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Abstract

Recent years have witnessed the growth of a new class of data-intensive applications that
do not fit the DBMS data model and querying paradigm. Instead, the data arrive at high
speeds taking the form of an unbounded sequence of values (data streams) and queries run
continuously returning new results as new data arrive. In these applications, data streams
from external sources flow into a Data Stream Management System (DSMS) where they are
processed by different operators. Many applications share the same need for processing data
streams in a continuous fashion. For most distributed streaming applications, the centralized
processing of continuous queries over distributed data is simply not viable. This research
addresses the problem of computing continuous join queries over distributed data streams. We
present a new method, called DHTJoin that exploits the power of a Distributed Hash Table
(DHT) combining hash-based placement of tuples and dissemination of queries by exploiting
the embedded trees in the underlying DHT, thereby incuring little overhead. Unlike state of
the art solutions that index all data, DHTJoin identifies, using query predicates, a subset
of tuples in order to index the data required by the user’s queries, thus reducing network
traffic. DHTJoin tackles the dynamic behavior of DHT networks during query execution and
dissemination of queries. We provide a performance evaluation of DHTJoin which shows that
it can achieve significant performance gains in terms of network traffic.

Keywords: P2P Systems, Continuous Query Processing

Résumé

De nombreuses applications distribuées partagent la même nécessité de traiter des flux de
données de façon continue, par ex. la surveillance de réseau ou la gestion de réseaux de cap-
teurs. Dans ce contexte, un problème important et difficile concerne le traitement de requêtes
continues de jointure qui nécessite de maintenir une fenêtre glissante sur les données la plus
grande possible, afin de produire le plus possible de résultats probants. Dans cette thèse, nous
proposons une nouvelle méthode pair-à-pair, DHTJoin, qui tire parti d’une Table de Hachage
Distribuée (DHT) pour augmenter la taille de la fenêtre glissante en partitionnant les flux
sur un grand nombre de noeuds. Contrairement aux solutions concurrentes qui indexent tout
les tuples des flux, DHTJoin n’indexe que les tuples requis pour les requêtes et exploite,
de façon complémentaire, la dissémination de requêtes. DHTJoin traite aussi le problème
de la dynamicité des noeuds, qui peuvent quitter le système ou tomber en panne pendant
l’exécution. Notre évaluation de performances montre que DHTJoin apporte une réduction
importante du trafic réseau, par rapport aux méthodes concurrentes.

Mots-clés : Systèmes pair-à-pair, Traitement de requêtes

acm Classification

Categories and Subject Descriptors : H.2.4 [Database Management]: Systems—Dis-
tributed databases, Query processing.
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CHAPTER1
Introduction

In recent years, an increasing number of data-intensive applications has emerged. These
applications requires on-line continuous processing of unbounded sequences of data that arrive
at high speeds (referred to as data stream) making space and execution-time performance a
critical issue. As has been noted [BBD+02][GÖ03a], traditional database management systems
(DBMS) are not adequate for data stream processing. In response to these applications, that do
not fit the DBMS data model and querying paradigm, a new class of data management systems,
commonly known as data stream management systems (DSMS), has emerged. However, high
stream input rates and cost-intensive query operations may cause a continuous query system to
run out of resources.

Due to the success of filesharing applications, peer to peer (P2P) networks have received
rapid and widespread deployment. Self-organization, symmetric communication and distributed
control are attractive properties of P2P networks that motivated researchers to study com-
plex query processing for supporting advanced P2P applications. Range [DHJ+05], aggregate
[ZHC08], ranking [APV06] and join [HHL+03] operators have been proposed under different
P2P architectures to process queries in diverse domains ranging from P2P reputation to net-
work monitoring.

Because applications that process streams from different sources are inherently distribu-
ted [CG07] and because distribution can be used to improve performance and scalability of
a DSMS [TcZ07] we are interested in continuous query processing over P2P networks where
self-organization, symmetric communication and distributed control can be used to face the
challenges motivated by the processing of data streams.

In this chapter, we first introduce stream processing applications and the data management
services that a DSMS must provide. We present P2P networks and its potential in the processing
of complex queries. We also motivate the processing of continuous queries in P2P networks.
Finally, we conclude with the scope, the contributions and outline of this thesis.

1.1 Data Stream Management Systems

Traditional database management systems (DBMS) are powerful for querying stores of per-
sistent data sets. In DBMS the data consist of a set of unordered objects stored as tables with
insertions, updating and deletions occurring less frequently than queries. Significant portions of
the data are queried again and again by executing one-time queries which are run once to com-
pletion over the current data sets stored in disk (see Figure 1.1). Recent years have witnessed
the growth of a new class of data-intensive applications that do not fit the DBMS data model
and querying paradigm. Instead, the data arrive at high speeds taking the form of an unbounded
sequence of values and queries run continuously over these streams returning new results as new
data arrive (see Figure 1.1). In these applications, data streams from external sources flow into

3



4 Chapter 1 — Introduction

a data stream management system (DSMS) where they are processed by different operators.
Examples of these applications include network monitoring, sensor networks, financial analysis
applications and analysis of transactional log data :

Figure 1.1 – Traditional DBSM vs Continuous DSMS

• In the networking community, network operators and service providers need to monitor
network traffic [Sul96][CJSS03] to analyze the provided service level, detect suspicious
activity, identify bottlenecks, etc. In this context, the streams arrive at high speeds and
are composed of well-structured IP packets that can therefore be queried continuously to
compute statistics over these streams.
• Sensors networks with wireless capabilities are being deployed for sensing the physical

world. Sensors continuously deliver data in streams for measurement [YG03], detection
and surveillance applications [ACG+04]. In these applications users issue long-running
queries over the streamed data.
• In electronic trading markets [LS03] such as the NASDAQ, large volume of data streams are

generated at speeds that can achieve up to tens of thousands of messages. In this context
data streams represents momentary opportunities to make profits if they are processed
efficiently. A financial analyst can submits continuous queries to detect simple conditions
(e.g. when a price is the maximum price of the day) and calculate correlations among price
time series.
• On-line analysis of transactions logs, [MAA05][CFPR00] generated by telephone call re-

cords and HTTP requests to a web server are very important to discover customer spending
patterns. For example, the ATT&T long distance telephone call stream is composed by
300 million of records per day generated from 100 million customers.

In response to the novel requirements imposed by the above applications a DSMS must
provide :
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• Persistent queries. In a stream processing application, queries are persistent in the sense
that are issued once but remain active for a long time and must be processed continuously
as new input data arrives. In contrast, a traditional DBMS executes one-time queries
(issued once and then “forgotten”) again stored data.
• Push-based processing. Contrary to DBMS, the processing of queries is push-based, or

data-driven. Data sources continuously produce streams items that are pushed into the
system for processing. This contrast with DBMS where the processing is pulled-based or
query-driven, i.e., the clients actively pull information about the data when they need it.
• Approximate answers with emphasis over recent data. Generally a data stream has a un-

bounded, or at least unknown, size. This setting imposes high processing and memory
requirements. From a system’s point of view, it is infeasible to store an entire stream in a
DSMS and query plans must avoid blocking operators that must consume the entire input
before any results produced [LWZ04]. However, approximate answers are often sufficient
when the goal of a query is to understand trends and making decisions about measurements
or utilization patterns. Moreover, in the majority of real world applications emphasizing
recent data is more informative and useful than old data.

1.2 P2P networks

P2P networks are distributed system in nature that satisfy roughly the following three criteria
[RBR+04] :

• Self-Organization : A P2P network automatically adapts to the arrival and departure of
nodes. There is no global directory of peers and resources. Nodes organize themselves
based on local information and interacting with locally reachable nodes (neighbors) and a
global behaviour emerges as a result of all the local interactions that occur.
• Symmetric communication : Nodes are considered equals. There is no a notion of clients

or servers, peers act as both.
• Distributed Control : There is no longer a node that centrally coordinates the behaviour

of nodes. Nodes determines their level of participation and their course of action autono-
mously. This decentralization is in particular interesting in order to avoid single-point-of
failures or performance bottlenecks.

In general, there are three P2P architectures : unstructured, structured and super-peer [VP04].
In unstructured P2P networks, each node can directly communicate with its neighbors. The peers
use flooding as the mechanism to send queries across the network with limited scope. When a
peer receives a query, it processes and redirects the incoming query to its neighbors. The flooding
mechanism is effective for locating high replicated data objects and provides resilience to nodes
joining and leaving the system. However, it does not scale up to large number of nodes.

Under structured P2P networks, peers are organized according to specific topologies (e.g.,
ring, hypercubes, tree-like, butterfly and others) based on a certain order [GGG+03]. The net-
work topology is tightly controlled and data are placed not at random nodes but in a specific way
to facilitate query processing. Structured P2P networks use the Distribute Hash Table (DHT) as
a substrate. Data objects and nodes are assigned unique identifiers called keys and data objects
are placed at nodes with identifiers corresponding to the data object’s unique key. DHTs offer
a good scalability (typically as logn) and has been proposed as a substrate for many large-scale
distributed applications.
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Super-peer P2P networks employs more powerful nodes as super-peers. A super-peer is a
node that acts as a centralized server to a subset of peers that act as dedicated server and
can perform complex functions such as indexing, query processing, access control and meta-
data management. Peers submit queries to their super-peer and receive results from it. The
main advantage of super-peer P2P networks is efficiency and quality of service. However, fault
tolerance is typically low since a super-peer is a single point of failure.

The success of P2P applications and protocols as DHTs [SMK+01] motivated researchers
from the distributed systems, networking and database communities to look more closely into
the core mechanisms of P2P networks and investigate how these could be used to support another
applications than filesharing. For example, under the different P2P architectures many research
works propose query operators to support various functionalities :

• Range query operator is important in supporting complex structured database-like queries.
However, keys which are semantically close at the application level are heavily fragmented
in a DHT. Many approaches [ACMD+03] [RRHS04][BAS04][JOV05] has been proposed in
order to implements efficiently range queries in structured P2P networks.
• Aggregate query operator is used to evaluate global states in P2P networks [ADGK07]

[JMB05] [BGMGM03]. For example, calculating the global reputation by aggregating peers
feedback [XL04] [ZHC08] is very important in P2P reputation systems where aggregate
queries are needed for quantifying and comparing the trustworthiness of participating peers
to combat malicious peers behaviours (e.g., dishonest feedback).
• Ranking query operator is a crucial requirement in many environments that involves mas-

sive amount of data. In many domain applications users are interested in the most impor-
tant (top-k) query answers in the potentially huge answer space. The main reason is that a
ranking query operator avoids overwhelming the user with large numbers of uninteresting
answers which are resource consuming. In unstructured P2P networks top-k queries are
proposed to rank query results based on user preferences and in this way reduce the heavy
network traffic [APV06][ADGK07].
• Join query operator is important in P2P networks where data normally originate from

multiple sources and the naive solution of collecting all data at a single site is simply not
viable [CG07]. In many applications such as network monitoring [CCD+03], sensor net-
works [BGS01] the join operator is one of the most important operators, which can be used
to detect trends between different data sources. In [BT03] a P2P DBMS called AmbientDB
is developed to process queries over and ad-hoc P2P of many, possibly small devices. In
AmbientDB, DHTs are used to support efficient global indices that can transparently ac-
celerate queries (e.g. join queries). Another efforts of designing complex querying facilities
focusing in join queries are [HHL+03] and [ILK08].

1.3 Problem Statement

Processing a query over a data stream involves running the query continuously over the data
stream and generating a new answer each time a new data item arrives. However, the unbounded
nature of data streams makes it impossible to store the data entirely in bounded memory. This
makes difficult the processing of queries that need to compare each new arriving data with past
ones. For example, real data traces of IP packets from an AT&T data source [GJK+08] show an
average data rate of approximately 400 Mbits/sec, which makes it hard to keep pace for a DSMS.
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Moreover, a DSMS may have to process hundreds of user queries over multiple data sources. For
most distributed streaming applications, the naive solution of collecting all data at a single site
is simply not viable [CG07]. Therefore, we are interested in techniques for processing continuous
queries over collections of distributed data streams. This setting imposes high processing and
memory requirements. However, approximate answers are often sufficient when the goal of a
query is to understand trends and making decisions about measurements or utilization patterns.

One technique for producing an approximate answer to a continuous query is to execute the
query over a sliding window [GÖ03b] that maintains a restricted number of recent data items.
This allows queries to be executed in finite memory, in an incremental manner by generating new
answers each time a new data item arrives. Moreover, in the majority of real world applications
emphasizing recent data is more informative and useful than old data.

In continuous query processing the join operator is one of the most important operators,
which can be used to detect trends between different data streams. For example, consider a
network monitoring application that needs to issue a join query over traffic traces from various
links, in order to monitor the total traffic that passes through three routers (R1, R2 and R3)
and has the same destination host within the last 10 minutes. Data collected from the routers
generate streams S1,S2 and S3. The content of each stream tuple contains a packet destination,
the packet size and possibly other information. This query can be posed using a declarative
language such as CQL [AW04], a relational query language for data streams, as follows :

q : Select sum (S1.size)
From S1[range 10 min], S2[range 10 min], S3[range 10 min]
Where S1.dest=S2.dest and S2.dest=S3.dest

To emphasizes in recent data the window conceptually slides over the input streams giving
raise to a type of join called sliding window join. To improve performance and scalability, dis-
tributed processing of data streams is a well accepted approach. Self-organization, symmetric
communication and distributed control are characteristics present in P2P networks that provide
a good substrate for creating distributed applications. However, even in a distributed setting
high stream arrival rates and cost-intensive query operations may cause a DSMS to run out
of resources. For example, when the memory allocated to maintain the state of a query is not
sufficient to keep the window size entirely, the completeness, i.e., the fraction of results produced
by an query operator over the total results (which could be produced under perfect conditions)
is reduced.

Moreover, in distributed processing of data streams, node failures can occur. The failures
can disrupt stream processing affecting the correctness of the results and in some cases it can
prevent the system for producing any results.

Considering the problems that are originated during the distributed processing of data
streams, the purpose of this research is to take the advantages of P2P networks and to pro-
vide efficient processing of continuous join queries.

1.4 Scope, Contributions and Organization

This research addresses continuous join queries over structured P2P networks (see Figure
1.2). This research excludes unstructured P2P networks because they are inefficient in terms of
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response time, consume much network traffic and do not provide guarantees of any kind. Join
query processing has been well addressed in prior research works [Val87][Has95][LR05] but the
unbounded nature of data stream and the P2P environment creates new challenges. We focus
in query execution where a DHT is used for routing tuples and as a hash table for storing
tuples. However, hash-based redistribution of tuples on their joining attribute is vulnerable to
the presence of skew in the underlying data. Moreover, in P2P networks nodes can fail disrupting
the execution of queries.

Figure 1.2 – The scope of this research.

We make profit of gossip-based protocols to cope with failures because they are resilient
to failures, frequent changes and they cope well with the dynamic behaviour of nodes in P2P
networks. Due to the nature of data stream applications, approximate answers are well accepted
in continuous query processing. Regarding this issue, we tackle the completeness of results using
an approach based on a peer level and on a query level that allows to precise how many resources
are needed in order to obtain a certain degree of completeness.

Considering the scope of this research, in the next section we gives a quick overview of the
proposed approach to addresses continuous join queries over structured P2P networks and we
precise its contributions.

Contributions

In this research we propose an efficient method named DHTJoin to process continuous join
queries using structured P2P networks. We provide an architecture for the deployment of DHT-
Join in a structured P2P network. This architecture allows the parallelization of continuous join
queries using a combination of partitioned and pipelined parallelism. The execution of continuous
join queries in DHTJoin is performed by a combination of hash-based placement of tuples and
dissemination of queries by exploiting the embedded trees in the underlying DHT. DHTJoin
also deals with failures during query execution and query dissemination, and attribute value
skew which may hurt load balancing and result completeness. More precisely, the contributions
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of this research are following :

• DHTJoin identifies, using query plans, a subset of tuples in order to index the data re-
quired by the user’s queries, thus reducing network traffic. This is more efficient than the
approaches based on structured P2P overlays, e.g. PIER [HHL+03] and RJoin [ILK08],
which typically index all tuples in the network. Furthermore, our approach dynamically
indexes tuples based on new attributes when new submitted queries contain different pre-
dicates.
• We provide an analytical evaluation of the best number of nodes to obtain a certain degree

of completeness given a continuous join query.
• DHTJoin tackles the dynamic behavior of DHT networks during query execution and

dissemination of queries. When nodes fail during query dissemination, DHTJoin uses a
gossip-based protocol that assures 100% of network coverage. The gossip-based protocol
is based on the concept of anti-entropy where nodes exchange messages in order to detect
and correct inconsistencies in a system. When nodes fail during query execution, DHT-
Join propagates messages to prevent nodes of sending intermediate results that do not
contribute to join results, thereby reducing network traffic.
• DHTJoin provides an efficient solution to deal with overloaded nodes as a result of data

skew. The key idea is to distribute the tuples of an overloaded node to some underloaded
nodes, called partners. When a node gets overloaded, DHTJoin discovers partners using
information in the routing table and determines what tuples to send them using the concept
of domain partitioning. We show that, in this case, DHTJoin incurs only one additional
message per joined tuple produced, thus keeping response time low.

Organization

This work is organized as follows. In Chapter 2, we survey data stream processing and query
processing in P2P networks. First, we give more insight into many aspects of data stream proces-
sing such as query languages, query operators and their implementation. Second, we present the
main research project in the area of DSMSs and their primary contributions. Then we present
P2P systems identifying their fundamental requirements, challenges and its potential in the pro-
cessing of complex queries. Finally, we discuss the state of the art and introduce our method to
process continuous join queries using structured P2P networks.

Chapter 3 presents the architecture of DHTJoin. After a quick overview, we detail the com-
ponents of the architecture with its different features and we provides a description of the data
flow during query processing.

In Chapter 4, we present DHTJoin, our proposed method to meet the challenges of efficiently
executing continuous join queries in a structured P2P network. We define formally the type of
join queries tackled and their strategies for parallelization. We describe DHTJoin and how it
deals with node failures during query dissemination and query execution. Then, we present
an analysis of result completeness which relates memory constraints, stream arrival rates and
number of nodes required to obtain a certain degree of result completeness. Finally, we show
how DHTJoin deals with data skew.

Chapter 5 presents the performance evaluation of DHTJoin through simulation. We show
that our method is competitive w.r.t a complete implementation of RJOIN [ILK08] the most
relevant state of the art approach dealing with continuous join queries over structured P2P
networks. We also show the effectiveness of the approaches proposed to deal with node failures
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during query dissemination and query execution.
Finally, we conclude and highlight future directions of research.
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CHAPTER2
State of The Art

This chapter reviews the main works on data stream processing and complex query processing
in P2P systems. More specifically, in Section 2.1 we survey query languages, in particular, join
operators and their implementation. In Section 2.1.3, we present the main research projects in
the area of data stream management systems presenting their primary contributions. Finally, in
Section 2.2 we present P2P systems, focusing on how complex query facilities are implemented
in DHT-based structured P2P systems.

2.1 Data Stream Processing

Query processing over data streams is a challenging task. Traditional DBMSs are not designed
to support continuous queries that are typical of data stream applications. In response, a new
class of data management systems commonly known as Data Stream Management Systems
(DSMS) has emerged. To support stream processing applications, DSMSs introduce new data
models, query languages and operators. In this section, we show how users can express their
queries and how query operators are implemented to cope with the requirements of data stream
applications. Finally, we survey recent work on DSMS.

2.1.1 Data Model and Query Languages

A data stream is an unbounded append-only sequence of timestamped data items. In relation-
based stream models (e.g. STREAM [BBD+02], DCAPE[ZR07], Borealis[AAB+05]) data items
take the form of tuples such that all the tuples belonging to the same stream have the same
schema, i.e. they have the same set of attributes. Tuples may contain timestamps assigned
explicitly by its source or assigned by the DSMS upon arrival. The timestamp may or may not
to be part of the stream schema. Tuples are produced continuously by data sources and are
pushed into the system and generally stored in main memory where they are processed through
the queries. In the majority of real-world streaming applications, analysis based on recent data is
more informative and useful than analysis based on stale data. This constraints queries to return
results inside a window (e.g. the last 30 minutes or the last hundred of packets). For example,
in network applications, emphasizing recent data is more informative and useful than old data.
This part of the user’s requirements is expressed as part of the user query, therefore it must be
supported by the query language used to express the queries. In DSMS, queries are continuous
in the sense that they are evaluated continuously as data items continue to arrive, generating
results over time reflecting the data items seen so far. Three querying paradigms have been
proposed [GÖ03a] by which the users can express their queries : relation-based, object-based
and procedural.

Relation-based Languages. This type of languages uses an SQL-like syntax enhanced with
support for sliding windows and ordering. CQL [AW04], developed to be used in the STREAM

13
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DSMS [ABB+03] is an example of a relation-based language. The main modification made to
standard SQL is a sliding window specification provided in the query’s FROM clause. CQL is
based on three classes of operators over streams and relations : relation-to-relation, stream-to-
relation and relation-to-stream. In CQL a stream S is a possibly infinite bag of elements 〈s, τ〉,
where s is a tuple belonging to S and τ ∈ T is the timestamp of the element. A relation R is a
mapping from T to a finite but unbounded bag of tuples belonging to R. A relation-to-relation
operator corresponds to standard relational algebraic operators, it takes one or more relations
R1, ...., Rn as input and generates a relation R as output. A stream-to-relation operator takes a
stream S and generates a relation R with the same schema as S, this operator is based on the
concept of sliding window. A time-based sliding window one stream S is specified by following
the name of the stream with the RANGE keyword and a time interval enclosed in brackets.
A relation-to-stream operator takes a relation R as input and generates a stream S as output.
Conceptually, an unbounded stream is converted to a relation by way of sliding windows where
the query is computed and the results are converted back to a stream. A window size in time
units on a stream X contains a historical snapshot of a finite portion of the stream. An example
query, computing a join of two timed-based windows of size 5 minutes each is shown below.

SELECT Distinct X.A
FROM X[RANGE 5 min], Y[RANGE 5 min]
WHERE X.B=Y.B

This query contains a stream-to-relation operator and a relation-to-relation operator that
performs projection and duplicate elimination.

Object-based Languages. In object-based languages, streams are modeled as hierarchical
data types. For instance, in the Tribeca [Sul96] network monitoring system the UDP/IP and
TCP/IP types both inherit from the IP type. A query has a single source stream and at least one
result stream. The query language of Tribeca supports the following operators over the entire
input stream or over a sliding window : projection, selection, aggregation and join, multiplex and
demultiplex (in order to support task of traffic analysis that partition a stream into a substreams,
process the substreams, and then recombines the results of the substream analysis).

Procedural Languages. In this type of languages, the user specifies the data flow using the
popular boxes and arrows paradigm found in most process flow and workflow systems. Borealis
[AAB+05] is a DSMS that inherits from the SQuAl procedural language of the Aurora [ACc+03]
DSMS. A query plan is constructed using a graphical interface by arranging boxes representing
query operators joined by directed arcs representing the data flow between boxes. However, an
optimization phase may re-arrange, add or remove operators. SQuAl has nine primitive operators
(filter, map, union, aggregate, join, bsort, resample, read and update) and a set of system-level
drop operators used to deal with system overload.

