk → ∞ as k → ∞ and a constant
L > 0, let T : [0,∞) → [0, 1] be a right continuous function which is C1,1(L) on each
interval (bk, bk+1), k ≥ 0. Furthermore, we assume that:

• T (bk) = 0 for each k ≥ 0.
• For each a > 1,

1 < inf
x∈[0,1]

∂xT (ax) and sup
x∈[0,1]

∂xT (ax) < ∞.

See Figure 1.

!"

"

!

Figure 1. A possible beginning of a graph for T : [0,∞) → [0, 1].

Given a map T as above, we obtain a C1,1(L)-version of the β-transformation Ta :
[0, 1] → [0, 1], a > 1, by defining Ta(x) = T (ax), x ∈ [0, 1]. As we will see in Section 6,
for each a > 1, Ta admits a unique a.c.i.p. µa. In Section 6 we will show the following.

Theorem 1.1. If X : (1,∞) → (0, 1] is C1 and X ′(a) ≥ 0, then X(a) is typical for µa

for Lebesgue a.e. a > 1.

If we choose X(a) = b1/a then X ′(a) < 0 and T j
a (X(a)) = 0 for all j ≥ 1. Hence, if

the condition X ′(a) ≥ 0 in Theorem 1.1 is not satisfied, we cannot any longer guarantee
almost sure typicality for the a.c.i.p. For an illustration of the curves on which we
have a.s. typicality see Figure 2 (when a is fixed, we can apply Birkhoff’s ergodic
theorem and get a.s. typicality on the associated vertical line). Observe that if we
choose T : [0,∞) → [0, 1] by T (x) = xmod1, then Ta(x) = axmod1 is the usual β-
transformation. Theorem 1.1 generalizes a result due to Schmeling [14] where it is shown
that for the usual β-transformation the point 1 is typical for the associated a.c.i.p. for
Lebesgue a.e. a > 1.

1.2. Skew tent maps. In Section 7 we investigate unimodal maps with slopes constant
to the left and to the right of the turning point. Let these slopes be α and −β where
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!

"

#
!

$

Figure 2. Lines and curves on which we have a.s. typicality for the
C1,1(L)-version of the β-transformation.

α,β > 1. For instance, let Tα,β : [0, 1] → R
+
0 be defined by

Tα,β(x) =

{

αx if x ≤ β
α+β

,

β(1− x) otherwise.

In order that Tα,β : [0, 1] → [0, 1], we have also to assume that α−1 + β−1 ≥ 1 (see, e.g.,
Lemma 3.1 in [11]). The map Tα,β is called a skew tent map. Fix two points (α0,β0) and
(α1,β1) in the set {(α,β) ; α,β > 1 and α−1 + β−1 ≥ 1} such that α1 ≥ α0, β1 ≥ β0,
and at least one of these two inequalities is sharp. Let

α : [0, 1] → [α0,α1] and β : [0, 1] → [β0,β1]

be functions in C1([0, 1]) such that (α(0),β(0)) = (α0,β0), (α(1),β(1)) = (α1,β1), and,
for all a ∈ [0, 1], if α0 &= α1, then α′(a) > 0 and if β0 &= β1, then β′(a) > 0. Consider
the one-parameter family Ta, a ∈ [0, 1], where Ta : [0, 1] → [0, 1] is the skew tent map
defined by Ta = Tα(a),β(a). By [9], since Ta has only two intervals of monotonicity, it
follows that there exists a unique a.c.i.p. µa for Ta. In Section 7 we will show that the
turning point is a.s. typical for the a.c.i.p.

Theorem 1.2. The turning point for the skew tent map Ta is typical for µa for Lebesgue

a.e. a ∈ [0, 1].

Theorem 1.2 generalizes a result due to Bruin [4] where almost sure typicality is shown
for the turning point of symmetric tent maps (i.e. when α(a) ≡ β(a)). It is possible to
extend the results in Section 7 to certain one-parameter families of C1,1(L) unimodal
maps (see Remark 7.5). In Section 7 we will use a slightly different representation of
skew tent maps.

1.3. One-parameter families of Markov maps. In Section 8 we consider one-para-
meter families, which preserve a certain Markov structure. A simple example for such a
family are the maps Ta : [0, 1] → [0, 1] defined by

Ta(x) =

{

x

a
if x < a,

x−a

1−a
otherwise,

where the parameter a ∈ (0, 1). See Figure 3. By [9], since this map has only one point
of discontinuity, it admits a unique a.c.i.p. µa (which coincides in this case with the
Lebesgue measure on [0, 1]). In Example 8.2 in Section 8 we will show the following.

Proposition 1.3. If X : (0, 1) → (0, 1) is a C1 map such that X ′(a) ≤ 0, then X(a) is
typical for µa for a.e. parameter a ∈ (0, 1).

Observe that if X(a) = pa where pa is the unique point of periodicity 2 in the interval
(0, a), then X ′(a) > 0. Hence, if the condition X ′(a) ≤ 0 is violated in Proposition 1.3,
we cannot any longer guarantee almost sure typicality for the a.c.i.p. The very simple
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structure of the example in this subsection makes it to a good candidate for serving the
reader as a model along the paper. Example 8.2 in Section 8 is formulated slightly more
general by composing Ta with a C1,1(L) homeomorphism g : [0, 1] → [0, 1].

! " #

#

!

Figure 3. A Markov structure preserving one-parameter family Ta

where a ∈ (0, 1).

2. Piecewise expanding one-parameter families

2.1. Preliminaries. In this subsection we introduce the basic notation and put up
a general model for one-parameter families of piecewise expanding maps of the unit
interval. A map T : [0, 1] → R will be called piecewise C1,1(L) if there exists a partition
0 = b0 < b1 < ... < bp = 1 of the unit interval such that for each 1 ≤ k ≤ p the
restriction of T to the open interval (bk−1, bk) is a C1,1(L) function. Observe that, by
the Lipschitz property, it follows that T restricted to (bk−1, bk) can be extended to the
closed interval [bk−1, bk] as a C1,1(L) function. Let I ⊂ R be an interval of finite length
and Ta : [0, 1] → [0, 1], a ∈ I, a one-parameter family of piecewise C1,1(L) maps where
the Lipschitz constant 0 < L < ∞ is independent on the choice of the parameter a. We
assume that there are real numbers 1 < λ ≤ Λ < ∞ such that for every a ∈ I,

(3) λ ≤ inf
x∈[0,1]

|∂xTa(x)| and sup
x∈[0,1]

|∂xTa(x)| ≤ Λ.

The parameter dependence is assumed to be piecewise C1, i.e. for all x ∈ [0, 1], there
exists a partition a0 < a1 < ... < ap(x) (where a0 is the left and ap(x) the right boundary
point of I) of the parameter interval I such that for each 1 ≤ k ≤ p(x) the restriction
of the map a &→ Ta(x) to the open interval (ak−1, ak) is a C1 function, which can be
extended to the closed interval [ak−1, ak] as a C1 function. More precise requirements
on the parameter dependence will be given shortly (see (i)-(iii) below).
In the sequel, instead of referring to [8] and [9], we will refer to a paper by S. Wong

[17] who extended the results in [8] and [9] on piecewise C2 maps to a broader class of
maps containing also piecewise C1,1(L) maps. For a fixed a ∈ I, by [17], there is a finite
collection of sets K1(a), ...,Kp0(a)(a) such that each Kk(a), 1 ≤ k ≤ p0(a), is a union
of finitely many disjoint closed intervals (each of positive length) and, for Lebesgue a.e.
x ∈ [0, 1], the accumulation points of the forward orbit of x is identical with one of these
Kk(a)’s, i.e. to every x in a full Lebesgue measure set of [0, 1], there is a Kk(a) such
that

(4) Kk(a) =

∞⋂

N=1

{Tn
a (x)}

∞

n=N .
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Furthermore, for each Kk(a) there is a unique (hence ergodic) a.c.i.p. µa,k such that
supp(µa,k) = Kk(a). Since we are always interested in only one Kk(a), we can without
loss of generality assume that p0(a) ≡ 1, a ∈ I. Henceforth, we write K(a) and µa

instead of K1(a) and µa,1, respectively. So, we have that µa is the unique a.c.i.p. for Ta

and
K(a) = supp(µa).

For a ∈ I, let c0(a) < c1(a) < ... < cp1(a)(a) be the associated partition for the piecewise

C1,1(L) map Ta : K(a) → K(a), i.e., if D1(a), ..., Dp2(a)(a) (p2(a) ≤ p1(a)) denote

the (maximal) open intervals in K(a) on which Ta is C1,1(L), then the ck(a)’s are the
boundary points of these C1,1(L) domains. For the sake of definition, assume that, for
1 ≤ k < p2, the domain Dk(a) is to the left of the domain Dk+1(a).
We assume that the number of ck(a)’s and Dk(a)’s are constant, i.e. p1(a) ≡ p1 and

p2(a) ≡ p2. Furthermore, we make the following three natural assumptions on our
one-parameter family.

(i) For all 0 ≤ k ≤ p1, the map a %→ ck(a) which maps I to [0, 1] is Lip(L), and
there is a constant δ0 > 0 such that

|Dk(a)| ≥ δ0,

for all 1 ≤ k ≤ p2 and a ∈ I.
(ii) For each x ∈ [0, 1] and 1 ≤ k ≤ p2, if J denotes the set of parameters a ∈ I such

that x ∈ Dk(a), then if J is non-empty, it is an interval and the maps a %→ Ta(x)
and a %→ ∂xTa(x) from J to R are Lip(L).

(iii) For each x ∈ [0, 1] and 1 ≤ k ≤ p2, if J denotes the set of parameters a ∈ I such
that T−1

a {x} has a pre-image in Dk(a), then if J is non-empty, it is an interval
and the branch of T−1

·
(x), which maps J to Dk is Lip(L).

2.2. Partitions. For a fixed parameter value a ∈ I, we denote by Pj(a), j ≥ 1, the
partition on the dynamical interval consisting of the maximal open intervals of smooth

monotonicity for the map T
j
a : K(a) → K(a). In other words, Pj(a) denotes the set of

open intervals ω in K(a) such that T j
a : ω → K(a) is C1,1(L) and ω is maximal, i.e. for

every other open interval ω̃ ⊂ K(a) with ω ! ω̃, T j
a : ω̃ → K(a) is no longer C1,1(L).

Clearly, P1(a) = {D1(a), ..., Dp2(a)}. For an open set H ⊂ K(a), we denote by Pj(a)|H
the restriction of Pj(a) to the set H. For a set J ⊂ K(a), which lies completely in one
Dk(a), 1 ≤ k ≤ p2, we denote by symba(J) the index (or symbol) k.
We will define similar partitions on the parameter interval I. Let X : I → [0, 1] be a

C1 map from I into the dynamical interval [0, 1]. The points X(a), a ∈ I, will be our
candidates for typical points. The forward orbit of a point X(a) under the map Ta we
denote as

xj(a) := T j
a (X(a)), j ≥ 0.

Remark 2.1. Since a lot of informations for the dynamics of Ta is contained in the forward
orbits of the partition points ck(a), 0 ≤ k ≤ p1, it is of interest to know how the forward
orbits of these points are distributed. Hence, an evident choice of the map X would be

X(a) = lim
x→ck(a)

x∈ω

Ta(x),

where ω ∈ P1(a) is an interval adjacent to ck(a).

Let J be an open set in the parameter space I. By Pj |J , j ≥ 1, we denote the
partition consisting of all open intervals ω in J such that for each 0 ≤ i < j, there exists
1 ≤ k ≤ p2, such that xi(a) ∈ Dk(a), for all a ∈ ω, and such that ω is maximal, i.e. for
every other open interval ω̃ ⊂ J with ω ! ω̃, there exist a ∈ ω̃, 0 ≤ i < j, and 1 ≤ k ≤ p2
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such that xi(a) ∈ ∂Dk(a). Observe that this partition might be empty. This is, e.g.,
the case when X(a) /∈ K(a) for all a ∈ I or when Ta is the usual β-transformation and
the map X is chosen to be equivalently equal to 0. However, such trivial situations are
excluded by condition (I) formulated in the next subsection. Knowing that condition
(I) is satisfied, then the partition Pj |J can be thought of as the set of the (maximal)
open intervals of smooth monotonicity for xj : J → [0, 1] (in order that this is really
true one should also assume that |x′j(a)| > L, for all j ≥ 0 and parameter values a ∈ I

for which this derivative is defined). We set P0|J = J , and we will write Pj |I instead of
Pj | int(I). If for a set J ′ in the parameter space and for some integer j ≥ 0 the symbol
symba(xj(a)) exists for all a ∈ J ′, then it is constant and we denote this symbol by
symb(xj(J

′)). Finally, in view of condition (I) below, observe that if a parameter a ∈ I
is contained in an element of Pj |I, j ≥ 1, then also the point X(a)(= x0(a)) is contained
in an element of Pj(a).

2.3. Main statement. In this subsection we will state our main result, Theorem 2.2.
Let n be large. To ensure good distortion estimates we will, in the proof of Theorem 2.2,
split up the interval I into smaller intervals J ⊂ I of size 1/n. The main idea in this

paper is to switch from the map xj : J → [0, 1], j ≤ n, to the map T j
a : [0, 1] → [0, 1]

where a is, say, the right boundary point of J . By this, since the dynamics of the map Ta

is well-understood, we derive similar dynamical properties for the map xj , which then

can be used to prove Theorem 2.2. To be able to switch from xj to T j
a , we put further

three rather natural conditions, conditions (I)-(III), on our one-parameter family.

In condition (I) we require that the derivatives of xj and T j
a are comparable. This is

the very basic assumption in this paper. Of course, the choice of the map X : I → [0, 1]
plays here an important role. If, e.g., for every parameter a ∈ I, X(a) is a periodic
point for the map Ta, then xj will have bounded derivatives and the dynamics of xj is
completely different from the dynamics of Ta. Henceforth, we will use the notations

T ′

a(x) = ∂xTa(x) and x′j(a) = Daxj(a), j ≥ 1.

(I) There is a constant C0 ≥ 1 such that for ω ∈ Pj |I, j ≥ 1, we have

1

C0
≤

∣

∣

∣

∣

∣

x′j(a)

T j
a
′(X(a))

∣

∣

∣

∣

∣

≤ C0,

for all a ∈ ω. Furthermore, the number of a ∈ I, which are not contained in any
element ω ∈ Pj |I is finite.

We turn to condition (II). For a ∈ I, let ϕa denote the density for µa. Assume for
the moment that ϕa is bounded from below and from above by a constant C ≥ 1, i.e
C−1 ≤ ϕa(x) ≤ C for a.e. x ∈ K(a). Note that, since the density ϕa is a fixed point of
the Perron-Frobenius operator, we have, for j ≥ 1,

ϕa(y) =
∑

x∈K(a)

T
j
a (x)=y

ϕa(x)

|T j
a
′(x)|

,

for a.e. y ∈ K(a). This implies that

(5)
∑

x∈K(a)

T
j
a (x)=y

1

|T j
a
′(x)|

≤ C2,

for a.e. y ∈ K(a). We require a similar estimate for the map xj .
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(II) There exists a constant C1 ≥ 1 such that the following holds. Let J ⊂ I be an
open interval of length 1/n. For ω̃ ∈ Pi|J , i ≥ 1, and 1 ≤ j ≤ n, we have

(6)
∑

a∈ω̃
xi+j(a)=y

∣

∣

∣

∣

∣

x′i(a)

x′i+j(a)

∣

∣

∣

∣

∣

≤ C1

for a.e. y ∈ [0, 1].

Let B ⊂ [0, 1] be a (small) interval. Recall that in condition (I) it is required that, for
j ≥ 1, there are only finitely many parameter values a ∈ I not contained in any element
of Pj |I. Thus, if in addition to condition (I), condition (II) is satisfied, then it follows
that

(7) |xi({a ∈ ω̃ ; xi+j(a) ∈ B})| =

∫

B

∑

a∈ω̃
xi+j(a)=y

∣

∣

∣

∣

∣

x′i(a)

x′i+j(a)

∣

∣

∣

∣

∣

dy ≤ C1|B|,

which will be the main estimate in the proof of Theorem 2.2. Now, we want to pull
back this estimate to the parameter interval I. Assuming that xi(ω̃) has a large size,
for instance, assuming that xi(ω̃) = (0, 1), then, by a minor distortion estimate for xi,
it follows (see (15) below) that

(8) |{a ∈ ω̃ ; xi+j(a) ∈ B}| ≤ C1C3|B||ω̃|,

where C3 is a bound for the distortion of xi. If ω̃ was a very small interval of smooth
monotonicity for xi then it might happen that ω̃ is mapped by xi+j entirely into the
interval B and not just a |B| fraction of it, as it is the case in (8). To avoid such cases we
want that the total measure of partition elements with a too small image is negligible.
Condition (III) requires that we are able to exclude elements ω ∈ Pj |I, j ≥ 1, whose

length of xj(ω) is below a fixed constant, say, δ1 > 0. However, if ω ∈ Pj |I is an element
such that |xj(ω)| < δ1, we will not exclude it immediately but, roughly speaking, we will
give ω (or at least a part of it) a chance to grow during the following

√
n iterations. The

formulation of condition (III) is rather technical.

