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Abstract

Motivated by the development of deep brain stimulation for Parkinson’s disease, in the first part
of this thesis we consider the problem of reducing the synchrony of a neuronal population via a
closed-loop electrical stimulation under the constraints that only the mean membrane voltage of
the ensemble is measured and that only one stimulation signal is available (mean-field feedback).
In order to derive analytical results, we model the periodic behavior of a regularly firing neuronal
population subject to a closed-loop electrical stimulation as a network of diffusively coupled Landau-
Stuart oscillators controlled via a linear single-input single-output feedback device. Under standard
assumptions, the obtained system reduces to a modified version of the Kuramoto model.

We start by showing that non-zero mean-field feedback prevents the existence of oscillating phase-
locked solutions for a generic interconnection topology and feedback gain. In order to justify the
persistence of perturbed phase-locked states under a too small proportional mean-field feedback, we
show some robustness properties (namely total stability) of phase-locking in the Kuramoto system
to time-varying inputs and for a general symmetric coupling topology. As a corollary of these results
we derive necessary conditions for an effectively desynchronizing mean-field feedback.

We further show that, when the feedback gain is sufficiently large, its effect is to inhibit the global
oscillation (neuronal inhibition). All the phases converge in this case to a constant value, correspond-
ing to a fixed point of the closed-loop system, which is shown to be almost globally asymptotically
stable in the fictitious case of zero natural frequencies and all-to-all coupling. In the case of an odd
number of oscillators, this property is shown to be robust to small natural frequencies and uncer-
tainties in the coupling and feedback topologies.

We finally introduce two notions of desynchronization for interconnected phase oscillators by re-
quiring that phases drift away from one another either at all times or in average, and provide a
characterization of these two concepts in terms of a classical notion of instability valid in Euclidean
spaces. An illustration is provided on the Kuramoto system, which is shown to be desynchronizable
by proportional mean-field feedback.

We conclude the first part of the thesis with some extensions to more general coupling and feedback
schemes.

In the second part, we explore two possible ways to analyze related problems on more biologically
sound models.

The first contribution is to analyze neuronal synchronization with the input-output approach recently
developed by L. Scardovi and co-workers. Neurons are modeled as an input-output interconnection
of nonlinear operators acting on a signal space. Coupling between the neurons is described via tools
from graph theory. A strength of this approach is that it does not require a detailed knowledge of
the underlying dynamics, and it permits to cast disturbances and uncertainties in a natural way.
We illustrate this method on the Hindmarsh-Rose neuron model.

The second contribution is motivated by the need of gaining a deeper mathematical insight on
experimental and numerical observations obtained on dopaminergic neurons. It consists in reducing
a detailed physiological model to a simple two dimensional one. The chief property of the detailed
model is the simultaneous activation of positive and negative ionic currents, which has important
consequences for neuronal excitability. Based on normal form reduction, we propose a novel reduced
model to capture this antisynergistic cooperation. Beside dopaminergic neurons, the proposed model
explaing the dynamics behavior of a large class of neurons, which are not captured by other existing
reduced models.
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Résumé

Motivé par le développement de la stimulation cérébrale profonde comme traitement des symptomes
moteurs de la maladie de Parkinson, nous considérons le probléme de réduire la synchronie d’une
population neuronale par I'intermédiaire d’une stimulation électrique en boucle fermée, sous les con-
traintes que seule la tension de membrane moyenne de I’ensemble est mesuré et qu’un seul signal de
stimulation est disponible (rétroaction du champ moyen). Afin d’obtenir des résultats analytiques,
nous modélisons le comportement périodique d’une population neuronale soumise & une stimula-
tion électrique en boucle fermée comme un réseau d’oscillateurs de Landau-Stuart couplés de fagon
diffusive et controlés via un dispositif de rétroaction linéaire mono-entrée mono-sortie. Sous des
hypotheéses standards, le systéme obtenu se réduit & une version modifiée du modéle de Kuramoto.
Nous commencons par montrer qu’une rétroaction non nulle du champ moyen empéche I'existence
des solutions & verrouillage de phase pour une topologie d’interconnexion et un de gain de rétroaction
génériques. Afin de justifier la persistance de solutions & verrouillage de phase perturbés pour un
gain de rétroaction trop petit, nous montrons quelques propriétés de robustesse du verrouillage de
phase dans le systéme de Kuramoto par rapport a des entrée variantes dans le temps et pour une
topologie d’interconnexion symétrique quelconque. Comme corollaire de ces résultats, nous dérivons
les conditions nécessaires pour une désynchronisation efficace par rétroaction du champ moyen.

En outre, nous montrons que, lorsque le gain de rétroaction est suffisamment grand, son effet est
d’inhiber loscillation globale (inhibition neuronale). Dans ce cas, toutes les phases convergent a une
valeur constante, correspondant & un point fixe du systéme en boucle fermée, que nous montrons étre
presque globalement asymptotiquement stable dans le cas fictif ou toutes les fréquences naturelles
sont nulles et le couplage est du type tous-a-tous. Dans le cas d’'un nombre impair d’oscillateurs,
cette propriété se révéle robuste aux petites fréquences naturelles et aux incertitudes dans les topolo-
gies de couplage et de rétroaction.

Nous proposons enfin deux notions de désynchronisation pour des oscillateurs de phase interconnec-
tés, en exigeant que les phases s’éloignent les unes des autres, soit 4 chaque instant, soit en moyenne.
Nous fournissons également une caractérisation de ces deux concepts en termes d’une notion clas-
sique d’instabilité valable dans les espaces euclidiens. Une illustration est fournie pour le systéme
de Kuramoto, qui se révele étre desynchronizable par rétroaction du champ moyen.

Nous concluons la premiére partie de la these avec quelques extensions a des schémas de couplage
et de rétroaction plus généraux.

Dans la deuxiéme partie, nous explorons deux voies possibles pour ’analyse des problémes similaires
dans des modéles biologiquement plus plausibles.

La premiére contribution est ’analyse de la synchronisation neuronale par ’approche entrée-sortie
récemment développé par L. Scardovi et collégues. Les neurones sont modélisés comme une inter-
connexion entrée-sortie d’opérateurs non linéaires agissants sur un espace de signaux. Le couplage
entre les neurones est décrit via des outils de la théorie des graphes. Un des points forts de cette
approche est qu’elle ne nécessite pas de connaissance détaillée de la dynamique, et elle permet de
considérer perturbations et incertitudes d’'une maniére naturelle. Nous illustrons cette méthode sur
le modéle de neurone de Hindmarsh-Rose.

La deuxiéme contribution a été motivée par la nécessité d’'une connaissance mathématique plus pro-
fond sur des observations expérimentales et numériques obtenues sur les neurones dopaminergiques.
1l s’agit de la réduction d’ un modéle physiologique détaillé & un modéle simple & deux dimensions.
La propriété principale du modéle détaillé est 'activation simultanée de courants ioniques positifs et
négatifs, ce qui a des conséquences importantes sur ’excitabilité neuronale. Basé sur une réduction
du type forme normale, nous proposons un nouveau modéle réduit qui capture cette coopération
antisynergique. A coté des neurones dopaminergiques, le modéle proposé explique le comportement
dynamique d’'une grande classe de neurones, qui ne sont pas capturés par d’autres modéles réduits
existants.
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“There are things known and there are things unknown, and in between are the doors of per-
ception.”

Aldous Huxley






Chapter 1

Introduction

Brains are an aggregate of units that communicate with each other to achieve a common goal.
Neurons are the elementary units, and both electrical and chemical messages constitute the
support through which neurons communicate. Through these electrical and chemical messages,
neurons are able to achieve a coherent oscillatory activity, or neuronal synchronization, among
large and sometimes distant populations.

On the one hand, neuronal oscillations are at the basis of fundamental brain functions like
memory (Rutishauser et al., 2010), cognition (Fries, 2001) and movement path generation
(Sanes and Donoghue, 1993). On the other hand, a too strong neuronal synchronization can
lead to pathological states. Prominent synchronous oscillations in the motor cortex are linked
to essential tremors (Hellwig et al., 2003), while in the hippocampus they are at the basis of
epileptic seizures (Traub and Wong, 1982). Another synchronization related neural pathology
is Parkinson’s disease (PD), which constitutes the main motivation for this thesis.

Parkinsonian patients exhibit an intense oscillatory synchronous activity in some deep brain
areas (Volkmann et al., 1996) that is tightly correlated to PD physical symptoms (Hammond
et al., 2007; Boraud et al., 2005) and is mainly due to the scarcity of a neurotransmitter:
dopamine. In the first phase of the illness, pharmacological therapies are able to efficiently
compensate for the deficiency of physiological dopamine and reduce PD pathological synchro-
nization, but in a second phase their efficiency rapidly decreases. At this stage, some patients
find an alternative in deep brain stimulation (DBS), a symptomatic treatment of PD and some
other synchronization related neurological diseases, such as chronic pain, essential tremor, and
dystonia (Kringelbach et al., 2007). DBS consists in the electrical stimulation of deep brain
areas through implanted electrodes (Benabid et al., 1991). Although DBS is a successful treat-
ment, it still suffers from considerable limitations.

In its present form, DBS is based on heuristics or experimental deductions, and does not use
any cerebral measurement (open-loop stimulation). Consequently, a neurologist must run a
day-long empirical tuning of the stimulator’s parameters, and this tuning is not guaranteed
to work (Rodriguez-Oroz et al., 2005). In addition, several studies observed a number of side
effects due, for example, to the excessive current injected in the brain tissues (Kumar et al.,
2003). Finally, an intense debate is still open about the exact functioning of DBS and its
relations with neuronal synchronization (Hammond et al., 2008; Kringelbach et al., 2007).

The research community is well aware of the limitations of the present open-loop approach.
In (Vitek, 2005), feedback control systems were identified as one of the major challenges con-
fronting the DBS development in years ahead. After almost six years this challenge has not
been won yet. We believe that a deeper theoretical understanding of neuronal synchronization



and its control via electrical stimulation will both help developing a closed-loop DBS technology
and gain a deeper knowledge of the mechanisms involved.

The main goal of this thesis is thus to contribute to the development of principles and method-
ologies for the analysis and control of neuronal synchronization. We take inspiration from
medical problems to derive mathematically treatable models and analyze them rigorously, us-
ing control theoretical tools, with the twofold goal of understanding complex phenomena and
suggesting experimental directions.

Part I of this manuscript is dedicated to the derivation of a simple model of an interconnected
neuronal population under the effects of a closed loop electrical stimulation and to the analytical
study of the observed synchronization phenomena. Part II presents some recent works aiming
at extending the analysis contained in Part I to more realistic models.

Introduction to Part I - Neurons as oscillators

We start by providing an introductory picture of the electrophysiology behind Parkinson’s
disease. The link between PD physical symptoms and neuronal synchronization is highlighted.
After, we present the available clinical treatments, including present DBS, and their limitations.
Based on these problematics, we define concisely the main objective of Part I, and provide a
review of existing related works. Finally, we outline in some details the content of Part I and
its contributions.

1.1 The problem: Parkinson’s disease and neuronal synchro-
nization

1.1.1 Electrophysiology and clinical treatment of Parkinson’s disease

As briefly recalled above, the parkinsonian neuronal state is characterized by intense syn-
chronous oscillation in a deep brain network: the basal ganglia (BG). Such pathological syn-
chronization is mainly the byproduct of the degeneration and death of dopaminergic neurons
(Vernier et al., 2004), and the consequent deficiency of this neurotransmitter in the brain.
Roughly speaking, the BG network acts as a filter on cortical inputs encoding voluntary move-
ments. An illustration of the anatomy and electrophysiology behind this filtering does not
enter in the scope of this dissertation, but the interested reader can find some information in
(Parent and Hazrati, 1993; Bolam et al., 2000). Local field potential (LFP) recordings in two
of the basal ganglia, namely the subthalamic nucleus (STN), and the globus pallidus inter-
num (GPi), reveal in PD patients a synchronized oscillatory activity in the band 13Hz-32Hz
(beta band). See (Brown et al., 2001; Williams et al., 2002, 2003; Brown and Williams, 2005;
Weinberger et al., 2006; Priori et al., 2004). Correlations in neurons electrical activity under-
lying these oscillations are found locally, 4.e. between neurons belonging to the same nucleus
(Brown et al., 2001; Williams et al., 2002, 2003; Priori et al., 2004, 2002; Silberstein et al.,
2003), among neurons belonging to different ganglia (Brown et al., 2001), and between BG
neurons and cortical activity (Marsden et al., 2001; Williams et al., 2002). Thus, synchronous
beta band oscillations in STN and GPi are a hallmark of PD basal ganglia electrical activity.
Conversely, they are absent, or small, under healthy conditions (Courtemanche et al., 2003;
Sochurkova and Rektor, 2003).

While its origins are still object of debate, the implication of BG synchronous oscillations in PD
physical symptoms is confirmed by experimental evidences. The reduction of the intensity of



the BG synchronized oscillatory activity at the beta band is roughly proportional to the clinical
improvement in bradikinesia, the slowness in the execution of movements, and akinesia, the
inability to initiate movements (Kiihn et al., 2006; Brown et al., 2004). Furthermore, under
healthy conditions, beta band oscillations are suppressed prior and during voluntary movements
(Williams et al., 2003; Priori et al., 2002; Cassidy et al., 2002; Doyle et al., 2005).

Despite these experimental evidences, however, the mechanisms through which STN/GPi syn-
chronous oscillations lead to PD physical symptoms are still unclear. We just mention two
explicative hypothesis. In (Bar-Gad et al., 2003) the authors suggest that the movement-
related desynchronization is associated to a dimensionality reduction in the representation of
cortical inputs. Eliminating correlations, a small group of STN neurons can efficiently encode
the information originally contained in a large coherently oscillating cortical population. In
(Rubin and Terman, 2004) the authors consider how PD synchronous oscillations transform
the BG network output, and the effects of these changes on the target neurons. Computa-
tional evidences suggest, in particular, that beta band synchronized inhibitory inputs from the
GPi to the thalamus compromise the ability of thalamic relay neurons to correctly respond
to cortical inputs. Interestingly, if the synchronization frequency and pattern are changed
through electrical stimulation of the STN, the same pathological effect is not observed. Be-
yond these intriguing hypothesis, as a matter of fact, a healthy basal ganglia network exhibits a
desynchronized STN/GPi activity (Courtemanche et al., 2003; Sochurkova and Rektor, 2003).

A first-line treatment of PD is the administration of L-dopa, a dopamine promoter drug. This
pharmacological therapy efficiently compensates for the lack of physiological dopamine, at
least in the first few years of the illness (Cotzias et al., 1969). In this period, L-dopa has been
shown to efficiently suppress the pathological synchronization (Priori et al., 2002; Sydow, 2008;
Doyle et al., 2005). Afterwards, its efficiency rapidly decreases with the diminishing number
of dopaminergic cells that can benefit from this chemical boost (Muenter and Tyce, 1971).
Moreover, a series of sever side effects come over with time, in particular the generation of
involuntary movements, or dyskinesia (Barbeau, 1974). At this stage pharmacological therapies
are no longer sufficient.

A predecessor and an alternative to drug therapies, used since the early sixties, is the lesioning
of some BG areas. This surgical ablation is effective in reducing PD tremors in drug resistant
patients (Jankovic et al., 1995). The physiological mechanism behind the therapeutic effects
of BG lesioning, and in particular STN lesion, are not clear. There are anyhow some evidences
that BG ablation suppresses the pathological synchronous oscillation at the lesion site (Trost
et al., 2003). At the same time the surgical complication of this invasive and non-reversible
procedure can be severe (Schuurman et al., 2008).

In the early nineties the medical research group of Benabid noticed that the chronic stimulation
of the STN, via a pair of implanted electrodes, drastically reduces tremors and akinesia in
Parkinson’s disease (Benabid et al., 1991). Comparative studies show that this type of deep
brain stimulation (DBS) is as effective as BG lesioning in reducing PD symptoms, but with
less severe side effects (Schuurman et al., 2008) and, more important, in a reversible way.
Since then, DBS has become an alternative to the pharmaceutical and ablative treatments of
synchronization-related parkinsonian motor symptoms, yet, far from being optimized for the
scope.

1.1.2 Open-loop DBS: Its limitations and preliminary generalizations

Nowadays DBS is an open-loop stimulation. The signal injected is similar to that of a stan-
dard cardiac pacemaker (Benabid et al., 1991), that is a train of current pulses of adjustable
amplitude and frequency, on which neurologists must run a day-long empirical tuning in order



FIGURE 1.1: Present DBS: a pair of electrodes are surgically implanted in central nervous

system. The electrode is guided until its head touches the STN, or, alternatively, the GPi (not

shown in the picture). The injected input is a train of voltage pulses of frequency = 130H z
and amplitude ~ 5V. Adapted from (Wikipedia, 2011).

to optimize the patient response to the therapy. Indeed, no automatic optimization algorithm
has yet been developed. The only “feedback” between the stimulation pattern and the patient
response is provided by the physicians during the parameters regulation stage. Once the DBS
apparel is installed, no physiological measurements are exploited to track the therapy efficiency
and to adapt to possible variations, suggesting that the stimulation pattern might not be op-
timized either for the scope. As a consequence, the present stimulation strategy has different
repercussions (Kumar et al., 2003). Firstly, due to the continuous current injection, the stimu-
lator batteries discharge faster than needed, requiring additional surgical operations to replace
them. Secondly, the permanent electrical stimulation of the BG can have sever psychological
and physiological side effects, such as memory decline, psychiatric disturbances, depression,
speech disturbances, and dysequilibrium (Kumar et al., 2003). Finally, roughly a half of the
patients find no symptomatic benefit in DBS (Rodriguez-Oroz et al., 2005).

The electrical measurements obtained with the help of the implanted electrode gives an op-
portunity to track the neuronal state and adapt the therapy on-line. Due to the size of the
electrode with respect to the neuronal scale, the measurement is given by the mean electrical
activity of the neuronal population near the electrode head, or local field potential. In the
following we refer at this population measurement as mean-field.

A first practical attempt to exploit mean-field measurement in DBS optimization has already
been worked out by the group of Prof. Tass (Tass, 1999, 2003b,a; Tass and Majtanik, 2006). See
also the USPTO patent (Tass, 2011). In their approach, whenever the pathological synchronous
state is detected, the DBS stimulator is turned on automatically and the standard pulsed DBS
signal is injected in a spatially coordinated way to desynchronize the ensemble. This strategy
helps to extend batteries life and to reduce side effects by reducing the amount of injected
current, but it does not optimize the stimulation pattern, which consists of large voltage pulses,
still sent in an open loop fashion.

1.1.3 Closing the loop: Control theory and DBS

In this section, we reformulate as precise control objectives (for a closed-loop DBS) the prob-
lematics discussed in Sections 1.1.1 and 1.1.2. More precisely, we will introduce two distinct
control strategies: neuronal desynchronization and neuronal inhibition.

In most control applications, synchronization is a goal to achieve: for instance, formations of
autonomous vehicles (Sepulchre et al., 2007, 2008), consensus protocols (Scardovi et al., 2007,
Olfati-Saber and Murray, 2004; Sarlette, 2009) and master-slave control of mechanical systems



(Spong, 1996; Nijmeijer and Rodriguez-Angeles, 2003) can all be formulated as a synchroniza-
tion objective. DBS for PD has exactly the opposite goal: given an originally synchronized
ensemble, find a control signal to induce it in a disordered desynchronized behavior.

Beside desynchronization, another interesting control strategy is to use the DBS signal to inhibit
the neuronal oscillations, that is to block completely the pathological spiking activity of the
population. This solution mimics the effects of a BG lesion, which can be seen as a drastic
and irreversible inhibition. Conversely, a DBS-induced neuronal inhibition is reversible and
could be activated only on demand. Apart from PD (Mclntyre et al., 2004; Benazzouz et al.,
2000; Olanow, 2001), the possibility of inhibiting the global synchronous activity of a group
of neurons in a reversible and controlled way may also find applications in the treatment of
other synchronization-related neurological diseases, like the block of fast oscillation associated
to epileptic seizures (Traub, 2003; Traub and Wong, 1982).

The originality of the DBS control problem that we address here stands also in the practical
input-output constraints. As already noted above, the only available measurement consist in
the neuron population mean-field. For the same reason, all the neurons receive basically the
same input signal. The resulting control setup consists of an extremely large number of units,
the neurons, whose collective behavior has to be regulated relying only on a scalar output,
the mean-field, and a scalar input, the injected current (see Figure 1.2). This is in opposition
with classic synchronization (Sepulchre et al., 2007, 2008; Scardovi et al., 2007; Olfati-Saber
and Murray, 2004; Sarlette, 2009) and desynchronization (Angeli and Kountouriotis, 2011)
problems, where each agent is endowed with a controller that can access local information
through a communication graph.

FIGURE 1.2: Proposed proportional mean-field feedback DBS control scheme. The mean

electrical activity of a population of neurons, each modeled for simplicity as an oscillator, is

recorder via a DBS electrode. This output is multiplied by a feedback gain and injected back
in the neuronal population.

In order to keep the proposed control scheme simple, we close the loop between the patient
and the DBS controller with a proportional (linear) feedback scheme. In other words, the
injected input is proportional to the measured output (Ogata, 2001, Chapter 5). The resulting
proportional mean-field feedback control scheme is summarized in Figure 1.2. The analysis of
the resulting closed-loop system guides the tuning of the feedback gain. Apart from its simple
nature, which ensures mathematical treatability and an easy practical implementation, the
proportional feedback approach is particularly tempting for DBS for energetic concerns. Energy
efficiency is a crucial issue in DBS. As mentioned above, a too strong injected current has the
twofold drawback of letting the stimulator batteries discharge too fast and of inducing severe
side effects. Since the population mean electrical activity is small in both the desynchronized
and inhibited states, a proportional feedback approach ensures, at least for small feedback



gains, a small DBS signal, and thus energy efficiency and side-effects reduction. In a nutshell,
we abstract the control strategy for a closed-loop DBS proposed in Part 1 as follows:

Objective of Part I: Given a neuronal population exhibiting a highly regular synchronous
activity, explore how it can be brought to either a healthy irregular desynchronized state or to
a silent inhibited state, via proportional mean-field feedback.

1.2 State of the art: Eliminating synchronization by control

In recent years, several works have appeared facing the problem of controlling the synchroniza-
tion behavior of an interconnected neuronal population through mean-field feedback, propor-
tional or not (Rosenblum and Pikovsky, 2004b,a; Rosenblum et al., 2006; Hauptmann et al.,
2005a,b,c; Popovych et al., 2006b, 2005, 2006a; Popovych and Tass, 2010; Luo et al., 2009).
We share with all these works the same modeling principle, that is to consider periodically
spiking neurons and to model them as simple nonlinear or phase oscillators. Other approaches,
different in philosophy from the work presented in this manuscript, employ optimal control
techniques for the computation of open-loop desynchronizing signals (Danzl et al., 2009) or for
the tuning of open-loop DBS parameters (Schiff, 2010). Finally, some works investigate the
oscillation inhibition, or oscillators death, phenomenon in coupled oscillators population (Er-
mentrout, 1990; Ermentrout and Kopell, 1990). In what follows, we describe those references
in some detail. The aimed extensions are summarized in Section 1.2.5.

1.2.1 Desynchronization via delayed feedback

In (Rosenblum and Pikovsky, 2004b,a; Rosenblum et al., 2006) the authors consider a linear
single-site delayed feedback. That is, they consider a group of neurons stimulated and recorded
with one electrode. The injected signal is taken proportional to the delayed mean-field of the
ensemble. Analytical investigations on simplified oscillators and phase models reveal that, de-
pending on the feedback gain and delay, this closed-loop control can enhance or suppress neural
synchrony. In the latter case the stimulation is vanishing when effective desynchronization is
achieved, which ensures energy efficiency and stimulation on demand. Numerical simulation
on detailed neuron models verify this analysis.

The main idea behind the approach proposed in (Hauptmann et al., 2005a,b,c) is to use multiple
stimulation sites and inject in each of them the delayed mean-field of the stimulated ensemble
with different delays. This stimulation leads to cluster of neurons, each of them oscillating
synchronously with the delayed mean-field of the ensemble for a particular delay value. When
the delays are chosen following a suitable law, the different clusters oscillate out of phase and
a global synchronization index is minimized. This control scheme is tested both on simplified
phase models and on detailed microscopic models.

A natural extension to linear delayed feedback is to consider nonlinear delayed feedback, as
proposed in (Popovych et al., 2006b, 2005, 2006a). The authors show numerically on detailed
models and analytically on phase models, that such a closed-loop stimulation can have a twofold
effect. If the ensemble is originally strongly interconnected, then the stimulation effectively
desynchronizes it for a broad range of feedback gains and delays. If the ensemble is originally
weakly interconnected, some parameter ranges appear in which synchronization is enhanced.
The case of two interacting populations with different internal connectivity degrees is considered
in (Popovych and Tass, 2010). The important finding is that, by applying a nonlinear delayed



feedback only to the weakly coupled population, it is possible to find parameter ranges for
which the strongly coupled population becomes effectively desynchronized via the indirect
control mediated by the populations interaction.

