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Abstract

In this thesis we investigate the Renormalization Group (RG) approach in finite-
dimensional glassy systems, whose critical features are still not well-established, or
simply unknown. We focus on spin and structural-glass models built on hierarchical
lattices, which are the simplest non-mean-field systems where the RG framework
emerges in a natural way. The resulting critical properties shed light on the critical
behavior of spin and structural glasses beyond mean field, and suggest future
directions for understanding the criticality of more realistic glassy systems.
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Chapter 1

Historical outline

Paraphrasing P. W. Anderson [4], “the deepest and most interesting unsolved problem
in solid state theory is probably the nature of glass and the glass transition”. Indeed,
the complex and rich behavior of simplified models for real, physical glassy systems
has interested theoreticians for its challenging complexity and difficulty, and opened
new avenues in a large number of other problems such as computational optimization
and neural networks.

When speaking of glassy systems, one can distinguish between two physically
different classes of systems: spin glasses and structural glasses.

Spin glasses have been originally [59] introduced as models to study disordered
uniaxial magnetic materials, like a dilute solution of, say, Mn in Cu, modeled by
an array of spins on the Mn arranged at random in the matrix of Cu, interacting
with a potential which oscillates as a function of the separation of the spins. Typical
examples of spin-glass systems are FeMnTiO3 [76, 71, 85, 14], (H3O)Fe3(SO4)2(OH)6
[56], CdCr1.7In0.3S4 [81, 156], Eu0.5Ba0.5MnO3 [129] and several others.

Spin glasses exhibit a very rich phenomenology. Firstly, the very first magne-
tization measurements of FeMnTiO3 in a magnetic field showed [76] the existence
of a cusp in the susceptibility as a function of the temperature. Occurring at a
finite temperature Tsg, this experimental observation is customary interpreted as
the existence of a phase transition.
Later on, further experimental works confirmed this picture [71], and revealed some
very rich and interesting features of the low-temperature phase: the chaos and mem-
ory effect. Consider a sample of CdCr1.7In0.3S4 in a low-frequency magnetic field
[81]. The system is cooled from above Tsg = 16.7K down to 5K, and is then heated
back with slow temperature variations. The curve for the out-of-phase susceptibility
χ′′ as a function of the temperature obtained upon reheating will be called the
reference curve, and is depicted in Fig. 1.1.

One repeats the cooling experiment but stops it at T1 = 12K. Keeping the
system at T1, one waits 7 hours. In this lapse of time χ′′ relaxes downwards, i. e. the
system undergoes an aging process. When the cooling process is restarted, χ′′ merges
back with the reference curve just after a few Kelvins. This immediate merging back
is the chaos phenomenon: aging at T1 does not affect the dynamics of the system
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FIG. 1. Out-of-phase susceptibility x 00 of the CdCr1.7In0.3S4
spin glass. The solid line is measured upon heating the
sample at a constant rate of 0.1 K!min (reference curve). Open
diamonds: the measurement is done during cooling at this same
rate, except that the cooling procedure has been stopped at 12 K
during 7 h to allow for aging. Cooling then resumes down to
5 K: x 00 is not influenced and goes back to the reference curve
(chaos). Solid circles: after this cooling procedure, the data is
taken while reheating at the previous constant rate, exhibiting
memory of the aging stage at 12 K.

Thus, aging at T1 ! 12 K has not influenced the result at
lower temperatures (“chaos” effect).

The surprise is that when the sample is reheated at a

constant heating rate (i.e., no further stops on the way

up), we find that the trace of the previous stop (the dip

in x 00) is exactly recovered (see Fig. 1). The memory

of what happened at T1 ! 12 K has not been erased

by the further cooling stage, even though x 00 at lower
temperatures lies on the reference curve. The system can

actually retrieve information from several stops if they

are sufficiently separated in temperature. In Fig. 2, we

show a “double memory experiment,” in which two aging

evolutions, one at T1 ! 12 K and the other at T2 ! 9 K,
are retrieved [13]. In the inset of Fig. 2, the result of a

similar experiment on a Cu:Mn sample is shown [11].

As discussed above, the cooling rate dependence of

the dynamics in spin glasses is largely governed by the

chaos effect. For example, it has been shown that there

is no difference in the aging behavior if the spin glass has

been directly quenched from above Tg or if it has been

subjected to a very long waiting pause immediately below

Tg [7]. However, the influence of the cooling rate was not

quantitatively characterized in systematic measurements,

and this point is of a particular interest for the comparison

between spin glasses and other glassy systems. We have

therefore performed the following experiment. We cool

the sample progressively and continuously (in fact, by

steps of 0.5 K) from above Tg to 12 K ! 0.72Tg, using

three very different cooling rates. The result is shown

in Fig. 3. The initial values of x 0 and x 00 are indeed

FIG. 2. Same as in Fig. 1 (CdCr1.7In0.3S4 insulating sample),
but with two stops during cooling, which allow the spin glass to
age 7 h at 12 K and then 40 h at 9 K. Both aging memories are
retrieved independently when heating back (solid circles). The
inset shows a similar “double memory” experiment performed
on the Cu:Mn metallic spin glass [11].

different: Slower cooling yields a smaller initial value of

the susceptibility, a value that is closer to “equilibrium.”

A small horizontal shift of the curves along the time scale

allows the superposition of the three of them; the curves

obtained after a slower cooling are somewhat “older.”
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FIG. 3. x 00 relaxation at 12 K as a function of time: effect of
the cooling rate on aging. The CdCr1.7In0.3S4 sample has been
cooled from above Tg ! 17 to 12 K at very different speeds:
2.6 K!min (solid circles), 0.08 K!min (crosses), 0.015 K!min
(open diamonds). In the inset, another procedure is used which
shows that this cooling rate effect is due only to the last
temperature interval: constant rate of 0.8 K!min (solid circles)
or 0.08 K!min (open diamonds) from 17 to 14 K, but in both
cases rapid quench from 14 to 12 K.

3244

Figure 1.1. Out out phase susceptibility χ′′ of CdCr1.7In0.3S4 as a function of the temper-
ature. The solid curve is the reference curve. The open diamonds-curve is obtained by
cooling the system and stopping the cooling process at T1 = 7K for seven hours. The
solid circles-curve is obtained upon re-heating the system after the above cooling process.
Data is taken from [81].

at lower temperatures. From a microscopic viewpoint, the aging process brings the
system at an equilibrium configuration at T1. When cooling is restarted, such an
equilibrium configuration behaves as a completely random configuration at lower
temperatures, because the susceptibility curve immediately merges the reference
curve. The effective randomness of the final aging configuration reveals a chaotic
nature of the free-energy landscape.

The memory effect is even more striking. When the system is reheated at a con-
stant rate, the susceptibility curve retraces the curve of the previous stop at T1. This
is quite puzzling, because even if the configuration after aging at T1 behaves as a ran-
dom configuration at lower-temperatures, the memory of the aging at T1 is not erased.

Such a rich phenomenology challenged the theoreticians for decades. The theo-
retical description of such models, even in the mean-field approximation, revealed
a complex structure of the low-temperature phase that could be responsible for
such a rich phenomenology. Still, such a complex structure has been shown to
be correct only in the mean-field approximation, and the physical features of the
low-temperature phase beyond mean field are still far from being understood.

Structural glasses, also known as glass-forming liquids or glass-formers, are liquids
that have been cooled fast enough to avoid crystallization [16, 150]. When cooling
a sample of o− Terphenyl [103], or Glycerol [112], the viscosity η or the relaxation
time τ can change of fifteen order of magnitude when decreasing the temperature of
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a factor two, as shown in Fig. 1.2.
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Figure 1.2. Base-10 logarithm of the relaxation time τ and of the viscosity η as a function of
the logarithm of the inverse reduced temperature Tg/T , where Tg is the glass-transition
temperature, for several glass formers. Data is taken from [150].

This striking increase of the viscosity can be interpreted in terms of a particle
jamming process, and suggests that a phase transition occurs at a finite temperature
Tg. The physical features of this transition are strikingly more complex than the
ordinary first order transitions yielding a crystal as the low-temperature state.

Indeed, crystals break the translational symmetry at low temperatures, the
particles being arranged on a periodic structure. Ergodicity is broken as well,
because the only accessible microscopic configuration of the particles is the crystal.
The sharp increase in the viscosity of a glass below the glass-transition point yields
also evidence of ergodicity breaking: elementary particle moves become extremely
slow, and energetically expensive, in such a way that the system is stuck in a
mechanically-stable state. Differently from the crystal, this state has the same
symmetry properties as the liquid: no evident symmetry breaking occurs, and there
is no static order parameter to signal the transition. Moreover, at Tg the excess
entropy Se of the glass over the crystal is remarkably high, suggesting that there is
a big degeneracy of mechanically-stable states a glass can get stuck in below the
transition point.

Once the system is frozen in one of these exponentially many configurations,
there is no way to keep it equilibrated below Tg. Accordingly, the equilibrium
properties in the whole temperature phase cannot be investigated in experiments.
Still, interesting properties of the low-temperature phase result from the pioneering
works of Kauzmann [93], who first realized that if the excess entropy of a glass
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former [143] is extrapolated from above Tg down in the low-temperature phase, there
is a finite temperature TK , the Kauzmann temperature, where this vanishes. This is
rather startling because, if the geometry of the crystal is not too different from that
of the liquid, one expects the entropy of the liquid to be always larger than that of
the crystal. There have been countless speculations on the solution of this paradox
[93, 16, 150], and the existence of a Kauzmann temperature in a real glass-former is
nowadays a still hotly-debated and untamed problem from both an experimental
and theoretical viewpoint.

Despite the triking difference between these two kinds of systems spin glasses
and structural glasses have some deep common features. Indeed, according to a
wide part of the community, spin-glass models with quenched disorder are good
candidates to mimic the dynamically-induced disorder of glass-forming liquids [16],
even if some people are still critical about this issue [102]. There are several points
supporting the latter statement. For instance, it has been shown that hard particle
lattice models [18] describing the phenomenology of structural glasses, display the
phenomenology of spin systems with quenched disorder like spin glasses. Accordingly,
there seems to be an underlying universality between the dynamically-induced disor-
der of glass-formers and the quenched disorder of spin glasses, in such a way that
the theoretical description of spin glasses and that of structural glasses shared an
important interplay in the last decades. More precisely, in the early 80’s the solution
of mean-field versions of spin [136] and structural [53] glasses were developed, and
new interesting features of the low temperature phase were discovered. Since then,
a huge amount of efforts has been done to develop a theoretical description of real,
non-mean-field spin and structural glasses. A contribution in this direction through
the implementation of the Renormalization Group (RG) method would hopefully
shed light on the critical behavior of such systems.

Before discussing how the RG framework could shed light on the physics of finite-
dimensional spin and structural glasses, we give a short outline of the mean-field
theory of spin and structural glasses, and on the efforts that have been done to
clarify their non-mean-field regime.

The Sherrington-Kirkpatrick model

The very first spin-glass model, the Edwards-Anderson (EA) model, was introduced
in the middle 70’s [59] as a model describing disordered uniaxial magnetic materials.
Later on, Sherrington and Kirkpatrick (SK) [144] introduced a mean-field version of
the EA model, which is defined as a system of N spins Si = ±1 with Hamiltonian

H[~S] = −
N∑

i>j=1
JijSiSj , (1.1)

with Jij independent random variables distributed according to a Gaussian distribu-
tion with zero mean and variance 1/N .

The model can be solved with the replica method [119]: given n replicas
~S1, ~S2, . . . , ~Sn of the system’s spins, the order parameter is the n × n matrix
Qab ≡ 1/N

∑N
i=1 Sa,iSb,i representing the overlap between replica a and replica
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b. The free energy is computed as an integral over the order parameter, and ther-
modynamic quantities are calculated with the saddle-point approximation, which is
exact in the thermodynamic limit. SK first proposed a solution for the saddle point
Q∗ab, which was later found to be inconsistent, since it yields a negative entropy
at low temperatures. This solution is called the replica-symmetric (RS) solution,
because the matrix Q∗ab has a uniform structure, and there is no way to discern
between two distinct replicas. Some mathematically non-rigorous aspects of the
replica approach had been blamed [155] to explain the negative value of the entropy
at low-temperatures. Amongst these issues, there is the continuation of the replica
index n from integer to non-integer values, and the exchange of the n→ 0-limit with
the thermodynamic limit N →∞. Still, no alternative approach was found to avoid
these issues.

In the late 70’s Parisi started investigating more complicated saddle points. In
the very first work [134], an approximate saddle point was found, yielding a still
negative but small value of the entropy at low temperatures. The solution was
called replica-symmetry-broken solution, because Q∗ab was no more uniform, but
presented a block structure. Notwithstanding the negative values of the entropy at
low temperatures, the solution was encouraging, since it showed a good agreement
with Monte Carlo (MC) simulations [95], whereas the replica-symmetric solution
showed a clear disagreement with MC data. Later on, better approximation schemes
for the saddle point were considered [135], where the matrix Q∗ab was given by a
hierarchical structure of blocks, blocks into blocks, and so on. The step of this
hierarchy is called the replica-symmetry-breaking (RSB) step K. The final result
of such works was presented in the papers of 1979 and 1980 [133, 136], where the
full-RSB (K = ∞) solution was presented. According to this solution, the sad-
dle point Q∗ab is uniquely determined in terms of a function q(x) in the interval
0 ≤ x ≤ 1, being the order parameter of the system. Parisi’s solution resulted
from a highly nontrivial ansatz for the saddle point Q∗ab, and there was no proof
of its exactness. Still, the entropy of the system resulting from Parisi’s solution is
always non-negative, and vanishes only at zero temperature, and the quantitative
results for thermodynamic quantities such as the internal energy showed a good
agreement [133] with the Thouless-Almeida-Palmer (TAP) solution [153] at low
temperatures. These facts were rather encouraging, and gave a strong indication
that Parisi’s approach gave a significant improvement over the original solution by SK.

Still, the physical interpretation of the order parameter stayed unclear until
1983 [137], when it was shown that the function q(x) resulting from the baffling
mathematics of Parisi’s solution is related to the probability distribution P (q) of
the overlap q between two real, physical copies of the system, through the relation
x(q) =

∫ q
−∞ dq

′P (q′). Accordingly, in the high temperature phase the order parame-
ter q(x) has a trivial form, resulting in a P (q) = δ(q), while in the low-temperature
phase the nontrivial form of q(x) predicted by Parisi’s solution implies a nontrivial
structure of the function P (q). In particular, the smooth form of P (q) implies the
existence of many pure states.

Further investigations in 1984 [117] and 1985 [121] gave a clear insight into the
way these pure states are organized: below the critical temperature the phase space is



8 1. Historical outline

fragmented into several ergodic components, and each component is also fragmented
into sub-components, and so on. The free-energy landscape could be qualitatively
represented as an ensemble of valleys, valleys inside the valleys, and so on. Spin
configurations can be imagined as the leaves of a hierarchical tree [119], and the
distance between two of them is measured in terms of number of levels k one has
to go up in the tree to find a common root to the two leaves. To each hierarchical
level k of the tree one associates a value of the overlap qk, where the set of possible
values qk of the overlap is encoded into the function q(x) of Parisi’s solution.

Parisi’s solution was later rederived with an independent method in 1986 by
Mézard et al [118], who reobtained the full-RSB solution starting from simple physi-
cal grounds, and presented it in a more compact form.

Finally, the proof of the exactness of Parisi’s solution came in 2006 by Talagrand
[149], whose results are based on previous works by Guerra [69], and who showed
with a rigorous formulation that the full-RSB ansatz provides the exact solution of
the problem.

This ensemble of works clarified the nature of the spin-glass phase in the mean-
field case. According to its clear physical interpretation, the RSB mechanism of
Parisi’s solution became a general framework to deal with systems with a large
number of quasi-degenerate states. In particular, in 2002 the RSB mechanism was
applied in the domain of constraint satisfaction problems [120, 122, 123, 19], showing
the existence of a new replica-symmetry broken phase in the satisfiable region which
was unknown before then.

Despite the striking success in describing mean-field spin glasses, it is not clear
whether the RSB scheme is correct also beyond mean field. Amongst the other
scenarios describing the low-temperature phase of non-mean-field spin glasses, the
droplet picture has been developed in the middle 80’s by Bray, Moore, Fisher, Huse
and McMilllan [111, 64, 61, 60, 62, 63, 27]. According to this framework, in the
whole low-temperature phase there is only one ergodic component and its spin
reversed counterpart, as in a ferromagnet. Differently from a ferromagnet, in a
finite-dimensional spin glass spins arrange in a random way determined by the
interplay between quenched disorder and temperature.

On the one hand, there have been several efforts to understand the striking
phenomenological features of three-dimensional systems in terms of the RSB [78],
the droplet or alternative pictures [81]. Still, none of these was convincing enough
for one of these pictures to be widely accepted by the scientific community as the
correct framework to describe finite-dimensional systems.

On the other hand, there is no analytical framework describing non-mean-field
spin glasses. Perturbative expansions around Parisi’s solution have been widely
investigated by De Dominicis and Kondor [52, 55], but proved to be difficult and
non-predictive. Similarly, several efforts have been done in the implementation in
non-mean-field spin glasses of a perturbative field-theory approach based on the
replica method [72, 99, 39], but they turned out to be non-predictive, because nonper-
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turbative effects are completely untamed. Amongst the possible underlying reasons,
there is the fact that such field-theory approaches are all based on a φ3-theory, whose
upper critical dimension is dc = 6. Accordingly, a predictive description of physical
three-dimensional systems would require an expansion in ε = dc − 3 = 3, which
can be quantitatively predictive only if a huge number of terms of the ε-series were
known [173]. Finally, high-temperature expansions for the free energy [141] turn out
to be badly behaved in three dimensions [51], and non-predictive.

Since analytical approaches do not give a clear answer on such finite-dimensional
systems, most of the knowledge comes from MC simulations, which started with
the first pioneering works from Ogielsky [131], and were then intensively carried on
during the 90’s and 00’s [15, 109, 110, 104, 108, 132, 100, 7, 87, 171, 89, 91, 82, 47, 83,
48, 106, 73, 10, 49, 86, 3, 8]. None of these gave a definitive answer on the structure
of the low-temperature phase, and on the correct physical picture describing it. This
is because a sampling of the low-temperature phase of a strongly-frustrated system
like a non-mean-field spin glass has an exponential complexity in the system size
[9, 160]. Accordingly, all such numerical simulations are affected by small system
sizes, which prevent from discerning which is the correct framework describing the
low-temperature phase. An example of how finite-size effects played an important
role in such analyses is the following. According to the RSB picture, a spin-glass
phase transition occurs also in the presence of an external magnetic field [119], while
in the droplet picture no transition occurs in such a field [64]. MC studies [89, 92]
of a one-dimensional spin glass with power-law interactions yielded evidence that
there is no phase transition beyond mean field in a magnetic field. Later on, a
further MC analysis [105] claimed that the physical observables considered in such a
previous work were affected by strong finite-size effects, and yielded evidence of a
phase transition in a magnetic field beyond mean field through a new method of
data analysis. Interestingly, a recent analytical work [126] based on a replica analysis
suggests that below the upper critical dimension the transition in the presence of an
applied magnetic field does disappear, in such a way that there is no RSB in the
low-temperature phase [124].

This exponential complexity in probing the structure of the low-temperature
phase has played the role of a perpetual hassle in such numerical investigations, and
strongly suggests that the final answer towards the understanding of the spin-glass
phase in finite dimensions will not rely on numerical methods [75].

The Random Energy Model

The simplest mean-field model for a structural glass was introduced in 1980 by
Derrida [53, 54], who named it the Random Energy Model (REM). In the original
paper of 1980, the REM was introduced from a spin-glass model with quenched
disorder, the p-spin model. It was shown that in the limit p→∞ where correlations
between the energy levels are negligible, the p-spin model reduces to the REM: a
model of N spins Si = ±1, where the energy ε[~S] of each spin configuration ~S is a
random variable distributed according to a Gaussian distribution with zero mean and
variance 1/N . Accordingly, for every sample of the disorder {ε[~S]}~S , the partition
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function of the REM is given by

Z =
∑
~S

e−βε[~S]. (1.2)

This model became interesting because, despite its striking simplicity, its solution
reveals the existence of a phase transition reproducing all the main physical features
of the glass transition observed in laboratory phenomena. Indeed, there exists a
finite value Tc of the temperature, such that in the high temperature phase the
system is ergodic, and has an exponentially-large number of states available, while
in the low-temperature phase the system is stuck in a handful of low-lying energy
states. The switchover between these two regimes is signaled by the fact that the
entropy is positive for T > Tc, while it vanishes for T < Tc. Interestingly, this
transition does not fall in any of the universality classes of phase transitions for
ferromagnetic systems [173]. Indeed, on the one hand the transition is strictly second
order, since there is no latent heat. On the other hand, the transition presents the
typical freezing features of first-order phase transitions of crystals [115].

Later on, people realized that the phenomenology of the REM is more general,
and typical of some spin-glass models with quenched disorder, like the p-spin model.
Indeed, the one-step RSB solution scheme of the SK model was found [50] to be
exact for both of the p-spin model and the REM [115], and the resulting solutions
show a critical behavior very similar to each other. Accordingly, the REM, the p-spin
model and other models with quenched disorder are nowadays considered to belong
to the same class, the 1-RSB class [16].

The solution of the p-spin spherical model reveals that the physics of such 1-RSB
mean-field models is the following [16]. There exists a finite temperature Td such
that for T > Td the system is ergodic, while for T < Td it is trapped in one amongst
exponentially-many metastable states: These are the Thouless Almeida Palmer
(TAP) [153] states. Since the energy barriers between metastable states are infinite
in mean-field models, the system cannot escape from the metastable state it is
trapped in. The nature of this transition is purely dynamical, and it shows up in
the divergence of dynamical quantities like the relaxation time τ , while there is
no footprint of it in thermodynamic quantities. We will denote by f∗(T ) the free
energy of each of these TAP states and by fp(T ) the free energy of the system in
its paramagnetic state. Accordingly, the total free energy of the glass below Td is
given by f∗(T ) − TΣ(T ). Since there is no mark of the dynamical transition in
thermodynamic quantities, one has that the free energy of the glass below Td must
coincide with fp(T )

fp(T ) = f∗(T )− TΣ(T ). (1.3)

Below Td, there exists a second finite temperature TK < Td, such that the complexity
vanishes at and below TK : the number of TAP states is no more exponential, and
the system is trapped in a bunch of low-lying energy minima: the system undergoes
a Kauzmann transition at TK . The nature of this transition is purely static, and
shows up in the singularities of thermodynamic quantities such as the entropy.
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An important physical question is whether this mean-field phenomenology persists
beyond mean field. In 1989 Kirkpatrick, Thirumalai and Wolynes (KTW) [96]
proposed a theoretical framework to handle finite-dimensional glass formers, which is
known as the Random First Order Transition Theory (RFOT). Their basic argument
was inspired by the following analogy with ferromagnetic systems. Consider a
mean-field ferromagnet in an external magnetic field h > 0. The free energy has two
minima, f+ and f−, with positive and negative magnetization respectively. Being
h > 0, one has f− > f+. Even though the +-state has a lower free energy, it cannot
nucleate because the free-energy barriers are infinite in mean field. Differently, in
finite dimensions d the free-energy barriers are finite, and the free-energy cost for
nucleation of a droplet of positive spins with radius R reads

∆f = C1R
d−1 − (f− − f+)C2R

d, (1.4)

where the first addend is the surface energy cost due to the mismatch between the
positive orientation of the spins inside the droplet and the negative orientation of
the spins outside the droplet, while the second addend represents the free-energy
gain due to nucleation of a droplet of positive spins, and is proportional to the
volume of the droplet. According to the above free-energy balance, there exists a
critical value R∗ such that droplets with R < R∗ do not nucleate and shrink to zero,
while droplets with R > R∗ grow indefinitely. Inspired by the physics emerging
from mean-field models of the 1-RSB class, KTW applied a similar argument to
glass-forming liquids. Before discussing KTW theory, is important to stress that
the dynamical transition at Td occurring in the mean-field case disappears in finite
dimensions. This is because the free-energy barriers between metastable states are
no more infinite in the thermodynamic limit. Thus, the sharp mean-field dynamical
transition is smeared out in finite dimensions, and it is plausible that Td is replaced
by a crossover temperature T∗, separating a free flow regime for T > T∗ from an
activated dynamics regime for T < T∗ [16].

According to KTW, for T < T∗ the system is trapped in a TAP state with
free energy f∗. Following the analogy with the ferromagnetic case, the TAP state
is associated with the −-state, while the paramagnetic state with the +-state.
Accordingly, by Eq. (1.3) one has f− − f+ = TΣ. Nucleation of a droplet of size R
of spins in the liquid state into a sea of spins in the TAP state has a free-energy cost

∆f = C1R
θ − TΣC2R

d,

where the exponent θ is the counterpart of d− 1 in the ferromagnetic case, Eq. (1.4).
Since the presence of disorder is expected to smear out such a surface effects with
respect to the ferromagnetic case, one has θ < d− 1. Liquid droplets with radius
smaller than R∗ ≡

(
C1θ

TΣC2d

) 1
d−θ disappear, while droplets with radius larger that R∗

extend to infinity. Since there are many spatially localized TAP states, droplets
can’t extend to infinity as in the mean-field case. The system is rather said to be in
a mosaic state, given by liquid droplets that are continually created and destroyed
[16].

In analogy with the 1-RSB phenomenology, RFOT theory predicts that Σ van-
ishes at a finite temperature TK < T∗. Below this temperature liquid droplets cannot
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nucleate anymore, because R∗ =∞, and the system is said to be in a ideal glassy
state, i. e. a collectively-frozen and mechanically-stable low-lying energy state. Sill,
the crucial question of the existence of a Kauzmann transition in real glass-formers is
an open issue. It cannot be amended experimentally, because real glasses are frozen
in an amorphous configuration below Tg, and the entropy measured in laboratory
experiments in this temperature range does not give an estimate of the number of
degenerate metastable states. Accordingly, analytical progress in non-mean-field
models of the 1-RSB class describing the equilibrium properties below Tg would
yield a significant advance on this fundamental issue.

A clear way to explore critical properties of non-mean-field systems came from
the RG theory developed by Wilson in his papers of 1971 [164, 165]. The RG theory
started from a very simple physical feature observed experimentally in physical
systems undergoing a phase transition [161]. Consider, for instance, a mixture of
water and steam put under pressure at the boiling temperature. As the pressure
approaches a critical value, steam and water become indistinguishable. In particular,
bubbles of steam and water of all length scales, from microscopic ones to macro-
scopic ones, appear. This empirical observation implies that the system has no
characteristic length scale at the critical point. In particular, as the critical point
is approached, any typical correlation length of the system must tend to infinity,
in such a way that no finite characteristic length scale is left at the critical point.
Accordingly, if we suppose to approach the critical point by a sequence of elementary
steps, the physically important length scales must grow at each step. This procedure
was implemented in the original work of Wilson, by integrating out all the length
scales smaller than a given threshold. As a result, a new system with a larger typical
length scale is obtained, and by iterating this procedure many times one obtains a
system whose only characteristic length is infinite, and which is said to be critical.

The above RG scheme yields a huge simplification of the problem. Indeed, systems
having a number of microscopic degrees of freedom which is typically exponential
in the number of particles are reduced to a handful of effective long-wavelength
degrees of freedom. These are the only physically relevant degrees of freedom in the
neighborhood of the critical point, and all the relevant physical information can be
extracted from them.

In the first paper of 1971 Wilson’s made quantitative the above qualitative
picture for the Ising model. Following Kadanoff’s picture [84], short-wavelengths
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degrees of freedom were integrated out by considering blocks of spins acting as a unit,
in such a way that one could treat all the spins in a block as an effective spin. Given
the values of the spins in the block, the value of this effective spin could be easily
fixed to be +1 if the majority of spins in the block are up, and −1 otherwise. The
resulting approximate RG equations were analyzed in the second paper of 1971 [165],
where Wilson considered a simplified version of the Ising model and showed that
this framework could make precise predictions on physical quantities like the critical
exponents, which were extracted in perturbation theory. There the author realized
that if the dimensionality d of the system was larger than 4 the resulting physics in
the critical regime was the mean-field one, while for d < 4 non-mean-field effects
emerge. These RG equations for the three-dimensional Ising model were treated
perturbatively in the parameter ε ≡ 4− d, measuring the distance from the upper
critical dimension d = 4, in a series of papers in the 70’s [169, 166]. The validity of
this perturbative framework was later confirmed by the reformulation of Wilson’s
RG equations in the language of field theory. There, the mapping of the Ising model
into a φ4-theory and the solution of the resulting Callan-Symanzik (CS) equations
[28, 147, 173] for this theory made the RG method theoretically grounded, and the
proof of the renormalizability of the φ4-theory [29] to all orders in perturbation
theory served as a further element on behalf of this whole theoretical framework.
Finally, the picture was completed some years later by high-order implementations
of the ε-expansion for the critical exponents [157, 41, 40, 43, 42, 94, 68, 97, 98] which
were in excellent agreement with experiments [173, 1] and MC simulations [140, 5].

Because of this ensemble of works, the RG served as a fundamental tool in
understanding the critical properties of finite-dimensional systems. Hence, it is
natural to search for a suitable generalization of Wilson’s ideas to describe the
critical regime of non-mean-field spin or structural glasses. The drastic simpli-
fication resulting from the reduction of exponentially many degrees of freedom
to a few long-wavelength degrees of freedom would be a breakthrough to tackle
the exponential complexity limiting our understanding of the physics of such systems.

Still, a construction of a RG theory for spin or structural glasses is far more
difficult than the original one developed for ferromagnetic systems. Indeed, in the
ferromagnetic case it is natural to identify the order parameter, the magnetization,
and then implement the RG transformation with Kadanoff’s majority rule. Con-
versely, in non-mean-field spin or structural glasses, the order parameter describing
the phase transition is fundamentally unknown.

For non-mean-field spin glasses, the RSB and droplet picture make two radi-
cally different predictions on the behavior of a tentative order parameter in the
low-temperature phase. In the RSB picture the order parameter is the probability dis-
tribution of the overlap P (q), being P (q) = δ(q) in the high-temperature phase and
P (q) a smooth function of q in the low-temperature phase [133]. Such a smooth func-
tion reflects the hierarchical organization of many pure states in the low-temperature
phase. In the droplet picture [64] P (q) reduces to two delta functions centered on the
value of a scalar order parameter, the Edwards-Anderson order parameter qEA [59].
Such an order parameter is nonzero if the local magnetizations are nonzero, i. e. if the
system is frozen in the unique low-lying ergodic component of the configuration space.
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For structural glasses, after important developments in the understanding of the
critical regime came in 2000 [66], a significant progress in the identification of the
order parameter has been proposed in 2004 [25] and numerically observed in 2008
[17] by Biroli et al., who suggested that the order parameter is the overlap between
two equilibrated spin-configurations with the same boundary conditions: the influ-
ence of the boundary conditions propagates deeper and deeper into the bulk as the
system is cooled, signaling the emergence of an amorphous order at low temperatures.

A justification of the difficulty in the definition of a suitable order parameter
for a spin or structural glass has roots in the frustrated nature of the spin-spin
interactions. To illustrate this point, let us consider a spin system like the SK where
the sign of the couplings Jij are both positive and negative, Eq. (1.1), and try
to mimic Wilson’s block-spin transformation [164] for the SK model. Given the
values of the spins in a block, Kadanoff’s majority rule does not give any useful
information on which should the value of the effective spin. Indeed, choosing the
effective spin to be +1 if most of the spins in the block are up and −1 otherwise
does not make sense: being the Jijs positive or negative with equal probability, the
magnetization inside the block is simply zero on average, and does not give any useful
information on which value should be assigned to the effective spin. Again, frus-
tration is the main stumbling block in the theoretical understanding of such systems.

In order to overcome this difficulty, we recall that Wilson’s approximate RG
equations were found to be exact [161] on a particular non-mean-field model for
ferromagnetic interactions, where the RG recursion formulas have a strikingly simple
and natural form. This is Dyson’s Hierarchical Model (DHM), and was introduced
by Dyson in 1969 [57]. There, the process of integrating out long-wavelength de-
grees of freedom emerged naturally in an exact integral equation for the probability
distribution of the magnetization. This equation was the forerunner of Wilson’s RG
equations.

The aim of this thesis is to consider a suitable generalization of DHM describ-
ing non-mean-field spin or structural glasses, and construct a RG framework for
them. These models will be generally denoted by Hierarchical Models (HM), and
will be introduced in Section 2.2. The definition of HM is quite general, and by
making some precise choices on the form of the interactions, one can build up
a HM capturing the main physical features a non-mean-field spin or structural
glass. Thanks to their simplicity, HM allow for a simple and clear construction of
a RG framework. Our hope is that such a RG framework could shed light on the
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criticality of the glass transition beyond mean field, and on the identification of
the order parameter describing the emergence of an amorphous long-range order,
if present. As a long-term future direction, the RG method on HM could also be
useful to understand the features of the low-temperature phase of such glassy systems.

The thesis is structured as follows. In Chapter 2 of Part I we discuss DHM, and
introduce HM for spin or structural glasses. In Part II we study a HM mimicking the
physics of a non-mean-field structural glass, the Hierarchical Random Energy Model
(HREM), being a hierarchical version of the REM. In this Part we show how one can
work out a precise solution for thermodynamic quantities of the system, signaling
the existence of a Kauzmann phase transition at finite temperature. The HREM
constitutes the first non-mean-field model of a structural glass explicitly exhibiting
such a freezing transition as predicted by RFOT. Interestingly, the solution suggests
also the existence of a characteristic length growing as the critical point is approached,
in analogy with the predictions of KTW. In Part III we study a HM mimicking the
physics of a non-mean-field spin glass, the Hierarchical Edwards-Anderson model
(HEA), being a hierarchical version of the Edwards-Anderson model. The RG
transformation is first implemented with the standard replica field-theory approach,
which turns out to be non-predictive because nonperturbative effects are completely
untamed. Consequently, a new RG method in real space is developed. This method
avoids the cumbersome formalism of the replica approach, and shows the existence
of a phase transition, making precise predictions on the critical exponents. The
real-space method is also interesting from a purely methodological viewpoint, because
it yields the first suitable generalization of Kadanoff’s RG decimation rule for a
strongly frustrated system. Finally, in Part IV we discuss the overall results of this
work, by paying particular attention to its implications and future directions in the
physical understanding of realistic systems with short-range interactions.





Chapter 2

Hierarchical models

In this Chapter we introduce hierarchical models. In Section 2.1 we first introduce
the ferromagnetic version of hierarchical models originally introduced by Dyson, and
in Section 2.2 we extend this definition to the disordered case, in the perspective to
build up a non-mean-field hierarchical model of a spin or structural glass.

2.1 Hierarchical models for ferromagnetic systems

A hierarchical model for ferromagnetic systems has been introduced in the past to
describe non-mean-field spin systems [57], and is known as Dyson’s Hierarchical
Model (DHM). DHM has been of great interest in the past, because Wilson’s RG
equations [164, 165, 163, 167, 168, 169] turn out to be exact in models with power-
law ferromagnetic interactions built on hierarchical lattices like DHM. Indeed, in
this model one can explicitly write an exact RG transformation for the probability
distribution of the magnetization of the system. All the relevant physical information
on the paramagnetic, ferromagnetic and critical fixed point, and the existence of a
finite-temperature phase transition are encoded into these RG equations. Moreover,
all the physical RG ideas emerge naturally from these recursion relations, whose
solution can be explicitly built up with the ε-expansion technique [31, 44, 45, 46].

DHM is defined [57, 31] as a system of 2k+1 Ising spins S1, . . . , S2k+1 , Si = ±1,
with an energy function which is built up recursively by coupling two systems of 2k
spins

HF
k+1 [S1, . . . , S2k+1 ] = HF

k [S1, . . . , S2k ] +HF
k

[
S2k+1, . . . , S2k+1

]
+ (2.1)

−JCk+1
F

 1
2k+1

2k+1∑
i=1

Si

2

,

where

CF ≡ 22(1−σF ), (2.2)

and F stands for ferromagnetic. The model is defined for

1/2 < σF < 1. (2.3)

17
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The limits (2.3) can be derived by observing that for σF > 1 the interaction energy
goes to 0 for large k, and no finite-temperature phase transition occurs, while for
σF < 1/2 the interaction energy grows with k faster than 2k, i. e. faster than the
system volume, in such a way that the model is thermodynamically unstable.

The key issue of DHM is that the recursive nature of the Hamiltonian function
encoded in Eq. (2.1) results naturally into an exact RG equation. This equation
can be easily derived by defining the probability distribution of the magnetization
m for a 2k-spin DHM, as

pk(m) ≡ C
∑
~S

e−βHF
k [~S]δ

 1
2k

2k∑
i=1

Si −m

 , (2.4)

where δ denotes the Dirac delta function, and C a constant enforcing the normalization
condition

∫
dmpk(m) = 1. Starting from Eq. (2.1), one can easily derive a recursion

equation relating pk to pk+1. This equation is derived in Section A.1 of Appendix A,
and reads

pk+1(m) = eβJC
k+1
F m2

∫
dµ pk(m+ µ)pk(m− µ), (2.5)

where any m-independent multiplicative constant has been omitted to simplify the
notation. Eq. (2.5) relies the probability distribution of a DHM with 2k spins with
that of a DHM with 2k+1 spins. Accordingly, Eq. (2.5) is nothing but the flow of
the function pk(m) under reparametrization 2k → 2k+1 of the length scale of the
system. Historically, Eq. (2.5) has been derived by Dyson [57], and then served as
the starting point for the construction of the RG theory for ferromagnetic systems
like the Ising model. Indeed, Wilson’s RG recursion formulas for the Ising model
[164, 165, 163] are approximate, while they turn out to be exact when applied to
DHM, because they reduce to Eq. (2.5). DHM has thus played a crucial role in
the construction of the RG theory for ferromagnetic systems, because in a sense
the work of Wilson on finite-dimensional systems has been pursued in the effort
to generalize the exact recursion formula (2.5) to more realistic systems with no
hierarchical structure, like the three-dimensional Ising model.

Equation (2.5) has also been an important element in the probabilistic formu-
lation of RG theory, originally foreseen by Bleher, Sinai [20] and Baker [6], and
later developed by Jona-Lasinio and Cassandro [79, 31]. Indeed, Eq. (2.5) aims to
establish the probability distribution of the average of 2k spin variables {Si}i for
k → ∞. In the case where the spins are independent and identically distributed
(IID), the above analogy becomes transparent, because the answer to the above
question is yield by the central limit theorem. Following this connection between
RG and probability theory, one can even prove the central limit theorem starting
from the RG equations (2.5) [31].

Equation (2.5) has been of interest in the last decades also because it is simple
enough to be solved with high precision, and the resulting solution gives a clear
insight into the critical properties of the system, showing the existence of a phase
transition. The crucial observation is that Eq. (2.5) can be iterated k � 1 times
in 2k operations. Indeed, the magnetization m of a 2k-spin DHM can take 2k + 1
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possible values {−1,−1 + 2/2k, · · · , 0, · · · , 1− 2/2k, 1}. According to Eq. (2.4), the
function pk(m) is nonzero only if m is equal to one of these 2k + 1 values. It follows
that in order to compute pk+1(m), one has to perform a sum in the right-hand side
of Eq. (2.5), involving 2k + 1 terms. This implies that the time to calculate pk(m)
for k � 1 is proportional to 2k. Thus, the use of the hierarchical structure encoded
in Eq. (2.5) yields a significant improvement in the computation of pk(m) with
respect to a brute-force evaluation of the sum in the right-hand side of Eq. (2.4),
which involves 22k terms.

Let us now discuss the solution of Eq. (2.5). For Eq. (2.5) to be nontrivial for
k →∞, one needs to rescale the magnetization variable. Otherwise, the Ck+1

F -term
in the right-hand side of Eq. (2.5) would diverge for k →∞. Setting

pk(m) ≡ pk(C
−k/2
F m), (2.6)

Eq. (2.5) becomes

pk+1(m) = eβJm2
∫
dµ pk

(
m+ µ

C
1/2
F

)
pk

(
m− µ
C

1/2
F

)
. (2.7)

The structure of the fixed points of Eq. (2.7) is discussed in Section A.2 of
Appendix A. In particular, it is shown that there exists a value βc F of β, such
that if β < βc F Eq. (2.7) converges to a high-temperature fixed point, while if
β > βc F Eq. (2.7) converges to a low-temperature fixed point. Both of these fixed
points are stable, and can be qualitatively represented as basins of attraction in
the infinite-dimensional space where pk(m) flows [163]. These basins of attraction
are separated by an unstable fixed point p∗(m), which is reached by iterating Eq.
(2.7) with β = βc F . p∗(m) is called the critical fixed point, and is characterized
by the fact that the convergence of pk to p∗ for β = βc F implies the divergence of
the characteristic length scale ξF of the system in the thermodynamic limit k →∞.
Accordingly, in what follows βc F will denote the inverse critical temperature of DHM.
In the neighborhood of the critical temperature the divergence of ξF is characterized
by a critical exponent νF , defined by

ξF
T→Tc F≈ A

(T − Tc F )νF , (2.8)

where A is independent of the temperature. The critical exponent νF is an important
physical quantity characterizing criticality, and is quantitatively predictable from
the theory. In Section A.3 of Appendix A we show how νF can be computed starting
from the RG equation (2.7). This derivation serves as an important example of
the techniques that will be employed in generalizations of DHM involving quenched
disorder, that will be discussed in the following Sections.

The calculation of νF relies on the fact that for 0 < σF ≤ 3/4 the critical fixed
point p∗(m) is a Gaussian function of m, while for 3/4 < σF < 1 p∗(m) is not
Gaussian, as illustrated in Section A.2. We recall [44, 45, 31, 163, 173, 174] that a
Gaussian p∗(m) corresponds to a mean-field regime of the model. The expression
mean field is due to the following. Consider for instance the thermal average at the



20 2. Hierarchical models

critical point of a physical observable O(1/2k
∑2k
i=1 Si), depending on the spins ~S

through the magnetization of the system. This can be expressed as an average of
O(m) with weight p∗(m), where p∗(m) = p∗(Ck/2F m)

EF~S [O] =
∫
dmp∗(m)O(m), (2.9)

where EF~S stands for the thermal average

EF~S [O] ≡
∑

~S e
−β HF

k [~S]O(1/2k
∑2k
i=1 Si)∑

~S e
−β HF

k
[~S]

.

In the mean-field approximation one evaluates integrals like that in the right-hand
side of Eq. (2.9) with the saddle-point approximation [173, 74, 130]. If 0 < σF ≤ 3/4,
p∗(m) is Gaussian, and so is p∗(m), in such a way that the saddle-point approxima-
tion is exact, i. e. the mean-field approximation is correct. On the contrary, for
3/4 < σF ≤ 1, p∗(m) is not Gaussian, and the system has a non-mean-field behavior.
In particular, fluctuations around the mean-field saddle point in the right-hand side
of Eq. (2.9) are not negligible. According to this discussion, we call σF = 3/4 the
upper critical dimension [74, 173, 174, 77] of DHM.

In the mean-field region 0 < σF ≤ 3/4, νF can be computed exactly, and is
given by Eqs. (A.16), (A.17). In the non-mean-field region νF can be calculated by
supposing that the physical picture emerging for 0 < σF ≤ 3/4 is slightly modified in
the non-mean-field region. As discussed in Section A.2, this assumption is equivalent
to saying that corrections to the mean-field estimate of integrals like (2.9) are small,
i. e. they can be handled perturbatively. Whether this assumption is correct or
not can be checked a posteriori, by expanding physical quantities like νF in powers
of εF = σF − 3/4, and investigating the convergence properties of the expansion.
If the εF -expansion is found to be convergent or resummable [173], the original
assumption is confirmed to be valid. If it is not, the non-mean-field physics is
presumably radically different from that arising in the mean-field region, and cannot
be handled perturbatively. As an example, the result to O(εF ) for νF is given by
Eqs. (A.16), (A.19). In [46, 44], the εF -expansion has been performed to high
orders, and found to be nonconvergent. Even though, the authors showed that the
application of a resummation method originally presented in [107] yields a convergent
series for νF , which is in quantitative agreement with the values of the exponent
obtained by Bleher [23]. Finally, we mention that the results from the εF -expansion
of DHM have been found to be in excellent agreement with those obtained with the
high-temperature expansion, which has been studied by Y. Meurice et al. [114].

Since DHM allows for a relatively simple implementation of the RG equations
for a non-mean-field ferromagnet, it is natural to ask oneself whether there exists a
suitable generalization of DHM that can describe a non-mean-field spin or structural
glass. This generalization will be exposed in the following Section.
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2.2 Hierarchical models for spin and structural glasses
In the effort to clarify the non-mean-field scenario of both spin glasses and structural
glasses, it is useful to consider a suitable generalization of DHM to the disordered
case. Concerning this, it is important to observe that the extension of DHM to the
random case has been performed only for some particular models.

Firstly, models with local interactions on hierarchical lattices built on diamond
plaques [11], have been widely studied in their spin-glass version, and lead to weakly
frustrated systems even in their mean-field limit [67]. Notwithstanding this, such
models yield a very useful and interesting playground to show how to implement the
RG ideas in disordered hierarchical lattices, and in particular on the construction of
a suitable decimation rule for a frustrated system.

Secondly, a RG analysis for random weakly frustrated models on Dyson’s hi-
erarchical lattice has been done in the past by A. Theumann [151, 152], and the
structure of the physical and unphysical infrared (IR) fixed points has been obtained
with the ε-expansion technique. Unfortunately, in these models spins belonging to
the same hierarchical block interact with each other with the same [151] random
coupling, in such a way that frustration turns out to be relatively weak and they are
not a good representative for realistic strongly frustrated systems. This is because
these models are obtained from DHM by replacing the coupling J in Eq. (2.1)
with a random variable Jk. Thus, the interaction energy between spins S1, . . . , S2k
is fixed, and purely ferromagnetic or antiferromagnetic, depending on the sign of
Jk. Differently, in strongly frustrated systems like the SK model, the coupling Jij
between any spin pair Si, Sj is never fixed to be ferromagnetic or antiferromagnetic,
because its sign is randomly drawn for any i and j.

Thirdly, disordered spin models on Dyson’s hierarchical lattice have been studied
by A. Naimzhanov [127, 128], who showed that the probability distribution of the
magnetization converges to a Gaussian distribution in the infinite-size limit. Also in
this case, the interaction between spins S1, . . . , S2k is fixed to be ferromagnetic or
antiferromagnetic, depending on the sign of a random energy εk which is equal to
±1 with equal probability.

Here we present a different generalization of DHM to a disordered and strongly
frustrated case, first introduced in [65], and simply call these models hierarchi-
cal models (HM). Indeed, the definition (2.1) holding in the ferromagnetic case
can be easily generalized as follows. We define a HM as a system of 2k+1 spins
S1, . . . , S2k+1 , Si = ±1, with an energy function defined recursively by coupling two
systems, say system 1 and system 2, of 2k Ising spins

Hk+1 [S1, . . . , S2k+1 ] = H1
k [S1, . . . , S2k ] +H2

k

[
S2k+1, . . . , S2k+1

]
+ (2.10)

+εk+1 [S1, . . . , S2k+1 ] .

The energies H1
k , H

2
k are to be considered as the energy of system 1 and system

2 respectively, while εk is the coupling energy between system 1 and system 2.
Differently from the ferromagnetic case, here the coupling energy εk+1 [S1, . . . , S2k+1 ]
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of any spin configuration S1, · · · , S2k+1 is a random variable, which is chosen to have
zero mean for convenience.

Since the interaction energy εk+1 couples 2k+1 spins, and since its order of
magnitude is give by its variance, one must have

Eε[ε2k+1] < 2k+1, (2.11)

where Eε stands for the expectation value with respect to all the coupling energies
εk of the model. Eq. (2.11) states that the interaction energy between 2k+1 spins is
sub extensive with respect to the system volume 2k+1, and ensures [119, 130] that
HM are non-mean-field models. The mean-field limit will be constantly recovered
in the following chapters as the limit where Eε[ε2k+1] becomes of the same order of
magnitude as the volume 2k+1.

As we will show in the following, the form (2.10) of the Hamiltonian corresponds
to dividing the system in hierarchical embedded blocks of size 2k, so that the in-
teraction between two spins depends on the distance of the blocks to which they
belong [65, 34, 35], as shown in Fig 2.1.

ǫ1

ǫ2

ǫ3

S1 S2 S3 S4 S5 S6 S7 S8

Figure 2.1. A 23-spin hierarchical model obtained by iterating Eq. (2.10) until k = 3.
The arcs coupling pairs of spins represent the energies ε1 at the first hierarchical level
k = 1. Those coupling quartets of spins represent ε2 at the second hierarchical level
k = 2. Those coupling octets of spins represent the energies ε3 at the third hierarchical
level k = 3.

The random energies εk of HM can be suitably chosen to mimic the interactions
of a strongly frustrated structural glass (Part II), or of a spin glass (Part III), in the
perspective to give some insight into the non-mean-field behavior and criticality of
both of these models. In this thesis such features will be investigated by means of
RG techniques. Indeed, as for DHM, the recursive nature of the definition (2.10)
suggests that HM are particularly suitable for an explicit implementation of the
RG transformation. As a matter of fact, the definition (2.10) is indeed a RG flow
transformation from the length scale 2k to the length scale 2k+1. As we will show
explicitly in Part III, one can analyze the fixed points of such an RG flow, in order
to establish if a phase transition occurs, and investigate the critical properties of the
system.

It is important to observe that without the hierarchical structure this would be
extremely difficult. This is mainly because of the intrinsic and deep difficulty in
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identifying the correct order parameter discussed in Section 1, and thus write an
RG equation for a function (or functional) of it without making use of the replica
method [55, 119] which, up to the present day, could not be used to make predictions
for the non-mean-field systems under consideration in this thesis.

After introducing HM in their very general form, we now make a precise choice
for the random energies εk in order to build up a hierarchical model for a structural
glass, the Hierarchical Random Energy Model, and discuss its solution.





Part II

The Hierarchical Random
Energy Model
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As discussed in Section 1, the REM is a mean-field spin model mimicking the
phenomenology of a supercooled liquid. Given the general definition of HM, it is
easy to make a particular choice for the random energies εk in (2.10), to build up
a non-mean-field version of the REM, i. e. a HM being a candidate for describing
the phenomenology of a supercooled liquid beyond mean field. Indeed, we choose
the energies εk to be independent variables distributed according to a Gaussian
distribution with zero mean and variance proportional to C2k

Eε[ε2k] ∼ C2k, (2.12)

where we set
C2 = 21−σ. (2.13)

For σ < 0 the thermodynamic limit k →∞ is ill-defined, because the interaction
energy Eε[ε2k] grows faster than the volume 2k. For σ > 1, Eε[ε2k] goes to 0 as
k →∞, implying that there is no phase transition at finite temperature. Hence, the
interesting region that we will consider in the following is

0 < σ < 1, (2.14)

which is the equivalent of Eq. (2.3) for DHM. As we will discuss in the following,
this HM reproduces the REM in the mean-field case σ = 0, and will thus be called
the Hierarchical Random Energy Model (HREM) [33, 36]. According to the general
classification of models with quenched disorder given in Section 1, the HREM has to
be considered as a model mimicking a structural glass.

Before discussing the solution of the HREM, it is important to focus our attention
on some important features of the model that make it interesting in the perspective
of investigating the non-mean-field regime of a structural glass.

Firstly, the hierarchical structure of the HREM allows an almost explicit solution
with two independent and relatively simple methods.
The first method will be described very shortly here (a complete discussion can
be found in [33, 32]) and relies on the fact that the recursive nature of Eq. (2.10)
implies a recursion relation for the function Nk(E), defined as the number of states
with energy E at the k-the step of the recursion. By solving this recursion equation
for large k, one can compute the entropy of the system

s(E) ≡ 1
2k log [Nk(E)] , (2.15)

and thus investigate its equilibrium properties. The computation time needed to
implement this recursion at the k-th step is proportional to a power of 2k, and
represents a neat improvement on the exact computation of the partition function,
involving a time proportional to 22k . This recursive method is also significantly
better than estimating thermodynamic quantities with MC simulations, because the
latter are affected by a severe increase of the thermalization time when approaching
the critical point, as discussed in Section 1.
The second method investigates the thermodynamic properties of the HREM by
a perturbative expansion in the parameter C, physically representing the coupling
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Figure 2.2. A 23-spin HREM and its interaction structure. Each arc represents an
interaction energy ε(i)j amongst spins falling below the arc.

constant between spins. As a matter of fact, the relatively simple structure of the
model allows for a fully automated expansion in C of the equilibrium thermody-
namic quantities, which exhibits a neat and clear convergence when increasing the
perturbative order as discussed in Chapter 3.
It follows that the HREM is a model that hopefully encodes the non-mean-field
features of a structural glass, and that is solvable with relatively simple and reliable
methods, such as the recursion equation for N (E) and the perturbative expansion in
C. In particular, as we will show in Chapter 3, with such methods one can identify
the existence of a phase transition in the HREM, and then analyze its physical
features.

Secondly, it turns out that the 22k energy levels {Hk[~S]}~S of the HREM are
not independent variables as in the REM [53], because here they are correlated
to each other. Indeed, by iterating k times Eq. (2.10), one obtains explicitly the
Hamiltonian for a HREM with 2k spins

Hk[~S] =
k∑
j=0

2k−j∑
i=1

ε
(i)
j [~S(j,i)], (2.16)

where ~S ≡ {S1, · · · , S2k}, while ~S(j,i) ≡ {S2j(i−1)+1, · · · , S2ji} are the spins in the
i-th embedded block at the j-th hierarchical level, and ε(i)j is the interaction energy
εj (see Eq. (2.10)) of the i-th hierarchical embedded block. The interaction energies
ε
(i)
j of Eq. (2.16) are depicted in Fig 2.2 for a HREM with 23 spins.

According to Eq. (2.16), the energy levels are clearly correlated to each other. As
we will show in Chapter 3, this fact implies that some critical features of the HREM
turn out to be quite different from to those of the REM. In particular, we will show
by an explicit calculation how a naive estimate of the critical temperature based on
the hypothesis that the energy levels are uncorrelated fails miserably, proving the
relevance of energy correlations in the critical regime.

Thirdly, the existence of the hierarchical structure depicted in Fig. 2.10 allows
for the introduction of a notion of distance between spins in the HREM, whereas
in the REM there is no notion of distance, because mean-field models have no
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spatial geometry [119]. As we will show in Chapter 4, such a length scale can be
introduced in the HREM by defining a suitable correlation function, and extracting
the characteristic length scale associated with its exponential decay at large distances.
It is then interesting to ask oneself whether such a length diverges at the critical
point as in ferromagnetic systems [74, 101, 173, 174, 163, 162, 138]. This point will
be investigated in Chapter 4, by means of the perturbative expansion method.

We will now present the perturbative computation of the equilibrium properties
of the HREM, and discuss the results on the critical behavior of the model [33].





Chapter 3

Perturbative computation of
the free energy

Given a sample of the random energies {ε} ≡ {ε(i)j }j,i, the free energy of a HREM
with 2k spins is defined as [115, 119]

f [T, {ε}] ≡ − 1
β2k log [Z [T, {ε}]] , (3.1)

where
Z [T, {ε}] ≡

∑
~S

exp
(
−βHk[~S]

)
, (3.2)

β ≡ 1/T is the inverse temperature, and Hk[~S] is given by Eq. (2.16). To simplify
the notation, in the following we omit the volume label k in the free energy f and
in the partition function Z unless necessary.