(III) There is a constant δ1 > 0 such that to every ε > 0 there is an integer nε growing
at most polynomially in 1/ε such that for n ≥ nε the following holds. Let J ⊂ I
be an open interval of length 1/n and fix an integer 1 ≤ j ≤ 2n. The exceptional
set

E = {ω ∈ Pj+[
√
n]|J ; ∄ ω̃ ∈ Pj+k|J, 0 ≤ k ≤ [

√
n],

such that ω̃ ⊃ ω and |xj+k(ω̃)| ≥ δ1},

satisfies
|E| ≤

ε

n
.

Finally, we state the main result of this paper.

Theorem 2.2. Let Ta : [0, 1] → [0, 1], a ∈ I, be a piecewise expanding one-parameter
family as described in Subsection 2.1, satisfying properties (i)-(iii), and let X : I → [0, 1]
be a C1 map. If conditions (I)-(III) are fulfilled, then X(a) is typical for µa for Lebesgue
almost every a ∈ I.

As already pointed out in the introduction, for all the examples considered in this paper
we will not verify conditions (II) and (III) directly. Instead we will verify conditions (IIa)
and (IIb) which are described in Section 4. Knowing that these two conditions are
satisfied is then sufficient to deduce that also conditions (II) and (III) are satisfied
(provided that the basic condition (I) holds); see Propositions 4.5 and 5.1. Furthermore,
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in the considered examples, we will usually not verify conditions (I), (IIa) and (IIb) for
the whole interval I for which the corresponding family is defined. Instead we will cover
I by a countable number of smaller intervals and verify these conditions on these smaller
intervals.

3. Proof of Theorem 2.2

The idea of the proof of Theorem 2.2 is inspired by Chapter III in [1] where Benedicks
and Carleson prove the existence of an a.c.i.p. for a.e. parameter in a certain parameter
set (the set ∆∞). Their argument implies that the critical point is in fact typical for
this a.c.i.p.
Let

B :=
{

(q − r, q + r) ∩ [0, 1] ; q ∈ Q, r ∈ Q+
}

.

We will show that there is a constant C ≥ 1 such that for each B ∈ B the function

Fn(a) =
1

n

n
∑

j=1

χB(xj(a)), n ≥ 1,

fulfills

(9) lim
n→∞

Fn(a) ≤ C|B|, for a.e. a ∈ I.

By standard measure theory (see, e.g., [10]), (9) implies that, for a.e. a ∈ I, every weak-∗
limit point νa of

(10)
1

n

n
∑

j=1

δxj(a),

has a density which is bounded above by C. In particular, νa is absolutely continuous.
Observe that, by the definition of xj(a), the measure νa is also invariant for Ta and,
hence, νa is an a.c.i.p. for Ta. By the uniqueness of the a.c.i.p. for Ta, we finally derive
that, for a.e. a ∈ I, the weak-∗ limit of (10) exists and coincides with the a.c.i.p. µa.
This concludes the proof of Theorem 2.2.
In order to prove (9), it is sufficient to show that for all (large) integers h ≥ 1 there is

an integer nh,B, growing for fixed B at most exponentially in h, such that
∫

I

Fn(a)
hda ≤ const(C|B|)h,

for all n ≥ nh,B (see Lemma A.1 in [2]).
In the remaining part of this section, we assume that B ∈ B is fixed. For h ≥ 1, we

have

(11)

∫

I

Fn(a)
hda =

∑

1≤j1,...,jh≤n

1

nh

∫

I

χB(xj1(a)) · · · χB(xjh(a))da.

For a fixed parameter a, there exists an integer k such that (T k
a , µa) is exact and, hence,

this system is mixing of all degrees (see [13] and [16]). It follows that for sequences of
non-negative integers jr1 , ..., j

r
h, r ≥ 1, with

lim
r→∞

inf
i $=l

|jri − jrl | = ∞,
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one has

(12)

∫

[0,1]
χB

(

T
kjr

1

a (x)
)

· · · χB

(

T
kjr

h
a (x)

)

dµa(x)

= µa

(

T
−kjr

1

a (B) ∩ ... ∩ T
−kjr

h
a (B)

)

r→∞−→ µa(B)h ≤ (‖ϕa‖∞|B|)h .

Since the maps T j
a and xj are, by conditions (I)-(III), ’comparable’, it is natural to

expect similar mixing properties for the maps xj . In fact, in the next subsection, we are
going to prove the following statement.

Proposition 3.1. Under the assumption that conditions (I)-(III) are satisfied, there is
a constant C ≥ 1 such that the following holds. For all h ≥ 1, there is an integer nh,B

growing at most exponentially in h such that, for all n ≥ nh,B and for all integer h-tuples
(j1, ..., jh) with

√
n ≤ j1 < j2 < ... < jh ≤ n and jl − jl−1 ≥

√
n, l = 2, ..., h,

∫

I
χB(xj1(a)) · · · χB(xjh(a))da ≤ 4|I|(C|B|)h.

Seen from a more probabilistic point of view, Proposition 3.1 says that whenever the
distances between consecutive ji’s are sufficiently large, the behavior of the χB(xji(.))’s
is comparable to that of independent random variables. Now, the number of h-tuples
(j1, ..., jh) in the sum in (11), for which mini ji <

√
n or mink $=l |jk−jl| <

√
n, is bounded

by 2h2nh−1/2. Hence, by Proposition 3.1,
∫

I
Fn(a)

hda ≤ 4|I|(C|B|)h +
2h2√
n
|I| ≤ 5|I|(C|B|)h,

whenever

n ≥ max

{

nh,B,

(

2h2

(C|B|)h

)2
}

.

Since both terms in this lower bound for n grow at most exponentially in h, this concludes
the proof of Theorem 2.2.

3.1. Proof of Proposition 3.1. To be able to make use of conditions (II) and (III),
we split up the integral in Proposition 3.1 and integrate over smaller intervals of length
1/n. More precisely, under the assumptions of Proposition 3.1, we are going to show that
there exists an integer nh,B growing at most exponentially in h such that, for n ≥ nh,B,
we have

(13)

∫

J
χB(xj1(a)) · · · χB(xjh(a))da ≤ 1

n
3(C|B|)h,

where J ⊂ I is an arbitrary interval of length 1/n. This immediately implies that, for
n ≥ nh,B,

∫

I
χB(xj1(a)) · · · χB(xjh(a))da ≤ 4|I|(C|B|)h,

(if nh,B ≫ 1/|I|), which concludes the proof of Proposition 3.1.
Note that by condition (I), for j ≥ 1, there are only finitely many parameter values

not contained in any element of Pj |I. Hence, we can neglect such parameter values and
focus on the partitions Pj |I. Let ω̃ ∈ Pi|J , i ≥ 1, and 1 ≤ j ≤ n. By condition (II) (see
(7)), we have

(14) |xi({a ∈ ω̃ ; xi+j(a) ∈ B})| ≤ C1|B|.

We will give a rough idea of how condition (III) can be used to conclude the proof of
Proposition 3.1. If our one-parameter family satisfies condition (III), this means that we
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can neglect too small partition elements, and we can without loss of generality assume
that the following preferable picture is true: If ω′ ∈ Pji |J , 1 ≤ i ≤ h − 1, then we can
write the subinterval of ω′ which is mapped into B as a disjoint union of intervals ω̃ such
that each ω̃ is an element of some partition Pji+k|J , 1 ≤ k ≤ ji+1 − ji, having a large
image, i.e. |xji+k(ω̃)| ≥ δ1. By Lemma 4.2 a), which is stated and proved in Section 4
and which follows essentially from condition (I), we have good distortion estimates on
ω̃, i.e.

∣

∣

∣

∣

∣

x′ji+k(a)

x′ji+k(a
′)

∣

∣

∣

∣

∣

≤ C3,

for a, a′ ∈ ω̃. Hence, combined with (14), we get

|{a ∈ ω̃ ; xji+1
(a) ∈ B}| ≤ C3

|xji+k({a ∈ ω̃ ; xji+1
(a) ∈ B})|

|xji+k(ω̃)|
|ω̃|

≤ C1C3

δ1
|B||ω̃|.(15)

So, of each such ’large’ ω̃ only a fraction which is proportional to the length of B can be
mapped by xji+1

into B. Observe that the argument for deriving (15) also applies when
ω̃ ∈ Pk|J , 1 ≤ k ≤ j1, satisfying |xk(ω̃)| ≥ δ1, in which case we obtain

(16) |{a ∈ ω̃ ; xj1(a) ∈ B}| ≤ C1C3

δ1
|B||ω̃|.

From (16) combined with (15), applied h − 1 times, we can derive Proposition 3.1. In
the remaining part of this subsection, we will work this out in detail.
Fix an integer τ ≥ 1 such that C2

0λ
−τ ≤ |B|, and assume that n is so large that√

n ≥ τ , which ensures that there are at least τ iterations between two consecutive ji’s.
Let Ω0 = J and

Ωi = {ω ∈ Pji+τ |Ωi−1 ; xji(ω) ∩B '= ∅},
for 1 ≤ i ≤ h. Notice that, by (I) and the assumption on τ , we have |xji(ω)| ≤ |B| for
all ω ∈ Pji+τ |J and, thus,

Ωi ⊂ {a ∈ Ωi−1 ; xji(a) ∈ 3B},

where 3B denotes the interval being three times as long as B and sharing the same
midpoint. In each step we will exclude partition intervals with too short images. To this
end we define, for 0 ≤ i ≤ h− 1, the following exceptional sets (let j0 = 0):

Ei = {ω ∈ Pji+1
|Ωi ; ∄ ω̃ ∈ Pji+k|Ωi, τ ≤ k ≤ ji+1 − ji,

s.t. ω̃ ⊃ ω and |xji+k(ω̃)| ≥ δ1}.

As the ε > 0 in condition (III) we take

ε =
(C|B|)h

h
,

where C is the constant 3C1C3/δ1. By (III) we derive that there is an integer nε,τ growing
at most polynomially in 1/ε such that for each 0 ≤ i ≤ h − 1, |Ei| ≤ ε/(

√
n − τ)2, for

n ≥ nε,τ . (The need to introduce the integer τ in this subsection is the reason why we
require in the formulation of condition (III) that 1 ≤ j ≤ 2n instead of 1 ≤ j ≤ n.) If
nε,τ ≥ (4τ)2, we get that |Ei| ≤ 2ε/n. τ is only dependent on |B|. By the definition of ε,
it follows that nh,B = max{nε,τ , (4τ)

2} grows at most exponentially in h. Disregarding
finitely many points, Ωi \ Ei can be seen as a set of disjoint and open intervals ω̃ such
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that each ω̃ is an element of a partition Pji+k|Ωi, τ ≤ k ≤ ji+1− ji, and |xji+k(ω̃)| ≥ δ1.
By (15) and (16), we obtain

|{a ∈ ω̃ ; xji+1
(a) ∈ 3B}| ≤ C|B||ω̃|,

which in turn implies that, for n ≥ nh,B,

|Ωi+1| ≤ C|B||Ωi \ Ei|+ |Ei| ≤ C|B||Ωi|+
2ε

n
.

Hence, we have

|Ωh| ≤ (C|B|)h|Ω0|+ h
2ε

n
≤

1

n
3(C|B|)h,

where in the last inequality we used the definitions of Ω0 and ε. Since

{a ∈ J ; xj1(a) ∈ B, ..., xjh(a) ∈ B} ⊂ Ωh,

this implies (13).

4. Condition (II)

As already mentioned in Subsection 2.3, in the examples considered in this paper,
we will not verify condition (II) directly. Instead we will verify two other conditions,
conditions (IIa) and (IIb) described below. We will show in this section that condi-
tions (IIa) and (IIb) imply condition (II). In fact, conditions (IIa) and (IIb) also imply
condition (III), see next section.

4.1. Conditions (IIa) and (IIb). Recall that for inequality (5) we assumed that the
density ϕa is bounded from below and from above. We require that this holds for each
density ϕa, a ∈ I, and with a constant independent on a.

(IIa) There is a constant C2 ≥ 1 such that for each density ϕa, a ∈ I, we have

1

C2

≤ ϕa(x) ≤ C2,

for a.e. x ∈ K(a).

Even if condition (IIa) appears to be a natural requirement on a one-parameter family
of piecewise expanding maps, it will take us some effort to verify the lower bound for
the examples in Sections 6 and 7. The upper bound follows almost immediately from
[17] and [8] (see the proof of Lemma A.1).
We turn to condition (IIb). Let a1 and a2 be two arbitrary parameter values in I

such that a1 < a2 and fix an integer j ≥ 1. We require that, for a.e. y ∈ K(a1) the

following holds. To each point x ∈ K(a1) satisfying T
j
a1(x) = y there is an associated

point x′ ∈ K(a2) satisfying T
j
a2(x

′) = y and having the same combinatorics as x, i.e.
symba2(T

i
a2
(x′)) = symba1(T

i
a1
(x)), 0 ≤ i < j. In other words, we require that the

combinatorics of Ta1 should be ’contained’ in the combinatorics of Ta2 and, furthermore,

if ω ∈ Pj(a1) and ω′ ∈ Pj(a2) have the same combinatorics, then the image by T
j
a1 of ω

should be contained in the image by T
j
a2 of ω′. Condition (IIb) is rather restrictive, see

Remark 4.1.

(IIb) For all a1, a2 ∈ I, a1 ≤ a2, and j ≥ 1 there is a mapping

Ua1,a2,j : Pj(a1) → Pj(a2),

such that, for all ω ∈ Pj(a1),

(17) symba1(T
i
a1
(ω)) = symba2(T

i
a2
(Ua1,a2,j(ω))), 0 ≤ i < j,
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and, in particular,

(18) T j
a1
(ω) ⊂ T j

a2
(Ua1,a2,j(ω)).

Remark 4.1. A simple example of a one-parameter family not satisfying (IIb) are the
maps Ta(x) = βx+αmod1, β > 1 and α ∈ (0, 1), where the parameter a can be chosen
to be either β or α. These maps are studied, e.g., in [7] and [6]. However, using the
special property that for every fixed map Ta the derivative of Ta is constantly equal to β,
it is possible to verify condition (II) directly (at least for large β). The main ingredient
in verifying condition (II) for this one-parameter family is that one can show that the
number of elements in the partitions Pj(a), j ≥ 1, are bounded above by a constant C
times βj where the constant C is independent on the parameter value a. This property,
that one, roughly speaking, can switch from considering the maps Ta to counting the
number of partition elements, is also used in [15]. To keep this paper in a reasonable size
we will not investigate this family Ta. For the parameter choice a = β, a.s. typicality in
the case when X(a) ≡ x ∈ [0, 1] is shown in [6].

4.2. Conditions (I), (IIa), and (IIb) imply condition (II). We prove first a dis-
tortion lemma. Let Ta, a ∈ I, be a one-parameter family as described in Subsection 2.1,
satisfying properties (i)-(iii), and let X : I → [0, 1] be a to this family associated C1

map. Let J ⊂ I be an interval of length 1/n. If condition (I) is satisfied, then, for large
n, the length of J is huge compared to the length of an element ω ∈ Pn|J , which, by (I),
can be estimated from above as |ω| ≤ C0/λ

n. Nevertheless, as part b) of the following
lemma asserts, the interval J is small enough to have good distortion estimates which

will enable us to compare the map xj : J → [0, 1] with the map T j
aJ : [0, 1] → [0, 1] where

aJ is the right boundary point of J .

Lemma 4.2. There exists a constant C3 ≥ 1 such that the following holds.

a) If the one-parameter family Ta, a ∈ I, with the associated map X satisfies con-
dition (I), then for ω ∈ Pj |I, j ≥ 1,

1

C3

≤

∣

∣

∣

∣

∣

x′j(a)

x′j(a
′)

∣

∣

∣

∣

∣

≤ C3,

for all a, a′ ∈ ω.
b) If the one-parameter family Ta, a ∈ I, satisfies condition (IIb), then we have the

following distortion estimate. Let n ≥ 1 and a1, a2 ∈ I such that a1 ≤ a2 and
a2 − a1 ≤ 1/n. For ω ∈ Pj(a1), 1 ≤ j ≤ 2n, we have

1

C3

≤

∣

∣

∣

∣

∣

T j
a1

′(x)

T j
a2

′(x′)

∣

∣

∣

∣

∣

≤ C3,

for all x ∈ ω and x′ ∈ Ua1,a2,j(ω).

Remark 4.3. If a1 = a2 in Lemma 4.2 b), then we get a well-known distortion estimate
for piecewise expanding C1,1(L) maps.

Proof. We proof first part b), which is the more difficult part. Fix τ ≥ 1 such that

max{4L/τ, Lλ/(λ− 1)τ} ≪ δ0.

The constant C3 in Lemma 4.2 b) will be greater than (Λ/λ)τ . Hence, for 2n ≤ τ ,
the distortion estimate in b) is trivially satisfied and we can assume that τ < j ≤ 2n.

Observe that, by (IIb), the set T j
a1(ω) is contained in the set T j

a2(Ua1,a2,j(ω)). Fix a point

y in T j
a1(ω) and let, for 1 ≤ i ≤ j,

ri ∈ T j−i
a1

(ω), si ∈ T j−i
a2

(Ua1,a2,j(ω)),
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be the pre-images of y, i.e. T i
a1
(ri) = T i

a2
(si) = y. Note that, by (IIb), we have

symba1(ri) = symba2(si). Let ki = symba1(ri).

Claim. The distance between ri and si, 1 ≤ i ≤ j, satisfies

(19) |ri − si| ≤
Lλ

λ− 1

1

n
.

