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Abstract

Object recognition in images is a growing field. Since several years, the emergence of
invariant interest points such as SIFT [Lowo1] has enabled rapid and effective systems
for the recognition of instances of specific objects as well as classes of objects (e.g. using
the bag-of-words model). However, our experiments on the recognition of specific object
instances have shown that under realistic conditions of use (e.g. the presence of various
noises such as blur, poor lighting, low resolution cameras, etc.) progress remains to be
done in terms of recall: despite the low rate of false positives, too few actual instances
are detected regardless of the system (RANSAC, votes / Hough ...). In this presentation,
we first present a contribution to overcome this problem of robustness for the recogni-
tion of object instances, then we straightly extend this contribution to the detection and
localization of classes of objects.

Initially, we have developed a method inspired by graph matching to address the
problem of fast recognition of instances of specific objects in noisy conditions. This
method allows to easily combine any types of local features (eg contours, textures ...)
less affected by noise than keypoints, while bypassing the normalization problem and
without penalizing too much the detection speed. In this approach, the detection system
consists of a set of cascades of micro-classifiers trained beforehand. Each micro-classifier
is responsible for comparing the test image locally and from a certain point of view (e.g.
as contours, or textures ...) to the same area in the model image. The cascades of micro-
classifiers can therefore recognize different parts of the model in a robust manner (only
the most effective cascades are selected during learning). Finally, a probabilistic model
that combines those partial detections infers global detections. Unlike other methods
based on a global rigid transformation, our approach is robust to complex deformations
such as those due to perspective or those non-rigid inherent to the model itself (e.g. a
face, a flexible magazine).

Our experiments on several datasets have showed the relevance of our approach. It is
overall slightly less robust to occlusion than existing approaches, but it produces better
performances in noisy conditions.

In a second step, we have developed an approach for detecting classes of objects in
the same spirit as the bag-of-visual-words model. For this we use our cascaded micro-
classifiers to recognize visual words more distinctive than the classical words simply
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based on visual dictionaries (like Csurka et al. [CDF*o4] or Lazebnik et al. [LSPos5]).
Training is divided into two parts: First, we generate cascades of micro-classifiers for
recognizing local parts of the model pictures and then in a second step, we use a clas-
sifier to model the decision boundary between images of class and those of non-class.
This classifier bases its decision on a vector counting the outputs of each binary micro-
classifier. This vector is extremely sparse and a simple classifier such as Real-Adaboost
manages to produce a system with good performances (this type of classifier is similar
in fact to the subgraph membership kernel). In particular, we show that the association
of classical visual words (from keypoints patches) and our disctinctive words results in
a significant improvement. The computation time is generally quite low, given the struc-
ture of the cascades that minimizes the detection time and the form of the classifier is
extremely fast to evaluate.

Keywords: Specific object recognition, class object recognition, graph matching, cas-
cades, optimization, mobile robotic.
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Chapter

Introduction

1.1 A Few Preliminary Words

Automatic object recognition in unconstrained conditions is a challenging task with
many potential applications. Despite its seeming simplicity, creating a system capa-
ble of understanding the surrounding world from pictures, like we do us humans, is
a difficult problem — although it is probably much easier than creating a full artificial
intelligence. More pragmatically, this captivating topic has a large number of practical

applications in today’s world where images are ubiquitous.

Scientifically speaking, object recognition is a whole research topic in itself. It has
always interested researchers in computer science and has been a very active topic since
the very beginning of computer science (let’s say, at least for the past 40 years), when
the available techniques were quite poor (see for instance the paper of Fischler and
Elschlager from 1973 [FE73] where pictures are rendered using ASCII characters). In
comparison, today’s techniques can afford complex computations that are several orders
of magnitude larger than the ones performed in those pioneer works, thanks to the
permanent increase in hardware power. Still, the perfect system is yet to be invented,
although important breakthroughs have recently emerged. To give a simple overview,
nowadays it is pretty much feasible to detect humans (pedestrians or faces) even in
noisy conditions. On the other hand, detecting any kind of objects in realistic conditions
is still a challenge for computer vision. In particular, producing detection systems that
are both robust to noise (in the general sense: jpeg noise, occlusion, clutter, etc.) and fast

is a challenge at stake.

In this dissertation, we present two contributions to object recognition while keeping

in mind those two constraints. In the first contribution, we present a generic system

1
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Chapter 1. Introduction

Figure 1.1: An example of recognition. The model object at left, a journal, is recognized
and localized by a detection system in the scene picture at right despite some occlusion
and a reduced scale.

for the recognition of instances of specific objects (an illustration is shown in Figure
[1.1), which is much more robust against realistic noise conditions for mobile robotic
than existing methods from the state-of-the-art. In the second contribution, we focus
instead on the recognition of classes of objects by re-using parts of the framework of our
first contribution, again leading to a system which results in substantial improvement in

speed and robustness over existing algorithms.

1.2 Application Field

Contrary to other research fields like mathematics, computer vision and especially object
recognition belongs to the field of applied sciences. There is an impressive number of
applications directly or indirectly connected to object recognition, from which some
examples are illustrated in Figure A non-exhaustive list of potential applications

includes:

e Robotic vision for:

- industrial purposes like automatic control of industrial clamps from vision
(Figure middle column, top row), or automatic counting of elements for

non-destructive controls.

— embedded mobile systems for domestic usage. The purpose for a robot like
the ones in the left column of Figure [1.2]is to interact with an indoor environ-

ment. It involves different tasks like localization from vision, object recogni-
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1.2. Application Field

tion and object pose estimation, face and speech recognition etc. It is crucial
to point out that robotic vision in unconstrained environments is especially
difficult: it implies that the robot takes decisions in real-time, i.e. requiring
a fortiori to detect objects and to understand the scene in real-time, and all
of this without making any error. In other words, extreme robustness and
detection speed are the key elements of a realistic application. Note that in
Japan, an official government program is currently supporting a long-term

plan aiming at assisting the elderly with robots.

¢ Content-Based Image Retrieval (CBIR) systems. Currently, most image search en-
gine (e.g. Google Images) only index images based on the text or legend surround-
ing them. Because this technique can often be a source of errors, current research
moves towards a combination of textual tags, object recognition techniques and

propagation of tags between images sharing visual similarities.

* Video surveillance and automatic monitoring of events. This application includes
the detection of unusual events as well as their characterization. An example is
shown in Figure [1.2] (middle column, bottom row) where an intruder is detected

in a parking.

¢ Augmented reality on smart phones. As the name indicates, the insight in this
case is to virtually “augment” the filmed scene by superimposing additional infor-
mation on it, such as the road and monument names, or the average ranking and
critics of a book. Although the final step deals more about information technolo-
gies, augmented reality first implies to detect elements in real-time in the filmed

scene. An example of automatic landmark detection is shown in top-right corner

of Figure

* Medical imaging, where the field of applications is vast because of the wide variety
of medical image sources (e.g. obtained using magnetic resonance imaging). An
example of application involving the automatic recognition of hand bone segments

in radiographies is presented in Figure [1.2| (right column, bottom row).

Overall, robustness and/or speed considerations are extremely important for all those
mentioned applications. In this dissertation, we mainly focus on the robotic vision
application, although other utilizations remain possible as well, so that these two aspects

are essential in our contributions.
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Figure 1.2: Application samples for object recognition. From left to right, top to bottom:
mobile robots with elaborate vision processing, face/object detection for content-based
image retrieval, visual control of industrial robots, video surveillance (here, intruder
detection), augmented reality for mobile phones, medical image processing.

1.3 A Short Definition of Object Recognition Terms

Although the topic may sound intuitive in the ear of the reader, we have to formally

define certain terms preliminary to the following of this dissertation.

Obiject or Class In the formalism of object recognition, an object is defined in its widest
sense, i.e., from a specific object (e.g. this book) to a class of objects (e.g. cars,
faces). In the first case we talk about individual or specific objects, while in the
second case we talk about class objects. We describe this distinction with more

details in the paragraph below.

Test/scene image Input image to the recognition system. Unless it is explicitly specified,
no particular assumption is made about this image (e.g. each of the model objects
can be present or not). In this dissertation, we only consider gray level images

defined as matrices of pixels:

Z:[1,Tx] x[1,Ty] — [0,255].
Model object An object which is learned by the recognition system from a set of model
images in order to be later recognized in test images.

Model Instance A specific exemplar of the model object or model class present in a test

image.

Object recognition The task of finding a given model object in a test image, i.e., lo-
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calizing every instances of the model object in the test image with a rectangular
bounding box. In this dissertation, we put aside the aspect of temporal continuity
present in frames when we deal with object recognition in videos. That is, we

process all frames independently.

Object detection Although a distinction is sometimes made between recognition and

detection, in this dissertation we consider those two terms to be synonyms.

Localization The task of localizing the position of a model instance, usually in the form
of a bounding rectangle (but it may extend up to determining the object pose). As

said above, it is a subtask of object recognition.

Classification The task of classifying a test image into one of several pre-defined cat-
egories (e.g. sunset, forest, town). Equivalently, if the categories correspond to
different model objects or classes, it is the task of deciding if at least one instance
of the model object is present in the image. Note that contrary to object recogni-
tion, this task does not imply localization and is only applied to classes of objects

or classes of backgrounds.

Image Features Set of low-level information extracted from the image. Image pixels are
the simplest features (i.e. the lowest level). More complex (and higher-level) fea-
tures are obtained by rearranging the pixel values according to some pre-defined
successions of operations. The next chapter will introduce some frequently used

complex features.

Object variations tackled in this dissertation In practice, object recognition has to

deal with two kinds of class variations:

¢ Inter-class variations, between instances of different classes. The more the classes
are different in the feature space, the easier it becomes to separate them and classify

an instance into the right class.

¢ Intra-class variations, between instances of the same class. They represent how
much instances of the same class can vary with respect to each other. In the case of
specific objects, intra-class variations are minor because only caused by noises such
as captor noise, movement blur and lighting effects. On the contrary in the case of
class objects, intra-class variations are connected to variations of semantic concepts
related to the objects. For instance, a face is always composed of two eyes, a mouth

etc., but the appearance of each such facial organ varies from one face to another.
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As a consequence, a class object recognition system must struggle a lot much to
learn the correct class boundaries than a specific object recognition system: because
of semantic variations, decision boundaries are much more complex for a class. As
a consequence, a lot more images are typically required to train a class object
recognition system. Figure illustrates those variations for various specific and
class objects : as can be seen, the appearance of class objects can largely vary from

one instance to another compared to specific objects.

Precisely concerning specific (i.e. individual) object recognition, we choose in this disser-
tation to consider 3D viewpoint changes and non-rigid object distortions as additional
sources of intra-class variations. In fact, we make the choice of not explicitly modeling
neither of those variations, that is we consider them as pure noise added on the train-
ing instances. All in all, our purpose is to make a generic recognition system robust

to a large range of possible disturbances, so that it can bear the unexpected of realistic

real-time conditions.

Figure 1.3: Illustration of intra-class variations for the class case (left) and the specific
case (right). In the case of specific objects (the stuffed animal and the tea mug), only
external variations such as lighting, background or 3D pose affect the appearance of the
model object. In the case of classes (the plane and the camera), an additional variation
comes from the variety of possible model instances.

1.4 Outlines

This manuscript is organized as follows:

In Chapter 2, we present an overview of the state-of the-art in the field of object
recognition with a special focus on specific object detection techniques, as we consider
it to be the core of this dissertation.

Then, we present two related contributions to the object recognition framework
which both aim at increasing the recognition robustness while maintaining a high de-

tection speed.
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Firstly, chapter 3| introduces an approach for specific object recognition. It relies on
non-rigid graph matching with a framework designed to enable the integration of dif-
ferent types of local features, contrary to most existing approaches, in order to increase
the robustness. Qualitative and quantitative evaluations of this contribution are pre-
sented in Chapter [4) on our own dataset for realistic robotic vision and on two other
popular datasets. In addition to an in-depth analysis of the detection performance is
also included a study of timing performance.

Secondly, we present an extension of the first contribution to the case of class object
recognition in Chapter [5| In fact, we use the same feature extraction framework than in
the first contribution but we adapt the decision model so as to handle the expected larger
intra-class variations of class objects. Again, qualitative and quantitative evaluations of
this contribution along with speed considerations are presented in Chapter [6| on single
object classes and a popular dataset for image classification.

Finally, Chapter [7|concludes and introduces some perspectives.
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THIS chapter provides an overview of the current techniques from the state-of-the-art

in object recognition for both specific and class object recognition. We begin by
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presenting basic concepts related to the feature extraction and description steps. Then,
we review existing methods used for specific and class object detection and further
examine their machinery with greater details. Finally, we also criticize various aspects
of existing methods with respect to our objective in this dissertation of elaborating a fast

and robust detection system.
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2.1. A Glance at Object Recognition

2.1 A Glance at Object Recognition

Even if recognizing an object in any kind of environment is almost immediate and effort-
less for us, that is still of huge difficulty for computers. After several years of research in
the neurocognitive field, what we know so far is that our brain contains several layers of
neurons dedicated to different low-level processing of the information coming from the
eyes [Schy7]. Those layers contain different neuron types called C1, V1, C2 and V2 which
are known to apply some simple fixed preprocessing, such as extracting local edges, the
gradient orientations or aggregating those information (in particular, see some detection
systems inspired by this cortex organization [KPgg, SWB*07]). Afterward those data un-
dergo subsequent processing deeper in the brain. At this very moment, we loose more
or less track of what happens, but we can guess that it is complex.

Interestingly enough, object recognition systems roughly follow the same dataflow
(see Figure [2.1): in a first step, low-level image features are extracted from the images in
an automatic way. Examples of low-level features include edges, corners and textures.
At this point, not enough information is available to draw any conclusions yet regarding
the image content, as each of these features taken individually only owns in the best case
a slight correlation with semantic image contents. As a consequence, a more complex
decision process, previously trained to distinguish between the model object and clutter,
is run in a second step. It relies on a global analysis of all available features and takes a

final decision regarding the presence and the location of the object.

Model Feature Model
object J > extraction :> training i

MOdel image Negative images

Training (off-line):

Testing (on-line):

......

:: ‘ ... o
@ Feature Model Y. 1
[:::] extraction Z> testing :> T tanaad’

scene image Detection result

Figure 2.1: General dataflow for object recognition systems.
The very interest of thus decomposing the recognition process in two steps is to sim-

plify the handling of appearance variations. In fact, although the appearance of a same
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object may appear consistent over time and environments for us (this illusion comes
from the ease with which our brain performs object detection), the situation is com-
pletely different for a computer. Small changes in light or viewpoint lead to images in
which the same object can appear totally different in terms of image pixels. In order
to be usable, a detection scheme thus has to be invariant to the following disturbance
sources: noise, illumination, translation, rescaling, rotation and intra-class variations. A
two-step decomposition enables an easier sharing of this burden: invariance to illumina-
tion, translation, rescaling and rotation are generally handled at the feature level while

noise and intra-class variations are dealt with by the decision process.

In the following of this chapter, we begin by presenting most of the popular existing
feature detectors and descriptors. Then, we explain how to aggregate these low-level
information in order to achieve object detection. As we will see, this implies first to create
a model for the object we wish to detect. We firstly dwell on the approaches related to
the first contribution of this dissertation, i.e. specific object recognition (Section [2.3),
then we also give an overview of existing techniques used for class object recognition

(Section related to our second contribution.

2.2 Low-level Features

As stated in the previous section, object recognition begins by extracting low-level fea-
tures from the images as an intermediary step before more complex processing. To
put it simply, an image feature is a value computed from the image pixels according to
a given formula. The gradient, for instance, is computed as the difference of value be-
tween consecutive image pixels. Therefore it is generally said of a feature that it describes
the image under a certain viewpoint, as it emphasize a given image property (edges for
the gradient example).

In practice, a multitude of features are generally extracted from a single image. For
simplicity, features stemming from the same type of processing (e.g. texture extraction)
are often gathered into feature vectors, also called feature descriptors. Sometimes, we will
call a “feature vector” simply a “feature” for simplicity. Most often, a descriptor under-
goes an additional processing that makes it invariant to some simple variation source
(typically, luminance). The interest of using feature descriptors rather than image pixels
directly is that they are easier to handle because of their smaller size, their invariance
and the fact that they emphasize some image properties useful for the detection task.

There exists several categories of features defined according to the formula used
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to compute them. Firstly, we can distinguish between two scopes for computing the

features:
¢ the local scope
* the global scope.

Features computed at a global scope (or more simply, “global features”), as their name
suggests, originates from the whole image. An example of a global feature would be
the mean luminance of an image. On the contrary, local features are only computed on
a limited area of the image. In the following of this dissertation, we will almost only
rely on local features as they bring invariance to translation. Indeed, using local features
enables to describe only the areas from the image which are straight above the object
(i.e. avoiding the background). In comparison, global features are used for tasks that
consider the image as a whole, like scene classification (e.g. deciding if a photo was
taken in a forest or in a street)]

Secondly, we can also categorize local features by the way in which they are ex-

tracted:
* sparse features
e dense features.

In the case of sparse features, a preliminary step is necessary to compute the set of image
locations where they exist. Those locations are usually selected in a way that is invariant
to common transforms (e.g. rotation, translation). The regions corresponding to edges
in images are for example invariant to most transforms. On the contrary, dense features
are not subject to such constraints and are available anywhere on the image. To sum-
marize, sparse feature integrates an additional aspect of spatial invariance which limits
their extraction to a few image locations, whereas dense features do not (see Section

2.2.2). A synthesis of the whole extraction process for local features is summarized in

Figure

We now review in detail the different types of features that are used in this disserta-
tion and related works from the state-of-the-art. We begin by describing dense features
in Section and then we dwell on sparse feature detectors in Section Finally,
some more elaborate feature descriptors based on gradient histograms are described in

Section [2.2.3]

"Note that sliding window techniques use global features extracted on sub-images, hence corresponding
in reality to local features with respect to the full image (see Section .
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Figure 2.2: The typical dataflow of local feature extraction in an object detection system.
In the first step, local image regions are defined either on the base of a dense sampling,
or according to a sparse detector. Then, each region is described by a feature vector.

2.2.1 Dense features
2.2.1.1 Convolution-based features

As stated above, dense features are extracted indifferently in every image locations.
Most often, they are obtained by convoluting a kernel (i.e. a smaller image) over the
image. In this case, the correlation between the image Z and the kernel K translated at

the position (x,y) corresponds to the image feature at that location:

(Z+K)(x,y) = ZI(x —m,y—n)-K(m,n)
mn
where * denotes the convolution operator. Since a convolution is highly time consuming
for each image pixel, it is common to use the Fourier transform which has a lower com-
putational complexity. The result of a convolution is a response map having the same
dimension than the image and where each peak indicates a high correlation between the
kernel and the image at the peak location. We now give a non-exhaustive list of popular

kernels for extracting dense features.

Template matching

Probably being the most intuitive, template matching consists of convoluting the image
with an image patch. It is therefore used to find small model parts (e.g. the patch repre-
sents an eye or a wheel) in an image. Because a standard convolution produces biased
responses with unnormalized patches (white areas tend to produce higher responses),
normalized cross-correlation (NCC) is often used instead. This simple technique is still
widely used in recent papers like [UEo06] or [TMFoy], but overall it has an heavy com-

putational cost.
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Figure 2.3: llustration of the gradient field on two simple images. The gradient vectors
represent the direction of the local largest change in pixel intensity.

Image Gradient

The gradient G of an image 7 is identical to its mathematical original definition except
that its expression is discrete instead of continuous. Two kernels are used corresponding

to the x and y image derivatives?}

+1
ngI*[—i—l 0 —1} and Gy, =T | 0
—1

The gradient in a given location (x,y) is thus defined as:

G(x,y) = [Gx(x,y), Gy(x,y)] .

Simply put, the resulting vector field G indicates the direction ®¢ of the largest change
from light to dark (see Figure where ©g = arctan <%) The rate of change in this
direction is encoded by its magnitude [|G|| = /G2 + G7.

The main interest of the gradient is that it is fairly insensitive to lighting changes
and, contrary to template matching, it is generic and fast to compute. Moreover, the
peaks in gradient magnitude indicate the points of sudden change in brightness (i.e.,
edges) as illustrated in Figure 2.4} To conclude with, the gradient constitutes one of the
simplest image feature but its derivative like HOG (Histogram of Oriented Gradients,

see Section are still widely used nowadays.