The free energy (3.1) of a typical sample {ε} can be computed by hypothesizing
that the self-averaging property holds. According to this property, holding in the
thermodynamic limit of a broad class of disordered systems with quenched disorder
[119, 37], the free energy computed on a fixed and typical sample of the disorder is
equal to the average value of the free energy over the disorder. Here we hypothesize
that this property holds, so that in the thermodynamic limit k →∞ we compute
f [T, {ε}] on a typical sample {ε} as the average of Eq. (3.1) over the random energies

lim
k→∞

f [T, {ε}] = lim
k→∞

Eε [f [T, {ε}]] . (3.3)

The advantage of using the self-averaging property is that the right-hand side
of Eq. (3.3) is easier to compute than the left-hand side by using the replica trick
[119, 115]

Eε [f [T, {ε}]] = − 1
β2k lim

n→0

Eε [Z[T, {ε}]n]− 1
n

. (3.4)

According to the general prescriptions of the replica trick [119, 136, 133, 37], the
argument of the limit in Eq. (3.4) is here computed for integer n, and an analytic
function of n is obtained. The left-hand side of (3.4) is then computed by continuing
such a function to real n, and taking its n→ 0 limit.

31
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As observed in Section 1, the use of the replica trick in mean-field models can be
non-rigorous, because of the assumption that one can exchange the thermodynamic
limit and the n → 0 limit [119, 115, 136, 37]. It is important to observe that this
issue does not occur in this case. Indeed, by using Eqs. (3.1), (3.3) and (3.4), one
has

lim
k→∞

f [T, {ε}] = lim
k→∞

lim
n→0

1− Eε [Z[T, {ε}]n]
nβ2k . (3.5)

In order to compute Eq. (3.5) in mean-field models, one hypothesizes that one can
first compute the right-hand side of Eq. (3.6) in the thermodynamic limit k →∞
by using the saddle-point approximation, and then take n→ 0, by exchanging the
limits. Being the HREM a non-mean-field model, the saddle-point approximation
is wrong even in the thermodynamic limit, so that the right-hand side of Eq. (3.5)
cannot be computed by taking its saddle point, and we do not need to exchange
the limits. Hence, the subtleties resulting from the exchange of the limits do not
occur in this case. In other words, here the replica trick is simply a convenient way
to perform the computation of the quenched free energy, and a direct inspection of
Eq. (3.5) in perturbation theory shows that one can do the computation without
replicas, and obtain the same result as that obtained with the replica trick to any
order in C. We observe that this fact is true also in the mean-field theory of spin
glasses, where the full-RSB solution [133] can be rederived [118] without making use
of the replica method.

Let us now focus on the explicit computation of the right-hand side of Eq. (3.5)
for integer n and on the n→ 0-limit. One has

Eε [Z[T, {ε}]n] =
∑

{~Sa}a=1,··· ,n

exp

β2

4

k∑
j=0

C2j
2k−j∑
i=1

n∑
a,b=1

δ~S(j,i)
a ,~S

(j,i)
b

 , (3.6)

where ~S1, · · · , ~Sn denote the spin configurations of the n replicas of the system
[136, 137, 37, 130]. We then expand Eq. (3.6) in power of C2, and take the
n→ 0, k →∞-limits. It is important to observe that this C2-expansion is equivalent
to a high-temperature expansion. Indeed, in Eq. (3.6) any power C2j of the coupling
constant is multiplied by a factor β2, so that the smallness of C2 is equivalent to
the smallness of the inverse temperature β.
By Eq. (3.5), the expansion of Eq. (3.6) in powers of C2 results into an expansion
for f [T, {ε}], that can be written as

f [T, {ε}] =
∞∑
i=0

C2iφi(T ), (3.7)

where for simplicity we omit the k →∞-limit, and the dependence of f on {ε} has
disappeared because of the self-averaging property (3.3). The coefficients φi(T ) can
be explicitly calculated for large i by means of a symbolic manipulation program [170],
handling the tensorial operations on the replica indices [33, 32]. This computation
is carried on for integer n and an analytic function of n is obtained, so that the
limit n→ 0 can be safely taken. In Appendix B we give an example of how these
computations are performed, by doing the explicit calculation of the coefficient φ0.
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In the following, the expansion (3.7) will be worked out at a fixed order l, under the
underlying assumption that the resulting free energy

fl(T ) ≡
l∑

i=0
C2iφi(T ) (3.8)

approximates the exact free energy (3.7) as l is large

fl(T ) l→∞→ f∞(T ) = f [T, {ε}].

Before discussing the result of this computation for 0 < σ < 1, it is interesting
to test perturbation theory in the region σ < 0 for the following reason. As stated
in Section 2.2, for σ < 0 the thermodynamic limit of the model is ill-defined. This
is because the interaction energy εk defined in Eq. (2.10) grows with k faster than
the volume 2k according to Eq. (2.12). Notwithstanding this, having the HREM 2k
spins, one can redefine the inverse temperature

β → 2kσ/2β, (3.9)

in such a way that the variance of εk defined in Eq. (2.12) becomes

Eε[ε2k]→ 2k. (3.10)

The thermodynamic limit is now well-defined, because the coupling energy scales as
the volume, and the model is a purely mean-field one. A direct numerical inspection
of the expansion (3.8) after such a redefinition of β for σ < 0 shows that as l is
increased the free energy of the HREM converges to that of a REM [53, 54] with
critical temperature

T σ<0
c U ≡ 1

2
√

log 2(1− 2σ)
. (3.11)

The label U in Eq. (3.14) stands for uncorrelated, because the value (3.14) of the
critical temperature can be easily worked out by hypothesizing that the energy levels
are uncorrelated as in the REM. Indeed, the fact that the free energy (3.8) converges
to that of the REM for σ < 0 tells us that in this region correlations are irrelevant,
and the model reduces to a purely mean-field one with the same features as the REM.
This is what we expected from the fact that the energy scales as the system vol-
ume (Eq. (3.10)), and serves as an important test of the perturbative expansion (3.7).

We now focus on the region 0 < σ < 1. From a direct analysis of the data for the
free energy fl(T ), it turns out that there exists an l-dependent critical temperature
T lc , defined in such a way that the entropy at the l-th order in C2 vanishes at T = T lc

sl(T lc) ≡ −
dfl(T )
dT

∣∣∣∣
T=T lc

= 0. (3.12)

As discussed in Section 1, in the REM the fact that the entropy vanishes at a given
temperature signals a Kauzmann phase transition. Hence, by definition T lc can be
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considered as the l-th order critical temperature of the system. Since perturbation
theory is approximate, and there is no guarantee that a perturbative expansion
converges at a critical point [74, 173, 174, 138], it is important to check the behavior
of T lc as l is increased. In Fig. 3.1, T lc as a function of l is depicted for σ = 0.1.
Even for l ≤ 10, a clear convergence is observed, and the resulting ‘exact’ critical
temperature T∞c is easily determined by fitting T lc vs. l with a function of the form
a − b × cl, with c < 1, and setting T∞c = a. In this way, T∞c as a function of σ is
determined in the region 0 ≤ σ ≤ 0.15, where T lc vs. l for l ≤ 10 exhibits a clear
convergence as a function of l, and the extrapolation for l→∞ is meaningful.

According to Eq. (3.12), the entropy of the HREMThe HREM has a
finite temperature
phase transition à

la Kauzmann. s(T ) ≡ −df∞(T )
dT

(3.13)

vanishes for T = T∞c . This allows a straightforward interpretation of the phase
transition occurring at T = T∞c , resembling to that occurring in the REM [53]: for
T > T∞c the entropy is positive, and the system explores an exponentially large num-
ber of states in the configuration space, while for T < T∞c the system is trapped in a
handful of low-lying energy states. We have thus shown that the HREM undergoes
a phase transition à la Kauzmann at a finite temperature T∞c , whose features are
similar to that of the phase transition of the REM and, more generally, of mean-field
structural glasses [16].

In the inset of Fig. 3.1, T∞c as a function of σ is depicted, and T∞c turns out to
be a decreasing function of σ. This fact is physically meaningful, because according
to Eq. (2.13), the larger σ the smaller the coupling C between spins, and so the
smaller the temperature T∞c such that for T < T∞c all the spins are frozen in a
low-lying energy state.
As in the σ < 0-case, we can hypothesize that the energy levels act as uncorrelated
random variables, in such a way that the HREM behaves as a REM. In this case,
the critical temperature can be computed exactly, and is given by

T σ>0
c U ≡ 1

2
√

log 2(1− 2−σ)
. (3.14)

Differently from the σ < 0-case, here the decorrelation hypothesis turns out to be
wrong. Indeed, by looking at the inset of Fig 3.1, T∞c does not coincide with T σ>0

c U .
This fact is a clear evidence that correlations between the energy levels play a crucial
role in the region σ > 0, and cannot be neglected.

In Fig 3.2 the free energy fl(T ) as a function of the temperature T for σ = 0.1
and different values of l ≤ 10 is depicted. fl(T ) is found to converge to a finite
value f∞(T ) for T > T∞c , while for T < T∞c the lower the temperature the worse
the convergence of the sequence fl(T ) vs. l. Hence, when descending into the
low-temperature phase from T > T∞c , a breakdown of perturbation theory occurs,
signaling the possibility of a nonanalyticity of the free energy at the critical point,
resembling to the nonanalytical behavior of physical quantities occurring in second-
order phase transitions for ferromagnetic systems [74, 101, 173, 174, 138].
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Figure 3.1. Critical temperature T lc (black points), its fitting function a− b× cl (red solid
curve) and asymptotic value T∞c = 1.861± 0.021 (blue dashed line) as a function of l
for σ = 0.1. T∞c = a has been determined as a fit parameter. Inset: critical temperature
T∞c (red points) in the region 0 < σ < 0.15 where the first 10 orders of the perturbative
expansion show a clear convergence, and critical temperature Tσ>0

c U (black curve), as a
function of σ. The error bars on T∞c are an estimate of the error resulting from the fit
on the parameter a. T∞c is clearly non-consistent with Tσ>0

c U , showing that correlations
between energy levels are important. The σ → 0+-limit of T∞c does not coincide with
the σ → 0−-limit of Tσ<0

c U because of the abrupt change (3.9) in the normalization of
the temperature when switching from σ > 0 to σ < 0.

According to the above discussion, the perturbative expansion (3.7) yields a
reliable method to estimate physical quantities in the high-temperature phase
T > T∞c . Notwithstanding this, no conclusions can be drawn on the behavior of
the free energy in the low-temperature phase with this perturbative framework.
In particular, this method gives no insight into the structure of the states of the
system in the low-temperature phase. An interesting approach yielding a tentative
solution in the low-temperature phase can be worked out by hypothesizing that the
n replicas ~S1, · · · , ~Sn in Eq. (3.6) are grouped into n/x groups, where each group
is composed by x replicas [119, 115]. For any two replicas a, b in the same group
one has ~Sa = ~Sb. We can look at the small C2-expansion (3.7) in the particular
case where the replicas are grouped as described above. We call the free energy
to the l-th order obtained with this ansatz fRSB

l (T, x). RSB stands for replica-
symmetry-breaking, and has the same physical interpretation as the ordinary RSB
mechanism described in Section 1 for structural glasses: as in the REM, a replica-
symmetry-broken structure in the low-temperature phase implies that the system
is no more ergodic, because it is trapped in a handful of low-lying energy states
[16, 119, 130, 53, 54, 136, 137, 115]. By performing the computation explicitly, it is
easy to find out that fRSB

l (T, x) = fl(T/x). According to the general prescriptions
of the replica approach [119, 115, 136, 133, 137], as we take the n → 0-limit the
parameter x, originally defined as an integer number, has to be treated as a real
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Figure 3.2. Free energy f as a function of temperature T for σ = 0.1. We depict
fl(T −T∞c +T lc) for l = 1, 2, · · · , 10 (gray points), f3(T −T∞c +T 3

c ) (green dashed curve),
f6(T −T∞c +T 6

c ) (blue dashed curve), f10(T −T∞c +T 10
c ) (black dashed curve), and the

extrapolated free energy f∞(T ) as a function of T (red points and solid curve). We also
depict the critical temperature T∞c (violet dashed line). For any fixed T , f∞(T ) has
been obtained by fitting the sequence fl(T − T∞c + T lc) vs. l with a function of the form
a− b× cl, with c < 1, and setting f∞(T ) = a. To compute f∞(T ), we used the sequence
fl(T −T∞c +T lc) vs. l instead of fl(T ) vs. l because the former has the same limit as the
latter for l→∞, and exhibits a better convergence for the accessible values of l ≤ 10.
The error bars on f∞(T ) are given by an estimate of the fit error on the parameter a.

number lying in the interval [0, 1]. Hence, the maximization of fRSB
l (T, x) with

respect to x gives x = 1 for T ≥ T lc , and x = T/T lc for T < T lc . It follows that
according to this this RSB ansatz the exact free energy reads

fRSB
∞ (T ) =

{
f∞(T∞c ) T < T∞c
f∞(T ) T ≥ T∞c

. (3.15)

The form (3.15) of the RSB free energy is the same as that of the REM [119, 53, 54],
and predicts that in the low-temperature phase the HREM has a one-step RSB,
reflecting ergodicity breaking. On the one hand, this RSB ansatz predicts a free
energy f∞(T ) which is exact for T ≥ T∞c , because it coincides with the free energy
computed with perturbation theory without making use of any ansatz. On the other
hand, there is no guarantee that fRSB is exact in the low-temperature phase. In
particular, the n replicas could be grouped in a more complicated pattern than the
RSB one described above, and this configuration could yield a free energy that is
larger than fRSB for T < T∞c . Since in the replica method the exact free energy is
not the minimum, but the maximum of the free energy as a function of the order
parameter configurations [115, 119], such a more complicated pattern would yield
the exact free energy of the system. The investigation of the existence of such an
optimal pattern is an extremely interesting question that could be subject of future
work, and give some insight into the low-temperature phase of the HREM, and
more generally into the low-temperature features of non-mean-field structural glasses.
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Once the existence of a phase transition has been established, we ask ourselves
what are its physical features. In particular, an interesting question is whether,
as in second-order phase transitions [74, 163, 162, 173, 174], the system has no
characteristic scale length at the critical point. Indeed, answering this question
for the HREM is particularly interesting, because an analysis of the characteristic
length scales of the system in the critical region could give some insight into the
construction of a RG theory for non-mean-field structural glasses.





Chapter 4

Spatial correlations of the
model

Being a non-mean-field model, the HREM allows for the definition of a distance
between spins. This definition is yield naturally by the hierarchical structure of the
couplings shown in Fig. 2.1. Indeed, given two spin sites i and j, one can define
their ultrametric distance m as the number of levels one has to get up in the binary
tree starting from the leaves, until one finds a root that is shared by i and j. This
geometrical construction of the ultrametric distance is depicted in Fig. 4.1 for a
HREM with k = 3. One can thus define the distance between i and j as

‖ i− j ‖≡ 2m. (4.1)

S2 S5

Figure 4.1. Ultrametric distance between spins S2 and S5 in a HREM with k = 3. In
order to find a root shared by S2 and S5, one has to go 2 levels up in the binary tree.
Hence, the ultrametric distance between S2 and S5 is m = 2.

Once the notion of distance has been clarified, we want to know if the system has
a characteristics length defined in terms of this distance, and what is the behavior
of this length in the critical region. In order to do so [32], we define a correlation
function whose exponential decay at large distances yields a characteristic length
scale ξ of the system. This correlation function is defined as

Y (2m, T ) ≡ Eε

[
E~S1,~S2

[2m∏
i=1

δS1,i,S2,i

]]
m→∞≡ exp

[
− 2m

ξ(T )

]
, (4.2)

39
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where E~S stands for the thermal average

E~S [O[~S]] ≡
∑

~S e
−β Hk[~S]O[~S]
Z[T, {ε}] , (4.3)

and δSi,Sj denotes the Kronecker delta function. The correlation function (4.2) has
the following physical meaning. Given two spin configurations ~S1, ~S2, Y (2m, T )
physically represents the mean overlap between ~S1 and ~S2 on the sites 1, · · · , 2m of
the lattice.

Before studying the behavior of ξ in the region 0 < σ < 1, we compute ξ in
the region σ < 0 where the model is purely mean field. As discussed in Chapter 3,
for the thermodynamic limit to be well-defined for σ < 0, one has to rescale the
temperature according to Eq. (3.9). By plugging Eq. (3.9) into Eq. (4.2) and taking
σ < 0, one easily obtains the correlation function in the mean-field case

Y (2m, 2−kσ/2T ) k→∞=
∑

~S1,~S2

∏2m
i=1 δS1,i,S2,i

22 2k (4.4)

= exp(−2m log 2).

Comparing Eq. (4.4) to the definition of ξ(T ) in Eq. (4.2), we obtain the mean-field
value of the correlation length

ξMF (T ) = 1
log 2 . (4.5)

Eq. (4.5) is consistent with the fact that in the mean-field case there must be no
notion of physical distance between spins [130], and so the system has no physical
length scale signaling the range of spatial correlations between spins.

This picture should radically change for 0 < σ < 1, where a physical spatial
structure and distance does exist. In Chapter 3 we showed that the HREM has a
phase transition at T∞c . According to the above physical meaning of the correlation
function (4.2), one expects long-range spatial correlations to occur at T∞c , because
for T → T∞c both ~S1 and ~S2 should stay trapped in the same handful of low-lying
energy states, and exhibit a high degree of overlap with each other. Hence, Y (2m, T )
should tend to 1, in such a way that ξ diverges.

In the following we compute ξ for 0 < σ < 1 in the same perturbative framework
as in Chapter 3, to investigate the existence of such a long-range spatial correlations
at the critical point. Firstly, Eq. (4.2) can be rewritten with the replica trick

Y (2m, T ) = Eε

∑~S1,~S2
e−β(Hk[~S1]+Hk[~S2])∏2m

i=1 δS1,i,S2,i

Z[T, {ε}]2

 (4.6)

= Eε

 lim
n→0

∑
~S1,··· ,~Sn

e−β
∑n

a=1 Hk[~Sa]
2m∏
i=1

δS1,i,S2,i


= lim

n→0

∑
~S1,··· ,~Sn

exp

β2

4

k∑
j=0

C2j
2k−j∑
i=1

n∑
a,b=1

δ~S(j,i)
a ,~S

(j,i)
b

 2m∏
i=1

δS1,i,S2,i .
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The last line of Eq. (4.6) is very similar to (3.6), used in Chapter 3 to compute the
free energy of the HREM. Hence, the very same techniques used to compute f in
perturbation theory can be employed here to calculate the correlation function Y .
In particular, one can expand the correlation function (4.6) in the coupling constant
C2

Y (2m, T ) =
∞∑
i=0

C2iΥm,i(T ), (4.7)

and explicitly evaluate the coefficients Υm,i by a symbolic manipulation program
[170] until the order i = 9. In Appendix C we present the steps of the computation of
Υm,0(T ), to give some insight into the main techniques employed in the calculation
to high orders.

For any fixed m and T , the exact value of Y (2m, T ) has been computed by
extrapolating the sequence

Yl(2m, T ) ≡
l∑

i=0
C2iΥm,i(T ) (4.8)

to l →∞, with the underlying assumption that for large l Eq. (4.8) converges to
the exact value of the correlation function

Yl(2m, T ) l→∞→ Y∞(2m, T ) = Y (2m, T ).

The sequence Yl(2m, T ) as a function of m for fixed σ, l and T is shown in Fig.
4.2 for m = 3, T = 3.5. Even though Yl is nicely convergent even to relatively low
orders for the values of m and T considered in Fig. 4.2, an explicit analysis of
Yl(2m, T ) for different values of m shows that the larger m, the larger the number
of orders needed to see a nice convergence with respect to l. This fact can be easily
understood by recalling that the C2-expansion is equivalent to a high-temperature
expansion (see Chapter 3). It is a general feature of high-temperature expansions
[172, 30, 146, 51] that with a finite number of orders of the β-series, one cannot
describe arbitrarily large length scales. Hence, with a finite number of orders (9 in
our case) for Yl(2m, T ), one cannot describe the correlations Yl(2m, T ) for too large
m.
Another important fact is that, for any fixed m the convergence of Yl(2m, T ) gets
worse as the temperature T is decreased, because more terms in the β-expansion,
and so in the C2 expansion, are needed.
Practically speaking, these limitations of the perturbative expansion made us take
m ≤ 3 and T > T0, where T0 is a σ-dependent value of the temperature signaling a
breakdown of perturbation theory. As we will discuss in the following, notwithstand-
ing the very small values of m here available, it has been possible to compute the
correlation length ξ(T ) defined in Eq. (4.2) in a wide interval of temperatures.

The correlation length ξ(T ) has been computed for every temperature T by
fitting the data for Y∞(2m, T ) vs. m, according to the definition of ξ(T ) given in
Eq. (4.2).

Once ξ(T ) is known, we investigate its behavior at low temperatures. As stated
above, one cannot take too low values of T because of the non-convergence of the
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Figure 4.2. Yl(2m, T ) (black points), its fitting function a− b× cl (blue dashed curve) as
a function of l, and Y∞(2m, T ) = a (red solid line), determined as a fit parameter. Here
σ = 0.1,m = 3 and T = 3.5.

perturbative expansion. Notwithstanding this, it is still possible to approach enough
the critical point T∞c and investigate the existence of long-range spatial correlations.
In particular, we test the validity of the hypothesis of a diverging ξ(T ) for T → T∞c .
In order to do so, we check whether the data for ξ(T ) is consistent with a power-law
divergence at some temperature T ξc

ξ(T )
T→T ξc≈ C

(T − T ξc )ν
. (4.9)

The validity of the hypothesis (4.9) has been tested in the following way. We suppose
that Eq. (4.9) holds, and determine the value of T ξc such that the data for ξ(T ) best
fits with Eq. (4.9). We fit the data for log [ξ(T )] vs. log(T − T ξc ) for different values
of T ξc . The value T ξc such that log [ξ(T )] vs. log(T −T ξc ) best fits with a straight line,
is such that the data for ξ(T ) is consistent with a power-law divergence at T ξc , accord-
ing to (4.9). The top panel of Fig. 4.3 shows that for σ = 0.1 the optimal value of
T ξc is compatible with the critical temperature T∞c for σ = 0.1 obtained in Chapter 3.

The data for ξ(T ) is thus consistent with a diverging correlation length at theThe data for the
correlation length
of the HREM is
consistent with a

power-law
divergence at the

Kauzmann
transition

temperature.

Kauzmann transition temperature T∞c . In the bottom panel of Fig. 4.3, ξ(T ) as
a function of T for σ = 0.1 is depicted, together with its fitting function (4.9)
with T ξc = T∞c . ξ(T ) increases as the temperature is decreased, and its shape is
compatible with a power-law divergence at the Kauzmann transition temperature
T∞c .

Since this work establishes the existence of a thermodynamic phase transition
and the possibility of a diverging correlation length in the HREM, it also shows the
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Figure 4.3. Top: log [ξ(T )] vs. log(T − T ξc ) for different tentative values of 1 < T ξc < 3.2
and σ = 0.1. The value of T ξc such that ξ(T ) best fits with the hypothesis (4.9) is
such that log [ξ(T )] vs. log(T − T ξc ) best fits with a straight line. This value lies in
the interval [1.8, 2], and is thus consistent with the Kauzmann transition temperature
T∞c = 1.861 ± 0.021 of the model. Bottom: ξ(T ) (black points), its fitting function
(4.9) with T ξc = T∞c (solid red curve), ξMF (orange dashed line) as a function of T for
σ = 0.1, and the Kauzmann transition temperature T∞c (blue dashed line). In the region
0 < σ < 1, the correlation length ξ(T ) at low temperature is significantly larger than the
mean-field value ξMF , because of the existence of physical spatial correlations between
spins. Inset: critical exponent ν defined by Eq. (4.9) as a function of σ. ν has been
computed by setting T ξc = T∞c and fitting ξ(T ) with Eq. (4.9). Error bars on ν are an
estimate of the uncertainty resulting from the determination of ν as a fit parameter.
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way forward to the study of finite-dimensional spin or structural-glass models.
For instance, the REM has been found [154, 26] to have a dynamical phase transition
at finite temperature if a particular dynamics is chosen: it would be interesting
to study these dynamical properties in the HREM, by introducing some suitable
dynamics of the spins, and by investigating the existence of a dynamical phase
transition, and of a diverging dynamical correlation length.
Another interesting future direction would be to generalize the techniques used in
the solution of the REM to more realistic non-mean-field spin or structural-glass
models, like p-spin models [50] built on a hierarchical lattice. Indeed, even though
the HREM serves as a model representing a non-mean-field structural glass, its
structure is still far from being realistic: strictly speaking, the spins ~S in the HREM
are not physical degrees of freedom, but serve as mere labels for the energy variables
Hk[~S] as in the REM [53, 115, 130]. Moreover, a criticism one could address to the
solution techniques developed in Chapters 3 and 4 is that these do not give any
insight into the construction of a suitable RG protocol. In particular, a decimation
rule on spins is still lacking.

In the following Part we introduce a HM of a spin glass, in the effort to address
these two points: in such a HM spins are real physical degrees of freedom, in such a
way that a decimation rule on spins naturally emerges, and one can explicitly solve
the resulting RG equations.



Part III

The Hierarchical
Edwards-Anderson Model

45
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As discussed in Section 1, the SK model is a mean-field spin glass, whose critical
properties have been clarified in Parisi’s solution [133, 136, 137, 119, 115, 130].
Whether the physical features of this solution persist also in a non-mean-field version
of the SK, or the non-mean-field case is described by a radically different scheme
[111, 64, 61, 60, 62, 63, 27, 125], is one of the most hotly debated topics in sta-
tistical physics. Being this a very difficult question, it is interesting to consider
non-mean-field versions of the SK that presumably capture all the non-mean-field
physics, and that are simple enough to be solved quite easily, by means of an explicit
implementation of the RG transformation.

Starting from the general definition (2.10) of Hierarchical models given in Section
2.2, here we explicitly chose the random energies εk to build up a non-mean-field
version of the SK model having these features: the Hierarchical Edwards-Anderson
model (HEA) [65, 34, 35, 36]. The HEA is defined by choosing the random energy
εk in the following way [65]

εk+1[S1, . . . , S2k+1 ] ≡ −
(
C2

2

)k+1 2k+1∑
i<j=1

J12,ijSiSj , (4.10)

where C is still defined by Eq. (2.13), and J12,ij are Gaussian random variables with
zero mean and unit variance.

Starting from Eq. (4.10) and from the definition of the J12s, it is easy to show
that εk+1 has zero mean, and that its variance satisfies

Eε[ε2k]
k→∞∼ 22k(1−σ). (4.11)

It follows that for σ < 1/2 the interaction energy (6.35) grows faster than the volume
2k, and the thermodynamic limit k → ∞ is not defined. The purely mean-field
case, i. e. the case where the interaction energy scales with k as the volume 2k, is
recovered for σ = 1/2. Moreover, for σ > 1 the interaction energy (6.35) goes to 0
as k →∞, in such a way that no phase transition can occur. Hence, in the following
we will take

1/2 < σ < 1, (4.12)

which is the equivalent of Eq. (2.3) for DHM.

Physically speaking, the interaction energy (4.10) of the HEA introduces two-
spin interactions, while the interaction energy of the HREM defined in Part II has
2k+1-spin interactions. Another fundamental difference between the HEA and the
HREM is that, according to the general classification of models with quenched
disorder given in Section 1, the HEA has to be considered as a model for a spin
glass, while the HREM as a model mimicking the physics of a structural glass [16].
Compared to the HREM, the HEA is a more realistic model, because according to
the definition (4.10), here the spins of the system are physical degrees of freedom,
and not mere labels for the energy variables as in the REM and in the HREM. As
we will see in the following, the HEA also allows for an explicit construction of a
suitable decimation rule on spins, and so of a RG transformation.



48

An equivalent definition of the HEA can be given without using the recursion
relation (2.10). Indeed, one can recover Eq. (2.10) by defining the HEA as a system
of 2k spins Si = ±1, 0 ≤ i ≤ 2k − 1, with Hamiltonian

Hk[~S] = −
2k−1∑
i,j=0

JijSiSj , (4.13)

where the Jijs are Gaussian random variables with zero mean and variance ς2
ij . ς2

ij

is given by the following expression: consider the binary representation of the points
i, j

i =
k−1∑
a=0

ca2k−1−a, j =
k−1∑
a=0

da2k−1−a.

If only the last m digits {ck−m, · · · , ck−1} of the binary representation of i are
different from the last m digits {dk−m, · · · , dk−1} of the binary representation of j,
one has

ς2
ij = 2−2σm. (4.14)

The definition (4.13) is equivalent to the definition given by (2.10) and (4.10).

The form (4.13) of the Hamiltonian can be obtained by dividing the system in
hierarchical embedded blocks of size 2m, as shown in Fig. 2.1. More precisely, the
integer m can be considered as the ultrametric distance between spins Si and Sj
defined in Fig. 4.1 for the HREM.

The HEA is a hierarchical counterpart of the one-dimensional spin glass with
power-law interactions (PLSG) [99], which has received attention recently [90, 88,
89, 104, 106]. The only difference between this PLSG and the HEA is the form of
ς2
ij . In the PLSG, Eq. (4.14) is replaced by ς2

ij = |i − j|−2σ, where |i − j| denotes
the ordinary absolute value of i − j. This form of the interaction structure, even
though apparently simpler than that of the HEA, makes the implementation of a
RG transformation extremely harder to pursue practically. Indeed, the form (4.14)
of the interactions of the HEA keeps track of the hierarchical structure of the model,
and so of a symmetry that is absent in the PLSG. Differently from the PLSG, thanks
to this symmetry the RG equations of the HEA allow for a direct solution that can
be in principle computed with extremely high precision [34, 35], as we will show in
Chapter 5.

We now proceed by exposing the techniques developed to solve the HEA [34, 35,
36]. An important observation is that an explicit evaluation of the partition function
for large k is practically impossible, because this would involve 2k spins, and so a
sum of 22k terms. Moreover, as discussed in Section 1, there is no guarantee [75]
that even the most refined MC techniques [58, 145, 73, 8, 3, 10] work properly at
low temperatures for reasonably large system sizes, because of the existence of many
metastable minima in the energy landscape.
An interesting method to overcome these difficulties is to use the hierarchical
structure of the model. Indeed, the recursion equation (2.10) stemming from this
structure results into some RG equations, whose thermodynamic limit k →∞ can
be studied with some suitable approximation schemes. In Chapter 5, we derive
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these RG equations with the replica approach, and analyze their fixed points with
standard field-theory techniques. We show that notwithstanding their simplicity, the
perturbative solution of these RG equations results into a perturbative series which
is probably non-convergent. Hence, an alternative real-space approach which does
not rely on the replica method is developed in Chapter 6. In this latter approach,
the hierarchical structure of the model is again used to write some RG equations
that can be solved numerically with high precision. The replica RG approach and
the real-space approach are then compared, by considering their predictions on the
critical exponents of the model.





Chapter 5

The RG in the replica approach

In this Chapter we derive and solve the RG equations for the HEA model with the
replica approach [34, 35]. These RG equations can be derived with two different
methods. The first, exposed in Section 5.1, derives the RG equations by using
directly the hierarchical structure of the model. We will call this approach method à
la Wilson, because it implements a coarse-graining RG step relating a 2k-spin HEA
to a 2k+1-spin HEA, and this yields a RG equation similar to the RG equations
originally obtained by Dyson [57, 44, 45, 31] for DHM, and so analogous to Wilson’s
RG equations [161, 164, 165, 163]. The second approach, exposed in Section 5.2,
reformulates the problem in terms of a φ3-field theory [173], and the resulting RG
equations are nothing but the Callan-Symanzig equations [173, 174] for such a field
theory. The two formulations are tested to be equivalent by an explicit computation
of the critical exponents.

5.1 The RG method à la Wilson

Let us consider the partition function Z[T, {ε}] of a HEA with 2k spins, which is
defined by Eq. (3.2). According to the general features of the replica approach
[119, 115, 130, 65], the physics of the model is encoded into the n→ 0 limit of the
n-times replicated partition function

Eε[Z[T, {ε}]n] = Eε

 ∑
{~Sa}a=1,...,n

exp
(
−β

n∑
a=1

Hk[~Sa]
) , (5.1)

where Eε denotes the expectation value with respect to the random distribution of
the energies εk, i. e. with respect to all the random couplings J12, ij of Eq. (4.10),
and ~Sa is the spin configuration of the a-th replica of the system. One can then
consider the n × n matrix Qab [119, 115, 130] physically representing the overlap
between replicas a and b, which is defined as

Qab ≡
1
2k

2k∑
i=1

Sa,iSb,i ∀a 6= b,

Qaa ≡ 0 ∀a.
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An interesting quantity which is derived from (5.1) is the probability distribution of
the overlap over the quenched disorder {ε}

Pk[Q] ≡ Eε

 ∑
{~Sa}a=1,...,n

exp
(
−β

n∑
a=1

Hk[~Sa]
)

n∏
a<b=1

δ

Qab − 1
2k

2k∑
i=1

Sa,iSb,i


 ,
(5.2)

where the volume dependence has been explicitly restored with the label k in Pk,
and δ denotes the Dirac delta function. The quantity Pk[Q] is interesting because
when one iterates the recursion equation (2.10), and a 2k+1-spin HEA is built up,
the resulting Pk+1 can be related to Pk by a simple recursion equation, which is

Pk+1[Q] = exp
(
β2C4(k+1)

4 Tr[Q2]
)∫

[dQ1dQ2]Pk[Q1]Pk[Q2]× (5.3)

×
n∏

a<b=1
δ

(
Qab −

Q1,ab +Q2,ab
2

)
,

where Tr denotes the trace over the replica indices a, b, . . ., and the integral over the
matrix Q is denoted by

∫
[dQ] ≡

∫ ∏n
a<b=1 dQab. Eq. (5.3) is equivalent to the recur-

sion equation (2.5) for DHM [57], and it yields the flow of the function Pk obtained
by coupling two systems with volume 2k to obtain a system with volume 2k+1. It
follows that Eq. (5.3) can be considered as the flow of Pk under the reparametrization
2k → 2× 2k of the length scale [164, 165, 163, 173, 174, 77, 138, 74]. According to
these considerations, Eq. (5.3) is a RG equation.

The very same techniques developed in Section 2.1 and in Appendix A to solve
Eq. (2.5) for DHM can be used to solve Eq. (5.3). Notwithstanding this, the solution
of Eq. (5.3) turns out to be much more cumbersome than that of Eq. (2.5), because
the former is a flow equation for a function Pk[Q] of a matrix Qab, while the latter
is a flow equation for a function pk(m) of a number m. In what follows we will show
the main steps of the solution of Eq. (5.3).

First of all, we seek for a solution of Eq. (5.3) for k →∞, in order to investigate
the critical properties of the HEA in the thermodynamic limit. To this end, let us
rescale the variable Q in Eq. (5.3), by setting

Pk[Q] ≡ Pk[C−2kQ], (5.4)

in such a way that Eq. (5.3) becomes

Pk[Q] = exp
(
β2

4 Tr[Q2]
)∫

[dP ] Pk−1

[
Q+ P

C2

]
Pk−1

[
Q− P
C2

]
. (5.5)

Similarly to Eq. (2.6), Eq. (5.4) is the correct rescaling for Eq. (5.3) to converge
to a nontrivial fixed point for k →∞, because according to Eqs. (2.13), (4.12) one
has C > 1, and the C4(k+1)-term in the right-hand side of Eq. (5.3) is an increasing
function of k allowing for no nontrivial fixed point for k → ∞. It follows that
physically speaking, this rescaling aims to look at the RG equations (5.3) on the
scales that are relevant for large k, by means of a ‘zoom’ on the function Pk[Q],
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which is encoded in the definition (5.4). An analogous rescaling will be presented in
the real-space approach discussed in Chapter 6.

Eq. (5.5) can now be solved by making an ansatz for Pk[Q], following the same
lines as in the solution of DHM illustrated in Appendix A. The simplest form one
can guess for Pk[Q] is the Gaussian

Pk[Q] = exp
(
−rkTr[Q2]

)
. (5.6)

This form corresponds to a mean-field solution [65]. By plugging Eq. (5.6) into Eq.
(5.5), one finds an evolution equation relating rk to rk−1

rk = 2rk−1
C4 − β2

4 . (5.7)

Even though the mean-field solution (5.6) is a fixed point of the RG equation
(5.5), there is no guarantee that more complex and physically meaningful fixed
points do not exist. By hypothesizing that Pk[Q] can be expanded in powers of Q,
non-gaussian fixed points can be explicitly built up in a perturbative framework, by
following the same lines as in the Ising model [163] and in DHM [44, 45, 31]. Indeed,
we can add non-Gaussian terms in Eq. (5.6), proportional to higher powers of Q,
and consistent with the symmetry properties of the model. For instance, in principle
there would be several possible replica invariants proportional to Q3, but it is possible
to show that the only invariant that is consistent with the original symmetries of
the Hamiltonian Hk is Tr[Q3]. It follows that the simplest non-mean-field ansatz for
Pk[Q] reads

Pk[Q] = exp
[
−
(
rkTr[Q2] + wk

3 Tr[Q3]
)]

. (5.8)

This non-Gaussian ansatz can be handled by supposing that the coefficient wk,
representing the deviations from the Gaussian solution, is small for every k. It is
important to point out that this is an hypothesis which is equivalent to assuming that
the non-mean-field regime of this model can be described in terms of a perturbation
of the mean-field regime [55]. As discussed in Section 1, there is no general agreement
on the fact that the non-mean-field behavior of a spin glass can be described in
terms of a slight modification of the mean-field picture [111, 64, 61, 60, 62, 63, 27].
Hence, one should keep in mind that this assumption is far from being trivial and
surely innocuous.
As shown in Appendix D, if one plugs the ansatz (5.8) into the RG equation (5.5)
and expands up to O(w3

k), one finds a recursion relation for the vector (rk, wk),
which is expressed as a function of (rk−1, wk−1) rk = 2rk−1

C4 − β2

4 −
n−2

4

(
wk−1

2C2rk−1

)2
+O(w4

k−1),

wk = 2wk−1
C6 + n−2

2

(
wk−1

2C2rk−1

)3
+O(w4

k−1).
(5.9)

Eqs. (5.9) are analogous to Wilson’s RG equations for the Ising model. Indeed,
the mass rk and the coupling constant uk of the φ4-theory describing the Ising model
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[173] satisfy a recursion equation very similar to Eq. (5.9) [169, 163].

In general Eqs. (5.9) do not have a finite fixed point rk = rk−1 ≡ r∗, wk =
wk−1 = w∗ for every value of β. Concerning this, let us suppose that there exists a
finite and nonzero inverse temperature βc such that Eqs. (5.9) have a finite fixed
point. By definition, βc physically represents the inverse temperature such that the
system is invariant under the RG step k → k + 1, i. e. under reparametrization of
the length scale. Hence, at βc the system has no characteristic length scale, i. e. it
is critical [161]. We call βc the inverse critical temperature of the HEA, because it
separates the high and low-temperature phases β < βc, β > βc where the system is
not invariant under reparametrization of lengths.

We now set β = βc and sketch qualitatively the flow of the coefficient wk towards
its fixed-point value w∗. Let us consider first the case 2/C6 < 1, i. e. ε < 0, with

ε ≡ σ − 2/3. (5.10)

In this case wk is decreased as k → k + 1, and tends to zero, in such a way that
Pk[Q] tends to a Gaussian solution for large k.
The situation is different when ε > 0. In order to better understand the case ε > 0,
let us rewrite the recursion equation for wk as

wk − wk−1 =
( 2
C6 − 1

)
wk−1 + n− 2

2

(
wk−1

2C2rk−1

)3
+O(w4

k−1), (5.11)

and suppose for simplicity that wk−1 is positive. Being 2/C6 > 1, the first addend in
the right-hand side of Eq. (5.11) is positive, while the second addend is negative in the
physical limit n→ 0. Hence, the first addend aims to increase wk, while the second
aims to decrease it. As we will show in the following, these two effects compensate
each other, in such a way that wk tends to a finite and nonzero fixed point for k →∞.

Following the very same lines as Wilson, we call P∗[Q],P∗[Q] the fixed-point
probability distributions of the overlap, obtained by setting rk = r∗, wk = w∗ in
Pk[Q],Pk[Q] respectively. The equations for n = 0 yield

w2
∗ =

 0 ε ≤ 0
48 log 2

(
β2/4

21/3−1

)3
ε+O(ε3/2) ε > 0.

(5.12)

As anticipated above, for ε > 0, wk tends to a finite and nonzero value, which is
found to be proportional to ε in Eq. (5.12).

We recall [44, 45, 31, 163, 173, 174] that a Gaussian P∗[Q] corresponds to
a mean-field regime of the model. Indeed, in the mean-field approximation one
evaluates with the saddle-point method the functional integral yielding the replicated
partition function [119, 130, 115, 133, 136]

Eε[Z [T, {ε}]n] =
∫

[dQ]P∗[Q], (5.13)

where Eq. (5.2) and Eq. (5.1) have been used. If σ ≤ 2/3, i. e. ε < 0, P∗[Q] is
Gaussian, and so is P∗[Q], in such a way that the saddle-point approximation is
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exact in the right-hand side of Eq. (5.13), i. e. the mean-field approximation is
correct. On the contrary, for 2/3 < σ ≤ 1, P∗[Q] is not Gaussian, and the system
has a non-mean-field behavior. In particular, fluctuations around the mean-field
saddle point in the right-hand side of Eq. (5.13) cannot be neglected. Hence, we
call σ = 2/3 the upper critical dimension [74, 173, 174, 77] of the HEA.
In the computation of a given physical quantity O(σ) for σ > 2/3, fluctuations show
up in the guise of some corrections proportional to ε to the mean-field value of this
quantity. It is important to emphasize that these ε-corrections are not merely a
numerical improvement on the predictions for the observable, but somehow encode
the strength of the corrections to the mean-field physics. For instance, if O(σ) was
expanded in powers of ε around σ = 2/3, and if this expansion could be resummed
and made convergent, this would mean that the non-mean-field physics of the system
could be considered as a ‘small correction’ to the mean-field physics. On the contrary,
if such a non-mean-field physics were substantially different, the latter statement
would be incorrect, and this fact would dramatically show up in a divergent and
non-resummable ε-series for O(σ).

These observations can be directly illustrated by considering as observable O
the critical exponent ν, related to the divergence of the correlation length ξ

ξ
T→Tc∼ (T − Tc)−ν . (5.14)

ν can be computed [163] by linearizing the transformation (5.9) in the neighborhood
of r∗, w∗. Such a linearization is performed by considering the 2× 2-matrix

Mij ≡
∂(rk+1, wk+1)
∂(rk, wk)

∣∣∣∣
rk=r∗,wk=w∗

.

It can be shown that ν is related to the largest eigenvalue Λ of M by the relation

ν = log 2
log Λ . (5.15)

A straightforward calculation yields ν at order ε, for n = 0

ν =
{

1
2σ−1 σ ≤ 2/3
3 + 36ε+O(ε2) σ > 2/3. (5.16)

A detailed analysis of the computation of Appendix E reveals that in this O(w3
k)-

calculation resulting in the O(ε)-estimate of ν, one considers all the one-particle
irreducible (1PI) [173, 158, 159] one-loop Feynman diagrams generated by the Q3-
vertex in Eq. (5.8). These are diagrams I1,I7 in Fig. 5.1. Similarly, in the
computation at order w5

k, resulting in the O(ε2)-estimate of ν, one considers two-loop
1PI Feynman diagrams I2, · · · ,I6 and I8, · · · ,I10 in Fig. 5.1, and so on.

As can be seen by Eq. (5.16), the coefficient of ε in Eq. (5.16) is quite large, an
it is plausible that the full ε-series of ν does not converge. According to the above
discussion, the convergence or resummability of the series would give some deep
insight into how strongly the mean-field physical picture should be modified in the
non-mean-field region σ > 2/3. In particular, a non-resummable series would suggest
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I1 I2

I4

I3

I5 I6

I7 I8 I9

I10

Figure 5.1. One and two-loop 1PI Feynman diagrams deriving from the Tr[Q3]-interaction
term, which contribute to the computation of the critical exponent ν in the method à la
Wilson presented in Section 5.1, and in the field-theory method presented in Section
5.2. In the method à la Wilson, diagrams I1, · · · ,I6 with two external lines have
to be considered without crosses on the internal lines, and represent the diagrams
contributing to the Tr[Q2]-term in Pk[Q]. In the same method, it can be shown that
diagrams I7, · · · ,I10 with three external lines contribute to the Q3, Q4, Q5-terms in
Pk[Q]. In the field-theory method, diagrams I1, · · · ,I6 and I7, · · · ,I10 contribute to
the 1PI two-point and three-point correlation functions respectively, and crosses stand
for Tr[Q2]-insertions [173]. This graphical identification of the same diagrams in the two
methods is an important test of their mutual consistency.
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that the non-mean-field physics cannot be described in terms of a perturbation of
the mean-field one, and would have a strong impact on the general problem of spin
glasses in finite dimensions. It is thus interesting to investigate the properties of the
ν-series by directly computing higher orders in ε, and checking the convergence or
the resummability of the series.

The computation of the ε-expansion at high orders can be performed with a
computer program. This is a particular feature of the HEA, because thanks to the
hierarchical structure of the system, the RG equations (5.5) have a simple form
compared to the RG equations of the PLSG [99] or of the EA model [72]. Indeed, the
latter are nothing but the Callan-Symanzik equations [28, 147, 173] for a Q3-field
theory, and their solution in perturbation theory requires an explicit enumeration
of all the Feynman diagrams deriving from the Q3-vertices, and the computation
of their IR-divergent part. This enumeration is extremely hard to implement in a
computer program, and has never been automated even in the simplest case of the
Ising model [70]. On the contrary, we believe that a symbolic manipulation program
could handle Eqs. (5.5) and automate the computation to higher orders in wk, with
no need to evaluate the IR-divergent part of Feynman integrals, which is not needed
in the present approach à la Wilson.
In order to perform this automation, we have evaluated by hand the first few terms
of the series, which has been computed to O(ε2) with the method à la Wilson, and
with a quite independent field-theory method exposed in Section 5.2. Both methods
give the same two-loop result for ν, which will serve as a severe test for a future
automation of the ε-expansion to high orders. This automation is very difficult from
a purely technical viewpoint, and is beyond the scope of this thesis.

Here we sketch the main steps of the two-loop computation of ν, more details
are given in [35]. We showed that if we plug the ansatz (5.8) into the right-hand
side of Eq. (5.5) and systematically neglect terms of order higher than w3

k, we get a
Pk+1[Q] which is still of the form (5.8), i. e. the RG equations are closed. This is
not true if we keep also terms of order higher than w3

k. Indeed, it is easy to show
that in this case terms of order Q4 arise in the right-hand side of Eq. (5.5), and
these terms are not present in the original ansatz. This fact implies that to O(w4

k),
Pk[Q] must contain also Q4-terms, and that these terms must be proportional to
w4
k. By plugging the fourth-degree polynomial Pk[Q] in Eq. (5.5) and expanding

the right-hand side up to O(w5
k), Q5-terms are generated. It follows that at O(w5

k),
Pk[Q] must contain also Q5-terms, and that these terms must be proportional to w5

k.
If this perturbative framework is consistent, by iterating such a procedure to higher
orders we reconstruct the exact function Pk[Q]. In particular, at the j-th step of
this procedure we generate nj monomials of order Qj , and call these monomials
{I(j)
l [Q]}l=1,...,nj . Hence, if this procedure is iterated until step number j = p, Pk[Q]

can be written in the compact form

Pk[Q] = exp

−
c(2)

1, kI
(2)
1 [Q] +

p∑
j=3

1
j

nj∑
l=1

c
(j)
l, kI

(j)
l [Q]

 , (5.17)
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where
I(2)[Q] ≡ Tr[Q2], I(3)[Q] ≡ Tr[Q3],

n3 ≡ 1, c(2)
1, k ≡ rk, c

(3)
1, k ≡ wk.

In the present work such a procedure has been pushed up to order w5
k, and Pk[Q]

has been computed as a fifth-degree polynomial in Q. In particular, one generates
n4 = 4 invariants I(4)[Q] of fourth degree and n5 = 4 invariants I(5)[Q] of fifth degree
in Q. The explicit expression for all the monomials I(j)

l [Q] at this order is given in
Table E.1 of Appendix E. The set of two RG equations (5.9) for the two-dimensional
vector (rk, wk) = (c(2)

1, k, c
(3)
1, k) obtained in the one-loop calculation here becomes a

set of ten equations for the vector c(2)
1, k, c

(3)
1, k, c

(4)
1, k, · · · , c

(4)
4, k, c

(5)
1, k, · · · , c

(5)
4, k, Eqs. (E.1)-

(E.10). By linearizing these equations at the critical fixed point one can compute
the 10 × 10-matrix M , and extract Λ. By Eq. (5.15), one can then compute the
exponent ν at two loops for ε > 0 and n = 0

ν = 3 + 36ε+
[
432− 27

(
50 + 55 · 21/3 + 53 · 22/3) log 2

]
ε2 +O(ε3). (5.18)

The coefficient of ε2 in Eq. (5.18) is about −5.1 × 103: the first two ordersThe replica
ε-expansion for

the critical
exponents of the

HEA is
presumably badly

behaved, and
non-predictive.

of the ε-expansion show that this is probably badly-behaved and out of control.
In particular, it is impossible to make any prediction on ν with the first two or-
ders of the series. Differently, the ε-expansion for the critical exponents of the
Ising model (consider for instance the exponent γ in [173]) is nonconvergent, but
it settles to a reasonable value as the order is increased from zero up to at least
three, and then it deviates from such a value when higher orders are considered
(see [157, 41, 40, 43, 42, 94, 68, 97, 98] for five-loop computations of the exponents).
Though, in that case the expansion can be resummed and made finite, giving a
result for the exponents which is in excellent agreement with experiments [1] and
MC simulations [140, 5].

As anticipated above, it is interesting to reproduce the two-loop result (5.18)
with an independent method. Indeed, in the effort to build up a fully automated
ε-expansion it is important to check that the prediction (5.18) is not only correct, but
also well-defined, i. e. it does not depend on the RG scheme used in the calculation.
For instance, in this approach à la Wilson the IR limit of the theory is taken by
requiring invariance under the transformation k → k + 1, which doubles the system
volume at each step. On the contrary, in Section 5.2 we perform the IR limit by
considering a real parameter λ physically representing the typical energy scale of the
system, and by sending it smoothly to zero. As we will show in the next Section,
these two independent ways of taking the IR limit yield the same two-loop result for
ν.

5.2 The RG method in the field-theory approach
The replica formulation for the HEA allows for a quite general treatment of the IR
behavior of the system, based on the path-integral formulation. This formulation
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can be developed along the lines of the path-integral formulation of the Ising model
[173, 174, 138, 159]. In the latter the partition and correlation functions are repre-
sented in terms of a path integral over a field φ, weighted with a φ4-action. Setting
ε ≡ 4− d (for the Ising model we use a different font for ε, to avoid confusion with
the ε of the HEA defined in Eq. (5.10)), one finds that in the physically relevant
case ε > 0 this φ4-field theory presents IR divergences occurring when the temper-
ature T approaches its critical value. These divergences are removed by means of
the observation that one can construct an auxiliary field theory, the renormalized
one, which makes the same physical predictions as the original one and has no IR
divergences. Indeed, it has been shown that these divergences can be removed at any
order in perturbation theory [29], and reabsorbed in the renormalization constants.
Once the renormalized theory has been built up, one can extract the critical ex-
ponents in perturbation theory from the ε-expansion of the renormalization constants.

Here we show how the result (5.18) for ν can be reproduced along these lines,
more details can be found in [35], while an extensive treatment of the renormalization
group theory used here is given in [173].

First, this computation is better performed by taking a definition of the HEA
which is slightly different from that of Eqs. (2.10), (4.10), and that has the same
critical exponent ν. First, let us relabel the spins S1, · · · , S2k as S0, · · · , S2k−1. We
redefine the interaction term in Eq. (4.10) as

εk+1[S0, . . . , S2k+1−1]→ −
(
C2

2

)k+1 2k−1∑
i=0

2k+1−1∑
j=2k

J12,ijSiSj . (5.19)

The redefinition (5.19) has the following physical meaning. In the original definition
(4.10), one couples two systems, say system 1 and system 2, with 2k spins each, and
obtains a 2k+1-spin system. The interaction energy between 1 and 2 is given by
couplings between spins belonging to 1 (given by the terms in the sum in Eq. (4.10)
with 1 ≤ i, j ≤ 2k), couplings between spins belonging to 2 (given by the terms in
the sum in Eq. (4.10) with 2k + 1 ≤ i, j ≤ 2k+1), and couplings between 1 and 2
(given by the terms in the sum in Eq. (4.10) with 1 ≤ i ≤ 2k, 2k + 1 ≤ j ≤ 2k+1).
In the redefinition (5.19), only the latter couplings are kept, and neither couplings
within system 1 nor 2 appear in the definition.

The equivalence between the two definitions can be shown as follows. If one
considers two spins Si, Sj and their interaction energy, it is easy to show [65] that in
the model defined by Eq. (5.19) the variance of such an interaction energy scales with
the ultrametric distance between Si and Sj in the same way as in the model defined
by Eq. (4.10), and that the two variances differ only in a constant multiplicative
factor. It follows that the long-wavelength features of the two models are the same.
According to general universality arguments, both of the models must have the same
critical exponents, because these depend only on the long-wavelength features of the
system, like the way interactions between spins decay at large distances [163, 161].
Notwithstanding this fact, non-universal quantities are generally different in the two
models. For instance, it is well known that if one multiplies the interaction strength
between spins by a constant factor, one changes the microscopic energy scale of the
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system. According to dimensional analysis [173], the critical temperature must be
proportional to this energy scale, and is thus multiplied by the same factor. Hence,
the critical temperature of the model defined by Eq. (4.10) is different from that
of the model defined by Eq. (5.19). This can be verified by considering how the
recursion relation (5.5) is modified when one applies the redefinition (5.19). Indeed,
if one starts from Eq. (5.19) and goes through the steps of the derivation of Eq. (5.5),
one finds a recursion equation that differs from Eq. (5.5) by a factor multiplying β.
The reason why the definition (5.19) is more suitable for this field-theory approach
will be clarified below.

The path-integral formulation of the HEA can now be introduced by observing
that one can write the replicated partition function (5.1) in terms of a functional
integral over a local overlap field Qi, ab ≡ Sai Sbi , 0 ≤ i ≤ 2k − 1

Eε[Z[T, {ε}]n] =
∫

DQ e−S[Q], (5.20)

where
∫

DQ ≡
∫ ∏2k−1

i=0
∏n
a<b=1 dQi, ab stands for the functional integral over the

field Qi, ab. The action S[Q] can be worked out by supposing that there exists a
critical temperature Tc such that the characteristic length of the system diverges
as T approaches Tc. We stress that this hypothesis has been made also in the RG
approach à la Wilson, where we assumed the existence of a Tc such that the RG
equations (5.9) have a nontrivial fixed point, i. e. a fixed point such that the system
has no finite characteristic length.

By taking T ≈ Tc, one can select the IR-dominant terms in S[Q], and obtain

S[Q] = 1
2

2k−1∑
i,j=0

∆′i,jTr
[
QiQj

]
+ g

3!

2k−1∑
i=0

Tr[Q3
i ]. (5.21)

In Eq. (5.21) the propagator ∆′i,j depends on i, j through the difference I(i)− I(j),
where for any 0 ≤ i ≤ 2k − 1 the function I(i) is defined in terms of the expression
in base 2 of i as

i =
k−1∑
j=0

aj2j , I(i) ≡
k−1∑
j=0

ak−1−j2j . (5.22)

According to the above definition of I(i), the quadratic term of Eq. (5.21) is
not invariant under spatial translations i → i + l. Accordingly [158, 173], the
Fourier transform of the propagator ∆′i,j does not depend only on the momentum p
associated with the variable i− j, but it generally depend on both of the momenta
p, q associated with the variables i, j respectively. With this complicated form of
the propagator, any explicit computation of the loop integrals, which is necessary
for the computation of the critical exponents, is extremely difficult to perform. This
problem can be overcome with a simple relabeling of the sites of the lattice. Indeed,
if one sets

I(i)→ i, ∀i = 0, . . . , 2k − 1,
it is easy to show that Eq. (5.20) still holds, with an action S[Q] which now reads

S[Q]→ 1
2

2k−1∑
i,j=0

∆i,jTr
[
QiQj

]
+ g

3!

