I. Et, approche développée permet d'évaluer les possibilités de remplissage pour les caractéristiques d'un réseau et d'un métal données. A ce niveau, l'amélioration des prévisions passe par l'élaboration de modèles semi-analytiques ou numériques couplés (mécanique des fluides / thermique) comme il a pu être fait pour les MMC's. Mais pour ces modèles

S. [. Amadeh, J. Heshmati-manesh, A. Labbe, P. Laimeche, and . Quintard, Wettability and corrosion of TiN, TiN???BN and TiN-AlN by liquid steel, Journal of the European Ceramic Society, vol.21, issue.3, pp.277-282, 2001.
DOI : 10.1016/S0955-2219(00)00190-4

W. [. Andrews, L. J. Sanders, and . Gibson, Compressive and tensile behaviour of aluminum foams, Compressive and tensile behaviour of aluminium foams, pp.113-124, 1999.
DOI : 10.1016/S0921-5093(99)00170-7

N. Babcsán, D. Leitlmeier, and H. P. Degischer, Foamability of Particle Reinforced Aluminum Melt, Materialwissenschaft und Werkstofftechnik, vol.21, issue.1, pp.22-29, 2003.
DOI : 10.1002/mawe.200390011

N. Babcsán, D. Leitlmeier, H. P. Degischer, and J. Banhart, The Role of Oxidation in Blowing Particle-Stabilised Aluminium Foams, Advanced Engineering Materials, vol.6, issue.6, pp.421-428, 2004.
DOI : 10.1002/adem.200405144

D. [. Babcsán, J. Leitlmeier, and . Banhart, « Metal foams ? high temperature colloids », Colloids and Surfaces A : Physicochemical Engineering Aspects, pp.261-123, 2005.

]. J. Ban1998a and . Banhart, « Production methods for metallic foams

]. J. Ban2000a and . Banhart, « Manufacturing routes for metallic foams, JOM, issue.#12, pp.52-74, 2000.

J. Banhart, J. Baumeister, O. Irretier, and J. , « Cost effective production techniques for the manufacture of aluminium foams, pp.491-496, 2000.

J. Banhart and . Manufacture, Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science, pp.539-632, 2001.
DOI : 10.1016/S0079-6425(00)00002-5

]. J. Ban2001b, H. Banhart, L. Stanzick, T. Helfen, and K. Baumbach, Nijhof, « Real-time X-ray investigation of aluminium foam sandwich production, Advanced Engineering Materials, vol.3, issue.#6, pp.407-411, 2001.

J. Banhart and D. , On the Road Again: Metal Foams Find Favor, Physics Today, vol.55, issue.7, pp.37-42, 2002.
DOI : 10.1063/1.1506749

J. Banhart, Aluminium foams for lighter vehicles, International Journal of Vehicle Design, vol.37, issue.2/3, pp.2-3, 2005.
DOI : 10.1504/IJVD.2005.006640

J. Banhart, Metal Foams: Production and Stability, Metal foams : production and stability, pp.781-794, 2006.
DOI : 10.1002/adem.200600071

. [. Bastien, « Comportement de l'hydrogène dans l'acier moulé, pp.183-131, 1961.

J. [. Baumeister, M. Banhart, and . Weber, Aluminium foams for transport industry, Materials & Design, vol.18, issue.4-6, pp.217-220, 1997.
DOI : 10.1016/S0261-3069(97)00050-2

M. [. Beals and . Thompson, « Density gradient effects on aluminium foam compression behaviour, Journal of Materials Science, vol.32, issue.13, pp.3595-3600, 1997.
DOI : 10.1023/A:1018670111305

P. Beauvais, Produits de moulage et de noyautage en sable », Fonderie, Fondeur d'Aujourd'hui, pp.40-44, 2007.

M. Bornert, T. Bretheau, and P. Gilormini, Homogénéisation en mécanique des matériaux 1 ? Matériaux aléatoires élastiques et milieux périodiques, 2001.