2.1.2 Query Operators

Conceptually, a query operator may be thought of as a function that consumes input streams,
stores some state, performs computation when new data arrive, modifies the state and outputs
results. DSMSs support standard relational operators such as join and aggregate, however their
implementation is different. Regarding the join operator, a new implementation is justified by
the following reasons. First, the join operator has a blocking behaviour because to produce the
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Figure 2.1 – A join operator with sliding windows

first result it must see its entire input. Since data streams may be infinite, a blocking operator
will never see its entire input not being able to produce any result. However, this problem
has been solved by replacing traditional join blocking operators with streaming symmetric join
operators [VNB03] that processes tuples from the streams in an arbitrary interleaved fashion,
i.e. for each arrival on one of the inputs, the state of the other input is probed to generate new
results. Second, the join operator stores a state that grows linearly with the size of its inputs
matching every tuple from one relation with every tuple from the other relation. Since data
streams are potentially unbounded in size, its is not possible to store state continuously and
match all tuples. To solve this problem, the join operator matches tuples considering a recent
portion of the streams only. Generally this portion of the streams is based on a sliding window
that explicitly defines the state of the operator as the set of tuples in the window. Usually two
kinds of window constraints can be used over a join operator to limit the size of its states : tuple-
based and time-based. For a tuple-based window, the window size is represented as the number
of tuples, and for a time-based window the size is represented as a time frame. For example,
two input streams (see Figure), A and B, both with tuples that contains a time attribute, and
a window size W ), the operator matches tuples that satisfy |a.time− b.time| ≤W .

In general a join operator, implementing sliding windows to limit the size of its states,
executes a 3-step process referred to as the purge-join-insert algorithm [WRGB06]. For a newly
arriving tuple a ∈ A : (1) a is used to purge tuples stored in window B[W ], (2) a is probed with
tuples in B[W ] possibly producing join results, and (3) a is inserted in A[W ]. Symmetric steps
are executed for a B tuple.

In this section we present the three major join operators used for executing continuous
multi-join queries, BJoin[], MJoin[VNB03] and Eddy[AH00]. In Bjoin a query plan is composed
of binary join operators that store intermediate results, while an MJoin is an operator that
takes symmetrically all the streams joining the arriving tuples with the remaining streams in a
particular order without storing intermediate results. In the Eddy operator queries are processed
without fixed plans. Instead, query execution is conceived as a process of routing tuples through
operators where a tuple routing operator adjusts the routing order of tuples on a per-tuple basis.

2.1.2.1 The Binary Join Tree Operator (BJoin)

In a Binary Join Tree operator (BJoin) [VNB03] the query plan is composed of binary join
operators. Each binary join operator applies a symmetric join algorithm that processes tuples
from the streams in an arbitrary interleaved fashion based on the order of arrival. In BJoin, each
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Figure 2.2 – A 3-way continuous join query using the BJoin operator

binary operator keeps two states that stores tuples that the operator has received so far. There
are states that store the tuples received directly from a stream, such as state SA in Figure 2.2,
and others states, such as SAB that store intermediate join results. To deal with infinite inputs,
the states can be maintained using sliding windows and the join tuples are calculated using
the purge-probe-insert algorithm described in Section 2.1.2. Consider, for example, the operator
A ⊲⊳ B in Figure 2.2. An incoming tuple a1 from input stream A first purges expired tuples of
stream B stored in SB. Then, it probes SB to produce new join results involving tuple a1. If
new join results are produced, they are stored in the state SAB. Finally, a1 is inserted into SA.
The same process applies to any tuple from streams B and C. However, incoming tuples in C
are probed directly with the intermediate results stored in SAB instead of being probed with
SA and SB separately avoiding the recomputation of intermediate results. Not maintaining such
intermediate results can limit performance when incoming tuples in C arrive with the same join
attribute value.

Existing optimization techniques such as the min-state algorithm [Zhu06] aim at minimizing
the total number of intermediate results, thus reducing memory to store them as well as the
processing costs (CPU) in generating future join results. The min-state algorithm is a greedy-
based algorithm that computes a BJoin plan in polynomial time as follows. The input to the
algorithm is a join graph G = (V, E) that represents a multi-join query, where V represents
the set of input streams, marked by its stream name Vi and its arrival rate λVi

, and an edge
(Vi, Vj) ∈ E represents a join predicate between two streams marked by the selectivity σViVj

of the join Vi ⊲⊳ Vj . Consider a 5-way join A ⊲⊳ B ⊲⊳ C ⊲⊳ D ⊲⊳ E in Figure 2.3(a) with
sliding windows of size W = 1. The algorithm ranks the edges using the following expression
λVi

λVj
σViVj

. The smallest value is selected and a join is generated with its vertex. Thus, the edge
(A, D) is selected first, is merged into a single vertex AD and the join A ⊲⊳ D is formed as shown
in Figure 2.3(a). The arrival rate of the new AD vertex is the output rate of tuples generated
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by A ⊲⊳ D that can be calculated as σAD(λA(λDWD) + λD(λAWA)) = 0.1(5 × 5 + 5 × 5) = 5.
Once the join graph updated, the algorithm picks the following smallest weighted edge. The
edge CE is chosen and the join C ⊲⊳ E is formed (see Figure 2.3(b)). The arrival rate of the new
vertex CE is 8. The same procedure is repeated (see Figure 2.3(c)) and the join B ⊲⊳ C ⊲⊳ E is
generated. Finally, as shown in Figure 2.3(d) the output of the algorithm is a binary join tree
that minimizes the size of intermediate states. The min-state algorithm does not guarantee to
always find an optimal BJoin tree, thus leading the optimizer to be more conservative because it
requires more resources than the query actually needs. However, it was chosen for its efficiency
[Zhu06] i.e. a good plan is found quickly, which is much needed by continuous query processing.

Figure 2.3 – Min-State Algorithm

2.1.2.2 The Multi-Way Join Operator

The basic idea of the Multi-Way Join operator (MJoin) [VNB03] is to generalize the sym-
metric binary hash join and the XJoin [UF00] to work for more than two inputs streams. Mjoin
considers n inputs streams symmetrically and by allowing the tuples from the streams to arrive
in an arbitrary interleaved fashion. The basic algorithm of MJoin creates as many hash tables
(states) as there are join attributes in the query. When a new tuple from a stream arrives into
the system, it is probed with the other n− 1 streams in some order to find the matches for the
tuple. The order in which the streams are probed is called the probing sequence. Note that de-
pending of the query, not all the streams are always eligible to be probed. To this end, an MJoin
implements a lightweight tuple router that routes the tuples to relations generating correct join
probes.

Figure 4.3 shows an MJoin operator for a 3-way continuous join query expressed using CQL
[AW04]. There are three hash tables corresponding to the three join attributes of the query.
An MJoin operator is ready to accept a new tuple on any input stream at any time. Upon
arrival, the new tuple is used to probe the remaining hash tables and generate a result as soon
as possible. For example, the following steps are executed when a new tuple a ∈ A arrives :
• a is inserted into the A hash table.
• The only valid probing sequence for an A tuple is B → C (see Figure 4.3). Note that an A

tuple is not eligible to be probed into the C hash table directly, since they do not contain
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Figure 2.4 – A 3-way continuous join query using the MJoin operator

the same join attribute.
• a is used to probe the hash table on B to find tuples that satisfy the join predicate

A.a = B.a. Intermediate tuples are generated by concatenating a with the matches ci ∈ C,
if any.
• If any result tuples were generated, they are routed to the C hash table in order to find

tuples that satisfy the join predicate B.b = C.b.

Similarly, when a new C tuple arrives, it is inserted into the hash table on C. It is used to
probe the hash table on B, since it is not eligible probing directly into the A hash table, and
the intermediate tuples (if any) are routed to the A hash table to find tuples that satisfy the
join predicate A.a = B.a. In the case of new B tuples, there are two probing sequences C → A
and A → C. Choosing a probing sequence is very important in MJoin because it must ensure
that the smaller number of intermediate results is generated. This process can be supported by
an adaptive algorithm [BMM+04].

Let us explain the execution of MJoin with the example query of 4.3 and the following tuple
arrival a1, a2, b1, b2, b3, c1, c2, a3, c3 (see Figure 2.5). We assume that the tuples arrive in the
following way generating the following partitions A1 = {a1, a2}, B = {b1, b2, b3}, C1 = {c1, c2},
A2 = {a3}, C2 = {c3} (see Figure 4.3). This generates the following query plans :

• (C1 ⊲⊳ B) ⊲⊳ A1, C1 tuples arrive last and the probing sequence B → A is chosen (see
Figure 4.3).
• (A2 ⊲⊳ B) ⊲⊳ C1, when the tuple a3 arrives the probing sequence B → C is chosen.
• (C2 ⊲⊳ B) ⊲⊳ (A1 ∪A2), when c3 arrives the probing sequence B → A is chosen.

The execution of a MJoin operator can be seen as a sequence of query plans executed using
left-deep pipeline plans where the internal state of hash tables is determined solely by the source
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tuples that have arrived so far.

Figure 2.5 – MJoin and the left-deep pipeline plans generated by an arrival of tuples

MJoin is very attractive when processing continuous queries over data streams because the
query plans can be changed by simply changing the probing sequence. Sliding windows are
adopted to deal with infinite inputs limiting the size of hash tables and the purge-probe-insert
algorithm (see Section 2.1.2) is used to calculate join tuples.

The principal drawback of MJoin is the recomputation of intermediate results because in-
termediate tuples generated during query execution are not stored for future use. In Figure 2.5,
the first query plan generates (C1 ⊲⊳ B) intermediate results which are not stored and could
be used in the query plan (A2 ⊲⊳ B) ⊲⊳ C1. A solution to this problem is proposed in [VNB03]
where a MJoin is broken into smaller MJoins or into a tree of binary joins. Another solution,
called adaptive caching [BMWM05], is to add/remove temporary caches of intermediate result
tuples.

Caching intermediate results. The A-caching algorithm [BMWM05] improves the perfor-
mance of MJoin using caches to store intermediate result tuples. In A-caching the performance
of a continuous join depends on the probing sequence and caching. This approach follows a
two-step process, to improve the performance of MJoin :

• A probing sequence is chosen, independently for each stream, using the A-Greedy algorithm
[BMM+04].
• For a given probing sequence, A-caching may decide to add a cache in the middle of the

pipeline.

A intermediate result cache C
S

O is an associative store, where S is the stream for which it is
maintained and O is the set of operators belonging to the probing sequence for which it stores
the intermediate result tuples. The cache entries contain key-value pairs (u, v) where u is the
value of the join attribute and v are the result tuples generated by probing into O. A cache
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supports the following operations :
• create(u, v) adds the key-value pair into the cache.
• probe(u) returns a hit with value v if (u, v) ∈ C

S

O, and a miss otherwise.
• insert(u, r) adds r to set v.
• delete(u, r) removes r from set v for determined attribute values.

Figure 2.6 shows a B ⊲⊳ C cache for the query and the probing sequences presented in Figure
4.3. When an A tuple arrives, the cache is consulted first to verify if there are results already
cached. If so, the probing sequence can be avoided, thus saving the work that would otherwise has
been performed to generate the result tuples. If there is a miss, the probing sequence continues
normally and inserts back the computed result into the cache. When new B and C tuples arrive,
the cache must be updated if the arriving tuples generate B ⊲⊳ C or C ⊲⊳ B intermediate results.
In the same way, when tuples of A and B are dropped out of their respective sliding windows
the cache must be updated. This latter operation could be computationally expensive, making
important the choice of which caches to maintain.

In A-caching, giving a probing sequence the caches are selected adaptively to optimize the
performance based on profiled costs and benefits of caches. Therefore, caches can be added, po-
pulated incrementally and dropped with little overhead, without compromising the join results.

Figure 2.6 – Query plans with a B ⊲⊳ C cache

2.1.2.3 The Eddy Operator

The Eddy operator is designed to enable fine-grained runtime control and adaptively ap-
proach the optimal order of join operations at runtime [AH00]. Queries are executed without
fixed plans. Instead, an optimized join order for each incoming tuple is computed individually.
An Eddy is a tuple routing operator between data sources and query operators as joins. It moni-
tors the execution and makes routing decisions by sending tuples from the data sources through
query operators. As a result, the routing destinations for tuples alone determine the query plans
executed by the Eddy.
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Figure 2.7 shows an Eddy operator for a 3-way continuous join query expressed using CQL
[AW04]. Along with the Eddy operator, two symmetric binary hash join operators are instantia-
ted. Tuples from A, B and C are routed through A ⊲⊳ B and B ⊲⊳ C. Since an operator expects
tuples of certain sources, arbitrary routing of tuples is not allowed. For instance, tuples from A
should not be routed to B ⊲⊳ C. In the query of Figure 2.7, the valid routing options for different
types of tuples (shown on the data flow edges) are as follows :

• A and C tuples can only be routed to the A ⊲⊳ B and B ⊲⊳ C operator respectively.
• B tuples can be routed to either of the two join operators.
• Intermediate AB and BC tuples can only be routed to B ⊲⊳ C and A ⊲⊳ B operator

respectively.
• ABC result tuples are routed to the output.

Figure 2.7 – A 3-way join query using the Eddy operator

The validity of routing decisions is supported by using a tuple signature composed of the set
of base relations that a tuple contains and the operators it has already been routed through. A
high level representation of a tuple signature is shown in Figure 2.7, valid routing destinations can
be added configuring a routing table. For efficient storage and lookups, a compact representation
of the tuple signature is proposed. To this end, each tuple is assigned a ready and a done bitset
that respectively represent the operators that are eligible to process the tuple, and the operators
that the tuple has already been through. If all the done bits are on, the tuple is sent to the eddy’s
output ; otherwise it is sent to another eligible operator. A join ordering is expressed turning
on only the ready bit corresponding to the operator that can be executed initially. When an
operator returns a tuple to the eddy, it turns on the ready bit of the following operator in the
join ordering. A latter implementation of Eddies in PostgreSQL [Des04] encodes the bitmaps
as integers to index a routing table initialized at the beginning of query execution. Thus, valid
destinations for tuples with the same signature are found efficiently. However, the size of the
routing table is exponential in the number of operators and hence this approach is not suitable
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for queries with a large number of operators.

An Eddy has a tuple routing scheme that monitors the behaviour of the operators (cost and
selectivity) and accordingly routes tuples through the operators. Two tuple routing schemes are
proposed in [AH00], back-pressure and lottery scheduling. The back-pressure works as follows :
the processing of a tuple is more slow in a high cost operator than in that of low cost. This
generates larger input queue sizes for high costs operators. If the length of input queues is fixed,
the Eddy operator is forced to route tuples to an operator of lower cost before routing to those
of higher cost. Under the lottery scheduling, each time a tuple is routed to an operator, it obtains
a ticket. When the operator returns a tuple to the Eddy, one ticket is debited. Thus, the number
of tickets is used to roughly estimate the selectivity of an operator. When two operators are
eligible to process a tuple, the operator with more tickets has higher probability to process it.
By doing this, the Eddy is very adaptive and the join order can be changed at runtime.

Intelligent routing decisions are the key to achieve good performance. However, it is difficult
to predict how the decisions made by the Eddy will affect the execution of subsequent tuples.
The problem is the state accumulated inside the join operators. A tuple stored in the state of
a join operator can effectively determine the order of execution for subsequently arriving tuples
from other tables even after the Eddy has switched the routing policy. As a result, the Eddy
effectively continues to emulate an suboptimal plan. To illustrate this point, consider the query
of Figure 2.7. At the beginning the Eddy emulates the plan (A ⊲⊳ B) ⊲⊳ C knowing that the data
source of A is stalled, which makes the A ⊲⊳ B operator an attractive destination for routing
B tuples. Some time later, a great quantity of A tuples arrive and it becomes apparent that
the plan A ⊲⊳ (B ⊲⊳ C) is the better choice. The Eddy switches the routing policy so that
subsequent B tuples are routed to B ⊲⊳ C first. Unfortunately the Eddy continues to emulate
the suboptimal plan (A ⊲⊳ B) ⊲⊳ C, even if the routing policy for B tuples has changed, because
of all the previously seen B tuples are still stored in the internal state of the A ⊲⊳ B operator.
As A tuples arrive, they must join with these B tuples before the B tuples are joined with C
tuples. To tackle this problem SteMs [RDH03] and STAIRs [DH04] are proposed.

The State Modules (SteMs) architecture is an extension of the Eddy architecture that ensures
that the state stored in the join operators is entirely independent of routing history. To this end,
SteMs does not store intermediate results. The main operator is a SteM, which is instantiated
for each attribute of each base relation addressed in the join predicates (see Figure 2.8). The
query is executed by routing tuples through these operators. Tuples arriving from each base
relation are first built into their own SteM and then used to probe the other relations’ SteMs to
get the join results. Considering the query of Figure 2.8, when a new A tuple arrives, it is :

1. inserted into the A SteM.

2. probed against B tuples stored in the B SteM to find matching tuples corresponding to
A ⊲⊳ B.

3. the resulting AB tuples are probed against the C tuples stored in the C SteM in order to
generate ABC results. Intermediate AB tuples are not stored anywhere. Thus, the state
accumulated into SteMs is independent of the routing history.

However, this solution has two significant drawbacks :

• Re-computation of intermediate results : since intermediate results are not stored
anywhere, they are re-computed each time they are needed.
• Constrained plan choices : query plans that can be executed for any new tuples are

constrained because even if the Eddy knows the existence of an optimal query plan, this
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Figure 2.8 – SteMs for a 3-way join query

plan is not feasible. For example, any new A tuple must join with B tuples (stored in
the SteM on B) first and then with C tuples (stored in the SteM on C). This restricts
the query plan for new A tuples to be (a ⊲⊳ B) ⊲⊳ C. A new optimal query plan such as
a ⊲⊳ (B ⊲⊳ C) cannot be proposed because the absence of B ⊲⊳ C tuples.

The STAIR operator exposes the state stored in the operators and allows to the Eddy
manipulate this state in order to reverse any bad routing decisions. A STAIR on relation A and
attribute a, denote by A.a, contains either tuples from A or intermediate tuples that contain a
tuples from A, and supports the following two basic operations :

• insert(A.a, t) : store a tuple t, that contains a tuple from A, inside the STAIR.
• probe(A.a, val) : given a value val from the A.a’s domain, return all the matching tuples

stored in the STAIR A.a.

Figure 2.9(a) shows how STAIRs are instantiated. Each join operator is replaced with two
STAIRs that interact with the Eddy directly. These STAIRs are called duals of each other. The
query execution using STAIRs is similar to query execution using an MJoin operator in the
following sense : when a new tuple arrives, the Eddy performs an insert on one STAIR, and
a probe into its dual. This is a property, called Dual Routing Property, always obeyed during
query execution.

The Eddy manipulates the state inside the STAIRs using two primitives that provide the
ability to reverse any bad routing decisions made in past.

• Demotion(A.a, t, t′) : this operation reduces an intermediate tuple t stored in the STAIR
A.a to a sub-tuple t′ of that tuple. Intuitively, this operation undoes a tuple that was done
earlier during execution.
• Promotion(A.a, t, B.b) : this operation replaces a tuple t with super tuples of that tuple

generated using another join in the query. Intuitively, this operation reroutes the tuple t
with to the new join ordering. To promote a tuple, the following steps are performed :
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1. Remove t from A.a.

2. Insert t into B.b.

3. Probe the dual of B.b using the tuple t.

4. Insert the resulting super-tuples of t (if any) back into A.a.

This process of moving state (tuples) from one STAIR to another is referred to as state migration.
As an example, Figure 2.9(a) shows state maintained inside the joins operators at time τ for
the query example. At time τ the system has received the tuples a1, b1, b2, b3, c1. Tuples b1 and
b2 have been routed to A ⊲⊳ B and b3 is routed to B ⊲⊳ C. At this time the Eddy knows that
routing b1 and b2 to A ⊲⊳ B was a mistake. Thus, this prior routing decision can be reversed
using Demotion and Promotion operations. Thus, tuples a1b1 and a1b2 are replaced by the
sub-tuples b1 and b2 after the call to Demotion (see Figure 2.9(b)). In general, this operation
can be interpreted as Demote all the A ⊲⊳ BA tuples in B.b to BA, where BA are the tuples of
B routed to A ⊲⊳ B. Figure 2.9(c), we see the Eddy after the call to Promotion. Tuples routed
erroneously to A ⊲⊳ B are replaced with super-tuples of these tuples that are generated when
the routing decision is . Thus, b1 and b2 are rerouted to B ⊲⊳ C and result tuples are inserted
back into STAIR B.a. As a result, bad routing decisions are reversed and the Eddy keeps the
ability to adapt over the time.

Figure 2.9 – An example of state migration using STAIRs
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2.1.3 Data Stream Management Systems

We now survey some of the main DSMSs in approximate chronological order of when they
started. We present their primary contributions and how continuous queries are processed in-
cluding query languages and operators.

TelegraphCQ [CCD+03] is one the firsts to process continuous queries focusing in adaptive
query processing. The software architecture of TelegraphCQ is based on an adaptation of Post-
greSQL to enable shared processing of continuous queries over stream sources. Tuples are read
from external sources using user-defined data acquisition functions called wrappers. A wrapper,
declared and managed using the PostgreSQL user-defined function infrastructure, processes data
read from a networked source and generates tuples in the appropriate format. Queries are ex-
pressed using the SQL Select statement, including a Window clause to specify the window size
of streams operations, and are executed without fixed plans. Instead, an optimized join order
for each incoming tuple is computed individually using an Eddy operator (see Section 2.1.2.3).

STREAM [ABB+03] is a DSMS built from scratch. Many aspects of stream processing
as query languages, resource management and statistics computation are explored during the
development of STREAM. Queries are specified in CQL [AW04] and once a query arrives to
the system a query plan is compiled from it. A query plan is composed of a tree of operators
(which perform the processing) connected by queues with synopses (which store operator state)
attached to operators as needed. Regarding join queries, they are executed using an MJoin
operator [VNB03] optimized by using the A-caching algorithm [BMWM05] that places and
removes caches of intermediate result tuples (see Section 2.1.2.2).

Borealis [AAB+05] is a distributed DSMS which inherits the core data model and stream
processing functionality from Aurora [ACc+03]. The design of Borealis focuses on fault tolerance
and overload management. Queries are specified using query diagrams which can be seen as a
network of query operators whose processing is distributed to multiple nodes. Fault tolerance is
tackled using a replication-based approach [BBMS08] which maintains consistency (users receive
correct results) and low processing latency. Overload is tackled dropping tuples [TcZ07] using
a load shedding plan composed of a set of drop operators placed at specific arcs of the query
diagram. Considering that the system cannot spend large amount of time calculating the best
plan at runtime, an off-line algorithm builds a set of plans in advanced which can be invoked
under different combinations of input load. Moreover, under dynamic environment a distributed
algorithm that efficiently computes changes to plans is proposed.

DCAPE [Zhu06] is a distributed DSMS focusing in adaptive query processing. The architec-
ture of DCAPE was conceived to provide adaptive services at all levels of query processing inclu-
ding dynamic query optimization, dynamic plan migration and distributed adaptation. Unlike
TelegraphCQ fine-grained level of adaptivity, DCAPE works with pre-defined optimized query
plans re-optimized using adaptive techniques. Queries are executed using partitioned parallelism
and re-optimized when the query plan becomes inefficient due to changes of the data charac-
teristics (selectivity and stream rate). The change of query plan is performed online without
affecting the correctness of the output. This transition is referred as dynamic plan migration.
The heterogeneity of plan shapes among different machines due to local query optimizations
is integrated with distributed load balancing [ZR07] using protocols that can balance the load
between machines handling the complexity caused by local plan changes. This process is referred
as distributed adaptation.
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Table 2.1 – Summary of join operators, their primary contributions, drawbacks and improve-
ments.
Operator Primary contribution Drawback Improvement

BJoin First approach to re-
place blocking operators
with streaming symme-
tric operators.

The growth of interme-
diate results increase the
processing cost in gene-
rating join results.

A greedy algorithm that re-
duces the total number of in-
termediate results.

MJoin High adaptivity obtai-
ned using different query
plans for each stream.

Recomputation of inter-
mediate results.

Adaptive caching to reuse in-
termediate tuples produced
during execution.

Eddy High adaptivity obtai-
ned calculating an opti-
mized join order for each
incoming tuple.

Execution of suboptimal
plan even if the routing
policy has changed

There is two approaches to im-
prove Eddy performance : 1)
Use SteMs that do not store in-
termediate results and 2) ma-
nipulate state store in join ope-
rators using STAIRs in order
to reverse bad routing deci-
sions.