1.2.2 Desynchronization via non-delayed feedback

Proportional-integro-differential (PID) feedback is at the basis of the approach proposed in
(Pyragas et al., 2008). The authors assume the existence of a recorded and a stimulated
populations, in which the stimulated population is subject to a PID feedback derived from
the mean behavior of the recorded population. This approach is particularly important in
an experimental framework where practical constraints may forbid the simultaneous recording
and stimulation of the whole network. The authors compute, in the limit of an infinite number
of oscillators, the gain threshold ensuring the effective desynchronization of both populations.
Numerical examples support these theoretical predictions.

In (Tukhlina et al., 2007) the authors exploit the interesting idea that a synchronized neuronal
population can, in first approximation, be modeled as a single active oscillator. Then a possible
solution to contrast global oscillations, leading to a desynchronized ensemble, is by dissipating
their energy. This can be achieved by interconnection with a passive oscillator. The obtained
results suggest that this feedback scheme can effectively block the global synchronous oscilla-
tion, and thus desynchronize the ensemble, with vanishing stimulation. The last point ensures
stimulation on demand and an energy efficient policy. Numerical examples validate these re-
sults on realistic neuron models. A more recent work from the same authors (Tukhlina and
Rosenblum, 2008) aims at extending this approach to the case of two interacting populations.
One population is recorded, the other is stimulated. This generalization further increases the
practical soundness of this stimulation scheme.

A similar idea to the one proposed in (Tukhlina et al., 2007) is explored in (Luo et al., 2009).
In this latter reference, instead of a passive oscillator, the authors consider the use of a tradi-
tional washout filter (or washout circuit), a stable high-pass filter, which is able to block the
Andronov-Hopf bifurcation exhibited by the mean-field at the synchronization transition. The
authors prove the efficiency of this control scheme through numerical examples.

1.2.3 Optimal control and open-loop stimulation strategies

In (Danzl et al., 2009) the authors rely on a detailed computational model of neurons and em-
ploy optimal control techniques to compute the waveform ensuring convergence toward a small
ball centered around an unstable fixed point in minimum time. Since all the isochrons® con-
verge in this zone, reflecting the fact that the unstable fixed point is phase-less, the asymptotic
phase of the controlled system is very sensitive to tiny amounts of perturbations, resulting in
phase-randomization. When applied at the population level, this technique works to transiently
desynchronize an ensemble of identical oscillators in an original perfectly synchronized state.
Nonetheless, the use of optimal control techniques requires a perfect knowledge of the underly-
ing dynamics and leaves no space to parametric uncertainties and heterogeneities, making this
approach difficult to apply in an experimental framework.

Apart from desynchronization via closed-loop stimulation, other approaches have been explored
in literature. Notably, the control of DBS through model-based approaches aim at exploiting

!Given a system with an almost globally asymptotically stable limit cycle, isochrons are hypersurfaces made
of all the points with the same phase (Guckenheimer, 1975). Unstable fixed points, in particular, are phase-less
and do not belong to any isochron.



computational models of sufficient complexity to emulate the behavior of different brain struc-
tures with enough fidelity. Optimization algorithms can then be used in real-time to tune a
limited number of parameters by comparison with experimental data. The resulting tuned
computational model is used to generate an open-loop control signal. We refer the reader to
the recent review of the subject (Schiff, 2010) for more details and a complete list of references.
We stress that this approach is quite different in philosophy to the one explored in Part I of
this thesis. We will, however, come back to it in Part L.

1.2.4 Neuronal inhibiton

The possibility of inhibiting the pathological STN oscillations by blocking the neuronal spiking
is also considered in Part 1. A similar oscillation inhibition phenomenon has already been
studied in the literature, even though not with a control objective. In (Ermentrout, 1990) the
author analyzes a population of all-to-all interconnected complex oscillators, of the same type of
the one used in Chapter 2 as a simple representation of periodically spiking neurons. He shows
that if the coupling between the oscillators is strong compared to the attractiveness of the limit
cycle, and the natural frequencies are sufficiently sparse, then diffusive coupling can stabilize
the origin of the interconnected system. This phenomenon corresponds to the disappearance
of the oscillation’s amplitude and frequency, and is often referred to as oscillators death. The
mechanism underlying this analysis are thus quite different, if not opposite, to the one analyzed
in Part T of this manuscript, which relies on the assumption that the coupling is sufficiently
weak so to ensure the persistence of the limit cycle (cf. Assumption 1 in Chapter 2).

The analysis presented in our work is nearer in spirit to the one in (Ermentrout and Kopell,
1990). There, the authors show that, under suitable assumptions on the coupling functions,
oscillation inhibition arises in two identical coupled phase oscillators as a supercritical fold
bifurcation on the synchronization line with the coupling strength as the bifurcation parame-
ter. A further non-degeneracy condition ensures that the stable node born in this bifurcation
corresponds to a stable solution of the full system. A similar result is proved with the help
of numerical simulations for couples of general nonlinear oscillators. In the case of a larger
number of oscillators the authors restrict their attention to the chain topology, and focus on a
suitable subclass of coupling functions to prove a similar stability result.

1.2.5 Aimed extensions

Neuronal desynchronization. All the works reviewed in Section 1.2.1 and 1.2.2 consider only
very simple interconnection topologies between the neurons, and do not account for the pos-
sibility that different neurons contribute to the recorded mean-field and receive the injected
signal with different intensity. Furthermore, in (Rosenblum and Pikovsky, 2004b,a; Rosenblum
et al., 2006; Hauptmann et al., 2005a,b,c; Popovych et al., 2006b, 2005, 2006a; Pyragas et al.,
2008; Popovych and Tass, 2010) the output and the input of the system are complex, which
does not reflect the electrical single-input-single-output nature of an experimental DBS control
scheme. Finally, no rigorous definition of desynchronization are provided. The analysis in
Part T aims at relaxing these constraints and at providing a more rigorous framework for the
analytical study of desynchronization.

Neuronal inhibition. The analysis (Ermentrout and Kopell, 1990) suggest that oscillation
inhibition is possible, at least for some interconnection topologies and coupling functions.
Inspired by this work, we analyze in Part I whether the coupling induced by a proportional
mean-field feedback can obtain the same result.



1.3 Contributions: Coupled oscillators under mean-field feed-
back

1.3.1 Model derivation

As introduced in Section 1.1, our goal being to derive analytical results on the control of
synchronization in an interconnected neuronal population via a scalar input that is function of
the population mean-field only, we start by deriving a mathematically treatable model.

The main idea guiding our model derivation is to focus on periodically spiking neurons. The
form of the dynamics associated to such a periodic behavior can be quite complicated for
physiological models, hampering the mathematical treatability, in particular for large inter-
connected networks. We thus look for a simple alternative representation of the associated
limit cycle. We refer the reader to (Ermentrout and Terman, 2010, Chapter 8) and (Izhikevich,
2007, Chapter 10), and the exhaustive list of references therein, for an introduction to the
dynamics of periodically spiking neurons and their synchronization properties.

In the spirit of (Rosenblum and Pikovsky, 2004b; Popovych et al., 2006b, 2005, 2006a; Pyragas
et al., 2008), we represent each neuron as a complex Landau-Stuart oscillator. As detailed in
Sections 2.1 and 2.2, we associate the real part of the oscillations to the membrane voltage
and its imaginary part to a recovery variable that represents the effects of other physiological
variables. This distinction is crucial to define a biologically meaningful output. More precisely,
as opposed to (Rosenblum and Pikovsky, 2004b,a; Rosenblum et al., 2006; Hauptmann et al.,
2005a,b,c; Popovych et al., 2006b, 2005, 2006a; Pyragas et al., 2008; Popovych and Tass, 2010),
given an oscillators population, we assume that the only available measurement is the mean real
part of the oscillation, corresponding to the mean membrane voltage of the neuronal ensemble,
or local-field potential. This measurement is standard in the medical practice (Legatt et al.,
1980), and is imposed by the size of the electrode head, much larger than the neuron scale.
Similarly, the injected input is a scalar that models the injected current and affects only the
real part of the oscillation. The obtained model, while not accounting for the dynamical details
of physiological models, still exhibits some important features of periodically spiking neurons,
and maintains a meaningful link with their input-output variables.

Furthermore, in order to account for the heterogeneous and unknown distance of each neuron
from the electrode head, we also assume that the weight with which each oscillator contributes
to the recorded mean-field is heterogeneous and unknown. The same experimental constraint
imposes that each oscillator receives the same scalar input, modulo an unknown gain that is
related to its distance from the electrode head. We stress that these modeling assumptions
relax the ones used in all the works reviewed in Section 1.2, where the authors consider only
simple interconnection topologies and registration-stimulation setups.

While neuronal coupling relies on different mechanisms, in our study we consider exclusively
diffusive coupling between the oscillators. Even though this assumption may be too simplistic,
it ensures the mathematical treatability of the resulting model. Some extensions are considered
in Appendix A and in Part II. As for the measurement-stimulation setup, we assume the
interconnection topology between the neurons to be arbitrary. Our working choice is to close the
loop between the oscillator population and the DBS controller via a proportional (linear) mean-
field feedback. As already said in Section 1.1, its simple nature guarantees both mathematical
treatability and an easy practical implementation.

The obtained model is presented in Section 2.2. Preliminary numerical observations, reported
in Figures 2.4, 2.5, and 2.6 on page 38), highlight a series of interesting synchronization /desyn-
chronization phenomena. For a generic choice of the interconnection topology and feedback



gain, the system does not exhibit phase-locked solutions with a non-zero frequency of oscilla-
tion. At the same time, if the feedback gain is small compared to both the natural frequencies
and coupling strength, the oscillators remain practically phase-locked, meaning that they ex-
hibit small oscillations around a perfectly phase-locked solution. Conversely, if the feedback
gain is sufficiently large, mean-field feedback can block the oscillations, that is the oscillators
phases converge to a constant value (oscillation inhibition). Finally, for a certain range of
feedback gains, mean-field feedback is able to desynchronize some pairs of oscillators, while
others remains practically synchronized in small clusters. This type of partial phase-locking,
or partial entrainment, is also studied in (Aeyels and Rogge, 2004; De Smet and Aeyels, 2009;
Aeyels and De Smet, 2010). Part I of this manuscript is devoted to an analytical understanding
of these phenomena.

We informally derive at the end of Section 2.2 the phase model associated to the ensemble
of Landau-Stuart oscillators under mean-field feedback. A rigorous derivation is provided in
Section A.2. The resulting system is the following:

Kuramoto phase dynamics Mean-field feedback contribution
. N N
0; = w; + Z ]Cij Sin(ej — (91) — Z %-j<sin(9j + 91) — sin(éj — 92)> .
Jj=1 Jj=1

The scalar 6; is the phase of the oscillator ¢, and describes the evolution of the neuron ¢ along
the periodically spiking limit cycle. The entries of the vector w := [wi]i:17,,_7]\/ e RY are the
natural frequency of the oscillators and are associated to the endogenous rate of spiking of the
neurons. The matrix k = [kiﬂ']i,jzl,...,N € RV*N s the coupling matrix and contains information

about the interconnection topology between the neurons. The matrix v = [’Vij]z'jzl N E

RNXN is the feedback gains and can be computed from the registration-stimulation setup.

This model basically consists of two parts. The first one is the standard Kuramoto dynamics
(Kuramoto, 1984), corresponding to diffusive coupling between the oscillators. The second one,
corresponding to the proportional mean-field feedback, is original. On one side, depending on
the feedback gain, it reduces or enhances the strength of the effective diffusive coupling. On
the other, it introduces a sinusoidal additive coupling sin(f;+6;) between couples of oscillators.
These two distinct effects are at the basis of all the phenomena observed in simulations on both
simplified (see Section 2.4.1) and more physiologically sound (see Section A.7) models, as we
are going to briefly and informally explain in this introduction.

In Section A.1, we consider some generalization of the studied closed-loop dynamics, permitting
to extend the class of modeled neuron networks. We also provide in Section A.2 an analytical
derivation of the associated phase dynamics. We deduce, in particular, an explicit bound on
the coupling and feedback strengths (the small coupling condition) for which the proposed
phase dynamics is a good (first order) approximation of the full closed-loop dynamics. This
technical part can however be skipped in a first reading?.

1.3.2 Definition and existence of oscillating phase-locked solutions

After having derived the model equations in Sections 2.1 and 2.2, we define in Section 2.3 its
pathological states in a rigorous manner. We can think of the pathological neuronal activity
affecting Parkinson’s disease patients as a highly ordered synchronous state, in which a group
of neurons discharge spike trains at the same frequency. In our model, such a behavior is de-
scribed by oscillating phase-locked solutions. See, e.g, (Kuramoto, 1984; Strogatz, 2000; Kopell

2Appendix A was inspired by the comments of Prof. G. B. Ermentrout and Prof. D. Aeyels on the first
version of this thesis.



and Ermentrout, 2002; Aeyels and Rogge, 2004; Fradkov, 2007). Such solutions, rigorously pre-
sented in Definition 2.1, are characterized by all the oscillators evolving with constant phase
differences, and thus the same frequency, and exhibiting a global oscillation, that is a non-zero
collective frequency. If the last condition is removed, we simply speak of phase-locked solu-
tion. It is interesting to consider this distinction since phase-locked solution with zero natural
frequency correspond to a silent (inhibited) neuronal ensemble (see Chapter 4).

A first positive result supporting closed-loop DBS is contained in Theorem 2.2. It states that
for a generic interconnection topology between the neurons, with both inhibitory and excitatory
links, the existence of any oscillating phase-locked solution is not compatible with the presence
of a non-zero mean-field feedback. This result is independent of the weights with which each
neuron contributes to the recorded mean-field and of the gains with which it receives the
injected signal. The adjective “generic” should be understood here in the sense of the Lebesgue
measure associated to the space of the interconnection topology and feedback gain matrices, and
natural frequencies vectors. Numerical simulations illustrate this theoretical result. The same
existence result is proved in Section A.3 for the generalized closed-loop dynamics considered
in Section A.1.

We stress that the disappearance of the perfectly oscillating phase-locked solutions may or may
not have a therapeutic interest. The resulting state might indeed correspond to an effectively
desynchronized ensemble, but also to an almost (practically) phase-locked oscillator population.
In the latter case, the neurons discharge at approximately the same natural frequency, which
would still correspond to a pathological behavior. Alternatively, the system may converge
to a non-oscillating (inhibited) phase-locked solution. Effective desynchronization, practical
phase-locking, and neuronal inhibition will all be analyzed in Chapters 3, 4, and 5.

The proof of Theorem 2.2 relies on two points, presented as Lemma 2.3 and Lemma 2.4 in
Section 2.4.2. Lemma 2.3 provides an original characterization of the oscillating phase-locked
solutions in term of a fixed point equation. This equation is composed of two subset of equa-
tions, corresponding, respectively, to the classic Kuramoto fixed point equation (Aeyels and
Rogge, 2004; Jadbabaie et al., 2004) and to the new constraints imposed by the presence of the
mean-field feedback. Lemma 2.4 is an invertibility lemma for the Kuramoto fixed point equa-
tion. It states that generically, with respect to the natural frequency and the interconnection
matrix, the Kuramoto fixed point equation can be locally inverted around any of its solutions
in terms of the implicit function theorem.

1.3.3 Robustness of phase-locked solutions

In Chapter 2 we have derived the model equations and analyzed the existence of phase-locked
solutions. Chapter 3 has a twofold objective: justify the persistence of robust practically
phase-locked solutions for small feedback gains and give explicit bounds on the tolerated dis-
turbances to compute necessary conditions for an effectively desynchronizing DBS. We address
this problem by analyzing the robustness of phase-locked solutions in the Kuramoto system
with respect to general time-varying inputs, including, as a particular case, the effects of a
proportional mean-field feedback DBS.

In Section 3.1 we introduce a generalized version of the Kuramoto model characterized by the
presence of time-varying natural frequencies modeling exogenous inputs. A natural mathemat-
ical object to study the robustness of phase-locking is the incremental dynamics associated to
this system. The incremental dynamics rules the evolution of the phase differences, and phase-
locking corresponds, in this representation, to a fixed point. As such, standard tools from
nonlinear system analysis are available to analyze its robustness properties. More precisely we
rely on a Lyapunov-based Input-to-State stability analysis (Sontag, 1989, 2006a).



We start by defining in Section 3.2 the set of asymptotically stable phase-locked solutions in
terms of the asymptotically stable fixed point of the incremental dynamics, as formalized in
Definition 3.1. We show that, for a general symmetric interconnection topology, each asymp-
totically stable phase-locked solution is also locally input-to-state stable (Sontag and Wang,
1996) with respect to small inputs (Theorem 3.4). Our proof comes with an explicit Lyapunov
function for the incremental dynamics and permits to derive explicit bounds on the size of the
tolerated inputs, the region of attraction, and the convergence rate for a general asymptot-
ically stable phase-locked solution. We specialize this analysis in Section 3.3 to the case of
all-to-all coupling (Theorem 3.5), and show how the obtained bounds are in line with recently
published results analyzing the case of constant inputs (Chopra and Spong, 2009; Dérfler and
Bullo, 2011). The robustness bounds are computed in Corollary 3.6 for the special case of
proportional mean-field feedback for a general symmetric interconnection topology, and the
necessary conditions for an effectively desynchronizing DBS are derived. The robustness anal-
ysis of Chapter 3 can be extended to the generalized phase dynamics considered in Section
A.1. A sketch of this extension, along with a generalized version of Theorem 3.5 (see Theorem
A.7) are the subject of Section A 4.

The results presented in Chapter 3 are supported by a specific mathematical analysis. The
variables of the incremental dynamics are linked by algebraic relationship that constrain the
evolution of the system on a suitable invariant submanifold. Lemmas 3.7 and 3.8 characterize
the critical points of the incremental Lyapunov function restricted to this submanifold and
relate them to the fixed point of the incremental dynamics. As a general conclusion of this
analysis we propose at the end of Section 3.5 a novel characterization of the robust phase-locked
states in terms of the isolated local minima of the restricted incremental Lyapunov function.

1.3.4 Neuronal inhibition

While Chapters 2 and 3 mainly deal with the analysis of the closed-loop system, Chapter 4
contains sufficient conditions on how to achieve a precise control goal: neuronal inhibition.
With this we mean to bring an originally synchronously oscillating population toward a silent
state, in which no spikes are emitted. This objective has a practical interest since it eliminates
the synchronous oscillatory activity of the STN and may allow a healthier cortical information
flow in the BG. This strategy is also supported by the fact that the precursor of DBS was the
surgical ablation of the STN, corresponding to a radical neuronal inhibition.

In Section 4.1 we recall the model under analysis. We split the diffusive coupling and the
mean-field feedback terms into a homogeneous part, in which the coupling and feedback gains
between each pair of oscillators are all given by the mean of the coupling and feedback gains,
respectively, and a heterogeneous part, accounting for the dispersion of the gains around their
means. The form of the obtained equations suggests that the diffusive coupling term, which is
responsible for the pathological synchronous behavior, can be drastically reduced by matching
the mean of the feedback gains to the mean of the coupling gains. Apart from the natural
frequencies and the heterogeneous parts of the coupling and feedback, the resulting dynamics
is ruled by the sinusoidal additive coupling only, which is small provided that the original
diffusive coupling is small, thus ensuring the persistence of the oscillators limit cycle attractor
(cf. Figure 2.5), provided that the small coupling condition derived in Section A.2 is satisfied.

We start by noticing that the system under analysis can be written as a gradient system.
The main idea is then to focus on the case of zero natural frequencies and homogeneous
gains, and study the corresponding unperturbed potential function. Natural frequencies and
gain heterogeneities can then be plugged back in as a perturbation. Section 4.2 provides a
complete description, summarized in Lemmas 4.1, 4.2, and 4.3 of the set of critical points of



the unperturbed potential function. We conclude Section 4.2 with a global convergence result,
presented as Proposition 4.4, stating that in the ideal case of zero natural frequencies and
homogeneous gains almost every solution converges to the set of isolated global minima. The
proof is based on the properties of gradient systems (Hirsch and Smale, 1974) and, due to
the presence of non-isolated critical points, on some results on normally hyperbolic invariant
manifolds (Hirsch et al., 1977).

The convergence results derived in Section 4.2 are at the basis of the oscillation inhibition anal-
ysis in the case of non-zero natural frequencies and heterogeneous gains. More precisely, we
consider small natural frequencies and gain heterogeneities, and treat them as a perturbations.
In this case, the isolated hyperbolic fixed points, as well as the normally hyperbolic invari-
ant manifolds of fixed points, persist along with their stable and unstable manifolds (Hirsch
et al., 1977). The main result, presented as Theorem 4.5, then follows from standard results
on gradient systems, and ensures that a small intensity proportional mean-field feedback DBS
can inhibit a neuronal population, provided that the natural frequencies and the gain hetero-
geneities are not too large.

An extension of the results of Chapter 4 to the generalized dynamics presented in Section A.1 is
provided in Section A.5. More precisely, we relax the assumption that the gain heterogeneities
are small, and derive conditions on the extended set of parameters and the associated gener-
alized potential function for which oscillation inhibition is still guaranteed. This extension is
formally stated in Theorem A.8.

1.3.5 Effective desynchronization via mean-field feedback

Desynchronization via mean-field feedback is the subject of Chapter 5, concluding the list of
numerically observed phenomena in an ensemble of diffusively coupled oscillators under mean-
field feedback. We start by examining how desynchronization might be suitably defined for an
ensemble of phase-oscillators. Since our mathematical analysis relies on the phase equations
associated to the oscillators, we must first answer this question in order to proceed rigorously.

We thus propose in Section 5.1 a short digression on existing concepts of synchronization
and derive a natural and simple definition of desynchronization, compactly presented in Def-
inition 5.1 and called Strong Desynchronization. It requires the relative drift between two
oscillators to be uniformly bounded away from zero. This definition owns the advantage of
being locally defined, and thus suitable for a use both on compact spaces like the N-torus, or
non-compact spaces like RY.

The chapter continues with a mathematical characterization of strong desynchronization. This
characterization is based on the grounded variable associated to the phase dynamics. This vari-
able describes the phase evolution lifted to RY in a reference frame moving with the mean drift
of the population. We show, in particular, that the proposed definition of desynchronization
admits a mathematical characterization in terms of instability concepts on Fuclidean spaces
that is in perfect opposition to that of synchronization in terms of asymptotic stability, cf. e.g.
(Aeyels and Rogge, 2004; Jadbabaie et al., 2004; Sepulchre et al., 2007).

Strong desynchronization is generally too harsh a constraint to be satisfied in practical appli-
cations, due to its all-time nature. We thus weaken the notion of strong desynchronization in
Definition 5.6 by asking the oscillators to be drifting away in average over a suitable time win-
dow. Such a requirement is particularly suited for phase oscillators, characterized by a periodic
internal dynamics. We call this weaker notion of desynchronization practical desynchronization
and characterize it mathematically in Section 5.2.2.



After the having posed the theoretical background for the study of desynchronization, we switch
in Section 5.3 back to the neuronal desynchronization problem. More precisely, we consider
the phase model derived in Chapter 2 with a general interconnection topology and recording-
stimulation setup and study the possibility of inducing a desynchronized activity via mean-field
feedback. The result of this analysis consists of a sufficient condition, given in Theorem 5.10,
ensuring that a given pair of oscillators is descynhronized. This condition involves three terms.
The first one requires the difference in natural frequency to be large, or at least non-zero. The
second imposes the mean natural frequency of the ensemble to be large. Note that this condition
complements the results derived in Chapter 4, by which one expects the mean-field feedback to
induce oscillation inhibition rather than desynchronization if the natural frequencies are small
(cf. Theorem 4.5). The third term guides the feedback gain design, in particular the DBS
electrode positioning and the choice of the stimulation intensity, by imposing to minimize the
closed-loop diffusive coupling strength. The same desynchronization analysis is extended in
Section A.6 to the generalized dynamics introduced in Section A.1.

This result is specialized to the all-to-all Kuramoto model in Corollary 5.11. Interestingly, this
result constitutes a complement to the clustering investigation in (Aeyels and Rogge, 2004).
The former provides a sufficient condition for a pair of originally phase-locked oscillators to be
desynchronized by mean-field feedback, while the latter gives a sufficient condition for a pair
of oscillators to form a practically phase-locked cluster in the absence of external inputs.