A. [. Brunke, S. J. Hamann, S. Cox, and . Odenbach, Experimental and numerical analysis of the drainage of aluminium foams, Journal of Physics: Condensed Matter, vol.17, issue.41, pp.6353-6362, 2005.
DOI : 10.1088/0953-8984/17/41/006

[. Chou and M. Song, A novel method for making open-cell aluminum foams with soft ceramic balls, Scripta Materialia, vol.46, issue.5, pp.379-382, 2002.
DOI : 10.1016/S1359-6462(01)01255-6

. [. Churkin, Analytic study of the temperature change in the flowing molten metal in sand casting, Journal of Engineering Physics and Thermophysics, vol.20, issue.#5, pp.619-623, 1971.

Q. [. Chu, Y. Niu, K. Lin, and . Wu, Control of Foaming of Al Alloy Melt., Control of foaming Al alloy melt, pp.597-600, 2000.
DOI : 10.2355/isijinternational.40.597

J. Coleto, J. Goñi, J. Maudes, and I. Leizaola, « Fabrication de mousses métalliques à cellules ouvertes ou fermées, par les voies de la fonderie, et applications de ces mousses », Fonderie Fondeur d'Aujourd'hui, pp.238-250, 2004.

«. Mortensen, Replication processing of highly porous materials, Advanced Engineering Materials, vol.8, issue.#9, pp.795-803, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00148698

G. [. Cox, D. Bradley, and . Weaire, Metallic foam processing from the liquid state, The European Physical Journal Applied Physics, vol.14, issue.2, pp.87-96, 2001.
DOI : 10.1051/epjap:2001141

W. [. Demiray, J. Becker, and . Hohe, Numerical determination of initial and subsequent yield surfaces of open-celled model foams, International Journal of Solids and Structures, vol.44, issue.7-8, pp.2093-2108, 2007.
DOI : 10.1016/j.ijsolstr.2006.06.044

N. [. Deshpande and . Fleck, High strain rate compressive behaviour of aluminium alloy foams, International Journal of Impact Engineering, vol.24, issue.3, pp.277-298, 2000.
DOI : 10.1016/S0734-743X(99)00153-0

N. [. Deshpande and . Fleck, Collapse of truss core sandwich beams in 3-point bending, International Journal of Solids and Structures, vol.38, issue.36-37, pp.6275-6305, 2001.
DOI : 10.1016/S0020-7683(01)00103-2

T. Dillard, « Caractérisation et simulation numérique du comportement mécanique des mousses de nickel : morphologie tridimensionnelle, réponse élastoplastique et rupture », thèse soutenue à l'Ecole Nationale, 2004.

G. [. Egorov, V. P. Gorbunov, and . Smironov, Interaction of sintered powder metallic and cermet materials with molten stainless steel, Soviet Powder Metallurgy and Metal Ceramics, vol.28, issue.3, pp.253-257, 1987.
DOI : 10.1007/BF00797028

. [. Elliott, Method of producing metal foam », US Patent, p.289, 1956.

N. Eustathopoulos and D. , Calculation of solid-liquid-vapour contact angles for binary metallic systems, Scripta Metallurgica, vol.14, issue.12, pp.1291-1296, 1980.
DOI : 10.1016/0036-9748(80)90181-7

H. Flankl, A. Birgmann, D. Leitlmeier, and F. Dobesberger, Device and process for producing metal foam, 2002.

M. C. Flemings, E. Niyama, and H. F. Taylor, « Fluidity of aluminium alloys : an experimental and quantitative evaluation », Transactions AFS, pp.61-111, 1961.

J. Frei, V. Gergely, A. Mortensen, and T. W. , The Effect of Prior Deformation on the Foaming Behavior of ???FORMGRIP??? Precursor Material, Advanced Engineering Materials, vol.4, issue.10, pp.749-752, 2002.
DOI : 10.1002/1527-2648(20021014)4:10<749::AID-ADEM749>3.0.CO;2-E

F. Garcia-moreno, N. Babcsan, and J. Banhart, « The role of the gas pressure on the foaming of metals following the PM-route, Proceedings of the 4 th International Conference on Porous metals and foaming technology Kyoto, 2005, éds. H. Nakajima, N. Kanetake, pp.129-132, 2005.