2.1.4 Conclusion

In this chapter, we discussed query languages, join query operators and how the different
DSMSs process continuous queries. In declarative languages as CQL [AW04] the sintax is similar
to SQL, but their semantic is considerably different. Object based languages are conceived prin-
cipally for specific domain applications as network monitoring [Sul96]. In procedural languages
[ACc+03] the user specifies how the data flows through the system allowing, as in the case of
Borealis DSMS, the graphical specification of a drop operator and how it is deployed over a set
of computing nodes.

We presented three join operators, BJoin [VNB03], MJoin [VNB03] and Eddy [AH00]. Table
2.1 summarizes the primary contribution of join operators, their drawbacks and improvements
proposed. BJoin is the natural extension of a classical binary tree of join operators to the
stream context. Intermediate join results are stored for future use and queries are executed
using a fixed query plan. Mjoin provides high adaptivity using different probing sequences for
each stream. Thus, depending of the arriving tuple a different left-deep query plan defined by the
probing sequence is executed. However, since MJoin does not store intermediate join results, the
recomputing of intermediate results can generate high processing costs. To tackle this problem,
a solution based on adaptive caches of intermediate results is proposed. Basically, an adaptive
cache can be instantiated, populated and dropped (if necessary) without compromising of join
results. The Eddy operator continuously reoptimizes a query making per-tuple routing decisions.
Thus, an optimal query plan is calculated for each incoming tuple. This provides high adaptivity,
but making per-tuple routing decisions may suggest high processing costs. However, an study
of overhead of Eddies [Des04] shows that its benefits can be obtained with some minor tuning.

We presented different DSMSs, Table 2.2 summarizes these DSMSs and their primary contri-
butions. Each DSMS has been developed emphasizing a particular research topic of stream
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Table 2.2 – Summary of DSMSs and their primary contributions.

DSMS Primary contribution

TelegraphCQ Operators for adaptive query processing.
STREAM Adaptive caching for continuous queries and query language.
Borealis Techniques for fault-tolerance and load management.
DCAPE Integrates local query optimization and distributed load balancing

processing. TelegrapCQ emphasizes adaptive query processing developing the highly adaptive
Eddy operator, in the others DSMSs the choice of operators is not very important since their
focus is in other aspects of stream processing as resource management [ABB+03], fault-tolerance
[AAB+05] and load balancing [Zhu06].

2.2 Query Processing in P2P networks

P2P systems adopt a completely decentralized approach to resource management. By distri-
buting data storage, processing, and bandwidth across autonomous peers in the network, they
can scale without the need for powerful servers. P2P systems have been successfully used for
sharing computation, e.g. Setihome [ACK+02] and Genomehome [LSSP03], communication, e.g.
ICQ and Jabber, internet services, e.g. P2P multicast systems [CJK+03] and security applica-
tions [KMR02][VATS04], or data, e.g. Gnutella, KaZaA and PIER [HHL+03].

There are several features that distinguish P2P systems from traditional distributed database
systems (DDBS) and make it difficult to provide advanced data management services over
P2P networks [NOTZ03] : Peers are very dynamic and can join and leave the system anytime.
However, in DDBS, nodes are added to and removed from the system in a controlled manner.
Usually there is no predefined global schema for describing the data which are shared by the
peers. In P2P systems, the answers to queries are typically incomplete. The reason is that some
peers may be absent at query execution time. In P2P systems, there is no centralized catalog
that can be used to determine the peers that hold relevant data to a query. However, such a
catalog is an essential component of DDBS.

Initial research on P2P systems has focused on improving the performance of query routing in
unstructured systems. This work leads to structured solutions based on distributed hash tables
(DHT), e.g. CAN [RFH+01] and Chord [SMK+01], or hybrid solutions with super-peers [NSS03].
Although very useful, most of the initial P2P systems are quite simple (e.g. file sharing), support
limited functions (e.g. keyword search) and use simple techniques (e.g. resource location by
flooding) which have performance problems. In order to overcome these limitations, recent works
have concentrated on supporting advanced applications which must deal with semantically rich
data (e.g. XML documents, relational tables, etc.) using a high-level SQL-like query language,
e.g. ActiveXML [ABC+03], Edutella [NWQ+02a], Piazza [TIM+03], PIER [HHL+03].

One of the main services which are needed for supporting advanced P2P applications is
a query processing service which deals with schema-based queries. However, providing such a
service in P2P systems is quite challenging because of the specific features of these systems,
e.g. lack of a global schema. Most techniques designed for distributed database systems which
statically exploit schema and network information no longer apply. New techniques are needed
which should be decentralized, dynamic and self-adaptive. Therefore, novel techniques have been
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proposed to perform decentralized schema mapping, to route queries to relevant peers without
relying on a centralized catalog, and to execute queries, especially complex queries such as join
queries, in a fully distributed fashion while taking into account the dynamic behavior of peers.

All P2P systems rely on a P2P network to operate. This network is built on top of the
physical network (typically the Internet), and thus referred to as overlay network. The degree of
centralization and the topology of the overlay network strongly impact the nonfunctional pro-
perties of the P2P system, such as fault-tolerance, self-maintainability, performance, scalability,
and security.

The remainder of this chapter surveys query routing in P2P networks (Section 2.2.1), and dif-
ferent approaches implementing complex query facilities in DHT-based structured P2P networks
(Section 2.2.3).

2.2.1 Query Routing in P2P Networks

The main problem for query processing in P2P systems is how to route the query to relevant
peers, i.e. those that hold some data related to the query, [LW06]. Once the query is routed
to relevant peers, it is executed at those peers and the answers are returned to the query
originator. In this section, we describe the approaches for query routing in unstructured, DHT-
based structured, and super-peer P2P systems.

2.2.1.1 Unstructured

In unstructured P2P networks, the overlay network is created in a nondeterministic (ad hoc)
manner and data placement is completely unrelated to the overlay topology. Each peer knows
its neighbors, but does not know the resources they have. Query routing is typically done by
flooding the query to the peers that are in limited hop distance from the query originator. There
is no restriction on the manner to describe the desired data (query expressiveness), i.e. key look-
up, SQL-like query, and other approaches can be used. Fault-tolerance is very high since all peers
provide equal functionality and are able to replicate data. In addition, each peer is autonomous to
decide which data to store. However, the main problems of unstructured networks are scalability
and incompleteness of query results. Query routing mechanisms based on flooding usually do not
scale up to a large number of peers because of the huge amount of load which they incur on the
network. Also, the incompleteness of the results can be high since some peers containing relevant
data may not be reached because they are too far away from the query originator. Examples of
P2P systems supported by unstructured networks include Gnutella, KaZaA and FreeHaven.

The approaches used in unstructured systems for query routing can be classified in the follo-
wing groups [TR03a] : Breath-First Search (BFS), Iterative deepening, random walks, adaptive
probabilistic search, local indices, bloom filter based indices, and distributed resource location
protocol.

BFS. This approach, which is used originally by Gnutella for data discovery, floods the query
to all accessible peers within a TTL (Time To Live) hop distance as follows. Whenever a query
with a TTL is issued at a peer, called query originator, it is forwarded to all its neighbors. Each
peer, which receives the query, decreases the TTL by one and if it is greater than one sends the
query and TTL to its neighbors. By continuing this procedure, all accessible peers whose hop
distance from the query originator is less than or equal to TTL receive the query. Each peer that
receives the query executes it locally and returns the answers directly to the query originator
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Iterative deepening. This approach [YGM02] is used when the user is satisfied by only
one (or a small number) of the closest answers. In this algorithm, the query originator performs
consecutive BFS searches such that the first BFS has a low TTL, e.g. 1, and each new BFS
uses a TTL greater than the previous one. The algorithm ends when the required number of
answers is found or a BFS with the predefined maximum TTL is done. For the cases where a
sufficient number of answers are available at the peers that are close to the query originator,
this algorithm achieves good performance gains compared to the standard BFS. In other cases,
its overhead and response time may be much higher than the standard BFS.

Random Walks. In Random Walks [LCC+02], for each query, the query originator forwards
k query messages to k of its randomly chosen neighbors. Each of these messages follows its own
path, having intermediate peers forward it to a randomly chosen neighbor at each step. These
messages are known as walkers. When the TTL of a walker reaches zero, it is discarded. Each
walker periodically contacts the query originator, asking whether the termination condition is
held or not. If the response is positive, the walker terminates. The main advantage of the Random
Walks algorithm is that it produces k×TTL routing messages in the worst case (k=the number
of walkers), a number which does not depend on the underlying network. The main disadvantage
of this algorithm is its highly variable performance, because success rates and the number of
found answers vary greatly depending on network topology and the random choices. Another
drawback of this method is that it cannot learn anything from its previous successes or failures.

Adaptive probabilistic search. In Adaptive Probabilistic Search (APS) [TR03b], for each
recently requested data, the peers maintain the data identifier and probability of returning the
data by each of their neighbors. Given a query asking for a data, the query originator establishes
k independent walkers and sends them to its neighbors. Each intermediate peer, which receives
a walker, sends it to the neighbor that has the highest probability to return the requested data.
Initially equal for all neighbors, the probability values are updated using either an optimistic
approach or a pessimistic approach [TR03b]. APS has very good performance as it is bandwidth-
efficient : the number of routing messages produced by it is very close to that of Random Walks.
In spite of this, the probability of finding the requested data by APS is much higher than that
of Random Walks. However, if the topology of the P2P system changes quickly, the ability of
APS to answer queries reduces significantly.

Local indices. In this approach [YGM02], each peer p indexes the data shared by all peers
which are within a certain radius r, i.e. the peers whose hop-distance from p is less than or equal
to r. The query routing is done in a BFS-like way, except that the query is processed only at
the peers that are at certain hop distances from the query originator. To minimize the overhead,
the hop distance between two consecutive peers that process the query must be 2r + 1. This
allows querying all data without any overlap. The processing time of this approach is less than
that of standard BFS because only a certain number of peers process the query. However, the
number of routing messages is comparable to that of standard BFS. In addition, whenever a
peer joins/leaves the network or updates its shared data, a flooding with TTL = r is needed in
order to update the peers’ indices, so the overhead becomes very significant for highly dynamic
environments.

Bloom filter based indices. In [RK02], the indexing of data is done using Bloom filters.
Each peer holds d bloom filters for each neighbor, such that the i-th filter summarizes the data
that can be found i hops away through that specific neighbor. When a peer receives a query
requesting a data, it checks its local data, if the data is found it is returned to the query originator.
Otherwise, the peer forwards the query to the neighbor who has the minimum numbered filter
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that represents the data among its members. The advantage of representing the indexed data
by Bloom filters [Blo70] is that they are space efficient, i.e. with a small space, one can index a
large number of data. However, it is not possible to remove a data from a Bloom filter, so they
are not easily adaptable to highly dynamic environments. In addition, it is possible that the
Bloom filter wrongly returns a positive answer in response to a question asking the membership
of a data item.

Distributed resource location protocol. In Distributed Resource Location Protocol
(DRLP) [MK02], the peers index the location of all data which are the answer for recently
issued queries. The indexing is done gradually as follows. Peers with no information about the
location of a requested data, forward the query to a set of randomly chosen neighbors. If the
data is found at some peer, a message is sent over the reverse path to the query originator,
storing the data location at those peers. In subsequent requests, peers with indexed location in-
formation forward the query directly to the relevant peers. This algorithm initially spends many
routing messages for query processing. In subsequent requests, it might take only one message
to discover it. Thus, if a query is issued frequently, this approach is very efficient.

2.2.1.2 Structured

Structured networks have emerged to solve the scalability problem of unstructured networks.
They achieve this goal by tightly controlling the overlay topology and data placement. Data (or
pointers to them) are placed at precisely specified locations and mappings between data and
their locations (e.g. a file identifier is mapped to a peer address) are provided in the form of a
distributed routing table. Distributed hash table (DHT) is the main representative of structu-
red P2P networks. A DHT provides a hash table interface with primitives put(key, value) and
get(key), where key is an object identifier, and each peer is responsible for storing the values (ob-
ject contents) corresponding to a certain range of keys. Each peer also knows a certain number of
other peers, called neighbors, and holds a routing table that associates its neighbors’ identifiers
to the corresponding addresses. Most DHT data access operations consist of a lookup, for finding
the address of the peer p that holds the requested data, followed by direct communication with
p. In the lookup step, several hops may be performed according to nodes’ neighborhoods.

Queries can be efficiently routed since the routing scheme allows one to find a peer responsible
for a key in O(log n) routing hops, where n is the number of peers in the network. Because a
peer is responsible for storing the values corresponding to its range of keys, autonomy is limited.
Furthermore, DHT queries are typically limited to exact match keyword search. Active research
is ongoing to extend the DHT capabilities to deal with more complex queries such as range
queries [RRHS04][JOV05] and join queries [HHL+03][ILK08].

Examples of P2P systems supported by structured networks include Chord [SMK+01], CAN
[RFH+01], Tapestry [ZHS+04] and Pastry [RD01]. They use a chain mode propagation approach,
where each node makes a local decision about to which node to send the request message next.
The way by which a DHT routes the keys to their responsible depends on the DHT’s routing
geometry [GGG+03], i.e. the topology which is used by the DHT for arranging peers and routing
queries over them. The routing geometries in DHTs can be [GGG+03] : tree, hypercube, butterfly,
XOR and hybrid. In the following, we describe these geometries and discuss query routing.

Tree. Tree is the first geometry which is used for organizing the peers of a DHT and routing
queries among them. In this approach, peer identifiers constitute the leaves of a binary tree of
depth log n where n is the number of nodes of the tree. The responsible for a given key is the
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peer whose identifier has the highest number of prefix bits which are common with the key.
Let h(p, q) be the height of the smallest common sub-tree between two peers p and q. For each
1 ≤ i ≤ log n, each peer p knows the address of a peer q such that h(p, q) = i. This means that,
for each 1 ≤ i ≤ log n, the peer p knows a peer q such that the number of common prefix bits
in the identifiers of p and q is i. The routing of a key proceeds by doing a longest prefix match
at each intermediate peer until reaching to the peer which has the most common prefix bit with
the key. The basic routing algorithms in Tapestry [ZHS+04] is rather similar to this algorithm.
The tree geometry gives a great deal of freedom to peers in choosing their neighbors : each peer
has 2i − 1 options in choosing a neighbor in a sub-tree with height i. Thus, in total, each peer
has about 2log n(log n−1)/2 options to select all its neighbors. Therefore, the tree geometry has
good neighbor selection flexibility. However, it has no flexibility for message routing : there is
only one neighbor which the message must be forwarded to, i.e. this is the neighbor that has
the most common prefix bits with the given key.

Hypercube. The hypercube geometry is based on partitioning a d-dimensional space into
a set of separate zones and attributing each zone to one peer. Peers have unique identifiers
with log n bits, where n is the total number of peers of the hypercube. Each peer p has log n
neighbors such that the identifier of the i-th neighbor and p differ only in the i-th bit. Thus,
there is only one different bit between the identifier of p and each of its neighbors. The distance
between two peers is the number of bits on which their identifiers differ. Query routing proceeds
by greedily forwarding the given key via intermediate peers to the peer that has minimum bit
difference with the key. Thus, it is somehow similar to routing on the tree. The difference is
that the hypercube allows bit differences to be reduced in any order while with the tree, bit
differences have to be reduced in strictly left-to-right order. The number of options for selecting
a route between two peers with k bit differences is (log n)(log n− 1). . . (log n− k), i.e. the first
peer on the route has log n choices, and each next peer on the route has one choice less than
its predecessor. Thus, in the hypercube, there is great flexibility for route selection. However,
for selecting its neighbors, a peer has only one choice. Thus, the hypercube geometry has no
flexibility in the neighbor selection. The routing geometry used in CAN [RFH+01] resembles a
hypercube geometry. CAN uses a d-dimensional coordinate space which is partitioned into n
zones and each zone is occupied by one peer. When d = log n, the neighbor sets in CAN are
similar to those of a log n dimensional hypercube.

Ring. The Ring geometry is based on a one dimensional cyclic space such that the peers
are ordered on the circle clockwise with respect to their identifiers. Chord [SMK+01] is a DHT
protocol that relies on this geometry for query routing. In Chord, each peer has an m-bit
identifier, and the responsible for a key is the first peer whose identifier is equal or follows k.
Each peer p maintains the address of logn other peers on the ring such that the i-th neighbor
is the peer whose distance from p clockwise in the circle is (2i − 1) mod n. Hence, any peer
can route a given key to its responsible in log n hops because each hop cuts the distance to the
destination by half. In the ring geometry, p can select its i-th neighbor from the peers whose
distance from p clockwise in the circle is in the range [(2i − 1) mod n, 2i mod n). This implies
that in the ring geometry, each peer has 2i − 1 options in selecting its ith neighbor. Thus in
terms of flexibility of neighbor selection, there are a total of approximately 2(log n−1)∗(log n−1)/2

options for each peer. The flexibility in route selection is approximately (log n)! possible routes
for a typical path.

Butterfly. The Butterfly geometry is an extension of the traditional butterfly network that
supports the scalability requirements of DHTs. Viceroy [MNR02] is a DHT that uses this geo-
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metry for efficient data location. The peers of a butterfly with size n are portioned into log n
levels and n/log n rows. The peers of each row are subsequently connected to each other using
successor/predecessor links. The number of peers in each row is log n, thus a sequential lookup
in each row is done in O(log n). In addition to successor/predecessor links, each peer has some
links to the peers of other rows. The inter-row links are arranged in such a way that the distance
between a peer in Level 1 of any row to any other row is log n. Routing a query in the Butterfly
is done in three steps as follows. First, the query is sequentially forwarded to the peer that is at
Level l of the same row as the query originator. This is done in O(log n) routing hops. Second,
from Level 1, the query is routed in O(log n) routing hops to the row to which the destination
peer belongs. Third, at the destination row, the query is traversed sequentially to the destination
peers. Each of these steps is done in O(log n) routing hops, thus the total time of query routing
is O(log n). The advantages of the Butterfly geometry is that the size of the routing table per
peer, i.e. the number of neighbors of each peer, is a small constant number whereas, in most of
other geometries, this size is O(log n). However, the Butterfly geometry has poor neighbor and
route selection flexibility, i.e. there is only one choice for selecting the neighbors or the route.

XOR. The XOR approach uses a symmetric unidirectional tree topology for structuring the
peers of the P2P network. Kademlia [MM02] is a DHT that uses the XOR geometry for query
routing. In Kademlia, the distance between two peers is computed as the numeric value of the
exclusive OR (XOR) of their identifiers. Each peer p has log n neighbors, where the i-th neighbor
is any peer whose XOR distance from p is a value in [2i, 2i + 1). Query routing proceeds by
greedily reducing via intermediate peers the XOR distance from the destination peer. Kademlia
provides the same neighbor selection flexibility as the tree geometry. In addition, in terms of
route selection, the XOR geometry can reduce the bit differences in any order, and does not
require strict left-to-right bit fixing as the tree geometry. Thus, it has a great route selection
flexibility which is comparable to that of the ring geometry.

Hybrid. Hybrid geometries use a combination of geometries. Pastry [RD01] combines the
tree and ring geometries in order to achieve more efficiency and flexibility. Peer identifiers are
maintained as both the leaves of a binary tree and as points on a one-dimensional circle. In
Pastry, the distance between a given pair of nodes is computed in two different ways : the
tree distance between them and the ring distance between them. Peers have great flexibility of
neighbor selection. For selecting their neighbors, peers take into account the proximity properties,
i.e. they select the neighbors that are close to them in the underlying physical network. The
route selection is also very flexible because, to route a message, peers have the possibility to
choose one of the hops that do make progress on the tree or on the ring.

2.2.1.3 Super-peer

Unstructured and structured P2P networks are considered ”pure” because all their peers
provide the same functionality. In contrast, super-peer networks are hybrid between client-server
systems and pure P2P networks. Like client-server systems, some peers, the super-peers, act as
dedicated servers for some other peers and can perform complex functions such as indexing, query
processing, access control, and metadata management. Using only one super-peer reduces to
client-server with all the problems associated with a single server. Like pure P2P networks, super-
peers can be organized in a P2P fashion and communicate with one another in sophisticated
ways, thereby allowing the partitioning or replication of global information across all super-
peers. Super-peers can be dynamically elected (e.g. based on bandwidth and processing power)
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and replaced in the presence of failures. In a super-peer network, a requesting peer simply sends
the request, which can be expressed in a high-level language, to its responsible super-peer. The
super-peer can then find the relevant peers either directly through its index or indirectly using its
neighbor super-peers. The main advantages of super-peer networks are efficiency and quality of
service (i.e. the user-perceived efficiency, e.g. completeness of query results, query response time,
etc.). The time needed to find data by directly accessing indices in a super-peer is very small
compared with flooding. In addition, super-peer networks exploit and take advantage of peers’
different capabilities in terms of CPU power, bandwidth, or storage capacity as super-peers take
on a large portion of the entire network load. In contrast, in pure P2P networks, all nodes are
equally loaded regardless of their capabilities. Access control can also be better enforced since
directory and security information can be maintained at the super-peers. However, autonomy
is restricted since peers cannot log in freely to any super-peer. Fault-tolerance is typically low
since super-peers are single points of failure for their sub-peers (dynamic replacement of super-
peers can alleviate this problem). Examples of super-peer networks include Napster], Publius
[WRC00], Edutella [NWQ+02b][NSS03], and JXTA. A more recent version of Gnutella also relies
on super-peers [ATS04].

Super-peer networks typically rely on some powerful and highly available peers, called super-
peers, to index the data shared by peers which are connected to the system. Edutella is one of
the most known super-peer networks. In Edutella, super-peers are arranged in the HyperCup
topology [SSDN02], so messages can be communicated between any two super-peers in O(logm)
routing hops, where m is the number of super-peers. The process of joining a super-peer to
the network consists of two parts : taking the appropriate position in the HyperCuP topology
and announcing itself to its neighbors. Each ordinary peer joins the system by connecting to a
super-peer. To support efficient query routing, at each super-peer, two kinds of routing indices
are maintained : super-peer/peer (SP/P) indices and super-peer/super-peer (SP/SP) indices.
Queries are routed over super-peers by using the SP/SP indices, and to ordinary peers based
on the SP/P indices. In the SP/P indices, each super-peer stores information about the charac-
teristics of the data which are shared by the peers that are connected to it. These indices are
used to route a query from the super-peer to its connected peers. At join time, peers provide
their metadata information to their super-peer by publishing an advertisement. To index the
provided metadata, Edutella uses the schema-based approaches which have successfully been
used in the context of mediator-based information systems (e.g. [Wie92]). To ensure that the
indices are always up-to-date, peers notify super-peers when their data change. When a peer
leaves the network, all references to this peer are removed from the indices. If a super-peer fails,
its formerly connected peers must connect to another super-peer chosen at random, and provide
their metadata to it. The second type of indices is SP/SP indices which are essentially summa-
ries (possibly also approximations) of SP/P indices. Update of SP/SP indices is triggered after
any modification to SP/P indices as follows. When a super-peer changes its SP/P index, e.g.
due to a peer’s join/leave, it broadcasts an announcement of update to the super-peer network
by using the HyperCuP protocol. The other super-peers update their SP/SP indices accordin-
gly. Although such a broadcast is not optimal, it is not too costly either because the number of
super-peers is much less than the number of all peers. Furthermore, if peers join/leave frequently,
the super-peer can send a summary announcement periodically instead of sending a separate
announcement for each join/leave. The query routing in Edutella is done as follows. When a
peer receives a query issued by the user, it sends the query to its super-peer. At the super-peer,
the metadata used in the query are matched against the SP/P indices in order to determine
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Table 2.3 – Comparison of P2P networks

Requirements Unstructured Structured Super-peer

Autonomy high low moderate

Query expressiveness ”high” ”low” high

Efficiency low high high

QoS low high high

Fault-tolerance high high low

Security low low high

local peers which are able to answer the query. If the query cannot be satisfied by local peers,
it is forwarded to other super-peers using SP/SP indices.

2.2.2 Comparing P2P Networks

From the perspective of data management, the main requirements of a P2P network are
[DGY03] : autonomy, query expressiveness, efficiency, quality of service, fault-tolerance, and
security. We describe these requirements in the following. Then, we compare P2P networks
based on these requirements.