Introduction to Part II - More realistic neuron models

Motivated by the development of a closed-loop DBS, the mathematical analysis in Part I high-
lights and rigorously explains the synchronization and desynchronization phenomena observed
in a population of interconnected oscillators, under the effect of its mean-field proportional
feedback. The objective of the second part of the manuscript is to explore other modeling ap-
proaches that might permit to extend this analysis to more biologically sound neuron models.

We start by briefly recalling some essentials on the electrical activity of neurons, and the rich
variety of associated dynamical behaviors beyond the periodically spiking one. The role of a
precise type of ionic current in the neuron membrane, namely the calcium current, is especially
highlighted, in particular in relation to the electrical activity of some PD-related neurons.
A review of some recently proposed modeling and analysis approaches beyond oscillator and
phase models is then presented. Finally, we provide an outline of the two modeling approaches
explored in Part II, and of the obtained results.

1.4 The problem: Modeling and analyzing non-periodically spik-
ing neurons

1.4.1 Ionic basis of spiking

Let us briefly recall some basic physiological facts about the ionic mechanisms underlying the
electrical activity of neurons. A more detailed discussion can be found in Section 6.1. All the
information presented here, and many more details can be found in (Hille, 1984, Chapters 1-5).

The neuron membrane is permeable to different types of ions, mainly sodium Na™, potas-
sium K%, and calcium Ca?T ions. Tons cross the neuron membrane through protein ionic
channels, generating in this way ionic membrane currents. The ionic channels permeability to
the different ions determines the membrane conductance with respect to a given ionic current.
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FIGURE 1.3: Electrical circuit equivalent to a model. C,, denotes the neuron membrane
capacitance. Vi, and Vi are, respectively, the sodium and potassium equilibrium potential.
The nonlinear conductances gy, and gx changes dynamically according to voltage changes.
Ic = C,,dV/dt is the current at membrane capacitance. Iy, and Ik are the ionic currents
generated by, respectively, sodium and potassium ions. The leak current I; approximates
passive properties of the cell. Adapted from (Skinner, 2006), with permission.

At the same time, the difference in ions concentration between the intracellular and extracellu-
lar mediums generates a potential difference, or membrane voltage. Finally, the lipid bilayer of
the neuron membrane acts as an insulator, or capacitance, between the two charged mediums.

Specific ionic channels properties render the obtained conductive-capacitive circuit, sketched
in Figure 1.3, nonlinear. More precisely, the ionic channels permeability to the different ions
is dynamically and nonlinearly regulated by voltage changes. Consequently, the membrane
conductance too changes dynamically according to voltage dependent nonlinear equations.
The nonlinear nature of the resulting electrical circuit is at the basis of the rich behavior of
neurons illustrated in the next section.

1.4.2 A rich variety of behaviors

We include in this section a few examples of the different behaviors associated to the intrin-
sically nonlinear nature of neurons dynamics. The interested reader can find in (Ermentrout
and Terman, 2010, Chapters 1-7) and (Izhikevich, 2007, Chapters 5-9) an exhaustive list of
electrical phenomena occurring in neurons membrane, along with a complete analysis of the
underlying dynamical mechanisms.

Neural excitability (Figure 1.4a) describes the abrupt and large excursion of the membrane
voltage (spike) of an originally resting neuron in response to small and brief stimuli (in red
in the figure). This nonlinear behavior relies on the interaction of the fast reacting inward
(positive) Nat current and the slower outward (negative) KT current. As the stimulus in-
duces a positive voltage change, the sodium current activates much faster than the potassium
current. As a consequence, a net inward current is activated that tends to further increase the
membrane voltage (upstroke). This positive feedback continues until the potassium current
is large enough. At this point the two currents are equilibrated, and the membrane voltage
starts to decrease. Both potassium and sodium currents then decrease as well, and the system
relaxes back to rest (downstroke).

Periodic spiking (Figure 1.4b) appears when, due to an injected dc-current (in red in the
figure), the stable resting state disappears. In this case, the mechanism is essentially the same
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FI1GURE 1.4: Neuronal excitability and periodic spiking

as the one described for neuronal excitability, apart that, after the spike, the injected current
triggers again the fast positive feedback mediated by Na™t currents, and the cycle continues.

Bursting (Figure 1.5a) describes the alternation of resting/excitable spiking and periodic spik-
ing. It is mainly due to the slow adaptation mechanism provided by changes in the intracellular
Ca?* concentration (in green in the figure). Indeed, while other ions concentrations barely in-
fluence the cell electrical properties, variations in Ca®* concentration can switch the neuron
from a resting excitable state to a periodically spiking one, and vice-versa.

After-depolarization potential (Figure 1.5b). While relaxing to rest, after a spike has been
generated, the membrane voltage exhibits a second small bump (depolarization). This sec-
ond depolarization is usually much smaller then a real spike. The ionic mechanism involves
Ca?t currents. Together with sodium, Ca®t currents provide a further, but slower, source of
depolarizing currents. Consequently, during the spike downstroke, inward C'a®* currents are
still active and, if the number of calcium channels is sufficiently large, they can temporarily
overcome the hyperpolarizing effects of K™ currents and generate a small depolarization.

Plateau oscillations (Figure 1.6). If depolarizing calcium currents are sufficiently strong, they
might trigger the fast positive feedback mediated by sodium currents and transform the ADP
in a real spike. The resulting sustained oscillations lie on a “plateau” above the rest membrane
voltage (dashed gray line in the figure). Plateau oscillations continue until the slow modulation
from intracellular Ca?* (green in the Figure) ends the burst.

Calcium channels play a fundamental role in some of the spiking behavior described above.
Citing (Hille, 1984):

“...(voltage-regulated) Ca channels are found in almost every excitable cell...”

They directly participate in the spiking pattern by providing, together with sodium channels, an
extra source of depolarizing currents. But, as opposite to sodium channels that inactivate very
fast, calcium channels contribution last longer, on a similar timescale as potassium channels.
As described above, the antagonistic cooperation of the resulting depolarizing calcium currents
and hyperpolarizing potassium currents regulates the afterspike cell excitability, and is involved,
for instance, in the generation of ADPs (Chen and Yaari, 2008; Brown and Randall, 2009) and
plateau oscillation (Rekling and Feldman, 1997; Beurrier et al., 1999).

Intracellular Ca®* variation due to calcium currents have also a slower modulating effect on
the global cell properties. Citing (Hille, 1984):
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“_..excitable cells translate their electricity into action by Ca?t fluxes modulated
by voltage-sensitive C'a-permeable channels. Calcium ions are intracellular messen-
ger capable of activating many cell function.”

The slow C'a modulation thus permits to shape and adapt the cell activity. In this regard,
bursting and plateau oscillations are just examples. Changes in Ca?* ions concentration affect
as well neurotransmitters release, and ionic channels permeability (Hille, 1984, Chapter 4).

Calcium channels are important also from a PD/DBS perspective. They abound indeed in
STN and dopaminergic neurons cells, where they are believed to participate in the regulation
of the neuronal pacemaking, excitability, and bursting. See for instance: STN (Beurrier et al.,
1999; Hallworth et al., 2003; Song et al., 2000; Zhu et al., 2004); DA (Amini et al., 1999; Cui
et al., 2004; Foehring et al., 2009; Waroux et al., 2005)

1.4.3 Searching simple models of complex dynamics

All the phenomenology presented in Section 1.4.2 is usually described via detailed conductance-
based models of the Hodgkin-Huxley type (Hodgkin and Huxley, 1952). The number of vari-
ables and parameters of such models rapidly increases with the sought level of realism, with
the risk of obscuring the essential firing mechanisms and hampering the mathematical under-
standing of the observed phenomena, in particular for large networks. It is thus of fundamental



importance to derive simple models able to capture the basic properties of neuronal dynamics.
In this regard, the complex oscillator model used in Part I is a simple model for oscillatory
dynamics.

In Part II of this manuscript we explore the mathematical abstraction of some neuron dynam-
ics from detailed to simple models, with the aim of combining physiological soundness and
mathematical understanding. The objective of this investigation is to extend to more realistic
neuron models the synchronization and desynchronization analysis developed in Part 1.

Objective of Part II: Given a neuron type exhibiting some electrophysiological properties,
find a simple model exhibiting and explaining these properties. Based on the simple model, in-
vestigate analytically synchronization and desynchronization phenomena observed in the com-
plex model.

1.5 State of the art: Simple models of complex dynamics

We recall in this section some existing modeling and analysis strategies that allows the simpli-
fied modeling of many of the neuronal properties described in Section 1.4.2.

1.5.1 Reduced neuron models

In (FitzHugh, 1961), FitzHugh derives a two-dimensional reduced model of the Hodgkin-Huxley
dynamics. His reduction is mainly based on the observation, obtained through analogical elec-
tronic simulations, that the system spends most of the time near a two-dimensional subman-
ifold. Even though not rigorously derived, his simple model, later known as the FitzHugh-
Nagumo equation, captures all the qualitative properties of the Hodgkin-Huxley dynamics,
in the sense that they possess the same bifurcation diagram. The bifurcation diagram de-
scribes how the limit sets (in the past and in future) of a dynamical system change as a given
parameter, or set of parameters, changes.

The interest of Fitz-Hugh reduction is that it permits to visualize and understand complex
physiological behaviors through a planar phase-portrait analysis, that FitzHugh called the
“physiological state diagram”. The same phenomena are obscured in the Hodgkin-Huxley model
by the four dimensions of the underlying dynamics.

The principle of FitzHugh reduction have been extended and formalized in (Kepler et al., 1992).
The authors develop an algorithm to replace variables having similar timescales and similar
effects on the membrane voltage dynamics by their weighted mean. Thus, for instance, in the
Hodgkin-Huxley model the variables describing the inactivation of the inward Na™ current and
the activation of the outward K current, both providing a negative feedback on membrane
voltage variations and evolving on similar time scales, can be embedded in a single variable still
providing a negative feedback on membrane voltage variations. Heuristically, FitzHugh per-
formed the same reduction, obtaining the famous “recovery variable” of the FitzHugh-Nagumo
model. The algorithm in (Kepler et al., 1992) fails, however, to embed variables with opposite
effects, called in that paper “antisynergistic”. An example is provided by the activation of the
calcium (inward) and potassium (outward) currents on a similar time scale, whose antisynergis-
tic cooperation is responsible for the generation of ADPs and plateau oscillations, as described
in Section 1.4.2.



1.5.2 Hybrid neuron models

Recent works, in particular (Izhikevich, 2010) and (Izhikevich, 2007, Chapter 8), have revived
the interest for reduced hybrid models that are amenable to a comprehensive mathematical
analysis and yet offer sufficient fidelity to the quantitative model to allow for effective large-
scale simulations. The hybrid® nature of the Izhikevich model adequately captures the fast
(almost discontinuous) behavior of spiking neurons. Hybrid quantitative modeling can also
find applications in the DBS computational model-based approach (Schiff, 2010) discussed in
Section 1.2, where computational efficiency and quantitative fidelity are essential.

Izhikevich’s reduction relies on the fundamental observation that the (fast) voltage dynamics
of many reduced models, including the aforementioned FitzHugh-Nagumo, exhibit, near the
resting state, a fold bifurcation, while the (slow) dynamics of the recovery variable is essentially
linear. By picking a normal form of the fold bifurcation for the voltage dynamics, a linear
equation for the recovery variable, and a reset mechanism for the spike down-stroke, Izhikevich
model is able to reproduce the qualitative and quantitative behavior of a large class of neurons
(Izhikevich, 2003). The resulting phase-portrait is characterized by a quadratic voltage nullcline
and a linear recovery variable nullcline, and its rich phase-portrait permits to explain a number
of physiological phenomena.

1.5.3 Incremental passivity and convergent/contracting dynamics

In recent years, control theorists have shown a growing interest in the analysis and control
of interconnected nonlinear oscillators, in particular in relation to neuronal oscillators. In
this framework, ideas derived from standard stability analysis are adapted to the study of
synchronization, and the related control tools thoroughly exploited.

A first approach relies on passivity techniques. More precisely, in (Stan and Sepulchre, 2007,
Hamadeh et al., 2008; Stan et al., 2007; Oud and Tyukin, 2004) the authors investigate passiv-
ity (Van der Schaft, 1999; Byrnes et al., 1991; Ortega, 1991), semi-passivity (Pogromsky and
Nijmeijer, 2001), and their incremental counterparts of neuronal and other biological oscilla-
tors. Roughly speaking, a system is (strictly output) passive if it dissipates the perturbations’
energy, which ensures asymptotic stability in the absence of perturbations and robustness if
exogenous inputs are present (Van der Schaft, 1999). Clearly, an oscillator can not be passive,
or it would rather converge to some fixed point. It turns out, however, that many oscillators
are semi-passive, that is they are passive only out of the region of oscillation. By diffusive
interconnection, it can also be shown that the semi-passivity property extends to the incre-
mental dynamics (incremental semi-passivity), ruling states differences between the oscillators.
Moreover, diffusive coupling tends to shrink the region of the incremental state space where
strict incremental output passivity does not hold, and, for sufficiently large coupling strength,
diffusive coupling makes the incremental dynamics strictly output passive, which ensures syn-
chronization. In conclusion, passivity and its generalization have proved to be a valid tool for
the analysis of diffusively interconnected neural and nonlinear oscillators.

A second approach for the analysis of synchronization relies on convergent dynamics and con-
traction theory (Demidovich, 1967; Pavlov et al., 2004, 2006; Spong, 1996; Wang and Slotine,
2004; Pham and Slotine, 2007; Lohmiller and Slotine, 1998). Both concepts deal with incremen-
tal stability, that is the stability of motion of one trajectory with respect to an other. Roughly
speaking a system is called convergent, or its dynamics contractive, if locally trajectories ap-
proach each other exponentially. The application to synchronization is thus straightforward

3 A system is said to be hybrid if its dynamics is ruled by both continuous differential equations and discrete
upgrades (Van der Schaft, 2000; Lygeros et al., 2003; Goebel et al., 2009).



by comparing the trajectories of different subsystems. We point out, however, that these re-
quirements, originally formulated for the control of robot manipulators, might be too strong
for biological oscillators.

Works that combine both approaches are (Pogromsky and Nijmeijer, 2001) and (Steur et al.,
2009). In (Steur et al., 2009) the authors show that many neuron models, including physio-
logical models like the Hodgkin-Huxley dynamics, can be decomposed in a scalar dynamics,
receiving external inputs, and a convergent dynamics, associated to membrane conductances.
Based on the results in (Pogromsky and Nijmeijer, 2001), they are able to provide sufficient
conditions for synchronization in networks of diffusively coupled neuronal oscillators.

1.6 Contributions: A preliminary exploration of two new mod-
eling approaches

Most of the results collected in Part I come from preliminary unpublished works. They stem
from two collaborations undertaken during the last year of this PhD thesis. The results con-
tained in Chapter 6 were obtained under the supervision of Prof. R. Sepulchre at the University
of Liége, Belgium. The results contained in Chapter 7 were obtained under the supervision of
Prof. L. Scardovi at the Technische Universitit Miinchen, Germany. Further details about the
available research fundings can be found in the relative chapters.

1.6.1 Reduced and hybrid modeling of calcium gated neurons

Recent results (Drion et al., 2011a,b) have highlighted the importance of voltage-regulated
calcium currents and calcium-regulated potassium channels in the pacemaking, excitability, and
synchronization properties of midbrain dopaminergic neurons. More precisely, these currents
have been shown to participate in the generation of the endogenous neuron rhythm (Drion
et al., 2011a) and in the regulation of the synchronizability of neurons with an external input
(Drion et al., 2011b), as shown in Figure 1.7. This latter property might have an importance
also for DBS. One of the conjectures behind the functioning of present DBS is that indeed STN
neurons synchronize with the DBS signal to a high non-pathological frequency (Hammond et al.,
2008). While STN and dopaminergic neurons do not exhibit exactly the same families of ionic
channels, in both types of neurons voltage-regulated calcium currents and calcium-regulated
potassium channels play a significant role (see page 1.4.2). Motivated by these experimental and
numerical evidences, we proceed further with the mathematical reduction of a dopaminergic
(DA) neuron model, mimicking the reduction of the (four-state) Hodgkin-Huxley (HH) model
to the (two-state) FitzHugh-Nagumo model, and the recent work by Izhikevich on spiking
neurons to reduced HH-type models with a calcium dynamics to a two-state hybrid model.
Even though we do not treat the DBS computational model-based approach (Schiff, 2010) in
this thesis, the potentiality of a quantitative, computationally efficient, hybrid modeling of the
neurons involved in PD/DBS might be relevant also in that framework.

As recalled in Section 1.5.2, the Izhikevich model (Izhikevich, 2010) is a hybrid model of neu-
rons that permits to reproduce with fidelity the spiking pattern of a vast family of neurons.
The parameters of the Izhikevich model can also be tuned to reproduce with fidelity the spik-
ing pattern of dopaminergic neurons, that is a slow periodic spiking (pacemaking) with ADPs.
Interestingly, however, when some external inputs are applied, the behavior of the obtained hy-
brid dynamics is extremely sensitive, and even tiny amounts of current, which barely influence
the behavior of detailed computational models of dopaminergic neurons, completely disrupt
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FIGURE 1.7: Response of an ensemble of heterogeneous dopaminergic neurons to a common

noisy input. SK channels inhibit the calcium-regulated excitability, letting the neurons insensi-

tive to the injected synaptic current and the ensemble desynchronized. When SK channels are

downregulated, the ensemble is entrained by the exogenous current, resulting in a synchronous
behavior. Adapted from (Drion et al., 2011b).

its regular spiking activity. This behavior is not satisfactory in biologically meaningful condi-
tions and makes the obtained dynamics not suitable for the analysis of the neuron response to
external inputs. See Figure 6.13 on page 153.

In Chapter 6 we show that this deficiency is due to the absence, in the Izhikevich model,
of a specific type of bifurcation exhibited by calcium-gated and, in particular, dopaminergic
neurons. Furthermore, we propose an alternative reduced model embedding this bifurcation,
and exhibiting robust pacemaking and ADPs. More precisely, after a brief recall of the ionic
basis of neuron dynamics (Section 6.1), we present in Section 6.2 a modified version of the
Hodgkin-Huxley model, including a voltage-regulated calcium current and exhibiting the typi-
cal behavior of calcium-gated neurons. The obtain model can be reduced in a standard way to a
planar dynamics, exhibiting the same behavior. Phase portrait and numerical bifurcation anal-
ysis are then exploited in Sections 6.2.2 and 6.2.3 to investigate the dynamics of calcium-gated
neurons and some typical physiological phenomena.

A deeper phase portrait investigation reveals that the voltage nullcline* has a self intersection
for a particular value of the input current. We explain in Section 6.3.1 how this self-intersection
is associated to a singular transcritical bifurcation of the fast voltage dynamics. This bifurca-
tion is absent in other existing simple models of neurons, including Izhikevich, and might be
identified as a mathematical signature of calcium-gated neurons. Furthermore, we show ana-
lytically in Section 6.3.3 through normal forms and geometrical singular perturbations (Jones,
1995; Krupa and Szmolyan, 2001b) that this singular transcritical bifurcation is closely related
to the saddle homoclinic bifurcation highlighted by the numerical bifurcation analysis.

“Given a planar dynamics & = f(z,y) and y = g(z,y), the z-nullcline is defined as the set {(z,y) € R? :
& = 0} and, similarly, the y-nullcline as {(z,y) € R*: § = 0}.
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acts with the different ionic currents via parallel feedback loops. In turn, calcium currents

change the intracellular Ca®* concentration, providing a further slower feedback on the volt-

age dynamics (see Section 1.4.2, page 16). The interconnection with other neurons is due to

electrical coupling and to the diffusion of Ca®* ions in the extracellular medium. Other forms
of internal and external interaction can similarly be modeled.

Apart from the mathematical interest of this phenomenon, which appears to be new in neurons
modeling, the computed normal form is used to derive in Section 6.4 a novel reduced hybrid
model of neurons. The parameters of this model can be chosen in order to reproduce the
behavior of a dopaminergic neuron. We finish with a comparison of the detailed computational
model of dopaminergic neurons, the novel reduced model, and the Izhikevich model. We rely
on the mathematical analysis developed in the rest of the chapter to show that the transcritical
bifurcation discussed above is crucial in generating robust pacemaking and ADPs, and that its
absence is at the basis of the non-robust behavior exhibited by the Izhikevich model.

As a conclusion, we propose the novel reduced model as a simple choice for the modeling of
dopaminergic neurons, and, more generally, calcium-gated neurons, and the analysis of their
response to external stimuli.

1.6.2 An input-output approach to neuronal synchronization

As discussed in Section 1.5, passivity and convergent dynamics techniques proved to be an
effective tool to analyze and control synchronization between neurons. At the same time, all
the cited works heavily use a state-space formalism, which requires a detailed knowledge of
the underlying dynamics, while biological systems are intrinsically affected by uncertainties,
variability, and noise.

In (Scardovi et al., 2010), the authors propose a purely input-output approach based on the
theory of nonlinear operators to model and analyze robust synchronization between intercon-
nected systems. This approach requires minimal knowledge of the physical laws governing the
systems, and is therefore particularly well suited to applications displaying high uncertainties
such as biological systems and in particular neuronal populations.

In cellular networks the signaling occurs both internally (through the interaction of electri-
cal, chemical, and other types of species) and externally (through intercellular signaling). In
neurons, in particular, the membrane voltage interacts dynamically with the different ionic
currents and with intracellular Ca®* variations, as described in Sections 1.4.1 and 1.4.2. See
also Section 6.1. This internal type of signaling is at the basis of the neuron endogenous
behavior. Meanwhile, interneuronal electrical and chemical signals travel among large popula-
tions. Figure 1.8 illustrates how these intracellular and intercellular interactions can naturally
be modeled as the interconnection of different units that model electrical, ionic, and chemical
species.



In the framework developed in (Scardovi et al., 2010), each species involved in the neuron
dynamics is modeled as an input-output operator. The input/output interconnection of these
operators forms a compartment that models the whole neuron. The operators associated to
each species are then interconnected among different compartments via diffusive coupling,
modeling electrical and chemical neuronal interaction (Figure 7.1). The obtained system is
naturally suited for the study of open- and closed-loop controls, and in particular DBS, due
to the input-output nature of its constituting elements and the rich control theory literature
available in this domain. See, for instance, (Vidyasagar, 1981; Moylan and Hill, 1978; Van der
Schaft, 1999) and references therein.

Relying on this modeling principle, we provide in Chapter 7 a theoretical extension of the work
in (Scardovi et al., 2010) to take into account heterogeneous populations, and accordingly
adapt the main result in in that reference. More precisely, we provide in Theorem 7.3 sufficient
conditions for a network of heterogeneous interconnected systems to achieve robust synchro-
nization and compute explicitly the bound on the synchronization error, given the strength of
disturbances.

Finally, we illustrate these techniques in the neuronal synchronization context. We show that
the Hindmarsh-Rose neuron can be naturally modeled as the negative feedback interconnection
of two nonlinear operators modeling, respectively, the fast excitable membrane dynamics, and
the slow intracellular calcium dynamics. As an application of Theorem 7.3, Proposition 7.9
provides sufficient conditions for the robust synchronization in a network of diffusively coupled
Hindmarsh-Rose neurons. This result thus constitutes a first extension of the main result
in Chapter 3 to more realistic neuron models. A numerical example is finally considered,
in which we model the interaction of two heterogeneous neuronal population with different
electrical properties (Section 7.4.3).
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Notation

We respectively denote by Z, N and R the sets of all integers, all nonnonegative integers, and
all real numbers. If A€ Nor A € R, and a € A, A>, denotes the set {z € A : © > a}. Given
N € N>y, we let N% = (i,5) € {1,...,N}? : i # j}. If T C Z, #I denotes the number of its
elements.

Given n € N>, T" denotes the n-dimensional torus, or simply n-torus.
Given a set A C R" (resp. A C T™), A denotes its boundary.

Given tow sets X,Y, a function f : X — Y, and A C X, we denote by f|a : A — Y the
restriction of f to A, which is defined by fa(z) = f(x), for all x € A.

We denote by 1,xm € R™*™ the n x m matrix with all unitary entries, and 1,, := 1,x1. In
denotes the identity matrix in dimension n. Given any square matrix A, spect(A) denotes the
set of its eigenvalues.

Given i € {1,...,N}, ¢; € RY is the vector with only zero entries, except the i-th which is
equal to 1. Given z € RN, ! := {z ERN : g7z = 0}.

For all € R™, the Euclidean norm of z is denoted by |z|z := /31 #? and its infinity norm
by |Z|eo := max;—1,. n|z;|. When clear from the context, we simply denote the Euclidean
norm as |z|. For A C R™ and z € R"”, the Euclidean point-to-set distance is denoted by
|z|4 := infyes|y — z|. Given A,B C RY the Euclidean set-to-set distance is denoted by
|A|p := infyeayen |z —y|. For A CR™ and r > 0, B(A,r) denotes the closed ball centered at
A of radius r in the Euclidean norm, that is B(A,r) := {x € R": |z|s <r}.