H. [. Gergely, T. W. Degischer, and . Clyne, Recycling of MMCs and Production of Metallic Foams, Comprehensive Composite Materials, pp.797-820, 2000.
DOI : 10.1016/B0-08-042993-9/00205-9

]. V. Ger2001a, R. L. Gergely, T. W. Jones, and . Clyne, The effect of capillarity-driven melt flow and size of particles in cell faces on metal foam structure evolution, Transactions of the JWRI, vol.30, pp.371-376, 2001.

]. V. Ger2001b, D. C. Gergely, and T. W. Curran, Clyne, « Drainage of metallic foams : modelling and experimental observations, Proceedings of the 2 nd international Conference on Cellular Metals and Metal Foaming Technology, 2001.

V. Gergely, D. C. Curran, and T. W. Clyne, Advances in the melt route production of closed cell aluminium foams using gas-generating agents, Proceedings of the Global Symposium on Materials Processing & Manufacturing, Processing and Properties of Lightweight Cellular Metals & Structures, pp.97-108, 2002.

D. [. Gergely and T. W. Curran, The FOAMCARP process: foaming of aluminium MMCs by the chalk-aluminium reaction in precursors, Composites Science and Technology, vol.63, issue.16, pp.2301-2310, 2003.
DOI : 10.1016/S0266-3538(03)00263-X

T. [. Gergely and . Clyne, Drainage in standing liquid metal foams: modelling and experimental observations, Acta Materialia, vol.52, issue.10, pp.3047-3058, 2004.
DOI : 10.1016/j.actamat.2004.03.007

R. [. Ghorpade, C. R. Heine, and . Loper-jr, « Oxygen probe mesurements in cast irons », Transactions AFS, pp.75-105, 1975.

S. [. Gong and N. Kyriakides, On the stability of Kelvin cell foams under compressive loads, Journal of the Mechanics and Physics of Solids, vol.53, issue.4, pp.771-794, 2005.
DOI : 10.1016/j.jmps.2004.10.007

A. Haibel, A. Rack, and J. Banhart, Why are metal foams stable?, Applied Physics Letters, vol.89, issue.15, pp.1-3, 2006.
DOI : 10.1063/1.2357931

URL : http://www.helmholtz-berlin.de/pubbin/oai_publication?VT=1&ID=15232

Z. [. Han, J. Zhu, and . Gao, Compressive deformation and energy absorbing characteristic of foamed metal, Metallurgical and Materials Transactions, pp.29-2497, 1998.

D. Hlushkou and U. , Transition from creeping via viscous-inertial to turbulent flow in fixed beds, Journal of Chromatography A, vol.1126, issue.1-2, pp.70-85, 2006.
DOI : 10.1016/j.chroma.2006.06.011

X. Hur and . Zhu, « Flow Modeling in Negative-Pressure Infiltration Casting Process of aluminium Open-Cell Fabrication, Materials Science Forum, pp.439-200, 2003.

[. Hyun and H. Nakajima, Fabrication of Lotus-Structured Porous Iron by Unidirectional Solidification under Nitrogen Gas, Advanced Engineering Materials, vol.4, issue.10, pp.741-744, 2002.
DOI : 10.1002/1527-2648(20021014)4:10<741::AID-ADEM741>3.0.CO;2-9

T. [. Ikeda, H. Aoki, and . Nakajima, Fabrication of lotus-type porous stainless steel by continuous zone melting technique and mechanical property, Metallurgical and Materials Transactions, pp.36-37, 2005.
DOI : 10.1007/s11661-005-0140-1

Y. [. Ip, J. M. Wang, and . Toguri, Aluminum Foam Stabilization by Solid Particles, Aluminium foam stabilization by solid particles, pp.81-92, 1999.
DOI : 10.1039/qr9591300071

G. Kaptay, « Interfacial criteria for stabilzation of liquid foams by solid particles, Colloids and Surfaces, pp.230-67, 2004.