• Autonomy : an autonomous peer should be able to join or leave the system at any time
without restriction. It should also be able to control the data it stores and which other
peers can store its data, e.g. some other trusted peers.
• Query expressiveness : the query language should allow the user to describe the desired

data at the appropriate level of detail. The simplest form of query is key look-up which
is only appropriate for finding files. Keyword search with ranking of results is appropriate
for searching documents. But for more structured data, an SQL-like query language is
necessary.
• Efficiency : the efficient use of the P2P network resources (bandwidth, computing power,

storage) should result in lower cost and thus higher throughput of queries, i.e. a higher
number of queries can be processed by the P2P system in a given time.
• Quality of service : refers to the user-perceived efficiency of the P2P network, e.g. comple-

teness of query results, data consistency, data availability, query response time, etc.
• Fault-tolerance : efficiency and quality of services should be provided despite the occurrence

of peers failures.
• Security : the open nature of a P2P network makes security a major challenge since one

cannot rely on trusted servers. Wrt. data management, the main security issue is access
control which includes enforcing intellectual property rights on data contents.

Table 2.3 summarizes how the requirements for data management are possibly attained by the
three main classes of P2P networks. This is a rough comparison to understand the respective
merits of each class. For instance, “high” means it can be high. Obviously, there is room for
improvement in each class of P2P networks. For instance, fault-tolerance can be made higher in
super-peer by relying on replication and fail-over techniques.



Chapter 2 — State of The Art 35

Figure 2.10 – Pier Architecture

2.2.3 Complex Query Processing

Although highly efficient, P2P systems based on DHTs provides only exact-match data
lookups. This compromise their use in applications where more advanced query facilities are
required. Examples of complex queries are : join queries and range queries. In this section, we
discuss the techniques proposed to support these complex queries in DHT-based P2P systems.

2.2.3.1 Join Queries

PIER. The first attempt to execute complex SQL queries on top of a DHT is PIER
[HHL+03]. PIER organizes the nodes using Bamboo, a DHT loosely based on Pastry [RD01],
where the nodes cooperates to evaluate a join query, although PIER is DHT agnostic since other
DHTs including CAN [RFH+01] and Chord [SMK+01] have been used in different stages of its
development. The join algorithms are adaptations of textbook parallel and distributed schemes
that have been adapted to suit the DHT scenario.

PIER is a three-tier system composed by a execution environment, a DHT and a query
processor as shown in Figure 2.10.

The execution environment has been designed based on the key idea that both simulation
and physical environments use the same code allowing to test network and multiple machines
in simulations running the real system code. The PIER programming model is event-based, the
events are processed by a single thread which is justified because it allows to utilize asynchro-
nous I/O and because it fits naturally with discrete-event network simulation. The execution
environment is key in the design of PIER making more easier the early identification of bugs in
the distributed logic of query execution.

The DHT is used both for indexing and storage. Traditional get and put methods are provided
as well as others methods in order to perform maintenance operations. In PIER, tuples and
queries have a :

• namespace, used in query processing to identify the table a tuple belongs to. In the case
of a query, it is used to identify a multicast group where the query is sent.
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• resourceID, composed of one or more attributes of a tuple, it can be viewed as a partitioning
key. In the case of a query, it is used to assign a globally unique identifier.
• instanceID, is an identifier chosen at random by the user application in order to separate

items that have been stored using the same namespace and resourceID.
The DHT key is calculated via a hash function on namespace and resourceID. Thus, tuples
having the same namespace and resourceID are stored at the same node. Once a tuple arrives to
a node a newData callback is used to notify this event. PIER does not provide persistent storage,
instead it uses the concept of soft state where a node stores tuples in main memory for a time
period after which the tuples is discarded. If a node wishes extend the period a tuple is stored,
it must invoke the renew function. PIER does not maintain system metadata. As a result, every
tuple in PIER is self-describing, containing its table name, column names, and column types.

The PIER query processor is a “boxes-and-arrows” dataflow engine. Using a graphical in-
terface called LightHouse a query plan is constructed by arranging boxes representing query
operators joined by directed arcs representing the data flow between operators. A query is sent
by an user application to a PIER node where the query is parsed , disseminated and the query
results are forwarded to the user application. This PIER node is called the proxy.

In the query parsing the proxy node generates a representation of the query in terms of
Java objects suitable for the query executor. Since there is no system catalog the parser does
not check the existence or type of columns referenced in the query. The proxy disseminates
the query contacting nodes, using a multicast communication primitive, that hold data needed
to process the query. Instances of each operator and dataflow links are created at each node
receiving the query. Access to tuples stored locally is provided by the lscan iterator. When a
result is generated, it is delivered to the proxy node. All the functions implemented by the DHT,
as listed in Table 2.4, provide an useful API to applications.

Table 2.4 – API provided by the DHT
item get(namespace, resourceID)

put(namespace, resourceID, instanceID, item, lifetime)

boolean renew(namespace, resourceID, instanceID, item, lifetime)

iterator lscan(namespace)

multicast(namespace, resourceID, item)

item newData(namespace)

To determine the subset of network nodes needed to process a query PIER uses three kinds of
indexes : a broadcast-predicate index, an equality-predicate index, and a range-predicate index.
A broadcast-predicate index is based on a distribution tree and is used with queries that range
over all the data to find all the data. The equality-predicate index is used with queries that need
to find a specific value, this is supported directly by using the DHT primitives. A range-predicate
index is based on a Prefix Hash Tree [RRHS04] a distributed data structure that supports range
queries over DHTs.

The execution of binary join algorithms is the core functionality in PIER. The join algorithms
implemented in PIER are a version of the symmetric hash join and a variant of a distributed
join algorithm called Fetch Matches. In the symmetric hash join tuples are read when appear
at either input, added to the corresponding hash table and probed against the opposite hash
table based on the tuples received so far. In PIER the tuples belonging to different relations,
for instance R and S, are supposed to be horizontally partitioned and stored in the DHT under
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Figure 2.11 – Symmetric or Doubly pipelined hash join

separate namespaces NR and NS . A query Q is disseminated to all nodes that store tuples in the
namespaces involved in the query. Each node receiving the query scan its relations using lscan
searching for tuples that satisfy the selection predicates. All these tuples are rehashed, using
the value of the join attribute to form the resourceID, in a new namespace NQ where they are
processed. When a tuple is rehashed, the put(namespace, resourceID, instanceID, item, lifetime)
function is used where namespace is NQ, resourceID is the concatenation of join attribute values,
instanceID is chosen at random, item is composed by the selection attributes and additional
information specifying the namespace the tuple comes from, and time is the amount the time
the item will be available in the NQ namespace. Thus, all the tuples with the same namespace
and resourceID are stored on the same node and process using the doubly pipelined hash join
as shown in Figure 2.11. The Algorithm 1 shows the steps followed by a node in NR. The same
steps are executed in a node containing tuples of relation S. When a tuple from R(or S) arrives
to a node in the namespace NQ a newData callback is issued and the get function is invoked
in order to find matches in the other relation. Whenever matching tuples are found, they are
sent to the next stage in the query or they are immediately sent to the query initiator using the
function send. The Algorithm 2 shows the steps followed by a node in NQ.

Algorithm 1 Build Hash Table : A node that stores R tuples scans and rehashes tuples using
the join attribute value

Require: Q, a join query.
1: for each r ∈ R do
2: resourceID = getJoinAttributeV alue(r, Q)
3: instanceID = random()
4: item = (getSelectAttributes(r, Q), R)
5: put(NQ, resourceID, instanceID, item, time)
6: end for
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Algorithm 2 Probe : A node in NQ that stores R tuples receives a newData callback and
searches locally for S tuples

Require: NQ, the namespace of the query. r, an R tuple.
1: s = get(NQ, resourceID)
2: if probe(r,s) then
3: result = createResult(getSelectAttributes(r, Q), getSelectAttributes(s, Q))
4: send(Queryinitiator, resourceID, instanceID, result, time)
5: end if

Let us consider the join query q over relations R and S with schema (a, b, c) :
q : Select R.b,S.c

From R,S
Where R.a=S.a

We assume that the tuples belonging to R and S have been partitioned into two namespaces
NR and NS as is shown in Figure 2.12. The query initiator disseminates the query to nodes in
namespaces and all the nodes that store tuples run scan/rehash steps as follows. All the tuples
stored locally are retrieved using lscan and rehashed based on the join attribute value and the
name of a new namespace NQ using the put function (see Figure 2.12). Considering the query q,
tuples with the same value on R.a and S.a are rehashed to the same node in NQ. Nodes in NQ

use newData and get in order to obtain join results as follows. Once a rehashed tuple arrives
on one of the relations, the query processor is informed by a newData callback that triggers a
call to the get function (expected to be local) in order to find matches in the other relation.
Note that tuples from the relations arrive in an arbitrary interleaved fashion thus a symmetric
join operator (see Figure 2.11) is implemented locally in each NQ node. Once a match is found,
tuples are concatenated and sent to the query initiator.

The rehashing step over both tables may need much bandwidth during the execution of
the symmetric hash join. To reduce this, the followings improvements of the symmetric hash
join are proposed : Fetch Matches, symmetric semi join and Bloom joins. In order to avoid the
rehashing of all the tuples, the Fetch Matches algorithm, a variant of a traditional distributed
join algorithm [ML86], is implemented. This algorithm assumes that one of the relations, say S,
is already hashed on the join attributes. All the nodes in NR are scanned using lscan and, for
each tuple of R, the DHT is queried using the get function, for S tuples matching R.a. Since
the get invocation are done at the DHT level, selection and projection over the selected S tuples
cannot be performed at the remote site. Thus, selection and projection are applied at NR nodes
and join results are sent to the query initiator. The symmetric semi join is a DHT-base version
of a traditional query rewrite strategy. This algorithm reduces the bandwidth, projecting tuples
locally, at NR and NS nodes, to only hash key and join attributes. A symmetric hash join is run
on the projected tuples and the resulting tuples are used as source for two Fetch Matches joins
to retrieve the other attributes specified in the query (R.b and S.c in the case of the query q of
Figure 2.12). Bloom joins is a rewrite strategy that reduces the amount of tuples rehashed in the
symmetric hash join. Each node creates a local Bloom filter, of its local R or S fragment, which
is publied into a temporary DHT namespace for each table. All the nodes in the namespaces
cooperate to generate Bloom filters BR.a and BS.a on all of R and S, respectively, which are
broadcast to all the nodes storing the opposite table. Once a node receives a Bloom filter, it
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Figure 2.12 – Execution of a join query using PIER

retrieves its tuples stored locally using lscan and rehashes only those tuples that match the filter.
The possible false positives are controlled by the symmetric hash join which completes the join.

RJoin. This algorithm is designed for the evaluation of continuous multi-way join queries
on top of DTHs. RJoin [ILK08] is based on the idea of incremental evaluation : as relevant
tuples arrive continuously, a multi-join query is rewritten continuously by replacing the value
of the join attributes of arriving tuples in the query, a new query with fewer joins is created
and is assigned to different nodes of the network. Thus, RJoin distributes the responsability of
evaluating the query to many network nodes. RJoin organizes the nodes in a Chord ring where
the nodes insert (index) tuples, pose continuous queries and participe in query processing tasks
(see Figure 2.13).

In Rjoin, tuples follow the relational data model. A timestamp, pubT (s), is assigned to each
tuple s with the time that the tuple was inserted into the network by some node. Queries are
expressed using SQL and timestamped with the time that the query was submitted to the
network. The timestamp of a query is denoted by insT (q).

The indexing of tuples is based on a variation of hash partitioning. RJoin indexes tuples for
streams S = {S1, S2, ...., Sm} as follows. Let s be a tuple belonging to Si. Let A = (Ai

1, A
i
2, ...., A

i
k)

be the set of attributes in s and val(s, Ai
j) be a function that returns the value of the attribute

Ai
j ∈ A in tuple s. A node indexes a tuple using each attribute name and each attribute value

it has. For each attribute Ai
j a node generates two identifiers : AIndexj = Hash(Si + Ai

j) to

index a tuple at the attribute level and V Indexj = Hash(Si + Ai
j + val(s, Ai

j)) to index a tuple
at the value level. Function Hash() is used to generate an identifier that allows to index the
tuple s to the first node which is equal or follows the identifier clockwise in the identifier space.
For each AIndexj the node creates a message newTuple = (s, AIndexj , attribute, pubT (s)). In
a similar way, for each V Indexj a message newTuple = (s, V Indexj , value, pubT (s)) is created.
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Figure 2.13 – Distributed evaluation of multi-way join queries in RJoin

Therefore, in a Chord ring of N nodes, RJoin creates 2k messages to index a tuple in 2kO(logN)
hops. The Algorithm 3 shows how a tuple is indexed.

Algorithm 3 Insert Tuple(s)

Require: s, a tuple ∈ Si of k attributes A = (Ai
1, A

i
2, ...., A

i
k) to be indexed into the network.

1: M = ∅, I = ∅

2: for j = 0 to k do
3: AIndexj = Hash(Si + Ai

j)
4: newTuple = (s, AIndexj , attribute, pubT (s))
5: I = I ∪ {AIndexj}
6: M = M ∪ {newTuple}
7: V Indexj = Hash(Si + Ai

j + val(s, Ai
j))

8: newTuple = (s, V Indexj , value, pubT (s))
9: I = I ∪ {V Indexj}

10: M = M ∪ {newTuple}
11: end for
12: multiSend(M,I)

To send messages created by the indexing of tuples, RJoin uses an extension of the standard
API of the Chord protocol. This extension allows a node to send a set of M messages to a
set of I identifiers using the function multiSend(M, I). This function is similar to the Chord
function lookup(). Basically, the function multiSend(M, I) sends each message Mj to the node
responsible for Ij in the Chord ring, where 1 ≤ j ≤ k. The function multiSend(M, I) works
as follows. The first node that invokes multiSend(M, I) sorts the set I in ascending order
clockwise starting from its own identifier. This node searches for the node responsible of head(I)
(the first element of I) and sends a multiSend() message. When a node, with identifier id in
the Chord ring, receives a multiSend() message, it compares its own identifier with head(I).
If id < head(I) the node just forwards the multiSend() message. If id ≥ head(I), then the
node process the message Mj corresponding to head(I). This node creates a new set I

′
from I,
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Figure 2.14 – Evaluation of a query in RJoin

deleting all the elements Ij such that head(I) ≤ Ij ≤ id, since it is responsible for them. All the
Mj messages corresponding to the deleted Ij elements are processed and M is updated creating
M

′
. Subsequently, the node invokes multiSend(M

′
, I

′
) and this procedure continues until the

set I is empty.

Regarding queries, once a query is posed in the network it is indexed to a node where it is
stored, then waiting for tuples. A query is indexed at the attribute and value level, however once
a query is submitted it is indexed at the attribute level. Thus, a query meets tuples indexed
with the same attribute, is rewritten with the attribute values present in the arriving tuples
and reindexed to another node where it waits for tuples and possibly will be reindexed until no
more join exists in the Where clause of the query. Note that, when the join query is rewritten
and reindexed, it is reduced to a simple select-project query. For example, consider the following
query and three streams A,B and C with the same schema (a, b, c). :

q : Select A.a,B.c
From A,B,C
Where A.a=B.a and B.c=C.c

We assume that the query is submitted by node 7 and indexed at the attribute level. Node
7 uses the function nextKey(q) to obtain the relation-attribute pair or relation-attribute-triple
used to index query q. Thus, q is indexed using Hash(A + a) that generates an identifier that
allows to index the query q to the first node which is equal or follows the identifier clockwise
in the identifier space as is shown in Figure 2.14. At node 1, the query is stored and waits
for arriving tuples. Tuple ai = (1, 2, 3) ∈ A indexed at the attribute level using Hash(A + a)
arrives to node 1. The arriving tuple is used to rewrite the query using the value of attribute
a only if pubT (ai) ≥ insT (q). If so, the query is rewritten by node 1, replacing the expression
A.a of the query predicate by the value of attribute a of the arriving tuple, generating q1 :
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Select A.a,B.b From A,B,C Where 1=B.a and B.c=C.c. Node 1 uses nextKey(q1) and q1 is
reindexed using predicate 1 = B.a. To send the query to the next node, node 1 creates a
message Eval = (q1, key, owner, insT (q1)), where key = B + a + 1 is the relation-attribute-
value triple used as the key used to determine the node that receives the rewritten query and
owner is the identifier of the node that submitted the query (node 7). Thus, as shown in Figure
2.14, query q1 is reindexed to node 4 where tuples belonging to stream B, that have the value
1 in its attribute a, are indexed at the value level using B + a + 1. Node 4 stores query q1 and
each arriving tuple is used to rewrite it and store it locally since they may be used in the future
when an another rewritten query arrives. Assuming that at node 4 a tuple bi = (1, 4, 5) ∈ B
arrives, it is used to rewrite query q1, generating q2 : Select A.a,B.b From A,B,C Where 1=1
and 5=C.c and simplifying the query predicate. Node 4 reindexes q2 to node 5 (see Figure
2.14) using Hash(C + c + 5) and creates the message Eval = (q2, key, owner, insT (q2)), with
key = C + c+5. At node 5 query q2 is rewritten using tuples belonging to stream C, with value
5 in its attribute c. At this point, the query predicate is totally simplified and a join result is
generated and sent to node 7.

Algorithm 4 Process indexedTuple(newTuple)

Require: newTuple, a newTuple message containing (s, AIndexj , LEV EL, pubT (s))
1: M = ∅, I = ∅

2: for i = 0 to sizeof(queryTable) do
3: if (pubT (s) ≥ insT (qi) then
4: q′ = rewrite(qi, s)
5: if (JoinPredicate(q′) is totally simplified) then
6: result = createResult(qi)
7: sendResult(result,owner(qi))
8: continue
9: end if

10: key = nextKey(q′)
11: id = Hash(key)
12: Eval = (q′, key, owner)
13: I = I ∪ {id}
14: M = M ∪ {Eval}
15: end if
16: end for
17: if LEVEL==Value then
18: store s locally
19: end if
20: multiSend(M,I)

In general, tuples are indexed at the attribute level in order to trigger the evaluation of a
query and are indexed at the value level in order to rewrite queries and simplify the join predicate.
Tuples indexed at the value level are stored locally since future queries will be rewritten using
it. The Algorithm 4 shows the steps followed by a node when it receives a tuple indexed at
the attribute or at the value level. When a node receives a rewritten query, it is stored locally
where it waits for arriving tuples. However, a node can store tuples that have a timestamp
pubT (s) ≥ insT (q) which have been already stored. Using each of such tuples, the query is
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rewritten and reindexed to another node. The Algorithm 5 shows the steps followed by a node
when receives a rewritten query.

Algorithm 5 Process Query(q)

Require: Eval, a Eval message containing (q, key, owner, insT (q))
1: M = ∅, I = ∅

2: T list of tuples s that match q
3: store q in the queryTable
4: for i = 0 to sizeof(T ) do
5: if (pubT (si) ≥ insT (qi) then
6: q′ = rewrite(qi, s)
7: if (JoinPredicate(q′) is totally simplified) then
8: sendResult(result,owner(qi))
9: continue

10: end if
11: key = nextKey(q′)
12: id = Hash(key)
13: Eval = (q′, key, owner)
14: I = I ∪ {id}
15: M = M ∪ {Eval}
16: end if
17: end for
18: multiSend(M,I)

Since data streams are potentially unbounded in size, it is not possible to store locally all the
arriving tuples indexed at the value level. To deal with infinite inputs, RJoin supports time-based
and tuple-based sliding windows.

In the previous example (see Figure 2.14) the joins of the query are evaluated in the order they
appear in the Where clause. However, similar to traditional distributed techniques to execute
joins, intermediate results can lead to increase the query processing load and network traffic. In
Rjoin, each newTuple message produces the rewriting and reindexing of a query. Thus, a query
indexed using a relation-attribute pair with tuples arriving at a high rate leads to an increase
of query rewriting and reindexing. Similarly, when a node receives a query rewritten using a
relation-attribute-value triple with tuples containing the same attribute value arriving at a high
rate the query rewriting an reindexing increases. This is a problem of join ordering that RJoin
solves indexing a query using a relation-attribute or a relation-attribute-value with an arrival
rate predicted to be low. To this end, before indexing a query, RJoin collects information about
the rate of incoming (RIC) tuples of the nodes to which the query could be indexed and then
the node with the smaller RIC is chosen to index the query. For example, considering the query
of Figure 2.14 being indexed by a node n, the candidate nodes where the query could be indexed
are n1 = Hash(A + a), n2 = Hash(B + a), n3 = Hash(B + c) and n4 = Hash(C + c). RJoin
uses the multiSend(msg, I) function to collect RIC information, where msg is used to store the
arrival’s rate and IP addresses and I = {n1, n2, n3, n4}. If we consider that the ascending order
of identifiers is (n1, n2, n3, n4) the RIC information is collected as follows. The node n1 is the
first node contacted, n1 store the arrival rate of tuples belonging to stream A and its address IP
in msg. Subsequently, n1 forwards msg to n2 that stores its information about the arrival rate



44 Chapter 2 — State of The Art

of tuples belonging to stream B and its address IP. Similarly, n2 forwards the message to n3.
Finally, n4 receives the message from n3 and sends all the RIC information and IP addresses
collected to node n. Thus, node n indexes the query to the node with the smaller arrival rate
in one hop. The total cost of this operation is O(klogN) + 2 messages, where k is the number
of nodes where the query could be indexed. RJoin assumes that the collected information is
similar for the future or at least during a reasonable window time. Thus, the cost of collect RIC
information is payed only once for each indexed query and the benefits of keeping the cost of
rewriting queries at low levels are perceived with every tuple insertion.

2.2.3.2 Range Queries

Conventional structured peer to peer systems based on distributed hash tables (CAN [RFH+01],
Chord [SMK+01], Pastry [RD01], etc.) are not effective for supporting data partitioning and re-
trieval based on ranges since hashing destroys the ordering of data. A range query is a query
asking for all objects with values in a certain range. Range queries are present naturally in many
applications domains such as internet databases [HHL+03], moving objects databases [HRM08]
and scientific computing [WS92].

Different approaches to the problem of processing range queries in P2P systems have been
proposed. These approaches can be divided into those that rely on an underlying DHT and those
that do not. In the first group, a P2P system based on Locality Sentitive Hashing is proposed
in [GAA03] where similar ranges are hashed to the same DHT node with high probability.
However, this method can only obtain approximate answers. The P-tree [CLGS04] structure
uses Chord as its overlay routing architecture. The key idea of a P-tree is to maintain parts
of semi-independents B+-trees at each peer. Data is stored in leaf nodes that form a Chord
ring. Exact and range queries take O(logn) steps but its performance degrades when the data is
skewed. Prefix Hash Tree (PHT) [RRHS04] hashes the prefix labels of PHT nodes over the DHT
identifier space. In the second group, P2P systems based on Skip Graphs [HJS+03] can support
range queries but they do not guarantee data locality and load balancing in the whole system.
BATON (BAlanced Tree Overlay Network) [JOV05] is based on a binary balanced tree structure
providing scalability and robustness similar to that of the B-tree. In BATON each node of the
tree is maintained by a peer. Range queries are answered in O(logn + X) steps. In the following
we present in more detail how range queries are answered in the PHT and BATON.

Prefix Hash Tree. The Prefix Hash Tree (PHT) is a trie-based distributed data structure
that supports range queries over a DHT. PHT assumes that the data being indexed are binary
strings of length D. PHT cannot by itself protect against data loss when nodes go down. However,
the failure of a node does not affect the availability of any other node in the trie. PHT is agnostic
to the choice of the underlying DHT since it is built entirely on top of the lookup(key) operation.

A PHT is a binary trie over the data set where the left branch of a node is labeled 0 and the
right branch is labeled 1. Thus, a node n in a PHT represents a prefix bit string, called label l,
produced by the concatenation of the labels of all branches in the path from the root to n.