Apart from template matching and gradient, there exists many other features based
on linear convolution of kernels. We can cite for instance the features obtained using

the Fourier coefficients, the wavelet transform coefficients or the Gabor filter response

*Note that the Sobel filters [SE] are often used instead of the simplistic differential operators presented
above in order to be more robust to noise, but the result is essentially the same.
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Figure 2.4: Gradient derivatives extracted from the left image. Middle: G,. Right: G,. As
can be observed, the gradient has a strong magnitude in region with marked contours.

maps.

2.2.1.2 Non-linear features

In this dissertation we do not focus on non-linear dense features. We nevertheless give
as example the work of Kruizinga and Petkov in which a non-linear texture de-
scriptor is implemented based on the neural processing in the visual cortex (see some
texture classification results in Figure [2.5). The texture descriptor is based on the con-
catenation of simulated neuron output at three different scale levels for each pixel. In
chapter 3] we created a texture descriptor inspired from this assembly (see Section 3.3.3)

although in our case the three sub-descriptors simply contain a histogram of oriented

gradients.

////////////k -

Figure 2.5: Results obtained with the biologically inspired texture descriptor of
Kruizinga and Petkov [KPgg]. Left pair: dense response map corresponding to a hatched
pattern. Right pair: texture classification results (each gray level in the right image
stands for a different class).

2.2.2 Sparse features

We saw that dense features are defined for every image pixels, but this is not always
useful. Often, an object detection system prefers to focus only on a small set of image

regions that are interesting for its purpose. Here, we mean by “region” a set of connected
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pixels (e.g. edges) or simply a single point in the image oriented scale-space (those
ones are called keypoints). For instance, plain areas of an image like a blue sky do not
provide valuable information for car detection. An interest region detector thus selects a
subset of regions within an image based on a predefined low-level criteria, making this
extraction very fast. Then, only the regions selected by the detector are further analyzed
in the rest of the detection process.

The criteria used for extraction is generally defined in order to comply to a repeata-
bility constraint. This implies that the detector must yield consistent results despite the
presence of usual transforms (namely noise, lighting change, rescaling, in-plane rotation
and even sometimes affine transformations). That is, the extraction of interest regions
must be invariant to these transformations. Edges or corners for instance are invariant
to most of those ones (e.g. the Harris corner detector [HSS88]).

In the literature, pairs consisting of a region location and an associated feature de-
scriptor are often addressed as “sparse features” or “invariant local features” due to
their limited number, their localized aspect and their invariance to usual transform.
Sparse feature detectors have been developed from almost the very beginning of image
processing and a non-exhaustive list includes edge detectors (Canny [Can86]), keypoint
detectors (SIFT [Lowo4], MSER [MCUPo2], Hessian-Harris corners [HS88]) and region
detectors like [AMFMog|]. We now give some details about three of the most popular
types of sparse features, namely edges, keypoints and regions, some of which being

used later in our contributions.

2.2.2.1 Edges

Edge features, sometimes referred as contours or boundaries’} have long been used by
researchers in the field of object detection as they are one of the simplest and more
intuitive interest regions. There exists a gap, however, between the contours that a
human being would draw in a given image and the edges really detectable in the same
image using the gradient magnitude (see Section [2.2.1). This is because humans are
influenced by their understanding of the scene. Recent approaches of contour detections
like [MAFMo8] have nevertheless succeeded to reduce this gap at the cost of complex
computations that search for global solutions over the whole image. In this dissertation,
for efficiency reasons, we limit to a simpler detector that was designed by Canny in 1986.

The Canny edge detector [Can86] is one of the oldest system for detecting edges, but

it is still widely used. It outputs a set of edge pixels based on the gradient magnitude. In

3but these words can have a slightly different meaning as they refer to high-level object contours whereas
edges are only related to low-level image properties, see [GLAMog|.
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a first step, the input image is blurred with a Gaussian convolution in order to reduce the
amount of white noise. Then, the gradient magnitude and orientation are computed for
each image pixel. In a third step, a non-maxima suppression is carried out to eliminate
the pixels which are not local maxima of magnitude in the gradient direction. Finally,
a threshold with hysteresis is used to select the final set of edges from the remaining
pixels: all pixels above a high threshold in term of gradient magnitude are tagged as
edge pixels as well as every pixel above a low threshold and neighbor of an edge pixel.
This hysteresis technique is more reliable than a simple thresholding, as it is in most
cases impossible to specify a global threshold at which a given gradient magnitude
switches from being an edge into not being so. Moreover, the process is fast, simple to
implement and efficient enough to explain its success until today. An example of edges

extracted by this method is given in Figure

Figure 2.6: Example of edges extracted using the Canny detector.

Additionally, a common finishing stage is to polygonize the set of edge pixels into
line segments to simplify their representation. The set of sparse features thus obtained
is however not so reliable for matching a same object across different pictures because
of the polygonization noise (typically, line segments undergo cuts or on the contrary

merge together).

2.2.2.2 Keypoints

The recent emergence of keypoints, whose most famous avatar is probably SIFT [Lowo4]],
has had a considerable influence on specific object recognition (see Section [2.3). For-
mally, a keypoint, also called interest point, is simply a location p = (x,y,0,0) in the
oriented scale-space of the image (in the literature, it often comes implicitly with an
associated descriptor). Different techniques have been proposed to extract keypoints in
images. We can cite the SIFT detector [Lowo4|], SURF [BTGo6] and the Harris-Hessian
corner detector [HS88]. Lately, affine region detectors [M1S*05] have been developed to
improve keypoint detection by approximating 3D viewpoint changes. Two recent state-

of-the-arts about keypoints and affine region detectors can be found in [MPo7, MSos].
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Figure 2.7: (a) Fast computation of the pyramid of difference-of-Gaussian using repeated
convolutions with Gaussian (left) and subtraction of adjacent Gaussian images (right).
After each octave, the Gaussian image is down-sampled by a factor of 2, and the process
repeats. (b) Maxima and minima of the difference-of-Gaussian images are detected by
comparing a pixel (marked with X) to its 26 neighbors at the current and adjacent scales.

We only describe in this section the SIFT detector as it has been proved to be
one of the most robust and efficient, as well as the only fully scale invariant method
[MPoy, MSos]. Introduced by Lowe in 1999 [Lowqg), the Scale Invariant Feature Trans-
form (SIFT) firstly extracts extrema in the difference-of-Gaussian space (see Figure [2.7).
Firstly, repeated convolutions of Gaussian kernels with increasing radius are applied to
the input image and the result are stacked in so-called “octaves”. Each time that the
Gaussian radius exceeds by a factor of 2 the first image of the current octave, the cor-
responding image is downsampled by a factor of 2 and the process repeats for another
octave. Then, adjacent images in octaves are subtracted in order to compute difference-
of-Gaussian as a fast approximation to Laplacian (see Figure [2.7/(a)). Then, maxima are
searched in the scale-space of difference-of-Gaussian and each point found constitutes
a keypoint center at the corresponding scale (see Figure [2.7}(b)). This process especially
fits textured objects as strong texture provides a large amount of stable extrema. Finally,
an orientation is assigned according to the dominant gradients around the point. The
locations thus obtained are invariant to a translation, an in-plane rotation, a rescaling

and a illumination change of the input image.

We use SIFT keypoints later in our contributions for their good propensity to specific

object recognition [Lowo4].
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2.2.2.3 Regions

Uniform image regions have also been considered to generate sparse features. The
Maximally Stable Extremal Region (MSER) detector [MCUPo2] is probably the most
famous one in this field. It is based on a segmentation of the image using a watershed
algorithm and various thresholds. At a high water threshold, all regions merge into a
single one but the algorithm is only interested in those regions that resist the watershed
the longest. Those extremal regions possess two highly desirable properties: they are
invariant to continuous (and thus projective) transformations of image coordinates as
well as to monotonic transformations of image intensities. Moreover, an efficient (near
linear complexity) and a fast detection algorithm is achieved in practice, making MSER
one of the most popular interest region detectors with SIFT (e.g. see [SREZo5| SSSFFo9]).

More complex region detectors have been recently developed, like the one of Arbe-
laez et al. [AMFMog] but unfortunately these detectors are not designed for interest
region detections. Instead, they aim at segmenting the image at the highest possible

semantic level.

2.2.3 Histogram-based features

Once that a set of sparse image locations have been extracted, each one has to be tagged
by a descriptor in order to ease its retrieval and allow its comparison with other de-
scriptors. We saw in Section how to extract the gradient as a dense vector field
from an image. We present here different descriptors that are all based on accumulating
the gradient vectors in histograms. Note that those description techniques can be used
indifferently for depicting the global image or local patches, depending on the image
area on which they are computed. The purpose here is to create robust and distinctive

descriptors, both properties being very important to ease subsequent detection schemes.

2.2.3.1 Local descriptors
The SIFT descriptor

We described above the SIFT detector, responsible for choosing a sparse set of invari-
ant points in the input image. The following step consists of building a discriminant
descriptor for each such point using the SIFT descriptor.

The SIFT descriptor is a 3D histogram in which two dimensions correspond to image
spatial dimensions and the additional dimension to the image gradient direction. It is

computed over a local square region of a given radius ¢ centered on a given point
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p = (x,y) and rotated by a given angle 6 (see Figure[2.8). As depicted by Figure the
histogram consists of 4x4 spatial subdivisions and 8 orientation intervals of 45° each,
which makes a total of 128 bins for the final descriptor. During the computation, each
gradient vector belonging to the local square region contributes to the histogram in the
corresponding bin depending on its location in the local region and on its orientation
(the contribution is proportional to the gradient magnitude). In order to avoid boundary
effects, the contributions are spread over 2 x 2 x 2 = 8 bins using linear interpolation.
Finally, a normalization step is applied to make the 128-dimension descriptor invariant

to lighting changes.

The SIFT descriptor has been shown by Mikolajczyk and Schmid [MSos]| to be one of
the most robust descriptors to perspective and lighting changes with the Shape Context
[BMoo] descriptor. Moreover, it is robust to small geometric distortions. Due to its popu-
larity, a lot of variants have been proposed: a non-exhaustive list include GLOH [MSos]],
PCA-SIFT [KSo4], SURF [BIGo6] and GIST [SIo7]. Recently, new keypoint descriptors
dedicated to real-time constraints have been developed by Lepetit et al. [LLFos] (later
improvements in the same framework include the works of Calonder et al. [CLK"09]
and Ozuysal et al. [zCLFog] for a fast extraction, description and matching of key-
points). They rely on fast pixel-to-pixel comparisons rather than gradient histograms.
As a result, the description step is much faster than with SIFT and the descriptors also

seem to better handle perspective distortions.

rotation angle 6

— 8 bins histogram of

gradient orientation

radius o

Figure 2.8: The SIFT descriptor consists of a 3D histogram in which two dimensions
correspond to image spatial dimensions (4x4 bins) and the additional dimension to the
image gradient direction (8 bins). The histogram covers a square region of the image
parametrized by a radius, a center and a rotation angle.
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\\.___ / direction—j

Figure 2.9: The DAISY descriptor [TLFo8]. Each circle represents a region where the
radius is proportional to the standard deviations of the Gaussian kernels and the "+
sign represents the locations where the convoluted orientation maps are sampled. The
radius of the outer regions are increased to have an equal sampling of the rotational axis
which is necessary for robustness against rotation.

DAISY

Tola et al. [TLFo8|] have introduced in 2008 a feature descriptor named DAISY which
is similar in many respects to SIFT at the difference that it is designed for a fast dense
extraction. It was shown to achieve better results than SIFT for wide-baseline matching

applied to stereoscopic images.

Specifically it also consists of several histograms of oriented gradients which are not
positioned on a square grid like SIFT but on a daisy-shaped grid (see Figure[2.9). The key
insight of DAISY is that computational efficiency can be achieved without performance
loss by convoluting orientation maps to compute the bin values. In other words, the
original gradient map of the image is divided into height maps based on the gradient
orientation (i.e. each map only takes care of a 45° bin), and a Gaussian blurring at
several scale levels for each map achieves a pre-computation of the histogram bins at
every image location and scale. Histograms picked up at the locations shown in Figure

are finally concatenated into the final feature descriptor for a given center and scale.

In Chapter [3, we use a related descriptor where the extraction part is strongly in-
spired from the work of Tola et al. [ILFo8]: the difference is that we used a Fourier
transform in the orientation space to compute the orientation maps in order to obtain

oriented descriptors without interpolating the bin values.
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2.3 Specific Object Recognition

Now that low-level features have been presented, we study how to combine them in
order to effectively take a decision about the presence of a given model object in a test
image. As our first contribution focuses on specific object recognition, we begin by a
summary of the existing methods for specific object recognition, yet including a few
references to related class object detection methods when necessary. Existing systems

for specific object recognition can be classified as follows:
¢ methods using global features,

* methods using sparse local features, from which we can distinguish:

— the ones relying on a rigid matching, and

— the ones relying on a non-rigid matching.

2.3.1 Using global features

Techniques using global features for specific object recognition are quite anecdotic in
the state-of-the-art. Indeed, the advantages of using local features compared with global
features are huge as we will see below. This is essentially why global techniques have
been investigated before the emergence of reliable invariant local features.

To put it simply, techniques using global features aim at recognizing the object in
its whole. To achieve this result one generally has to learn, from a set of images, the
object to recognize. Nayar et al. [NWNg6] have presented in 1996 a fast method which
can handle one hundred objects while still being effective. They conducted a principal
component analysis of the model pictures in order to extract eigen-views that eliminate
the lighting noise. Then, an optimized scheme of nearest neighbor search was used to
quickly match a test image with a model object. A lot of other works relying on global
features have been proposed for class object recognition, like the one of Viola and Jones
for face detection with boosted cascade of simple classifiers [V]o4].

However, using global features has several drawbacks: first of all, the object has to
fill the whole test image in order to match the model. To overcome this issue, sliding
window techniques are generally used to enable invariance to translation, scaling and
rotation. This solution nevertheless has a large computational cost (thousands of win-
dows must be examined [GLAMog]) whereas specific object recognition usually implies
real-time constraints. Precisely retrieving the 3D model pose using global features also

appears very difficult. Thirdly, the amount of data needed for training is usually huge,
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as well as the training time. A last problem is that these approaches have difficulties
dealing with partial occlusions. Those issues are admissible for class object recognition
since a lot of model pictures are necessary anyway to precisely learn the intra-class vari-
ations, and the task is difficult enough to afford to avoid the occlusion problem. On
the contrary, we expect more from a simpler system dealing with specific objects: i.e.,

training the model from only a few pictures and bearing occlusions.

2.3.2 Using local features

A wide variety of specific object detection methods relies on sparse local features. Since
the properties used for extracting these features are invariant to most real-world trans-
forms, a common technique is to describe the model object by a constellation of these
local features in the training stage; and to search the same spatial arrangement of fea-
tures in the test image during the detection stage. To summarize, the general scheme

usually implies three steps:

1. The first one is the extraction and description of sparse invariant local features, in

both test and model images.

2. The next step consists of selecting test image features that match the model ones

(i.e. pairwise matches between keypoints, lines or regions).

3. The final step elects the best subset of test image features based on their spatial

consistency with respect to the geometrical arrangement of the model features.

In this way, the object position can be precisely computed as well as the occlusion map,
provided that the model object is covered by a sufficient number of local features (e.g.
like in [FTo4]]). A fourth additional step is also often performed to assert a detection

using a probabilistic model which depends on the method.

Using keypoints as local features

Among all different types of local features, one type holds more attention than others.
Indeed, the emergence of keypoints has significantly improved the state-of-the-art in
various domains of computer vision and more particularly in the detection of specific
objects. Clearly, most methods presented in the following are based on keypoints.

In fact, recognition methods using keypoints present numerous advantages: they in-
herit the invariant properties of keypoints (namely to translation, scale and rotation) and

the localized aspect of the features makes them robust to occlusion without significant
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Figure 2.10: Representation of an object as a constellation of keypoints. Each keypoint
is associated to a local square patch where the keypoint descriptor is extracted. In
the method of Lowe [Lowo4], the position of all keypoints is constrained by a global
affine transform of their coordinates in the model image, thus enabling to filter out most
incorrect detections.

increase in complexity. Moreover, thanks to the high descriptive power of the keypoint
descriptors (see Section [2.2.3), any training is quite unnecessary. Finally, those methods
are generally simple to carry out and they can perform close to real-time (in particular,
see [CLFo8]]). Another point that could explain why keypoints have become so popular
these last few years is that the concept of decomposing an object into a constellation of
small interest patches is somehow familiar with the human visual system. An example
of an object described by a constellation of keypoints is shown in Figure We distin-
guish in the following between two different ways of verifying the geometric consistency

of a constellation: namely, rigid and non-rigid techniques.

2.3.2.1  Rigid matching

Methods that rely on a rigid transform (e.g. a projective transform) to constrain the
local feature positions can be classified into two categories: RANSAC-based methods

and Hough-based methods.

Hough-based

The Hough transform was first patented in 1962 and later adapted for the computer
vision community by Duda and Hart [DH72]. Briefly, the Hough transform involves
two stages: in the first one, votes are accumulated in the parameter space based on an
examination of the available features in the test image (because of imprecision, votes are
usually cast on intervals in the parameter space, or equivalently, the parameter space is
quantized into several bins); in the second stage the votes are clustered and the position
of the largest cluster yields the optimal transform parameters.

From all specific object detection methods using the Hough transform, the method
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Figure 2.11: Example of robust detection of specific instances using Lowe’s method
[Lowo4]. In spite of a projective transform of the model image (top) in the test im-
age (bottom, yellow box) and a large amount of clutter, Lowe’s method is still able to
correctly detect the beaver thanks to a spatial verification of the matched keypoint con-
figuration. In this image, the search of the beaver model object results in 14 detections,
the best one being correct with a probability score of 100% while the false positive ones
have much lower scores (i.e. all below 23%, average score is 8.9%).
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of Lowe [Lowo4] is probably the most famous and popular. During the training stage,
multiple views of the same object are combined in order to compute a set of characteris-
tic views. In the same time, keypoints belonging to the model views are indexed in a k-d
tree in order to enable a fast pairwise matching between model and scene keypoints (this
technique is scalable to a large number of model objects and thus has been replicated in
many other works, e.g. see [BTGo6]). During detection, keypoints in the scene image are
extracted and matched with the model keypoints using the k-d tree. Then, the Hough
transform is performed: each matched scene keypoint votes for an approximate model
position in the parameter space (assuming a simple similarity transform, the keypoint’s
position, scale and orientation suffice for the extrapolation). Finally, peaks of votes in
the parameter space are further verified with an affine transform and a probabilistic
decision determines whether the object is really there or not, based on the amount of
spurious matches in the concerned area. An example of detection using Lowe’s method
is presented in Figure The drawback of such an approach is that it does not take
into account the real 3D shape and the 3D transformations of the object and therefore is
unable to recover its precise spatial pose. Moreover, Moreels and Perona [MPo8] have
shown that the choice of the bin size in the Hough space is problematic (smaller bins
cause fewer true positives, while larger bins cause more spurious detections). They have
proposed instead a cascaded procedure which adds an additional ransac stage (see be-
low) after the Hough transform, and have also improved the final probabilistic decision
in order to reduce the false alarm rate. However, their probabilistic model relies on cor-
rect and incorrect keypoint match densities which are rather hard to obtain (they used
a mechanical rotating table with different objects placed on it to obtain ground truth
feature matches [MPo7]).

Finally, the method of Gu et al. [GLAMog] is also related to the Hough transform.
By representing the model objects as bags of regions (each one weighted during the
training using a machine learning technique similar to a support vector machine) and
then applying a similar voting scheme in the scale-space of possible instance locations,
they manage to detect textureless objects unfit to be depicted by keypoints. The used

region detector is unfortunately very complex and not suitable for fast applications.

ransac-based techniques

The ransac algorithm was introduced by Fishler and Bolles in 1981 [EB81]. It is possibly
the most widely used robust estimator in the field of computer vision. Figure [2.12]

illustrates how the line estimated by ransac from a noisy set of points effectively recovers
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Figure 2.12: RANSAC can extrapolate the correct line parameters despite the presence of
many outliers (source: Wikipedia).

the optimal parameters. The ransac algorithm can be summarized as follows: assuming
a noisy set of samples and a given spatial transform, the algorithm iteratively picks a
small number of input samples and estimate the transform parameters of the associated
fitting problem. Then, a score is given to this trial to measure its quality, usually by
counting the number of inliers, i.e. the number of other samples that comply with this
parametrization. Finally, the transform parameters corresponding to the best trial are
returned. Because ransac relies on a succession of random trials, it is not guaranteed to
find the optimal solution. A probabilistic formula is used in practice to determine the
number of iterations necessary to output the optimal solution with some confidence.