2k−1∑
i=0

Tr[Q3
i ], (5.23)
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where ∆i,j ≡ ∆′I−1(i),I−1(j). Since ∆′i,j depends on i, j through the difference
I(i)− I(j), ∆i,j depends on i, j through the difference i− j. It follows that S[Q]
is now translationally invariant, and the ordinary Fourier transform techniques
[148, 113] can be used. In particular, the Fourier transform ∆(p) of ∆i,j depends
only on the dyadic norm |p|2 (see [139] for a precise definition of the dyadic norm)
of the momentum p relative to the variable i− j, and can be written as

∆(p) = |p|2σ−1
2 +m, (5.24)

where the mass m is proportional to T − Tc, and has dimensions [m] = 2σ − 1.

The action defined by Eq. (5.23) yields a Tr[Q3]-field theory, which is known to
describe the spin-glass transition in both short-range [39] and long-range [38, 99]
spin glasses. Notwithstanding this, an interesting and novel feature of the propagator
(5.24) is that it depends on the momentum p through its dyadic norm |p|2. This fact
is rather interesting, because it implies a direct analogy with the original derivation
of the RG equations for the Ising model in finite dimensions, in particular with
the Polyakov derivation [163, 142]. Indeed, the basic approximation scheme in the
Polyakov derivation consists in introducing an ultrametric structure in momentum
space, such that the momentum space is divided into shells and the sum of two
momenta in a given shell cannot give a momentum of a higher momentum scale
cell. This feature is analogous to a general property of the dyadic norm, such
that if p1, p2 are two integers in 0, . . . , 2k − 1, their dyadic norms satisfy [139]
|p1 + p2|2 ≤ max (|p1|2, |p2|2). This fact implies that if p1, p2 are inside a shell of
radius max (|p1|2, |p2|2), the momentum p1 +p2 is still in that shell. Thus, the dyadic
structure of Eq. (5.24) emerges naturally in more general contexts where there
is no hierarchical structure, such as finite-dimensional systems with short-range
interactions.

A perturbative expansion in g of the two and three-point 1PI correlation func-
tions deriving from the action (5.23) reveals that if ε < 0 the field theory (5.23) is
well-defined and finite, while if ε > 0 IR divergences occur when m→ 0. According
to a simple dimensional argument, if ε < 0 the critical exponent ν is given by the
first line of Eq. (5.16). On the contrary, if ε > 0 a more elaborated treatment is
needed to deal with IR divergences and compute ν.

For ε > 0, IR divergences can be eliminated by defining a renormalized field
theory having a renormalized mass and coupling constant mr, gr, which are defined
in terms of the bare mass and coupling constant

m = mr + δm, (5.25)

g = m
3ε

2σ−1
r grZg, (5.26)

where δm is the mass shift due to renormalization, and Zg is the renormalization
constant of the coupling g. According to general results on models with long-range
interactions, the field Qi, ab is not renormalized, i. e. its renormalization constant
ZQ is equal to one. On the contrary, one has to introduce a renormalization constant
ZQ2 enforcing the renormalization of the Tr[Q2

i ]-field. According to the minimal
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subtraction scheme, the renormalization constants δm,Zg, ZQ2 are chosen in such a
way that they subtract the divergences occurring in the two and three-point 1PI
correlation functions of the renormalized theory. In the IR limit mr → 0, these
divergences appear in the shape of poles in ε. Since here δm,Zg, ZQ2 are expanded in
powers of the renormalized coupling gr, and since these IR divergences are subtracted
order by order in gr, the constants δm,Zg, ZQ2 are given by a series in gr whose
coefficients contain poles in ε. From a detailed analysis it turns out that these series
contain only even powers of gr, that only Zg and ZQ2 are needed to compute ν, and
that a-loops Feynman diagrams contribute to order g2a

r in Zg, ZQ2 . In Appendix F
we sketch the main steps of the one-loop computation of Zg, ZQ2 , which are given in
Eqs. (F.7), (F.8).

By following the very same techniques as those exposed in Appendix F, we
computed Zg, ZQ2 at two loops. For n = 0 one has

Zg = 1 + g2
r

48ε log 2 + g4
r

[
1

1536ε2(log 2)2 + 5 + 2 · 22/3

512ε log 2

]
+O(g6

r ), (5.27)

ZQ2 = 1 + g2
r

24ε log 2 + g4
r

[
1

576ε2(log 2)2 − 5(1 + 11 · 21/3 + 7 · 22/3)
2304ε log 2

]
+

+O(g6
r ). (5.28)

One can also show that δm = O(g4
r ).

Eqs. (5.27), (5.28) explicitly construct the renormalized theory, which is free of
IR divergences. In this theory, we can safely perform the IR limit, and in particular
compute physical quantities in this limit. In order to do this, we introduce a function
g(λ), physically representing the effective coupling constant of the model at the
energy scale λ. g(λ) can be computed from the Callan-Symanzik equations [28, 147],
as the solution of the differential equation

β(g(λ)) = λ
dg(λ)
dλ

, (5.29)

where the β-function is defined as

β(gr) ≡ µ
∂gr
∂µ

∣∣∣∣
g,m

, (5.30)

and µ ≡ m
1

2σ−1
r . Eq. (5.29) states that β(gr) governs the flow of the effective coupling

g(λ) under changes in the energy scale λ of the system. β(gr) can be explicitly
computed in terms of the renormalization constant Zg, Eq. (5.27)

β(gr) = −3εgr + g3
r

8 log 2 + 35 + 2 · 22/3

128 log 2 g5
r +O(g7

r ). (5.31)

The effective coupling g(λ) in the IR limit is obtained by letting the energy scale
λ go to zero, and is given by g∗r ≡ g(λ = 0). By definition, g∗r is a fixed point of the
flow equation (5.29), and is obtained perturbatively in the shape of a series in ε, as
the solution of the fixed-point equation β(g∗r ) = 0. Moreover, one can show from
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Eq. (5.31) that the IR fixed point g∗r = 0 is stable only for ε < 0, while for ε > 0
a nontrivial fixed point g∗r 6= 0 of order

√
ε arises. The same fixed-point structure

arises in Wilson’s method, Eq. (5.12). Notwithstanding this, in Wilson’s method the
IR limit is reached by doing a set of discrete steps k → k + 1 each of which doubles
the volume of the system, while in this approach this limit is reached by letting the
energy scale λ go to zero smoothly.

Once the effective coupling in the IR limit is known, the scaling relations yield
the critical exponent ν in terms of g∗r and of the renormalization constant ZQ2

ν = 1
η2(g∗r ) + 2σ − 1 , (5.32)

where
η2(gr) ≡ µ

∂ logZQ2

∂µ

∣∣∣∣
g,m

. (5.33)

By plugging the two-loop result (5.28) for ZQ2 into Eqs. (5.33) and evaluating η(gr)
for gr = g∗r , we can extract ν for n = 0 from Eq. (5.32). The result is exactly the
same as that of with Wilson’s method, Eq. (5.18).

The fact that the method à la Wilson and the field-theory method yield the
same two-loop prediction for ν shows that the IR limit of the HEA is well-defined,
because it does not depend on the RG framework used to reach it: even though the
two methods have a few underlying common features, they yield the same result
for the universal quantities of the system, which are encoded into the coefficients
of the ε-expansion. We want to stress that these universal quantities stay the
same when changing the RG approach and redefining the microscopical details of
the model, Eq. (5.19). Accordingly, this picture suggests that the ordinary RG
ideas for the Ising model work consistently also in this disordered case: the HEA
has a characteristic length diverging at the critical point, and the universal physi-
cal features in the critical region are governed by long-wavelength degrees of freedom.

Notwithstanding the positiveness of this result, the ε-expansion is still non-
predictive, because the first few terms of the series (5.18) have a nonconvergent
behavior. On the one hand, one could test empirically the reliability of the present
perturbative approach, and so the convergence properties of the perturbative series,
by solving Eq. (5.5) numerically for integer n > 0 and by comparing the result to
the first three orders of the perturbative expansion. On the other hand, it would
be much more difficult to test whether the series could be made resummable by
some suitable techniques, by explicitly computing high orders of the expansion. To
this end, our two-loop result constitutes a starting point and a severe test of this
high-order computation. An eventual evidence of the resummability of the series
would suggest that the non-mean-field behavior of this model can be considered as a
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perturbation of the mean-field one. On the contrary, a failure of the resummation
techniques would imply that the non-mean-field behavior is radically different from
the mean-field one.

Another weak spot of this replica RG approach is that the method does not
identify the correct spin-decimation rule in a non-mean-field strongly frustrated case,
which, as discussed in Section 1, is one of the fundamental questions and difficulties
in the construction of a RG theory for finite-dimensional spin glasses.

Both of these weak spots of the replica RG approach made us seek for an
alternative methodology which, based on a transparent spin-decimation rule, could
overcome over the difficulties of the replica method, and make quantitative predictions
for the critical exponents. This methodology will be illustrated in Chapter 6, and
does not rely on the replica method, but on a real-space RG criterion.



Chapter 6

The RG approach in real space

As discussed in Section 1, a fundamental ingredient for constructing of a RG theory
is the introduction of a decimation rule. Through decimation, one practically
implements a coarse-graining process that changes the length scale with which one
looks at the physics of the system. For ferromagnetic systems, a suitable spin
decimation rule has been originally introduced by Kadanoff [84], and relies on the
construction of block spins. As discussed in Section 1, Kadanoff’s decimation rule
does not work in a disordered system like the HEA, because the average over disorder
of the magnetization inside a block of spins is trivially zero. In this Chapter we
propose a real-space decimation rule for the HEA which overcomes this problem,
and which is not directly based on the block-spin construction. This method will be
first applied to DHM in Section 6.1, and then generalized to the HEA in Section 6.2.

6.1 The RG approach in real space for Dyson’s Hierar-
chical Model

Let us consider a DHM, defined by Eqs. (2.1), (2.2). The real-space RG method
is built up by initially iterating exactly the recursion equation (2.1) for k = k0
steps, assuming for simplicity that HF

0 [S] = 0. In this way, a DHM with 2k0 spins
S1, · · · , S2k0 and Hamiltonian HF

k0
[S1, · · · , S2k0 ] is obtained exactly. Practically

speaking, this means that in the following we compute exactly the physical observ-
ables of this 2k0-spin DHM. For instance, if k0 = 2 we have a 4-spin DHM whose
Hamiltonian is

HF
2 [S1, · · · , S4] = −

{
CFJ

[(
S1 + S2

2

)2
+
(
S3 + S4

2

)2
]

+

+C2
FJ

(
S1 + S2 + S3 + S4

4

)2
}
. (6.1)

We recall for future purpose that in the Hamiltonian (6.1), and similarly for arbitrary
values of k0, when one goes one hierarchical level up, the couplings are multiplied
by a factor CF . In particular, the first addend in braces in Eq. (6.1) physically
represents the couplings at the first hierarchical level, while the second addend
represents the couplings at the second hierarchical level.

65
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≈

S1S1 S2 S3 S4 S ′
1 S ′

2

Figure 6.1. Approximation of the real-space approach for k0 = 2. In the implementation
of the real-space approach to DHM exposed in Section 6.1, a 22-spin DHM with spins
S1, · · · , S4 and Hamiltonian (6.1) is approximated by a 2-spin DHM with spins S′1, S′2
and Hamiltonian (6.2).
In the implementation of the real-space approach to the HEA exposed in Section 6.2, a
22-spin HEA with spins S1, · · · , S4 and Hamiltonian (6.11) is approximated by a 2-spin
HEA with spins S′1, S′2 and Hamiltonian (6.12).

We now want to build up a 2k0+1-spin DHM starting from such a 2k0-spin DHM.
As shown in Section 2.1, DHM is a special case where this procedure can be iterated
k times in 2k operations, by using the hierarchical structure of the system resulting
in the recurrence equation (2.5). On the contrary, if the recurrence equations (2.5)
did not hold, in order to build up a 2k-spin DHM one should compute exactly the
partition function, which involves 22k operations. To our knowledge, for the HEA
model there is no known recursion equation analogous to (2.5). Indeed, the only
recursion equation that one can derive for the HEA is Eq. (5.3), which relies on
the replica approach. To derive a recurrence equation for a function or functional
of a suitably defined order parameter without relying on the replica approach is
very difficult. The origin of this difficulty is nothing but the problem of how to
identify of a suitable order parameter and a function of it, which should replace the
magnetization m and its probability pk(m) in the recursion equation (2.5) of DHM.
Since we have not been able to derive such a recurrence equation without relying
on the replica approach, the construction of a 2k-spin HEA model still requires a
computational effort of 22k . It is hence clear that an approximation scheme is needed
to reach the thermodynamic limit k →∞ for the HEA. We now illustrate this ap-
proximation scheme for DHM first, and then generalized it to the HEA in Section 6.2.

Once a 2k0-spin DHM has been built exactly, we consider 2k0−1-spin DHM,
where J is replaced by another coupling J ′. More precisely, such a 2k0−1-spin
DHM is defined by iterating k0 − 1 times Eq. (2.1) with J → J ′, and for the
sake of clarity its spins will be denoted by S′1, · · · , S′2k0−1 , and its Hamiltonian by
H ′Fk0−1[S′1, · · · , S′2k0−1 ]. For k0 = 2 the Hamiltonian of this DHM reads

H ′
F
1 [S′1, S′2] = −CFJ ′

(
S′1 + S′2

2

)2
. (6.2)

Given J , the coupling J ′ is chosen in such a way that the 2k0−1-spin DHM represents
as well as possible the 2k0-spin DHM, as qualitatively depicted in Fig. 6.1. The
precise meaning of this representation will be illustrated shortly.
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According to the iterative construction of Eq. (2.1), a new DHM is then
constructed by taking two copies of the 2k0−1-spin DHM. Say that the first copy has
spins S′1, · · · , S′2k0−1 and Hamiltonian H ′Fk0−1[S′1, · · · , S′2k0−1 ], while the second copy
has spins S′2k0−1+1, · · · , S

′
2k0 and Hamiltonian H ′Fk0−1[S′2k0−1+1, · · · , S

′
2k0 ]. We make

these two copies interact and form a 2k0-spin DHM with Hamiltonian

H ′
F
k0−1[S′1, · · · , S′2k0−1 ] +H ′

F
k0−1[S′2k0−1+1, · · · , S

′
2k0 ]− J ′Ck0

F

 1
2k0

2k0∑
i=1

S′i

2

. (6.3)

Since each of the DHMs that we make interact represents a 2k0-spin DHM,
the model defined by Eq. (6.3) represents a 2k0+1-spin DHM. Once again, this
DHM is then approximated by a 2k0−1-spin DHM with coupling, say, J ′′, and two
copies of such a 2k0−1-spin DHM are then taken and coupled again, to obtain
a system representing a 2k0+2-spin DHM. Such a recursive construction is iter-
ated k times, and a system representing a 2k0+k-spin DHM is obtained. Setting
J0 ≡ J, J1 ≡ J ′, J2 ≡ J ′′, · · · , this procedure establishes a relation between Jk and
Jk+1. Since at each step k of this procedure we double the system size, this flow
physically represents the RG flow of the coupling Jk under reparametrization of the
unit length 2k → 2k+1.

Let us now describe how a 2k0-spin system has been approximated by a 2k0−1-
spin system. Consider a physical observable OFk0

(βJ) of the 2k0-spin DHM, whose
spins are S1, · · · , S2k0 , and whose Hamiltonian is HF

k0
[S1, · · · , S2k0 ]. Consider also

an observable OFk0−1(βJ ′) of the 2k0−1-spin DHM, whose spins are S′1, · · · , S′2k0−1 ,
and whose Hamiltonian is H ′Fk0−1[S′1, · · · , S′2k0−1 ]. The normalized magnetizations
on the left and right half of the 2k0-spin system are

mL ≡
1

2k0−1
∑2k0−1
i=1 Si√

E~S
[(

1
2k0−1

∑2k0−1
i=1 Si

)2
] ,

mR ≡
1

2k0−1
∑2k0
i=2k0−1+1 Si√

E~S
[(

1
2k0−1

∑2k0
i=2k0−1+1 Si

)2
] (6.4)

respectively, where E~S stands for the thermal average at fixed temperature T ,
performed with the Boltzmann weight exp(−βHF

k0
). Similarly, the normalized

magnetizations on the left and right half of the 2k0−1-spin system are

m′L ≡
1

2k0−2
∑2k0−2
i=1 S′i√

E ~S′

[(
1

2k0−2
∑2k0−2
i=1 S′i

)2
] ,

m′R ≡
1

2k0−2
∑2k0−1

i=2k0−2+1 S
′
i√

E ~S′

[(
1

2k0−2
∑2k0−1

i=2k0−2+1 S
′
i

)2
] (6.5)
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respectively, where E ~S′
stands for the thermal average with the Boltzmann weight

exp(−βH ′Fk0−1).

According to Kadanoff’s block-spin rule, in order that the 2k0−1-spin DHM might
be a good approximation of the 2k0-spin DHM, one should map the block of spins
in the left half of the 2k0-spin DHM into the block of spins in the left half of the
2k0−1-spin DHM, and so for the right half. Accordingly, one should find a method
which quantitatively implements the qualitative equalities

mL = m′L, mR = m′R. (6.6)

To this end, we choose the following observables

OFk0(βJ) ≡ E~S [mLmR] ,
OFk0−1(βJ ′) ≡ E~S′

[
m′Lm

′
R

]
. (6.7)

According to Eqs. (6.6), Kadanoff’s block-spin rule described in Eq. (6.6) can be
practically implemented by imposing the constraint

OFk0(βJ) = OFk0−1(βJ ′). (6.8)

For any fixed J , Eq. (6.8) is the equation determining J ′ as a function of J , as
the value of the coupling of the 2k0−1-spin DHM such that this is the best-possible
approximation of the 2k0-spin DHM. According to the above discussion, Eq. (6.8) is
the RG equation relating the coupling J at the scale 2k to the coupling J ′ at the
scale 2k+1.

The RG Eq. (6.8) is not exact, because it relies on the fact that a 2k0-spin
DHM is approximated by a 2k0−1-spin DHM. Even though, such an approximation
becomes asymptotically exact for large k0, as we will explicitly show in the following.
Another important issue of this RG scheme is that there is a considerable amount of
freedom in the choice of the observables OFk0

, OFk0−1, and that the RG equations (6.8)
depend on this choice. This is the reason why in what follows the whole method will
be systematically tested a posteriori, by comparing its predictions to the predictions
obtained heretofore with other methods, if these exist. As we will show shortly, the
encouraging outcome of this comparison makes us guess that if k0 is large enough,
the results of this RG approach do not depend on the choice of the observables, if
this is reasonable.

Quite large values of k0 can be achieved by using the hierarchical structure of
the system. Indeed, thanks to this structure the thermal averages appearing in Eqs.
(6.7), which would involve 22k0 terms in a brute-force computation, can be computed
in 2k0 operations, as shown in Appendix G.

Back to the predictions of Eq. (6.8), one can show that for any k0 they reproduce
the interval (2.3). Indeed, for σF > 1 Eq. (6.8) gives J ′ < J ∀J, β, in such a way that
the coupling J goes to 0 when the RG transformation is iterated many times, and no
phase transition occurs. On the contrary, for σF < 1/2 one has J ′ > J ∀J, β, in such
a way that the model is thermodynamically unstable. The fact that the interval
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Figure 6.2. βJ ′ as a function of βJ for CF = 1.2, k0 = 8, and point (Kc,Kc) where the
two curves intersect. According to the discussion in the text, β Q βRScF implies that
J ′ Q J .

(2.3) is reproduced is a first test of the correctness of the real-space approach. For
1/2 < σF < 1 there is a finite inverse temperature βRScF such that for β < βRScF one has
J ′ < J , while for β > βRScF one has J ′ > J , where the label RS stands for real space.
For β = βRScF , J ′ = J , i. e. the system is invariant under reparametrization of the
length scale 2k → 2k+1. Hence βRScF is the critical temperature of the model [161, 163].

The RG transformation (6.8) is illustrated in Fig 6.2, where βJ ′ is depicted as a
function of βJ for a given CF and k0-value. Interesting properties about universality
emerge from this plot. Indeed, the curve βJ ′ as a function of βJ intersects the
straight line βJ for a unique value of the coupling βJ ≡ Kc. Now let us iterate the
RG transformation several times, starting with a given J = J0, then determining
J ′ = J1, J

′′ = J2, and so on. At the first step of the iteration, J1 = J0 if and only
if βJ0 = Kc. It follows that βRScF = Kc/J0. Similarly, at the next steps Kc/J0 is
the only value of the inverse temperature such that Jk = J0 ∀k. Since Kc is defined
as the solution of the equations OFk0

(Kc) = OFk0−1(Kc), it does not depend on the
initial condition J0, and thus it is universal. As an analogy, Kc corresponds to the
dimensionless nearest-neighbor critical coupling of the Ising model, which has been
extensively measured in three dimensions by means of Monte Carlo Renormalization
Group (MCRG) calculations [5, 140]. On the other hand, dimensional quantities
like βRScF = Kc/J0 are not universal. Indeed, βRScF = Kc/J0 depends on the coupling
J0 at the initial step of the iteration, i. e. at microscopic length scales. This is in
agreement with the very general RG picture of ferromagnetic systems like the Ising
model [163], where the critical temperature is not universal because it depends on
the microscopic properties of the lattice.

An important universal quantity is the critical exponent νF , defined in terms
of the correlation length by Eq. (2.8). According to the general RG theory in the
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neighborhood of the critical fixed point Kc, νF is given by

νF = log 2
log ΛF RS

, (6.9)

where ΛF RS is here defined as

ΛF RS ≡
dβJ ′

dβJ

∣∣∣∣
βJ=Kc

. (6.10)

Since in this case the RG transformation involves only one variable J , ΛF RS is
simply the largest eigenvalue of the 1× 1 matrix linearizing the transformation in
the neighborhood of the critical fixed point. A more complex case where the RG
transformation involves an infinite number of variables will be discussed in Section
6.2. In Fig. 6.3 we depict ΛF RS from Eq. (6.10) together with the values of ΛF

(Eq. (A.16)) presented in [46] resulting from the field-theory approach of Section
2.1 and Appendix A, as a function of 1/2 < σF < 1. The field-theory method
makes the exact prediction (A.17) for ΛF in the region 1/2 < σF < 3/4 where the
mean-field approximation is exact, while it estimates ΛF in the non-mean-field region
3/4 < σF < 1 by means of a resummed εF = σF − 3/4-expansion. The first order of
this expansion is given by Eq. (A.19).

As k0 is increased, ΛF RS computed with the real-space method approaches theThe real-space RG
approach makes a
prediction for the
critical exponents

of Dyson’s
Hierarchical

Model which is in
good agreement

with that obtained
with other
methods.

field-theory value ΛF , confirming the validity of the real-space RG approach. Notice
that according to Eqs. (A.17) and (A.19), the derivative with respect to σF of ΛF is
discontinuous at σF = 3/4. On the contrary, ΛF RS is a smooth function of σF . This
discrepancy is presumably due to the fact that k0 is not large enough, and should
disappear for larger k0, because the real-space approach is exact for k0 →∞.

Since the real-space approach for DHM reproduces the interval (2.3) and, for
large k0, also the critical exponents obtained with other methods, it is natural to
generalize it to the HEA model. Accordingly, its predictions will be compared to
those obtained with the replica approach in the mean-field region 1/2 < σ ≤ 2/3
where the latter is predictive, yielding a precise consistency test of the two approaches.
On the contrary, in the non-mean-field region 2/3 < σ < 1 the replica approach
is not predictive, and thus a quantitative comparison of the values of the critical
exponents would be meaningless. Even though, an interesting question is whether
the real-space approach is predictive in this non-mean-field region. These points will
be addressed in the following Section.

6.2 The RG approach in real space for the Hierarchical
Edwards-Anderson model

It turns out that the definition of the HEA which is suitable to implement the
real-space approach is the one where the interaction energies are redefined by Eq.
(5.19). Accordingly, in what follows the HEA will be defined by Eqs. (2.10), (5.19),
and we set for simplicity H0[S] = 0.
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Figure 6.3. ΛF RS and ΛF as a function of σF for 1/2 < σF < 1. The black dashed line
represents the upper critical dimension σF = 3/4 discussed in Section 2.1 and Appendix
A. The points represent ΛF RS for 5 ≤ k0 ≤ 12. The orange dashed curve and the red
solid curve represent ΛF obtained with the field-theory method in the mean-field region
1/2 < σF ≤ 3/4 and in the non-mean-field region 3/4 < σF < 1 respectively. The orange
dashed curve represent the exact mean-field value of ΛF given by Eq. (A.17), and the red
continuous curve represents ΛF computed with the resummed εF = σF − 3/4-expansion
[46] (see Eq. (A.19) for the first order of the εF -expansion).

6.2.1 Simplest approximation of the real-space method

Let us now illustrate how to implement in the spin-glass case the real-space approach
presented in Section 6.1 for k0 = 2. The reader should follow our derivation in close
analogy with the one exposed in Section 6.1 for DHM. A HEA model with 22 spins
S1, · · · , S4 is built up exactly by means of the recursion equation (2.10). Setting
Jij ≡ C2/2Jij , the Hamiltonian of this model is

H2[S1, · · · , S4] = −
{

[J12S1S2 + J34S3S4] + C2

2 [J13S1S3 + J14S1S4 +

+J23S2S3 + J24S2S4]
}
. (6.11)

By definition, the couplings {Jij}ij are IID random variables, and the probability
distribution of each of them will be denoted by p(J ).

Thus, we consider a 2-spin HEA model, defined by iterating once Eq. (2.10).
For the sake of clarity its spins will be denoted by S′1, S′2, and its Hamiltonian reads

H ′1[S′1, S′2] = −J ′12S
′
1S
′
2. (6.12)

For each realization of the couplings {Jij}ij , we choose J ′12 as a function of
{Jij}ij in such a way that the 2-spin HEA model yields the best-possible approxi-
mation of the 22-spin HEA. This procedure is analogous to that exposed in Section
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6.1 for DHM, and is qualitatively depicted in Fig. 6.1. By choosing J ′12 in this way,
the distribution p(J ) induces a distribution of J ′12, that we will denote by p′(J ′12).
The technical details on how p′(J ) is computed from p(J ) will be given shortly.

According to the iterative construction of Eq. (2.10), a new HEA is then
constructed by taking two realizations of the 2-spin HEA. Each realization is given
by drawing the coupling J ′ according to its probability distribution p′(J ′). Say that
the first realization has spins S′1, S′2 and Hamiltonian H ′1[S′1, S′2] = −J ′12S

′
1S
′
2, while

the second realization has spins S′3, S′4 and Hamiltonian H ′1[S′3, S′4] = −J ′34S
′
3S
′
4.

We make these two copies interact and form a 22-spin HEA with Hamiltonian

H ′1[S′1, S′2] +H ′1[S′3, S′4]− C2

2 [J ′13S
′
1S
′
3 + J ′14S

′
1S
′
4 + J ′23S

′
2S
′
3 + J ′24S

′
2S
′
4], (6.13)

where J ′13,J ′14,J ′23,J ′24 have been drawn independently from the distribution p′(J ′).
Since each of the HEA models that we made interact represents a 22-spin HEA,
the model defined by Eq. (6.13) represents a 23-spin HEA. At the next step of the
iteration, this HEA model is again approximated by a 2-spin HEA with coupling,
say, J ′′12, and the probability distribution p′′(J ′′12) of J ′′12 is computed from p′(J ′).
Two realizations of such a 2-spin HEA are then taken and coupled again, to obtain
a system representing a 24-spin HEA. This step is repeated k-times, and a system
representing a 22+k-spin HEA is obtained.

Setting p0(J ) ≡ p(J ), p1(J ) ≡ p′(J ), p2(J ) ≡ p′′(J ), · · · , this procedure estab-
lishes a relation between pk(J ) and pk+1(J ). Since at each step k of this procedure
we double the system size, this physically represents the RG flow of the probabil-
ity distribution of the coupling pk(J ) under reparametrization of the unit length
2k → 2k+1.

A 22-spin HEA has been approximated by a 2-spin HEA as follows. Consider a
physical observable O2({βJij}ij) of the 22-spin HEA, depending on the 6 couplings
{Jij}ij and β through the dimensionless quantities {βJij}ij . Consider also an ob-
servable O1(βJ ′12) of the 2-spin HEA, depending on the coupling J ′12 and β through
the dimensionless quantity βJ ′12. We recall that in the real-space approach for DHM
with k0 = 2 we built up the observables (6.7) as products of the magnetizations
inside the left and right-half of the 22-spin DHM and of the 2-spin DHM. In a sense
that choice was natural, because we know that the magnetization is the correct
order parameter of DHM. When one tries to generalize that choice to the HEA,
one has to face the fact that the order parameter for non-mean-field spin glasses
is not known, and so the choice of the observables is more difficult and ambiguous.
Inspired by the fact that the order parameter in the mean-field case is the overlap
[133, 136, 137, 119, 130], here we will build up O2, O1 as thermal averages of products
of spin overlaps. We want to stress that to a certain extent this choice relies on
the underlying assumption that the overlap is still the good quantity describing the
physics of the system, and should be thus be verified a posteriori. In particular, there
is no guarantee that this choice is correct for values of σ lying in the non-mean-field
region 2/3 < σ < 1. A detailed analysis of the predictions of this real-space approach
for the critical exponents in this region will be exposed in the following.
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To build up O2 and O1, consider two real replicas ~S1, ~S2 of the spins of the
22-spin model, and two real replicas ~S′

1
, ~S′

2
of the spins of the 2-spin model. The

normalized overlap between ~S1 and ~S2 on the left and on the right leaf of the 22-spin
HEA are

QL =
S1

1S
2
1+S1

2S
2
2

2√
E~S1,~S2

[(
S1

1S
2
1+S1

2S
2
2

2

)2] ,

QR =
S1

3S
2
3+S1

4S
2
4

2√
E~S1,~S2

[(
S1

3S
2
3+S1

4S
2
4

2

)2] (6.14)

respectively, where E~S denotes the thermal average at fixed disorder {J }ij and
temperature, performed with the Hamiltonian (6.11). The normalized overlap
between ~S′

1
and ~S′

2
on the left and on the right leaf of the 2-spin HEA are

Q′L = S′11 S
′2
1 ,

Q′R = S′12 S
′2
2 (6.15)

respectively. Following Kadanoff’s decimation rule, we want to map the 22-spin
HEA into the 2-spin HEA by imposing that the spins S1, S2 correspond to the spin
S′1, and that the spins S3, S4 correspond to the spin S′2. This mapping results in a
correspondence between the overlaps in Eq. (6.14) and those in Eq. (6.15), which
can be qualitatively written as

QL = Q′L, QR = Q′R. (6.16)

Making the following choice for the observables

O2({βJij}) ≡ E~S1,~S2 [QLQR] , (6.17)
O1(βJ ′12) ≡ E~S′1,~S′2

[
Q′LQ

′
R

]
,

Kadanoff’s decimation rule encoded in Eq. (6.16) can be practically implemented by
enforcing the constraint

O2({βJij}) = O1(βJ ′12), (6.18)
where E ~S′

denotes the thermal average at fixed disorder J ′12 and temperature,
performed with the Hamiltonian (6.12). For any realization of the couplings {Jij}ij ,
Eq. (6.18) determines J ′12 as a function of {Jij}ij in such a way that the 2-spin
HEA yields the best-possible approximation of the 22-spin HEA. The mapping (6.18)
results into a mapping between the probability distribution p(J ) of each of the
couplings {Jij}ij and p′(J ′12). Indeed, Eq. (6.18) can be easily rewritten as

O2({βJij}) = tanh2(βJ ′12).

and thus the mapping between p(J ) and p′(J ′) is

p′(J ′) =
∫ [∏

i<j

p(Jij)dJij

]
1
2

[
δ

(
J ′ − 1

β
arctanh

(√
O2({βJij})

))
+

+δ
(
J ′ + 1

β
arctanh

(√
O2({βJij})

))]
. (6.19)
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Eq. (6.19) is the RG flow relating the distribution of the disorder p(J ) at length
scale 2k with the distribution of the disorder p′(J ′) at length scale 2k+1, and is the
generalization of Eq. (6.8) holding for DHM. We recall that the RG equation (6.8)
for DHM yields a flow for a number J , while Eq. (6.19) yields a flow for a function
p(J ), which can be seen as a set {p(J )}J of an infinite number of degrees of freedom,
each of which is the value of p(J ) at a point J . Accordingly, the solution of Eq.
(6.19) is slightly more complicated than that of Eq. (6.8), and it has been worked
out with two independent techniques. The first one transforms Eq. (6.19) into a
recursion equation relating the moments of p(J ) to the moments of p′(J ′), which is
built up perturbatively by means of a high-temperature expansion, and is presented
in Section 6.2.1.1. The second one is purely numerical, and solves Eq. (6.19) by
means of the population dynamics algorithm, as illustrated in Section 6.2.1.2. In
the following two Sections we thus illustrate these solution techniques for Eq. (6.19),
and analyze the resulting fixed-points structure and show how the critical exponents
can be calculated in the k0 = 2-approximation. Then, we illustrate how the very
same techniques can be implemented in better approximations of the real-space
approach, i. e. k0 > 2, and analyze the predictions of the real-space approach for
the critical exponents as a function of k0.

6.2.1.1 Solution of the real-space RG equations with the high-temperature
expansion

Since it is not easy to handle analytically the continuous set of degrees of freedom
{p(J )}J in Eq. (6.19), it is better to transform the latter into an equation for
the moments of p(J ), p′(J ′). Since there is ±J -symmetry, p(J ), p′(J ′) are even
functions of J ,J ′ respectively. Hence, setting

ma ≡
∫
dJ p(J )J a,

m′a ≡
∫
dJ ′p′(J ′)(J ′)a,

one has m2a+1 = m′2a+1 = 0, and Eq. (6.19) can be transformed into an equation
relating {m2a}a to {m′2a}a. Indeed, let us call the 6 couplings J12,J13, . . . ,J34
J1, · · · ,J6 respectively, and integrate both sides of Eq. (6.19) with respect to J ′

m′2a =
∫ [ 6∏

α=1
dJαp(Jα)

]
1
β2a

[
arctanh 2a

(√
O2({βJγ}γ)

)]
≡ F2a[{m2b}b]. (6.20)

The function F2a depends in a complicated way on the even moments {m2b}b, and
we have not been able to compute it explicitly. Still, this dependence can be sys-
tematically worked out by expanding in powers of β the square brackets in the
right-hand side of Eq. (6.20). If we truncate the expansion at a given order β2m, the
right-hand side of Eq. (6.20) becomes a linear combination of {m2b}b=1,...,m which
can be computed explicitly. Hence, if we take Eq. (6.20) for a = 1, . . . ,m, we obtain
a set of equations relating {m′2a}a=1,...,m to {m2b}b=1,...,m. This set of equations is
nothing but the flow p(J )→ p′(J ′) represented with the discrete set of degrees of
freedom {m2a}a=1,...,m → {m′2b}b=1,...,m.
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In Appendix H we show explicitly these equations for m = 2, Eq. (H.1), and
discuss their solution. In particular, we show that if we consider only the leading
terms in the β-expansion, the RG equations relating {m′2a}a=1,...,m to {m2b}b=1,...,m
reproduce the condition σ > 1/2 that has been previously derived in Eq. (4.12). On
the contrary, they do not reproduce the condition σ < 1. This is presumably due to
the fact that the present approach implements the lowest-order approximation k0 = 2
of the real-space method. Indeed, in Section 6.2.2 we will show that the numerical
implementation of the real-space method for k0 > 2 yields a better description of
the region where σ significantly deviates from 1/2, and the condition σ < 1 should
be recovered for k0 large enough.

It is easy to see that Eq. (H.1) has an attractive high-temperature fixed point
m2a = 0 ∀a, and an attractive low-temperature fixed point m2a =∞∀a. These fixed
points are separated by a repulsive critical fixed point {m∗2a}a=1,...,m. In order to
investigate the latter, one can introduce a critical temperature βRSc such that Eq.
(H.1) converges to {m∗2a}a=1,...,m for β = βRSc . This fixed point is determined by
means of an expansion in powers of σ−1/2, physically representing the distance from
the purely mean-field regime σ = 1/2 of the model. The critical exponent ν defined
by Eq. (5.14) is expressed in terms of the largest eigenvalue ΛRS of the matrix
linearizing Eq. (H.1) in the neighborhood of {m∗2a}a=1,...,m through the relation

ν = log 2
log ΛRS

,

and is given by Eq. (H.7).

This computation can be performed to higher orders. If the expansion is done
up to O(β2m), ΛRS can be computed to order (σ − 1/2)m−1. The calculation has
been done for m = 5 by means of a symbolic manipulation program [170], and the
result is

ΛRS = 1 + 2 log 2 (σ − 1/2)− 219(log 2)2

20 (σ − 1/2)2 +

−113453(log 2)3

1200 (σ − 1/2)3 + 56579203(log 2)4

403200 (σ − 1/2)4 +

+O((σ − 1/2)5). (6.21)

Even though only the first four terms of the expansion are available, Eq. (6.21)
yields an accurate estimate of ΛRS in a relatively wide range of values of σ. This is
shown in Table 6.1, where the values of Λ(i)

RS obtained by truncating the expansion
(6.21) to order (σ − 1/2)i are listed for different values of 0.54 ≤ σ ≤ 0.62 and i.
Since Λ(i)

RS increases by less than 1% when increasing i from 3 to 4, in this region we
can extract the exact value of ΛRS with good accuracy.

It turns out that the high-temperature expansion cannot be implemented for
k0 > 2, because the symbolic manipulations become too difficult. Still, the values of
the critical exponent ν computed with the high-temperature expansion for k0 = 2
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Table 6.1. Λ(i)
RS as a function of i for different values of 0.54 ≤ σ ≤ 0.62. The relative

change in Λ(i)
RS obtained as one increases the order i from 3 to 4 is less than 1%, and

yields an estimate of the error on the critical exponent ν.

σ Λ(1)
RS Λ(2)

RS Λ(3)
RS Λ(4)

RS

0.54 1.05545 1.04703 1.04502 1.0451
0.58 1.1109 1.07723 1.06111 1.06244
0.62 1.16636 1.0906 1.03619 1.04291

will serve as an important test of a different, purely numerical implementation of the
RG equations (6.19) for k0 = 2, that will be illustrated in the following Section. Once
the agreement between the numerical and analytical approach will be established
for k0 = 2, the numerical method will be easily implemented for k0 > 2, yielding an
estimate of the exact value of the exponents obtained as k0 is increased.

6.2.1.2 Solution of the real-space RG equations with the population-
dynamics method

The RG equations (6.19) are nonlinear integral equations, and it is difficult to solve
them analytically and determine p′(J ′) as a functional of p(J ). Accordingly, one
can use some numerical methods. Here we describe a stochastic approach known
as population dynamics, yielding an extremely simple and powerful solution of Eq.
(6.19). Historically, population dynamics appeared first in the theory of localization
of electrons in disordered systems [2], and was later developed for spin glasses [116]
and constraint-satisfaction problems [115].

In population dynamics one represents the function p(J ) as a population of
P numbers {Ji}i=1,...,P , where each Ji has been drawn with probability p(Ji).
Accordingly if P is large enough, once we know p(J ) we can compute the population
{Ji}i, while once we know the population {Ji}i we can compute p(J ) from the
relation

p(J )dJ ∼ 1
P

P∑
i=1

I[Ji ∈ (J, J + dJ)], (6.22)

where the function I[Ji ∈ (J, J + dJ)] equals one if Ji ∈ (J, J + dJ) and zero
otherwise, and dJ is a suitably chosen small binning interval. Thus, there is a
one-to-one correspondence between p(J ) and {Ji}i=1,...,P , and these are different
representations of the same object

p(J )↔ {Ji}i=1,...,P . (6.23)

In practice, once one knows the population {Ji}i the corresponding p(J ) is
computed by setting

JMAX ≡ max
i

(|Ji|), (6.24)

choosing dJ = 2JMAX/B, and using Eq. (6.22), where B is a suitably chosen large
integer number.



6.2 The RG approach in real space for the Hierarchical Edwards-Anderson
model 77

Routine 1 Population-dynamics routine
for i = 1, . . . , P

for α = 1, . . . , 6
draw uniformly a random number j in {1, . . . , P}.
set J tempα = Jr.

end
draw uniformly a random sign s = ±1.

set J ′i = s 1
β arctanh

(√
O2({βJ tempα }α)

)
.

end

return {J ′i }i.

The mapping p(J ) → p′(J ′) given by Eq. (6.19) yields a mapping between
{Ji}i=1,...,P and the population {J ′i }i representing p′(J ′)

p′(J ′)↔ {J ′i }i=1,...,P . (6.25)

Indeed, once {Ji}i is known, it is easy to show that one can compute {J ′i }i by
means of the pseudocode illustrated in Routine 1.

The reader should notice that the population dynamics Routine is extremely
simple and versatile to implement, and that it requires no evaluation of the inte-
grals in the right-hand side of Eq. (6.19). Once {J ′i }i is known, this routine is
iterated to compute {J ′′i }i from {J ′i }i, and so on. In particular, by iterating k
times Routine 1 one can compute the population {Jk i}i representing the probability
distribution pk(Jk). Accordingly, the algorithm is named population dynamics after
the fact that k is analogous to the dynamical-evolution time of the population {Jk i}i.

The structure of the fixed points of Eq. (6.19) can be now investigated numer-
ically. Indeed, by iterating the population-dynamics Routine at fixed β and by
computing pk(J ) as a function of k, it is easy to show that there is a finite value
of β = βRSc such that for β < βRSc pk(J ) converges to δ(J ) as k is increased, while
for β > βRSc pk(J ) broadens, i. e. its variance is an increasing function of k. The
reader should observe that this flow to weak and strong coupling for p(J ) in the
high and in the low-temperature phase respectively is the analog of the flow to
weak and strong coupling for the number J in the real-space approach for DHM,
depicted in Fig. (6.2). The physical interpretation of these two temperature regimes
is that for β < βRSc pk(J ) flows to an attractive high-temperature fixed point with
J = 0 where spins are decorrelated, while for β > βRSc it flows to an attractive
low-temperature fixed point with J =∞ where spins are strongly correlated. This
fact implies that as the temperature is lowered below Tc a phase transition occurs,
and this transition yields a collective and strongly interacting behavior of spins in
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the low-temperature phase. Even though this result has been derived in the k0 = 2-
approximation, the implementations of the real-space method for k0 > 2 will confirm
this picture. The existence of a finite-temperature phase transition for a diluted
version of the HEA model has been established heretofore with MC simulations by
means of finite-size scaling techniques [65]. Since the critical properties of such a
diluted version of the HEA should be the same [65] as those of the HEA defined
here, the real-space approach confirms the picture on the criticality of the system
given by MC simulations.

An important feature of the population-dynamics approach is that for σ < 1/2
the thermodynamic limit is ill-defined, which has been discussed in Part III, Eq.
(4.12). Indeed, the numerics show that for σ → 1/2 βRSc → 0, in such a way that
the system is always in the low-temperature phase, i. e. the variance of pk(J ) is
an increasing function of k, and the thermodynamic limit k →∞ is ill-defined. On
the other hand, according to Eq. (4.12) one should have that βRSc →∞ as σ → 1,
because for σ > 1 no finite-temperature phase transition occurs. Unfortunately, this
condition is not reproduced by the real-space approach. As discussed in Section
6.2.1.1, this is presumably due to the fact that k0 is small, i. e. that Eq. (6.19)
implements only the lowest-order approximation of the real-space method (k0 = 2).
This hypothesis is supported by the fact that the estimate of the critical exponents
that we will give in what follows significantly improve as k0 is increased in the region
where σ differs significantly from 1/2, while they hardly change in the region σ ≈ 1/2,
implying that the closer σ to 1, the larger the values of k0 needed. Accordingly, for
σ → 1 a significantly better description would be obtained if larger values of k0 were
accessible, and the σ < 1-limit would be recovered.

The numerical implementation of Routine 1 also shows that there is a repulsive
critical fixed point, that we will call p∗(J ), which is reached by iterating Routine 1
with β = βRSc

p∗(J ) =
∫ [ 6∏

α=1
p∗(Jα)dJα

]
1
2

[
δ

(
J − 1

βRSc
arctanh

(√
O2({βRSc Jα}α)

))
+

+δ
(
J + 1

βRSc
arctanh

(√
O2({βRSc Jα}α)

))]
. (6.26)

This critical fixed point is analogous to the critical value of the coupling Kc in the
real-space method for DHM, depicted in Fig. (6.2). In the numerical implementation
both βRSc and p∗(J ) are computed by iterating Routine 1 and by dynamically
adjusting β at each step to its critical value, which is approximately determined as
the value of β such that

∫
dJ ′p′(J ′)(J ′)2 =

∫
dJ p(J )J 2. In order to do so, one

starts with two values of the temperature Tmin, TMAX such that

Tmin < TRSc < TMAX, (6.27)

and then iterates the bisection Routine 2.
Each iteration k of Routine 2 is one step of the RG transformation performed at

temperature T = (Tmin + TMAX)/2, and if the second moment of p′(J ′) is smaller
than that of p(J ), T is in the high-temperature phase, and the interval [Tmin, TMAX]
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Routine 2 Bisection routine
for k = 1, . . . , kMAX

set T = (Tmin + TMAX)/2.
set ς2 = 1

P

∑P
i=1 J 2

i .
compute {J ′i }i from Routine 1 and set Ji = J ′i ∀i = 1, . . . , P .
set ς ′2 = 1

P

∑P
i=1 J ′

2
i .

if ς ′2 > ς2 set Tmin = Tmin + x(TMAX − Tmin).
else set TMAX = TMAX − x(TMAX − Tmin).

end

return TRSc = T and {Ji}i ↔ p∗(J )

is reduced by 0 < x < 1 by lowering the upper limit TMAX, and vice versa if T is
in the low-temperature phase. By iterating this procedure kMAX � 1 times, the
Routine returns an estimate of the critical temperature TRSc = T and of the critical
fixed point {Ji}i ↔ p∗(J ).
Since population dynamics is a stochastic approach, this bisection Routine is not
deterministic, and might give slightly different results when one runs it several times
if the population size P is not large enough. In particular, such a stochastic character
can introduce some instabilities when approaching the repulsive fixed point, and
these might let the bisection Routine flow towards the low or high-temperature
fixed point, far away from p∗(J ). Accordingly, the parameter x has been chosen by
hand in order to minimize this instability, and the numerical implementation of the
bisection Routine has shown that x ∼ 0.1 yields a good estimate of the critical fixed
point.

The critical fixed point p∗(J ) obtained with this bisection method is depicted
in Fig. 6.4 for a given σ-value, where we also represent p∗(J ) obtained with the
k0 = 3, 4-approximations that will be described in what followins.

Once the fixed point p∗(J ) has been computed numerically, the critical exponents
can be determined by linearizing the transformation (6.19) in the neighborhood
of p∗(J ). Being the RG equations (6.19) a flow for a continuous set of degrees of
freedom {p(J )}J , the matrix linearizing the RG transformation in the neighborhood
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Figure 6.4. Fixed point p∗(J ) as a function of J for σ = 0.5146 and k0 = 2, 3, 4,
obtained by iterating Routine 2 starting with p0(J ) = 1/

√
2πe−J 2/2. For k0 = 2,

kMAX = 50, P = 2× 106, x = 0.1 and B = 96. For k0 = 3, kMAX = 50, P = 106, x = 0.1
and B = 96. For k0 = 4, kMAX = 20, P = 2 × 104, x = 0.1 and B = 96. p∗(J ) has
compact support and a convergent behavior as k0 is increased. This convergence indicates
that k0 is large enough in such a way that the real-space approach is asymptotically
exact for this value of σ.

of p∗(J ) has continuous indices J ,J ′, and is defined as

MRS
J ,J ′ ≡

δp′(J )
δp(J ′)

∣∣∣∣
p=p∗, β=βRSc

=
6∑

γ=1

∫  6∏
λ6=γ=1

p∗(Jλ)dJλ

×
×1

2

[
δ

(
J − 1

βRSc
arctanh

(√
O2({βRSc Jλ}

γ,J ′
λ )

))
+

+δ
(
J + 1

βRSc
arctanh

(√
O2({βRSc Jλ}

γ,J ′
λ )

))]
, (6.28)

where {βRSc Jλ}
γ,J ′
λ ≡ {βRSc J1, . . . , β

RS
c Jγ−1, β

RS
c J ′, βRSc Jγ+1, . . . , β

RS
c J6} and in

the second line of Eq. (6.28) Eq. (6.19) has been used.

In the rigorous treatment [45] of the εF -expansion for DHM, the linearization of
the transformation pk(m)→ pk+1(m) in the neighborhood of p∗(m) is formulated in
terms of a linear functional acting on a suitably defined space of functions φ(m), and
the critical exponents are extracted from the eigenvalues of this functional. These
eigenvalues are determined by the theory of linear functionals, in particular by the
theory of Hermite polynomials. Similarly, here the matrix MRS defines a linear
functional L acting on a suitably defined space of functions φ(J ), and yielding a
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function L[φ](J )
L[φ](J ) ≡

∫
dJ ′MRS

J ,J ′φ(J ′).

Unfortunately, the complicated form (6.28) of MRS did not allow for an analytic
treatment, and in particular the spectrum of MRS , and so the critical exponents,
could not be determined in terms of the spectrum of well-known linear functionals.
Hence, a completely numerical analysis of the spectrum of MRS has been done.
This analysis is illustrated in Appendix I. As a result, the critical exponent ν defined
by Eq. (5.14) is determined from the spectrum of MRS . In Fig. 6.5 we depict
λ(n∗) obtained with this k0 = 2-approximation, λ(n∗) obtained with the k0 = 3, 4-
approximations that will be discussed in what follows, and ΛRS obtained with the
high-temperature expansion as a function of σ. We also depict the prediction for
21/ν of the replica approach discussed in Chapter 5, in both the mean-field region
σ ≤ 2/3 and the non-mean-field region σ > 2/3. Fig. 6.5 shows that the prediction
ΛRS for 21/ν obtained with the high-temperature expansion and the prediction λ(n∗)

for 21/ν obtained with population dynamics are in excellent agreement, confirming
the validity of both methods. Even though, the agreement between ΛRS , λ(n∗) and
21/ν obtained with the replica approach is good only if σ is sufficiently close to 1/2.
As we will see shortly, this discrepancy progressively disappears when implementing
approximations with k0 > 2. Since these have been developed along the lines of the
k0 = 2-approximation, in the following Section we will sketch only the main steps
of the derivation of the real-space RG equations for k0 > 2, and of the resulting
computation of the critical exponents.

6.2.2 Improved approximations of the real-space method

In the real-space approach developed in Section 6.2.1 a 2k0-spin HEA is approximated
by a 2k0−1-spin HEA, with k0 = 2. This approximation can be implemented for
larger k0 and, as discussed above, it becomes asymptotically exact for k0 →∞. In
order to generalize the real-space approach to k0 > 2, let us consider a 2k0-spin HEA
with spins S1, . . . , S2k0 and Hamiltonian Hk0 [~S], where Hk0 is obtained by iterating
the recursion equations (2.10), (5.19). Let us set C2/2Jij ≡ Jij , where Jij are the
couplings defined in Eq. (2.10), (5.19).

Let us then consider a 2k0−1-spin HEA with spins S′1, . . . , S′2k0−1 and Hamilto-
nian Hk0−1[~S′], where Hk0−1 is obtained by iterating the recursion equations (2.10),
(5.19). Let us set C2/2J ′ij ≡ J ′ij , where J ′ij are the couplings defined in Eq. (2.10),
(5.19). Let us also call the M ≡ 2k0(2k0 − 1)/2 couplings J12,J13, . . . ,J2k0−1 2k0

J1, · · · ,JM respectively, and let us call the M ′ ≡ 2k0−1(2k0−1 − 1)/2 couplings
J ′12,J ′13, . . . ,J ′2k0−1−1 2k0−1 J ′1, · · · ,J ′M ′ respectively.

According to the analysis of Section 6.2.1, for each sample of the couplings
{Jα}α we choose {J ′α}α as a function of {Jα}α in such a way that the 2k0−1-spin
HEA yields the best-possible approximation of the 2k0-spin HEA. This procedure is
qualitatively depicted in Fig. 6.6 for k0 = 3.

Since in this case the number of couplings of the 2k0−1-spin HEA is M ′, we
need a set of M ′ equations to determine the optimal couplings {J ′α}α. This set of
equations ensuring that the 2k0−1-spin HEA approximates the 2k0-spin HEA can
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Figure 6.5. 21/ν as a function of σ. The red points represent λ(n∗) computed with the
population-dynamics implementation of the real-space RG equations with k0 = 2 and
48 ≤ B ≤ 96, kMAX = 50, 106 ≤ P ≤ 2× 107, x = 0.1 and initial distribution p0(J ) =
1/
√

2πe−J 2/2. The brown points represent λ(n∗) computed with the population-dynamics
implementation of the real-space RG equations with k0 = 3 and 48 ≤ B ≤ 100, kMAX =
50, 4 × 104 ≤ P ≤ 106, x = 0.1 and initial distribution p0(J ) = 1/

√
2πe−J 2/2. The

violet points represent λ(n∗) computed with the population-dynamics implementation
of the real-space RG equations with k0 = 4 and 48 ≤ B ≤ 96, kMAX = 20, 5 × 103 ≤
P ≤ 2× 104, x = 0.1 and initial distribution p0(J ) = 1/

√
2πe−J 2/2. For any fixed k0

one cannot compute ν for too large σ, because the bisection routine used to determine
the critical fixed point is unstable for large σ. The blue dashed curve represents ΛRS
computed with the high-temperature expansion of the real-space RG equations to fourth
order in σ − 1/2, see Eq. (6.21). The black dashed curve and the green dashed curve
represent 21/ν obtained with the replica approach presented in Chapter 5: the black
dashed curve represents the mean-field value of 21/ν for σ ≤ 2/3 given by the first line
in Eq. (5.16), while the green dashed curve represents the two-loop result (5.18) for
σ > 2/3. The orange dashed curve represents the upper critical dimension σ = 2/3
resulting from the replica approach and discussed in Chapter 5.

be obtained by considering M ′ physical observables {Oαk0
({βJγ}γ)}α=1,...,M ′ of the

2k0-spin HEA, depending on the M couplings {Jα}α and on β through the dimen-
sionless quantities {βJα}α. Consider also M ′ observables {Oαk0−1({βJ ′γ}γ)}α=1,...,M ′

of the 2k0−1-spin HEA, depending on the couplings {J ′α}α and on β through the
dimensionless quantity {βJ ′α}α.

In order to build up Oαk0
and Oαk0−1, consider two real replicas ~S1, ~S2 of the spins

of the 2k0-spin HEA, and two real replicas ~S′
1
, ~S′

2
of the spins of the 2k0−1-spin HEA.

Now consider the 2k0−1 pairs of contiguous spins (S1, S2), (S3, S4), . . . , (S2k0−1, S2k0 )
of the 2k0-spin HEA, and the normalized overlaps between ~S1 and ~S2 on each of the
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≈

S4S1S1 S2 S3 S8S5 S6 S7 S ′
4S ′

1 S ′
2 S ′

3

Figure 6.6. Approximation of the real-space approach for k0 = 3. A 23-spin HEA with
spins S1, · · · , S8 and Hamiltonian H8[~S] is approximated by a 22-spin HEA with spins
S′1, . . . , S

′
4 and Hamiltonian H2[~S′].

leaves defined by these pairs

Qα =
S1

2α−1S
2
2α−1+S1

2αS
2
2α

2√√√√E~S1,~S2

[(
S1

2α−1S
2
2α−1+S1

2αS
2
2α

2

)2
] ,

where α = 1, . . . , 2k0−1, and E~S1,~S2 denotes the expectation value with respect
to ~S1, ~S2 with Boltzmann weight e−βHk0 . Now consider the normalized overlaps
between ~S′1 and ~S′2 on each of the spins of the 2k0−1-spin HEA

Q′α = S′1α S
′2
α ,

where α = 1, . . . , 2k0−1.
Kadanoff’s decimation rule is implemented by imposing the correspondence

between Qα and Q′α ∀α = 1, . . . , 2k0−1. This can be done by choosing the following
observables

O1
k0({βJγ}γ) = E~S1,~S2 [Q1Q2],

O2
k0({βJγ}γ) = E~S1,~S2 [Q1Q3],

. . .

