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Abstract

Object recognition in images is a growing field. Since several years, the emergence of
invariant interest points such as SIFT [Low01] has enabled rapid and effective systems
for the recognition of instances of specific objects as well as classes of objects (e.g. using
the bag-of-words model). However, our experiments on the recognition of specific object
instances have shown that under realistic conditions of use (e.g. the presence of various
noises such as blur, poor lighting, low resolution cameras, etc.) progress remains to be
done in terms of recall: despite the low rate of false positives, too few actual instances
are detected regardless of the system (RANSAC, votes / Hough ...). In this presentation,
we first present a contribution to overcome this problem of robustness for the recogni-
tion of object instances, then we straightly extend this contribution to the detection and
localization of classes of objects.

Initially, we have developed a method inspired by graph matching to address the
problem of fast recognition of instances of specific objects in noisy conditions. This
method allows to easily combine any types of local features (eg contours, textures ...)
less affected by noise than keypoints, while bypassing the normalization problem and
without penalizing too much the detection speed. In this approach, the detection system
consists of a set of cascades of micro-classifiers trained beforehand. Each micro-classifier
is responsible for comparing the test image locally and from a certain point of view (e.g.
as contours, or textures ...) to the same area in the model image. The cascades of micro-
classifiers can therefore recognize different parts of the model in a robust manner (only
the most effective cascades are selected during learning). Finally, a probabilistic model
that combines those partial detections infers global detections. Unlike other methods
based on a global rigid transformation, our approach is robust to complex deformations
such as those due to perspective or those non-rigid inherent to the model itself (e.g. a
face, a flexible magazine).

Our experiments on several datasets have showed the relevance of our approach. It is
overall slightly less robust to occlusion than existing approaches, but it produces better
performances in noisy conditions.

In a second step, we have developed an approach for detecting classes of objects in
the same spirit as the bag-of-visual-words model. For this we use our cascaded micro-
classifiers to recognize visual words more distinctive than the classical words simply
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based on visual dictionaries (like Csurka et al. [CDF∗04] or Lazebnik et al. [LSP05]).
Training is divided into two parts: First, we generate cascades of micro-classifiers for
recognizing local parts of the model pictures and then in a second step, we use a clas-
sifier to model the decision boundary between images of class and those of non-class.
This classifier bases its decision on a vector counting the outputs of each binary micro-
classifier. This vector is extremely sparse and a simple classifier such as Real-Adaboost
manages to produce a system with good performances (this type of classifier is similar
in fact to the subgraph membership kernel). In particular, we show that the association
of classical visual words (from keypoints patches) and our disctinctive words results in
a significant improvement. The computation time is generally quite low, given the struc-
ture of the cascades that minimizes the detection time and the form of the classifier is
extremely fast to evaluate.

Keywords: Specific object recognition, class object recognition, graph matching, cas-
cades, optimization, mobile robotic.
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Chapter 1
Introduction

1.1 A Few Preliminary Words

Automatic object recognition in unconstrained conditions is a challenging task with

many potential applications. Despite its seeming simplicity, creating a system capa-

ble of understanding the surrounding world from pictures, like we do us humans, is

a difficult problem although it is probably much easier than creating a full artificial

intelligence. More pragmatically, this captivating topic has a large number of practical

applications in today’s world where images are ubiquitous.

Scientifically speaking, object recognition is a whole research topic in itself. It has

always interested researchers in computer science and has been a very active topic since

the very beginning of computer science (let’s say, at least for the past 40 years), when

the available techniques were quite poor (see for instance the paper of Fischler and

Elschlager from 1973 [FE73] where pictures are rendered using ASCII characters). In

comparison, today’s techniques can afford complex computations that are several orders

of magnitude larger than the ones performed in those pioneer works, thanks to the

permanent increase in hardware power. Still, the perfect system is yet to be invented,

although important breakthroughs have recently emerged. To give a simple overview,

nowadays it is pretty much feasible to detect humans (pedestrians or faces) even in

noisy conditions. On the other hand, detecting any kind of objects in realistic conditions

is still a challenge for computer vision. In particular, producing detection systems that

are both robust to noise (in the general sense: jpeg noise, occlusion, clutter, etc.) and fast

is a challenge at stake.

In this dissertation, we present two contributions to object recognition while keeping

in mind those two constraints. In the first contribution, we present a generic system

1
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2 Chapter 1. Introduction

Figure 1.1: An example of recognition. The model object at left, a journal, is recognized
and localized by a detection system in the scene picture at right despite some occlusion
and a reduced scale.

for the recognition of instances of specific objects (an illustration is shown in Figure

1.1), which is much more robust against realistic noise conditions for mobile robotic

than existing methods from the state-of-the-art. In the second contribution, we focus

instead on the recognition of classes of objects by re-using parts of the framework of our

first contribution, again leading to a system which results in substantial improvement in

speed and robustness over existing algorithms.

1.2 Application Field

Contrary to other research fields like mathematics, computer vision and especially object

recognition belongs to the field of applied sciences. There is an impressive number of

applications directly or indirectly connected to object recognition, from which some

examples are illustrated in Figure 1.2. A non-exhaustive list of potential applications

includes:

• Robotic vision for:

– industrial purposes like automatic control of industrial clamps from vision

(Figure 1.2, middle column, top row), or automatic counting of elements for

non-destructive controls.

– embedded mobile systems for domestic usage. The purpose for a robot like

the ones in the left column of Figure 1.2 is to interact with an indoor environ-

ment. It involves different tasks like localization from vision, object recogni-
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1.2. Application Field 3

tion and object pose estimation, face and speech recognition etc. It is crucial

to point out that robotic vision in unconstrained environments is especially

difficult: it implies that the robot takes decisions in real-time, i.e. requiring

a fortiori to detect objects and to understand the scene in real-time, and all

of this without making any error. In other words, extreme robustness and

detection speed are the key elements of a realistic application. Note that in

Japan, an official government program is currently supporting a long-term

plan aiming at assisting the elderly with robots.

• Content-Based Image Retrieval (CBIR) systems. Currently, most image search en-

gine (e.g. Google Images) only index images based on the text or legend surround-

ing them. Because this technique can often be a source of errors, current research

moves towards a combination of textual tags, object recognition techniques and

propagation of tags between images sharing visual similarities.

• Video surveillance and automatic monitoring of events. This application includes

the detection of unusual events as well as their characterization. An example is

shown in Figure 1.2 (middle column, bottom row) where an intruder is detected

in a parking.

• Augmented reality on smart phones. As the name indicates, the insight in this

case is to virtually “augment” the filmed scene by superimposing additional infor-

mation on it, such as the road and monument names, or the average ranking and

critics of a book. Although the final step deals more about information technolo-

gies, augmented reality first implies to detect elements in real-time in the filmed

scene. An example of automatic landmark detection is shown in top-right corner

of Figure 1.2.

• Medical imaging, where the field of applications is vast because of the wide variety

of medical image sources (e.g. obtained using magnetic resonance imaging). An

example of application involving the automatic recognition of hand bone segments

in radiographies is presented in Figure 1.2 (right column, bottom row).

Overall, robustness and/or speed considerations are extremely important for all those

mentioned applications. In this dissertation, we mainly focus on the robotic vision

application, although other utilizations remain possible as well, so that these two aspects

are essential in our contributions.
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4 Chapter 1. Introduction

Figure 1.2: Application samples for object recognition. From left to right, top to bottom:
mobile robots with elaborate vision processing, face/object detection for content-based
image retrieval, visual control of industrial robots, video surveillance (here, intruder
detection), augmented reality for mobile phones, medical image processing.

1.3 A Short Definition of Object Recognition Terms

Although the topic may sound intuitive in the ear of the reader, we have to formally

define certain terms preliminary to the following of this dissertation.

Object or Class In the formalism of object recognition, an object is defined in its widest

sense, i.e., from a specific object (e.g. this book) to a class of objects (e.g. cars,

faces). In the first case we talk about individual or specific objects, while in the

second case we talk about class objects. We describe this distinction with more

details in the paragraph below.

Test/scene image Input image to the recognition system. Unless it is explicitly specified,

no particular assumption is made about this image (e.g. each of the model objects

can be present or not). In this dissertation, we only consider gray level images

defined as matrices of pixels:

I : [1, Tx]× [1, Ty]→ [0, 255].

Model object An object which is learned by the recognition system from a set of model

images in order to be later recognized in test images.

Model Instance A specific exemplar of the model object or model class present in a test

image.

Object recognition The task of finding a given model object in a test image, i.e., lo-
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1.3. A Short Definition of Object Recognition Terms 5

calizing every instances of the model object in the test image with a rectangular

bounding box. In this dissertation, we put aside the aspect of temporal continuity

present in frames when we deal with object recognition in videos. That is, we

process all frames independently.

Object detection Although a distinction is sometimes made between recognition and

detection, in this dissertation we consider those two terms to be synonyms.

Localization The task of localizing the position of a model instance, usually in the form

of a bounding rectangle (but it may extend up to determining the object pose). As

said above, it is a subtask of object recognition.

Classification The task of classifying a test image into one of several pre-defined cat-

egories (e.g. sunset, forest, town). Equivalently, if the categories correspond to

different model objects or classes, it is the task of deciding if at least one instance

of the model object is present in the image. Note that contrary to object recogni-

tion, this task does not imply localization and is only applied to classes of objects

or classes of backgrounds.

Image Features Set of low-level information extracted from the image. Image pixels are

the simplest features (i.e. the lowest level). More complex (and higher-level) fea-

tures are obtained by rearranging the pixel values according to some pre-defined

successions of operations. The next chapter will introduce some frequently used

complex features.

Object variations tackled in this dissertation In practice, object recognition has to

deal with two kinds of class variations:

• Inter-class variations, between instances of different classes. The more the classes

are different in the feature space, the easier it becomes to separate them and classify

an instance into the right class.

• Intra-class variations, between instances of the same class. They represent how

much instances of the same class can vary with respect to each other. In the case of

specific objects, intra-class variations are minor because only caused by noises such

as captor noise, movement blur and lighting effects. On the contrary in the case of

class objects, intra-class variations are connected to variations of semantic concepts

related to the objects. For instance, a face is always composed of two eyes, a mouth

etc., but the appearance of each such facial organ varies from one face to another.
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6 Chapter 1. Introduction

As a consequence, a class object recognition system must struggle a lot much to

learn the correct class boundaries than a specific object recognition system: because

of semantic variations, decision boundaries are much more complex for a class. As

a consequence, a lot more images are typically required to train a class object

recognition system. Figure (1.3) illustrates those variations for various specific and

class objects : as can be seen, the appearance of class objects can largely vary from

one instance to another compared to specific objects.

Precisely concerning specific (i.e. individual) object recognition, we choose in this disser-

tation to consider 3D viewpoint changes and non-rigid object distortions as additional

sources of intra-class variations. In fact, we make the choice of not explicitly modeling

neither of those variations, that is we consider them as pure noise added on the train-

ing instances. All in all, our purpose is to make a generic recognition system robust

to a large range of possible disturbances, so that it can bear the unexpected of realistic

real-time conditions.

Figure 1.3: Illustration of intra-class variations for the class case (left) and the specific
case (right). In the case of specific objects (the stuffed animal and the tea mug), only
external variations such as lighting, background or 3D pose affect the appearance of the
model object. In the case of classes (the plane and the camera), an additional variation
comes from the variety of possible model instances.

1.4 Outlines

This manuscript is organized as follows:

In Chapter 2, we present an overview of the state-of the-art in the field of object

recognition with a special focus on specific object detection techniques, as we consider

it to be the core of this dissertation.

Then, we present two related contributions to the object recognition framework

which both aim at increasing the recognition robustness while maintaining a high de-

tection speed.
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1.4. Outlines 7

Firstly, chapter 3 introduces an approach for specific object recognition. It relies on

non-rigid graph matching with a framework designed to enable the integration of dif-

ferent types of local features, contrary to most existing approaches, in order to increase

the robustness. Qualitative and quantitative evaluations of this contribution are pre-

sented in Chapter 4 on our own dataset for realistic robotic vision and on two other

popular datasets. In addition to an in-depth analysis of the detection performance is

also included a study of timing performance.

Secondly, we present an extension of the first contribution to the case of class object

recognition in Chapter 5. In fact, we use the same feature extraction framework than in

the first contribution but we adapt the decision model so as to handle the expected larger

intra-class variations of class objects. Again, qualitative and quantitative evaluations of

this contribution along with speed considerations are presented in Chapter 6 on single

object classes and a popular dataset for image classification.

Finally, Chapter 7 concludes and introduces some perspectives.
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Chapter 2
Survey on Object Recognition
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This chapter provides an overview of the current techniques from the state-of-the-art

in object recognition for both specific and class object recognition. We begin by
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10 Chapter 2. Survey on Object Recognition

presenting basic concepts related to the feature extraction and description steps. Then,

we review existing methods used for specific and class object detection and further

examine their machinery with greater details. Finally, we also criticize various aspects

of existing methods with respect to our objective in this dissertation of elaborating a fast

and robust detection system.
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2.1. A Glance at Object Recognition 11

2.1 A Glance at Object Recognition

Even if recognizing an object in any kind of environment is almost immediate and effort-

less for us, that is still of huge difficulty for computers. After several years of research in

the neurocognitive field, what we know so far is that our brain contains several layers of

neurons dedicated to different low-level processing of the information coming from the

eyes [Sch77]. Those layers contain different neuron types called C1, V1, C2 and V2 which

are known to apply some simple fixed preprocessing, such as extracting local edges, the

gradient orientations or aggregating those information (in particular, see some detection

systems inspired by this cortex organization [KP99, SWB∗07]). Afterward those data un-

dergo subsequent processing deeper in the brain. At this very moment, we loose more

or less track of what happens, but we can guess that it is complex.

Interestingly enough, object recognition systems roughly follow the same dataflow

(see Figure 2.1): in a first step, low-level image features are extracted from the images in

an automatic way. Examples of low-level features include edges, corners and textures.

At this point, not enough information is available to draw any conclusions yet regarding

the image content, as each of these features taken individually only owns in the best case

a slight correlation with semantic image contents. As a consequence, a more complex

decision process, previously trained to distinguish between the model object and clutter,

is run in a second step. It relies on a global analysis of all available features and takes a

final decision regarding the presence and the location of the object.

scene image

Model imageModel imageModel image

Feature 
extraction

Model 
training

Training (off-line):

Testing (on-line):

Model 
object

Feature 
extraction

Model 
testing

Detection result

Negative images

Figure 2.1: General dataflow for object recognition systems.

The very interest of thus decomposing the recognition process in two steps is to sim-

plify the handling of appearance variations. In fact, although the appearance of a same
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12 Chapter 2. Survey on Object Recognition

object may appear consistent over time and environments for us (this illusion comes

from the ease with which our brain performs object detection), the situation is com-

pletely different for a computer. Small changes in light or viewpoint lead to images in

which the same object can appear totally different in terms of image pixels. In order

to be usable, a detection scheme thus has to be invariant to the following disturbance

sources: noise, illumination, translation, rescaling, rotation and intra-class variations. A

two-step decomposition enables an easier sharing of this burden: invariance to illumina-

tion, translation, rescaling and rotation are generally handled at the feature level while

noise and intra-class variations are dealt with by the decision process.

In the following of this chapter, we begin by presenting most of the popular existing

feature detectors and descriptors. Then, we explain how to aggregate these low-level

information in order to achieve object detection. As we will see, this implies first to create

a model for the object we wish to detect. We firstly dwell on the approaches related to

the first contribution of this dissertation, i.e. specific object recognition (Section 2.3),

then we also give an overview of existing techniques used for class object recognition

(Section 2.4) related to our second contribution.

2.2 Low-level Features

As stated in the previous section, object recognition begins by extracting low-level fea-

tures from the images as an intermediary step before more complex processing. To

put it simply, an image feature is a value computed from the image pixels according to

a given formula. The gradient, for instance, is computed as the difference of value be-

tween consecutive image pixels. Therefore it is generally said of a feature that it describes

the image under a certain viewpoint, as it emphasize a given image property (edges for

the gradient example).

In practice, a multitude of features are generally extracted from a single image. For

simplicity, features stemming from the same type of processing (e.g. texture extraction)

are often gathered into feature vectors, also called feature descriptors. Sometimes, we will

call a “feature vector” simply a “feature” for simplicity. Most often, a descriptor under-

goes an additional processing that makes it invariant to some simple variation source

(typically, luminance). The interest of using feature descriptors rather than image pixels

directly is that they are easier to handle because of their smaller size, their invariance

and the fact that they emphasize some image properties useful for the detection task.

There exists several categories of features defined according to the formula used
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2.2. Low-level Features 13

to compute them. Firstly, we can distinguish between two scopes for computing the

features:

• the local scope

• the global scope.

Features computed at a global scope (or more simply, “global features”), as their name

suggests, originates from the whole image. An example of a global feature would be

the mean luminance of an image. On the contrary, local features are only computed on

a limited area of the image. In the following of this dissertation, we will almost only

rely on local features as they bring invariance to translation. Indeed, using local features

enables to describe only the areas from the image which are straight above the object

(i.e. avoiding the background). In comparison, global features are used for tasks that

consider the image as a whole, like scene classification (e.g. deciding if a photo was

taken in a forest or in a street)1.

Secondly, we can also categorize local features by the way in which they are ex-

tracted:

• sparse features

• dense features.

In the case of sparse features, a preliminary step is necessary to compute the set of image

locations where they exist. Those locations are usually selected in a way that is invariant

to common transforms (e.g. rotation, translation). The regions corresponding to edges

in images are for example invariant to most transforms. On the contrary, dense features

are not subject to such constraints and are available anywhere on the image. To sum-

marize, sparse feature integrates an additional aspect of spatial invariance which limits

their extraction to a few image locations, whereas dense features do not (see Section

2.2.2). A synthesis of the whole extraction process for local features is summarized in

Figure 2.2.

We now review in detail the different types of features that are used in this disserta-

tion and related works from the state-of-the-art. We begin by describing dense features

in Section 2.2.1 and then we dwell on sparse feature detectors in Section 2.2.2. Finally,

some more elaborate feature descriptors based on gradient histograms are described in

Section 2.2.3.
1Note that sliding window techniques use global features extracted on sub-images, hence corresponding

in reality to local features with respect to the full image (see Section 2.4).
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image

Sparse 
region 

extraction

Dense 
sampling

Region
description

Feature
vectorsor

Image
regions

Figure 2.2: The typical dataflow of local feature extraction in an object detection system.
In the first step, local image regions are defined either on the base of a dense sampling,
or according to a sparse detector. Then, each region is described by a feature vector.

2.2.1 Dense features

2.2.1.1 Convolution-based features

As stated above, dense features are extracted indifferently in every image locations.

Most often, they are obtained by convoluting a kernel (i.e. a smaller image) over the

image. In this case, the correlation between the image I and the kernel K translated at

the position (x, y) corresponds to the image feature at that location:

(I ∗ K)(x, y) = ∑
m,n
I(x−m, y− n) · K(m, n)

where ∗ denotes the convolution operator. Since a convolution is highly time consuming

for each image pixel, it is common to use the Fourier transform which has a lower com-

putational complexity. The result of a convolution is a response map having the same

dimension than the image and where each peak indicates a high correlation between the

kernel and the image at the peak location. We now give a non-exhaustive list of popular

kernels for extracting dense features.

Template matching

Probably being the most intuitive, template matching consists of convoluting the image

with an image patch. It is therefore used to find small model parts (e.g. the patch repre-

sents an eye or a wheel) in an image. Because a standard convolution produces biased

responses with unnormalized patches (white areas tend to produce higher responses),

normalized cross-correlation (NCC) is often used instead. This simple technique is still

widely used in recent papers like [UE06] or [TMF07], but overall it has an heavy com-

putational cost.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



2.2. Low-level Features 15

Figure 2.3: Illustration of the gradient field on two simple images. The gradient vectors
represent the direction of the local largest change in pixel intensity.

Image Gradient

The gradient G of an image I is identical to its mathematical original definition except

that its expression is discrete instead of continuous. Two kernels are used corresponding

to the x and y image derivatives2:

Gx = I ∗
[
+1 0 −1

]
and Gy = I ∗


+1

0

−1


The gradient in a given location (x, y) is thus defined as:

G(x, y) =
[
Gx(x, y), Gy(x, y)

]
.

Simply put, the resulting vector field G indicates the direction ΘG of the largest change

from light to dark (see Figure 2.3) where ΘG = arctan
(
Gy
Gx

)
. The rate of change in this

direction is encoded by its magnitude ‖G‖ =
√
G2

x + G2
y .

The main interest of the gradient is that it is fairly insensitive to lighting changes

and, contrary to template matching, it is generic and fast to compute. Moreover, the

peaks in gradient magnitude indicate the points of sudden change in brightness (i.e.,

edges) as illustrated in Figure 2.4. To conclude with, the gradient constitutes one of the

simplest image feature but its derivative like HOG (Histogram of Oriented Gradients,

see Section 2.2.3) are still widely used nowadays.

Apart from template matching and gradient, there exists many other features based

on linear convolution of kernels. We can cite for instance the features obtained using

the Fourier coefficients, the wavelet transform coefficients or the Gabor filter response

2Note that the Sobel filters [SF] are often used instead of the simplistic differential operators presented
above in order to be more robust to noise, but the result is essentially the same.
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16 Chapter 2. Survey on Object Recognition

Figure 2.4: Gradient derivatives extracted from the left image. Middle: Gx. Right: Gy. As
can be observed, the gradient has a strong magnitude in region with marked contours.

maps.

2.2.1.2 Non-linear features

In this dissertation we do not focus on non-linear dense features. We nevertheless give

as example the work of Kruizinga and Petkov [KP99] in which a non-linear texture de-

scriptor is implemented based on the neural processing in the visual cortex (see some

texture classification results in Figure 2.5). The texture descriptor is based on the con-

catenation of simulated neuron output at three different scale levels for each pixel. In

chapter 3 we created a texture descriptor inspired from this assembly (see Section 3.3.3)

although in our case the three sub-descriptors simply contain a histogram of oriented

gradients.

Figure 2.5: Results obtained with the biologically inspired texture descriptor of
Kruizinga and Petkov [KP99]. Left pair: dense response map corresponding to a hatched
pattern. Right pair: texture classification results (each gray level in the right image
stands for a different class).

2.2.2 Sparse features

We saw that dense features are defined for every image pixels, but this is not always

useful. Often, an object detection system prefers to focus only on a small set of image

regions that are interesting for its purpose. Here, we mean by “region” a set of connected
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pixels (e.g. edges) or simply a single point in the image oriented scale-space (those

ones are called keypoints). For instance, plain areas of an image like a blue sky do not

provide valuable information for car detection. An interest region detector thus selects a

subset of regions within an image based on a predefined low-level criteria, making this

extraction very fast. Then, only the regions selected by the detector are further analyzed

in the rest of the detection process.

The criteria used for extraction is generally defined in order to comply to a repeata-

bility constraint. This implies that the detector must yield consistent results despite the

presence of usual transforms (namely noise, lighting change, rescaling, in-plane rotation

and even sometimes affine transformations). That is, the extraction of interest regions

must be invariant to these transformations. Edges or corners for instance are invariant

to most of those ones (e.g. the Harris corner detector [HS88]).

In the literature, pairs consisting of a region location and an associated feature de-

scriptor are often addressed as “sparse features” or “invariant local features” due to

their limited number, their localized aspect and their invariance to usual transform.

Sparse feature detectors have been developed from almost the very beginning of image

processing and a non-exhaustive list includes edge detectors (Canny [Can86]), keypoint

detectors (SIFT [Low04], MSER [MCUP02], Hessian-Harris corners [HS88]) and region

detectors like [AMFM09]. We now give some details about three of the most popular

types of sparse features, namely edges, keypoints and regions, some of which being

used later in our contributions.

2.2.2.1 Edges

Edge features, sometimes referred as contours or boundaries3, have long been used by

researchers in the field of object detection as they are one of the simplest and more

intuitive interest regions. There exists a gap, however, between the contours that a

human being would draw in a given image and the edges really detectable in the same

image using the gradient magnitude (see Section 2.2.1). This is because humans are

influenced by their understanding of the scene. Recent approaches of contour detections

like [MAFM08] have nevertheless succeeded to reduce this gap at the cost of complex

computations that search for global solutions over the whole image. In this dissertation,

for efficiency reasons, we limit to a simpler detector that was designed by Canny in 1986.

The Canny edge detector [Can86] is one of the oldest system for detecting edges, but

it is still widely used. It outputs a set of edge pixels based on the gradient magnitude. In

3but these words can have a slightly different meaning as they refer to high-level object contours whereas
edges are only related to low-level image properties, see [GLAM09].
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18 Chapter 2. Survey on Object Recognition

a first step, the input image is blurred with a Gaussian convolution in order to reduce the

amount of white noise. Then, the gradient magnitude and orientation are computed for

each image pixel. In a third step, a non-maxima suppression is carried out to eliminate

the pixels which are not local maxima of magnitude in the gradient direction. Finally,

a threshold with hysteresis is used to select the final set of edges from the remaining

pixels: all pixels above a high threshold in term of gradient magnitude are tagged as

edge pixels as well as every pixel above a low threshold and neighbor of an edge pixel.

This hysteresis technique is more reliable than a simple thresholding, as it is in most

cases impossible to specify a global threshold at which a given gradient magnitude

switches from being an edge into not being so. Moreover, the process is fast, simple to

implement and efficient enough to explain its success until today. An example of edges

extracted by this method is given in Figure 2.6.

Figure 2.6: Example of edges extracted using the Canny detector.

Additionally, a common finishing stage is to polygonize the set of edge pixels into

line segments to simplify their representation. The set of sparse features thus obtained

is however not so reliable for matching a same object across different pictures because

of the polygonization noise (typically, line segments undergo cuts or on the contrary

merge together).

2.2.2.2 Keypoints

The recent emergence of keypoints, whose most famous avatar is probably SIFT [Low04],

has had a considerable influence on specific object recognition (see Section 2.3). For-

mally, a keypoint, also called interest point, is simply a location p = (x, y, σ, θ) in the

oriented scale-space of the image (in the literature, it often comes implicitly with an

associated descriptor). Different techniques have been proposed to extract keypoints in

images. We can cite the SIFT detector [Low04], SURF [BTG06] and the Harris-Hessian

corner detector [HS88]. Lately, affine region detectors [MTS∗05] have been developed to

improve keypoint detection by approximating 3D viewpoint changes. Two recent state-

of-the-arts about keypoints and affine region detectors can be found in [MP07, MS05].
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(a) (b)

Figure 2.7: (a) Fast computation of the pyramid of difference-of-Gaussian using repeated
convolutions with Gaussian (left) and subtraction of adjacent Gaussian images (right).
After each octave, the Gaussian image is down-sampled by a factor of 2, and the process
repeats. (b) Maxima and minima of the difference-of-Gaussian images are detected by
comparing a pixel (marked with X) to its 26 neighbors at the current and adjacent scales.

We only describe in this section the SIFT detector as it has been proved to be

one of the most robust and efficient, as well as the only fully scale invariant method

[MP07, MS05]. Introduced by Lowe in 1999 [Low99], the Scale Invariant Feature Trans-

form (SIFT) firstly extracts extrema in the difference-of-Gaussian space (see Figure 2.7).

Firstly, repeated convolutions of Gaussian kernels with increasing radius are applied to

the input image and the result are stacked in so-called “octaves”. Each time that the

Gaussian radius exceeds by a factor of 2 the first image of the current octave, the cor-

responding image is downsampled by a factor of 2 and the process repeats for another

octave. Then, adjacent images in octaves are subtracted in order to compute difference-

of-Gaussian as a fast approximation to Laplacian (see Figure 2.7.(a)). Then, maxima are

searched in the scale-space of difference-of-Gaussian and each point found constitutes

a keypoint center at the corresponding scale (see Figure 2.7.(b)). This process especially

fits textured objects as strong texture provides a large amount of stable extrema. Finally,

an orientation is assigned according to the dominant gradients around the point. The

locations thus obtained are invariant to a translation, an in-plane rotation, a rescaling

and a illumination change of the input image.

We use SIFT keypoints later in our contributions for their good propensity to specific

object recognition [Low04].
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2.2.2.3 Regions

Uniform image regions have also been considered to generate sparse features. The

Maximally Stable Extremal Region (MSER) detector [MCUP02] is probably the most

famous one in this field. It is based on a segmentation of the image using a watershed

algorithm and various thresholds. At a high water threshold, all regions merge into a

single one but the algorithm is only interested in those regions that resist the watershed

the longest. Those extremal regions possess two highly desirable properties: they are

invariant to continuous (and thus projective) transformations of image coordinates as

well as to monotonic transformations of image intensities. Moreover, an efficient (near

linear complexity) and a fast detection algorithm is achieved in practice, making MSER

one of the most popular interest region detectors with SIFT (e.g. see [SREZ05, SSSFF09]).

More complex region detectors have been recently developed, like the one of Arbe-

laez et al. [AMFM09] but unfortunately these detectors are not designed for interest

region detections. Instead, they aim at segmenting the image at the highest possible

semantic level.

2.2.3 Histogram-based features

Once that a set of sparse image locations have been extracted, each one has to be tagged

by a descriptor in order to ease its retrieval and allow its comparison with other de-

scriptors. We saw in Section 2.2.1 how to extract the gradient as a dense vector field

from an image. We present here different descriptors that are all based on accumulating

the gradient vectors in histograms. Note that those description techniques can be used

indifferently for depicting the global image or local patches, depending on the image

area on which they are computed. The purpose here is to create robust and distinctive

descriptors, both properties being very important to ease subsequent detection schemes.

2.2.3.1 Local descriptors

The SIFT descriptor

We described above the SIFT detector, responsible for choosing a sparse set of invari-

ant points in the input image. The following step consists of building a discriminant

descriptor for each such point using the SIFT descriptor.

The SIFT descriptor is a 3D histogram in which two dimensions correspond to image

spatial dimensions and the additional dimension to the image gradient direction. It is

computed over a local square region of a given radius σ centered on a given point
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p = (x, y) and rotated by a given angle θ (see Figure 2.8). As depicted by Figure 2.8, the

histogram consists of 4×4 spatial subdivisions and 8 orientation intervals of 45° each,

which makes a total of 128 bins for the final descriptor. During the computation, each

gradient vector belonging to the local square region contributes to the histogram in the

corresponding bin depending on its location in the local region and on its orientation

(the contribution is proportional to the gradient magnitude). In order to avoid boundary

effects, the contributions are spread over 2 × 2 × 2 = 8 bins using linear interpolation.

Finally, a normalization step is applied to make the 128-dimension descriptor invariant

to lighting changes.

The SIFT descriptor has been shown by Mikolajczyk and Schmid [MS05] to be one of

the most robust descriptors to perspective and lighting changes with the Shape Context

[BM00] descriptor. Moreover, it is robust to small geometric distortions. Due to its popu-

larity, a lot of variants have been proposed: a non-exhaustive list include GLOH [MS05],

PCA-SIFT [KS04], SURF [BTG06] and GIST [SI07]. Recently, new keypoint descriptors

dedicated to real-time constraints have been developed by Lepetit et al. [LLF05] (later

improvements in the same framework include the works of Calonder et al. [CLK∗09]

and Özuysal et al. [zCLF09] for a fast extraction, description and matching of key-

points). They rely on fast pixel-to-pixel comparisons rather than gradient histograms.

As a result, the description step is much faster than with SIFT and the descriptors also

seem to better handle perspective distortions.

radius σ

rotation angle θ

Center p

8 bins histogram of 
gradient orientation

Figure 2.8: The SIFT descriptor consists of a 3D histogram in which two dimensions
correspond to image spatial dimensions (4×4 bins) and the additional dimension to the
image gradient direction (8 bins). The histogram covers a square region of the image
parametrized by a radius, a center and a rotation angle.
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Figure 2.9: The DAISY descriptor [TLF08]. Each circle represents a region where the
radius is proportional to the standard deviations of the Gaussian kernels and the ’+’
sign represents the locations where the convoluted orientation maps are sampled. The
radius of the outer regions are increased to have an equal sampling of the rotational axis
which is necessary for robustness against rotation.

DAISY

Tola et al. [TLF08] have introduced in 2008 a feature descriptor named DAISY which

is similar in many respects to SIFT at the difference that it is designed for a fast dense

extraction. It was shown to achieve better results than SIFT for wide-baseline matching

applied to stereoscopic images.

Specifically it also consists of several histograms of oriented gradients which are not

positioned on a square grid like SIFT but on a daisy-shaped grid (see Figure 2.9). The key

insight of DAISY is that computational efficiency can be achieved without performance

loss by convoluting orientation maps to compute the bin values. In other words, the

original gradient map of the image is divided into height maps based on the gradient

orientation (i.e. each map only takes care of a 45° bin), and a Gaussian blurring at

several scale levels for each map achieves a pre-computation of the histogram bins at

every image location and scale. Histograms picked up at the locations shown in Figure

2.9 are finally concatenated into the final feature descriptor for a given center and scale.

In Chapter 3, we use a related descriptor where the extraction part is strongly in-

spired from the work of Tola et al. [TLF08]: the difference is that we used a Fourier

transform in the orientation space to compute the orientation maps in order to obtain

oriented descriptors without interpolating the bin values.
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2.3 Specific Object Recognition

Now that low-level features have been presented, we study how to combine them in

order to effectively take a decision about the presence of a given model object in a test

image. As our first contribution focuses on specific object recognition, we begin by a

summary of the existing methods for specific object recognition, yet including a few

references to related class object detection methods when necessary. Existing systems

for specific object recognition can be classified as follows:

• methods using global features,

• methods using sparse local features, from which we can distinguish:

– the ones relying on a rigid matching, and

– the ones relying on a non-rigid matching.

2.3.1 Using global features

Techniques using global features for specific object recognition are quite anecdotic in

the state-of-the-art. Indeed, the advantages of using local features compared with global

features are huge as we will see below. This is essentially why global techniques have

been investigated before the emergence of reliable invariant local features.

To put it simply, techniques using global features aim at recognizing the object in

its whole. To achieve this result one generally has to learn, from a set of images, the

object to recognize. Nayar et al. [NWN96] have presented in 1996 a fast method which

can handle one hundred objects while still being effective. They conducted a principal

component analysis of the model pictures in order to extract eigen-views that eliminate

the lighting noise. Then, an optimized scheme of nearest neighbor search was used to

quickly match a test image with a model object. A lot of other works relying on global

features have been proposed for class object recognition, like the one of Viola and Jones

for face detection with boosted cascade of simple classifiers [VJ04].

However, using global features has several drawbacks: first of all, the object has to

fill the whole test image in order to match the model. To overcome this issue, sliding

window techniques are generally used to enable invariance to translation, scaling and

rotation. This solution nevertheless has a large computational cost (thousands of win-

dows must be examined [GLAM09]) whereas specific object recognition usually implies

real-time constraints. Precisely retrieving the 3D model pose using global features also

appears very difficult. Thirdly, the amount of data needed for training is usually huge,
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as well as the training time. A last problem is that these approaches have difficulties

dealing with partial occlusions. Those issues are admissible for class object recognition

since a lot of model pictures are necessary anyway to precisely learn the intra-class vari-

ations, and the task is difficult enough to afford to avoid the occlusion problem. On

the contrary, we expect more from a simpler system dealing with specific objects: i.e.,

training the model from only a few pictures and bearing occlusions.

2.3.2 Using local features

A wide variety of specific object detection methods relies on sparse local features. Since

the properties used for extracting these features are invariant to most real-world trans-

forms, a common technique is to describe the model object by a constellation of these

local features in the training stage; and to search the same spatial arrangement of fea-

tures in the test image during the detection stage. To summarize, the general scheme

usually implies three steps:

1. The first one is the extraction and description of sparse invariant local features, in

both test and model images.

2. The next step consists of selecting test image features that match the model ones

(i.e. pairwise matches between keypoints, lines or regions).

3. The final step elects the best subset of test image features based on their spatial

consistency with respect to the geometrical arrangement of the model features.

In this way, the object position can be precisely computed as well as the occlusion map,

provided that the model object is covered by a sufficient number of local features (e.g.

like in [FT04]). A fourth additional step is also often performed to assert a detection

using a probabilistic model which depends on the method.