Proof. In order to show (19), we will show

(20) |ri − si| ≤
L

n

i−1∑

l=0

1

λl
,

for 1 ≤ i ≤ j. Since y has for both parameters a1 and a2 a pre-image r1 = T−1
a1

(y)

and s1 = T−1
a2

(y), which lies in Dk1
, it follows, by (iii) in Subsection 2.1, that y has a

pre-image in Dk1
(a) for all parameter values a in the interval [a1, a2] and, furthermore,

the corresponding map a #→ T−1
a is Lip(L). Hence, we have

(21) |r1 − s1| = |T−1
a1

(y)− T−1
a2

(y)| ≤ L(a2 − a1) ≤
L

n
.

Assume now that we have shown (20) for some 1 ≤ i < j. Since a2 − a1 ≤ 1/n
it follows, by (i), that the length of the intersection of Dki+1

(a1) and Dki+1
(a2) is at

least δ0 − 2L/n. If z lies in this intersection, then, by (ii), the map a #→ Ta(z) is
Lip(L) on the interval [a1, a2]. Thus, the length of the intersection of Ta1(Dki+1

(a1))
and Ta2(Dki+1

(a2)) is at least δ0− 4L/n. Since, by the assumption on τ , δ0− 4L/n ≈ δ0

and |ri − si| ≤ Lλ/(λ − 1)n ≪ δ0, we deduce that at least one of the following two
situations occurs:

• The branch of T−1
a1

which maps ri to Dki+1
(a1) is defined on the whole interval

[ri, si].
• The branch of T−1

a2
which maps si to Dki+1

(a2) is defined on the whole interval
[ri, si].

Assuming the first situation occurs, we obtain, by (3),

|T−1
a1

(ri)− T−1
a1

(si)| ≤
1

λ
|ri − si|,

and, as in (21), we derive that

|T−1
a1

(si)− T−1
a2

(si)| ≤
L

n
.

It follows that

|ri+1 − si+1| = |T−1
a1

(ri)− T−1
a2

(si)| ≤
1

λ
|ri − si|+

L

n
≤

L

n

i∑

k=0

1

λk
.

We can do a similar calculation when the second situation occurs, which concludes the
proof. !

By a similar reasoning as in the proof of (19), we note that at least one of the following
two situations occurs:

• [ri, si] ⊂ Dki
(a1).

• [ri, si] ⊂ Dki
(a2).
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If the first situation occurs, we have, by (ii), that the map a !→ T ′

a(si) is Lip(L) on
the interval [a1, a2]. Combined with (19) and since x !→ Ta1(x) is C

1,1(L) on [ri, si], we
obtain

|T ′

a1
(ri)| ≤ |T ′

a1
(si)|+ L|ri − si| ≤ |T ′

a2
(si)|+ L(a2 − a1) + L|ri − si|

≤ |T ′

a2
(si)|+

2Lλ

λ− 1

1

n
.

If the second situation occurs, it follows in a similar way that

|T ′

a2
(si)| ≥ |T ′

a1
(ri)|−

2Lλ

λ− 1

1

n
.

For τ < i ≤ j, let ti = ri and αi = a1 if the first situation occurs and ti = si and αi = a2
otherwise. Altogether, we obtain

∣

∣

∣

∣

∣

T j
a1

′(x)

T j
a2

′(x′)

∣

∣

∣

∣

∣

≤

(

Λ

λ

)

τ j
∏

i=τ+1

|T ′

a1
(T j−i

a1 (x))|

|T ′

a2
(T j−i

a2 (x′))|

≤

(

Λ

λ

)

τ j
∏

i=τ+1

|T ′

a1
(ri)|+ L|T j−i

a1 (ω)|

|T ′

a2
(si)|− L|T j−i

a2 (Ua1,a2,j(ω))|

≤

(

Λ

λ

)

τ j
∏

i=τ+1

|T ′

αi
(ti)|+ 2Lλ(λ− 1)−1n−1 + Lλ−i

|T ′

αi
(ti)|− 2Lλ(λ− 1)−1n−1 − Lλ−i

.(22)

(To ensure that the denominators are positive, we should also assume that τ was chosen
so large that 2Lλ(λ− 1)−1

τ
−1 + Lλ−τ < λ.) Since j ≤ 2n, the product in the last term

of inequality (22) is clearly bounded above by a constant independent on n. Hence, this
shows the upper bound in the distortion estimate in part b). The lower bound is shown
in the same way. This concludes the proof of part b).
The proof of part a) is similar but easier than the proof of part b). We will give only

a sketch of the proof. Let ω ∈ Pj |I, j ≥ 1, and a, a′ ∈ ω. By condition (I), we have
∣

∣

∣

∣

∣

x′j(a)

x′j(a
′)

∣

∣

∣

∣

∣

≤ C2
0

j−1
∏

i=0

∣

∣

∣

∣

T ′

a(xi(a))

T ′

a′
(xi(a′))

∣

∣

∣

∣

.

The distance between xi(a) and xi(a
′), 1 ≤ i ≤ j − 1, satisfies, by (I),

|xi(a)− xi(a
′)| ≤ |xi(ω)| ≤ C2

0λ
−(j−i).

This inequality is a counterpart to inequality (19), which is the part in b) where we used
condition (IIb). Similarly as in the proof of part b) we derive

∣

∣

∣

∣

∣

x′j(a)

x′j(a
′)

∣

∣

∣

∣

∣

≤ C2
0

(

Λ

λ

)

τ j−τ
∏

i=1

|T ′

αi
(ti)|+ 2LC2

0λ
−(j−i)

|T ′

αi
(ti)|− 2LC2

0λ
−(j−i)

,

where either αi = a and ti = xi(a) or αi = a′ and ti = xi(a
′), and τ is chosen so

large that 2LC2
0λ

−τ < λ. The product in this inequality is clearly bounded above by a
constant independent on j ≥ 1. This concludes the proof of Lemma 4.2. !

To prove Lemma 4.2 b), instead of property (18) in condition (IIb), it would be suffi-

cient to assume that dist(T j
a1(ω), T

j
a2(Ua1,a2,j(ω))) ≤ 1/n. However, to establish inequal-

ity (6) in condition (II), property (18) is essential.

Lemma 4.4. Under the assumption that conditions (I) and (IIb) are satisfied, there is
an integer q ≥ 1 such that the following holds. Let J ⊂ I be an open interval of length
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1/n such that the right boundary point aJ of J is contained in I, and let i ≥ 0. For each
element ω̃ ∈ Pi|J and integer 1 ≤ j ≤ 2n, there is an at most q-to-one map

Uω̃,aJ ,j : Pi+j |ω̃ → Pj(aJ),

such that, for ω ∈ Pi+j |ω̃, the image of ω is contained in the image of Uω̃,aJ ,j(ω), i.e.

(23) xi+j(ω) ⊂ T j
aJ
(Uω̃,aJ ,j(ω)),

and we have the following distortion control:

(24)
1

|T j
a
′(xi(a))|

≤ C3

1

|T j
aJ

′(x)|
,

for all a ∈ ω and x ∈ Uω̃,aJ ,j(ω).

Proof. We define the map

Uω̃,aJ ,j : Pi+j |ω̃ → Pj(aJ)

as follows. Let ω ∈ Pi+j |ω̃ and a ∈ ω. By the definition of the partitions associated to
the parameter interval, xi+l(a) /∈ {c0(a), ..., cp1(a)}, for all 0 ≤ l < j. Hence, there exists
an element ω(xi(a)) in the partition Pj(a) containing the point xi(a). We set

Uω̃,aJ ,j(ω) = Ua,aJ ,j(ω(xi(a))),

where Ua,aJ ,j : Pj(a) → Pj(aJ) is the map given by (IIb). Note that the element
ω
′ = Ua,aJ ,j(ω(xi(a))) has the same combinatorics as ω, i.e.

symbaJ (T
l
aJ
(ω′)) = symb(xi+l(ω)),

0 ≤ l < j. Since there cannot be two elements in Pj(aJ) with the same combinatorics, the
element ω′ is independent on the choice of a ∈ ω. It follows that the map Uω̃,aJ ,j is well-

defined. By property (18) in condition (IIb), we have T j
a (ω(xi(a))) ⊂ T j

aJ (Uω̃,aJ ,j(ω)),
for all a ∈ ω. This implies (23). Since j ≤ 2n and aJ − a ≤ 1/n, for a ∈ ω, inequality
(24) follows immediately from the distortion estimate in Lemma 4.2 b). In order to
conclude the proof of Lemma 4.4, it is only left to show that the map Uω̃,aJ ,j is at most
q-to-one for some integer q ≥ 1. Let i0 = i0(C0,λ) ≥ 0 be so large that |x′i(a)| ≥ L
for all i ≥ i0 and parameter values a ∈ I for which the derivative is defined (L is the
Lipschitz constant introduced in Subsection 2.1). If i ≥ i0, using that the partition points
c0(a), ..., cp1(a) are Lip(L), it is easy to show that the map Uω̃,aJ ,j : Pi+j |ω̃ → Pj(aJ) is
one-to-one. For 0 ≤ i ≤ i0, recall that, by condition (I), the partition Pi|I consists of
only finitely many elements. Hence, setting q = #{ω ∈ Pi0 |I} we derive that the map
Uω̃,aJ ,j : Pi+j |ω̃ → Pj(aJ) is at most q-to-one. !

Using Lemma 4.2 and Lemma 4.4, we can easily deduce the main statement of this
section.

Proposition 4.5. If the one-parameter family Ta, a ∈ I, with the associated map X
satisfies conditions (I), (IIa), and (IIb), then it satisfies condition (II).

Proof. Let J ⊂ I be an open interval of length 1/n. We assume first that the right
endpoint aJ of J lies in I. As in condition (II), let ω̃ ∈ Pi|J , i ≥ 1, and 1 ≤ j ≤ n.

Observe that, by condition (I), we have |x′i(a)|/|x
′

i+j(a)| ≤ C2
0 |T

j
a
′(xi(a))|. Let Uω̃,aJ ,j :

Pi+j |ω̃ → Pj(aJ) be the map provided by Lemma 4.4. By inequality (23), for each
ω ∈ Pi+j |ω̃, whenever there is a parameter value a ∈ ω such that xi+j(a) = y, then
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there is also a point x ∈ Uω̃,aJ ,j(ω) satisfying T
j
aJ (x) = y. Combined with the distortion

estimate (24), we obtain

∑

a∈ω̃
xi+j(a)=y

|x′i(a)|

|x′i+j(a)|
≤ C2

0

∑

a∈ω̃
xi+j(a)=y

1

|T j
a
′(xi(a))|

≤ qC2
0C3

∑

x∈K(aJ )

T j
aJ

(x)=y

1

|T j
aJ

′(x)|
,

for all but finitely many y ∈ [0, 1] (we exclude points y for which there exists a parameter
value a ∈ ω̃ which is not contained in any element of Pi+j |ω̃ and such that xi+j(a) = y;
by condition (I), the number of such points y is finite). Recall that condition (IIa) implies
inequality (5) with the upper bound C2

2 . By applying (5) to the right hand side of the
inequality above, we obtain condition (II) with the constant C1 = qC2

0C
2
2C3. Since C1

does not depend on aJ , we can drop the assumption, that the right boundary point of
J is contained in I. This concludes the proof. !

5. Condition (III)

As already pointed out in the introduction, even if conditions (IIa) and (IIb) are in
particular designed for verifying condition (II), it turns out that if conditions (I), (IIa),
and (IIb) are satisfied, then also condition (III) is satisfied — at least on smaller intervals.

Proposition 5.1. If the one-parameter family Ta, a ∈ I, with the associated map X

satisfies conditions (I), (IIa), and (IIb), then, disregarding a finite number of parameter
values in I, we can cover I by countably many intervals such that on each such interval
condition (III) is satisfied.

Proof. Fix an integer τ so large that 21/τ ≤
√
λ. Observe that, if we set for a fixed a ∈ I,

δ = min{|ω| ; ω ∈ Pτ (a)},

then the following is trivially satisfied: For all ω ∈ Pt(a), where 1 ≤ t ≤ τ , we have

|T t
a(ω)| ≥ δ.

We want that a similar property holds for the partition elements of the parameter space.

Claim. Disregarding a finite number of parameter values in I, we can cover I by a
countable number of intervals Ĩ ⊂ I such that for each interval Ĩ there exists a constant
δ1 = δ1(Ĩ) > 0 such that the following holds. Let j ≥ 1 and 1 ≤ t ≤ τ . If ω ∈ Pj+t|ω

′

for some ω
′ ∈ Pj |Ĩ and if ω is not adjacent to a boundary point of ω′, then we have

(25) |xj+t(ω)| ≥ δ1.

Proof. Even if the proof is rather straightforward, we have to be a bit careful. For a ∈ I,
let

κ(a) = min{|ω| ; ω ∈ Pτ (a)} > 0.

Since condition (IIb) holds, we can argue as in the proof of Lemma A.1 (see inequal-
ity (48)) and, disregarding a finite number of parameter values in I, we can cover I by a

countable number of intervals Ĩ ⊂ I such that for each such interval Ĩ there is a constant
κ0 = κ0(Ĩ) > 0 such that

(26) κ(a) ≥ κ0,

for all a ∈ Ĩ. Fix such a parameter interval Ĩ and let a ∈ Ĩ. Recall that in Subsection 2.1
we defined Dk(a), 1 ≤ k ≤ p2, to be the elements of P1(a). Let C(Ĩ) denote the following
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set of functions:

C(Ĩ) = {b : Ĩ → [0, 1] ; b(a) = lim
x→c(a)
x∈Dk(a)

T t
a(x), 1 ≤ k ≤ p2, 1 ≤ t ≤ τ,

and c(a) ∈ ∂Dk(a) (s.t. c ∈ C0(Ĩ))}.

By the first claim in the proof of Lemma A.1, the functions in C(Ĩ) are continuous. Let
ω ∈ Pt(a), 1 ≤ t ≤ τ . Observe that the image of ω by T t

a is of the form

T t
a(ω) = (b1(a), b2(a)),

for some functions b1, b2 ∈ C(Ĩ) (if b1 and b2 are not uniquely defined, we choose them

such that (27) below holds). By the continuity of the functions in C(Ĩ) and by (26),

we derive that for each parameter value a∗ ∈ Ĩ there exists a to ω associated element
ω∗ ∈ Pt(a∗) such that

(27) T t
a∗
(ω∗) = (b1(a∗), b2(a∗)), and symba∗(T

i
a∗
(ω∗)) = symba(T

i
a(ω)),

for 0 ≤ i < t. By condition (IIb), it follows further that

(28) (b1(a∗), b2(a∗)) ⊂ (b1(a), b2(a)),

for all a∗, a ∈ Ĩ such that a∗ ≤ a. Observe that from (26) it follows also that for each

function b ∈ C(Ĩ) there exists 1 ≤ k ≤ p2 such that

(29) b(a) ∈ closure{Dk(a)},

for all a ∈ Ĩ.
We turn to the partitions on the parameter space. Let j0 = j0(C0,λ) ≥ 1 be so large

that |x′j(a)| ≥ L, for all j ≥ j0 and parameter values a ∈ I for which the derivative

is defined (L is the Lipschitz constant from Subsection 2.1). We consider first the case

when j ≥ j0. Let ω
′ ∈ Pj |Ĩ, fix an integer 1 ≤ t ≤ τ , and denote by a∗ the left boundary

point of Ĩ. We will construct a map U : Pj+t|ω
′ → ∪1≤s≤tPs(a∗) such that for each

ω ∈ Pj+t|ω
′ not adjacent to a boundary point of ω′ we have

(30) T s
a∗
(U(ω)) ⊂ xj+t(ω), for some 1 ≤ s ≤ t.