Numerous papers related to the matching of specific objects or even whole scenes,
like short and wide baseline stereo matching [CMo2, MCUPo2], motion segmentation
[Torgs|] and of course specific object detection [LLFo5, RLSPo6|] have used ransac cou-
pled with keypoints as robust estimator. Lepetit et al. [LLFos], for instance, have pre-
sented a real-time system based on randomized trees for keypoint matching which have
been later improved by Ozuysal et al. [zCLFog] into ferns. Their solution is notably ro-
bust against changes in view point and illumination. In a different fashion, Rothganger
et al. [RLSPo6] have considered affine invariant keypoints to recover more efficiently
the object pose from the matched feature patches. Even if those methods give good
results, a common drawback is that the 3D shape of the model objects has to be learned
beforehand.

Finally, note that the original ransac algorithm has been adapted into several vari-
ants by Chum et al. [CMKo3| |CMos| (CMo8|]. We have implemented in Chapter |4 for
comparison purpose the variant called “Locally Optimal ransac” (Lo-ransac) [CMKo3]
which assumes two transforms to fasten the matching process (the first transform be-
ing an approximation of the second one). In the main loop, the simplified transform is
used as it requires less samples to estimate the transform parameters, hence reducing
the number of iterations. During the verification step, a secondary ransac using the full

transform is launched only on the set of inliers discovered by the simplified transform.
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Chum et al. have shown that this way of processing gives better results than using a
standard ransac and is also faster. Our experiments (see Chapter [4) have confirmed
this statement with the setting proposed by Philbin et al. [PCI*o7] in which a similar-
ity transform is used for the main ransac loop (only requiring one keypoint match to
estimate the transform parameters) and a projective transform for the verification step

(requiring four matches).

Other techniques

Rosenhahn and Sommer [RSosa) RSosb] have proposed a technique for 3D object track-
ing. To that aim, the conformal space is used to embed feature points, lines and circles.
Nevertheless, their method assumes that the matching step is performed externally to
their method (i.e. it can only be used to track an object after a manual matching initial-
ization). To our knowledge, no full detection scheme relying on this theory yet exists.
In a different style the older system of Jurie [Juroi] also use edge features to represent
objects. Indexing techniques are used to achieve fast 2D and 3D object recognition while
additional optimizations are used to recursively prune the space of hypothesis poses
at matching time. Yet, the general shortcomings of such edge-based approaches is that
edge features alone carry low distinctiveness and that the quality of the segmentation

(edge extraction) is variable (it is known to be not robust to noise in general).

2.3.2.2 Non-rigid matching

As we saw rigid matching is efficient, but obviously it can not handle distortions like
what happens to a bent magazine or to a yawning face, for instance. Non-rigid match-
ing, on the contrary, assumes that the model object can be decomposed in a set of
different independent parts that can move on their own (with some limits, of course).
This strategy has been shown to give more flexibility to the model [FTGo6] and to in-
crease performances thanks to the fact that distant features are disconnected [CPMog].
The matching cost is however often superior compared to the case of a rigid matching,
but this is expected as the number of parameters that govern a non-rigid transform is

by far superior to the number of parameters for a rigid transform.
Non-rigid matching can be roughly categorized into two kinds of techniques: those

relying on graph matching and those denoted as part-based models (note that both

categories are strongly related, as we will see).
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Graph matching

Graph matching seems to be a straightforward way to resolve specific object detection.
Indeed, after having extracted some sparse local features, both model object and scene
can be represented as graphs (see Figure [2.13). Moreover, graph matching operates at
a local scale by comparing pairs of nodes or pairs of edges, thus avoiding the need of
a global (rigid) transform. Formally, the graph matching problem can be formulated as

the maximization of the following objective function [GRg6, BBMos| [CSSo7]:

EM) = ) HuipM. Mg,
ac,i,‘B,j

where

* M is the desired match matrix (i.,e. M,; = 1 means that node a from the first
graph is matched to node i from the second graph, otherwise M, ; = 0). M is
usually subject to an additional constraint: a many-to-one matching scheme is

often allowed (i.e. Vi, }_, M, ; = 1 or conversely by interchanging i with «), and

* H is a matrix which describes the compatibilities between edges of the two graphs.
H, ; g ; thus measures how much the edge (&, B) (from the first graph) and the edge
(,]) (from the second graph) are compatible. In the case where « = fand i = j,

H, i, simply measures the compatibility between node a and node i.

Driven by this straightforward formulation, researchers have long proposed graph match-
ing as a powerful tool for classifying structured patterns (see [CFSVo4] for details). More
specifically, a large amount of studies have tackled the recognition problem using graph
matching, for instance applied to the detection of faces [WFKvdMg7|, indoor objects
[GR96] or mechanical parts [KKg1].

The main drawback of this kind of approaches however lies in the computational
power needed to match two graphs. In fact, it has been shown that the subgraph iso-
morphism problem (i.e. what we practically call graph matching) is NP-hard. As a
consequence, researchers have either focused on sub-problems easier to solve (e.g. the
matching of bipartite graph [KKog1]), either proposed heuristics and optimizations so
as to efficiently reach or approximate the global solution [BDBVoz1, SBVo1, MBg§]|. For
instance, Messmer and Bunke [MBg8] have shown that the subgraph isomorphism res-
olution using a model graph decomposition and a set of graph edit operations can be
very robust compared to classical A*-like algorithms that were developed first. On the

contrary, recent researches have focused on global approximations (graph-cuts [TKRo8§],
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Figure 2.13: Representing objects as graphs (nodes are figured with black dots). (a)
Using keypoints; (b) using regions (here, surfaces); (c) using line segments.

tensor-based [DBKPog] and/or spectral method [CSSo7]), but the timing performances
remain disappointing for large graphs. In comparison, the historically older relaxation
methods perform faster and stay competitive in practice [FSGDo8, MGMRoz2, [ITKRo8§],
although no theoretical guarantee ensures their convergence.

Among all applications of graph matching to specific object detection, we can cite
the system of Kim et al. [KHPo7] which is dedicated to recognize indoor objects. In
their approach, edge segments are firstly extracted and described in term of their neigh-
borhood (i.e. luminance and color). Then, they are matched between the scene and the
model using logistic classifiers. Finally, a spectral method [CSSoy] is used to solve the
global assignment problem. The method shows superior results compared to a SIFT
based approach, but this is expected as the problem setup is dedicated to the detection
of textureless indoor objects. The works of Christmas et al. [CKPo4] and Wilson and
Hancock [WHog] for matching road segments in maps are also interesting. In the first
approach, a two-levels hierarchy based on the size of the line segments yields good
matching results despite its apparent simplicity.

However, the main problem of graph matching techniques in our opinion lies in
the discretization necessary to convert an image into a graph through a selection of
some image spots (i.e. each one being transformed into a graph node). Indeed, this
step inevitably results in a loss of relevant information. We will see in Chapter [3| how
this issue can be addressed by introducing the notion of continuous graph (i.e. a graph in
which the number of nodes is infinite) thanks to the use of dense or semi-sparse features

(namely textures and edges).

Part-based models for specific object recognition

Apart from graph matching, a closely related field is the class of part-based object recog-

nition methods. Although the term “parts” may refer to semantic parts (especially for
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class object recognition methods, see next section), we restrict here to the case of spe-
cific objects. In this context parts thus only mean local patches of the object surface,
most often derived from sparse feature detectors. Part-based models for specific object
recognition address the problem in a similar fashion than graph matching (i.e. decom-
posing objects in parts loosely connected) but use different techniques to solve the part
assignment problem.

First of them, the work of Ferrari et al. [FTog4, FTGo6] deals with the object recogni-
tion problem in a greedy fashion. Firstly, local patches are densely sampled on the model
objects in order to learn their entire surface. During detection, the method of Ferrari et
al. gradually explores the areas surrounding some initial matches obtained using sparse
affine features, recursively constructing more and more matching regions, increasingly
farther from the initial ones. To eliminate wrong matches, the process alternates be-
tween contraction phases and expansion phases, hence achieving object segmentation at
the same time. A similar approach have been proposed by Kushal and Ponce [KPo6]
specifically for the detection and 3D pose recovery of 3D rigid objects. The problem of
those method is that they only fit strongly textured objects preferably viewed in close-up
and that they are very slow (4-5 minutes to process a pair of model and scene images on
a 2.4 Ghz computer). Moreover, the segmentation aspect (dense coverage) of the method
makes the model very heavy and is not always desirable for practical applications.

On the contrary, the approach of Detry et al. [DPPo8] is centered on edge features
connected by a hierarchy. Their method allows to infer the position and the 3D pose of
a model instance, but the detection time is also slow because of the probabilistic han-
dling of the resolution: belief propagation is performed in moderately high dimensional
spaces to enable the invariance to translation, scale and 3D rotation. Even if their op-
timization using a density estimation technique enables an important speed-up, it still
takes one minute to detect the object and its pose. A similar work was done previously
by Scalzo and Piater [SPos] where an expectation-maximization scheme was used to
identify and code spatial correlations between features/parts.

Recently, an other approach using edge features has been proposed by Holzer et al.
[HHINog|]. Their technique relies on a depiction of the model object as a set of closed
contours. For each contour template, a distance map is computed during training to
store the minimal distance between each template pixel and the closest edge pixel (see
Figure [2.14), which is robust to segmentation noise. By training a classifier for various
template poses, they could obtain robustness against perspective effects. In addition,
spatial relations between multiple contours on the object are learned and later used for

outlier removal. At run time, the classifier provides the identity and a rough 3D pose
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(d)

Figure 2.14: An illustration of the distance transform used in [HHINog]. (a) A stop
sign picture; (b) Edges extracted with the Canny detector [Can86]; (c) Distance maps
computed from (b): the closer we are to an edge, the smaller is the distance (dark pixels
correspond to small values); (d) the eight templates extracted from closed contours of
the model object.

of the Distance Transform Template, which is further refined by a modified template
matching algorithm that is also based on the distance transform. Of course, this method

is only relevant for the objects presenting planar contours on their textured surface.

2.4 Class Object Recognition

Finally, we give in this section an overview of current class object recognition techniques.
Basically, the main difference between specific object recognition and class object recog-
nition is that in the latter case, intra-class variations are larger (in particular, beyond 3D
pose changes) and more complex to model. Practically, this means that the boundary
between positive and negative instances in the feature space has a potentially compli-
cated shape, in particular because the semantic definition of an object class differs from
the feature-based definition. As a consequence, a widely used solution is to transfer the
burden of modeling this complex boundary to machine learning algorithms. Those ones
are indeed dedicated to handle this kind of problem and can efficiently learn a decision
surface from sampleg?| (generally in an optimal way regarding a certain formulation of
the problem). Those techniques are either discriminative (i.e. existing machine learn-
ing techniques like Support Vector Machine (SVM [BGV92]), boosting (e.g. AdaBoost
[FSo5] or its variants) or generative (probabilistic Bayesian models, e.g. the naive model
[CDF*04]). The result is called a classifier, as its task is simply to decide whether a given
sample (expressed in the feature space) belongs to the model class or not. To summarize,
the main trend in class object recognition is thus to express the model images as vectors
in a relevant feature space, and to train a classifier with negative and positive sample
vectors so as to learn the class distribution (in other words, we talk about statistical

learning). We will now review in more details some of the most efficient feature spaces

4We only talk about supervised learning in this dissertation.
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found so far as well as frequent schemes used for detection.

2.4.1 Feature spaces for class object recognition
Why not using simple feature types ?

As we saw previously, simple features such as keypoints are enough for specific object
recognition. Although using the same features as well for classes of objects could appear
to be a good idea, it is not that simple. The main problem lies in the fact that simple
features are often too much specific, enabling few generalization regarding the larger
intra-class variations occurring for classes. To overcome this issue, class methods have
to add additional steps (e.g. creating histograms of features, see below) leading to

higher-level features which are more invariant to class variations.

Bag-of-words

The Bag-of-Words (BoW) features have been firstly proposed by the natural language
processing community. The original approach was aiming at representing a textual doc-
ument as a histogram of the words composing it. (The term “bag” originates from the
fact that the position information of the words in the document is lost in the histogram
bining process). This feature space is known to be extremely effective for textual docu-
ments (e.g. that’s how Google indexes web pages), so several researchers have proposed
an application of the same principle to images.

In computer vision, the solution which has been proposed by several groups is to re-
place textual words by visual words [CDF*og4, [FFPos5, [LSPos5]: first, local features having
a high descriptive power (typically SIFT descriptors) are extracted from the image (using
either dense sampling or salient detector); then, each local feature is quantized, i.e. as-
sociated to the nearest word in a predefined codebook (we assume that the codebook, or
“visual dictionary”, has been preliminary built using clustering techniques like k-means
in the descriptor space); and finally, the descriptor for that image is computed as a his-
togram of the visual words present in that image. After that, the image is represented
as a point in the space of histograms. In this feature space, two images are compared
based on the distances between their histograms. Popular distances include the chi-
squared distance and the minimum intersection between histograms [ZBMMo6, BZo7].
Note that the computer vision community still benefits nowadays from techniques used
in the textual document field (e.g. see Tirilly et al. [TCG10]).

Surprisingly, bag-of-features performs very well for various tasks despite its sim-

plicity (e.g. object recognition [BZo7] or image classification [ZBMMo6]). In fact, the
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loss of spatial information seems to be rather an advantage for handling class varia-
tions as it provides invariance to pose/viewpoint and geometric variations (in fact, the
bag-of-feature representation amounts to consider images as textures having no spatial
organization by definition [ZBMMo6]]). On the other hand, the lack of spatial informa-
tion is also one of the most frequent criticism against BoW. In fact, there are applications
which require to take into account the geometric configuration of the local features (at
least partially). As a consequence, an additional spatial verification step is sometimes
performed after the histogram comparison (e.g. see Chum et al. [CPMog]) or spatial
information are directly incorporated into the histogram (e.g. the spatial pyramid of
Lazebnik et al.[LSPo6]).

Histogram of oriented gradient (HOG)

Now that we have presented histograms of visual words, we present the Histograms
of Oriented Gradients (HOG). Introduced by Dalal and Triggs [DTos], the insight is as
the name suggests to accumulate image gradients into histogram bins corresponding
to different gradient locations and orientations. More specifically, the image is divided
into a dense grid of uniformly spaced cells. Each cell then contains a single histogram
with several orientation bins that receives the contributions of the underlying gradient
vectors. Contrary to the SIFT descriptor presented above, the HOG feature is intended
to describe the image in its entirety (or the sub-image in the case of a sliding window,
see below) without any rotation or scale invariance.

Dalal and Triggs [DTos] have studied the influence of each stage of the feature com-
putation process regarding the performance of a pedestrian detection application. They
have concluded that fine-scale gradients, fine orientation binning, relatively coarse spa-
tial binning, and high-quality local contrast normalization in overlapping descriptor

blocks are all important for good results.

High-level local features

While the two previous features are global features, we now present local features which
are specially designed to handle the case of class objects. In other words, those local
features are tolerant to some variations. An excellent example is the biologically-inspired
features presented by Serre et al. [SWB*o7]. In their work, the extraction of features
follows the process explained at the beginning of this chapter: the image is convoluted
by Gabor filters (corresponding to C1 cells in the visual cortex), then the response maps

are sub-sampled and max-pooled in a local frame (corresponding to C2 cells); after that
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the maps are again convoluted (V1 cells) and a final sub-sampling followed by max-
pooling yields the feature vector (V2 cells). Although the feature extraction process is
costly computationally speaking, the scene classification results are very good [SWB*o7],
and subsequent works have also proved that those features can be very efficient for
recognizing class objects [MLo6].

In this dissertation, we also present high-level features designed to detect model
parts. Our features are somehow related to the features of Serre et al. [SWB*o7| as
they are composed of several local features loosely connected so as to get a maximum
response with respect to a model groups of feature in a local frame (i.e. some sort
of max-pooling). Finally, note that other types of high-level features have also been
developed, most of them being inspired by biological processes in the human visual

cortex [KPgo| JWXD10, Slo7].

Comparison to specific object detection systems

To conclude this subsection, in general the feature types used in the case of class objects
are either global or dense. Compared to the simple sparse features used for specific
object detection (i.e. structural methods), those types generate more data and hence
multiply the overall computational cost by a large factor. As a result, many class object
recognition systems are not real-time at all. To conclude with, specific object detection
requires fast machinery with respect to its range of applications, and hence cannot afford

the complex features and processing used in the case of class object recognition.

2.4.2 Detection schemes
Sliding windows

The simplest and yet widely used strategy to detect object in images is to use a sliding
window. In order to enable invariance against translation and scale, the recognition

process follows the following steps:
1. A window scans the input image at various locations and scales.

2. For each window:

(a) A global feature vector is extracted.

(b) The classifier decides the presence or absence of the model object in the win-

dow based on the feature vector.
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The second step is summarized in Figure [2.15/a. Although this scheme can seem sim-
plistic, it gives good results as it allows the utilization of statistical learning techniques
to solve the recognition problem: the recognition problem reduces to classifying feature
vectors into class and non-class categories. Typically, discriminative classifiers like SVM
[H]JSog] or AdaBoost [V]Jo1] are used with this scheme and are trained using bootstrap-
ping, i.e. iteratively adding to the classifier training set windows wrongly classified
by the classifier learned in the previous iteration. Because the number of windows to
examine in an image is potentially very large, several optimization schemes have been
presented (see the next paragraph). Overall, sliding windows remains extremely used

for generic class object detection and face detection [MLo6, TMFoy, HALLos, [FGo§].

Optimization using cascades

As said above, the sliding window scheme involves the examination of tens of thousands
of windows (often even more, see Gu et al. [GLAMog]]), which is generally very slow.
In order to overcome this limitation, Viola and Jones [V]Jo1] have first proposed to use a
cascaded detection scheme in order to speed up the detection. The insight of cascades is
to save as much energy as possible during the detection process: as soon as a negative
outcome becomes evident, the computations stop for the current window. Recent ap-
proaches complying to this methodology include the works of Vedaldi et al. [VGVZo9]
and Harzallah et al. [HJSog|]. In this dissertation, we will also make use of cascades al-
though they will only act at the feature extraction level (i.e. we extract “smart” features)
and not at the classifier level (Chapter [4).

To draw a parallel of cascades with the human vision, one immediately “knows”
which spots of an image to focus on to get a fast understanding of it. This intuition has
a lot to do with the pre-processing done automatically by the pre-cognitive system in
our brain in order to predict interest areas in the scene. This behavior allows to save
body resources by sensing only small parts of the scene with a greater resolution. For
instance, flat areas like the sky are of low interest, so almost no time is spent analyzing
them. Interestingly enough, the structure of cascaded detection systems is closely related
to the human visual system.

The origin of cascades arises from the fact that in a classical sliding window scheme
the same amount of computations is spent whether the considered area is plain blue sky
or not. Intuitively, one can understand that this approach is far from the optimum com-
putationally speaking and that many time that could be reinvested into more complex

tasks is lost. More generally, such an approach becomes dramatically costly for detect-
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Figure 2.15: Comparison between a classical detection process and a cascaded detection
process. (a) a standard process; (b) a cascade with 3 layers. Each layer is activated if the
previous layer returns a positive response.

ing more than one type of objects provided that the window aspect ratio, the features or
the classifiers used are different.

The cascade framework thus proposes to decompose the recognition process into
several successive steps of increasing complexity [VJo1, EHOKoi]. The key idea is to
enable an ending as early as possible: instead of taking a decision on the full available
knowledge, like is done typically in image classification with Support Vector Machine
for instance, the global decision function F : R" — {0,1} is fragmented into smaller

functions f; : R% — {0,1} that are evaluated sequentially:
F(x) = Q) fi(xi) with Vig; <n, i.e. x; C x
i

where x represents the full feature vector for a given window and @ is a generic se-
quence operator that can take various forms. Here, each subclassifier f; is dedicated
to clutter detection rather than true positive labelling. A single negative decision thus
suffices to abort the rest of the detection process for the current window (see Figure
2.15|b). As long as the vast majority of input vectors are clutters, an admissible hypothe-
sis for real-world object recognition systems [EHOKoz1, [ESPMos|, the approach becomes

extremely efficient: millions of windows can be examined in a matter of seconds (espe-
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cially when associated to a fast feature extraction process like in Viola and Jones [V]o4]).
Additionally, one can purposely set up overly simple subclassifiers for the first cascade
layers (for instance, a single feature is used in the first subclassifier of [VJo4]]), whereas
the subclassifiers of the last stages are more complex in order to better represent the ideal
decision surface. Some examples of cascaded strategies include the work of Vedaldi et
al. [VGVZog] where a decrease of processing time per image from 27 hours to 67 sec-
onds was reported compared with a brute force approach. Similarly, Felzenszwalb et al.
[FEGM10] improved the detection time by a factor of 20 using cascades with respect to

the same approach using dynamic programming and generalized distance transforms.