Using keypoints as local features

Among all different types of local features, one type holds more attention than others.

Indeed, the emergence of keypoints has significantly improved the state-of-the-art in

various domains of computer vision and more particularly in the detection of specific

objects. Clearly, most methods presented in the following are based on keypoints.

In fact, recognition methods using keypoints present numerous advantages: they in-

herit the invariant properties of keypoints (namely to translation, scale and rotation) and

the localized aspect of the features makes them robust to occlusion without significant
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Figure 2.10: Representation of an object as a constellation of keypoints. Each keypoint
is associated to a local square patch where the keypoint descriptor is extracted. In
the method of Lowe [Low04], the position of all keypoints is constrained by a global
affine transform of their coordinates in the model image, thus enabling to filter out most
incorrect detections.

increase in complexity. Moreover, thanks to the high descriptive power of the keypoint

descriptors (see Section 2.2.3), any training is quite unnecessary. Finally, those methods

are generally simple to carry out and they can perform close to real-time (in particular,

see [CLF08]). Another point that could explain why keypoints have become so popular

these last few years is that the concept of decomposing an object into a constellation of

small interest patches is somehow familiar with the human visual system. An example

of an object described by a constellation of keypoints is shown in Figure 2.10. We distin-

guish in the following between two different ways of verifying the geometric consistency

of a constellation: namely, rigid and non-rigid techniques.

2.3.2.1 Rigid matching

Methods that rely on a rigid transform (e.g. a projective transform) to constrain the

local feature positions can be classified into two categories: RANSAC-based methods

and Hough-based methods.

Hough-based

The Hough transform was first patented in 1962 and later adapted for the computer

vision community by Duda and Hart [DH72]. Briefly, the Hough transform involves

two stages: in the first one, votes are accumulated in the parameter space based on an

examination of the available features in the test image (because of imprecision, votes are

usually cast on intervals in the parameter space, or equivalently, the parameter space is

quantized into several bins); in the second stage the votes are clustered and the position

of the largest cluster yields the optimal transform parameters.

From all specific object detection methods using the Hough transform, the method
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Figure 2.11: Example of robust detection of specific instances using Lowe’s method
[Low04]. In spite of a projective transform of the model image (top) in the test im-
age (bottom, yellow box) and a large amount of clutter, Lowe’s method is still able to
correctly detect the beaver thanks to a spatial verification of the matched keypoint con-
figuration. In this image, the search of the beaver model object results in 14 detections,
the best one being correct with a probability score of 100% while the false positive ones
have much lower scores (i.e. all below 23%, average score is 8.9%).
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of Lowe [Low04] is probably the most famous and popular. During the training stage,

multiple views of the same object are combined in order to compute a set of characteris-

tic views. In the same time, keypoints belonging to the model views are indexed in a k-d

tree in order to enable a fast pairwise matching between model and scene keypoints (this

technique is scalable to a large number of model objects and thus has been replicated in

many other works, e.g. see [BTG06]). During detection, keypoints in the scene image are

extracted and matched with the model keypoints using the k-d tree. Then, the Hough

transform is performed: each matched scene keypoint votes for an approximate model

position in the parameter space (assuming a simple similarity transform, the keypoint’s

position, scale and orientation suffice for the extrapolation). Finally, peaks of votes in

the parameter space are further verified with an affine transform and a probabilistic

decision determines whether the object is really there or not, based on the amount of

spurious matches in the concerned area. An example of detection using Lowe’s method

is presented in Figure 2.11. The drawback of such an approach is that it does not take

into account the real 3D shape and the 3D transformations of the object and therefore is

unable to recover its precise spatial pose. Moreover, Moreels and Perona [MP08] have

shown that the choice of the bin size in the Hough space is problematic (smaller bins

cause fewer true positives, while larger bins cause more spurious detections). They have

proposed instead a cascaded procedure which adds an additional ransac stage (see be-

low) after the Hough transform, and have also improved the final probabilistic decision

in order to reduce the false alarm rate. However, their probabilistic model relies on cor-

rect and incorrect keypoint match densities which are rather hard to obtain (they used

a mechanical rotating table with different objects placed on it to obtain ground truth

feature matches [MP07]).

Finally, the method of Gu et al. [GLAM09] is also related to the Hough transform.

By representing the model objects as bags of regions (each one weighted during the

training using a machine learning technique similar to a support vector machine) and

then applying a similar voting scheme in the scale-space of possible instance locations,

they manage to detect textureless objects unfit to be depicted by keypoints. The used

region detector is unfortunately very complex and not suitable for fast applications.

ransac-based techniques

The ransac algorithm was introduced by Fishler and Bolles in 1981 [FB81]. It is possibly

the most widely used robust estimator in the field of computer vision. Figure 2.12

illustrates how the line estimated by ransac from a noisy set of points effectively recovers
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Figure 2.12: ransac can extrapolate the correct line parameters despite the presence of
many outliers (source: Wikipedia).

the optimal parameters. The ransac algorithm can be summarized as follows: assuming

a noisy set of samples and a given spatial transform, the algorithm iteratively picks a

small number of input samples and estimate the transform parameters of the associated

fitting problem. Then, a score is given to this trial to measure its quality, usually by

counting the number of inliers, i.e. the number of other samples that comply with this

parametrization. Finally, the transform parameters corresponding to the best trial are

returned. Because ransac relies on a succession of random trials, it is not guaranteed to

find the optimal solution. A probabilistic formula is used in practice to determine the

number of iterations necessary to output the optimal solution with some confidence.

Numerous papers related to the matching of specific objects or even whole scenes,

like short and wide baseline stereo matching [CM02, MCUP02], motion segmentation

[Tor95] and of course specific object detection [LLF05, RLSP06] have used ransac cou-

pled with keypoints as robust estimator. Lepetit et al. [LLF05], for instance, have pre-

sented a real-time system based on randomized trees for keypoint matching which have

been later improved by Özuysal et al. [zCLF09] into ferns. Their solution is notably ro-

bust against changes in view point and illumination. In a different fashion, Rothganger

et al. [RLSP06] have considered affine invariant keypoints to recover more efficiently

the object pose from the matched feature patches. Even if those methods give good

results, a common drawback is that the 3D shape of the model objects has to be learned

beforehand.

Finally, note that the original ransac algorithm has been adapted into several vari-

ants by Chum et al. [CMK03, CM05, CM08]. We have implemented in Chapter 4 for

comparison purpose the variant called “Locally Optimal ransac” (lo-ransac) [CMK03]

which assumes two transforms to fasten the matching process (the first transform be-

ing an approximation of the second one). In the main loop, the simplified transform is

used as it requires less samples to estimate the transform parameters, hence reducing

the number of iterations. During the verification step, a secondary ransac using the full

transform is launched only on the set of inliers discovered by the simplified transform.
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Chum et al. have shown that this way of processing gives better results than using a

standard ransac and is also faster. Our experiments (see Chapter 4) have confirmed

this statement with the setting proposed by Philbin et al. [PCI∗07] in which a similar-

ity transform is used for the main ransac loop (only requiring one keypoint match to

estimate the transform parameters) and a projective transform for the verification step

(requiring four matches).

Other techniques

Rosenhahn and Sommer [RS05a, RS05b] have proposed a technique for 3D object track-

ing. To that aim, the conformal space is used to embed feature points, lines and circles.

Nevertheless, their method assumes that the matching step is performed externally to

their method (i.e. it can only be used to track an object after a manual matching initial-

ization). To our knowledge, no full detection scheme relying on this theory yet exists.

In a different style the older system of Jurie [Jur01] also use edge features to represent

objects. Indexing techniques are used to achieve fast 2D and 3D object recognition while

additional optimizations are used to recursively prune the space of hypothesis poses

at matching time. Yet, the general shortcomings of such edge-based approaches is that

edge features alone carry low distinctiveness and that the quality of the segmentation

(edge extraction) is variable (it is known to be not robust to noise in general).

2.3.2.2 Non-rigid matching

As we saw rigid matching is efficient, but obviously it can not handle distortions like

what happens to a bent magazine or to a yawning face, for instance. Non-rigid match-

ing, on the contrary, assumes that the model object can be decomposed in a set of

different independent parts that can move on their own (with some limits, of course).

This strategy has been shown to give more flexibility to the model [FTG06] and to in-

crease performances thanks to the fact that distant features are disconnected [CPM09].

The matching cost is however often superior compared to the case of a rigid matching,

but this is expected as the number of parameters that govern a non-rigid transform is

by far superior to the number of parameters for a rigid transform.

Non-rigid matching can be roughly categorized into two kinds of techniques: those

relying on graph matching and those denoted as part-based models (note that both

categories are strongly related, as we will see).
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Graph matching

Graph matching seems to be a straightforward way to resolve specific object detection.

Indeed, after having extracted some sparse local features, both model object and scene

can be represented as graphs (see Figure 2.13). Moreover, graph matching operates at

a local scale by comparing pairs of nodes or pairs of edges, thus avoiding the need of

a global (rigid) transform. Formally, the graph matching problem can be formulated as

the maximization of the following objective function [GR96, BBM05, CSS07]:

E(M) = ∑
α,i,β,j

Hα,i,β,jMα,iMβ,j

where

• M is the desired match matrix (i.e. Mα,i = 1 means that node α from the first

graph is matched to node i from the second graph, otherwise Mα,i = 0). M is

usually subject to an additional constraint: a many-to-one matching scheme is

often allowed (i.e. ∀i, ∑α Mα,i = 1 or conversely by interchanging i with α), and

• H is a matrix which describes the compatibilities between edges of the two graphs.

Hα,i,β,j thus measures how much the edge (α, β) (from the first graph) and the edge

(i, j) (from the second graph) are compatible. In the case where α = β and i = j,

Hα,i,β,j simply measures the compatibility between node α and node i.

Driven by this straightforward formulation, researchers have long proposed graph match-

ing as a powerful tool for classifying structured patterns (see [CFSV04] for details). More

specifically, a large amount of studies have tackled the recognition problem using graph

matching, for instance applied to the detection of faces [WFKvdM97], indoor objects

[GR96] or mechanical parts [KK91].

The main drawback of this kind of approaches however lies in the computational

power needed to match two graphs. In fact, it has been shown that the subgraph iso-

morphism problem (i.e. what we practically call graph matching) is NP-hard. As a

consequence, researchers have either focused on sub-problems easier to solve (e.g. the

matching of bipartite graph [KK91]), either proposed heuristics and optimizations so

as to efficiently reach or approximate the global solution [BDBV01, SBV01, MB98]. For

instance, Messmer and Bunke [MB98] have shown that the subgraph isomorphism res-

olution using a model graph decomposition and a set of graph edit operations can be

very robust compared to classical A*-like algorithms that were developed first. On the

contrary, recent researches have focused on global approximations (graph-cuts [TKR08],
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(a) (b) (c)

Figure 2.13: Representing objects as graphs (nodes are figured with black dots). (a)
Using keypoints; (b) using regions (here, surfaces); (c) using line segments.

tensor-based [DBKP09] and/or spectral method [CSS07]), but the timing performances

remain disappointing for large graphs. In comparison, the historically older relaxation

methods perform faster and stay competitive in practice [FSGD08, MGMR02, TKR08],

although no theoretical guarantee ensures their convergence.

Among all applications of graph matching to specific object detection, we can cite

the system of Kim et al. [KHP07] which is dedicated to recognize indoor objects. In

their approach, edge segments are firstly extracted and described in term of their neigh-

borhood (i.e. luminance and color). Then, they are matched between the scene and the

model using logistic classifiers. Finally, a spectral method [CSS07] is used to solve the

global assignment problem. The method shows superior results compared to a SIFT

based approach, but this is expected as the problem setup is dedicated to the detection

of textureless indoor objects. The works of Christmas et al. [CKP94] and Wilson and

Hancock [WH99] for matching road segments in maps are also interesting. In the first

approach, a two-levels hierarchy based on the size of the line segments yields good

matching results despite its apparent simplicity.

However, the main problem of graph matching techniques in our opinion lies in

the discretization necessary to convert an image into a graph through a selection of

some image spots (i.e. each one being transformed into a graph node). Indeed, this

step inevitably results in a loss of relevant information. We will see in Chapter 3 how

this issue can be addressed by introducing the notion of continuous graph (i.e. a graph in

which the number of nodes is infinite) thanks to the use of dense or semi-sparse features

(namely textures and edges).

Part-based models for specific object recognition

Apart from graph matching, a closely related field is the class of part-based object recog-

nition methods. Although the term “parts” may refer to semantic parts (especially for
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class object recognition methods, see next section), we restrict here to the case of spe-

cific objects. In this context parts thus only mean local patches of the object surface,

most often derived from sparse feature detectors. Part-based models for specific object

recognition address the problem in a similar fashion than graph matching (i.e. decom-

posing objects in parts loosely connected) but use different techniques to solve the part

assignment problem.

First of them, the work of Ferrari et al. [FT04, FTG06] deals with the object recogni-

tion problem in a greedy fashion. Firstly, local patches are densely sampled on the model

objects in order to learn their entire surface. During detection, the method of Ferrari et

al. gradually explores the areas surrounding some initial matches obtained using sparse

affine features, recursively constructing more and more matching regions, increasingly

farther from the initial ones. To eliminate wrong matches, the process alternates be-

tween contraction phases and expansion phases, hence achieving object segmentation at

the same time. A similar approach have been proposed by Kushal and Ponce [KP06]

specifically for the detection and 3D pose recovery of 3D rigid objects. The problem of

those method is that they only fit strongly textured objects preferably viewed in close-up

and that they are very slow (4-5 minutes to process a pair of model and scene images on

a 2.4 Ghz computer). Moreover, the segmentation aspect (dense coverage) of the method

makes the model very heavy and is not always desirable for practical applications.

On the contrary, the approach of Detry et al. [DPP08] is centered on edge features

connected by a hierarchy. Their method allows to infer the position and the 3D pose of

a model instance, but the detection time is also slow because of the probabilistic han-

dling of the resolution: belief propagation is performed in moderately high dimensional

spaces to enable the invariance to translation, scale and 3D rotation. Even if their op-

timization using a density estimation technique enables an important speed-up, it still

takes one minute to detect the object and its pose. A similar work was done previously

by Scalzo and Piater [SP05] where an expectation-maximization scheme was used to

identify and code spatial correlations between features/parts.

Recently, an other approach using edge features has been proposed by Holzer et al.

[HHIN09]. Their technique relies on a depiction of the model object as a set of closed

contours. For each contour template, a distance map is computed during training to

store the minimal distance between each template pixel and the closest edge pixel (see

Figure 2.14), which is robust to segmentation noise. By training a classifier for various

template poses, they could obtain robustness against perspective effects. In addition,

spatial relations between multiple contours on the object are learned and later used for

outlier removal. At run time, the classifier provides the identity and a rough 3D pose
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(a) (b) (c) (d)

Figure 2.14: An illustration of the distance transform used in [HHIN09]. (a) A stop
sign picture; (b) Edges extracted with the Canny detector [Can86]; (c) Distance maps
computed from (b): the closer we are to an edge, the smaller is the distance (dark pixels
correspond to small values); (d) the eight templates extracted from closed contours of
the model object.

of the Distance Transform Template, which is further refined by a modified template

matching algorithm that is also based on the distance transform. Of course, this method

is only relevant for the objects presenting planar contours on their textured surface.

2.4 Class Object Recognition

Finally, we give in this section an overview of current class object recognition techniques.

Basically, the main difference between specific object recognition and class object recog-

nition is that in the latter case, intra-class variations are larger (in particular, beyond 3D

pose changes) and more complex to model. Practically, this means that the boundary

between positive and negative instances in the feature space has a potentially compli-

cated shape, in particular because the semantic definition of an object class differs from

the feature-based definition. As a consequence, a widely used solution is to transfer the

burden of modeling this complex boundary to machine learning algorithms. Those ones

are indeed dedicated to handle this kind of problem and can efficiently learn a decision

surface from samples4 (generally in an optimal way regarding a certain formulation of

the problem). Those techniques are either discriminative (i.e. existing machine learn-

ing techniques like Support Vector Machine (SVM [BGV92]), boosting (e.g. AdaBoost

[FS95] or its variants) or generative (probabilistic Bayesian models, e.g. the naive model

[CDF∗04]). The result is called a classifier, as its task is simply to decide whether a given

sample (expressed in the feature space) belongs to the model class or not. To summarize,

the main trend in class object recognition is thus to express the model images as vectors

in a relevant feature space, and to train a classifier with negative and positive sample

vectors so as to learn the class distribution (in other words, we talk about statistical

learning). We will now review in more details some of the most efficient feature spaces

4We only talk about supervised learning in this dissertation.
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found so far as well as frequent schemes used for detection.

2.4.1 Feature spaces for class object recognition

Why not using simple feature types ?

As we saw previously, simple features such as keypoints are enough for specific object

recognition. Although using the same features as well for classes of objects could appear

to be a good idea, it is not that simple. The main problem lies in the fact that simple

features are often too much specific, enabling few generalization regarding the larger

intra-class variations occurring for classes. To overcome this issue, class methods have

to add additional steps (e.g. creating histograms of features, see below) leading to

higher-level features which are more invariant to class variations.

Bag-of-words

The Bag-of-Words (BoW) features have been firstly proposed by the natural language

processing community. The original approach was aiming at representing a textual doc-

ument as a histogram of the words composing it. (The term “bag” originates from the

fact that the position information of the words in the document is lost in the histogram

bining process). This feature space is known to be extremely effective for textual docu-

ments (e.g. that’s how Google indexes web pages), so several researchers have proposed

an application of the same principle to images.

In computer vision, the solution which has been proposed by several groups is to re-

place textual words by visual words [CDF∗04, FFP05, LSP05]: first, local features having

a high descriptive power (typically SIFT descriptors) are extracted from the image (using

either dense sampling or salient detector); then, each local feature is quantized, i.e. as-

sociated to the nearest word in a predefined codebook (we assume that the codebook, or

“visual dictionary”, has been preliminary built using clustering techniques like k-means

in the descriptor space); and finally, the descriptor for that image is computed as a his-

togram of the visual words present in that image. After that, the image is represented

as a point in the space of histograms. In this feature space, two images are compared

based on the distances between their histograms. Popular distances include the chi-

squared distance and the minimum intersection between histograms [ZBMM06, BZ07].

Note that the computer vision community still benefits nowadays from techniques used

in the textual document field (e.g. see Tirilly et al. [TCG10]).

Surprisingly, bag-of-features performs very well for various tasks despite its sim-

plicity (e.g. object recognition [BZ07] or image classification [ZBMM06]). In fact, the
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loss of spatial information seems to be rather an advantage for handling class varia-

tions as it provides invariance to pose/viewpoint and geometric variations (in fact, the

bag-of-feature representation amounts to consider images as textures having no spatial

organization by definition [ZBMM06]). On the other hand, the lack of spatial informa-

tion is also one of the most frequent criticism against BoW. In fact, there are applications

which require to take into account the geometric configuration of the local features (at

least partially). As a consequence, an additional spatial verification step is sometimes

performed after the histogram comparison (e.g. see Chum et al. [CPM09]) or spatial

information are directly incorporated into the histogram (e.g. the spatial pyramid of

Lazebnik et al.[LSP06]).

Histogram of oriented gradient (HOG)

Now that we have presented histograms of visual words, we present the Histograms

of Oriented Gradients (HOG). Introduced by Dalal and Triggs [DT05], the insight is as

the name suggests to accumulate image gradients into histogram bins corresponding

to different gradient locations and orientations. More specifically, the image is divided

into a dense grid of uniformly spaced cells. Each cell then contains a single histogram

with several orientation bins that receives the contributions of the underlying gradient

vectors. Contrary to the SIFT descriptor presented above, the HOG feature is intended

to describe the image in its entirety (or the sub-image in the case of a sliding window,

see below) without any rotation or scale invariance.

Dalal and Triggs [DT05] have studied the influence of each stage of the feature com-

putation process regarding the performance of a pedestrian detection application. They

have concluded that fine-scale gradients, fine orientation binning, relatively coarse spa-

tial binning, and high-quality local contrast normalization in overlapping descriptor

blocks are all important for good results.

High-level local features

While the two previous features are global features, we now present local features which

are specially designed to handle the case of class objects. In other words, those local

features are tolerant to some variations. An excellent example is the biologically-inspired

features presented by Serre et al. [SWB∗07]. In their work, the extraction of features

follows the process explained at the beginning of this chapter: the image is convoluted

by Gabor filters (corresponding to C1 cells in the visual cortex), then the response maps

are sub-sampled and max-pooled in a local frame (corresponding to C2 cells); after that
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the maps are again convoluted (V1 cells) and a final sub-sampling followed by max-

pooling yields the feature vector (V2 cells). Although the feature extraction process is

costly computationally speaking, the scene classification results are very good [SWB∗07],

and subsequent works have also proved that those features can be very efficient for

recognizing class objects [ML06].

In this dissertation, we also present high-level features designed to detect model

parts. Our features are somehow related to the features of Serre et al. [SWB∗07] as

they are composed of several local features loosely connected so as to get a maximum

response with respect to a model groups of feature in a local frame (i.e. some sort

of max-pooling). Finally, note that other types of high-level features have also been

developed, most of them being inspired by biological processes in the human visual

cortex [KP99, JWXD10, SI07].

Comparison to specific object detection systems

To conclude this subsection, in general the feature types used in the case of class objects

are either global or dense. Compared to the simple sparse features used for specific

object detection (i.e. structural methods), those types generate more data and hence

multiply the overall computational cost by a large factor. As a result, many class object

recognition systems are not real-time at all. To conclude with, specific object detection

requires fast machinery with respect to its range of applications, and hence cannot afford

the complex features and processing used in the case of class object recognition.

2.4.2 Detection schemes

Sliding windows

The simplest and yet widely used strategy to detect object in images is to use a sliding

window. In order to enable invariance against translation and scale, the recognition

process follows the following steps:

1. A window scans the input image at various locations and scales.

2. For each window:

(a) A global feature vector is extracted.

(b) The classifier decides the presence or absence of the model object in the win-

dow based on the feature vector.
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The second step is summarized in Figure 2.15.a. Although this scheme can seem sim-

plistic, it gives good results as it allows the utilization of statistical learning techniques

to solve the recognition problem: the recognition problem reduces to classifying feature

vectors into class and non-class categories. Typically, discriminative classifiers like SVM

[HJS09] or AdaBoost [VJ01] are used with this scheme and are trained using bootstrap-

ping, i.e. iteratively adding to the classifier training set windows wrongly classified

by the classifier learned in the previous iteration. Because the number of windows to

examine in an image is potentially very large, several optimization schemes have been

presented (see the next paragraph). Overall, sliding windows remains extremely used

for generic class object detection and face detection [ML06, TMF07, HALL05, FG08].

Optimization using cascades

As said above, the sliding window scheme involves the examination of tens of thousands

of windows (often even more, see Gu et al. [GLAM09]), which is generally very slow.

In order to overcome this limitation, Viola and Jones [VJ01] have first proposed to use a

cascaded detection scheme in order to speed up the detection. The insight of cascades is

to save as much energy as possible during the detection process: as soon as a negative

outcome becomes evident, the computations stop for the current window. Recent ap-

proaches complying to this methodology include the works of Vedaldi et al. [VGVZ09]

and Harzallah et al. [HJS09]. In this dissertation, we will also make use of cascades al-

though they will only act at the feature extraction level (i.e. we extract “smart” features)

and not at the classifier level (Chapter 4).

To draw a parallel of cascades with the human vision, one immediately “knows”

which spots of an image to focus on to get a fast understanding of it. This intuition has

a lot to do with the pre-processing done automatically by the pre-cognitive system in

our brain in order to predict interest areas in the scene. This behavior allows to save

body resources by sensing only small parts of the scene with a greater resolution. For

instance, flat areas like the sky are of low interest, so almost no time is spent analyzing

them. Interestingly enough, the structure of cascaded detection systems is closely related

to the human visual system.

The origin of cascades arises from the fact that in a classical sliding window scheme

the same amount of computations is spent whether the considered area is plain blue sky

or not. Intuitively, one can understand that this approach is far from the optimum com-

putationally speaking and that many time that could be reinvested into more complex

tasks is lost. More generally, such an approach becomes dramatically costly for detect-
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Figure 2.15: Comparison between a classical detection process and a cascaded detection
process. (a) a standard process; (b) a cascade with 3 layers. Each layer is activated if the
previous layer returns a positive response.

ing more than one type of objects provided that the window aspect ratio, the features or

the classifiers used are different.

The cascade framework thus proposes to decompose the recognition process into

several successive steps of increasing complexity [VJ01, EHOK01]. The key idea is to

enable an ending as early as possible: instead of taking a decision on the full available

knowledge, like is done typically in image classification with Support Vector Machine

for instance, the global decision function F : Rn → {0, 1} is fragmented into smaller

functions fi : Rqi → {0, 1} that are evaluated sequentially:

F(x) ≡
⊗

i

fi(xi) with ∀i qi < n, i.e. xi ⊂ x

where x represents the full feature vector for a given window and
⊗

is a generic se-

quence operator that can take various forms. Here, each subclassifier fi is dedicated

to clutter detection rather than true positive labelling. A single negative decision thus

suffices to abort the rest of the detection process for the current window (see Figure

2.15.b). As long as the vast majority of input vectors are clutters, an admissible hypothe-

sis for real-world object recognition systems [EHOK01, ESPM05], the approach becomes

extremely efficient: millions of windows can be examined in a matter of seconds (espe-
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cially when associated to a fast feature extraction process like in Viola and Jones [VJ04]).

Additionally, one can purposely set up overly simple subclassifiers for the first cascade

layers (for instance, a single feature is used in the first subclassifier of [VJ04]), whereas

the subclassifiers of the last stages are more complex in order to better represent the ideal

decision surface. Some examples of cascaded strategies include the work of Vedaldi et

al. [VGVZ09] where a decrease of processing time per image from 27 hours to 67 sec-

onds was reported compared with a brute force approach. Similarly, Felzenszwalb et al.

[FGM10] improved the detection time by a factor of 20 using cascades with respect to

the same approach using dynamic programming and generalized distance transforms.

Part-based models

A drawback of sliding window is that their global consideration of the sub-image makes

them unsuitable to bear occlusion; moreover they are generally not invariant to rotation

(in order to save computations). On the other hand, the fact that many class objects can

be intuitively decomposed into parts has led to the development of part-based models.

Similarly to some previously mentioned methods for specific object recognition, in a

part-based model the model object is represented as a collection of parts (each one

provided with a corresponding local appearance) along with their spatial configuration.

An illustration of such possible decomposition is shown in Figure 2.16 for faces, cars and

humans. Part-based models thus belong to the field of structural methods, in contrast

to sliding window techniques (although some crossovers have been recently developed).

Note that generative classifiers (i.e. Bayesian instead of discriminative) are generally

used as classifiers for this class of methods because they can straightforwardly describe

the generation of structural models. Contrary to the rigid model for specific objects,

the representation in a part-based model is tolerant to class variations both in the part

appearance (i.e. appearance variations are handled in the descriptor) and in their spatial

configuration (i.e. parts are loosely connected). The insight is that class objects are more

different globally than locally: a car and a truck may be globally dissimilar, but they both

have rather similar parts (e.g. wheels, headlights, handles) and the spatial arrangement

of the parts is only slightly variable.

In the literature, probably the oldest part-based model was developed by Fischler

and Elschlager [FE73] for face detection. In their pioneer approach, they considered

faces as collection of facial organs connected by spring-like links. More recently, sev-

eral detectors and descriptors have been proposed to detect and describe the parts (e.g.

the Kadir-Bradir detector [ZCY07], descriptor with Gaussian model [FPZ03]). Likewise,
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(a) (b)

Figure 2.16: Illustration of part-based models. (a) Decomposition of faces into local
rectangular patches [BBU04]; (b) “cars” and “human” recognition results where the
positions of the detected parts are highlighted in blue [FGM10].

there exist several options for learning the spatial arrangement of the different parts

with respect to each other: usually, the spatial configuration is expressed as a set of

pairwise interactions between parts [FPZ03, LHS07, SP05] for which different organi-

zations have been proposed: constellation of parts [LLS04, AAR04], star-shaped mod-

els [CFH06, FPZ05, FGMR09], graph-based models [FPZ03, ZC06], hierarchies of parts

[EU05, BT05, SP06] etc. In this dissertation we also model the class objects as collections

of parts, although we do not explicitly compute the spatial arrangement of parts for the

class case.

To conclude with, class object detection schemes can be either based on statistical

learning (sliding windows) coupled with discriminative classifiers; or based on struc-

tural (i.e. part-based) models coupled with generative Bayesian classifiers (at least

this is the general trend). In this dissertation, the originality of our contribution for

class object recognition (Chapter 5) is to combine every type of features (sparse, dense

and higher-level features) with every above-mentioned detection scheme (sliding win-

dows, cascades and part-based model) altogether in a unified consistent graph-matching

framework. Our purpose is to take the best of each schemes: efficiency of statical learn-

ing techniques concerning sliding windows, detection speed concerning cascades and

smart representation of parts-based models.
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In this chapter, we present an approach for the recognition of instances of specific

3D objects. The proposed approach builds upon the graph matching framework

and enables the joint utilization of different types of local features (namely keypoints,

edges and textures) in a unified manner so as to improve robustness. The combination

of different feature types, either sparse or dense, is made possible through a cascaded

detection scheme. Contrary to standard graph matching methods, we do not convert

the test images into finite graphs (i.e. no discretization nor quantization). Instead, we

explore the continuous space of graphs in the test image at detection time. For that

purpose, we define local kernels compatible with an efficient indexing of the image

features in order to enable a fast detection. During training, the mutual information is

used to select the most discriminative model subgraphs; then at detection time those

ones are detected using a cascaded process.

This work has been partially published in the International Conference for Pattern

Recognition (IEEE ICPR 2010) [RLAB10a].
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(a) Lowe’s Method (b) The proposed method

Figure 3.1: (a) Recognition failure of a keypoint-based method on an image with motion
blur because the SIFT keypoint detector performs poorly in these conditions; (b) on the
contrary, the method presented in this chapter is able to properly detect the object thanks
to the utilization of dense image features.

3.1 Introduction and Motivations

To our knowledge, almost every method for specific object recognition from the state-

of-the-art is based solely on keypoint features (see Chapter 2). On one hand, it is certain

that keypoints enable an elegant and convenient handling of the problem thanks to

their ability to accurate extraction and pairwise matching. On the other hand, they

perform poorly on textureless objects because keypoint detectors tend to find salient

points only inside well-textured regions (see Section 2.2.2). Indeed our experiments

on a home-made dataset have highlighted the fact that the repeatability of keypoints

can highly deteriorate in noisy conditions of use. In particular, we noticed that in an

indoor environment, using a low quality camera suffices to significantly degrade the

good performance of keypoint-based methods (see an example of this in Figure 3.1).

As most practical utilizations of specific object detection concern embedded systems

equipped with low-quality video cameras, we believe it to be a serious matter.

In the state-of-the-art, exceptions are the method of Ferrari et al. [FTG06] and

Kushal and Ponce [KP06] which in addition to keypoints also use densely sampled

patches so as to improve robustness and enable a precise segmentation of the retrieved

instances. As a result, their methods are extremely robust to large occlusions and distor-

tions. In fact, using different types of local features is known to enhance the detection

performance for various tasks (e.g. in image classification or class object recognition

[LZL∗05, MHK06, MSHvdW07, GN09, GLAM09]). Different feature types can indeed

complement each others well by describing different aspects of the image (texture, edges,

colors, etc.). For instance, edge features have been widely used for specific object de-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



44 Chapter 3. Cascaded Multi-feature Incomplete Graph Matching For 3D Specific Object Recognition

tection as well (see [Jur01, KHP07, DPP08, HHIN09]), so it might probably be a good

idea to use them in our system. Moreover, it has been demonstrated that using dense

features like HOG [DT05] (see Section 2.2.3) or densely sampled patches [JT05, FTG06]

was a good idea for various applications. The interest of using dense features in our case

is to rely on other feature sources than saliency-based detectors: as said earlier, those

detectors (e.g. the SIFT detector as mentioned above) experience difficulties when they

deal with blurred images or important scale changes. The flip side of the coin is that

systems which use dense features are often extremely slow (e.g. the system of Ferrari

mentioned earlier). Moreover, it is a delicate problem to combine different types of fea-

tures (especially sparse and dense features) in a same framework. To solve both issues,

we turned ourselves toward the graph matching framework coupled with cascades.

3.1.1 The feature combination problem

As pointed out above, we show in this chapter how a cascade-oriented graph matching

framework can help to solve the delicate problem of combining together heterogeneous

types of features (i.e. sparse and dense features). Generally speaking, this is not a trivial

matter in computer vision and especially in the object recognition field. It often raises

several well-known issues, such as the normalization problem, the increase of compu-

tational complexity due to feature extractions and the inherent difficulties to combine

sparse and dense types of features.

Normalization issues Different types of features involve different ranges of values and

it generally gets bothersome when such heterogeneous values are gathered in a same

feature vector. In the literature, normalization is generally achieved by assuming that

each component of the global feature vector follows a Gaussian distribution (meaning,

subtracting the mean and dividing by the standard deviation) or a χ2 distribution in

the case of histograms [VGVZ09]. In practice however, such hypotheses are not always

realistic. Recent works on Multiple Kernel Learning (MKL) have contributed to partially

solve some of these issues (combining heterogeneous types by using a linear combi-

nation of dedicated kernels), but the results can still be disappointing compared to a

simple averaging for instance [GN09, VGVZ09].

A first benefit in a cascade-oriented framework is that in a cascade, the different

subclassifiers { fi} use different subsets ϕi of the whole feature set ϕ: fi : ϕi → {0, 1} (see

Section 2.4.2). Assuming that each ϕi only contains scalars picked out from a particular

feature type, each decision function then combines comparable features, which shrugs

off most of the problem. The method presented in this chapter is among those ones.
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Namely, dense textures, sparse keypoints and semi-sparse edges are used separately in

the subclassifiers.

Computational issues Feature extraction is a time-consuming process which can even

become a bottleneck in a standard object detection application. For instance, Vedaldi et

al. [VGVZ09] have evaluated that, in the perspective of a classical approach (see Figure

2.15.(a)), just computing the feature vector for all possible windows is prohibitively

slow. On the contrary, a cascade-oriented framework offers efficient ways to reduce

the computational burden. As the decisions are taken temporally (i.e. one after the

others), it becomes possible to prune every unnecessary feature extraction work. Ideally,

a cascaded system is expected to extract the features at run-time, i.e., just before they

are required for evaluation by the subclassifier (see Figure 2.15.(b)). This way, only a few

spots in the image get closely examined, saving important amounts of computational

power as demonstrated by Felzenszwalb et al. [FGM10] for instance.

In particular, it can be interesting to limit the number of feature types used in the

first cascade layers (i.e. the part of the cascade which is evaluated the most frequently).

Since feature types are generally independent, each type requires its own machinery to

be extracted from the image. By retaining a subset or even a single feature type to feed

the subclassifier of the first layer, the time spent to extract all the other types will be

saved. Such a strategy was used independently by Harzallah et al. [HJS09] and Vedaldi

et al. [VGVZ09]. In the first case, the feature type that is the least expensive to compute

(namely, HOG features optimized using integral images) was used alone by the first

level subclassifier without significant loss of performance compared to using all types.

In the second case, a jumping window technique relying again on a single feature type

(namely SIFT keypoints) was used to generate candidate windows sent to the second

cascade layer. Our method strongly relates to this latter work.

Heterogeneity issues The last problem concerns the combination of feature types dif-

ferently stored in terms of data structures: sparse features are stored in lists of variable

length whereas dense features are stored in vectors of fixed length. Because machine

learning techniques generally prefer to deal with fixed-length vectors, sparse features

have to undergo some preprocessing (typically they are quantized before an histogram

binning [CDF∗04], see Section 2.2.3). This process is not always desirable as it makes lose

some valuable information contained in the sparse features (for instance, the keypoint

positions).