A PHT is based on the following properties :

1. Universal prefix. Each node has either 0 or 2 children.

2. Key storage. A key k is stored at a leaf node whose label is a prefix of k.

3. Split. Atmost B keys are stored at each leaf node.

4. Merge. A sub-tree of a internal node contains at least B + 1 keys.
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Figure 2.15 – Prefix Hash Tree

5. Threaded leaves. Each leaf node maintains a pointer to its left and right adjacent leaf
node respectively.

These properties are invariants in a PHT. Property 1 assures that each node has exactly
one prefix. Property 2 states that a key k is only stored at leaf(k). Properties 3 and 4 dictate
how the PHT adapts to the distribution of keys in the data set. Finally, property 5 ensures the
construction of a double linked list formed by the leaves of the PHT. This linked list allows
the sequential traversal of leaves for answering range queries. PHT vertices are assigned to
DHT nodes by hashing the prefix label of a PHT node over the DHT identifier space. The peer
responsible for the label l is the peer whose identifier is closest to hash(l). Thus, PHT nodes are
assigned to DHT nodes. This implies that given a label l, it is possible to locate its corresponding
PHT node via a single DHT lookup.

Figure 2.15 is an example of a PHT with D = 6 and B = 4. Shadow nodes are leaf nodes
storing the keys and forming a double linked list. As an example, the key 010000 is stored at
leaf(010000) = 010∗.

In a PHT, the lookup operation lookup(k) returns the unique leaf node leaf(k) whose label
is a prefix of k. Given a key k of length D, there are D + 1 distinct prefixes of k. The obvious
algorithm is to obtain leaf(k) performing a linear scan of these potential nodes D + 1 as shown
in algorithm 6. In the case of the PHT of Figure 2.15, given the key k = 001100, the prefixes 0,
00, 001 and 0011 are tested to obtain the leaf node that stores k.

However, considering that a PHT is a binary trie, the linear scan can be improved imple-
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Algorithm 6 Linear lookup

Require: k, a key.
1: for i = 0 to D do
2: node = lookup(Prefixi(k))
3: if node is a leaf node then
4: return node
5: end if
6: end for

menting a binary search on prefix length. This reduces the number of DHT lookups from D + 1
to logD.

Recall that a PHT is built entirely on top of the lookup operation. Thus, once this operation
is implemented we can show how a PHT supports range queries. Given two keys a and b such
as a ≤ b, a range query returns all keys k satisfying a ≤ k ≤ b. In a PHT two algorithms for
range queries are implemented.

1. Sequential. Using the PHT lookup operation implemented as a binary search. This algo-
rithm searches leaf(a) and scans sequentially the linked list of leaf nodes until the node
leaf(b) is reached.

2. Parallel. This algorithm identifies the node whose label corresponds to the smallest prefix
range that completely covers the range [a, b]. To reach this node a simple DHT lookup is
used and the query is forwarded recursively to those children which overlap with the range
[a, b].

Consider the PHT of Figure 2.15 and a query for the range [000001, 001111]. The sequential
algorithm uses the PHT lookup operation to locate leaf(000001). Once the leaf node is located,
the double linked list formed by the leaves nodes is traversed until the node leaf(001111) is rea-
ched. In the parallel algorithm, the prefix 00∗ is identified as the smallest prefix range that com-
pletely covers the range [000001, 001111]. A DHT lookup is used to directly reach this node, after
which the query is forwarded recursively to those children which overlap with the range specified
in the query. Figure 2.15 shows how the query is forwarded in parallel. In both cases, the response
to the query is composed by the set of keys {000001, 000010, 001000, 001001, 001010, 001101, 001110, 001111}.

BATON. The first attempt to build a P2P overlay network based on a balanced tree struc-
ture is BATON. In BATON each node of the tree is maintained by a peer. The position of a node
is determined by a (level,number) tuple, of which level starts by 0 at the root and number starts
from 1 at the root and sequentially assigned in an in-order traversal. Each tree node stores links
to its parent, children, adjacent nodes and selected neighbor nodes which are nodes at the same
level. Two routing tables, a left routing table and a right routing table, store links to the selected
neighbor nodes. For a node numbered i, these routing tables contains links to nodes located at
the same level with numbers that are less (left routing table) and greater (right routing table)
than i by a power of 2. The jth element in the left (right) routing table at node i contains a
link to the node numbered i − 2j−1 (respectively i + 2j−1) at the same level in the tree. This
structure is in the spirit of Chord except that the geometry is on a straight line rather than on
a circle. Figure 2.16 shows the routing table of node 6.

In BATON, each node, both leaf and internal, is assigned a range of values. For each link
this range is stored at the routing table and when it range changes, the link is modified to record
the change. The range of values managed by a node is required to be to the right of the range
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Figure 2.16 – BATON structure-tree index and routing table of node 6

managed by its left subtree and less than the range managed by its right subtree (see Figure
2.17). Thus, BATON builds an effective distributed index structure.

When a node joins or leaves the system can cause the tree to become imbalanced. The
algorithm to join a node seeks out leaf nodes with its routing tables full and having less than
two children. If the routing tables of a node are full, the level is full and the node joining the
system can be accepted as a child, otherwise it forwards the request to its parent. In a network
of n nodes, the height of the tree is O(logn), thus a join request cannot be forwarded more than
O(logn) times. When a node accepts a new node as its child, it contacts all neighbor nodes in its
routing tables to inform about the new node and updates its adjacent links accordingly. Thus, a
node joining the system will not upset the tree balance. A leaf node can leave the system safely
when there is no neighbor node in its routing tables with children. Otherwise, it contacts a child
node of one of its neighbor nodes to replace its position. If the leaving node is not a leaf node, it
must find a node to replace it by contacting to one of its adjacent nodes. Considering that the
process of finding a replacement node always goes down, it is bounded by the height of the tree
which is O(logn). When the join or leave is part of a load balancing process the above approach
may not be permitted. In this case, BATON restructures the tree using rotations in a similar
way to AVL trees [JOV05].

A range query can be processed as follows. For a range query Q with range [a, b] submitted
by node i, it looks for a node that intersects with the lower bound of the searched range. The
peer that stores the lower bound of the range checks locally for tuples belonging to the range
and forwards the query to its right adjacent node. In general, each node receiving the query
checks for local tuples and contacts its right adjacent node until the node containing the upper
bound of the range is reached. Partial answers obtained when an intersection is found are sent
to the node that submits the query. In a network of n nodes, the first intersection is found in
O(logn) steps using an algorithm for exact match queries [JOV05]. Therefore, a range query
with X nodes covering the range is answered in O(logn + X) steps. The Algorithm 7 shows the
steps followed to process a range query.

As an example, consider the query Q with range [7, 45] issued at node 7, it executes an
exact match query looking for a node containing the lower bound of the range (see dashed line
in Figure 2.17). Since the lower bound is in the range assigned to node 4, it checks locally for
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Figure 2.17 – Range query

Algorithm 7 Range Query

INPUT : Q, a range query in the form [a,b].
OUTPUT : T, tuples belonging to range [a,b].
{% Searching for the node storing the lower bound of the range}

1: At query originator node do
2: {
3: p = ExactQuery(a)
4: send query to node p
5: }
{% A node p receiving Q searches for local tuples and sends Q to its right adjacent node}

6: At each node p that receives Q
7: {
8: T = Range(p) ∩ [a,b]
9: send T to query initiator

10: if Range(RightAdjacent(p))∩ [a,b] 6= ∅ then
11: send Q to right adjacent node of p
12: end if
13: }
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tuples belonging to the range and forwards the query to its adjacent right node (node 9). Node
9 checks for local tuples belonging to the range and forwards the query to node 2 as is shown
in Figure 2.17. Nodes 10, 5, 1 and 6 receive the query, they check for local tuples and contact
its respective right adjacent node until the node containing the upper bound of the range is
reached.

2.2.4 Conclusion

Unstructured P2P networks typically use a simple flooding scheme which is inefficient in
terms of response time and consumes much network traffic. Furthermore, they are not suitable
for efficient processing of continuous queries as they do not provide guarantees of any kind.
Structured networks (i.e. DHT) provide more efficient key-based search. Because applications
that process streams from different sources are inherently distributed and because distribution
is a well accepted approach to improve both performance and scalability [CG07][TcZ07] of a
DSMS, using a DHT is a natural choice to face the challenges motivated by the processing of
continuous join queries.

In the context of join queries, the most relevant state of the art approaches, PIER [HHL+03]
and RJoin [ILK08], rely on a hash function to distribute data streams in the DHT using join
attribute values. However, it is well known that hash-based join algorithms suffer from join
attribute skew, i.e. certain join attribute values are much more frequent than others [ÖV99],
which hurts load balancing and thus response time. It is important to note that data skew
occurs naturally in many data streaming applications [XKZC08]. For example, in online analysis
of transaction logs generated by telephone call records, some numbers used for online tv contests
register a huge number of phone calls. In network monitoring applications, malicious traffic traces
show that an abnormally high number of source addresses are connected to a single destination
address.

Regarding the indexing of tuples, PIER [HHL+03] and RJoin [ILK08] adopt a full indexing
strategy where all database tuples are indexed in the network. In fact, RJoin generates 2 × k
indexing messages for each tuple of k attributes.

In P2P systems, several types of failures can occur preventing the system from producing
any result. PIER and RJoin rely on the DHT to deal with crash failures of peers and thus does
not give guarantees on result completeness. Fault tolerance is a widely-studied problem, but the
environment of stream processing applications creates new challenges.

The use of a DHT for routing tuples (indexing) and as a hash table for storing tuples gives
internet scalability. However, the indexing strategy adopted by the state of the art approaches
is clearly not practical in stream environment where the amount of information is massive in
volume, and the number of tables and attributes can be huge. Moreover, in these approaches
node failures and problems generated by skewed data have not been addressed. In the next
section we present the architecture of DHTJoin, a method for processing continuous join queries
over distributed data streams.





CHAPTER3
DHTJoin Architecture

In this Chapter we present the architecture and the core concepts of the DHTJoin method
which is focused on meeting the challenges of efficiently executing continuous join queries in an
network environment.

In DHTJoin, nodes are connected by means of an overlay network that provides a DHT
service (Distributed Hash Table) [DZD+03]. The nodes from the overlay network are assi-
gned unique identifiers. While there are significant implementation differences between DHTs
[RFH+01][SMK+01], they all map a given key k onto a node p using a hash function and can
lookup p efficiently, usually in O(logn) routing hops where n is the number of nodes. DHTs
typically provide two basic operations : put(k, data) stores a key k and its associated data in the
DHT using some hash function ; get(k) retrieves the data associated with k in the DHT. The
basic structure of a node participating of DHTJoin is depicted in Figure 3.1.

Figure 3.1 – Architecture of DHTJoin

The proposed architecture is based on three main components : (1) an interface for submitting
the queries ; (2) a core layer named DHTJoin divided into two components : a component
providing advances services as tuple filtering and query processing, and a component providing
P2P network services as dissemination and indexing ; and (3) an overlay network layer that
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provides a communication service to the DHTJoin layer. In DHTJoin, the user queries are
expressed using the CQL language and they are parsed and disseminated to the overlay nodes.
Data items (tuples) are filtered and indexed to nodes for later processing. Once a node receives a
query, it instantiates the join operators that allow the processing of tuples stored locally. During
execution, a node may produce answer tuples which are forwarded to the node submitting the
query. Depending on the functionality required by a node, one or more components of the
architecture may not exist. The different tasks performed by nodes during the execution of a
query give raise to three kind of nodes. The first kind is Stream Reception Peers (SRP), a SRP
filters the tuples received from data stream sources. Once a tuple is filtered it is indexed to
the second kind of nodes, the Stream Query Peers (SQP). SQPs are responsible for executing
query predicates over the tuples stored locally. Result tuples are sending the the third kind of
nodes, the User Query Peers (UQP). Note that the difference between SRP, SQP and UQP is
functional and the same node can support all these functionalities.

The rest of this chapter is organized as follows. In Section 3.1 we first present the DHT-
Join stream data model. In Section 3.2, we describe issues concerning tuple filtering and query
processing. In Section 3.3, we describe the various ways DHTJoin uses a DHT overlay network.
Finally, in Section 3.4 we present the data flow during query processing.

3.1 Stream Data Model

In DHTJoin a data stream (a stream in the following) is an append-only sequence of data
items called tuples, generated at data sources, which are composed of attribute values. DHTJoin
does not maintain metadata, thus each tuple is self-describing. All tuples belonging to the
same stream have the same set of attributes. This set of attributes defines the schema of the
stream. In addition to application-specific attributes, each tuple has system-assigned attributes.
This attributes are hidden from the application and are used internally by DHTJoin for query
processing purposes. For example, upon arrival to the system every tuple is timestamped to
indicate its arrival time, and every tuple generated (i.e. a join tuple) has the timestamp of the
oldest tuple that was used in generating it. More specifically, DHTJoin defines a tuple, a stream
, a data source and a relation as follows :

Definition 1. A tuple is a data item on a stream taking the form : (timestamp, stream, a1, ..., an),
where timestamp represents the time that they are inserted in the overlay network by some node,
stream is the name of the stream which the tuple belongs to and a1, ..., an are attribute values.
The schema has the form (TS, S, A1, ..., Am) and all the tuples belonging to the same stream
have the same schema.

Definition 2. A stream is an uniquely named unbounded bag (multiset) of tuples that all conform
to the same schema.

A stream originates at a single data source. However, a data source can produce multiples
streams but it must assign a different name to each stream.

Definition 3. A data source is any application or device that continuously produce tuples and
pushes them to SRPs for processing.

Definition 4. A relation is time-varying bag of tuples. Note that this definition differs from the
traditional one which has no built-in notion of time.
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We assume that data and query sources are equipped with well-synchronized clocks by using
the public domain Network Time Protocol (NTP) designed to work over packet-switched and
variable latency data networks and already tested in distributed DSMS [TcZ07]. Since a data
stream is assumed to be unbounded or at least unknown length, tuples are stored in a main
memory space reserved to query operators and they are maintained only for a limited time using
a sliding window model.

3.2 Advanced Services

In this section we present the Advanced Services component of the DHTJoin layer. Basically,
this layer performs query processing and tuple filtering tasks. The query processor, compiles the
user’s CQL query text into an internal query plan and implements join query operators when
it is responsible for executing the local portion of a query. Additionally, the query processor
contacts the P2P Network Services in order to disseminate a query. Given a continuous join
query, its join predicates are used to filter the incoming tuples of a data stream. Thus, tuples
that do not satisfy the join predicates of a given query are dropped as early as possible. In this
work we focus in join predicates but in the same way a filter based on selection predicates can
be implemented. In the following we present the process of filtering tuples and the details of the
query processor.

3.2.1 Query Processor

When an UQP submits a CQL query, the first task of the query processor is query parsing. In
DHTJoin, the CQL statement is parsed checking that it is correctly specified and subsequently
it is converted into a query plan. Syntactically, CQL is a relative minor extension to SQL [AW04]
that uses three classes of operators over streams and relations (see Section2.1.1). In this work we
use a stream-to-relation operator that takes a stream as input and produces a relation as output.
The stream-to-relation operator in CQL is based on the concept of sliding window. Specifically,
DHTJoin queries are specified using time-based sliding windows in order to limit the size of the
state maintained by a join operator. A time-based sliding window on a stream S takes a time
interval W as a parameter and produces a relation as output. At time τ , the relation contains all
tuples of S with timestamps between τ −W and τ . Syntactically, a time-based sliding windows
is specified by following S with [Range W ].

Once a query is parsed, a query plan is compiled from it. A query plan is composed of opera-
tors, which perform the processing of tuples, queues, which buffer tuples as they move between
operators, and states, which store operator state. In a plan, a queue connects a “producing”
plan operator OP to its “consuming” operator OC . A collection of tuples representing a portion
of a data stream or relation is contained at any time in a queue. The elements produced by an
OP are inserted into the queue remaining there until they are retrieved by OC as needed. An
state has a behaviour depending of the operator it belongs to. For example, to perform a join of
two streams using sliding windows, the join operator probes all tuples in the current window on
each input stream maintaining one state for each of its inputs. A query plan can be thought of
as a dataflow diagram that pipes table data through a graph of query operators. Performance
requirements of data stream applications often dictate that buffers and queues must be kept in
memory, and we make that assumption throughout this work.
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Figure 3.2 – A query plan illustrating operators, queues and states.

Locally, SQP nodes performs join processing using the MJoin operator (see Section2.1.2.2).
The execution of a MJoin operator can be seen as a sequence of query plans executed using left-
deep pipeline plans where the internal state of hash tables is determined solely by the source
tuples that have arrived so far. As a example, a query plan of a join query, implementing the
probing sequence A→ B → C for tuples arriving from stream A, is shown in Figure 3.2. There
are two MJoin operators that perform the join processing using the tuples stored in the states.
Queues qA,qB and qC hold the tuples arriving from streams A, B and C respectively. Queue
qAB holds the A ⊲⊳ B tuples. Note that mjoin does not store intermediate results. StateA holds
tuples for “A[Range 5min]”. StateB and StateC hold tuples for “B[Range 5min]” and “C[Range
5min]” respectively. States are maintained by the MJoin operator using sliding windows and
tuples obtained from the queues are used to perform joins with tuples on the opposite state. State
maintenance is performed using the direct approach technique [GÖ03b]. For every new tuple
stored into one of the join states, expiration is performed at the same time as the processing
of the new tuple. A tuples expires if its timestamp falls out of the range W of the window.
Additionally, state maintenance could be triggered when there are no arrivals for some time.

When an UQP submits a query, its is disseminated. In this case the query processor contacts
the P2P Network Service in order to disseminate a query. When an SRP receives a query, it
extracts the necessary information for constructing the data structure that supports the tuples
filtering. In the same way, an SQP extract the information concerning the query plan in order
to instantiates the operators, queues and states that support the query processing.
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3.2.2 Tuple Filtering

Once stream data items (tuples) arrive on a SRP they are filtered. The filtering process drops
tuples not concerned by queries as early as possible. Basically, an SRP extract the information
contained in the join predicates in order to set the data structure supporting the filtering process.
Given a tuple, a filter finds a join predicate that match. When an arriving tuple is not dropped
it is sent to an SQP for processing.

Figure 3.3 – Filtering tuples in DHTJoin

The filtering process can be accelerated by indexing the join predicates present in a given
query. The indexing process is performed as follows. When an SRP receives a query, it extracts
the information contained in the query plan concerning the stream names and the join attributes.
The stream names are used as a key k mapping to a disjoint set of join attributes. As an example,
when an SRP receives a query with a join predicate S1.a1 = S2.a1, it generates the keys S1 and
S2, and adds the attribute a1 to its corresponding set of attributes. Thus, each join predicate of
the arriving queries is processed giving raise to a data structure similar that of Figure 3.3.

When a tuple arrives to an SRP, it extracts the name of the stream which the tuple belongs
to and test it against the filter index. If there is an entry for the stream name in the filter index
the SRP sends the tuple to an SQP for processing. Otherwise, the tuple is dropped. When an
SRP send a tuple to an SQP it contacts the P2P Network Service. The filter index is organized
as a hash table using the stream names as keys. Thus, the filtering process takes O(1) in order
to know if a tuple must be dropped.

3.3 P2P Network Services

The design of DHTJoin is based on Chord which is a simple and very popular DHT. Howe-
ver, DHTJoin is DHT agnostic and it can be adapted to others DHTs such as Pastry [RD01]
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and Tapestry [ZHS+04]. Basically, DHTJoin uses a DHT in order to support two services :
dissemination and indexing.

3.3.1 Dissemination

When an UQP submits a CQL query, it is parsed and a query plan is generated by the
query processor (see Section3.2.1). Subsequently, the submitted query is disseminated to the
participating nodes using the technique presented in [EAABH03]. The dissemination is based on
a tree structure built using the information stored in the routing table maintained by the DHT.
The basic idea is to consider that in a DHT as Chord a lookup operation can be perceived as a
binary search that generates a binary tree using the nodes (links) stored in the routing table. The
root of the tree is the node that submits the query (see Figure 3.4). When an UQP originates
a query dissemination the query processor contacts the dissemination service, and each node
receiving a dissemination message contacts its local query processor in order to announce the
existence of a new query (see Figure 3.4).

The query is disseminated from the root node to all nodes of the DHT using a divide-and-
conquer approach. Roughly, a node that receives a dissemination message Dmsg store the query
in a query table QT , creates a new Dmsg and looks in its routing table to choose the nodes
which to disseminate the query.

Figure 3.4 – Dissemination of a query.

The storage requirements of QT are the followings. The query identifier qid : 2 bytes. The
identity of UQP : 2 bytes. In the case of the query plan, we consider a query plan based on a
bushy tree because it requires more storage space. Considering a bushy tree and a maximum of
10 streams and 10 attributes each, we need an array of size 2log10

2 −1 ≈ 9 to represent it. We can
encode the streams and the attributes using 4 bits each. The root node, that needs to store more
information, can be stored using 40 bits (5 bytes). Therefore, the query plan needs 9x5 = 45
bytes. Considering a system with thousands of queries, the size of QT is (2+2+45)∗1000 = 49000
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bytes, i.e. approx. 48KB. We consider that this small structure can be stored in the RAM of
DHTJoin nodes.

3.3.2 Indexing

Indexing a tuple amounts to storing an arriving tuple at one SQP of the overlay. A tuple
is indexed by value using the attributes present in join predicates. Thus, when a tuple is not
dropped by the filtering process, the filtering service contacts the indexing service (see Figure
3.1) in order to index the tuple. When an SQP receives a tuple via an indexing message, it
is pushed to the local query processor where it enters a queue operator that contains tuples
belonging to the same stream (see Figure 3.2) . We recall that we consider each tuple is self-
describing, thus a tuple can reach easily the corresponding queue and subsequently gather join
processing according to the query plan.

Figure 3.5 – Data flow in DHTJoin.

3.4 Data Flow

The data flow is the continuous flow of tuples and queries from tuples and query sources to
client applications through the query processing nodes. To describe this flow we assume that
the typical temporal order of events in DHTJoin is as follows. First, a CQL query is submitted
and disseminated by an UQP. Then, tuples arrive to SRPs. The description of the data flow
ignores the details of each component of the architecture and concentrates principally on the
interactions between the different kind of nodes during stream processing. The different levels
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of the architecture involved in the described interactions are represented by shadow areas in
Figure 3.5.

When a UQP submits a query to the system, the application layer contacts the query proces-
sor in order to parse and generate a query plan. Subsequently, the query processor contacts the
dissemination module of the P2P Network Service which in turn contacts the Overlay Network
Layer that sends the dissemination message using the put primitive (see Figure 3.5). Tuples ar-
riving at SRP nodes are filtered by the Tuple Filtering module of the Advanced Service. When
a tuple is not dropped by the filter, it is indexed (stored) at one node of the DHT using the
attributes involved (if any) in a previously disseminated query. To this end, the Indexing module
of the P2P Network Service is used which in turn contacts the Overlay Network Layer that sends
the indexing messages using the put primitive (see Figure 3.5). Finally, tuples indexed at SQPs
are pushed to the local query processor where they are processed by the queries and result tuples
generated at SQPs are sent back to the UQP.

3.5 Conclusion

In this chapter, we presented the architecture of DHTJoin to set the context of our work.
We presented the DHTJoin stream data model, the different kinds of nodes involved in query
processing, the different layers of the architecture and their principal modules, and the data flow
during query processing. DHTJoin architecture is based on a DHT which influences many tasks
that we enumerate as follows.
• Query Dissemination. The content of the routing table of each DHT node allows the

construction of query dissemination trees rooted at the node submitting the query.
• Hash Index. When tuples are indexed into the DHT, the stream is stored in a distributed

hash index keyed on the attribute(s) present(s) in the join predicates.
• Flow Partitioning and Parallelism. Arriving tuples belonging to different streams are par-

titioned by value using the DHT. This allows the distribution of join processing across
the nodes belonging to the DHT giving rise to different approaches for parallelization of
queries.