OM
′

k0 ({βJγ}γ) = E~S1,~S2 [Q2k0−1−1Q2k0−1 ], (6.29)

O1
k0−1({βJ ′γ}γ) = E~S′1,~S′2 [Q′1Q′2],

O2
k0−1({βJ ′γ}γ) = E~S′1,~S′2 [Q′1Q′3],

. . .

OM
′

k0−1({βJ ′γ}γ) = E~S′1,~S′2 [Q′2k0−1−1Q
′
2k0−1 ], (6.30)

where E~S′1,~S′2 denotes the expectation value with respect to ~S′1, ~S′2 with Boltzmann
weight e−βHk0−1 . The 2k0-spin HEA can now be approximated by the 2k0−1-spin
HEA by enforcing the constraints

Oαk0({βJγ}γ) = Oαk0−1({βJ ′γ}γ) ∀α = 1, . . . ,M ′. (6.31)
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In what follows we assume that Eq. (6.31) can be written as

J ′α = 1/βfα({βJγ}γ), (6.32)

where in Eq. (6.32) we have used the fact that the right-hand side of Eq. (6.31)
depends on {J ′α}α through the dimensionless products {βJ ′α}α.

Now suppose that the couplings {Jα} are independent and that each of them is
distributed according to a given p(J ). According to Eq. (6.32), the couplings {J ′α}α
are not independent, because the entangled structure of Eq. (6.32) introduces some
correlation between them. Accordingly, the joint probability distribution of {J ′α}α is

p′C({J ′α}α) =
∫ M ′∏

α=1
p(Jα)dJα

 M ′∏
α=1

δ

(
J ′α −

1
β
fα({βJγ}γ)

)
, (6.33)

where the label C stands for correlated. Hence, starting with a set of uncorrelated
couplings {Jα}α, after one step of the RG transformation we generate some correla-
tion between the couplings. This situation occurs in many cases where one performs
an effective reduction of the degrees of freedom of a system under reparametrization
of the length scale. Indeed, it is a quite general fact that if one starts with a set of
degrees of freedom at a given length scale L, additional degrees of freedom are gener-
ated at the length scale 2L. A typical example is the RG flow for the Ising model in
dimensions d ≈ 4, where in the effective φ4-theory one generates additional φ6, φ8, · · · -
terms after one RG step (see [164, 165, 163, 162, 168] for a general discussion in the
approach à la Wilson and [173] for a discussion in the field-theory approach for the
Ising model). Notwithstanding this, it turns out that in the field-theory RG approach
[173] these terms are finite, i. e. non singular in 1/(4− d), so they do not need to be
absorbed into the renormalization constants, and do not contribute to the critical
exponents. This fact is intrinsically related to the perturbative renormalizability of
the φ4-theory [173], and implies that the RG equations can be written in closed form.

It is not easy to tell if the above correlation can be consistently neglected in this
real-space approach, and the answer to this question could be intrinsically related
to the renormalizability of the theory. In our approach we will not address this
delicate point, and we will simply get rid of the above correlation between the J ′αs by
assuming that they are independent, and that each of them is distributed according
to a distribution p′(J ′) given by the average of M ′ marginalized distributions, each
of which is obtained by integrating p′C({J ′α}α) over M ′ − 1 couplings

p′(J ′) = 1
M ′

M ′∑
α=1

∫  M ′∏
γ=1,γ 6=α

dJ ′γ

 p′C(J ′1, . . . ,J ′α−1,J ′,J ′α+1, . . . ,J ′M ′). (6.34)

By plugging Eq. (6.33) into Eq. (6.34) we obtain the RG equation relating p(J )
to p(J ′)

p′(J ′) = 1
M ′

M ′∑
α=1

∫ M ′∏
γ=1

p(Jγ)dJγ

 δ (J ′ − 1
β
fα({βJγ}γ)

)
. (6.35)
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A procedure along the lines of that presented in Section 6.2.1 can be applied to
Eq. (6.35): once a 2k0-spin HEA has been approximated by a 2k0−1-spin HEA, one
takes two realizations of the latter and couples them to obtain a system representing
a 2k0+1-spin HEA, and iterates this procedure. In this way one obtains a sequence
p(J ) ≡ p0(J ), p′(J ′) ≡ p1(J ′), p′′(J ′′) ≡ p2(J ′′), . . . physically representing the RG
flow of the disorder distribution.

In the numerical implementation p(J ) and p′(J ′) are represented by two popu-
lations, and the RG equations (6.35) are implemented in population dynamics by
generalizing Routine 1. The numerical implementation of Eq. (6.35) shows that the
main qualitative features of the k0 = 2-case stay the same here. In particular, there
is a finite value of β, that we will call βRSc , such that for β < βRSc pk(J ) converges to
the high-temperature fixed point δ(J ) as k is increased, while for β > βRSc the width
of pk(J ) is an increasing function of k, and pk(J ) converges to the low-temperature
fixed point. If one iterates Eq. (6.35) with β = βRSc , the iteration converges to a
finite critical-fixed-point p∗(J ).

The critical fixed point p∗(J ) is obtained by implementing Routine 2, and is
depicted in Fig. 6.4 as a function of J for a given σ-value and k0 = 3, 4.

The matrix MRS
J ,J ′ linearizing the RG transformation in the neighborhood of

p∗(J ) is defined in the same way as in Eq. (6.28), and its eigenvalue λ(n∗) defined by
Eq. (I.14) yields the critical exponent ν defined by Eq. (5.14) according to Eq. (I.15).

λ(n∗) for k0 = 3, 4 is depicted in Fig 6.5 as a function of σ. Fig. 6.5 shows that The real-space RG
method makes
precise predictions
for the critical
exponents of the
Hierarchical
Edwards-
Anderson model,
which are in
agreement with
those of the
replica method in
the classical
region. In the
non-classical
region these
predictions cannot
be compared to
those of the
replica method.

even though for k0 = 2 λ(n∗) is significantly different from the mean-field value
obtained with the replica approach, as k0 is increased both λ(n∗) for k0 = 3 and
λ(n∗) for k0 = 4 agree very well with the mean-field value obtained with the replica
approach in the whole mean-field region 1/2 < σ ≤ 2/3. This is an important a
posteriori test of the whole real-space RG framework presented here. The situation
subtler in the non-mean-field region σ > 2/3. In this region the ε-expansion based
on the replica approach is non-predictive, because the first few orders (5.18) of the
series have a nonconvergent behavior. Still, the data of the real-space approach can
be compared to that of MC simulations [65] performed on a diluted version of the
HEA, where ν is an increasing function of σ in the non-mean-field region σ > 2/3,
which disagrees with the results of the real-space approach, Fig. 6.5.

There might be several reasons for this disagreement [36]. A first issue might be
the smallness of k0 in the real-space approach: it is plausible that for larger k0 the
derivative of λ(n∗) at σ = 2/3+ turns out to be negative, in agreement with the MC
results. Another issue might be that the exponent ν is not universal: the exponent
ν of the HEA model studied here might be different from that of the diluted version
of the HEA studied in MC simulations. Indeed, universality in non-mean-field spin
glasses has never been established rigorously [75]. On the one hand, universality
violation in finite-dimensional systems [12, 13] resulted from numerical studies done
heretofore, even though more recent analyses based on MC simulations [91] and
high-temperature expansion [51] suggest that universality holds. A third important
issue might be that the couplings correlation has been neglected in the real-space
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approach for k0 > 2, see Eq. (6.34). Indeed, this couplings correlation might play a
vital role in the non-mean-field region 2/3 < σ < 1, and it might yield a radically
different critical behavior of the system if one took it into account.

These issues could be investigated in some future directions of this real-space
method. For instance, it would be interesting to find a way to handle couplings
correlation in the real-space approach. One could then investigate the relevance of
this correlation in both the mean and the non-mean-field region, and compare the
resulting values of the critical exponents to those obtained with MC simulations.
Another interesting future direction would be to implement this approach in the
presence of an external magnetic field. Indeed, by analyzing the existence of a
critical fixed point one could establish whether there is a phase transition in the
non-mean-field region, which has been a hotly debated issue in the last years [89, 105],
and could give some insight into the correct picture describing the low-temperature
phase of the system [64]. Finally, it would be interesting to implement the present
approach for more realistic spin-glass systems, like the three-dimensional EA model.
Indeed, a simple analysis shows that this method can be easily generalized to models
with short-range interactions built on a finite-dimensional hypercube.
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This thesis has investigated the implementation of renormalization-group (RG)
techniques in finite-dimensional glassy systems, in order to shed light on the critical
behavior of spin and structural glasses beyond mean field. In finite dimensions
the existence of a phase transition in structural glasses is not well-established, and
the structure of the low-temperature phase for both spin and structural glasses is
fundamentally unknown and controversial. Since Wilson’s RG equations emerge in a
natural and simple way in ferromagnetic spin models with a hierarchical interaction
structure, in this work we considered two finite-dimensional models of spin and
structural glasses built on Dyson’s hierarchical lattice [57].

After giving a brief introduction on spin and structural glasses in Part I, in Part II
we focused on a structural-glass model built on a hierarchical lattice, the Hierarchical
Random Energy Model (HREM) [33, 32]. In this study, we showed the first evidence
of a non-mean-field model of a supercooled liquid undergoing a Kauzmann phase
transition. On the one hand, the features of the phase transition are different from
the mean-field case [53]. The free energy is found to be nonanalytical at the critical
point, and our study of the correlation length of the system in the critical region
shows that the data is consistent with the existence of a diverging correlation length.
On the other hand, by investigating the properties of the low-temperature phase we
showed that the free energy has a one-step replica-symmetry-breaking (RSB) saddle
point in the low-temperature phase, describing a fragmentation of the free-energy
landscape into disconnected components.

A first future direction of this work would be to generalize it to more realistic
models, like 1-RSB models with p-spin interactions and p ≥ 3, which have an
entropy-crisis transition in the mean-field case: it would be interesting to build up a
non-mean-field version of these models on a hierarchical lattice, and to implement
a suitable generalization of the RG techniques used for the HREM to study their
critical behavior. A second future direction would be to study the dynamics of the
HREM and of these hierarchical 1-RSB models. In particular, 1-RSB models have a
dynamical phase transition in the mean-field case mimicking the dynamical arrest in
glass-formers at the glass-transition temperature predicted by the Mode Coupling
Theory. If one could check whether this transition persists or is smeared out in such
hierarchical counterparts of mean-field 1-RSB models, one could test directly some
of the building blocks of the Random First Order Transition Theory.

In Part III we presented the study of a spin-glass model built on a hierarchical
lattice, the Hierarchical Edwards-Anderson Model (HEA). Differently from the
HREM, in the HEA the spins are not mere labels for the energy variables, but they
are physical degrees of freedom. This fact allowed for an implementation of a RG
decimation protocol, which has been implemented with two different approaches.
The first approach is based on the replica method [34, 35], while the second one does
not rely on the replica formalism, but on a real-space picture [36].
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In the replica RG approach the infrared (IR) limit of the theory has been taken
with two different methods, and both of them yield the same two-loop prediction for
the ε-expansion of the critical exponents. This shows that the IR limit of the theory
is well defined, and suggests the existence of a diverging correlation length in the
system. Unfortunately, this approach makes predictions for the critical exponents
only in the classical region, i. e. in the parameter region where the mean-field
approximation is exact. In the non-classical region the two-loop ε-expansion has
a nonconvergent behavior, in such a way that no conclusion can be drawn on the
actual values of the critical exponents.

In the real-space RG approach a generalization of Kadanoff’s block-spin decima-
tion is implemented in spin glasses, and the resulting RG equations are worked out
by means of a series of approximation steps. These equations have been solved by
means of the high-temperature expansion and of the population-dynamics method,
yielding consistent results. Similarly to the replica RG method, the real-space
approach shows that a phase transition occurs in the HEA and that the correlation
length diverges at the critical point. At variance with the replica RG method, this
method makes precise predictions for the critical exponents in both the classical
region, where the critical exponents are in excellent agreement with those of the
replica method, and in the non-classical region. The real-space predictions in this
region are in disagreement with Monte Carlo (MC) simulations done for a diluted
version of the HEA. There might be several possible reasons for this disagreement:
the discrepancy should disappear if better approximation steps were considered in
the real-space approach, or the critical exponents of the HEA model defined here
might be different from those of the diluted HEA, i. e. universality might be violated.

There are several future directions for the replica and for the real-space approach.
As far as the replica approach is concerned, the two-loop calculation that we have
done here is a base of departure for an automated computation of the ε-expansion
for the critical exponents. Despite its highly technical nature, the calculation of
high orders of the ε-series would clarify whether the ε-expansion can be resummed
and made convergent, and so whether the non-mean-field physics of the system can
be considered as a small perturbation of the mean-field one. As far as the real-
space approach is concerned, it would be interesting to improve the approximation
scheme to check whether the disagreement with MC simulations disappears. If the
disagreement does not disappear, one could test the universality of the exponents by
checking directly whether the critical indices stay the same when changing the details
of the quenched-disorder probability distribution. Moreover, in order to shed light
on the structure of the low-temperature phase, it would be interesting to implement
the real-space method in the presence of an external magnetic field and to verify the
existence of a phase transition in the non-classical region, by searching for a critical
fixed point of the RG equations. Indeed, the existence of a phase transition in a
field is one of the fundamental elements discriminating between the RSB and the
droplet picture for finite-dimensional spin glasses, and it would shed light on the
features of the low-temperature phase of these systems.



Appendix A

Properties of Dyson’s
Hierarchical Model

A.1 Derivation of Eq. (2.5)

Let us derive Eq. (2.5) first. We start from the definition (2.4), omit any m-
independent multiplicative constant to simplify the notation, and we have

pk+1(m) =
∑
~S

e
−β(HF

k [~S1]+HF
k−1[~S2])+βJCk+1

F

(
1

2k+1
∑2k

i=1 Si

)2

×

×δ

 1
2k+1

2k+1∑
i=1

Si −m

∫ dm1dm2δ

 1
2k

2k∑
i=1

Si −m1

×
×δ

 1
2k

2k+1∑
i=2k+1

Si −m2


= eβJC

k+1
F m2

∫
dm1dm2δ

(
m1 +m2

2 −m
)
×

×

∑
~S1

e−βHF
k [~S1]δ

 1
2k

2k∑
i=1

Si −m1

×
×

∑
~S2

e−βHF
k [~S2]δ

 1
2k

2k+1∑
i=2k+1

Si −m2


= eβJC

k+1
F m2

∫
dm1dm2δ

(
m1 +m2

2 −m
)
pk(m1)pk(m2), (A.1)

where we set ~S1 ≡ {S1, . . . , 22k}, ~S2 ≡ {S2k+1, . . . , 22k+1}, in the first line we used Eq.
(2.1) and multiplied by a factor equal to one, and in the third line we used the fact
that the quantities in square brackets in the second line are equal to pk(m1), pk(m2)
because of the definition (2.4). By changing the variables of integration, Eq. (A.1)
leads to Eq. (2.5).
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A.2 Structure of the fixed points of Eq. (2.7)

Taking HF
0 [S] = 0, the Hamiltonian HF

k [~S] has ±~S symmetry, and thus according to
Eqs. (2.4), (2.6), pk(m) is an even function of m. Hence, the simplest approximation
is to assume that it is a Gaussian

pk(m) = e−rFk m2
, (A.2)

by neglecting higher powers of m in the exponential. Non-Gaussian terms will be
later added in the argument of the exponential of Eq. (A.2). For the integral of
pk(m) with respect to m to be finite, we have rFk > 0.

By plugging Eq. (A.2) into Eq. (2.7), we obtain a recursion equation for rFk

rFk+1 = 2rFk
CF
− βJ. (A.3)

Eq. (A.3) can be solved explicitly, and yields

rFk =
( 2
CF

)k (
rF0 −

βJ
2
CF
− 1

)
+ βJ

2
CF
− 1

. (A.4)

It follows that if β = βc F , with

βc F ≡ rF0 /J(2/CF − 1), (A.5)

rFk has a finite limit r∗ = r0 for k →∞. This fixed point will be called the critical
fixed point. The critical fixed point is unstable, because any small deviation of β
from βc F would let rFk flow away from rF∗ towards another fixed point, as one can
see from Eq. (A.4). If β < βc F or β > βc F , this attractive fixed point is called
the high or low-temperature fixed point respectively. According to Eq. (A.5), the
critical temperature depends on the value rF0 at the initial step of the iteration,
i. e. at microscopic length scales 2k ∼ 1. This fact is in agreement with the very
general picture occurring in ferromagnetic systems like the Ising model [163], where
the critical temperature is not universal, because it depends on the microscopic
properties of the lattice, like the nearest-neighbor couplings between spins.

Another important feature of the solution of Eq. (A.3) is the following. Take
β < βc F and k � 1. According to Eqs. (2.6), (A.2) and (A.4), one has

pk(m) = exp
[
−2k

(
rF0 −

βJ
2
CF
− 1

)
m2
]
. (A.6)

Eq. (A.6) shows that for large k the variable m = 1/2k
∑2k
i=1 Si is distributed

according to a Gaussian distribution with variance proportional to 1/2k. This is the
result that one could have guessed with the central limit theorem, supposing the
spins Si to be independent. Now take β = βc F . According to Eqs. (2.6), (A.2) and
to the fact that rk = r∗ ∀k, for large k one has

pk(m) = e−r∗CkFm2
. (A.7)
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Eq. (A.7) shows that the distribution of m is still Gaussian, but its variance is
proportional to 1/CkF , while supposing the spins to be independent by means of the
central limit theorem, one would predict the variance to be proportional to 1/2k.
The physical interpretation of these facts resulting from Eqs. (A.6), (A.7) is the
following. For β < βc F spins can be considered as independent, and so m has the
k-dependence predicted by the central limit theorem. On the contrary, at the critical
point strong correlations are developed, resulting in a collective behavior of spins
which cannot be considered as independent anymore, and yielding a magnetization m
with a k-dependence different from that predicted with the independence hypothesis.

Let us now seek for a more accurate approximation of pk, by adding a quartic
term in the exponential in the right-hand side of Eq. (A.2)

pk(m) = e−(rFk m
2+wFk m

4), (A.8)

where for the integral of pk(m) with respect to m to be finite, one has wFk > 0.
In the following we will suppose that the non-Gaussian term wFk is small for

every k, i. e. that an expansion in powers of wFk is meaningful. Practically speaking,
this is equivalent to supposing that the above qualitative picture resulting from the
Gaussian ansatz (A.2) is slightly modified from the introduction of non-Gaussian
terms in Eq. (A.8). The correctness of this assumption will be tested a posteriori
by checking if the resulting perturbative series for physical quantities is convergent,
or if it can be made convergent with some suitable resummation technique [173].
Plugging Eq. (A.8) into Eq. (2.7) and developing in powers of wFk , one has

pk+1(m) = e−
2rF
k

CF
m2+βJm2

{
1− 1

8(rFk )2

[
3 + 8m2rFk (3CF + 2m2rFk )

C2
F

]
wFk +

+ 1
128C4

F (rFk )4 [105C4
F + 720C3

F r
F
k m

2 + 1824C2
F (rFk )2m4 +

+768CF (rFk )3m6 + 256(rFk )4m8](wFk )2 +O((wFk )3)
}
. (A.9)

The right-hand side of Eq. (A.9) does not have the same form as the ansatz
(A.8). Notwithstanding this, one can rewrite the term in braces in the right-hand
side of Eq. (A.9) as an exponential up to order (wFk )2, and obtain

pk+1(m) = exp
{
−
[

2rFk
CF
− βJ + 3

CF rFk
wFk −

9
2CF (rFk )3 (wFk )2

]
m2 +

−
[

2
C2
F

wFk −
9

C2
F (rFk )2 (wFk )2

]
m4 +O((wFk )3)

}
. (A.10)

Comparing Eq. (A.10) to Eq. (A.8), one has rFk+1 = 2rFk
CF
− βJ + 3

CF r
F
k

wFk −
9

2CF (rF
k

)3 (wFk )2 +O((wFk )3),
wFk+1 = 2

C2
F
wFk −

9
C2
F (rF

k
)2 (wFk )2 +O((wFk )3).

(A.11)
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The second line of Eq. (A.11) can be rewritten as

wFk+1 − wFk =
(

2
C2
F

− 1
)
wFk −

9
C2
F (rFk )2 (wFk )2 +O((wFk )3).

If follows that σF ≶ 3/4 implies 2/C2
F ≶ 1, and so wFk+1 ≶ wFk . Hence, for σ ≤ 3/4

wFk → 0 for k → ∞, and any fixed point is Gaussian, while for σF > 3/4 a non-
Gaussian fixed point arises for k →∞. Historically, the analysis of Gaussian fixed
points of Eq. (2.6) was first done in [20, 22, 21], while non-Gaussian fixed points have
been studied first in [24], and their analysis was later developed in [46, 45, 44, 80].
According to the above assumption that an expansion in powers of wFk is meaningful,
the structure of the fixed points of Eq. (2.7) discussed in the Gaussian case must
still hold. Let us set

εF ≡ σF −
3
4 (A.12)

and show this explicitly in Fig. A.1, where a parametric plot of (rFk , wFk ) as a
function of k is depicted for three different temperatures T < Tc F , T > Tc F and
T ≈ Tc F for a given εF and J-value, with εF > 0. The Figure shows the ex-
istence of two attractive fixed points, the high-temperature fixed point and the
low-temperature fixed point, and of an unstable critical fixed point separating
them, as illustrated in the Gaussian case. Given an initial condition, the parameters
rFk , w

F
k converge to the critical fixed point only if β is equal to its critical value βc F .

Let us now focus on the critical fixed point. This is obtained by setting β = βc F
and by requiring that rFk+1 = rFk = rF∗ , w

F
k+1 = wFk = wF∗ in Eq. (A.11) rF∗ = 2rF∗

CF
− βc FJ + 3

CF r
F
∗
wF∗ − 9

2CF (rF∗ )3 (wF∗ )2 +O((wF∗ )3),
wF∗ = 2

C2
F
wF∗ − 9

C2
F (rF∗ )2 (wF∗ )2 +O((wF∗ )3).

(A.13)

If wF∗ is nonzero, one can divide the second equality of Eq. (A.13) by wF∗ , and get

1− 2
C2
F

= − 9
C2
F (rF∗ )2w

F
∗ +O((wF∗ )2). (A.14)

Since wF∗ must be positive, we have 1−2/C2
F < 0, i. e. εF > 0. As anticipated above,

a non-Gaussian critical fixed point wF∗ 6= 0 exists only if εF > 0, and according to
Eq. (A.14) it is proportional to εF . Accordingly, if εF ≤ 0 one has wF∗ = 0.

A.3 Calculation of νF
The critical exponent νF can be calculated [163] by linearizing Eq. (A.13) in the
neighborhood of the critical fixed point rF∗ , wF∗ . Let us introduce the 2× 2 matrix

M F
ij ≡

∂(rFk+1, w
F
k+1)

∂(rFk , wFk )

∣∣∣∣∣
rF
k

=rF∗ ,wFk =wF∗

. (A.15)

One can show [163], that the critical exponent νF is related to the largest eigenvalue
ΛF of M F

νF = log 2
log ΛF

. (A.16)
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Figure A.1. Parametric plot of (rFk , wFk ) as a function of k with εF = 0.01, J = 1. The black
points represent (rFk , wFk ) for increasing k from top to bottom, with T < Tc F . The blue
points represent (rFk , wFk ) for increasing k from left to right, with T > Tc F . The red points
represent (rFk , wFk ) for increasing k from top to bottom: here T has been dynamically
adjusted as follows at each step k. At the step k = 0 of the iteration we consider two
initial values of the temperature TmF , TM F such that TmF < Tc F < TM F . Then, we
iterate the following procedure. We choose T = (TmF +TM F )/2 and compute rFk+1, w

F
k+1

as a function of rFk , wFk with Eqs. (A.11). If rFk+1 > rFk , we are in the high-temperature
phase, and thus we lower the upper bound on T by setting TM F → (TmF + TM F )/2,
otherwise we are in the low-temperature phase, and we raise the lower bound by
setting TmF → (TmF + TM F )/2. Then we set k → k + 1 and repeat. By iterating
this procedure many times, we obtain an estimate of the critical temperature Tc F by
successive bisections of the interval [TmF , TM F ], and we also obtain an estimate of the
critical fixed point rF∗ , wF∗ , which is depicted in the Figure. This bisection procedure is
analog to the bisection Routine 2, illustrated in Section 6.2.1.2 for the RG approach in
real space.

If εF ≤ 0, one has rF∗ = βc FJ/(2/CF−1), wF∗ = 0. M F can be directly computed
from Eq. (A.11), and one has

ΛF = 22σF−1. (A.17)

Even though Eq. (A.17) has been derived by using the approximate ansatz (A.8),
one can show that any ansatz including m6,m8, · · · -terms in pk(m) would lead to
Eq. (A.17). Hence, Eq. (A.17) is exact.

If εF > 0, the critical fixed point rF∗ , wF∗ can be computed perturbatively as a
power series in εF by observing from Eq. (A.14) that wF∗ = O(εF ), and by expanding
the left and the right-hand side of Eq. (A.13) in powers of εF . The result is

rF∗ = (1 +
√

2)βc FJ −
10
3 (4 + 3

√
2)βc FJ log 2 · εF +O(ε2F ),

wF∗ = 8
9(3 + 2

√
2)(βc FJ)2 log 2 · εF +O(ε2F ). (A.18)
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Using Eqs. (A.15), (A.11), (A.18), one has

ΛF =
√

2
(

1 + 2
3 log 2 · εF +O(ε2F )

)
. (A.19)

Differently from Eq. (A.17), Eq. (A.19) is not exact, because it is the first order of
a series in εF .



Appendix B

Calculation of φ0

In order to calculate φ0, let us consider Eq. (3.6) for C = 0. One has

Eε[Z[T, {ε}]n] =
∑

{~Sa}a=1,...,n

exp

β2

4

2k∑
i=1

n∑
a,b=1

δSa,i,Sb,i

 (B.1)

=
∑

{~Sa}a=1,...,n

exp

β2

4

2k∑
i=1

n∑
a,b=1

1 + Sa,iSb,i
2


=

∑
{~Sa}a=1,...,n

exp

β2

8

2k∑
i=1

n∑
a,b=1

Sa,iSb,i

 [1 +O(n2)]

=
∑

{~Sa}a=1,...,n

exp

β2

8

2k∑
i=1

(
n∑
a=1

Sa,i

)2


=
∑

{~Sa}a=1,...,n

2k∏
i=1

√
2
π

∫ ∞
−∞

dxi exp
(
−2x2

i + βxi

n∑
a=1

Sa,i

)

=
2k∏
i=1

√
2
π

∫ ∞
−∞

dxie
−2x2

i [2 cosh(βxi)]n

=
{√

2
π

∫ ∞
−∞

dxe−2x2 [1 + n log [2 cosh(βx)] +O(n2)
]}2k

= 1 + n2k
√

2
π

∫ ∞
−∞

dxe−2x2 log [2 cosh(βx)] +O(n2).

In the second line of Eq. (B.1) we write explicitly δSa,i,Sb,i in terms of the
spins. In the third line we observe that the first addend in the exponential is O(n2),
and so we don’t have to calculate it because, according to Eq. (3.5), in order to
compute f we need only the terms in Eε[Z[T, {ε}]n] that are linear in n. In the
fifth line we write the exponential in terms of a Gaussian integral, according to the
Hubbard-Stratonovich transformation [173]. In the sixth line we sum over the spins.
The expression obtained in the sixth line is an explicit function of n, in such a way
that in the seventh and eighth line we develop such an expression in powers of n up
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to linear terms.

Plugging Eq. (B.1) in Eq. (3.5) and using Eq. (3.7), one has

φ0(T ) = − 1
β

√
2
π

∫ ∞
−∞

dxe−2x2 log [2 cosh(βx)] .

This calculation has been automated with a symbolic manipulation program
[170], and the coefficients φi(T ) have been computed for 0 ≤ i ≤ 10.



Appendix C

Calculation of Υm,0

From the last line of Eq. (4.6) with C = 0, one has

Υm,0(T ) = lim
n→0

∑
{~Sa}a=1,...,n

exp

β2

4

2k∑
i=1

n∑
a,b=1

δSa,i,Sb,i

 2m∏
i=1

δS1,i,S2,i (C.1)

= lim
n→0

∑
{~Sa}a=1,...,n

exp

β2

4

2k∑
i=1

n∑
a,b=1

1 + Sa,iSb,i
2

 2m∏
i=1

δS1,i,S2,i

= lim
n→0

∑
{~Sa}a=1,...,n

exp

β2

8

2k∑
i=1

n∑
a,b=1

Sa,iSb,i

 2m∏
i=1

δS1,i,S2,i [1 +O(n2)]

= lim
n→0

∑
{~Sa}a=1,...,n

exp

β2

8

2k∑
i=1

(
n∑
a=1

Sa,i

)2
 2m∏
i=1

δS1,i,S2,i

= lim
n→0

∑
{~Sa}a=1,...,n

 2k∏
i=1

√
2
π

∫ ∞
−∞

dxi exp
(
−2x2

i + βxi

n∑
a=1

Sa,i

)×
×

2m∏
i=1

δS1,i,S2,i

= lim
n→0

{ ∑
{~SaI }

n
a=1

[2m∏
i=1

√
2
π

∫ ∞
−∞

dxi exp
(
−2x2

i + βxi

n∑
a=1

Sa,i

)]
×

2m∏
i=1

δS1,i,S2,i

}
×

×
{ ∑
{~SaO}

n
a=1

 2k∏
i=2m+1

√
2
π

∫ ∞
−∞

dxi exp
(
−2x2

i + βxi

n∑
a=1

Sa,i

)}
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= lim
n→0

{ ∑
{~SaI }

n
a=1

[2m∏
i=1

√
2
π

∫ ∞
−∞

dxi exp
(
−2x2

i + βxi

n∑
a=1

Sa,i

)]
×

×
2m∏
i=1

δS1,i,S2,i

}
×

×
{ 2k∏
i=2m+1

√
2
π

∫ ∞
−∞

dxie
−2x2

i [2 cosh(βxi)]n
}

= lim
n→0

∑
{~SaI }

n
a=1

[2m∏
i=1

√
2
π

∫ ∞
−∞

dxi exp
(
−2x2

i + βxi

n∑
a=1

Sa,i

)]
×

×
2m∏
i=1

δS1,i,S2,i [1 +O(n)]

= lim
n→0

∑
{~SaI }

n
a=2

2m∏
i=1

√
2
π

∫ ∞
−∞

dxi exp
[
−2x2

i + βxi(2S2,i + S3,i + · · ·+ Sn,i)
]

= lim
n→0

{ 2m∏
i=1

√
2
π

∫ ∞
−∞

dxie
−2x2

i
2 cosh(2βxi)

[2 cosh(βxi)]2−n

}

=
[√

2
π

∫ ∞
−∞

dxe−2x2 2 cosh(2βx)
[2 cosh(βx)]2

]2m

In the second line of Eq. (C.1) we write explicitly δSa,i,Sb,i in terms of the spins. In
the third line we observe that the first addend in the exponential is O(n2), and so we
don’t have to compute it in the limit n→ 0. In the fifth line we write the exponential
in terms of a Gaussian integral, according to the Hubbard-Stratonovich transfor-
mation [173]. In the sixth line we split the sum over the spins into a sum involving
spins ~SaI ≡ Sa,1, · · · , Sa,2m , and a sum involving spins ~SaO ≡ Sa,2m+1, · · · , Sa,2k . In
the seventh line we explicitly calculate the latter sum, and in the eighth line we
observe that this is given by 1 + O(n). In the ninth line we drop the O(n) terms,
and sum over ~S1

I , while in the tenth line we sum over the remaining spins. The
expression obtained in the tenth line is an explicit function of n, in such a way that
in the last line the limit n→ 0 can be taken.

This calculation has been automated with a symbolic manipulation program
[170], and the coefficients Υm,i(T ) have been computed for 0 ≤ i ≤ 9.



Appendix D

Derivation of the recurrence
equations (5.9)

Plugging Eq. (5.8) into Eq. (5.5), one finds

Pk[Q] = exp
{
−
[(

2rk−1
C4 − β2

4

)
Tr[Q2] + 2wk−1

3C6 Tr[Q3]
]}
× (D.1)

×
∫

[dP ] exp [−Sk−1[P,Q]] ,

Sk−1[P,Q] ≡ 2rk−1
C4 Tr[P 2] + 2wk−1

C6 Tr[QP 2].

The integral in Eq. (D.1) is Gaussian, and thus it can be calculated exactly by
using standard formulas [173]. Indeed, defining ∀a > b the index A ≡ (a, b), the
n(n − 1)/2 integration variables {Pab}a<b=1,...,n can be labeled with the index A:
{Pab}a<b=1,...,n → {PA}A=1,...,n(n−1)/2. In order to compute the Gaussian integral in
Eq. (D.1), we observe that

∂2Sk−1[P,Q]
∂PA∂PB

= 8rk−1
C4 δAB + 4wk−1

C6 MAB[Q],

where

Mab,cd[Q] ≡ Nab,cd[Q] +Nab,dc[Q], (D.2)
Nab,cd[Q] ≡ δbcQda + δacQdb. (D.3)

Calculating the Gaussian integral, Eq. (D.1) becomes

Pk[Q] = exp
{
−
[(

2rk−1
C4 − β2

4

)
Tr[Q2] + 2wk−1

3C6 Tr[Q3]
]}
×

×
[
det

(8rk−1
C4 δAB + 4wk−1

C6 MAB[Q]
)]− 1

2
, (D.4)

where in Eq. (D.4) and in the following, Q-independent multiplicative constants are
omitted.

Supposing that wk is small for every k, the determinant in the right-hand side
of Eq. (D.4) can now be expanded in powers of wk−1. Calling Tr the trace over
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A-type indices, we use the relation log det = Tr log for the matrix in round brackets
in Eq. (D.4)

[
det

(8rk−1
C4 δAB + 4wk−1

C6 MAB[Q]
)]− 1

2
= (D.5)

exp
{
− 1

2

[
wk−1

2C2rk−1
Tr[M [Q]]− 1

2

(
wk−1

2C2rk−1

)2
Tr[M [Q]2] +

+1
3

(
wk−1

2C2rk−1

)3
Tr[M [Q]3] +O(w4

k−1)
]}
.

By using the definitions (D.2) and (D.3), one has Tr[M [Q]] = 0. Then, by using
Eqs. (D.2), (D.3), one has

Tr[M [Q]2] =
∑
AB

M [Q]ABM [Q]BA

=
∑

a>b,c>d

(Nab,cd[Q] +Nab,dc[Q]) (Ncd,ab[Q] +Ncd,ba[Q])

=
∑

a6=b,c 6=d
Nab,cd[Q]Ncd,ab[Q]

=
∑

a6=b,c 6=d
(δbcQda + δacQdb)(δdaQbc + δcaQbd)

=
∑

a6=b,c 6=d
δcaQ

2
bd

=
∑
abcd

(1− δab)(1− δcd)δcaQ2
bd

= (n− 2)
∑
ab

Q2
ab

= (n− 2)Tr[Q2]. (D.6)

In the second line of Eq. (D.6) we write the sum over the indices A,B, . . . in
terms of a sum over the replica indices a, b, . . .. In the third line we use the symmetry
of Nab,cd[Q] with respect to a↔ b and rewrite the sum over a > b, c > d in terms
of a sum with a 6= b, c 6= d. In the fifth line we find out that only one of the terms
stemming from the product (δbcQda + δacQdb)(δdaQbc + δcaQbd) does not vanish,
because of the constraints a 6= b, c 6= d, Qaa = 0 (see Eq. (5.2)), and because of the
Kronecker δs in the sum. Once we are left with the nonvanishing term, in the sixth
line we write explicitly the sum over a 6= b, c 6= d in terms of an unconstrained sum
over a, b, c, d by adding the constraints (1 − δab)(1 − δcd). In the seventh line we
calculate explicitly the sum over the replica indices, and write everything in terms
of the replica invariant I(2)

1 [Q] ≡ Tr[Q2] (see Table E.1).

By following the steps shown Eq. (D.6), all the other tensorial operations can be
done. In particular, one finds

Tr[M [Q]3] = (n− 2)Tr[Q3]. (D.7)



103

By plugging Eqs. (D.6), (D.7) into Eq. (D.5), and then substituting Eq. (D.5)
into the recursion relation (D.4), one finds

Pk[Q] = exp
{
−
[(

2rk−1
C4 − β2

4 −
n− 2

4

(
wk−1

2C2rk−1

)2
)
Tr[Q2] + (D.8)

+1
3

(
2wk−1
C6 + n− 2

2

(
wk−1

2C2rk−1

)3
)
Tr[Q3] +O(w4

k−1)
]}
.

Comparing Eq. (D.8) to the ansatz (5.8) for Pk, one finds the recursion relations
(5.9) for the coefficients rk, wk.





Appendix E

Results of the two-loop RG
calculation à la Wilson

Here we sketch the results of the perturbative calculation to the order w5
k mentioned

in Section 5.1. The invariants I(j)
l [Q] yielding Pk[Q] as a fifth-degree polynomial in

Q are given in Table E.1.

The recurrence RG equation (5.5) relating Pk−1[Q] to Pk[Q] yields a set of
equations relating the coefficients {c(j)

l, k−1}j,l to {c
(j)
l, k}j,l. After a quite involved

calculation, one finds that these are

c
(2)
1, k =

2c(2)
1, k−1
C4 − β2

4 −
n− 2

4

 c
(3)
1, k−1

2C2c
(2)
1, k−1

2

+ (2n− 1)
c

(4)
1, k−1

8C4c
(2)
1, k−1

+

+
c

(4)
2, k−1

2C4c
(2)
1, k−1

[
1 + n(n− 1)

4

]
+ (n− 2)

c
(4)
3, k−1

8C4c
(2)
1, k−1

+
3c(4)

4, k−1

8C4c
(2)
1, k−1

+

+O
(
(c(3)

1, k−1)6
)
, (E.1)

Table E.1. Invariants generated to the order p = 5. In each line of the table we show the
invariants I(j)

1 [Q], . . . , I(j)
nj [Q] from left to right.

j I
(j)
l [Q]

2 Tr[Q2]

3 Tr[Q3]

4 Tr[Q4] Tr[Q2]2
∑
a6=cQ

2
abQ

2
bc

∑
abQ

4
ab

5 Tr[Q5] Tr[Q2]Tr[Q3]
∑
abcdQ

2
abQbcQbdQcd

∑
abcQ

3
abQacQbc
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c
(3)
1, k =

2c(3)
1, k−1
C6 + n− 2

2

 c
(3)
1, k−1

2C2c
(2)
1, k−1

3

+
3nc(5)

1, k−1

4C6c
(2)
1, k−1

+

+(n+ 3)
3c(5)

2, k−1

20C6c
(2)
1, k−1

+
9c(5)

3, k−1

20C6c
(2)
1, k−1

+

+
3c(5)

4, k−1

20C6c
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Appendix F

One-loop RG calculation in the
field-theory approach

In this Appendix we present the computation of the RG functions Zg, ZQ2 to order g2
r .

In the bare theory, 1PI correlation functions are defined by the action (5.23), and
they can be obtained as the derivative of the bare 1PI generating functional Γ[Q]
with respect to Qi, ab. Similarly, the renormalized 1PI correlation functions are the
derivatives with respect to Q of the generating functional Γr[Q] of the renormalized
theory, which depends on the renormalized parameters mr, gr. Accordingly, Γr[Q]
can be expanded in powers of gr by means of the loop expansion

Γr[Q] = 1
2

2k−1∑
i,j=0

∆ijTr[QiQj ] + m3ε
r gr
3!

∑
i

Tr[Q3
i ]
(
Zg + (F.1)

+n− 2
8 m

6ε
2σ−1
r I7g

2
r

)
+O(g5

r ).

The Feynman diagram I7 is depicted in Fig. 5.1, and is equal to

I7 = 1
2k

2k−1∑
p=0

1(
mr + δm+ |p|2σ−1

2

)3 . (F.2)

It is easy to show that I7 has a finite limit for k →∞. Indeed, the propagator
(5.24) in the sum in the right-hand side of Eq. (F.2) depends on p through its dyadic
norm. Hence, the sum over p in the right-hand side of Eq. (F.2) can be easily
transformed into a sum over all the possible values of |p|2. In order to do so, we
recall [139] that the number of integers 0 ≤ p ≤ 2k − 1 which satisfy |p|2 = 2−j
is given by 2−j+k−1. This number is the volume of a shell in a space of integer
numbers p, where the distance between two integers p1, p2 is given by the dyadic
norm |p1 − p2|2. Hence, Eq. (C.1) becomes

I7 =
k−1∑
j=0

2−j−1 1[
mr + δm+ 2−j(2σ−1)]3 (F.3)

k→∞=
∞∑
j=0

2−j−1 1[
mr + δm+ 2−j(2σ−1)]3 ,
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where in the second line of Eq. (F.3) the k →∞ limit has been taken, because the
sum in the first line is convergent in this limit. One can also show that δm = O(g2

r ),
and thus rewrite (F.3) as

I7 =
∞∑
j=0

2−j−1 1[
mr + 2−j(2σ−1)]3 +O(g2

r ). (F.4)

Looking at Eq. (F.4), we observe that I7 is divergent for mr → 0. In particular, the
smaller mr, the larger the values of j dominating the sum. It follows that in the IR
limit mr → 0 the sum in the right-hand side of Eq. (F.4) can be approximated by
an integral, because in the region j � 1 dominating the sum the integrand function
is almost constant in the interval [j, j + 1]. Setting q ≡ 2−j , for mr → 0 we have
−q log 2 dj = dq, and

I7 = 1
2 log 2

∫ 1

0

dq

[mr + q2σ−1]3
+O(g2

r )

= m
− 6ε

2σ−1
r

2 log 2

∫ m
− 1

2σ−1
r

0

dx

(1 + x2σ−1)3 +O(g2
r )

= m
− 6ε

2σ−1
r

2 log 2

∫ ∞
0

dx

(1 + x2σ−1)3 +O(g2
r ), (F.5)

where in the last line of Eq. (F.5) the mr → 0-limit has been taken. By considering
the asymptotic behavior for x→∞ of the integrand function in the last line of Eq.
(F.5), one finds that its integral is convergent for ε > 0 and divergent for ε < 0, in
such a way that it has a singularity for ε→ 0+. Its ε-divergent part can be easily
evaluated

I7 = m
− 6ε

2σ−1
r

4 log 2 Γ
(

3 + 1
1− 2σ

)
Γ
(

1 + 1
1− 2σ

)
+O(g2

r )

= m
− 6ε

2σ−1
r

[ 1
12ε log 2 +Oε(1)

]
+O(g2

r ), (F.6)

where Γ is the Euler’s Gamma function, and in the second line of Eq. (F.6) we
developed the right-hand side in the first line in powers of ε around ε = 0, where
Oε(1) denotes terms which stay finite as ε→ 0.
We now plug Eq. (F.6) into Eq. (F.1), and require that Γr[Q], the generating
functional of the renormalized theory, is finite, i. e. that it has no terms singular in
ε. Accordingly, we require that the ε-singular part of I7 is canceled by Zg: this is
the minimal subtraction scheme. Taking n = 0, this subtraction implies that

Zg = 1 + 1
48ε log 2g

2
r +O(g4

r ). (F.7)

A very similar calculation can be done by considering the generating functional
Γ[Q,K], whose derivatives with respect to Qi, ab and Kj yield 1PI correlation
functions with Qi, ab and Tr[Q2

j ]-insertions, and by introducing the corresponding
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functional of the renormalized theory Γr[Q,K]. By requiring that Γr[Q,K] is finite,
we obtain

ZQ2 = 1 + 1
24ε log 2g

2
r +O(g4

r ). (F.8)

Eqs. (F.7), (F.8) are the one-loop renormalization constants Zg, ZQ2 .





Appendix G

Computation of the observables
6.7 in Dyson’s Hierarchical
Model

In order to compute the observables (6.7), it is convenient to introduce for any
k a discrete magnetization variable µ taking 2k + 1 possible values {−1,−1 +
2/2k, · · · , 0, · · · , 1− 2/2k, 1}, and its probability distribution

πk(µ) ≡
∑

~S e
−βHF

k [~S]δ
(

1
2k
∑2k
i=1 Si = µ

)
Zk

, (G.1)

where

Zk ≡
∑
~S

e−βHF
k [~S],

and δ denotes the Kronecker delta. Eq. (2.1) implies [57] that πk(µ) satisfies a
recursion equation analogous to Eq. (2.5)

πk+1(µ) = eJβC
k+1
F µ2 ∑

µ1,µ2

πk(µ1)πk(µ2)δ
(
µ1 + µ2

2 = µ

)
, (G.2)

where a µ-independent multiplicative constant has been omitted in the right-hand
side of Eq. (G.2).

Given βJ , the recursion equation (G.2) can be iterated numerically k0 − 1 times
in 2k0 operations. Once πk0(µ) is known, the observable OFk0

(βJ) can be easily
computed. Indeed, according to Eqs. (6.7), (6.4), we have

OFk0(βJ) =
E~S
[(

1
2k0−1

∑2k0−1
i=1 Si

) (
1

2k0−1
∑2k0
i=2k0−1+1 Si

)]
E~S
[(

1
2k0−1

∑2k0−1
i=1 Si

)2
] . (G.3)
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Model

The numerator of Eq. (G.3) is

E~S

 1
2k0−1

2k0−1∑
i=1

Si

 1
2k0−1

2k0∑
i=2k0−1+1

Si

 =

= 1
Zk0

∑
~S

exp

−β (HF
k0−1[~S1] +HF

k0−1[~S2]
)

+ βJCk0
F

 1
2k0

2k0∑
i=1

Si

2
×

×

 1
2k0−1

2k0−1∑
i=1

Si

 1
2k0−1

2k0∑
i=2k0−1+1

Si

×
×
∑
µ1,µ2

δ

 1
2k0−1

2k0−1∑
i=1

Si = µ1

 δ
 1

2k0−1

2k0∑
i=2k0−1+1

Si = µ2


=

Z2
k0−1
Zk0

∑
µ1,µ2

eβJC
k0
F

(
µ1+µ2

2

)2

µ1µ2πk0−1(µ1)πk0−1(µ2), (G.4)

where S1 ≡ {S1, · · · , S2k0−1}, S2 ≡ {S2k0−1+1, · · · , S2k0}, and in the first line of Eq.
(G.4) we used the recurrence relation (2.1), and we multiplied by a factor equal to
one, while in the second line we used the definition (G.1). By following the same
steps as in Eq. (G.4), the denominator in Eq. (G.3) is

E~S


 1

2k0−1

2k0−1∑
i=1

Si

2
 =

Z2
k0−1
Zk0

∑
µ1,µ2

eβJC
k0
F

(
µ1+µ2

2

)2

µ2
1πk0−1(µ1)πk0−1(µ2).

(G.5)
By dividing Eq. (G.4) by Eq. (G.5), the multiplicative constants cancel out, and we
are left with

OFk0(βJ) =
∑
µ1,µ2 e

βJC
k0
F

(
µ1+µ2

2

)2

µ1µ2πk0−1(µ1)πk0−1(µ2)∑
µ1,µ2 e

βJC
k0
F

(
µ1+µ2

2

)2

µ2
1πk0−1(µ1)πk0−1(µ2)

. (G.6)

The right-hand side of Eq. (G.6) can be computed in 2k0 operations.



Appendix H

Solution of the real-space RG
equations with the
high-temperature expansion

In this Appendix we show how the RG equations (6.20) can be solved with a sys-
tematic expansion in powers of β, by illustrating an explicit example where this
expansion is performed up to order β4.

Expanding in powers of β the arctanh term in the right-hand side of Eq. (6.20)
we have {

m′2 = C4

2 m2 + C4

2 β
2(m2)2 + C8

8 β
2(m2)2 − C8

24 β
2m4,

m′4 = 3C8

16 (m2)2 + C8

16m4.
(H.1)

An important feature of Eq. (H.1) is that it reproduces the fact that for σ < 1/2
the thermodynamic limit is ill-defined, as we discussed in Part III, Eq. (4.12). In
order to see this, let us look at the first line of Eq. (H.1). The first addend in the
right-hand side is the O(β2)-term resulting from the β-expansion of the term in square
brackets in the right-hand side of Eq. (6.20), while the other addends are O(β4)-
terms. Keeping only the first term and using Eq. (2.13), we have m′2 = 21−2σm2
. Accordingly, if σ < 1/2 we have m′2 > m2, i. e. the variance of the coupling J
increases at each RG step, in such a way that in the thermodynamic limit k →∞
the interaction energy diverges, and the model is ill-defined. On the other hand, Eq.
(H.1) does not reproduce the condition σ < 1. This fact will emerge also in the nu-
merical solution of the RG equations (6.19), and it will be discussed in Section 6.2.1.1.

Eq. (H.1) is formally analogous to Eq. (A.11) for DHM, and to Eq. (5.9),
(E.1), (E.2) for the HEA. Accordingly, it is easy to see that Eq. (H.1) has a stable
high-temperature fixed point m2 = m4 = 0, and a stable low-temperature fixed
point m2 = m4 =∞. These fixed points are separated by an unstable critical fixed
point m2 = m∗2,m4 = m∗4. By iterating k times Eq. (H.1) we generate the sequence
m2 k,m4 k, and we depict the flow {m2 k,m4 k}k in Fig. H.1 for different values of the
temperature. Fig. H.1 shows that there is a value of the temperature TRSc such that
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high-temperature expansion

for T = TRSc {m2 k,m4 k}k converges to m∗2,m∗4, while for T ≷ TRSc {m2 k,m4 k}k
converges to the high or low-temperature fixed point respectively.
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c
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c
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c

Figure H.1. Parametric plot of (m2 k,m4 k) as a function of k with σ = 0.6. The black
points represent (m2 k,m4 k) for increasing k from left to right, with T < TRSc . The blue
points represent (m2 k,m4 k) for increasing k from top to bottom, with T > TRSc . The
red points represent (m2 k,m4 k) for increasing k from top to bottom: here T has been
dynamically adjusted to TRSc at each step k with the same procedure as that described
in the Caption of Fig A.1 for DHM.

We now use the same procedure as that illustrated in Section A.2 to calculate
m∗2,m

∗
4, by taking β = βRSc in such a way that Eq. (H.1) has a nontrivial fixed point

ma = m′a = m∗a{
m∗2 = C4

2 m
∗
2 + C4

2 (βRSc )2(m∗2)2 + C8

8 (βRSc )2(m∗2)2 − C8

24 (βRSc )2m∗4,

m∗4 = 3C8

16 (m∗2)2 + C8

16m
∗
4.

(H.2)

The second line in Eq. (H.2) yields

m∗4 = 3C8(m∗2)2/[16(1− C8/16)], (H.3)

and by plugging Eq. (H.3) into the first line of Eq. (H.2) we obtain

m∗2 = C4

2 m∗2

{
1 +

[
1 + C4

4 + C12

26(−1 + C8/16)

]
(βRSc )2m∗2

}
. (H.4)

Eq. (H.4) has a solution m∗2 = 0 which is ruled out, and a nonzero solution
m∗2 ∝ 1−C4/2. In the following we will compute this solution with an expansion in
the neighborhood of σ = 1/2. According to Eq. (2.13) one has 1−C4/2 = O(σ−1/2),
thus we have m∗2 = O(σ − 1/2), and m∗4 = O((σ − 1/2)2). More precisely, from Eqs.
(H.4), (H.3) we have

m∗2 = 3 log 2
2(βRSc )2 (σ − 1/2) +O((σ − 1/2)2),

m∗4 = 9(log 2)2

4(βRSc )4 (σ − 1/2)2 +O((σ − 1/2)3). (H.5)
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Once the critical fixed point has been found, we can linearize the RG transfor-
mation (H.1) in the neighborhood of m∗2,m∗4 to extract the critical exponents. To
this end, we introduce the 2× 2 matrix

Mij ≡
∂m′2i
∂m2j

∣∣∣∣∣
~m=~m∗

(H.6)

and its largest eigenvalue ΛRS . From Eqs. (H.6), (H.1), (H.5) one finds

ΛRS = 1 + 2 log 2 (σ − 1/2) +O((σ − 1/2)2). (H.7)

This high-temperature expansion can be implemented to higher orders in β.
More precisely, it turns out that if the expansion of the term in square brackets in Eq.
(6.20) is done up to order β2m, one obtains a set of m RG equations analogous to
Eq. (H.1), relating {m2a}a=1,...,m to {m′2a}a=1,...,m. The critical fixed point and the
matrix M linearizing the RG transformation in its neighborhood are then extracted.
The largest eigenvalue ΛRS of M can be computed as a power series in σ − 1/2 up
to order (σ − 1/2)m−1. This computation has been done for m ≤ 5 by means of a
symbolic manipulation program [170], and the result is given in Eq. (6.21).





Appendix I

Numerical discretization of the
matrix MRS in the
k0 = 2-approximation

In this Section we describe the numerical computation of the matrix MRS and of
its spectrum through a discretization of the continuous variable J .

Suppose that by iterating Routine 2 we computed the critical fixed point p∗(J )↔
{Ji}i. As shown in Fig. 6.4, p∗(J ) has a compact support [−JMAX,JMAX], where
JMAX is defined by Eq. (6.24). This feature of the critical fixed point suggests a
rather natural way to compute MRS

J ,J ′ , based on a discretization of the continuous
variable J in the compact interval [−JMAX,JMAX]. Let us consider

J (i) ≡
[1

2 + (i− 1)
] 2JMAX

B
− JMAX, ∀i = 1, . . . , B, (I.1)

and the B ×B matrix
Mij ≡MRS

J (i),J (j). (I.2)

The matrix M, and so MRS , can be easily computed numerically with a population-
dynamics routine which is quite similar to Routine 1.

In Fig. I.1 we depict MRS
J ,J ′ as a function of J ,J ′, computed by means of

Eq. (I.2) for a given σ-value, and we show that by taking B large enough the
discretization method reconstructs a smooth function of J ,J ′.

The eigenvalues of M can be easily extracted numerically, and the eigenvalues
of MRS , which are related to the critical exponents, can be easily obtained from
those of M as follows. The n-th eigenvalue λ(n) and the left and right eigenfunctions
φLn(J ), φRn (J ) of MRS are defined by∫

dJ ′MRS
J ,J ′φ

R
n (J ′) = λ(n)φRn (J ), (I.3)∫

dJ φLn(J )MRS
J ,J ′ = λ(n)φLn(J ′). (I.4)
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k0 = 2-approximation
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Figure I.1. Matrix MRS
J ,J ′ as a function of J ,J ′ in the k0 = 2-approximation obtained with

the discretization method (I.2) with σ = 0.6215, P = 107, B = 96, kMAX = 50, x = 0.1.
The matrix is not symmetric, and thus some eigenvalues are complex. Notwithstanding
this, the explicit numerical computation of the spectrum of MRS shows that the
eigenvalue yielding the critical exponent ν is real.

The n-th eigenvalue λ(n)
D and the left and right eigenvectors φLDn(i), φRDn(i) of M are

defined by

B∑
j=1
Mijφ

R
Dn(j) = λ

(n)
D φRDn(i), (I.5)

B∑
i=1

φRLn(i)Mij = λ
(n)
D φLDn(j). (I.6)

If we multiply Eqs. (I.5), (I.6) by dJ ≡ 2JMAX/B, take the large-B limit, transform
the sums in Eqs. (I.5), (I.6) into integrals and use the definition (I.2), by comparing
Eqs. (I.5), (I.6) to Eqs. (I.3), (I.4) we obtain the following identifications holding in
the B →∞-limit

λ
(n)
D × dJ = λ(n), (I.7)
φRDn(i) = φRn (J (i)), (I.8)
φLDn(i) = φLn(J (i)). (I.9)

In particular, from Eq. (I.7) we can extract the eigenvalues of MRS from those of
M.