(Observe that for the construction of the map in Lemma 4.4 we consider instead of
the left the right boundary point of the parameter interval and the inclusion is in the
other direction. The construction regarding (30) is a bit more cumbersome.) Having
constructed such a map U , since the sizes of the elements in Ps(a∗), 1 ≤ s ≤ t, are
bounded from below by κ0, by setting δ1 = κ0, this immediately implies the assertion of
the claim for the case j ≥ j0. Fix ω ∈ Pj+t|ω

′ not adjacent to a boundary point of ω′.
Let

t0 = min{s ≥ 1 ; ∃ ω̃ ∈ Pj+s|ω
′ s.t. ω ⊂ ω̃, ∂ω̃ ∩ ∂ω

′ = ∅ and ∂ω̃ ∩ ∂ω *= ∅},

and, for i ≥ 0, if ω /∈ Pj+ti |ω
′, then let

ti+1 = min{s > ti ; ∃ ω̃ ∈ Pj+s|ω
′ s.t. ω ⊂ ω̃ and ω̃ /∈ Pj+ti |ω

′};

and otherwise, we do not define ti+1. Let q ≤ t be the maximal integer for which tq is
defined and set tq+1 = t+ 1. For 0 ≤ i ≤ q, let ωi be the element in Pj+ti |ω

′ containing
ω. Observe that ωi is also an element of Pj+ti+1−1|ω

′. In particular, we have ωq = ω.
We will show that for each ωi there is an element ω∗

i ∈ Pti−t0+1(a∗) such that ω∗
i is also

an element of Pti+1−t0(a∗) and if b1, b2 ∈ C(Ĩ) are the functions satisfying

(31) T
ti+1−t0
a∗ (ω∗

i ) = (b1(a∗), b2(a∗)),



TYPICAL POINTS 19

then they satisfy also

(32) xj+ti+1−1(ωi) = (b1(aL), b2(aR)) or xj+ti+1−1(ωi) = (b1(aR), b2(aL)),

where aL and aR are the boundary points of ωi. Combined with (28), this immediately
implies (30) by setting U(ω) = ω∗

q . Recall that by c0(a) < c1(a) < ... < cp1(a) we denote
the boundary points of the Dk(a), 1 ≤ k ≤ p2, and these boundary points are Lipschitz
in a with Lipschitz constant L. Since j ≥ j0 and since ω0 is not adjacent to a boundary
point of ω′, we have that the image of ω0 by xj+t0−1 is of the form

xj+t0−1(ω0) = (ck(aL), ck+1(aR)) or xj+t0−1(ω0) = (ck(aR), ck+1(aL))

where aL and aR are the boundary points of ω0 and 0 ≤ k < p1 (the assumption
j ≥ j0 we used to avoid that the image is, e.g., of the form (ck(aL), ck(aR))). Now, let
ω∗
0 ∈ P1(a∗) be the element of the form (ck(a∗), ck+1(a∗)). By (26) and (29), we derive

immediately that ω∗
0 is also an element of Pt1−t0(a∗) and properties (31) and (32) are

satisfied for w0 and w∗
0. If q = 0 then we are done. Otherwise, assume that we have

shown (31) and (32) for 0 ≤ i < q. Let aL and aR denote the boundary points of ωi+1.
We have that one boundary point of xj+ti+1−1(ωi+1) is equal to ck(aL) or ck(aR) for some
0 < k < p1, and the other coincides with a boundary point of xj+ti+1−1(ωi) (this latter
fact follows since, by the definition of t0, ω0 and ω have a common boundary point),

i.e. xj+ti+1−1(ωi+1) is of the form (b(aL), ck(aR)) or (b(aR), ck(aL)) where b ∈ C(Ĩ) (if
c < b then we mean by (b, c) the interval (c, b)). Since we assumed that (31) and (32)
are satisfied for the element ωi with an associated element ω∗

i ∈ Pti−t0+1(a∗), we can
apply (26) and (29) and we deduce that there is an element ω∗

i+1 ∈ Pti+1−t0+1(a∗) such

that T
ti+1−t0
a∗ (ω∗

i+1) = (b(a∗), ck(a∗)). Applying (26) and (29) once more, we get that
ω∗
i+1 is also an element of Pti+2−t0(a∗) and, furthermore, we deduce that properties (31)

and (32) are satisfied for the elements ωi+1 and ω∗
i+1. This concludes the proof of the

claim in the case when j ≥ j0. Observe that by condition (I) there are only finitely many

elements in a partition Pj |Ĩ. Hence, by setting the constant δ1 = δ1(Ĩ) equal to

δ1 = min{κ0,min{|ω| ; ω ∈ Pj |Ĩ , 1 ≤ j ≤ j0}},

this concludes the proof of the claim. !

In the following, we restrict our considerations to an interval Ĩ ⊂ I with an associated
constant δ1 > 0, as described in the claim above, and verify condition (III) on this

interval Ĩ. As in condition (III), let J ⊂ Ĩ be an open interval of length 1/n, where we
assume n ≫ 1, and fix an integer 1 ≤ j ≤ 2n. For each ω′ ∈ Pj |J , we define the set

E
ω
′ = {ω ∈ Pj+[

√
n]|ω

′ ; ∄ ω̃ ∈ Pj+k|ω
′,

0 ≤ k ≤ [
√
n], s.t. ω̃ ⊃ ω and |xj+k(ω̃)| ≥ δ1}.

If 1 ≤ t ≤ τ , we derive from the claim above that

#{ω ∈ Pj+t|ω
′ ; |xj+t(ω)| < δ1} ≤ 2.

In other words only the element(s) in Pj+t|ω
′ being adjacent to a boundary point of ω′

can have a small image. By a repeated use of this fact we derive

#{ω ∈ Pj+[
√
n]|Eω

′} ≤ 2 · 2[
√
n]/τ ≤ 2

√
λ
[
√
n]
,

where in the last inequality we used the definition of τ . Applying condition (I), it follows
that

|xj(Eω
′)| ≤ C2

0

#{ω ∈ Pj+[
√
n]|Eω

′}

λ[
√
n]

≤
2C2

0
√
λ
[
√
n]

=: γn.
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The exceptional set E in condition (III) is given by

E =
⋃

ω′∈Pj |J

Eω′ .

Let aJ denote the right boundary point of J . Without loss of generality we can assume
that aJ ∈ I. Set

Cj := {b ; b ∈ ∂T i
aJ
(ω), 1 ≤ i ≤ j, ω ∈ Pj(aJ)}.

By (I), we obtain

|E| =
∑

ω′∈Pj |J

∫
xj(Eω

′ )

1

|x′j(ay)|
dy ≤

∑
ω′∈Pj |J

C0

∫
xj(Eω

′ )

1

|T j
ay

′(X(ay))|
dy,

where ay = (xj |ω′)−1(y). Since conditions (I) and (IIb) are satisfied, we can apply
Lemma 4.4 in the case where i = 0 and get

|E| ≤
∑

ω∈{UJ,aJ ,j(ω′) ; ω′∈Pj |J}

C0C3

∫
Γ(ω)

1

|T j
aJ

′(xy)|
dy

≤ q
∑

ω∈Pj(aJ )

C0C3

∫
Γ(ω)

1

|T j
aJ

′(xy)|
dy,

where xy = (T j
aJ |ω)

−1(y), and

Γ(ω) = [bω, bω + |xj(Eω′)|],

where bω ∈ Cj denotes the left boundary point of T j
aJ (ω). Recall that |xj(Eω′)| ≤ γn.

Finally, we can move the sum over the partition elements inside the integral and we
derive that

|E| ≤ qC0C3

∑
b∈Cj

∫
[b,b+γn]

∑
x∈K(aJ )

T
j
aJ

(x)=y

1

|T j
aJ

′(x)|
dy.

Since condition (IIa) is satisfied, we can apply inequality (5), and we get that the sum
inside the integral above is bounded by the constant C2

2 . Recall that p2 is the number of
(maximal) smooth monotonicity domains for TaJ |K(aJ ), and observe that for each b ∈ Cj
there is such a monotonicity domain D ∈ P1(aJ) and a partition point c ∈ ∂D such that

b = lim
x→c
x∈D

T i
aJ
(x),

for some 1 ≤ i ≤ j. Thus, since j ≤ 2n, we have

|Cj | ≤ |C2n| ≤ 2n · 2p2.

Finally, for each ε > 0, we deduce that

|E| ≤ 4p2qC0C
2
2C3nγn ≤

ε

n
,

for n ≥ nε, where nε can in fact be taken to grow less than polynomially in 1/ε. This

concludes the verification of condition (III) on the interval Ĩ. !
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6. β-transformation

We apply Theorem 2.2 to a C1,1(L)-version of β-transformations. Let the map T :
[0,∞) → [0, 1] be piecewise C1,1(L) and 0 = b0 < b1 < ... be the associated partition,
where bk → ∞ as k → ∞. We assume that:

a) T is right continuous and T (bk) = 0, for each k ≥ 0.
b) For each a > 1,

1 < inf
x∈[0,1]

∂xT (ax) and sup
x∈[0,1]

∂xT (ax) < ∞.

See Figure 1. We define the one-parameter family Ta : [0, 1] → [0, 1], a > 1, by Ta(x) =
T (ax). There exists a unique a.c.i.p. µa for each Ta as the following lemma asserts.

Lemma 6.1. For each a > 1 there exists a unique a.c.i.p. µa for Ta. The support K(a)
is an interval adjacent to 0 and its length |K(a)| is piecewise constant in a where the
number of discontinuities is countable. Furthermore, the following holds. Let I ! (1,∞)
be a parameter interval on which |K(a)| is constant and such that the left endpoint of I
does not coincide with 1 or a point of discontinuity for a $→ |K(a)|. Then, there exists
an integer t ≥ 1 (independent on the parameter value a ∈ I), such that the support K(a),
a ∈ I, is obtained by iterating t times the interval of monotonicity adjacent to 0, i.e.
K(a) = closure{T t

a((0, b1/a))}.

The proof of Lemma 6.1 is not difficult but tedious. For completeness we add the proof
in the end of this section. Henceforth in this section, I ! (1,∞) will always denote an
interval as described in Lemma 6.1 and such that, for a ∈ I, the number of discontinuities
of Ta inside K(a) is constant, i.e. the number #{k ≥ 1 ; bk/a ∈ int(K(a))} is constant
on I. For a fixed interval I it is now straightforward to check that the one-parameter
family Ta, a ∈ I, fits into the model described in Subsection 2.1 fulfilling properties
(i)-(iii). Now, we can state the main result of this section.

Theorem 6.2. If for a C1 map X : I → [0, 1] condition (I) is satisfied, then X(a) is
typical for µa for a.e. a ∈ I.

Remark 6.3. As the family Ta we could also consider other models as, e.g., x $→

ag(x)mod 1 where g : [0, 1] → [0, 1] is a C1,1(L) homeomorphism with a strict positive
derivative. Even if this model is not included in the families described above, it would
be easier to treat since, seen as a map from the circle into itself, it is non-continuous
only in the point 0 which, in particular, implies that K(a) = [0, 1].

By Theorem 2.2 and Propositions 4.5 and 5.1, in order to proof Theorem 6.2, it is
sufficient to check conditions (IIa) and (IIb). As we will show in the following subsection,
there is a large class of maps X satisfying condition (I):

Corollary 6.4. If X : (1,∞) → (0, 1] is C1 such that X ′(a) ≥ 0, then X(a) is typical
for µa for a.e. a > 1.

Remark 6.5. Observe that the map

X(a) ≡ lim
x→bk−

T (x),

a > 1, satisfies X(a) > 0 and X ′(a) ≥ 0, and, hence, Corollary 6.4 can be applied to
these from a dynamical point of view important values.

Obviously, we can cover (1,∞) with a countable number of intervals I ⊂ (1,∞) as they
are used in Theorem 6.2. Thus, in order to prove Corollary 6.4, it is sufficient to verify
condition (I) for the family Ta restricted to such a parameter interval I. Henceforth, we
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will use the notation of Subsection 2.1 related to the family Ta, a ∈ I. In particular,
recall that λ > 1 is defined to be a lower bound for the expansion in the family, and
observe that here we have ck(a) = bk/a, for 0 < k < p1. First we will prove Corollary 6.4.

6.1. Proof of Corollary 6.4. Note that if the map X in Corollary 6.4 satisfies X(a) /∈
int(K(a)) on I, then, by definition, the partition Pj |I would be empty for all j ≥ 1 and,
hence, condition (I) is not fulfilled. However, the following calculations in this subsection
(see, in particular, (33)) show that, for j ≥ 1, the derivative of xj exists and is strictly
positive for all but a finite number of points a ∈ I. Combined with property (4), we
derive that, disregarding a countable number of points, we can cover I by a countable
number of intervals J ⊂ I such that for each such interval J there is an integer j ≥ 0
such that xj |J is C1, x′j(a) ≥ 0, and xj(a) ∈ int(K(a)) for all a ∈ J . Thus, by possibly
redefining X as xj and focusing on smaller parameter intervals, we can without loss of
generality assume that X(a) ∈ int(K(a)) for all a ∈ I.
Let j ≥ 1 and ω ∈ Pj |I. For a ∈ ω we have

x′j(a) = DaT (axj−1(a)) = T ′(axj−1(a))(xj−1(a) + ax′j−1(a))

= T ′

a(xj−1(a))(xj−1(a)/a+ x′j−1(a)),

and, hence, we derive

x′j(a) =

j−1∑

i=0

T j−i
a

′(xi(a))
xi(a)

a
+ T j

a
′(X(a))X ′(a),

(recall that x0(a) = X(a)). Furthermore, we obtain

x′j(a)

T j
a
′(X(a))

=

j−1∑

i=0

1

T i
a
′(X(a))

xi(a)

a
+X ′(a).

Let κ = infa∈I X(a) and M = supa∈I X
′(a). By the assumptions on I and X, we have

κ > 0 and M < ∞. Thus, for a ∈ ω,

(33)
κ

aI
≤

x′j(a)

T j
a
′(X(a))

≤

j−1∑

i=0

1

λi
+M ≤

λ

λ− 1
+M,

where aI denotes the right boundary point of I. This provides us with a lower and an
upper bound in (I).
It is only left to show that the number of parameters a ∈ I not contained in any element

of the partition Pj |I is finite. We show this by induction. Note that the discontinuity
points ck(a), 1 ≤ k ≤ p1− 1, are equal to bk/a (the partition points c0(a) ≡ 0 and cp1(a)
are constant) and, thus, strictly decreasing in a. Since X ′(a) ≥ 0 and X(a) ∈ int(K(a)),
for all a ∈ I, it follows that the number of parameters a ∈ I such that X(a) = ck(a) for
some 0 ≤ k ≤ p1 is finite. Hence, the number of parameters a ∈ I not contained in any
element of P1|I is finite. Let j ≥ 1 and assume that the number of a’s not contained in
any element of Pj |I is finite. Let ω ∈ Pj |I. By the first inequality in (33), it follows that
x′j(a) > 0, a ∈ ω. Since the partition points ck(a), 0 ≤ k ≤ p1, of Ta are decreasing or

constant in a it follows that the number of a ∈ ω such that xj(a) = ck(a), 0 ≤ k ≤ p1,
is finite. We derive that the number of parameters a ∈ I not contained in any element
of the partition Pj+1|I is finite. This concludes the proof of Corollary 6.4.

6.2. Condition (IIa). The verification of condition (IIb) in the next subsection does
not make use of condition (IIa). Hence, by Lemma A.1, we can without loss of generality
assume that there is a constant C = C(I) ≥ 1 such that for each a ∈ I the density ϕa is
bounded from above by C and, further, there exists an interval J(a) of length C−1 such
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that ϕa restricted to J(a) is bounded from below by C−1 (otherwise, disregarding a finite
number of points, by Lemma A.1, we can cover the interval I by a countable number
of subintervals on each of which this is true and then proceed with these subintervals
instead of I). To conclude the verification of condition (IIa) it is left to show that there
exists a lower bound for ϕa on the whole of K(a).
To make the definition of the intervals Ji(a) below work, we assume that the interval

J(a) is closed to the left. Recall that, by property (i) in Subsection 2.1, we have ck(a) >
ck−1(a)+δ0, 1 ≤ k ≤ p1, for some constant δ0 = δ0(I) > 0. Let ε = min{(λ−1)/2C,λδ0}
and take l ≥ 1 so large that λl/2C > 1. We claim that [0, ε) ⊂ T l

a(J(a)). Let J0(a) =
J(a) and assume that we have defined the interval Ji−1(a) ⊂ J(a), i ≥ 1, where Ji−1(a) is
a (not necessarily maximal) interval of monotonicity for T i−1

a . If [0, ε) ⊂ T i
a(Ji−1(a)), we

stop and do not define Ji(a). If [0, ε) is not contained in T i
a(Ji−1(a)) then, since Ji−1(a)

is a monotonicity interval for T i−1
a and by the definition of ε (combined with property

(i) and property a) of Ta), it follows that there can lie at most one partition point ck(a)
in the image T i−1

a (Ji−1(a)). If there is no partition point in this image then we let
Ji(a) = Ji−1(a), which is in this case also a monotonicity interval for T i

a. If there is a
partition point ck(a) ∈ T i−1

a (Ji−1(a)), then we define Ji(a) ⊂ Ji−1(a) to be the interval
of monotonicity for T i

a such that T i−1
a (Ji(a)) = T i−1

a (Ji−1(a)) ∩ [0, ck(a)). Note that
|T i−1

a (Ji−1(a)) ∩ [ck(a), 1]| < ε/λ, since otherwise we would have [0, ε) ⊂ T i
a(Ji−1(a)).

Assuming that Jl(a) is defined, we obtain

|T l
a(Jl(a))| ≥ λ(|T l−1

a (Jl−1(a))|− ε/λ) ≥ λl|J0(a)|− ε
λl − 1

λ− 1

≥ λl(1/C − 1/2C) ≥ λl/2C > 1,

where we used the definitions of ε and l. Since Jl(a) is a monotonicity interval for T l
a,

this is a contradiction and it follows that the maximal integer i ≥ 0 such that Ji(a) is
defined is strictly smaller than l. Hence, T l

a(J(a)) contains [0, ε) as claimed above. This
immediately implies that there is an integer l′ ≥ 1 independent on the parameter a ∈ I
such that [0, c1(a)) ⊂ T l′

a (J(a)).
Combined with Lemma 6.1 we derive that there is an integer j ≥ 1 independent on

a ∈ I such that, K(a) = closure{T j
a (J(a))}. Now, by the Perron-Frobenius equality, it

follows that, for a ∈ I,

(34) ϕa(y) ≥
∑

x∈J(a)

T
j
a (x)=y

ϕa(x)

|T j
a
′(x)|

≥
1

CΛj
,

for a.e. y ∈ K(a). This concludes the proof of a lower bound for ϕa on the whole of
K(a).