In the next chapter, we precise the type of join queries processed by DHTJoin, the ap-
proaches for parallelization of queries, the choice of the join operator, and how query plans are
specified and optimized. We propose a theoretical approach in order to determine the number
of computing resources needed to achieve a certain degree of completeness for a given query.
Moreover, we describe how DHTJoin deal with problems as node failures and data skew.



CHAPTER4
DHTJoin

In this chapter, we describe DHTJoin, our approach for processing continuous join queries
over distributed data streams. In DHTJoin, nodes are organized using a DHT protocol. Basically,
DHTJoin combines hash-based placement of tuples in a DHT and dissemination of queries by
exploiting the embedded trees in the underlying DHT. Nodes insert data in the form of relational
tuples and queries are represented in a relational query language for data streams such as CQL
[AW04]. Tuples belonging to the same stream are inserted by the same node and continuous
queries are originated at any node of the network. Tuples and queries are timestamped to
represent the time that they are inserted in the network by some node.

Many applications are interested in making decisions over recently observed tuples of the
streams. This is why we maintain each tuple only for a limited time. This leads to a sliding
window S[Wi] over Si that is defined as follows. Let Wi denotes the size of S[Wi] in terms of
seconds, i.e. the maximum time that a tuple is maintained in S[Wi]. Let TS(s) be a function
that denotes the arrival time of a tuple s and t be current time. Then S[Wi] is defined as
S[Wi] = {s|s ∈ Si ∧ (t − TS(s) ≤ Wi}. Tuples continuously arrive at each instant and expire
after Wi time steps (time units). Thus, the tuples under consideration change over time as new
tuples get added and old tuples get deleted.

DHTJoin also deals with node failures during query execution and skewed data which may
hurt load balancing and result completeness.

The rest of this chapter is organized as follows. In Section 4.1 we define formally the type of
continuous join queries tackled in our approach. Section 4.2 presents the problem definition. In
Section 4.3 we describe DHTJoin. Section 4.4 describes how DHTJoin deals with node failures. In
Section 4.5, we provide an analysis of result completeness of our method which relates memory
constraints, stream arrival rates and results completeness. Finally, Section 4.6 describes how
DHTJoin deals with data skew.

4.1 Continuous Join Queries

Let us now formally define continuous join queries and the type of continuous queries that we
consider in our approach. Let S = {S1, S2, ...., Sm} be a set of data streams. Each data stream
Si has a relational schema (Ai

1, A
i
2, ...., A

i
ni

), where each Ai
j is an attribute. We use equi-join and

conjunctive predicates, i.e., the where clause uses exclusively conjunctions of atomic equality
conditions. Let Qi = (S′,P) be a continuous join query defined over S′ ⊆ S and composed by P
that represents a set of equi-join predicates. As in [ZYYZ06][ILK08], we identify two types of join
queries depending on the attributes involved in P. A query of type 1 is a join query with a set
of equi-join predicates as following : P = {(S1.A

1
k = S2.A

2
k), (S2.A

2
k = S3.A

3
k), ..., (Sm−1.A

m−1
k =

Sm.Am
k )}, i.e., the join attribute is the same in all the relations of the query. As an example, a

query of type 1 with three streams X, Y and Z having the same schema (A, B, C) is as follows :
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qtype1 : Select sum (X.size)
From X[range 10 min], Y [range 10 min], Z[range 10 min]
Where X.A = Y.A = Z.A

A query of type 2 is a join query with a set of equi-join predicates as following : P =
{(S1.A

1
k = S2.A

2
k), (S2.A

2
l = S3.A

3
l ), (S3.A

3
m = S4.A

4
m), ...., (Sm−1.A

m−1
nm

= Sm.Am
nm

)}, i.e., the
join attributes are different and adjacent joins must have a common relation. As an example, a
query of type 2 over the same streams of query 1 is as follows :

qtype2 : Select Y.B, Z.C
From X[range 5 min], Y [range 5 min], Z[range 5 min]
Where X.B = Y.B and Y.C = Z.C

Queries of type 1 are often founded in network management applications. As an example,
an application that monitors the traffic that passes through three routers and has the same
destination host within the last 10 minutes. Considering the three kind of nodes of the archi-
tecture of DHTJoin (see Chapter 3), the traffic of the three routers can feed three SRPs where
the packets are filtered and indexed to SQPs. This monitoring task can be performed using a
multi-way window join query. The CQL query representing the task is :

q1 : Select sum (X.size)
From X[range 10 min], Y [range 10 min], Z[range 10 min]
Where X.destIP = Y.destIP = Z.destIP

where X, Y , Z represents the stream generated by the traffic of the three routers and destIP
is the IP address of the destination host. Since the monitoring task is interested in the most
recent content of the streams (the last 10 minutes) a time-based sliding windows is specified in
the From clause of the query.

Queries of type 2 are more complex queries that allow to show how DHTJoin executes and
addresses more sophisticated query plans.

4.2 Problem Definition

We view a data stream as a sequence of tuples ordered by monotonically increasing times-
tamps. The nodes have an identifier denoted by nodeid and are assumed to synchronize their
clocks using the public domain Network Time Protocol (NTP),thus achieving accuracies within
milliseconds [BGGMM04]. Each tuple and query have a timestamp that may be either implicit,
i.e. generated by the system at arrival time, or explicit, i.e. inserted by the source at creation
time.
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This work focuses on query execution (not query optimization). Thus, we assume the exis-
tence of a query optimizer that translates a query represented in CQL [AW04] into a query plan
in the form of an operator tree. Since an MJoin operator [VNB03] is used by default to specify
join operations, only the join order needs to be specified by the optimizer, i.e. the choice of how
to execute MJoin operators (e.g. which nodes) is done at runtime using our method. Each query
Qi has a query plan Qplani

that specifies the ordering of the join operations.

Formally, the problem can be defined as follows. Let S = {S1, S2, ...., Sm} be a set of data
streams, and QP = {Qplan1 , Qplan2 , ...., Qplann

} be a set of query plans of the following set of
continuous join queries Q = {Q1, Q2, ...., Qn}, where Qi = (S′,P) is a continuous join query
defined over S′ ⊆ S and P represents a set of equijoin predicates. Our goal is to provide an
efficient method to execute QP over S in terms of network traffic.

Additionally, we precisely state the main issues that our solution must tackle in the context
of processing continuous join queries in DHTs.

• Node failures : in DHT networks nodes join and leave the system at will. In the context of
join query processing, a failing node can lead to the waste of resources involved in sending,
processing and storing tuples.
• Load balancing : hash-based placement of tuples is vulnerable to the presence of skew in

the underlying data. This situation leads to load imbalancing that hurts any of the gains
due to parallelism.
• Result completeness : the notion of completeness, defined as the ratio of the amount of data

of the answer w.r.t. a query and the amount of answers we would get if all the participant
nodes would respond, is very important in data stream applications since approximate
answers are often sufficient when the goal of a query (i.e. a join query) is to understand
trends.

4.3 DHTJoin Method

In this section, we describe DHTJoin, a method for processing continuous join query pro-
cessing using DHTs. Basically, DHTJoin has two steps : dissemination of queries and indexing
of tuples. A query is disseminated using the embedded tree inherent to DHTs networks and a
tuple inserted by a node is indexed, i.e., stored at another node using DHT primitives. However,
a node indexes a tuple only if there is a query that contains an attribute of the arriving tuple in
P. To this end, a node stores locally a disseminated query and once it receives a tuple it checks
for already disseminated queries that contain an attribute of the arriving tuple in P.

We describe the design of DHTJoin based on Chord which is a simple and very popular DHT.
However, the techniques used here can be adaptable to others DHTs such as Pastry [RD01] and
Tapestry [ZHS+04].

As we state in Chapter 3, in order to process a query, we consider three kinds of nodes. The
first kind is Stream Reception Peers (SRP) for indexing tuples to the second kind of nodes, the
Stream Query Peers (SQP). In Figure 4.1, nodes 3, 6 and 7 correspond to SRP because they
receive tuples belonging to streams z, y, and x respectively. SQP are responsible for executing
query predicates over the arriving tuples using their local sliding windows, and sending the
results to the third kind of node(s), the User Query Peers (UQP). In Figure 4.1, nodes 1 and
4 are SQP because node 1 computes the join predicate X.B = Y.B of query q2 (submitted at
node 0) and node 4 performs the join predicate Y.C = Z.C of q2. In addition, node 0 is a UQP
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Figure 4.1 – A DHTJoin example using a query type 2

because query q2 was submitted at this node.
Note that the difference between SRP, SQP and UQP is functional and the same node can

support all these functionalities.

4.3.1 Disseminating Queries

Each new query issued by users should be disseminated to all nodes because by using S′ and
the set of predicates P of a query a node decide which tuples and attributes should be indexed.
The query dissemination system consists of a set of DHT nodes. A query can originate at any of
the nodes and is disseminated using a tree [CJK+03]. Basically, the query is disseminated from
the root node to all nodes of the DHT using a divide-and-conquer approach.

To disseminate a query, DHTJoin dynamically builds a dissemination tree as proposed in
[EAABH03]. The basic idea is to consider that in a DHT as Chord a lookup operation can be
perceived as a binary search [EAABH03] that generates a binary tree using the nodes (links)
stored in the routing table. The root of the tree is the node that submits the query (an UQP).
This node sends the query to all its neighbors stored in its Finger table. If the Finger table
contains redundant fingers only the last one is used and the others are skipped (see Algorithm 8).
The forwarding space of each receiving nodes is restricted by a Limit. As shown in the Algorithm
8, the Limit for a node stored in the ith position of the Finger table is that of Finger[i + 1],
1 ≤ i ≤M − 1 where M is the size of the Finger table. In the case of the M th finger, the Limit
is set to the nodeid.

When a node receives a disseminated query, it is stored locally in a query table (QT ), thus
allowing to know what is the attribute of an arriving tuple that must be used in the indexing
process. This is important since a tuple si is indexed using an attribute Ai

j only if it is contained
in the set P allowing to decrease network traffic and providing a better utilization of local SQP
resources by avoiding the indexing of tuples using an attribute that is not being involved in a
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Algorithm 8 InitDissemination : An UQP submits a query to the system. The UQP is the root
of a dissemination tree and disseminates the query to all the nodes stored in its Finger table.

Require: Q, a join query. Qplan, the query plan.
1: for i = 1 to M − 1 do
2: if (Finger[i] 6= Finger[i + 1]) then
3: Receiver ← Finger[i]
4: Limit← Finger[i + 1]
5: Dmsg ← 〈nodeid, qid, Q, Qplan, ts, Limit〉
6: sendDsmg to Receiver
7: end if
8: end for
9: Receiver ← Finger[M ]

10: Dmsg ← 〈nodeid, qid, Q, Qplan, ts, nodeid〉
11: sendDsmg to Receiver

query.

To disseminate a query, an UQP node creates a dissemination message Dmsg containing its
own node identifier nodeid, an unique query identifier qid, the query Q = (S′,P), the query plan
Qplan, a timestamp ts that denotes the arrival time of Qi and a limit of dissemination Limit.
A node with identifier nodeid that receives a Dmsg store the query in its QT and forwards
it to nodes stored in its Finger table with identifiers belonging to the interval ]nodeid, Limit[.
Subsequently, it creates a new Dmsg preserving the nodeid, the qid, the Q, the Qplan, the
timestamp ts, and changing Limit by NewLimit (see Algorithm 9). Note that the NewLimit
is used to define a new smaller subtree.

Algorithm 9 Dissemination : A node receives and forwards a dissemination message.

Require: Dmsg, a dissemination message.
1: for i = 1 to M − 1 do
2: if (Finger[i] 6= Finger[i + 1]) then
3: if (Finger[i] ∈]nodeid, Limit[) then
4: Receiver ← Finger[i]
5: if (Finger[i + 1] ∈]nodeid, Limit[) then
6: NewLimit← Finger[i + 1]
7: else
8: NewLimit← Limit
9: end if

10: Dmsg ← 〈nodeid, qid, Q, Qplan, ts, NewLimit〉
11: sendDsmg to Receiver
12: else
13: exitfor
14: end if
15: end if
16: end for

For example, using a fully-populated Chord ring with 8 nodes, each one contains a routing
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table of log(n) entries called fingers. The ith entry in the table at node n contains the identity
of the first node that succeeds or equal n + 2i. A dissemination message initiated at node 0
is sent to finger nodes 1, 2 and 4 (see Figure 4.2) giving them the disseminations limits [1,2),
[2,4) and [4,0) respectively. The disseminations limits are used to restrict the forwarding space
of a node and they are constructed using as a upper bound the finger i + 1. Each node applies
the same principle reducing the search scope. When node 2 receives the dissemination message
with limits [2,4) it examines the routing table and sends the message to node 3. Once node 4
receives the dissemination message it examines the routing table and sends the message to nodes
5 and 6 with limits [5,6) and [6,0) respectively. In the same way, node 5 does not continues with
the dissemination process (since there are no nodes between [5,6)) and node 6 disseminates the
message to node 7. This forwarding process generates n−1 messages and a tree of depth log(n),

Figure 4.2 – A dissemination tree formed using DHT links of a 8-node Chord ring

which fixes the latency of query dissemination.

4.3.2 Indexing Tuples

The indexing of tuples allows DHTJoin to distribute the query workload across multiple
DHT nodes. Let us describe how DHTJoin indexes tuples for streams S = {S1, S2, ...., Sm}.
Let si be a tuple belonging to Si. Let A = (Ai

1, A
i
2, ...., A

i
ni

) be the set of attributes in si and
val(si, A

i
j) be a function that returns the value of the attribute Ai

j ∈ A in tuple si. Let h be

a uniform hash function that hashes val(si, A
i
j) into a DHT key, i.e. a number which can be

mapped to a nodeid. A SRP that index a tuple si ∈ Si creates a message Index = (Si, si, A
i
j , ts)

containing the stream Si which the tuple belongs to, the tuple si being indexed, the attribute
used to index the tuple and a timestamp ts that denotes the arrival time of the tuple. Let S[Wi]
denote a sliding window on stream Si. Recall that we use time-based sliding windows where Wi

is the size of the window in time units. At time t, a tuple si belongs to S[Wi] if it has arrived in
the time interval [t−Wi, t].

For indexing a tuple si that arrives at an SRP, each tuple obtains an index key computed as
key = h(val(si, A

i
j)). The attributes Ai

j in si are chosen once the tuple pass through the Tuple
filtering module (see Section 3.2.2). Recall that the filtering process drops tuples not concerned
by queries as early as possible. Then to index si the SRP node creates a Index message and
sends it to an SQP, by performing put(key, Index). Thus, tuples of different streams having
the same key are put in the same SQP node and are stored in sliding windows where they are



Chapter 4 — DHTJoin 65

processed to produce the result of a specific join predicate.

4.3.3 Query Execution

Query processing in a DSMS entails the generation and execution of a query plan. This paper
focuses on the execution part. For simplicity, we assume that the query plan is an operator tree
that specifies the ordering of operations (i.e. join order) and it is included in the Dmsg message
of the query dissemination step (see Section 4.3.1).

Queries of type 1 are executed using partitioned parallelism [Has95] with SQP nodes im-
plementing the MJoin operator [VNB03]. In partitioned parallelism, individual operators are
parallelized by partitioning their input across a network of nodes. The partial outputs from
individual operators are unioned to form the final output result. This method is very common
for processing queries with large inputs in a distributed system. The avantage of partitioned
parallelism is that it gives more scalability for unbounded inputs because individual operators
are easily partitioned into many independent units. A query plan contains a probing sequence
for each stream present in the query (see Figure 4.3) that could be optimized locally, thus ge-
nerating a new operator tree. Each node in the operator tree represents a join operator and
an edge represents the next stream to probe. As we stated before, the partitioned parallelism
gives more scalability but its combination with the MJoin operator gives more flexibility face to
variations in the workload because the shape of the query plan residing on individual machines
is restructured easy and independently.

Queries of type 2 are executed using pipelined parallelism [LR05]. In pipelined parallelism,
a sequence of non-blocking operators is divided into smaller subsequences allocated to different
nodes. This give raise to a execution scenario where nodes are connected via the producer-
consumer relationship, where the output of the producer comprises the input of the consumer.
In DHTJoin, queries of type 2 are executed using a segmented bushy processing strategy [LR05].
A segmented bushy tree applies independent parallelism with minimal dependencies among
subtrees. We choose this strategy because it aims to balance partitioned and pipelined parallelism
for complex multi-join queries giving more opportunities to share executions plans with queries
of type 1. For queries of type 2, the query plan is assumed to be generated by a centralized query
optimizer based on a cost model which captures information regarding data (e.g. tuples’ arrival
rates) and operators (e.g. cost of a join) [ZYYZ06]. Each node in the operator tree represents a
join operator implemented using MJoin and an edge represents the next step in the pipeline.

In this section, we describe the execution of queries of type 1 and 2 in DHTJoin.

4.3.3.1 Queries of Type 1

In this type of queries, DHTJoin uses partitioned parallelism where different nodes execute
independently the same query plan on different data partitions. By default, DHTJoin instan-
tiates an MJoin operator [VNB03] for queries of type 1. Figure 4.3 shows an MJoin operator
instantiated at a SRP for a 3-way continuous join query expressed using CQL [AW04]. There
are three hash tables corresponding to the three join attributes of the query and three probing
sequences. An MJoin operator is ready to accept a new tuple on any input stream at any time.
MJoin implements a lightweight tuple router that, considering the probing sequence, routes the
arriving tuples to the remaining hash tables.

MJoin integrates sliding windows as follows. Let us consider the MJoin operator of Figure
4.3. Each hash table stores the tuples that fall within the current window period which, in the
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Figure 4.3 – MJoin operator for a 3-way join query of type 1

case of q1,correspond to 10 minutes for the streams X, Y and Z. For example, for each arriving
tuple x ∈ X, before probing the hash table on Y , the Y tuples that are outside of the window
S[WY ] are eliminated. If an intermediate result tuple xyi is generated, the Z tuples that are
outside of the window S[WZ ] are eliminated before the probe step.

Choosing a probing sequence is very important in MJoin because it must ensure that the
smallest number of intermediate results is generated. This process is supported by heuristic-based
ordering algorithms [GÖ03b][VNB03]. MJoin is very attractive when processing continuous que-
ries over data streams because the query plans can be changed by simply changing the probing
sequence. Thus, each SQP node that processes a query of type 1 can optimize the execution plan
of the query independently.

Let us illustrate how DHTJoin performs query processing with the following query of type 1 :

q1 : Select sum (X.size)
From X[range 10 min], Y [range 10 min], Z[range 10 min]
Where X.dest = Y.dest = Z.dest

As shown in Figure 4.4, the query q1 is submitted at node 0 and disseminated, using the
strategy proposed in Section 4.3.1, over the entire network as soon as it is submitted. SRPs 7, 6
and 3 filter xi, yi and zi tuples, indexing them only if q1 contains in its query plan an attribute
belonging to the arriving tuples. Recall that in a query of type 1, the join attribute is the same
in all relations, so that all the tuples having the same attribute value are located in the same
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SQP without producing intermediate results. Therefore, q1 can be executed independently at
different SQPs. Thus, SQPs 1 and 4 process q1 on different partitions of X, Y and Z.

As an example, the following steps are executed at SQP 1 (see Figure 4.4) when a new tuple
x ∈ X arrives :
• The probing sequence for an X tuple is Y → Z (see Figure 4.3).
• x is used to probe the hash table on Y to find the tuples that satisfy the join predicate

X.dest = Y.dest. Intermediate tuples are generated by concatenating x with the matching
tuples yi ∈ Y , if any.
• If any result tuples were generated, they are routed to the Z hash table in order to find

the tuples that satisfy the join predicate Y.dest = Z.dest.
• Before each probing step tuples that are outside of the windows S[WY ] and S[WZ ] are

eliminated.
• x is inserted into the X hash table.
The results produced by SQPs 1 and 4 are sent directly to the UQP (whose address was

provided in the Dmsg message when q1 was disseminated).

Figure 4.4 – Execution of q1 in DHTJoin

4.3.3.2 Queries of Type 2

DHTJoin executes queries of type 2 using pipelined parallelism [LR05] where different nodes
run in a pipelined fashion such that tuples output by a node can be fed to another node as they
get produced. Recall that DHTJoin partitions the streams by hash functions. For example, let
us consider query q2 with the following set of predicates {(X.B = Y.B), (Y.C = Z.C)}. Streams
X and Y are indexed based on the value of attribute B while stream Z is indexed based on the
value of attribute C which is placed at a node different from where the stream Y is indexed.
Therefore, redirection of intermediate join results is necessary in this type of query. Another
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solution is to index the stream Y twice, i.e. based on attributes B and C executing X ⊲⊳B Y and
Y ⊲⊳C Z in parallel. However, we do not consider this solution for the two following reasons :

• It duplicates unnecessarily the indexing of Y tuples.
• It introduces more messages and processing costs because the output tuples of the two

joins must be processed to find the final join result.

For queries of type 2, we assume that the query optimizer generates a query plan based on a
bushy tree of binary joins that has the potential of executing independents subtrees concurrently.
Local operators are executed using an MJoin operator and can be optimized as for queries of
type 1.

Let us illustrate how DHTJoin performs query processing using the following query of type 2 :

q2 : Select Y.B, Z.C
From X[range 5 min], Y[range 5 min], Z[range 5 min]
Where X.B=Y.B and Y.C=Z.C

This query specifies an equijoin among X, Y and Z streams over the last 5 minutes. Query
q2 is submitted at node 0 and disseminated over the entire network as soon as it is submitted.
Thus, after a while, all nodes know the existence of this query and are able to index the incoming
streams (tuples). We assume that the query plan generated for q2 is (X ⊲⊳B Y ) ⊲⊳C Z). Once
an X-, Y - or Z-tuple arrives at nodes 7, 6 and 3 respectively, each node filter and subsequently
index tuples concerned by q2. If so, nodes 7, 6 and 3 execute the task of an SRP. For instance,
in our example, node 7 indexes xi because the attribute B ∈ X is in the Qplan of q2. Node 7
creates a message Index = (X, xi, B, ts), generates an index key using key = h(val(xi, B)) and
indexes the tuple using put(key, Index). The equijoin predicate X.B = Y.B belonging to q2 is
evaluated at a SQP (node 1) only with tuples that arrive in the system after the query.

Sliding windows are used at each SQP node, as for queries of type 1, as follows. For example,
at node 1 in Figure 4.1, tuples expired in S[WY ] are invalidated upon the arrival of X-tuples.
The load shedding procedure is executed over S[WX ]’s buffer if there is not enough memory
space to insert the arriving tuple.

The SQP node 1 searches in the query plan of q2 what is the next step to follow and
concludes that the intermediate results xiyj must be sent to another node using the value
of C attribute belonging to the Y-tuple. Thus the SQP node 1 creates a message Index =
(XY, xiyj , C, max(TS(xi), TS(yj)), generates an index key using key = h(val(yj , C)) and index
the intermediate tuple using put(key, Index) to SQP node 4. The join result tuples produced
by SQP node 4 are immediately sent to the appropriate UQP node (whose address is provided
when starting query dissemination).

4.3.4 DHTJoin on Other DHTs

The design of DHTJoin is based on Chord which is a simple and very popular DHT. However,
the dissemination technique and the indexing of tuples used can be adapted to others DHTs
such as Pastry [RD01] and Tapestry [ZHS+04]. In the dissemination of queries, recall that the
basic idea (using Chord) is to consider a lookup operation as a binary search in spite of its
ring geometry. The routing algorithms in Pastry and Tapestry are both similar in spirit to the
PRR’s routing algorithm [PRR99] which is based on a tree hierarchical organization. This makes
of Pastry and Tapestry a good choice to implement the query dissemination.
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We consider Pastry as an example and demonstrate how to apply query dissemination using
the mechanism proposed in [CJK+03]. In Pastry each node has a unique nodeId assigned from
a identifier space of 128 bits. Application-specific objects are assigned unique identifiers called
keys from the same identifier space. Assuming a network of size n, each Pastry node maintains
a routing table of log2bn rows with 2b entries each. For the purpose of routing, the nodeId and
keys can be thought of as a sequence of L digits in base 2b. The mechanism to route a message
is prefix-based, i.e. the routing is achieved by forwarding the message to a node that shares a
common prefix by at least one more digit. Pastry can route a message to any node in log2bn
hops. For ease of explanation, we use b = 1, L = 3 and a network of 8 nodes. A dissemination
message initiated a node 000 contains the query id qid and the message is sent to the 3 nodes
of its routing table 100, 010 and 001 adding the routing table row r of each node. When a node
receives a dissemination message, it searches in the routing table all the nodes located in rows
greater than r (if any) and disseminates the message to them. This process is repeated at each
node that receives the message, thus generating a dissemination tree of depth log(n).