In our cascade-oriented framework, we adopt instead an approach where sparse
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and global features are not directly used together. The local kernels that we define in

Section 3.3 are specific to each feature type and perform sparse-to-sparse or dense-to-

dense comparisons separately. For instance, the kernel associated to a dense feature

type operates a local search in the dense feature space in order to find optimal local

matching.

3.1.2 Outlines of the proposed method

To summarize, the proposed algorithm takes as input a collection of model images (the

model position in each image is supposed to be known) as well as a collection of non-

class (background) images. It automatically extracts a large collection of local features

of various types from the model images (Section 3.3). Then, each training image is

converted into a prototype graph by considering features as graph nodes and connect-

ing neighboring nodes in the scale-space (Section 3.4.1). The last step of the training

procedure consists of building a detection lattice from a selection of the most discrimina-

tive subgraphs from the prototype graphs. The lattice is composed of cascaded micro-

classifiers aiming at successively recognizing neighboring model features in a region

growing scheme.

During the recognition stage, graph matching is efficiently performed based on an

iterative scheme which picks one scene keypoint each time and feeds it to the detection

lattice to initiate the search of a model part around the keypoint location. The detection

lattice thus checks the area surrounding the input keypoint, searching for features con-

sistent with the model graph. Since we focus on realistic object recognition, we tackle the

occlusion problem by considering the recognition to be successful when a sufficiently

big subgraph of the prototype graph is discovered in the test image (Section 3.4.2). This

is optimally done by computing during training the posterior probability of finding the

whole model given a model subgraph. We also introduce a new texture descriptor, both

descriptive and fast to compute in section 3.3.3 which highly contributes to explain our

good results (see Chapter 4).

The different parts of our method are represented in Figure 3.2 and detailed in the

Section 3.4. The lattice construction procedure is detailed in Section 3.5. Finally, Section

3.6 concludes.

3.1.3 Related works

There are several related works with respect to ours in the state-of-the-art. To begin with,

the approaches that we found to be the closest to ours belong to the field of part-based
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Figure 3.2: Summary of the method presented in this chapter. (a) A set of model images
(i.e. the model is a face, here only one image shown). Local features are extracted using
either a detector (i.e. keypoints) or densely sampled. For simplification, they are repre-
sented using lines (for edges), ellipses (for keypoints) and triangles (for textures), i.e. 3

feature types (only a small number of them is drawn for clarity). (b) Construction of a
prototype graph for each model image from the local features; (c) Complete detection lattice
for the prototype graph shown in (b). The lattice contains cascades of micro-classifiers
aiming at detecting the prototype graph by checking local feature one by one in any
possible order; (d) Pruned detection lattice: it now aims at detecting subgraphs (red
squares) of the prototype graphs; (e) example of recognition from a randomly picked
scene keypoint (top blue arrow): the keypoint is fed into the lattice, each lattice path is
evaluated, a successful path is found leading to a model subgraph (small red square),
and a vote is cast in the test image (large red square).
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methods for class object recognition. As described in Chapter 2, this family of methods

considers the recognition problem under a structural viewpoint: the model object is

viewed as a graph in which the different parts corresponds to graph nodes, which are

connected by pairwise spatial interactions.

The method of Zhu et al. [ZCY07], for instance, considers triplets of keypoints as ba-

sic features and learns grammar rules based on “AND” and “OR” operations to detect

the objects. The resulting grammar resembles our lattice in the fact that it can be viewed

as a mixture of trees, allowing the detection of different model subgraphs using infer-

ence with Markov Random Fields. Contrary to us however, neither cascades nor dense

features are used; moreover the tree shape is learned using an EM algorithm while in

our case we rely on mutual information to build our lattice. Finally, their method can

only afford to extract a small number of features per image (i.e. graphs nodes) and has

to limit the number of edges (for instance, they constrain edges to not cross) so that the

run-time complexity does not explode. Similar shortcomings also hold for the method

of Fergus et al. [FPZ03] and Zhang et al. [ZBMM06]. More generally, the feature types

and decision schemes used in the case of class object detection are more complex than

for our specific object detection approach. Traditional cascades are indeed built using

high level classifiers (e.g. AdaBoost in [VJ01, FG08]), each of them handling hundreds

of features. In our case, each classifier is extremely simple as it takes its decision from a

single feature. Although there exists one part-based approach by Felzenszwalb [FH05]

that uses simple texture features similar to ours, our system differs from this one in the

matching scheme essentially different, and also the fact that our parts are not manu-

ally landmarked before training. On the contrary, our parts are automatically gathered

based on the mutual information that they provide to the model. This latter part selec-

tion scheme is similar to the one initiated by Vidal-Naquet and Ullman [VNU03] and

continued by Epshtein and Ullman [EU07] except that in our case the list of parts is

not explicitly computed before training; instead, the appearance and geometrical models

are learned at the same time to select the most discriminant parts with respect to their

close neighbors in the model images. Finally, the recent part-based approach of Felzen-

szwalb et al. [FGM10] uses cascades like us to speed up the detection, but here again,

the features used, the matching scheme and the invariance set are different.

In the field of specific object detection, the methods of Lazebnik et al. [LSP04] and

Ferrari et al. [FTG06] are probably the most similar to ours. In the first case [LSP04],

model parts constituted by connected keypoints are learned from training images; and

then they are detected in test images using a region growing scheme with a pruning

based on the spatial arrangement and descriptor consistency of the features matched.
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Again a single type of salient feature is used (i.e. affine keypoints). Moreover, the prun-

ing thresholds for checking spatial consistency at growing time are defined manually

whereas in our approach, all thresholds are learned automatically. In the second case

[FTG06], the recognition of specific instances is performed in two steps: first keypoint

matches are used to raise hypothesis, and then dense features are extracted to verify

the hypothesis with an iterative expansion/contraction process seeking to discover the

entire visible object surface. Likewise, we also use keypoints as a first step for recogni-

tion and other features (in particular dense features) for growing regions, but this latter

process is much faster thanks to the utilization of cascades. Moreover, we do not seek

to entirely detect the instance surface, instead we only try to detect parts which are dis-

tinctive enough (our expansion process stops as soon as the distinctiveness is sufficient

according to a prior training). Finally, the method of Moreels et al. [MP08] is essentially

different to ours, although the title of their paper may suggest it as they also rely on a

cascade-oriented framework for specific object recognition. Contrary to us, the system

of Moreels et al. [MP08] only uses a single type of feature (i.e. keypoint). Furthermore,

their cascade consists of a succession of several rigid recognition schemes (i.e. Hough

transform followed by RANSAC), which is completely different in the principle and in

practice from our incomplete graph matching strategy.

3.2 Useful notation

Pre-emptively to the following of this chapter, we introduce for clarity the table of useful

symbols in Table 3.1.

3.3 Used Features

At the bottom of the recognition process, low-level features are used to locally describe

the model object. In order to get a recognition system as fast as possible, we selected a

subset of three complementary feature types prone to fast extraction:

• Keypoints, denoted by ϕK.

• Edges, denoted by ϕE.

• Textures, denoted by ϕT.

For each of these three types, we outline below its properties and define a kernel func-

tion Kt : ϕt × ϕt → R. We refer to this kernel as a local kernel as it takes into account
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symbol meaning
O the model object
I an image
I a list of images I.

I+ the list of positive training images (i.e. model views).
c = (x, y) 2D center

σ scale. By convention we use radius = scale.
θ orientation (θ ∈ [−π, π])

h = (σ cos θ, σ sin θ) radial vector.
p = (c, h) position = center and radial vector.

ϕt type of local feature (e.g. SIFT keypoint)
z descriptor (e.g. 128-dimensional vector for SIFT).

φt = (p, z) local feature of type ϕt = a position and a descriptor.
Kt : ϕt × ϕt → R kernel of type ϕt.

A = {φ} model aggregate (collection of connected local features).
A′ = {φ′} detected aggregate (collection of detected local features).

eij = (Ai → Aj) lattice branch connecting aggregate Ai to aggregate Aj.
dmax

ij threshold of the micro-classifier associated to eij.

Table 3.1: Useful symbols.

both the positions p = (c, h) of the two features (respectively, their center c and their

radial vector h) and their descriptor z, in contrast with standard kernels as in Multiple

Kernel Learning (see [GN09]) which act at a global scale. The kernel output is some

sort of distance between the two features and is used later in the recognition process to

check the presence in an image of a specified local feature (see Subsection 3.4.2).

3.3.1 Keypoints

We use SIFT keypoints for their good propensity to specific object recognition [Low04,

MP07]. In our system, the SIFT detector acts as a saliency detector, and only salient

regions are further analyzed. In other words, the search of the model object always

starts from SIFT keypoints. In order to overcome the robustness issues mentionned in

the introduction, we use an absolute distance between SIFT descriptor (i.e. the noise is

thus seen as constant and additive) instead of the traditional distance ratio between the

first and second best neighbors.

Formally, each image keypoint φK ∈ ϕK is defined by a center c = (x, y), a radial

vector h = (σ cos θ, σ sin θ) (where σ is the patch radius and θ its orientation), and a

descriptor z of 128 dimensions. We define two kernels for this feature type:

• The first kernel is a standard comparison between descriptors:

Kz
K(φK

i , φK
j ) =

∥∥zj − zi
∥∥ (3.1)
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• The second kernel is a spatial distance between two “compatible” keypoints φK
i

and φK
j :

KK(φK
i , φK

j ) =


∥∥cj − ci

∥∥2 + α2
K

∥∥hj − hi
∥∥2 if Kz

K(φK
i , φK

j ) ≤ ζK ,

∞ otherwise.
(3.2)

where ζK is a threshold that specifies the acceptable amount of noise for a SIFT

descriptor (see §4.2.2). Since the system will need in the following to quickly

compare a given keypoint versus all keypoints present in the test image, we index

the scene keypoints in a k-d tree. Contrary to [Low04], this indexing is based on

the keypoint position rather than on its descriptor.

3.3.2 Edges

We use the Canny edge detector [Can86] followed by a step of polygonization to obtain

a bunch of line segments. A line segment φE ∈ ϕE is only defined by its center and

its radial vector (no descriptor) such that the boundaries of the segments are c + h

and c − h. The local kernel KE between two edges φE
i and φE

j is the maximum of the

minimum distance between each pair of pixels lying on both segments:

KE(φE
i , φE

j ) =


max

p∈[−1,1]
min

q∈[−1,1]

∥∥(cj + phi)− (cj + qhi)
∥∥ if

∣∣θj − θi
∣∣ ≤ ζE,

∞ otherwise.
(3.3)

(since no visual descriptor comes with a line segment, we simply check the orientation).

Again, we reduce the search time of a given line segment against all existing segments

in the test image using 6 distance maps (i.e. we use 6 orientation bins, so that ζE = 30°,

and each distance map only considers the edges which are roughly oriented in the map

orientation). This technique is robust to a noisy polygonization since the distance does

not vary much if the existing line undergoes cuts or oversize. Moreover, it enables to

quickly create at run-time new segments superimposed on existing ones but having

different boundary locations, in order to fit in the best possible way the position of a

query line segment. An example of a fitting between a request line segment and all

the edges contained in a sample image is illustrated in Figure 3.3. A new line segment

is created at run-time according to the projection of the request line segment onto the

nearest image edges having similar orientations (Figure 3.3.d). Thanks to this operation,

the set of existing segment features is virtually infinite. One can thus think of edge

features as semi-sparse features in the sense that they can adapt to the request (within
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some limits). This behavior would be clearly impossible to implement in a classical

graph matching application where the set of features is finite and well defined before

proceeding to the matching.

3.3.3 Textures

We derive a new texture descriptor from the work of Tola et al. about the DAISY feature

[TLF08]. Since textures are dense features, they exist for every pixel of the image scale-

space. In our case, the descriptor of a texture feature φT ∈ ϕT located at p = (x, y) and

h = (σ cos θ, σ sin θ) is defined as the concatenation of three sub-descriptors extracted at

the same position p but at three different scales {σ/1.54, σ, 1.26σ} (we followed a similar

definition by Kruizinga and Petkov [KP99]). Each sub-descriptor is an 8-bins histogram

of oriented gradient extracted at the corresponding position. The local kernel is simply

defined as the Euclidean distance between the two descriptors, provided that the two

locations are not too far away in the scale-space:

KT(φT
i , φT

j ) =


∥∥zi − zj

∥∥ if
∥∥ci − cj

∥∥2 + α2
T

∥∥hi − hj
∥∥2 ≤ ζT ,

∞ otherwise.
(3.4)

As in the original paper of Tola et al. [TLF08], we precomputed eight gradient maps

(one for each orientation) at the finest scale and spanned the rest of the scale-space with

a pyramid of Gaussian to enable a fast descriptor extraction.

Finally, we introduce here the shorthanded notation

min
I

Kt(φt
i ) ≡ min

φt
j∈I(ϕt)

Kt(φt
i , φt

j)

in which a given request feature φt
i is compared to all image features of the same type

t, and the minimum distance is returned (hence the notation of the minimum of Kt on

the whole image I). Thanks to the indexing of each feature type, this comparison is

extremely fast and is a key component for our system.

3.4 Algorithm Description

Now that the feature types used in our approach have been presented, we describe in

this section the core of our approach. Our method for the detection of specific object

instances is as follows: first, we assume that a few images of the model object O are pro-
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(a) (b)

(c) (d)

Figure 3.3: (a) Sample image. (b) Request line segment (dashed green line). (c) Dis-
tance map corresponding to the closest orientation bin θ = 75°± 30°. (d) Projection of
the request line segment onto the nearest existing edges using the distance map (the
resulting line segment is shown as a bold line). The circle indicates the point of maxi-
mum distance between the request segment and any existing image edges of the same
orientation. This distance is returned by the kernel KE and corresponds to the fitting
error.
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vided (i.e. the object is viewed under different viewpoints and/or lighting conditions)

(in Figure 3.2.a, only one simplified training image is shown for clarity). Theoretically,

the more numerous the training pictures are, the better the recognition will be (redun-

dancy between them does not pose a problem). Then, a prototype graph is extracted

from each model image. The prototype graphs are constituted of local features (either

extracted using a detector or densely sampled) which are connected when close in the

scale-space (Figure 3.2.b). A detection lattice is constructed from those prototype graphs:

its aim is to recognize the prototype graphs (i.e. the model views) using a region grow-

ing scheme. It is composed of cascaded micro-classifiers that verify the presence of local

features one by one (Figure 3.2.c). Because the complete lattice has an exponential size,

only a small part is used so as to enable a fast detection (Figure 3.2.d). Finally, the lattice

is used to detect objects in test images (Figure 3.2.e). The resulting system is robust to

occlusion and has a low computational complexity.

3.4.1 The prototype graphs

First, we extract a prototype graph Gn from each model image In ∈ I+ of the model

object O. The aim of this step is to transform the input model pictures from matrices

of pixels into structured objects. This is necessary as our method belongs to the family

of structural methods, i.e. methods that decompose the model object into a finite set of

“parts” (although the term “part” may not be well-chosen in our case, as the parts that

we extract do not necessarily refer to semantic parts). In our case, the definition of a part

is just a connected subset of graph nodes, and this decomposition is redundant (parts

can overlap).

The procedure for converting a model image In into a prototype graph Gn is the

following:

1. Firstly, the picture is aligned in a reference frame pre f using a similarity transform

(i.e. normalizing coordinates in [−1, 1]).

2. Secondly, local features of each type are extracted from the image. For keypoints

and line segments, the SIFT detector and the Canny edge detector are used. For

textures, we sample them densely and uniformly. The aim here is to cover the

image with a large number of local features, each of them constituting a weak

classifier potentially selected later in the detection lattice (in the same spirit as the

work of Viola and Jones [VJ01]).

3. Each local feature becomes a graph node with center c, scale σ and angle θ (and
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h = (σ cos θ, σ sin θ)).

4. Two nodes are linked if their distance in the scale-space is small enough. Typically,

we use the following criteria for connecting two nodes with centers ci, cj and scale

σi, σj:

0.5 <
σi

σj
< 2 and

∥∥ci − cj
∥∥2

< σiσj (3.5)

The first inequality constrains the two nodes to have about the same scale (up

to a factor 2), while the second one ensures their centers are not too far apart in

the scale-space. Hence, each graph edge ideally stands for a stable neighborhood

relationship as we assume the correlation between two model features to decrease

when their distance augments. Note finally that two features (i.e. nodes) with

different types can be connected, in fact the graph nodes are linked regardless of

the feature types.

This procedure is repeated for every model image In ∈ I+. Note that the construction

of the prototype graphs is fully automatic; Figure 3.2.(b) presents an illustration of a

simplified prototype graph (a realistic graph would be too complex to be displayed here

as it typically contains thousands of features and edges). In the following, a detection

lattice will be straightly derived from the prototype graphs in order to recognize sub-

graphs (i.e. model parts) in a cascaded manner (problem also known as incomplete graph

matching).

The prototype graph G For convenience, we also define a unified prototype graph

G =
⋃ Gn. So in the following when we speak of “the prototype graph” in the singular,

we mean the gathering of all prototype graphs in a single graph (note that G has |I+|
connected components, one for each model image).

3.4.2 The detection lattice

Concerning the detection, we use a sort of degenerate tree formally called a “lattice”.

Mathematically, a lattice L is a set with a partial order relation between elements. A

simple example of lattice is shown in Figure 3.4. Because of this order relation, a lattice

resembles a tree except the fact that there can be more than one path between two nodes,

but still excluding cycles (edges are oriented). The depth of a node is defined as in a

tree, i.e. by the number of edges from which it is separated from the root, and all nodes

with the same depth constitutes a level. 1

1There exists another definition of a lattice – a squared grid – but this has nothing to do with our method.
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{x, y, z}

{x, y} {x, z} {y, z}

{x} {y} {z}

Ø

Figure 3.4: Hasse diagram of a lattice formed from the set {x, y, z} with subset inclusion
as order relation (4 levels).

In our framework, the detection lattice L stores some possible ways of building

the prototype graph by adding nodes one by one. More precisely, each lattice node

represents a connected subgraph of the prototype graph G, and each branch between

two lattice nodes represents an atomic addition of a single prototype graph node (i.e. a

feature) from the first subgraph to the second one. The order relation between elements

is thus the subset inclusion.

Aggregates For clarity, we denote in the following the lattice nodes by the term “aggregate”.

An aggregate is a connected subgraph of the prototype graph G, and as said earlier it

corresponds to a model part in our approach. Depending on the number of atomic fea-

tures composing it, the part will be smaller or larger (but is is interesting to note that

contrary to [LSP04] all features contained in an aggregate will be close in the scale-space

due to the connection constraint of (3.5)). To sum up, each level l of the lattice contains

aggregates of cardinality equal to l. For example, the root level (l = 0) contains only one

empty aggregate which stands for the empty graph, level 1 is composed of aggregates

containing single features, and so on. An illustration is given in Figure 3.2.c.

Obviously, the cardinality of each level grows exponentially with l. For this reason,

it is not tractable to compute the entire lattice. Fortunately, storing it entirely is useless

for our purpose and in the following we will confine ourselves to using an incomplete

lattice (see Figure 3.2.d).
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3.4.3 Aggregate position

As we saw above, the purpose of the recognition step is to discover model parts, i.e.

aggregates, in the test image. In other words, we want to detect in the test image groups

of features that are consistent with a model aggregate in terms of feature descriptors

and spatial arrangement. Concerning the latter point, we use a 2D similarity transform

to align two aggregates, so we need to define a unique center and a radial vector for

an aggregate from its features. The purpose here is that two matching aggregates have

roughly the same centers and radial vectors up to some noise. The averaging of the

spatial positions of the composing features appears to be a valid choice, as noise is in

random directions and hence canceled by the averaging. Moreover, the result of the

averaging is independent of the order in which the features are added in the aggregate.

This is important as an aggregate can be constructed from different lattice paths, i.e. by

adding its composing features in different orders, see Figure 3.2.d for an illustration.

Formally, let an aggregate A contain a set of l features, then its center cA and radial

vector hA are defined as:

cA =
1
l

l

∑
n=1

cn (3.6)

hA = ∑l
n=1 hn∥∥∥∑l
n=1 hn

∥∥∥
√√√√1

l

(
l

∑
n=1
‖cn‖2 + ‖hn‖2

)
− ‖cA‖2 (3.7)

Formulas (3.6) and (3.7) represent the averaged center and the average orientation

normalized by the standard deviation around the global center and the composing cen-

ters, respectively. Those formulas experimentally showed up to give stable results even

in case of important deformations and can deal with slight 3D viewpoint changes (see

Figure 4.14). Moreover cA and hA can be computed in constant time using the center

and radial vector of A’s father, at the cost of updating a few hidden variables, making

the aggregate growth an efficient operation.

3.4.4 Aggregate recognition

We now explain the recognition process assuming first that the detection lattice L is

already constructed. As mentioned earlier, the purpose of the recognition step is to

discover model aggregates (i.e. model parts) in the test image, and then to draw a final

decision about the presence of the model object O from those partial detections.

To begin with, aggregates are detected in the test images using an expansion process

where features are added one at a time. The expansion process is dictated by the lattice
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shape: every discovered aggregate corresponds to a lattice node (i.e. a model aggregate)

and attempts to go further in the lattice, i.e. to grow according to the available lattice

branches starting from the lattice node. For this purpose, we use cascades in order to

enable a fast detection of the aggregates. Practically, a classifier is associated to each lat-

tice branch in order to take a decision about letting the aggregate grows or not. Namely,

each classifier is responsible for ensuring that the feature associated to its lattice branch

is also present in the test image, relatively to the aggregate position. In contrast with

the work of Viola and Jones [VJ01], our classifiers are extremely simple as they simply

consist of single decision stumps. For this reason, we denote them as “micro-classifiers”

in the following. A corollary is that an aggregate can be seen as a weak classifier: when it

is detected in the test image, it indicates that a model part is probably present, but more

aggregates are required to ensure the detection of the model object.

Formally, the aggregate detection procedure is as follows: first, a loop iteratively

picks a random seed feature in the test image. A seed feature is a salient feature which

acts as an entry point in the image for the search of model aggregates, similarly to the

jumping windows of Chum and Zisserman [CZ07]. In our case, we use SIFT keypoints

to initiate the search. The picked feature is then fed to all seed branches, i.e. lattice

branches starting from the root. If the associated micro-classifier of each seed branch

returns a positive response, then the branch is traversed. Likewise, all children branches

are recursively checked and traversed in case of positive responses of the associated

micro-classifiers. When the seed feature truly belongs to a learned part visible in the

test image, then at least one terminal aggregate will be detected at that position (we

mean by terminal aggregate an aggregate which has no children). An example of this

discovery process is shown in Figure 3.2.e. In the following, we distinguish the notation

between a model aggregate A, which contains original model features, and a detected

aggregate A′ which is constituted of similar features detected in the test image.

More formally, let Ai be a model aggregate containing l features and A′i the corre-

sponding detected aggregate found in the test image (thus it also contains l matched

features). The micro-classifier condition for reaching level l + 1 through the branch

eij = (Ai → Aj) (i.e. connecting aggregate Ai (l features) to aggregate Aj (l + 1 features)

L), which corresponds to the addition of the model feature φt
ij of type t, is:

dij = min
I

Kt(φt∗
ij ) ≤ dmax

ij (3.8)

where φ∗ij =
(

p∗ij, zij

)
is the predicted model feature in the test image (i.e. same descrip-

tor but different position), dij the kernel distance between φ∗ij and what can actually be
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eij

Ai

Aj

cA’i

Φij
*

Φij

AiAj

Ai’

cAi

hAi
hA’i

Model aggregates Ai and Aj Detected aggregate A′i
(Model image) (Test image)

Figure 3.5: Predicted position of the edge feature φ∗ij in the test image (dashed line) with
respect to the model aggregate Ai and the two features already detected (a square and
a circle for simplification). In our approach, this is done using a 2D similarity. As can
be seen, the test image contains an edge near the predicted position (strong black line),
meaning that the micro-classifier of the edge eij = (Ai → Aj) will most likely output a
positive decision (i.e. dij < dmax

ij ).

found in the test image, and dmax
ij is a constant learned during training (see section 3.5).

Here, p∗ij is the predicted position of φt
ij relatively to the position of A′i, which in our case

is obtained by a simple 2D similarity:

p∗ij = sim2D(pij|Ai, A′i) = (Rcij + t, Rhij)

with R a 2× 2 matrix and t a translation vector defined such thatcA′i
= RcAi + t

hA′i
= RhAi

.

An illustration of this growing process is given in Figure 3.5: here, the aggregate Ai

composed of two features has been already detected in the test image (A′i). The next step

is to reach children aggregate Aj through edge eij which corresponds to the addition of

an edge feature φij (strong solid line in the left figure). As a result, the ideal position

of φij is computed in the test image with respect to A′i, resulting in φ∗ij (gray dashed

line). The local kernel minI KE(φ∗ij) is evaluated and since an edge is also present in the

test image at approximately the same position, the kernel returns a distance inferior to

dmax
ij . In other words, the branch eij is traversed. The process then repeats for subsequent

children aggregates (not shown).

Although the features are of different types, the fact that they are added one at a time

enables to bypass the problem of combining different feature types together. If a feature
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is not found (i.e. de > dmax
e ), the progression in the path is simply abandoned. When a

terminal aggregate Aterm is reached, a position hypothesis is cast for the model presence

at sim2D(pre f |Aterm, A′term). The pseudo-code for the aggregate detection procedure is

given in Algorithm 3.1. Finally, hypothesis are clustered in the oriented scale space

using a greedy algorithm (Section 3.4.5) and a probability formula is applied to weight

each cluster (Section 3.4.6).

Continuous graph matching

It should be noted that new test image features are computed at each micro-classifier

evaluation (those features are composing the detected aggregates). This comes from

the formulation of the decision function (eq. (3.8)) which asks for a minimum over all

possible test image features. Since this latter set is almost infinite (for dense feature

at least) and thus intractable to compute, instead only a few features are extracted at

plausible positions and compared. For instance, the texture micro-classifier first collects

a few texture features in the neighborhood of the request position; then it returns the

one minimizing the distance criteria. Another example is the case of edge features where

a small line segment can be created onto a bigger one to minimize the distance to the

request (or conversely two contiguous line segments can be united into a bigger one).

This is in contrast with classical graph matching where the test image is first dis-

cretized into a finite graph of limited size (usually small) before proceeding to the

matching itself. In our case, everything happens as if the test graph has an infinite

number of nodes. Thus, the classical decrease of robustness caused by discretization

does not affect our approach (this is illustrated in the next Chapter).

3.4.5 Clustering of detected aggregates

After having detected aggregates in the test images, those aggregates cast hypothesis

which are clustered in the four-dimensional scale-space of locations (x, y) and poses

(σ, θ) (i.e. Hough transform) using a greedy process. Formally, let us assume two

detected aggregates A′i and A′j. Two hypothesis, one for each, are then cast at position

phyp
i and phyp

j with

phyp
i = sim2D(pre f |Ai, A′i)

and

phyp
j = sim2D(pre f |Aj, A′j).

Then, hypothesis are merged if they are not too distant in the scale-space. Namely,
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Input:

• test image I

• detection lattice L

Output:

• List of weighted hypothesis H

Main:
H := ∅
I(ϕK) :=ExtractKeypoints(I)
A0 := root(L)
for each φK

k ∈ I(ϕK) do
for each edge e0i = (A0 → Ai) do

if Kz
K(φK

k , φK
0i) < dmax

0i then
H := H ∪ LatticeFromNode(Ai, {φK

k }, I ,L)
end if

end for
end for
ClusterHypothesis(H) // see Section 3.4.5
WeightHypothesis(H) // see Section 3.4.6
return H

LatticeFromNode(Ai, A′i , I ,L):
if is_terminal(Ai) then

phyp
i := sim2D(pre f |Ai, A′i)

return phyp
i

end if
H := ∅
for each edge eij = (Ai → Aj) do

p∗ij := sim2D(pij|Ai, A′i)
φ∗ij := (p∗ij, zij)
if minI K(φ∗ij) < dmax

ij then
φ′ij := arg minI K(φ∗ij)
H:= H ∪ LatticeFromNode(Aj, A′i ∪ φ′ij, I ,L)

end if
end for
return H

Algorithme 3.1: Pseudo-code for the detection.
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for two hypothesis phyp
i and phyp

j , they merge if

∥∥∥chyp
i − chyp

j

∥∥∥2
+
∥∥∥hhyp

i − hhyp
j

∥∥∥2
<

σ2
i + σ2

j + 3σ
hyp
i σ

hyp
j

8
(3.9)

This criterion is more permissive than the criterion of eq. (3.17) used during training

(see below), as we expect more distortion in the test images than in the training images.

Intuitively, it roughly corresponds to a maximum factor 2 in scale ratio, a maximal angle

difference of 40° and to a maximal distance of 0.8σ between the two centers (note that

in practice, it is impossible to reach all three limits together as the sum balances the

conditions in eq. (3.9)).

The merging criterion enables robustness to non-rigid distortions, as it is illustrated

in Chapter 4 (e.g. Figure 4.10). Note that hypothesis are clustered independently for

each model view (i.e. two hypothesis belonging to different training views cannot

merge). Finally, each cluster defines a detection D, with a center cD and a radial vec-

tor hD computed as the average of the clustered hypothesis. Finally, a probability is

assigned to each detection (next Section).

3.4.6 Probabilistic model for clusters of hypothesis

Let a test image I be processed with the lattice L designed to detect the model object

O. As a result, a set of detections are output. Without loss of generality, let us consider

the case of a single detection D in the following. More particularly, we will assume that

the detected aggregates in the set {A′} have all voted for this detection (i.e. ignoring the

other aggregates detected in I). The general probabilistic formula of finding object O at

location cD and pose hD knowing the detected aggregates {A′} is the following:

p(OD|{A′}) = max
Vn∈O

p(Vn,D|{A′}Vn,D)

with

p(Vn,D|{A′}Vn,D) = p(Vn,D)
p({A′}Vn,D |Vn,D)

p({A′}Vn,D)
(3.10)

(from Bayes’ rule). That is, the object O is detected at position D if one of its view Vn is

detected at this position ({A′}Vn,D ⊂ {A′} denotes the set of detected aggregates voting

for view Vn at position D). In our framework, each view Vn ∈ O simply corresponds

to a single training image In ∈ I+. In the following we will drop the subscript n, D for

clarity and focus on a single view V ∈ O.

The aim is now to make eq. (3.10) computable. As in similar works [Low01, RLSP06],
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one can consider that p(VD) is independent of the instance location and pose, thus

p(VD) = p(V), which is in turn assumed independent of the considered view so that

p(V) becomes constant. Then, one can develop the right-hand part of eq. (3.10) into

p({A′}|V)
p({A′}) =

p(A′1|{A′2+}, V)p({A′2+}, V)
p(A′1|{A′2+})p({A′2+})

= . . . = ∏
i

p(A′i|{A′i+}, V)
p(A′i|{A′i+})

with {A′} = A′1∪{A′2, . . . , A′n} = A′1∪
{

A′1+
}

. However, a new problem arises: all those

conditional distributions p(Ai|{A′i+}) are hard to learn in practice, as the number of

training images is very small with respect to the huge space of function parameters (i.e.

2n possible combinations for n Boolean parameters representing the presence or absence

of each A′i ∈ {A′i}1≤i≤n). (As we will see in Chapter 5, those conditional probabilities

can be partly estimated in the case of class object detection, as the number of training

images is by far superior to the one in the instance detection case.)

In order to make the evaluation of eq. (3.10) possible, we must then inject a-priori

knowledge in the model. Typically, this requires the addition of some independence

hypothesis between the conditional distributions. We can for instance consider p(A′i)

and p(A′j) to be independent for i 6= j, which is roughly true unless A′i and A′j are

overlapping in I . This would yield:

p({A′}|V)
p({A′}) = ∏

i

p(A′i|{A′i+}, V)
p(A′i|{A′i+})

'∏
i

p(A′i|V)
p(A′i)

(3.11)

In our case however, the clustering of the detected aggregates in the scale-space of

hypothesis introduces a bias in the independence assumption. Indeed, we experimen-

tally observe that for a same detection size, false positive detections are more likely to

be generated by smaller aggregates in proportion (see Figure 3.6). This is expected as

this straightly relates to the ratio of the surface recognized as model parts to the full

object surface. To compensate this, we introduce a correction that lowers the weights of

aggregates being small with respect to the detection size:

p({A′}|V)
p({A′}) = ∏

i

p(A′i|{A′i+}, V)
p(A′i|{A′i+})

'∏
i

[
p(A′i|V)

p(A′i)

]η(A′i ,D)

(3.12)
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Figure 3.6: Noise affects more clusters of hypothesis having a large support (outer purple
circle), as their surface absorbs more false aggregates (small blue circles). Left: a positive
detection (the toy car); right: a negative detection for the same object.
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Figure 3.7: Plot of η(A′i , D) as learned based on positive and negative detections. Small
aggregates with respect with the object size are purposely disadvantaged because they
are more likely to arise from noise.

This correction takes the form of an exponentiation with the exponent lying in the

range 0 < η(A′i , D) < 1 (thus canceling A′i if η(A′i , D) = 0 or having no effect if

η(A′i , D) = 1), since the ratio p(A′i|V)/p(A′i) is necessarily superior to 1. One could

explicitly derive η(A′i , D) from the stacking tolerance defined in eq. (3.9) but this ap-

pears difficult in practice. Instead, we use a logistic function learned on the basis of

example aggregates belonging to true and false detections:

η(A′i , D) =
1
Z

 1

1 + exp[a + b
σA′i
σD

]
+ c


where Z = (1 + exp[a + b])−1 + c is a normalization factor. A plot of η(A′i , D) is shown

in Figure 3.7 on which we can see that small aggregates in proportion are disadvantaged.

To sum up, until now our model makes a rough independence assumption between

aggregates. (Notice that we consider p(A′i|V) and p(A′j|V) to be independent as well in

eq. 3.12. This is mostly incorrect as knowing the model presence, two aggregates are
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often correlated, but we use it for simplicity and because of the detection noise and the

possibility of occlusion.) What happens however if two detected aggregates share some

common branches (i.e. lattice edges) in their respective lattice path ? As a result, they

would be highly correlated, thus undermining our initial assumption. A solution to this

issue consists of considering the set of traversed branches {e′} instead of {A′}. In fact,

the Independence assumption is more acceptable for branches than for aggregates, as

branches correspond to the atomic features composing the aggregates. Let us first define

the set of lattice branches {e′} traversed by the detected aggregates {A′}:

{e′} =
⋃

A′i∈{A′}
{e′}i

(by a slight abuse of notation, {e′}i is the set of branches lying on the lattice path leading

to A′i). In this definition the redundancy between aggregates is canceled by the union

operator on sets of branches. Indeed, if two aggregates share common branches, each

shared branch appears only once in {e′}.

As we saw in Section 3.4.4, each aggregate is detected after a cascade of positive

decisions in the lattice, each one corresponding to traversing a branch. According to

this definition, we can replace aggregates by branches in eq. (3.12). Following the same

rationale, eq. (3.12) can be rewritten into:

p({A′}|V)
p({A′}) ' ∏

ejk∈{e′}

[
p(e′jk|{e′}jk−, V)

p(e′jk|{e′}jk−)

]η(Ak ,D)

(3.13)

where {e′}jk− is the set of branches already traversed before e′jk. Hence from 3.10 we

have the final formula

p(VD|{A′}) = p(VD) ∏
ejk∈{e′}

[
p(e′jk|{e′}jk−, VD)

p(e′jk|{e′}jk−)

]η(Ak ,D)

.

which can also be expressed as a detection score by taking the logarithm:

score(VD|{A′}D) = log(p(VD)) + ∑
ejk∈{e′}

η(Ak, D) log

[
p(e′jk|{e′}jk−, VD)

p(e′jk|{e′}jk−)

]
(3.14)

Note that the ratio p(e′jk|{e′}jk−, V)/p(e′jk|{e′}jk−) are constants estimated during

training, and the term log(p(V)) is constant for every pair of model-view so it dis-

appears.
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Discussion Our probabilistic model for detection is simple and fast to compute. Basi-

cally, the detection score is a weighted sum of the weights associated to each traversed

branches. In other words, the more numerous are the positive decisions taken by the

micro-classifiers, the higher is the score. This appears appropriate as it means that the

confidence of the object being detected directly relates to the number of its parts being

recognized.