In order to extract the critical exponents, one should observe that there is an
eigenvalue, that we will call λ(1), which can be calculated analytically and which
does not contribute to ν even though it is part of the spectrum of MRS . Indeed,
by multiplying Eq. (6.28) by p∗(J ′), integrating with respect to J ′ and using Eq.
(6.26), we obtain ∫

dJ ′MRS
J ,J ′p∗(J ′) = 6p∗(J ), (I.10)

while by multiplying Eq. (6.28) by a constant A and integrating with respect to J
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we have ∫
dJAMRS

J ,J ′ = 6A. (I.11)

Comparing Eqs. (I.10), (I.11) to Eqs. (I.3), (I.4) we have

λ(1) = 6,
φR1 (J ) = p∗(J ),
φL1 (J ) = A. (I.12)

Following the very same procedure as Wilson’s [163], if we iterate the RG equations
(6.19) k times for T ≈ TRSc and then iterate l times, the difference between pk+l and
p∗ is given by

pk+l(J )− p∗(J ) =
∫
dJ ′[(MRS)l]J ,J ′ [pk(J ′)− p∗(J ′)]

=
∫
dJ ′

∑
n

(λ(n))lφRn (J )φLn(J ′)[pk(J ′)− p∗(J ′)], (I.13)

where [(MRS)l]J ,J ′ is the J ,J ′-th component of the matrix (MRS)l, and in the sec-
ond line of Eq. (I.13) the spectral representation of MRS has been used. According
to the third line of Eq. (I.12), the integral in the second line of Eq. (I.13) vanishes
for n = 1 because of the normalization condition

∫
dJ ′pk(J ′) =

∫
dJ ′p∗(J ′) = 1.

Hence, the eigenvalue λ(1) does not contribute either to the exponential divergence
of pk+l from p∗ nor to ν [163]. This fact is rather natural, because the eigenvalue
λ(1) = 6 is an artefact of the k0 = 2-approximation, where a 22-spin HEA model with
exactly six couplings {Jα}α is reduced to a 2-spin HEA. This fact will be elucidated
further in Section 6.2.2 when illustrating the k0 > 2-approximations. Indeed also for
k0 > 2 there is an eigenvalue λ(1) = 2k0(2k0 − 1)/2 which depends explicitly on the
approximation degree k0, but which does not contribute to ν.

The eigenvalue of MRS determining ν is easily found by defining n∗ in such a
way that

|λ(n∗)| = max
n

(|λ(n)|) and
∫
dJ φLn∗(J )[pk(J )− p∗(J )] 6= 0, (I.14)

and by observing that [163] the critical exponent ν defined by Eq. (5.14) is given by

ν = log 2
log λ(n∗)

. (I.15)
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We introduce a random energy model on a hierarchical lattice where the interaction strength between

variables is a decreasing function of their mutual hierarchical distance, making it a non-mean-field model.

Through small coupling series expansion and a direct numerical solution of the model, we provide

evidence for a spin-glass condensation transition similar to the one occurring in the usual mean-field

random energy model. At variance with the mean field, the high temperature branch of the free-energy is

nonanalytic at the transition point.
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Clarifying the nature of glassy states is a fundamental
goal of modern statistical physics. Both for spin glasses [1]
and for structural glasses [2], the mean-field theory of
disordered systems provides a suggestive picture of labo-
ratory glassy phenomena as the reflection of an ideal
thermodynamic phase transition. Unfortunately, the devel-
opment of a first principles theory of glassy systems going
beyond mean field has resisted decades of intense research
[3–5]. One of the main obstacles towards this goal lies in
the lack of reliable real space renormalization group (RG)
schemes allowing us to reduce the effective number of
degrees of freedom and identify the relevant fixed points
describing glassy phases. In ferromagnetic systems, an
important role in the understanding of the real space RG
transformation has been played by spin systems with
power law interactions on hierarchical lattices [6,7]. In
these models, the RG equations take the simple form of
nonlinear integral equations for an unknown function (as
opposed to the functional of statistical field theory), that
can be solved with high precision. In this perspective, it is
natural to generalize these models to spin glasses [8,9].

In this Letter, we introduce the simplest such spin-glass
model, a random energy model (REM) [13,14]. As we shall
see, the hierarchical REM is such that the interaction
energy between subsystems scales subextensively in the
system size. It thus qualifies as a non-mean-field model.
We report in what follows the results of a small coupling
expansion and of an algorithmic solution of the RG equa-
tions for the entropy that, exploring complementary re-
gions of parameter space, provide the first analytic
evidence in favor of an ideal glass transition in a non-
mean-field model. Interestingly, this transition turns out to
have—as in the case of the standard REM—the character
of an entropy catastrophe analogous to the one hypothe-
sized long ago for the structural glasses [15,16].

The hierarchical REM can be defined as a system of
N ¼ 2k Ising spins with an energy function defined recur-
sively. The recursion is started at the level of a single spin
k ¼ 0, with the definition of H0½S� ¼ �0ðSÞ, where the

single spin energies are independent identically distributed
(i.i.d.) random variables extracted from a distribution
�0ð�Þ. At the level kþ 1, we consider then two indepen-
dent systems of 2k spins S1 ¼ fS1ig, i ¼ 1; . . . ; 2k and S2 ¼
fS2ig, i ¼ 1; . . . ; 2k with Hamiltonians H1k½S1� and
H2k½S2�, respectively, and put them in interaction to form
a composite system of 2kþ1 spins and Hamiltonian

Hkþ1½S1; S2� ¼ H1k½S1� þH2k½S2� þ �k½S1; S2�;
where the �k are i.i.d. random variables extracted from a
distribution �kþ1ð�Þ, chosen to have zero mean and vari-

ance h�k½S1; S2�2i � 2ðkþ1Þð1��Þ. The interaction term
�k½S1; S2� is physically analogous to a surface interaction
energy between the two subsystems. For � 2 ð0; 1Þ, this
model qualifies as a non-mean-field system, where the
interaction energy between different parts of the system
scales with volume to a power smaller than unity. On the
contrary, when � � 0, the interaction energy grows faster
than the volume. A rescaling of the energy is then neces-
sary to get a well-defined thermodynamic limit. The sys-
tem behaves in this case as a mean-field model. Finally, for
�> 1, the interaction energy decreases with distance and
asymptotically the model behaves as a free system. In the
following, we focus on the most interesting region 0<
�< 1.
We have studied this model with two different methods.

The first one is a replica study of the quenched free energy,
performed through a small coupling perturbative expan-
sion. The second one is a numerical estimate of the micro-
canonical entropy as a function of the energy. Both
methods suggest that a REM-like finite-temperature phase
transition occurs for all � 2 ð0; 1Þ.
Perturbative computation of the free energy.—In order to

make the calculations as simple as possible, we have
chosen a Gaussian distribution for the energies �k. We
then considered the perturbative expansion in g � 21��

of the free energy fðTÞ ¼ fðmÞðTÞ þOðgmþ1Þ. Notice that
the expansion of f to the mth order takes into account just
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the interactions with range less or equal to 2m, i.e., the first
m hierarchical levels.

The computation of the free energy has been done with
the replica method. In this context, it is just a mathematical
tool to organize the terms of the series. We considered then
the expansion of the average partition function of the
system replicated n times

Zn ¼ X

S1���Sn
exp

�
�2

4

Xk

j¼0

gj
X2k�j

i¼1

Xn

a;b¼1

�
Sðj;iÞa Sðj;iÞ

b

�
(1)

where � � 1=T, and Sðj;iÞ is the configuration of the ith
group of spins at the jth level of the hierarchy. This

representation allowed an automated computation of fðmÞ
up to the value of m ¼ 10.

A useful check of the method is obtained considering
�< 0. Since in this case high values of j dominate the
energy in (1), correlations between the energy levels can be

neglected. After rescaling the energies by �j ! 2k�=2�j,

the free energy of the model becomes equal to the one of

the standard REM [13,14] with critical temperature Tc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j2

��j= log2
q

. We found that, when increasing m, fðmÞ

converges to the REM free energy with exponential speed
in the whole high temperature regime �<�c.

We now consider fðTÞ for 0<�< 1. The direct in-
spection of the curves shows that, form � 1, themth order

entropy sðmÞðTÞ � �dfðmÞðTÞ=dT while positive at high

temperature, becomes negative at some temperature TðmÞ
c .

As can be seen in Fig. 1, the sequence TðmÞ
c exhibits a good

exponential convergence to a finite limit Tc for � � 0:15.
The stability of these data for large m clearly suggests that
an entropy crisis transition is present in the model at Tc.
The inset in Fig. 1 shows that Tc is a decreasing function of
�, consistently with the fact that the larger �, the weaker
the interaction strength. At high temperature also, the free-

energy series has a good exponential convergence in g (see
Fig. 2).
This small g expansion gives some evidence for an

entropy crisis taking place at temperature Tc. It is impor-
tant to realize that this Tc cannot be simply computed from
the sum of the variances of the �k: the energy correlations
cannot be neglected. An entropy crisis implies the exis-
tence of a phase transition at a temperature� Tc. In a REM
scenario, the phase transition would take place exactly at
Tc, when the entropy vanishes. An argument in favor of
such a result can be found with a one-step replica symme-
try breaking ansatz. Consider the partition function (1) and
suppose that the n replicas are grouped into n=x groups, so

that, for any two replicas a, b in the same group, Sðj;iÞa ¼
Sðj;iÞb for all i, j. Then perform again the small g expansion,

within this ansatz. To each order m, this procedure gives a

free energy fðmÞ
x ðTÞ ¼ fðmÞðT=xÞ. The maximization over x

then gives x ¼ 1 for T > TðmÞ
c , and x ¼ T=TðmÞ

c for T <

TðmÞ
c . This result is in complete analogy with the one found

in the REM, so the above replica symmetry breaking
Ansatz predicts a REM-like transition at T ¼ Tc. In order
to get distinct evidence for this scenario, we have done
some numerical study.
Numerical computation of the entropy.—We exploit the

hierarchical structure of the model to compute the micro-
canonical entropy SkðEÞ. In order to make the computa-
tions as simple as possible, we have chosen for �kð�Þ the
binomial distribution [17,18],

�kð�Þ ¼ 1

2Mk

Mk

�þ Mk

2

� �
:

At the level k,Mk is the integer part of �2
kð1��Þ, to have the

FIG. 1. The temperatures TðmÞ
c vs m for � ¼ :1. Here, Tc ¼

1:861� :021. Inset: Tc vs �.

FIG. 2. To get a better convergence for the free energy, we

considered the sequence fðmÞðT � Tc þ TðmÞ
c Þ instead of fðmÞðTÞ.

As TðmÞ
c ! Tc form ! 1, the two sequences have the same limit

fð1ÞðTÞ. Here, we see that for � ¼ 0:1, fðmÞðTÞ has negative

entropy sðmÞðTÞ for T < TðmÞ
c .
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same scaling of the variance as in the Gaussian model. The
constant � is chosen so that for all the values of � studied,

bð�2kð1��ÞÞc=ð�2kð1��ÞÞ 	 1 for every k. Consider the
disorder-dependent density of states for a sample a:
N a

kðEÞ ¼
P

S�HkðSÞ;E. The recursion relation that defines

the model’s Hamiltonian implies that when two samples a
and b at the level k are merged to define a sample at the
level kþ 1, the resulting density of states N c

kþ1ðEÞ sat-
isfies

N c
kþ1ðEÞ ¼

X

Ea;Eb;�
E¼EaþEbþ�

nkðEa; Eb; �Þ (2)

where nkðEa; Eb; �Þ ¼
P

S1;S2
�Ha

k
ðS1Þ;Ea



�Hb

k
ðS1Þ;Eb

��kðS1;SeÞ;� is the number of states in the composite

system that have Ha ¼ Ea, Hb ¼ Eb and interaction en-
ergy equal to �. For given Ea and Eb, the joint distribution
of the nkðEa; Eb; �Þ for the different values of � is multi-
nomial with parameters q� ¼ hnkðEa; Eb; �Þi ¼
N a

kðEaÞN b
kðEbÞ�kð�Þ, while nk’s with different first or

second argument are independent.
Our algorithmic approach starts from the exact iteration

of Eq. (2). Thanks to the use of a discrete interaction
energy, the iteration time grows with k proportionally to

2kð3��Þ. This allowed us to reach the level k ¼ 12. The
results of the iteration shows that the values of the energy
can be divided in bulk region of energy density around the

origin where the number of states N kðEÞ ¼ e2
kSkðE=2kÞ is

exponential in the system size, and an edge region where
the number of states is of order one (see Fig. 3).

In order to proceed further, we assume the existence and
self-averaging property of the entropy density SðeÞ in the
thermodynamic limit. We then coarse grain our descrip-
tion. We discretize the energy density in the bulk region

and use an approximated iteration for the entropy, where
the sum (2) is approximated by its maximum term. We
account for the edge region using the exact recursion for
the N0 ¼ 10 000 lowest energy levels. We can in this way
iterate many times and obtain a good estimate of the
thermodynamic limit behavior.
In Fig. 3, we present the average entropy density as a

function of the energy density e for various values of �. In
order to identify the transition, it is more convenient to
average the data obtained with a fixed energy difference
from the fluctuating ground states. We can get in this way
good estimates of the value of the inverse critical tempera-
ture of the model �c ¼ s0ðe0Þ. An interesting feature
emerging from our analysis is that close to the ground state
energy density e0, the entropy is not analytic and behaves
as SðeÞ 	 �cðe� e0Þ þ Cðe� e0Þa with a well fitted by
the value a ¼ 2� �. This behavior, when translated in
the canonical formalism, implies a singularity of the

free energy close to Tc, FðTÞ ¼ E0 þ const
 ðT �
TcÞð2��Þ=ð1��Þ, corresponding to a specific heat exponent
� ¼ � �

1�� .

Having found evidence for a thermodynamic phase tran-
sition, we turn our attention to the distribution of low-lying
energy states. The REM picture suggests that, close to the
ground state, the number of energy levels with given
energy E are independent Poissonian variables with den-

sity hN 1ðEÞi ¼ e�cðE�E0Þ. A computation using extreme
value statistics shows that the probability Q‘ðkÞ that the
ground state and first ‘� 1 excited states are occupied by n
levels is given by

Q‘ðnÞ ¼ ½1� expð�‘�cÞ�n=ð‘�cnÞ: (3)

In Fig. 4, we show theQ‘ðnÞ obtained numerically together
with a fit with the form (3). This procedure confirms the

FIG. 3. The entropy sðeÞ vs e=
ffiffiffiffi
�

p
for � ¼ 0:9, 0.8, 0.7, 0.6

(with � ¼ 30, 10, 5, 5, respectively), from the outside to the
inside. Inset: power law behavior of �� �c. The slopes are
close to 1� �, with � ¼ 0:6, 0.7, 0.8 from bottom to top.

FIG. 4. Numerical data (cross) and the fitting function Q3ðnÞ
for the statistics of occupation of the ground state and the first
two occupied levels. Here, k ¼ 10, � ¼ 0:6 and � ¼ 5. The
dashed line is a fit with the form (3) with �c ¼ 1:20.
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validity of a REM-like transition, and provides an alter-
native way of estimating the critical temperature. As Fig. 5
shows, the two estimates for different values of k tend to
the same limit from opposite directions.

Conclusions.—In this Letter, we have introduced a hier-
archical, non-mean-field REM. We have analyzed it
through small coupling series, through a 1RSB replica
ansatz, and through an algorithmic approach. The two
approaches point to the existence of a REM-like phase
transition at the temperature where the entropy vanishes.
At variance with the mean-field result (which predicts a
discontinuity in the specific heat), one finds a nontrivial
specific heat exponent at Tc. It will be interesting to study
the replica structure of this hierarchical REM in order to
explore other possible replica solutions at low tempera-
tures. Another important theme of future research is the
study of spin-glass models with p-body interaction
[13,19,20]: at the mean-field level, these models display
an entropy crisis transition similar to the one of the REM

whenever p � 3. It will be interesting to study them on
hierarchical lattices.
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Abstract. We study the adversarial satisfiability problem, where the adversary
can choose whether the variables are negated in clauses or not, in order to
make the resulting formula unsatisfiable. This problem belongs to a general
class of adversarial optimization problems that often arise in practice and are
algorithmically much harder than the standard optimization problems. We use
the cavity method to compute large deviations of the entropy in the random
satisfiability problem with respect to the configurations of negations. We conclude
that in the thermodynamic limit the best strategy the adversary can adopt is to
simply balance the number of times every variable is negated and the number of
times it is not negated. We also conduct a numerical study of the problem, and
find that there are very strong pre-asymptotic effects that may be due to the fact
that for small sizes exponential and factorial growth is hardly distinguishable. As
a side result we compute the satisfiability threshold for balanced configurations
of negations, and also the random regular satisfiability, i.e. when all variables
belong to the same number of clauses.
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1. Introduction

The following setting often arises in practical optimization problems. Consider two
players, each of them has a given set of moves (configurations) and a cost function
depending on the moves of both the players. The first player is trying to optimize a
certain cost function over his set of moves (configurations), and the interest of the second
player is to make this optimum as bad as possible. In the game, at first the second
player (adversary) chooses his moves (a configuration), and then the first player chooses
his moves. What is the best strategy (algorithm) for the adversary in the case where his
set of moves is too large to be able to evaluate all the possibilities? A specific example
of this adversarial optimization setting could be a police department trying to set border
controls in such a way that the amount of goods smugglers can transfer is the smallest
possible [1, 2], or minimax games treated in [3].

Let us call the set of moves of the adversary �u, and the set of moves of the first
player �v, the cost function being f(�u,�v). The goal of the adversary is to find um that
maximizes min�v f(�u,�v). Since in common situations both �u and �v have exponentially
many components in the size of the system the adversarial optimization is much harder
than the usual (one-player) optimization, because even evaluating the min�v f(�u,�v) for a
given �u is typically a hard optimization problem.

In the theory of algorithmic complexity the so-called NP problems are those for which
it is easy (polynomial) to evaluate if a proposed solution is indeed a solution. In other
words verifying a solution to an NP problem is a polynomial problem. Assume now
that for a given �u the problem ∃�vΦ(�u,�v) = TRUE is an NP problem (as an example
consider Φ(�u,�v) = TRUE if and only if f(�u,�v) < a where f is the cost function

doi:10.1088/1742-5468/2011/03/P03023 2
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from above, and a is a constant). Then the associated adversarial decision problem
is defined as ∃�u ∀�vΦ(�u,�v) = TRUE. Hence if the class of polynomial problems is
considered easy, and the NP problems correspond to the first level of difficulty, then
the adversarial problems correspond to the second level of difficulty. We could continue
this construction by adding even more levels of logical quantifiers; this would lead to the
so-called polynomial hierarchy of complexity classes. For more details on these notions see
for instance [4, 5]. Without doubt, the theoretical understanding of hard optimization and
decision problems is crucial for many areas of science, and the same holds for adversarial
problems.

The most famous benchmark of an algorithmically hard problem is theK-satisfiability
(K-SAT) of Boolean formulas. Call a clause a logical disjunction (operation ‘or’) of K
variables or their negations. Given a set of N Boolean variables xi, and a set of M clauses,
the satisfiability problem consists in deciding whether all clauses can be simultaneously
satisfied or not. The K-SAT problem was the first problem shown to be NP-complete,
that is as hard as any other NP problems [6]. It has a large number of applications
in automated verification and design. The random K-SAT problem, where variables in
clauses are chosen randomly and negated with probability 1/2, provides easy to generate
hard formulas [7].

Random K-SAT thus became a common playground for new algorithms, and
theoretical ideas for understanding the origin of algorithmic hardness. The statistical
physics approach related to the physics of diluted spin glasses contributed tremendously
to the understanding of the properties of randomK-SAT formulas, see e.g. [8, 9]. Following
this path in this paper we introduce a random adversarial satisfiability problem and
develop a statistical mechanics framework to understand its properties. This framework
can be readily applied to other random adversarial optimization and decision problems.
We study the large deviation functions for the original optimization problem with respect
to the moves of the adversary. The main ideas of our approach to the study of large
deviations come from studies of spin glasses and the cavity method [10]–[13]. Our approach
is also closely linked to the well established fact that the replicated free energy in Parisi’s
replica symmetry breaking (RSB) [14, 15] can be interpreted as Legendre transformation
of the large deviation function. We will, however, derive our method independently of
these notions, by using only the factor graph representation of the problem and the belief
propagation (BP) algorithm.

One natural setting for the random adversarial satisfiability problem is to introduce
the negation-variables Jia, where Jia = 1 if variable i is negated in clause a, and Jia = 0 if
not. The set of moves of the adversary is then all the possible configurations of negations
{Jia}, while the moves of the first player are all the possible configurations of the variables
{xi}. The graph of interactions is chosen at random as before. The goal of the adversary
is to set the negations in such a way that the resulting formula is as frustrated as possible.
In particular, we will be interested in the question: can the adversary make the formula
unsatisfiable or not? We will call this problem random AdSAT.

An independent interest in the random AdSAT comes from the study of the random
quantum satisfiability (quantum SAT) problem [16]–[18]. It was shown that if the
adversary can make the random formula unsatisfiable, then also the random quantum
SAT is unsatisfiable. A natural question is whether the quantum SAT is much more
restrictive than the AdSAT or not.

doi:10.1088/1742-5468/2011/03/P03023 3
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Note also that the quantified satisfiability (QSAT) problem is another SAT-based
problem that belongs to the general adversarial setting as introduced above. In the QSAT
problem one introduces two types of variables: the existential variables xi and the universal
variables yi. The QSAT then consists in deciding whether ∀ �y ∃�xG(�x, �y) = TRUE, where
G(�x, �y) is a satisfiability formula (with negation-variables fixed). Random ensembles
of QSAT were introduced and studied in [19]. QSAT is arguably more important for
industrial applications than the AdSAT that we study here. We chose the AdSAT defined
as above because it is slightly simpler, and it provides information relevant to the original
random SAT problem. We plan to apply our approach to the random QSAT problem in
the near future.

In terms of methodology our study is also closely related to the work on optimization
under uncertainty [20], where the goal is to find argmin�uE�t min�v f(�u,�v, t). In other words
one needs to minimize an expectation of a result of an independent minimization, which
itself can be hard to compute. In [20] the authors studied the stochastic bipartite matching
problem with a message passing technique very closely related to the one we use for the
adversarial SAT problem here.

The present paper is structured as follows. In section 2 we set the adversarial
satisfiability problem, and describe our statistical physics approach to solve it. In section 3
we recall the standard belief and survey propagation (SP) equations for the random K-
satisfiability problem. In section 4 we derive the equations to compute the large deviations
with respect to the configurations of negations. In section 5 we first present and discuss
the cavity result for random regular adversarial satisfiability, then we do the same for
the canonical (Poissonian) random adversarial satisfiability. As a side result we obtain
the satisfiability threshold for the (non-adversarial) random regular and random balanced
SAT. In section 6 we compare our theoretical result to numerical simulations, performing
an exhaustive search of all the solutions. Finally, in section 7 we conclude and discuss the
perspectives of this work.

2. AdSAT as a large deviation calculation

The random K-SAT problem is defined as follows. Consider N Boolean variables
{xi}i=1,...,N , xi = {0, 1}, and M = αN clauses ψa. Each clause depends on K random
variables from the N available ones. If a variable i belongs to clause ψa, then we set
Jai = 1 if the variable is negated, and Jia = 0 if it is not. The K-SAT problem can
be represented via a so-called factor graph, a bipartite graph between variables (variable
nodes) and clauses (function nodes), with edges between variable i and clause a if i belongs
to clause a. The negation-variables can be seen as attributes of the edges. The random
K-SAT instance corresponds to the case where the Jias are drawn uniformly at random.
Probably, the most well known property of the random K-SAT is the existence of a phase
transition at a value αc such that if α < αc then with high probability (probability going
to one as N → ∞) there exists a configuration {xi} that satisfies all the clauses, and for
α > αc no such configuration exists with high probability. We define ∂i as the ensemble
of function nodes connected to the variable node i, ∂a as the ensemble of variable nodes
connected to the function node a.

The adversarial satisfiability problem (AdSAT) is defined by drawing a random K-
SAT instance as before without deciding the negation-variables {Jia} ≡ J . A solution to
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the AdSAT problem is given by a set J such that the resulting instance is unsatisfiable.
Just as in random K-SAT there is a threshold αa in the random AdSAT such that for
α < αa no solution to the AdSAT formula exists with high probability. And for α > αa a
solution exists with high probability. We observe that αa ≤ αc since above αc a random
configuration of negations makes the formula unsatisfiable, recall αc(K = 3) = 4.2667 [21].
Also αa ≥ αp, where αp = 1/K is the percolation threshold below which the graph is
basically a collection of small trees and a few single loop components, which are both
satisfiable for any configuration of negations. One of the goals of the present paper is to
estimate the value of the AdSAT threshold αa.

In random K-SAT the satisfiability threshold can be found by counting the number
of configurations that have a certain energy E({xi}) (i.e. number of unsatisfied clauses).
To compute the entropy one introduces a Legendre parameter β and computes the free
energy f defined as

e−βNf(β) =
∑

{xi}
e−βE({xi}) = eN [s(e)−βe],

∂s(e)

∂e
= β, (1)

where the number of configurations having energy E is eS(E), and the saddle-point
approximation for N → ∞ has been used. If E = 0 belongs to the support of the
function S(E) then the problem is in the satisfiable phase, if not than the problem is
in the unsatisfiable phase. In the satisfiable phase we call s = S(0)/N the entropy of
satisfying configurations. The cavity method and the replica symmetry breaking serve
to compute f(β) in the thermodynamic limit N → ∞ [22, 8]. There are two crucial
properties that make this calculation possible. First, the energy can be written as a sum
of local terms:

E({xi}) =
∑

a

∏

i∈∂a

δxi,Jia
. (2)

Second, the underlying factor graph is locally tree-like. These computations moreover
provide much more information about the problem than the value of the satisfiability
threshold.

In the study of random AdSAT we will proceed analogously. We consider the number
of configurations of the negations that yield a given value of the entropy of solutions s

s(J ) =
1

N
log

⎡
⎣∑

{xi}

M∏

a=1

(
1 −

∏

i∈∂a

δxi,Jia

)⎤
⎦. (3)

We define a large deviation function L(s) as the logarithm of this number divided by the
size of the system N . Again to compute L(s) it is advantageous to introduce its Legendre
transform

Z(x) = eNΦ(x) =
∑

J
exNs(J ) = eN [L(s)+xs],

∂L(s)

∂s
= −x, (4)

where the saddle-point approximation for N → ∞ has been used.
We stress here that L(s) is the large deviation function with respect to the negation-

configurations; it is hence defined for a given geometry of the satisfiability formula.
In what follows we assume, as is usual, that L(s) is self-averaging with respect to the
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formula geometry, i.e. L(s) is almost surely the same function for two randomly chosen
formulas. This assumption is a generalization of the self-averaging property of the free
energy in the canonical K-SAT problem. Note also that when writing this expression we
implicitly assume that the number of negation-configurations that give a certain entropy
is exponential in N . If it is smaller that exponential in N computation of Φ(x) will lead
to L(s) = −∞. We will come back to this point in section 6.

Note two special cases: for x = 0 the partition function (4) is simply equal to the
total number of negation-configurations Φ(0) = Kα log 2; for x = 1, the partition function
above is related to the annealed partition function, Φ(1) = log 2 + α log(2K − 1).

The major difficulty in calculating Φ(x), for a general value of x, is that the entropy
s(J ) is not defined as a sum of local terms. On the other hand the geometry of the
underlying factor graph is still tree-like in the random AdSAT, hence for any configuration
of negations J we can apply the cavity method (with replica symmetry breaking if needed)
to compute the entropy s(J ). In the cavity method, as is reminiscent of the Bethe
approximation, the entropy (or more generally Bethe free energy) can be written as a
sum of local terms. This fact enables us to calculate Φ(x).

The statistical physics treatment of the random K-SAT problem among others led
to a discovery that the replica symmetry breaking approach is needed [22, 8, 9] in order
to correctly compute the entropy close to the satisfiability threshold αc. In other words,
in that region the space of solutions splits into well ergodically separated clusters. We
define the complexity function Σ as the logarithm of the total number of clusters per
variable. The value of the complexity can then be computed with the survey propagation
equations [8]. At the satisfiability threshold the complexity goes to zero, whereas the
entropy density of solutions is a positive number even at the threshold. With this in mind
it will be useful to define also

eNΦSP(x) =
∑

J
exNΣ(J ) = eN [LSP(Σ)+xΣ],

∂LSP(Σ)

∂Σ
= −x, (5)

where LSP(Σ) is the entropy density of negation-configurations that give a certain
complexity function Σ, and the saddle-point approximation for N → ∞ has been used.

3. Reminder of equations for belief and survey propagation

With the notation introduced in section 2 we write the belief propagation equations and
the Bethe entropy as derived, e.g., in [23, 24]. These equations are asymptotically exact
on locally tree-like graphs as long as all the correlation length scales are finite. If they
are not then splitting the phase space into clusters such that within each cluster the
correlations decay again might be possible. SP then estimates the total number of such
clusters [8], and it does so asymptotically exactly at least close enough to the satisfiability
threshold [25, 9].

Denoting by {mia, m̂ai} the BP (SP) messages, we write the BP (SP) fixed-point
equations as

mia = gia({m̂bi}b∈∂i\a, {Jbi}b∈∂i), (6)

m̂ai = ĝai({mja}j∈∂a\i, {Jja}j∈∂a). (7)

doi:10.1088/1742-5468/2011/03/P03023 6
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In the BP case, the messages read [24] mia = {ν0
ia, ν

1
ia}, m̂ai = {ν̂0

ai, ν̂
1
ai}, and

gr
ia({ν̂bi}b∈∂i\a) =

∏
b∈∂i\a ν̂

r
bi∏

b∈∂i\a ν̂
0
bi +

∏
b∈∂i\a ν̂

1
bi

,

ĝr
ai({νja}j∈∂a\i, {Jja}j∈∂a) =

1 − δr,Jai

∏
j∈∂a\i ν

Jja

ja

2 −∏j∈∂a\i ν
Jja

ja

,

(8)

where r = 0, 1. In the SP case, mia = {QS
ia, Q

U
ia, Q

∗
ia}, m̂ai = Q̂ai, and

g∗
ia({Jbi}b∈∂i, {Q̂bi}b∈∂i\a) = C

∏

b∈∂i\a

(1 − Q̂bi),

gS
ia({Jbi}b∈∂i, {Q̂bi}b∈∂i\a) = C

∏

b∈Uia

(1 − Q̂bi)

[
1 −

∏

b∈Sia

(1 − Q̂bi)

]
,

gU
ia({Jbi}b∈∂i, {Q̂bi}b∈∂i\a) = C

∏

b∈Sia

(1 − Q̂bi)

[
1 −

∏

b∈Uia

(1 − Q̂bi)

]
,

ĝai({Qja}j∈∂a\i) =
∏

j∈∂a\i

QU
ja,

(9)

where C is a normalization constant enforcing the relation g∗
ia + gS

ia + gU
ia = 1, and Sia, Uia

are defined as

if Jia = 0 Sia = ∂0i\a, Uia = ∂1i,

if Jia = 1 Sia = ∂1i\a, Uia = ∂0i,
(10)

where ∂0/1i = {a ∈ ∂i such that Jia = 0/1}.

If {mia, m̂ai} is a fixed point of equations (6)–(7), the Bethe entropy for BP and the
complexity for SP are both written in a general form

s({Jia, mia, m̂ai}) =
M∑

a=1

Sa({mia, Jia}i∈∂a) +
N∑

i=1

Si({m̂ai, Jia}a∈∂i) −
∑

(ia)

Sai(mia, m̂ai),

(11)

where for BP

Sa({νia, Jia}i∈∂a) = log

(
1 −

∏

i∈∂a

νJia
ia

)
,

Si({ν̂ai, Jia}a∈∂i) = log

(∏

b∈∂i

ν̂0
bi +

∏

b∈∂i

ν̂1
bi

)
,

Sai(νia, ν̂ai) = log
(
ν0

iaν̂
0
ai + ν1

iaν̂
1
ai

)
,

(12)
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while for SP

Sa({Qia, Jia}i∈∂a) = log

(
1 −

∏

j∈∂a

QU
ja

)
,

Si({Q̂ai, Jia}a∈∂i) = log

[∏

b∈∂0i

(1 − Q̂bi) +
∏

b∈∂1i

(1 − Q̂bi) −
∏

b∈∂i

(1 − Q̂bi)

]
,

Sai(Qia, Q̂ai) = log
(
1 −QU

iaQ̂ai

)
.

(13)

Readers unfamiliar with the interpretation and derivation of the belief and the survey
propagation (8)–(10) are referred to [23, 26, 24]. However, for understanding of our method
in what follows the general form (6)–(7) and (11) is sufficient.

4. Computation of the large deviations function

The most important formula of section 3 is (11): in certain regimes it gives the
asymptotically exact entropy or complexity in a form factorized in local terms. The
remaining complication is that now everything depends on the fixed point of the BP (SP)
equations. We can, however, write

Z(x) =
∑

J

∫ ∏

ia

dmiadm̂aie
Nxs({Jia,mia,m̂ai})

∏

(ia)

δ(mia − gia({m̂bi}b∈∂i\a, {Jbi}b∈∂i))

×
∏

(ia)

δ(m̂ai − ĝai({mja}j∈∂a\i, {Jja}j∈∂a)). (14)

If we now introduce auxiliary variables ωia ≡ {Jia, mia, m̂ai} the partition function defined
by (4) can be re-written in the common local form

Z(x) =
∑

{ωia}

⎧
⎨
⎩

[
M∏

a=1

Ψa({ωia}i∈∂a)

][
N∏

i=1

Ψi({ωia}a∈∂i)

][∏

(ia)

Ψai(ωia)

]⎫⎬
⎭ , (15)

where

Ψa({ωia}i∈∂a) ≡ exSa({mia,Jia}i∈∂a)
∏

i∈∂a

δ(m̂ai − ĝai({mja}j∈∂a\i, {Jja}j∈∂a)),

Ψi({ωia}a∈∂i) ≡ exSi({m̂ai,Jai}a∈∂i)
∏

a∈∂i

δ(mia − gia({m̂bi}b∈∂i\a, {Jbi}b∈∂i)),

Ψai(ωia) ≡ e−xSai(mia,m̂ai).

(16)

In equation (15) and in the following the sum over ωia stands for the sum over Jia and
the integral over mia, m̂ai.

The probability measure in equation (15) is local and can hence be represented with
an auxiliary factor graph that can be viewed as decorating the original K-SAT factor
graph. Figure 1 depicts this construction.

The partition function Z(x) can now be computed by implementing the general BP
formalism to the auxiliary graph, just as is done in the derivation of the 1RSB equations
in [24] (note indeed the close formal resemblance of our approach and the 1RSB equations).

doi:10.1088/1742-5468/2011/03/P03023 8
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Figure 1. Left: the graph of the original K-SAT instance. Empty circles
and empty squares represent variable and function nodes respectively. An edge
connecting a variable node i to a function node a means that the function node ψa

depends on xi. Right: the auxiliary factor graph describing equation (15), built
upon the graph of the K-SAT instance in the left panel. Empty squares with
black-filled squares inside represent the Ψa function nodes, empty circles with
black-filled squares inside represent Ψi function nodes of the auxiliary graphs.
Finally, black-filled squares represent Ψia function nodes, while black-filled circles
represent ωia variable nodes of the auxiliary graph. An edge connecting ωia to a
function node of the auxiliary graph means that such a function node depends
on ωia.

We call Sia(ωia) the message going from the variable node ia to the function node a, and

Ŝai(ωia) the message going from the variable node ia to the function node i. BP equations
on the auxiliary factor graph on the variables ωia then lead to fixed-point equations for
these messages:

Ŝai(ωia) 

∑

{ωja}j∈∂a\i

[ẑai({mja, Jja}j∈∂a, m̂ai)]
x
∏

j∈∂a

δ(m̂aj − ĝaj({mka}k∈∂a\j , {Jka}k∈∂a))

×
∏

j∈∂a\i

Sja(ωja), (17)

Sia(ωia) 

∑

{ωib}b∈∂i\a

[zia({m̂bi, Jib}b∈∂i, mia)]
x
∏

b∈∂i

δ(mib − gib({m̂ci}c∈∂i\b, {Jci}c∈∂i))

×
∏

b∈∂i\a

Ŝbi(ωib), (18)

where

zia({m̂bi, Jib}b∈∂i, mia) ≡ eSi({m̂bi,Jib}b∈∂i)−Sai(mia,m̂ai),

ẑai({mja, Jja}j∈∂a, m̂ai) ≡ eSa({mia,Jia}i∈∂a)−Sai(mia,m̂ai).

Equations (17)–(18) can be further simplified. It is easy to check that when the
fixed-point equations (6)–(7) hold, the term zia (respectively ẑai) does not depend on
the ‘backward’ messages mia (respectively m̂ai). Using this result, we can see that (17)–

(18) are compatible with a choice of the messages Sia, Ŝai depending only on mia, Jia

and only on m̂ai, Jia respectively. Indeed, if we assume that Sia(ωia) = Sia(mia, Jai), and

doi:10.1088/1742-5468/2011/03/P03023 9
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Ŝai(ωia) = Ŝai(m̂ai, Jai), then (17)–(18) become

Sia(mia, Jai) 

∑

{Jbi}b∈∂i\a

∫ ∏

b∈∂i\a

dm̂biŜbi(m̂bi, Jbi) [zia({m̂bi, Jib}b∈∂i\a)]
x

× δ(mia − gia({m̂bi}b∈∂i\a, {Jbi}b∈∂i)), (19)

Ŝai(m̂ai, Jai) 

∑

{Jaj}j∈∂a\i

∫ ∏

j∈∂a\i

dmjaSja(mja, Jja) [ẑai({mja, Jja}j∈∂a\i)]
x

× δ(m̂ai − ĝai({mja}j∈∂a\i, {Jja}j∈∂a)). (20)

The free energy Φ(x) can then be computed using the general expression for the Bethe
free entropy [24]

NΦ(x) =
M∑

a=1

Fa +
N∑

i=1

Fi −
∑

(ia)

Fia, (21)

where

Fa = log

[ ∑

{Jia}i∈∂a

∫ ∏

i∈∂a

dmiaSia(mia, Jia)e
xSa({mia,Jia}i∈∂a)

]
, (22)

Fi = log

[ ∑

{Jia}a∈∂i

∫ ∏

a∈∂i

dm̂aiŜai(m̂ai, Jia)e
xSi({m̂ai}a∈∂i)

]
, (23)

Fia = log

[∑

Jia

∫
dmia dm̂aiSia(mia, Jia)Ŝai(m̂ai, Jia)e

xSia(mia,m̂ai)

]
. (24)

Equations (19)–(20) clearly show the formal analogy with the 1RSB cavity
equations [24]. The difference between equations (19)–(20) and the latter is that in the
AdSAT case the negations are considered as physical degrees of freedom of the partition
function Z(x), and the resulting cavity equations (19)–(20) consist in a weighted average
of the quantities [zia({m̂bi, Jib}b∈∂i\a)]

x, [ẑai({mja, Jja}j∈∂a\i)]
x over {Jia, mia, m̂ai}. On the

contrary, in the 1RSB case the only degrees of freedom are the BP messages {mia, m̂ai} in
such a way that the resulting 1RSB cavity equations consist in an average over (mia, m̂ai)
at fixed Jias.

The biggest advantage of the formal resemblance of equations (19)–(20) to the
1RSB cavity equations is that in order to solve (19)–(20) numerically we can use the
very same technique and all the related knowledge as in the case of 1RSB. We indeed
use the population dynamics [22], where the distributions Sia(mia, Jia), Ŝai(m̂ai, Jia) are
represented as populations of P messages. When the size of the population P is large, we
expect the populations to reproduce well the distributions Sia(mia, Jia), and Ŝai(m̂ai, Jia).
The cavity equations (19)–(20) can be written in terms of these populations. Starting from
a given initial configuration, the iteration of the cavity equations yields the fixed-point
populations satisfying (19)–(20). Once this fixed point is achieved the free energy Φ(x)
can be computed numerically by means of (21)–(24). This is repeated for different values
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of x and finally the Legendre transform L(s) is evaluated. Everything is done in the very
same way as the 1RSB equations are usually solved, for more details see, e.g., [22, 27, 28].
The only difference is in the treatment of the negation-variables. In our case one writes
the distributions Sia(mia, Jia), Ŝai(m̂ai, Jia) as

Sia(mia, Jia) = 1
2
Sia(mia|Jia), Ŝai(m̂ai, Jia) = 1

2
Ŝai(m̂ai|Jia),

because Sia(Jia) =
∫

dmiaSia(mia, Jia) = 1/2 = Ŝai(Jia), as can be seen by
explicitly integrating equations (19)–(20). We then introduce a pair of populations

{S1
ia[s], Ŝ

1
ai[s]}s=1,...,P and {S0

ia[s], Ŝ
0
ai[s]}s=1,...,P representing the probability distributions

Sia(mia|1), Ŝai(m̂ai|1) and Sia(mia|0), Ŝai(m̂ai|0) respectively. The population dynamics is
then implemented in terms of such populations, and the resulting fixed point investigated
numerically.

5. Cavity method results for random AdSAT

In this section we present the solution of the cavity equations (19)–(20), and its
implications for the random AdSAT problem.

5.1. Large deviations of the entropy and complexity on regular instances

Before addressing the random AdSAT as defined in section 1 we will study it on random
regular instances. On L-regular instances every variable belongs to exactly L clauses. A
random L-regular instance is chosen uniformly at random from all possible ones with a
given number of variables N and number of clauses M , provided that KM = LN . Note
that, as far as we know, this ensemble of random SAT instances was not treated in the
literature previously.

In the 3-SAT problem discussed in this paper the Bethe entropy is asymptotically
exact only as long as the BP equations converge to a fixed point [9]; the non-convergence
is equivalent to the spin glass instability, or a continuous transition to a replica symmetry
breaking phase. On random regular graphs with random values of negations, BP stops
converging at L = 12 (this is the reason why these and larger values are omitted from
table 1), meaning that for L ≥ 12 there is a need for SP (or another form of replica
symmetry breaking solution). For L ≥ 15 BP iterations for random regular 3-SAT lead
to contradictions (zero normalizations) meaning that in this region the large random
instances are almost surely unsatisfiable. Survey propagation on random regular 3-SAT
has a trivial fixed point for L ≤ 12, and a non-trivial fixed point for L = 13 with the
value of complexity Σ(L = 13) = 0.008. SP does not converge for L ≥ 14; if we ignore
the non-convergence, and compute the complexity from the current values of messages,
we get on average Σ(L = 14) = −0.03. This means that L = 13 is the largest satisfiable
case.

The great advantage of random regular instances is that topologically the local
neighborhood looks the same for every variable i. Moreover, we recall that in regimes
where the BP equations are asymptotically exact the properties of variable i depend
only on the structure of the local neighborhood of i. Hence on regular graphs
all the quantities in equations (19)–(20) are independent of the indices i, j, and
a, b. This so-called factorization property simplifies crucially the numerical solution of
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Table 1. The Bethe free entropy on regular instances with random negation-
configurations (sran), with balanced negation-configurations (sB), and non-
frustrated with Jia = 0 ∀(ia) (sU). The entropy for the non-frustrated case
and for the balanced case for even degree L ≤ 10 can be computed analytically
since the BP fixed point is factorized in these cases. In the other cases we iterate
the BP equations on large random graphs and compute the entropy from the
corresponding BP fixed point. The star signals that BP did not converge and
the value of entropy was obtained by averaging over an interval of time. The ×
means that BP converged to contradictions for these densities of constraints.

L sran sB sU

2 0.6039 0.5710 0.6196
3 0.5592 0.5324 0.5975
4 0.5134 0.4488 0.5796
5 0.4686 0.4120 0.5644
6 0.4220 0.3266 0.5513
7 0.3750 0.2902 0.5397
8 0.3302 0.2044 0.5293
9 0.2816 0.1677 0.5199

10 0.2319 0.082 * 0.5114
11 0.1813 0.042 * 0.5035
12 0.128 * × 0.4962
13 0.07 * × 0.4894
14 × × 0.4831

equations (19)–(20); the 2KM distributions {Sia(νia, Jia), Ŝai(ν̂ai, Jai)} reduce to only

two (J = 0 and 1) distributions S(ν, J), Ŝ(ν̂, J). Moreover, the thermodynamic limit is
taken directly without increasing the computational effort. (To avoid confusion, we recall
here that for the canonical random K-SAT problem where negation-variables are chosen
uniformly at random and fixed, the BP solution is not factorized. In the adversarial
version one sums over the negation-variables, hence the factorization.)

In figure 2 we show the large deviation function L(s) of the Bethe entropy s obtained
by the population dynamics over BP messages on regular graphs with K = 3 and variable
degree L = 4, i.e. by solving equations (19), (20) and (21)–(24). First of all, in the
‘infinite temperature’ case, i.e. when the Legendre parameter x = 0, that is at the
maximum of L(s), we recover the logarithm of the total number of negation-configurations
L(x = 0) = L log 2. The corresponding value of entropy s(x = 0) = sran is the Bethe
entropy for a random choice of negations (values summarized in table 1).

The inset of the figure shows that as the Legendre parameter x → ±∞ both L and
s converge to well defined ending points (the same data in a logarithmic plot show that
the convergence is exponential). Let us denote the lowest entropy ending point (left,
x → −∞) (sL,LL), and the highest entropy ending point (right, x → ∞) (sR,LR).
We observe systematically that the value of sR is equal to sU, where sU is the entropy
of the uniform negation-configuration which is obtained by computing a fixed point of
equations (6)–(7) such that ν̂ai = ν̂ ∀(ai), νia = ν ∀(ia) and Jia = 0 ∀(ia), and plugging
it into equation (11). The values of sU as a function of L are summarized in table 1. An
edge-independent fixed point of the BP equations is called factorized. We realize that sU
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Figure 2. Left: the BP large deviation function L(s) versus the Bethe entropy
s computed by population dynamics on regular graphs with K = 3, L = 4,
population size P = 104. The left ending point (fL,LL) corresponds to balanced
configurations of negations, whereas the right ending point (fR,LR) to the
polarized configurations of negations (more details in the text). Right: the SP
large deviation function LSP(Σ) versus the complexity Σ computed by population
dynamics on regular graphs with K = 3, L = 13, P = 104 (bottom), and
K = 3, L = 12, P = 75 × 103 (top).

also corresponds to the value of the Bethe entropy when every variable is either always
negated or never negated; we call such negation-configurations polarized. There are 2LN

polarized negation-configurations, and indeed the logarithm of the number of such choices
corresponds to the value of LR = log 2. Intuitively such configurations of negation are
frustrating the formula in the least possible way, and figure 2 shows that such intuition is
asymptotically exact in this case.

Similarly, for the lowest entropy ending point, for even values of the degree L, we
realize that LL = log

(
L

L/2

)
and sL corresponds to a value sB that is obtained from a

factorized BP fixed point when each variable is L/2 times negated and L/2 times non-
negated; values are summarized in table 1. Such balanced configurations of negations
locally frustrate the variables in a maximal way (half of the clauses want the variable
to be 1, the other half 0). And the computation presented in figure 2 suggests that
asymptotically there are no correlated negation-configurations that would frustrate the
formula even more and decrease the value of the entropy further.

We investigate in more detail the result following from figure 2, i.e. that the most
frustrated configurations of negations on the regular graphs with even degree are the
balanced negations; we denote the balanced negation-configurations {Jia}B = JB. There

are
(

L
L/2

)N
such negation-configurations. Does our result mean that all of them lead

to the same number of solutions N (JB)? We will see in section 6 that this is not
true for finite N . The correct conclusion from the result presented in figure 2 is that
limN→∞[log N (JB)]/N = sB = sL independently of the realization of JB. This can also
be seen directly from the solution of the BP equations on the formulas with balanced
negations. Indeed, for even L the fixed point of the BP equations is factorized and
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independent of the realization of negations and also of the size of the graph. We tried
numerically formulas of various sizes and many possible realizations of balanced negations,
and for even degree L < 10 BP always converges to the factorized fixed point (at L = 10
BP stops converging, as we will discuss later in the paper), giving always the same Bethe
entropy density sB. Further discussion about the true entropy fluctuations compared to
the constant Bethe entropy in this case will be presented in section 6.

For regular graphs with odd degree L we cannot achieve ideal balancing of every
variable. Instead, we call a configuration of negations balanced if for every variable there
is either (L − 1)/2 or (L + 1)/2 negations. The total number of such configurations

is then 2N
(

L
(L−1)/2

)N
. The BP fixed point on the balanced instances for odd L is not

factorized anymore. We can, however, solve the cavity equations (19)–(20) restricted to
only balanced values of negations and we obtain that within the error-bars of the numerical
resolution of the equations (that are less than 1%) all the balanced configurations give
the same value of Bethe entropy also in the odd L case.

Our results for large deviations of the Bethe entropy lead to a conclusion that for
the regular instances and in the limit N → ∞ the most frustrated formulas are all
those with balanced configurations of negations. Let us hence conclude this section by
summarizing the properties of regular SAT instances with balanced negations. BP on
balanced instances converges for L ≤ 9, and leads to contradictions for L ≥ 13. Survey
propagation on balanced regular instances has a trivial fixed point for L ≤ 9, for L = 10
a fixed point with complexity ΣB(L = 10) = 0.018, and for L ≥ 11 the complexity is
negative (e.g. ΣB(L = 11) = −0.001, ΣB(L = 12) = −0.075).

For completeness, we also computed the large deviations of the complexity function.
That is, we solved equations (19)–(20) using SP as the basic message passing scheme.
Figure 2 (right) shows some of the results for L = 12 and 13; we indeed see that
there are configurations of negations that lead to negative complexity. Unfortunately,
it is hard to extract any information from these curves for very negative values of x,
because of the noise introduced by the finite population size effects. This also poses
a problem for L = 10 and 11, where we know that a non-trivial fixed point of SP
exists for the balanced configurations of negations. In the population dynamics we
should hence see a non-trivial solution for very negative values of x. Instead we were
only able to obtain very noisy and inconclusive data from the population dynamics
with population sizes up to 7.5 × 104. For L = 10 the SP equations have only
one factorized fixed point for all the balanced configurations of negations; this again
strongly suggests that instances with balanced negations are the most frustrated ones,
and hence that for L = 10 the adversary cannot make large formulas unsatisfiable. For
lower values of L ≤ 9 the population dynamics has always only a trivial fixed point
given by Sia(Qia, Jia) = δ(QS

ia)δ(Q
U
ia)δ(Q

∗
ia − 1)/2, Ŝai(Q̂ai, Jia) = δ(Q̂ai)/2 yielding

Φ(x) = Kα log 2. SP is hence not very useful in this case to obtain new information
about the random AdSAT problem.

In summary, for L ≥ 11 the adversary will succeed in making a large formula
unsatisfiable by simply balancing the negations (for L ≥ 14 a random choice of negations
would do). On the other hand, following our previous conclusion that the balanced
formulas are the most frustrated ones, for L ≤ 10 the adversary will not be able to make
large random regular SAT instances unsatisfiable by adjusting the values of negation-
variables.
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J.S
tat.M

ech.
(2011)

P
03023

Adversarial satisfiability problem

5.2. Results for random AdSAT, i.e. instances with Poisson degree distribution

In the most commonly considered ensemble of the random K-satisfiability problem,
K variables appearing in each clause are chosen independently at random (avoiding
repetitions). For large system sizes this procedure generates Poissonian degree distribution
with mean Kα. In this case every node has a different local neighborhood and hence
the fixed point of equations (19)–(20) is not factorized, and the distribution Sia(mia, Jai),

Ŝai(m̂ai, Jai) are different on every edge. We hence solve equations (19)–(20) by generating
an instance of the problem (graph) of size N , associating one population of size P
with every directed edge, and iterate following equations (19)–(20). This is more
computationally involved, and we are able to treat only modestly large N and P , typically
several hundreds. The resulting large deviation function L(s) is depicted in figure 3 for
several values of constraint density α.

For low values of the constraint density, e.g. α = 1 in figure 3, the location of the
right (large entropy, least frustrated) ending point (sR,LR) corresponds, as in the case of
random regular instances, to the value of Bethe entropy that is obtained if no negations
are present in the instance (Jia = 0 for all ia), and LR = (1−e−Kα) log 2 (corresponding to
the number of negation-configurations where no variable is locally frustrated). For larger
values of the constraint density, e.g. α = 2 in figure 3, the results from population sizes as
large as we were able to achieve are very noisy for large values of x ≈ 100. We observed
that the data are getting smoother as the population size is growing, however not enough
to be able to confirm from these data that (sR,LR) is the right ending point.

The part of the curve corresponding to a very large negative parameter x does not
converge to an ending point. Instead at some x0 the large deviation function L(s) ceases
to be concave, and an unphysical branch appears for x < x0. This unphysical branch is
not present on random regular instances with even degree; when the degree is odd the
data for large negative x are inconclusive in the sense that we might see a unphysical
branch or only a numerical noise. We define the left ending point as the extreme of the
physical branch sL = s(x0), and LL = L(x0). We observe systematically that in the region
of interest (say for α ≥ 1) the values sL and LL are very close to the values corresponding
to balanced instances (sB,LB). In balanced instances each variable is negated as many
times as non-negated (for variables of odd degree the absolute value of the difference
between the number of negations and non-negations is one). In the thermodynamic limit
the number of such balanced negation-configurations is

LB =

∞∑

i=0

log

(
2i
i

)
e−kα (kα)2i

(2i)!
+

∞∑

i=0

log

[
2

(
2i+ 1
i

)]
e−kα (kα)2i+1

(2i+ 1)!
. (25)

We made a number of attempts to obtain a value of entropy considerably smaller
than the balanced entropy, s < sB. First, we removed the leaves from the formula and
balanced only the residual formula. This indeed leads to a lower value of the entropy, but
for α > 1 the difference was less than 1%. We tested the population dynamics limited
to the balanced negation-configurations, i.e. we solved equations (19)–(24) where the sum
over the negation-variables in equations (20) and (23) was limited only to the balanced
negation-configurations. The large deviation function L(s) obtained in this way did not
differ more than by 1% from the value (sB,LB), see figure 3 (left). We also investigated the
results of population dynamics over the SP equations and we were not able to find cases
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Figure 3. Left: the BP large deviation function L(s) versus the Bethe entropy s
computed by population dynamics on Poissonian graphs with random negation-
configurations, for K = 3, various values of the constraint density α, and both
positive and negative x. For α = 1–3 the part of the curve with x < 0 has been
computed with N = P = 300. For α = 1 the part of the curve with x > 0 reaches
the right ending point, and has been computed with N = P = 500. For α = 2, 3
the part of the curve with positive x has been computed with N = P = 300,
and it does not reach the right ending point; even larger N and P are needed to
remove the noise from the data for very large positive x. For x < 0, an unphysical
branch (concave part of the curve) starts at x0 ≈ −42, x0 ≈ −44, x0 ≈ −40 for
α = 1, 2, 3 respectively. The points indicate the values for balanced configurations
of negations (sB,LB), and for configurations of negations where all the variables
are non-negated (sR,LR). Right: zoom of the large deviation function L(s)
versus s for α = 1 close to the low entropy ending point for N = P = 500.
The data become noisy close to the low entropy ending point; larger graph and
population sizes lead to an improvement. We plotted the data down to the
lowest value of entropy s; hence the unphysical branch is not plotted. The point
indicates the value (sB,LB) for balanced configurations of negations. The blue
data points show the large deviation function restricted to balanced configurations
of negations for N = 102, P = 103. Notice the narrow range of entropies s
plotted in the latter, and how little the lowest entropy we achieved differs from
the balanced value.

where the complexity would decrease by more than 1% below the complexity value on
the balanced instances. We also tried simulated annealing on the negation-variables using
the Bethe entropy as the cost function, with the same result. All this makes us conclude
that with at least 1% of precision the satisfiability threshold for random adversarial SAT
equals the satisfiability threshold of the balanced random ensemble.