If u:R>9 — R" denotes a measurable signal, locally essentially bounded, its essential supre-
mum norm is denoted by [|ul| := ess sup;>o|u(t)|.

We denote by V. the vector of partial derivatives (gradient) with respect to x, i.e. V, =
o) e}

(Tm, ey %)

For all z,y € R, z = x mod y if z = x + ky for some k € Z. Given z € R" and a € R, (z

mod a) = [z; mod al,_; , CR™

A continuous function a : R>g — Rxq is said to be of class K if it is increasing and a(0) = 0.
It is said to be of class Ko if it is of class K and a(s) — oo as s — oo. A function g :
R>p X R>p — R>q is said to be of class KL if §(-,t) € K for any fixed ¢t > 0 andf(s,-) is
continuous decreasing and tends to zero at infinity for any fixed s > 0.

We denote by ™ the Lebesgue measure on R™ (resp. T™), and for almost all (Va.a.) denotes the
equivalence operation with respect to this measure. When no confusion can arise, we simply
denote the Lebesgue measure as .

The solution of a system & = f(z,t) starting at g € R™ at time tg € R is denoted by
x(+;to, xo) everywhere it exists. In the autonomous case, the solution of a system & = f(x)
starting at o € R™ at t = 0 is denoted as z(-,xg) everywhere it exists. Given a set U C R,
x(t;to, U) := {x(t;to, o) : xo € U}. Given a set A C R", we define its stable (resp. unstable)
set with respect to a given dynamics & = f(x) as A% := {zp € R" : limy_, |(t;20)|a = 0}
(resp. A% :={xp € R" : limy_,_ |z(t;20)|a = 0}).

Let L3 denotes the extended L space Van der Schaft (1999) of signals w : R>g — R™, such
that the truncation wr := wlj 7y is in L§*([0, T]), for all T > 0. In other words, L3, is made of
all signals that are square-integrable on any finite interval. Given any 7' > 0, for all w,v € L3},
the scalar product of wr and vy is denoted by (w,v)r. We write ||w||r for the L5 norm of
w|p.






Part 1

Neurons as oscillators






Chapter 2

Model derivation and phase-locking
under mean-field feedback

With the aim of approaching the closed-loop DBS control problem described in Section 1.1 in
an analytical way, we derive in this chapter a simplified model of an interconnected neuronal
population under the effect of a closed-loop electrical stimulation. Some useful definitions and
a preliminary analysis of this system are then provided.

Let us briefly recall the problem under analysis. A more complete discussion and more refer-
ences can be found in Section 1.1. Under healthy conditions the subthalamic nucleus (STN)
neurons fire in an uncorrelated (i.e., desynchronized) manner (Nini et al., 1995; Sarma et al.,
2010). In PD patients, STN neurons form a cluster of synchronous periodic activity that leads
to the PD’s physical symptoms (Volkmann et al., 1996; Hammond et al., 2007). In order to
overcome tolerance to pharmaceutical therapies, many patients undergo Deep Brain Stimu-
lation (DBS). Through a pair of implanted electrodes, a low voltage “high"-frequency (>100
Hz) electrical input is permanently injected in the STN. This leads to a drastic reduction of
the physical symptoms (Benabid et al., 1991). At present this electrical signal is periodic and
generated by a standard artificial pacemaker (open-loop control) and is consequently not opti-
mized for the purpose. For each patient an empirical parameter tuning is needed, which may
take up to several days and which is not guaranteed to be effective (Rodriguez-Oroz et al.,
2005). Moreover patients can develop side effects or tolerance to DBS (Kumar et al., 2003)
along the treatment. Also, the permanent electrical stimulation leads to a fast discharge of the
pacemaker batteries and, consequently, to further surgical operations to change them.

In order to both provide theoretical justifications to DBS and to overpass the above limitations
by exploiting cerebral measurements, we develop a rigorous analysis based on a simplified
model. More precisely, we analyze a network of Landau-Stuart oscillators, modeling the neuron
population, subject to a scalar input, modeling the effect of DBS. The DBS signal is taken
proportional to the mean-field of the neuronal population (mean-field feedback).

Due to heterogeneities in the medium, the contribution of each neuron to the mean-field is seen
as an unknown parameter. In the same way, the influence of the DBS signal on each neuron
is modeled as an unknown gain. The coupling topology is also taken to be arbitrary, allowing
for a general time-invariant synaptic interconnection. This approach thus allows to represent
any recording-stimulation setup as well as any coupling topology. Nonetheless, we point out
that it does not detail the neuronal dynamics, nor the electrode setup.

Under standard assumptions, our model reduces to a modified version of Kuramoto coupled
oscillators. This model, originally developed in the seminal work (Kuramoto, 1984), has been
already extensively exploited to analyze synchronization phenomena in networks of oscillators



(Pyragas et al., 2008; Daniels, 2005; Acebron et al., 2005; Kuramoto, 1984; Brown et al., 2003;
Cumin and Unsworth, 2007; Maistrenko et al., 2005; Chopra and Spong, 2009; Van Hemmen
and Wreszinski, 1993; Jadbabaie et al., 2004; Dérfler and Bullo, 2011). Only recently the
interest of the scientific community has focused on desynchronization phenomena, in particular
in relation with neurological pathologies (Maistrenko et al., 2005; Pyragas et al., 2008; Tukhlina
et al., 2007; Tass, 2003b).

Motivated by the same problem, we introduce in Section 2.1 the Landau-Stuart oscillator as a
simple representation of the limit cycle associated to periodically spiking neurons. Relying on
this mathematically treatable abstraction of the neuronal rhythm, in Section 2.2 we derive an
original model of interconnected oscillators under mean-field feedback. After having formally
defined different types of phase-locked solutions (Section 2.3), we show that, for a generic class
of interconnections between the oscillators, the existence of perfectly phase-locked oscillating
solutions is not compatible with any non-zero mean-field proportional feedback (Section 2.4.1).
This analytical result, illustrated through simulations, confirms the expectations of a closed-
loop DBS desynchronizing strategy. We present the lemmas needed for the proof of the main
result in Section 2.4.2. The proofs of major results are given in Section 2.5, while technical
proofs are provided in Section 2.6

2.1 A simple representation of the periodic spiking limit cycle

As anticipated in Section 1.3, in Part I we focus on periodically spiking neurons, that is
neurons generating an infinite regular train of action potentials. Even though a rich variety
of behaviors exist beside this, periodic neurons are commonly considered for the analysis of
neuronal synchronization. See for instance (Ermentrout and Terman, 2010, Chapter 8) and
(Izhikevich, 2007, Chapter 10), and references therein. As a first step in exploring the control
of neuronal synchronization, we thus start by focusing on this particular type of neurons, and
postpone possible extensions to more realistic neuron models in Part II.

The dynamics underlying periodic spiking behavior can be extremely complicated. Even basic
physiological models, such as the Hodgkin-Huxley model (Hodgkin and Huxley, 1952) depicted
in Figure 2.1, consist of four coupled nonlinear differential equations. If the mathematical anal-
ysis of some isolated physiological neuron models, or small networks of them, is still feasible!,
the only realistic analysis of large networks is through numerical simulation. With the aim of
establishing analytical results on networks with an arbitrary number of neurons controlled via
electrical stimulation, we look for a simpler model still exhibiting some of the peculiarities of
its complex counterparts.

A hallmark of periodically spiking neurons is the existence of a (locally) exponentially stable
limit cycle attractor, as it is evident in the two dimensional Ing, + I (persistent sodium plus
potassium) neuron model depicted in Figure 2.2. One could look for a simple representation of
the periodically spiking limit cycle relying on analytical tools, like center manifolds reduction
and topological equivalence arguments. See (Guckenheimer and Holmes, 2002, Sections 1.7, 1.8,
and 1.9, and Chapter 3) and (Guckenheimer, 1995), and references therein for an introduction
to these techniques. Such a rigorous derivation would go beyond the motivation and the goal
of this modeling section. Our goal is to find a mathematically treatable representation of a
locally exponentially stable limit cycle attractor.

Apart from exhibiting a stable oscillation, we require the simple model to exhibit another
basic property, dictated by control theoretical needs. All the physiological models possess an
electrical variable associated to the neuron membrane voltage, while the rest of the variables

!See for instance Part II of the book (Coombes and Bressloff, 2005), and references therein.
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FIGURE 2.1: Periodic spiking in the Hodgkin-Huxley model. Equations and parameters as in
(Hodgkin and Huxley, 1952).
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FIGURE 2.2: Periodic spiking and associated limit cycle in the Iy, + Ix model. Equations
and parameters as in (Izhikevich, 2007, Figure 4.1)

describe the membrane permeability to the different ions involved in the spiking generation
mechanism. This distinction is crucial when we have to define a meaningful output. In the
DBS practice, indeed, only electrical measurements are available. We thus require the simple
model to possess at least two variables. So, one can be associated to the membrane voltage, and
constitutes the model output, while the other is associated to the other variables of physiological
models.

Consider, the following complex oscillator, known as Landau-Stuart oscillator,
i = (iwo + p? — |2|?)z, z€C, (2.1)

where w, € R and p > 0. In its simple form this model captures the two aforementioned basic
properties of periodically spiking neurons. First, it exhibits an exponentially stable oscillation
of radius p and frequency w, (Guckenheimer and Holmes, 2002, Theorem 3.4.2). More precisely,
the local convergence rate, which measures the limit cycle attractivity, is 2p? (see the proof
of Proposition A.1, in Chapter A). Thus, the radius, the frequency, and the attractivity of
the oscillation can easily be tuned by changing w, and p. Secondly, we can associate its real



part to the membrane voltage, representing the measured output, and its imaginary part to a
recovery variable, embedding the effects of the other variables of physiological neuron models. A
similar simplification of the neural rhythm has been extensively used in the synchronization and
desynchronization literature. See for instance (Kuramoto, 1984; Ermentrout, 1990; Winfree,
1980; Rosenblum et al., 2006; Hauptmann et al., 2005a; Popovych et al., 2006b; Pyragas et al.,
2008), just to name a few references. Figure 2.3 summarizes this modeling approach. However,
(2.1) constitutes a simplification of more complex models under different aspects. For instance,
its phase phase-dynamics is invariant with respect to natural radius re-scaling. This fact is
reflected in the model’s radial “isochrons” (Guckenheimer, 1975), which leads to consistent
simplifications in the form of the coupled phase dynamics. More complex limit cycle oscillators
do not share the same simple structure, and the consequence of this difference on the form of

the phase coupling can be important, see e.g. (Ermentrout and Terman, 2010, Sections 8.1.3
and 8.1.4, and references therein).

We stress that, throughout Part I, we use (2.1) in the strong attractivity regime, that is
for sufficiently large natural radius p. Other works, e.g. Aronson et al. (1990), study the
dynamics of coupled Landau-Stuart oscillators (2.1) as a normal form of coupled oscillators
near a supercritical Hopf bifurcation, corresponding to small natural radius, when the limit

cycle attractivity is small. The behavior in the two regime is rather different, as we further
discuss in Sections A.1 and A.3.4.
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2.2 Coupled oscillators under mean-field feedback

Relying on the simple representation (2.1) of periodically spiking neurons, in this section we
derive a phase model describing a neuronal population under the effect of mean-field feedback.

While the coupling between real neurons can rely on different physical mechanisms (electrical
diffusive coupling or gap-junction, impulsive coupling, synaptic coupling, chemical coupling,
etc.), we assume diffusive coupling between the oscillators, in order to derive a mathematically
treatable model. The same approach has been exploited, for instance, in (Maistrenko et al.,
2005; Pyragas et al., 2008; Tukhlina et al., 2007; Tass, 2003b). The model for N € N> coupled



oscillators is then given by
N
Zi = (iwi + p? — |zi|2)zi + Z/ﬁij(zj‘ — Zi), Vi=1,...,N,
j=1

where x;;, 4,7 = 1,..., N, denotes the coupling gain from oscillator j to oscillator i. We
denote w = [w;]i=1,..N € RY as the vector of natural frequencies. As in practice the neuronal
interconnection is poorly known, we allow x;;, 4,7 = 1,..., N, to be arbitrary in our study.
The possibility of considering any interconnection topology is an interesting particularity of
the approach presented here. Furthermore, the presence of a limited number of electrodes and
their large size with respect to the neuronal scale, makes the mean-field (i.e. the mean neurons
membrane voltages) the only realistic measurement for DBS. In the same way, the unknown
distances from the neurons to the electrodes and the unknown conductivity of nearby tissues
make the contribution of each neuron to the overall recording both heterogeneous and unknown.
Consequently the only measurement assumed to be available for DBS is the weighted sum of
the neuron membrane voltages. Associating the real part of (2.1) to the voltage, the output of
our system is therefore

N
y =Y a;Re(z), (2.2)

j=1
which is referred to as the mean-field of the ensemble, where o := [oy]j=1,.. N € RJEVO describes
the influence of each neuron on the electrode’s recording. Similarly, we define 3 := [5;];=1,.. N €

RY | as the gain of the electrical input on each neuron. It is assumed to be unknown. The pair
(a, ) thus defines the stimulation-registration setup. The dynamics of N coupled oscillators
under mean-field feedback then reads:

N N
Z; = (iwi + p? — ‘21‘2)21 + Z mj(zj —2i) + Bi Z O@'RG(Zj), (2.3)
j=1 J=1
for all ¢ = 1,...,N. Let us briefly compare the above model to existing ones. A complete

review of other related works can be found in Section 1.2. In (Rosenblum and Pikovsky, 2004a;
Tukhlina et al., 2007) the global dynamics of the network is modeled as a single Landau-Stuart
oscillator, exploiting the fact that oscillators are synchronized. Hence that model is valid
only near the synchronous state. On the contrary (2.3) is valid for both synchronized and
desynchronized behaviors. In (Popovych et al., 2006b) the authors use a population approach
with all-to-all coupling that makes the results valid only for large number of oscillators with
an homogeneous interconnection topology. Our paper allows for general coupling topology
and number of agents. Finally, we consider a real output as opposed to the complex output
assumed in (Popovych et al., 2006b).

In order to simplify the analysis, we make the assumption that each oscillator evolves with
constant radius.

Assumption 1. For all i = 1,..., N there exists a constant r; > 0 such that the solution of
(2.83) satisfies |zi(t)| = ri, for all t > 0.

This assumption is equivalent to neglecting the radius dynamics. It is commonly made in
synchronization studies (Acebron et al., 2005; Aeyels and Rogge, 2004; Jadbabaie et al., 2004,
Van Hemmen and Wreszinski, 1993; Brown et al., 2003; Kuramoto, 1984; Ermentrout and
Kopell, 1990), and is justified by the normal hyperbolicity of the stable limit cycle of (2.1) that
let the oscillation persist under sufficiently small external perturbations (cf. e.g. (Hoppensteadt
and Izhikevich, 1997, Chapter 4.3)). More precisely, as we rigorously show in Section A.2,



given p; > 0,4 =1,..., N, it is possible to find an upper bound §,(p) > 0 on the coupling and
feedback strength, such that, if

(5, B, )| < b, (2.4)
where £ := [K;j]ij=1,..~, then the oscillator radius variations around their natural radius are
bounded by

Ir(t) — p| < Chl(k, B,0)], vt >0, (2.5)

for some positive constant C, = C(p). Thus, Assumption 1 can be verified with an arbitrary
precision, provided that the coupling and the feedback gains are sufficiently small. Note that
the small coupling condition (2.4) and the radius variation bound (2.5) solely depend on the
natural radius p. In particular they are independent of the oscillator natural frequencies.

By relying on Assumption 1 we can derive the phase dynamics of (2.3). A more rigorous
derivation can be found in Section A.2. By letting z; = r;e'%, which defines the phase 6; € T
of each oscillator, we get from Assumption 1 that 2 = 7% + ir;0;el% = ir;0;e%. Dividing

each side of this equation by 7;€l%, and extracting the imaginary part of both sides, we get
from (2.3) that

N

: rj
0; = w; + Z /{U Sln (05— 0;) — Bs 5111(91-); ozjr—z cos(4;).
We can now use the trigonometric identity sin 6; cos 6; = 3 sin(6; +6;) — 3 sin(6; — 6;) to derive
N N
= Z ij T Vij SIH(QJ 01) - Z’Vij Sin(ej + 0%)7 (26)
j=1 j=1
forall i =1,..., N, where
r
0 e ) e RNV (2.7)
’ Y i 7‘).] 1,. 7N
is referred to as the coupling matriz, and
— s _ [Biayr RNXN 5
Y= [’YULJ‘:L,,,,N T € (2.8)
Ti dij=1,..N

defines the feedback gain. We also define the modified coupling matriz, I' € RV*N | as

)

U=yl joa v = R +%igli jor v (2.9)
Our study is based on the incremental dynamics of (2.6), defined, for all i,57 =1,..., N, by

N
éi—éj = wi—wj—Z(vm sin(6;46;) + vjn sin(0,+6; ) Z ( insin(@p—0;) — Ty, sin(@n—Hj)>.
n=1
(2.10)
The model (2.6) appears to be new in the literature and allows, by properly choosing a,
and k, to encompass all kinds of interconnection topologies and recording-stimulation setups.
We stress that the use of a nonzero feedback gains ~ breaks the T (i.e global phase shift
(Sepulchre et al., 2007, Eq. (8))) symmetry of the original Kuramoto system. As it will be
clearer in the sequel, this complicates the analysis, but allows for new desynchronization and
inhibition expectations.



2.3 Different types of phase-locked solutions

In this section we formally define the concept of phase-locking. From a modeling point of
view, phase-locking describes the pathological STN synchronous activity. Roughly speaking, a
phase-locked solution can be interpreted as a fixed point of the incremental dynamics (2.10).
We distinguish solutions that exhibit collective oscillations (pathological case for DBS) from
non-oscillating ones, corresponding to a neuronal inhibition.

Definition 2.1. A solution {6;},—; .~ of (2.6) is said to be phase-locked if it satisfies
0:(t) —0;(t) =0, Vi, j=1,...,N, Vt>0. (2.11)

A phase-locked solution is oscillating if, in addition, 9:‘(15) = 0, for almost all ¢ > 0 and all
i=1,...,N.

In other words, for oscillating phase-locked solutions, the discharge rhythm is the same for
each neuron, which corresponds to a synchronous (pathological) activity, while in the non os-
cillating case the neurons are in a quiescent (non pathological) state. The above definition of
phase-locking corresponds to that of “Frequency (Huygens) Synchronization" (Fradkov, 2007,
Definition 5.1 and Example 5.1), which is the most widely studied in the analysis of syn-
chronization between coupled oscillators (Kopell and Ermentrout, 2002; Scardovi et al., 2007
Chopra and Spong, 2009; Acebron et al., 2005; Aeyels and Rogge, 2004; Jadbabaie et al., 2004;
Van Hemmen and Wreszinski, 1993; Brown et al., 2003; Assisi et al., 2005; Sepulchre et al.,
2007; Sarlette, 2009; Fradkov, 2007; Pikovsky et al., 2001; Doérfler and Bullo, 2011; Ko and

Ermentrout, 2009). It is trivially equivalent to the existence of a matrix A := [Aj;lij=1,.., N,
such that
0;(t) —0;(t) = Ay, Vi, j=1,...,N, Vt >0, (2.12)
or to the existence of a measurable function €2 : R>¢g — R such that, for each i =1,..., N,
t
03(1) :/ Q(s)ds + 05(0), Vi >0, (2.13)
0

where §2 is the instantaneous collective frequency of oscillation, that is Hf(t) = Q(t) for all
i=1,...,N. In case of oscillating phase-locking, Q(t) # 0 for almost all ¢ > 0.

In the original Kuramoto system, i.e. without mean-field feedback, the oscillating and non-
oscillating cases are equivalent due to the 7' symmetry, which guarantees invariance to a
common phase drift such as a nonzero mean natural frequency. More precisely, if v € R is
the synchronization frequency of a Kuramoto phase-locked solution, one can introduce a new
variable 6, (t), defined by 6; = (0,):(t) + vt, for all ¢ > 0, which corresponds to switching to a
rotating reference frame. Due to the invariance of the Kuramoto system with respect to a global
phase-shift, it is easy to verify that 6, is ruled by an autonomous dynamics and that it converges
to a non-oscillating phase-locked solution. See also (Jadbabaie et al., 2004; Sepulchre et al.,
2007) for the Kuramoto model and (Ermentrout, 1990) for a similar discussion in diffusively
coupled complex Landau-Stuart oscillators. Conversely, the sinusoidal additive term brought
by the mean-field feedback breaks the 7! invariance, and oscillating and non-oscillating phase-
locked solutions become physically and mathematically distinct objects. This distinction is
crucial for the achievement of oscillation inhibition (Chapter 4) and desynchronization (Chapter
5) via mean-field feedback. In both cases indeed, the magnitude of the oscillators natural
frequencies plays a fundamental role.



Example 2.1. Consider the following system? of two oscillators:

01 = 1+4sin(6; + 63) + sin(26;)
Oy = 24 2sin(6; + 03) + 2sin(26-),

that is, with the above notations, w; = 1, wy = 2,‘1“ =0, 711 =72=1, Y21 = 722 = 2. For
01(0) = 02(0) = /12, it can be seen that 01(t) = 02(t) = 0, for all t > 0. This corresponds to
a non-oscillating (inhibited) phase-locked solution.

We note that a simple sufficient condition to avoid non-oscillating phase-locking is given by

N N
‘max_|w;| > max E |kij + vij| +  max E Y451,
i=1,...,N =1,....N | ‘. i=1,....N 4
J=1j#i J=1

meaning that at least one natural frequency is sufficiently large with respect to the coupling
and feedback gain. This condition ensures that the phase dynamics (2.6) does not have fixed
points.

2.4 Phase-locked solutions under mean-field feedback

2.4.1 Existence of oscillating phase-locking

We now present a general result on phase-locking under mean-field feedback.

Theorem 2.2. For almost all natural frequencies w € RN, for almost all interconnection
matrices k € RV*N and for almost all feedback gains v € RVN*N | system (2.6) admits no
oscillating phase-locked solution.

Theorem 2.2, whose proof can be found in Section 2.5.3, states that, for a generic neuronal
interconnection, the use of a proportional mean-field feedback prevents the oscillators to all
evolve at the exact same frequency. Generically, under mean-field feedback, only two situations
may thus occur: either no phase-locking or no oscillations. This result therefore constitutes
a promising feature of mean-field feedback DBS. We stress that the result of Theorem 2.2 is
meaningful for the full dynamics (2.3) only if the small coupling condition (2.4) is satisfied,
which ensures that the phase dynamics (2.6) is a good approximation of (2.3). More precisely,
the result of Theorem 2.2 extend to (2.3) only if k£ and ~ are sufficiently small, independently
of the natural frequencies w.

On the one hand, the strength of Theorem 2.2 stands in the generality of its assumptions:
it holds for generic interconnections between neurons, including negative weights (inhibitory
synapses), and does not require any knowledge neither on the contribution ¢; of each neuron on
the overall measurement nor on the intensity ; of the stimulation on each neuron. On the other
hand, the disappearance of the phase-locked states does not prevent a pathological behavior.
Indeed, while Theorem 2.2 states that the perfectly synchronized behavior is not compatible
with mean-field feedback, it does not exclude the possibility of some kind of “practical” phase-
locking, such as solutions whose mean behavior is near to that of a phase-locked one, but
with small oscillations around it. For instance, they may correspond to phase differences
which, while not remaining constant, stay bounded at all time. From a medical point of view,
such a behavior for the neurons in the STN would anyway lead to tremor. We address this

>This example was suggested by an anonymous reviewer of the CDC 2010 conference version of the result
presented in this chapter. We are very thankful to him for this suggestion.



problem in Chapter 3. Moreover, as illustrated in Example 2.1, and discussed in details in
Chapter 4, if the feedback gain is too large with respect to the natural frequencies, mean-
field feedback may leads to non-oscillating phase-locked solution, corresponding to neuronal
inhibition. Conversely, when the natural frequencies are sufficiently large there exists a range
of feedback gains for which mean-field feedback can induce full desynchronization. We provide
in Chapter 5 a sufficient condition to ensure full desynchronization in the Kuramoto system
under mean-field feedback for a general interconnection topology and feedback setup.

Numerical simulations illustrate these features. We simulate an ensemble of N=20 coupled
Landau-Stuart oscillators (2.3). Their natural radius is p; = 10 for all ¢ = 1,..., N. Defining
randyxm C R™™ as the ensemble of matrices whose elements are randomly chosen on the
interval [0,1] according to a uniform distribution, the interconnection matrix is chosen as
k = %KOR, where Ko € R is the coupling strength and R € randyxy. In the simulation
K is chosen sufficiently large to yield the existence of an asymptotically stable phase-locked
solution in the absence of an external stimulation. The weight of each neuron on the measured
mean-field (2.2) is chosen as @ = randyxi1. The influence of the input on each neuron (see
(2.3)) is chosen as § = BB, with B € randyx1, where 3 € R denotes the feedback gain. This
choice for a and § defines a generic and imprecise recording and stimulation setup. In order
to have a heterogeneous ensemble, the natural frequencies are randomly chosen on the interval
[Winin, Wmin + 3] according to the uniform distribution, where wy,;, is either 0.27 or 2.