Moreover, another consequence is that there is a theoretical independence between

the detection performance and the number of terminal aggregates in the lattice. In

fact, eq (3.14) shows that the average detection score is proportional to the number of

branches in the lattice. In other words, the ratio of true detection scores to false detection

scores remains constant on average. Of course, the variance of this ratio might change,

and the less terminal aggregates, the more unstable the performances might be. This

is confirmed by our experiments in Chapter 4. (Note that we also tried a different

probabilistic model: the one of Lowe [Low01], whose major difference is to take into

account the number of keypoints in the hypothesis area, but results were only worse).

Besides, our probabilistic model only takes into account the conditional dependency

between branches if they lie on the same lattice path. That is, two branches lying on

distinct lattice paths (i.e. paths that are connected only by the lattice root) are considered

independent. All in all, this results in modeling the joint conditional distribution only

for small groups of branches, each group being independent with other groups. In our

opinion, this is similar to the work of Özuysal et al. [zCLF09] where ferns are used

to classify keypoint patches and achieve excellent performance. In their work, a single

“fern” is a set of micro-classifiers small enough so that the joint probability distribution

can be modeled, while different ferns are considered as independent. If the reader thinks

of a lattice path as a fern, both models look similar (although the distributions used in

their work are different).

3.5 How to build the detection lattice

As we saw earlier, each path in the lattice represents the growth of an aggregate – i.e.

the gradual addition of new model features. As a consequence, the distinctiveness of the

aggregate grows as well. We can imagine that when the aggregate ultimately contains all

the model features (of a single training image), its distinctiveness is maximum. On the

other hand, it becomes too much distinctive to allow some tolerance to noise. The key

point of the training is then to find out at which point the aggregates become distinctive

enough and still maintain some robustness to noise.
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One solution would be to first build the complete lattice, then measure the distinc-

tiveness of all aggregates, and finally prune the lattice so as to maximize this trade-off.

However, because it is not tractable to build the complete lattice, we opt for a sub-

optimal solution consisting of iteratively adding a new level to the lattice, measuring

the distinctiveness of each new aggregate and stopping their growth when they become

distinctive enough.

3.5.1 Algorithm inputs

The training algorithm takes as inputs:

• npos training images In of a single 3D model object (e.g. different viewpoints, or

same viewpoints with different lighting conditions). In the following, we denote

the list of positive images as I+ = [In]
npos
n=1.

• a vector P+ = [p+
n ]npos

n=1 containing the positions of the model object in the previous

images. The object center, scale and orientation in each image have thus to be

known (at least approximately). 2

• nneg of negative training images. The model object must not appear in those images

as they are used to estimate background distributions. In the following, we denote

the list of negative images as I−.

• an integer parameter nterm controlling the trade-off between robustness and detec-

tion time of our method (see Section 3.4.2).

3.5.2 Iterative pruning of the lattice

Initially, the detection lattice only contains the empty aggregate (l = 0). Then, starting

from the first level (l = 1), the lattice L is built in an iterative fashion. For each level

l ∈ [1, ∞], the following operations are executed:

1. All possible children aggregates are added to level l:

L(l) =
⋃

Ai∈L(l−1)

{
Aj ∈ S(G)|¬is_terminal(Ai) and card(Aj) = l and Ai ⊂ Aj

}
where G is the unified prototype graph, S(G) is the set of all subgraphs of G and

L(l) = {Aj ∈ L|card(Aj) = l}. In the following, we call those new aggregates as

2In the case of 3D objects with many viewpoints, the orientation can be hard to define. We personally
choose the projection of the vertical axis onto the camera plane. In any case, this is not a big issue for our
training algorithm: the lattice size will just augment in case of ill-defined orientations as less redundancy
will be found between different viewpoints.
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“candidate aggregates”. (In fact, we arbitrarily limit their number to 8 times the

number of non-terminal aggregates in level l− 13 otherwise it would explode from

l ≈ 4 because of the exponential growth of the number of subgraphs).

2. Each candidate aggregate Aj ∈ L(l) is connected to its parents {Ai ∈ L(l− 1)|Ai ⊂
Aj} of the previous level by branches eij = (Ai → Aj). For each such branch,

the associated micro-classifier is initialized with a fixed threshold dmax
ij , learned

separately (see Section 3.5.3).

3. If l = 1: go back to step 1. (We prevent aggregates of only one feature to become

terminal.)

4. Loop until all candidates have been picked:

(a) Pick the best candidate Ak ∈ {Aj ∈ L(l)|¬picked(Aj)} according to the mu-

tual information (see Section 3.5.4).

(b) Set picked(Ak) to true.

(c) Detect model aggregate Ak in each training images, leading to a set of detec-

tion {A′k}.

(d) If Ak is no more detected in negative images, then Ak becomes terminal.

(e) If nLdet
npos
≥ nterm, the training algorithm stops and returns the current lattice L

cleaned from all remaining candidates (nLdet is the total number of detected

parts in the positive training images with the current lattice, npos is the num-

ber of positive training images and nterm is a parameter specifying the desired

number of detected parts per model image).

5. Go back to step 1.

Thus, aggregates may become terminal at different levels depending on their distinc-

tiveness (step 4.d). This can be connected to the human cognitive way of recognizing

occluded objects: an object can be identified even if a very small but very characteristic

part of it is visible and vice versa.

The stopping criterion in step 4.e aims at controlling the number of detectable model

parts (i.e. the number of terminal aggregates). When at least nterm model parts are

detected in each training image (on average), the lattice construction stops. The ranking

system of step 4.a, detailed below, ensures that every images is roughly covered by the

same number of parts. Note that a similar strategy is used in the MMRFS algorithm of

3That is, we randomly delete some candidates.
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Cheng et al. [CYHH07]. In the following we describe in more detail the steps 2 and 4.a

of the loop in Sections 3.5.3 and Section 3.5.4.

3.5.3 Learning the micro-classifier thresholds

As we saw previously, each lattice branch is associated to a micro-classifier that pro-

duces a binary decision by comparing a kernel distance to a threshold (see eq. (3.8)). We

have tried in a previous version of this algorithm to learn those thresholds individually

for each branch, by maximizing the mutual information on the training set. However,

we have found that this method was providing too unstable results and was computa-

tionally costly. Instead, we propose now to learn by advance the thresholds “once and

for all”, regardless of the model object by using an independent training set.

As with traditional cascades, our strategy is to minimize the false negative rate for

each micro-classifier. In other words, we do not want to miss a true detection. Since our

lattice paths are dedicated to recognizing small parts of the model object and since we

expect some noise, we thus set the thresholds to the maximal amount of noise expected

after usual image transformations (jpeg noise, blur, viewpoint change...). Specifically,

we have set the thresholds such that on average 95% of true matches are accepted (in-

differently of the noise types). Thus, the threshold is only function of the type of the

associated feature: for an branch eij adding the model feature φt
ij of type t, then we set

dmax
ij := dmax

t .

Detailed experiments on the calculation of these thresholds are provided in the next

chapter.

3.5.4 Ranking of the aggregates

During the training loop, for each level a large number of candidate aggregates are

generated. However, in the end only a few of the candidates are kept in the lattice

(the ones that lie on the path of a terminal aggregate), whereas all the other ones are

abandoned. The problem is then to select the best candidates so as to maximize both

following criteria:

• The individual efficiency. Efficient candidates generate more true detections and

less false detections.

• The coverage of every possible model parts. Because of the possibility of occlusion,

we need well spread aggregates to detect every areas of the training images, even
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though some areas are easier to detect than others (e.g. for a face: an eye versus a

chin).

In order to satisfy both criteria, we need an adapted metric to rank the candidates. For

that purpose, we have formalized this problem in the information theory framework.

To begin with, the mutual information measures the correlation between two random

variables X and Y:

MI(X; Y) = ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

In our case, we define the following variables:

• Let pn
m be the m-th part of training image In. We will define later more precisely

what is an image part, for now let just consider that it is a local patch of the image:

it has a center cn
m and a radius σn

m.

• Let Ai(pn
m) be a binary random variable representing the fact that aggregate Ai is

detected at position pn
m:

Ai(pn
m) =

1 if ∃A′i|pn
m = pA′i

0 otherwise.
.

• Let O(pn
m) be a binary random variable symbolizing the ground truth. As we

wish to detect aggregates in parts belonging to the model object and not to the

background, it is defined as:

O(pn
m) =

1 if In ∈ I+

0 otherwise.

(We do here the simplifying assumption that positive images do not contain back-

ground.)

Obviously, one can use the mutual information to measure the efficiency of a candidate

aggregate with respect to the detection task. In fact, the mutual information between O

and Ai tells us how much the aggregate Ai is useful for detecting the model object. If

Ai generates a lots of detections, both in positive and negative images, then the mutual

information will be low, likewise if Ai is detected neither in negative nor positive images.

The maximal mutual information will be reached when Ai is detected in positive images

and not in negative images.
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However, the mutual information used as a metric only satisfies the first criterion. In

order to satisfy both criteria (individual efficiency and good coverage), we use the gain

in mutual information. This is a measure of the amount of independent information

delivered by a third variable Z in addition to X:

gain(Z|X; Y) = MI(X, Z; Y)−MI(X; Y) (3.15)

where

MI(X, Z; Y) = ∑
x,y,z

p(x, y, z) log
p(x, y, z)

p(x, z)p(y)
.

In our case, gain(Aj|Ai; O) straightly gives us the amount of information provided by

a second candidate Aj, in addition to the first candidate Ai. If Ai and Aj detect exactly the

same model part then the gain is null; on the contrary, if Ai and Aj are complementary

(i.e. Ai and Aj detecting different model parts), the gain will be important. Furthermore,

the gain will be even more important if Ai and Aj are not only complementary but also

efficient separately. Likewise, we can measure the gain brought by a third aggregate Ak

with respect to Ai and Aj using gain(Ak|Ai, Aj; O) (and so on with any numbers of

aggregates).

As a consequence, we see here how the gain in mutual information can be a used as

a metric to rank the candidates in a way that optimizes both (a) the selection of efficient

candidates and (b) the detection of all model parts. However, computing the gain for

several random variables has an exponential complexity and in our case, we have to deal

with a large number of aggregates. The solution is then to use a new random variable,

M(pn
m) defined as the probability that a given part pn

m is detected with the current lattice:

M(pn
m) = p(∃Ai ∈ L(l+) and ∃A′i|pn

m = pA′i
),

where L(l+) is the set of already picked or terminated aggregates:

L(l+) = {Ai ∈ L|terminated(Ai)} ∪ {Ai ∈ L(l)|picked(Ai)}.

Since every picked aggregate will terminate sooner or later anyway, they are consid-

ered equally with terminal aggregates. In other words, M acts as a memory of all poten-

tial terminal aggregates such that gain(Ak|L(l+); O) ≈ gain(Ak|M; O). The advantage

is that the computation of gain(Ak|M; O) is in constant time instead of exponential time.

This simplification is possible because our process for accepting candidates is iterative:
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candidates are accepted one by one (see step 4), making it possible to “update” M each

time that a candidate is picked or terminated. Note that Vidal-Naquet and Ullman

[VNU03] have also used the mutual information as a feature selection process; however,

their optimization was with a max-min procedure different from ours (and slower as the

complexity in their case is squared with the number of parts).

3.5.5 Discretization of the training image into parts

Until now we have used undefined model parts pn
m for the calculation of the information

gain. Depending on the definition of what is a part, this computation can take different

forms and be slower or faster. Obviously, it is not tractable to compute the information

gain for an infinite number of parts. As a result, we have chosen to discretize the training

images into a small, finite set of parts.

More precisely, we have clustered the scale-space in a similar manner to the spatial

pyramid of Lazebnik et al. [LSP06]. We have used one pyramid of 4 levels for each

training image, and a single “virtual” location for all negative images. This makes a

total of 12 + 22 + 42 + 82 = 85 parts for each training image (each level is separated

from others by a factor 2 of scale). Hence, we need to store 85npos + 1 probabilities in

M. Those are respectively the probabilities for each model part to be detected with the

current lattice, and the probability to detect the background (see Figure 3.8).

Note that we have not used false positive images in the computation of the infor-

mation gain for the seed branches (first iteration in our training loop). This is because

we want to select seed features that are robust to initiate the detection of true model

parts regardless of their detection performance on background images. This is in the

same philosophy as with traditional cascades: the first micro-classifiers, more than any

others, should generate as few false negative as possible in order not to impair the rest

of the detection process (the next micro-classifier purpose being then to evacuate false

positives).

Explicitness of the coverage map M As we saw earlier, M(pn
m) stores the probabilities

of detecting parts with the current lattice. We define those probabilities as:

M(pn
m) =


1−∏nL(l+)

det (pn
m)

(1− pK
rep) if In ∈ I+

0 otherwise.
(3.16)

where nL(l+)
det (pn

m) denotes the number of detection of the part pn
m by the terminal and

picked aggregates in the current lattice, and pK
rep is the keypoint repeatability: it is the
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probability that a keypoint is detected at the same place after some noisy transforma-

tion. In M(pn
m), we consider for simplification that the probability that an aggregate is

detected is equal to the probability pK
rep that its seed feature is detected. Making the

assumption that all seed features are detected independently, we get the above formula

(upper row of eq. (3.16)). (Note that this formula makes it possible to update M in

constant time each time that nL(l+)
det is incremented.) Practically, we use linear interpola-

tion to dispatch a detection into several contiguous cells pn
m of the spatial pyramid. This

is done based on the center cA′i
and radius σA′i

of the detected aggregates. Moreover,

we only count as positive a aggregate A′i detected in model image In if it accurately

extrapolate the ground truth position:

∥∥∥chyp
n − c+

n

∥∥∥2
+
∥∥∥hhyp

n − h+
n

∥∥∥2
<

σ
hyp
n σ+

n
4

(3.17)

where p+
n is the known position of the model object in In and phyp

n = sim2D(pre f ; Ai, A′i)

(this formula allows for some tolerance: a factor 1.5 in scale difference is accepted if the

two centers chyp
n and c+

n are equal, for instance). Finally, we do not store the probability

of false detections in M. It would be pointless, as there are a very large number of

potential parts in the negative images and we can not reduce all those probabilities in a

single value. An example of the evolution of M during training is shown in Figure 3.8.

3.6 Conclusion

We have presented a novel approach for the detection of instances of specific objects.

This system enables a fast recognition robust to noise and occlusions. The introduction

of local kernels allowed to combine different types of features while still preserving the

invariance to a large set of transformations. The cascaded structure of the detection

lattice enables a smart handling of the graph matching problem in a continuous space

(i.e. the test image is not discretized into a graph) contrary to classical graph matching,

in order to improve both speed and robustness.
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0

1

0.5

Figure 3.8: Top row: model parts according to the scale-space pyramid decomposition.
Subsequent rows: evolution of the probabilities stored in M to detect each model part
while building the detection lattice. Second row: l = 2; third row: l = 3; fourth row:
l = 6.
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This chapter presents a quantitative evaluation of the contribution presented in the

previous chapter. Firstly, we detail the preliminary training step for determining

the micro-classifier’s thresholds independently of any model object. Then, an in-depth

examination of the performance is conducted for different datasets: our own dataset for

mobile robotic, the dataset of Ferrari et al. [FTG06] and the dataset of Rothganger et al.

75
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[RLSP06]. We also make a quantitative comparison against some of the most popular

algorithms from the state of the art (a baseline ransac, the improved lo-ransac from

Chum et al. [CMK03] and Lowe’s method [Low04]). Results shows that our approach

outperforms those algorithms in realistic conditions of mobile robotic. On the two other

datasets, our method performs slightly less well than the best existing methods but still

holds out well while providing very fast detection.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



4.1. Discussion about the evaluation 77

4.1 Discussion about the evaluation

There exist several methods and datasets for evaluating the performance of a specific

object detection system. In the following of this section, we give an overview of the

existing datasets and metrics in the state-of-the-art and we justify a selection of the most

relevant ones with respect to our method and our objectives.

4.1.1 Test datasets

4.1.1.0.1 Existing datasets There are several available datasets to evaluate algorithms

for specific object detection. Among them, we can cite:

• The dataset of Ferrari et al. [FT04] (9 model objects, 23 test images). It focuses

on 3D object recognition (4 objects have one view, the other 5 have 6~8 views) in

heavily cluttered conditions. Strong occlusions make this dataset quite challeng-

ing. Moreover, large distortions of the model instances are often visible because

of (1) extreme perspective effects and (2) non-rigid distortions (e.g. bended maga-

zine).

• The dataset of Rothganger et al. [RLSP06] (8 model objects, 51 test images) for

3D object reconstruction and recognition. The particularity of this dataset is that a

large number of training views are provided for each object (between 20 and 28),

so that a full 3D reconstruction is possible. concerning the test images, they show

the objects in varying scale, pose and level of occlusion. The amount of clutter also

varies depending on the images. Finally, note that the test images are very large in

surface (2~3 MPixels) which leads to a large number of keypoints per image and

hence a long detection time.

• The dataset of Moreels et al. [MP05, MP08]. It consists of close-up views of home

objects (101 objects, 123 test images) and toys (31 objects, 141 test images). Similarly

to the previous datasets, the test images show close-up views of the model objects

in cluttered background with possible occlusion. Note that only two methods have

been evaluated on this dataset (Moreels’ and Lowe’s method).

• The dataset of Kootstra et al. [KYdB08]. It consists of close-up views of seven ob-

jects under 36 different viewpoints (images are taken by a mobile robot equipped

with a CCD camera). The dataset is not publicly available to our knowledge, but

appears easy because the sample pictures shown in the original paper [KYdB08]
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Ferrari et al. [FT04] Rothganger et al. [RLSP06]

Moreels et al.
[MP05, MP08]

Our dataset
[RLAB10a, Rev09]

Figure 4.1: Sample test images from different datasets for the evaluation of specific object
recognition systems.

display no occlusion and few clutter. No real evaluation has been performed on

this dataset (only pairwise keypoint matching).

• The dataset of Kushal and Ponce [KP06] (9 model objects, 80 test images). It em-

phasizes the 3D aspect of object recognition: each model object comes with 7~12

training viewpoints and appears in various 3D poses in the test images with pos-

sibly strong occlusions. This dataset mostly resembles the dataset of Rothganger

et al. [RLSP06]. Furthermore, only the method of Kushal and Ponce [KP06] and

two baselines have been evaluated on this dataset.

To sum up, in all those datasets test images consist of close-up views of the model ob-

jects, often strongly occluded (see some examples of test images in Figure 4.1). Although

this is challenging, we do not find this aspect really realistic regarding scenarii of mobile

robotic. Usually, a mobile robot has to detect an object from a certain distance despite a

low-quality acquisition device, which is an essentially different task. As a result we de-

cided, in addition to evaluating our system with the first two datasets presented above

for comparison purpose, to create a new dataset providing more realistic conditions for

robotic vision. We describe our dataset and the associated experiments in Section 4.3.
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4.1.2 Evaluation metrics

In most similar works, results are presented in the form of Receiver Operating Char-

acteristic (ROC) curves. This is a clever choice as it enables one to see in one glance

the efficiency of the method: the more the curve follows the left and top boundaries,

the better the performance is. In a classical ROC curve, the abscissa axis represents the

False Positive Rate (FPR) and the ordinate axis represents the True Positive Rate (TPR).

The TPR and FPR are respectively defined as the ratio of true (resp. false) detections

to the total number of positive (resp. negative) boxes defined in the ground truth. A

true detection occurs when the detection system hypothesizes a box fitting enough the

ground truth (in our case, a minimum in mutual overlap of 25% is required) and having

the correct label. Since for each detection is associated a confidence by the detection sys-

tem, by varying the threshold of minimum confidence one can generate all ROC curve

points.

Nevertheless, it is difficult to define the FPR in the case of object detection, because

the number of negative boxes is potentially infinite when we consider every possible

combinations of location, orientation and scale not fitting positive boxes. As a con-

sequence, instead of the FPR we prefer to use the average number of False Positive

detections Per test Image (FPPI) as in [FFJS07]. Another alternative chosen by Ferrari

[FTG06] is to use the 1 − precision value, where the precision is defined as the ratio

of the number of positive detections to the number of detections (both above a given

threshold). This choice appears to us less pertinent as it is less meaningful to the reader.

Averaging issues In the literature, results are generally presented in term of a single

ROC curve, although the dataset is composed of several model objects varying in ground

truth box count and difficulty. Because in our dataset the number of ground truth boxes

for each model object can considerably vary, we present both the standard single ROC

curve (all model objects combined) and the averaged ROC curve obtained by vertically

averaging the individual ROC curves corresponding to each model object.

In other words, two different scenarii are used to compute the ROC curves for our

dataset. In the first scenario, the ROC curve is generated by only taking into account the

detections boxes, indifferently of the object identity (i.e. the same thresholds are used

for all objects); in the second scenario, the ROC curve is obtained by vertically averaging

the individual ROC curves corresponding to each object (i.e. different thresholds may

correspond to similar FPPI values). We believe that the first scenario is more realistic

as in a practical utilization individual thresholds per object may be unknown, although

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



80 Chapter 4. Evaluation of Our Contribution For Specific Object Detection

it is less fair because in this case all objects are not equally represented in the curves.

For completeness, we show both curves each time believing that each curve should be

considered with an equal importance.

Area Under Curve (AUC) In order to measure in a single real value the performance

of a detection system, we use the Area Under ROC Curve (AUC) metric. As the name

indicates, it simply corresponds to the area under the ROC curve (i.e. for the range of

FPPI shown in the plot, usually 0 ≤ FPPI ≤ 1). This is a robust measure which ranges

between 0 and 1 (note that it is closely related to the average Precision).

4.2 Preliminary training

Preliminarily to the experiments, we have to train the lattice parameters that are inde-

pendent of the model objects. The following parameters are to be trained:

• The thresholds dmax
ij of each branch micro-classifier (Section 4.2.1),

• The local kernel parameters (Section 4.2.2).

4.2.1 Learning the subclassifier thresholds

As we saw previously, each lattice edge is associated to a simple micro-classifier that

produces a binary decision by comparing a kernel distance to a threshold (see eq. (3.8)).

Our goal in this section is to learn the classifier thresholds in a automated manner. We

have tried in a previous version of this algorithm to learn those thresholds individually

for each edge, by maximizing the mutual information on the training set. However, we

have found that this method was providing too instable results and was computationally

costly. Instead, we propose now to learn by advance the thresholds “once and for all”,

regardless of the model object by using an independent training set.

As with traditional cascades, our strategy is to minimize the false negative rate for

each subclassifier. In other words, we do not want to miss a true detection. Since our

lattice paths are dedicated to recognizing small parts of the model object and that we

expect some noise, we thus set the thresholds to the maximal amount of noise expected

after usual image transformations (jpeg noise, blur, viewpoint change...).

For this purpose, we have used the dataset made available by Mikolajczyk and

Schmid [MS05]. This dataset was originally proposed for the evaluation of feature de-

tectors+descriptors and is composed of 48 pictures belonging to eight distinct sets (6

pictures in each set). Each set represents the same scene purposely affected by a type of
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noise, such as JPEG noise or slight 3D viewpoint change. What makes the dataset inter-

esting for our purpose is that the pairwise pixel correspondences between each image

of a set are provided as ground truth. As a result, it makes it possible to measure the

amount of noise caused by usual transforms on the kernel distances defined in Section

(3.3).

Namely, we have extracted a large amount of random aggregates in all 48 images.

Then, knowing aggregate correspondences (based on the adequacy between ground

truth and their position) we have measured the distribution of kernel distances for true

matches. Note that contrary to other authors like Lowe [Low04], we are not interested

by the case of false matches. Indeed our unique purpose is to build lattice paths that are

robust to noise; the distinctiveness of the aggregates being later handled by the succes-

sion of subclassifiers – eliminating more and more false detections, as with traditional

cascades.

The resulting histograms of distances are presented in Figure 4.2 for each kernel. We

have set the thresholds such that on average 95% of true matches are accepted (indiffer-

ently of the noise types). Specifically, the threshold is only function of the type of the

associated feature: for an edge eij adding the model feature φt
ij of type t, then we set

dmax
ij = dmax

t .

The retained thresholds are presented in Table 4.1. For the keypoint type, there are two

kernels: the first one is used to compare SIFT descriptors of seed features (first row of

Table 4.1) while the second one is used in the subsequent levels of the lattice (second

row of Table 4.1). For the seed branches, we only authorize matches if the descriptor

distance is less than dmax
Kz = 0.251, which corresponds to 75% retrieval (dmax

Kz is the micro-

classifier threshold of the seed branches and appears in Algorithm 3.1). We reduced this

proportion with respect to 95% in order to fasten the matching. Indeed, it makes a big

difference in speed because the detection time is somehow proportional to the number

of matched seed features. According to our experiments, restraining the threshold to

75% of retrieval divides by 10 the number of matches compared to a threshold of 95%

and does not impair much the performance. This optimization is used only for the first

level; for the subsequent levels we set ζK = 0.5 for the second kernel (representing 95%

retrieval). Finally, we have also measured the repeatability of keypoints prep
K needed in

eq. (3.16), see rightmost column of Table 4.1
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Figure 4.2: Distance distributions corresponding to true matches for each kernel. The
irregular curves for KK and KE are due to normalization effects on integer distances
(typically for small line segments or keypoints).

Table 4.1: Retained thresholds and standard-deviation for each feature types.
Type Kernel Branch level dmax

t repeatability
Keypoint (desc) Kz

K 0→ 1 0.251 0.345882

Keypoint (pos) KK n→ (n + 1), n ≥ 1 1.004

Segment line KE n→ (n + 1), n ≥ 1 0.793

Texture KT n→ (n + 1), n ≥ 1 0.944
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4.2.2 Other kernel parameters

A few other parameters have to be fixed a priori for the local kernels. We arbitrarily set

α2
K = 8 for the second keypoint local kernel KK (see eq. (3.2)) to balance location against

scale and orientation. Concerning textures, since their descriptor varies smoothly along

the image, they are robust to slight positioning errors so we considered a unique test as

sufficient, i.e. we set α2
T = 1 and ζT = 0 (see eq. (3.4)). This minimum setting produces

excellent results, see below.

4.3 The CS17 dataset

As stated above, we have created a new dataset for the sake of better simulating clas-

sical robotic vision conditions. The name “CS-17” originates from the laboratory name

directed by Professor Ariki (Kobe University) where it was made.

Dataset description

We have manually shot a dozen of indoor videos with a standard SONY handycam.

The image resolution is willingly smaller (720× 480) than in the existing datasets where

high-quality photos are used. As stated above, our choice is motivated by the aim of

better simulating the realistic conditions of robotic vision, which are generally much

more difficult because of the poor luminosity conditions of the indoor environment, the

variety of noises (captor noise, movement blur, video interlace) and also because of the

objects themselves which are not always heavily textured. The videos were sampled at

10 fps (resulting in 2837 frames, a much higher number than in the existing datasets)

where the ground truth was manually labeled. All training and test images can be found

at http://liris.cnrs.fr/jerome.revaud/CVIU.

Figure 4.3: Model objects used in the experiments. The amount of texture and the shape
dramatically differ depending on the object.
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Table 4.2: Dataset statistics. The third and fourth columns respectively denote the num-
ber of training images and the number of positive boxes in the ground truth.

# model name train test

1 frame 1 784

2 stuffed animal 4 319

3 50cl bottle 3 130

4 keyboard 1 121

5 cloth hanger 2 352

6 desk chair 4 477

# model name train test

7 tea mug 4 224

8 coffee table 4 329

9 journal 3 201

10 vinyl record 3 207

11 fire extinguisher 3 235

Model objects Eleven objects at our disposal, such as a cloth hanger or a fire extin-

guisher, were used to test our system. The detailed list of model objects is presented in

Table 4.2 and their pictures can be seen in Figure 4.3. The objects were chosen based

on their amount of texture and their shape in order to cover a large range of possible

indoor objects: the bottle, the journal and the vinyl models are heavily textured contrary

to the mug and the small table models; the frame, the journal and the vinyl models are

flat and rectangular whereas the stuffed animal, the bottle, the chair legs, the mug and

the small table have complex 3D shapes; the hanger, the chair legs and the mug contain

holes and/or sharp edges; the frame, the bottle, the chair legs and the journal are prone

to specular reflections; etc.

As in similar datasets [FTG06, MP08], we have used a small number of training im-

ages per model object (between 1 and 4). However, all model objects are only shown

from a single 3D viewpoint (in other words, this is a 2D dataset). When several training

images are available for a single object, it simply means that they are taken in different

viewing conditions (e.g. scale, lighting) under the same viewpoint with possible redun-

dancy. From the 2837 frames, 2272 frames contain at least one model object (i.e. 565

frames only show background) and the total number of true boxes is 3502.

4.3.1 Parameter Tuning

Before proceeding to the experiments, we need to tune two parameters of our approach:

• The average number nterm of detected parts per model image (Section 3.5.2).

• The number nneg of negative images (Section 3.5.1). For simplicity, we assume in

the following that all negative images are independent and have roughly the same

size.

In order to study how the performance of our approach vary depending on these two

parameters, we have divided our dataset between a held-out validation set (all the im-
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Figure 4.4: Impact of the number of negative training images on the performance in
term of AUC value (in fact: almost no impact).

ages having the suffix “0.jpg”, hence 1/10
th of all test images) and a test set (the rest of

the dataset). All tuning experiments presented in the following of this subsection are

done on the validation dataset.

Number of negative images We have first investigated the number of negative images

in the training set. To that aim, we have launched the training procedure for values of

nneg comprised between 2 and 80, having fixed beforehand nterm to 200. The first 19

negative images were shot by us in the laboratory, the next images are sampled from

the “Background” category of the Caltech-101 dataset [FFFP06]. (The average number

of seed features per negative image is about 1000.) Then, we have measured the perfor-

mance in term of AUC metric. Results are presented in Figure 4.4.

As can be observed, results are stable for any number of negative images (only a

small decay is observed for nneg = 2), in accordance with our theoretical model (i.e.

the number of negative images is not involved in our probabilistic model). However, it

should be noted that the number of negative images have an influence on the average

depth of the lattice paths (i.e. on the distinctiveness of the terminal aggregates). This

is logical insofar as aggregates become terminal when they are no more detected in

negative images (see Section 3.5.2). So for a large number of training images, aggregates

must be very distinctive to terminate their path. Because their distinctiveness grows

along with their depth, it encourages long paths in this case.

In Figure 4.5, this effect is illustrated by the fact that the number of detections is

much larger for low values of nneg. This in turn impacts the detection time: a larger

number of hypothesis involves a larger clustering time, and because our algorithm is

greedy it becomes typically quite slow. The difference of time between nneg = 5 and

nneg = 80 is about 0.5s according to our experiments. As a consequence, we choose in

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



86 Chapter 4. Evaluation of Our Contribution For Specific Object Detection

0

10000

20000

30000

40000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80A
ve

ra
ge

 d
e

te
ct

io
n

 c
o

u
n

t 
p

e
r 

im
ag

e

Number of negative images

Figure 4.5: Impact of the number of negative training images in term of the average
number of detections per image. Because large numbers of negative images encourage
distinctive aggregate, there are less detections per image for similar performance.

the following experiments an intermediate value of nneg = 30 because the number of

average detections per image stabilizes from this value. This corresponds in practice to

a cumulation of about 30,000 seed features in the negative images, hence a probability

for termination of p(Ai|¬O) < 1/30000 ' 3.10−5.

Number of model parts Now that we have studied the influence of the number of

negative training images, we turn now to the number of model parts detected by the lat-

tice. We recall that the parameter nterm corresponds to the minimum average number of

detected aggregates per model image during the lattice construction (Section 3.5.2). For

instance, a value nterm = 1 means that the lattice detects at least a single aggregate (i.e.

part) in each model image, on average. Theoretically, this parameter has no influence on

the detection performance (see the discussion in Section 3.4.6), but this is without con-

sidering the possibility of occlusion or noise. In practice, we have to trade-off between

a small value of nterm (favoring a small lattice hence a fast detection) and large value of

nterm which brings more robustness to occlusion and noise (because more model parts

are likely to be detected).

We have experimented different values of nterm to verify this effect. The results are

presented in terms of AUC in Figure 4.6 averaged for nneg ∈ [2, 30]. As can be seen, the

performance does not vary significantly for nterm ∈ [40, 200] (especially, no significant

improvement is observed for nterm ≥ 135). However, the variance of the results signif-

icantly decreases from nterm ≥ 60, confirming our guess that small numbers of model

parts produce less stable results. On the other hand, the detection time is significantly

inferior for a smaller number of parts: Figure 4.6 shows that the detection time is roughly

linear with the value of nterm (remember that the preliminary feature extraction time is

constant and independent of nterm; it is denoted by a red area in Figure 4.6). This makes
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Figure 4.6: Influence of the parameter nterm on the detection performance (left) and on
the detection time per image for searching all 11 objects (right). nterm corresponds to the
average number of detected parts per model images.

sense because nterm straightly relates to the lattice breadth (see the paragraph “detection

time” below). As a consequence, we use the adequate value of nterm corresponding to

the best AUC to detection time ratio in Section 4.4 and 4.5. In this section, we just use

the value producing the best results (nterm = 200); but remember that almost similar

results are achieved from nterm ≥ 60 as shown in Figure 4.6.

4.3.2 Comparative experiments

Experimental settings

We have trained our detection lattice with all available positive images (knowing the

bounding boxes and orientations of the objects), and nneg = 30 negative images, consti-

tuted by 19 background photos of the indoor environment plus the 11 first images of

the “Background” category of Caltech-101. We have set the number of model parts to

nterm = 200, but similar results can be achieved with lower values as illustrated in Figure

4.6.

Concurrent approaches We compare our contribution against the most commonly

used methods for this task from the state of the art:

• A baseline RANSAC [FB81] with a homography. Keypoints from all model im-

ages are stored into a k-d tree to enable their fast retrieval (matches are based on

the first-to-second best neighbor distance ratio being less than 0.8). Since a ho-

mography needs at minimum 4 matches to infer a pose hypothesis, the number of

iterations excessively increases when the ratio of inliers is small. As a consequence,

we used an over-estimated probability of 10% (the true effective rate being much

smaller). The tolerance for the localization of inliers was set to 5% of the diameter
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of the detected objects (this value gives the best results on our dataset). Finally, the

stopping criterion and the probabilistic formula asserting a detection are the same

as in prosac [CM05].

• The locally optimized ransac (lo-ransac) as theorized by Chum et al. [CMK03]

and practically adapted by Philbin et al. [PCI∗07]. It is similar to ransac except

that a similarity transform is used in the main loop and a homography in the

local optimization step (called every time that a new maximum of inlier count

is found). This solution enables a much lower probability for inliers ratio as the

similarity transform only requires a single match: we set a worst-case ratio value of

1% without noticeable slowdown. As with the standard RANSAC, the probability

of finding the object is moved to generate the ROC curve, however contrary to

RANSAC an inlier tolerance of 5% for the outer loop and 2.5% for the inner loop

produces the best results.

• The object recognition system from Lowe [Low04]: SIFT keypoints are used for

local feature matching using a kd-tree search. Each match casts a vote for an

approximate model pose, the votes are then accumulated into a hash map and

all clusters of 3 votes or more are verified using an affine transform. Remaining

hypothesis undergo a probability decision and the threshold on the acceptance

probability is used to generate the ROC curve.

Experimental results

The detection performance is presented for each method in terms of ROC curves in

Figure 4.7. As stated in Section (4.1.2), we display two plots in order to reflect both

averaged performance (left plot, all model objects have an equal weight) and overall

performance (right plot, all instances are considered indifferently of their model object).

This distinction appears important to us because some model objects are largely more

present in the test set than others (e.g. the frame object, see Table 4.2), making the right

plot imbalanced. Nevertheless, the two plots look rather similar for all methods meaning

that the performance on each model object alone are approximately equivalent. Sample

detections for our method are also shown in Figure 4.8.

Our contribution significantly outperforms all concurrent methods. Among them,

Lowe’s method is producing the best results, but is still far behind ours. In order to

check whether this superiority was coming from our implementation of Lowe’s method

or not, we have tested it on several separate images. An example of such test is shown

in Figure 2.11 (Chapter 2). In this image, the beaver is correctly detected with a score of
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Figure 4.7: Comparative results for the CS-17 dataset in term of ROC curves.