Let us hence summarize the results about BP and SP for the random satisfiability
problem with balanced configurations of negations. For K = 3 the BP ceases to converge
for α ≥ 2.96. SP starts to converge to a non-trivial fixed point for α > 3.20, and the
complexity decreases to zero at

αB = 3.399 ± 0.001; (26)

this is hence the satisfiability threshold on the balanced random formulas. All our
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Figure 4. Left: LN (s) versus s for regular random graphs with random negations,
computed exactly for 15 ≤ N ≤ 60 withNs = 105 samples J , and binning interval
Δs = (smax−smin)/100 withK = 3, L = 8, where smax and smin are the maximum
and minimum entropies of the Ns samples respectively. We also plot L(s) versus
s computed with the population dynamics for both negative x (P = 5 × 104)
and positive x (P = 2 × 104). Right: LN (s) versus s for regular random graphs
with balanced negations, computed exactly for 39 ≤ N ≤ 87, Ns = 105, binning
interval Δs = (smax−smin)/100, and K = 3, L = 8. The curves do not superpose,
so the large deviations decay faster than exponentially.

observations about the large deviation function suggest that the threshold for the random
adversarial satisfiability problem satisfies αa > 3.39.

6. Numerical results for AdSAT and large deviations

In this final section we compare theoretical predictions from the cavity method with
numerical results.

6.1. Numerical results for large deviations

First, we investigate numerically the number of configurations of negations yielding a
formula with a certain entropy of solutions. For one given random graph geometry
of size N , we generate independently at random I � 1 different configurations of
negations, and for each of them we count the number of solutions using a publicly available
implementation of the exact counting algorithm relsat [29]. We define the probability
PN(s) over the negation-configurations that the value of the entropy density is between s
and s+ Δs, where Δs is a binning interval that we will specify later.

Following the assumption of exponentially-small large deviations made in
equation (4), we define

LN(s) =
1

N

[
logPN(s) − log max

s
PN(s)

]
. (27)

The numerical result for LN(s) is depicted in figure 4 (left) for L = 8, and compared to
the predictions of the large deviations of the Bethe entropy from section 5. The agreement
between the numerical data point and the theoretical prediction is not good in the low
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entropy region. One possibility is that this is due to pre-asymptotic effects; on the other
hand this does not seem likely as the numerical curves seem to superpose nicely for different
system sizes. Another possibility is that we neglected some replica symmetry breaking
effects; note, however, that the large deviation calculation over survey propagation did
not provide any non-trivial result. We hence leave this disagreement as an open problem.

At this point we want to recall the result from BP that we obtained on balanced
regular instances with even degree (i.e. for instance L = 8); in that case the BP fixed
point was factorized and independent of the negation-configuration even for small graphs.
Let us hence investigate the numerical results for the large deviations of the entropy in
this case. The data for LN(s) are depicted in figure 4 (right); recall from table 1 that the
maximum of the curve corresponds to sB obtained with BP. The curves in figure 4 (right)
clearly do not superpose for different system sizes. Indeed, LN(s) seems to be ‘closing’.
From these data it is indeed plausible that in the limit N → ∞, LN(s) converges to a
delta function on the value of entropy s = sB.

Hence, the data in figure 4 (right) suggest that the probability that the entropy of a
formula is different from the value predicted by BP is smaller than exponentially small.
This makes us conclude that in a general case, the probability of having an entropy outside
the interval (sL, sR) is smaller than exponentially small (we recall that for the balanced
negations and even degree L regular graphs sL = sR = sB). Hence in the thermodynamic
limit there are almost surely no negation-configurations that would lead to a value of
entropy outside the range (sL, sR).

Moreover, the large deviation function LN(s) if asymptotically negative can be
interpreted as a probability of generating a rare graph and configuration of negations
having entropy s [30]. Since there are of order NN regular graphs, and there is no or at
least one graph with entropy s /∈ (sL, sR), we can have either PN(s) = 0 or

PN(s) ≥ e−c1N log N , (28)

where c1 is some positive constant. Consider now that there are eNL′
of configurations of

negations (e.g. L′ = Kα log 2 if we consider all the negation-configurations, or L′ = LB

if we consider just the balanced negation-configurations). The fraction of graphs with
configurations of negations leading to entropy s /∈ (sL, sR) has to be small only if

PN(s)eNL′ 
 1. (29)

If an equality holds in equation (28) then equation (29) holds in the thermodynamic limit,
N → ∞. However, (29) does not have to hold for finite N unless

N ≥ Nc ≡ exp

(L′

c1

)
. (30)

Since c1 can be considerably smaller than L′, the crossover value of Nc might be very
large and out of reach for exact numerical methods. This justifies the presence of strong
pre-asymptotic effects for the system sizes treated in figure 4.

6.2. Strong finite size corrections for the AdSAT threshold

We investigate numerically the AdSAT threshold αa by computing the probability (over
random graph instances) ps that an adversary is not able to find a configuration of
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Figure 5. Probability ps that using the simulated annealing algorithm described
in the text we did not find any unsatisfiable configuration of negations for L-
regular instances, as a function of L, for different system sizes 9 ≤ N ≤ 54. We
used the annealing rate r = 1.1, and number of instances I = 100.

negations that makes the formula unsatisfiable. We do this on regular instances because
of the reduced fluctuations that arise due to the randomness of the graph.

We generate I � 1 regular instances for each value of the degree L and for each
size N . Then for each instance we use simulated annealing on the negation-variables in
order to minimize the number of solutions; we monitor whether an unsatisfiable formula
is generated or not. This general strategy for AdSAT was suggested by [31]. In particular,
we introduce an inverse temperature β. Initially we set β = 1. We choose randomly one
of the negation-variables, Jia, and attempt to flip it, i.e. to set Jia → 1 − Jia. Denoting
by J ′ the configuration of negations after this flip, we accept the flip with probability
min{1, e−β(SJ ′−SJ )}. The entropy SJ is computed exactly with a publicly available
implementation of the exact exhaustive search algorithm relsat [29]. This algorithm has
an exponential running time in the size of the system, limiting us to very small system
sizes. Attempting for N negation flips is one Monte Carlo (MC) step. Every 10 MC
steps we multiply the inverse temperature by a rate factor r > 1. We keep track of the
so far minimal value of entropy smin and the index n0 of the MC step in which it was
first found. The algorithm stops if either an unsatisfiable instance is encountered or no
further decrease in the value of entropy smin has occurred in the last 9×n0 +50 MC steps.
The probability ps plotted in figure 5 is then given by the fraction of cases in which an
unsatisfiable instance was not found.

There is of course no guarantee that our algorithm found the actual minimal possible
entropy. So, strictly speaking, any result for the satisfiability threshold derived from the
data for ps is only an upper bound to the true threshold. However, given the strictness of
our stopping condition we have a reasonable confidence that our results are very close to
the exact results. Figure 5 depicts the fraction of regular instances of size N where we were
unable to find a configuration of negations that would make the formula unsatisfiable.

On first sight the numerical data in figure 5 do not agree with our theoretical
predictions. Indeed, we predicted that unsatisfiable configurations of negations exist only
for L ≥ 11, whereas, for the system sizes our simulated annealing algorithm was able
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to treat, we find unsatisfiable negation-configurations for a large fraction of graphs with
L ≥ 8.

On a second sight, however, we see in figure 5 that for L = 6 and 7 there are very
strong finite size corrections to ps. Indeed, for L = 6 and size N = 9 we find that roughly
3/4 of the instances can be made unsatisfiable, whereas for N = 36 none of the I = 100
instances that we tried can be made unsatisfiable. Similarly for L = 7 and size N = 36
we find that most of the I = 100 instances can be made unsatisfiable, whereas for N = 54
almost none of them. If this trend continues it is perfectly plausible that in the N → ∞
limit even for L = 10 the adversary is never successful. These results, in agreement with
the conclusions of section 6.1, suggest very strong pre-asymptotic effects in the AdSAT
problem. The strength of the finite size corrections hence poses a challenge to numerical
verifications of our cavity method asymptotic predictions.

On the other hand, the scaling argument presented in equation (30) suggests that
the system sizes at which the asymptotic behavior starts to be dominant might be
quite large (perhaps thousands or more); this is in particular true in the vicinity of the
satisfiability threshold. Hence, in the AdSAT problem, and likely also in other adversarial
optimization problems, it is particularly important to develop techniques that predict
the pre-asymptotic behavior and the finite size corrections. We saw from the results on
random regular instances with even degree that BP predicts the same Bethe entropy for
all balanced negation-configurations independently of the system size; hence the methods
for analysis of finite size corrections and pre-asymptotic effects will have to go beyond
the assumptions of the cavity method. On the other hand, analysis of the cases where
the BP fixed point is factorized might be a good playground for the development of such
techniques.

7. Discussion and conclusions

In this paper we studied the adversarial satisfiability problem and concluded that the
most frustrated instances of random K-SAT are very close to the ones with balanced
configurations of negations. For random regular 3-SAT instances this leads to a threshold
L = 11, starting from which the adversary is able to find unsatisfiable configurations of
negations (compare to L = 14 for the ordinary random regular 3-SAT). For the canonical
(Poissonian) adversarial 3-SAT this leads to αa = 3.399(1) (compare to αc = 4.2667 for
the ordinary random 3-SAT). The satisfiability threshold values for the regular and for
the balanced 3-SAT instances were obtained as a side result.

This result is rather uninteresting from the algorithmic point of view, as balancing
negations is an easy problem. However, the same method we used here can be applied
to more interesting situations, for instance the quantified SAT problem. Recall also that
the adversarial satisfiability problem was suggested as a problem interpolation between
random SAT and random quantum SAT. Note, however, that our study leads to the
conclusion that the adversary SAT is much closer to the classical random SAT than to
the quantum SAT. Note that in the large K limit the random satisfiability threshold
scales as α ≈ 2K log 2; the same scaling holds for the threshold in the random K-SAT
with balanced negations, since at large K the degree of the variables is so large that the
difference between the Poissonian distribution of the number of non-negated variables and
balanced negation-configurations does not play any role in the leading order in K. On
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the other hand, the satisfiability threshold of the quantum SAT was upper-bounded by
2K log 2/2 [17, 18]; hence the quantum effect must be responsible for this drastic decrease
of the threshold value.

We obtained our results by studying the large deviations of the entropy in the ordinary
random K-SAT. In particular, an approach leading to equations very similar to the 1RSB
equations leads to the calculation of the large deviations in the case where rare instances
are exponentially rare. Exponential large deviations are common in statistical physics. In
some cases, see, e.g., [32], [11]–[13], the large deviations are rarer than exponentially rare.
In our study this arises for regular random K-SAT instances with balanced negations and
even degree. In cases where the large deviation function decays faster than exponentially
with the system size extremely strong finite size corrections and pre-asymptotic effects
can be induced, as we argued in section 6, where we presented numerical studies of the
large deviations and of the satisfiability threshold. Interestingly, methods based on the
standard cavity method are not straightforwardly applicable to study of the related finite
size corrections and pre-asymptotic behavior. It remains a theoretical challenge to find out
how to describe analytically and algorithmically these pre-asymptotic effects that might
be crucial for solving some industrial instances of adversarial optimization problems.

Finally we did not address the possibility of replica symmetry breaking in the space
of negations (due to its technical difficulty) and this should also be a subject of future
works.
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[24] Mézard M and Montanari A, 2009 Physics, Information, Computation (Oxford: Oxford Press)
[25] Montanari A, Parisi G and Ricci-Tersenghi F, Instability of one-step replica-symmetry-broken phase in

satisfiability problems, 2004 J. Phys. A: Math. Gen. 37 2073
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The large scale behavior of the simplest non-mean-field spin-glass system is analyzed, and the critical
exponent related to the divergence of the correlation length is computed at two loops within the �-expansion
technique with two independent methods. The techniques presented show how the underlying ideas of the
renormalization group apply also in this disordered model, in such a way that an �-expansion can be consis-
tently set up. By pushing such calculation to high orders in �, a consistent non-mean-field theory for such
disordered system could be established, giving a substantial contribution the development of a predictive
theory for real spin glasses.
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The understanding of glassy systems and their critical
properties is a subject of main interest in statistical physics.
The mean-field theory of spin-glasses �1� and structural
glasses �2� provides a physically and mathematically rich
theory. Nevertheless, real spin-glass systems have short-
range interactions, and thus cannot be successfully described
by mean-field models �1�. This is the reason why the devel-
opment of a predictive and consistent theory of glassy phe-
nomena going beyond mean field is still one of the most
hotly debated, difficult and challenging problems in this do-
main �3–5�, so that a theory describing real glassy systems is
still missing. This is because nonperturbative effects are
poorly understood and not under control, and the basic prop-
erties of large scale behavior of these systems still far from
being clarified.

In ferromagnetic systems, the physical properties of the
paramagnetic-ferromagnetic transition emerge in a clear way
already in the original approach of Wilson �7�, where one can
write a simple renormalization group �RG� transformation. It
was later realized that Wilson’s equations are exact in models
with ferromagnetic power-law interactions on hierarchical
lattices as the Dyson model �8,9�. This model contains all the
physical RG properties, and is simple enough to yield a so-
lution of the RG equations within the �-expansion �10�.

The extension of this approach to random systems is
available only in a few cases. An RG analysis for random
models on the Dyson hierarchical lattice has been pursued in
the past �11,12�, and a systematic analysis of the physical
and unphysical infrared �IR� fixed points has been developed
within the �-expansion technique. Unfortunately, in such
models spins belonging to the same hierarchical block inter-
act each other with the same �11� random coupling J, in such
a way that frustration turns out to be relatively weak and they
are not a good representative of realistic strongly frustrated
system. Moreover, there has recently been a new wave of
interest for strongly frustrated random models on hierarchi-
cal lattices �13–15�: for example, it has been shown �14� that
a generalization of the Dyson model to its disordered version
�the hierarchical random energy model �HREM�� has a ran-
dom energy model-like phase transition.

In this letter we present a field theory analysis of the
critical behavior of a generalization of Dyson’s model

to the disordered case, known as the hierarchical Edwards-
Anderson Model �HEA� �13�. The HEA is of particular in-
terest, since it is a non-mean-field strongly frustrated model
with long-range interaction. It follows that its RG analysis
pursued in this work makes a contribution to the develop-
ment of a theory describing real glassy systems with short-
range interaction. Indeed, the symmetry properties of the
HEA make an RG analysis simple enough to be done with
two independent methods, showing that its IR-limit is physi-
cally well-defined, independently on the computation tech-
nique that one uses. The same symmetry properties make
the RG equations simple enough to make a high-order
�-expansion tractable by means of a symbolic manipulation
program, resulting in a first predictive theory for the critical
exponents for a strongly frustrated non-mean-field system
mimicking a real spin-glass. It is possible that such a pertur-
bative expansion turns out to be nonconvergent: if this hap-
pens, it may help us to pin down the nonperturbative effects.
Motivated by this purpose, we show with a two-loop calcu-
lation that such �-expansion can be set up consistently, and
that the ordinary RG underlying ideas actually apply also in
this case, so that the IR limit of the theory is well-defined
independently on the regularization technique.

The Hamiltonian of the HEA is defined �13� as HJ�S�=
−�i,kJi,kSiSk where the spin Sis take values �1 and Ji,k are
Gaussian random variables with zero mean and variance �i,k

2 .
Everything depends on the form of �i,k

2 that will be chosen in
such way to make the model simple enough, and a good
candidate mimicking a real glassy system. At large distance
we have that �i,k

2 =O��i−k�−2��, where � is a parameter tuning
the decay of the interaction strength with distance: we re-
cover the mean-field regime for �=1 /2, while no transition
is present for ��1 �13�. We will thus be interested in the
case 1 /2���1, where the interaction strength mimics the
non-mean field forces of a real spin glass. The form of �i,k

2 is
given by the following expression: if only the last m digits in
the binary representation of the points i and k are different,
�i,k

2 =2−2�m. This form of the Hamiltonian corresponds in di-
viding the system in hierarchical embedded blocks of size
2m, such that the interaction between two spins depends on
the distance of the blocks to which they belong. The quantity
�i,k

2 is not translational invariant, but it is invariant under a
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huge symmetry group and this will be crucial in the study of
the model.

We reproduce the IR behavior of the HEA by two differ-
ent methods. The first method is analogous to the coarse-
graining Wilson’s method for the Ising model: the IR limit is
obtained by imposing invariance with respect to the compo-
sition operation taking two systems of 2k spins and yielding
a system of 2k+1 spins, for which one can obtain closed for-
mulas because of hierarchical structure of the Hamiltonian.
The second method is more conventional: we perform the
IR-limit of the theory by constructing an IR-safe renormal-
ized theory and performing its IR limit by the Callan-
Symanzik equation.

Wilson’s method. As mentioned before, the hierarchical
symmetry structure of the model makes the implementation
of a recursionlike RG equation simple enough to be solved
within an approximation scheme, yielding �13� a recurrence
relation for the probability distribution of the overlap �1,2�
Qab ,a=1, ¯ ,n

Zk�Q� = e�2/4 Tr�Q2�� �dP�Zk−1�Q + P

C1/2 	 � Zk−1�Q − P

C1/2 	 ,

�1�

where C
22�1−��, �
1 /T is the inverse-temperature and
��dP� stands for the functional integral over Pab. The recur-
sion relation �1� can be solved by supposing Zk�Q� to be a
mean-field solution, i.e., a Gaussian function of Q. As it will
be explicitly shown in the following, the resulting fixed point
Z��Q� of Eq. �1� turns out �13� to be stable just for �
�
− 2

3 �0. For ��0 the stable fixed point is no more Gaussian,
and we search for a solution to Eq. �1� as a small perturba-
tion to the mean-field solution

Zk�Q� = exp�− �rk Tr�Q2� + wk/3 Tr�Q3��
 . �2�

General RG arguments �7� suggest that the corrections to the
mean-field solution must be proportional to �.

A complete reconstruction of the function Zk�Q� for �
�0 stems from the following systematic expansion proce-
dure. In first approximation, we write Zk�Q� as in Eq. �2�,
and take into account only the cubic term. By inserting Eq.
�2� into Eq. �1�, and expanding in terms of wk−1 to up to
O�wk−1

3 �, we find that Zk�Q� has the same functional form as
in Eq. �2�, where the coefficients rk ,wk are given by some
functions of rk−1 ,wk−1 that can be directly computed. It fol-
lows that the recursion Eq. �1� yields a relation between
rk ,wk and rk−1 ,wk−1. In particular, the recursion relation giv-
ing wk as a function of rk−1 ,wk−1

wk =
2wk−1

C3/2 +
n − 2

16C3/2�wk−1

rk−1
�3

+ O�wk−1
5 � ,

shows that for ��0 the fixed point is Gaussian, while for
��0 a non-Gaussian fixed point arises. It is important point
out that the value of �=�−2 /3 is different by the ��=�
−1 /2, arising in the generalization Dyson model to its disor-
dered version that has been already pursued in the literature
�11,12�. This is because in the latter the frustration is much
weaker than in the HEA, in such a way that the IR-behavior
of the theory turns out to be generally different.

Higher order corrections to the Gaussian solution can be
handled systematically: inserting Eq. �2� into Eq. �1�, and
expanding to O�wk−1

4 �, we generate in Zk�Q� four monomials
�I4

l �Q�
l=1,. . .,4 of fourth degree in Q. In order to close the
recursion relation �2�, it is then natural to set

Zk�Q� = exp�− rk�Tr�Q2� + wk/3 Tr�Q3� +
1

4�
l=1

4

�k
l I4

l �Q�	� ,

�3�

where �k
l =O�wk

4�. By plugging Eq. �3� into Eq. �1�, we
obtain a recursion equation relating rk ,wk , ��k

l 
l=1,¯,4 to
rk−1 ,wk−1 , ��k−1

l 
l=1,¯,4. This procedure can be pushed to ar-
bitrary high order p in wk, yielding an p-degree polynomial
for

Zk�Q� = exp�− �
j=2

p

�
l=1

nj

cj,k
l Ij

l�Q�� , �4�

where the number nj of monomials proliferates for increasing
j. Following the method explained above, a recursion equa-
tion relating �cj,k

l 
 j,l to �cj,k−1
l 
 j,l can be obtained, and the criti-

cal fixed point �cj,�
l 
 j,l computed by solving perturbatively in

� the fixed-point equations. Following the standard RG, we
suppose that the system has a characteristic correlation
length 	, diverging at the critical point, where the system is
invariant under change in the scale length. By linearizing the
recursion relation close to such fixed point, the critical expo-
nent 
 governing the power-law divergence of 	 for T→Tc
can be obtained in terms of the largest eigenvalue � of the
matrix M linearizing such transformation next to the fixed
point �7�: 
−1=log2 �.

We performed this systematic expansion to the order p
=5, generating n4=4 invariants of fourth degree, and n5=4
invariants of fifth degree in Q. Such computation yields 
 to
the order �2. For n→0, we find


 = 3 + 36� + �432 − 27�50 + 55 · 21/3 + 53 · 22/3�log 2��2

+ O��3� . �5�

The one-loop result for 
 is the same as that of the power-law
interaction spin-glass studied in �5� �where �
3��−2 /3��.
Notwithstanding this, the coefficients of the expansion in
these two models will be in general different at two or more
loops. As a matter of fact, the binary tree structure of the
interaction of the HEA emerges in the nontrivial log 2 ,21/3

factors in the coefficient of �2 in Eq. �5�, that can’t be there
in the power-law case.

Before discussing the result in Eq. �5�, we point out that
Wilson’s method explicitly implements the binary-tree struc-
ture of the model when approaching the IR limit. Neverthe-
less, if the IR limit is well-defined, physical observables like

 must not depend on the technique we use to compute them
in such a limit. It is then important to reproduce Eq. �5� with
a different approach.

Field-theoretical method. Here the �-expansion is per-
formed by constructing a functional integral field theory and
by removing its IR divergences within the minimal subtrac-
tion scheme. The field theory is constructed by expressing
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the average of the replicated partition function as a func-
tional integral over the local overlap field

Qiab 
 Si
aSi

b, EJ�Zn� =� �dQ�e−S�Q�. �6�

A short computation yields the IR-dominant terms in the
effective Hamiltonian for a system of 2k spins,

S�Q� =
1

2 �
i,j

0,2k−1

��i,j
2 + �2�−1�ij�Tr�QiQj� +

g

3! �
i=0

2k−1

Tr�Qi
3� ,

�7�

where Tr denotes the trace over the replica indexes and
�2�−1
T−Tc. The field theory defined by Eq. �7� reproduces
the Q3 interaction term of the well-know effective actions
describing the spin-glass transition in short-range �16� and
long-range �5,17� spin glasses. Notwithstanding this similar-
ity, the novelty of the HEA is that a high-order �-expansion
can be quiet easily automatized by means of a symbolic ma-
nipulation program solving the simple RG Eq. �1� to high
orders in �. This is not true for such short and long-range
�5,16,17� models, where the only approach to compute the
exponents is the field-theoretical one. Indeed, nobody ever
managed to automatize at high orders a computation of the
critical exponents within the field-theoretical minimal sub-
traction scheme, either for the simplest case of the Ising
model.

To start our field-theoretical analysis, we observe that Eq.
�7� presents an unusual quadratic term that is not invariant
under spatial translations and it is difficult to perform explicit
calculations. This difficulty can be overcome by a relabeling
of the sites of the lattice i=0, ¯ ,2k−1, following the same
procedure of �18,19�. After relabeling one obtains that �i,j

2


 �i− j�2
−2�, where �i�2 is the diadic norm of i, i.e., if 2m divides

i and i /2m is odd, �i�2=2−m. Even if this representation is
quite unusual �if you are not an expert in p-adic numbers�, in
this way the variance of the couplings Ji,j is translational
invariant, since it depends only on i− j �each realization of
the system is not translational invariant�. In the replica for-
malism we need to know only the variance of the couplings,
not the actual couplings and therefore the effective Hamil-
tonian in replica space is translational invariant and we can
use the standard Fourier transform �19,20� in order to com-
pute loop integrals. The field theory defined by Eq. �7� can
be now analyzed within the loop expansion framework. We
expand the 1PI correlation functions

�a1b1i1¯ambmim;j1¯jl
�m,l�


 2−l�Qi1a1b1
¯ Qimambm

Tr�Qj1
2 � ¯ Tr�Qjl

2��1PI,

in terms of the renormalized coupling constant gr and
take the small renormalized mass limit �r→0. According

to general results �6� concerning long-range models,
the field Q is not renormalized, and all we need
are the Tr�Q2�-renormalization constant Z2, and the
g-renormalization constant Zg. An explicit evaluation of the
loop integrals related to the action �Eq. �7�� shows that the IR
divergences arising for ��0, �r→0 can be reabsorbed into
Zg ,Z2 by means of the minimal subtraction scheme �6�. An
IR-safe renormalized theory can be constructed, and its IR
fixed point gr

� is computed as the zero of the �-function
�(g���)=�g����, yielding the effective coupling constant
g��� of the theory at the energy scale �. 
 is given in terms
of gr

� ,Z2

�2�gr� 
 �r� � log Z2

��r
�

g,�
,

1



= �2�gr

�� + 2� − 1. �8�

As predicted by dimensional considerations, the fixed
point gr

�=0 is stable only for ��0, while for ��0 a non-
Gaussian fixed point gr

� of order � arises. By plugging the
two-loop result for gr

� and Z2 into Eq. �8� and taking n→0,
we reproduce exactly the result �Eq. �5�� derived within Wil-
son’s method.

Conclusions. In this paper we consider a strongly frus-
trated non-mean-field spin-glass system, the HEA model, and
performed an RG analysis yielding results and future devel-
opments for a predictive theory of the critical exponents for
real spin-glass systems. We set up two perturbative ap-
proaches to compute the IR behavior of the HEA. The first
explicitly exploits the hierarchical structure of the model,
and implements a Wilson-like coarse-graining technique to
reach the IR limit. The second relies on the construction of
an effective field theory reproducing the IR limit by means of
the Callan-Symanzik equation. In both methods, we imple-
mented the basic RG underlying ideas. Among these, the
existence of a characteristic length 	 diverging at the critical
point, where the theory is invariant with respect to changes
in its energy scale. The two approaches yield the same pre-
diction for the critical exponent 
 related to the divergence of
	, showing that the IR limit of the theory is well-defined and
independent on the actual method one uses to reproduce it.

Thanks to the hierarchical symmetry of the model, a high-
order �-expansion for the HEA could be automatized by
means of a symbolic manipulation program. If such series
could be made convergent �6� by means of some resumma-
tion technique, such high-order calculation would yield an
analytical control on the critical exponents, resulting in a
precise prediction for a non-mean-field spin-glass.

We are glad to thank S. Franz, M. Mézard and N. Sourlas
for interesting discussions and suggestions.
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Renormalization-group computation of the critical exponents of hierarchical spin glasses:
Large-scale behavior and divergence of the correlation length
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In a recent work [M. Castellana and G. Parisi, Phys. Rev. E 82, 040105(R) (2010)], the large-scale behavior
of the simplest non-mean-field spin-glass system has been analyzed, and the critical exponent related to the
divergence of the correlation length has been computed at two loops within the ε-expansion technique by two
independent methods. By performing the explicit calculation of the critical exponents at two loops, one obtains
that the two methods yield the same result. This shows that the underlying renormalization group ideas apply
consistently in this disordered model, in such a way that an ε-expansion can be set up. The question of the
extension to high orders of this ε-expansion is particularly interesting from the physical point of view. Indeed,
once high orders of the series in ε for the critical exponents are known, one could check the convergence properties
of the series, and find out if the ordinary series resummation techniques, yielding very accurate predictions for
the Ising model, work also for this model. If this is the case, a consistent and predictive non-mean-field theory for
such a disordered system could be established. In that regard, in this work we expose the underlying techniques
of such a two-loop computation. We show with an explicit example that such a computation could be quite easily
automatized, i.e., performed by a computer program, in order to compute high orders of the ε-expansion, and
so eventually make this theory physically predictive. Moreover, all the underlying renormalization group ideas
implemented in such a computation are widely discussed and exposed.

DOI: 10.1103/PhysRevE.83.041134 PACS number(s): 05.20.−y, 75.10.Nr, 64.60.ae

I. INTRODUCTION

Spin glasses, structural glasses, and the physical description
of their critical properties have interested statistical physicists
for several decades. The mean-field theory of these models
[1–4] provides a physically and mathematically rich picture of
their physics and of their critical behavior. Notwithstanding
the great success of such mean-field theories, real spin-
glass systems are non-mean-field systems, because they have
short-range interactions. It follows that these systems cannot
be described by mean-field models. As a matter of fact,
the generalization of the above mean-field theories to the
non-mean-field case is an extremely difficult task that has still
not been achieved, so that the development of a predictive and
consistent theory of glassy phenomena for real systems is still
one of the most hotly debated and challenging problems in this
domain [5–11].

There are several reasons why this task is so difficult
to achieve. For example, the standard field-theoretical tech-
niques [12,13], yielding the Ising model critical exponents
with striking agreement with experimental data, usually do
not apply to locally interacting glassy systems. Indeed, a
considerable difficulty in the setup of a loop expansion for
a spin glass with local interactions is that the mean-field
saddle point has a very complicated structure [3], and could
even be nonuniquely defined. It follows that the predictions
of a loop expansion performed around one selected saddle
point could actually depend on the choice of the saddle point
itself [14], resulting into an intrinsic ambiguity in the physical
predictions of such an expansion. Moreover, nonperturbative
effects are poorly understood and not under control, and the
basic properties of the large-scale behavior of these systems

are still far from being clarified. From the physical point of
view, the fact that one cannot handle perturbatively corrections
to the mean-field solution could imply that the physics of real
systems is radically different from the mean-field one, so that
a completely new description is needed.

The physical properties of the paramagnetic-ferromagnetic
transition emerge in a clear way in ferromagnetic systems,
as was already discussed in the original work of Wilson
[13], where one can write a simple renormalization group
(RG) transformation, describing a flow under length-scale
reparametrizations. These RG equations turn out to be exact
in models with power-law ferromagnetic interactions built on
hierarchical lattices such as the Dyson model [15,16]. As a
matter of fact, in these models one can explicitly write an
exact RG transformation for the probability distribution of
the magnetization of the system. All the relevant physical
information on the paramagnetic, ferromagnetic, and critical
fixed point, and the existence of a finite-temperature phase
transition are encoded into these RG equations. Moreover, all
the physical RG ideas emerge naturally from these recursion
relations, whose solution can be explicitly built up with the
ε-expansion technique [16–18]. The convergence properties
of such an ε-expansion in the Dyson model have been
investigated in Ref. [17]. It turns out that the ε series
is divergent, but can be made convergent with a suitable
resummation technique.

The extension of this approach to random systems has been
performed only for some particular models. On the one hand,
a RG analysis for random models on the Dyson hierarchical
lattice has been done in the past [19,20], and a systematic
analysis of the physical and unphysical infrared (IR) fixed
points has been performed within the ε-expansion technique.

041134-11539-3755/2011/83(4)/041134(13) ©2011 American Physical Society
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Unfortunately, in such models spins belonging to the same
hierarchical block interact with each other with the same [19]
random coupling J , in such a way that frustration turns out to
be relatively weak, and they are not a good representative of
a realistic strongly frustrated system.

On the other hand, models with local interactions on
hierarchical lattices built on diamond plaquettes [21] have
been widely studied in their spin-glass version, and also lead to
weakly frustrated systems even in their mean-field limit [22].
Notwithstanding this, such models yield a very useful and
interesting playground to show how to implement the RG
ideas in disordered hierarchical lattices, and in particular on
the construction of a suitable decimation rule for a frustrated
system, which is one of the basic topics in the construction
of a RG for spin glasses, and so in the identification of the
existence of a spin-glass phase in finite dimension.

In addition, recently there has been a new wave of
interest for strongly frustrated random models on hierarchical
lattices [23–25]: For example, it has been shown [24] that a
generalization of the Dyson model to its disordered version
[the hierarchical random energy model (HREM)] has a random
energy model-like phase transition, yielding interesting new
critical properties that do not appear in the mean-field case.

In a recent work [26], we performed a field theory analysis
of the critical behavior of a generalization of Dyson’s
model to the disordered case, known as the hierarchical
Edwards-Anderson model (HEA) [23], that is physically
more realistic than the HREM and presents a strongly
frustrated non-mean-field interaction structure, being thus
a good candidate to mimic the critical properties of a real
spin glass. This analysis is based on the replica method,
and in particular on the assumption that the physics of the
system is encoded in the n → 0-limit [1,2]. Moreover, the
symmetry properties of the HEA make a RG analysis simple
enough to be performed with two independent methods, to
check if the IR limit of the model is physically well defined
independently on the computation technique that one uses.
Another element of novelty of the HEA is that its hierarchical
structure makes the RG equations simple enough to make a
high-order ε-expansion eventually tractable by means of a
symbolic manipulation program, resulting in a quantitative
theory for the critical exponents beyond mean field for a
strongly frustrated spin-glass system. It is possible that such
a perturbative expansion turns out to be nonconvergent: If
this happens, it may help us to pin down the nonperturbative
effects. Motivated by this purpose, we have shown [26] with
a two-loop calculation that such an ε-expansion can be set
up consistently, and that the ordinary RG underlying ideas
actually apply also in this case, so that the IR limit of the theory
is well defined independently on the regularization technique.

In the present work, we show how the underlying RG ideas
emerge in the computation of Ref. [26], and in particular how
such a calculation has been performed, so that the reader can
fully understand and reproduce it. Moreover, we show by an
explicit example of such a computation how the ε-expansion
could be automatized, i.e., implemented by a computer
program, in such a way that high orders of the expansion
could be computed to establish its summability properties.

The HEA is defined [23,26] as a system of 2k+1 spins,
S0, . . . ,S2k+1−1,Si = ±1, with an energy function defined

recursively by coupling two systems of 2k Ising spins

HJ
k+1[S0, . . . ,S2k+1−1]

= H
J1
k [S0, . . . ,S2k−1] + H

J2
k [S2k , . . . ,S2k+1−1]

− 1

2(k+1)σ

0,2k+1−1∑
i<j

J12,ij SiSj , (1)

where

HJ
1 [S1,S2] = −J2−σ S1S2,

and all the couplings Jij are Gaussian random variables with
zero mean and unit variance. Here σ is a parameter tuning the
decay of the interaction strength with distance.

As we will show in the following, the form (1) of the
Hamiltonian corresponds to dividing the system in hierarchical
embedded blocks of size 2k , so that the interaction between
two spins depends on the distance of the blocks to which they
belong [23,24].

The HEA is a hierarchical counterpart of the one-
dimensional spin glass with power-law interactions [11],
which has received attention recently [27–31].

It is crucial to observe [23] that the sum of the squares of
the interaction terms that couple the two subsystems in Eq. (1)
scales with k as 22k(1−σ ). Hence, for σ > 1/2 the interaction
energy scales sub-extensively in the system volume, yielding
a non-mean field behavior of the model, while for σ < 1/2 it
grows faster than the volume, and the thermodynamic limit
is not defined. On the contrary, for σ > 1 the interaction
energy goes to 0 as k → ∞, so that no finite-temperature
phase transition can occur. Hence, the interesting region we
will study is σ ∈ (1/2,1).

An equivalent definition of the HEA can be given without
using the recursion relation (1). Indeed, one can recover Eq. (1)
by defining the HEA as a system of 2k Ising spins with the
Hamiltonian,

Hk[S] = −
2k−1∑
i,j=0

JijSiSj , (2)

where Jij are Gaussian random variables with zero mean
and variance σ 2

ij . The form of σ 2
ij is given by the following

expression: If only the last m digits in the binary representation
of the points i and j are different, σ 2

ij = 2−2σm. This form of the
Hamiltonian corresponds to dividing the system in hierarchical
embedded blocks of size 2m, such that the interaction between
two spins depends on the distance of the blocks to which
they belong. It is important to observe that the quantity σ 2

ij

is not translational invariant, but it is invariant under a huge
symmetry group, and this will be crucial in the study of the
model. The two definitions (1) and (2) are equivalent.

We reproduce the IR behavior of the HEA and calculate
its critical exponents by two different methods. Both methods
assume the existence of a growing correlation scale length ξ ,
diverging for T → Tc as

ξ ∝ (T − Tc)−ν,

in such a way that for T → Tc the theory is invariant under
reparametrizations of the length scale.
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The first method is analogous to the coarse-graining
Wilson’s method for the Ising model: The scale-free limit
is obtained by imposing invariance with respect to the
composition operation of Eq. (1), taking two systems of
2k spins and yielding a system of 2k+1 spins. As for
the Dyson ferromagnetic model, thanks to the hierarchical
structure of the Hamiltonian, one can obtain closed formulas
for physical quantities with respect to such a composition
operation, analyze the critical and noncritical fixed points, and
extract ν.

The second method is more conventional: The IR diver-
gences appearing for k → ∞ and T → Tc are removed by
constructing a renormalized IR-safe theory. The fundamental
physical information one extracts from such a renormalized
theory is the same as that of the original theory defined by
Eq. (1). In particular, the correlation length and its power-law
behavior close to the critical point must be the same, and so
the critical exponent ν.

The rest of this paper is divided into three main sections: In
Sec. II we go through the main steps of the computation with
Wilson’s method, show that the tensorial operations can be
easily implemented diagrammatically, and thus performed by a
computer program to compute high orders of the ε-expansion.
Moreover, we give the two-loop result for ν. In Sec. III the
same result is reproduced with the field-theoretical method,
and the analogies between the two methods are discussed.
In particular, we discuss why Wilson’s method would be
definitely better than the field-theoretical method for a high-
order automatization of the ε-expansion. In Secs. II and III,
we explicitly do all the steps of the calculation at one loop,
giving to the reader all the information needed to reproduce the

two-loop result for ν. Finally, in Sec. IV the two-loop result
is discussed in the perspective of the setup of a high-order
ε-expansion.

II. WILSON’S METHOD

As mentioned before, the hierarchical symmetry structure
of the model makes the implementation of a recursive RG
equation simple enough to be solved within an approximation
scheme. As a matter of fact, let us define the probability
distribution of the overlap [1,2],

Qab, a,b = 1, . . . ,n
(3)

Qab = Qba, Qaa = 0 ∀a,b = 1, . . . ,n

as

Zk[Q] ≡ EJ

⎡
⎣∑

{Sa
i }i,a

exp

(
−β

n∑
a=1

HJ
k

[
Sa

0 , . . . ,Sa
2k−1

])

×
n∏

a<b=1

δ

⎛
⎝Qab − 1

2k

2k−1∑
i=0

Sa
i Sb

i

⎞
⎠
⎤
⎦ , (4)

where β ≡ 1/T is the inverse temperature and EJ the
expectation value with respect to all the couplings {J12,ij }ij .

It is easy to show that the recursion relation (1) for the
Hamiltonian results in a recursion relation for Zk[Q]. Denoting
by Tr the trace over the replica indexes, by

∫
[dQ] the

functional integral over {Qab}a<b, and setting

C ≡ 22(1−σ ), (5)

this recursion relation can be derived [23] as follows:

Zk[Q] = EJ

{ ∑
{Sa

i }i,a
exp

[
− β

n∑
a=1

(
H

J1
k−1

[
Sa

0 , . . . ,Sa
2k−1−1

]+ H
J2
k−1

[
Sa

2k−1 , . . . ,S
a
2k−1

]

− 1

2kσ

0,2k−1∑
i<j

J12,ij S
a
i Sa

j

)]
n∏

a<b=1

δ

(
Qab − 1

2k

2k−1∑
i=0

Sa
i Sb

i

)}

×
∫

[dQ1dQ2]
n∏

a<b=1

⎡
⎣δ

⎛
⎝Q1,ab − 1

2k−1

2k−1−1∑
i=0

Sa
i Sb

i

⎞
⎠ δ

⎛
⎝Q2,ab − 1

2k−1

2k−1∑
i=2k−1

Sa
i Sb

i

⎞
⎠
⎤
⎦

=
∫

[dQ1dQ2]
∑

{Sa
i }i,a

EJ1

⎡
⎣exp

(
− β

n∑
a=1

H
J1
k−1

[�Sa
1

]) n∏
a<b=1

δ

⎛
⎝Q1,ab − 1

2k−1

2k−1−1∑
i=0

Sa
i Sb

i

⎞
⎠
⎤
⎦

×EJ2

⎡
⎣exp

(
− β

n∑
a=1

H
J2
k−1

[�Sa
2

]) n∏
a<b=1

δ

⎛
⎝Q2,ab − 1

2k−1

2k−1∑
i=2k−1

Sa
i Sb

i

⎞
⎠
⎤
⎦

×EJ12

⎡
⎣exp

⎛
⎝ β

2kσ

n∑
a=1

0,2k−1∑
i<j

J12,ij S
a
i Sa

j

⎞
⎠
⎤
⎦ n∏

a<b=1

δ

(
Qab − Q1,ab + Q2,ab

2

)

=
∫

[dQ1dQ2]
∑

{Sa
i }i,a

EJ1

⎡
⎣exp

(
− β

n∑
a=1

H
J1
k−1

[�Sa
1

]) n∏
a<b=1

δ

⎛
⎝Q1,ab − 1

2k−1

2k−1−1∑
i=0

Sa
i Sb

i

⎞
⎠
⎤
⎦

×EJ2

⎡
⎣exp

(
− β

n∑
a=1

H
J2
k−1

[�Sa
2

]) n∏
a<b=1

δ

⎛
⎝Q2,ab − 1

2k−1

2k−1∑
i=2k−1

Sa
i Sb

i

⎞
⎠
⎤
⎦
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× exp

⎡
⎣ β2

422kσ

0,2k−1∑
i,j

(
n∑

a=1

Sa
i Sa

j

)2
⎤
⎦ n∏

a<b=1

δ

(
Qab − Q1,ab + Q2,ab

2

)

=
∫

[dQ1dQ2]
∑

{Sa
i }i,a

EJ1

⎡
⎣exp

(
− β

n∑
a=1

H
J1
k−1

[�Sa
1

]) n∏
a<b=1

δ

⎛
⎝Q1,ab − 1

2k−1

2k−1−1∑
i=0

Sa
i Sb

i

⎞
⎠
⎤
⎦

×EJ2

⎡
⎣exp

(
− β

n∑
a=1

H
J2
k−1

[�Sa
2

]) n∏
a<b=1

δ

⎛
⎝Q2,ab − 1

2k−1

2k−1∑
i=2k−1

Sa
i Sb

i

⎞
⎠
⎤
⎦

× exp

⎡
⎢⎣ β2

422k(σ−1)

n∑
a,b=1

⎛
⎝ 1

2k

0,2k−1∑
i

Sa
i Sb

i

⎞
⎠

2
⎤
⎥⎦ n∏

a<b=1

δ

(
Qab − Q1,ab + Q2,ab

2

)

= exp

(
β2Ck

4
Tr[Q2]

)∫
[dQ1dQ2]Zk−1[Q1]Zk−1[Q2]

n∏
a<b=1

δ

(
Qab − Q1,ab + Q2,ab

2

)
. (6)

The main steps of Eq. (6) can be summarized as follows. We
observe first that in the composition operation of Eq. (1), a
system 1 of 2k−1 spins �S1 ≡ {S0, . . . ,S2k−1−1} with couplings
J1,ij and a system 2 with 2k−1 spins �S2 ≡ {S2k−1 , . . . ,S2k−1} and
couplings J2,ij are put into interaction with couplings J12,ij ,
and a system with 2k+1 spins is obtained. In the first line of
Eq. (6) we used Eq. (1) and inserted the integrals over the
Q1,Q2 that are both equal to 1. In the third line we performed
the integral over J12, which is found in the fourth line to
depend only on the overlap Qab. In the fifth line we use the
definition (4) of Zk−1[Q], and obtain the equation relating
Zk−1[Q] to Zk[Q]. Here and in the rest of this paper, all the
Q-independent constants multiplying Zk[Q] are omitted for
simplicity. Equation (6) is analogous to the recursion equation
in Dyson’s model [15–18], relating the probability distribution
gk(m) of the magnetization at the k-th hierarchical level to
gk−1(m). According to the general prescriptions of the replica
approach, all the physics of the model is encoded in the n → 0
limit of Zk[Q].

We define the rescaled overlap distributions as

Zk[Q] ≡ Zk[C−k/2Q],

and observe that the recursion relation (6) for Zk[Q] implies
a recursion relation for Zk[Q]:

Zk[Q] = exp

(
β2

4
Tr[Q2]

)∫
[dP ]

×Zk−1

[
Q + P

C1/2

]
Zk−1

[
Q − P

C1/2

]
. (7)

To illustrate the technique used to solve (7) for Zk[Q],
we present our method in a simple toy example, where the
matricial field Qab is replaced by a one-component field φ, the
functional Zk[Q] by a function 	k(φ), and Eq. (7) by

	k(φ) = exp

(
β2

4
φ2

)∫
dχ	k−1

[
φ + χ

C1/2

]
	k−1

[
φ − χ

C1/2

]
.

(8)

As for Dyson’s model, Eq. (8) can be solved by making an
ansatz for 	k(φ). The simplest ansatz for 	k(φ) is the Gaussian
one:

	k(φ) = exp[−(dkφ
2 + ekφ)]. (9)

This form corresponds to a mean-field solution. By inserting
Eq. (9) into Eq. (8), one finds two recursion equations relating
dk,ek to dk−1,ek−1:

dk = 2dk−1

C
− β2

4
,

ek = 2ek−1

C1/2
.

Non-Gaussian solutions can be explicitly constructed pertur-
batively. Indeed, by setting

	k(φ) = exp

[
−
(

dkφ
2 + ekφ + uk

3
φ3

)]
, (10)

and supposing that uk is small, one can plug Eq. (10) into
Eq. (8) and get

	k(φ) = exp

(
−
{[

2dk−1

C
− β2

4
− 1

4

(
uk−1

C1/2dk−1

)2
]

φ2

+
(

2ek−1

C1/2
+ uk−1

2C1/2dk−1

)
φ

+ 1

3

[
2uk−1

C3/2
+1

2

(
uk−1

C1/2dk−1

)3
]
φ3 + O

(
u4

k−1

)})
,

(11)

where φ-independent constants multiplying 	k(φ) are omitted
for simplicity here and hereinafter. Comparing Eq. (11) with
Eq. (10), one finds three recurrence equations relating dk,ek,uk
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to dk−1,ek−1,uk−1:

dk = 2dk−1

C
− β2

4
− 1

4

(
uk−1

C1/2dk−1

)2

+ O
(
u4

k−1

)
,

ek = 2ek−1

C1/2
+ uk−1

2C1/2dk−1
+ O
(
u4

k−1

)
, (12)

uk = 2uk−1

C3/2
+ 1

2

(
uk−1

C1/2dk−1

)3

+ O
(
u4

k−1

)
.

One can easily analyze the fixed points of the RG-flow
equations (12), and the resulting critical properties. We will
not enter into these details for the toy model, because
all these calculations will be illustrated extensively for the
HEA model.

Back to the original problem, Eq. (7) can be solved by
making an ansatz for Zk[Q], following the same lines as in the
toy model case. The simplest form one can suppose for Zk[Q]
is the Gaussian one:

Zk[Q] = exp(−rkTr[Q2]). (13)

This form corresponds to a mean-field solution. By inserting
Eq. (13) into Eq. (7), one finds the evolution equation relating
rk−1 to rk:

rk = 2rk−1

C
− β2

4
. (14)

Corrections to the mean-field solution can be investigated
by adding non-Gaussian terms in Eq. (13), which are propor-
tional to higher powers of Q, and consistent with the symmetry
properties of the model. It is easy to see [1] that the only
cubic term in Q consistent with such symmetry conditions
is Tr[Q3], so that the non-mean field ansatz of Zk[Q]
reads

Zk[Q] = exp

[
−
(

rkTr[Q2] + wk

3
Tr[Q3]

)]
. (15)

This correction can be handled by supposing that wk is small
for every k, and performing a systematic expansion in powers
of it. By inserting Eq. (15) into Eq. (7), one finds

Zk[Q] = exp

{
−
[(

2rk−1

C
− β2

4

)
Tr[Q2] + 2wk−1

3C3/2
Tr[Q3]

]}

×
∫

[dP ] exp
[− S

(3)
k−1[P,Q]

]
, (16)

S
(3)
k−1[P,Q] ≡ 2rk−1

C
Tr[P 2] + 2wk−1

C3/2
Tr[QP 2].

The Gaussian integral in Eq. (16) can be computed ex-
actly. Indeed, defining ∀a > b the super-index A ≡ (a,b),
one has

∂2S
(3)
k−1[P,Q]

∂PA∂PB

≡ 8rk−1

C
δAB + 4wk−1

C3/2
MAB[Q], (17)

where

Mab,cd [Q] ≡ Nab,cd [Q] + Nab,dc[Q], (18)

Nab,cd [Q] ≡ δbcQda + δacQdb. (19)

One thus finds

Zk[Q] = exp

{
−
[(

2rk−1

C
− β2

4

)
Tr[Q2] + 2wk−1

3C3/2
Tr[Q3]

]}

×
[

det

(
8rk−1

C
δAB + 4wk−1

C3/2
MAB[Q]

)]− 1
2

. (20)

The determinant in the right-hand side of Eq. (20) can now
be expanded in wk−1. Denoting by Tr the trace over the A-
type indexes, it is easy to show that Tr[M[Q]] = 0, and one
has to explicitly evaluate the traces Tr[M[Q]2],Tr[M[Q]3] to
expand the determinant to O(w3

k−1). Here we show how the
trace Tr[M[Q]2] can be evaluated, in order to show to the
reader how the tensorial operations over the replica indexes
can be generally carried out. By using Eqs. (18) and (19), one
has

Tr[M[Q]2] =
∑
AB

M[Q]ABM[Q]BA

=
∑

a>b,c>d

(Nab,cd [Q] + Nab,dc[Q])

×(Ncd,ab[Q] + Ncd,ba[Q])

=
∑

a 	=b,c 	=d

Nab,cd [Q]Ncd,ab[Q]

=
∑

a 	=b,c 	=d

(δbcQda + δacQdb)(δdaQbc + δcaQbd )

=
∑

a 	=b,c 	=d

δcaQ
2
bd

=
∑
abcd

(1 − δab)(1 − δcd )δcaQ
2
bd

= (n − 2)
∑
ab

Q2
ab

= (n − 2)Tr[Q2]. (21)

The steps in Eq. (21) can be summarized as follows: In the sec-
ond line we write the sums over the super indexes A,B, . . . in
terms of the replica indexes a,b, . . ., and in the third line we use
the symmetry of Nab,cd [Q] with respect to a ↔ b and rewrite
the sum over a > b,c > d in terms of a sum with a 	= b,c 	= d.
In the fifth line we find out that just one of the terms stemming
from the product (δbcQda + δacQdb)(δdaQbc + δcaQbd ) does
not vanish, because of the constraints a 	= b,c 	= d,Qaa = 0,
and because of the Kronecker δs in the sum. Once we are left
with the nonvanishing term, in the sixth line we write explicitly
the sum over a 	= b,c 	= d in terms of an unconstrained sum
over a,b,c,d by adding the constraints (1 − δab)(1 − δcd ). In
the seventh line we perform explicitly the sum over the replica
indexes, and write everything in terms of the replica-invariant
I

(2)
1 [Q] ≡ Tr[Q2] (see Table I).

The trace in Eq. (21) can also be computed with a purely
graphical method, which can be easily implemented in a
computer program to perform this computation at high orders
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TABLE I. Invariants generated at the order p = 5. In each line of the table we show the invariants I
(j )
1 [Q], . . . ,I (j )

nj
[Q] from left to right.

j I
(j )
l [Q]

2 Tr[Q2]
3 Tr[Q3]
4 Tr[Q4] Tr[Q2]2

∑
a 	=c Q2

abQ
2
bc

∑
ab Q4

ab

5 Tr[Q5] Tr[Q2]Tr[Q3]
∑

abcd Q2
abQbcQbdQcd

∑
abc Q3

abQacQbc

in wk . Let us set

Tr2[f ] ≡
∑

a1 	=b1,···,ak 	=bk

fa1b1,...,akbk

=
∑

a1b1,···,akbk

(1 − δa1b1 ) · · · (1 − δakbk
)fa1b1,...,akbk

(22)

for any function of f the replica indexes, and make the
graphical identifications shown in Fig. 1. The last line in
Eq. (21) can now be reproduced by a purely graphical
computation, as shown in Fig. 2. There we show that all the
tensorial operations have precise a graphical interpretation, and
so that they can be performed without using the cumbersome
steps of Eq. (21). This graphical notation is suitable for an
implementation in a computer program, which could push
our calculation to high orders in wk . For example, as shown
in Fig. 2 in a simple example, while computing Tr[M[Q]k]
for k � 1, a proliferation of terms occurs, and some of these
terms can be shown to be equal to each other, because they are
represented by isomorph graphs, so that the calculation can be
extremely simplified.

By following the steps shown in Eq. (21) (or their graphical
implementation), all the other tensorial operations can be
carried out. In particular, one finds

Tr[M[Q]3] = (n − 2)Tr[Q3]. (23)

By plugging Eqs. (21) and (23) into Eq. (20), one finds

Zk[Q] = exp

(
−
{[

2rk−1

C
− β2

4
− n − 2

4

(
wk−1

2rk−1C1/2

)2
]

× Tr[Q2] + 1

3

[
2wk−1

C3/2
+ n − 2

2

(
wk−1

2rk−1C1/2

)3
]

× Tr[Q3] + O
(
w4

k−1

)})
. (24)

δab ≡

Qab ≡ a b.

a b,

FIG. 1. Graphical identifications representing symbolically the
mathematical objects used in tensorial operations. The basic objects
are the δab function, imposing that the replica indexes a and b are
equal (top), and the matrix Qab (bottom). Once these elements are
represented graphically, all the tensorial operations can be worked
out by manipulating graphical objects composed by these elementary
objects.

Comparing Eq. (24) with Eq. (15), one finds a recursion
relation for the coefficients rk,wk:

rk = 2rk−1

C
− β2

4
− n − 2

4

(
wk−1

2C1/2rk−1

)2

+ O
(
w4

k−1

)
,

(25)

wk = 2wk−1

C3/2
+ n − 2

2

(
wk−1

2C1/2rk−1

)3

+ O
(
w5

k−1

)
.

Setting

ε ≡ σ − 2/3,

Equation (25) shows that if ε < 0, wk → 0 for k → ∞, i.e.,
the corrections to the mean field vanish in the IR limit. In
this case, the critical fixed point (r∗,w∗) of Eq. (25) has
w∗ = 0. On the contrary, for ε > 0 a nontrivial critical fixed
point w∗ 	= 0 arises. According to general RG arguments, this
nontrivial fixed point is proportional to some power of ε [12].
In particular, one finds that w2

∗ = O(ε).
The critical exponent ν can be computed [13] by consider-

ing the 2 × 2 matrix M linearizing the transformation given
by Eq. (25) around the critical fixed point (r∗,w∗),(

rk − r∗
wk − w∗

)
= M ·

(
rk−1 − r∗

wk−1 − w∗

)
,

and is given by

ν = log 2

log �
, (26)

where � is the largest eigenvalue of M.
Such a procedure can be systematically pushed to higher

orders in wk , and thus in ε, by taking into account further
corrections to the mean-field solution. Indeed, if we go back to
Eq. (20) and consider also the O(w4

k−1) terms on the right-hand
side, we find

[
det

(
8rk−1

C
δAB + 4wk−1

C3/2
MAB[Q]

)]− 1
2

= exp

{
− 1

2
Tr

[
− 1

2

(
wk−1

2C1/2rk−1

)2

M[Q]2

+ 1

3

(
wk−1

2C1/2rk−1

)3

M[Q]3 − 1

4

(
wk−1

2C1/2rk−1

)4

×M[Q]4 + O
(
w5

k−1

)]}
. (27)
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By computing explicitly the O(w4
k−1) term on the right-hand

side of Eq. (27), one finds

Tr[M[Q]4] = nI
(4)
1 [Q] + 3I

(4)
2 [Q] − 16I

(4)
3 [Q] − 8I

(4)
4 [Q],

I
(4)
1 [Q] ≡ Tr[Q4],

I
(4)
2 [Q] ≡ (Tr[Q2])2,

(28)
I

(4)
3 [Q] ≡

∑
b 	=c

Q2
abQ

2
ac,

I
(4)
4 [Q] ≡

∑
ab

Q4
ab.