6.3. Condition (IIb). We can verify condition (IIb) by induction over j ≥ 1. Let
a1, a2 ∈ I such that a1 ≤ a2. Note that P1(a) = {(ck(a), ck+1(a)) ; 0 ≤ k < p2}
where ck(a) = bk/a for 0 < k < p1. Thus, if 1 ≤ k < p2 then we clearly have
Ta1((ck−1(a1), ck(a1))) = Ta2((ck−1(a2), ck(a2))). The point cp1(a) ∈ (bp1−1/a, bp1/a)
is constant since the length |K(a)| is constant. It follows that Ta(cp1(a)) is increasing in
a, which implies that Ta1((cp1−1(a1), cp1(a1))) ⊂ Ta2((cp1−1(a2), cp1(a2))). Hence, (IIb)
holds for j = 1. Assume that (IIb) holds for j ≥ 1. Let ω̃ ∈ Pj(a1) and ω̃′ = Ua1,a2,j(ω̃)
the corresponding element in Pj(a2). Note that the image by T i

a, i ≥ 1, of an ele-

ment in Pi(a) is always adjacent to 0. Since T j
a1(ω̃) ⊂ T j

a2(ω̃
′) and the ck(a)’s are

decreasing (or constant in the case k = 0 and k = p1), it follows immediately that
for every element ω ∈ Pj+1(a1)|ω̃ there is a unique element ω′ ∈ Pj+1(a2)|ω̃

′ fulfilling
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symba1(T
i
a1(ω)) = symba2(T

i
a2(ω

′)), 0 ≤ i < j + 1, and T j+1
a1 (ω) ⊂ T j+1

a2 (ω′). Defining
Ua1,a2,j+1(ω) = ω

′ shows that (IIb) holds also for j + 1.

6.4. Proof of Lemma 6.1. For a > 1 let µa be an a.c.i.p. for Ta with support K(a)
and let J ⊂ K(a) be an open interval. Since Ta is expanding there exists an integer

j ≥ 1 such that T j
a : J → [0, 1] is not any longer continuous. It follows that there exists

an ε > 0 such that T j
a (J) contains [0, ε). If Ta had more than one a.c.i.p. then, by [17],

there would exists two a.c.i.p.’s with disjoint supports (disregarding a finite number of
points). This shows that the a.c.i.p. µa is unique.
For each a > 1 we define a number y(a) ∈ (0, 1] and an integer t(a) ≥ 1. The number

y(a) will be the right boundary point of the support K(a) and t(a) will be so large that

the image by T
t(a)
a of the interval [0, b1/a) will be equal to [0, y(a)). Let

y1(a) = lim
x→b1−

T (x)
(

= lim
x→b1/a−

Ta(x)
)

,

and t1(a) = 1. Assume that, for i ≥ 1, yi(a) and ti(a) are defined. Let

ki,1(a) = max
{

k ≥ 1 ;
bk
a

≤ yi(a)
}

and set

yi,1(a) = max
1≤k≤ki,1(a)

lim
x→bk−

T (x).

Assume that both ki,j(a) and yi,j(a) are defined for j ≥ 1. Let

ki,j+1(a) = max
{

k ≥ 1 ;
bk
a

≤ yi,j(a)
}

.

If ki,j+1(a) = ki,j(a) we do not define yi,j+1(a). Otherwise, let

yi,j+1(a) = max
1≤k≤ki,j+1(a)

lim
x→bk−

T (x).

Since, for fixed a > 1, there are only finitely many k ≥ 1 such that bk/a ∈ [0, 1], yi,j(a) is
only defined for finitely many j ≥ 1. Let j ≥ 1 be maximal such that yi,j(a) is defined.

1) If yi,j(a) = yi(a) we do not define yi+1(a) and ti+1(a).
2) If yi,j(a) > yi(a) and limx→yi,j(a)− Ta(x) ≤ yi,j(a) we set yi+1(a) = yi,j(a) and

ti+1(a) = ti(a) + j.
3) If we are not in case 1) nor in case 2), it follows that

yi,j(a) ∈ (bki,j(a)/a, bki,j(a)+1/a)

and Ta(yi,j(a)) > yi,j(a). We set

yi+1(a) = lim
x→bki,j(a)+1−

T (x).

Taking l minimal such that T l
a(yi,j(a)) ≥ bki,j(a)+1/a, we set ti+1(a) = ti(a)+ j+

l < ∞.

Observe that if the cases 1) or 2) occur, yi+2(a) will not be defined. Only when the
case 3) occurs, yi+2(a) is possibly defined. Since, for fixed a > 1, there are only finitely
many k ≥ 1 such that bk/a ∈ [0, 1], case 3) can occur only a finite number of times,
which implies that yi(a) and ti(a) are defined only for a finite number of i ≥ 1. We set
y(a) = yi(a) and t(a) = ti(a) where i is the maximal number for which yi(a) and ti(a)
are defined. (Note that t(a) is finite.) By the constructions of y(a) and t(a) it follows
that

[0, y(a)) = T l
a([0, b1/a)),
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for all l ≥ t(a). Hence, the support K(a) of µ(a) coincides with the interval [0, y(a)].
Furthermore, by the construction of y(a), we deduce that y(a) is not decreasing in a and
for each a > 1 there exists a k ≥ 1 such that y(a) = limx→bk− T (x). It follows that y(a)
is piecewise constant. It is straightforward to check that y(a) is right continuous and
ã > 1 is a point of discontinuity for a "→ y(a) if and only if y(ã) is a fixed point for Tã and
different from 1. Furthermore, lima→ã+ t(a) = ∞ and possibly also lima→1+ t(a) = ∞.
But on a parameter interval I ⊂ (1,∞) where y(a) is constant, t(a) is not increasing in a.
Hence, if the left boundary point of I is not adjacent to 1 or a point of discontinuity for
a "→ y(a) then t(a) is bounded from above on I. This concludes the proof of Lemma 6.1.

7. Tent maps

In this section we apply Theorem 2.2 to skew tent maps. Instead of considering skew
tent maps defined on the unit interval as it is done in the introduction, we take the same
representation as in [11], i.e. we define the skew tent map with slopes α and −β where
α,β > 1, by the formula

Tα,β(x) =

{

1 + αx if x ≤ 0,
1− βx otherwise,

(see Remark 7.3). The turning point of Tα,β is 0, Tα,β(0) = 1 and, by Lemma 3.1
in [11], if α−1 + β−1 ≥ 1 then the interval [Tα,β(1), 1](= [1 − β, 1]) is invariant under
Tα,β (if α−1 + β−1 < 1 then there exists no invariant interval of finite positive length).
For two parameter couples (α,β) and (α′,β′) we take the same order relation as the
one which appears in [11], i.e. we shall write (α′,β′) > (α,β) if α′ ≥ α, β′ ≥ β,
and at least one of these inequalities is sharp. Fix (α0,β0) and (α1,β1) in the set
{(α,β) ; α,β > 1 and α−1 + β−1 ≥ 1} such that (α1,β1) > (α0,β0). Let

α : [0, 1] → [α0,α1] and β : [0, 1] → [β0,β1]

be functions in C1([0, 1]) such that (α(0),β(0)) = (α0,β0), (α(1),β(1)) = (α1,β1), and,
for all a ∈ [0, 1], if α0 )= α1 then α′(a) > 0 and if β0 )= β1 then β′(a) > 0. Observe that
α(a),β(a) > 1, and α(a)−1 + β(a)−1 ≥ 1, for all a ∈ [0, 1]. We define the one-parameter
family Ta as the family of skew tent maps given by

Tα(a),β(a) : [Tα(a),β(a)(1), 1] → [Tα(a),β(a)(1), 1], a ∈ [0, 1].

By [9], since Ta has only two intervals of monotonicity, there exists a unique a.c.i.p.
µa. Observe that even if Ta is now defined on a larger interval than the one-parameter
families described in Subsection 2.1, the definitions of the partitions Pj(a) and Pj |[0, 1]
in Subsection 2.2 still apply. The main statement of this section is the following.

Theorem 7.1. For a.e. parameter a ∈ [0, 1] the turning point 0 is typical for µa.

In contrast to the β-transformation, it is more difficult to state typicality for other, not
so specific points as, e.g., the turning point. However, we will show that conditions (IIa)
and (IIb) are satisfied for the one-parameter family of skew tents maps Ta, a ∈ [0, 1].
Hence, given a C1 function Y : [0, 1] → R (such that Y (a) ∈ [Ta(1), 1]), it is sufficient to
check condition (I) in order to obtain a.s. typicality for Y .

Corollary 7.2. If the one-parameter family Ta, a ∈ [0, 1], with the associated map
a "→ Y (a) satisfies condition (I), then Y (a) is typical for µa, for a.e. a ∈ [0, 1].

The calculations in Subsection 7.1 below show that if the function yj(a) = T
j
a (Y (a))

has, for some j ≥ 1, a high enough initial expansion in a, it will imply condition (I) for

Ta with the associated map a "→ Ỹ (a) = yj(a). This makes it easy to check condition (I)
in Corollary 7.2 numerically.



26 DANIEL SCHNELLMANN

If α ≤ β/(β2 − 1) then Tα,β is renormalizable, see, e.g., [11]. More precisely, T 2
α,β(1)

is greater or equal than the unique fixed point in (0, 1) and T 2
α,β restricted either to the

interval [Tα,β(1), T
3
α,β(1)] or to the interval [T 2

α,β(1), 1] is affinely conjugated to Tβ2,αβ

restricted to the interval [Tβ2,αβ(1), 1]. Observe that the new slopes α′ = β2 and −β′ =

−αβ still satisfy α′,β′ > 1 and (α′)−1+(β′)−1 ≥ 1 (the latter inequality follows from the
assumption α ≤ β/(β2 − 1)). Since the function β $→ β/(β2 − 1) is decreasing for β > 1,
we have that if T0 is not renormalizable then not either Ta, a ∈ [0, 1], is renormalizable.
Now, assume for the moment that Ta is renormalizable for each a ∈ [0, 1] and consider

the one-parameter family defined by T̃a = Tβ(a)2,α(a)β(a). Note that if we show typicality

of the turning point for the family T̃a, for a.e. a ∈ [0, 1], this implies a.s. typicality of
the turning point for the original family Ta. Furthermore, if we verify conditions (IIa)

and (IIb) for the family T̃a, this implies that conditions (IIa) and (IIb) also hold for
the family Ta. Since the a-derivative of α(a)β(a) is positive and the a-derivative of

β(a)2 is non-negative, the new one-parameter family T̃a fits into the family of skew tent
maps described in the beginning of this section. Furthermore, it is known that for each
a ∈ [0, 1], Ta is at most a finite number of times renormalizable where this number is
bounded above by a constant only dependent on (α0,β0) and not on the parameter a
(this can easily be derived by looking, e.g., at the topological entropy of Ta, see [11]
page 137). Altogether, we derive that in order to prove Theorem 7.1 (and therewith
also Corollary 7.2) we can without loss of generality restrict ourself to the case when Ta,
a ∈ [0, 1], is not renormalizable, i.e. we assume that

(35) α0 > β0/(β
2
0 − 1).

Observe that it is only possible for the parameter a = 1 to satisfy the equality α(a)−1+
β(a)−1 = 1. Thus, since we are only interested in Lebesgue almost every parameter we
can neglect skew tent maps whose slopes satisfy α−1 + β−1 = 1, i.e. we assume that

(36) α−1
1 + β−1

1 > 1.

For non-renormalizable Ta it will follow from Subsection 7.2 that the support K(a) of
the a.c.i.p. µa is the whole invariant interval [Ta(1), 1]. Hence, if ψa is the affine map
from [0, 1] onto [Ta(1), 1] with, say, positive derivative it is straightforward to check that
the one-parameter family ψa ◦ Ta ◦ ψ−1

a : [0, 1] → [0, 1], a ∈ [0, 1], fits into the model
described in Subsection 2.1, satisfying properties (i)-(iii).

Remark 7.3. Observe that the length of the invariant interval K(a) for Ta is bounded
from below by 1 and from above by β1. Hence, the estimates to be established in
conditions (I), (IIa), and (IIb) for the family Ta and the to it affinely conjugated family
on the unit interval will differ only by constants, which are uniformly in a bounded
above, and below away from zero. Therefore we will continue with the representation Ta

and do not switch to skew tent maps defined on the unit interval. The partitions defined
in Subsection 2.2 are defined in an analog way for the family Ta.

Let X(a) = T 3
a (0) (if we started with an iteration of 0 lower than the third, then by our

definition of the Pj |[0, 1]’s, all of these partitions would be empty). To prove Theorem 7.1
it is sufficient to verify conditions (I), (IIa), and (IIb) for the family Ta, a ∈ [0, 1], with
the associated map X. Henceforth, we will use the notations of Subsection 2.1 related
to the family Ta, a ∈ [0, 1]. The constants λ and Λ can be chosen as

λ = min{α0,β0} and Λ = max{α1,β1}.

The main computation needed for the verifications of (I) and (IIb) is already done in a
paper by Misiurewicz and Visinescu [11] (see Lemma 3.3 and 3.4 therein), where they
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show monotonicity of the kneading sequence for skew tent maps. (A reader not familiar
with the basic notions and facts of kneading theory can find them in [5].) For the later
use we state here the main result in [11].

Theorem 7.4. Let (α,β) and (α′,β′) be in the set {(α,β) ; α,β > 1 and α−1 + β−1 ≥

1}. If (α′,β′) > (α,β) then the kneading sequence of Tα′,β′ is strictly greater than the

kneading sequence of Tα,β.

Proof. See Theorem A in [11]. !

Since the derivatives of α(a) and β(a) are non-negative and at least one of them is
positive, we obtain strict monotonicity of the kneading sequence for our family Ta.

Remark 7.5. We could also formulate and prove certain C1,1(L)-versions of Theorem 7.1
and Corollary 7.2. But it is difficult for us to formulate very general statements as it is,
e.g., done in Section 6 for the β-transformation. To mention nevertheless an example,
one could show, by the methods in this section, almost sure typicality for the turning
point of one-parameter families T̃a of C1,1(L) unimodal maps, which are of the form

T̃a = Ta ◦ g where Ta is a fixed family of skew tent maps as described above but with a
representation such that the Ta’s map the unit interval into itself, and g : [0, 1] → [0, 1]
is a C1,1(L) homeomorphism satisfying g′(x) ≈ 1. However, to keep this paper in a
reasonable size we will here not investigate such possible C1,1(L)-versions of skew tent
maps.

7.1. Condition (I). We note first that, for j ≥ 1, the number of parameter values
a ∈ [0, 1] not contained in any partition element of Pj |[0, 1] is finite. In fact, if a ∈ [0, 1]
is not contained in any element of Pj |[0, 1], then xi(a) = T i+3

a (0) = 0 for some 0 ≤ i < j.
Hence, the kneading sequence of Ta ends with C and has length smaller than j + 3.
But, by the strict monotonicity of the kneading sequence, Ta can have such a kneading
sequence only for finitely many parameters a ∈ [0, 1].
Let j ≥ 1, 0 ≤ τ < j, and ω ∈ Pj |[0, 1]. For a ∈ ω, we have

x′j(a) = Da(Ta(xj−1(a))) =

{
α(a)x′j−1(a) + α′(a)xj−1(a) if xj−1(a) ≤ 0,

−β(a)x′j−1(a)− β′(a)xj−1(a) otherwise,

= T ′

a(xj−1(a)) ·

{

x′j−1(a) +
1

T ′

a(xj−1(a))
α′(a)xj−1(a) if xj−1(a) ≤ 0,

x′j−1(a)−
1

T ′

a(xj−1(a))
β′(a)xj−1(a) otherwise,

= T j−τ
a

′(xτ (a))·

(

x′τ (a) +

j−τ
∑

i=1

1

T i
a
′(xτ (a))

·

{
α′(a)xτ+i−1(a) if xτ+i−1(a) ≤ 0,
−β′(a)xτ+i−1(a) otherwise.

︸ ︷︷ ︸

(∗)

)

.

Let M = maxa∈[0,1]{α
′(a)|1− β1|,β

′(a)} < ∞ and M ′ = maxa∈[0,1] |X
′(a)|. We have

|(∗)| ≤
M

λ− 1
,

and, by setting τ = 0, we obtain in condition (I) the upper bound
∣
∣
∣
∣
∣

x′j(a)

T
j
a
′(X(a))

∣
∣
∣
∣
∣
≤ M ′ +

M

λ− 1
.

To establish a lower bound in condition (I) is more delicate. We will use some derivative
estimates given in [11]. To this end we will look at the kneading sequences of the Ta’s.
Every kneading sequence of a map Ta in our family starts with RL and is smaller or
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equal than the sequence RL∞. In fact, by (36) and by the monotonicity of the kneading
sequence (Theorem 7.4), the kneading sequence of T1(= Tα1,β1

) is strictly smaller than
RL∞. Let 1 ≤ m1 < ∞ be the integer such that the kneading sequence of T1 starts with
RLm1R or is equal to RLm1C. From [11] we derive the following result.

Proposition 7.6. There exists a constant κ > 0 such that for ω ∈ Pj |[0, 1], j ≥ 0, and
a ∈ ω, we have

(37)
∣

∣

∣
∂αT

j+3
α(a),β(a)(0)

∣

∣

∣
,
∣

∣

∣
∂βT

j+3
α(a),β(a)(0)

∣

∣

∣
≥ κβ

[

j

m1

]

0 ,

and, furthermore,

(38) sign(∂αT
j+3
α(a),β(a)(0)) = sign(∂βT

j+3
α(a),β(a)(0)) = sign(T j+2

a
′(1)).