(1− 10−12) (15 matches) despite a projective transform and a lot of clutter, whereas the

second best detection (out of fourteen) only has a score of 0.23 (6 matches). In addition

to those sample tests, we have also tested our implementation on the Rothganger dataset

(see Section 4.5 below) and we have obtained a similar result to the one reported, which

has reinforced the idea that our implementation is trustable.

In fact, the explanation of the failure of traditional methods arises instead from the

fact that our test images are extremely noisy. An example of such noise is shown in

Figure 4.9 where the leftmost image are the training images and the other image corre-

sponds to detected instances, rescaled such that all objects have the same scale. As can

be observed, serious distortions affect the instance pictures (note that those images are

rendered using the PNG format in this document, so that no artificial noise is added

compared to the original test images). Those distortions are caused by scale changes

(instances often appear very small because they are seen from a large distance), MPEG

noise, movement blur and light reflections. As a result, a lot less keypoints are detected

on the instances, or similarly, the repeatability of keypoints is reduced.

Extracting more keypoints To verify that our keypoint detector was not the cause

of this detection failure, we have tried to generate more keypoints: instead of using

Lowe’s executable (which is not parametrizable), we have used the SIFT implementation

made available by Andrew Vedaldi [VF08]. We have lowered the extraction threshold,

which resulted in 3720 keypoints per test image on average, instead of 949 before. The

curves displayed for Lowe’s method and LO-RANSAC method in Figure 4.7 are actually

produced with this setting. Note that this setting does not really change the outcome:

extracting more keypoints only slightly extends Lowe’s curve to the right from the point

where it reach its maximum TPR (thus no improvement is achieved) at the price of a
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Figure 4.8: Examples of detections on the CS-17 dataset using the proposed method
(FPPI is set to 0.01 for each model). This method is robust to occlusions, rescaling,
viewpoint changes and various captor noises like movement blur. Correct detections
are represented with green squares, incorrect detections with red squares, and missed
objects with dashed blue squares.
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Figure 4.9: Sample detections for our method on the CS-17 dataset for four model ob-
jects: the stuffed animal, the fire extinguisher, the vinyl and the frame (leftmost im-
ages). It should be noticed that the instances suffers from serious noise sources such as
rescaling, MPEG noise, movement blur and light reflections. For this reason, traditional
methods fails at detecting most instances.
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Table 4.3: Average processing times with a 2.3 GHz computer on a 720x480 test image
for 11 model objects. Our detection time depends on the parameter nterm (e.g. 400 ms for the
curves reported earlier with nterm = 200).
1 We use Lowe’s executable to extract the SIFT keypoints, which is rather slow because the image
first has to be converted to the PGM format, and the extraction output is made through a text
file. With more efficient implementations of the SIFT detector, the detection time is about 1s.

Operation time (ms)

SIFT keypoints 1648
1

Feature extraction Edges 310

Textures 210

RANSAC 225

Object LO-RANSAC 108

detection LOWE 81

Ours 80~400

considerably slower detection speed. On the contrary, for the standard RANSAC, the

best performance was obtained with Lowe’s executable because for RANSAC with an

homography, the chance of hitting four correct matches is higher when the number of

image keypoints is small.

Detection time

We summarize in Table 4.3 the average detection time necessary for searching the 11

models objects in each test image. All tests were processed on a 2.6 Ghz computer

without coding any particular optimizations. Globally, the feature extraction step on a

720x480 image takes about 2s which three-quarters are spent solely for keypoint extrac-

tion (note that Lowe’s executable used to extract SIFT keypoints is probably not opti-

mal, e.g. other keypoint detectors like the one in [zCLF09] are almost instantaneous).

Moreover, edge and texture features are only used by our contribution although their

extraction is rather fast. An efficient implementation could be obtained by parallelizing

all these processes on different cores.

Our contribution remains relatively fast, depending on the value of nterm (see Figure

4.6). Indeed, the small number of features in terminal aggregates (2.6 on average, to

relate to the thousands of features initially present in the prototype graphs) enables

almost instantaneous verifications. For a value of nterm ≥ 60, the detection time of

our system is comparable to that of Lowe’s method or LO-RANSAC and the detection

performance is still largely superior to theirs. Still, we believe that our system could be

accelerated several times with an appropriate optimization. In fact, the detection time is

linear with the number of branches starting from the root node, because each keypoint

in the test image is compared to each first-level seed feature. So by interposing a tree-
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shaped indexing structure between the root and the first-level aggregates, one should be

able to achieve a significant speed-up. The work of Beretti et al. [BDV01] for indexing

graph using nested spheres, for instance, seems to be a promising track to achieve such

a boost. This is however beyond the scope of this dissertation.

4.3.3 Discussion

As stated earlier, our contribution significantly outperforms the methods which we com-

pared to. Although it is difficult to give an exhaustive list of the causes of this superiority,

here are the main trends:

• Contrary to the others, our method generates a lot of detections from which the

correct ones tend to pile up whereas the negative ones behaves as a random uni-

form noise. In comparison, even a very low probability threshold for Lowe’s

method and LO-RANSAC surprisingly does not produce a lot more true posi-

tives (i.e. ROC curves stop very soon in Figure 4.7). This is due to the fact that

these methods require respectively at least 3 and 4 correctly matched keypoints

(but often more) to assert a single detection, which is quite a difficult prerequisite

in our noisy conditions (see how dirty object instances are in Figure 4.9).

• When the model object is poorly textured, the keypoint descriptors are very unspe-

cific, decreasing the probability that the best-to-second distance ratio is accepted.

Since our method uses absolute distance between keypoint descriptors, it is not

affected by this issue.

• Scale is very different between model images and instances in videos. Usually,

model photos are taken in close-up while detection needs to recognize the objects

at a much smaller scale. This is a problem for keypoints, since their theoretical

invariance to scale owns some limits, whereas texture features which are not salient

are readily extractable everywhere in the image. On the contrary, our method

specifically addresses this issue by dedicating aggregates to large scaled model

parts (see Section 3.5.5).

• When the object surface is small or when the object contains holes (e.g. the cloth

hanger), SIFT keypoints describe most of the time the background instead of the

object. Our method can use line segments which are less prone to background

clutter.

Moreover, our approach demonstrates that an efficient detection scheme can be built

in a two-steps manner: one first part for fast and rough hypothesis generation using a
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Used features AUC Difference with K+E+T
Keypoints 0.44 -0.10

Edges 0.47 -0.07
Textures 0.55 +0.01

Keypoints + Textures 0.51 -0.03
Keypoints + Edges 0.54 +0.01
Edges + Textures 0.54 +0.00

K+E+T 0.54

Table 4.4: Contributions of each feature type on the CS-17 dataset for our method. The
leftmost column specifies which subset of the 3 basic feature types were used to construct
the lattice from the second level (the first lattice level always remains composed with
keypoints). The two other columns show the performance thus obtained in term of ROC
AUC and the difference with the normal case where all three feature types are used.

small fraction of the model information, and a second part for verification using the rest

of the model information. In our case, the cascaded structure of the lattice intrinsically

includes the two parts, because the first part for hypothesis generation is constituted by

the seed branches, and the second part for verification is performed by the rest of the

paths (from level l ≥ 2).

Importance of each feature type We have taken a look at the importance of each fea-

ture type regarding the detection performance. To do so, we have constructed the detec-

tion lattice using a subset of the three proposed feature types (i.e. keypoints, edges and

textures). For instance, we have constructed detection lattices using only edges. (Note

however that the first level of the lattice is an exception to this constraint as it remains

always exclusively composed of keypoints.) Then, we have measured the performance

of such lattices on our dataset in terms of AUC value; results are presented in Table 4.4.

In general, the combination of two feature types performs better than one type used

alone but clearly the best performance is obtained when the “Texture” feature type is

present. The explanation to the superiority of the texture features is that they are not

affected by repeatability issues: they are readily extractable everywhere. In contrast, the

keypoint and edge types are salient and thus their extraction is subject to the presence of

noise (typically: rescaling, motion blur), although the edge feature is more flexible than

the keypoint feature (see Section (3.3.2)). To conclude with, this confirms our assumption

that salient features, still important for reducing the search space and for readjusting the

aggregate positions during their growth (texture feature does not have any anchorage),

should be used in association with non-salient features to gain robustness.

For completeness, we also show in Table 4.5 the proportion of each feature type

automatically chosen in each detection lattice for this dataset. The texture type is logi-
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Table 4.5: Lattice statistics for each model object. The three columns respectively denotes
the percentage of keypoints, edges and textures automatically chosen in the recognition
lattice.

# model name % kpt % edge % tex

1 frame 22.2 14.4 63.3

2 stuffed animal 14.1 8.9 77.0

3 50cl bottle 19.5 8.6 71.9

4 keyboard 20.7 8.7 70.7

5 cloth hanger 22.4 19.1 58.9

6 chair leg 12.1 18.4 69.5

# model name % kpt % edge % tex

7 tea mug 10.2 22.2 67.7

8 coffee table 8.9 14.8 76.3

9 journal 18.3 14.8 66.9

10 vinyl record 35.8 22.8 41.4

11 fire extinguisher 21.5 11.7 66.8

average 18.5 15.0 66.5

cally dominating for two reasons: first of them, it is an efficient feature as said earlier;

and secondly texture features are extracted in large number at the construction of the

prototype graphs, making them statistically more often connected to the other features.

4.4 The ETHZ toys dataset

For comparative purpose, we have evaluated our approach on two existing datasets. The

first of them is the ETHZ-toys dataset as made available by Ferrari et al [FTG06].

Dataset description The ETHZ-toys dataset [FTG06] is composed of 9 model objects

and 23 test images containing 42 instances in total. The number of training images

per model depends on the model object: some objects are covered by (up to) 8 views

forming 360° viewpoints, while some others have only a single training image (e.g. two

magazines). All model objects are strongly textured, either with textual patterns or

with printed images, making them an easy target for keypoint-based detection systems.

However, the main challenge of this dataset lies in three points: (a) the heavy amount

of clutter in the test images; (b) the important amount of occlusions; and (c) the strong

distortions with which the model objects appear in the test set. The distortions can be

either caused by a close-up, causing the perspective projection to be quite extreme (e.g.

the fourth image in Figure 4.10 for instance), or the consequence of intended non-rigid

deformations (e.g. first and fifth images in Figure 4.10).

Experimental settings As mentioned above the distortions of the instances in the test

images are extremely important and cause the failure of most pairwise matching be-

tween SIFT descriptors, causing in turn extremely low performance for our method.

Probably for this reason, Ferrari et al. have used affine invariant features instead of only

scale invariant features. This supplementary invariance indeed provides better pairwise
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Figure 4.10: Sample images from the ETHZ-toys dataset [FTG06]. Instances suffer from
strong distortions (non rigid distortions in the first and fourth image, extreme perspec-
tive effects in other images) or strong occlusions (all 6 images). The correct detections
for our method are bounded by green rectangles, the roman soldier toy inside a blue
rectangle in the last image was not detected by our method.
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matching performance for strong viewpoint changes. We could have done the same, but

our method is not designed to use affine invariant features as seed features (i.e. there

would be two half vectors per feature instead of one).

So instead, we have used a simpler trick inspired to us by Yu and Morel on their

work with ASIFT [YM09]. ASIFT is an extension of SIFT to the affine invariance. In this

work, affine SIFT features are generated by simply extracting SIFT features on affinely

deformed versions of the input image. In our case, we have simply generated additional

views using a projective transform and we have added those views to the training set.

Various distances of the objects to the camera were used (i.e. assuming flat objects),

resulting in 9 times more pictures than in the original training set. Concerning the

negative training set, we have used the first nneg = 30 images of the “Background”

category of the Caltech-101 dataset as no negative images were provided in the original

dataset.

Experimental results we have tried different values of nterm and we only display here

the results for nterm = 135, as no significant improvement was obtained beyond. The

corresponding ROC plot is shown in Figure 4.11. Our method produces good results

at null FPR (equivalent to the one of Ferrari’s method), however no real improvement

is obtained for increasing FPR - contrary to Ferrari’s method. Note however that color

information is used in Ferrari’s method but not in ours, which might be an important

handicap for us on such a difficult dataset. Still, our method is well beyond all other

methods to which Ferrari et al. compare to for decent values of FPR (the abscissa axis

on the ROC plot corresponds to 1 − precision, meaning that after 0.5 there are more

erroneous detections than correct ones). As a consequence, we consider those results

as very satisfying regarding the fact that our method was not designed to be robust

against such strong occlusions and distortions. The fact that 73% of the test instances

are correctly detected without any false detection shows that our method resists quite

well and is still able to discriminate between objects and clutter. The rest of the instances

are not detected because of huge occlusion.

Detection time The detection time for our method is several orders of magnitude

smaller to the one of Ferrari’s method. On average, our method requires 3 seconds

per image to search all 9 objects (feature extraction step included) whereas an hour is

spent for each image with the method of Ferrari (in both case, a 2.4 GHz computer is

used). This long time is easily explained by the fact that Ferrari’s method iterates sev-

eral steps of an expansion-contraction procedure in order to recognize the maximum

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



98 Chapter 4. Evaluation of Our Contribution For Specific Object Detection

Ferrari et al, 2006
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Figure 4.11: ROC plot for the ETHZ-toys dataset. The two best curves are for Ferrari et
al.’s method and our method. See text for details.

surface for each object. Indeed, in the work of Ferrari et al. [FTG06] the training images

are densely sampled with local textures to exhaustively learn the surface of each object.

This is in contrast with our method where all training images are also densely sampled,

but where only a tiny fraction of them is retained in the detection lattice.

4.5 The Rothganger dataset

The second existing dataset to which we compare is the Ponce-Rothganger dataset

[RLSP06].

Dataset description The Rothganger dataset is composed of 8 model objects and 51

test images containing 78 instances in total. Its purpose is the evaluation of systems for

3D recognition of specific instances. As a result, each model object is purposely shot

under an important number of 3D viewpoints (between 16 and 29) in the training set.

Likewise, object instances appear viewed from various 3D viewpoints in the test set.

More globally, this dataset does not present major difficulties, as most of the model

objects are well textured and thus easily recognizable using standard keypoints-based

methods. Its main advantage is that many existing systems [RLSP06, Low04, MP05,

FTG06] have already been evaluated with it, making the comparison possible.

Experimental settings As usual, we have trained a single lattice for each model object,

setting the number of negative images to nneg = 30 (using again the first 30 images of
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the Background folder of the Caltech-101 dataset [FFFP06]) and trying different number

of terminal nodes in the set nterm ∈ {40, 60, 90, 135, 200}.
Due to the large size of the training images, we have been forced to downsize each

of them by a factor 2. In fact, the original training images are up to 4 MPixels and each

of them contains thousands of keypoints. During training, this creates multitudes of

candidate aggregates, making the learning extremely slow. Reducing the size up to 1

MPixels allows our algorithm to relatively quickly construct the detection lattice (about

4 hours per model object on our 2.6 GHz machine) – and more importantly, avoids the

computer to crash because of memory overflow.

Besides, it seems impossible with our current technical configuration to build the

index maps for the edge features when the image size exceeds some threshold (remem-

ber that we need 6 distance maps as well as 6 pointer-to-nearest-segment maps to index

the edges in a single training image). As a result, using the edge features makes our

computer consistently crash because of memory overflow (2 GB of RAM apparently do

not suffice). In the end, we excluded the edge features from our feature set. We also

thought about generating additional perspective views for training like we did on the

ETHZ datasets, but because of the good results without this trick and the multiplication

of training time and memory required, we did not do that either.

To sum up, our experimental setting was to downsize the training images to a factor

4 (in surface) and to only use SIFT keypoints and textures (no edge), without generating

additional training images.

Experimental results We compare in Figure 4.12 our results for the value nterm = 90

in the form of a ROC plot (no real improvement was obtained for higher values of nterm

while the training+testing time was increasing). This value is thus the most interesting

trade-off between performance and speed in our opinion.

As can be seen, our results are approaching the best results obtained on this dataset.

More specifically, our method produces slightly superior results to the Rothganger’s

black and white setting (our method does not use color information neither) for a detec-

tion time again several orders of magnitude faster (Rothganger et al. reports one hour

spent for each image on a 3 GHz computer). Lowe’s method produces the best per-

formance on this dataset probably because of the great number of pairwise matches of

SIFT descriptors for each instance, both thanks to the great deal of local textures on the

model objects and the high-resolution nature of the test images. Because our method se-

lects in the final lattice only a tiny proportion of all SIFT keypoints found in the training

images, a logical consequence is a slight loss of performance against occluded and/or
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Our method (b&w).

Figure 4.12: Comparison of performance of our method in terms of in ROC curves on
the Rothganger dataset.

poorly textured objects.

The apple object, for instance, has a rather uniform texture (or, at least, a weak

texture) which does not produce many SIFT keypoints. In fact, it is clearly the object

which is the most difficult to detect using our method. Figure 4.13 illustrates some of

its instances completely missed during the tests. On the contrary, the strong occlusions

undergone by some instances (e.g. the vase in second row, first column of Figure 4.13)

are not a problem for our method because many aggregates are still detected from the

large number of keypoints still visible (e.g. see the high score of the occluded teddy-bear

model object in Figure 4.14, second row, third column). Finally, a few instances which

are viewed from viewpoints that are too much different from the viewpoints provided

in the training set, are also missed as seed keypoints do not correspond. This problem

was handled by using affine invariant features in the original paper of Rothganger et al.

[RLSP06], but our experiments show that except 2 instances of the cylinder box model,

all other instances can be well recognized using classical SIFT features.

Robustness to 3D viewpoint change We now give a short example of how our method

is robust to viewpoint change. For this purpose, we have trained a lattice on a small

subset of the training images available for the teddy bear model. Namely, we have
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scores = 233, 173, 66, 301,
135

scores = 84, 41 score = 52

scores = 41 scores = 29, 0 (missed) score = 16

score = 12 missed missed

Figure 4.13: Some correct detections and the worst failures of our method on the Roth-
ganger dataset (images are cropped around the bounding box for visual clarity). When
there are more than one object per image, scores are given in left-to-right and top-down
order. For information, the average scores on this dataset are 174.0 and 12.9 for the true
positives and the noise (FP), respectively.
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selected three images showing a frontal view of the teddy bear (see Figure 4.14). Then,

we launched the recognition on the test dataset to check to which extent our method

was robust to viewpoint change. The teddy bear is a good example as it appears under

many viewpoints more or less different from the frontal view. Results are shown in

Figure 4.14. Although it is hard to generalize from a single example, results still show

that our method is able to recognize viewpoints that are ' 80° apart from what was

learned, although the detection score obviously decreases proportionally to the angle

difference.

4.6 Conclusion

We have presented a quantitative evaluation of our contribution for specific recognition

on several datasets:

• On our own dataset (the CS-17 dataset), specifically fitted to model the realistic

conditions of robotic vision, our contribution yields performance largely superior

to the state of the art in terms of ROC plots.

• On the two existing datasets, our method gives correct results although it appears

slightly less robust to occlusion that existing methods. In this regard, it should be

observed that each system behaves differently depending on the dataset: Lowe’s

method, for instance, performs excellently on the Rothganger dataset but poorly on

the CS-17 dataset; similar observation can be made with Ferrari’s method, which

is inferior to our method on the Rothganger dataset but performs better on its own

dataset.

In any case, we have shown that our strategy of selecting only a small fraction of the

model features (the most efficient ones) in the detection lattice is valid. Besides, it seems

extremely important to add other feature types in the recognition process. It indeed

highly increases the robustness and improve the performance in noisy conditions.
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Training
images:

score = 460 score = 425 score = 218 score = 68

score = 55 score = 55 score = 54 score = 42

score = 42 score = 41 score = 27 score = 16

Figure 4.14: Illustration of the robustness of our method to viewpoint change. (Top) The
three training images of the teddy bear used to train the lattice (orientation is defined
vertically for the three images, nterm = 90). (Bottom) Top scoring detections on the Roth-
ganger dataset using the lattice thus created (small green circles indicate the position of
detected aggregates, large purple circles indicate the hypothesized object location and
pose). Our method shows an impressive tolerance to viewpoint change (the first nega-
tive detection comes with a score of 16, after the 11

th positive image). The quality of the
10

th detection is questionable due to bounding box misplacement. The next detections
(with scores inferior to 16) are all true negatives.
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In this chapter, we present an extension of the method described in Chapter 3 for

detecting classes of object instead of instances of specific objects. This development

is motivated by the fact that, in our opinion, the part decomposition and detection
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achieved respectively by the lattice construction and detection procedures of Chapter 3

also hold for object classes.

We begin by presenting the general principles of our method and similar methods

from the state-of-the-art. Then, we introduce the modifications made to the original

approach of Chapter 3. These modifications include the way in which the lattice is

trained and the way in which the objects are detected. More specifically for the latter

part we use a discriminative classifier (real-AdaBoost) instead of the probabilistic model

originally proposed in Chapter 3. We also describe an optimization to fasten the training.
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5.1 Introduction

Although the method presented in Chapter 3 is designed for specific object recognition,

we have reason to believe that it can also apply to class object recognition. In fact,

many works have highlighted the fact that class instances share at least local similarities

[FPZ03, VNU03, JT05]. This appears to be consistent with the intuition for object classes

like cars or faces, for which semantic parts like car wheels or eyes are shared between

all class instances – despite some minor variations in the appearance of these parts.

Because (i) our detection lattice is designed so as to detect similar parts to the ones

found on training images and that (ii) the final constraint on the spatial arrangement

of these different parts is rather loose, it is reasonable to think that it could also well

apply to the case of class object recognition. To check this up, we have trained our

lattice with a few images from the Caltech-101 dataset [FFFP06] which, as the names

indicates, contains sample images of objects belonging to 101 different categories (i.e.

object classes). Examples of training images and qualitative recognition results with

the unmodified lattice of Chapter 3 are shown in Figure 5.1. As can be observed, the

detection lattice is well able to cope with small shape variations and various noises.

However, additional tests (not shown here) have also demonstrated that the method of

Chapter 3 unchanged produces poor results on more complicated cases. As a result, we

have decided to adapt the original method of Chapter 3 to the case of class objects. The

corresponding set of modifications and the resulting recognition algorithm are presented

in this chapter.

In the rest of this section, we first briefly introduce the outline of the proposed

method. Then, we discuss about related works and justify the proposed algorithm based

on solid evidences found in other papers.

5.1.1 Method overview

Globally, the method presented in this chapter takes advantage of two existing general

frameworks for class object recognition:

• Concerning the feature part, we lean upon the frequent pattern mining framework.

• Concerning the structure of the detection algorithm, we adopt the bag-of-features

framework.

A description of those frameworks along with a review of related papers is performed

in the next subsection.
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Figure 5.1: Test of the method described in Chapter 3 with class objects instead of specific
objects. A few object classes with relatively low intra-class variations were picked up
from the Caltech-101 dataset [FFFP06]. Top: training images for each class (for the
negative training set, the 20 first images of the Caltech-101 “background” folder are
used); bottom: recognition examples. We only show here detections supported by an
important number of votes (i.e. more than 10).
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5.1.2 Related works

Frequent Patterns Mining

Recently, a number of papers [CYHH07, NTU∗07, QFLG07] have shown that frequent

patterns can be powerful structures for complex classification tasks. In a general context,

a pattern is defined as a higher-level combination of low-level features. For instance,

in Cheng et al. [CYHH07], each sample to classify is represented by a set of binary

attributes; in this case, a pattern is the union of several binary attributes, i.e., a subset

of attributes. Then, a frequent pattern is a pattern which is found in a large number of

training samples.

More formally, the (relative) support of a pattern α on a sample set S is defined as

Dα = |{s ∈ S|α ⊆ s}| / |S|, where α ⊆ s denotes the fact that the pattern α is present

in sample s (note that 0 ≤ Dα ≤ 1). Interestingly, Cheng et al. [CYHH07] have demon-

strated using both mutual information and Fisher’s Score metrics that frequent patterns

provide on average more information for the classification task than low-level features

do, as long as the pattern frequency is in a given range (i.e. θmin ≤ Dα ≤ θmax). In fact,

patterns that are too much frequent can not have highly discriminative power as they

are indistinctly found both in class and non-class samples. Symmetrically, rare patterns

are also of low interest for classification (in fact, using them could even harm the classi-

fication due to over-fitting effects). Note that similar observations were made before by

other authors like Jurie and Triggs [JT05] although no in-depth study was provided at

the time.

Subgraph as a pattern

In the object recognition context, low-level features often take the form of local regions

in the broad sense, e.g. keypoints, edges or image regions. As noticed by a large number

of researchers [KK91, LSP04, ZBMM06, CFJV06, FSGD08, TWLB10], it appears natural

to organize those features in the shape of a graph, as a graph provides an effective

and compact representation of the image based on both local appearances (using graph

nodes) and spatial relationship (using graph edges). In this paradigm, image patterns

can be then simply defined as subgraphs.

Frequent subgraph mining has already been investigated by several authors. For the

general case of attributed relational graph, we can cite the pioneer work of Kuramochi

and Karypis [KK01]. In the object recognition field, we can cite for instance Nowozin et

al. [NTU∗07], Quack et al. [QFLG07] or more recently Ozdemir and Aksoy [OA10] and

Zhang et al. [ZYW∗10]. In all those works, although the graph framework may not be
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explicitly mentioned, frequent patterns take the form of combination of nearby features

and are extracted using data-mining techniques, i.e. after discretizing and quantizing

the training images into discrete structures so as to fit traditional database algorithms.

The two latter works are the most similar to the method presented in this chapter.

In their approaches, the authors convert the training images into graphs of quantized

keypoints, and frequent subgraphs are used for classification purpose (for instance, his-

togram of subgraphs are computed in the bag-of-features fashion). In our opinion,

the problem in those approaches lies in the discretization and quantization steps re-

quired to convert images into finite, small graphs. This conversion indeed implies losses

in terms of non-salient information, which is known to be valuable for classification

[JT05, VGVZ09]. On the other hand, it is intractable to create graphs based on densely-

sampled features, because they come in great number and the resulting graph size and

complexity would prevent any practical utilization. In this perspective, our detection

lattice appears as the right trade-off between the two options: in our framework every

subgraph is ensured to contain at least a single salient feature (i.e. a keypoint), so as to

achieve fast detection, but the other subgraph features can be densely sampled in the

image.

Using frequent subgraphs for classification

So in all above mentioned papers as well as in this chapter, subgraphs are used for

classification. However, it is well known that the number of existing subgraphs for a

given graph is exponential with the graph size. As a result, it is intractable to use the

multitude of them for classification. One solution is to purposely reduce the graph size,

like in [ZYW∗10] where graphs with only 80 nodes describe single images, but this may

harm the performance as explained above. A more widely used solution is thus to select

a subset of all possible subgraphs based on a heuristic procedure. Such procedures de-

rive generally from the Sequential Forward Selection (SFS) algorithm [CYHH07, OA10]

and/or Depth First Search (DFS) procedure [KMM05]. In both case, the insight is to

iteratively select those subgraphs that bring the most information with respect to the

classification task, while avoiding redundancy inside the set of selected subgraphs. For

this purpose, subgraphs are generally enumerated from smallest to biggest while in the

same time different pruning strategies based on minimum information gain are em-

ployed [KMM05, NTU∗07, CYHH07].

In this chapter, we use a slightly modified version of the lattice construction proce-

dure of Chapter 3 as subgraph selection algorithm. It is in fact similar in its structure to
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the kind of existing algorithms mentioned above: the space of all possible subgraphs is

explored and pruned at the same time; and mutual information enables simultaneously

to find efficient subgraphs and to avoid redundancy. The fact that more positive training

images are available in the class case than for the specific object case indeed makes our

algorithm to select frequent subgraphs: remember that the negative images are modeled

with a single value in the coverage map (Section 3.5.5).

Finally, note for completeness that there exists other strategies for classification with

frequent subgraphs such as the marginalized kernel of Kashima and Tsuda [KTI03]. In

their work, two graphs are compared by an infinite pairwise comparison of random

walks, which amounts in fact to compare them in terms of common subgraphs. This

appears unfortunately hardly applicable for our continuous graph framework.

The bag-of-features model

Finally, we use the bag-of-features as classification model. Since the bag-of-features

model has already been presented in Chapter 2, we just sum up here that it consists in

representing an image as a set (or an histogram) of quantized visual words. Despite

the fact that spatial relationship between visual words are lost in the binning process,

the bag-of-features model performs surprisingly well. In addition, this model is easy

to train, easy to use, and works well in practice for a large number of object categories.

So we decided to use it as well in our class object recognition system; however, instead

of coupling it with a SVM classifier as is generally done [JT05, ZBMM06], we prefer

AdaBoost as it inherently gets rid of over-fitting problems by selecting a sparse subset

of features (so that there are two successive feature selections in our method: the first

one during the lattice construction and the second one done by AdaBoost). In fact, the

association subgraph + AdaBoost has already been proved to be extremely powerful in

term of classification accuracy in Kudo et al. [KMM05]. Another choice would have

been to choose a linear SVM, as it also somehow performs a feature selection through

the weight attributed to each feature (e.g. see Cheng et al. [CYHH07], Jurie et al. [JT05]).

However, as noticed by [ZYW∗10], SVM with graph kernel are less interpretable easily

and usually cost more computations.

5.1.3 Chapter outline

To sum up, we introduce in this chapter an extension of the method described in Chap-

ter 3 to the case of class object recognition. The chapter content is as follows: firstly,

we describe in Section 5.2 the general frame of the proposed method, which follows the
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classical scheme in this domain (i.e. sliding window with feature extraction and classi-

fier). Then in Section 5.3 we detail and justify modifications to the original method in

order to detect classes of objects instead of instances of specific objects. Those modifica-

tions include changes in the lattice training and detection procedures as well as in the

final decision model. Finally, we conclude in Section 5.4.

5.2 Method Description

We describe in this chapter a method for the joint detection and localization of class

objects in natural images. The details of our approach are best explained by considering

the recognition step first. The next section will introduce how to build a detection lattice

for the class case, but for now assume that the lattice already exists. Following the

literature mainstream, we divide the detection problem into two nested tasks:

• The first one is to decide if an object instance belonging to the learned class is

present in the input test image or not (i.e. classification task). That is, we explicitly

require the object size to roughly match the image size.

• The second task is to achieve object detection and localization using the first sys-

tem. Classically, we scan the input image at several positions and several scales,

and each sub-image (i.e. window) is classified by the first system.

We now describe in more details the resulting system as a whole.

Sliding window

Without loss of generality, let us consider in the following a single windowW extracted

from an input image I at a given position and scale, which have no importance (we

assume that the window aspect ratio is known by advance). At detection time, visual

words and aggregates are detected inW using respectively a standard keypoint detector

followed by nearest neighbor search in a pre-computed visual codebook, and a pre-

computed detection lattice. Then, features are extracted from those detected words and

aggregates and are gathered into a feature vector. Finally, the feature vector is examined

by a classifier which evaluates the likelihood of the object presence in the window. Note

that we do not use contextual information based on global image features combined

with the window position and scale like [MTEF06, HJS09]. In other words, all windows

are processed independently. A final non-maxima suppression step is applied after that

all windows of image I have been processed, in order to remove redundant overlapping

detections.
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Classification and Training procedure

Our general approach for training follows a classical scheme in the literature: first we

generate a large number of features; then we use a feature selection process and finally

we train a classifier from those selected features. The feature selection step in our case

is combined with the classifier training step as we use AdaBoost coupled with decision

stumps. Hence our purpose for the first step is to generate weak classifiers, i.e., fea-

tures that are at least weakly correlated with the ground truth. In our case, the features

correspond either to the histogram bins of the bag-of-features model or to the binary

presence or absence of learned model parts. That is, for the latter case our lattice is used

to detect frequent aggregates (i.e. model subgraphs) distinctive to the class. Hence, our

method is related to the graph boosting of [ZYW∗10] or classification using frequent

pattern of [CYHH07], although our detection lattice searches for frequent subgraphs in

the continuous image space instead of a discretized space.

In the following, we first describe the features extracted for a window W , keeping

the same notation as in Chapter 3. Then, we detail the classifier used and its training

procedure.

5.2.1 Features used

Basic features As stated above, we consider two sets of basic features to describe the

content of a windowW :

• Real-valued features
{

f W
n
}Nwords

n=1 derived from visual words. Those features corre-

spond to the bin sizes of the normalized histogram of visual words in the bag-

of-features framework. Namely, keypoints are initially extracted in the image at

salient locations along with their descriptor, then a code is associated to each of

them according to their nearest neighbor in a pre-computed visual codebook of

size Nwords. (The codebook is computed beforehand using k-means on a set of de-

scriptors extracted in natural images.) In our case, the feature f W
n corresponding

to code n is then defined as

f W
n (W) =

#{φW
i |cW

i ∈ W and zW
i = n}

∑j #{φW
j |cW

j ∈ W and zW
j = n}

where #{. . .} is the cardinality of a set and φW
i ∈ ϕW is an instantiated visual word

(i.e. φW
i = (pW

i , zW
i ) ∈ ϕW with ϕW the visual word feature type, pW

i = (cW
i , hW

i )

the visual word position and zW
i ∈ [1, Nwords] the associated code with respect to
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the codebook).

• Binary features
{

f A
i
}NAggr

i=1 derived from aggregates. Each such feature is a binary

value indicating the presence or absence of an aggregate Ai (i.e. a model part)

inside W . Contrary to visual words, aggregate features are composed of several

types of local features (namely keypoints, edges and textures). Formally, we have

f A
i (W) =

1 if ∃A′i ∈ W

0 otherwise.

In order to achieve scale invariance, we restrict the detected aggregates to the set

of aggregates whose scale and position fit the current window W . Formally, it

amounts to define the property A′i ∈ W as follows:

A′i ∈ W := cA′i
∈ W and 0.5 <

σ
hyp
A′i

σW
< 2 (5.1)

where cA′i
is the aggregate center and σ

hyp
A′i

= σre f
σA′i
σAi

is the hypothesized object

scale in the test image with respect to the object scale in the training images.

Complex features Next, we derive complex features from the previous basic ones:

• We define doublets of aggregates
{

f D
ij (W)

}Ndoublets

i,j
as complex features indicating

the joint presence of two given aggregates A′i and A′j in the window. Doublet

features are formally defined as

f D
ij (W) =

1 if ∃A′i ∈ W and ∃A′j ∈ W

0 otherwise.
,

where the property ∃A′i ∈ W is defined as above. Doublets features have been

shown to produce good results thanks to their increased distinctiveness in several

works (see [SREZ05] and [TWL∗10]). Moreover, they are cheap to compute in our

framework as their definition is closely related to the definition of simple aggregate

features. The only shortcoming is that their number is squared with the number

of aggregates, so that we select only a limited number of them (Ndoublets � N2
aggr)

based on a random sampling over existing doublets in the positive training images.

• Three real-valued features f C
0 , f C

1 and f C
2 derived from aggregate features and

corresponding to the number of aggregates detected in the window normalized by
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different values. Firstly, we define the unnormalized aggregate count f S
0 (W) as

f C
0 (W) = ∑

i
f A
i (W)

Then, we define f C
1 = f C

0 /NA(W) and f C
2 = f C

0 /NK(W) as the number of de-

tected aggregates normalized by, respectively, the number of aggregates NA(W) =

# {A′i|A′i ∈ W} and the number of keypoints NK(W) = #
{

φK
i |cK

i ∈ W
}

detected in

the window W . Note that according to this definition, we currently have f C
1 = 1.

However, when we divide the window into different cells C ⊆ W using the spa-

tial pyramid layout (see below), this eventually leads to separate instantiation of

{ f C
0 , f C

1 , f C
2 } for each cell where f C

1 (C) ≤ 1.

The list of all features used is summarized in Table 5.1.

Spatial pyramid

We again derive new features inspired by the spatial pyramid framework from the fea-

tures defined above. The spatial pyramid was proposed simultaneously by Lazebnik et

al. [LSP06] and Grauman and Darrell [GD05] as an improvement of the bag-of-features

model. It enables to capture, to some extent, the spatial layout of the features inside an

image or a window (recall that the original bag-of-features model ignores the location of

the features) by subdividing the window into overlapping cells and computing a sepa-

rate histogram for each cell. It has been shown to significantly improve the performance

while only bringing minor modifications to the model. In the original paper [LSP06],

different weights are assigned to the cells due to their SVM classification scheme, but in

our case (i.e. boosting) those weights become unnecessary.