W. Knott, S. Padovan, and ®. Tego-magnan, The blowing agent from Degussa for the innovative Combal ® light metal foam », présentation de produit faite lors de la journée « Degussa for automotive Innovation Day, 2004.

M. Kobashi and N. Kanetake, Processing of Intermetallic Foam by Combustion Reaction, Advanced Engineering Materials, vol.4, issue.10, pp.745-747, 2002.
DOI : 10.1002/1527-2648(20021014)4:10<745::AID-ADEM745>3.0.CO;2-U

R. [. Körner and . Singer, Processing of Metal Foams???Challenges and Opportunities, Advanced Engineering Materials, vol.2, issue.4, pp.159-165, 2000.
DOI : 10.1002/(SICI)1527-2648(200004)2:4<159::AID-ADEM159>3.0.CO;2-O

M. [. Körner, V. Hirschmann, R. F. Bräutigam, and . Singer, Endogenous Particle Stabilization During Magnesium Integral Foam Production, Endogenous particle stabilization during magnesium integral foam production, pp.385-390, 2004.
DOI : 10.1002/adem.200405147

. [. Körner, Foam formation mechanisms in particle suspensions applied to metal foams, Materials Science and Engineering: A, vol.495, issue.1-2, 2008.
DOI : 10.1016/j.msea.2007.09.089

K. Kremer, A. Liszkiewicz, and J. , Adkins, « Development of steel foam materials and structures », Technology Roadmap Program 9913, Final Report, issue.07

S. [. Krishna, A. Bose, and . Bandyopadhyay, « Strenght of open-cell 6101 aluminium foams under free and constrained compression, Materials Science and Engineering, pp.452-453, 2007.

. [. Kuchek, Method of making porous metallic article », US Patent, p.706, 1966.

S. [. Kujime, H. Hyun, and . Nakajima, Fabrication of lotus-type porous carbon steel by the continuous zone melting method and its mechanical properties, Metallurgical and Materials Transactions, pp.37-43, 2006.
DOI : 10.1007/s11661-006-0009-y

R. [. Kwon, C. Cooke, and . Park, « Representative unit-cell models for opencell metal foams with or without elastic filler, Materials Science and Engineering, pp.343-63, 2003.

J. [. Lehmhus and . Banhart, Properties of heat-treated aluminium foams, Materials Science and Engineering: A, vol.349, issue.1-2, pp.349-98, 2003.
DOI : 10.1016/S0921-5093(02)00582-8

H. [. Leitlmeier and H. J. Degischer, Development of a Foaming Process for Particulate Reinforced Aluminum Melts, Advanced Engineering Materials, vol.4, issue.10, pp.735-740, 2002.
DOI : 10.1002/1527-2648(20021014)4:10<735::AID-ADEM735>3.0.CO;2-Y

. [. Levy, Experimental and theorical modeling of DNAPL transport in fractured vertical media », thesis submitted at the Massachusetts Institute of Technology, 2003.

Z. [. Ma and D. Song, Cellular structure controllable aluminium foams produced by high pressure infiltration process, Scripta Materialia, vol.41, issue.7, pp.785-789, 1999.
DOI : 10.1016/S1359-6462(99)00219-5

G. P. Martins, D. L. Olson, and G. R. Edwards, Modeling of infiltration kinetics for liquid metal processing of composites, Metallurgical Transactions B, vol.73, issue.1, pp.19-95, 1988.
DOI : 10.1007/BF02666495

G. [. Maxwell, D. L. Martins, G. R. Olson, and . Edwards, « The infiltration of aluminium into silicon carbide compacts, Metallurgical Transactions, pp.21-475

A. [. Michaud and . Mortensen, Infiltration processing of fibre reinforced composites: governing phenomena, Composites Part A: Applied Science and Manufacturing, vol.32, issue.8, pp.981-996, 2001.
DOI : 10.1016/S1359-835X(01)00015-X