Part-based models

A drawback of sliding window is that their global consideration of the sub-image makes
them unsuitable to bear occlusion; moreover they are generally not invariant to rotation
(in order to save computations). On the other hand, the fact that many class objects can
be intuitively decomposed into parts has led to the development of part-based models.
Similarly to some previously mentioned methods for specific object recognition, in a
part-based model the model object is represented as a collection of parts (each one
provided with a corresponding local appearance) along with their spatial configuration.
An illustration of such possible decomposition is shown in Figure [2.16for faces, cars and
humans. Part-based models thus belong to the field of structural methods, in contrast
to sliding window techniques (although some crossovers have been recently developed).
Note that generative classifiers (i.e. Bayesian instead of discriminative) are generally
used as classifiers for this class of methods because they can straightforwardly describe
the generation of structural models. Contrary to the rigid model for specific objects,
the representation in a part-based model is tolerant to class variations both in the part
appearance (i.e. appearance variations are handled in the descriptor) and in their spatial
configuration (i.e. parts are loosely connected). The insight is that class objects are more
different globally than locally: a car and a truck may be globally dissimilar, but they both
have rather similar parts (e.g. wheels, headlights, handles) and the spatial arrangement

of the parts is only slightly variable.

In the literature, probably the oldest part-based model was developed by Fischler
and Elschlager [FE73] for face detection. In their pioneer approach, they considered
faces as collection of facial organs connected by spring-like links. More recently, sev-
eral detectors and descriptors have been proposed to detect and describe the parts (e.g.

the Kadir-Bradir detector [ZCYo7|, descriptor with Gaussian model [FPZo3]). Likewise,
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(a) (b)

Figure 2.16: Illustration of part-based models. (a) Decomposition of faces into local
rectangular patches [BBUo4]; (b) “cars” and “human” recognition results where the
positions of the detected parts are highlighted in blue [FGMio].

there exist several options for learning the spatial arrangement of the different parts
with respect to each other: usually, the spatial configuration is expressed as a set of
pairwise interactions between parts [FPZo3, [LHSo7, [SPos| for which different organi-
zations have been proposed: constellation of parts [LLSo4) [AARo4], star-shaped mod-
els [CFHo6)| [FPZos, FGMRog|, graph-based models [FPZo3| [ZCo6||, hierarchies of parts
[EUos| BTos, etc. In this dissertation we also model the class objects as collections

of parts, although we do not explicitly compute the spatial arrangement of parts for the

class case.

To conclude with, class object detection schemes can be either based on statistical
learning (sliding windows) coupled with discriminative classifiers; or based on struc-
tural (i.e. part-based) models coupled with generative Bayesian classifiers (at least
this is the general trend). In this dissertation, the originality of our contribution for
class object recognition (Chapter [5) is to combine every type of features (sparse, dense
and higher-level features) with every above-mentioned detection scheme (sliding win-
dows, cascades and part-based model) altogether in a unified consistent graph-matching
framework. Our purpose is to take the best of each schemes: efficiency of statical learn-
ing techniques concerning sliding windows, detection speed concerning cascades and

smart representation of parts-based models.
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N this chapter, we present an approach for the recognition of instances of specific
I 3D objects. The proposed approach builds upon the graph matching framework
and enables the joint utilization of different types of local features (namely keypoints,
edges and textures) in a unified manner so as to improve robustness. The combination
of different feature types, either sparse or dense, is made possible through a cascaded
detection scheme. Contrary to standard graph matching methods, we do not convert
the test images into finite graphs (i.e. no discretization nor quantization). Instead, we
explore the continuous space of graphs in the test image at detection time. For that
purpose, we define local kernels compatible with an efficient indexing of the image
features in order to enable a fast detection. During training, the mutual information is
used to select the most discriminative model subgraphs; then at detection time those
ones are detected using a cascaded process.

This work has been partially published in the International Conference for Pattern
Recognition (IEEE ICPR 2010) [RLAB10a].
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(a) Lowe’s Method
Figure 3.1: (a) Recognition failure of a keypoint-based method on an image with motion
blur because the SIFT keypoint detector performs poorly in these conditions; (b) on the

contrary, the method presented in this chapter is able to properly detect the object thanks
to the utilization of dense image features.

3.1 Introduction and Motivations

To our knowledge, almost every method for specific object recognition from the state-
of-the-art is based solely on keypoint features (see Chapter [2). On one hand, it is certain
that keypoints enable an elegant and convenient handling of the problem thanks to
their ability to accurate extraction and pairwise matching. On the other hand, they
perform poorly on textureless objects because keypoint detectors tend to find salient
points only inside well-textured regions (see Section [2.2.2). Indeed our experiments
on a home-made dataset have highlighted the fact that the repeatability of keypoints
can highly deteriorate in noisy conditions of use. In particular, we noticed that in an
indoor environment, using a low quality camera suffices to significantly degrade the
good performance of keypoint-based methods (see an example of this in Figure [3.1).
As most practical utilizations of specific object detection concern embedded systems
equipped with low-quality video cameras, we believe it to be a serious matter.

In the state-of-the-art, exceptions are the method of Ferrari et al. [FTGo6] and
Kushal and Ponce [KPo6] which in addition to keypoints also use densely sampled
patches so as to improve robustness and enable a precise segmentation of the retrieved
instances. As a result, their methods are extremely robust to large occlusions and distor-
tions. In fact, using different types of local features is known to enhance the detection
performance for various tasks (e.g. in image classification or class object recognition

[LZL* 05, MHKo06, MSHvdWoy, [GNog| [GLAMog]). Different feature types can indeed

complement each others well by describing different aspects of the image (texture, edges,

colors, etc.). For instance, edge features have been widely used for specific object de-
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tection as well (see [Juro1, KHPoy, [IDPPo8, HHINog]), so it might probably be a good
idea to use them in our system. Moreover, it has been demonstrated that using dense
features like HOG [DTos] (see Section or densely sampled patches [JTos, FTGo6]]
was a good idea for various applications. The interest of using dense features in our case
is to rely on other feature sources than saliency-based detectors: as said earlier, those
detectors (e.g. the SIFT detector as mentioned above) experience difficulties when they
deal with blurred images or important scale changes. The flip side of the coin is that
systems which use dense features are often extremely slow (e.g. the system of Ferrari
mentioned earlier). Moreover, it is a delicate problem to combine different types of fea-
tures (especially sparse and dense features) in a same framework. To solve both issues,

we turned ourselves toward the graph matching framework coupled with cascades.

3.1.1 The feature combination problem

As pointed out above, we show in this chapter how a cascade-oriented graph matching
framework can help to solve the delicate problem of combining together heterogeneous
types of features (i.e. sparse and dense features). Generally speaking, this is not a trivial
matter in computer vision and especially in the object recognition field. It often raises
several well-known issues, such as the normalization problem, the increase of compu-
tational complexity due to feature extractions and the inherent difficulties to combine

sparse and dense types of features.

Normalization issues Different types of features involve different ranges of values and
it generally gets bothersome when such heterogeneous values are gathered in a same
feature vector. In the literature, normalization is generally achieved by assuming that
each component of the global feature vector follows a Gaussian distribution (meaning,
subtracting the mean and dividing by the standard deviation) or a x? distribution in
the case of histograms [VGVZog]. In practice however, such hypotheses are not always
realistic. Recent works on Multiple Kernel Learning (MKL) have contributed to partially
solve some of these issues (combining heterogeneous types by using a linear combi-
nation of dedicated kernels), but the results can still be disappointing compared to a
simple averaging for instance [GNog| VGVZog].

A first benefit in a cascade-oriented framework is that in a cascade, the different
subclassifiers { f; } use different subsets ¢; of the whole feature set ¢: f; : ¢; — {0,1} (see
Section [2.4.2). Assuming that each ¢; only contains scalars picked out from a particular
feature type, each decision function then combines comparable features, which shrugs

off most of the problem. The method presented in this chapter is among those ones.
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Namely, dense textures, sparse keypoints and semi-sparse edges are used separately in

the subclassifiers.

Computational issues Feature extraction is a time-consuming process which can even
become a bottleneck in a standard object detection application. For instance, Vedaldi et
al. [VGVZog] have evaluated that, in the perspective of a classical approach (see Figure
2.15/(a)), just computing the feature vector for all possible windows is prohibitively
slow. On the contrary, a cascade-oriented framework offers efficient ways to reduce
the computational burden. As the decisions are taken temporally (i.e. one after the
others), it becomes possible to prune every unnecessary feature extraction work. Ideally,
a cascaded system is expected to extract the features at run-time, i.e., just before they
are required for evaluation by the subclassifier (see Figure (b)). This way, only a few
spots in the image get closely examined, saving important amounts of computational
power as demonstrated by Felzenszwalb et al. [FGM10] for instance.

In particular, it can be interesting to limit the number of feature types used in the
tirst cascade layers (i.e. the part of the cascade which is evaluated the most frequently).
Since feature types are generally independent, each type requires its own machinery to
be extracted from the image. By retaining a subset or even a single feature type to feed
the subclassifier of the first layer, the time spent to extract all the other types will be
saved. Such a strategy was used independently by Harzallah et al. [HJSog|] and Vedaldi
et al. [VGVZog|. In the first case, the feature type that is the least expensive to compute
(namely, HOG features optimized using integral images) was used alone by the first
level subclassifier without significant loss of performance compared to using all types.
In the second case, a jumping window technique relying again on a single feature type
(namely SIFT keypoints) was used to generate candidate windows sent to the second

cascade layer. Our method strongly relates to this latter work.

Heterogeneity issues The last problem concerns the combination of feature types dif-
ferently stored in terms of data structures: sparse features are stored in lists of variable
length whereas dense features are stored in vectors of fixed length. Because machine
learning techniques generally prefer to deal with fixed-length vectors, sparse features
have to undergo some preprocessing (typically they are quantized before an histogram
binning [CDF*o4]], see Section [2.2.3)). This process is not always desirable as it makes lose
some valuable information contained in the sparse features (for instance, the keypoint
positions).

In our cascade-oriented framework, we adopt instead an approach where sparse
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and global features are not directly used together. The local kernels that we define in
Section [3.3| are specific to each feature type and perform sparse-to-sparse or dense-to-
dense comparisons separately. For instance, the kernel associated to a dense feature
type operates a local search in the dense feature space in order to find optimal local

matching.

3.1.2 Outlines of the proposed method

To summarize, the proposed algorithm takes as input a collection of model images (the
model position in each image is supposed to be known) as well as a collection of non-
class (background) images. It automatically extracts a large collection of local features
of various types from the model images (Section [3.3). Then, each training image is
converted into a prototype graph by considering features as graph nodes and connect-
ing neighboring nodes in the scale-space (Section [3.4.1). The last step of the training
procedure consists of building a detection lattice from a selection of the most discrimina-
tive subgraphs from the prototype graphs. The lattice is composed of cascaded micro-
classifiers aiming at successively recognizing neighboring model features in a region
growing scheme.

During the recognition stage, graph matching is efficiently performed based on an
iterative scheme which picks one scene keypoint each time and feeds it to the detection
lattice to initiate the search of a model part around the keypoint location. The detection
lattice thus checks the area surrounding the input keypoint, searching for features con-
sistent with the model graph. Since we focus on realistic object recognition, we tackle the
occlusion problem by considering the recognition to be successful when a sufficiently
big subgraph of the prototype graph is discovered in the test image (Section [3.4.2). This
is optimally done by computing during training the posterior probability of finding the
whole model given a model subgraph. We also introduce a new texture descriptor, both
descriptive and fast to compute in section which highly contributes to explain our
good results (see Chapter [4).

The different parts of our method are represented in Figure [3.2| and detailed in the
Section The lattice construction procedure is detailed in Section Finally, Section

concludes.

3.1.3 Related works

There are several related works with respect to ours in the state-of-the-art. To begin with,

the approaches that we found to be the closest to ours belong to the field of part-based
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Figure 3.2: Summary of the method presented in this chapter. (a) A set of model images
(i.e. the model is a face, here only one image shown). Local features are extracted using
either a detector (i.e. keypoints) or densely sampled. For simplification, they are repre-
sented using lines (for edges), ellipses (for keypoints) and triangles (for textures), i.e. 3
feature types (only a small number of them is drawn for clarity). (b) Construction of a
prototype graph for each model image from the local features; (c) Complete detection lattice
for the prototype graph shown in (b). The lattice contains cascades of micro-classifiers
aiming at detecting the prototype graph by checking local feature one by one in any
possible order; (d) Pruned detection lattice: it now aims at detecting subgraphs (red
squares) of the prototype graphs; (e) example of recognition from a randomly picked
scene keypoint (top blue arrow): the keypoint is fed into the lattice, each lattice path is
evaluated, a successful path is found leading to a model subgraph (small red square),
and a vote is cast in the test image (large red square).
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methods for class object recognition. As described in Chapter |2 this family of methods
considers the recognition problem under a structural viewpoint: the model object is
viewed as a graph in which the different parts corresponds to graph nodes, which are

connected by pairwise spatial interactions.

The method of Zhu et al. [ZCYoy], for instance, considers triplets of keypoints as ba-
sic features and learns grammar rules based on “AND” and “OR” operations to detect
the objects. The resulting grammar resembles our lattice in the fact that it can be viewed
as a mixture of trees, allowing the detection of different model subgraphs using infer-
ence with Markov Random Fields. Contrary to us however, neither cascades nor dense
features are used; moreover the tree shape is learned using an EM algorithm while in
our case we rely on mutual information to build our lattice. Finally, their method can
only afford to extract a small number of features per image (i.e. graphs nodes) and has
to limit the number of edges (for instance, they constrain edges to not cross) so that the
run-time complexity does not explode. Similar shortcomings also hold for the method
of Fergus et al. [FPZo3|] and Zhang et al. [ZBMMo6|]. More generally, the feature types
and decision schemes used in the case of class object detection are more complex than
for our specific object detection approach. Traditional cascades are indeed built using
high level classifiers (e.g. AdaBoost in [V]o1, [FGo8]), each of them handling hundreds
of features. In our case, each classifier is extremely simple as it takes its decision from a
single feature. Although there exists one part-based approach by Felzenszwalb [FHos]
that uses simple texture features similar to ours, our system differs from this one in the
matching scheme essentially different, and also the fact that our parts are not manu-
ally landmarked before training. On the contrary, our parts are automatically gathered
based on the mutual information that they provide to the model. This latter part selec-
tion scheme is similar to the one initiated by Vidal-Naquet and Ullman [VNUo3] and
continued by Epshtein and Ullman [EUoy|] except that in our case the list of parts is
not explicitly computed before training; instead, the appearance and geometrical models
are learned at the same time to select the most discriminant parts with respect to their
close neighbors in the model images. Finally, the recent part-based approach of Felzen-
szwalb et al. [FGM10] uses cascades like us to speed up the detection, but here again,
the features used, the matching scheme and the invariance set are different.

In the field of specific object detection, the methods of Lazebnik et al. [LSPo4] and
Ferrari et al. [FTGo6|] are probably the most similar to ours. In the first case [LSPo4],
model parts constituted by connected keypoints are learned from training images; and
then they are detected in test images using a region growing scheme with a pruning

based on the spatial arrangement and descriptor consistency of the features matched.
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Again a single type of salient feature is used (i.e. affine keypoints). Moreover, the prun-
ing thresholds for checking spatial consistency at growing time are defined manually
whereas in our approach, all thresholds are learned automatically. In the second case
[FTGo6], the recognition of specific instances is performed in two steps: first keypoint
matches are used to raise hypothesis, and then dense features are extracted to verify
the hypothesis with an iterative expansion/contraction process seeking to discover the
entire visible object surface. Likewise, we also use keypoints as a first step for recogni-
tion and other features (in particular dense features) for growing regions, but this latter
process is much faster thanks to the utilization of cascades. Moreover, we do not seek
to entirely detect the instance surface, instead we only try to detect parts which are dis-
tinctive enough (our expansion process stops as soon as the distinctiveness is sufficient
according to a prior training). Finally, the method of Moreels et al. [MPo8] is essentially
different to ours, although the title of their paper may suggest it as they also rely on a
cascade-oriented framework for specific object recognition. Contrary to us, the system
of Moreels et al. [MPo8] only uses a single type of feature (i.e. keypoint). Furthermore,
their cascade consists of a succession of several rigid recognition schemes (i.e. Hough
transform followed by RANSAC), which is completely different in the principle and in

practice from our incomplete graph matching strategy.

3.2 Useful notation

Pre-emptively to the following of this chapter, we introduce for clarity the table of useful
symbols in Table

3.3 Used Features

At the bottom of the recognition process, low-level features are used to locally describe
the model object. In order to get a recognition system as fast as possible, we selected a

subset of three complementary feature types prone to fast extraction:
* Keypoints, denoted by ¢k.
¢ Edges, denoted by ¢k.
* Textures, denoted by ¢r.

For each of these three types, we outline below its properties and define a kernel func-

tion K¢ : ¢ X ¢ — IR. We refer to this kernel as a local kernel as it takes into account
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] symbol | meaning ‘
O the model object
A an image
I a list of images I.
It the list of positive training images (i.e. model views).
c=(x,y) 2D center
o scale. By convention we use radius = scale.
0 orientation (0 € [—7r, 7])
h = (0cos6,0sinf) | radial vector.
p = (¢, h) position = center and radial vector.
o type of local feature (e.g. SIFT keypoint)
z descriptor (e.g. 128-dimensional vector for SIFT).
¢' = (p,z) local feature of type ¢; = a position and a descriptor.
Ki: ¢t x ¢ — R | kernel of type ¢;.
A={¢} model aggregate (collection of connected local features).
A ={¢'} detected aggregate (collection of detected local features).
eij = (A — Aj) lattice branch connecting aggregate A; to aggregate A;.
dlf;?”x threshold of the micro-classifier associated to e;;.

Table 3.1: Useful symbols.

both the positions p = (c, h) of the two features (respectively, their center ¢ and their
radial vector h) and their descriptor z, in contrast with standard kernels as in Multiple
Kernel Learning (see [GNog|]) which act at a global scale. The kernel output is some
sort of distance between the two features and is used later in the recognition process to

check the presence in an image of a specified local feature (see Subsection 3.4.2).

3.3.1 Keypoints

We use SIFT keypoints for their good propensity to specific object recognition [Lowo4,
MPo7]. In our system, the SIFT detector acts as a saliency detector, and only salient
regions are further analyzed. In other words, the search of the model object always
starts from SIFT keypoints. In order to overcome the robustness issues mentionned in
the introduction, we use an absolute distance between SIFT descriptor (i.e. the noise is
thus seen as constant and additive) instead of the traditional distance ratio between the
first and second best neighbors.

Formally, each image keypoint ¢¥ € ¢k is defined by a center ¢ = (x,y), a radial
vector h = (0 cosf,0sinf) (where o is the patch radius and 6 its orientation), and a

descriptor z of 128 dimensions. We define two kernels for this feature type:

* The first kernel is a standard comparison between descriptors:

Ki(9F, ¢f) = [|zj — 2| (3.1)
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* The second kernel is a spatial distance between two “compatible” keypoints ¢X

and ¢f:

lej — cll* +ad ||hy — by if Kz (9K, ) < Cx,

0 otherwise.

Kk (¢F, ¢f) = (3-2)

where (x is a threshold that specifies the acceptable amount of noise for a SIFT
descriptor (see §4.2.2). Since the system will need in the following to quickly
compare a given keypoint versus all keypoints present in the test image, we index
the scene keypoints in a k-d tree. Contrary to [Lowo4|, this indexing is based on

the keypoint position rather than on its descriptor.

3.3.2 Edges

We use the Canny edge detector [Can86] followed by a step of polygonization to obtain
a bunch of line segments. A line segment ¢¢ € ¢ is only defined by its center and
its radial vector (no descriptor) such that the boundaries of the segments are ¢ + h
and ¢ — h. The local kernel Kr between two edges ¢F and <p]‘5 is the maximum of the

minimum distance between each pair of pixels lying on both segments:

max  min_||(¢j+ ph;) — (¢; +qhy)|| if |6; — 6] < g,
KE(<P;E,<P]E) = { pe[-L1]qe[-11] (3-3)
o otherwise.