Plugging Eq. (28) in Eq. (27) and Eq. (27) in Eq. (20),
we see that at O(w4

k−1), Eq. (7) generates the fourth-order

monomials {I (4)
l [Q]}l=1,...,4, which are not included into the

original ansatz (15). It follows that at O(w4
k ), Zk[Q] must be

of the form

Zk[Q] = exp

[
−
(

rkTr[Q2] + wk

3
Tr[Q3]

+ 1

4

4∑
l=1

λl,kI
(4)
l [Q]

)]
, (29)

with λl,k = O(w4
k ) ∀l = 1, . . . ,4.

By inserting Eq. (29) into Eq. (7) and expanding up
to O(w4

k−1), we obtain six recursion equations relating
rk,wk,λ1,k, . . . ,λ4,k to rk−1,wk−1,λ1,k−1, . . . ,λ4,k−1.

Such a systematic expansion can be iterated to any order
O(wp

k ), obtaining

Zk[Q] = exp

⎧⎨
⎩−
⎡
⎣c

(2)
1,kI

(2)
1 [Q] +

p∑
j=3

1

j

nj∑
l=1

c
(j )
l,k I

(j )
l [Q]

⎤
⎦
⎫⎬
⎭ ,

(30)

where c
(2)
1,k ≡ rk, c

(3)
1,k ≡ wk, c

(4)
l,k ≡ λl,k∀l = 1, . . . ,4, n3 =

1, n4 = 4, and I
(3)
1 [Q] ≡ Tr[Q3]. In this way, a

recursion equation relating {c(j )
l,k−1}j,l to {c(j )

l,k }j,l is
obtained.

The number nj of monomials generated at the step j

of this procedure proliferates for increasing j . In Table I
we show the invariants I

(j )
l [Q] obtained by performing this

systematic expansion up to the order p = 5. It is interesting
to observe that the invariants Tr[Q2]2,Tr[Q2]Tr[Q3] that are
generated, are of O(n2) if the matrix Qab is replica symmetric.
Notwithstanding this, in general they will give a nonvanishing
contribution to the recursion relations {c(j )

l,k−1}j,l → {c(j )
l,k }j,l ,

and so to ν. The recurrence equations at O(w5
k ) are the

following:

c
(2)
1,k = 2c

(2)
1,k−1

C
− β2

4
− n − 2

4

(
c

(3)
1,k−1

2C1/2c
(2)
1,k−1

)2

+ (2n − 1)
c

(4)
1,k−1

8Cc
(2)
1,k−1

+ c
(4)
2,k−1

2Cc
(2)
1,k−1

[
1 + n(n − 1)

4

]

+ (n − 2)
c

(4)
3,k−1

8Cc
(2)
1,k−1

+ 3c
(4)
4,k−1

8Cc
(2)
1,k−1

+ O
[(

c
(3)
1,k−1

)6]
, (31)

c
(3)
1,k = 2c

(3)
1,k−1

C3/2
+ n − 2

2

(
c

(3)
1,k−1

2C1/2c
(2)
1,k−1

)3

+ 3nc
(5)
1,k−1

4C3/2c
(2)
1,k−1

+ (n + 3)
3c

(5)
2,k−1

20C3/2c
(2)
1,k−1

+ 9c
(5)
3,k−1

20C3/2c
(2)
1,k−1

+ 3c
(5)
4,k−1

20C3/2c
(2)
1,k−1

[12 + n(n − 1)] − 3c
(3)
1,k−1

4C1/2c
(2)
1,k−1

[
(n − 1)c(4)

1,k−1

2Cc
(2)
1,k−1

+ 2c
(4)
2,k−1

Cc
(2)
1,k−1

+ c
(4)
3,k−1

2Cc
(2)
1,k−1

]
+ O
[(

c
(3)
1,k−1

)7]
, (32)

c
(4)
1,k = 2c

(4)
1,k−1

C2
− n

2

(
c

(3)
1,k−1

2C1/2c
(2)
1,k−1

)4

+ O
[(

c
(3)
1,k−1

)6]
, (33)

c
(4)
2,k = 2c

(4)
2,k−1

C2
− 3

2

(
c

(3)
1,k−1

2C1/2c
(2)
1,k−1

)4

+ O
[(

c
(3)
1,k−1

)6]
, (34)

c
(4)
3,k = 2c

(4)
3,k−1

C2
+ 8

(
c

(3)
1,k−1

2C1/2c
(2)
1,k−1

)4

+ O
[(

c
(3)
1,k−1

)6]
, (35)

c
(4)
4,k = 2c

(4)
4,k−1

C2
+ 4

(
c

(3)
1,k−1

2C1/2c
(2)
1,k−1

)4

+ O
[(

c
(3)
1,k−1

)6]
, (36)

c
(5)
1,k = 2c

(5)
1,k−1

C5/2
+ n + 6

2

(
c

(3)
1,k−1

2C1/2c
(2)
1,k−1

)5

+ O
[(

c
(3)
1,k−1

)7]
,

(37)

c
(5)
2,k = 2c

(5)
2,k−1

C5/2
− 40

(
c

(3)
1,k−1

2C1/2c
(2)
1,k−1

)5

+ O
[(

c
(3)
1,k−1

)7]
, (38)
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Tr[M [Q]2] = Tr2[N [Q]N [Q]]

= Tr2

[(
+

)(
+ +

)]

+= Tr2

[

= Tr2

[ ]

== − − +

== − 2×

== − 2×n×

= (n − 2)Tr[Q2]

Example of a graphical computation

+

]

+

FIG. 2. Graphical computation of Tr[M[Q]2] in Eq. (21). In the
second line, the two addends of the matrix N [Q]ab,cd in Eq. (19) are
represented graphically in terms of the graphical objects defined in
Fig. 1. In the third line, the legs of such addends are contracted with
each other, and four terms are generated. The second and the third
term can be easily recognized to be topologically identical, and so
equal. According to the condition Qaa = 0 in Eq. (3), the first term
in the third line vanishes. Indeed, in this term the lines coming out
of the square vertex Qab are connected by a circuit, meaning that the
matrix element Qab is computed with a = b, and thus vanishes. The
second and third terms in the third line also vanish because, according
to Eq. (22), the dummy indexes in Tr2 must satisfy a1 	= b1,a2 	= b2,
while the graphical structure of the second and third terms enforces
the constraint a2 = b2,a1 = b1 respectively. Moreover, the two top
lines in the third term are actually equivalent to just one line, because
of the relation δ2

ab = δab. Hence, we are left with a single term in the
fourth line. In the fifth line, we perform graphically the operation Tr2.
Such an operation can be easily implemented graphically by looking
at the second line of Eq. (22). Let us expand the product of δs in the
second line of Eq. (22), and recall from Fig. 1 that δab represents a
line with a circular dot connecting a with b. Hence, given a graphical
object O with external legs (indexes) (a1,b1), . . . ,(ak,bk), Tr2[O] is
nothing but the sum of all the possible 2k contractions (performed
with a line with a circular dot) of these external legs, where each
contracted term is multiplied by (−1)# of contractions of the term. In this
case k = 2, so we generate 22 terms in the fifth line. In the sixth
line, we take into account the fact that the second and third terms
in the fifth line are topologically isomorph, and that the fourth term
in the fifth line vanishes because of the condition Qaa = 0. In the
seventh line the unconstrained sum over the replica indexes is finally
performed. This can be done graphically in the following way: When
we have an external line connected to a round vertex, summing over
the replica index represented by that line means that one has to simply
remove the line (this is the graphical implementation of the relation∑

b δabgb = ga). We do this in the first term: We sum over the top-left
index, and remove the line on the top. Then we sum over the top-right
index by simply multiplying by n. The sum over the bottom-left and
bottom-right indexes simply yields Tr[Q2]. We do the same for the
second term: We sum over the top-right index and remove the top
line, then sum over the top-left index and remove the top-left line.
Then, the sum over the bottom-left and bottom-right indexes yields
Tr[Q2]. Hence, we get the same result as in Eq. (21).

c
(5)
3,k = 2c

(5)
3,k−1

C5/2
+ 30

(
c

(3)
1,k−1

2C1/2c
(2)
1,k−1

)5

+ O
[(

c
(3)
1,k−1

)7]
, (39)

c
(5)
4,k = 2c

(5)
4,k−1

C5/2
+ 5

(
c

(3)
1,k−1

2C1/2c
(2)
1,k−1

)5

+ O
[(

c
(3)
1,k−1

)7]
. (40)

By looking at Eqs. (33)–(40) and using the definition (5),
it is easy to see that the coefficients c

(4)
l,k ,c

(5)
l,k scale to zero as

k → ∞ if ε < 1/12. It is easy to find out that this is actually
true for all the coefficients c

(j )
l,k with j > 3. Such a critical

value ε = 1/12 will be reproduced also in the field-theoretical
approach in Sec. III.

The evolution Eqs. (31)–(40) depend smoothly on the
replica number n, so that the analytical continuation n → 0,
can be done directly. By linearizing the transformation (31)–
(40) around the critical fixed point {c(j )

l∗ }j,l and computing the
matrix M, one can extract �, and so ν for n = 0 to the order
ε2 by using Eq. (26). We find

ν = 3 + 36ε + [432 − 27(50 + 55 × 21/3

+ 53 × 22/3) log 2]ε2 + O(ε3). (41)

At order ε, our result for ν is the same as that of the
power-law interaction spin glass [11] [where ε ≡ 3(σ − 2/3)].
Notwithstanding this, the coefficients of the expansion in these
two models will be in general different at two or more loops.
As a matter of fact, the binary-tree interaction structure of
the HEA emerges in the nontrivial log 2,21/3 factors in the
coefficient of ε2 in Eq. (41), which cannot be there in the
power-law case.

Before discussing the result in Eq. (41), we point out
that Wilson’s method explicitly implements the binary-tree
structure of the model when approaching the IR limit. As
a matter of fact, the hierarchical structure of the model
is explicitly exploited to construct the steps of the RG
transformation. Nevertheless, if the IR limit is unique and
well defined, physical observables such as ν must not depend
on the technique we use to compute them in such a limit.
It is thus important to verify that Eq. (41) does not depend
on the method we used to reproduce the IR behavior of the
theory. This has been done by reproducing Eq. (41) with a
quite different field-theoretical approach.

III. FIELD-THEORETICAL METHOD

Here the IR limit is performed by constructing a functional
integral field theory and by removing its IR divergences within
the minimal subtraction scheme.

While in Wilson’s method the IR limit was performed by
looking at the scale-invariant fixed points for k → ∞ after
solving the recursion relation (7), in this case we perform
before the large-k limit, remove the resulting IR singularities
through re-normalization, and then perform the scale-invariant
(IR) limit by means of the Callan-Symanzik equation.
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This computation is better performed by slightly changing
the definition of the model. Indeed, the following redefinition
of the interaction term in Eq. (1),

0,2k+1−1∑
i<j

J12,ij SiSj →
2k−1∑
i=0

2k+1−1∑
j=2k

J12,ij SiSj (42)

is equivalent to the original definition (1) and makes the field-
theory computations simpler. The equivalence of Eq. (42) with
the original definition (1) can be shown [23] by observing that
the scaling of the spin coupling in the model defined by Eq. (42)
differs from that in Eq. (1) for a constant multiplicative factor,
and thus that the two options are equivalent, and must yield
the same critical exponents. Notwithstanding this, the critical
temperature of the model defined by Eq. (1) and that of the
model defined by Eq. (42) are different. This can be verified by
considering how the recursion relation (6) is modified when
one applies the redefinition (42).

The only difference is the third factor in the second line of
Eq. (6), which is now given by

EJ12

⎡
⎣exp

⎛
⎝ β

2kσ

n∑
a=1

2k−1−1∑
i=0

2k−1∑
j=2k−1

J12,ij S
a
i Sa

j

⎞
⎠
⎤
⎦

= exp

{
β2Ck

4

[
Tr[Q2] − 1

4

(
Tr
[
Q2

1

]+ Tr
[
Q2

2

])]}
.

It follows that the recursion relation (6) becomes

Zk[Q] = exp

(
β2Ck

4
Tr[Q2]

)∫
[dQ1dQ2]

× exp

(
−β2Ck

16
Tr
[
Q2

1

])
Zk−1[Q1]

× exp

(
−β2Ck

16
Tr
[
Q2

2

])
Zk−1[Q2]

×
n∏

a<b=1

δ

(
Qab − Q1,ab + Q2,ab

2

)
. (43)

Setting

Xk[Q] ≡ exp

(
−β2C

16
Tr[Q2]

)
Zk[C−k/2Q],

one can rewrite Eq. (43) as

Xk[Q] = exp

[
β2

4

(
1 − C

4

)
Tr[Q2]

] ∫
[dP ]

×Xk−1

(
Q + P

C1/2

)
Xk−1

(
Q − P

C1/2

)
. (44)

By comparing Eq. (44) with Eq. (7), it is finally clear that
the redefinition (42) results in an effective redefinition of the
inverse temperature β.

The redefinition (42) also has a clear physical meaning.
Indeed, the original definition (1) is such that, when two
subsystems of 2k spins are coupled to form a system with
2k+1 spins, one introduces couplings J12,ij between the two
subsystems and between the spins within each subsystem,
while in Eq. (42) only couplings between the two subsystems
are introduced.

By iterating the recursion relation (1), one has an explicit
form for the Hamiltonian HJ

k [�S] of a system of 2k spins in
the large-k limit. Then, the average of the replicated partition
function is expressed as an integral over the local overlap field
Qiab ≡ Sa

i Sb
i :

EJ [Zn] = EJ

⎡
⎣∑

{Sa
i }i,a

exp

(
−β

n∑
a=1

HJ
k

[
Sa

0 , . . . ,Sa
2k−1

])⎤⎦
=
∫

[dQ] e−S[Q].

By using a dimensional analysis, it is easy to pick up the terms
in S[Q] that are relevant in the IR limit. It is easy to check that
S[Q] is given by the sum of a quadratic term in Qiab, plus a
cubic term, plus higher-degree terms. The dimensions of the
field Qiab can be computed by imposing the adimensionality
of the quadratic term, and so the dimensions of the coefficient g
of the cubic term and of those of the higher-degree terms. One
finds that the dimensions of g in energy is [g] = 3ε. Thus, as in
Wilson’s method, the cubic term scales to zero in the IR limit
for ε < 0, while a nontrivial fixed point appears for ε > 0. As
in Wilson’s method, it is easy to see that for ε < 1/12 all the
higher-degree terms in S[Q] scale to zero in the IR limit. Thus,
the IR-dominant part of the action reads

S[Q] = 1

2

2k−1∑
i,j=0

�ij Tr[QiQj ] + g

3!

2k−1∑
i=0

Tr
[
Q3

i

]
. (45)

In the derivation of Eq. (45), the bare propagator �ij

originally depends on i,j through the difference I(i) − I(j ),
where the function I(i) is defined as follows: Given i ∈
[0,2k − 1] and its expression in base 2,

i =
k−1∑
j=0

aj 2j , I(i) ≡
k−1∑
j=0

ak−1−j 2j . (46)

Hence, the quadratic term of Eq. (45) is not invariant under
spatial translations. This would make any explicit computation
of the loop integrals, and so of the critical exponents, extremely
difficult to perform. This problem can be overcome by a
relabeling of the sites of the lattice [33],

I(i) → i,∀i = 0, . . . ,2k − 1.

After relabeling one obtains that �ij depends on i,j just
through the difference i − j , thus S[Q] is translationally in-
variant, and the ordinary Fourier transform techniques [33,34]
can be employed. In particular, the Fourier representation of
the propagator is

�ij = 1

2k

2k−1∑
p=0

exp

[−2πıp(i − j )

2k

] (|p|2σ−1
2 + m

)
, (47)

where |p|2 is the diadic norm of p [32], and the mass m ∝
T − Tc has dimensions [m] = 2σ − 1.

An interesting feature of the action (45) is the fact the
propagator � in Eq. (47) depends on the momentum p through
its diadic norm |p|2. If we look at the original derivation of the
recursion RG equation for the Ising model in finite dimension
(in particular, to the Polyakov derivation [13]), we find that the
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basic approximation was to introduce an ultrametric structure
in momentum space: The momentum space is divided in shells,
and the sum of two momenta of a given shell cannot give
a momentum of a higher momentum scale cell. This has a
nice similarity with the metric properties of the diadic norm,
where if p1,p2 are two integers, their diadic norms satisfy [32]
|p1 + p2|2 � max(|p1|2,|p2|2).

The field theory defined by Eq. (45) reproduces the Tr[Q3]
interaction term of the well-know effective actions describing
the spin-glass transition in short-range [35] and long-range
[11,36] spin glasses. Notwithstanding this similarity, the
novelty of the HEA is that a high-order ε-expansion can be
quite easily automatized within Wilson’s method, by means
of a symbolic manipulation program solving the simple RG
equation (7). This is not true for such short- and long-range
[11,35,36] models, where the only approach to compute the
exponents is the field-theoretical one. Indeed, to the best
of our knowledge, nobody ever managed to automatize a
high-order computation of the critical exponents within the
field-theoretical minimal subtraction scheme, even for the
Ising model, because such an automation is not an easy
task [37].

The field theory defined by Eq. (45) can be now analyzed
within the loop-expansion framework. The renormalized mass
and coupling constant are defined as

m = mr + δm, (48)

g = m
3ε

2σ−1
r grZg. (49)

We define the one-particle-irreducible [12] (1PI) renormalized
correlation functions �(m,l)

r in terms of the bare 1PI correlation
functions �(m,l) as

�(m,l)
r

(
a1b1i1 · · · ambmim; j1 · · · jl ; gr,m

1
2σ−1
r

)
≡ Zl

2�
(m,l)
(
a1b1i1 · · · ambmim; j1 · · · jl ; g,m

1
2σ−1
)
.

Since this model has long-range interactions, the field Qab

is not renormalized, and [12] ZQ = 1. Hence, all we need to
compute ν are [12] the renormalization constants Zg,Z2 and
δm. These can be obtained by computing the IR-divergent parts
of �(3,0)

r ,�(2,1)
r with the minimal subtraction scheme [12]. In

other words, one takes the IR limit mr → 0, and systematically
removes the resulting ε-singular parts of the correlations
functions by absorbing them into the renormalization constants
Zg,Z2.

The Feynman diagrams contributing to �(2,1)
r ,�(3,0)

r are
shown in Figs. 3 and 4, respectively, and their singular parts
are in the form of 1/ε,1/ε2 poles.

Here we show by a simple example how the ε-divergent
part of such diagrams can be computed. Let us consider the
one-loop expansion of �(3,0)

r . This is obtained by picking up
the Tr[Q3] term in the renormalized 1PI generating functional
[12]:

�r [Q] = 1

2

2k−1∑
i,j=0

�ij Tr[QiQj ] + m3ε
r gr

3!

2k−1∑
i=0

Tr
[
Q3

i

]

×
(

Zg + n − 2

8
m

6ε
2σ−1
r I7g

2
r

)
+ O
(
g5

r

)
. (50)

1 2 3

4 5 6

FIG. 3. One- and two-loop Feynman diagrams contributing to
�(2,1)

r . The crosses represent Tr[Q2] insertions. From left to right,
such diagrams computed at zero external momenta are equal to
I1,I2,I3,I4,I5,I6, respectively.

The loop integral,

I7 ≡ 1

2k

2k−1∑
p=0

1(
mr + δm + |p|2σ−1

2

)3 , (51)

is represented by the first diagram in Fig. 4.
Equation (51) has a well-defined limit for k → ∞. Indeed,

thanks to the translational invariance of the theory, the
argument of the sum on the right-hand side of Eq. (51) depends
on p just through its diadic norm. It follows that the sum I7

can be transformed into a sum over all possible values of
|p|2. Indeed, using the standard result [32] that the number of
integers p ∈ [0,2k − 1] such that |p|2 = 2−j , i.e., the volume
of the diadic shell, is given by 2−j+k−1, Eq. (51) becomes

I7 =
k−1∑
j=0

2−j−1 1

[mr + δm + 2−j (2σ−1)]3

→
∞∑

j=0

2−j−1 1

[mr + δm + 2−j (2σ−1)]3
, (52)

FIG. 4. One- and two-loop Feynman diagrams contributing to
�(3,0)

r . From left to right, such diagrams computed at zero external
momenta are equal to I7,I8,I9,I10, respectively. The last diagram
is nonplanar.
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where in the second line of Eq. (52) the k → ∞ limit has been
taken, because the sum in the first line is convergent. By using
the fact that δm = O(g2

r ), we can rewrite Eq. (52) as

I7 =
∞∑

j=0

2−j−1 1

[mr + 2−j (2σ−1)]3
+ O
(
g2

r

)
. (53)

It is easy to see that I7 is IR divergent for mr → 0. Indeed, in
the limit mr → 0 the sum over j in Eq. (53) is dominated by the
terms in the IR region 2−j = |p|2 → 0. The js corresponding
to this region go to infinity as mr → 0, yielding a divergent
sum in I7.

In the IR region, the sum on the right-hand side of Eq. (53)
can be approximated by an integral, because the integrand
function is almost constant in the interval [j,j + 1] for large
j . Setting q ≡ 2−j , for mr → 0 we have −q log 2dj = dq,
and

I7 = 1

2 log 2

∫ 1

0

dq

[mr + q2σ−1]3
+ O
(
g2

r

)

= m
− 6ε

2σ−1
r

2 log 2

∫ m
− 1

2σ−1
r

0

dx

(1 + x2σ−1)3
+ O
(
g2

r

)

→ m
− 6ε

2σ−1
r

2 log 2

∫ ∞

0

dx

(1 + x2σ−1)3
+ O
(
g2

r

)
. (54)

The integral on the right-hand side of the last line in
Eq. (54) is convergent for ε > 0, and diverges as ε → 0.
Its ε-divergent part can be easily evaluated,

I7 = m
− 6ε

2σ−1
r

4 log 2
�

(
3 + 1

1 − 2σ

)

×�

(
1 + 1

1 − 2σ

)
+ O
(
g2

r

)
= m

− 6ε
2σ−1

r

[
1

12ε log 2
+ Oε(1)

]
+ O
(
g2

r

)
, (55)

where � is the Euler-gamma function and Oε(1) denotes terms
that stay finite as ε → 0. As we will show in the following,
these finite terms give a contribution to the renormalization
constants at two loops. By plugging Eq. (55) into Eq. (50),
one can compute the g2

r coefficient of Zg by imposing that
the ε-singular part of I7 is canceled by Zg . For n = 0
we have

Zg = 1 + 1

48ε log 2
g2

r + O
(
g4

r

)
. (56)

By repeating the same computation for the generating func-
tional �r [Q,K] of correlation functions with Tr[Q2] insertions
and imposing that the

∑2k−1
i=0 KiQ2

i term is finite, i.e., that �(2,1)
r

is finite, we obtain

Z2 = 1 + 1

24ε log 2
g2

r + O
(
g4

r

)
.

Such a procedure has been pushed at two loops by an explicit
calculation. Even if the evaluation of the ε-divergent part
of the two-loop diagrams is more involved, the techniques
and underlying ideas are exactly the same as those used to
compute the one-loop diagram I7. In Figs. 3 and 4 we show
the Feynman diagrams contributing to the finiteness conditions
of �(2,1)

r and of �(3,0)
r , respectively. We denote by I7, . . . ,I6

the diagrams in Fig. 3 evaluated at zero external momenta, and
by I7, . . . ,I10 those in Fig. 4 evaluated at zero momenta. It
is easy to show that the equalities

I7 = I7,

I2 = I6 = I9,

I3 = I10,

I4 = I5 = I8

hold, and so that all we need to compute the renormalization
constants are I7,I2,I3,I4. I7 is given by Eq. (51), while
the other loop integrals are

I2 = 1

22k

2k−1∑
p=0

2k−1∑
q=0

1(
mr + δm + |p|2σ−1

2

)4(
mr + δm + |q|2σ−1

2

)(
mr + δm + |p − q|2σ−1

2

) ,

I3 = 1

22k

2k−1∑
p=0

2k−1∑
q=0

1(
mr + δm + |p|2σ−1

2

)2(
mr + δm + |q|2σ−1

2

)2(
mr + δm + |p − q|2σ−1

2

)2 ,

I4 = 1

22k

2k−1∑
p=0

2k−1∑
q=0

1(
mr + δm + |p|2σ−1

2

)3(
mr + δm + |q|2σ−1

2

)2(
mr + δm + |p − q|2σ−1

2

) .
In the limit mr → 0, I2,I3,I4 are given by

I2 = m
−12ε
2σ−1
r

[(
2

22/3 − 1
− 1

21/3 − 1
− 1

)
1

48ε log 2

]
+ Oε(1) + O

(
g2

r

)
,

I3 = m
−12ε
2σ−1
r

(
1

21/3 − 1

1

16ε log 2

)
+ Oε(1) + O

(
g2

r

)
,
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I4 = m
−12ε
2σ−1
r

{
1

2

[
1

(12ε log 2)2
−
(

3

8(log 2)2
+ 1

48 log 2

)
1

ε

]
+
(

1

21/3 − 1
+ 1

22/3 − 1

)
1

48ε log 2

}
+Oε(1) + O

(
g2

r

)
.

The finiteness of �(3,0)
r is imposed by making finite the

∑2k−1
i=0 Tr[Q3

i ] term in the 1PI generating functional �r [Q]. The finiteness

of �(2,1)
r is imposed by making finite the

∑2k−1
i=0 KiQ2

i term in the 1PI generating functional �r [Q,K]. The two-loop expansion
of �r [Q] and of �r [Q,K] read

�r [Q] = gr

2k−1∑
i=0

Tr
[
Q3

i

]{m
3ε

2σ−1
r Zg

3!
+ g2

r (n − 2)

6

⎛
⎝m

3ε
2σ−1
r Zg

2

⎞
⎠

3

I7

+g4
r m

15ε
2σ−1
r Z5

g

3!27
[6(n − 2)2I9 + 6(n − 2)2I8 + 2(n(n − 1) − 4 − (n − 2)2)I10] + O

(
g6

r

)}

+ · · · , (57)

�r [Q,K] =
2k−1∑
i=0

KiTr
[
Q2

i

]{Z2

4
+ g2

r Z2Z
2
gm

6ε
2σ−1
r (n − 2)

16
I1 + g4

r m
12ε

2σ−1
r (n − 2)2

28
[2(3I2 + 2I4)

+ 4I5 + I3] + O
(
g6

r

)}+ · · · , (58)

where the · · · in Eq. (57) stands for terms that are not cubic
in Qi , while the · · · in Eq. (58) stands for terms that are not
quadratic in Qi and linear in Ki . The renormalization constants
Zg,Z2 are calculated by imposing that the renormalized
correlation functions �(3,0)

r , �(2,1)
r are finite, i.e., that the term

in curly brackets in Eq. (57) and that in Eq. (58) have no
singularities [12] in ε. At this purpose, we observe that the
finite part of the integral I7 contributes to the renormalization
constants at two loops. For example, let us consider the second
addend in curly brackets on the right-hand side of Eq. (57). By
using Eq. (55) and the one-loop result (56) for Zg , it is easy to
see that this term produces an ε-divergent term, given by

g2
r (n − 2)

48
m

9ε
2σ−1
r

3

48ε log 2
g2

r Oε(1), (59)

where Oε(1) is the finite part of I7 in Eq. (55). The term in
Eq. (59) is of O(g4

r ) and singular in ε. Hence, it contributes to
the O(g4

r ) term in Zg .
After setting n = 0 and imposing the finiteness conditions,

we find

Zg = 1 + g2
r

48ε log 2

+ g4
r

[
1

1536ε2(log 2)2
+ 5 + 2 × 22/3

512ε log 2

]
+ O
(
g6

r

)
,

(60)

Z2 = 1 + g2
r

24ε log 2

+ g4
r

[
1

576ε2(log 2)2
− 5

(1 + 11 × 21/3 + 7 × 22/3)

2304ε log 2

]
+O
(
g6

r

)
. (61)

It is also easy to verify that δm = O(g4
r ).

Once the IR-safe renormalized theory has been constructed,
the effective coupling constant g(λ) at the energy scale λ is
computed from the Callan-Symanzik equation in terms of the

β function by setting μ ≡ m
1

2σ−1
r ,

β(gr ) = μ
∂gr

∂μ

∣∣∣∣
g,m

, β(g(λ)) = λ
dg(λ)

dλ
. (62)

β(gr ) can be explicitly computed in terms of the renormaliza-
tion constant Zg by applying μ ∂

∂μ
|g,m on both sides of Eq. (49):

0 = μ
∂

∂μ

∣∣∣∣
g,m

(μ3εgrZg). (63)

The right-hand side of Eq. (63) can then be worked out
explicitly by using the two-loop result (60) and substituting
systematically β(gr ) to μ

∂gr

∂μ
|g,m. In this way, an explicit

equation for β(gr ) is obtained. One finds

β(gr ) = −3εgr + g3
r

8 log 2
+ 3

5 + 2 × 22/3

128 log 2
g5

r + O
(
g7

r

)
. (64)

Setting g∗
r ≡ g(λ = 0), we see from Eq. (64) that the fixed

point g∗
r = 0 is stable only for ε < 0, while for ε > 0 a non-

Gaussian fixed point g∗
r of order

√
ε arises, as predicted by

dimensional considerations and by Wilson’s method. Now the
IR limit λ → 0 can be safely taken, and the scaling relations
yield ν, in terms of g∗

r and Z2,

η2[gr ] ≡ μ
∂ log Z2

∂μ

∣∣∣∣
g,m

, ν = 1

η2[g∗
r ] + 2σ − 1

. (65)

By plugging the two-loop result for g∗
r and Z2 into Eq. (65),

we reproduce the result (41) derived within Wilson’s method.
We observe that the analytical effort to derive the coef-

ficients of the ε-expansion in this field-theoretical approach
is much bigger than that of Wilson’s method. Indeed, in
the minimal subtraction scheme additional calculations are
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needed to extract the coefficients of the ε poles of the
Feynman diagrams in Figs. 3 and 4. It follows that for an
automatized implementation of the high-order ε-expansion,
Wilson’s method turns out to be much better performing
that the field-theoretical method. Notwithstanding this, the
tensorial operations needed to compute the Q-dependence of
the diagrams in this field-theoretical approach turn out to be
exactly the same as those needed in Sec. II, and no additional
effort has been required to compute them.

IV. CONCLUSIONS

In a previous work [26], we set up two perturbative
approaches to compute the IR behavior of a strongly frustrated
non-mean-field spin-glass system, the HEA model. The two
methods are based on the replica approach, and in particular
on the assumption that the physics of the system is encoded in
the limit where the number of replicas n tends to zero. Within
the ε-expansion framework, the two approaches yield the same
prediction at two loops for the critical exponent ν related to
the divergence of the correlation length.

In this work the two-loop computation is shown in all
its most relevant details, so that the reader can reproduce
it. Moreover, we show the underlying renormalization group
ideas implemented in the two computation methods. One of
these is the existence of a characteristic length ξ diverging at

the IR critical fixed point, where the theory is invariant with
respect to reparametrization of the length scale.

In addition, we show with an explicit example that such a
computation of the critical exponents could be quite easily
automatized, i.e., implemented in a computer program, in
order to compute high orders of the ε-expansion, and so
eventually make this theory physically predictive. Indeed, we
give a graphical interpretation of the cumbersome tensorial
operations needed to compute ν and previously used in
Ref. [26]. Such a graphical method makes the calculations
much more straightforward and suitable for an implementation
in a computer program to compute high orders of the ε

series. We observe that once this high-order series in ε will
be known, some resummation technique will be needed to
make the theory predictive, because the series probably has
a nonconvergent behavior. If the high-order series could be
made convergent by means of some appropriate resummation
technique, this calculation would yield an analytical control
on the critical exponents, resulting in a precise prediction for
a non-mean-field spin glass mimicking a real system.
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Abstract – A real-space Renormalization Group approach is presented for a non-mean-field spin-
glass. This approach has been conceived in the effort to develop an alternative method to the
Renormalization Group approaches based on the replica method. Indeed, non-perturbative effects
in the latter are quite generally out of control, in such a way that such approaches are non-
predictive. On the contrary, we show that the real-space method presented here yields a precise
prediction of the critical behavior and exponents of the model.
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Introduction. – Spin-glasses, structural glasses, and
the physical description of their critical properties have
interested statistical physicists for several decades. The
mean-field theory of these models [1,2] provides a phys-
ically and mathematically rich picture of their physics
and of their critical behavior. Notwithstanding the great
success of such mean-field theories, real spin-glasses are
non-mean-field systems, because they have short-range
interactions. It follows that these systems cannot be
described by mean-field models. Indeed, the generaliza-
tion of the above mean-field theories to the non-mean-
field case is an extremely difficult task that has still not
been achieved, so that the development of a predictive and
consistent theory of glassy phenomena for real systems is
still one of the most hotly debated and challenging prob-
lems in this domain [3].
This task is difficult to achieve because the perturbative

field-theoretical techniques [4,5] yielding the Ising model
critical exponents with striking agreement with experi-
mental data do not apply to locally interacting glassy
systems. Indeed, a considerable difficulty in the set-up of
a loop-expansion for a spin-glass with local interactions is
that the mean-field saddle-point has a very complicated
structure [1,6], and non-perturbative effects are not under
control, in such a way that the properties of the large-scale
behavior of these systems are still far from being clarified.
The physical properties of the paramagnetic-

ferromagnetic transition emerge clearly in ferromag-
netic systems in the original work of Wilson [4], where

(a)E-mail: michele.castellana@u-psud.ft

one can write a simple Renormalization Group (RG)
transformation describing a flow under length-scale
re-parametrizations. These RG equations are exact in
non-mean-field models with power-law ferromagnetic
interactions built on hierarchical lattices like Dyson
Hierarchical Model (DHM) [7]. Indeed, in these models
one can write an exact RG transformation for the prob-
ability distribution of the magnetization of the system,
in such a way that all the relevant physical information
on criticality and all the fundamental RG concepts
are encoded into this equation, whose solution can be
explicitly built up with the ε-expansion technique [8,9].
Accordingly, to investigate the RG properties of non-
mean-field spin-glasses it is natural to consider spin-glass
models built on hierarchical lattices. This study has been
done heretofore only for some particular models. On the
one hand, models with local interactions on hierarchical
lattices built on diamond plaquettes [10] have been
widely studied in their spin-glass version, and have been
shown to lead to weakly frustrated systems even in their
mean-field limit [11], and so are not a good representative
of a realistic strongly frustrated spin-glass. On the other
hand, a RG analysis of a different kind of random models
on Dyson hierarchical lattice, and of their physical and
non-physical infrared (IR) fixed points, has been done
heretofore [12]. Unfortunately, also in these models spins
belonging to the same hierarchical block interact with
each other with the same [12] random coupling J , in such
a way that frustration turns out to be relatively weak and
they are not a good representative of a realistic strongly
frustrated system.

47014-p1
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The study of such non-mean-field strongly frustrated
spin-glasses is difficult also because it is hard to identify
the correct order parameter and write the resulting RG
equations for a function or functional of it without relying
on the replica method, which is generally able to make
predictions for the critical exponents only in the mean-
field case [6].
In this letter we present a real-space RG method for a

non-mean-field strongly frustrated spin-glass on a hierar-
chical lattice, the Hierarchical Edwards-Anderson model
(HEA) [13], that does not rely on the replica method.
Even if this method does not identify the order parame-
ter of the system, it is interesting from the methodolog-
ical point of view, because it yields a way to implement
Kadanoff’s [14] block-spin decimation rule in a strongly
frustrated system, and to write the resulting RG equa-
tions. In this way, precise predictions on the critical expo-
nents are obtained.
The HEA is defined as a system of 2k+1 spins
S1, . . . , S2k+1 , Si =±1, with an energy function defined
recursively by coupling two systems, say system 1 and
system 2, of 2k spins

Hk+1 [S1, . . . , S2k+1 ] =H
1
k [S1, . . . , S2k ]

+H2k [S2k+1, . . . , S2k+1 ]− 2−σ(k+1)
2k∑

i=1

2k+1∑

j=2k+1

JijSiSj ,

(1)

where Jij are random couplings distributed according
to a Gaussian law with zero mean and unit variance,
and H0[S] = 0. σ is a parameter tuning the decay of
the interaction strength between spins with distance. It
turns out that for σ < 1/2 the thermodynamic limit is
ill-defined, because the interaction energy grows with k
faster than the volume 2k, while for σ > 1 the interaction
energy goes to zero for large k, and no finite-temperature
phase transition occurs. Accordingly, in the following we
will take 1/2<σ < 1. In this interval, the model is a non-
mean-field one, and the mean-field limit is recovered for
σ→ 1/2 [13].
The critical properties of the HEA have been studied

heretofore within the replica formalism [15], showing that
the system has a classical behavior in the region 1/2<
σ! 2/3, where the mean-field approximation is correct,
while non-mean-field effects are important for 2/3<σ < 1.
This analysis makes a prediction for the critical exponents
only in the classical region 1/2<σ! 2/3, because in the
non-classical region 2/3<σ < 1 the first few orders of
the σ− 2/3≡ ε-expansion have a non-convergent behavior,
and higher orders are not known.
Before exposing the real-space approach for the HEA,

let us illustrate it in the case where the couplings Jij in
eq. (1) are ferromagnetic, i.e. for the well-known DHM [7],
in order to test the consistency of our method.

The real-space approach for Dyson Hierarchical
Model. – DHM is defined [7] as a system of 2k+1 spins

S1, . . . , S2k+1 , Si =±1, with an energy function defined
recursively by coupling two systems, say system 1 and
system 2, of 2k spins

HFk+1 [S1, . . . , S2k+1 ] =H
F
k [S1, . . . , S2k ]

+HFk [S2k+1, . . . , S2k+1 ]−J22(1−σF )(k+1)


 1
2k+1

2k+1∑

i=1

Si




2

,

(2)

where HF0 [S] = 0, the suffix F stands for “ferromagnetic”,
and one can show that 1/2<σF < 1, with the same
argument as that used to derive the constraints on σ for
the HEA.
The real-space RG method is built up by iterating

exactly k0 times the recursion equation (2). In this way,
a DHM with 2k0 spins S1, . . . , S2k0 and Hamiltonian
HFk0 [S1, . . . , S2k0 ] is obtained. We now want to build up

a 2k0+1-spin DHM starting from such a 2k0-spin DHM,
which can be done as follows. We consider a 2k0−1-spin
DHM, where J is replaced by another coupling J ′. Such a
2k0−1-spin DHM is defined by iterating k0− 1 times eq. (2)
with J→ J ′, and its Hamiltonian is H ′F

k0−1[S
′
1, · · ·, S′2k0−1 ].

Given J , the coupling J ′ is chosen in such a way that
the 2k0−1-spin DHM represents as well as possible the
2k0-spin DHM, as qualitatively depicted in fig. 1. This
approximation is practically implemented by considering
a physical observable OFk0(βJ) of the 2

k0 -spin DHM, and

an observable OFk0−1(βJ
′) of the 2k0−1-spin DHM, where β

is the inverse temperature. The normalized magnetization
on the left half of the 2k0 -spin DHM is

mL ≡
(
1

2k0−1

2k0−1∑

i=1

Si

){

E"S

[(
1

2k0−1

2k0−1∑

i=1

Si

)2]}− 12
,

and an analog expression holds for the right-half magne-
tization mR, where E"S stands for the thermal average at
fixed β, performed with weight exp(−βHFk0). The normal-
ized magnetization on the left half of the 2k0−1-spin DHM
is

m′L ≡
(
1

2k0−2

2k0−2∑

i=1

S′i

){

E "S′

[(
1

2k0−2

2k0−2∑

i=1

S′i

)2]}− 12
,

and an analog expression holds for the right-half magneti-
zation m′R, where E "S′ stands for the thermal average with
weight exp(−βH ′Fk0−1). Mimicking Kadanoff’s block-spin
rule, for the 2k0−1-spin DHM to be a good approximation
of the 2k0-spin DHM, we map the block of the spins in the
left half of the 2k0-spin DHM into the block of the spins in
the left half of the 2k0−1-spin DHM, and do the same for
the right half. In order to do so, we choose the observables
to be OFk0(βJ)≡E"S [mLmR], O

F
k0−1(βJ

′)≡E"S′ [m′Lm′R],
and impose the equation

OFk0(βJ) =O
F
k0−1(βJ

′). (3)

For any fixed J , eq. (3) determines J ′ as a function of J , as
the value of the coupling of the 2k0−1-spin DHM such that
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≈

S1S1 S2 S3 S4 S1 S2

Fig. 1: Approximation of the real-space approach for k0 = 2.
In the implementation of the real-space approach for DHM,
a 22-spin DHM is approximated by a 2-spin DHM. In the
implementation of the real-space approach for the HEA,
a 22-spin HEA is approximated by a 2-spin HEA.

this yields the best possible approximation of the 2k0 -spin
DHM.
Let us take two copies of the 2k0−1-spin DHM. We

make these two copies interact according to eq. (2), and
form a 2k0-spin DHM. Since each of the DHMs that we
make interact represents a 2k0-spin DHM, the 2k0 -spin
DHM result of this composition effectively represents a
2k0+1-spin DHM. Once again, this DHM is then approxi-
mated as a 2k0−1-spin DHM with coupling, say, J ′′, and so
on. Setting J0 ≡ J, J1 ≡ J ′, J2 ≡ J ′′, . . ., eq. (3) establishes
a relation between Jk and Jk+1, physically representing
the RG flow of the coupling Jk under reparametrization
of the unit length 2k→ 2k+1.
The RG eq. (3) is not exact, because it relies on the

fact that a 2k0-spin DHM is approximated by a 2k0−1-spin
DHM. Nevertheless, such an approximation must become
asymptotically exact in the large k0-limit, where both 2k0

and 2k0−1 tend to infinity. Quite large values of k0 can
be reached by exploiting the hierarchical structure of the
system [7], in such a way that the observables OFk0 , O

F
k0−1

can be calculated with a computational cost proportional
to 2k0 . It is possible to show that for any k0 the real-space
method reproduces the constraints 1/2<σF < 1. Indeed,
for σF > 1 eq. (3) gives J ′ <J , ∀J, β, so that the coupling
Jk goes to 0 for large k, and no phase transition occurs.
On the contrary, for σF < 1/2 one has J ′ >J , ∀J, β, and
the model is thermodynamically unstable.
The critical exponent νF related to the divergence of

the correlation length [5] is easily obtained by linearising
the transformation βJ→ βJ ′ in the neighborhood of the
critical fixed point βJ = βJ ′ ≡Kc [4], 21/νF = dβJ

′

dβJ |βJ=Kc .
In fig. 2 we depict 21/νF computed with this method,
together with 21/νF computed by Bleher [9,16] with an
independent approach, as a function of 1/2! σF ! 1.
The latter calculation makes an exact prediction for
21/νF in the region 1/2<σF ! 3/4 where the mean-field
approximation is exact, while it estimates 21/νF in the
non-mean-field region 3/4<σF ! 1 by means of a series
of successive approximations. In the bottom inset of fig. 2
we show how ΛF RS for finite k0 has been extrapolated to
the k0→∞-limit: for every σF the sequence ΛF RS vs. k0
is fitted with a function of the form a− b · γk0 , and a is
the resulting extrapolated value. The parameter γ < 1 is
an indicator of the speed of convergence with respect to
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Fig. 2: (Color online) 21/νF as a function of σF for 1/2!
σF ! 1. The black dashed line represents the upper critical
dimension σF = 3/4 discussed in [8]. The points are given by
21/νF computed with the real-space method for 5! k0 ! 12,
and the gray points are 21/νF extrapolated to k0→∞ by fitting
ΛF RS vs. k0 with a function of the form f(k0)≡ a− b · γk0 . The
orange dashed curve and the green triangular points are 21/νF

obtained in [16]. Top inset: γ vs. σF . Bottom inset: ΛF RS vs.
k0 for σF = 0.92, its fitting function f(k0) and the extrapolated
value a.

k0: the larger γ the slower the convergence. In the main
plot of fig. 2 the extrapolated value is depicted, and this
is in good agreement with the value given in [9,16]. The
region where the disagreement between the two methods is
largest is σF ≈ 3/4, where 21/νF must be non-analytic [8].
This non-analiticity cannot show up for finite k0. However,
in the top inset of fig. 2 we show that the parameter γ
has a maximum at σF ≈ 3/4. This fact shows that the
convergence slows down in the neighborhood of σF = 3/4,
i.e. that the real-space method signals the appearance of
a non-analiticity of νF at σF = 3/4, which results from the
switchover from a mean-field to a non-mean-field regime.
It is now natural to generalise this real-space approach

to the HEA model, to compare its predictions with those
obtained with the replica method.

The real-space approach for the Hierarchical
Edwards-Anderson model. – Let us now illustrate how
to apply the real-space method to the HEA, by considering
first the simplest case k0 = 2. The reader should follow our
derivation in close analogy with that exposed above for
DHM. A HEA with 22 spins S1, · · ·, S4 and Hamiltonian
H2[S1, . . . , S4] is built up exactly by means of the recursion
equation (1). We set Jij ≡ 2−σJij , where by definition the
couplings {Jij}ij are independent identically distributed
random variables, and the probability distribution of each
of them will be denoted by p(J ). Thus, we consider
a 2-spin HEA, whose Hamiltonian reads H ′1[S′1, S

′
2] =

−J ′12S′1S′2. For each realization of the couplings {Jij}ij ,
we choose J ′12 as a function of {Jij}ij in such a way that
the 2-spin HEA yields the best possible approximation of
the 22-spin HEA, as qualitatively depicted in fig. 1.
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In order to do so, let us consider a physical observable
O2({βJij}ij) of the 22-spin HEA, depending on the 6
couplings {Jij}ij and β, and an observable O1(βJ ′12)
of the 2-spin HEA. Inspired by the fact that the order
parameter in the mean-field case is the overlap [1], here
we build up O2 and O1 as the thermal average of products
of spin overlaps. To build up O2 and O1, consider two real
replicas &S1, &S2 of the spins of the 22-spin model, and two

real replicas &S′
1
, &S′
2
of the spins of the 2-spin model. The

normalized overlap between &S1 and &S2 on the left leaf of
the 22-spin HEA is

QL ≡
S11S

2
1 +S

1
2S
2
2

2

{

E"S1,"S2

[(
S11S

2
1 +S

1
2S
2
2

2

)2]}− 12
,

and an analog expression holds for the right-leaf over-
lap QR, where E"S stands for the thermal average at
fixed disorder {Jij}ij and β. The normalized overlap
between &S′

1
and &S′

2
on the left leaf of the 2-spin HEA

is Q′L = S
′1
1 S

′2
1 , and an analog expression holds for the

right-leaf overlap Q′R. Following Kadanoff’s decimation
rule, we map the 22-spin HEA into the 2-spin HEA by
imposing that the spins S1, S2 correspond to the spin
S′1, and that the spins S3, S4 correspond to the spin
S′2. This mapping results in a correspondence between
QL and Q′L, and between QR and Q

′
R. By choosing the

observables as O2({βJij})≡E"S1,"S2 [QLQR], O1(βJ ′12)≡
E"S′1,"S′2 [Q′LQ′R], Kadanoff’s decimation rule can be prac-
tically implemented by imposing the equality

O2({βJij}) =O1(βJ ′12), (4)

where E "S′ stands for the thermal average at fixed disorder
J ′12 and β. For any realization of the couplings {Jij}ij ,
eq. (4) determines J ′12 as a function of {Jij}ij in such a
way that the 2-spin HEA yields the best possible approx-
imation of the 22-spin HEA. Accordingly, the distribution
p(J ) induces a distribution of J ′12, that we will denote
by p′(J ′12). The mapping between p(J ) and p′(J ′) can be
shown to be given by

p′(J ′) =
∫ [∏

i<j

p(Jij)dJij
]1
2

×
[

δ

(
J ′− 1

β
arctanh

(√
O2({βJij})

))

+δ

(
J ′+ 1

β
arctanh

(√
O2({βJij})

))]

. (5)

According to the iterative construction of eq. (1), a
new HEA is then constructed by taking two realizations
of the 2-spin HEA. Each realization is given by throw-
ing the coupling J ′ according to its probability distrib-
ution p′(J ′). We make these two copies interact to form
a 22-spin HEA. Since each of the HEAs that we put into
interaction represents a 22-spin HEA, the 22-spin HEA
result of this composition effectively represents a 23-spin

HEA. At the next step of the iteration, this 22-spin HEA
is again approximated as a 2-spin HEA with coupling, say,
J ′′12, and the probability distribution p′′(J ′′12) of J ′′12 is
computed from p′(J ′), and so on. This step is repeated
k-times, and a system representing a 22+k-spin HEA is
obtained.
Setting p0(J )≡ p(J ), p1(J )≡ p′(J ), p2(J )≡

p′′(J ), . . ., eq. (5) establishes a relation between pk(J )
and pk+1(J ), physically representing the RG flow of
the probability distribution of the coupling pk(J ) under
reparametrization of the unit length 2k→ 2k+1.
Equation (5) has been solved by means of the population

dynamics algorithm. In population dynamics, one repre-
sents the function p(J ) as a population of P ( 1 numbers
{Ji}i=1,...,P , where each Ji has been drawn with proba-
bility p(Ji). The mapping p(J )→ p′(J ′) given by eq. (5)
results into a mapping between {Ji}i and the population
{J ′i }i representing p′(J ′).
The structure of the fixed points of eq. (5) has been

thus investigated numerically, showing that there exists
a finite value of β = βc such that for β < βc pk(J )
shrinks to a δ(J ) as k is increased, while for β > βc
pk(J ) broadens, i.e. its variance is an ever-increasing
function of k. The physical interpretation of these two
temperature regimes is that for β < βc pk(J ) flows to
the attractive high-temperature fixed point with J = 0
where spins are decorrelated, while for β > βc it flows to
the attractive low-temperature fixed point with J =∞
where spins are strongly correlated. This fact implies
that as the temperature is lowered below Tc = 1/βc a
phase transition occurs, resulting in the appearance of
a collective and strongly interacting behavior of spins
in the low-temperature phase. The existence of such a
finite-temperature phase transition for a diluted version of
HEA model has already been established heretofore in MC
simulations by means of finite-size scaling techniques [13].
The population dynamics approach reproduces the fact

that for σ < 1/2 the thermodynamic limit is ill-defined,
as we discussed above. Indeed, the numerics show that
for σ→ 1/2 βc→ 0, in such a way that the variance of
pk(J ), and so that of H2, is an ever-increasing function
of k, and the thermodynamic limit k→∞ is ill-defined.
Unfortunately, the second constraint σ < 1 is not repro-
duced. This is presumably due to the fact that eq. (5)
implements only the lowest-order approximation of the
real-space method, k0 = 2, and that the method is exact
only for large k0. This hypothesis is supported by the esti-
mate of the critical exponents that we will discuss in the
following, suggesting that the closer σ to one, the larger
the values of k0 needed to have a good estimate of the
exact result. Accordingly, for σ→ 1 a significantly better
description would be obtained if larger values of k0 were
accessible, and the σ < 1-limit would be recovered.
The numerical implementation of eq. (5) also reveals the

existence of a repulsive critical fixed point with a finite
width, that we will denote by p∗(J ), and that is reached
by iterating eq. (5) with β = βc. The critical exponent
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ν governing the power-law divergence of the correlation
length at β = βc is determined [4] from the spectrum
of the matrix linearising the transformation (5) in the
neighborhood of p∗(J ).
Before discussing the numerical results for p∗(J ) and
ν, let us discuss better implementations with k0 > 2
of this method. The only new element with respect
to the k0 = 2-case is the following. For k0 > 2, a 2k0 -
spin HEA is approximated as a 2k0−1-spin HEA. The
latter has 2k0−1(2k0−1− 1)/2≡M ′ > 1 couplings {J ′ij}ij .
It turns out that even if the couplings {Jij}ij of the
2k0-spin HEA are independent, {J ′ij}ij are not, and are
distributed according to a joint distribution that we
denote by p′C({J ′ij}ij). In other words, correlations are
introduced when iterating the RG transformation. In the
present treatment these correlations have been neglected
by assuming that each of the {J ′ij}ij behaves as an
independent random variable distributed according to a
distribution obtained as the average of M ′ distributions,
each obtained by marginalising p′C({J ′ij}ij) with respect
to M ′− 1 couplings J ′ij .
The real-space approach has been thus implemented

for k0 = 2, 3, 4. Larger values of k0 were not accessible,
because the computational cost scales as 22

k0 . All the
qualitative features emerging for k0 = 2 and discussed
above are preserved for k0 = 3, 4. In fig. 3 we depict p∗(J )
as a function of J for several values of σ in the k0 = 3, 4
approximations. Two interesting features emerge from
fig. 3. Firstly, the discrepancy between p∗(J ) in the k0 = 3-
approximation and p∗(J ) in the k0 = 4-approximation is
relatively small, signaling that k0 = 4 is hopefully large
enough for the real-space approach to give a reasonably
good estimate of the critical fixed point, at least for the
values of σ considered in fig. 3. Secondly, a plausible
scenario resulting from the inset of fig. 3 is that, for
large k0, p∗(0) = 0 for σ < 2/3, while p∗(0)> 0 for σ > 2/3.
Interestingly, the analysis of the HEA based on the replica
approach [13,15] predicts a sharp change of behavior from
a mean-field regime for 1/2<σ! 2/3 to a non-mean-field
regime for 2/3<σ < 1. In the real-space approach Jij is
nothing but the effective coupling between spins Si and
Sj of a 2k0 -spin HEA. At the critical point, Si is obtained
as the coarse-graining of a group of 2l, l( 1 spins, which
have been progressively decimated and reduced to a single,
effective degree of freedom Si, and the same property holds
for Sj . For σ < 2/3 the model is effectively mean-field, and
should thus behave as a fully connected one. Accordingly,
the 2l spins represented by Si must interact with all the
other spins, and so with the 2l spins represented by Sj .
Thus, the effective coupling between Si and Sj cannot
vanish, i.e. p∗(0) = 0. In the non-mean-field case σ > 2/3
the system is not fully connected, because the effective
interaction range is finite. Accordingly, there is a finite
probability that the 2l spins represented by Si do not
interact with the 2l spins represented by Sj . Thus, the
effective coupling between Si and Sj can vanish, i.e.
p∗(0)> 0. According to this argument, this change of
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Fig. 3: (Color online) Fixed point p∗(J ) as a function of
J for k0 = 3 and σ= 0.621, 0.678, 0.737 (in black, violet and
brown, respectively), and for k0 = 4 and σ= 0.621, 0.678, 0.737
(in red, blue and green, respectively). For these values of σ, the
discrepancy between p∗(J ) in the k0 = 3-approximation and
p∗(J ) in the k0 = 4-approximation is relatively small, signaling
that k0 = 4 is presumably large enough for the method to give
a reasonably good estimate of the critical fixed point. Inset:
p∗(0) vs. σ for k0 = 3, 4. A plausible picture resulting from the
data is that, for large k0, p∗(0) = 0 for σ < 2/3 and p∗(0)> 0
for σ > 2/3. This picture has a clear physical interpretation
given in the text, and suggests a change of behavior at σ= 2/3,
reminiscent of the switchover from a mean-field regime for
σ < 2/3 to a non-mean-field regime for σ > 2/3 predicted by
the replica approach.

behavior of p∗(0) at σ= 2/3 can be seen as the switchover
from a mean-field behavior to a non-mean-field one, and
is predicted independently and confirmed by the replica
analysis of the HEA.
Let us now consider the predictions on the critical expo-

nent ν. In fig. 4 we depict 21/ν obtained with the k0=2,
3, 4-approximation and 21/ν obtained with the replica
approach [15] as a function of σ, both in the mean-field
region σ! 2/3 and in the non-mean-field region σ > 2/3,
where the first two orders of the ε-expansion are depicted.
The agreement between 21/ν computed with the real-space
approach for k0 = 2 and 21/ν computed with the replica
approach is not satisfying. Nevertheless, for k0 = 3, 4 the
agreement in the mean-field region 1/2<σ! 2/3 is very
good, and serves as an important test of the real-space
method. A quantitative comparison between 21/ν of the
real-space approach and that of the replica approach in
the non-mean-field region cannot be done, because in the
latter the ε-expansion is out of control, i.e. the first two
orders of the expansion have a non-convergent behav-
ior, and higher orders are not known. Accordingly, the
ε-expansion curve depicted in fig. 4 must not be consid-
ered as an estimate of 21/ν . A prediction for ν in the
non-classical region σ > 2/3 for a diluted version [13] of
the HEA is given by Monte Carlo (MC) simulations [17].
According to [17], for σ > 2/3 21/ν is a decreasing function
of σ in the neighborhood of σ= 2/3, which is in disagree-
ment with the results of the real-space approach, fig. 4.
This discrepancy will be discussed in the following.
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Fig. 4: (Color online) 21/ν as a function of σ. The red,
brown and blue points are 21/ν computed with the real-space
approach for k0 = 2, 3, 4, respectively. The black dashed curve
and the green dashed curve are 21/ν obtained with the replica
approach [15], and the orange dashed line is the relative upper
critical dimension σ= 2/3 [13]: the black dashed curve is the
mean-field value of 21/ν for σ! 2/3, while the green dashed
curve is the two-loops result obtained with the ε-expansion.