As a result, we follows the same guideline and recursively subdivide the original

window by a factor 2, leading to a set of overlapping cells C ⊆ W (with 22l cells per

level l ≥ 0). Each feature described above is thus computed independently in every cell.

This is in order to better model the spatial arrangement of the features (remember that

each feature alone do not contain information about its position in the window). For

three levels of the spatial pyramid, we then have 21 cells (one at the first level, 4 at the

second level and 16 at the third level). As a consequence, the number of features would

also be multiplied by 21 for three levels.
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5.2.2 Window classification

Now that a set of features have been extracted for a given window, we must feed those

features to a classifier that will decide if the window contains the learned class object or

not. In Chapter 3, we have used a probabilistic generative model to take this decision

(Section 3.4.6). However, we now turn towards a discriminative classifier for the class

object case.

The reason behind this change is that the probabilistic model proposed in Chapter 3

is over-simplified - which is fine for a simple task like instance detection, where intra-

class variance is small. On the contrary in the case of class objects, one has to find a way

to precisely learn the complex decision boundaries between class and non-class in the

feature space. In our case, we choose AdaBoost combined with decision stumps as clas-

sifier. This choice is motivated by several reasons: AdaBoost produces an interpretable

classifier well suited to our task: selected features basically corresponds to model parts;

a boosted classifier is extremely fast to evaluate because its evaluation simply amounts

to a weighted sum of binary variables1; and finally it only selects the features that are

useful for discriminating class and non-class windows. Note that this is important as the

set of features extracted earlier may be over-complete, especially concerning the aggre-

gate features. (We will see later that the detection lattice is purposely constructed so as

to extract a great deal of aggregates.) We now give a formal description of the classifier

and its training.

AdaBoost

AdaBoost is a classifier originally proposed by Freund and Schapire [FS95]. It has been

shown to yield excellent classification accuracy, generally equivalent to support vector

machines (SVM). As said above, its main advantage with respect to SVM is that it can

select a subset of features from the huge feature pool available during training. Formally,

the classifier takes the form of a real-valued decision function expressed itself as a sum

of weak classifiers:

H(x) = ∑
t

h∗t (x)

where x is a feature vector to classify and h∗t (x) is a weak classifier selected at training

iteration t. In our case, x corresponds to the features extracted in a window W and in

the following we will replace x by W in a slight abuse of notation. In addition to the

reasons mentioned above, we choose to use decision stumps as weak classifiers for their

1It can be further accelerated at almost no cost using a soft-cascade like Bourdev and Brandt[BB05]
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Table 5.1: Summary of the features used in our classifier (Real-AdaBoost).

Description Type total number
really
used

number of
stumps

histogram of visual words f W
n

array
of real

NwordsNcells NwordsNcells 10NwordsNcells

single aggregates f A
i binary Ncells |LE| Ncells |LE| Ncells |LE|

doublets of aggregates f D
ij binary (Ncells |LE|)2 Ndoublets Ndoublets

# aggregate per cell f C
0 real Ncells Ncells 100Ncells

# aggregate per cell / NA(W) = f C
1 real Ncells Ncells 100Ncells

# aggregate per cell / NK(W) = f C
2 real Ncells Ncells 100Ncells

simplicity and the fact that they are compatible with our binary features. Note that we

also tried to use a SVM classifier instead of AdaBoost, but the results were not satisfying.

Decision stumps

A decision stump is a minimal decision tree composed of only one root and two leaf

nodes. In Real-AdaBoost, a widely used variant of AdaBoost, decision stumps are de-

fined as follows:

hi(W) =
1
2

log
pw(W ∈W+| fhi(W))
pw(W ∈W−| fhi(W))

where pw is a probability subject to weight vector w (see below), W = W+ ∪W− is

the set of training windows, respectively positive windows and negative windows and

fhi is the binary feature corresponding to the weak classifier hi. Because we also deal

with non-binary features (e.g. f C
0 ), we integrate those ones in the training pool using

additional binary features which are generated by comparisons of the original real-

valued feature against fixed thresholds. The thresholds are sampled on the distribution

of values observed in the training set for each real-valued features, as is classically done.

The number of thresholds (i.e. resulting binary features) chosen for each real-valued

feature is summarized in the rightmost column of Table 5.1.

5.2.3 Optimization for training the classifier

Training procedure During training, a subset of the stumps extracted previously is

chosen to form the final classifier. The size of the subset is determined by validation

on a separate training set. Empirically, the number of selected stumps is always much

lower than the number of available stumps, resulting in a compact and fast classifier.

More precisely, in each iteration t of boosting, the best stump h∗t ∈ {hi}
nstumps
i=1 is

selected as the one minimizing the score Zi,w on the training set:
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Zi,w = 2
(√

pw
(
W ∈W+| fhi(W) = 1

)
pw
(
W ∈W−| fhi(W) = 0

)

+
√

pw
(
W ∈W−| fhi(W) = 1

)
pw
(
W ∈W+| fhi(W) = 0

))
(5.2)

The weighted probability pw(S) mentioned earlier is formally defined as

pw(S) =
∑

nsamples
n=1 δ(Wn ∈ S)wn

∑
nsamples
n=1 wn

where S ⊆ W is a subset of training windows and δ : B → {0, 1} is the Kronecker

delta. Once the best stump h∗t is selected, the weights in w are updated for each training

sample according to the following formula:

wn = wn exp
[
h∗t (Wn)

(
2δ(Wn ∈W+)− 1

)]
More details for the training procedure of real-AdaBoost can be found in [SS98, WZ01].

Optimization During our training, the number of decision stumps nstumps in the train-

ing pool typically ranges between 40,000 and 100,000 (i.e. it corresponds to about 1,500

aggregates in the lattice with three levels of the spatial pyramid). Because in each boost-

ing iteration, every stump is evaluated with respect to every training window (5.2), it is

important to use a data structure making the evaluation of a stump on a given window

as fast as possible. Initially, we implemented a tree map structure to store the detected

aggregates and visual words for each window. This makes sense, since the set of de-

tected aggregates and visual words is sparse: a tree map structure saves memory by

allocating memory only for the detected features. Testing the presence of an aggregate

or a visual word amounts then to search for its hash-code in the tree map, which is

efficient because in O(log n). (The other complex features are small in number, so we

will neglect them in this analysis.) While this intuitive choice appears valid, it becomes

problematic regarding the training time: in practice using this scheme causes hours of

training because of the huge number of such atomic searches.

A simple solution, way faster, exists: to pre-compute by advance the binary matrix

F telling about the output of each stump for each sample (hence F has nsamples rows and

nstumps columns) in order to avoid looking each time in the tree map (i.e. O(1) instead

of O(log n)). Because this matrix is huge, it is not feasible to store it entirely. Instead, we

decompose it into a set of lists, where each list Li (1 ≤ i ≤ nstumps) stores non-null values
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in the i-th column of F. Because F is sparse, the lists are lite in memory. Using this new

configuration, it takes about one minute to learn the classifier for 5000 training examples

in total and 50,000 stumps (including 2-fold cross-validation). In comparison, the SVM

training time for the same task is approximately equivalent (although additional training

iterations are required for a SVM in order to find the optimal constant C).

5.2.4 Optimization for detection speed

As we saw, AdaBoost performs feature selection when building the classifier. In other

words, only a few features from the training pool are kept in the final classifier H(W),

and the other ones are discarded. According to our features (see Table 5.1), the situation

is the following:

• If at least a single feature h∗t (W) related to f C
0 , f C

1 or f C
2 is selected in H(W), then

every aggregates Ai in the lattice is necessary at detection time. Indeed, those three

features count the number of all detected aggregates fitting the current windowW
indifferently of their identity.

• Conversely, if neither f C
0 , f C

1 nor f C
2 are selected in H(W), then every aggregate

which is not on the path of a useful aggregate becomes useless at detection time.

We call a useful aggregate Ai an aggregate which is selected in the final classifier

(either because a related single f A
i or doublet f D

ij feature is selected in H(W)).

As a consequence, we straightly see how the lattice can be pruned when the second

situation is true. Because most aggregates in the training lattice are not selected in the

final classifier, the pruning reduces the lattice size by a large factor, which results in

a significant gain in detection speed. In the next chapter we experiment pruning the

lattice after purposely discarding the three aggregate count features f C
0 , f C

1 and f C
2 in

order to study the effect in terms of detection performance and speed. In particular we

show that a significant boost can be obtained without losing performance.

5.3 Modifications to the original lattice

We detail and justify in this section the modifications applied to the framework of Chap-

ter 3 in order to detect aggregates in the case of class object detection instead of specific

instance detection. Those modifications include minor changes in the lattice training

and detection procedures.
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5.3.1 Rotation variance

Several works have shown that the rotational invariance property of keypoints is, at

best, useless or, more often, harms the performance in the case of class object recogni-

tion. Indeed class instances are most of the time all in the same orientation in test or

train images (e.g. pedestrians walk vertically, feet on the ground). Besides, the way in

which keypoint rotational invariance is achieved demands an important amount of local

similarity. For object classes, where the intra-class variation is high, this invariance is

unstable.

As a consequence, we drop the rotational invariance for SIFT keypoints in our recog-

nition lattice (i.e. both for training and testing). Namely, we define the radial vector for

any keypoint φK
i as being equal to hφK

i
= (σφK

i
, 0) (the aggregate position and growth

remain computed in the same way as before). Our experiments have shown a significant

improvement of the performances following this simple modification. Of course, visual

word features are also extracted from SIFT keypoints without using the orientation.

5.3.2 Recognition procedure for the lattice

In Chapter 3, we have set up a detection lattice for localizing in the test images exactly

the same object parts (up to some noise) than the ones learned in the training images.

Each terminal aggregate was responsible for detecting a model part with a high distinc-

tiveness, and this distinctiveness was achieved by a succession of micro-classifiers until

termination of the corresponding lattice path.

In the class case, however, larger differences between parts can be expected since the

intra-class variation is known to be more important. For this reason, it becomes less

clear which level of distinctiveness is necessary to detect each part: some parts might

remain extremely similar between class instances while other parts might be only loosely

similar. As a consequence, we decide to consider all possible levels of distinctiveness for

each lattice path, letting the classifier decide which one is the most useful at training

time.

In other words, we output detections at all levels of the lattice (and not only at termi-

nal levels): since we know that the distinctiveness of a lattice path gradually augments

as the path grows (i.e. as micro-classifiers are added), we output one detection per tra-

versed branch. An illustration of this behavior is shown in Figure 5.2. In this example,

3 detections are output corresponding to 3 aggregates of intermediate levels (note in

particular that the terminal aggregate is not detected because the last feature is missing

in the test image). A direct consequence of this modification is that a lot more aggre-
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Figure 5.2: Illustration of incomplete aggregate detections. Left column: example of one
lattice path terminated at level 3 and composed of the model aggregates A1, A2 and
A3. Right column: at top, a test image viewed as a collection of local features (here
keypoints, textures and edges). Two aggregates are detected in the bottom-left corner of
the image corresponding to the incomplete model aggregates A1 and A2. The terminal
aggregate A3 is not detected because the third feature (an horizontal edge) is absent
from the test image.

gates are detected in each image. This is not a problem insofar as AdaBoost is able to

drop useless aggregates and can take a fast decision based on a sum of extremely simple

decisions (presence or absence of each such detected aggregate).

In the same line of thinking, we purposely raise the micro-classifier threshold dmax
Kz

of the seed branches (see Section 4.2.1). Originally, this threshold is set to a low value

so as to eliminate most candidate keypoints in the test image, and thus achieve fast

detection. The value chosen in Section 4.2.1 technically amounts to prune 99.9% of

the pairs (image keypoint, seed branch). Because this selectivity does not fit the intra-

class variations and also because we want to generate lattice paths with more uniformly

distributed selectivity of micro-classifiers, we raise the threshold so that only 95~99% of

the pair (test keypoint, seed branch) are pruned. Experiments in the next chapter are

dedicated to studying the impact of the variation of dmax
Kz within such range. Note that
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the rest of the thresholds for the other kernels remains unchanged. We indeed make the

simplifying assumption that intra-class variations of local model parts are equivalent in

terms of effects to the various noises used for computing those thresholds (see Section

3.5.3).

Comparison with the probabilistic model of Chapter 3 In the probabilistic model de-

scribed in Section 3.4.6, the probabilities p(e′jk|{e′}jk−, V)/p(e′jk|{e′}jk−) were estimated

independently for each lattice path. Morevoer, an additional independence assumption

between lattice branches lying on different paths was made to simplify the evaluation

of p(O|{A′i}). On the contrary, in our case AdaBoost is able to implicitly learn the joint

probability distribution p(O|{A′i}) conditioned on the presence of every model aggre-

gates in the lattice (although this is not true strictly speaking, as AdaBoost only estimates

a discriminative function and not a probability distribution). This is made possible by

the fact that a lot more training images are available, so that the classifier does not over-

fit. Morevoer, the fact that every lattice aggregate can be selected in the classifier (and

not only terminal ones) allows AdaBoost to tune the adequate level of disctinctiveness

corresponding to each model part (for the same lattice path, i.e. model part, a longer

path is more distinctive that a shorter one). This choice has been shown to improve the

detection performance by a large amount in our experiments. Morevoer, to our knowl-

edge no similar mechanism has yet been proposed in the computer vision community

(i.e. selecting the distinctiveness dynamically when building the final classifier, and not

only statically beforehand).

5.3.3 Training procedure for the lattice

As we saw above, the recognition lattice is used to detect aggregates in the test images.

What we want is, as before, to manage to build the lattice in such a way that the detected

aggregates are correlated as much as possible with the ground truth. So similarly to

Chapter 3 we train our lattice from a set of class images (rather than several pictures of

the same object) and a set of negative images (background images). However, the fact

that the training images can not be precisely aligned when building the prototype graphs

(Section 3.4.1), and our new objective of generating a large pool of training features

(i.e. lattice aggregates) rather than a fixed number of terminal aggregates imply a few

modifications of the training algorithm. To summarize, we basically used almost the

same procedure, except for the following steps:
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Hypothesis Extrapolation During training, recall that the position of the detected ag-

gregates is checked to ensure that they enable a correct extrapolation of the known object

bounding box. If the extrapolation is erroneous2, then the detection is ignored in the cal-

culation of the information gain. In Section 3.4.6, we used criterion (3.9) to ensure that

the extrapolation is correct up to some extent. For a similar reason than exposed before,

the aggregate orientation and position become unreliable in the class case. So instead of

extrapolating the bounding box using a 2D similarity, we simply check that the detected

aggregate center remains in the known bounding box and that the extrapolated scale is

correct. In other words, we just require the model aggregates to detect locally similar

model parts at similar scales (we do not care about their position or orientation). As a

consequence, we use the criterion (5.1) already defined above in Section 5.2.1 instead of

the original criterion (3.9).

Lattice path termination In Chapter 3, the condition for a model aggregate to become

terminal was based on the fact that it does not generate any detection in the set of

negative training images. In the class case, this can be a problem as the number of

negative training images is fixed and generally large (typically, hundred images), which

can prevent lattice paths from terminating before a high level. Although this is not

a problem in theory, as every path will eventually terminate with a large number of

features (giving extremely high distinctiveness to the path), in practice it makes the

training last very long. Our solution to this issue is to change the termination criterion:

to terminate a path, we simply require that the number of false detections generated by

its terminal aggregate Ak is small in proportion:

p(Ak|¬O) =
#{A′k|A′k ∈ I−}
#{φK

i |φK
i ∈ I−}

< pmax

This proportion is calculated by dividing the number of false detections by the num-

ber of seed features (i.e. the number of trials) in the negative images. This parameter

is also subject to investigations in the experiments in the next chapter. In practice, we

found out that pmax ≈ 10−4 was producing good results (it corresponds to 5 features per

aggregate on average).

End of lattice construction In Chapter 3, the condition for stopping the lattice con-

struction was based on a threshold on the number of detected aggregates in the positive

images (i.e. minimum coverage). In the case of classes, the objective is slightly different
2This typically happens for an aggregate detected on an image where the object have a sufficiently

different pose from the image from which the aggregate was created.
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as we want to generate as many training features (i.e. aggregates) as possible, letting

AdaBoost decide which ones are pertinent. Because an infinity of aggregates is not de-

sirable either, we must define some criterion to generate as many aggregates as possible

but avoiding too much redundancy between them.

For this reason, we limit the number of candidates retained in each level based on

a minimum gain in mutual information. Moreover, we ignore false detections in this

calculation of the added mutual information because we reckon that what is important

at this point is to properly cover the model images with detected aggregates, rather than

finding aggregates with a good correlation (those ones with best correlation are picked

first in the loop anyway). Formally, steps (4.d-4.e) in the training loop of Section 3.5.2

are replaced as follows:

[4] Loop until all candidates have been picked:

(a) Pick the best candidate Ak ∈ {Aj ∈ L(l)|¬picked(Aj)} according to the mu-

tual information (see Section 3.5.4).

(b) Set picked(Ak) to true.

(c) Detect model aggregate Ak in each training images, leading to a set of detec-

tion {A′k}.

(d) if Ak is detected in strictly less than two training images: remove Ak from the

candidates and return to step (4.a).

(e) if gain+(Ak|M; O) < gain+
min: remove Ak from the candidates and return to

step (4.a).

(f) If p(Ak|¬O) < pmax, then Ak becomes terminal.

Step (4.d) is added to prune non-frequent aggregates, whose information gain for the

detection task has been shown to be bounded by a low value and are most likely useless

for training [CYHH07]. Step (4.e) purpose is to evacuate redundant aggregates. This is

again similar to heuristic algorithm of feature selection as the MMMRFS algorithm of

[CYHH07].

The loop stops when the maximal level is reached (we typically use a maximum of

6 levels) or when there are no more candidates. gain+ measures the maximum gain in

mutual information only computed from positive detections for a single training image:

gain+(Ak|M; O) = max
I∈I+

MI+I (M, Ak; O)−MI+I (M; O)
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with

MI+I (M; O) = ∑
m={0,1}

p(MI = m, OI = 1) log
p(MI = m, OI = 1)

p(MI = m)p(OI = 1)

where OI and MI denotes the random variable previously defined restricted to a single

training image I . The reason behind why we restrict the computation of the gain of

information to the maximum over all training images is two-fold: firstly, it makes the

threshold gain+
min independent of the number of model images; secondly, it avoids to

support aggregates that are of little good for a lot of training images. In other words,

we advantage aggregates that are very good on a small subset of training images, be-

cause they are generally more distinctive and meaningful than the ones discovered in all

training images (and usually discovered as well in a large number in negative images).

5.4 Conclusion

We have presented a novel framework for class object detection and localization derived

from the lattice described in Chapter 3. This approach combines the advantages of

several previous works, i.e. the bag-of-features and the part-based models. A simple but

robust (sliding window plus classifier) scheme is used for the detection. The originality

of our method is that different levels of distinctiveness for each model part are proposed

to the classifier (i.e. every aggregates in the lattice). To sum-up, we rely both on generic

features suited to detect any classes (including the background) and on class specific

features dedicated to a single class. Dedicated features are generally slower to compute,

but in our case the cascaded lattice enables a relatively fast detection. A simple way

to further accelerate the detection speed would be to use soft-cascades in the boosted

classifier.
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Chapter 6
Evaluation of Our Contribution For

Class Object Detection
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This chapter presents a qualitative and quantitative evaluation of the contribution

presented in the previous chapter, i.e. an approach for class object recognition

using subgraphs. We begin by presenting existing datasets available for that purpose

and we select some of them with respect to our objectives. On the first dataset composed

of four single classes we tune and evaluate our approach in terms of object recognition

and image classification. On this occasion we quantitatively compare our results against

a baseline and a part-based model from the state-of-the-art. Secondly, we answer the

image classification challenge proposed for the Pascal VOC 2005 dataset. We show that

our method is able to achieve results slightly inferior, similar or even superior to other

state-of-the-art approaches for a smaller detection time. Moreover, the comparison with

125
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related approaches of subgraph boosting clearly turns in our favour with improvements

of 10% in term of EER measure.
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6.1 Introduction

6.1.1 Existing datasets

There is a large variety of datasets available to evaluate class object detection systems.

Among the most popular ones, we can cite:

• Whole series of Pascal Visual Object Challenges [EGWZ05, EVGW∗] (Pascal VOC

2005, 2006, 2007 and 2008). The goal of these challenges is to recognize objects from

a number of visual object classes in realistic scenes (i.e. not pre-segmented objects).

Evaluation is either performed in terms of image classification (i.e. classify a test

image to a given class means that at least one instance of the class is present in

the image) or object recognition (i.e. detect and localize every instances in the test

images) performance.

• The Graz dataset [OPFA06] and the Xerox dataset [WAC∗04], which have essen-

tially similar characteristics.

• The Caltech-101 and Caltech-256 datasets [FFFP06, GHP07] concern the image clas-

sification task only (only one object per image filling most of the image frame).

• Some separate datasets concerning single object classes like “airplanes” or “car

rears” are available on the web page of the Computational Vision Group of Cali-

fornia Institute of Technology [Com].

Note that this list is not exhaustive and that there are many other datasets, in particular

in the field of Content-Based Image Retrieval (CBIR) where the topics are closely related

to object recognition and image classification.

6.1.2 Purpose of this chapter

There are two purposes for this chapter. First of all, we wish to study the influence of the

different parameters listed in Chapter 5. In particular, we want to inspect the parameter

effects in terms of detection performance and speed. Then, we also want to compare our

results against the baseline and comparable approaches from the state-of-the-art.

Single object classes

As a first step, we need to evaluate the effect of the three free parameters dmax
Kz (eq. (3.8),

Section 4.2.1), pmax and gain+
min (Section 5.3.3). Because there are a large number of

combinations of their possible instantiations, we purposely select a few datasets which
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are limited in size and thus fast to evaluate. We choose four separated datasets consisting

of single object classes: we use the “horses”, “car rears”, “motorbikes” and “airplanes”

datasets from [BU02] and [Com]. These four categories are also well representative of

standard categories in other datasets like Pascal [EVGW∗].

Image classification

In a second step, we evaluate our approach on the Pascal 2005 dataset in term of clas-

sification performance, in order to compare our results to state-of-the-art results. In

particular, we want to compare to the system of Zhang et al. [ZYW∗10] as their method

is closely related to ours (i.e., boosting with subgraph decision stumps). It would have

also been interesting to evaluate our contribution in term of object recognition perfor-

mance (i.e. instead of classification) on a larger dataset like Pascal VOC 2007, but due to

lack of time we must report this evaluation for later1.

6.2 Experiments on Single Classes

As stated above, we evaluate our system using four object classes as a first experimental

step. In more details, the four classes are the following:

• The Weizmann horses dataset (327 class images, 900 non-class images) from [BU02].

• Three classes from the Caltech Computational Vision Group web page [Com]:

– The “airplanes” dataset (1074 images)

– The “car rears 127” dataset (127 images)

– The “motorbikes” dataset (798 images)

For each of the three latter classes, we use the “background” dataset from [Com] as

non-class pictures. Every image is downsized such that its size fits the size reported

in Epshtein and Ullman [EU07], i.e., about 200 pixels wide. Sample images from those

datasets are shown in Figure 6.1.

1It indeed takes a long time to train and test on this kind of dataset, as several classifiers must be trained
for each pair of class object and window aspect ratio (e.g. they are different for different viewpoints like
rear view or side view). Also, the large number of training images and the parameter tuning do not help
matters.
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Figure 6.1: Sample images from the “horses”, “airplanes”, “car rears 127” and “motor-
bikes” datasets (each row shows instances from a single category in this order). The last
row shows images from the “background” dataset used in our tests as non-class images.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



130 Chapter 6. Evaluation of Our Contribution For Class Object Detection

Comments about the four datasets

In addition to the fact that running experiments on those four datasets is relatively fast

because of the small sizes of images, hence allowing us to extensively study parame-

ter effects, another advantage is that the datasets only contain instances viewed from

a single viewpoint. With respect to our lattice training procedure, this is the perfect

setting: training images are easily alignable hence enabling the construction procedure

to learn all model parts from a large number of examples for each one (remember that a

coverage map is used to divide each model image into a set of parts according to a pyra-

midal division the scale-space, see Section 3.5.5). Moreover, this evacuates the problem

of scanning the image at different aspect-ratios as exists in more realistic datasets like

the Pascal VOC.

Finally, one last advantage is that results from the method of Epshtein and Ullman

[EU07] have been reported for two out of these four datasets (the third dataset used

by Epshtein and Ullman is not publicly available to our knowledge2). It is interest-

ing to compare to them as their method is also based on using local multi-scale model

parts learned using mutual information, but the features and decision model are differ-

ent from our system (respectively, they use template-based features and a hierarchical

probabilistic model).

6.2.1 Parameter tuning

As a first experimental step, we evaluate in this section the influence of the following

three parameters:

• The seed branch threshold dmax
Kz (eq. (3.8), Section 4.2.1). Depending on the value

of dmax
Kz , seed branches will let a various proportion of test keypoints traverse them.

In particular, we suspect that a small value of dmax
Kz would harm the performance,

as too much similarity between train and test seed keypoints will be required in

spite of the intra-class variations.

• The path termination threshold pmax (Section 5.3.3). When the probability p(Ak|¬O)

of lattice aggregate Ak being detected in non-class images goes below pmax, then

the corresponding lattice path is terminated. In other words, the higher is pmax,

the shorter are lattice paths (on average).

• The minimum gain in mutual information gain+
min (Section 5.3.3). When the gain

of information from a candidate aggregate is inferior to gain+
min, then it is pruned.

2We wrote to them to get the last dataset but we did not receive any answer.
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A small value of gain+
min thus involves less pruning and more terminal aggregates

(i.e. a broader lattice).

To sum up, the first parameter controls the distinctiveness of the seed branches and

the other two influence the lattice depth and breadth. (Note that dmax
Kz also influence the

lattice depth because p(Ak|¬O) depends on dmax
Kz and the distinctiveness of the following

branches on Ak’s path.)

Experimental settings The following operations are done for each dataset indepen-

dently.

Test/train data We randomly split in half the class and non-class images between train-

ing and test. The training set is one more time split: one half for learning the lattice

and the classifier, and the other one for validation.

Lattice training The lattice construction is based on a subset of 32 class images for

efficiency. For the same reason, we use random sampling during the candidate

picking loop (step 4.a, Section 5.3.3) to speed-up the training. In other words, we

only pick the best candidate from a sub-sample of all candidates in each iteration

(an exhaustive search would be too slow). A drawback of randomization is that

the training procedure can produce different lattices from the same training images

and parameters.

Classifier training Concerning the classifier training, we use 3 levels of spatial pyramid

(standard value in the literature [LSP06, GD05, HJS09]), Ndoublets = 10000 doublet

features randomly sampled from positive training windows and a codebook of 100

visual words learned from background images using k-means (superior values did

not yield superior results due to the small image sizes, identical codebook size was

reported in Harzallah et al. [HJS09] for Pascal 2007). We generate additional train-

ing windows by shifting the original bounding boxes in position and scale (two

shifts of ±12.5% along x and y and one shift of ±10% along scale), hence multi-

plying the number of positive training windows by 7. Note that this operation is

very important to improve performance because it forces AdaBoost to be robust to

a noisy window positioning. This is in contrast with a traditional bag-of-features

+ χ2-SVM [ZBMM06] where this operation is useless and even harms the perfor-

mance according to our experiments. In fact, this problem does not arise for a

SVM because the kernel returns real values directly related to the distances be-

tween samples; on the contrary for AdaBoost decision stumps only return binary
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decisions. As a consequence, robustness to a noisy positioning must be explicitly

learned from the training set. Finally, we use 4 iterations of bootstrapping to train

real-AdaBoost.

Detection During detection, we scan each test image with a window of a fixed aspect-

ratio at multiple scales (we use the average aspect-ratio of the training bounding

boxes, the window shifts are 25% in position and 20% in scale). Each of the win-

dows is evaluated independently by the classifier and a final non-maxima sup-

pression step is performed on overlapping windows. Finally, ROC curves are

generated from the detected boxes (we take 50% minimum mutual overlap with

the ground truth to consider a box as correct as in [EVGW∗]).

6.2.1.1 Influence of the parameters

We now perform an exhaustive search over the space of parameters. To reduce the

search space, we quantize each parameter into the following values: dmax
Kz ∈ {7× 104, 8×

104, 9× 104}, pmax ∈ {5.1× 10−2, 6.4× 10−3, 8× 10−4, 10−4} and gain+
min ∈ {0.05, 0.07, 0.09, 0.11, 0.13}.

The values for dmax
Kz correspond respectively to a matching probability of 2.3%, 3.9% and

6.2% between two keypoints randomly sampled in natural images. The values for pmax

correspond to average path lengths of 2.01, 2.49, 3.23 and 3.51 respectively. Finally, the

values for gain+
min respectively correspond to an average number of terminal aggregates

per lattice of 1264, 1015, 833, 702 and 594.

Mean AUC

First of all, we investigate the parameter influence on the recognition performance in

term of the Area Under ROC Curve (AUC) measure. To that aim, we measure the

average AUC when one parameter is fixed and the two other ones are varying. Results

are shown for each parameter separately in Figures 6.2, 6.3 and 6.43.

As can be noticed on the averaged charts, performance is substantially equivalent

whatever the value of each parameter. About the parameter dmax
Kz , slightly better results

seem to be reached for dmax
Kz = 80000. About the minimum information gain gain+

min,

slightly better results are achieved for low values. This appears logical as low val-

ues imply larger detection lattices and hence larger feature pools, yielding more choice

to AdaBoost to build the classifier. Still, there is not a big AUC difference between

3Due to a different threshold involved in the non-maxima suppression step between experiments of
this section and the next section, the AUC values obtained in the charts do not exactly corresponds to
subsequent AUC curves below (which are correct). Please excuse us for this awkwardness which fortunately
does not invalidate the results in the charts (only a constant offset is added).
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Figure 6.2: Influence of the parameter dmax
Kz on the performance in term of AUC measure

on the four datasets. Left bars correspond to using f C
0 , f C

1 and f C
2 and right bars to not

using them in order to prune the detection lattice. The last chart shows averaged AUC
over all datasets.
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Figure 6.3: Influence of the parameter gain+
min on the performance in term of AUC

measure on the four datasets. Left bars correspond to using f C
0 , f C

1 and f C
2 and right

bars to not using them in order to prune the detection lattice. The last chart shows
averaged AUC over all datasets.
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Figure 6.4: Influence of the parameter pmax on the performance in term of AUC measure
on the four datasets (labels are expressed as decimal logarithms of pmax). Left bars
correspond to using f C

0 , f C
1 and f C

2 and right bars to not using them in order to prune
the detection lattice. The last chart shows averaged AUC over all datasets.

gain+
min = 0.05 and gain+

min = 0.13, meaning that our approach succeeds in picking

first the most discriminative candidates during the lattice construction loop. About the

parameter pmax, for some reason the best results depend whether the features f C
0 , f C

1

and f C
2 are used or not (although the change is not so important). Namely, when the

{ f C
n }n=0..2 are used (i.e. the detection lattice is not pruned) then setting pmax = 10−1.3

performs best. On the contrary, when the { f C
n }n=0..2 are not used, setting pmax = 10−4

performs best. It is interesting to note however that the { f C
n }n=0..2 are not so useful: es-

sentially similar performance is reached whether they are used or not. This is important

since it means that the detection lattice can be pruned so as to reduce the detection time

(Section 5.2.4) without sacrifying the performance.

Detection Time

We investigate now the effect of the different parameters on the detection time. It is

indeed expected that a larger detection lattice implies more detected aggregates, hence

more time spent per image. We display in Figure 6.5 the detection time averaged over

all datasets as a function of the three different parameters (i.e. excluding the feature

extraction step: we only measure the time of aggregate extraction followed by sliding

window classification). Interestingly, one can see that pruning the detection lattice after

constructing the classifier (Section 5.2.4) significantly boosts the detection speed by a
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Figure 6.5: Average detection time per image (excluding the feature extraction step)
over the different datasets in function of the parameters. The detection time is almost
constant and independent of the parameters when the detection lattice is pruned.

factor 4~5. In particular, it is crucial to point out that after pruning the detection time

does not depend on the original lattice width anymore (see middle and left charts in

Figure 6.5). As a consequence, we systematically discard the { f C
n }n=0..2 features in order

to prune the lattice in the following experiments.

6.2.2 Comparison against other approaches

We now quantitatively evaluate our approach on the four datasets versus the following

settings:

• A baseline bag-of-features with Nwords = 100 (superior values did not yield supe-

rior results). We use a SVM with a χ2 kernel as suggested by [BZ07] and determine

the slack parameter on the validation set.

• A baseline bag-of-features with Nwords = 100, but using real-AdaBoost instead of a

SVM.

• The method of Epshtein et al. [EU07] which is related to ours in the fact that

discriminative model parts are also learned during training using mutual informa-

tion gain. However contrary to us, their features are dense image patches matched

by normalized cross-correlation (NCC), and they use a hierarchical probabilistic

model to infer the object presence from the detected parts (Figure 6.10). (Note that

their results are only reported for two out of our four datasets.)

Concerning our approach, we try different values of dmax
Kz , gain+

min and pmax and retain

the combination that produce the best performance on the validation dataset. This is

crucial in order to cancel the effect of randomization in the lattice construction proce-

dure (a probably more efficient solution would be to merge several lattices constructed

with different or identical parameters, and to use this larger lattice for training). More-

over, we use two settings for our method in order to investigate the complementarity
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of visual words and aggregate features: in the first setting we use both visual words

and aggregates, while in the second setting we use only aggregates. Finally, we evaluate

the performance using either one level of spatial pyramid [LSP06, BZ07] (i.e. pure bag-

of-features without any spatial information) or 3 levels (21 cells per window, standard

setting in the literature).

Experimental results

Sample detections for the “horses” and “car-rears” datasets are illustrated in Figures 6.6

and 6.7 respectively. Each image corresponds to the window which was ranked highest

by the classifier (i.e. images are cropped). Aggregates used by the classifier are drawn

as green squares. As can be observed, most aggregates are positioned on object parts

rather than on the background, demonstrating that our lattice construction procedure is

well able to learn discriminative aggregates.

Then, quantitative results for one level are shown in Figure 6.8 and results for three

levels are shown in Figure 6.9. The acronyms in the figure legends are the following:

“BoF” means bag-of-features (i.e. classical visual words), “Aggr” means that we use

aggregates detected with the lattice, and “SVM” or “realAB” (real-AdaBoost) specify

the type of the classifier.

In the first situation (one level) our methods constantly outperform all others. The

performance for the two baselines (BoF+SVM and BoF+realAB) is roughly similar, while

the performance using only aggregates is slightly inferior to the combination of visual

words and aggregates.

On the contrary for three pyramid levels we observe a good complementarity be-

tween visual words and aggregates (in particular for the “horses”, “motorbikes” and

“car rears” datasets). This is interesting as it means that aggregates alone are too much

specific to the learned class and are insufficient to achieve high performance. This is

because they do not allow a good modeling of the negative windows; on the contrary

visual word features are more generic as the visual codebook is constructed from a

collection of natural images: the combination of the two feature groups substantially

improves the performance, demonstrating their good complementarity. Apart from this,

our methods still outperform the baselines for three pyramid levels except for the “mo-

torbikes” dataset where the SVM performs slightly better. This is due to the fact that the

localization is less precise using AdaBoost that using a SVM for the above mentioned

reason (i.e. real-valued kernel distance vs binary stumps). Indeed, we will see in the

next paragraph that when we classify the images our system performs better than the
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Figure 6.6: Sample detections on the “horses” dataset (only the highest-ranked window
per image is shown). Aggregates used by the classifier to rank the window are high-
lighted in green squares. As can be observed, most squares are positioned on object parts
rather than on the background, demonstrating that our lattice construction procedure is
well able to learn discriminative aggregates.
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Figure 6.7: Sample detections on the “car-rears” dataset (only the highest-ranked win-
dow per image is shown). Aggregates used by the classifier to rank the window are
highlighted in green squares. As can be observed, most squares are positioned on ob-
ject parts rather than on the background, demonstrating that our lattice construction
procedure is well able to learn discriminative aggregates.
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Figure 6.8: ROC plots on the four datasets for our methods versus several baselines. For
all methods we use one level of spatial pyramid, i.e. this is a pure bag-of-features setting.
The acronyms in the legends are the following: BoF means bag-of-features (i.e. classical
visual words), Aggr means that we use aggregates detected with the lattice, and SVM /
realAB (real-AdaBoost) specifies the used classifier type.
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Figure 6.9: ROC plots on the four datasets for our methods versus several baselines. For
all methods we use three levels of spatial pyramid (a standard setting). The acronyms
in the legends are the following: BoF means bag-of-features (i.e. classical visual words),
Aggr means that we use aggregates detected with the lattice, and SVM / realAB (real-
AdaBoost) specifies the used classifier type.

same baseline SVM for this dataset although exactly the same lattice and classifier are

used.