Regarding the indexing of tuples, we use primitives which represent capabilities that are
common to all DHTs. DHTs typically provide two basic operations [DZD+03] : put(k, data)
stores a key k and its associated data in the DHT using some hash function ; get(k) retrieves
the data associated with k in the DHT. Thus, we can process continuous join queries in other
DHTs.

4.4 Dealing with Node Failures

In this section, we discuss how DHTJoin deals with node failures during query execution.
By node failure, we mean various situations by which a DHT node stops participating in query
execution (e.g. because it crashes). We address this issue considering two situations : (1) Failure
of a node during query dissemination. Recall that the dissemination of queries allows to decrease
network traffic by avoiding the indexing of tuples using an attribute that is not being involved
in a query. However, its benefits can be lost when the tree hierarchical organization of the
dissemination is broken due to node failures. (2) Failure of a node during query execution. The
failure of a node stops the indexing of tuples. With queries of type 2, this situation can generate
partial results that never contribute to generate join results.

4.4.1 Failures during Query Dissemination

In DHTJoin, continuous join queries are originated at any node of the DHT and disseminated
using a tree. The dissemination of queries achieves a network coverage of 100%, takes O(logn)
hops to reach every node in the network and generates n−1 messages. However, dynamic changes
of the structure of the DHT network can disturb the dissemination. The failure of a node in
the tree structure generated by the dissemination makes the entire subtree under this node
unreachable. To provide reliability in the dissemination of queries, we propose to use a gossip
based protocol as a complementary to our tree based dissemination. Thus, the dissemination
algorithm, which guarantees to never send redundant messages, will attempt to disseminates
queries, while the gossip protocol ensures that all nodes with high probability and low cost get
the dissemination message.

Gossip algorithms mimic rumor mongering in real life. Just as people pass on a rumor by
gossiping their contacts, each node in a distributed system relays new information it has received
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to selected nodes which in their turn, forward the information to other peers, and so on. They
are also known as epidemic protocols in reference to virus spreading. Basically, gossip proceeds
as follows : a node ni knows a group of other nodes or contacts, which are maintained in a
list called n′

is view. Periodically ni selects a contact nj from its view to gossip : ni sends its
information to nj and receives back other information from nj .

Gossip has recently received considerable attention from researchers in the field of P2P
systems [VvS07][KvS07]. In addition to their inherent scalability, they are simple to implement,
robust and resilient to failures. They are designed to deal with continuous changes in the system,
while they exhibit reliability despite peer failures and message loss. This makes them ideally
suited for large-scale an dynamic environments like P2P systems.

Figure 4.5 – Gossip and its integration with dissemination

The generic gossip behaviour of each node can be modeled by means of two separate threads
exchanging information that depends strictly on the application : an active thread which takes
the initiative to communication, and a passive thread which reacts to incoming initiatives
[KvS07]. In a gossip protocol the information exchange can be implemented using the follo-
wing strategies :

• Eager push approach : nodes send messages to random selected peers as soon as they
receive it for the first time.
• Pull approach : periodically, nodes query random selected peers for messages recently

received. If a node receives information about a message not received yet, it updates its
local information.
• Lazy push approach : nodes send the message identifier to random selected peers as soon

as they receive it for the first time. The peers receiving an identifier of a message they
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have not received make an explicit pull request.

We propose a gossip protocol based on the concept of anti-entropy. The term anti-entropy
[BHÖ+99] refers to a protocol that detects and corrects inconsistencies in a system by continuous
gossiping. Basically, the gossip algorithm is deployed on top of the DHT using the information
stored in the Finger table of nodes for random gossip exchange. We reason that imposing some
level of determinism on the choice of which nodes to gossip reduce redundant messages while
achieving complete dissemination under node failures. In general, a gossip anti-entropy algorithm
progresses periodically through rounds (with a gossip period noted Tgossip) in which a node ni

randomly chooses other nodes to which it sends a message. The nature of the message depends
of the approach chosen for the information exchange. When a node discovers that it has missed
a message, it updates its local information. Our gossip protocol is based on a pull approach that
periodically queries random selected peers for missed messages. We justify our decision on the
following facts : (a) We have verified experimentally that in spite of the failures of the nodes
the dissemination process provides a good network coverage. (b) Recent research [FKL+09] has
showed that the pull approach is more efficient that a push approach when the information
disseminated has covered a significant number of nodes. The problem of a pull approach is the
setting of the gossip frequence Tgossip since a node that has received regularly all the disseminated
messages does not have to start a gossip exchange. Thus, Tgossip must be particularly adapted
to each node. We use the following steps to adapt Tgossip : (1) once arriving to the system, each
node starts a gossip round, (2) a local query arrival rate is calculated by each node as queries
arrive, (3) if after a time interval, equal to the local query arrival rate calculated in the previous
step, the node does not receive a query then a gossip round is triggered.

As an example, Figure 4.5(a) shows the dissemination of a query using a dissemination tree
rooted at node 0. During the dissemination process node 4 fails making the entire subtree under
this node unreachable (see dashed nodes). Nodes 5, 6 and 7 run a gossip algorithm and pick up
randomly a node from its Finger table which they send a message. If a node discovers that it
has missed a query, then it updates its local state. For example, in Figure 4.5(b), the node 7
pick ups the id of node 3 from its Finger table. Node 7 that has not received the query, since
node 4 has failed, updates its local information with the message received from node 3.

To support gossip, each node locally manages the following elements :

• fingerTable, this table correspond to the view maintained by gossip nodes. Basically, the
gossip protocol extract from it the address IP of a node.
• QT , is the query table stored at each node in DHTJoin. Since the gossip protocol is used

to detect and correct missed queries due to node failures, this table is used to detect if a
gossip message contributes to the knowledge of query missed by a node.

The gossip behaviour of each node is illustrated in Algorithm 10 : the active behaviour
describes how a node ni initiates a gossip exchange, while the passive behaviour shows how a
node nj reacts to a gossip exchange initiated by ni.

All the nodes that do not receive a query after a time interval Tgossip trigger a gossip
round. Thus, a node ni selects from its fingerTable a node nj via select() and then send
to it gossipMsg, a message that contains the more recent queries received. ni receives in ex-
change gossipMsg′ containing similar information from nj . However, this messages is sent only
if it contributes to detect queries missed by ni. The procedure merge() collects in a buffer
all the entries from both the local QT and the recently received gossipMsg′, and discards the
duplicates. Then, the QT and Tgossip are updated.

The passive behaviour is triggered when nj receives a gossip message containing the most
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Algorithm 10 Gossip behaviour of nodes

1: // active behaviour
2: while () do
3: wait(Tgossip)
4: nj ← fingerTable.select()
5: gossipMsg ← 〈QT.getRecent()〉
6: send gossipMsg to nj

7: receive gossipMsg′ from nj

8: buffer ←merge(gossipMsg′, QT.getQueries())
9: QT.update(buffer)

10: update(Tgossip)
11: end while

12: // passive behaviour
13: while () do
14: waitGossipMsg()
15: receive gossipMsg from ni

16: buffer ←merge(gossipMsg, QT.getQueries())
17: QT.update(buffer)
18: update(Tgossip)
19: if (missedQueries← (gossipMsg ∩QT ) 6= ∅) then
20: gossipMsg′ ← missedQueries
21: send gossipMsg′ to ni

22: end if
23: end while
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recent queries received from some node ni. Then, nj updates its Tgossip and its local QT via
merge() and update() as described previously, and sends back a gossip message only if it
contributes to detect queries missed by ni.

4.4.2 Failures during Query Execution

DHTJoin distributes the query workload across multiple DHT nodes and provides a mecha-
nism that avoids indexing tuples using attributes not contained in the set P of a query. However,
when a node fails, another node can generate partial results irrespective of whether they produce
join query results. In this section, we address the problem of indexing partial results that never
contribute to generate join results.

Figure 4.6 – Query Plan of a 5-way continuous join query of type 2

For example, let us consider the following query plan (V ⊲⊳ W ) ⊲⊳ ((X ⊲⊳ Y ) ⊲⊳ Z) for a
query of type 2 where there are nodes connected by a producer-consumer relationship, whereby
a producer node generates tuples to be processed by a consumer node [YP08]. The query plan
(see Figure 4.6) shows the relations between producers and consumers. We assume that a join
operator Opi resides at node ni. Operator Op3 is a producer of X ⊲⊳ Y ⊲⊳ Z tuples for Op4 and
a consumer w.r.t Op2 and SRP of stream Z. Recall that in a query of type 2, the operators are
placed at different SQP nodes and the query plan is provided in the query dissemination step.
If the node n1 fails, the indexing of V ⊲⊳ W intermediate result tuples is stopped, thus yielding
no join results because of no matching tuples in node n4. Furthermore, if no matching tuple of
V ⊲⊳ W appears at node n4 before expiration of X ⊲⊳ Y ⊲⊳ Z tuples, the resources involved in
sending, processing and storing these tuples are wasted.

To address this problem, we propose the following solution. If node n4, where Op4 is executed,
detects that V ⊲⊳ W tuples are not being generated by node n1 it sends a message to node n3 to
alert that it is not necessary to send X ⊲⊳ Y ⊲⊳ Z tuples. Consequently, as the demand of Op3

as a consumer has changed, it propagates the alerting message to node n2 and to the SRP of
stream Z only if there does not exist another query that needs X ⊲⊳ Y ⊲⊳ Z tuples generated by
Op3. This condition is verified at all the operators that receive an alerting message. Once the
communication with n1 is established again, node n4 sends a resume message to n3 in order to
continue with the production of tuples and node n3 propagates the resume message it proceeds.
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If in a query plan, a consumer also acts as a producer, it is not necessary to alert its consumer.
The reason is that a consumer is always testing its producers in the query plan in order to detect
a problem. Therefore, the consumer that detects that there are tuples not being generated by
a producer must trigger an alert message only to the other producers (the descendents) in the
query plan if any. Procedure 11 describes the behaviour of the consumer that trigger the alert
message to the producers of the query plan. Procedure 12 describes the behaviour of a producer
in order to handle and alert message.

Procedure 11 Send AlertMSG(q)

Require: the query q
1: for all the descendents ∈ query plan of q do
2: alertMSG← {q, {suspend|resume}}
3: send(myID,alertMSG)
4: end for

Procedure 12 Handle AlertMSG(consumerID, alertMSG)

Require: consumerID, the identifier of the consumer node in the Chord ring. alertMSG is a
message containing the identification of the query q and the type of action {suspend,resume}

1: if notExists(qi ∈ QT 6= q) then
2: propagate AlertMSG(myID, alertMSG) ;
3: end if
4: if (action is suspend) then
5: suspend(q)
6: else
7: resume(q)
8: end if

In Procedure 11, a consumer sends an alert message to all the other producers of the query
plan of query q. The consumer sends a suspend message when it detects that there are tuples
not being generated by a producer. Otherwise, it sends a resume message.

In Procedure 12, Line 1 verifies that there does not exist another query in QT that needs
the tuples generated by the producer that receives the message. If so, the producer acting as
a consumer sends the message to its descendents (Line 2) in the query plan of q. Finally, the
producer performs appropriate operations to suspend (Line 5) or reactivate (Line 7) locally
the production of tuples related to q. By eliminating unnecessary intermediate results, this
optimization yields an important reduction of network traffic and a better utilization of local
resources.

4.5 Analysis of Result Completeness

The notion of result completeness is important in distributed and P2P databases since par-
tial (incomplete) query answers are often only possible [NFL04][KSH+08]. Result completeness
is thus defined as the fraction of results actually produced over the total results (which could be
produced under perfect conditions). In data streaming applications, the potential high arrival
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rates of streams impose high processsing and memory requirements. However, approximate ans-
wers are often sufficient when the goal of a query is to understand trends and making decisions
about measurement or utilization patterns. Query approximation can be done by limiting the
size of states maintained for queries [KNV03]. In our analysis we focus in the case where the
memory allocated to maintain the state of a query is not sufficient to keep the window size enti-
rely, thus reducing the received join results and completeness. DHTJoin provides more memory
to store tuples, but we consider that determining the number of computing resources necessaries
to achieve a certain degree of completeness for a given query is an important aspect in the setup
phase of DHTJoin.

In this section, we propose formulas which relate peer memory constraints, stream arrival
rates, and result completeness. We will use these formulas in our performance evaluation and
they could be useful to a DHTJoin user (e.g. an application developer) to define and tune a DHT
network for specific application requirements. We provide the necessary equations to calculate
the completeness in a 2-way join and afterwards we generalize our results for a m-way join.

Table 4.1 – Symbols used in this analysis
Symbol Description

n number of nodes

m number of streams

S = {S1, S2, ...., Sm} set of streams

Ai
j j-th attribute of stream Si

λi arrival rate of stream Si in
tuples/sec

S[Wi] sliding window of stream Si

Wi window size of S[Wi] in se-
conds

Q = {Q1, Q2, ...., Qn} set of queries

P set of equijoin predicates of a
query Qi

QP = {QP1, QP2, ...., QPn} set of query plans

sel join selectivity ∈ [0..1]

m(Si) function that returns the me-
mory assigned to Si tuples

For ease of analysis, we make simplifying assumptions : the tuples are uniformly distributed
across the DHT network ; the memory assigned to store tuples is the same at each peer ; we use
the average rate to characterize the rate of arrivals of incoming tuples and stream tuples arrive
in monotonically increasing order of their timestamps. We use the notations specified in Table
4.1. In order to illustrate our analysis, let us consider the following join query over two streams
S1 and S2 :

Q : Select *
from S1[range 5 min], S2[range 5 min]
where S1.x = S2.x
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The expected tuple arrival rate of streams S1 and S2 at each node of the DHT is λ1
n and

λ2
n respectively. Thus, the expected number of join tuples generated by S1 and S2 over sliding
windows at each node can be estimated as

T (S1, S2) = sel × (
W1λ1

n
)× (

W2λ2

n
) (4.1)

Each node needs a memory space for storing tuples in its local sliding window equivalent to
W1λ1

n and W2λ2
n . In general, if (Wiλi

n > m(Si)) we have a loss rate (Lr) to store tuples equivalent
to :

Lr(Si) =

{

0, Wiλi

n ≤ m(Si)
Wiλi

n −m(Si), otherwise
(4.2)

Assuming that memory is insufficient to retain all the tuples in W1 and W2, the loss of join
tuples L of S1 and S2 is :

L(S1) = sel × Lr(S1)× (
W2λ2

n
) (4.3)

L(S2) = sel × Lr(S2)× (
W1λ1

n
) (4.4)

Let αi be the Si-tuples stored in the memory space m(Si) and βi be the Si-tuples not stored
due to memory constraints (see Figure 4.7). We can rewrite equations (4.3) and (4.4) as :

L(S1) = sel × β1 × (α2 + β2) = (sel × α2 × β1) + (sel × β1 × β2)

L(S2) = sel × β2 × (α1 + β1) = (sel × α1 × β2) + (sel × β1 × β2)

Figure 4.7 – A join state including stored and non stored tuples

Notice that the tuples related to expression (sel × β1 × β2) are counted in both L(S1) and
L(S2). This expression can be rewritten as : (sel×Lr(S1)×Lr(S2)). The total loss of join tuples
TL of S1 ⊲⊳ S2 is the sum of the loss of join tuples L(S1) and L(S2) minus the tuples counted
twice :

TL(S1, S2) = L(S1) + L(S2)− (sel × Lr(S1)× Lr(S2)) (4.5)

The completeness C of a S1 ⊲⊳ S2 join query is the fraction of total results T (S1, S2) minus
the loss of tuples TL(S1, S2) and total results T (S1, S2), using equation (4.1) and equation (4.5)
C is :

C =
T (S1, S2)− TL(S1, S2)

T (S1, S2)
(4.6)
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Developing expressions in (4.6) allows us to simplify C to :

C =
n2 ×m(S1)×m(S2)

W1λ1 ×W2λ2
(4.7)

Moreover, we can write (4.7) as :

n =

√

C × (W1λ1)× (W2λ2)

m(S1)×m(S2)
(4.8)

This equation allow us to evaluate how many peers are necessary to process a 2-way join query.

Now we generalize our analysis to m-way joins as following. Recall that the total loss of
join tuples TL is the sum of the loss of join tuples minus the tuples counted more than one
time. The sum of the loss of join tuples can be easily extended to an m-way join as

∑m
i=1 L(Si).

However, the expression that represents the tuples counted more than one time is more difficult
to generalize. We use the same method of rewriting (4.3) and (4.4) to find the expression that
represents the case of tuples counted more than one time. Thus in a S1 ⊲⊳ S2 ⊲⊳ S3 join we
rewrite L(S1),L(S2) and L(S3), discovering that (sel2× β1× β2×α3), (sel2× β1× β3×α2) and
(sel2×β2×β3×α1) are counted twice and (sel2×β1×β2×β3) is counted triple. Rewriting αi and
βi we arrive at the following expression : sel2Lr(S1)Lr(S2)m(S3) + sel2Lr(S1)Lr(S3)m(S2) +
sel2Lr(S2)Lr(S3)m(S1) + 2sel2Lr(S1)Lr(S2)Lr(S3).

Repeating the same method with m-way joins (m ≥ 4) and analyzing the resulting expres-
sions, we arrive at the following general expression for a S1 ⊲⊳ S2 ⊲⊳ .... ⊲⊳ Sm join :

m
∑

k=2

∑

S′⊆S

|S′|=k

∑

S′′⊆S
|S′′|=m−k
S′′∩S′=∅

(selm−1(k − 1)
∏

a∈S′

Lr(a)
∏

b∈S′′

m(b))

Now, the general case of (4.5) can be expressed as :

TL(S1, S2, ...., Sm) =
m

∑

i=1

L(Si)−

m
∑

k=2

∑

S′⊆S

|S′|=k

∑

S′′⊆S
|S′′|=m−k
S′′∩S′=∅

(selm−1(k − 1)
∏

a∈S′

Lr(a)
∏

b∈S′′

m(b)) (4.9)

The completeness C of a S1 ⊲⊳ S2 ⊲⊳ .... ⊲⊳ Sm join query, using the general form of (4.1) and
equation (4.9) is :

C =
T (S1, S2, ...., Sm)− TL(S1, S2, ...., Sm)

T (S1, S2, ...., Sm)
(4.10)

Developing expressions in (4.10) allows us to simplify C to :

C =
nm

∏m
i=1 m(Si)

∏m
i=1 Wiλi

(4.11)
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and to obtain

n = m

√

C ×
∏m

i=1 Wiλi
∏m

i=1 m(Si)
(4.12)

It is clear from our analysis that (4.11) is independent of selectivity which is reasonable in the
context of continuous join queries. As our analysis shows, DHTJoin can scale up the processing
of continuous join queries using multiple peers and improve the completeness of join results.
Using (4.12) a DHTJoin user can adjust the size of the network by evaluating how many peers
are necessary to process a continuous join query for given stream arrival rates and a desired
result completeness.

4.6 Dealing with Data Skew

DHTJoin relies on a hash function to distribute data streams in the DHT using join attribute
values. So far, we assumed that the hash function yields uniform distribution of the join attribute
values. However, it is well known that parallel join algorithms suffer from join attribute skew,
i.e. certain join attribute values are much more frequent than others [ÖV99], which hurts load
balancing and thus response time. It is important to note that data skew occurs naturally in
many data streaming applications [XKZC08]. For example, in online analysis of transaction logs
generated by telephone call records, some numbers used for online tv contests register a huge
number of phone calls. In network monitoring applications, malicious traffic traces show that
an abnormally high number of source addresses are connected to a single destination address.
In DHTJoin, data skew in join attribute values may hurt load balancing of join execution.
Furthermore, it may reduce the completeness of join results because the overloaded nodes cannot
maintain all received tuples in their sliding window.

In the context of parallel join algorithms, specific solutions have been proposed to deal with
data skew. A common solution is to capture join attribute distribution [HL91][WYTD90][KO90].
However, this requires scanning the joined relations before join execution which is not feasible
with continuous data streams. The sampling solution proposed in [DNSS92] is also not possible
since the arrival of tuples in an arbitrary interleaved way makes the sampling imprecise.

Therefore, we propose a new solution to deal with data skew. The key idea is to distribute
the tuples of an overloaded node to some underloaded (or lightly loaded) nodes, called partners.
There are several issues to address : 1) How to determine that a node is overloaded ; 2) How to
find partner(s) node(s) ; 3) What data to migrate and how to execute a join query Q ; and 4)
When to start data redistribution.

We say that a node is overloaded if it is not capable of storing all arriving tuples that are not
expired. Recall that a load shedding process eliminates stored tuples before they are expired.
Each node has a memory space assigned to store tuples belonging to each stream. Thus, detecting
whether a node is overloaded is made locally. A node considers that the redistribution of tuples
to a partner node must begin when a certain threshold δ is exceeded. Let cn be the storing
capacity of node n, i.e. the number of tuples it can store, and sn be the number of tuples it
actually stores. Then, a node n is considered as overloaded when sn

cn
> δ, where 0 < δ ≤ 1.

Once a node n becomes overloaded, it should find a partner node. For this, it contacts the
nodes in its finger table. Each contacted node sends its free storing capacity and the partner is
the closest node (with smaller latency) whose free capacity is higher than the requirement of n.
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If there is no partner with enough free capacity to store the tuples of n, several partners are
chosen from the finger table.

We use the concept of domain partitioning over the join attribute in order to determine what
data to send to the partner(s) node(s). Consider an attribute a be a join attribute belonging to
stream Si and let Da be its domain of values. Da is partitioned into m nonempty sub-domains
d1, d2, ...., dm such that their union is equal to Da and the intersection of any two different sub-
domains is empty. When a node is not overloaded, it is responsible for the entire domain Da of
the join attribute. Once a node n is overloaded, the domain is partitioned uniformly into two
sub-domains, e.g. d1 and d2, and a partner node is selected, e.g. n1. Node n gets responsible for
the sub-domain d1 and partner node n1 gets responsible for the sub-domain d2. Each overloaded
node constructs a local index that stores the upper and lower bounds of the generated sub-
domains and the address of their respective responsibles. When one partner is not capable of
storing the tuples of the overloaded node n, several partners are chosen and the index of n is
set accordingly.

If a partner n1 becomes overloaded, it informs n. Then, node n reorganizes the sub-domain
of which n1 is responsible by dividing it and searches among its neighbors for a new responsible
n2. The index is then updated with the new reorganization of sub-domains and node n1 is
contacted in order to inform it that tuples must be sent to node n2. Thus, the responsability of
the sub-domain is shared between n1 and n2.

To execute a continuous join query R ⊲⊳ S, the overloaded node n executes the same steps
as in the non-overloaded case for each incoming tuple ri ∈ R, with only one additional access to
the local index : 1) ri is used to purge tuples in S stored at the partner node registered in the
index, 2) ri is probed with tuples in S stored at partner node(s) registered in the index, and 3)
the value of the join attribute of ri is examinated and ri is stored in the node indicated by the
index. The same steps are executed for a S tuple.

In summary, to obtain a join result DHTJoin must first index each incoming tuple which
incurs O(logN) messages (see Section 4.3.2). Then, if a node is overloaded, it redistributes
tuples to a partner node. The redistribution adds only one message per tuple (to send from the
overloaded node to the partner node). Thus, to obtain a join result DHTJoin uses O(logN) + 1
messages, keeping the response time slow.