Discussion and conclusions. – In this letter we
developed a real-space RG approach for a non-mean-
field spin-glass, the Hierarchical Edwards-Anderson model
(HEA). This approach is innovative with respect to the
RG approaches to disordered, strongly frustrated systems
developed heretofore that generally rely on the replica
method [6]. Indeed, the present approach does not make
use of the replica method, which is generally predictive
only in the mean-field case, and cannot handle pertur-
batively fluctuations around the mean-field saddle-point,
because these turn out to be out of control [6]. Through
a systematic approximation scheme, the present approach
implements Kadanoff’s block-spin decimation rule [14] on
spins. The implementation of such a decimation rule to a
disordered, strongly frustrated system has not been devel-
oped heretofore because of the intrinsic difficulties intro-
duced by frustration, and allows for an effective reduction
of the degrees of freedom of the system. Kadanoff’s block-
spin rule is practically implemented by approximating a
2k0-spin HEA as a 2k0−1-spin HEA. Such an approxi-
mation is practically performed by imposing that some
observables of the 2k0 -spin HEA are equal to some corre-
sponding observables of the 2k0−1-spin HEA. For large k0,
the method is asymptotically exact, and so are its predic-
tions on the critical features of the system. The method
has been tested in the simplest case of Dyson Hierarchi-
cal Model [7], which is the ferromagnetic version of the
HEA, and the resulting predictions for the critical expo-
nents are in good agreement with the results obtained
heretofore [16].
The method has been then applied to the HEA, and

identifies the existence of a phase transition in the system,
yielding a prediction on the critical exponent ν related
to the power-law divergence of the correlation length at
the critical point. Above the upper critical dimension

(σ < 2/3), the results for ν are in very good quantitative
agreement with those given by the replica method [15]
even for small k0 = 3, 4. Below the upper critical dimen-
sion (σ > 2/3), the ε-expansion for the critical exponents
performed within the replica method is not predictive,
because the first few orders have a non-convergent behav-
ior, and higher orders are not known. Hence, a quantita-
tive comparison between the real-space approach and the
replica approach is not possible. On the contrary, Monte
Carlo (MC) simulations [17] for a diluted version of the
HEA yield a prediction for the critical exponents in this
region. These are in disagreement with those of the real-
space approach. This discrepancy could be due both to
the smallness of k0 in the real-space approach, or to the
non-universality of the exponent ν when switching from
the HEA defined here to its diluted version, or to the
fact that correlations between the spin couplings have
been neglected in the real-space approach. Accordingly,
the quantitative estimate of ν below the upper critical
dimension is a still untamed issue, which could be suitable
for future investigations and developments of the present
real-space method.
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We investigate the finite-size fluctuations due to quenched disorder of the critical temperature of the
Sherrington-Kirkpatrick spin glass. In order to accomplish this task, we perform a finite-size analysis of the
spectrum of the susceptibility matrix obtained via the Plefka expansion. By exploiting results from random
matrix theory, we obtain that the fluctuations of the critical temperature are described by the Tracy-Widom
distribution with a nontrivial scaling exponent 2/3.
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I. INTRODUCTION

The characterization of phase transitions in terms of a
nonanalytic behavior of thermodynamic functions in the
infinite-size limit has served as a milestone1–5 in the physical
understanding of critical phenomena. In laboratory and numer-
ical experiments, the system size is always finite so that the
divergences that would result from such a nonanalytic behavior
are suppressed, and are replaced by smooth maxima occurring
in the observation of physical quantities as a function of the
temperature. In disordered systems, the pseudocritical tem-
perature, defined as the temperature at which this maximum
occurs, is a fluctuating quantity depending on the realization
of the disorder. A question naturally arises: Can the fluctu-
ations of the pseudocritical temperature be understood and
determined with tools of probability theory? Several efforts
have been made to study the fluctuations of the pseudocritical
temperature for disordered finite-dimensional systems6–9 and
their physical implications. For instance, recently Sarlat et al.10

showed that the theory of finite-size scaling, which is valid
for pure systems, fails in fully-connected disordered models
because of strong sample-to-sample fluctuations of the critical
temperature.

The extreme value statistics of independent random vari-
ables is a well-established problem with a long history
dating from the original work of Gumbel,11 while less results
are known in the case where the random variables are
correlated. The eigenvalues of a Gaussian random matrix
are an example of strongly-correlated random variables.12

Only recently, Tracy and Widom calculated13–16 exactly the
probability distribution of the typical fluctuations of the
largest eigenvalue of a Gaussian random matrix around its
infinite-size value. This distribution, known as Tracy-Widom
distribution, appears in many different models of statistical
physics, such as directed polymers17,18 or polynuclear growth
models,19 showing profound links between such different
systems. Conversely, to our knowledge no evident connections
between the Tracy-Widom distribution and the physics of spin
glasses have been found heretofore.20

The purpose of this work is to try to fill this gap. We consider
a mean-field spin glass model, the Sherrington-Kirkpatrick
(SK) model,21 and propose a definition of finite-size critical
temperature inspired by a previous analysis.8 We investigate
the finite-size fluctuations of this pseudocritical temperature

in the framework of extreme value statistics and show that the
Tracy-Widom distribution naturally arises in the description
of such fluctuations.

II. THE MODEL

The SK model21 is defined by the Hamiltonian

H [{Si},{xij }] = − J

N1/2

N∑
i>j=1

xijSiSj +
N∑

i=1

hiSi, (1)

where Si = ±1, the couplings {xij }i>j=1,...,N ≡ {x}, xji ≡
xij∀i > j are distributed according to normal distribution with
zero mean and unit variance

P (x) = 1√
2π

e− x2

2 , (2)

and J is a parameter tuning the strength of the interaction
energy between spins.

The low-temperature features of the SK model have been
widely investigated in the past and are encoded in Parisi’s
solution,22–27 showing that the SK has a finite-temperature
spin glass transition at Tc = J in the thermodynamic limit
N → ∞. The critical value Tc can be physically thought of as
the value of the temperature where ergodicity breaking occurs
and the spin glass susceptibility diverges.25–27

While Parisi’s solution has been derived within the replica
method framework, an alternative approach to study the SK
model had been previously proposed by Thouless, Anderson,
and Palmer (TAP).28 Within this approach, the system is
described in terms of a free energy at fixed local magnetization,
and the physical features derived in terms of the resulting
free-energy landscape. Later on, Plefka29 showed that the
TAP free energy can be obtained as the result of a systematic
expansion in powers of the parameter

α ≡ βJ

N1/2
,

where β is the inverse temperature of the model. This α

expansion, known as Plefka expansion, has thus served as
a method for deriving the TAP free energy for several classes
of models, and has been extensively used in different contexts
in physics, from classical disordered systems,30–32 to general
quantum systems.33–36 It is a general fact that, if the model is
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defined on a complete graph, the Plefka expansion truncates to
a finite order in α, because higher-order terms should vanish
in the thermodynamic limit. In particular, for the SK model,
the orders of the expansion larger than three are believed37 to
vanish in the limit N → ∞ in such a way that the expansion
truncates, and one is left with the first three orders of the α

series, which reads

−βf ({mi},β) = −
∑

i

[
1 + mi

2
ln

(
1 + mi

2

)
+ 1 − mi

2

× ln

(
1 − mi

2

)]
+ α

∑
i>j

xijmimj

+ α2

2

∑
i>j

x2
ij

(
1 − m2

i

)(
1 − m2

j

)
, (3)

where mi ≡ 〈Si〉 is the local magnetization, i.e., the thermal
average 〈〉 of the spin Si performed with the Boltzmann weight
given by Eq. (1) at fixed disorder {x}.

In the thermodynamic limit N → ∞, for temperatures T >

Tc, the only minimum of βf ({m},β) is the paramagnetic one
mi = 0 ∀i. Below the critical temperature, the TAP free energy
has exponentially many different minima: the system is in a
glassy phase. In this framework, the phase transition at Tc can
be characterized by the inverse susceptibility matrix, which is
also the Hessian of βf

βχ−1
ij ≡ β

∂hi

∂mj

= ∂2(βf )

∂mi∂mj

. (4)

The inverse susceptibility matrix in the paramagnetic mini-
mum at leading order in N is

βχ−1
ij = (1 + β2J 2)δij − αxij . (5)

Random-matrix theory states that the average density of
eigenvalues of x,

ρN (λ) ≡ Ex

[
1

N

N∑
i=1

δ(λ − λi({x}))
]

, (6)

has a semicircular shape38 on a finite support [−2
√

N,2
√

N ],
whereEx denotes expectation value with respect to the random
bonds {x}, and λi({x}) is the ith eigenvalue of x. Equation
(6) is nothing but the density of eigenvalues of the Gaussian
orthogonal ensemble (GOE) of Gaussian random matrices.12,39

Due to self-averaging properties, the minimal eigenvalue of
βχ−1 in the paramagnetic minimum is λ = (1 − βJ )2. This
shows that, for T > Tc, λ is strictly positive and vanishes at
Tc, implying the divergence25 of the spin glass susceptibility
1/β2Tr[χ2]. Since λ is also the minimal eigenvalue of the
Hessian matrix of βf in the paramagnetic minimum, we
deduce that this is stable for T > Tc and becomes marginally
stable at Tc.

This analysis sheds some light on the nature of the spin glass
transition of the SK model in terms of the minimal eigenvalue
λ of the inverse susceptibility matrix (Hessian matrix) in
the thermodynamic limit. In this paper we generalize such
analysis to finite sizes, where no diverging susceptibility nor
uniquely-defined critical temperature exists, and the minimal
eigenvalue λ acquires fluctuations due to quenched disorder.

We show that a finite-size pseudocritical temperature can
be suitably defined and investigate its finite-size fluctuations
with respect to disorder. As a result of this work, these
fluctuations are found to be described by the Tracy-Widom
distribution.

The rest of the paper is structured as follows. In Sec. III, we
generalize Eq. (5) to finite sizes, in the simplifying assumption
that the Plefka expansion can be truncated up to order α2,
which is known as the TAP approach. We then study the
finite-size fluctuations of the minimal eigenvalue λ of the
susceptibility matrix, and show that they are governed by the
TW distribution. In Sec. IV, we extend this simplified approach
by taking into account the full Plefka expansion, by performing
an infinite re-summation of the series. Hence, in Sec. V,
we give a suitable definition of a finite-size pseudocritical
temperature, and show that its fluctuations are governed by
the TW distribution. In Sec. VI, this result is discussed in
the perspective of generalizing it to more realistic spin glass
models.

III. FINITE-SIZE ANALYSIS OF THE SUSCEPTIBILITY IN
THE TAP APPROXIMATION

In this section, we study the finite-size fluctuations due to
disorder of the minimal eigenvalue of the inverse susceptibility
matrix βχ−1 at the paramagnetic minimum mi = 0 ∀i, by
considering the free energy f in the TAP approximation,
Eq. (3). We want to stress the fact that large deviations
of thermodynamics quantities of the SK model have been
already studied heretofore. For example, Parisi et al. have
studied40,41 the probability distribution of large deviations of
the free energy within the replica approach. The same authors
studied the probability of positive large deviations of the free
energy per spin in general mean-field spin-glass models,42 and
showed that such fluctuations can be interpreted in terms of
the fluctuations of the largest eigenvalue of Gaussian matrices,
in analogy with the lines followed in the present work.

Back to the TAP equations (3), the inverse susceptibility
matrix in the paramagnetic minimum for finite N reads

βχ−1
ij = −αxij + δij

⎛
⎝1 + α2

∑
k 	=i

x2
ki

⎞
⎠

= −αxij + δij (1 + β2J 2) + δij

(βJ )2

√
N

zi
2, (7)

where

zi
2 ≡

√
N

⎛
⎝ 1

N

∑
k 	=i

x2
ki − 1

⎞
⎠ . (8)

According to Eq. (8), zi
2 is given by the sum of N − 1

independent identically-distributed random variables x2
ij . By

the central limit theorem, at leading order in N the variable zi
2

is distributed according to a Gaussian distribution with zero
mean and variance 2

pN

(
zi

2 = z
) N→∞→ 1√

4π
e−z2/4, (9)
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where pN (zi
2 = z) denotes the probability that zi

2 is equal to z

at finite size N .
We set

βχ−1
ij ≡ δij (1 + β2J 2) + αMij . (10)

According to Eq. (8), the diagonal elements of Mij are
random variables correlated to out-of-diagonal elements. The
statistical properties of the spectrum of a random matrix whose
entries are correlated to each other has been studied heretofore
only in some cases. For instance, Stäring et al.43 studied
the average eigenvalue density for matrices with a constraint
implying that the row sum of matrix elements should vanish,
and other correlated cases have been investigated both from a
physical44 and mathematical45 point of view.

In recent years, a huge amount of results has been obtained
on the distribution of the minimal eigenvalue of a N × N

random matrix drawn from Gaussian ensembles, such as GOE.
In particular, Tracy and Widom13–16 deduced that for large N ,
small fluctuations of the minimal eigenvalue λGOE of a GOE
matrix around its leading-order value −2

√
N are given by

λGOE = −2
√

N + 1

N1/6
φGOE, (11)

where φGOE is a random variable distributed according to
the Tracy-Widom (TW) distribution for the GOE ensemble
pGOE(φ). It follows that for βJ = 1 if zi

2 was independent on
{x}, the matrix Mij would belong to the GOE ensemble, and
the minimal eigenvalue λ of βχ−1 would define a variable φ

according to

λ = 1

N2/3
φ, (12)

and φ would be distributed according to the TW distribution
pGOE(φ).

As shown in Appendix A, this is indeed the case for zi
2,

which can be treated, at leading order in N , as a random
variable independent on xij . The general idea is that zi

2 is given
by the sum of N − 1 terms all of the same order of magnitude,
and only one amongst these N − 1 terms depends on xij . It
follows that at leading order in N , zi

2 can be considered as
independent on xij . Since in Eq. (7) zi

2 is multiplied by a
sub-leading factor 1/

√
N , in Eq. (7) we can consider zi

2 at
leading order in N , and treat it as independent on xij .

To test this independence property, we set βJ = 1, generate
numerically S 
 1 samples of the N × N matrix βχ−1, and
compute the average density of eigenvalues of βχ−1, defined
as in Eq. (6), together with the distribution of the minimal
eigenvalue λ for several sizes N . The eigenvalue distribution
ρN (λ) as a function of λ is depicted in Fig. 1, and tends to the
Wigner semicircle as N is increased, showing that the minimal
eigenvalue λ tends to 0 as N → ∞.

The finite-size fluctuations of λ around 0 are then investi-
gated in Fig. 2. Defining φ in terms of λ by Eq. (12), in Fig. 2 we
depict the distribution pN (φ) of the variable φ for several sizes
N , and show that for increasing N , pN (φ) approaches the TW
distribution pGOE(φ). Let us introduce the central moments

μN
1 ≡ EN [φ],

μN
i ≡ EN [(φ − EN [φ])i] ∀i > 1

0
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0 1 2 3 4

ρ
(λ

)

λ

ρSC(λ)
ρ64(λ)

ρ128(λ)
ρ256(λ)
ρ512(λ)

ρ1024(λ)

FIG. 1. (Color online) Density of eigenvalues ρN (λ) of the matrix
βχ−1 for N = 64,128,256,512,1024 (in red, blue, yellow, green, vio-
let respectively), βJ = 1 and S = 16 × 103, and Wigner semicircular
law ρSC(λ) = 1/(2π )

√
4 − (2 − λ)2 (black) as a function of λ. ρN (λ)

approaches ρSC(λ) as N is increased.

of pN (φ), and the central moments

μGOE
1 ≡ EGOE[φ],

μGOE
i ≡ EGOE[(φ − EGOE[φ])i] ∀i > 1

of the TW distribution, where

EN [·] ≡
∫

dφ pN (φ) · ,

EGOE[·] ≡
∫

dφ pGOE(φ) · .

In the inset of Fig. 2 we depict μN
i for several sizes N and

μGOE
i as a function of i, showing that μN

i converges to μGOE
i

as N is increased.
In Fig. 3, this convergence is clarified by depicting �μN

i ≡
(μN

i − μGOE
i )/μGOE

i for several values of i > 1 as a function
of N . �μN

i is found to converge to 0 for large N . In the inset
of Fig. 3, we depict �μN

1 as a function of N , showing that
the convergence of the first central moment with N is much
slower than that of the other central moments. It is interesting
to observe that a slowly-converging first moment has been
recently found also in experimental46 and numerical47 data
of models of growing interfaces where the TW distribution
appears.

The analytical argument proving the independence property
of zi

2 has been thus confirmed by this numerical calculation.
Hence, the main result of this section is that the finite-size
fluctuations of the minimal eigenvalue of the susceptibility
matrix βχ−1 in the TAP approximation for βJ = 1 are of
the order of N−2/3 and are distributed according to the TW
law. These fluctuations have already been found to be of
the order of N−2/3 in a previous work,48 and more recently
reconsidered,49 following an independent derivation based on
scaling arguments, even though the distribution has not been
worked out. Our approach sheds some light on the nature of
the scaling N−2/3, which is nontrivial, since it comes from the
N−1/6 scaling of the TW distribution, which is found to govern
the fluctuations of λ. Moreover, the fact that we find the same
scaling as that found in such previous works can be considered
as a consistency test of our calculation.
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FIG. 2. (Color online) Distribution pN (φ) for N = 128,256,512,1024,2048,4096 (in red, yellow, blue, brown, violet, green respectively)
and 105 � S � 4 × 105 samples, and the Tracy-Widom distribution pGOE(φ) for the GOE ensemble (black), as a function of φ. For increasing
N , pN (φ) approaches pGOE(φ), confirming the asymptotic independence of the diagonal elements (11) by each of the off-diagonal elements xij

for large N . Inset: μN
i for sizes N = 128,256,512,1024,2048,4096 (in red, yellow, blue, brown, violet, green respectively), 105 � S � 4 × 105,

and μGOE
i (black) as a function of i > 1.

We now recall that both the derivation of this section and
the previously-developed analysis of Bray and Moore48 rely
on the TAP approximation, i.e., neglect the terms of the Plefka
expansion (13) of order larger than 2 in α. As we will show
in the following section, these terms give a non-negligible
contribution to the finite-size corrections of the TAP equations,
and so to the finite-size fluctuations of the critical temperature,
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Δ
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FIG. 3. (Color online) Relative difference �μN
i between the

central moments μN
i of the distribution pN (φ) for 105 � S � 4 × 105,

and the central moments μGOE
i of the Tracy-Widom distribution as

a function of N = 128,256,512,1024,2048,4096, for i = 2,3,4,5
(in red, blue, black, orange respectively). For increasing N , μN

i

approaches μGOE
i , confirming the asymptotic independence of zi

2 by
each of the off-diagonal elements xij for large N . Inset: relative
difference of the first central moment �μN

1 as a function of N (brown).
�μN

1 approaches 0 very slowly as N is increased.

and thus must be definitely taken into account in a complete
treatment.

IV. FINITE-SIZE ANALYSIS OF THE SUSCEPTIBILITY
WITHIN THE FULL PLEFKA EXPANSION

In this section, we compute the inverse susceptibility matrix
βχ−1 by taking into account all the terms of the Plefka
expansion, in the effort to go beyond the TAP approximation
of Sec. III. Notwithstanding its apparent difficulty, here we
show that this task can be pursued by a direct inspection of
the terms of the expansion. Indeed, let us formally write the
free-energy f as a series29 in α,

f ({m},β) =
∞∑

n=0

αnfn({m},β). (13)

For n < 3, the fn’s are given by Eq. (3). For n > 3, fn is given
by the sum of several different addends,37 which proliferate
for increasing n.

It is easy to show that at leading order in N , there is just one
term contributing to fn, and that such a term can be written
explicitly as

fn({m},β)
N→∞≈

∑
i1>···>in−1

xi1i2xi2i3 · · · xin−1i1

× (
1 − m2

i1

) × · · · × (
1 − m2

in−1

)
. (14)
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It follows that by plugging Eq. (14) into Eq. (13) and
computing βχ−1 for mi = 0, one obtains a simple expression
for the inverse susceptibility at the paramagnetic solution

βχ−1
ij = −αxij + δij

(
1 + α2

∑
k 	=i

x2
ki + 2

∞∑
n=3

αn

×
∑

i1>···>in−1

xii1xi1i2 · · · xin−1i

)

= −αxij + δij (1 + β2J 2) + δij

1√
N

×
[

(βJ )2zi
2 + 2

∞∑
n=3

(βJ )n√
(n − 1)!

zi
n

]
. (15)

where

zi
n ≡

√
(n − 1)!

N
n−1

2

∑
i1>···>in−1

xii1xi1i2 · · · xin−1i ,∀n > 2. (16)

According to Eq. (16), one has that at leading order in N ,

Ex

[
zi
n

] = 0 ∀n > 2,
(17)

Ex

[(
zi
n

)2] = 1 ∀n > 2,

where in the second line of Eq. (17) the multiple sum defining
zi
n has been evaluated at leading order in N .

We observe that the random variables zi
n and xjk in Eq. (15)

are not independent, since each zi
n depends on the bond

variables {x}. Following an argument similar to that given in
Sec. III for zi

2, we observe that, by Eq. (16) and at leading order
in N , zi

n is given by a sum of O(Nn−1) terms which are all of the
same order of magnitude. Each term is given by the product of
n − 1 bond variables xii1xi1i2 · · · xin−1i forming a loop passing
by site i. For any fixed i, j, k, and n, only O(Nn−2) terms
amongst the O(Nn−1) terms of zi

n are entangled with the
random bond variable xjk . It follows that at leading order in
N , zi

n can be considered as independent by xjk . Since the sum
in the second line of Eq. (15) has a 1/

√
N factor multiplying

each of the zi
n’s, we can consider the zi

n at leading order in
N . Hence, in Eq. (15) we can consider each of the zi

n’s as
independent on xjk .

In Appendix B we show that at leading order in N , the
distribution of zi

n is a Gaussian with zero mean and unit
variance for every i and n > 2, while in Appendix C we
show that at leading order in N the variables {zi

n}n,i are
mutually independent. Both these predictions are confirmed by
numerical tests, illustrated in Appendix B and C respectively.

Hence, at leading order in N the term in square brackets
in Eq. (15) is nothing but the sum of independent Gaussian
variables, and is thus equal to a random variable σ × ζi , where
ζi is Gaussian with zero mean and unit variance, and

σ 2 = 2(βJ )4 + 4
∞∑

n=3

(βJ )2n

(n − 1)!

= 2(βJ )2{2(e(βJ )2 − 1) − (βJ )2}.

It follows that Eq. (15) becomes

βχ−1
ij = −αxij + δij

(
1 + β2J 2 + σ√

N
ζi

)
= −αx ′

ij + δij (1 + β2J 2), (18)

where

x ′
ij ≡ xij − δij

σ

βJ
ζi. (19)

Because of the additional diagonal term in Eq. (19), the matrix
x ′

ij does not belong to the GOE ensemble. Notwithstanding this
fact, it has been shown by Soshnikov50 that the presence of
the diagonal elements in Eq. (19) does not alter the universal
distribution of the maximal eigenvalue of x ′

ij , which is still
distributed according to the TW law. Hence, denoting by λ the
minimal eigenvalue of βχ−1, we have

λ = (1 − βJ )2 + βJ

N2/3
φGOE, (20)

where φGOE is a random variable depending on the sample xij ,
and distributed according to the TW law.

In this section, we have calculated the inverse susceptibility
matrix βχ−1, by considering the full Plefka expansion. In
this framework, additional diagonal terms are generated that
were not present in the TAP approximation. These additional
terms can be handled via a resummation to all orders in the
Plefka expansion. As a result, we obtain that the fluctuations
of the minimal eigenvalue λ of the susceptibility βχ−1 are
still governed by the TW law, as in the TAP case treated in
Sec. III.

V. FINITE SIZE FLUCTUATIONS OF THE CRITICAL
TEMPERATURE

We can now define a finite-size critical temperature, and
investigate its finite-size fluctuations due to disorder. In the
previous sections, we have shown that for a large but finite
size N , the minimal eigenvalue of the inverse susceptibility
matrix, i.e., the Hessian matrix of βf ({m},β) evaluated in
the paramagnetic minimum mi = 0, is a function of the
temperature and of a quantity φGOE, which depends on
the realization of the disorder {x}. Since the TW law, i.e., the
distribution of φGOE, has support for both positive and negative
values of φGOE, the subleading term in Eq. (20) can be positive
or negative. Accordingly, for samples {x} such that φGOE < 0,
there exists a value of βJ ≈ 1 such that λ(βJ ) = 0, in such
a way that the spin-glass susceptibility in the paramagnetic
minimum diverges. This fact is physically meaningless, since
there cannot be divergences in physical quantities at finite
size. This apparent contradiction can be easily understood by
observing that if λ(βJ ) = 0, the true physical susceptibility
is no more the paramagnetic one, but must be evaluated in
the low-lying nonparamagnetic minima of the free energy,
whose appearance is driven by the emergent instability of
the paramagnetic minimum. According to this discussion, in
the following we will consider only samples {x} such that
φGOE > 0.
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For these samples, the spectrum of the Hessian matrix at
the paramagnetic minimum has positive support for every
temperature: The paramagnetic solution is always stable, and
the paramagnetic susceptibility matrix χ is physical and finite.
We define a pseudoinverse critical temperature βcJ as the value
of βJ such that λ has a minimum at βcJ :

dλ

dβJ

∣∣∣∣
βJ=βcJ

≡ 0

= −2(1 − βcJ ) + 1

N2/3
φGOE, (21)

where in the second line of Eq. (21), Eq. (20) has been
used. This definition of pseudocritical temperature has a
clear physical interpretation: The stability of the paramagnetic
minimum, which is encoded into the spectrum of the Hessian
matrix βχ−1, has a minimum at β = βc. According to Eq. (21),
the finite-size critical temperature βc is given by

βcJ = 1 − 1/2

N2/3
φGOE, (22)

where φGOE depends on the sample {x}, and is distributed
according to the TW law.

Eq. (22) shows that the pseudocritical temperature of the
SK model is a random variable depending on the realization
of the quenched disorder. Finite-size fluctuations of the
pseudocritical temperature are of the order of N−2/3, and are
distributed according to the TW law. This has to be considered
the main result of this paper.

VI. DISCUSSION AND CONCLUSIONS

In this paper, the finite-size fluctuations of the critical
temperature of the Sherrington-Kirkpatrick spin glass model
have been investigated. The analysis is carried on within the
framework of the Plefka expansion for the free energy at fixed
local magnetization. A direct investigation of the expansion
shows that an infinite resummation of the series is required to
describe the finite-size fluctuations of the critical temperature.
By observing that the terms in the expansion can be treated
as independent random variables, one can suitably define a
finite-size critical temperature. Such a critical temperature
has a unique value in the infinite-size limit, while it exhibits
fluctuations due to quenched disorder at finite sizes. These
fluctuations with respect to the infinite-size value have been
analyzed, and have been found to be of the order of N−2/3,
where N is the system size, and to be distributed according to
the Tracy-Widom distribution.

The exponent 2/3 describing the fluctuations of the pseu-
docritical temperature stems from the fact that the finite-
size fluctuations of the minimal eigenvalue λ of the inverse
susceptibility matrix are of the order of N−2/3. Such a scaling
for λ at the critical temperature had already been obtained
in a previous work,48 where it was derived by a completely
independent method, by taking into account only the first three
terms of the Plefka expansion. The present work shows that
a more careful treatment, including an infinite resummation
of the expansion, is needed to handle finite-size effects. The

exponent 2/3 derived by Bray and Moore48 is here rederived
by establishing a connection with recently-developed results in
random matrix theory, showing that the scaling N−2/3 comes
from the scaling of the Tracy-Widom distribution, which was
still unknown when the paper by Bray and Moore48 was
written.

As a possible development of the present work, it would be
interesting to study the fluctuations of the critical temperature
for a SK model where the couplings are distributed according
to a power law. Indeed, in a recent work52 the distribution of
the largest eigenvalue λ of a random matrix M whose entries
Mij are power-law distributed as p(Mij ) ∼ M

−1−μ

ij has been
studied. The authors show that if μ > 4, the fluctuations of λ

are of the order of N−2/3 and are given by the TW distribution,
while if μ < 4 the fluctuations are of the order of N−2/μ−1/2

and are governed by Fréchet’s statistics. This result could be
directly applied to a SK model with power-law distributed
couplings. In particular, it would be interesting to see if there
exists a threshold in the exponent μ separating two different
regimes of the fluctuations of Tc.

Another interesting perspective would be to generalize the
present approach to realistic spin glass models with finite-
range interactions. For instance, a huge amount of results has
been quite recently obtained for the three-dimensional Ising
spin glass,53–60 and for the short-range p-spin glass model in
three dimensions,61 yielding evidence for a finite-temperature
phase transition. It would be interesting to try to generalize
the present work to that systems, and compare the resulting
fluctuations of the critical temperature with sample-to-sample
fluctuations observed in these numerical works. Accordingly,
the finite-size fluctuations deriving from the generalization of
this work to the three-dimensional Ising spin glass could be
hopefully compared with those observed in experimental spin
glasses,62 such as Fe0.5Mn0.5TiO3.

Finally, a recent numerical analysis63 inspired by the
present work has investigated the sample-to-sample fluctua-
tions of a given pseudocritical temperature for the SK model,
which is different from that defined in this work. Even though
the relatively small number of samples did not allow for a
precise determination of the probability distribution of that
pseudocritical point, the analysis yields a scaling exponent
equal to 1/3, which is different from that of the pseudocritical
temperature defined here. As a consequence, the general scal-
ing features of the pseudocritical temperature seem to depend
on the actual definition of the pseudocritical point itself, even
though different definitions of the pseudocritical temperature
must all converge to the infinite-size pseudocritical tempera-
ture as the system size tends to infinity. As a future perspective,
it would be interesting to investigate which amongst the fea-
tures of the pseudocritical point are definition-independent, if
any.
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APPENDIX A: PROOF OF THE ASYMPTOTIC
INDEPENDENCE OF xi j AND zi

2

Here we show that at leading order in N , the variables xij

and zi
2 are independent, i.e., that at leading order in N

pN

(
xij = x,zi

2 = z
) = pN (xij = x) × pN

(
zi

2 = z
)
. (A1)

Let us explicitly write the left-hand size of Eq. (A1) as

pN

(
xij = x,zi

2 = z
)

= E{xik}k 	=i

[
δ(xij − x)δ

(
zi

2 − z
)]

,

= Exij

⎡
⎣δ(xij − x)E{xik}k 	=i,k 	=j

×
⎧⎨
⎩ δ

⎡
⎣√

N

⎛
⎝ 1

N

∑
k 	=i,k 	=j

x2
ki − 1

⎞
⎠ − z

ij

2

⎤
⎦

⎫⎬
⎭
⎤
⎦ , (A2)

where Exlm,xno,··· denotes the expectation value with respect
to the probability distributions of the variables xlm,xno, . . ., δ

denotes the Dirac delta function, and

z
ij

2 ≡ z − x2
ij√
N

. (A3)

Proceeding systematically at leading order in N , the second
expectation value in the second line of Eq. (A2) is nothing
but the probability that the variable

√
N ( 1

N

∑
k 	=i,k 	=j x2

ki − 1)

is equal to z
ij

2 . We observe that according to the central limit
theorem, at leading order in N this probability is given by

E{xik}k 	=i,k 	=j

⎡
⎣δ

⎛
⎝√

N

⎛
⎝ 1

N

∑
k 	=i,k 	=j

x2
ki − 1

⎞
⎠ − z

ij

2

⎞
⎠

⎤
⎦

= 1√
4π

e− (z
ij
2 )2

4 . (A4)

By plugging Eq. (A4) into Eq. (A2) and using Eq. (A3), one
has

pN

(
xij = x,zi

2 = z
) = 1√

4π

∫
dxijP (xij )δ(xij − x)

×e− (z−x2
ij

/
√

N)2

4

= P (x)
1√
4π

e− (z−x2/
√

N)2

4 (A5)

= pN (xij = x) × pN

(
zi

2 = z
)
,

where in the first line we explicitly wrote the expectation value
with respect to xij in terms of the probability distribution (2),
while in the third line proceeded at leading order in N , and
used Eq. (9).

APPENDIX B: COMPUTATION OF THE PROBABILITY
DISTRIBUTION OF zi

n

Here we compute the probability distribution of zi
n at lead-

ing order in N . Let us define a super index L ≡ {i1, . . . ,in−1},
where L stands for loop, since L represents a loop passing by
the site i. Let us also set XL ≡ xii1xi1i2 · · · xin−1i . By Eq. (16)

one has

zi
n =

√
(n − 1)!

N
n−1

2

∑
L

XL,∀n > 2. (B1)

We observe that the probability distribution of XL is the same
for every L. Hence, according to Eq. (B1), zi

n is given by the
sum of equally distributed random variables. Now pick two of
these variables, XL and XL′ . For some choices of L,L′, XL and
XL′ are not independent, since they can depend on the same
bond variables xij . If one picks one variable XL, the number
of variables appearing in the sum (B1) which are dependent
on XL are those having at least one common edge with the
edges of XL. The number of these variables, at leading order
in N , is O(Nn−2), since they are obtained by fixing one of the
n − 1 indexes i1, . . . ,in−1. The latter statement is equivalent to
saying that if one picks at random two variables XL and XL′ ,
the probability that they are correlated is

O(Nn−2/Nn−1) = O(N−1). (B2)

Hence, at leading order in N , we can treat the ensemble of the
variables {XL}L as independent. According to the central limit
theorem, at leading order in N , the variable

√
(n − 1)!

N
n−1

2

zi
n = 1

Nn−1

(n−1)!

∑
L

XL

is distributed according to a Gaussian distribution with mean
Ex[XL] = 0 and variance

Ex

[(√
(n − 1)!

N
n−1

2

zi
n

)2
]

= Ex

[
X2

L

]
Nn−1

(n−1)!

= 1
Nn−1

(n−1)!

, (B3)

where in Eq. (B3) Eq. (2) has been used. It follows that at
leading order in N , zi

n is distributed according to a Gaussian
distribution with zero mean and unit variance

pN

(
zi
n = z

) N→∞→ 1√
2π

e− z2

2 , (B4)

where pN (zi
n = z) is defined as the probability that zi

n is equal
to z at size N .

Eq. (B4) has been tested numerically for the first few values
of n: pN (zi

n = z) has been computed by generating S 
 1
samples of {x}, and so of zi

n. For n = 3 and 4, the resulting
probability distribution pN (zi

n = z) converges to a Gaussian
distribution with zero mean and unit variance as N is increased,
confirming the result (B4). This convergence is shown in Fig. 4,
where pN (z1

4 = z) is depicted for different values of N together
with the right-hand side of Eq. (B4), as a function of z.

APPENDIX C: INDEPENDENCE OF THE zi
n’s AT LEADING

ORDER IN N

Let us consider two distinct variables zi
n and z

j
m, and proceed

at leading order in N . Following the notation of Appendix B,
we write Eq. (16) as

zi
n =

√
(n − 1)!

N
n−1

2

∑
L

XL, (C1)

zj
m =

√
(m − 1)!

N
m−1

2

∑
L′

XL′ , (C2)
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FIG. 4. (Color online) Probability distribution pN (z1
4 = z) for

S = 105 and different values of N = 64,128,256,512,1024 (in red,
blue, yellow, green, violet respectively) together with a Gaussian
distribution 1/

√
2πe−z2/2 with zero mean and unit variance (black),

as a function of z. As N is increased, pN (z1
4 = z) converges to

1/
√

2πe−z2/2, as predicted by the analytical calculation, Eq. (B4).
Inset: zoom of the above plot explicitly showing the convergence of
pN (z1

4 = z) to 1/
√

2πe−z2/2 as N is increased.

where L,L′ represent a loop of length n,m passing by the site
i,j respectively. Some of the variables XL depend on some of
the variables XL′ , because they can depend on the same bond
variables xij . Let us pick at random one variable XL appearing
in zi

n, and count the number of variables XL′ in z
j
m that are

dependent on XL. At leading order in N , these are given by
the number of XL′ having at least one common bond with XL,
and are O(Nm−2). Hence, if one picks at random two variables
XL,XL′ in Eqs. (C1), (C2) respectively, the probability that
XL,XL′ are dependent is

O(Nm−2/Nm−1) = O(N−1).
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FIG. 5. (Color online) p1024(z1
3 = z,z1

4 = z′) for S = 105 samples
(red), and the N → ∞ limit of the right-hand side of Eq. (C3) (black),
as a function of z,z′. For large N , pN (z1

3 = z,z1
4 = z′) equals pN (z1

3 =
z) × pN (z1

4 = z′), as predicted by Eq. (C3). Hence, at leading order
in N , the variables z1

3 and z1
4 are independent.

It follows that zi
n and z

j
m are independent at leading order

in N , i.e., for N → ∞
pN

(
zi
n = z,zj

m = z′) = pN

(
zi
n = z

) × pN

(
zj
m = z′), (C3)

where pN (zi
n = z,z

j
m = z′) denotes the joint probability that

zi
n equals z and z

j
m equals z′, at fixed size N .

Eq. (C3) has been tested numerically for n = 3,m = 4:
pN (z1

3 = z,z1
4 = z′) has been computed by generating S 
 1

samples of {x}, and so of z1
3,z

1
4. As a result, the left-hand

side of Eq. (C3) converges to the right-hand side as N is
increased, confirming the predictions of the above analytical
argument. This is shown in Fig. 5, where p1024(z1

3 = z,z1
4 =

z′) is depicted together with the N → ∞ limit of the
right-hand side of Eq. (C3) [see Eq. (B4)], as a function
of z,z′.
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We study the probability distribution of the pseudocritical temperature in a mean-field and in a short-

range spin-glass model: the Sherrington-Kirkpatrick and the Edwards-Anderson (EA) model. In both

cases, we put in evidence the underlying connection between the fluctuations of the pseudocritical point

and the extreme value statistics of random variables. For the Sherrington-Kirkpatrick model, both with

Gaussian and binary couplings, the distribution of the pseudocritical temperature is found to be the Tracy-

Widom distribution. For the EA model, the distribution is found to be the Gumbel distribution. Being the

EA model representative of uniaxial magnetic materials with quenched disorder like Fe0:5Mn0:5TiO3 or

Eu0:5Ba0:5MnO3, its pseudocritical point distribution should be a priori experimentally accessible.

DOI: 10.1103/PhysRevLett.107.275701 PACS numbers: 64.70.Q�, 02.10.Yn, 02.50.�r

Disordered uniaxial magnetic materials having a glassy
behavior like Fe0:5Mn0:5TiO3 [1] and Eu0:5Ba0:5MnO3 [2]
have interested physicists for decades. Since the first pio-
neering work of Edwards and Anderson (EA) [3], these
systems have been studied by means of spin-glass models
with quenched disorder, which were later considered in
their mean-field version by Sherrington and Kirkpatrick
(SK) [4]. In the thermodynamic limit, Parisi’s solution for
the SK model [5] predicts a phase transition at a finite
critical temperature separating a high-temperature para-
magnetic phase from a low-temperature glassy phase.
Differently, for the EAmodel there is no analytical solution
and the existence of a finite-temperature phase transition
relies entirely on numerical simulations [6].

Even though criticality in a physical system can emerge
only in the thermodynamic limit [7,8], in laboratory and
numerical experiments the system size is always finite:
singularities of physical observables are smeared out and
replaced by smooth maxima. In order to characterize the
critical point of finite-size systems, a suitably defined pseu-
docritical temperature must be introduced, e.g., the tem-
perature at which such maxima occur. In finite-size systems
with quenched disorder, such a pseudocritical temperature
is a random variable depending on the realization of the
disorder. The characterization of the distribution of the
pseudocritical point and of its scaling properties is still an
open problem which has drawn the attention of physicists
since the very first works of Harris [9–13]. Further studies
of such distributions in spin glasses have been performed in
a recent work [14], where some of the authors showed a
connection between the fluctuations of the pseudocritical
temperature of the SK model and the theory of extreme
value statistics (EVS) of correlated random variables.

The EVS of independent identically distributed (IID)
random variables is a well-established problem: a funda-
mental result [15] states that the limiting Probability
Distribution Function (PDF) of the maximum of IID

random variables belongs to three families of distributions:
the Gumbel, Fréchet, or Weibull distribution. Much less is
known about the EVS of correlated random variables. A
noteworthy case of an EVS distribution of correlated ran-
dom variables that has been recently discovered is the
Tracy-Widom (TW) distribution [16], describing the fluc-
tuations of the largest eigenvalue of a Gaussian random
matrix. The TW distribution has been found to describe the
fluctuations of observables of a broad number of physical
and mathematical models, like the longest common se-
quence in a random permutation [17], directed polymers
in disordered media [18], and polynuclear growth models
[19], which can be described by the Kardar-Parisi-Zhang
equation [20,21]. Recently the TW distribution has been
found to describe the conductance fluctuations in two- and
three- dimensional Anderson insulators [22,23] and has
been measured in growing interfaces of liquid-crystal tur-
bulence [24,25] experiments.
In this Letter we study the distribution of the pseudo-

critical temperature in the SK and in the EA model by
means of numerical simulations. Our numerical findings
show that the fluctuations of the pseudocirtical temperature
of the SK model both with Gaussian and binary couplings
are described by the TW distribution. This result suggests
that the features of the fluctuations of the pseudocritical
temperature are universal, i. e., stable with respect to the
distribution of the disorder. To our knowledge, this is the
first time that the ubiquitous TW distribution is shown to
play a role in spin glasses. Moreover, our numerical analy-
sis shows that the fluctuations of the pseudocritical point of
the EA model are described by the Gumbel distribution.
These two results shed light on the role played by EVS in
spin glasses.
To pose the problem, let us consider a system of N spins

Si ¼ �1 located at the vertices of a graph, interacting via

the Hamiltonian H½ ~S� ¼ �P
ði;jÞJijSiSj, where the sum

runs over the interacting spin pairs (i, j). For the SK model
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with Gaussian couplings (GSK) and for the SK model with
binary couplings (BSK) the interacting spin pairs are all the
distinct pairs. The couplings Jij are IID Gaussian random

variables with zero mean and variance 1=N for the GSK

model [4], and are equal to�1=
ffiffiffiffi
N

p
with equal probability

for the BSK model [26]. For the EA model the interacting
spin pairs are the nearest-neighbor pairs on a three-
dimensional cubic lattice with periodic boundary condi-
tions, and Jij are IID random variables equal to �1 with

equal probability [3]. For the BSK and EA model, the
binary structure of the couplings allowed for the use of
an efficient asynchronous multispin-coding simulation
technique [6], yielding an extensive number of disorder
samples and system sizes.

Let us now define the physical observables used to carry
on the numerical analysis of the problem. Given two real

spin replicas ~S1, ~S2, their mutual overlap q � 1
N

P
N
i¼1 S

1
i S

2
i

is a physical quantity characterizing the spin-glass transi-

tion in the thermodynamic limit [5,6]: hq2iJ ð�Þ ¼ 0 if

�< �c, hq2iJ ð�Þ> 0 if �>�c, where h� � �iJ denotes
the thermal average performed with the Boltzmann weight

defined by the Hamiltonian H½ ~S�, � � 1=T is the inverse
temperature, and � � � stands for the average over quenched
disorder J � fJijgij. The finite-size inverse pseudocritical
temperature �c J of a sample with a realization J of the

disorder can be defined as the value of � at which hq2iJ ð�Þ
significantly differs from zero, i. e., becomes critical. This
qualitative definition is made quantitative by setting

hq2iJ ð�c J Þ ¼ hq2iJ ð�N
c Þ: (1)

Both for the GSK and BSK model, �N
c is chosen to be the

average critical temperature at size N, which is defined as

the temperature at which the Binder ratio B � 1=2ð3�
hq4iJ =hq2iJ 2Þ of a system of sizeN equals the Binder ratio

of a system of size 2N. For the EA model we simply take
�N

c to be equal to the infinite-size critical temperature
�c ¼ 0:855 [27], because in this case the Binder ratios
cross at a temperature which is very close to the infinite-
size critical temperature �c. The definition (1) and �N

c are
qualitatively depicted in Fig. 1. The distribution of �c J

can be characterized by its mean �c J , its variance �
2
� N �

�2
c J � �c J

2, and by the PDF pNðxJ Þ of the natural scal-
ing variable xJ � ð�c J � �c J Þ=�� N. We can expect

that, to leading order in N, ��N � N��, and that for large

N, pNðxJ Þ converges to a nontrivial limiting PDF p1ðxJ Þ.
Sherrington-Kirkpatrick model.—Let us start discussing

the distribution of �c J for the GSK and BSK model.

Monte Carlo (MC) simulations have been performed with
parallel tempering for system sizes N ¼ 32, 64, 128, 256
(GSK) and N ¼ 16, 32, 64, 128, 256, 512, 1024, 2048,
4096 (BSK), allowing for a numerical computation of
hq2iJ and so of �c J for several samples J . The data

shows that as the system size N is increased, �c J

approaches �c. Setting TcJ �1=�cJ , �2
T N � T2

c J �
Tc J

2 � N��, the power law fit of �T N shown in Fig. 2
gives the value of the scaling exponent � ¼ 0:31� 0:07
(GSK) and� ¼ 0:34� 0:05 (BSK). These values of� are
both consistent with the value � ¼ 1=3 one would
expect from scaling arguments by considering the variable

y � N1=3ðT � TcÞ [28].
The PDF pN of the rescaled variable xJ is depicted in

Fig. 2. The curves pNðxJ Þ collapse quite satisfyingly in-

dicating that we are close to the asymptotic regime N!1.
Even though one could naively expect the fluctuations of
the pseudocritical point to be Gaussian, Fig. 2 shows that
this is not the case.
To understand this fact, let us recall the analysis pro-

posed in a recent work [14] by some of the authors. In order
to study the sample-to-sample fluctuations of the pseudo-
critical temperature one uses the Thouless-Anderson-
Palmer approach for the SK model. In the TAP approach
a free energy function of the local magnetization is built up
for any sample J of the disorder, and its Hessian matrix
Hij calculated at the paramagnetic minimum is a random

matrix in the Gaussian orthogonal ensemble. In the ther-
modynamic limit, the spectrum of Hij is described by the

Wigner semicircle, centered in 1þ �2 and with radius 2�.
The critical temperature �c ¼ 1 of the SK model is iden-
tified as the value of � such that the minimal eigenvalue of
Hij vanishes. In [14] the fluctuations of the pseudocritical

temperature are investigated in terms of the fluctuations of
the minimal eigenvalue of Hij. One introduces a definition

of pseudocritical temperature �̂c J , which is different from
that considered in the present work. The finite-size fluctu-

ations of �̂c J are found to be described by the relation

FIG. 1. Square value of the overlap hq2iJ for a sample J
(dashed curve) for the binary Sherrington-Kirkpatrick model

with N ¼ 128, its average hq2iJ over the samples J (solid

curve) as a function of the inverse-temperature �, and critical
temperatures �N

c and �c J . The dashed vertical lines depict the

definition (1) of �c J . Inset: Binder parameter B as a function of

the temperature T for N ¼ 128, 256, and average pseudocritical
temperature T128

c , with TN
c � 1=�N

c .
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�̂c J ¼ �c � �J =ð2N2=3Þ, where �J is distributed accord-

ing to the TW distribution in the high-temperature region

�̂c J < 1. According to Fig. 2, MC simulations confirm

this analysis: the limiting distribution of pNðxJ Þ is de-

scribed with good accuracy by the TW distribution in the
high-temperature regime �c J < 1 (xJ < 0). The TW dis-

tribution is robust with respect to the choice of the disorder
distribution and to the definition of pseudocritical tempera-
ture. On the other hand, since the exponent � obtained
from MC simulations is not compatible with the exponent

2=3 of �̂c J , we conclude that the scaling exponent is

definition dependent [14,29].
Edwards-Anderson model.—The same analysis has been

performed for the three-dimensional EA model. Physical
observables have been computed with parallel tempering
for system sizesN ¼ L3 with L ¼ 4, 8, 12, 16. Similarly to
the SK model, the width ��N of the distribution of the

pseudocritical point �c J shrinks to zero as the system size

N is increased: a power law fit ��N ¼ aN�� gives the

value of the scaling exponent � ¼ 0:23� 0:03 (inset of
Fig. 3). The PDFs pNðxJ Þ of the rescaled critical tempera-

ture seem to have a finite limit asN is increased, as depicted
in Fig. 3, and this limit coincides with the Gumbel distri-
bution. Both � and the PDF have the following interesting

features. As far as the exponent � is concerned, we recall
[10] that for systems known to be governed by a random
fixed point like the EA model, it was predicted that the
scaling exponent satisfies 1=� ¼ d�, where d is the dimen-
sionality of the system. The value of the critical exponent
� ¼ 1:8� 0:2 for the EA model is known from numerical
simulations [6], yielding a value of� ¼ 0:19� 0:02which
is compatible with that measured from the fluctuations of
the critical temperature. As far as the limiting distribution
p1ðxJ Þ is concerned, we recall that [30] a disordered

system like the EA behaves as an ensemble of independent
subsystems S1; . . . ;SM, where each subsystem Si has a
random local critical temperature �i

c, the local critical
temperatures f�i

cgi being IID random variables depending
on the local realization of the disorder. We can argue that,
for a single realization of the disorderJ , the pseudocritical
temperature�c J results from the fact that� has to be taken

large enough to bring all of the subsystems fSigi to criti-
cality. Thus,�c J is the maximum over the ensemble of the

local critical temperatures�c J ¼ maxi�
i
c. If this picture is

correct, �c J is distributed according to one of the EVS

limiting distributions of independent variables [15]: the
Gumbel, Fréchet, or Weibull distribution. Assuming that
the distribution of�i

c decays exponentially for large�
i
c, the

distribution of �c J is the Gumbel one. We want to stress

that this argument would not hold for the SK model, where
there is no geometric structure.
Conclusions.—In this Letter, we have performed a nu-

merical analysis of the distribution of the pseudocrtical

FIG. 2. Distribution of the pseudocritical point both for the
Sherrington-Kirkpatrick (SK) model with Gaussian couplings
(GSK) and for the SK model with binary couplings (BSK). PDF
pNðxJ Þ of the rescaled critical temperature xJ for system sizes

N ¼ 32, 64, 128, 256 with 1:6� 104 � S � 4:7� 104 (GSK)
and 2:9� 104 � S � 9:8� 104 (BSK) disorder samples, Tracy-
Widom distribution pTWðxJ Þ (solid curve) and Gaussian distri-

bution pGðxJ Þ (dashed curve), both with zero mean and unit

variance. The plot has no adjustable parameters, and is in
logarithmic scale to highlight the behavior of the distributions
on the tails. Top inset: width �T N for the BSK as a function of N
and fitting function fðNÞ ¼ aN�� þ bN�2�, yielding � ¼
0:34� 0:05. Bottom inset: same plot as in the main plot in
linear scale.

FIG. 3. Distribution of the pseudocritical point for the
Edwards-Anderson model. PDF pNðxJ Þ of the rescaled critical

temperature xJ for systems sizes N ¼ 43, 83, 123, 163 with

2:4� 104 � S � 3:2� 104 disorder samples, Gaussian distri-
bution pGðxJ Þ (solid curve), Tracy-Widom distribution pTWðxJ Þ
(dashed curve), and Gumbel distribution pGuðxJ Þ (dotted curve),
all with zero mean and unit variance. The plot has no adjustable
parameters, and is in logarithmic scale to highlight the behavior
of the distributions on the tails. Top inset: width �� N as a

function of N, and fitting function fðNÞ ¼ aN��, with scaling
exponent � ¼ 0:23� 0:03. Bottom inset: same plot as in the
main plot in linear scale.
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temperature in two mean-field spin glasses, the
Sherrington-Kirkpatrick model with Gaussian couplings
and with binary couplings, and in a short-range spin glass,
the Edwards-Anderson model. The analysis for the
Sherrington-Kirkpatrick models shows that the distribution
of the pseudocritical temperature in the high-temperature
phase is described with good accuracy by the Tracy-
Widom distribution, as suggested by an analytical predic-
tion previously published by some of the authors [14]. To
our knowledge, this is the first time that the Tracy-Widom
distribution is shown to play a role in spin glasses. The fact
that both the Sherrington-Kirkpatrick model with Gaussian
couplings and the Sherrington-Kirkpatrick model with
binary couplings yield the Tracy-Widom distribution
suggests that the Tracy-Widom distribution is universal
with respect to the bonds’ distribution.

The analysis pursued for the three-dimensional
Edwards-Anderson model shows that the liming distribu-
tion of the pseudocritical temperature is the Gumbel dis-
tribution. An argument to understand this result has been
proposed. These two numerical analyses put in evidence a
connection between the critical regime of spin-glass mod-
els and the extreme value statistics theory which has never
been proposed heretofore.

The present Letter opens several perspectives. As far as
the Sherrington-Kirkpatrick model is concerned, we recall
that the Tracy-Widom distribution describes typical fluc-
tuations of the maximal eigenvalue of a Gaussian orthogo-
nal ensemble random matrix, while the large deviations
regime of these fluctuations has been studied only recently
[31]. It would be interesting to study numerically the large
deviations regime of the fluctuations of the critical tem-
perature, where the distribution of the pseudocritical point
could be described by the large deviations function derived
in [31]. It would be also interesting to consider the case
where the couplings Jij are Gaussian with a positive bias J0
[32]. Depending on the value of J0, the Sherrington-
Kirkpatrick model has a phase transition from a paramag-
netic to a spin-glass phase or from a ferromagnetic to a
mixed phase [32]: it would be interesting to investigate,
both analytically and numerically, the fluctuations of these
pseudocritical points. Moreover, in order to bridge the
gap between a mean-field and a short-range interactions
regime, it could be interesting to investigate the fluctua-
tions of the pseudocritical temeperature in spin-glass
models with tunable long-range interactions, like those
introduced in [33]. As far as the Edwards-Anderson
model is concerned, it would be interesting to test experi-
mentally the scenario found here in Fe0:5Mn0:5TiO3 [1] or
Eu0:5Ba0:5MnO3 [2] spin-glass materials. Indeed, ac-
susceptibility measurements in these systems show [1]
that the spin-glass critical temperature can be identified
as the temperature where the susceptibility has a cusp.
Accordingly, the pseudocritical point could be identified
and measured, and one could test whether the resulting

rescaled pseudocritical point distribution converges to the
Gumbel distribution as the system size is increased.
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