We quantify the synchronization of the system, by defining the collective radius 7+, (Kuramoto,
1984) and the mean phase 1) of the network as

Too(t)eV®) = Zeiei(t), vt > 0. (2.14)

The mean-field feedback is switched on at ¢t = 3.

As shown in Figure 2.4(a), for a sufficiently large negative feedback gain B = — K and if the nat-
ural frequencies are large, i.e. wmin = 27, mean-field feedback induces full-desynchronization.
Indeed, by noting that 6; —0; = 6;——(0;—1), for all i, j = 1,..., N, the plot in Figure 2.4(b)
shows that the phase differences between most pairs of oscillators, at the exception of small
clusters (Aeyels and Rogge, 2004; Aeyels and De Smet, 2010; De Smet and Aeyels, 2009), tend
to grow indefinitely and with uniformly non-zero drift, at least in average, which corresponds
to a fully desynchronized behavior® (cf. Definitions 5.1 and 5.6 in Chapter 5). As shown in
the inset of Figure 2.4(b), the disordered behavior of the collective radius ro, is also similar to
that of an uncoupled ensemble.

Conversely, if the natural frequencies are small, i.e. wpy = 0.27, the mean-field feedback
blocks the oscillations, as shown in Figure 2.5(a). We stress that this type of oscillation inhi-
bition does not correspond to an oscillator death, as the one discussed in (Ermentrout, 1990),
when also the oscillation amplitude goes to zero. Indeed, as imposed by Assumption 1, and
confirmed by Figure 2.5(b), in the case under analysis here only the frequency of oscillation
goes to zero, while the oscillation radius remains practically unchanged during the oscillators
evolution. A similar oscillation inhibition is considered in (Ermentrout and Kopell, 1990).
The system remains however practically phase-locked if a too small feedback gain B =—05K,
is used (cf. Figure 2.6), that is the oscillators exhibit small oscillations around a perfectly
phase-locked state. We stress that also in this case, as stated by Theorem 2.2, the oscillating
phase-locked solution disappears as soon as we activate the mean-field feedback. Indeed, from

3For the sake of clarity, these plots are given with the phases evolving in R rather than in T



Definition 2.1, and Equation (2.12), if the system is phase-locked we have
1 “ 1 o N N
— i0:(t)| _ 01 (t A || — A,
Too(t) := —ZEZI el = |—e"! (1-1-;26 1) = 1+i:§26 H, (2.15)

that is 7o, has to be constant, which is the case for neither small (Figure 2.6(b)) nor large
(Figure 2.4(b)) feedback gain.

FIGURE 2.5: Large feedback gain and small natural frequencies: neuronal inhibition.

2.4.2 Characterizations

The proof of Theorem 2.2 is based on two main steps, which are presented here as Lemmas 2.3
and 2.4. Their interest goes beyond the technical aspects of the proof, as they underline some
intringic properties of the Kuramoto system under mean-field feedback, and permit to give a
characterization of its phase-locked solutions in terms of an associated fixed point equation.
Lemma 2.3 states that the problem of finding a phase-locked solution can be reduced to solving
a set of nonlinear algebraic equations in terms of the phase differences A and the collective
frequency of oscillation . Its proof is provided in Section 2.5.1.
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FIGURE 2.6: Small feedback gain: practical phase-locking.

Lemma 2.3. For all initial conditions 0*(0) € TV, all natural frequencies w € RN, all coupling
matrices k € RVN*N and all feedback gains v € RN*N | if system (2.6) admits an oscillating
phase-locked solution starting in 6*(0) with phase differences A and collective frequency of
oscillation Q0 satisfying (2.12)-(2.13), then, for all 1 < i < j < N, it holds that

N
wi —wi+ Y [(kjn +vin) sin(Ajn) = (Kin +7in) sin(Ain)| = 0,(2.16a)
h=1

hf:iyjh sin <2 /0 O(s)ds + Ay + 29;(0))—%»;1 sin (2 /0 O(s)ds + Ay + 29;(0)) } — 0.(2.16b)

While this fact is trivial for the Kuramoto system without inputs (i.e. v = 0), its generalization
to the presence of mean-field feedback is not straightforward. The first set of equations (2.16a)
can be seen as the classical fixed point equation for a Kuramoto system with natural frequencies
w and coupling matrix I' = k + «. It may or may not lead to the existence of a phase-locked
solution (see (Jadbabaie et al., 2004) for necessary and sufficient conditions). The second set
of equations (2.16b) is linked to the action of the mean-field feedback. It trivially holds if
the feedback gain ~ is zero. Intuitively, we can expect that if the frequency of the collective
oscillation € is not zero then (2.16b) admits no solution for any v # 0. This fact becomes
evident in the following example involving only two neurons.

Example 2.2. For N=2,Equation (2.16b) boils down to a single condition. Consider w # wa,
vij =1 and kij =2 for all i,j € {1,2}. In view of (2.12), condition (2.16b) reads

¢ t
sin (2/ Q(s)ds + 29;(0)) — sin (2 / Q(s)ds + 205(0) + 2A21> =0,
0 Jo
or, by invoking the trigonometric identity sina — sinb = 2 cos ("“T*'b) sin (‘IT_Z’),
t
2 cos (2 / Q(s)ds + 205(0) + A21) sin(Az) = 0,
0

for all t > 0. In addition, (2.12) imposes that Ay = —Aq. Consequently (2.16a) reads
w1 —we = 2sin(Ag). Since wy # wa, it also holds that A9y & {0,7}. We conclude that (2.16b)
admits no solution for any Q0 which is not zero almost everywhere and thus, in particular, (2.6)
admits no oscillating phase-locked solutions.



The second main step in the proof of Theorem 2.2 confirms that indeed, if (2.16) admits
a solution (A, ), then A is fully determined by the “standard" part (2.16a) of this fixed
point equation and is thus independent of the collective oscillation frequency 2. In particular
the following lemma states that, around almost any solution of (2.16a), the phase differences
that define a phase-locked configuration A can be locally expressed as a smooth function of
the natural frequencies w and of the interconnection matrix I'. The proof of this lemma,
mostly relying on the implicit function theorem (Lee, 2006) and elementary measure theory
(Billingsley, 1995), is provided in Section 2.5.2.

Lemma 2.4. There exists a set N C RN x RN*N and a set Ny C N satifying p(Ng) = 0,
such that (2.16a) with natural frequencies w* € RN and modified interconnection matriz T* :=
E* 4+ % € RNN admits a solution A* € RVN*N if and only if (w*,T*) € N. Moreover, for
all (w*,T*) € N\ Ny, there exists a neighborhood U of (w*,T*), a neighborhood W of A*, and
a smooth function f: U — W, such that, for all (w,T') € U, <w7 r, A:= f(w,F)) is the
unique solution of (2.16a) in U x W,

In other words, Lemma 2.4 states that the standard, i.e. without mean-field feedback, Ku-
ramoto fixed point equation (Aeyels and Rogge, 2004; Jadbabaie et al., 2004) is invertible for
a generic choice of natural frequencies and interconnection topology.

We close this section by stressing a limitation of Theorem 2.2, due to its generic nature.
Some particular configurations may indeed allow for phase-locking even under a mean-field
feedback stimulation. The following counter-example illustrates this fact, by showing that all-
to-all homogeneous interconnections preserves phase-locking under mean-field feedback if all
the neurons have the same natural frequencies. We stress that the heterogeneity of neurons and
the complexity in their coupling make this example irrelevant for practical neural modeling.

Example 2.3. (Oscillating phase-locking despite mean-field feedback) Consider the
system (2.6) with w; = wj, kij = k and v;; = v # —k for all i,j = 1,...,N. This choice
corresponds to the all-to-all coupling of identical Kuramoto oscillators, and is well studied in the
literature, cf. e.g. (Kuramoto, 1984; Sepulchre et al., 2007; Aeyels and Rogge, 2004; Sarlette,
2009; Brown et al., 2003).The system of equations (2.16a) then reads, for all1 <1< j < N,

N
> (k+7)(sin(Ajy) —sin(Ag)) = 0.
h=1

A solution to this equation is Aj; = 0 for all 1 < 1 < j < N. In view of (2.12), this is
equivalent to the existence of Oy € T such that 0}(0) = 0y, for alli=1,...,N. The system of
equations (2.16b) then reads

th:l {sin (2 /Ot Q(s)ds + 90> — sin <2 /Ot Q(s)ds + 90))} =0,

which s trivially satisfied for any collective frequency of oscillation Q). Lemma 2.4 thus ensures
that oscillating phase-locking is preserved despite the mean-field stimulation.



2.5 Main proofs

2.5.1 Proof of Lemma 2.3
From (2.12)-(2.13), phase-locked solutions of (2.6) satisfy, for allt >0 and all 4,5 =1,..., N,

05 () +0;(t) = 05(t) — 07 (1) + 207 (1)
= 2Aq(t) + A 207 (0), (2.17)

where Aq(t) := ng(s)ds, for all t > 0. In view of (2.10), (2.12)-(2.13), and noting that the
fixed point equation equation is trivial if 4 = j and that, due to the antisymmetric dependence
of (2.16) on 7 and j, finding a solution for some i = ¢* and j = j* gives a solution also for
1 =j* and j = ¢*, finding a phase-locked solution is equivalent to solving the set of equations

N
wj —wi + Y [(kjn +vjn) sin(Ajn) — (kin + vin) sin(Agp)]
h=1

N
-3 [%-h sin (2Aq(t) + Ajn + 207(0)) — i sin (2Aq () + Ag, + 29;‘(0))} =0. (218
h=1

forallt >0and all 1 <7< j <N, in terms of A and . Note that the first line of the last
equation is constant, that is there exist constants {c;;}; j=1,.. ni<; such that

N

Wi — Wy +Z[(l€jh+’}/jh) Sin(Ajh)—(kih + 'Yih) Sin(Aih)]:Ci]‘. (2.19)
h=1

Equation (2.18) then reads
N
3 [yjh sin (2A0(t) + Ajy + 265(0)) — yan sin (2A0(t) + Ay, + 29;(0))] =y, (2:20)
h=1

forallt > 0 and all 1 < ¢ < j < N. Hence, if a phase-locked solution exists, then there
must exist a solution to the set of equations (2.19) and (2.20) in terms of A, Q and ¢ :=
{¢ij}ij=1,..,Ni<j. By time-differentiating (2.20), one gets, for allt > 0 and all 1 <i < j < N,

N
20(t) 3 [1n cos (2ha(t) + Aji +207(0)) = 7an cos (2Aa(t) + A +207(0) | =0.  (2.21)
h=1

Since 2 is a non identically zero continuous function, there exists an open interval (¢,7), 0 <
t < t, such that (t) # 0 for all ¢ € (¢,7). Hence (2.21) implies that

N
> [m cos (2 (t) + Ajp + 205(0)) — in cos (2Aa(t) + Mg + 29;(0))] =0, (2.22)
h=1

for all t € (t,t). By differentiating (2.22) with respect to time and considering once again
that Q(t) # 0 for all ¢ € (£,7), one gets that (2.20) holds true for all ¢ € (¢,f), and for
all 1 < i < j < N. ¢ being a constant this implies that, for all t > 0, ¢;; = 0, for all
1<i<j<N. OJ



2.5.2 Proof of Lemma 2.4

For notational purposes, define y; := A;y, i =1,...,N — 1, and y := [y;];=1,..n—1. Since it
holds that Ay = yn — ym, for allm,n = 1,..., N, we can express all the phase differences in
(2.16a) in terms of the components of y. Analogously, since 0, — 0y, = 0, — 05 — (0 — On),
it suffices to find a solution to the set of equation in (2.16a), relative to the pairs of index
(4,N),i=1,...,N —1. For the vectors y, we use the suffix * when it refers to A*. Define, for
i=1,...,N—1,

N-1

Fi(w,T,y) == wn — w; — Z [Fih sin(yn, — vi) — T'vn sinyh] —I';n siny;. (2.23)
h=1

With this notation, the equations in (2.16a) relative to the pairs of index (i, N),i =1,..., N—1,
can be written as

F(w,T,y) = 0. (2.24)

In order to solve (2.24)in the form y = f(I",w) through the implicit function theorem , we have

to show that the matrix oF

Ay, ij=1,...,.N—1

has full rank on the solutions of (2.24). Define, for y € RN,
S(y) :=={T e RV*N . det J(T,y) = 0}. (2.26)

Since det J(I',y) is a non-identically zero analytical function (for example it is non-zero for
y=0and I';; =1, for all 4,j = 1,...,N), it is zero only on sets of zero measure (Krantz and
Parks, 2002, Chapter 4). In particular u(S(y)) = 0, for all y € RV~1. Let the sets N and N
be defined as

N ={(wT) eRY xRN : 3y e RN"!: F(w,T,y) = 0} (2.27)

and
No = {(w,T) e RN x RV*N 3y e RN"1: F(w,T,y) =0,T € S(y)}, (2.28)

that is VV contains all the natural frequencies and modified interconnection matrices that admit
a solution to (2.16a), and N all the natural frequencies and modified interconnection matrices
that admit a solution to (2.16a) such that (2.25) is singular. The next claim, proved in Section
2.6.1, shows that Ny is of zero Lebesgue measure.

Claim 2.5. Let Nj be defined as in (2.28). Then p(Npy) = 0.

The lemma then follows directly from the implicit function theorem. Indeed, given any point
(w*, T*) € N\ Ny, since T* & S(y*), the matrix J(I'*,y*), defined in (2.25), is invertible, and
the existence of the neighborhoods U and W, and of the function f with the properties of
the statement of the lemma follows directly from the implicit function theorem (Lee, 2006,
Theorem 7.9). O

2.5.3 Proof of Theorem 2.2

The proof consists in explicitly constructing a zero Lebesgue measure set of natural frequen-
cies and coupling and feedback gains, out of which the system of equations (2.16) admits no
solutions. The theorem then follows from Lemma 2.3.



Since the interconnection matrix k, the modified interconnection matrix I', and the feedback
gain v are linked by the linear relation k = I' — 7, we can independently fix I" and ~, and set
k accordingly. For all w € R, let

Mo(w) :=={T e RN . (w,T) € Np} (2.29)

where Ny € RY x RVXN g defined in the statement of Lemma 2.4 and has zero Lebesgue
measure. Let

So ={weRY: pu(Mo(w)) > 0} (2.30)

If 4(So) > 0, then p(No) = [5 w(Mo(w))dw > 0, which contradicts Lemma 2.4. Hence
1(So) = 0.

Consider any w € RV \ Sy and any T' € R¥*N \ Mg(w). In view of what precedes, this
constitutes a generic choice or w and T" and it holds that (w,T") ¢ M. Suppose that there exists
an oscillating phase-locked solution starting in 6*(0), with phase differences A and collective
frequency of oscillation 2. From Lemma 2.3, a necessary condition for the existence of an
oscillating phase locked solution 6* is that (w,I', A) is a solution of (2.16a). From Lemma 2.4,
(w,I') € M. Since (w,I') € N\ Ny, Lemma 2.4 guarantees that the phase differences A
of 0* can locally be uniquely expressed in the form A = f(w,I), for some smooth function
f RN x RVXN  RNXN Ty particular A does not depend on the feedback gain . Consider
now the line of (2.16b) relative to the pair of indices (1, 2):

N
> [W sin(Aq(t) 4+ Ay + 207 (0)) —7o; sin(Aq(t) + Ag; + 29;(0))] =0, Vt >0, (2.31)
=1

where Aq(t) := 2 [ Q(s)ds, for all t > 0. Using the identity sin(a +b) = sinacos b+ cos asinb
and defining

N

Y1 o= Z Y14 COS(AU + 29?(0)) — 72i COS(AQi + 29;(0))
i=1
N

22 = Z Y14 Sil’l(A]_i + 29?(0)) — Y2 Sin(AQi + 29;(0))7
i=1

Equation (2.31) reads ¥ sin Aq(t) — Yo cos Aq(t) = 0. Since sin Aq(0) = 0 and cos Aq(0) =1,
39 has to be zero. Moreover, since the phase-locked solution 6* is oscillating, there exists t > 0
such that sin Aq(t) # 0. Hence, ¥1 = 0 as well. Define by, by € R?Y as
* * T
bi(A): = [[eos(Awi+207(0)] s,y —leos(Azi +205(0)] 1 v]

bo(A): = [[sin(Ay +205(0) 2y, v, —[sin(Asi + 2035007, ]

)

Note that b; and by depend only on A = f(w,I") and on the initial conditions. They do
T

not depend on 7. Hence, by defining 4 := ([’}/21‘]?:1,.”’]\[, hli]?:l,...,N) € R?YN | the condition

Y1 = 3y = 0 can be re-written as ¥7b; = 77 by = 0 or, equivalently,

7 € bi(f(w, D)) Nba(f(w, D)™ (2.32)

Let
Lo(w,T) = by (f(w, 1) Nba(f(w,T))+ c R?Y, (2.33)

Noticing that b, be can not be both zero, u(Lo(w,T)) = 0 for all w, T € R x RV*N_ Recalling
(2.32), for all w € RN\ Sy, for all T' € RVXN \ My(w), and for all v € RNV \ Lo(w,T),



system (2.6) admits no oscillating phase-locked solution, where My, Sp, and Ly are defined in
(2.29),(2.30), and (2.33), respectively, and are all of zero Lebesgue measure. The theorem is
proved by noticing that, given w € R\ Sy, for any I' € RVXN \ Mg (w), the set {y € RV*N .
v =T —k, k€ RV*N} = RNVXN "that is, given any I' € RV*N \ My(w), v € Lo(w,T) for
almost all k. g

2.6 Technical proofs

2.6.1 Proof of Claim 2.5

We start by introducing the notation that will be used along the proof. The two sets £ and G
are defined as follows £ := RV*N x RN~ and G := RV~ x RV*N | We recall that, if A C R™,
1(A) denotes the Lebesgue measure of A in R™.

Given w € RN, let & ;= w; —wn,i=1,...,N —1, and

W= [dji]izl’m,]\[,l. (234)
The set N and N, defined, respectively, in (2.27) and (2.28), can be characterized in terms of
& as follows. Let, for all w € RV, all T € RV*N and all y € RV,

N-1

Fi(d)i,].“,y) = Z [Pz’h sin(yh — yz) — FNh sinyh] — sinyi — (f)i, 1= 1, . .,N — 1,
h=1

and define

F(@,F,y) = [FZ((D,F,y)] (235)

i=1,.,N
Moreover, let the set of all pairs (w,I") that admit a solution y to F(dz, I',y) = 0 be denoted as
Yo={@T)eG: eR 1. FWT,y) =0}, (2.36)

and let the subset Xj C X be defined as
So:={@)eg: yeR 1 F(@,T,y)=0,TeSy)} (2.37)

where, for each y € RV~! the set S(y) is defined in (2.26). We are going to show that the sets
¥ and Xy completely characterize, respectively, the sets A and N.

STEP 1:We claim that the set N and Ny, defined, respectively, by (2.27) and (2.28), are the
images of, respectively, X X R and X9 X R by a linear map of determinant 1. In particular, if
1(Xo0) = 0, then pu(No) = 0.

Given @ € RVN=1 let
L={weRY :wj=Gj+wy.i=1,...,N — 1wy € R}. (2.38)

Let the linear map M : RY — RY be defined as

Mz = {IN— { 11\6_1 } [O,...,O,l]} x, VreRY.



Note that M has determinant 1. The set @ x R is the image of the set I; through the linear
invertible map M, that is
wxR=M(I). (2.39)

By definitions (2.23),(2.34),(2.35),(2.38), it follows that F'(&,T,y) = F(w,T,y), for all w € I,.
Hence,
F(W7F>y):0 = F(@7F7y)207 (240)

and

A

F@wTy)=0 = F(wIy =0, Vwe I,. (2.41)

Relation (2.41) implies that, if & € X, then I, C A. Since, from (2.39), I, = M (& x R) this
also implies that, for all @ € ¥, M~1(& x R) € N, which shows that

MY (2 xR)CN.

The converse inclusion follows by noticing that, given w € N, (2.40) implies that © € X. Tt
follows that, given w € N, © x R C ¥ x R, that is, from (2.39), M (I;) C ¥ x R. Since, by
construction, w € I, we conclude that, for all w € N, M(w) € ¥ x R, that is

M(N)CX xR,

which shows the first part of STEP 1 for N. The statement for Ny follows similarly.

To show that u(Np) = 0 whenever pu(Xg) = 0, recall that the Lebesgue measure is invariant
under linear maps of determinant 1 and note that, given a collection of open intervals {I;};cn,
such that (J;en I; = R, o x R can be written as the countable union X9 x R = [J;en X0 X I;.
Thus, since, for all i € N, u(Xg x I;) = u(Xo)u(I;) (see for instance (Billingsley, 1995, Section
12)), if u(X0) = 0, then u(Xp x I;) = 0, for all ¢ € N. That is, if u(Xg) = 0, then N is the
image through an invertible linear map of the union of a countable collection of sets of zero
Lebesgue measure, and, hence, of zero Lebesgue measure, which shows STEP 1.

Before introducing the second step of the proof we need the following notation. Let & be the
set of matrices I' and phase-differences y such that the Jacobian of F' is singular, that is

S={T.y)e&: T eSSk} (2.42)

where, for all y € RV=1 the set S(y) is defined in (2.26).
Let F, be the set of triplet (w,I',y) that are solution to F' = 0, that is

F:={(@,T,y)eGxRY": F@,T,y) =0}, (2.43)

and Fy the set of triplet (w,T',y) that are solution to F' = 0, and, moreover, such that the
Jacobian of F' is singular, that is

Fo={(@T,y) € Gx RV F(@,T,y) =0,T € S(y)}, (2.44)

The next step shows that X is the image of £ through a smooth mapping T, and that ¥ is
the image of & through T'. This will allow to study the measure of 3y as a function of the
measure of &.

STEP 2:There exists a smooth map T : £ — G, such that ¥ =T(E), and ¥y = T(&).
Consider the set F defined in (2.43). Since gg; = 0;j, where ¢;; denotes the Kroenecker symbol,

it follows from (Lee, 2006, Theorem 8.8) that F is an embedded submanifold of codimension




N — 1. In particular F can be described as the graph of the smooth function
g:=—F(0,-,-): & — RN
as
F={@T,y)egGxR¥: &=yg(,y)}
Similarly Fo = {(&,T,y) € G x RVN=1: (T,y) € &, & = ¢g(TI',y)}. Hence, the point of F are
the image of the point of £ through the smooth mapping (lift) L: € — G x RN~!, defined by

L(T',y) := (9(L,y), T, y).

Moreover, it follows directly from the definition of ¥ that ¥ = PgF and ¥¢ = PgFo, where Fg
is the projection of G x RN=! on G, defined by Pg(w,T,y) = (&,T).
Hence, by defining T':= Pgo L : £ — G, as

T(yy) = (g9(lyy), I'), V(I'y) € €

(see also fig. 2.7), we conclude that, ¥ = T'(€), and ¥¢ = T'(&).

STEP 3:The Lebesgue measure of Xq s zero.

Since & is given by the zeros of an analytic function, u(&) = 0. Since Xy is the image through
a smooth map T : £ — G of a set of zero measure (cf. STEP 2), ¥ has zero measure (Lee,
2006, Lemma 10.2).

The statement of the claim follows directly from STEP 1 and STEP 3 g

&

r 3

FiGURE 2.7: Construction of the smooth map T : £ — G.



Chapter 3

Phase-locking robustness and
necessary conditions for
desynchronization

The main result of Chapter 2 ensures the disappearance of the perfectly phase-locked states
under mean-field feedback. This makes closed-loop DBS promising from a therapeutic point
of view. However, for small feedback gains, the numerical observations reported in Figure 3.1
(see also Section 2.4.1) highlights the persistence of nearly phase-locked states. Even though
not phase-locked, these solutions are not yet desynchronized either. In particular, they are
associated to a neuronal ensemble approximately discharging action potential in a synchronous,
and thus still pathological, manner.

F1GURE 3.1: Practical phase-locking in Equation (2.3).

The evidence of this “practical" phase-locking imposes to compute necessary conditions on the
feedback gain which would assure effective desynchronization. This leads us to a robustness
analysis of phase-locked solutions in an oscillators population with respect to general time-
varying inputs, thus including mean-field feedback as a special case. For this analysis, we rely
on the phase model derived in Section 2.2. In the absence of mean-field feedback, this model
reduces to the standard Kuramoto system (Kuramoto, 1984).