Proof. The proof of Proposition 7.6 follows from Lemma 3.3 and 3.4 in [11]. For this
note that for each a ∈ [0, 1], the integer m ≥ 1 such that the kneading sequence of Ta

starts with RLmR or is equal to RLmC is smaller or equal than m1. Observe also that
xj in [11] corresponds to xj−2 in our setting.
Actually, Lemma 3.4 in [11] is only formulated for the case when j ≥ m. But con-

sidering Lemma 3.4 i) in [11] it is easy to deduce that Proposition 7.6 also holds when
0 ≤ j < m. !

Property (38) will be essential to verify condition (IIb).
For j ≥ 0, we have

(39) x′j(a) = α′(a)∂αT
j+3
α(a),β(a)(0) + β′(a)∂βT

j+3
α(a),β(a)(0),

for all a contained in an element of Pj |[0, 1]. Since at least one of the derivatives α′(a)
and β′(a) is uniformly bounded away from 0, by (37) and (38), |x′j | is uniformly growing
and we can fix an integer j0 ≥ 1 such that

|x′j0(a)| ≥
M

λ− 1
+ 1.

Thus, by setting τ = j0 in the formula for the derivative of xj in the beginning of this
subsection, we obtain that for all ω ∈ Pj |[0, 1], j ≥ j0, and a ∈ ω,

|x′j(a)| ≥ |T j−j0
a

′(xj0(a))|,

which implies
∣

∣

∣

∣

∣

x′j(a)

T j
a
′(X(a))

∣

∣

∣

∣

∣

≥
1

Λj0
.

Furthermore, by (37), (38), and (39), there is a constant κ′ > 0 such that |x′j(a)| ≥ κ′,

for all 1 ≤ j < j0. This concludes the proof of a lower bound in condition (I).

7.2. Condition (IIa). The verification of condition (IIb) in the next subsection does
not make use of condition (IIa). Hence, as in the first paragraph in Subsection 6.2,
by Lemma A.1, we can without loss of generality assume that there is a constant C =
C([0, 1]) ≥ 1 such that for each a ∈ [0, 1] the density ϕa is bounded from above by C
and, further, there exists an interval J(a) of length C−1 such that ϕa restricted to J(a)
is bounded from below by C−1. In the remaining part of this section we will establish a
lower bound for ϕa on the whole of K(a).
If α = β/(β2−1) then the kneading sequence of Tα,β is RLR∞ (see Lemma 3.2 and its

proof in [11]). By (35) and by the monotonicity of the kneading sequence (Theorem 7.4),
there exists a non-negative integer m0, which is either equal to 0 or even, such that the
kneading sequence of T0 = Tα0,β0

starts with RLRm0L or is equal to RLRm0C. This in
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turn implies that for each a ∈ [0, 1] there exists an integer 0 ≤ m ≤ m0, which is either
equal to 0 or even, such that the kneading sequence of Ta starts with RLRmL or is equal
to RLRmC. Fix a ∈ [0, 1] and let 0 ≤ m ≤ m0 be the corresponding integer.

Lemma 7.7. Let J ⊂ [Ta(1), 1] be an interval adjacent to 0 and let j ≥ 1 be the first

time such that #{ω ∈ Pj(a)|J} = 2. If j ≤ m+ 2 then Tm+4
a (J) ⊃ (Ta(1), 1).

Proof. Since Ta((0, 1)) = (Ta(1), 1) it is enough to show that Tm+3
a (J) ⊃ (0, 1). Observe

that, by the definition of j, 0 is contained in T j
a (J). If j = 1 then, since 0 is a boundary

point of J , it follows that Ta(J) contains the interval (0, 1)(= (0, Ta(0))).
If j = 2, then T 2

a (J) contains the interval (T 2
a (0), 0). If m = 0 then T 2

a (0) ≤ 0 and it
follows that T 3

a (J) ⊃ (0, 1). If m ≥ 2 (recall that m is even), then we derive inductively
that, for 2 < i ≤ m + 2, T i

a(J) ⊃ (T i
a(0), 1) if i is odd and T i

a(J) ⊃ (0, T i
a(0)) if i is

even. Hence, Tm+2
a (J) ⊃ (0, Tm+2

a (0)) and, by the fact that Tm+3
a (0) ≤ 0, it follows that

Tm+3
a (J) ⊃ (0, 1).

If 2 < j ≤ m + 2 then T j
a (0) > 0. Hence, T j

a (J) contains the interval (0, T j
a (0)).

Observing that this implies that j is even, we can argue as in the case when j = 2 and
deduce that Tm+3

a (J) ⊃ (0, 1). !

Let J(a) be the interval of length C−1 such that ϕa restricted to J(a) is bounded from
below by C−1. Let j0 ≥ 1 be the first time such that #{ω ∈ Pj0(a)|J(a)} = 2. We
define J0(a) to be the interval in Pj0(a)|J(a) satisfying

(40) |T j0−1
a (J0(a))| ≥ |T j0−1

a (J(a))|/2

(if both intervals in Pj0(a)|J(a) satisfy this then we choose one arbitrarily). Let j1 > j0
be the first time such that #{ω ∈ Pj1(a)|J0(a)} = 2. Assume now that Ji−1(a) and
ji are defined for some i ≥ 1. If ji − ji−1 ≤ m + 2 we stop and do not define Ji(a).
Otherwise, let Ji(a) be the interval in Pji(a)|Ji−1(a) satisfying

(41) |T ji−1
a (Ji(a))| ≥ |T ji−1

a (Ji−1(a))|/2

(if both intervals in Pji(a)|Ji−1(a) satisfy this then we choose one arbitrarily). We define
ji+1 > ji to be the first time such that #{ω ∈ Pji+1

(a)|Ji(a)} = 2. The size of the images
of the Ji(a)’s is growing in i:

Lemma 7.8. There exists a constant λ̃ > 2 independent on the parameter a such that

if Jk(a) and jk+1 are defined for some k ≥ 1, then, for all 0 ≤ i < k, we have

|T
ji+1−1
a (Ji(a))| ≥ λ̃|T ji−1

a (Ji(a))|.

Proof. Since there are at least m+ 3 iterations between ji and ji+1 and since the right

boundary point of T ji
a (Ji(a)) is 1, we have

|T
ji+1−1
a (Ji(a))| = |T

ji+1−ji−1
a

′(1)| · |T ′

a|T ji−1
a (Ji(a))

| · |T ji−1
a (Ji(a))|

= |T
ji+1−ji−3
a

′(T 2
a (1))|α(a)β(a)min{α(a),β(a)}

︸ ︷︷ ︸

(∗)

|T ji−1
a (Ji(a))|.

If m ≥ 2 (recall that m is even), then ji+1 − ji − 3 ≥ 2 and the kneading sequence
of Ta starts with RLR2. Therefore (∗) ≥ α(a)β(a)3min{α(a),β(a)}. By (35), α(a) >
max{β(a)/(β(a)2 − 1), 1}. Hence,

(∗) ≥ inf
β>1

{
β3max{β/(β2

− 1), 1}min{max{β/(β2
− 1), 1},β}

}
≥ 4,

where it is straightforward to verify the last inequality.
If m = 0 then (∗) = β(a)α(a)min{α(a),β(a)}. In the case when 1 < β(a) < 2 we

have a better lower bound for α(a) than the one above. Given 1 < β < 2, note that
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the kneading sequence of T(β−1)−1,β is equal to RLC. Since m = 0 it follows that

α(a) ≥ max{(β(a)− 1)−1, 1} and we obtain

(∗) ≥ β(a)max{(β(a)− 1)−1, 1}min{max{(β(a)− 1)−1, 1},β(a)}.

This lower bound is not good enough since the minimum of the function

βmax{(β − 1)−1, 1}min{max{(β − 1)−1, 1},β},

which is attained in the point β = 2, is equal to 2. However, if β(a) ≈ 2 then, since

α(a) ≥ α0 > 1, we derive that (∗) ≥ 2 + ε for some ε > 0. Setting λ̃ = min{4, 2 + ε},
this concludes the proof. !

Assuming that Jk(a) and jk+1 are defined for some k ≥ 1, by (40), (41), and Lemma 7.8,
it follows that

|T jk−1
a (Jk−1(a))| ≥

( λ̃

2

)k |J(a)|

2
≥

( λ̃

2

)k 1

2C
,

where (λ̃/2)k is growing in k. The length of the interval T jk−1
a (Jk−1(a)) is bounded

above by the length of the invariant interval [Ta(1), 1], which in turn is bounded by β1.
This implies that the number k ≥ 0 for which Jk(a) can be defined, is bounded above
by a number independent on a ∈ [0, 1]. Let k be maximal such that Jk(a) and jk+1 are

defined. It follows that jk+1 − jk ≤ m + 2. Since the interval T jk−1
a (Jk(a)) is adjacent

to 0, we can apply Lemma 7.7 and we obtain

T jk+m+3
a (Jk(a)) ⊃ (Ta(1), 1).

Clearly, the number of iterations between successive ji’s is bounded above by a number
independent on a, and the integer m is bounded above by m0. Altogether, we derive
that there is an iteration j ≥ 1 (independent on the parameter a), such that for each

a ∈ [0, 1], T j
a (J(a)) = [Ta(1), 1]. Finally, we can apply inequality (34) and we obtain a

lower bound for ϕa on the whole of [Ta(1), 1]. Observe that T j
a (J(a)) = [Ta(1), 1] implies

that K(a) = [Ta(1), 1].

7.3. Condition (IIb). The main ingredient in verifying condition (IIb) is property (38)
stated in Proposition 7.6. Observe that, by (38), (39), and the definition of xj , we have

(42) sign(DaT
m
a (0)) = sign(Tm−1

a
′(1)),

for all m ≥ 3 and parameter values a contained in an element of Pm−3|[0, 1].
We verify condition (IIb) by induction over j ≥ 1. In fact, we will show the following

statement. For each j ≥ 1 there exists a map as described in condition (IIb) and
further, if a1, a2 ∈ [0, 1] such that a1 < a2 and ω ∈ Pa1 , then the boundary points of

T j
a (Ua1,a,j(ω)) are continuous in a ∈ [a1, a2]. For j = 1 this statement can easily be

verified observing that, by the properties of the maps α and β, Ta(1) is constant or
continuously decreasing and T 2

a (1) is continuously increasing in a ∈ [0, 1]. Assume now
that the statement holds for some j ≥ 1. Take ω̃ ∈ Pj(a1) and, for a ∈ [a1, a2], let

ω̃(a) = Ua1,a,j(ω̃) be the to it associated element in Pj(a). Since T j
a1(ω̃) ⊂ T j

a (ω̃(a))
and the turning point 0 is constant in a, it follows that for each (of the maximal two)
element ω ∈ Pj+1(a1)|ω̃ there is a unique element ω(a) ∈ Pj+1(a)|ω̃(a) fulfilling

(43) symba(T
i
a(ω(a))) = symba1(T

i
a1
(ω)),

for 0 ≤ i < j + 1. In particular this is true for a = a2. Setting Ua1,a2,j+1(ω) =
ω(a2), this verifies property (17) in condition (IIb). Using the induction assumption
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it is straightforward to derive the continuity of the boundary points of T j+1
a (ω(a)) for

a ∈ [a1, a2]. So, it is only left to show that property (18) is satisfied, i.e.

(44) T j+1
a1

(ω) ⊂ T j+1
a2

(ω(a2)).

For a ∈ [a1, a2], let xa be, say, the left boundary point of ω(a). Observe that, by (43),

we have sign(T i
a
′|
ω(a)) ≡ sign(T i

a1
′|ω) for all 1 ≤ i < j + 1. Let σ = sign(T j+1

a1
′|ω). We

have to show that

(45) σT j+1
a2

(xa2) ≤ σT j+1
a1

(xa1).

To this end, we make use of the following general fact for skew tent maps. For a ∈ [0, 1],
the image by T i

a, i ≥ 1, of a boundary point x of an element in Pi(a) is of the form

T i
a(x) = Tm

a (0),

for some integer 1 ≤ m ≤ i+2. Applied to the boundary point xa, a ∈ [a1, a2], we denote

by 1 ≤ m(a) ≤ j + 3 the minimal integer such that T j+1
a (xa) = T

m(a)
a (0). By the strict

monotonicity of the kneading sequence there can only be finitely many a0 ∈ [a1, a2] such

that T k
a0
(0) = T l

a0
(0), for 1 ≤ k &= l ≤ j + 3. Hence, by the continuity of T j+1

a (xa), it
follows that, disregarding an at most finite number of points, we can cover [a1, a2] by
open intervals J ∈ [a1, a2] on which the integer m(a) is constant. Fix such an interval J
and let m denote the to it associated integer. In order to show (45), we prove that

(46) σTm
a′ (0) ≤ σTm

a (0),

for all a, a′ ∈ J such that a < a′. Since a '→ T
j+1
a (xa) is continuous on [a1, a2], we

can extend (46) to parameters a and a′ lying in the closure of J , from which we deduce
(45). In order to establish (46), it is sufficient to show that, for all a ∈ J , the derivative
DaT

m
a (0) exists and

(47) sign(DaT
m
a (0)) = −σ or sign(DaT

m
a (0)) = 0.

The cases when m = 1, 2 or 3 are a bit special, so we treat them one by one. If m = 1

then T
j+1
a (xa) = 1 for all a ∈ J , and (47) is satisfied. If m = 2 then, for a ∈ J , we have

T
j+1
a (xa) = Ta(1) = 1 − α(a) which is the left boundary point of K(a). It follows that

σ = +1. The derivative of α is non-negative in a and, hence, (47) is satisfied. If m = 3

then T
j
a (xa) = Ta(1) for all a ∈ J . It follows that sign(T j

a
′|
ω(a)) and sign(T ′

a|T j
a (ω(a))

)

are both equal to +1 and, hence, we have σ = +1. By (42), sign(DaT
3(0)) = −1 which

implies (47).
Finally, we turn to the case when m > 3. Observe that since m was chosen minimal,

we have that T i
a(0) &= 0 for all 1 ≤ i < m and all a ∈ J . It follows that J ⊂ ω

′ for
some element ω

′ ∈ Pm−3|[0, 1]. By (42), we deduce that the derivatives DaT
m(0) and

DaT
m−1(0) exist and are non-zero on J . Note that since T

j
a (xa) &= 0 this implies that

xa is in fact also the left boundary point of ω̃(a). Thus, by the induction assumption,
we obtain

sign(T j
a1

′|ω)T
j
a′(xa′) ≤ sign(T j

a1
′|ω)T

j
a (xa),

for all a, a′ ∈ [a1, a2] such that a < a′, which implies that sign(DaT
m−1
a (0)) is equal to

− sign(T j
a1

′|ω). On the other hand, by (42), we derive that

sign(DaT
m
a (0)) sign(DaT

m−1
a (0)) = sign(T ′

a(T
m−1
a (0))).

Since sign(T ′

a(T
m−1
a (0))) = sign(T ′

a1
|
T

j
a1

(ω)
), it follows that sign(DaT

m
a (0)) = −σ, which

concludes the proof of (47) in the case when m > 3.
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If xa, a ∈ [a1, a2], denotes the right boundary point of ω(a), we can do an analog
argument to show that

σT j+1
a2

(xa2) ≥ σT j+1
a1

(xa1).

Combined with (45) this implies inequality (44) and, thus, this concludes the verification
of condition (IIb).

8. Markov partition preserving one-parameter families

Assume that we have a one-parameter family Ta : [0, 1] → [0, 1], a ∈ I, as described in
Subsection 2.1, satisfying properties (i)-(iii). We require additionally that for each a ∈ I

the intervals D1(a), ..., Dp2(a) have the following Markov property.

(M) For each 1 ≤ k ≤ p2 there exists 0 ≤ iLk < iRk ≤ p1 (independent on a), such that,
for all a ∈ I,

Ta(Dk(a)) = (ciL
k

(a), ciR
k

(a)),

and, furthermore, these images are constant, i.e.

ciL
k

(a) ≡ ciL
k

and ciR
k

(a) ≡ ciR
k

.

Theorem 8.1. If the one-parameter family Ta, a ∈ I, satisfies the Markov property (M)
and if for a C1 map X : I → [0, 1] condition (I) is fulfilled, then X(a) is typical for µa,
for a.e. a ∈ I.

Example 8.2. Let

T̃a(x) =

{

x
a

if x < a,
x−a
1−a

otherwise,

and g : [0, 1] → [0, 1] a C1,1(L) homeomorphism such that infx g
′(x) > 0 and such that

the set

I = {a ∈ (0, 1) ; inf
x
T̃ ′

a(g(x))g
′(x) > 1}

is non-empty. Clearly, I is an (open) interval. We define the one-parameter family
Ta : [0, 1] → [0, 1] as

Ta(x) = T̃a(g(x)), a ∈ I.

By [17], since Ta has only one point of discontinuity, there exists a unique a.c.i.p. µa.
From the verification of condition (IIa) in the proof of Theorem 8.1, it will follow that
supp(µa) = [0, 1].

Proposition 8.3. If X : I → (0, 1) is a C1 map such that X ′(a) ≤ 0, then X(a) is
typical for µa, for a.e. parameter a ∈ I.

Proof. To fit the one-parameter family Ta into the model described in Subsection 2.1,
we restrict the family to a smaller parameter interval Ĩ ! I such that Ĩ does not have
a boundary point in common with I. Since I can be covered by a countable number of
such intervals Ĩ, in order to prove Proposition 8.3, it is sufficient to consider the family
Ta, a ∈ Ĩ. By the choice of Ĩ, it follows that there exist constants 1 < λ ≤ Λ < ∞ such
that for every a ∈ Ĩ,

λ ≤ inf
x∈[0,1]

T ′

a(x) and sup
x∈[0,1]

T ′

a(x) ≤ Λ.