(since no visual descriptor comes with a line segment, we simply check the orientation).
Again, we reduce the search time of a given line segment against all existing segments
in the test image using 6 distance maps (i.e. we use 6 orientation bins, so that (g = 30°,
and each distance map only considers the edges which are roughly oriented in the map
orientation). This technique is robust to a noisy polygonization since the distance does
not vary much if the existing line undergoes cuts or oversize. Moreover, it enables to
quickly create at run-time new segments superimposed on existing ones but having
different boundary locations, in order to fit in the best possible way the position of a
query line segment. An example of a fitting between a request line segment and all
the edges contained in a sample image is illustrated in Figure A new line segment
is created at run-time according to the projection of the request line segment onto the
nearest image edges having similar orientations (Figure[3.3/d). Thanks to this operation,
the set of existing segment features is virtually infinite. One can thus think of edge

features as semi-sparse features in the sense that they can adapt to the request (within
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some limits). This behavior would be clearly impossible to implement in a classical
graph matching application where the set of features is finite and well defined before

proceeding to the matching.

3.3.3 Textures

We derive a new texture descriptor from the work of Tola et al. about the DAISY feature
[TLFo8]. Since textures are dense features, they exist for every pixel of the image scale-
space. In our case, the descriptor of a texture feature ¢* € ¢t located at p = (x,y) and
h = (0 cos6,0sinf) is defined as the concatenation of three sub-descriptors extracted at
the same position p but at three different scales {¢/1.54,0,1.260} (we followed a similar
definition by Kruizinga and Petkov [KPgg]]). Each sub-descriptor is an 8-bins histogram
of oriented gradient extracted at the corresponding position. The local kernel is simply
defined as the Euclidean distance between the two descriptors, provided that the two

locations are not too far away in the scale-space:

. 2 2 2
2i = zjl| - if [|ei = ojl]" + aF by = hy[]" < &r,
Kr(¢], ¢]) = (3.4)
e otherwise.
As in the original paper of Tola et al. [ITLFo8]], we precomputed eight gradient maps

(one for each orientation) at the finest scale and spanned the rest of the scale-space with

a pyramid of Gaussian to enable a fast descriptor extraction.

Finally, we introduce here the shorthanded notation

minK;(¢!) = min Ki(¢!, ¢!)

z # P (1) # (P]

in which a given request feature ¢! is compared to all image features of the same type
t, and the minimum distance is returned (hence the notation of the minimum of K; on
the whole image 7). Thanks to the indexing of each feature type, this comparison is

extremely fast and is a key component for our system.

3.4 Algorithm Description

Now that the feature types used in our approach have been presented, we describe in
this section the core of our approach. Our method for the detection of specific object

instances is as follows: first, we assume that a few images of the model object O are pro-
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Figure 3.3: (a) Sample image. (b) Request line segment (dashed green line). (c) Dis-
tance map corresponding to the closest orientation bin 6 = 75° £ 30°. (d) Projection of
the request line segment onto the nearest existing edges using the distance map (the
resulting line segment is shown as a bold line). The circle indicates the point of maxi-
mum distance between the request segment and any existing image edges of the same
orientation. This distance is returned by the kernel Kr and corresponds to the fitting
error.
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vided (i.e. the object is viewed under different viewpoints and/or lighting conditions)
(in Figure [3.2la, only one simplified training image is shown for clarity). Theoretically,
the more numerous the training pictures are, the better the recognition will be (redun-
dancy between them does not pose a problem). Then, a prototype graph is extracted
from each model image. The prototype graphs are constituted of local features (either
extracted using a detector or densely sampled) which are connected when close in the
scale-space (Figure[3.2]b). A detection lattice is constructed from those prototype graphs:
its aim is to recognize the prototype graphs (i.e. the model views) using a region grow-
ing scheme. It is composed of cascaded micro-classifiers that verify the presence of local
features one by one (Figure [3.2}c). Because the complete lattice has an exponential size,
only a small part is used so as to enable a fast detection (Figure [3.2ld). Finally, the lattice
is used to detect objects in test images (Figure [3.2le). The resulting system is robust to

occlusion and has a low computational complexity.

3.4.1 The prototype graphs

First, we extract a prototype graph G, from each model image Z,, € I of the model
object O. The aim of this step is to transform the input model pictures from matrices
of pixels into structured objects. This is necessary as our method belongs to the family
of structural methods, i.e. methods that decompose the model object into a finite set of
“parts” (although the term “part” may not be well-chosen in our case, as the parts that
we extract do not necessarily refer to semantic parts). In our case, the definition of a part
is just a connected subset of graph nodes, and this decomposition is redundant (parts
can overlap).

The procedure for converting a model image 7, into a prototype graph G, is the

following:

1. Firstly, the picture is aligned in a reference frame p,.s using a similarity transform

(i.e. normalizing coordinates in [—1, 1]).

2. Secondly, local features of each type are extracted from the image. For keypoints
and line segments, the SIFT detector and the Canny edge detector are used. For
textures, we sample them densely and uniformly. The aim here is to cover the
image with a large number of local features, each of them constituting a weak
classifier potentially selected later in the detection lattice (in the same spirit as the

work of Viola and Jones [V]o1]).

3. Each local feature becomes a graph node with center ¢, scale ¢ and angle 6 (and
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h = (0cosf,0sinf)).

4. Two nodes are linked if their distance in the scale-space is small enough. Typically,
we use the following criteria for connecting two nodes with centers c;, ¢; and scale
0j, 0, it

05 < Z <2 and |[[¢; — c]-HZ < 005 (3.5)

The first inequality constrains the two nodes to have about the same scale (up
to a factor 2), while the second one ensures their centers are not too far apart in
the scale-space. Hence, each graph edge ideally stands for a stable neighborhood
relationship as we assume the correlation between two model features to decrease
when their distance augments. Note finally that two features (i.e. nodes) with
different types can be connected, in fact the graph nodes are linked regardless of

the feature types.

This procedure is repeated for every model image Z,, € I". Note that the construction
of the prototype graphs is fully automatic; Figure [3.2/(b) presents an illustration of a
simplified prototype graph (a realistic graph would be too complex to be displayed here
as it typically contains thousands of features and edges). In the following, a detection
lattice will be straightly derived from the prototype graphs in order to recognize sub-
graphs (i.e. model parts) in a cascaded manner (problem also known as incomplete graph

matching).

The prototype graph G For convenience, we also define a unified prototype graph
G = UGx. So in the following when we speak of “the prototype graph” in the singular,
we mean the gathering of all prototype graphs in a single graph (note that G has |I*|

connected components, one for each model image).

3.4.2 The detection lattice

Concerning the detection, we use a sort of degenerate tree formally called a “lattice”.
Mathematically, a lattice £ is a set with a partial order relation between elements. A
simple example of lattice is shown in Figure Because of this order relation, a lattice
resembles a tree except the fact that there can be more than one path between two nodes,
but still excluding cycles (edges are oriented). The depth of a node is defined as in a
tree, i.e. by the number of edges from which it is separated from the root, and all nodes

with the same depth constitutes a level.

'There exists another definition of a lattice — a squared grid — but this has nothing to do with our method.
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&

v

Figure 3.4: Hasse diagram of a lattice formed from the set {x, y, z} with subset inclusion
as order relation (4 levels).

In our framework, the detection lattice £ stores some possible ways of building
the prototype graph by adding nodes one by one. More precisely, each lattice node
represents a connected subgraph of the prototype graph G, and each branch between
two lattice nodes represents an atomic addition of a single prototype graph node (i.e. a
feature) from the first subgraph to the second one. The order relation between elements

is thus the subset inclusion.

Aggregates For clarity, we denote in the following the lattice nodes by the term “aggregate”.
An aggregate is a connected subgraph of the prototype graph G, and as said earlier it
corresponds to a model part in our approach. Depending on the number of atomic fea-
tures composing it, the part will be smaller or larger (but is is interesting to note that
contrary to [LSPo4] all features contained in an aggregate will be close in the scale-space
due to the connection constraint of (3.5)). To sum up, each level [ of the lattice contains
aggregates of cardinality equal to I. For example, the root level (I = 0) contains only one
empty aggregate which stands for the empty graph, level 1 is composed of aggregates
containing single features, and so on. An illustration is given in Figure [3.2lc.

Obviously, the cardinality of each level grows exponentially with I. For this reason,
it is not tractable to compute the entire lattice. Fortunately, storing it entirely is useless

for our purpose and in the following we will confine ourselves to using an incomplete

lattice (see Figure [3.2ld).
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3.4.3 Aggregate position

As we saw above, the purpose of the recognition step is to discover model parts, i.e.
aggregates, in the test image. In other words, we want to detect in the test image groups
of features that are consistent with a model aggregate in terms of feature descriptors
and spatial arrangement. Concerning the latter point, we use a 2D similarity transform
to align two aggregates, so we need to define a unique center and a radial vector for
an aggregate from its features. The purpose here is that two matching aggregates have
roughly the same centers and radial vectors up to some noise. The averaging of the
spatial positions of the composing features appears to be a valid choice, as noise is in
random directions and hence canceled by the averaging. Moreover, the result of the
averaging is independent of the order in which the features are added in the aggregate.
This is important as an aggregate can be constructed from different lattice paths, i.e. by
adding its composing features in different orders, see Figure [3.2}d for an illustration.
Formally, let an aggregate A contain a set of | features, then its center c4 and radial

vector h 4 are defined as:

1 1
cA=7 Y e (3.6)
n=1
1 !
_1h 1
hy = gt o (Z ol + thuz> ~ fleal’? 67)
Hzn:l h?‘l n=1

Formulas and represent the averaged center and the average orientation
normalized by the standard deviation around the global center and the composing cen-
ters, respectively. Those formulas experimentally showed up to give stable results even
in case of important deformations and can deal with slight 3D viewpoint changes (see
Figure [4.14). Moreover ¢4 and h, can be computed in constant time using the center
and radial vector of A’s father, at the cost of updating a few hidden variables, making

the aggregate growth an efficient operation.

3.4.4 Aggregate recognition

We now explain the recognition process assuming first that the detection lattice £ is
already constructed. As mentioned earlier, the purpose of the recognition step is to
discover model aggregates (i.e. model parts) in the test image, and then to draw a final
decision about the presence of the model object O from those partial detections.

To begin with, aggregates are detected in the test images using an expansion process

where features are added one at a time. The expansion process is dictated by the lattice
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shape: every discovered aggregate corresponds to a lattice node (i.e. a model aggregate)
and attempts to go further in the lattice, i.e. to grow according to the available lattice
branches starting from the lattice node. For this purpose, we use cascades in order to
enable a fast detection of the aggregates. Practically, a classifier is associated to each lat-
tice branch in order to take a decision about letting the aggregate grows or not. Namely,
each classifier is responsible for ensuring that the feature associated to its lattice branch
is also present in the test image, relatively to the aggregate position. In contrast with
the work of Viola and Jones [V]o1], our classifiers are extremely simple as they simply
consist of single decision stumps. For this reason, we denote them as “micro-classifiers”
in the following. A corollary is that an aggregate can be seen as a weak classifier: when it
is detected in the test image, it indicates that a model part is probably present, but more

aggregates are required to ensure the detection of the model object.

Formally, the aggregate detection procedure is as follows: first, a loop iteratively
picks a random seed feature in the test image. A seed feature is a salient feature which
acts as an entry point in the image for the search of model aggregates, similarly to the
jumping windows of Chum and Zisserman [CZo7]. In our case, we use SIFT keypoints
to initiate the search. The picked feature is then fed to all seed branches, i.e. lattice
branches starting from the root. If the associated micro-classifier of each seed branch
returns a positive response, then the branch is traversed. Likewise, all children branches
are recursively checked and traversed in case of positive responses of the associated
micro-classifiers. When the seed feature truly belongs to a learned part visible in the
test image, then at least one terminal aggregate will be detected at that position (we
mean by terminal aggregate an aggregate which has no children). An example of this
discovery process is shown in Figure[3.2le. In the following, we distinguish the notation
between a model aggregate A, which contains original model features, and a detected

aggregate A’ which is constituted of similar features detected in the test image.

More formally, let A; be a model aggregate containing [ features and A} the corre-
sponding detected aggregate found in the test image (thus it also contains / matched
features). The micro-classifier condition for reaching level / + 1 through the branch
eij = (A; — Aj) (i.e. connecting aggregate A; (I features) to aggregate A; (I + 1 features)
L), which corresponds to the addition of the model feature qbf]. of type t, is:

dy = min K (¢f) < dj™ (3.8)

where ¢ = (pl’.‘j, zz-]-> is the predicted model feature in the test image (i.e. same descrip-

tor but different position), d;; the kernel distance between ¢;; and what can actually be
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Model aggregates A; and A; Detected aggregate A’
(Model image) (Test image)
Figure 3.5: Predicted position of the edge feature 472‘]- in the test image (dashed line) with
respect to the model aggregate A; and the two features already detected (a square and
a circle for simplification). In our approach, this is done using a 2D similarity. As can
be seen, the test image contains an edge near the predicted position (strong black line),

meaning that the micro-classifier of the edge e¢;; = (A; — A;) will most likely output a
positive decision (i.e. d;; < d}j™).

ij
found in the test image, and dj;*" is a constant learned during training (see section [3.5).
Here, pj; is the predicted position of 4>f]. relatively to the position of A/, which in our case

is obtained by a simple 2D similarity:
p;kj = Sisz(pij|Ai, A;) = (RCZ']' +t, Rhi]')
with R a 2 x 2 matrix and t a translation vector defined such that

CAg = RCAi—f—t
hA; — RhAl.

An illustration of this growing process is given in Figure here, the aggregate A;
composed of two features has been already detected in the test image (A?). The next step
is to reach children aggregate A; through edge e;; which corresponds to the addition of
an edge feature ¢;; (strong solid line in the left figure). As a result, the ideal position
of ¢;j is computed in the test image with respect to A}, resulting in ¢;; (gray dashed
line). The local kernel miny Kg (4’1*]) is evaluated and since an edge is also present in the
test image at approximately the same position, the kernel returns a distance inferior to
dZ-’“" . In other words, the branch ¢;; is traversed. The process then repeats for subsequent
children aggregates (not shown).

Although the features are of different types, the fact that they are added one at a time

enables to bypass the problem of combining different feature types together. If a feature
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is not found (i.e. d, > d]'"¥), the progression in the path is simply abandoned. When a
terminal aggregate Ay, is reached, a position hypothesis is cast for the model presence
at sim2D(pyef| Aterm, Aleyyy). The pseudo-code for the aggregate detection procedure is

given in Algorithm Finally, hypothesis are clustered in the oriented scale space
using a greedy algorithm (Section [3.4.5) and a probability formula is applied to weight

each cluster (Section [3.4.6).

Continuous graph matching

It should be noted that new test image features are computed at each micro-classifier
evaluation (those features are composing the detected aggregates). This comes from
the formulation of the decision function (eq. (3.8)) which asks for a minimum over all
possible test image features. Since this latter set is almost infinite (for dense feature
at least) and thus intractable to compute, instead only a few features are extracted at
plausible positions and compared. For instance, the texture micro-classifier first collects
a few texture features in the neighborhood of the request position; then it returns the
one minimizing the distance criteria. Another example is the case of edge features where
a small line segment can be created onto a bigger one to minimize the distance to the
request (or conversely two contiguous line segments can be united into a bigger one).
This is in contrast with classical graph matching where the test image is first dis-
cretized into a finite graph of limited size (usually small) before proceeding to the
matching itself. In our case, everything happens as if the test graph has an infinite
number of nodes. Thus, the classical decrease of robustness caused by discretization

does not affect our approach (this is illustrated in the next Chapter).

3.4.5 Clustering of detected aggregates

After having detected aggregates in the test images, those aggregates cast hypothesis
which are clustered in the four-dimensional scale-space of locations (x,y) and poses
(0,0) (i.e. Hough transform) using a greedy process. Formally, let us assume two
detected aggregates A} and A;.. Two hypothesis, one for each, are then cast at position
p?y P and p?yp with

pz}.lyp = sim2D(p,.¢|A;, Aj})

and

h .
p]_yp = slmZD(Pref|Aj’ A;)

Then, hypothesis are merged if they are not too distant in the scale-space. Namely,
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Input:
e test image 7
¢ detection lattice £
Output:
¢ List of weighted hypothesis H

Main:
H:=0
Z(¢k) :=ExTRACTKEYPOINTS(Z)
Ap :=root(L)
for each ¢f € Z(¢x) do
for each edge ep; = (Ag — A;) do
if K2 (¢K, ¢K) < dIo* then
H := H ULATTICEFROMNODE(A4;, {$X},Z, L)
end if
end for
end for
CrusterRHyroTHESIS(H) [3-4.5]
WercHTHYPOTHESIS(H) [3.4.6]
return H

LarTicEFROMNODE(A;, A}, Z, L):
if is_terminal(A;) then
pflyp = simZD(prEf|Ai,A§)
return pf.zy P
end if
H=00
for each edge ¢;; = (A; — A;) do
pz*] = Sisz(pij‘Ai, A;)
0 = (b} 2i)
if ming K(q;;;) < dji* then
¢;; == argmin; K(¢})
H=HU LATTICEFROMNODE(A]', AlU 4)§j, Z,L)
end if
end for
return H

Algorithme 3.1: Pseudo-code for the detection.
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for two hypothesis p?y P and p?y P, they merge if

I

This criterion is more permissive than the criterion of eq. (3.17) used during training

hyp hyp
h”" —h i

2 0P+ 0]-2 + 3(7?”(7@’7
; H (3-9)

2
hyp hyPH ‘ j
. ¢ + 3

(see below), as we expect more distortion in the test images than in the training images.
Intuitively, it roughly corresponds to a maximum factor 2 in scale ratio, a maximal angle
difference of 40° and to a maximal distance of 0.8c between the two centers (note that
in practice, it is impossible to reach all three limits together as the sum balances the
conditions in eq. (3.9)).

The merging criterion enables robustness to non-rigid distortions, as it is illustrated
in Chapter [4] (e.g. Figure [4.10). Note that hypothesis are clustered independently for
each model view (i.e. two hypothesis belonging to different training views cannot
merge). Finally, each cluster defines a detection D, with a center ¢p and a radial vec-
tor hp computed as the average of the clustered hypothesis. Finally, a probability is

assigned to each detection (next Section).

3.4.6 Probabilistic model for clusters of hypothesis

Let a test image Z be processed with the lattice £ designed to detect the model object
O. As a result, a set of detections are output. Without loss of generality, let us consider
the case of a single detection D in the following. More particularly, we will assume that
the detected aggregates in the set { A’} have all voted for this detection (i.e. ignoring the
other aggregates detected in 7). The general probabilistic formula of finding object O at
location ¢p and pose hp knowing the detected aggregates { A’} is the following:

p(Op|{A'}) = max p(V, p|{A'}"?)
V,€0
with

p({A}"2[Va,p)
p({A’}Vn,D)D (3.10)

p(Vupl{A'}?) = p(Vup)

(from Bayes’ rule). That is, the object O is detected at position D if one of its view V), is
detected at this position ({A’}Y»> C {A’} denotes the set of detected aggregates voting
for view V, at position D). In our framework, each view V, € O simply corresponds
to a single training image Z,, € I*. In the following we will drop the subscript 1, D for
clarity and focus on a single view V € O.

The aim is now to make eq. computable. As in similar works [Lowo1, RLSPo6],
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3.4. Algorithm Description

one can consider that p(Vp) is independent of the instance location and pose, thus
p(Vp) = p(V), which is in turn assumed independent of the considered view so that

p(V) becomes constant. Then, one can develop the right-hand part of eq. into

p{A}V) _ p(A1{A3, 3, V)p({45, 1Y) —11? p(Ail{AL 1Y)
p({A'}) p(A{A2, Hp({A3,}) T p(A{ALY)

with {A'} = AfU{A)}, ..., A} = A{U{A, }. However, a new problem arises: all those
conditional distributions p(A;|{Aj],}) are hard to learn in practice, as the number of
training images is very small with respect to the huge space of function parameters (i.e.
2" possible combinations for n Boolean parameters representing the presence or absence
of each Al € {Al}1<i<y). (As we will see in Chapter [5, those conditional probabilities
can be partly estimated in the case of class object detection, as the number of training
images is by far superior to the one in the instance detection case.)