Finally, note that the baseline SVM performance significantly degrades for three

pyramid levels compared with one level on the “airplanes” dataset. As noted by Bosch

and Zisserman [BZ07], the importance of each pyramid level varies from one class to

another, and more complex models are required to learn those distributions. In con-

trast to SVMs, AdaBoost coupled with decision stumps selects a sparse set of features

to construct the classifier and hence is able to avoid inefficient features, independently

of their level in the pyramid. This is in contrast with the sample-based selection made

by a SVM where single features can not be discarded. Because our approach also uses

AdaBoost, we can theoretically set the number of levels to a high value without fear-

ing performance losses (although the training time may dramatically increase). This is

important as the less parameters to tune, the more simple and convenient is a method.
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Figure 6.10: The hierarchical decomposition of Epshtein and Ullman [EU07]: an example
of simple hierarchy.

Classifying images

In order to compare to Epshtein and Ullman [EU07] we conform to their experimental

settings: for each image, we perform object recognition using a sliding window, then we

retain the label of the box with the highest score to determine the image label (i.e. class

or non-class image). Unfortunately, only two of the three datasets that Epshtein and

Ullman have used are available to us (motorbikes and horses). Results in term of ROC

plots for those two datasets are shown in Figure 6.11. Again, our approach outperforms

theirs. It is important to note that the method of Epshtein and Ullman is probably much

slower than ours, although they did not report any running time: in fact, they have

used dense patch features which are searched in the test image using Normalized Cross

Correlation (NCC). This operation is typically very slow, and probably for this reason

they have only evaluated their system on a small number of classes with small sized

images. On the contrary, our method classifies each image in a matter of milliseconds, if

we exclude the feature extraction step (keypoint extraction is the longest part, it requires

about half a second for an image, the segment and texture extraction only last about 100

milliseconds4).

6.3 Pascal 2005 Classification experiments

We present in this section an evaluation of our approach in term of classification perfor-

mance on the Pascal VOC 2005 dataset [EGWZ05]. Our purpose is to compare to related

approaches like the methods of Nowozin et al. [NTU∗07] and Zhang et al. [ZYW∗10] as

well as to the best results from the state-of-the-art.

4Note however than the feature extraction step has to be done once per image, in the case where multiple
objects are searched in an image
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Figure 6.11: Comparison of our method with the method of Epshtein and Ullman [EU07]
and a baseline bag-of-features + SVM.

Dataset description The Pascal VOC 2005 dataset aims at evaluating the performance

of classification and object recognition approaches in unconstrained natural images. The

dataset comprises four categories: bicycles, cars, motorbikes and people. For each cat-

egory, a set of training and test images are provided (a various number of instances

from only one category are present in each image). Sample training images are shown

in Figure 6.12. As can be observed, instances can appear at various scales, locations,

viewpoints and levels of occlusion, making the dataset extremely challenging. Note

however that the category “motorbikes” is easier than the other ones as instances most

often appear under the same viewpoint, fit the image size and are in front of an empty

background (e.g. first and second pictures in the third row of Figure 6.12).

Finally, it is important to note that two different test sets are provided by the dataset

creators: the first set follows the same distribution than the training set (i.e. images

originate from the same sources), while the second set is composed of images gathered

from different sources. As a result, the second test set is harder but enables to evaluate

the generalization power of an approach.

Experimental settings

Because object recognition and localization is unrealistic on the Pascal VOC 2005 dataset

with our current approach (particularly for the people category where the variability is

huge, see last row of Figure 6.12), we turned toward the image classification challenge.

Contrary to the protocol presented in the previous section where the best window was

used to determine the image score, we simply make a single evaluation per image to

assign its score, that is, we only evaluate a single window fitting the whole image. This

way of doing is standard in the literature and shrugs off aspect ratio and viewpoint
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Figure 6.12: Sample images from Pascal VOC 2005 [EGWZ05] (each row shows images
from a single category). The intra-class variations are much greater for the “people”
category than for other classes.
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issues raised by sliding window methods when object classes have great variability.

Moreover, it has the advantage to take into account the image context, i.e. to take into

account any information in the image other than the object itself that may be useful for

classifying it.

Concerning our training procedure, we build beforehand one lattice per category

using 32 positives images and every available negative images from the other categories.

We set the thresholds to the following values: pmax = 10−4, gain+
min = 0.05 and dmax

Kz =

{60000, 70000, 80000, 90000}. We set gain+
min to a low value to generate a large number

of aggregates, since it tends to increase the performance as we saw previously (Figure

6.3). We also set pmax to a low value for the same reason (see Figure 6.4) and because

we expect more keypoints per window (since images are larger), hence requiring more

distinctive aggregates. Finally, we select several values for the seed branch threshold

dmax
Kz since the tuning of Section 6.2.1 did not clearly demonstrate any preference5. We

thus obtain a total of 16 lattices (4 per category) which we merge altogether using a

simple concatenation. The resulting lattice is used to collect aggregates in the training

and test images. Then, we train a binary classifier for each category with respect to

the provided validation set. Although we could use several pyramid levels to improve

the performance, we only use one pyramid level (i.e. pure bag-of-aggregates) for a

fair comparison with other existing approaches (see below). For the same reason, we

do not use doublet features (i.e. Ndoublets = 0). We also experiment our method with

and without using visual words (we use a codebook of Nwords = 250). Finally, after

learning the classifier we prune the original training lattice so as to save only the selected

aggregates. Whereas the original lattice contains 40,638 aggregates (6684 seed branches,

5.2 features per terminal aggregate on average), the pruned lattices only contain 785 (249

seed branches), 935 (286 seed branches), 1013 (305 seed branches) and 349 aggregates

(102 seed branches) respectively for the bicycle, cars, motorbikes and people categories.

Experimental results

Following the standard procedure, results are expressed in terms of Equal Error Rate

(EER) measured on separate ROC curves (one for each category). Table 6.1 shows the

performance of our method as well as results of existing methods from the state-of-

the-art. Our method is clearly inferior to the best results of Larlus et al. [LDJ06] and

Zhang et al. [ZBMM06], but on the other hand our aggregates only grow from salient

keypoints (i.e. sparse SIFT) whereas million of dense vectors are extracted in Larlus

5in fact, the optimal value may depend on each seed features
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test set 1 test set 2

method Motorbikes Bicycles People Cars Motorbikes Bicycles People Cars

bag-of-features (sparse) [ZBMM06] 95.8 89.4 90.4 92.3 79.7 68.4 72.8 72.3

bag-of-features (dense) [LDJ06] 97.7 93.0 97.7 96.1 - - - -

subgraph boosting [NTU∗07] 80.6 69.0 66.8 80.7 66.2 62.1 62.1 63.4

Subgraph sharing [ZYW∗10] 81.5 71.2 71.1 83.8 66.3 62.2 62.5 68.7

Our method (Aggregates only) 95.0 82.6 85.5 91.6 70.7 70.0 72.0 72.5

Our method (Bof+Aggr) 95.6 85.1 85.3 92.0 72.4 72.0 72.5 74.8

Table 6.1: Equal Error Rate (EER) for each category on Pascal VOC 2005.

et al. algorithm, making it probably very slow. Concerning the work of Zhang et al.

[ZBMM06] we report in Table 6.1 their results obtained using only keypoint extracted

with the SIFT detector (like we do) for a fair comparison. Note however that they use

two types of descriptors for each keypoint (SIFT and SPIN). Again, our results are about

5% inferior on the first test set. However, on the second test set we obtain similar and

even superior results on the “cars” and “bicycles” categories, meaning that our method

is well able to generalize.

On the contrary, our method largely outperforms the related approaches of Nowozin

et al. [NTU∗07] and Zhang et al. [ZYW∗10] for all categories and test sets. The improve-

ment in term of EER ranges between 5% and 14% for both test sets. This is not a

surprise insofar as both Nowozin et al. [NTU∗07] and Zhang et al. [ZYW∗10] extract

small 80-node graphs per image for computational reasons. In comparison, our method

can afford to look at thousands of subgraphs per image without noticeable slowdown.

Indeed our classification time per image is 3.28s on average, from which 2.78s s are

spent for extracting features (80% of this time is just dedicated to keypoint extraction

and description) and the rest (0.5s) is spent on detecting aggregates and evaluating all

four classifiers (note that the classification time is the same whether we use the visual

words or not ). This latter time is well below the time of ~1s per image and per category

reported by Zhang et al [ZBMM06] to classify an image using either a EMD or a χ2 SVM

kernel.

Discussion about normalization issues

More generally, we explain our inferior results with respect to bag-of-features methods

on the first test set by the fact that our decision scheme only considers the binary pres-

ence or absence of aggregates, which may contain less information for representing the

image than histograms do. In fact, there is no explicit normalization in our method with

respect to the image size except for the fact that all aggregates incorrectly extrapolating
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the image size are discarded (i.e. this is the same strategy than in Section 6.2 with the

sliding window). Yet, this scheme is not robust against scale changes of instances in test

images (a common situation in the Pascal VOC 2005 dataset). On the contrary, in the

classical bag-of-features robust normalization is naturally achieved by computing the

relative proportion of each visual word in the image (i.e. histogram bins sum to one).

To conclude with, it would be interesting to investigate other ways of normalizing our

feature vector, e.g. to use an histogram of subgraphs like Ozdemir and Aksoy [OA10]

for which spatial information is not entirely lost in the bining process (local spatial in-

formation is encoded into the subgraphs).

6.4 Conclusion

We have presented a quantitative evaluation of the contribution of Chapter 5. We have

first evaluated our approach on the tasks of recognizing and localizing instances belong-

ing to 4 separate object classes. Our results are superior to different baselines as well as

to the hierarchy of parts of Epshtein et al. [EU07]. Besides, pruning the lattice appears

to be a winning strategy as it implies similar performance while the detection time is

divided by 5 in the same time.

Secondly, we have compared our approach to other works on the Pascal VOC 2005

dataset in the classification challenge. We have obtained results that are slightly inferior

or equivalent to the state-of-the-art with a faster classification scheme; moreover our

method largely outperforms related approaches based on subgraph boosting. As noted

by Zhang et al. [ZYW∗10], our moderately good results against bag-of-features models

may be explained by the fact that our lattice construction process is strongly suboptimal

due to the best-forward aggregate selection procedure (training loop of Section 5.3.3).

As a result, perspectives include discovering better heuristics for aggregate selection as

well as finding more robust normalization schemes in the classification case.
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Chapter 7
Conclusion

7.1 Summary of Contributions

In this dissertation, we have presented two contributions to the field of object recogni-

tion. The first contribution leans upon to the case of specific objects while the second one

applies to class objects. We now summarize each of our contributions to their respective

framework.

Specific Object Recognition

In Chapter 3, we have presented a method of specific 3D object recognition inspired

from graph matching. Specific object recognition is a problem that may appear simpler

to handle than class object recognition, but as our experiments have shown, there is still a

long way before reaching a 100% detection rate in realistic (noisy) conditions of use. The

insight of our approach is to decompose the model object into a set of parts and to detect

those parts in the scene image to infer the object presence (note that we do not explicitely

model the object 3D shape, instead we tackle viewpoint changes by allowing some tol-

erance to distortions). Contrary to keypoint-based approaches [Low04, LLF05, MP08],

only a small number of model parts are selected during training according to a mutual

information based criterion. Another difference with respect to classical graph match-

ing, where the scene images are beforehand converted into graphs, is that our system is

able to generate new graph nodes at detection time in a dense fashion. The only con-

straint is that the search of plausible parts in the scene image has to begin from salient

spots (keypoints). Contrary to similar methods relying on slow expansion/contraction

iterations [FTG06, KP06], our matching scheme relies on cascades to speed up the detec-

tion. The use of cascades enables in addition to combine different feature channels (both
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sparse and dense) which results in a significant improvement in term of robustness, as

demonstrated in Chapter 4.

Indeed, our experiments on our own dataset fitted to model the realistic conditions

of mobile robotic (11 model objects and more than 2800 test images) have shown that

our detection scheme outperforms other standard methods. Other comparisons against

state-of-the-art algorithms on existing datasets emphasizing occlusion and clutter rather

than scale changes show that our method performs slightly less well than other ap-

proaches; however our method remains generally faster. All in all, we demonstrated

that despite a small number of training images cascades are adequate for specific object

recognition, and that it is extremely important to use several feature types (especially

dense features) in the recognition process.

Class Object Recognition

In chapter 5, we have introduced an extension of the graph matching method de-

scribed in Chapter 3 to the detection of class objects. The basic reason for this ex-

tension was the fact that class objects can also be efficiently represented as collection

of parts [AAR04, BT05], hence allowing to reuse our previous part detection system.

However, we have used a discriminative classifier (real-AdaBoost) instead of the proba-

bilistic model originally proposed in Chapter 3 in order to better handle class variations.

Globally, the strength of our approach comes from that it combines both statistical dis-

criminative learning through sliding window and bag-of-features frameworks, and the

representational power of structural methods through the graph matching framework.

To sum up our method, we achieve object recognition using a sliding window in which

the model presence is evaluated from visual words as well as detected model parts.

Moreover, contrary to classical approaches where the parts are learned before training

the classifier (e.g. [VNU03]), in our method different levels of distinctiveness for each

model part are dynamically available to the classifier at training time. As a result our

detection process relies both on generic features suited to detect any classes (including

the background) and on class specific features (model parts) with finely tuned distinc-

tiveness dedicated to the model class. Although dedicated features are generally slower

to compute (e.g. [SWB∗07]), in our case the cascaded lattice enables a relatively fast

detection. In addition, we have also introduced two optimizations to fasten both the

training and the detection steps.

We have then experimented the resulting system in Chapter 6 on several existing

datasets. On the first dataset composed of four single classes we have evaluated our ap-
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proach in terms of object recognition and image classification. On this occasion we have

demonstrated superior performance against a baseline bag-of-words and a part-based

model from the state-of-the-art. Secondly, we have answered the image classification

challenge proposed for the Pascal VOC 2005 dataset. We have shown that our method is

able to achieve results slightly inferior, similar or even superior to other state-of-the-art

approaches for a smaller detection time. Moreover, the comparison with related ap-

proaches of subgraph boosting has clearly turned in our favour with improvements of

10% in term of EER measure, hence validating the soundness of our approach.

7.2 Perspectives

Given the extent of the works presented in this dissertation, there are many possible

perspectives. We give here a non-exhaustive list of the most important tracks in our

opinion.

Scalability issues

The detection technique that we have used for our first contribution is not yet scalable to

a large number of model objects in the database. The reason is that we use an absolute

distance between keypoint descriptors instead of a relative distance using a kd-tree like

other methods generally do (e.g. [Low04]). Yet, we believe it possible to tackle this issue

in two complementary ways: first is to gather all detection lattices (one per model object)

into one single lattice in order to share aggregates accross model objects. A similar ap-

proach for subgraph sharing applied to pure graph matching was already demonstrated

to be feasible by Messmer and Bunke [MB98]. Secondly we noticed that the detection

time is linear with the number of branches starting from the lattice root node, because

each keypoint in the test image is compared to each first-level seed feature. So by inter-

posing a tree-shaped indexing structure between the root and the first-level aggregates,

one should be able to achieve a significant speed-up. The work of Beretti et al. [BDV01]

for indexing graph using nested spheres, for instance, seems to be a promising track to

achieve such a boost.

Real-time object detection

Although both contributions are already fast, there is still a gap before achieving real-

time detection. One general solution to increase the speed would be to parallelize the

feature extraction process. A promising track seems also the use of faster keypoint
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extraction and description schemes (e.g. the ferns proposed by Özuysal et al. [zCLF09]).

Finally, a simple way to further accelerate the detection speed for the second contribution

would be to use soft cascades [BB05].

Improvement of the lattice construction procedure

As noted by Zhang et al. [ZYW∗10], the fact that bag-of-subgraphs perform less well

than classical bag-of-features for the classification task may be explained by the fact that

the subgraph generation process is strongly suboptimal due to the best-forward aggre-

gate selection procedure (training loop of Section 5.3.3). Indeed, it seems impossible to

exhaustively explore the huge space of all possible subgraphs. As a result, additional

researches are necessary to discover better heuristics for subgraph selection during the

lattice construction process.

Improvement of the bag-of-subgraphs model

Finally, we believe that the binary representation of the bag-of-subgraphs model (i.e.

only considering the presence or absence of each aggregate) is suboptimal for image

classification. In fact, there is the lack of a normalization compared to classical bag-

of-features where robust normalization is naturally achieved by computing the relative

proportion of each visual word in the image (i.e. histogram bins sum to one). To

conclude with, it would be interesting to investigate other ways of normalizing our

feature vector, e.g. to use an histogram of subgraphs like Ozdemir and Aksoy [OA10].
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A.1 Introduction

La reconnaissance d’objet dans les images est un domaine en pleine expansion. De-

puis plusieurs années, l’émergence des points d’intérêts invariants tels que SIFT [Lowe,

2001] a permis de produire des systèmes efficaces et rapides aussi bien pour la recon-

naissance d’instances d’objets spécifiques que pour la reconnaissance de classes d’objets

(e.g. modèle du sac de mots visuels). Cependant, nos expériences sur la reconnaissance

d’instances d’objets spécifiques ont montré que dans des conditions réalistes d’utilisa-

tion (i.e. présence de bruits divers comme le flou de bougé, une luminosité criarde, une

faible résolution d’image, etc.), des progrès restaient encore à accomplir en termes de

rappel : malgré le faible taux de faux positifs, trop peu d’instances réelles sont détectées

quel que soit le système utilisé (RANSAC, vote/Hough. . . ). Dans cette thèse, nous pré-

sentons tout d’abord une contribution visant à pallier ce problème de robustesse pour la

reconnaissance d’instances, puis une extension directe de cette contribution à la recon-
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naissance et la localisation de classes d’objets.

Dans un premier temps, nous avons développé une méthode inspiré de l’apparie-

ment de graphe (i.e. graph matching) afin de traiter le problème de la reconnaissance ra-

pide d’instances d’objets spécifiques dans des conditions bruitées. Cette méthode permet

de rajouter facilement un nombre quelconque d’autres types de caractéristiques locales

(e.g. contours, textures. . . ) moins affectées par le bruit tout en contournant le problème

de la normalisation et sans pénaliser la vitesse de détection. Dans cette approche, le sys-

tème de détection est formé d’un ensemble de cascades de micro-classifieurs entraînées

préalablement. Chaque micro-classifieur est chargé de comparer l’image test localement

et sous un certain point de vue (e.g. sous forme de contours, ou de textures...) par rap-

port à la même zone de l’image modèle. Les cascades de micro-classifieurs permettent

donc de reconnaître différentes parties du modèle de manière robuste (seules les cas-

cades les plus efficaces sont sélectionnées pendant l’apprentissage). Finalement, un mo-

dèle probabiliste qui combine ces détections partielles permet d’inférer les détections

globales. Contrairement aux méthodes basées sur une transformation globale rigide,

cette approche supporte facilement des déformations complexes du modèle telles que

celles dues à la perspective ou encore celles non-rigides inhérentes au modèle lui-même

(e.g. un visage, un magazine souple).

Nos expériences sur plusieurs bases de test ont montré la pertinence de notre ap-

proche. Notre approche est globalement légèrement moins robuste à l’occultation que

les approches existantes, mais elle produit des performances supérieures aux approches

standard en conditions bruitées.

Dans un second temps, nous avons développé une approche pour la détection de

classes d’objets dans le même esprit que celui du sac de mots visuels. Pour cela, nous

utilisons nos cascades de micro-classifieurs pour reconnaître des mots visuels plus dis-

tinctifs que les mots basés simplement sur des points d’intérêts. L’apprentissage se di-

vise en deux parties : dans un premier temps, nous générons des cascades de micro-

classifieurs servant à reconnaître des parties locales des images modèles ; puis dans un

second temps, nous utilisons un classifieur afin de modéliser la frontière de décision

entre les images de classe et celles de non-classe. Ce classifieur base sa décision sur un

vecteur comptabilisant les sorties binaires de chaque micro-classifieur. Ce vecteur étant

extrêmement clairsemé (sparse), un classifieur très simple comme Real-Adaboost+stumps

parvient à produire de bons résultats (ce type de classifieur s’apparente en fait au noyau

d’appartenance de sous-graphe). En particulier, nous montrons que l’association de mots
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classiques (à partir de points d’intérêts) et de nos mots plus distincts produit une amélio-

ration significative des performances. Le temps de calcul reste globalement assez faible,

étant donné la structure des cascades qui minimise le temps de détection et la forme du

classifieur, extrêmement rapide à évaluer.

A.2 Combinaison Linéaire de Deux Vues Pour la Détection d’Ob-

jets 3D

Ce chapitre présente une méthode de reconnaissance d’objets basée sur la théorie dé-

veloppée par Ullman et Basri en 1991 [UB91]. Selon ces auteurs, il est en effet possible

de reconnaître une vue 2D d’un objet 3D à partir d’un nombre limité de ses vues 2D

connues, sans connaître sa forme géométrique 3D et même si la pose est différente. La

théorie stipule qu’un même objet vu sous différentes poses 3D peut être exprimé comme

une combinaison linéaire d’un petit nombre de ses points de vue, comme défini par les

équations suivantes :

x̂ = u1ρ = (a1e1 + a2e2 + a3r1)ρ = a1x1 + a2y1 + a3x2,

ŷ = u2ρ = (b1e1 + b2e2 + b3r1)ρ = b1x1 + b2y1 + b3x2

où (x1, y1) et (x2, y2) sont les coordonnées d’un point ρ de l’objet vu respectivement dans

la première et deuxième vue du modèle, et (x̂, ŷ) dénote les coordonnées de ρ dans une

image de test (i.e. avec une pose quelconque).

La première section de ce chapitre est consacrée à la présentation de ce cadre théo-

rique en plus amples détails. La section suivante décrit l’algorithme que nous avons

dérivé de cette théorie : pour un objet modèle donné, nous construisons notre modèle à

partir de seulement deux de ses vues (différant légèrement par leur point de vue). Ces

deux images sont alignées à l’aide de points d’intérêt invariants de type SIFT [Low04].

Deux exemples d’alignement sont présentés dans la Figure A.1.

Notre contribution à la théorie originale est double : d’une part, nous avons implé-

menté un système de détection d’objets en utilisant des points d’intérêt invariants (ces

derniers n’existaient pas encore à l’époque), d’autre part nous avons optimisé l’algo-

rithme original de détection. La complexité de la méthode originale a été considéra-

blement réduite (passant d’un facteur O(k3 + n2) à O(n), avec n le nombre de points

d’intérêt dans le modèle et k le nombre de points occultés dans l’image test), ce qui nous

a permis de produire une implémentation rapide associée à une procédure standard

LO-RANSAC [CMK03].
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Figure A.1: Deux objets, une boîte de thé et un patin à roulettes, sont modélisés à partir
de deux images pour chacun où la pose de l’objet diffère légèrement. Les lignes jaunes
représentent les appariements entre points d’intérêt et constituent la seule information
requise par notre méthode (i.e. les positions 2D des points d’intérêt et leurs descripteurs).

Le processus de détection complet se présente comme suit. Nous commençons par

extraire des points d’intérêt SIFT dans l’image test. Ensuite, nous calculons les corres-

pondances avec les points d’intérêt du modèle avec la même stratégie que Lowe [Low04].

À chaque itération de la boucle primaire de LO-RANSAC, une correspondance est choi-

sie au hasard. A partir de cette simple paire, les paramètres d’une transformation simili-

tude 2D sont extrapolés, ce qui constitue une hypothèse approximative pour la position

du modèle dans l’image test. Ensuite, nous examinons l’ensemble des autres corres-

pondances compatibles avec cette hypothèse (i.e. les inliers) afin d’affiner l’extrapolation

du modèle. En fait, une boucle secondaire de RANSAC est lancée sur cet ensemble

de correspondances pour recalculer les paramètres du modèle avec davantage de don-

nées, ce qui résulte en une localisation plus fiable. A cette occasion, notre optimisation

du schéma d’alignement original de Ullman et Basri [UB91] est mise à profit. Enfin, la

meilleure hypothèse trouvée parmi toutes les itérations de LO-RANSAC (celle avec le

nombre maximal d’inliers) est retournée comme résultat final (voir Figure A.2). Option-

nellement, la pose 3D de l’objet détecté (définie par rapport à la première image du

modèle) peut être calculée au prix de la non-prise en compte des effets de perspectives.

Les travaux décrits dans ce chapitre ont été présentés à la Conférence internationale

ACM CIVR 2007 [RLAB07].

A.3 Appariement Pseudo-Hiérarchique de Graphes avec des Points

d’Intérêt

Dans ce chapitre, nous examinons une procédure basée sur l’appariement de graphes

pour reconnaître des objets. Nous nous appuyons sur la théorie de Christmas et al.

[CKP95] à laquelle nous intégrons des contraintes supplémentaires sur la structure des
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Figure A.2: Reconnaissance de deux objets modèles dans la même image. Chaque objet
est correctement localisé. Les positions des points d’intérêt du modèle extrapolés sur
l’image test sont dessinés avec des croix rouge (les points d’intérêt trouvés sont repré-
sentés avec des cercles blancs).

graphes afin d’effectuer un filtrage pseudo-hiérarchique.

Tout d’abord, le graphe du modèle et le graphe de scène sont construits à partir

de caractéristiques invariantes locales (là-encore, nous avons utilisé des points d’intérêt

SIFT) et en les reliant selon une règle dite de proximité :

E =

{
eij

∣∣∣∣∣∀i, j

∥∥pi − pj
∥∥

√
σiσj

< χ

}
(A.1)

où eij dénote une arrête entre les deux sommets indexés par les indices i et j, et où p et

σ dénote respectivement la position 2D et la taille du patch des points d’intérêt associés

à ces sommets.

Cette manière de relier les sommets présente plusieurs propriétés intéressantes, no-

tamment l’invariance en échelle, la robustesse à diverses déformations et la linéarité

empirique du nombre d’arêtes par rapport au nombre de sommets. En ce qui concerne

le processus d’appariement, il est hiérarchique afin d’accroître la vitesse et les perfor-

mances de détection. Plus précisément, il s’appuie sur une intégration progressive des

caractéristiques locales en fonction de leur taille (i.e. les caractéristiques locales les plus

grandes sont intégrées en premier). Un exemple de décomposition hiérarchique d’un

graphe modèle Gm en une série de sous-graphes Gm
(i) ⊆ G

m est donné en Figure A.3. En

conséquence de cette décomposition, même un appariement entre des graphes conte-

nant des milliers de sommets est très rapide (quelques millisecondes).

Le processus d’appariement est itératif et consiste à successivement apparier les sous-
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(a) Gm
1 (b) Gm

2 (c) Gm
3 = Gm

Figure A.3 – Décomposition pseudo-hiérarchique d’un graphe modèle (ici, en 3 ni-
veaux). Les caractéristiques locales les plus petites sont incorporées en dernier.

graphes du modèle {Gm
1 , Gm

2 · · · } avec le graphe de scène (qui lui n’est pas décomposé)

en utilisant la méthode de relaxation probabiliste définie par Christmas et al. [CKP95].

Dans le même temps, l’espace des correspondances possibles entre sommets du graphe

modèle et sommets du graphe scène est élagué afin de garder constante la complexité

du processus, alors que le nombre de caractéristiques ajoutées à chaque niveau de la

hiérarchie augmente. Cette procédure est résumée dans la Figure A.4.

Quelques exemples de reconnaissance en utilisant cette méthode sont présentés dans

les Figures A.5 et A.6. Notre méthode est robuste aux déformations non-rigides comme

le montre la Figure A.5 grâce à la souplesse de l’appariement de graphes, qui compare

la similarité des sommets et des arrêtes à une échelle locale tout en essayant de trouver

une solution globalement optimale.

Finalement, nous adaptons notre algorithme au cas de l’apprentissage à partir d’images

multiples (par exemple pour la reconnaissance de classes d’objets) et nous montrons

quelques résultats préliminaires prometteurs.

Les travaux présentés dans ce chapitre ont été présentés en session oral à la Confé-

rence internationale ACM CIVR 2010 [RLAB10b].

A.4 Appariement Incomplet de Graphes Multi-Caractéristiques

Avec des Cascades

Dans ce chapitre, nous présentons une nouvelle approche basée sur l’appariement de

graphes pour la reconnaissance d’objets spécifiques. Cette fois, nous intégrons différents
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(a) Alignement initial entre le premier niveau du graphe modèle Gm
1 (à gauche,

sommets noirs) et le graphe scène (à droite, lui n’est pas décomposé car la taille de
l’objet dans la scène est inconnu).

(b) Ajout des nouvelles
correspondances.

(c) Connexion des nouvelles
correspondances.

Figure A.4 – (a) Illustration du graphe de correspondances (sommets oranges) entre
les sommets du graphe modèle (à gauche) et ceux du graphe scène (à droite). (b), (c) :
algorithme de mise à jour dans lequel les nouveaux sommets ajoutées dans le niveau
suivant de la hiérarchie sont accolés aux correspondances déjà trouvées puis reliés entre
eux.
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Figure A.5 – Exemple d’appariement non-rigide en utilisant notre méthode sur deux
images montrant deux expressions faciales différentes (les lignes vertes dénotent les
appariements de points d’intérêt). La méthode présentée est particulièrement adaptée
à ce type de situation car l’appariement de graphes permet de trouver un arrangement
global optimal tout en ne se basant que sur des comparaisons locales connectées par des
liaisons souples.

∆ = 20 ∆ = 40 ∆ = 60 ∆ = 80
314

correspondances
158

correspondances
116

correspondances
69 correspondances

Figure A.6 – Appariement entre différentes vues du même objet vu sous différent angles
(données issues de la séquence “hotel” [CMC∗07], des points d’intérêt SIFT sont utili-
sés au lieu de balises définies manuellement). La méthode proposée est robuste à un
changement de point de vue important .
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Ø
level
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3

Ø Ø

3
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5

6

Figure A.7 – Résumé de la méthode présentée dans ce chapitre. (a) en entrée de l’algo-
rithme, quelques images du modèle prises dans différentes conditions d’éclairage ; (b)
construction du graphe prototype à partir de caractéristiques locales saillantes (SIFT,
contours) et non-saillantes (textures) échantillonnées sur les images du modèle ; (c)
construction du treillis de détection. Il est constitué d’une cascade de classificateurs
faibles (flèches noires) visant à détecter des sous-graphes du modèle (cercles rouges)
en ajoutant une caractéristique locale à la fois ; (d) reconnaissance de la peluche dans
une image test. Un point d’intérêt est choisi au hasard dans l’image (flèche bleue) et est
fourni au treillis. Un trajet menant à un sous-graphe du modèle (cercle rouge) est trouvé
grâce à la présence de deux caractéristiques voisines compatibles. Finalement, l’empla-
cement correspondant dans la scène reçoit un vote (rectangle rouge en pointillés).

types de caractéristiques locales (à savoir des points d’intérêt, des contours et des tex-

tures) dans la même approche pour en améliorer la robustesse. Leur combinaison est

rendue possible grâce à l’utilisation conjointe d’une structure de détection en cascade.

Comme dans le chapitre précédent, nous nous appuyons sur un graphe de proximité

pour modéliser l’objet à reconnaître ; par contre, nous ne transformons pas les images

de test en graphes pendant la détection. Au lieu de cela, une procédure itérative est

utilisée pour lancer la recherche d’une solution plausible dans chaque image de test. A

partir d’un seul point d’intérêt choisi aléatoirement à chaque tentative, le système re-

cherche des caractéristiques voisines compatibles (relativement au graphe modèle), afin

de vérifier progressivement la zone environnante. La méthode est résumée plus en détail

dans la Figure A.7.
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Pour parvenir à nos fins, nous définissons des kernels locaux compatibles avec une

indexation efficace des caractéristiques de l’image de test afin de permettre une détec-

tion rapide. Pendant l’apprentissage, l’information mutuelle est utilisée pour sélection-

ner les sous-graphes modèle les plus performants, lesquels sont ensuite décomposés en

cascades et factorisés dans un treillis de détection global (voir Figure A.7.(c)). Contraire-

ment aux techniques classiques d’appariement de graphes, notre algorithme recherche

une solution dans l’espace continu de l’image de test, et pas seulement dans un ensemble

fini d’éléments saillants (i.e. tel que des points d’intérêt), ce qui améliore notablement

la robustesse. Quelques résultats de reconnaissance sur des classes d’objets présentant

une faible variation intra-classe sont présentés dans la Figure A.8. Finalement, une ex-

tension au cas général des classes d’objets est présentée ainsi que quelques résultats

préliminaires assez prometteurs.

Ce travail a par ailleurs été présenté en session oral à la conférence internationale

IEEE ICPR 2010 [RLAB10a] et a été soumis à la revue Elsevier Computer Vision and

Image Understanding (CVIU) en mai 2010.

A.5 Evaluation des Contributions Présentées

Ce chapitre présente une évaluation quantitative de la contribution de cette thèse. Tout

d’abord, nous résumons pour le lecteur les aspects spécifiques de chaque contribution

(plusieurs images requises par modèle objet pour la première et la troisième méthodes

(resp. Sections A.2 et A.4), nécessité d’images d’arrière-plan pour l’apprentissage de la

troisième méthode) et nous justifions dès lors le choix de la base de test utilisée pour les

expériences. Quelques images de cette base sont présentées en Figure A.9 (la base totale

contient 11 objets modèles et plus de 2800 images de test, elle est conçue pour simuler

de manière réaliste la vision d’un système robotique embarqué).

Ensuite, un examen en profondeur des performances est effectué sur cet ensemble

de données pour chaque contribution présentée précédemment. Nous nous comparons

également de manière quantitative avec les algorithmes les plus populaires de l’état de

l’art (un RANSAC de base avec des points d’intérêt SIFT, une variation de RANSAC

de Chum et al. [CMK03] et Philbin et al. [PCI∗07] et la méthode de Lowe [Low04]).

Les résultats principaux sont présentés dans la Figure A.10 en termes de courbes ROC

(plus haut est la courbe, meilleur est le résultat). Nos contributions sont compétitives

par rapport à l’état de l’art, en particulier pour la troisième méthode proposée (Section

A.4) qui affiche des résultats largement supérieures à toutes les autres méthodes.

Finalement, nous tirons des conclusions pragmatiques sur les différentes aptitudes

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



A.5. Evaluation des Contributions Présentées 161

Figure A.8 – Exemples de détections sur plusieurs classes issues de la base Caltech-101.
Haut : images utilisées pour l’apprentissage (les 20 premières images de la catégorie
“Background_Google” de Caltech-101 sont utilisées comme images négatives) ; Bas :
exemples de reconnaissance. Les détections montrées ici sont toutes soutenues par un
nombre important de votes (i.e. plus de 10).
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Figure A.9 – Exemples de détections sur notre base de données en utilisant la troisième
méthode proposée (taux de fausses alarmes fixé à 0,01/image pour chaque modèle).
Cette méthode est robuste aux occultations, changements d’échelle, changements de
point de vue et aux bruits divers comme le flou de mouvement. Les détections correctes
sont représentées par des carrés verts, les détections erronées par des carrés rouges et
les objets non-détectés par des rectangles bleus en pointillés.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



A.6. Conclusion 163

All models averaged. All instances.
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Figure A.10 – Performances de détection en termes de courbes ROC. Gauche : moyen-
nage vertical ; droite : indifférent au modèle.

de chacune des méthodes présentées (e.g. les types d’objets qui leur conviennent le

mieux) à travers quelques expérimentations supplémentaires. Globalement, nos conclu-

sions sont que la stratégie de réduire le nombre de points d’intérêt dans les modèles

(au moins pendant la première étape du processus de détection) permet d’améliorer

les résultats, indifféremment de la méthode utilisée. En outre, nos expériences montrent

qu’une faible proportion de l’information totale du modèle suffit pour générer suffi-

samment d’hypothèses à faible coût sans pour autant sacrifier le taux de vrais positifs.