CHAPTER5
Performance Evaluation

In this section, we provide a performance evaluation of our method through simulation.

Simulator. To test our DHTJoin method, we built a Java-based simulator. Given that
DHTJoin relies on a DHT structured overlay network, we choose Chord which is a simple and
efficient DHT ; we simulate its routing and churn stabilization protocols. We use a discrete event
simulation package SimJava to simulate the distributed processing. To simulate a node, we use
a Java object that performs all tasks that must be done by a node wrt the architecure described
in Chapter 3. In order to assess our approach, we compare the performance of DHTJoin against
a complete implementation of RJoin [ILK08] which is the most relevant related work (see Sec-
tion 2.2.3). RJoin uses incremental evaluation based on tuple indexing and query rewriting over
distributed hash tables. In RJoin a new tuple is indexed twice for each attribute it has ; wrt the
attribute name and wrt the attribute value. A query is indexed waiting for matching tuples. Each
arriving tuple that is a match causes the query to be rewritten and reindexed at a different node.

Table 5.1 – Simulation Parameters

Parameter Value

Nb of nodes 1024

Query rate 2-5 queries per 5 minutes

Window size 50 seconds

Nb of streams 2-10

Nb of attributes per stream 2-10

Max value of join attribute 1000

Tuple arrival rate 30-60 tuples per second

Node depart rate 2-5 nodes per 5 minutes

Gossip period Tgossip Adaptive

Data generation. We generate arbitrary input data streams consisting of synthetic asyn-
chronous data items with no tuple-level semantics. We have a schema of 10 relations, each one
with 10 attributes. In order to create a new tuple we choose a relation using an uniform distri-
bution and assign values to all its attributes using a Zipf distribution with a default parameter
of 0.9. The max value of the domain of the join attribute is fixed to 1000. Unless otherwised
specified, tuples on streams are generated at a constant rate varying of λi = 30 tuples/second
to λi = 60 tuples/second.
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Query generation. We generate queries of type 1 and 2 as specified in Section 4.1. Unless
otherwise specified, the window size is set to 50 seconds. We generate a default probing sequence
for relations in queries of type 1 and bushy plans are generated for queries of type 2. This infor-
mation is used by the nodes in order to set local join states. Probing sequences can be adapted
locally during the execution of queries.

In the rest of this section, we evaluate network traffic and the effectiveness of the approaches
proposed in Section 4.4 and in Section 4.6 to deal with node failures and skewed data respectively.
The main simulation parameters are summarized in Table 5.1.
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Figure 5.1 – Effect of tuple, query arrival rates and number of joins on the network traffic

5.1 Network Traffic

In this section, we investigate the effect of tuples’ arrival rate, query’s arrival rate and
number of joins on the network traffic. The network traffic of RJoin and DHTJoin grows as
the tuples’ arrival rate grows. In RJoin, as more tuples arrive, the number of messages related
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Figure 5.2 – Reduction of intermediate results and its impact on network traffic

to the indexing of tuples and query rewriting increases (see Figure 5.1(a)). DHTJoin generates
significantly less messages than RJoin. The reason is that before indexing a tuple, DHTJoin
checks for the existence of a query that requires it, but RJoin indexes all tuples twice (even
if there is no query for them). In Figure 5.1(b), we show that, as more queries arrive, RJoin
generates more query rewriting messages. However, DHTJoin generates more messages only if
new queries related to new different values used in the tuples arrive in the system. Figure 5.1(c)
shows that more join require more network traffic. RJoin generates more query rewriting when
there are more joins in the queries. However, in DHTJoin the network traffic increases only if the
arriving queries require attributes that are not present in the already disseminated queries. The
reason is that with the dissemination of queries, DHTJoin can avoid the unnecessary indexing
of tuples that are not required by the queries.

In summary, due to the integration of query dissemination and hash-based placement of
tuples our approach avoids the excessive traffic generated by RJoin which is due to its method
of indexing tuples.

5.2 Node failures during query execution

We now investigate the effect of the approach proposed in Section 4.4.2 in order to deal
with node failures. Query execution with this approach is referred as DHTJoin+OPT. In our
experiment, tuples arrive at λi = 60 tuples/sec and a query of type 2 with query plan (A ⊲⊳
B) ⊲⊳ (C ⊲⊳ D) is executed. In Figure 5.2, we show that, as the period of inactivity (time
between fail and recovery) of a stream source gets longer, the generation of tuples that never
contribute to join results increases. However, by eliminating unnecessary intermediate results,
this optimization yields an important reduction of network traffic.

Figure 5.3(a) shows the number of messages generated while varying the window size of the
query. During the execution of the query, the 20% of the nodes producing C ⊲⊳ D tuples fail. As
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we can see, a longer window leads to a larger number of total intermediate results since a tuple
has more chance of participate in a join match. However, with DHTJoin+OPT a reduction of
up to 23% of network traffic is obtained.
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Figure 5.3 – Effect of window size and tuple arrival rate on the network traffic

Figure 5.3(b) shows the number of messages while increasing the tuple rate. Intuitively, a
rapid tuple rate leads to more intermediate results, many of which are not demanded by their
corresponding consumers when nodes fail. As is shown in Figure 5.3(b), the effect of the tuple
rate is similar to that of window size. Thus, a reduction of unnecessary intermediate results is
obtained.

5.3 Node failures during query dissemination

The failure of a node in the tree structure generated by the dissemination procedure makes
the entire subtree under this node unreachable. To provide reliability in the dissemination of
queries, we proposed a gossip based protocol (see Section 4.4.1).

To evaluate the effectiveness of our approach regarding an increment of node’s failure rate
we originate queries every 100 seconds on average and we increment the node’s failure rate (see
Figure 5.4) during 1 hour. We consider a first scenario where the queries are disseminated using
the technique described in Section 4.3.1 and a second scenario where the queries are disseminated
using the same technique in complement with gossip. Figure 5.4 shows that with node failures
the dissemination cannot achieve a network coverage of 100%. However, the dissemination of
queries complemented with gossip can obtain a network coverage of 100% in spite of an increase
in node failures.

The first experiment evaluates the effectiveness of a gossip protocol in order to obtain a
network coverage of 100% when nodes fail. In the next experiment, we are interested in the im-
pact (overhead) of the gossip protocol in the network traffic wrt a dissemination without node
failures. We vary the gossip period (Tgossip) ; then after 1 simulation hour, we collect the number



Chapter 5 — Performance Evaluation 85

 0

 20

 40

 60

 80

 100

0.02 0.04 0.06 0.08

%
 N

od
es

 r
ea

ch
ed

Node Failure Rate

Dissem Dissem+Gossip

Figure 5.4 – Effect of dealing with node failures during the dissemination of queries

of messages produced by the gossip protocol and calculate the overhead. When decreasing the
Tgossip parameter, gossip exchanges are less spaced and thus more frequent. Thus, as shown in
Table 5.2, the gossip protocol generates more messages and its overhead increases. However,
increasing Tgossip can reduce the effectiveness of the gossip protocol. Therefore, we evaluate the
approach proposed in Section 4.4.1 where Tgossip is particularly adapted at each node. The re-
sults obtained confirm the effectiveness of our appraoch showing that adapting Tgossip reduces
the overheah of the gossip protocol.

Table 5.2 – Impact of Gossip using static and adjustable Tgossip.

Tgossip #Messages Overhead

Adaptive 1992 16.2%
300sec 5103 40.86%
250sec 6245 49.55%
200sec 9459 74.22%

The impact of the query’s arrival rate is shown in Figure 5.5. We vary this parameter from
2 to 5 queries each 5 minutes and set the node’s depart rate to 2 nodes each 5 minutes. As we
can see, more queries produce more dissemination messages. However, as is shown in Figure 5.5
the number of messages produced by the gossip protocol is more or less constant. Thus, the
overhead produced by the gossip protocol decreases while the query’s arrival rate increases (see
Table 5.3). This shows that gossip exchanges contains much more relevant information when
more queries arrive allowing nodes to obtain information about queries not received due to node
failures during the dissemination.

The impact of the node failure’s rate is shown in Figure 5.6. During 1 simulation hour
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this parameter is varied from 2 to 5 failed nodes each 5 minutes generating a very dynamic
environment. As is shown in Figure 5.6, the number of messages due to gossip exchanges and
dissemination remains constant. However, the overhead increases while the depart of nodes
increases (see Table 5.4). This situation is originated during the dissemination of queries since
as more nodes fail more fingers tables are not up to date. Thus, the dissemination algorithm
can not assure a dissemination free of redundant messages (see Table 5.4). Since the problem
is caused by the content of the finger table, the stabilization protocol of Chord must be tuned
(what is out of the scope of this work). The gossip protocol can not avoid these messages, thus
it suggests a more frequent execution of the stabilization protocol incrementing the number of
messages.

Table 5.3 – Overhead due to gossip messages

Queries/5min #Gossip messages Overhead

2 1082 7.79%
3 1054 4.20%
4 1207 3.29%
5 1078 2.85%

Table 5.4 – Effect of node depart rate

Departs/5min #Broadcast msgs #Broadcast redundant msgs #Gossip msgs Overhead

2 12316 184 1003 8.49%
3 12318 249 995 10.47%
4 12317 302 989 10.85%
5 12422 392 1000 11.52%

However, concerning the gossip protocol and its strategy to provides an adaptive Tgossip we
shown that it provides an efficient solution to the problem of node failures during the dissemi-
nation of queries.

5.4 Data Skew

The distribution of tuples on their joining attribute is vulnerable to the presence of skew in
the underlying data hurting load balancing of join execution and reducing completeness of join
results. To provide a solution to this problem we propose an approach based on partners nodes
that store the tuples of an overloaded node (see Section 4.6).

To generate test data we use the ideas proposed in [DNSS92] where an alternative method to
drawn attribute values from a Zipf distribution is prefered. The argument is that the data must
be generated in order to make the experiments much easier to understand and control. The idea
is to keep the same behaviour of the Zipf distribution (a small number of highly skewed values
with the bulk of the values appearing very infrequently). Thus, we generate tuples as follows. We
assume that the stream Si has an arrival rate of λi and we consider a query with a sliding window
of size W . We use the equation (4.11) in order to set the DHT and calculate cn (the storing
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capacity of a node). We generate skewed attribute values during a time interval equivalent to
f × cn

λi
, where f = {1, 1.1, 1.2, 1.4}. Since we known the identifiers of the DHT nodes, we can

generate skewed values during a specified time interval in order to overload certains nodes. Thus,
we configure various patterns of overload and during the same interval of time certains nodes
get overloaded.

Table 5.5 – Average time to obtain a result tuple

Query type f=1 f=1.1 f=1.2 f=1.4

type 1 0.44 sec 0.42 sec 0.46 sec 0.47 sec
type 2 0.45 sec 0.47 sec 0.43 sec 0.48 sec

In our experiments, we consider a DHT of 16 nodes and a query of type 1 A ⊲⊳ B with a sliding
windows of size W = 5 minutes. Tuples of streams A and B arrive at λi = 30 tuples/sec. Thus,
using the equation (4.11) the value of cn is 563 tuples. We consider that a node is overloaded
if sn

cn
> 0.9 and the required completeness is 100%, i.e. C = 1. We consider that all streams

present skewed values and the join attribute takes a value between 0 and 128.
We measure the average time to obtain a join result in a partner node. We set the latency

of a direct communication between any two nodes to 100 ms. We run the experiments 10 times
changing the stream sources. Recall that a lookup operation in Chord takes O(log n) on average.
Since the latency of each hop is 100 ms., the average lookup latency is O(log n) × 100 = 0.4
secs when n = 16. Considering the additional message in order to find the node that stores the
tuples of the overload node, analytically the average time to obtain a tuple is 0.4 + 0.1 = 0.5
secs.

Table 5.5 shows the average time obtained by the simulator to generate a result tuple from a
partner node in a DHT with n = 16 nodes. We see that the obtained values from the simulation
are very close to the analytical average time under all overload patterns.

In the second experiment we evaluate the efectiveness of our approach using a query of type
2 with query plan (A ⊲⊳ B) ⊲⊳ (C ⊲⊳ D). In the case of a query type 2 we generate skewed data
for all the streams of the query. The average times obtained are very close to the values reported
for the queries of type 1 because the join operators (A ⊲⊳ B) and (C ⊲⊳ D) are executed en
parallel.

In summary, with δ = 0.9 we prevent the lost of tuples due to a lack of space to store them.
Thus, result completeness is not compromised and the approach to deal with skew data based
on partners nodes keeps the response time low.



CHAPTER6
Conclusions and Future

Work
6.1 Conclusions

P2P networks is an important architecture to support distributed stream applications. Com-
plex query operators such as a join operator are essential for various applications such as network
monitoring, electronic trading markets, online analysis of telephone call records and many others.
Although the execution of join queries has been widely studied in the literature, the unbounded
nature of data streams and the distributed processing of join queries under a P2P environment
creates new challenges.

In this thesis, we proposed a new method, called DHTJoin, for processing continuous join
queries using structured P2P networks in DSMS. DHTJoin combines hash-based placement
of tuples and dissemination of queries using the trees formed by the underlying DHT links.
DHTJoin takes advantage of the indexing power of DHT protocols and dissemination of queries
to avoid the placement of tuples that cannot contribute to generate join results. DHTJoin deals
with node failures and problems generated by skewed data.

We have presented (Chapter 3) the architecture of DHTJoin, which has been designed to
meet the challenges of efficiently executing continuous queries in an structured P2P environment.
This architecture is deployed on top of a DHT protocol which influences tasks such as query
dissemination and flow partitioning. The dissemination of queries is performed constructing a
tree rooted at the node submitting the query and using the information stored in the routing
table of nodes. The design of DHTJoin is based on Chord but we show in Section 4.3.4 that the
dissemination technique can be adapted to others DHTs such as Pastry [RD01] and Tapestry
[ZHS+04]. The tuples are partitioned by value where the DHT is used for routing tuples and as
a hash table for storing tuples. However, once tuples arrive at the system they are filtered. This
filtering process drops tuples not concerned by queries as early as possible achieving significant
performance gains in terms of network traffic. This is more efficient than the approaches based
on structured P2P overlays, e.g. PIER [HHL+03] and RJoin [ILK08], which typically index all
tuples in the network.

The DHTJoin method is presented in Chapter 4, specifying the type of join queries processed
by DHTJoin and the approaches for parallelization of queries. For queries of type 1 the partitio-
ned parallelism gives more scalability and its combination with the MJoin operator gives more
flexibility face to variations in the workload because the shape of the query plan residing on
individual machines is restructured easy and independently. On the other hand, queries of type
2 are parallelized using pipelined parallelism using segmented bushy trees. This allow the exe-
cution of queries applying independent parallelism with minimal dependencies among subtrees.
This strategy offers a good trade-off between partitioned and pipelined parallelism for complex

89



90 Chapter 6 — Conclusions and Future Work

multi-join queries while giving more opportunities to share executions plans with queries of type
1.

We tackle the problem of node failures during the dissemination of queries using a gossip
protocol based on the concept of anti-entropy. This gossip protocol allows the detection and cor-
rection of inconsistencies about the knowledge of queries in the system by continuous gossiping.
Basically, the gossip algorithm is deployed on top of the DHT using the information stored in
the Finger table of nodes for random gossip exchange. This level of determinism on the choice
of which nodes to gossip reduce redundant messages while achieving complete dissemination
under node failures. Node failures during query execution is tackled through the collaboration
between consumer and producer operators eliminating unnecessary intermediate tuples that do
not contribute to join results. Thus, a significant savings in terms of network traffic is obtained.

DHTJoin provides an efficient solution to deal with overloaded nodes as a result of data skew.
An overload node use the information stored in its Finger table to choose some underload node
to which tuples of the overloaded node are distributed. We show that, in this case, DHTJoin
incurs only one additional message per joined tuple produced, thus keeping response time low.

We propose a theoretical approach which relate peer memory constraints, stream arrival
rates, and result completeness. We state that could be useful to a DHTJoin user (e.g. an appli-
cation developer) to define and tune a DHT network for specific application requirements. We
showed analytically that DHTJoin can scale up the processing of continuous join queries using
multiple peers and improves the completeness of join results.

To validate our contribution, we implemented DHTJoin as well as RJoin which is the most
relevant state of the art solution in the context of processing continuous join queries using DHTs.
Our performance evaluation shows that DHTJoin yields significant performance gains due to
the mechanism of indexing tuples and the elimination of unnecessary intermediate results. Our
results also demonstrate that the total number of messages of DHTJoin is always less than that
of RJoin wrt tuple arrival rate, query arrival rate and number of joins. We also show that the
problem of node failures during the dissemination of queries can be complemented with a gossip
based protocol that allows, in spite of node failures, a network coverage of 100%.

6.2 Future Work

Our future work focuses on adding to DHTJoin more advances features in terms of query
processing. For example, Skyline queries [BKS01][JEHH07] are important to applications such as
multi-criteria decision making where query results are obtained with respect to user preferences.
Due to its importance, research efforts have been started to implement a skyline operator in
commercial DBMS [CDK06]. In a d-dimensional data space, a skyline query retrieves those
data points that are not dominated by other points. A point dominates another point if it
as good or better in all dimensions and better in at least one dimension. More formally, a
point p = (p[1], p[2], ..., p[d]) where p[i] is a value on dimension di dominates another point
q = (q[1], q[2], ..., q[d]) iff p[i] ≤ q[i] 1 ≤ i ≤ d and there is at least one dimension j such that
p[j] < q[j]

Figure 6.1 shows an example of skyline over a small set of points {p1, p2, p3, p4, p5}. We can
see that p2 dominates p1 since both coordinates of p2 are smaller than that of p1. Thus, p1

cannot be a skyline point. Since p2, p3 and p4 are not dominated by any other points, they are
the skyline in this set of points.
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Figure 6.1 – A skyline example

Existing research assumes that the skyline query is processed using attributes from the
same table. However, there are scenarios where the attributes that users are interested in are
from different tables. In this case a skyline query access data from distributed sources via joins
and combines several attributes across these sources through user preferences. State of the
art algorithms that operate using indices constructed on the skyline attributes [PTFS03] are
inappropriate in this setting, since the construction of an index on the fly can be expensive.

Considering a distributed setting, skyline queries processing in super-peers networks has been
proposed in [VDKV07] and the approach proposed in [WOTX07] extends BATON [JOV05] to
support skylines queries. However, these approaches not consider joins.

To the best of our knowledge, only a few research works tackle skyline queries in the presence
of joins [SWLT08][JMP+10]. However, these approaches not consider continuous queries and
obtain skyline point over static queries and data.

Considering the state of the art w.r.t. skylines queries, we plan as a future work to address
the problem of processing distributed continuous skyline join queries. Skyline operator is by
definition a blocking operator and its integration with join in a distributed environment is a
challenge.
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[GÖ03b] Lukasz Golab and M. Tamer Özsu. Processing sliding window multi-joins in conti-
nuous queries over data streams. In VLDB, pages 500–511, 2003.

[Has95] W. Hasan. Optimization of SQL Queries for Parallel Machines. PhD thesis,
Departament of Computer Science, Stanford, USA, December 1995.

[HHL+03] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott Shen-
ker, and Ion Stoica. Querying the internet with pier. In VLDB, pages 321–332,
2003.

[HJS+03] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec
Wolman. Skipnet : A scalable overlay network with practical locality properties.
In USENIX Symposium on Internet Technologies and Systems, 2003.



96 BIBLIOGRAPHY

[HL91] Kien A. Hua and Chiang Lee. Handling data skew in multiprocessor database
computers using partition tuning. In VLDB, pages 525–535, 1991.

[HRM08] Cecilia Hernández, M. Andrea Rodŕıguez, and Mauricio Maŕın. Complex queries
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copies of replicated objects in a distributed environment. Theory Comput. Syst.,
32(3) :241–280, 1999.

[PTFS03] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD Conference, pages 467–
478, 2003.

[RBR+04] Mema Roussopoulos, Mary Baker, David S. H. Rosenthal, Thomas J. Giuli, Petros
Maniatis, and Jeffrey C. Mogul. 2 p2p or not 2 p2p ? In IPTPS, pages 33–43,
2004.

[RD01] Antony I. T. Rowstron and Peter Druschel. Pastry : Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware, pages
329–350, 2001.



98 BIBLIOGRAPHY

[RDH03] Vijayshankar Raman, Amol Deshpande, and Joseph M. Hellerstein. Using state
modules for adaptive query processing. In ICDE, pages 353–, 2003.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and Scott Shen-
ker. A scalable content-addressable network. In SIGCOMM, pages 161–172, 2001.

[RK02] Sean C. Rhea and John Kubiatowicz. Probabilistic location and routing. In
INFOCOM, 2002.

[RRHS04] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M. Hellerstein, and Scott Shen-
ker. Brief announcement : prefix hash tree. In PODC, page 368, 2004.

[SMK+01] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, and Hari Bala-
krishnan. Chord : A scalable peer-to-peer lookup service for internet applications.
In SIGCOMM, pages 149–160, 2001.

[SSDN02] Mario T. Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl. Hypercup.
Technical report, Stanford University, 2002.

[Sul96] Mark Sullivan. Tribeca : A stream database manager for network traffic analysis.
In VLDB, page 594, 1996.

[SWLT08] Dalie Sun, Sai Wu, Jianzhong Li, and Anthony K. H. Tung. Skyline-join in dis-
tributed databases. In ICDE Workshops, pages 176–181, 2008.
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Traitement de requêtes de jointures continues dans

les systèmes pair-à-pair (P2P) structurés

Wenceslao Enrique Palma Munoz

Résumé

De nombreuses applications distribuées partagent la même nécessité de traiter des flux de données
de façon continue, par ex. la surveillance de réseau ou la gestion de réseaux de capteurs. Dans ce
contexte, un problème important et difficile concerne le traitement de requêtes continues de jointure
qui nécessite de maintenir une fenêtre glissante sur les données la plus grande possible, afin de produire
le plus possible de résultats probants. Dans cette thèse, nous proposons une nouvelle méthode pair-
à-pair, DHTJoin, qui tire parti d’une Table de Hachage Distribuée (DHT) pour augmenter la taille
de la fenêtre glissante en partitionnant les flux sur un grand nombre de noeuds. Contrairement aux
solutions concurrentes qui indexent tout les tuples des flux, DHTJoin n’indexe que les tuples requis
pour les requêtes et exploite, de façon complémentaire, la dissémination de requêtes. DHTJoin traite
aussi le problème de la dynamicité des noeuds, qui peuvent quitter le système ou tomber en panne
pendant l’exécution. Notre évaluation de performances montre que DHTJoin apporte une réduction
importante du trafic réseau, par rapport aux méthodes concurrentes.

Mots-clés : Systèmes pair-à-pair, Traitement de requêtes

Abstract

Recent years have witnessed the growth of a new class of data-intensive applications that do not fit the
DBMS data model and querying paradigm. Instead, the data arrive at high speeds taking the form of
an unbounded sequence of values (data streams) and queries run continuously returning new results
as new data arrive. In these applications, data streams from external sources flow into a Data Stream
Management System (DSMS) where they are processed by different operators. Many applications share
the same need for processing data streams in a continuous fashion. For most distributed streaming
applications, the centralized processing of continuous queries over distributed data is simply not
viable. This research addresses the problem of computing continuous join queries over distributed data
streams. We present a new method, called DHTJoin that exploits the power of a Distributed Hash
Table (DHT) combining hash-based placement of tuples and dissemination of queries by exploiting
the embedded trees in the underlying DHT, thereby incuring little overhead. Unlike state of the art
solutions that index all data, DHTJoin identifies, using query predicates, a subset of tuples in order
to index the data required by the user’s queries, thus reducing network traffic. DHTJoin tackles the
dynamic behavior of DHT networks during query execution and dissemination of queries. We provide
a performance evaluation of DHTJoin which shows that it can achieve significant performance gains
in terms of network traffic.

Keywords: P2P Systems, Continuous Query Processing
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