K. C. Mills, Y. Su, Z. Li, and R. F. Brooks, Equations for the Calculation of the Thermo-physical Properties of Stainless Steel, Equations for calculation of the thermophysical properties of stainless steel, pp.1661-1668, 2004.
DOI : 10.2355/isijinternational.44.1661

. [. Mills, The high strain mechanical response of the wet Kelvin model for open-cell foams, International Journal of Solids and Structures, vol.44, issue.1, pp.51-65, 2007.
DOI : 10.1016/j.ijsolstr.2006.04.014

T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara, ALPORAS Aluminum Foam: Production Process, Properties, and Applications, Advanced Engineering Materials, vol.2, issue.4, pp.179-183, 2000.
DOI : 10.1002/(SICI)1527-2648(200004)2:4<179::AID-ADEM179>3.0.CO;2-G

A. Mortensen, L. J. Masur, J. A. Cornie, and M. C. Flemings, Infiltration of fibrous preforms by a pure metal: Part I. Theory, Metallurgical Transactions A, vol.20, issue.5, pp.20-2535, 1989.
DOI : 10.1007/BF02666688

M. Mota, J. A. Teixeira, and A. , Yelshin, « Tortuosity in bioseparations and its application to food processes, Proceedins of the 2 nd European Symposium on Biochemical Engineering Science, pp.93-98, 1998.

H. Nakajima, T. Ikeda, and S. Hyun, Fabrication of Lotus-type Porous Metals and their Physical Properties, Advanced Engineering Materials, vol.6, issue.6, pp.377-384, 2004.
DOI : 10.1002/adem.200405149

J. E. Niesse, M. C. Flemings, and H. F. Taylor, Application of theory in understanding fluidity of metals », Transactions AFS, pp.59-99, 1959.

K. [. Nieh, J. Higashi, and . Wadsworth, « Effect of cell morphology on the compressive properties of open-cell aluminium foams, Materials Science and Engineering, pp.283-105, 2000.

N. [. Olurin, M. F. Fleck, and . Ashby, Deformation and fracture of aluminium foams, Materials Science and Engineering: A, vol.291, issue.1-2, pp.291-136, 2000.
DOI : 10.1016/S0921-5093(00)00954-0

S. [. Park and . Nutt, PM synthesis and properties of steel foams, Materials Science and Engineering: A, vol.288, issue.1, pp.288-111, 2000.
DOI : 10.1016/S0921-5093(00)00761-9

A. Paul and U. Ramamurty, « Strain rate sensivity of a closed-cell aluminium foam, Materials Science and Engineering, pp.281-282, 2000.

K. Raiber, P. Hammerschmid, and D. Janke, Experimental Studies on Al2O3 Inclusion Removal from Steel Melts Using Ceramic Filters., ISIJ International, vol.35, issue.4, pp.380-388, 1995.
DOI : 10.2355/isijinternational.35.380

L. Ramqvist, Wetting of metallic carbides by liquid copper, nickel and iron, International Journal of Powder Metallurgy, vol.1, issue.4, pp.2-21, 1965.

G. [. Ruan, L. S. Lu, B. Ong, and . Wang, Triaxial compression of aluminium foams, Triaxial compression of aluminium foams, pp.1218-1234, 2007.
DOI : 10.1016/j.compscitech.2006.05.005

[. Marchi and A. Mortensen, Deformation of open-cell aluminum foam, Acta Materialia, vol.49, issue.19, pp.3959-3969, 2001.
DOI : 10.1016/S1359-6454(01)00294-4

G. Sciama and M. , Jeancolas, « Temps de solidification de pièces élémentaires coulées en sable ? Coefficients de forme et calcul pratique des masselottes, pp.239-250, 1971.