Cela indique qu’un système de détection efficace peut être décomposé en deux parties :

une première partie rapide génère des hypothèses “brutes” en utilisant seulement une

fraction minuscule de l’information du modèle, et une seconde partie vérifie ces hypo-

thèses avec le reste de l’information du modèle. Pour terminer, il semble extrêmement

important d’ajouter d’autres types de caractéristiques dans le processus de reconnais-

sance, comme nous l’avons fait pour notre troisième méthode. Cela augmente en effet

fortement la robustesse au bruit et améliore les performances dans toutes les situations.

A.6 Conclusion

Dans cette thèse, nous avons présenté trois contributions au domaine de la reconnais-

sance d’objets, avec un accent sur la reconnaissance d’objets spécifiques. La reconnais-

sance d’objets spécifiques est un problème qui peut paraître plus simple à résoudre que

la reconnaissance de classes d’objets, mais comme nos expériences l’ont montré, le che-

min est encore long avant d’atteindre un taux de détection de 100% dans des conditions

réalistes d’utilisation. Nos recherches ont cependant abouti sur une nette amélioration

des performances de détection en particulier grâce à la deuxième et troisième méthodes

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



164 Appendix A. Résumé en Français

proposées (resp. Sections A.3 et A.4). La première méthode (Section A.2), bien qu’offrant

des performances légèrement inférieures à l’état de l’art, permet cependant de récupé-

rer la pose 3D d’un objet à faible coût (pas de maillage 3D requis, création du modèle

très rapide). Elle peut donc éventuellement être combinée avec une des deux autres

méthodes.

Les différentes perspectives qui s’offrent à nous pour poursuivre ce travail de re-

cherche concernent aussi bien l’extension de nos travaux à la reconnaissance de classes

d’objets (à ce titre, l’utilisation des sous-graphes modèle de la troisième méthode semble

particulièrement intéressante) que la prise en compte de la 3D pour les deux dernières

méthodes, ou encore la gestion de grande bases d’objets modèles en temps-réel.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



Bibliography

[AAR04] Agarwal S., Awan A., Roth D.: Learning to detect objects in images via
a sparse, part-based representation. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI) 26 (2004), 2004.

[AMFM09] Arbelaez P., Maire M., Fowlkes C., Malik J.: From contours to regions:
An empirical evaluation. In International Conference on Computer Vision
and Pattern Recognition (CVPR) (2009).

[BB05] Bourdev L., Brandt J.: Robust object detection via soft cascade. In
International Conference on Computer Vision and Pattern Recognition (CVPR)
(2005).

[BBM05] Berg A. C., Berg T. L., Malik J.: Shape matching and object recogni-
tion using low distortion correspondences. In International Conference on
Computer Vision and Pattern Recognition (CVPR) (2005), pp. 26–33.

[BBU04] Bart E., Byvatov E., Ullman S.: View-invariant recognition using cor-
responding object fragments. In European Conference on Computer Vision
(ECCV) (2004), vol. 0, pp. 152–165.

[BDBV01] Berretti S., Del Bimbo A., Vicario E.: Efficient matching and indexing
of graph models in content-based retrieval. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI) 23, 10 (2001), 1089–1105.

[BDV01] Beretti S., Del Bimbo A., Vicario E.: Efficient matching and indexing
of graph models in content-based retrieval. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI) 23, 10 (2001), 1089–1105.

[BGV92] Boser B. E., Guyon I. M., Vapnik V. N.: A training algorithm for op-
timal margin classifiers. In Conference on Learning Theory (COLT) (1992),
pp. 144–152.

[BM00] Belongie S., Malik J.: Matching with shape contexts. In Content Based
Access of Image and Video Libraries (CBAIVL) (2000), p. 20.

165

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



166 Bibliography

[BT05] Bouchard G., Triggs B.: Hierarchical part-based visual object catego-
rization. In International Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2005), pp. 710–715.

[BTG06] Bay H., Tuytelaars T., Gool L. V.: Surf: Speeded up robust features.
Lecture Notes in Computer Science Volume 3951 (2006), 404–417.

[BU02] Borenstein E., Ullman S.: Class-specific, top-down segmentation. In
European Conference on Computer Vision (ECCV) (2002), pp. 109–124.

[BZ07] Bosch A., Zisserman A.: Representing shape with a spatial pyramid
kernel. In Conference for Image and Video Retrieval (CIVR) (2007), pp. 401–
408.

[Can86] Canny J.: A computational approach to edge detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (PAMI) 8, 6 (1986), 679–
698.

[CDF∗04] Csurka G., Dance C. R., Fan L., Willamowski J., Bray C.: Visual
categorization with bags of keypoints. In Workshop on Statistical Learning
in Computer Vision (2004).

[CFH06] Crandall D., Felzenszwalb P., Huttenlocher D.: Toward Category-
Level Object Recognition. 2006, ch. Object Recognition by Combining Ap-
pearance and Geometry, pp. 462–482.

[CFJV06] Conte D., Foggia P., Jolion J., Vento M.: A graph-based, multi-
resolution algorithm for tracking objects in presence of occlusions. Pat-
tern Recognition (PR) 39, 4 (Apr. 2006), 562–572.

[CFSV04] Conte D., Foggia P., Sansone C., Vento M.: Thirty years of graph
matching in pattern recognition. International Journal of Pattern Recogni-
tion and Artificial Intelligence 18 (2004), 265–298.

[CKP94] Christmas W. J., Kittler J., Petrou M.: Matching of road segments us-
ing probabilistic relaxation: Reducing the computational requirements.
In Sensing, Imaging and Vision for control and guidance of aerospace vehicles
(1994), pp. 169–179.

[CKP95] Christmas W. J., Kittler J., Petrou M.: Structural matching in com-
puter vision using probabilistic relaxation. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI) 17 (1995), 749–764.

[CLF08] Calonder M., Lepetit V., Fua P.: Keypoint signatures for fast learning
and recognition. In European Conference on Computer Vision (ECCV) (2008),
pp. 58–71.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



Bibliography 167

[CLK∗09] Calonder M., Lepetit V., Konolige K., Mihelich P., Bowman J., Fua

P.: Compact signatures for high-speed interest point description and
matching. In International Conference on Computer Vision (ICCV) (2009).

[CM02] Chetverikov D., Matas J.: Periodic textures as distinguished regions
for wide-baseline stereo correspondence. In Texture02 (2002), pp. 25–30.

[CM05] Chum O., Matas J.: Matching with prosac " progressive sample consen-
sus. In International Conference on Computer Vision and Pattern Recognition
(CVPR) (2005), pp. 220–226.

[CM08] Chum O., Matas J.: Optimal randomized ransac. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI) 30, 8 (2008), 1472–1482.

[CMC∗07] Caetano T. S., McAuley J. J., Cheng L., Le Q. V., Smola A. J.: Learning
graph matching. In International Conference on Computer Vision (ICCV)
(2007).

[CMK03] Chum O., Matas J., Kittler J.: Locally optimized ransac. Pattern Recog-
nition (PR) (2003), 236–243.

[Com] Computational Vision Group: Caltech Computer Vision Datasets.

[CPM09] Chum O., Perdoch M., Matas J.: Geometric min-hashing: Finding a
(thick) needle in a haystack. In International Conference on Computer Vision
and Pattern Recognition (CVPR) (2009), pp. 17–24.

[CSS07] Cour T., Srinivasan P., Shi J.: Balanced graph matching. In Advances in
Neural Information Processing System (NIPS) (2007).

[CYHH07] Cheng H., Yan X., Han J., Hsu C.: Discriminative frequent pattern
analysis for effective classification. In International Conference on Data
Engineering (ICDE) (2007), pp. 716–725.

[CZ07] Chum O., Zisserman A.: An exemplar model for learning object
classes. In International Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2007).

[DBKP09] Duchenne O., Bach F., Kweon I., Ponce J.: A tensor-based algorithm
for high-order graph matching. In International Conference on Computer
Vision and Pattern Recognition (CVPR) (2009).

[DH72] Duda R. O., Hart P. E.: Use of the hough transformation to detect lines
and curves in pictures. Communications of the ACM 15, 1 (1972), 11–15.

[DPP08] Detry R., Pugeault N., Piater J. H.: Probabilistic pose recovery using
learned hierarchical object models. In International Conference on Computer
Vision (ICCV) (2008).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



168 Bibliography

[DT05] Dalal N., Triggs B.: Histograms of oriented gradients for human de-
tection. In International Conference on Computer Vision and Pattern Recog-
nition (CVPR) (June 2005), Schmid C., Soatto S., Tomasi C., (Eds.), vol. 2,
pp. 886–893.

[EGWZ05] Everingham M., Gool L., Williams C., Zisserman A.: Pascal visual
object classes challenge results. Tech. rep., 2005.

[EHOK01] Elad M., Hel-Or Y., Keshet R.: Pattern detection using a maximal
rejection classifier. Pattern Recognition Letters (PRL) 23 (2001), 1459–1471.

[ESPM05] Eveland C. K., Socolinsky D. A., Priebe C. E., Marchette D. J.: A hi-
erarchical methodology for class detection problems with skewed priors.
Journal of Classification 22, 1 (2005), 17–48.

[EU05] Epshtein B., Ullman S.: Feature hierarchies for object classification. In
International Conference on Computer Vision (ICCV) (2005), pp. 220–227.

[EU07] Epshtein B., Ullman S.: Semantic hierarchies for recognizing objects
and parts. In International Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2007), pp. 1–8.

[EVGW∗] Everingham M., Van Gool L., Williams C. K. I., Winn

J., Zisserman A.: The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop.

[FB81] Fischler M. A., Bolles R. C.: Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated car-
tography. Communications of the ACM 24, 6 (1981), 381–395.

[FE73] Fischler M. A., Elschlager R. A.: The representation and matching of
pictorial structures. IEEE Transactions on Computers 22, 1 (1973), 67–92.

[FFFP06] Fei-Fei L., Fergus R., Perona P.: One-shot learning of object categories.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 28, 4

(2006), 594.

[FFJS07] Ferrari V., Fevrier L., Jurie F., Schmid C.: Groups of adjacent contour
segments for object detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI) (2007), 36–51.

[FFP05] Fei-Fei L., Perona P.: A bayesian hierarchical model for learning natural
scene categories. In International Conference on Computer Vision and Pattern
Recognition (CVPR) (2005), pp. 524–531.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



Bibliography 169

[FG08] Fleuret F., Geman D.: Stationary features and cat detection. Journal of
Machine Learning Research (JMLR) 9 (November 2008), 2549–2578.

[FGM10] Felzenszwalb P. F., Girshick R. B., McAllester D.: Cascade object
detection with deformable part models. In International Conference on
Computer Vision and Pattern Recognition (CVPR) (2010).

[FGMR09] Felzenszwalb P. F., Girshick R. B., McAllester D., Ramanan D.: Ob-
ject detection with discriminatively trained part based models. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI) 99,
PrePrints (2009).

[FH05] Felzenszwalb P. F., Huttenlocher D. P.: Pictorial Structures for Object
Recognition. International Journal of Computer Vision (IJCV) 61, 1 (Jan.
2005), 55–79.

[FPZ03] Fergus R., Perona P., Zisserman A.: Object class recognition by un-
supervised scale-invariant learning. International Conference on Computer
Vision and Pattern Recognition (CVPR) 2 (2003), 264.

[FPZ05] Fergus R., Perona P., Zisserman A.: A sparse object category model for
efficient learning and exhaustive recognition. In International Conference
on Computer Vision and Pattern Recognition (CVPR) (2005), pp. 380–387.

[FS95] Freund Y., Schapire R. E.: A decision-theoretic generalization of on-
line learning and an application to boosting. In European Conference on
Computational Learning Theory (1995), pp. 23–37.

[FSGD08] Fischer B., Sauren M., Güld M. O., Deserno T. M.: Scene analysis with
structural prototypes for content-based image retrieval in medicine. In
Medical Imaging (2008), Reinhardt J. M., Pluim J. P. W., (Eds.), vol. 6914,
SPIE.

[FT04] Ferrari V., Tuytelaars T.: Simultaneous object recognition and seg-
mentation by image exploration. In European Conference on Computer Vi-
sion (ECCV) (2004), pp. 40–54.

[FTG06] Ferrari V., Tuytelaars T., Gool L.: Simultaneous object recognition
and segmentation from single or multiple model views. International
Journal of Computer Vision (IJCV) 67, 2 (2006), 159–188.

[GD05] Grauman K., Darrell T.: The Pyramid Match Kernel: Discriminative
Classification with Sets of Image Features. In International Conference on
Computer Vision (ICCV) (2005), no. October, pp. 1458–1465.

[GHP07] Griffin G., Holub A., Perona P.: Caltech-256 Object Category Dataset.
Tech. rep., California Institute of Technology, 2007.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



170 Bibliography

[GLAM09] Gu C., Lim J. J., Arbelaez P., Malik J.: Recognition using regions. In
International Conference on Computer Vision and Pattern Recognition (CVPR)
(2009).

[GN09] Gehler P., Nowozin S.: On feature combination for multiclass object
classification. In International Conference on Computer Vision (ICCV) (Oc-
tober 2009).

[GR96] Gold S., Rangarajan A.: A graduated assignment algorithm for graph
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) 18 (1996), 377 – 388.

[HALL05] Huang C., Ai H., Li Y., Lao S.: Vector boosting for rotation invariant
multi-view face detection. In International Conference on Computer Vision
(ICCV) (2005), pp. 446–453.

[HHIN09] Holzer S., Hinterstoisser S., Ilic S., Navab N.: Distance transform
templates for object detection and pose estimation. In International Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2009).

[HJS09] Harzallah H., Jurie F., Schmid C.: Combining efficient object local-
ization and image classification. In International Conference on Computer
Vision (ICCV) (2009), pp. 237–244.

[HS88] Harris C., Stephens M.: A combined corner and edge detection. In
Proceedings of The Fourth Alvey Vision Conference (1988), pp. 147–151.

[JT05] Jurie F., Triggs B.: Creating efficient codebooks for visual recognition.
In International Conference on Computer Vision (ICCV) (2005), pp. 604–610.

[Jur01] Jurie F.: Object recognition: solution of the simultaneous pose and cor-
respondence problem. Traitement du signal 18, 5-6 (2001), 321–344.

[JWXD10] Jiang A., Wang C., Xiao B., Dai R.: A New Biologically Inspired Fea-
ture for Scene Image Classification. In International Conference on Pattern
Recognition (ICPR) (Aug. 2010), pp. 758–761.

[KHP07] Kim G., Hebert M., Park S.-K.: Preliminary development of a line
feature-based object recognition system for textureless indoor objects.
In Recent Progress in Robotics: Viable Robotic Service to Human, Springer-
LNCIS, (Ed.). Springer, 2007, ch. Perception Guided Navigation and Ma-
nipulation, pp. 255–268.

[KK91] Kim W.-Y., Kak A. C.: 3-d object recognition using bipartite matching
embedded in discrete relaxation. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI) 13, 3 (1991), 224–251.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



Bibliography 171

[KK01] Kuramochi M., Karypis G.: Frequent subgraph discovery. In Interna-
tional Conference on Data Mining (ICDM) (2001), no. Icdm, pp. 313–320.

[KMM05] Kudo T., Maeda E., Matsumoto Y.: An application of boosting to graph
classification. Advances in neural information processing systems 17 (2005),
729–736.

[KP99] Kruizinga P., Petkov N.: Nonlinear operator for oriented texture. Image
Processing, IEEE Transactions on 8, 10 (1999), 1395–1407.

[KP06] Kushal A., Ponce J.: Modeling 3d objects from stereo views and recog-
nizing them in photographs. In European Conference on Computer Vision
(ECCV) (2006), pp. 563–574.

[KS04] Ke Y., Sukthankar R.: Pca-sift: A more distinctive representation for
local image descriptors. In International Conference on Computer Vision and
Pattern Recognition (CVPR) (2004), vol. 02, pp. 506–513.

[KTI03] Kashima H., Tsuda K., Inokuchi A.: Marginalized kernels between
labeled graphs. In Machine Learning (2003), vol. 20, p. 321.

[KYdB08] Kootstra G., Ypma J., de Boer B.: Active exploration and keypoint
clustering for object recognition. 2008 IEEE International Conference on
Robotics and Automation (May 2008), 1005–1010.

[LDJ06] Larlus D., Dorko G., Jurie F.: Creation de vocabulaires visuels effi-
caces pour la categorisation d’images. In Reconnaissance des Formes et
Intelligence Artificielle (RFIA) (2006).

[LHS07] Leordeanu M., Hebert M., Sukthankar R.: Beyond Local Appearance:
Category Recognition from Pairwise Interactions of Simple Features. In
International Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2007), pp. 1–8.

[LLF05] Lepetit V., Lagger P., Fua P.: Randomized trees for real-time keypoint
recognition. In International Conference on Computer Vision and Pattern
Recognition (CVPR) (2005).

[LLS04] Leibe B., Leonardis A., Schiele B.: Combined object categorization and
segmentation with an implicit shape model. In European Conference on
Computer Vision (ECCV) (May 2004), pp. 17–32.

[Low99] Lowe D. G.: Object recognition from local scale-invariant features. In
International Conference on Computer Vision (ICCV) (1999), pp. 1150–1157.

[Low01] Lowe D. G.: Local feature view clustering for 3d object recognition. In
International Conference on Computer Vision and Pattern Recognition (CVPR)
(2001).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



172 Bibliography

[Low04] Lowe D. G.: Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision (IJCV) 60, 2 (2004), 91–110.

[LSP04] Lazebnik S., Schmid C., Ponce J.: Semi-local affine parts for object
recognition. In British Machine Vision Conference (BMVC) (2004), vol. 2,
pp. 959–968.

[LSP05] Lazebnik S., Schmid C., Ponce J.: A sparse texture representation using
local affine regions. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) 27, 8 (Aug. 2005), 1265–78.

[LSP06] Lazebnik S., Schmid C., Ponce J.: Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR) (2006),
vol. 2, pp. 2169–2178.

[LZL∗05] Liu X., Zhang L., Li M., Zhang H., Wang D.: Boosting image classifica-
tion with lda-based feature combination for digital photograph manage-
ment. Pattern Recognition (PR) 38, 6 (2005), 887 – 901.

[MAFM08] Maire M., Arbelaez P., Fowlkes C., Malik J.: Using contours to detect
and localize junctions in natural images. In International Conference on
Computer Vision and Pattern Recognition (CVPR) (2008).

[MB98] Messmer B. T., Bunke H.: A new algorithm for error-tolerant subgraph
isomorphism detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) 20, 5 (1998), 493–504.

[MCUP02] Matas J., Chum O., Urban M., Pajdla T.: Robust wide baseline stereo
from maximally stable extremal regions. In British Machine Vision Confer-
ence (BMVC) (2002), vol. 1, pp. 384–393.

[MGMR02] Melnik S., Garcia-Molina H., Rahm E.: Similarity flooding: A versa-
tile graph matching algorithm and its application to schema matching.
In International Conference on Data Engineering (ICDE) (2002).

[MHK06] Mansur A., Hossain M., Kuno Y.: Integration of multiple methods for
class and specific object recognition. In International Symposium on Visual
Computing (ISVC) (2006), pp. I: 841–849.

[ML06] Mutch J., Lowe D. G.: Multiclass object recognition with sparse, local-
ized features. In International Conference on Computer Vision and Pattern
Recognition (CVPR) (2006), pp. 11–18.

[MP05] Moreels P., Perona P.: Probabilistic Coarse-To-Fine Object Recognition.
Tech. rep., California Institute of Technology, 2005.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



Bibliography 173

[MP07] Moreels P., Perona P.: Evaluation of features detectors and descriptors
based on 3d objects. International Journal of Computer Vision (IJCV) 73, 3

(2007), 263–284.

[MP08] Moreels P., Perona P.: A probabilistic cascade of detectors for individ-
ual object recognition. In European Conference on Computer Vision (ECCV)
(2008), pp. 426–439.

[MS05] Mikolajczyk K., Schmid C.: A performance evaluation of local descrip-
tors. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
27, 10 (2005), 1615–1630.

[MSHvdW07] Marszałek M., Schmid C., Harzallah H., van de Weijer J.: Learning
object representations for visual object class recognition, oct 2007.

[MTEF06] Murphy K., Torralba A., Eaton D., Freeman W.: Object detection
and localization using local and global features. In Toward Category-Level
Object Recognition, Ponce J., Hebert M., Schmid C., Zisserman A., (Eds.),
vol. 4170 of Lecture Notes in Computer Science. Springer, 2006, pp. 382–400.

[MTS∗05] Mikolajczyk K., Tuytelaars T., Schmid C., Zisserman A., Matas J.,
Schaffalitzky F., Kadir T., Gool L. V.: A comparison of affine region
detectors. International Journal of Computer Vision 65, 1/2 (2005), 43–72.

[NTU∗07] Nowozin S., Tsuda K., Uno T., Kudo T., Bakir G.: Weighted Substruc-
ture Mining for Image Analysis. In International Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2007), pp. 1–8.

[NWN96] Nayar S. K., Watanabe M., Noguchi M.: Real-time 100 object recogni-
tion system. IEEE Transactions on Pattern Analysis and Machine Intelligence
18, 12 (1996), 1186–1198.

[OA10] Ozdemir B., Aksoy S.: Image Classification Using Subgraph Histogram
Representation. In International Conference on Pattern Recognition (ICPR)
(Aug. 2010), vol. 1, pp. 1112–1115.

[OPFA06] Opelt A., Pinz A., Fussenegger M., Auer P.: Generic object recognition
with boosting. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI) 28, 3 (Mar. 2006), 416–31.

[PCI∗07] Philbin J., Chum O., Isard M., Sivic J., Zisserman A.: Object retrieval
with large vocabularies and fast spatial matching. In International Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2007), pp. 1–8.

[QFLG07] Quack T., Ferrari V., Leibe B., Gool L. V.: Efficient mining of frequent
and distinctive feature configurations. In International Conference on Com-
puter Vision (ICCV) (October 2007).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



174 Bibliography

[Rev09] Revaud J.: The cs-17 dataset. http://liris.cnrs.fr/jerome.

revaud/datasets.shtml, 2009.

[RLAB07] Revaud J., Lavoué G., Ariki Y., Baskurt A.: Fast and cheap object
recognition by linear combination of views. In Conference for Image and
Video Retrieval (CIVR) (2007), pp. 194–201.

[RLAB10a] Revaud J., Lavoué G., Ariki Y., Baskurt A.: Learning an efficient and
robust graph matching procedure for specific object recognition. In In-
ternational Conference on Pattern Recognition (ICPR) (Aug. 2010).

[RLAB10b] Revaud J., Lavoué G., Ariki Y., Baskurt A.: Scale-Invariant Proximity
Graph for Fast Probabilistic Object Recognition. In Conference for Image
and Video Retrieval (CIVR) (July 2010).

[RLSP06] Rothganger F., Lazebnik S., Schmid C., Ponce J.: 3d object modeling
and recognition using local affine-invariant image descriptors and multi-
view spatial constraints. International Journal of Computer Vision (IJCV) 66,
3 (2006), 231–259.

[RS05a] Rosenhahn B., Sommer G.: Pose estimation in conformal geometric
algebra part i: The stratification of mathematical spaces. Journal of Math-
ematical Imaging and Vision 22, 1 (2005), 27–48.

[RS05b] Rosenhahn B., Sommer G.: Pose estimation in conformal geometric al-
gebra part ii: Real-time pose estimation using extended feature concepts.
Journal of Mathematical Imaging and Vision 22 (2005), 49–70.

[SBV01] Shearer K., Bunke H., Venkatesh S.: Video indexing and similarity re-
trieval by largest common subgraph detection using decision trees. Pat-
tern Recognition (PR) 34, 5 (May 2001), 1075–1091.

[Sch77] Schwartz E. L.: Spatial mapping in the primate sensory projection:
analytic structure and relevance to perception. Biological cybernetics 25, 4

(February 1977), 181–194.

[SF] Sobel I., Feldman G.: A 3x3 isotropic gradient operator for image pro-
cessing. presented at a talk at the Stanford Artificial Project in 1968.

[SI07] Siagian C., Itti L.: Rapid biologically-inspired scene classification us-
ing features shared with visual attention. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI) 29, 2 (2007), 300–312.

[SP05] Scalzo F., Piater J. H.: Statistical learning of visual feature hierarchies.
Computer Vision and Pattern Recognition Workshops (CVPRW) 0 (2005), 44.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés

http://liris.cnrs.fr/jerome.revaud/datasets.shtml
http://liris.cnrs.fr/jerome.revaud/datasets.shtml


Bibliography 175

[SP06] Scalzo F., Piater J. H.: Unsupervised learning of dense hierarchical
appearance represe. In ICPR ’06: Proceedings of the 18th International Con-
ference on Pattern Recognition (2006), pp. 395–398.

[SREZ05] Sivic J., Russell B., Efros A. A., Zisserman A.: Discovering objects and
their location in images. In International Conference on Computer Vision
(ICCV) (October 2005).

[SS98] Schapire R. E., Singer Y.: Improved boosting algorithms using
confidence-rated predictions. In Conference on Learning Theory (COLT)
(1998), pp. 80–91.

[SSSFF09] Sun M., Su H., Savarese S., Fei-Fei L.: A multi-view probabilistic model
for 3d object classes. In International Conference on Computer Vision and
Pattern Recognition (CVPR) (2009).

[SWB∗07] Serre T., Wolf L., Bileschi S., Riesenhuber M., Poggio T.: Robust ob-
ject recognition with cortex-like mechanisms. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI) 29, 3 (2007), 411–426.

[TCG10] Tirilly P., Claveau V., Gros P.: Distances and weighting schemes for
bag of visual words image retrieval. In Conference on Multimedia Informa-
tion Retrieval (MIR) (2010), pp. 323–332.

[TKR08] Torresani L., Kolmogorov V., Rother C.: Feature correspondence via
graph matching: Models and global optimization. In European Conference
on Computer Vision (ECCV) (2008), pp. 596–609.

[TLF08] Tola E., Lepetit V., Fua P.: A fast local descriptor for dense matching.
International Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2008), 1–8.

[TMF07] Torralba A., Murphy K. P., Freeman W. T.: Sharing visual features for
multiclass and multiview object detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI) 29, 5 (2007), 854–869.

[Tor95] Torr P. H. S.: Outlier detection and motion segmentation. PhD thesis, Dept.
of Engineering Science, University of Oxford, 1995.

[TWL∗10] Ta A. P., Wolf C., Lavoué G., Baskurt A., Jolion J.-M.: Pairwise fea-
tures for human action recognition . In International Conference on Pattern
Recognition (ICPR) (Aug. 2010), IEEE, (Ed.).

[TWLB10] Ta A. P., Wolf C., Lavoué G., Baskurt A.: Recognizing and localizing
individual activities through graph matching. In International Conference
on Advanced Video and Signal-Based Surveillance (AVSS) (2010), IEEE, (Ed.).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



176 Bibliography

[UB91] Ullman S., Basri R.: Recognition by linear combinations of models.
IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 10 (1991),
992–1006.

[UE06] Ullman S., Epshtein B.: Visual classification by a hierarchy of extended
fragments. Lecture Notes in Computer Science 4170 (2006), 321–344.

[VF08] Vedaldi A., Fulkerson B.: VLFeat: An open and portable library of
computer vision algorithms. http://www.vlfeat.org/, 2008.

[VGVZ09] Vedaldi A., Gulshan V., Varma M., Zisserman A.: Multiple kernels
for object detection. In International Conference on Computer Vision (ICCV)
(September 2009).

[VJ01] Viola P., Jones M.: Rapid object detection using a boosted cascade of
simple features. In International Conference on Computer Vision and Pattern
Recognition (CVPR) (2001), pp. 511–518.

[VJ04] Viola P., Jones M. J.: Robust real-time face detection. International
Journal of Computer Vision (IJCV) 57, 2 (2004), 137–154.

[VNU03] Vidal-Naquet M., Ullman S.: Object recognition with informative fea-
tures and linear classification. In ICCV ’03: Proceedings of the Ninth IEEE
International Conference on Computer Vision (2003), p. 281.

[WAC∗04] Willamowski J., Arregui D., Csurka G., Dance C., Fan L.: Catego-
rizing nine visual classes using local appearance descriptors. In ICPR
Workshop on Learning for Adaptable Visual Systems (2004), vol. 17, p. 21.

[WFKvdM97] Wiskott L., Fellous J.-M., Krüger N., von der Malsburg C.: Face
recognition by elastic bunch graph matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI) 19, 7 (1997), 775–779.

[WH99] Wilson R. C., Hancock E. R.: Graph matching with hierarchical discrete
relaxation. Pattern Recognition Letters (PRL) 20, 10 (1999), 1041–1052.

[WZ01] Wang Y., Zhang H.: Content-based image orientation detection with
support vector machines. In CBAIVL ’01: Proceedings of the IEEE Workshop
on Content-based Access of Image and Video Libraries (CBAIVL’01) (2001),
p. 17.

[YM09] Yu G., Morel J.-M.: A fully affine invariant image comparison
method. In International Conference on Acoustics Speech and Signal Pro-
cessing (ICASSP) (2009), no. 1, pp. 597–1600.

[ZBMM06] Zhang H., Berg A., Maire M., Malik J.: Svm-knn: Discriminative near-
est neighbor classification for visual category recognition. International

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés

http://www.vlfeat.org/


Bibliography 177

Conference on Computer Vision and Pattern Recognition (CVPR) 2 (2006),
2126–2136.

[ZC06] Zhang D.-q., Chang S.-F.: A Generative-Discriminative Hybrid Method
for Multi-View Object Detection. pp. 2017–2024.

[zCLF09] Özuysal M., Calonder M., Lepetit V., Fua P.: Fast keypoint recognition
using random ferns. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) 99, 1 (2009).

[ZCY07] Zhu L., Chen Y., Yuille A.: Unsupervised learning of a probabilistic
grammar for object detection and parsing. Advances in neural information
processing systems 19 (2007), 1617.

[ZYW∗10] Zhang B., Ye G., Wang Y., Wang W., Xu J., Herman G., Yang Y.:
Multi-class Graph Boosting with Subgraph Sharing for Object Recogni-
tion. In International Conference on Pattern Recognition (ICPR) (Aug. 2010),
pp. 1541–1544.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



178 Bibliography

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



Author’s Publications

International Journals

• Improving Zernike Moments Comparison for Optimal Similarity and Rotation An-

gle Retrieval, J. Revaud, G. Lavoué, and A. Baskurt. In IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI) 31(4):627-636, 2009.

• Human-Robot Interface Using System Request Utterance Detection Based on Acous-

tic Features, T. Takiguchi, T. Yamagata, A. Sako, N. Miyake, J. Revaud, and Y.

Ariki. In International Journal of Hybrid Information Technology, Vol. 1, No. 3,

pp. 81-90, 2008.

International Conferences

• Fast and cheap object recognition by linear combination of views, J. Revaud, G.

Lavoué, Y. Ariki, and A. Baskurt. In Conference on Image and Video Retrieval (CIVR),

pages 194–201, ACM, 2007.

• Scale-Invariant Proximity Graph for Fast Probabilistic Object Recognition, J. Re-

vaud, G. Lavoué, Y. Ariki, and A. Baskurt. In Conference on Image and Video Re-

trievals 2010 (CIVR), ACM.

• Learning an efficient and robust graph matching procedure for specific object

recognition, J. Revaud, G. Lavoué, Y. Ariki, and A. Baskurt. In International Confer-

ence on Pattern Recognition 2010 (ICPR).

• Human-Robot Interface Using System Request Utterance Detection Based on Acous-

tic Features, T. Takiguchi, T. Yamagata, A. Sako, N. Miyake, J. Revaud, and Y. Ariki.

179

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



180 BIBLIOGRAPHY

In The 2nd International Conference on Multimedia and Ubiquitous Engineering

(MUE2008), pp. 304-309, 2008-04.

Book Chapter

• Task-specific salience for object recognition, J. Revaud, G. Lavoué, Y. Ariki, and A.

Baskurt. Chapter accepted for the book ‘Innovations in Intelligent Image Analysis’,

Springer-Verlag, 2011 (to be published).

Local Conferences:

• Combinaison de caractéristiques pour la reconnaissance rapide, robuste et invari-

ante d’objets spécifiques, J. Revaud, G. Lavoué, Y. Ariki, and A. Baskurt. In Recon-

naissance des Formes et Intelligence Artificielle (RFIA), 2010.

• Une nouvelle mesure de distance entre descripteurs de moments de Zernike pour

une similarité optimale et un angle de rotation entre les images, J. Revaud, G.

Lavoué, and A. Baskurt. In Compression et Representation des Signaux Audiovisuels

(CORESA), 2009.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY 181

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0042/these.pdf 
© [J. Revaud], [2011], INSA de Lyon, tous droits réservés


	Notice XML
	Page de titre
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	A Few Preliminary Words
	Application Field
	A Short Definition of Object Recognition Terms
	Outlines

	Survey on Object Recognition
	A Glance at Object Recognition
	Low-level Features
	Dense features
	Convolution-based features
	Non-linear features

	Sparse features
	Edges
	Keypoints
	Regions

	Histogram-based features
	Local descriptors


	Specific Object Recognition
	Using global features
	Using local features
	Rigid matching
	Non-rigid matching


	Class Object Recognition
	Feature spaces for class object recognition
	Detection schemes


	Cascaded Multi-feature Incomplete Graph Matching For 3D Specific Object Recognition
	Introduction and Motivations
	The feature combination problem
	Outlines of the proposed method
	Related works

	Useful notation
	Used Features
	Keypoints
	Edges
	Textures

	Algorithm Description
	The prototype graphs
	The detection lattice
	Aggregate position
	Aggregate recognition
	Clustering of detected aggregates
	Probabilistic model for clusters of hypothesis

	How to build the detection lattice
	Algorithm inputs
	Iterative pruning of the lattice
	Learning the micro-classifier thresholds
	Ranking of the aggregates
	Discretization of the training image into parts

	Conclusion

	Evaluation of Our Contribution For Specific Object Detection
	Discussion about the evaluation
	Test datasets
	Evaluation metrics

	Preliminary training
	Learning the subclassifier thresholds
	Other kernel parameters

	The CS17 dataset
	Parameter Tuning
	Comparative experiments
	Discussion

	The ETHZ toys dataset
	The Rothganger dataset
	Conclusion

	Extension of the Multi-feature Incomplete Graph Matching to Recognition of Class Objects
	Introduction
	Method overview
	Related works
	Chapter outline

	Method Description
	Features used
	Window classification
	Optimization for training the classifier
	Optimization for detection speed

	Modifications to the original lattice
	Rotation variance
	Recognition procedure for the lattice
	Training procedure for the lattice

	Conclusion

	Evaluation of Our Contribution For Class Object Detection
	Introduction
	Existing datasets
	Purpose of this chapter

	Experiments on Single Classes
	Parameter tuning
	Influence of the parameters

	Comparison against other approaches

	Pascal 2005 Classification experiments
	Conclusion

	Conclusion
	Summary of Contributions
	Perspectives

	Résumé en Français
	Introduction
	Combinaison Linéaire de Deux Vues Pour la Détection d’Objets 3D
	Appariement Pseudo-Hiérarchique de Graphes avec des Points d’Intérêt
	Appariement Incomplet de Graphes Multi-Caractéristiques Avec des Cascades
	Evaluation des Contributions Présentées
	Conclusion

	Bibliography
	Author's Publications