In order to make the evaluation of eq. possible, we must then inject a-priori
knowledge in the model. Typically, this requires the addition of some independence
hypothesis between the conditional distributions. We can for instance consider p(A})
and p(A}) to be independent for i # j, which is roughly true unless A} and A} are
overlapping in Z. This would yield:

pUAYY) _ pppUAHAL),Y)
p({A'}) i p(AI{AL Y
pA’|V

H (3.11)

In our case however, the clustering of the detected aggregates in the scale-space of
hypothesis introduces a bias in the independence assumption. Indeed, we experimen-
tally observe that for a same detection size, false positive detections are more likely to
be generated by smaller aggregates in proportion (see Figure [3.6). This is expected as
this straightly relates to the ratio of the surface recognized as model parts to the full
object surface. To compensate this, we introduce a correction that lowers the weights of

aggregates being small with respect to the detection size:

PUAYY) _ pp P41 (4L, ,Y)
p({A}) 4 p(AIAL YD)
p(Al ]V)} 1(4:.D)

(3.12)

—H{
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Figure 3.6: Noise affects more clusters of hypothesis having a large support (outer purple
circle), as their surface absorbs more false aggregates (small blue circles). Left: a positive
detection (the toy car); right: a negative detection for the same object.
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Figure 3.7: Plot of (A}, D) as learned based on positive and negative detections. Small
aggregates with respect with the object size are purposely disadvantaged because they
are more likely to arise from noise.

This correction takes the form of an exponentiation with the exponent lying in the
range 0 < 75(A],D) < 1 (thus canceling A! if #(A},D) = 0 or having no effect if
(A}, D) = 1), since the ratio p(A}|V)/p(A!) is necessarily superior to 1. One could
explicitly derive 17(A!, D) from the stacking tolerance defined in eq. (3.9) but this ap-
pears difficult in practice. Instead, we use a logistic function learned on the basis of

example aggregates belonging to true and false detections:

n(A;,D) = 1 ! +c

(%N
Z\1 —I—exp[u—i—bg%"]

where Z = (14 expla 4+ b]) ' + ¢ is a normalization factor. A plot of 5(A!, D) is shown
in Figure|3.7]on which we can see that small aggregates in proportion are disadvantaged.

To sum up, until now our model makes a rough independence assumption between
aggregates. (Notice that we consider p(A;[V) and p(Aj[V) to be independent as well in
eq. This is mostly incorrect as knowing the model presence, two aggregates are
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often correlated, but we use it for simplicity and because of the detection noise and the
possibility of occlusion.) What happens however if two detected aggregates share some
common branches (i.e. lattice edges) in their respective lattice path ? As a result, they
would be highly correlated, thus undermining our initial assumption. A solution to this
issue consists of considering the set of traversed branches {¢'} instead of {A’}. In fact,
the Independence assumption is more acceptable for branches than for aggregates, as
branches correspond to the atomic features composing the aggregates. Let us first define

the set of lattice branches {¢’} traversed by the detected aggregates {A’}:

{y= U {¥
Ale{A"}
(by a slight abuse of notation, {¢’}’ is the set of branches lying on the lattice path leading
to A}). In this definition the redundancy between aggregates is canceled by the union
operator on sets of branches. Indeed, if two aggregates share common branches, each

shared branch appears only once in {¢'}.

As we saw in Section each aggregate is detected after a cascade of positive
decisions in the lattice, each one corresponding to traversing a branch. According to
this definition, we can replace aggregates by branches in eq. (3.12). Following the same
rationale, eq. can be rewritten into:

r({A}V) T [V(e;'k‘{e/}jk_rv)]W(Ak'D) (3.13)

pAAY) ey | PlEl{eV)

where {¢/}/*~ is the set of branches already traversed before ey Hence from we

have the final formula

p(Vol{A'}) =p(Vp) 1]

ex€le’}

!p(e}k‘ {e/}jkf’ Vb) ] 1(Ax,D)
A

which can also be expressed as a detection score by taking the logarithm:

score(Vp|{A'}P) =log(p(Vp)) + ). n(Ax D)log

ejke{e’}

plepl{e'’ Y, Vp)
/ / ]k_ (3'14’)
EAICI
Note that the ratio p(ej|{e’ Ve, V) / p(eyl{e }k=) are constants estimated during
training, and the term log(p(})) is constant for every pair of model-view so it dis-

appears.
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Discussion Our probabilistic model for detection is simple and fast to compute. Basi-
cally, the detection score is a weighted sum of the weights associated to each traversed
branches. In other words, the more numerous are the positive decisions taken by the
micro-classifiers, the higher is the score. This appears appropriate as it means that the
confidence of the object being detected directly relates to the number of its parts being
recognized.

Moreover, another consequence is that there is a theoretical independence between
the detection performance and the number of terminal aggregates in the lattice. In
fact, eq shows that the average detection score is proportional to the number of
branches in the lattice. In other words, the ratio of true detection scores to false detection
scores remains constant on average. Of course, the variance of this ratio might change,
and the less terminal aggregates, the more unstable the performances might be. This
is confirmed by our experiments in Chapter [ (Note that we also tried a different
probabilistic model: the one of Lowe [Lowoi], whose major difference is to take into
account the number of keypoints in the hypothesis area, but results were only worse).

Besides, our probabilistic model only takes into account the conditional dependency
between branches if they lie on the same lattice path. That is, two branches lying on
distinct lattice paths (i.e. paths that are connected only by the lattice root) are considered
independent. All in all, this results in modeling the joint conditional distribution only
for small groups of branches, each group being independent with other groups. In our
opinion, this is similar to the work of C)zuysal et al. [zCLFog|] where ferns are used
to classify keypoint patches and achieve excellent performance. In their work, a single
“fern” is a set of micro-classifiers small enough so that the joint probability distribution
can be modeled, while different ferns are considered as independent. If the reader thinks
of a lattice path as a fern, both models look similar (although the distributions used in

their work are different).

3.5 How to build the detection lattice

As we saw earlier, each path in the lattice represents the growth of an aggregate — i.e.
the gradual addition of new model features. As a consequence, the distinctiveness of the
aggregate grows as well. We can imagine that when the aggregate ultimately contains all
the model features (of a single training image), its distinctiveness is maximum. On the
other hand, it becomes too much distinctive to allow some tolerance to noise. The key
point of the training is then to find out at which point the aggregates become distinctive

enough and still maintain some robustness to noise.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/20111SAL0042/these.pdf
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



3.5. How to build the detection lattice

One solution would be to first build the complete lattice, then measure the distinc-
tiveness of all aggregates, and finally prune the lattice so as to maximize this trade-off.
However, because it is not tractable to build the complete lattice, we opt for a sub-
optimal solution consisting of iteratively adding a new level to the lattice, measuring
the distinctiveness of each new aggregate and stopping their growth when they become

distinctive enough.

3.5.1 Algorithm inputs
The training algorithm takes as inputs:

* 7,5 training images 7, of a single 3D model object (e.g. different viewpoints, or

same viewpoints with different lighting conditions). In the following, we denote

Mpos

the list of positive images as It = [Z,],"].

e avector Pt = [p;} ]ZZ | containing the positions of the model object in the previous
images. The object center, scale and orientation in each image have thus to be

known (at least approximately). P

* 1, of negative training images. The model object must not appear in those images
as they are used to estimate background distributions. In the following, we denote

the list of negative images as I~

* an integer parameter 714, controlling the trade-off between robustness and detec-
tion time of our method (see Section [3.4.2).

3.5.2 Iterative pruning of the lattice

Initially, the detection lattice only contains the empty aggregate (I = 0). Then, starting
from the first level (I = 1), the lattice £ is built in an iterative fashion. For each level

I € [1, 00|, the following operations are executed:

1. All possible children aggregates are added to level I:

L)y= |J {AjeS(G)|-is_terminal(A;) and card(A;) = and A; C A;}
A,‘Eﬁ(l—l)

where G is the unified prototype graph, S(G) is the set of all subgraphs of G and
L(l) = {Aj € L|card(A;) = I}. In the following, we call those new aggregates as

?In the case of 3D objects with many viewpoints, the orientation can be hard to define. We personally
choose the projection of the vertical axis onto the camera plane. In any case, this is not a big issue for our
training algorithm: the lattice size will just augment in case of ill-defined orientations as less redundancy
will be found between different viewpoints.
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“candidate aggregates”. (In fact, we arbitrarily limit their number to 8 times the
number of non-terminal aggregates in level I — 1P| otherwise it would explode from

I = 4 because of the exponential growth of the number of subgraphs).

2. Each candidate aggregate A; € £(I) is connected to its parents {A; € L(I —1)|A; C
A;} of the previous level by branches e¢;; = (A; — A;). For each such branch,

the associated micro-classifier is initialized with a fixed threshold d?]’?”x, learned

separately (see Section |3.5.3).

3. If I = 1: go back to step 1. (We prevent aggregates of only one feature to become

terminal.)

4. Loop until all candidates have been picked:

(a) Pick the best candidate Ay € {A; € L(I)|—picked(A;)} according to the mu-

tual information (see Section [3.5.4).
(b) Set picked(Ag) to true.

(c) Detect model aggregate Ay in each training images, leading to a set of detec-
tion {A}}.

(d) If Ay is no more detected in negative images, then Ay becomes terminal.

(e) If %ﬁ > Nyerm, the training algorithm stops and returns the current lattice £
cleaned from all remaining candidates (1%, is the total number of detected
parts in the positive training images with the current lattice, 71,05 is the num-
ber of positive training images and ., is a parameter specifying the desired

number of detected parts per model image).

5. Go back to step 1.

Thus, aggregates may become terminal at different levels depending on their distinc-
tiveness (step 4.d). This can be connected to the human cognitive way of recognizing
occluded objects: an object can be identified even if a very small but very characteristic
part of it is visible and vice versa.

The stopping criterion in step 4.e aims at controlling the number of detectable model
parts (i.e. the number of terminal aggregates). When at least #y., model parts are
detected in each training image (on average), the lattice construction stops. The ranking
system of step 4.a, detailed below, ensures that every images is roughly covered by the

same number of parts. Note that a similar strategy is used in the MMREFS algorithm of

3That is, we randomly delete some candidates.
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Cheng et al. [CYHHoy|]. In the following we describe in more detail the steps 2 and 4.a
of the loop in Sections and Section 3.5.4}

3.5.3 Learning the micro-classifier thresholds

As we saw previously, each lattice branch is associated to a micro-classifier that pro-
duces a binary decision by comparing a kernel distance to a threshold (see eq. (3.8)). We
have tried in a previous version of this algorithm to learn those thresholds individually
for each branch, by maximizing the mutual information on the training set. However,
we have found that this method was providing too unstable results and was computa-
tionally costly. Instead, we propose now to learn by advance the thresholds “once and
for all”, regardless of the model object by using an independent training set.

As with traditional cascades, our strategy is to minimize the false negative rate for
each micro-classifier. In other words, we do not want to miss a true detection. Since our
lattice paths are dedicated to recognizing small parts of the model object and since we
expect some noise, we thus set the thresholds to the maximal amount of noise expected
after usual image transformations (jpeg noise, blur, viewpoint change...). Specifically,
we have set the thresholds such that on average 95% of true matches are accepted (in-
differently of the noise types). Thus, the threshold is only function of the type of the

associated feature: for an branch e;; adding the model feature (])fj of type t, then we set
di ™ = dy"™.

Detailed experiments on the calculation of these thresholds are provided in the next

chapter.

3.5.4 Ranking of the aggregates

During the training loop, for each level a large number of candidate aggregates are
generated. However, in the end only a few of the candidates are kept in the lattice
(the ones that lie on the path of a terminal aggregate), whereas all the other ones are
abandoned. The problem is then to select the best candidates so as to maximize both

following criteria:

* The individual efficiency. Efficient candidates generate more true detections and

less false detections.

* The coverage of every possible model parts. Because of the possibility of occlusion,

we need well spread aggregates to detect every areas of the training images, even
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though some areas are easier to detect than others (e.g. for a face: an eye versus a
chin).

In order to satisfy both criteria, we need an adapted metric to rank the candidates. For
that purpose, we have formalized this problem in the information theory framework.
To begin with, the mutual information measures the correlation between two random

variables X and Y:

o og PY)
MIXGY) = L plxy)log o

In our case, we define the following variables:

¢ Let pj;, be the m-th part of training image Z,,. We will define later more precisely
what is an image part, for now let just consider that it is a local patch of the image:

it has a center ¢, and a radius .
m m

e Let A;(p},) be a binary random variable representing the fact that aggregate A; is

detected at position p;;:

1 if Al pE, = pa
Ai(pm) = s i
0 otherwise.

e Let O(p},) be a binary random variable symbolizing the ground truth. As we
wish to detect aggregates in parts belonging to the model object and not to the

background, it is defined as:

o(p!) 1 ifZ, eIt
Pu) =
0 otherwise.

(We do here the simplifying assumption that positive images do not contain back-

ground.)

Obviously, one can use the mutual information to measure the efficiency of a candidate
aggregate with respect to the detection task. In fact, the mutual information between O
and A; tells us how much the aggregate A; is useful for detecting the model object. If
A; generates a lots of detections, both in positive and negative images, then the mutual
information will be low, likewise if A; is detected neither in negative nor positive images.
The maximal mutual information will be reached when A; is detected in positive images

and not in negative images.
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However, the mutual information used as a metric only satisfies the first criterion. In
order to satisfy both criteria (individual efficiency and good coverage), we use the gain
in mutual information. This is a measure of the amount of independent information

delivered by a third variable Z in addition to X:

gain(Z|X;Y) =MI(X, Z;Y) — MI(X;Y) (3.15)
where
p(x,y,2)
MI(X,Z;Y) = x,y,z)log ———.
( ) x%p( y:2) & p(x,2)p(y)

In our case, gain(A;|A;; O) straightly gives us the amount of information provided by
a second candidate A;, in addition to the first candidate A;. If A; and A; detect exactly the
same model part then the gain is null; on the contrary, if A; and A; are complementary
(i-e. A;and A; detecting different model parts), the gain will be important. Furthermore,
the gain will be even more important if A; and A; are not only complementary but also
efficient separately. Likewise, we can measure the gain brought by a third aggregate Ay
with respect to A; and A; using gain(Ax|A;, Aj;O) (and so on with any numbers of
aggregates).

As a consequence, we see here how the gain in mutual information can be a used as
a metric to rank the candidates in a way that optimizes both (a) the selection of efficient
candidates and (b) the detection of all model parts. However, computing the gain for
several random variables has an exponential complexity and in our case, we have to deal
with a large number of aggregates. The solution is then to use a new random variable,

M(p?,) defined as the probability that a given part pJ, is detected with the current lattice:
M(py,) = p(34; € L(I+) and FA|p}, = pay),

where L(I+) is the set of already picked or terminated aggregates:

L(I4) = {A; € L|terminated(A;)} U{A; € L(I)|picked(A;)}.

Since every picked aggregate will terminate sooner or later anyway, they are consid-
ered equally with terminal aggregates. In other words, M acts as a memory of all poten-
tial terminal aggregates such that gain(A|L(I+); O) ~ gain(Ax|M; O). The advantage
is that the computation of gain(Ay|M; O) is in constant time instead of exponential time.

This simplification is possible because our process for accepting candidates is iterative:
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candidates are accepted one by one (see step 4), making it possible to “update” M each
time that a candidate is picked or terminated. Note that Vidal-Naquet and Ullman
[VNUo3]| have also used the mutual information as a feature selection process; however,
their optimization was with a max-min procedure different from ours (and slower as the

complexity in their case is squared with the number of parts).

3.5.5 Discretization of the training image into parts

Until now we have used undefined model parts pj;, for the calculation of the information
gain. Depending on the definition of what is a part, this computation can take different
forms and be slower or faster. Obviously, it is not tractable to compute the information
gain for an infinite number of parts. As a result, we have chosen to discretize the training
images into a small, finite set of parts.

More precisely, we have clustered the scale-space in a similar manner to the spatial
pyramid of Lazebnik et al. [LSPo6]. We have used one pyramid of 4 levels for each
training image, and a single “virtual” location for all negative images. This makes a
total of 12 4 22 + 42 + 82 = 85 parts for each training image (each level is separated
from others by a factor 2 of scale). Hence, we need to store 8571, + 1 probabilities in
M. Those are respectively the probabilities for each model part to be detected with the
current lattice, and the probability to detect the background (see Figure [3.8).

Note that we have not used false positive images in the computation of the infor-
mation gain for the seed branches (first iteration in our training loop). This is because
we want to select seed features that are robust to initiate the detection of true model
parts regardless of their detection performance on background images. This is in the
same philosophy as with traditional cascades: the first micro-classifiers, more than any
others, should generate as few false negative as possible in order not to impair the rest
of the detection process (the next micro-classifier purpose being then to evacuate false

positives).

Explicitness of the coverage map M As we saw earlier, M(p},) stores the probabilities

of detecting parts with the current lattice. We define those probabilities as:

1—T1 ooy, , (1 —pR ) ifZ, €TF
M(pnm) = ndet+ (pm)( prep) n (3'16)
0 otherwise.

L(I+)

where 1, "’ (p};,) denotes the number of detection of the part pj, by the terminal and

picked aggregates in the current lattice, and pﬁ,p is the keypoint repeatability: it is the
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probability that a keypoint is detected at the same place after some noisy transforma-
tion. In M(pJ,), we consider for simplification that the probability that an aggregate is
detected is equal to the probability pfep that its seed feature is detected. Making the
assumption that all seed features are detected independently, we get the above formula
(upper row of eq. (3.16)). (Note that this formula makes it possible to update M in

constant time each time that nge(tlﬂ

is incremented.) Practically, we use linear interpola-
tion to dispatch a detection into several contiguous cells pj}, of the spatial pyramid. This
is done based on the center ¢,/ and radius o4 of the detected aggregates. Moreover,
we only count as positive a aggregate A} detected in model image Z, if it accurately

extrapolate the ground truth position:

where p;' is the known position of the model object in Z,, and pﬁw = sim2D(p,.f; Ai, A7)

hyp _+

2

h 0,7 o

cnyp— + < ”4 L (3.17)

h
c, h,’? —h,}

2
|

(this formula allows for some tolerance: a factor 1.5 in scale difference is accepted if the
two centers cﬁy P and ¢, are equal, for instance). Finally, we do not store the probability
of false detections in M. It would be pointless, as there are a very large number of
potential parts in the negative images and we can not reduce all those probabilities in a

single value. An example of the evolution of M during training is shown in Figure

3.6 Conclusion

We have presented a novel approach for the detection of instances of specific objects.
This system enables a fast recognition robust to noise and occlusions. The introduction
of local kernels allowed to combine different types of features while still preserving the
invariance to a large set of transformations. The cascaded structure of the detection
lattice enables a smart handling of the graph matching problem in a continuous space
(i.e. the test image is not discretized into a graph) contrary to classical graph matching,

in order to improve both speed and robustness.
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0.5

o Ll
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Figure 3.8: Top row: model parts according to the scale-space pyramid decomposition.
Subsequent rows: evolution of the probabilities stored in M to detect each model part
while building the detection lattice. Second row: | = 2; third row: [ = 3; fourth row:
I=e.
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HIs chapter presents a quantitative evaluation of the contribution presented in the
T previous chapter. Firstly, we detail the preliminary training step for determining
the micro-classifier’s thresholds independently of any model object. Then, an in-depth
examination of the performance is conducted for different datasets: our own dataset for

mobile robotic, the dataset of Ferrari et al. [FTGo6|] and the dataset of Rothganger et al.
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[RLSPo6]. We also make a quantitative comparison against some of the most popular
algorithms from the state of the art (a baseline RANSAc, the improved LO-RANSAC from
Chum et al. [CMKo3|] and Lowe’s method [Lowo4]). Results shows that our approach
outperforms those algorithms in realistic conditions of mobile robotic. On the two other
datasets, our method performs slightly less well than the best existing methods but still

holds out well while providing very fast detection.
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4.1 Discussion about the evaluation

There exist several methods and datasets for evaluating the performance of a specific
object detection system. In the following of this section, we give an overview of the
existing datasets and metrics in the state-of-the-art and we justify a selection of the most

relevant ones with respect to our method and our objectives.