The robustness of phase-locking in the Kuramoto model has already been partially addressed
in the literature both in the case of infinite and finite number of oscillators. On the one
hand, the infinite dimensional Kuramoto model allows for an easier analytical treatment of
the robustness analysis (see for example (Acebron et al., 2005) for a complete survey). This



approach has been used to analyze the effect of delayed (Hauptmann et al., 2005a) and multisite
(Pyragas et al., 2008) mean-field feedback approaches to desynchronization. In the case of
stochastic inputs it allows to find the minimum coupling to guarantee phase-locking in the
presence of noise (Daniels, 2005). However, this approach is feasible only in the case of the
all-to-all interconnection. On the other hand, the finite dimensional case has been the object
of both analytical and numerical studies. In particular, (Cumin and Unsworth, 2007) proposes
a complete numerical analysis of robustness to time-varying natural frequencies, time-varying
interconnection topologies, and non-sinusoidal coupling. It suggests that phase-locking exhibits
some robustness to all these types of perturbations. Analytical studies on the robustness of
phase-locking in the finite Kuramoto model have been addressed only for constant natural
frequencies (Jadbabaie et al., 2004; Chopra and Spong, 2009; Dorfler and Bullo, 2011). The
existence and explicit expression of the fixed points describing stable and unstable phase-
locked states is studied in (Aeyels and Rogge, 2004). The Lyapunov approach proposed in
(Van Hemmen and Wreszinski, 1993) for an all-to-all coupling suggests that an analytical
study of phase-locking robustness can be deepened. To the best of our knowledge the problem
of the robustness of phase-locking with respect to time-varying natural frequencies has still
not been analytically addressed in the finite Kuramoto model with arbitrary bidirectional
interconnection topologies.

In this chapter we establish (Theorem 3.4) that phase-locking is locally input-to-state stable
(ISS) with respect to small inputs (Sontag, 1989, 2006a), a property also referred to as total sta-
bility (Malkin, 1958). Roughly speaking, a system is ISS if its origin is globally asymptotically
stable when no inputs are applied, and the steady-state error in presence of inputs is somewhat
proportional to their magnitude. Total stability, or local ISS, imposes this behavior only for
small initial conditions and inputs magnitude. The proof of this result, provided in Section
3.6.3, is based on the existence of a local [SS-Lyapunov function for the incremental dynamics
of the system. This analysis provides a general methodology to build explicit estimates on the
size of the region of convergence, the ISS gain, and the tolerated input bound. It applies to
general symmetric interconnection topologies and to any asymptotically stable phase-locked
state. In practice, these bounds, together with an approximate knowledge of the interconnec-
tion topology between the oscillators and their natural frequencies’ distribution, can be used to
compute the necessary minimum value of the gain of the mean-field feedback to desynchronize
the ensemble (Corollary 3.6). As an illustrative application of the main theorem, we extend
in Proposition 3.5 some recent results in (Chopra and Spong, 2009; Dorfler and Bullo, 2011)
to the time-varying case. We prove, in particular, the exponential ISS of synchronization in
the all-to-all Kuramoto system when all the initial phase differences lie in the interval [—g, g],
and we give explicit bounds on the convergence rate and the tolerated disturbances magnitude.
The size of the region of convergence, the sufficient bound on the coupling strength and the
convergence rate are compared to those obtained in (Chopra and Spong, 2009; Dorfler and
Bullo, 2011). Furthermore, the Lyapunov function for the incremental dynamics allows for
a new characterization of the phase-locked states of the unperturbed system. In particular,
when restricted to a suitable invariant manifold, it allows to completely characterize the robust
phase-locked states in terms of its isolated local minima, as discussed in Section 3.5 through
Lemmas 3.7 and 3.8.

The chapter is structured as follows. In Section 3.1 we extend the simplified neurons population
model (2.6) introduced in Chapter 2 in order to include exogenous time-varying inputs. In
Section 3.2 we prove local input-to-state stability of the phase-locked states with respect to
small inputs (total stability) for general bidirectional interconnection topologies. We specialize
this result in Section 3.3 to the case of all-to-all coupling. In Section 3.4 we derive necessary
conditions on the mean-field feedback gain assuring effective desynchronization. Section 3.5



introduces the incremental Lyapunov function used in the analysis, and further characterizes
the robust phase-locked states. The proofs of the main results are given in Section 3.6.

3.1 Modeling exogenous inputs and uncertainties

We start by slightly generalizing system (2.6) to take into account general time-varying inputs:
. N ~
Hz(t) = wz(t) -+ Z k/‘ij sin(ﬁj(t) — Hz(t)), (3.1)
j=1

forallt > 0and all ¢ = 1,..., N, where w; : R — R denotes the input of the i-th oscillator,
and k = [l;:i]-]m:lw’N € RgXN is the coupling matrix. We stress that, in this section, only
nonnegative interconnection gains are considered; negative gains are assumed minoritary and
are trated as perturbations. Beyond the effect of the mean-field feedback, the system (3.1)
encompasses the heterogeneity between the oscillators, the presence of exogenous disturbances
and the uncertainties in the interconnection topology (time-varying coupling, negative inter-
connection gains, etc.). To see this clearly, let w; denote the (constant) natural frequency of the
agent i, let p; represent its additive external perturbations, and let €;; denote the uncertainty
on each coupling gain l%zj We assume that p;, €;; : R>o — R are bounded piecewise continuous
functions for each 4,57 = 1,..., N. Then the effects of all these disturbances, including mean-
field feedback, can be analyzed in a unified manner by (3.1) by letting, for all ¢ > 0 and all
i=1,..., N,

N
wi(t) = wi+pi(t +Z£U sin( )+ > [ sin(0;(t) — 05()) — yij sin(0; () + 0;(t)) ],
7=1
(3.2)
which is well defined due to the forward completeness of (3.1)'. In Definition 2.1, the problem
of finding a phase-locked solution has been translated into the search of a fixed point for the
incremental dynamics (2.10). In the same spirit, the robustness analysis of phase-locked states
is translated into some robustness properties of these fixed points. We define the common drift
w of (3.1) as

w(t)=—=)> wj;t), Yt>0 (3.3)
and the grounded input as @ = [@;],_, 5, where
i(t) = wi(t) —w(t), Vi=1,...,N, Vt >0. (3.4)

Noticing that w; — w; = w; — @;, the evolution equation of the incremental dynamics ruled by
(3.1) then reads

N
0:(t) — 0,(t) = @i( Z ih sin(0x(t) kinsin(0n(t) — 0;(t)),  (3.5)

||M2

for all 3,5 = 1,...,N and all ¢ > 0. As expected, the incremental dynamics is invariant to
common drifts, which explain why the results of this section hold for all kinds of phase-locking

! The forward completeness of (3.1) follows by the fact that (3.1) is a Lipschitz continuous periodic dynamics,
and thus bounded and globally Lipschitz, and (Khalil, 2001, Theorem 3.2).



(oscillating or not). In the sequel we use 6 to denote the incremental variable

0 :=[0; — 0;)s j1,...nips € TNV, (3.6)

3.2 Robustness analysis of Kuramoto oscillators

When the same input is applied to the oscillators, i.e. @ = 0, we expect the solutions of (3.5)
to converge to some asymptotically stable fixed point or, equivalently, the solution of (3.1)
to converge to some asymptotically stable phase-locked solution at least for some coupling
matrices k. To make this precise, we start by defining the notion of 0-asymptically stable (0-
AS) phase-locked solutions, which are described by asymptotically stable fixed points of the
incremental dynamics (3.5) when no incremental inputs are applied.

Definition 3.1. Given a coupling matrix ke ]RgOXN, let O; C TWN-1 denote the set of
all asymptotically stable fixed points of the unperturbed (i.e. @ = 0) incremental dynamics
(3.5). A phase-locked solution 6 of (3.1) is said to be (Q)—asymptotically stable if and only if the
incremental state 0* := [9: — 9;5]1,7],:1’“"]\[7#]. € TW=1" belongs to 0.
A similar definition of asymptotically stable phase-locked solutions, valid in the case of constant
inputs, is provided in (Aeyels and Rogge, 2004). A characterization of 0-AS phase-locked
solutions of (3.1) for general interconnection topologies can be found in (Sepulchre et al.,
2008) and (Sarlette, 2009). In Section 3.5, we characterize the set O; in terms of the isolated
local minima of a suitable Lyapunov function. The reason for considering only asymptotically
stable fixed points of the incremental dynamics lies in the fact that only those guarantee the
robustness property of local Input-to-State Stability with respect to small inputs (Sontag and
Wang, 1996), also referred to as Total Stability (Malkin, 1958; Loria and Panteley, 2005). On
the contrary, (non 0-AS) stable fixed points may exhibit non-robust phase-locked states, as
illustrated by the following example.

Example 3.1. Consider the case where N > 2 and let ];:12 = 12321 > 0, and ];;,-j = 0 for all
(1,7) € Ney x Ney \ {(1,2),(2,1)}, that is oscillators 1 and 2 are mutually coupled with the
same positive gain, while all the other interconnection links are absent. When © = 0, the
dynamics (3.5) reads

0; —6; =0,

for all (i,5) € Ney x Neny \ {(1,2),(2,1)}, and
91 — 92 = —2/2‘12 sin(91 — 02)

In this case, all the solutions of the form 61(t) — 02(t) = 0, for all t > 0, and 0;(t) — 0;(t) =
6;(0)—0;(0), for allt > 0 and all (i, j) € Ney xN<ny\{(1,2),(2,1)} are phase-locked. They can
be shown to be stable, but not asymptotically. By adding any (arbitrarily small) constant inputs
W # 0 to one of the agent | € Nen \ {1,2}, the system becomes completely desynchronized,
since ,—0; =&y foralli=1,...,N,i # l. In particular, the set Oy, is empty for this particular
case.

Definition 3.2 ((Sontag and Wang, 1996)). For a system & = f(z,u), a compact set A C R"
is said to be locally input-to-state stable (LISS) with respect to small inputs iff there exist some
constants 0, d, > 0, a KL function 8 and a K function p, such that, for all |xg|4 < d, and
all u satisfying |lu|| < d,, its solution satisfies

2t 20,w)| 4 < Bllzolat) + plul), vt > 0.



If this holds with B(r,s) = Cre~7 for all r,s > 0, where C, T are positive constants, then A is
locally ezponentially Input-to-State Stable with respect to small inputs.

Local input-to-state stability (LISS) of a set A means that the steady-state distance between the
set A and the trajectories starting in a spheric neighborhood of radius d,, is smaller than p(||u||),
as dictated by the decreasing term S(|xg|4,t), provided the input intensity ||u|| is smaller than
dyu. This property is called exponential if the function 8 can be picked as 5(r, s) < ¢1re”%2° for
all 7, s > 0, where g1 and ¢o denote positive constants. In particular, LISS guarantees some
system’s robustness with respect to the set A, provided the initial state is sufficiently near to
A, and the perturbation are sufficiently small.

Remark 3.3. Definition 3.2 is given on R™, which is not well adapted to the context of this
chapter. Its extension to the n-Torus is natural since T" is locally isometric to R™ through the
identity map Z (i.e. |0|pn :=|Z(0)| = |0|). In particular this means that the n-Torus can be
equipped with the local Euclidean metric and its induced norm. Hence, Definition 3.2 applies
locally to the n-Torus.

The next theorem, whose proof is given in Section 3.6.3, states the LISS of O;, with respect to
small inputs @.

Theorem 3.4. Let k € RJZVOXN be a given symmetric interconnection matriz. Suppose that
the set Oy, of Definition 3.2 is non-empty. Then the the set Oy is LISS with respect to small
grounded inputs & for (3.5). In other words, there exist 55,0, >0, B € KL and p € Koo, such

that, for all & : Rso — RN and all 6y € TNV satisfying ||@| < 6, and |6olo;, < g,
0(D)lo, < Bllfolog.t) + p(ll]), vt =0. (3.7)

Theorem 3.4 guarantees that, if a given configuration is asymptotically stable for the unper-
turbed system, then solutions starting sufficiently close to that configuration remain near it at
all time, in presence of sufficiently small perturbations w. Moreover, the steady-state distance
of the incremental state 6 from O;. is somewhat “proportional” to the amplitude of & with
nonlinear gain p. This means that the phase-locked states are robust to time-varying natural
frequencies, provided that they are not too heterogeneous. In terms of the full dynamics (2.3),
Theorem 3.4 applies, provided that the coupling strength |x|, where the matrix x € RV*V
is defined as in (2.4), is sufficiently small that the open-loop small coupling condition (2.4) is
satisfied, that is
K| < On,

where §j, is defined as in (2.4). See Appendix A for more details.

We stress that, while local ISS with respect to small inputs is a natural consequence of asymp-
totic stability (Loria and Panteley, 2005), the size of the constants ¢, and §,, in Definition 3.2,
defining the robustness domain in terms of initial conditions and inputs amplitude, are po-
tentially very small. As we show explicitly in the next section in the special case of all-to-all
coupling, the Lyapunov analysis used in the proof of Theorem 3.4 (cf. Section 3.6.3) provides
a general methodology to build these estimates explicitly. In particular, while the region of
attraction depends on the geometric properties of the fixed points of the unperturbed system,
the size of admissible inputs can be made arbitrarily large by taking a sufficiently large coupling
strength. This is detailed in the sequel. See Equations (3.23), (3.24), (3.28) and (3.29) below.



3.3 Robustness of the synchronized state in the case of all-to-all
coupling

In this section we focus the Lyapunov analysis used in the proof of Theorem 3.4 (cf. Section
3.6.3) to the case of all-to-all coupling. In this case, it is known (Sepulchre et al., 2008) that
the only asymptotically stable phase-locked solution is the ezact synchronization

6(t) =0, Vt>0, (3.8)

corresponding to a zero phase difference between each pair of oscillators. The following proposi-
tion states the local exponential input-to-state stability of the synchronized state with respect
to small inputs, and provides explicit estimates of the region of convergence, of the size of
admissible inputs, of the ISS gain, and of the convergence rate. Its proof can be found in
Section 3.6.4.

Proposition 3.5. Consider the system (8.1) with the all-to-all interconnection topology, i.e.

kij=K >0 foralli,j=1,...,N. Then, for all e € [0,5], and all & satisfying

(3.9)
the following facts hold:
1. the set D¢ := {5 e TW-D%: |f|, < 5 - e} is forward invariant for the system (8.5);

2. for all Oy € Dy, the set D, is attractive, and the solution of (3.5) satisfies
o)1 < Tliole™ ¥ + g3l w0
=5 ole = K W, = L.

Proposition 3.5 establishes the exponential ISS of the synchronized state in the all-to-all Ku-
ramoto model with respect to time-varying inputs whose amplitudes are smaller than KT\{rN
It holds for any initial condition lying in Dy, that is when all the initial phase differences lie
in [—%,Z]. Moreover, if the inputs amplitude is bounded by d¢,, for some 0 < e < 7, then the

set D, is forward invariant and all the solutions starting in Dg actually converge to D..

Recently, necessary and sufficient conditions for the exponential synchronization of the Ku-
ramoto system with all-to-all coupling and constant different natural frequencies were given
in (Chopra and Spong, 2009; Doérfler and Bullo, 2011). We stress that the estimated region
of attraction provided by Proposition 3.5 is strictly larger than the one obtained in (Chopra
and Spong, 2009, Theorem 4.1), which does not allow € to be picked as zero. For initial con-
ditions lying in D, with a strictly positive ¢, it is interesting to compare the convergence rate
obtained in Proposition 3.5, g, with the one obtained in (Chopra and Spong, 2009, Theorem
3.1), NK sin(e). While the convergence rate of Proposition 3.5 is slower than the one obtained
in (Chopra and Spong, 2009, Theorem 3.1) for large ¢, it provides a better estimate for small
values of e. Furthermore, for any fixed amplitude ||@|, the bound (3.9) allows to find the
sufficient coupling strength K. which ensures the attractivity of De:



Noticing that v N max; j—1.. n |[w; — w;j|| > [|@]|, we get that

71.2

K <

(5 —¢ I leo; — @5
Since (5 —€) > 2 cos(e), for all 0 < e < I, it results that

3

K. < ; — 3K,

© = 2cos(e) JmlaxNle @jll <7 Kinv,

where K, is the sufficient coupling strength provided in (Chopra and Spong, 2009, Proof of
Theorem 4.1). This observation shows that, while the estimate K. may be more restrictive
than the one proposed in (Chopra and Spong, 2009), both are of of the same order, in the
sense that KK—E < 7.

For the same region of attraction, a tighter bound Kj, s for the sufficient coupling strength
has recently been given in (Dorfler and Bullo, 2011), where this bound is inversely proportional
to the number of oscillators, that is K. ff ~ N. Nonetheless, similarly to (Chopra and Spong,

2009), their rate of convergence is proportional to sin(e), leading to a worse bound than ours
for large regions of attraction.

In conclusion, Proposition 3.5 partially extends the main results of (Chopra and Spong, 2009;
Dorfler and Bullo, 2011) to time-varying inputs. On the one hand, it allows to consider sets of
initial conditions larger than those of (Chopra and Spong, 2009), and bounds the convergence
rate by a strictly positive value, independently of the region of attraction. On the other hand
the required coupling strength is comparable to the one given in (Chopra and Spong, 2009),
but more conservative than the lower bound in (Dérfler and Bullo, 2011). Finally for small
regions of attraction, the bound on the convergence rate obtained in Proposition 3.5 is not as
good as the one of (Chopra and Spong, 2009; Dérfler and Bullo, 2011).

3.4 Robustness of neural synchrony to mean-field feedback

As a corollary of Theorem 3.4 we derive necessary conditions on the intensity of a desyn-
chronizing mean-field feedback. To that end consider the Kuramoto system under mean-field
feedback (2.6), and let 7 and w' represent the intensity of the mean-field feedback DBS and
the heterogeneity of the ensemble of neurons:

7=, max ), (3.10)
L 1
W= wi—Nij . (3.11)
=t Ji=1,.,N

We also define the grounded mean-field input Iy of the incremental dynamics associated to
(2.6) as )
I]\/[F(t) = IMF(t)—I]\/[F(t)lN, VtZO, (312)

where, for all £ > 0, IMF(t) = [IMFi(t)]izl,...,N ,

N

e (¢ Z 7ij (Sin(0:() — 0;(1)) — sin(6:(t) + 0;(1) ),



is the input of the mean-field feedback (cf. (3.2)) and

N
Tarp()= x> 2y (sin(Bs(t) — 05(0)) — sin(Bi(r) + 65(0)),
ij=1

for all t > 0, represents the common drift among the ensemble of neurons due to the mean-
field feedback. The grounded mean-field input Iy is the quantity of interest for the aim of
desynchronization. Indeed, as already pointed out in (3.5), it is this input, along with the
intrinsic heterogeneity of the ensemble (i.e. w™), which is responsible for the destabilization
of the incremental dynamics of the Kuramoto system under mean-field feedback. An upper
bound on the norm of I~MF can be easily found as in the proof of Corollary 3.6 (Section 3.6.5),
and reads
\Inr| < 29NVN.

The following result, whose proof is given in Section 3.6.5, stresses the robustness of phase-
locking with respect to mean-field feedback. It provides a negative answer to the question
whether mean-field feedback DBS with arbitrarily small amplitude can effectively desynchronize
a network of Kuramoto oscillators.

Corollary 3.6. Let k € R]ZVOXN be a given symmetric interconnection matriz and w € RN be

any (constant) vector of natural frequencies. Let v € RN*N be any feedback gain. Let 7, w,
and Inp be defined as in (3.10)-(3.12). Let the set Oy, be defined as in Definition 3.1 and
suppose that it is non-empty. Then there exist a class KL function B, a class Koo function o,
a positive constant 6, and a neighborhood P of O, such that, for all natural frequencies and
all mean-field feedback satisfying

lwt| + 25 NVN < 6,
the solution of (2.6) satisfies, for all 0y € P,
0(8)|o, < B(I0olo,. 1) + ol |+ |[Iurl), vt >0,

where 0 is defined in (3.6).

Corollary 3.6 states that the phase-locked states associated to the Kuramoto system with any
symmetric interconnection topology are robust to sufficiently small mean-field feedbacks. The
intensity of the tolerable feedback gain 7 depends on the distribution of natural frequencies,
reflecting the fact that a heterogeneous ensemble can be more easily brought to an incoherent
state. Similarly to Theorem 3.4, Corollary 3.6 ensures the robustness of the full dynamics (2.3)
to small mean-field proportional feedback, only if the coupling strength |x| is sufficiently small
to verify condition (2.4), i.e. |k| < Op.

As stressed in Section 1.1, energy consumption is a critical issue in the DBS framework
(Rodriguez-Oroz et al., 2005), mainly due to the short life of the stimulator’s batteries and to
the side effects that a too strong current injection can bring. Corollary 3.6, along with the
explicit input bound d,,, which can be computed as in the proof of Theorem 3.4, provides a
lower bound on the intensity of a proportional mean-field feedback DBS to achieve effective
desynchronization for a general symmetric interconnection between the neurons and recording-
stimulation setup. Even if hard to know in practice, also an approximate knowledge of the
distribution of natural frequencies of the neurons in the STN, of their interconnection topology
and of the electrical characteristics of the recording-stimulation setup can be used to compute



this value. In conclusion, Corollary 3.6 answers negatively to the question weather an arbitrar-
ily small feedback gain suffices to induce effective desynchyronization in a neuronal ensemble
via mean-field feedback DBS.

A sufficient condition on the feedback gain to bring a neuronal ensemble in a desynchronized
state for a generic interconnection topology and feedback setup is provided in Section 5.3.

3.5 A Lyapunov function for the incremental dynamics

In this section, we introduce the Lyapunov function for the incremental dynamics (3.5), that
will be referred to as the incremental Lyapunov function. It will be used in the proof of Theorem
3.4. We start by showing that the incremental dynamics (3.5) possesses an invariant manifold,
that we characterize through some linear relations. This observation allows us to restrict the
analysis of the critical points of the Lyapunov function to this manifold. Beyond its technical
interest, this analysis shows that phase-locked solutions correspond to these critical points. In
particular, it provides an analytic way of computing the set O; of Definition 3.1, completely
characterizing the set of robust asymptotically stable phase-locked solutions.

3.5.1 The incremental Lyapunov function

We start by introducing the normalized interconnection matriz associated to k

1
E = [Ejj); == |k

ij=1uN T [~ij]z’,j=1,...,N’ (3.13)

where the constant K > 0 is defined as

1 if k=0
K — - - 3.14
{ max; j—1,.. N kij if k#0. ( )

Inspired by (Sarlette, 2009), let V7 : TWN-1)% R>0o be the incremental Lyapunov function
defined by

R L R T
Vi(0) :=2> > Ejsin <T) (3.15)
i=1j=1

where the incremental variable 6 is defined in (3.6). We stress that V; is independent of the
coupling strength K.

3.5.2 The invariant manifold

The presence of an invariant manifold (Lee, 2006; Hirsch et al., 1977) comes from the fact
that the components of the incremental variable 6 are not linearly independent. Indeed, we
can express (N — 1)(N — 2) of them in terms of the other N — 1 independent components.
More precisely, by choosing, for instance, ¢; :=6; — 0y, i =1,..., N — 1, as the independent
variables, it is possible to write, for alli =1,..., N — 1,

0; —On = i, (3.16a)
QZ-—GJ- = @i = @5, ijl,...,N—l. (316b)



These relations can be expressed in a compact form as
6 = B(p) .= By mod 2w, ¢ M, (3.17)

77777 N_1, B € R(N*WX(N*U, rankB = N —1, Bis continuously differentiable,
and M C TW=D? ig the submanifold defined by the embedding (3.17). The continuous
differentiability of B : M — TW=1? comes from the fact that @; €T foralli=1,...,N—1,
and from the additive group structure of 7. Formally, this means that the system is evolving
on the manifold M c T®W=1? of dimension N — 1. In particular M is diffeomorphic to TV 1.

3.5.3 Restriction to the invariant manifold

In order to conduct a Lyapunov analysis based on V7 it is important to identify its critical
points. Since the system is evolving on the invariant manifold M, only the critical points of the
Lyapunov function V7 restricted to this manifold are of interest. Hence we focus on the critical
points of the restriction of V7 to M, which is defined by the function V;|aq : TV =1 — Rxg as

Vilm(p) == Vi(By), Ve M. (3.18)

The analysis of the critical points of V7| is not trivial. To simplify this problem, we exploit
the fact that the variable ¢ can be expressed in terms of 6 by means of a linear transformation
A e RV=DXN "with rankA = N — 1, in such a way that

©=A() := A9 mod 2. (3.19)
Based on this, we define the function V : TV — R as
V() :=Vim(A8), Vo eTN. (3.20)

In contrast with V7|, the function V' owns the advantage that its critical points are already
widely studied in the synchronization literature, see for instance (Sepulchre et al., 2007) and
(Sarlette, 2009, Chapter 3). The following lemma allows to reduce the analysis of the critical
points of V7 on M to that of the critical points of V on TV. Its proof is given in Section 3.6.1.