Furthermore, for a ∈ Ĩ, Ta is piecewise C1,1(L̃) where

L̃ = L · sup
a∈Ĩ

{a−1, (1− a)−1}.
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Now, one checks easily that the one-parameter family Ta, a ∈ Ĩ, fits into the model
described in Subsection 2.1 satisfying properties (i)-(iii). Hence, we can apply Theo-
rem 8.1 to this family. Clearly, Ta satisfies the Markov property (M). In order to proof
a.s. typicality, it is only left to verify condition (I). By a similar calculation as it is done

in Subsections 6.1 and 7.1, we derive, for ω ∈ Pj |Ĩ, j ≥ 1, the following formula for the
derivative x′j(a), a ∈ ω:

x′j(a) = T j
a
′(X(a))X ′(a)−

j−1
∑

i=0

T j−i
a

′(xi(a)) ·

{

g(xi(a))
ag′(xi(a))

if g(xi(a)) < a,
1−g(xi(a))

(1−a)g′(xi(a))
otherwise.

Note that this derivative is strictly negative. We obtain

x′j(a)

T
j
a
′(X(a))

= X ′(a)−

j−1
∑

i=0

1

T i
a
′(X(a))

·

{

g(xi(a))
ag′(xi(a))

if g(xi(a)) < a,
1−g(xi(a))

(1−a)g′(xi(a))
otherwise.

Set
s = inf

a∈Ĩ

X ′(a) and κ = inf
a∈Ĩ

{g(X(a)), 1− g(X(a))}.

By the choice of Ĩ, the constant s is bounded from below and κ is strictly positive. Thus,
for a ∈ Ĩ and j ≥ 1, we deduce that

κ

supx g
′(x)

≤

∣

∣

∣

∣

∣

x′j(a)

T
j
a
′(X(a))

∣

∣

∣

∣

∣

≤ s+

j−1
∑

i=0

1

λi
·

1

infx g′(x)
,

where the first term is positive and the last one bounded from above. Hence, to conclude
the verification of condition (I), it is only left to show that, for j ≥ 1, the number of

a ∈ Ĩ, which are not contained in any element of Pj |Ĩ is finite. By the choice of X
and since the point of discontinuity of Ta is strictly increasing in a, there can only be
one point in the inner of the interval Ĩ not belonging to an element of the partition
P1|Ĩ. Assume that for some j ≥ 1 there are only finitely many points in Ĩ, which are not

contained in any element of the partition Pj |Ĩ. For ω ∈ Pj |Ĩ, we have that xj(ω) ⊂ (0, 1)
and the derivative of xj is negative. Hence, there is at most one point a ∈ ω satisfying
xj(a) = a and which has to be excluded in the partition Pj+1|ω. It follows that there

are only finitely many points not belonging to the partition Pj+1|Ĩ, which concludes the
verification of condition (I) and, hence, the proof of the Proposition 8.3. !

We turn to the proof of Theorem 8.1.

Proof. In order to proof Theorem 8.1, it is sufficient to verify conditions (IIa) and (IIb).
We first verify condition (IIa). To verify (IIb) we observe that, since Ta is preserving a
Markov structure, there exists even a bijection

Ua1,a2,j : Pj(a1) → Pj(a2),

for all a1, a2 ∈ I and j ≥ 1, satisfying (17). Since, by (M), the images Ta(Dk(a)) are
constant, we have that, for all ω ∈ Pj(a1),

T j
a1
(ω) = T j

a2
(Ua1,a2,j(ω)).

As in the first paragraph in Subsection 6.2, by Lemma A.1, we can without loss of
generality assume that there is a constant C = C(I) ≥ 1 such that for each a ∈ I the
density ϕa is bounded from above by C and, further, there exists an interval J(a) of
length C−1 such that ϕa restricted to J(a) is bounded from below by C−1. Since for
each a ∈ I the expansion of Ta is at least λ, we derive that there is an integer i ≥ 1
independent on a such that the number of elements in Pi|J(a) is greater or equal than
3. An element ω ∈ Pi|J(a), which is not adjacent to a boundary point of J(a), has, by
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(M), image T i
a(ω) = Ta(Dk(a)) for some 1 ≤ k ≤ p2. By our assumption on the one-

parameter family Ta, the measure µa is ergodic. It follows that there is an integer j ≥ i

such that K(a) = closure{T j−i
a (Dk(a))}. Furthermore, we can take j ≥ i not depending

on 1 ≤ k ≤ p2. Thus, for almost every y ∈ K(a), there exists a point x ∈ J(a) such that x

is mapped to y after j iterations, i.e. T j
a (x) = y. Now, inequality (34) provides us with a

lower bound for the density. Note that from this argument follows that supp(µa) = [0, 1]
in Example 8.2. !

Appendix A

Lemma A.1. Let Ta : [0, 1] → [0, 1], a ∈ I, be a one-parameter family as described in
Subsection 2.1, satisfying properties (i)-(iii) and condition (IIb). Disregarding a finite

number of parameters in I, we can cover I by a countable number of intervals Ĩ ⊂ I
such that on each interval Ĩ the following holds. There exists a constant C = C(Ĩ) ≥ 1

such that for each a ∈ Ĩ the density ϕa of µa is bounded above by C and, further, there
exists an interval J(a) ⊂ [0, 1] of size C−1 such that ϕa restricted to J(a) is bounded
from below by C−1.

Proof. For each a ∈ I it follows from [17] p.496 line 5 and [8] p.484 line 6, that the
variation over the unit interval of the density ϕa is bounded above by a constant

Cv(a) =
3

κ(a)(λτ − 3)
,

where the integer τ ≥ 1 is chosen so large that 3/λτ < 1 and the number κ(a) is given
by

κ(a) = min{|ω| ; ω ∈ Pτ (a)} > 0.

Claim. For j ≥ 1, let (s0, ..., sj−1) be a sequence of symbols si ∈ {1, ..., p2}, 0 ≤ i < j.
If a0 ∈ I is a parameter value such that there exists an element ω(a0) ∈ Pj(a0) satisfying

symba0(T
i
a0
(ω(a0))) = si, 0 ≤ i < j,

then there is a neighborhood U of a0 in I such that for all a ∈ U there is an element
ω(a) ∈ Pj(a) having the same combinatorics as ω(a0), i.e. symba(T

i
a(ω(a))) = si,

0 ≤ i < j. Furthermore, the boundary points of ω(a) and T j
a (ω(a)) depend continuously

on a ∈ U .

Proof. We prove the claim by induction over j ≥ 1. The proof is easy but a bit cum-
bersome, so we will give only a sketch of it. We do not make use of condition (IIb). For
j = 1 the elements in P1(a) corresponding to the symbols s0 ∈ {1, ..., p2} are the inter-
vals Dk(a), 1 ≤ k ≤ p2. The boundary points of these intervals are the partition points
ck(a), 0 ≤ k ≤ p1, which are, by property (i), continuous functions on I. Using property
(ii), one can show by an easy calculation that the boundary points of Ta(Dk(a)) are
continuous on I. Now, assume that the statement holds for some j ≥ 1. Fix a sequence
(s0, ..., sj) of symbols in {1, ..., p2}. Let a0 ∈ I be a parameter such that there exists an
element ω(a0) ∈ Pj+1(a0) satisfying symba0(T

i
a0
(ω(a0))) = si, for all 0 ≤ i < j + 1 (if

there is no such a parameter a0 for which the element ω(a0) exists then there is noth-
ing to show). Let ω̃(a0) ∈ Pj(a0) be the element containing ω(a0). By the induction
assumption there exists a neighborhood V of a0 in I such that for all a ∈ V there is an
element ω̃(a) ∈ Pj(a) having the same combinatorics as ω̃(a0) and the boundary points

of ω̃(a) and T j
a (ω̃(a)) depend continuously on a ∈ V . Note that if y(a0) is a boundary

point of T j
a (ω(a0)) then it is equal to a partition point ck(a0), 0 ≤ k ≤ p1, or it is a

boundary point of T j
a0(ω̃(a0)). By the continuity of the boundary points of T j

a (ω(a)) on
V and the continuity of a '→ ck(a), we deduce that there exists a neighborhood U ⊂ V
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of a0 in I such that for each a ∈ U there exists an element ω(a) ∈ Pj+1(a) having the

same combinatorics as ω(a0). Since the boundary points of T j
a (ω(a)) are continuous on

U , we can once more apply property (ii) to deduce that also the boundary points of

T j+1
a (ω(a)) are continuous on U . The continuity of the boundary points of ω(a) follows

by a repeated use of property (iii). !

Let (s0, ..., sj−1) be a sequence of symbols si ∈ {1, ..., p2}, and for each a ∈ I let
ω(a) ∈ Pj(a) be — if it exists — the to it associated element as in the claim above.
Writing |ω(a)| = 0 if such an element does not exists it follows immediately from the
claim that the map a "→ |ω(a)| is continuous on I. Furthermore, by condition (IIb),
if |ω(a0)| > 0 for some a0 ∈ I, then |ω(a)| > 0 for all a ≥ a0. This implies that the
map a "→ κ(a) is piecewise continuous on I with only a finite number of discontinuities.
Hence, disregarding a finite number of parameter values in I, we can cover I by a
countable number of intervals Ĩ ⊂ I such that for each such interval Ĩ there is a constant
κ0 = κ0(Ĩ) > 0 such that

(48) κ(a) ≥ κ0,

for all a ∈ Ĩ. It follows that that there is a constant Cv = Cv(Ĩ) ≥ 1 such that the

variation of ϕa is bounded from above by Cv for all a ∈ Ĩ. Since
∫ 1

0
ϕa(x)dx = 1, this

immediately implies that ϕa is bounded from above by Cv + 1. To establish a lower
bound on a subinterval of K(a), we observe the following.

Claim. If the variation over [0, 1] of a function ϕ : [0, 1] → R+ is bounded from above

by a constant Cv ≥ 1, and if
∫ 1

0
ϕ(x)dx = 1, then there exists an interval J of length

1/2Cv such that ϕ(x) ≥ 1/3Cv for all x ∈ J .

Proof. LetN = [2Cv], divide the unit interval intoN disjoint intervals J1, ..., JN of length
1/N , and, for 1 ≤ l ≤ N , set ml = inf{ϕ(x) ; x ∈ Jl} and Ml = sup{ϕ(x) ; x ∈ Jl}.

Since 1 =
∫ 1

0
ϕ(x)dx ≤

∑N
l=1Ml/N , it follows that N ≤

∑N
l=1Ml. If ml < 1/3Cv,

for all 1 ≤ l ≤ N , it would follow that the variation of ϕ is strictly greater than∑N
l=1(Ml−1/3Cv) ≥ N(1−1/3Cv) ≥ Cv, where the last inequality follows since Cv ≥ 1.

Hence, at least for one 1 ≤ l ≤ N , ml ≥ 1/3Cv. !

Setting C = 3Cv this concludes the proof of Lemma A.1. !

Acknowledgement

The author is grateful to M. Benedicks and K. Bjerklöv for many fruitful discussions
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Almost sure equidistribution in expansive families !

by Michael Björklund and Daniel Schnellmann

Royal Institute of Technology (KTH), Department of Mathematics, S-100 44 Stockholm, Sweden

Communicated by Prof. M.S. Keane

ABSTRACT

In this paper we study generic equidistribution in families of sequences of points on tori. We assume that

the sequences are parameterized by some subset of a Euclidean space, and we formulate geometric

conditions on the dependence so that equidistribution holds almost everywhere with respect to the

Lebesgue measure on the parameter space. As a consequence, we can give a new proof of an old result

by Koksma.

1. INTRODUCTION

Equidistribution of sequences of real numbers modulo 1 is a very classical and

well-studied area of research (see e.g. [2,3,5] and the references therein). The main

inspiration for this paper is the following classical and well-known result by

Koksma [4] which can also be generalized to a larger class of real sequences:

For almost every θ > 1, with respect to the Lebesgue measure on R, the sequence

θ
j mod 1, j ! 1, is equidistributed in T, i.e. for any interval A of the unit circle T,

#{j ; θ j mod 1 ∈ A,1 " j " N}

N
→ |A|, as N → ∞,

! D. Schnellmann was supported by grant KAW 2005.0098 from the Knut and Alice Wallenberg

Foundation.
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where | · | denotes the Lebesgue measure on T = R/Z. Koksma proved this

result using Fourier analysis and reduced the statement to the combinatorics of

exponential sums.

In this paper we will discuss a geometric method to prove Koksma’s result based

on the techniques developed by Benedicks and Carleson [1] in one-dimensional

dynamics. This method can also be used to establish higher dimensional analogues

of Koksma’s theorem.

Let I be an open set in R
d , and let f̃j be a sequence of maps on I into R

d . Define,

for a fixed θ in I , the sequence of points fj (θ) = f̃j (θ)modZ
d in T

d = R
d/Z

d .

What are natural geometric conditions on the sequence f̃j so that we can ensure

equidistribution of the sequence fj (θ) in T
d , for Lebesgue almost every θ in I?

Koksma studied the case f̃j (θ) = θ j , and I = (1,∞) ⊂ R. Two special features

of this example are expansion and distortion. Here, expansion refers to the fact that

θ j+k

θ j
= θk

is growing sufficiently fast in k, for all j ! 1, and distortion simply means that

the quotient of the derivatives of f̃j , restricted to the pre-image of a unit interval

in (1,∞) is close to 1, provided that j is sufficiently large. We will see that these

two properties are sufficient to conclude that, for almost every θ in I , the sequence

fj (θ) is equidistributed in T. It is straightforward to generalize these two conditions

to higher dimensions.

2. MAIN STATEMENT

Let

f̃ : N × I → R
d

(j, θ) %→ f̃j (θ),

where I ⊂ R
d open and d ! 1. For each j ! 1 we assume that f̃j is a C1 function in

θ which is one-to-one and whose Jacobian is never 0. We put two conditions on f̃ ,

one concerning the expansion and one concerning the distortion properties of f̃ .

(I) There is 0 < κ < 1 and an at least polynomially growing function g : N → R
+

∪

{0}, i.e.

lim
n→∞

g(n)

nγ
> 0, for some γ > 0,

such that for 1 " j " n and k ! nκ

|Dθ f̃j+k(θ)v|

|Dθ f̃j (θ)v|
! g(n),

for all θ ∈ I and v ∈ R
d \ {0}.
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(II) For each ε > 0 and r > 0 there is an integer jε,r ! 1 such that the following

holds. Let B(x, r) denote the open ball in Rd with radius r and center x. For

all x ∈ Rd and all θ, θ ′ ∈ f̃ −1

j (B(x, r) ∩ f̃j (I )), j ! jε,r , we have

|Dθ f̃j (θ)|

|Dθ f̃j (θ ′)|
" 1 + ε,

where |Dθ f̃j (θ)| is the Jacobian of Dθ f̃j (θ).

Remark. A weaker version of the first condition is:

(I)′ There is an at least polynomially growing function g : N → R+ ∪ {0}, such that

for j ! 1 and k ! 1,

|Dθ f̃j+k(θ)v|

|Dθ f̃j (θ)v|
! g(k),

for all θ ∈ I and v ∈ Rd \ {0}.

Obviously condition (I)′ implies condition (I) (with an arbitrarily chosen κ).

The main reason for stating a refined version in condition (I) is that we want

to include examples as f̃j (θ) = θ

√
j (see Example 4.1). The introduction of the

constant κ in (I) is natural in view of the estimate of the exceptional terms in the

sum in (2).

Let Ŵ be a lattice in Rd . We define f : N × I → Rd/Ŵ as

fj (θ) = f̃j (θ)modŴ.

Theorem 2.1. If f̃ fulfills conditions (I) and (II), then the sequence fj (θ), j ! 1,

is equidistributed in Rd/Ŵ, for Lebesgue almost every θ ∈ I , i.e.

1

n

n
∑

j=1

δfj (θ)
weak-∗
−→ m, as n → ∞,

where m denotes the Haar measure on Rd/Ŵ.

3. PROOF OF THEOREM 2.1

Let Q be the set of open parallelepipeds in Rd related to the lattice Ŵ, i.e. Q is

the set of all open parallelepipeds Q such that the intersection of the closure of Q

and Ŵ is exactly the set of vertices of Q. Since we can cover I by a countable union

of open balls B(x, r) we can without loss of generality assume that I = B(x0, r0)

for some x0 ∈ Rd and r0 > 0.

Fix a parallelepiped Q0 ∈ Q. Let

B :=
{

B(x, r)modŴ;B(x, r) ⊂ Q0, x ∈ Q0 ∩ Qd , r ∈ Q+
}

.
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We will show that, for B ∈ B, the function

Fn(θ) =
1

n

n
∑

j=1

χB

(

fj (θ)
)

, n ! 1,

fulfills

lim
n→∞

Fn(θ) " m(B), for a.e. θ ∈ I.(1)

By a standard argument (see e.g. [6]), (1) implies that, for a.e. θ ∈ I , every weak-∗

limit point µθ of

1

n

n
∑

j=1

δfj (θ)

is absolutely continuous with respect to m in (Rd/Ŵ) \ ∂Q0 where the density

satisfies dµθ/dm " 1. Observe that

∣

∣

∣

∣

⋂

k!1

{θ ∈ I ;fj (θ) ∈ ∂Q0 modŴ, for some j ! k}

∣

∣

∣

∣

= 0,

where | · | denotes the Lebesgue measure in R
d . Hence, for a.e. θ ∈ I , the probability

measure µθ gives zero measure to ∂Q0 modŴ. It follows that, for a.e. θ ∈ I , µθ = m

which implies Theorem 2.1.