4.1.1 Test datasets

4.1.1.0.1 Existing datasets There are several available datasets to evaluate algorithms

for specific object detection. Among them, we can cite:

e The dataset of Ferrari et al. [FTo4] (9 model objects, 23 test images). It focuses
on 3D object recognition (4 objects have one view, the other 5 have 6~8 views) in
heavily cluttered conditions. Strong occlusions make this dataset quite challeng-
ing. Moreover, large distortions of the model instances are often visible because
of (1) extreme perspective effects and (2) non-rigid distortions (e.g. bended maga-

zine).

¢ The dataset of Rothganger et al. [RLSPo6] (8 model objects, 51 test images) for
3D object reconstruction and recognition. The particularity of this dataset is that a
large number of training views are provided for each object (between 20 and 28),
so that a full 3D reconstruction is possible. concerning the test images, they show
the objects in varying scale, pose and level of occlusion. The amount of clutter also
varies depending on the images. Finally, note that the test images are very large in
surface (2~3 MPixels) which leads to a large number of keypoints per image and

hence a long detection time.

¢ The dataset of Moreels et al. [MPos, MPo8]. It consists of close-up views of home
objects (101 objects, 123 test images) and toys (31 objects, 141 test images). Similarly
to the previous datasets, the test images show close-up views of the model objects
in cluttered background with possible occlusion. Note that only two methods have

been evaluated on this dataset (Moreels” and Lowe’s method).

¢ The dataset of Kootstra et al. [KYdBo8]. It consists of close-up views of seven ob-
jects under 36 different viewpoints (images are taken by a mobile robot equipped
with a CCD camera). The dataset is not publicly available to our knowledge, but

appears easy because the sample pictures shown in the original paper [KYdBo8§]|
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Moreels et al. Our dataset
[MPos5, MPoS] [RLAB10a, Revog]

Figure 4.1: Sample test images from different datasets for the evaluation of specific object
recognition systems.

display no occlusion and few clutter. No real evaluation has been performed on

this dataset (only pairwise keypoint matching).

e The dataset of Kushal and Ponce [KPo6|] (9 model objects, 8o test images). It em-
phasizes the 3D aspect of object recognition: each model object comes with 7~12
training viewpoints and appears in various 3D poses in the test images with pos-
sibly strong occlusions. This dataset mostly resembles the dataset of Rothganger
et al. [RLSPo6]. Furthermore, only the method of Kushal and Ponce [KPo6] and

two baselines have been evaluated on this dataset.

To sum up, in all those datasets test images consist of close-up views of the model ob-
jects, often strongly occluded (see some examples of test images in Figure[4.1). Although
this is challenging, we do not find this aspect really realistic regarding scenarii of mobile
robotic. Usually, a mobile robot has to detect an object from a certain distance despite a
low-quality acquisition device, which is an essentially different task. As a result we de-
cided, in addition to evaluating our system with the first two datasets presented above
for comparison purpose, to create a new dataset providing more realistic conditions for

robotic vision. We describe our dataset and the associated experiments in Section [4.3}
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4.1.2 Evaluation metrics

In most similar works, results are presented in the form of Receiver Operating Char-
acteristic (ROC) curves. This is a clever choice as it enables one to see in one glance
the efficiency of the method: the more the curve follows the left and top boundaries,
the better the performance is. In a classical ROC curve, the abscissa axis represents the
False Positive Rate (FPR) and the ordinate axis represents the True Positive Rate (TPR).
The TPR and FPR are respectively defined as the ratio of true (resp. false) detections
to the total number of positive (resp. negative) boxes defined in the ground truth. A
true detection occurs when the detection system hypothesizes a box fitting enough the
ground truth (in our case, a minimum in mutual overlap of 25% is required) and having
the correct label. Since for each detection is associated a confidence by the detection sys-
tem, by varying the threshold of minimum confidence one can generate all ROC curve
points.

Nevertheless, it is difficult to define the FPR in the case of object detection, because
the number of negative boxes is potentially infinite when we consider every possible
combinations of location, orientation and scale not fitting positive boxes. As a con-
sequence, instead of the FPR we prefer to use the average number of False Positive
detections Per test Image (FPPI) as in [FFJSo7]. Another alternative chosen by Ferrari
[FTGo6] is to use the 1 — precision value, where the precision is defined as the ratio
of the number of positive detections to the number of detections (both above a given

threshold). This choice appears to us less pertinent as it is less meaningful to the reader.

Averaging issues In the literature, results are generally presented in term of a single
ROC curve, although the dataset is composed of several model objects varying in ground
truth box count and difficulty. Because in our dataset the number of ground truth boxes
for each model object can considerably vary, we present both the standard single ROC
curve (all model objects combined) and the averaged ROC curve obtained by vertically
averaging the individual ROC curves corresponding to each model object.

In other words, two different scenarii are used to compute the ROC curves for our
dataset. In the first scenario, the ROC curve is generated by only taking into account the
detections boxes, indifferently of the object identity (i.e. the same thresholds are used
for all objects); in the second scenario, the ROC curve is obtained by vertically averaging
the individual ROC curves corresponding to each object (i.e. different thresholds may
correspond to similar FPPI values). We believe that the first scenario is more realistic

as in a practical utilization individual thresholds per object may be unknown, although
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it is less fair because in this case all objects are not equally represented in the curves.
For completeness, we show both curves each time believing that each curve should be

considered with an equal importance.

Area Under Curve (AUC) In order to measure in a single real value the performance
of a detection system, we use the Area Under ROC Curve (AUC) metric. As the name
indicates, it simply corresponds to the area under the ROC curve (i.e. for the range of
FPPI shown in the plot, usually 0 < FPPI < 1). This is a robust measure which ranges

between o and 1 (note that it is closely related to the average Precision).

4.2 Preliminary training

Preliminarily to the experiments, we have to train the lattice parameters that are inde-

pendent of the model objects. The following parameters are to be trained:
* The thresholds d7** of each branch micro-classifier (Section ,

e The local kernel parameters (Section [4.2.2).

4.2.1 Learning the subclassifier thresholds

As we saw previously, each lattice edge is associated to a simple micro-classifier that
produces a binary decision by comparing a kernel distance to a threshold (see eq. (3.8)).
Our goal in this section is to learn the classifier thresholds in a automated manner. We
have tried in a previous version of this algorithm to learn those thresholds individually
for each edge, by maximizing the mutual information on the training set. However, we
have found that this method was providing too instable results and was computationally
costly. Instead, we propose now to learn by advance the thresholds “once and for all”,
regardless of the model object by using an independent training set.

As with traditional cascades, our strategy is to minimize the false negative rate for
each subclassifier. In other words, we do not want to miss a true detection. Since our
lattice paths are dedicated to recognizing small parts of the model object and that we
expect some noise, we thus set the thresholds to the maximal amount of noise expected
after usual image transformations (jpeg noise, blur, viewpoint change...).

For this purpose, we have used the dataset made available by Mikolajczyk and
Schmid [MSos]. This dataset was originally proposed for the evaluation of feature de-
tectors+descriptors and is composed of 48 pictures belonging to eight distinct sets (6

pictures in each set). Each set represents the same scene purposely affected by a type of
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noise, such as JPEG noise or slight 3D viewpoint change. What makes the dataset inter-
esting for our purpose is that the pairwise pixel correspondences between each image
of a set are provided as ground truth. As a result, it makes it possible to measure the

amount of noise caused by usual transforms on the kernel distances defined in Section

(G3).

Namely, we have extracted a large amount of random aggregates in all 48 images.
Then, knowing aggregate correspondences (based on the adequacy between ground
truth and their position) we have measured the distribution of kernel distances for true
matches. Note that contrary to other authors like Lowe [Lowog4], we are not interested
by the case of false matches. Indeed our unique purpose is to build lattice paths that are
robust to noise; the distinctiveness of the aggregates being later handled by the succes-
sion of subclassifiers — eliminating more and more false detections, as with traditional

cascades.

The resulting histograms of distances are presented in Figure |4.2|for each kernel. We
have set the thresholds such that on average 95% of true matches are accepted (indiffer-
ently of the noise types). Specifically, the threshold is only function of the type of the

associated feature: for an edge e;; adding the model feature qbfj of type t, then we set
d;?]?llx — dit’l’lllX.

The retained thresholds are presented in Table For the keypoint type, there are two
kernels: the first one is used to compare SIFT descriptors of seed features (first row of
Table while the second one is used in the subsequent levels of the lattice (second
row of Table . For the seed branches, we only authorize matches if the descriptor
distance is less than d@#* = 0.251, which corresponds to 75% retrieval (dg#* is the micro-
classifier threshold of the seed branches and appears in Algorithm [3.1). We reduced this
proportion with respect to 95% in order to fasten the matching. Indeed, it makes a big
difference in speed because the detection time is somehow proportional to the number
of matched seed features. According to our experiments, restraining the threshold to
75% of retrieval divides by 10 the number of matches compared to a threshold of 95%
and does not impair much the performance. This optimization is used only for the first
level; for the subsequent levels we set {x = 0.5 for the second kernel (representing 95%

retrieval). Finally, we have also measured the repeatability of keypoints pi” needed in

eq. (3.16), see rightmost column of Table
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Figure 4.2: Distance distributions corresponding to true matches for each kernel. The
irregular curves for Kx and Kg are due to normalization effects on integer distances
(typically for small line segments or keypoints).

Table 4.1: Retained thresholds and standard-deviation for each feature types.
| Type | Kernel | Branch level | dp>* | repeatability |

Keypoint (desc) | K% 0—1 0.251 | 0345882 |
Keypoint (pos) Ky |n—(n+1),n>1]| 1.004
Segment line Kg n—(n+1),n>11 o793
Texture Kt n— (n+1),n>11 0944
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4.2.2 Other kernel parameters

A few other parameters have to be fixed a priori for the local kernels. We arbitrarily set
a% = 8 for the second keypoint local kernel K (see eq. (3.2)) to balance location against
scale and orientation. Concerning textures, since their descriptor varies smoothly along
the image, they are robust to slight positioning errors so we considered a unique test as
sufficient, i.e. we set a3 =1 and {7 = 0 (see eq. (3-4)). This minimum setting produces

excellent results, see below.

4.3 The CS17 dataset

As stated above, we have created a new dataset for the sake of better simulating clas-
sical robotic vision conditions. The name “CS-17” originates from the laboratory name

directed by Professor Ariki (Kobe University) where it was made.

Dataset description

We have manually shot a dozen of indoor videos with a standard SONY handycam.
The image resolution is willingly smaller (720 x 480) than in the existing datasets where
high-quality photos are used. As stated above, our choice is motivated by the aim of
better simulating the realistic conditions of robotic vision, which are generally much
more difficult because of the poor luminosity conditions of the indoor environment, the
variety of noises (captor noise, movement blur, video interlace) and also because of the
objects themselves which are not always heavily textured. The videos were sampled at
10 fps (resulting in 2837 frames, a much higher number than in the existing datasets)

where the ground truth was manually labeled. All training and test images can be found

at http://liris.cnrs.fr /jerome.revaud /CVIU.

Figure 4.3: Model objects used in the experiments. The amount of texture and the shape
dramatically differ depending on the object.
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Table 4.2: Dataset statistics. The third and fourth columns respectively denote the num-
ber of training images and the number of positive boxes in the ground truth.
| # | model name | train | test | K2

model name \ train \ test ‘

1 frame 1 784 — —
2 | stuffed animal | 4 | 319 7 & 4 4

8 coffee table 4 | 329
3 50cl bottle 3 130 -

9 journal 3 201
4 keyboard 1 | 121 :

10 vinyl record 3 | 207
5 | cloth hanger 2 352 175 fire extinguisher 2
6 desk chair 4 477 ) 3 35

Model objects Eleven objects at our disposal, such as a cloth hanger or a fire extin-
guisher, were used to test our system. The detailed list of model objects is presented in
Table and their pictures can be seen in Figure The objects were chosen based
on their amount of texture and their shape in order to cover a large range of possible
indoor objects: the bottle, the journal and the vinyl models are heavily textured contrary
to the mug and the small table models; the frame, the journal and the vinyl models are
flat and rectangular whereas the stuffed animal, the bottle, the chair legs, the mug and
the small table have complex 3D shapes; the hanger, the chair legs and the mug contain
holes and/or sharp edges; the frame, the bottle, the chair legs and the journal are prone
to specular reflections; etc.

As in similar datasets [FTGo6, MPo8], we have used a small number of training im-
ages per model object (between 1 and 4). However, all model objects are only shown
from a single 3D viewpoint (in other words, this is a 2D dataset). When several training
images are available for a single object, it simply means that they are taken in different
viewing conditions (e.g. scale, lighting) under the same viewpoint with possible redun-
dancy. From the 2837 frames, 2272 frames contain at least one model object (i.e. 565

frames only show background) and the total number of true boxes is 3502.
4.3.1 Parameter Tuning
Before proceeding to the experiments, we need to tune two parameters of our approach:

* The average number 7., of detected parts per model image (Section [3.5.2).

* The number 7,., of negative images (Section [3.5.1). For simplicity, we assume in
the following that all negative images are independent and have roughly the same

size.

In order to study how the performance of our approach vary depending on these two

parameters, we have divided our dataset between a held-out validation set (all the im-
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Figure 4.4: Impact of the number of negative training images on the performance in
term of AUC value (in fact: almost no impact).

ages having the suffix “0.jpg”, hence 1/10™" of all test images) and a test set (the rest of
the dataset). All tuning experiments presented in the following of this subsection are

done on the validation dataset.

Number of negative images We have first investigated the number of negative images
in the training set. To that aim, we have launched the training procedure for values of
npeg comprised between 2 and 80, having fixed beforehand 7y, to 200. The first 19
negative images were shot by us in the laboratory, the next images are sampled from
the “Background” category of the Caltech-101 dataset [FFFPo6]. (The average number
of seed features per negative image is about 1000.) Then, we have measured the perfor-
mance in term of AUC metric. Results are presented in Figure

As can be observed, results are stable for any number of negative images (only a
small decay is observed for 1,,; = 2), in accordance with our theoretical model (i.e.
the number of negative images is not involved in our probabilistic model). However, it
should be noted that the number of negative images have an influence on the average
depth of the lattice paths (i.e. on the distinctiveness of the terminal aggregates). This
is logical insofar as aggregates become terminal when they are no more detected in
negative images (see Section [3.5.2). So for a large number of training images, aggregates
must be very distinctive to terminate their path. Because their distinctiveness grows
along with their depth, it encourages long paths in this case.

In Figure this effect is illustrated by the fact that the number of detections is
much larger for low values of 7,,,. This in turn impacts the detection time: a larger
number of hypothesis involves a larger clustering time, and because our algorithm is
greedy it becomes typically quite slow. The difference of time between n,,, = 5 and

Npeg = 80 is about 0.5s according to our experiments. As a consequence, we choose in
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Figure 4.5: Impact of the number of negative training images in term of the average
number of detections per image. Because large numbers of negative images encourage
distinctive aggregate, there are less detections per image for similar performance.

the following experiments an intermediate value of n,,, = 30 because the number of
average detections per image stabilizes from this value. This corresponds in practice to
a cumulation of about 30,000 seed features in the negative images, hence a probability
for termination of p(A;|-0) < 1/30000 ~ 3.10~°.

Number of model parts Now that we have studied the influence of the number of
negative training images, we turn now to the number of model parts detected by the lat-
tice. We recall that the parameter 7y, corresponds to the minimum average number of
detected aggregates per model image during the lattice construction (Section . For
instance, a value 1, = 1 means that the lattice detects at least a single aggregate (i.e.
part) in each model image, on average. Theoretically, this parameter has no influence on
the detection performance (see the discussion in Section [3.4.6), but this is without con-
sidering the possibility of occlusion or noise. In practice, we have to trade-off between
a small value of #., (favoring a small lattice hence a fast detection) and large value of
Nterm, Which brings more robustness to occlusion and noise (because more model parts
are likely to be detected).

We have experimented different values of 1y, to verify this effect. The results are
presented in terms of AUC in Figure averaged for 7. € [2,30]. As can be seen, the
performance does not vary significantly for ny,, € [40,200] (especially, no significant
improvement is observed for 7, > 135). However, the variance of the results signif-
icantly decreases from #e,, > 60, confirming our guess that small numbers of model
parts produce less stable results. On the other hand, the detection time is significantly
inferior for a smaller number of parts: Figure|4.6|shows that the detection time is roughly
linear with the value of 714, (remember that the preliminary feature extraction time is

constant and independent of #14.; it is denoted by a red area in Figure . This makes
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Figure 4.6: Influence of the parameter 7, on the detection performance (left) and on
the detection time per image for searching all 11 objects (right). ¢, corresponds to the
average number of detected parts per model images.

sense because 1.y, straightly relates to the lattice breadth (see the paragraph “detection
time” below). As a consequence, we use the adequate value of 7y, corresponding to
the best AUC to detection time ratio in Section |4.4] and In this section, we just use
the value producing the best results (14, = 200); but remember that almost similar
results are achieved from 4., > 60 as shown in Figure

4.3.2 Comparative experiments
Experimental settings

We have trained our detection lattice with all available positive images (knowing the
bounding boxes and orientations of the objects), and 7,,, = 30 negative images, consti-
tuted by 19 background photos of the indoor environment plus the 11 first images of
the “Background” category of Caltech-101. We have set the number of model parts to

Nterm = 200, but similar results can be achieved with lower values as illustrated in Figure

-6l

Concurrent approaches We compare our contribution against the most commonly

used methods for this task from the state of the art:

* A baseline RANSAC [FB81] with a homography. Keypoints from all model im-
ages are stored into a k-d tree to enable their fast retrieval (matches are based on
the first-to-second best neighbor distance ratio being less than 0.8). Since a ho-
mography needs at minimum 4 matches to infer a pose hypothesis, the number of
iterations excessively increases when the ratio of inliers is small. As a consequence,
we used an over-estimated probability of 10% (the true effective rate being much

smaller). The tolerance for the localization of inliers was set to 5% of the diameter
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of the detected objects (this value gives the best results on our dataset). Finally, the
stopping criterion and the probabilistic formula asserting a detection are the same

as in prosac [CMos].

¢ The locally optimized RANSAC (LO-RANSAC) as theorized by Chum et al. [CMKo3]|
and practically adapted by Philbin et al. [PCI*o7]. It is similar to RANSAC except
that a similarity transform is used in the main loop and a homography in the
local optimization step (called every time that a new maximum of inlier count
is found). This solution enables a much lower probability for inliers ratio as the
similarity transform only requires a single match: we set a worst-case ratio value of
1% without noticeable slowdown. As with the standard RANSAC, the probability
of finding the object is moved to generate the ROC curve, however contrary to
RANSAC an inlier tolerance of 5% for the outer loop and 2.5% for the inner loop

produces the best results.

* The object recognition system from Lowe [Lowo4|]: SIFT keypoints are used for
local feature matching using a kd-tree search. Each match casts a vote for an
approximate model pose, the votes are then accumulated into a hash map and
all clusters of 3 votes or more are verified using an affine transform. Remaining
hypothesis undergo a probability decision and the threshold on the acceptance
probability is used to generate the ROC curve.

Experimental results

The detection performance is presented for each method in terms of ROC curves in
Figure As stated in Section (4.1.2), we display two plots in order to reflect both
averaged performance (left plot, all model objects have an equal weight) and overall
performance (right plot, all instances are considered indifferently of their model object).
This distinction appears important to us because some model objects are largely more
present in the test set than others (e.g. the frame object, see Table [4.2), making the right
plot imbalanced. Nevertheless, the two plots look rather similar for all methods meaning
that the performance on each model object alone are approximately equivalent. Sample
detections for our method are also shown in Figure

Our contribution significantly outperforms all concurrent methods. Among them,
Lowe’s method is producing the best results, but is still far behind ours. In order to
check whether this superiority was coming from our implementation of Lowe’s method
or not, we have tested it on several separate images. An example of such test is shown

in Figure (Chapter 2). In this image, the beaver is correctly detected with a score of
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Figure 4.7: Comparative results for the CS-17 dataset in term of ROC curves.

(1 —10712) (15 matches) despite a projective transform and a lot of clutter, whereas the
second best detection (out of fourteen) only has a score of 0.23 (6 matches). In addition
to those sample tests, we have also tested our implementation on the Rothganger dataset
(see Section [4.5below) and we have obtained a similar result to the one reported, which
has reinforced the idea that our implementation is trustable.