Lemma 3.7. Let M, Vi|ap, A and V be defined by (3.17)-(3.20). Then 0* € TV is a critical
point of V' (i.e. VoV (0*) = 0) if and only if p* = A0* € M is a critical point of Vijrm (i-e.
Vo Vilm(e*) = 0). Moreover if 0% is a local mazimum (resp. minimum) of V then ¢* is a local
mazimum (resp. minimum) of Vi|a. Finally the origin of M is a local minimum of V|-

3.5.4 Lyapunov characterization of robust phase-locking

The above development allows to characterize phase-locked states through the incremental
Lyapunov function V7. The following lemma, proved in Section 3.6.2, states that the fixed
points of the unperturbed incremental dynamics are the critical points of Vj|aq, modulo the
linear relations (3.16), i.e. the critical points of Vi|x¢ completely characterize phase-locked
solutions.

Lemma 3.8. Let k € RJ>V0XN be a given symmetric interconnection matriz. Let B and Vi be
defined as in (3.17) and (5.18). Then ¢* € M is a critical point of Vi|m (i-e. Vo Vilm(p*) =
0) if and only if Bp* € TWN=1? j5 ¢ fized point of the unperturbed (i.e. @ = 0) incremental
dynamics (3.5).



Remark 3.9. When no inputs apply (i.e., @ = 0), the Lyapunov function V7 is strictly
decreasing along the trajectories of (3.5) if and only if the state does not belong to the set
of critical points of Vz|a (cf. Claim 3.11 below). It then follows directly from Lemma 3.8
that isolated local minima of V| correspond to asymptotically stable fixed points of (3.5).
By Definition 3.1 and Theorem 3.4, we conclude that the robust asymptotically stable phase-
locked states are completely characterized by the set of isolated local minima of Vi|r¢. The
computation of this set is simplified through Lemma 3.7.

3.5.5 Consequence for the system without inputs

At the light of Lemma 3.8, we can state the following corollary, which recovers, and partially
extends, the result of (Sarlette, 2009, Proposition 3.3.2) in terms of the incremental dynamics
of the system. It states that, for a symmetric interconnection topology, any disturbance with
zero grounded input (3.4) preserves the almost global asymptotic stability of phase-locking for
(3.1).

Corollary 3.10. Let w : Ry — RN be any signal satisfying w(t) =0, for all t > 0, where
w is defined in (3.4). If the interconnection matriz k € ]R]ZVOXN is symmetric, then almost all
trajectories of (3.1) converge to a stable phase-locked solution.

We stress that Corollary 3.10 is an almost global result. It follows from the fact that almost all
trajectories converge to the set of local minima of Vj|r¢. From Lemma 3.8, this set corresponds
to asymptotically stable fixed points of the incremental dynamics, that is to asymptotically
stable phase-locked solutions. The precise proof is omitted here.

3.6 Main proofs

3.6.1 Proof of Lemma 3.7

By the definition (3.20) of V(#), it holds that VoV (0) = VoVi|m(A40) = ATVA9V1|M(A0).
Hence
VAQV[‘M(AH) =0 = VQV(H) =0.

Since rankA = N — 1, kerAT = {0}, it follows that
VQV(G) =0 = VA9V[|M(A9) =0,

which proves the first part of the lemma. To prove the second part, we note that if 8* is a
local minimum of V' then there exists a neighborhood U of #* such that V(6) > V(6*) for all
9 € U. That is, V| (A0) > Vil (A6*) for all 6 € U. That is Vi|um(e) > Vilm(e*) for all
p € W = AU, where ¢* = Af*. A similar proof holds for maxima. The third part of the
lemma follows from the fact the function V7| is positive definite and Vi|a((0) =0, i.e. ¢* =0
is a local minimum of V7. O

3.6.2 Proof of Lemma 3.8

From Lemma 3.7, ¢* € M is a critical point of V7|4 if and only if §* € T is a critical point of
V', where ¢* = A6*, and A is defined in (3.19). Moreover, when @ = 0, (3.5) can be re-written
as



where x(0) = [xi(0)],=; n == VoV(0) = Zévzl E;jsin(6; — 60;), and E is defined in (3.13).
Hence, x(0*) = VoV (0*) = 0 if and only if ¢* = A6* is a critical point of Vi|aq; and x;(0*) —
xi(0*) =0, foralli,j =1,..., N, if and only if Bp* = BAG* is a fixed point of the unperturbed
incremental dynamics, where B is defined in (3.17). To prove the lemma it thus suffices to
show that

xX(0*)=0 & x;(0")—xi(6")=0, Vi,j=1,...,N.

One implication is straightforward: if x(0*) = 0, then in particular all of its components are
zero, which implies that x;(6*) — x;(6*) = 0, for all 4,5 = 1,...,N. On the other hand, if
X;(0*) —xi(0*) =0foralli,j =1,..., N, then there exists a constant %, such that x;(6*) =X
for all  =1,..., N. Hence, it holds that

N N oV Y
Nx = in(e*) = Z 90, (9*) - ZZEU Sin(e; B 92*)
i=1 """ j

i=1 i=1j=1

Since the matrix k is symmetric, so is the matrix E (cf. (3.13)), and thus SN, Zév:l Ejjsin(07 —
0¥) = 0. Consequently, x;(60*) = X = 0 for all ¢ = 1,..., N, which proves the converse
implication. O

3.6.3 Proof of Theorem 3.4

In order to develop the robustness analysis we consider the Lyapunov function (3.15), where
the incremental variable 6 is defined in (3.6), and the matrix F is given by (3.13)-(3.14). The

derivative of V; yields V() = (V(;V])Té, where 6 is given by (3.5). The following claim, whose
proof is given in Section 3.7.1 provides an alternative expression for Vi

Claim 3.11. If k € RNV is symmetric, then V; = —2(KxTx 4+ x7@), where

x(0) := V@V(é) =

N
Eij sin(«9j — 91) .
J=1 i=1,....,N

=1,...

From Claim 3.11, it holds that, if |y| > %, then V; < —KxTx. However, LISS does not
follow yet as these regions are given in terms of x rather than 0. In order to estimate these
regions in terms of §, we define F as the set of critical points of Vi|a (i.e. F := {p* € M :
Vo Vilm(¢*) = 0}), where M and V7| are defined in (3.17) and (3.18), respectively. Then,
from Lemma 3.7 and recalling that x = VyV7, it holds that |x| = 0 if and only if 6 e F.
Since |y| is a positive definite function of the distance from 6 to the set F and is defined on a

compact set, (Khalil, 2001, Lemma 4.3) guarantees the existence of a K function o such that

x| = o(18l7), v8eT™ L (3.21)
The function o can then be taken as K by choosing a suitable extension outside TW-1?,
Let U := F \ Oy, where the set O, is given in Definition 3.1. In view of Lemma 3.8, U denotes
the set of all the critical points of Vi|x¢ which are not asymptotically stable fixed points of the
incremental dynamics. Since VV7| a4 is a Lipschitz function defined on a compact space, it can
be different from zero only on a finite collection of open sets. That is, U and O, are the finite
disjoint unions of closed sets:

u=Uwn 0= U o). (3.22)

i€y ’L'EI(QI~€



where Iy, lo, C N are finite sets, {v;, i € Iy} is a family of closed subsets of M, and
{{qﬁi}, i€ IO;;} is a family of singletons of M. We stress that a # b implies a N'b = () for any
a,be{y;, i€ Iyt {{gf)i}, 1€ I@I.{} =: Fg. Define

§:= min inf |0, (3.23)
a,beFs,a#b fcq

which represents the minimum distance between two critical sets, and, at the light of Lemma
3.8, between two fixed points of the unpertubed incremental dynamics (3.1). Note that, since

Fg is finite, § > 0. Define
K /6 4]
o, =—0c (5) , 05= . (3.24)

5 then gives an estimate of the radius of attraction, modulo the shape of the level sets of V.
The following claim is proved in Section 3.7.2.

Claim 3.12. For all i € Ip_, 0 € B(¢;,6;), and |&] < 4.,

2|w|

-olzo (5E) = i< -Ko- 0,

For all i € Io,, the function Vi(0) — Vi) is zero for § = ¢;, and strictly positive for all
0 € B(¢i,d5) \ {¢i}. Noticing that B(¢;,d;) is compact, (Khalil, 2001, Lemma 4.3) guarantees
the existence of K functions q;, @; defined on [0, d4] such that, for all 6 € B(¢;, d5),

(10 — ¢i|) < Vi(0) — Vi(ei) < @(|0 — ¢i]). (3.25)

The two functions can then be picked as Ko by choosing a suitable prolongation on Rxg.
Define the s functions

a(s) := min q;(s), a(s) := max @;(s), Vs > 0. (3.26)
ielok 7:6]0).C

It then holds that, for all i € Io_ and all § € B(¢;, ;)

a(lf — i) < Vi(9) — Vi(es) < a(ld — ¢i]). (3.27)

In view of Claim 3.12 and (3.27), it follows from (Isidori, 1999, Remark 10.4.3) that an estimate
of the ISS gain and on the tolerated input bound are given by

p(s) = alomoo ! (%8) , Vs >0 (3.28)
6, = p o) < 0L, (3.29)

where o is defined in (3.21). From (Isidori, 1999, Section 10.4) and Claim 3.12, it follows that,
for all [|@| < 6o, the set B(Og,d;) is forward invariant for the system (3.5). Furthermore,
invoking (Sontag and Wang, 1996) and (Isidori, 1999, Section 10.4), Claim 3.12 thus implies
LISS with respect to inputs satisfying ||©|| < 4., meaning that there exists a class L function
8 such that, for all ||©| < &, and all 6y € B(0;,05), the trajectory of (3.5) satisfies 0(t)| <
B(160),t) + p(||@]]), for all £ > 0. O



3.6.4 Proof of Proposition 3.5
Input-to-State Gain

We start by computing the ISS gain p, defined in (3.28), in the particular case of all-to-all
coupling and show that it can be taken as a linear function. The first step is to compute the
function o, defined in (3.21), with respect to the origin of the incremental dynamics. That is
we have to find a class K function o, such that |x(6)| > o(]|) for all § in some neighborhood
of the origin of the incremental dynamics, where x is defined in Claim 3.11. The following
claim, whose proof is given in Section 3.7.3, gives an explicit expression of this function on the
set Dy = {f € TO-1" : |6, < 5}, as defined in the statement of Proposition 3.5.

Claim 3.13. In the case of all-to-all coupling , the function x defined in Claim 3.11 satisfies,

for any 6 € Dy, |x(0)| > ‘;rﬂ, that is the function o in (3.21) can be picked as o(r) = ~, for all
r > 0.

At the light of Claim 3.13, the ISS gain p can be easily computed through (3.28). Indeed, in

the all-to-all case, the entries of the matrix E, introduced in (3.13), are all equal to 1, and the
Lyapunov function V7, provided in (3.15), thus becomes

i @—ﬂ)

Using the fact that z > sinz > fz for all 0 < z < 7, it follows that, for all 6 e Do,

(VAN
N =

2 . - -
—2\9]2 < Vi(9) 10)°. (3.30)
T
Recalling the definition of the upper @ and lower a estimates of the Lyapunov function with
respect to the set of asymptotically stable fixed point (3.26), and that, in the all-to-all case,
this set reduces to the origin, we conclude that

2 1

a(r) = —27“2, a(r) = =r?, Vr > 0.

us 2
In view of Claim 3.13 and (3.28), it follows that the ISS gain p in the statement of Theorem
3.4, can be chosen as

p(r) = =" (3.31)

Input bound and invariant set

For Claim 3.13, the ISS gain computed in the previous section is valid as soon as 6 belongs to
Dg. In the following we compute an input bound which guarantees that trajectories starting
in Dy remain inside Dy. For the sake of generality, we actually show the forward invariance of
D, for any € € [0,%]. To that end, we start by the following technical claim, whose proof is
given in Section 3.7.4.

Claim 3.14. Given any 0 < ¢ < 7, the following holds true:

0] < VNS = max |0; — ;| <6.
i,7=1,...,.N

-----



At the light of Claim 3.14, and in view of (3.7) and (3.31), we can compute the input bound
85 which lets D, be invariant for the systems (3.5) by imposing p(d5) = VN (Z — €), where

_ 2

p(s) = TG=s is the ISS gain in the statement of Theorem 3.4. This gives

5, =

w

——€

G

(3.32)

™

Exponential convergence and attractivity of D,

From Claims 3.12 and 3.13, and (3.30), it holds that, for all |&| < d¢,, and all § € Dy,
K

T2

2K

~ 2w . ~
0l > 18] = Vi < -0 < -5V,

Invoking the comparison Lemma (Khalil, 2001, Lemma 3.4), it follows that, for all ¢ > 0,

in 10(s)] > 2@l = Vid(1) < Vi((0))e™ ="
in 05)) = NGl = V(i) < Viao)e "
From (3.30), this also implies that, for all ¢ > 0
A 2 . ~ T o~ Ky
> — < — =2
i 00s)] 2 @l = 180)] < J100))e "

Recalling the explicit expression of ISS gain (3.31), this implies that the system is exponentially
input-to-state stable (see for instance (Isidori, 1999, Section 10.4) and (~Khalil, 2001, Lemma
4.4 and Theorem 4.10)), and in particular that for all ||@|| < d5, and all 8y in Do,

2
~ ~ K
6(8)| < Zhole™=*" + Z=[1@l, v > 0.

Noticing finally that, if |©]| < d, (3.32) guarantees that
()| < 3ol + VA (5 — ), v 20,

Claim 3.14 implies the attractivity of D, for all ||@]| < d¢,. O

3.6.5 Proof of Corollary 3.6

The Corollary is a trivial consequence of Theorem 3.4 by noting that, since \(fMF)Z| =|(IpF)i—
% Z](IMF)]| < max; |(IMF)3| and ‘(IMF)’L| < 2N7, for all ¢« = 1,...,N, it results that
|Ivr| < 29V/NN. By letting d,, be defined as in (3.29), from Theorem 3.4, the system is LISS,
provided that |wb| + |Iyr| < [wh| 4+ 29V NN < 6,,. O



3.7 Technical proofs

3.7.1 Proof of Claim 3.11

Consider the derivative of the incremental Lyapunov function V7, defined in (3.15), along the
trajectories of the incremental dynamics (3.5):

Vi) = (VaV)'e

N
= Z Eij sin(Hj — 92)(9] — 91)
4,j=1

N
= =2 Z Eij sin(ﬂj — 91)91,
4,j=1

where the last equality comes from the fact that, since F is a symmetric matrix, ij:l E;jsin(0;—

Oi)éj = — Z%‘:l E;jsin(6; — 97,)9z For the same reason it holds that wzf}’jzl E;jsin(6;—60;) =
0. Since, from (3.1), 0, =w+w; + Kzgzl E;p sin(fy, — 0;), we get that

N [N N
V[ = -2 Z Z Eij Sin(ej — 91) (K Z Eih sin(&h — (91) + (:)Z>
i=1 \j=1 h=1
= 2(KVVIVV +VVTy),
which proves the claim. O

3.7.2 Proof of Claim 3.12
From Claim 3.11 it holds that V; = —2K|x|? — 2xT& < —2K|x|? + 2|x||©|. That is

2|lw .
w228l o V< R (3.33)

In view of (3.24), |@| < &/, implies that o~* (2@) < d5. Recalling that, for all 6 ¢ B(¢i,d5),
0] 7 = |6 — ¢, it results that

~ 1 2|w 2|w
i-olzo () - wzF (3.3

Since (3.21) ensures that —|x|? < —o2(|0 — ¢;|), at the light of (3.33) and (3.34), it results that

i-olza () = V<Ko (-0

3.7.3 Proof of Claim 3.13

In the case of all-to-all coupling, the vector x defined in Claim 3.11 reads

~ N
x(0) = {Z sin(6; — ei)]
j=1

i=1,...,.N



Therefore, the norm inequality |0]z > |0|o implies

N

X Zsm —6;)].

X(0)]2 > max
=1 =1

Now, since 6 € Dy, we have |0; —0;] < 5, which implies that the phases of all oscillators belong
to the same quarter of circle. We can thus renumber the indexes of the oscillator phases in
such a way that 6; < 6; whenever i < j.

First step — For a given 6, in order to find a tight lower bound on |x(f)|2, we are going to
show that

N
Z sin(Gj - 91)

=1

max
i=1,..,.N

N N
= max {Z sin |0; — 91|,Zsin 16 — HN]} . (3.35)

j=1 j=1

On the one hand, forall j = 1,..., N, we have 0 < 0; —0; < 7 and 0 < Oy —0; < 5. It follows

that

B

N
Z sin |0 — (3.36)

and

Mz

sin |0; — On|. (3.37)

N
Z sin(6; — On)
j=1

On the other hand, for any i € {1, N}, we have that, for any j < i, 0 < 6; —0; <
any j >1,0<6; —0; <7. That is

Jj=1

; while, for

0l

N i—1
= Z sin|9j—9i\—Zsin|0j—0i| .
j=i+1 J=1

Now, for all 9~ g Do, if 4 > 7, then ’0J —91| < |9J —9]\/|7 while, if 1 < 7, then |9] —91| < ‘9] —91|.
Hence, for all 8 € Dy,

i— N
> sin|0; — 6, <Y sin|f; — O], Vie{1,N},
j=1 j=1

and
N N
> sinlf; —6;| <> sin|6; —61], Vie{1,N}.
j=i+1 j=1

Recalling that, for all a,b > 0, |a — b| < max{a, b}, it then follows that, for any ¢ € {1, N},

i—1 N
(Qj—ei) < max{Zsin|0j—¢9i|, Z sin|9j—0i|}
J=1 Jj=it+l
N N
< max {Z sin |0; — 01], Zsin 16 — 0N|} . (3.38)
j=1

J=1

Therefore, combining (3.36), (3.37), and (3.38), we obtain (3.35), which ends the first step of
the proof.



Second step — Using the fact that sinz > 2z, for all z € [0, ], Equation (3.35) yields

Ix(0)]z > max{Zsm 60 — 61], Zsm |6 —9N|}

j=1 j=1

Vv
ZHI\D

{g\& — 04, 21]0 —GN\}

v

2 N N
“max Y (6;—61),> (On —0;)
™ 7=1 J=1

Or, equivalently, by defining § := 0y — 61, with 0 < ¢ < 7,

. 9 N N
x(0)]2 2 — max {Z(Qj —61),>_[6—(6; - 91)]} : (3.39)
j=1 j=1
For notation purposes, define Iz := [0,8]N"2, 2; := ;41 — 01, for all i = 1,...,N — 2, and

L= ['1"7:]7;:17”_7]\7_2 € I;. Then

N N
max{Z(ej—elyz (0; —61)] } = max{(5+zxz75+z —331}
j=1

Jj=1
N-2

N—2
= 5+max{2xi, 2(5—371)} (3.40)
i=1 i=1

In order to obtain the desired bound, we minimize the function f : I; — Rxq, defined by
f(z) == max {Zf\i_f zi, SN2 - xl)} Define the functions

N-2 N-2

a(x)::in and b(x :Z — ),

=1 =1

and the sets

A = {zely: a(x) > b(x)}
B = {zxecl;: b(z)>a(x)}
C = {xecl;: a(r)="0b(x)}.

It then results that I; = AUBUC, with ANB=BNC =CNA=0. Observe, moreover,
that we obviously have f|4 = a|4 and f|p = b|p. By the fact that, for all z € C, ZZ 1 2y =
SIVT2(8 — ), we have
-2
f(x) =a(x) =blx) = ——0, VxeC. (3.41)
Moreover, since b(z) = (N — 2)0 — a(x), it results that

-2
5 0, VreA,

and 5
b(z) > T_é, Vx € B.



That is, since f|4 = ala, f|p =b|p, and AUB = I\ C,

N -2
f@)> =55, Vael;\C.

From (3.41), this also implies that, for all z € I,

@) > %5. (3.42)

From (3.39), (3.40), and (3.42), we obtain

~ 2 N -2 N
O > 2 (5+ 5 28) = "4
s 2 s
Finally, recalling that § = ||, by the norm inequality || > |é| %, we conclude that, for all
9 S DU, .
~ N ~ 102
O)|p > ———10]9 > —=
|X( )|2_7T(N—1)| |2_ T

which proves the claim.

3.7.4 Proof of Claim 3.14

Since we want to prove that 10l < VNG = |6|s <6, we are going to prove that |f|s > 6 =
|8]o > v/N6. Tt is enough to show that, for all 6 € [0, ],

0l =06 = |8]z > VN0, (3.43)

Indeed, given & > 4, (3.43) implies that, if ||oe = & > 4, then |0y > VN&' > V/N§. In
order to prove (3.43) we minimize the Euclidean norm 0] (or, equivalently, ||3), with the
constraint that |<9\oo = 4. For the sake of simplicity, renumber the oscillator phases indexes in
such a way that 0; < 0; whenever ¢ < j, as in the proof of Claim 3. The problem can then be
translated into minimizing |@|3, with the constraint that fy — 6; = d. Since the square of the
Euclidean norm and the constrained function are smooth, we can apply the method of Lagrange
multipliers?. That is, we can find critical points of |@|3, under the constraint O — 6 = 4, by
solving the set of equations

0 .
%F(G )\) = O, Z—].,...,N, (344)
0

SSF0.0) = 0, (3.45)

where F(0,\) := zﬁj:l(ei —0;)2—X(On —01—9), and X € R is the Lagrange multiplier. (3.44)
gives, for i € {1, N}, gives

Mz

(6: — 0;) (3.46)
7j=1

2We present a brief recall of this method in Appendix A on page 67



While (3.45) gives the constraint 6 — 6; = J. In addition, (3.44) gives, for i = 1, 42;-\7:1(01 -
0;) + X =0, and, for i = N, 42;-\7:1(01\7 —0;) — A =0,. By solving with respect to A\, we get

N N
D (61 —0;)+> (On —6;) (3.47)
j=1 j=1

Equations (3.46)-(3.47), with the constraint 6 — 61 = J, admit a unique solution, modulo a
common phase shift among the ensemble (i.e 6; — 0; + « for all 7):

0; —07 = 0, Y(i,5) & {(1,N),(N,1)}, (3.482)

0r —607 = =, 0 —0y= , Vig {1,N}. (3.48b)
By computing the Hessian of F' with respect to the vector (éT, AT, it is easy to show that its
symmetric part is positive semidefinite for all (§7, \)T. Hence the solution (3.48) corresponds
to a minimum. To show the uniqueness of this critical point, modulo a common phase shift,
note that the set of equations (3.44) can be rewritten as the linear system

N—-1 -1 ... -1 -1 0,
1 N-1 ... -1 -1 0y
GO = : P : : (3.49)
1 -1 ... N—-1 -1 On_ s
1 -1 .. -1 N-1 On_1
-1 0 ... 0 1 O
A
4
0
_ C 3.50
0 (3.50)
Y
4
5

The matrix G € RVTDXN hag rank N — 1, since the minor given by the first N rows is the
Laplacian matrix associated to a complete graph, which has rank N — 1. In particular, it holds
that G1y = 0. Hence the solution to (3.49) is of the form 6* = 65 + aly, o € R, where 6%
belongs to the ortogonal space to 1y, and is uniquely determined by (3.49). This confirms
that the solution (3.48) is unique, modulo a common phase shift. We can then conclude that,
if |0|oo = 0, then

N
013 > > (07 —065)?

ij=1

N—-2 ¢2 N-2 ¢9

0 )

> 2642 T2l g

j=2 j=2 4
> No?,

which proves the claim. ]



Appendix A - Lagrange Multipliers

An extremum of a continuously differentiable function f : R®™ — R, under the constraints
gi(x) =b;, i =1,...,m, where g; : R® — R is continuously differentiable, and b; € R belongs
to the image of g;, for all i = 1,...,m, can be found by constructing the Lagrangian function
F' through the Lagrangian multipliers A\;, ¢ =1,...,m,

and by solving the set of equations

0
%F(:Ev)\l)"'a)\m)zoa

0
—F(x,\,...,Am) =0
a/\J (l’, 1 ) m) )
foralli =1,...,nand all j = 1,...,m. The optimal value z*, is found together with the
vector of Lagrangian multipliers \* = (A],..., A},). See for example (Bliss, 1947).

r'm






Chapter 4

Oscillation imhibition via mean-field
feedback

Chapters 2 and 3 are mainly concerned with the analysis of network of oscillators under the
effect of a closed-loop control signal. They show that no oscillating phase-locked solution
can co-exist with the presence of a mean-field feedback (Theorem 2.2). Yet, we have seen
that if the feedback gain is too small, the system may converge to an almost phase-locked
oscillating solution, still corresponding to a pathological state (Theorem 3.4). In this chapter
we investigate a first control goal that can be effectively achieved via closed-loop stimulation
of oscillators population.