V. Sha1993-] and . Shapovalov, « Method for manufacturing porous articles », US Patent, p.549, 1993.

L. [. Shapovalov and . Boyko, Gasar???A new Class of Porous Materials, Advanced Engineering Materials, vol.6, issue.6, pp.407-410, 2004.
DOI : 10.1002/adem.200405148

R. [. Showman, Aufderheide, « A process for thin-wall sand casting, Transactions AFS, pp.567-578, 2003.

R. E. Showman and R. C. , Aufderheide, « Getting to the core of thin-walled castings », Modern Casting, pp.94-126, 2004.

W. [. Siman?ík, R. Rajner, and . Laag, « Alulight ? Aluminium foam for lightweight construction, SAE 2000 World Congress, pp.31-38, 2000.

M. [. Stange, H. J. Dreyer, and . Rath, Capillary driven flow in circular cylindrical tubes, Capillary driven flow in circular cylindrical tubes, pp.2587-2601, 2003.
DOI : 10.1063/1.1596913

M. [. Stefanescu, A. M. Owens, T. S. Lane, K. D. Piwonka, J. O. Hayes et al., « Penetration of liquid steel in sand molds, part I : Physics ans chemistry of penetration and mathematical modeling ? metal side, Transactions AFS, pp.1-058, 2001.

L. [. Taran, L. D. Ivanov, and . Moshkevich, Morphology of the eutectic in Fe-W-C alloys, Morphology of the eutectic in the Fe-W-C alloys, pp.3-6, 1972.
DOI : 10.1007/BF00658335

R. C. Voigt, « Fillability of thin-wall steel castings », work supported by the US Energy Department of Energy under award n° DE-FC07-99ID13580, 2002.

. [. Wadley, Cellular Metals Manufacturing, Cellular metals manufacturing, pp.726-733, 2002.
DOI : 10.1002/1527-2648(20021014)4:10<726::AID-ADEM726>3.0.CO;2-Y

[. Wang and D. R. Olander, Thermodynamics of the Zr-H System, Thermodynamics of the Zr-H system », pp.3323-3328, 1995.
DOI : 10.1111/j.1151-2916.1995.tb07972.x

C. [. Wiehler, R. F. Körner, and . Singer, High Pressure Integral Foam Moulding of Aluminium ??? Process Technology, Advanced Engineering Materials, vol.282, issue.3, pp.171-178, 2008.
DOI : 10.1002/adem.200700267

Z. Xia, Y. Zhou, Z. Mao, and B. Shang, Fabrication of fiber-reinforced metal-matrix composites by variable pressure infiltration, Metallurgical Transactions B, vol.20, issue.228, pp.23-295, 1992.
DOI : 10.1007/BF02656284

C. [. Youn and . Kang, Fabrication of foamable precursors by powder compression and induction heating process, Metallurgical and Materials Transactions B, vol.181, issue.2, pp.35-39, 2004.
DOI : 10.1007/s11663-004-0017-5

F. Von-zeppelin, M. Hirscher, H. Stanzick, and J. Banhart, Desorption of hydrogen from blowing agents used for foaming metals, Composites Science and Technology, vol.63, issue.16, pp.2293-2300, 2003.
DOI : 10.1016/S0266-3538(03)00262-8

B. V. Zhmud, F. Tiberg, and K. Hallstensson, Dynamics of Capillary Rise, Journal of Colloid and Interface Science, vol.228, issue.2, pp.263-269, 2000.
DOI : 10.1006/jcis.2000.6951

J. Zhou, S. Allameh, B. D. Leyda, and W. O. Soboyejo, « An investigation of the effects of heat-treatment on the strength of open-cell Al foams, Proceedings of the TMS 2002 Fall meeting, Mechanisms and Mechanics of Fracture : The John Knott Symposium, Colombus, pp.199-205, 2002.

P. [. Zhou, W. O. Shrotriya, and . Soboyejo, Mechanisms and mechanics of compressive deformation in open-cell Al foams, Mechanics of Materials, vol.36, issue.8, pp.781-797, 2004.
DOI : 10.1016/j.mechmat.2003.05.004

J. [. Zhu, N. J. Knott, and . Mills, Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells, Journal of the Mechanics and Physics of Solids, vol.45, issue.3, pp.319-343, 1997.
DOI : 10.1016/S0022-5096(96)00090-7