In fact, the explanation of the failure of traditional methods arises instead from the
fact that our test images are extremely noisy. An example of such noise is shown in
Figure |4.9 where the leftmost image are the training images and the other image corre-
sponds to detected instances, rescaled such that all objects have the same scale. As can
be observed, serious distortions affect the instance pictures (note that those images are
rendered using the PNG format in this document, so that no artificial noise is added
compared to the original test images). Those distortions are caused by scale changes
(instances often appear very small because they are seen from a large distance), MPEG
noise, movement blur and light reflections. As a result, a lot less keypoints are detected

on the instances, or similarly, the repeatability of keypoints is reduced.

Extracting more keypoints To verify that our keypoint detector was not the cause
of this detection failure, we have tried to generate more keypoints: instead of using
Lowe’s executable (which is not parametrizable), we have used the SIFT implementation
made available by Andrew Vedaldi [VFo8]. We have lowered the extraction threshold,
which resulted in 3720 keypoints per test image on average, instead of 949 before. The
curves displayed for Lowe’s method and LO-RANSAC method in Figure|4.7]are actually
produced with this setting. Note that this setting does not really change the outcome:
extracting more keypoints only slightly extends Lowe’s curve to the right from the point

where it reach its maximum TPR (thus no improvement is achieved) at the price of a
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Figure 4.8: Examples of detections on the CS-17 dataset using the proposed method
(FPPI is set to 0.01 for each model). This method is robust to occlusions, rescaling,
viewpoint changes and various captor noises like movement blur. Correct detections
are represented with green squares, incorrect detections with red squares, and missed
objects with dashed blue squares.
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Figure 4.9: Sample detections for our method on the CS-17 dataset for four model ob-
jects: the stuffed animal, the fire extinguisher, the vinyl and the frame (leftmost im-
ages). It should be noticed that the instances suffers from serious noise sources such as
rescaling, MPEG noise, movement blur and light reflections. For this reason, traditional
methods fails at detecting most instances.
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Table 4.3: Average processing times with a 2.3 GHz computer on a 720x480 test image
for 11 model objects. Our detection time depends on the parameter nserm (€.g. 400 ms for the
curves reported earlier with r¢,r,;, = 200).

1 We use Lowe’s executable to extract the SIFT keypoints, which is rather slow because the image
first has to be converted to the PGM format, and the extraction output is made through a text
file. With more efficient implementations of the SIFT detector, the detection time is about 1s.

Operation \ time (ms) ‘

SIFT keypoints 1648!
Feature extraction Edges 310
Textures 210
RANSAC 225
Object LO-RANSAC 108
detection LOWE 81

Ours 80~400

considerably slower detection speed. On the contrary, for the standard RANSAC, the
best performance was obtained with Lowe’s executable because for RANSAC with an
homography, the chance of hitting four correct matches is higher when the number of

image keypoints is small.

Detection time

We summarize in Table the average detection time necessary for searching the 11
models objects in each test image. All tests were processed on a 2.6 Ghz computer
without coding any particular optimizations. Globally, the feature extraction step on a
720x480 image takes about 2s which three-quarters are spent solely for keypoint extrac-
tion (note that Lowe’s executable used to extract SIFT keypoints is probably not opti-
mal, e.g. other keypoint detectors like the one in [zCLFog] are almost instantaneous).
Moreover, edge and texture features are only used by our contribution although their
extraction is rather fast. An efficient implementation could be obtained by parallelizing
all these processes on different cores.

Our contribution remains relatively fast, depending on the value of ., (see Figure
[4.6). Indeed, the small number of features in terminal aggregates (2.6 on average, to
relate to the thousands of features initially present in the prototype graphs) enables
almost instantaneous verifications. For a value of ng;,; > 60, the detection time of
our system is comparable to that of Lowe’s method or LO-RANSAC and the detection
performance is still largely superior to theirs. Still, we believe that our system could be
accelerated several times with an appropriate optimization. In fact, the detection time is
linear with the number of branches starting from the root node, because each keypoint

in the test image is compared to each first-level seed feature. So by interposing a tree-
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shaped indexing structure between the root and the first-level aggregates, one should be
able to achieve a significant speed-up. The work of Beretti et al. [BDVo1] for indexing
graph using nested spheres, for instance, seems to be a promising track to achieve such

a boost. This is however beyond the scope of this dissertation.

4.3.3 Discussion

As stated earlier, our contribution significantly outperforms the methods which we com-
pared to. Although it is difficult to give an exhaustive list of the causes of this superiority,

here are the main trends:

¢ Contrary to the others, our method generates a lot of detections from which the
correct ones tend to pile up whereas the negative ones behaves as a random uni-
form noise. In comparison, even a very low probability threshold for Lowe’s
method and LO-RANSAC surprisingly does not produce a lot more true posi-
tives (i.e. ROC curves stop very soon in Figure [4.7). This is due to the fact that
these methods require respectively at least 3 and 4 correctly matched keypoints
(but often more) to assert a single detection, which is quite a difficult prerequisite

in our noisy conditions (see how dirty object instances are in Figure [4.9).

¢ When the model object is poorly textured, the keypoint descriptors are very unspe-
cific, decreasing the probability that the best-to-second distance ratio is accepted.
Since our method uses absolute distance between keypoint descriptors, it is not

affected by this issue.

* Scale is very different between model images and instances in videos. Usually,
model photos are taken in close-up while detection needs to recognize the objects
at a much smaller scale. This is a problem for keypoints, since their theoretical
invariance to scale owns some limits, whereas texture features which are not salient
are readily extractable everywhere in the image. On the contrary, our method

specifically addresses this issue by dedicating aggregates to large scaled model

parts (see Section 3.5.5).

* When the object surface is small or when the object contains holes (e.g. the cloth
hanger), SIFT keypoints describe most of the time the background instead of the
object. Our method can use line segments which are less prone to background

clutter.

Moreover, our approach demonstrates that an efficient detection scheme can be built

in a two-steps manner: one first part for fast and rough hypothesis generation using a
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| Used features | AUC | Difference with K+E+T |

Keypoints 0.44 -0.10

Edges 0.47 -0.07

Textures 0.55 +0.01

Keypoints + Textures | 0.51 -0.03

Keypoints + Edges 0.54 +0.01

Edges + Textures 0.54 +0.00
K+E+T 0.54

Table 4.4: Contributions of each feature type on the CS-17 dataset for our method. The
leftmost column specifies which subset of the 3 basic feature types were used to construct
the lattice from the second level (the first lattice level always remains composed with
keypoints). The two other columns show the performance thus obtained in term of ROC
AUC and the difference with the normal case where all three feature types are used.

small fraction of the model information, and a second part for verification using the rest
of the model information. In our case, the cascaded structure of the lattice intrinsically
includes the two parts, because the first part for hypothesis generation is constituted by
the seed branches, and the second part for verification is performed by the rest of the

paths (from level | > 2).

Importance of each feature type We have taken a look at the importance of each fea-
ture type regarding the detection performance. To do so, we have constructed the detec-
tion lattice using a subset of the three proposed feature types (i.e. keypoints, edges and
textures). For instance, we have constructed detection lattices using only edges. (Note
however that the first level of the lattice is an exception to this constraint as it remains
always exclusively composed of keypoints.) Then, we have measured the performance
of such lattices on our dataset in terms of AUC value; results are presented in Table

In general, the combination of two feature types performs better than one type used
alone but clearly the best performance is obtained when the “Texture” feature type is
present. The explanation to the superiority of the texture features is that they are not
affected by repeatability issues: they are readily extractable everywhere. In contrast, the
keypoint and edge types are salient and thus their extraction is subject to the presence of
noise (typically: rescaling, motion blur), although the edge feature is more flexible than
the keypoint feature (see Section (3.3.2)). To conclude with, this confirms our assumption
that salient features, still important for reducing the search space and for readjusting the
aggregate positions during their growth (texture feature does not have any anchorage),
should be used in association with non-salient features to gain robustness.

For completeness, we also show in Table the proportion of each feature type

automatically chosen in each detection lattice for this dataset. The texture type is logi-
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Table 4.5: Lattice statistics for each model object. The three columns respectively denotes
the percentage of keypoints, edges and textures automatically chosen in the recognition
lattice.

# ‘ model name | % kpt | % edge | % tex ‘ ’ # ‘ model name % kpt | % edge | % tex ‘
1 frame 22.2 14.4 63.3 7 tea mug 10.2 222 67.7
2 | stuffed animal | 14.1 8.9 77.0 8 coffee table 8.9 14.8 76.3
3 5ocl bottle 19.5 8.6 71.9 9 journal 18.3 14.8 66.9
4 keyboard 20.7 8.7 70.7 10 vinyl record 35.8 22.8 41.4
5 | cloth hanger 22.4 19.1 58.9 11 | fire extinguisher | 21.5 11.7 66.8
6 chair leg 12.1 18.4 69.5 average 18.5 15.0 66.5

cally dominating for two reasons: first of them, it is an efficient feature as said earlier;
and secondly texture features are extracted in large number at the construction of the

prototype graphs, making them statistically more often connected to the other features.

4.4 The ETHZ toys dataset

For comparative purpose, we have evaluated our approach on two existing datasets. The

first of them is the ETHZ-toys dataset as made available by Ferrari et al [FIGo6].

Dataset description The ETHZ-toys dataset [FTGo6] is composed of g model objects
and 23 test images containing 42 instances in total. The number of training images
per model depends on the model object: some objects are covered by (up to) 8 views
forming 360° viewpoints, while some others have only a single training image (e.g. two
magazines). All model objects are strongly textured, either with textual patterns or
with printed images, making them an easy target for keypoint-based detection systems.
However, the main challenge of this dataset lies in three points: (a) the heavy amount
of clutter in the test images; (b) the important amount of occlusions; and (c) the strong
distortions with which the model objects appear in the test set. The distortions can be
either caused by a close-up, causing the perspective projection to be quite extreme (e.g.
the fourth image in Figure for instance), or the consequence of intended non-rigid
deformations (e.g. first and fifth images in Figure [4.10).

Experimental settings As mentioned above the distortions of the instances in the test
images are extremely important and cause the failure of most pairwise matching be-
tween SIFT descriptors, causing in turn extremely low performance for our method.
Probably for this reason, Ferrari et al. have used affine invariant features instead of only

scale invariant features. This supplementary invariance indeed provides better pairwise
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Figure 4.10: Sample images from the ETHZ-toys dataset [FTGo6]. Instances suffer from
strong distortions (non rigid distortions in the first and fourth image, extreme perspec-
tive effects in other images) or strong occlusions (all 6 images). The correct detections
for our method are bounded by green rectangles, the roman soldier toy inside a blue
rectangle in the last image was not detected by our method.
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matching performance for strong viewpoint changes. We could have done the same, but
our method is not designed to use affine invariant features as seed features (i.e. there
would be two half vectors per feature instead of one).

So instead, we have used a simpler trick inspired to us by Yu and Morel on their
work with ASIFT [YMog]. ASIFT is an extension of SIFT to the affine invariance. In this
work, affine SIFT features are generated by simply extracting SIFT features on affinely
deformed versions of the input image. In our case, we have simply generated additional
views using a projective transform and we have added those views to the training set.
Various distances of the objects to the camera were used (i.e. assuming flat objects),
resulting in 9 times more pictures than in the original training set. Concerning the
negative training set, we have used the first n,,, = 30 images of the “Background”
category of the Caltech-101 dataset as no negative images were provided in the original

dataset.

Experimental results we have tried different values of ny., and we only display here
the results for ny.,;, = 135, as no significant improvement was obtained beyond. The
corresponding ROC plot is shown in Figure Our method produces good results
at null FPR (equivalent to the one of Ferrari’s method), however no real improvement
is obtained for increasing FPR - contrary to Ferrari’s method. Note however that color
information is used in Ferrari’s method but not in ours, which might be an important
handicap for us on such a difficult dataset. Still, our method is well beyond all other
methods to which Ferrari et al. compare to for decent values of FPR (the abscissa axis
on the ROC plot corresponds to 1 — precision, meaning that after 0.5 there are more
erroneous detections than correct ones). As a consequence, we consider those results
as very satisfying regarding the fact that our method was not designed to be robust
against such strong occlusions and distortions. The fact that 73% of the test instances
are correctly detected without any false detection shows that our method resists quite
well and is still able to discriminate between objects and clutter. The rest of the instances

are not detected because of huge occlusion.

Detection time The detection time for our method is several orders of magnitude
smaller to the one of Ferrari’'s method. On average, our method requires 3 seconds
per image to search all 9 objects (feature extraction step included) whereas an hour is
spent for each image with the method of Ferrari (in both case, a 2.4 GHz computer is
used). This long time is easily explained by the fact that Ferrari’s method iterates sev-

eral steps of an expansion-contraction procedure in order to recognize the maximum
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Figure 4.11: ROC plot for the ETHZ-toys dataset. The two best curves are for Ferrari et
al.’s method and our method. See text for details.

surface for each object. Indeed, in the work of Ferrari et al. [FTGo6] the training images
are densely sampled with local textures to exhaustively learn the surface of each object.
This is in contrast with our method where all training images are also densely sampled,

but where only a tiny fraction of them is retained in the detection lattice.

4.5 The Rothganger dataset

The second existing dataset to which we compare is the Ponce-Rothganger dataset
[RLSPo6].

Dataset description The Rothganger dataset is composed of 8 model objects and 51
test images containing 78 instances in total. Its purpose is the evaluation of systems for
3D recognition of specific instances. As a result, each model object is purposely shot
under an important number of 3D viewpoints (between 16 and 29) in the training set.
Likewise, object instances appear viewed from various 3D viewpoints in the test set.
More globally, this dataset does not present major difficulties, as most of the model
objects are well textured and thus easily recognizable using standard keypoints-based
methods. Its main advantage is that many existing systems [RLSPo6, [Lowo4, [MPos),

FTGo6] have already been evaluated with it, making the comparison possible.

Experimental settings As usual, we have trained a single lattice for each model object,

setting the number of negative images to 1,,, = 30 (using again the first 30 images of
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the Background folder of the Caltech-101 dataset [FFFPo6]) and trying different number
of terminal nodes in the set 14, € {40, 60,90,135,200}.

Due to the large size of the training images, we have been forced to downsize each
of them by a factor 2. In fact, the original training images are up to 4 MPixels and each
of them contains thousands of keypoints. During training, this creates multitudes of
candidate aggregates, making the learning extremely slow. Reducing the size up to 1
MPixels allows our algorithm to relatively quickly construct the detection lattice (about
4 hours per model object on our 2.6 GHz machine) — and more importantly, avoids the
computer to crash because of memory overflow.

Besides, it seems impossible with our current technical configuration to build the
index maps for the edge features when the image size exceeds some threshold (remem-
ber that we need 6 distance maps as well as 6 pointer-to-nearest-segment maps to index
the edges in a single training image). As a result, using the edge features makes our
computer consistently crash because of memory overflow (2 GB of RAM apparently do
not suffice). In the end, we excluded the edge features from our feature set. We also
thought about generating additional perspective views for training like we did on the
ETHZ datasets, but because of the good results without this trick and the multiplication
of training time and memory required, we did not do that either.

To sum up, our experimental setting was to downsize the training images to a factor
4 (in surface) and to only use SIFT keypoints and textures (no edge), without generating

additional training images.

Experimental results We compare in Figure our results for the value 7y, = 90
in the form of a ROC plot (no real improvement was obtained for higher values of .
while the training+testing time was increasing). This value is thus the most interesting
trade-off between performance and speed in our opinion.

As can be seen, our results are approaching the best results obtained on this dataset.
More specifically, our method produces slightly superior results to the Rothganger’s
black and white setting (our method does not use color information neither) for a detec-
tion time again several orders of magnitude faster (Rothganger et al. reports one hour
spent for each image on a 3 GHz computer). Lowe’s method produces the best per-
formance on this dataset probably because of the great number of pairwise matches of
SIFT descriptors for each instance, both thanks to the great deal of local textures on the
model objects and the high-resolution nature of the test images. Because our method se-
lects in the final lattice only a tiny proportion of all SIFT keypoints found in the training

images, a logical consequence is a slight loss of performance against occluded and/or
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Figure 4.12: Comparison of performance of our method in terms of in ROC curves on
the Rothganger dataset.

poorly textured objects.

The apple object, for instance, has a rather uniform texture (or, at least, a weak
texture) which does not produce many SIFT keypoints. In fact, it is clearly the object
which is the most difficult to detect using our method. Figure illustrates some of
its instances completely missed during the tests. On the contrary, the strong occlusions
undergone by some instances (e.g. the vase in second row, first column of Figure
are not a problem for our method because many aggregates are still detected from the
large number of keypoints still visible (e.g. see the high score of the occluded teddy-bear
model object in Figure second row, third column). Finally, a few instances which
are viewed from viewpoints that are too much different from the viewpoints provided
in the training set, are also missed as seed keypoints do not correspond. This problem
was handled by using affine invariant features in the original paper of Rothganger et al.
[RLSPo6], but our experiments show that except 2 instances of the cylinder box model,

all other instances can be well recognized using classical SIFT features.

Robustness to 3D viewpoint change We now give a short example of how our method
is robust to viewpoint change. For this purpose, we have trained a lattice on a small

subset of the training images available for the teddy bear model. Namely, we have
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Figure 4.13: Some correct detections and the worst failures of our method on the Roth-
ganger dataset (images are cropped around the bounding box for visual clarity). When
there are more than one object per image, scores are given in left-to-right and top-down
order. For information, the average scores on this dataset are 174.0 and 12.9 for the true
positives and the noise (FP), respectively.
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selected three images showing a frontal view of the teddy bear (see Figure [4.14). Then,
we launched the recognition on the test dataset to check to which extent our method
was robust to viewpoint change. The teddy bear is a good example as it appears under
many viewpoints more or less different from the frontal view. Results are shown in
Figure Although it is hard to generalize from a single example, results still show
that our method is able to recognize viewpoints that are ~ 80° apart from what was
learned, although the detection score obviously decreases proportionally to the angle

difference.

4.6 Conclusion

We have presented a quantitative evaluation of our contribution for specific recognition

on several datasets:

* On our own dataset (the CS-17 dataset), specifically fitted to model the realistic
conditions of robotic vision, our contribution yields performance largely superior

to the state of the art in terms of ROC plots.

* On the two existing datasets, our method gives correct results although it appears
slightly less robust to occlusion that existing methods. In this regard, it should be
observed that each system behaves differently depending on the dataset: Lowe’s
method, for instance, performs excellently on the Rothganger dataset but poorly on
the CS-17 dataset; similar observation can be made with Ferrari’s method, which
is inferior to our method on the Rothganger dataset but performs better on its own

dataset.

In any case, we have shown that our strategy of selecting only a small fraction of the
model features (the most efficient ones) in the detection lattice is valid. Besides, it seems
extremely important to add other feature types in the recognition process. It indeed

highly increases the robustness and improve the performance in noisy conditions.
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Figure 4.14: Illustration of the robustness of our method to viewpoint change. (Top) The
three training images of the teddy bear used to train the lattice (orientation is defined
vertically for the three images, 71t = 90). (Bottom) Top scoring detections on the Roth-
ganger dataset using the lattice thus created (small green circles indicate the position of
detected aggregates, large purple circles indicate the hypothesized object location and
pose). Our method shows an impressive tolerance to viewpoint change (the first nega-
tive detection comes with a score of 16, after the 11" positive image). The quality of the
10" detection is questionable due to bounding box misplacement. The next detections

(with scores inferior to 16) are all true negatives.
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N this chapter, we present an extension of the method described in Chapter [3| for
detecting classes of object instead of instances of specific objects. This development

is motivated by the fact that, in our opinion, the part decomposition and detection
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achieved respectively by the lattice construction and detection procedures of Chapter
also hold for object classes.

We begin by presenting the general principles of our method and similar methods
from the state-of-the-art. Then, we introduce the modifications made to the original
approach of Chapter These modifications include the way in which the lattice is
trained and the way in which the objects are detected. More specifically for the latter
part we use a discriminative classifier (real-AdaBoost) instead of the probabilistic model

originally proposed in Chapter |3l We also describe an optimization to fasten the training.
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5.1 Introduction

Although the method presented in Chapter [3|is designed for specific object recognition,
we have reason to believe that it can also apply to class object recognition. In fact,
many works have highlighted the fact that class instances share at least local similarities
[FPZo3| [VNUos3| JTos]. This appears to be consistent with the intuition for object classes
like cars or faces, for which semantic parts like car wheels or eyes are shared between
all class instances — despite some minor variations in the appearance of these parts.

Because (i) our detection lattice is designed so as to detect similar parts to the ones
found on training images and that (ii) the final constraint on the spatial arrangement
of these different parts is rather loose, it is reasonabl