From now B ∈ B is fixed. Let rB = min{radius(B), r0}. In order to prove (1) it

is sufficient to show that there exists a constant C > 0 such that for all ε0 > 0 and

integers h ! 1 there is an integer nh,ε0,rB growing at most exponentially in h, such

that
∫

I
Fn(θ)h dθ " C((1 + ε0)m(B))h for all n ! nh,ε0,rB . See 4.2.

Henceforth, fix h ! 1.

∫

I

Fn(θ)h dθ =
∑

1"j1,j2,...,jh"n

1

nh

∫

I

χB

(

fj1
(θ)

)

· · ·χB

(

fjh(θ)
)

dθ .(2)

Let 0 < κ < 1 be the constant in condition (I). The number of h-tuples (j1, . . . , jh)

in (2), for which minl jl < nκ or mink %=l |jk − jl | < nκ , is bounded by 2h2nh−(1−κ).

The sum over these (exceptional) terms in (2) is therefore bounded by

|I |2h2n−(1−κ). In the following proposition we treat all the other terms in (2), i.e.

the terms related to the h-tuples which are most likely to occur.

Proposition 3.1. For all ε0 > 0 and h ! 1, there is an integer nh,ε0,rB growing at

most exponentially in h, such that for all n ! nh,ε0,rB and for all h-tuples (j1, . . . , jh)

with 1 " j1 < j2 < · · · < jh " n, j1 ! nκ and jl − jl−1 ! nκ , l = 2, . . . , h,

∫

I

χB

(

fj1
(θ)

)

· · ·χB

(

fjh(θ)
)

dθ " 2|I |
(

(1 + ε0)m(B)
)h

.
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From a probabilistic point of view this proposition tells us that whenever

the distances between consecutive jl’s are sufficiently large, the behavior of the

χB(fjl (.))’s is comparable to that of independent random variables.

Proposition 3.1 implies

∫

I

Fn(θ)h dθ ! 2|I |
(

(1 + ε0)m(B)
)h

+ |I |2h2n−(1−κ)

! 3|I |
(

(1 + ε0)m(B)
)h

,

for all

n " max

{

nh,ε0,rB ,

(

2h2

((1 + ε0)m(B))h

)1/(1−κ)}

.

Since both terms in this lower bound for n grow at most exponentially in h, this

concludes the proof of Theorem 2.1. Now we turn to the proof of Proposition 3.1.

Proof of Proposition 3.1. Let B̃ denote the lift of B to R
d . We have

∫

I

χB

(

fj1
(θ)

)

· · ·χB

(

fjh(θ)
)

dθ = |{θ ∈ I ; f̃j1
(θ) ∈ B̃, . . . , f̃jh(θ) ∈ B̃}|.

For J ⊂ I open and j " 1 we define the partition Pj |J on J as

Pj |J :=
{

f̃ −1

j

(

Q ∩ f̃j (J )
)

;Q ∈ Q
}

.

For j = 0 we set P0|J = J and f̃0(θ) = θ . We give first a sketch of the proof of

Proposition 3.1. Note that by the expansion property of the f̃j ’s we have that for

large n a typical partition element ω ∈ Pj1
|I is mapped by f̃j1

onto the whole of

a parallelepiped Q ∈ Q, i.e. we can neglect the elements in Pj1
|I adjacent to the

boundary of I (the union of these boundary elements is the exceptional set E0

defined below). By the distortion property of the f̃j ’s we have that roughly speaking

only a |B|/|Q|(= m(B)) fraction of the element ω is mapped by f̃j1
onto B̃ ∩ Q.

Considering only the part J of ω which is mapped onto B̃ ∩Q we can now, by using

that j2 − j1 is large, repeat the argument for the elements in the partition Pj2
|J .

Going on like this we derive Proposition 3.1. In the remaining part we will work

this out in more detail.

We say that an element ω ∈ Pj |J , j " 1, is an entire element if there is a Q ∈ Q

such that f̃j (ω) = Q. Set

I0 = {entire ω ∈ Pj1
|I },

Il = {entire ω ∈ Pjl+1
|Il−1; f̃jl (ω) ⊂ B̃},

for 1 ! l < h, and

Ih = {θ ∈ Ih−1; f̃jh(θ) ∈ B̃}.
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We consider the set Il , 0 ! l < h, as a set of partition elements in Pjl+1
|I as well as

an open set in I . Let

E0 = {ω ∈ Pj1
|I ;ω /∈ I0},

and, for 1 ! l < h,

El = {ω ∈ Pjl+1
|Il−1;ω /∈ Il, f̃jl (ω) ∩ B̃ $= ∅}.

Observe that the union of these sets contains (modulo a Lebesgue measure zero set)

the set we are interested in, i.e.

{θ ∈ I ; f̃j1
(θ) ∈ B̃, . . . , f̃jh(θ) ∈ B̃}

◦
⊂ Ih ∪

(

h−1
⋃

l=0

El

)

.(3)

We state two lemmas. Provided that n is sufficiently large, the first lemma

indicates that we can essentially deal with entire elements only, i.e. the El’s are

exceptional sets which can be neglected, and, thus, if ω ∈ Pjl+1
|I , 1 ! l < h, and

f̃jl (ω)∩ B̃ $= ∅ then we can assume – without loss of generality – that ω is an entire

element. The main ingredient in the proof of this lemma is condition (I). Using

condition (II), the second lemma gives a proof of Proposition 3.1 for the ‘nice’

set Ih.

Lemma 3.2. For all ε > 0 and r > 0, there is an integer nε,r growing at most

polynomially in 1

ε
, such that for n " nε,r the following holds. Assume j = 0 or

nκ ! j ! n, and k " nκ . For B(x, r) ⊂ f̃j (I ) set J = f̃ −1

j (B(x, r)),

J ′ = {entire ω ∈ Pj+k|J },

and

EJ =
{

ω ∈ Pj+k|I ;ω /∈ J ′, f̃j (ω) ∩ B(x, r) $= ∅
}

.

We have that

|EJ | ! ε|J |.

Proof. By condition (I), for ω ∈ Pj+k|I , diam(f̃j (ω)) ! diam(Q0)/g(n). Hence,

|f̃j (EJ )| !
2 diam(Q0)Vold−1(∂B(x, r))

g(n)
.

Let j1,r be the integer in condition (II). Take nε,r " (j1,r)
1/κ minimal such that for

n " nε,r ,

g(n) "
4 diam(Q0)Vold−1(∂B(x, r))

ε|B(x, r)|
.
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Recall that, by (I), g(n) is at least polynomially growing in n, hence nε,r is at most

polynomially growing in 1

ε
. For n ! nε,r , we obtain

|f̃j (EJ )| " 2
−1

ε|B(x, r)|.

If j = 0 we are done. Otherwise we have j ! nκ ! j1,r , and it follows by the

distortion estimate in condition (II) that |EJ | " ε|J |. !

Lemma 3.3. Set rŴ = diam(Q0)/2 and let jε0,rŴ be the integer in condition (II). If

nκ ! jε0,rŴ then

|Il | " (1 + ε0)m(B)|Il−1|, for 1 " l " h.

Proof. Let ω ∈ Il−1. By the definition of Il−1, ω is an entire element in Pjl |I . Since

jl ! nκ ! jε0,rŴ we have by condition (II),

|{θ ∈ ω; f̃jl (θ) ∈ B̃}| " (1 + ε0)
|B̃ ∩ Q0|

|Q0|
|ω| = (1 + ε0)m(B)|ω|.

Hence,

|{θ ∈ Il−1; f̃jl ∈ B̃}| " (1 + ε0)m(B)|Il−1|.

Since Il ⊂ {θ ∈ Il−1; f̃jl (θ) ∈ B̃} this concludes the proof. !

Recall that rB = min{radius(B), r0}. Let ε1 = ((1 + ε0)m(B))h/h and nε1,rB the

integer in Lemma 3.2, and set

nh,ε0,rB = max
{

nε1,rB , (jε0,rŴ )1/κ
}

.

Since nε1,rB is at most polynomially growing in 1

ε1
, it follows that nh,ε0,rB is at most

exponentially growing in h. Henceforth, assume n ! nh,ε0,rB . Setting j = 0, k = j1

and J = I (= B(x0, r0)) in Lemma 3.2, it follows immediately that |E0| " ε1|I |.

Now let ω ∈ Il−1, 1 " l < h. By the definition of Il−1, ω is an entire element in Pjl |I .

Set, in Lemma 3.2, j = jl , k = jl+1 − jl and J = f̃ −1

jl
(B̃ ∩ f̃jl (ω)), i.e. J is the part

of ω which is mapped by fjl onto B . Then J ′ = Il ∩ ω, and we obtain

∣

∣

{

ω
′ ∈ Pjl+1

|ω;ω′ /∈ Il, f̃jl

(

ω
′
)

∩ B̃ &= ∅
}
∣

∣ " ε1|J | " ε1|ω|.

Observe that,

El =
⋃

ω∈Il−1

{

ω
′ ∈ Pjl+1

|ω;ω′ /∈ Il, f̃jl

(

ω
′
)

∩ B̃ &= ∅
}

.

Thus |El | " ε1|Il−1| " ε1|I |. By (3), Lemma 3.3 and the choice of ε1,

|{θ ∈ I ; f̃j1
(θ) ∈ B̃, . . . , f̃jh(θ) ∈ B̃}|

" |Ih| +

l−1
∑

l=0

|El | "
(

(1 + ε0)|B|
)h

|I0| + hε1|I | " 2|I |
(

(1 + ε0)|B|
)h

,
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which concludes the proof of Proposition 3.1. !

4. EXAMPLES

We give two simple examples which can be derived from Theorem 2.1. Note

that both examples also can be derived from a combination of Weyl’s lemma and

Koksma’s theorem.

Example 4.1. Let Ŵ be a lattice in R
d . Fix α = (α1, . . . ,αd) ∈ (0,∞)d . There

is a subset Xα of (1,∞)d of full Lebesgue measure, such that the sequence

(θ
jα1

1
, . . . , θ

jαd

d ) modŴ, j ! 1, is equidistributed in R
d/Ŵ, for all θ in Xα .

Proof. Let f̃j (θ) = (θ
jα1

1
, . . . , θ

jαd

d ), defined on I = (θ0,∞)d for some θ0 > 1.

To apply Theorem 2.1, we have to check that (I) and (II) hold for the func-

tions f̃j : I → R
d . Set α0 = min{1,α1, . . . ,αd}, and choose 0 < κ < 1 such that

α0 + κ > 1. Note that for large n,

(

n + nκ
)α0

− nα0 !
α0

2

nα0+κ

n
.

Thus, if j " n and k ! nκ ,

|Dθ f̃j+k(θ)v|

|Dθ f̃j (θ)v|
! θ

(n+nκ )α0−nα0

0
,

is growing faster than polynomially, for all v ∈ R
d \ {0}. This implies (I).

To verify (II), we first observe that any points θ, θ ′ in f̃ −1

j (B(x, r) ∩ f̃j (I )), are

on distance at most 2r/jα0θ
jα0−1

0
. Thus,

|Dθ f̃j (θ)|

|Dθ f̃j (θ ′)|

d
∏

i=1

(

θi

θ
′

i

)jαi −1

"

d
∏

i=1

(

1 +
2r

jα0θ
jα0−1

0

)jαi −1

,

where the right-hand side converges uniformly to 1 when j increases. This

implies (II). !

Even if the above result tells us that the sequence (θ
jα1

1
, . . . , θ

jαd

d )modŴ, j ! 1,

is almost surely equidistributed in R
d/Ŵ, it is very hard to determine whether

this sequence is equidistributed for some given θ ∈ (1,∞)d . For instance, in

one-dimension it is not known whether ( 3

2
)j or ej modulo 1 are equidistributed

in T. However, going in an other direction the next example asserts that j θ -powers

of a fixed α ∈ (1,∞)d are equidistributed, for almost every θ :

Example 4.2. For any α ∈ (1,∞)d , there is a full measure subset Xα of (0,∞)d ,

such that the sequence (α
jθ1

1
, . . . ,α

jθd

d )modŴ, j ! 1, is equidistributed in R
d/Ŵ,

for all θ in Xα .
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Proof. Let f̃j (θ) = (α
jθ1

1 , . . . ,α
jθd

d ), defined on I = (θ0,∞)d for some θ0 > 0.

Choosing 0 < κ < 1 such that θ0 + κ > 1 condition (I) is verified as in Example 4.1.

Let α0 = min{α1, . . . ,αd}. To establish condition (II), we note that

|Dθ f̃j (θ)|

|Dθ f̃j (θ ′)|
=

d
∏

i=1

j θi−θ
′

i α
jθi −j

θ
′

i

i ,

and for large j , |Dθ f̃j (θ)v| ! α
jθ0

0 for all v ∈ R
d \ {0}. For θ, θ ′

∈ f̃ −1
j (B(x, r) ∩

f̃j (I )) the distance between θ and θ
′ is less than 2rα

−jθ0

0 . Hence, when j → ∞,

j θi−θ
′

i converges to 1 and (assuming θ
′

i < θi )

j θi − j θ
′

i " j θi
(

θi − θ
′

i

)

log j → 0, j → ∞.

We conclude that condition (II) holds. !

Remark. We have restrained from making very general statements. The methods

in this paper can probably be pushed without too much hard labor to nil-manifolds,

with conditions (I) and (II) replaced by natural expansion and distortion properties

of the cover maps. With some minor restrictions on the maps involved, the methods

should also apply to compact locally symmetric spaces of non-compact type.

APPENDIX

For the sake of completeness we add the following fact from measure theory,

which we believe has independent interest. Let I ∈ B(Rd), ej : I → [0,∞), j ! 1,

measurable functions, and set

Fn(θ) =
1

n

n
∑

j=1

ej (θ).

Lemma A.1. Assume that for all h ! 1 there is an integer nh such that

∫

I

Fn(θ)h dθ " Cε
h,

for all n ! nh, where C is some constant independent of h. If the sequence nh grows

at most exponentially in h then it follows that limn→∞ Fn(θ) " ε for Lebesgue a.e.

θ ∈ I .

Proof. By possibly increasing the nh’s we can assume that nh = 2hk , for some fixed

integer k. Let δ > 0 and l, H be integers such that 2−l(2k
− 1) " δ, and Hk ! l.

Consider the sequence mi , i ! 0, defined as

mi = 2(H+[i2−l ])k +
(

i − [i2−l]2l
)

2(H+[i2−l ])k−l
(

2k
− 1

)

.
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This sequence of integers is defined such that, for h ! H ,

#{i;nh " mi < nh+1} = 2
l,(4)

and the distance between two successive mi ’s lying in the interval [nh, nh+1] is

constant. Furthermore, one easily verifies that

mi+1

mi

" 1 + 2
−l

(

2
k
− 1

)

" 1 + δ,(5)

for i ! 0. Using (4), we get

∣

∣

∣

∣

⋂

j!0

⋃

i!j

{Fmi
! (1 + δ)ε}

∣

∣

∣

∣

" lim
j→∞

∑

i!j

|{Fmi
! (1 + δ)ε}| " lim

j→∞

∑

i!j

∫

I
Fmi

(θ)H+[i2−l ] dθ

((1 + δ)ε)H+[i2−l ]

" lim
j→∞

C
∑

i!j

(

ε

(1 + δ)ε

)H+[i2−l ]

" lim
j→∞

C2
l
∑

h!j

1

(1 + δ)h
= 0.

It follows that limi→∞ Fmi
(θ) " (1+δ)ε for all θ in a set I ′ which has full Lebesgue

measure in I . Fix θ ∈ I ′. For sufficiently large i we have Fmi
(θ) " (1 + δ)2ε, and

using the definition of Fn and inequality (5), we obtain, for 1 " j < mi+1 − mi ,

Fmi+j (θ) "
mi+1

mi + j
Fmi+1

(θ) "
mi+1

mi

(1 + δ)2ε " (1 + δ)3ε.

It follows that limn→∞ Fn(θ) " (1 + δ)3ε for all θ ∈ I ′. Thus, since δ > 0 was

arbitrary, limn→∞ Fn(θ) " ε for a.e. θ ∈ I . !

To conclude this appendix we give an example showing that nh cannot grow

arbitrarily fast in h. Let I = [0,1] and consider the super-exponentially growing

sequence nh = 3
2
h
, h ! 1. Set ej (a) ≡ 0 for j < n1 and for nh " j < nh+1, h ! 1,

let

ej (a) = χ
[ k

2h−1
, k+1

2h−1
]
(a),

if 3
2knh " j < 3

2k+1nh, 0 " k < 2
h−1, and ej (a) ≡ 0 otherwise. It can easily be

verified that for each nh " n < nh+1, the average function Fn(a) is smaller or equal

than 1/3 everywhere except on an interval of length 1/2
h−1 and furthermore, for

every a ∈ I , there exists an nh " n < nh+1 such that Fn(a) ! 2/3. It follows that

limn→∞ Fn(a) ! 2/3, for all a ∈ I . On the other hand, for h ! 1,

∫

I

Fn(a)h da "

(

1

3

)h

+
1

2h−1
" 3

(

1

2

)h

,

if n ! nh.
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