More precisely, we work under the assumption that the pathological synchronization charac-
terizing neuronal populations in Parkinson’s disease can be eliminated by inhibiting the global
oscillation. In other words, our aim here is to use the DBS signal to inactivate STN neurons,
meaning that the stimulation acts by impeding pathological bursting and spiking (Filali et al.,
2004). Such an approach basically results as a functional lesion of the STN. This hypothesis
is also supported by the fact that, before the invention of DBS, the surgical PD treatment
consisted in an ablation of the cerebral zone under concern (Jankovic et al., 1995; Benabid
et al., 1996), which corresponds to a radical neuronal inhibition.

The aim of this chapter is thus to provide some insights on how the collective oscillation of a
network of nonlinear oscillators, modeling a neuronal population, can be inhibited by propor-
tional feedback when only its average behavior is measured. We rely on the simplified neuron
model derived in Chapter 2 to provide preliminary theoretical justifications on how mean-field
feedback DBS may yield neuronal inhibition in the STN. We show that for sufficiently small
natural frequencies the closed-loop system exhibits a set of almost globally asymptotically sta-
ble fixed points, which corresponds to an effective oscillation inhibition. In the case of zero
natural frequencies, the feedback signal is vanishing on the stable set, and remains small for
small natural frequencies, thus assuring an efficient energy policy of the proposed stimulation
signal.

The analysis relies on a gradient dynamics approach. We develop an extensive analysis of the
critical sets of the potential function, and completely characterize their stability. The presence
of non-isolated equilibria makes the stability analysis rather tricky and tools from invariant
normally hyperbolic manifolds theory are used in order to obtain global results. The situation
is more involved in the case when the number of oscillators is even, in which case the set of
non-isolated critical points is not globally a manifold.

The chapter is structured as follows. In Section 4.1 we recall the mathematical form of the
system under studies. In Section 4.2 we consider the ideal case of zero natural frequencies and



homogeneous coupling and feedback gains, and develop an extensive fixed-point and conver-
gence analysis. In Section 4.4, we use the result obtained in Section 4.2 to derive conclusions
in the general case of non-zero natural frequencies and heterogeneous gains. The proofs of the
main results are provided in Section 4.5, technical proofs are given in Section 4.6.

4.1 Problem formulation

In the following, we consider the Kuramoto system under mean-field feedback (2.6), and let

ko = N2 ka

4,j=1

be the mean of the coupling strengths and
N
1
=% Z

denote the mean of feedback gains. Define moreover the deviations

g‘ = [kz] - ko]ij:l,...,N S RNXN

and

Y= lvij — ’YO]ij:L,,,,N e RN

of, respectively, the coupling strengths and feedback gains around their means. If the feedback

gain o can be picked in such a way that vy = —kq, then (2.6) can be rewritten as
_ N
0; = koY sin(6;+6;)+ f'(6), Vi=1,...,N. (4.1)
=1

where the vector function

N
() = {wl + Z k:zj + ;) sin(6 Z_: i sin(6; + 0; )-| (4.2)

)
7=1 Ji:l N

20ty

is parametrized by the matrix
= (w, k,7) € RVXA+2N), (4.3)

In this particular situation, one intuitively expects that, if f7 is small, then the synchronization
of the network of oscillators is compromised, yielding either an oscillating desynchronized state
or the end of oscillations. Numerical simulations support these expectations. They reveal that,
when f7 is small compared to the coupling strength kg, mean-field feedback inhibits oscillations
when g is picked as —kg: the phase of each oscillator goes to a fixed point (cf. Fig. 4.1 left,
in which the feedback is activated at t = 4), thus eventually stopping oscillations. On the
contrary, when f" is large with respect to the coupling strength kg, the use of a mean-field
feedback with gain v9 = —kg desynchronizes the network (cf. Fig. 4.2 left). This problem is
addressed in Chapter 5. We stress that the choice 79 = —ko implies that the feedback gain is
small provided that the original diffusive coupling is small, thus ensuring, in accordance with
Assumption 1, the persistence of the oscillators limit cycle attractors in (2.3). The numerical
simulations in Figures 4.1(left) and 4.2(left) illustrate this behavior. They show that, even if
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FIGURE 4.1: Small natural frequencies: oscillations inhibition.

the oscillations are blocked or desynchronized, the single oscillators remain near the original
limit cycles, where the phase approximation is valid. More precisely, if the coupling strength
|k|, where the matrix k € RV*¥ is defined as in (2.4), is sufficiently small that the small
coupling condition (2.4) is satisfied, i.e. |k| < Jp, then the choice vy = —ko automatically
ensures that the same condition is satisfied for the closed-loop system. To summarize, the
analysis contained in this chapter extends to the full dynamics (2.3), provided that the open-
loop diffusive coupling strength is sufficiently small. The reader is referred to Appendix A for
more details.

Im(z)

F1GURE 4.2: Large natural frequencies: desynchronization.

Robust oscillation inhibition can be formalized as the existence of an (almost globally) attrac-
tive set of fixed points for (4.1). In order to develop an existence and stability analysis of such
a set, we start by identifying the fixed points of (4.1) and study their nature in the fictitious
case f7 = 0. Stability properties in the general case (i.e. in presence of f" with sufficiently
small amplitude) are derived as a second step, by relying on robustness arguments.

In the remainder of this chapter we lift the oscillators phases from T to RY. This is necessary
in view of the gradient analysis developed for f7 # 0. As detailed in Section 4.4, in this case,
(4.1) defines a gradient dynamics on RY, but not necessarily on T%. We stress that the derived
results are independent of this choice, since the 27-periodicity of the vector field in (4.1) allows
to project the lifted vector field, and the associated trajectories, back to the N-torus.



4.2 The case of zero natural frequencies

When f7 =0, i.e. when the natural frequencies are zero and the coupling is all-to-all, (4.1)
reduces to

N
91’ = kOZsin(Gi—i—Qj), Vi=1,...,N. (44)
j=1
We note that (4.4) can equivalently be written as the gradient system

. oW
= i=1,...,N
91 892(9)7 Vi ) ) ’

where the potential function W is given, for all § € RN, by

N

W) = —ko 3 sin? (%) (4.5)
i=1

4.2.1 Fixed points identification

We start by computing the fixed points of (4.4) or, equivalently, the critical points of its
potential function (4.5). To that aim, we define the following set:

3
Ay = {GERN:Hi:gmonW wezg,el:gmod% Vi € Iz,

Ts UTse ={1,..., N}, #Iz # #z%w} . (4.6)

That is, Ag is made of all the vectors § € RY whose components are either 7/2 or 37/2 (modulo
27), and for which the number of 7/2 entries is different from the number of 37/2 entries. In
the same way, we define

By = {#eRN:0;=0mod 2r Vi€ Ly, 0; = mod 21 Vi€ I,
IOUI :{1>'-"N}7 #IO##ITF} (47)

In other words, all the vectors of By are made only with 0 and 7 elements, and the number of
their 7n’s differ from the number of their 0’s. Finally, we introduce

N = {9 eRY: isin(&i) = icos(@i) = 0} . (4.8)
i=1

=1

The following lemma, whose proof is given in Section 4.5.1, shows that Ag, By and A/ completely
characterize the fixed points of (4.4).

Lemma 4.1. Given any ko > 0, the set Fy of fized points of (4.4) is given by the disjoint union
Fy = Ao U By UN, where Ay, By, N are given in (4.6)-(4.8). That is the sets Ao, By, N form
a partition of Fy.

Lemma 4.1 states in particular that the critical points of W can be divided into two families.
The critical points contained in the sets Ag and By are isolated by their definitions (4.6)-(4.7).
Their stability can then be easily studied by analyzing the sign definiteness of the Hessian of
W at these points. This will be achieved by Lemma 4.2. On the contrary, as we show in the
sequel, the fixed points belonging to A are not isolated. Noticing that A is defined as a level



set of the function 6 — (3N sin(6;), 3, cos(6;))T, we argue that, at least locally, it is an
embedded submanifold. Its stability can then be analyzed through the linearization of (4.4)
on the orthogonal subspace of this submanifold. This will be achieved by Lemma 4.3.

4.2.2 Analysis of isolated equilibria

In the following lemma, proved in Section 4.5.2, we address the stability of the fixed points of
(4.4) belonging to Ag U By.

Lemma 4.2. Let ko be any given positive constant. Let W be defined in (4.5), and let

Win 1= {9 eRN: 9= (g mod 7r> lN} (4.9a)
Wy = {0 € RN : 0 = (0 mod 7) 1y} . (4.9D)
Then the following holds true:

a) Wi, contains all global minima of W and its points are hyperbolically asymptotically stable
for (4.4).

b) War contains all global mazima of W and all its points are hyperbolically unstable for
(4-4)-

c¢) All the critical points of W, which are not global extrema, that is all the points in (Ag U
Bo) \ W UWn) where Ay and By are defined in (4.6)-(4.7), are hyperbolic saddles for

(4-4)-

We stress that the points belonging to the two sets W,,, and Wj; are multiples of the vector 1.
Thus, for those points, the oscillator phases are all equal. More precisely, points belonging to
Wi, are characterized either by all the phases being equal to 7 or by all the phases being equal
to —%, modulo rotations of 2. For instance, the vector (7, 5, 5) belongs to W,, whereas the

vector (5, 5, —5) does not. Similarly for Why.

4.2.3 Analysis of non-isolated equilibria

The following lemma, whose proof is given in Section 4.5.3, characterizes the non-isolated
critical points of the function W, i.e. those contained in N.

Lemma 4.3. Let ko be any positive constant and let N be defined in (4.8). Then, the following
holds true:

a) If Nisodd, N is an embedded submanifold of codimension 2 that is normally hyperbolict
for (4.4). In particular, for all 8 € N, the eigenvalues A_(6), A+ (0) of the linearization
of (4.4) restricted to the orthogonal directions to N are such that A\_(0) < 0 < A4 (6).

b) If N iseven, there exists a normally hyperbolic submanifold N of codimension 2, and 2V
one-dimensional submanifolds No;, i =1,.. ., 2N, such that N' = NUU?L Noi. Moreover,
for all 0 € N, the eigenvalues A_(0), \.(0) of the linearization of ({.4) restricted to the
orthogonal directions to N are such that A_(0) <0< A (), and, for all i =1,...,2N,

the stable set of Ny; is contained in a submanifold N, of dimension %

! An invariant embedded submanifold is normally hyperbolic for a given vector field, if the linearization on
its orthogonal subspace is hyperbolic and dominates the tangent behavior. We refer the reader to (Hirsch et al.,
1977) for a rigorous introduction to this and related concepts.



Lemma 4.3 states in particular that locally around almost all points 6 in A/, the dynamics (4.4)
can be decomposed in three behaviors: the null behavior tangent to NV; the convergent behavior
toward A along the eigenvector associated to A_(6); and the divergent behavior away from
N along the eigenvector associated to A (#). In the even case, the set A cannot be globally
described as a normally hyperbolic submanifold, due to the presence of the singularities Ny,
where the equation

N N
Zsin(@i) = Zcos(&i) =0
i=1 i=1

loses rank. Interestingly, the set A coincides with the set of non-isolated unstable points of
the all-to-all Kuramoto system with all identical natural frequencies (Sepulchre et al., 2007).

4.3 Convergence to the global minima

We have all the ingredients to prove the almost global asymptotic stability of the set of the
global minima of W.

Proposition 4.4. Given any ko > 0, the set W, defined in (4.9a) is almost globally asymp-
totically stable for the dynamics (4.4).

Proposition 4.4, whose proof is provided in Section 4.5.4, states that, when neglecting the
natural frequencies of the oscillators, the choice 79 = —kg of the mean-field feedback gain yields
oscillation inhibition for almost all initial conditions, that is the oscillators phases converge
almost globally toward an asymptotically stable configuration.

We point out that the output of the system (2.2), defined as
N .
y:ZRe(zj), 2j :rjelef, j=1,...,N, (4.10)
j=1

where r; > 0 is the radius of the oscillator j (cf. Assumption 1), and thus the applied pro-
portional mean-field feedback, is vanishing on W,,. This fact is of crucial importance in the
DBS practice, where inputs magnitude and energy consumption are critical medical issues. See
Section 1.1.2.

We point out that the effect of a robust oscillations inhibition is peculiar to the presence of
mean-field feedback. In the absence of mean-field feedback, the diffusive coupling of the stan-
dard Kuramoto dynamics is invariant with respect to global phase-shifts, commonly denoted
as T'-symmetry?. The presence of this symmetry lets the diffusive coupling be ineffective for
oscillations inhibition. The T symmetry is indeed associated to a zero eigenvalue of the dy-
namics with eigenvector 15 and any nonzero additive constant perturbation of the form wly,
makes an originally non-oscillating phase-locked solution oscillate with frequency w # 0.

4.4 The perturbed case f" Z 0

In Section 4.2 we have identified and characterized all the fixed points of (4.4) in the case
of zero natural frequencies and all-to-all coupling and feedback, i.e. f7 = 0. We can now
plug natural frequencies and coupling and feedback uncertainties back in as perturbations and
derive global stability results in the general case f" Z 0.

2This symmetry is indeed generated by the torus, when considered as a Lie group, rather than a geometrical
space.



Also in the case when f7 # 0, simple computations reveal that, if the dispersion matrices k,5
are both symmetric, then (4.1) can be written as the gradient dynamics

: oW, ,
b= =" 0), Vi=1,...N,

where the perturbed potential function W), is defined, for all 6 € RN by
W,(0) := W (8) + F"(0), (4.11)

in which the function W is defined in (4.5) and, for all € RV,

0; + 0, N 0, —
Z’y”sm < + ) Z k:l]—k'y” sin (]

i,7=1

N
)=
i=1

This observation results from the fact that, if l;ij = l;:ji and ;5 = 7ji, forall 4,5 = 1,..., N,
then —97% = f7!, foralli=1,..., N.

Note that the potential function W, being not 27 periodic, (4.1) can be written as a gradient
dynamics with W, as the potential function only when the oscillators phases are lifted to the
real line.

4.4.1 Odd number of oscillators

Even though the perturbed potential function W), is lower unbounded, we expect its local
minima to be near the global minima of W and still almost globally asymptotically stable,
provided that the perturbation f” is sufficiently small. The following theorem confirms this
expectation in the case when the number of oscillators is odd.

Theorem 4.5. Let N € N>3 be odd and k7 € RN*N be symmetric. Then there exists 8 > 0
and a class Koo function p such that, if the matriz n € RN*U+2N) - defined in (4.3), satisfies
In| <8, then there exists a set of isolated points W1 C RN | satisfying®

Wiklw,, < p(Inl), (4.12)

where Wiy, is defined in (4.9a), which contains all the local minima of the perturbed potential
Junction W,.  Moreover, W), is almost globally attractive for (4.1), that is, for almost all
0o € RY, it holds that

Jim [0 60) vy, = 0.

Theorem 4.5, whose proof is provided below, thus formally establishes the possibility to inhibit
oscillations in presence of non-zero natural frequencies and symmetric coupling and feedback
uncertainties, at least when the number of oscillators is odd. Note that it guarantees, for
almost all fy € RY, that the solution of (4.1) satisfies

lim sup [6(t; 60) lw,,, < p(Inl),
t—o00
provided that |n| < §. Since the mean-field (4.10) is a continuous function which is zero on W,y,,
this in turns ensures that the mean-field (and thus the applied feedback) is small provided that
|n| is small. In other words, neuronal inhibition can be achieved via proportional mean-field
feedback with an efficient energy policy.

3W1 |y, denotes the distance between W,, and W?,. See notation section for details.



A similar oscillation inhibition result is contained in (Ermentrout and Kopell, 1990). In that
reference the authors consider a chain of phase oscillators, and a class of coupling functions
that contains the sinusoidal additive coupling considered here as a special case. The result is
the existence of a unique stable inhibited solution in the chain of oscillators, provided that the
natural frequencies are sufficiently small. Theorem 4.5 complements this analysis, by focusing
on a particular coupling function and considering a different interconnection topology. The
nature of the derived results is also different. In (Ermentrout and Kopell, 1990), the authors
do not exclude the presence of stable oscillating phase-locked solutions. Theorem 4.5, relying
on a global gradient dynamics analysis, excludes the presence of any other limit set, except the
critical points of the potential function.

4.4.2 Even number of oscillators

The result of Theorem 4.5 is limited to the case when N is odd. In this case the set of
non-isolated fixed points N of the unperturbed system, i.e. with f7 = 0, defines a normally
hyperbolic invariant manifold (cf. Lemma 4.3). As seen in the previous subsection, the local
analysis around this set can still be developed in the perturbed case by means of the normally
hyperbolic invariant manifolds theory. On the contrary, in the even case, the set A is not
a manifold, and no standard mathematical instruments are readily available to analyze its
existence and stability under perturbations. The same situation is present, for example, in
the standard Kuramoto system (cf. (Sepulchre et al., 2007, Section IIT)), and also for this
system, despite numerical evidences, no results have yet been rigorously proved on the almost
global convergence to a phase-locked state in the case of non-identical natural frequencies.
Nonetheless, in the case f7 = 0, Proposition 4.4 states the almost global asymptotic stability
of the set of local minima of the potential function also in the even case. In the light of the
results of Proposition 4.4 and Theorem 4.5 we conjecture the following result.

Conjecture 4.1. The result of Theorem 4.5 holds also in the case when N is even.

4.5 Main proofs

4.5.1 Proof of Lemma 4.1

The fixed points 6% € RY of (4.4) satisfy

N
> sin(0; +6;) =0, Vi=1,...,N. (4.13)
j=1

Using the trigonometric identity sin(a 4+ ) = sinacos 8 + sin 3 cos a, this condition can be
rewritten as

sin(6;)a(0*) + cos(6;)b(6*) =0, Vi=1,...,N, (4.14)

where, for all § € RV,

N
a(f) := ZCOS(Qj), (4.15)
j=1

and

N
b(6) =3 sin(6;). (4.16)
j=1



We start by showing that the equation

a(0%)

cos(0;) = — b0

sin(0;), Vi=1,...,N, (4.17)

with a(0*) # 0 and b(6*) # 0, admits no solution. Suppose indeed that (4.17) holds true.
Then, by taking the sum over i of both sides of (4.17), we have

a(0*)

N 0" &
cos(t;) = —— - sin(6;),
;é; (67) b0 2;; (67)

that is, by the definitions (4.15)-(4.16) of @ and b,

a(0”),
= _a(e*),

a(0*)

which implies a(6*) = 0 and thus contradicts the hypothesis.

Recalling (4.14)-(4.16), all the other solutions of (4.13) then necessarily belong to one of the
following three sets:

Ay = {8eRY: a(h)=0, b(#
By = {8cRY: b)) =0, a(f
N = {6eR: a(d) =b(0) =0},

where N is defined in (4.8). To prove the lemma it remains to show that Ay = Ap and By = By,
where Ay and By are defined in (4.6) and (4.7) respectively.

STEP 1: By = By.

For all i = 1,...,N, sin(f;) = 0 implies that 6; = 0 mod 7. Hence, each point #* € By has
myg elements equal to 0 mod 27 and m, elements equal to m# mod 2w. The sets Zy and Z; in
(4.7) can then be picked as the corresponding index sets, and it holds that #Zyp = mg and
#I, = my. The condition a(6*) # 0 then imposes mg # my, that is #Zy # #Z,. This
shows that By C By. The converse sense of the inclusion follows by similar reasonings, which
establishes that By = By.

STEP 2: Ay = Ap.
We omit the proof of this step, at is follows along the same line as Step 1.

4.5.2 Proof of Lemma 4.2

We start by computing the Hessian of W:

oW
H(9) .= 0).
(6):= g (0
Basic computations reveal that H = [Hjj;|; j=1,.. n with, forall 4,5 =1,..., N,
HZ(Q) = —k’o(COS<29i) + 81(9» (4.18&)

H;;(0) = —kocos(b; +6;), Y i#j, (4.18Db)



where

N
si(0) ::Zcos(0i+9j) Vi=1,...,N. (4.19)
j=1

Item a): Global minima.
Noticing that W () > —koN? for all § € RV, the global minimum of W is attained when

sin? (%) =1, for all 4,5 = 1,..., N, that is, §* = (§ mod ) 1y. Recalling (4.9a), it

follows that the set W, contains all the global minima of W. On this set, it holds that
cos(@} +6f)=—1foralli,j=1,...,N. Recalling the expression of the Hessian of W, given
in (4.18), at the global minima we thus have

Hly,, = ko(NIy + 1yxn)-

Since H|w,, is symmetric diagonally dominant with strictly positive diagonal entries, all its
eigenvalues are strictly positive (Horn and Johnson, 1985, Theorem 6.1.10), that is all the
points of W, are non-degenerate minima of W and thus hyperbolic asymptotically stable for
(4.4).

Item b): Global mazima.

The proof of this item is omitted here as it follows along the same lines as for Item a).

Item c): Saddles.
In view of Lemma 4.1, after a reordering of the phase indexes, the points 6* € By \ W), are
such that

0; =0 mod 2w, Vi=1,...,mg,

and
f; = 7™ mod 27, Vi=mg+1,..., N,

where mg € {1,...,N}. Let my; := N — mg and consider ip,iy € {1,...,mo} and ir, i, €
{mo+1,...,N}. Since

cos(20;,) = cos(b;, + 0%) = cos(20;,) = cos(0;, +0; ) =1,
and
cos(0i, + bipx) = —1,

basic computations from (4.18) reveal that, for all * € By \ Wy, the Hessian of W has the

form
A ]—mo XMy

H(0*) = —kg 4.20
( ) 1:no><mﬂ- B ( )
where A € R™0%X™0 and B € R™7*™r gre defined as
A:: (mo - mﬂ')ImO + 1m0><mo (421)
Bi= (mg — m0) I, + Lo, xcm,.- (4.22)

Comnsider the two vectors
er:=(1,1,0,...,0)7

and
ez :=(0,...,0,1,1)T.

Since
el H(0%)ey = —2ko(mo — my)



and
egH(O*)eg = 2ko(mo — mz),

and recalling that mg # my in view of Lemma 4.1, H(6*) is sign indefinite. In particular, small
variations in the direction given by e; or ey at this critical points change the values of W by
respectively dW; and Wy with §W;0Ws < 0. Hence, all the points 6* € By \ W, are saddles.
It remains to show that they are also hyperbolic, that is H(6*) is non-singular. Suppose on
the contrary that H(6*) is singular. Then its columns are not linearly independent. That is
there exists a1,...,any € R, not all zero, such that

N
ZajHij(G*) = O, Vi = 1,.. . 7]\f.
Jj=1

In particular, using (4.20), (4.21), and (4.22), we get

N [ mo N
ZajHlj(G*) = kg (mo — Mg+ 1)&1 + Zaj — Z aj| = 0 (4.23)
j=1 i j=2 j=mo+1 J
N mo N
Zangj(G*) = kg (mo — Mg+ 1)&2 + Z a; — Z a;| = 0. (4.24)
Jj=1 j;; j=mo+1

L J

Subtracting (4.23) to (4.24), we get (mo — mx + 1)(az — a1) = (a2 — a1). Recalling that
mo # my in view of Lemma 4.1, (mg — m, + 1) # 1. Hence, necessarily as = a;. With similar
computations, it follows that that a; = a;, for all 7,5 = 1,..., N. Plugging this relation in
(4.23), and solving for mg — my, one gets mg — m, = —%, which is absurd, since mg, m, € N.
Hence H(0*) is non singular. Through similar computations, the same result holds for the
points 68* € Ay \ Wyy.

4.5.3 Proof of Lemma 4.3

The set NV, defined in (4.8), is the zero level set of the function
F() = ( Z((; > RN — R?, (4.25)

where a,b : RN — R? are respectively defined in (4.15) and (4.16). The level set of a function
defines a submanifold of codimension m if the function has constant rank m (Lee, 2006). In
order to check this condition on F', we have to compute its Jacobian’s rank in each point § € V.
In view of (4.15), (4.16), and (4.25), basic computations reveal that

_OF, [ —sinf; ... —sinfy
Jr(0) = %(0) o ( cosfy ... cosfy ) ' (4.26)

This matrix has rank 2 if and only if it contains two independent columns. A necessary and
sufficient condition is then that there exists (i,7) € Nﬁ, such that

—sinf; —sinf; \ . Y
det ( cosi  cosb, ) =sin(f; — 6;) # 0.



In other words, the rank of F is strictly smaller than 2 at some point # € A if and only if
sin (0; —0;) =0, Vi,j=1,...,N. (4.27)

This implies? 6; — §j =0orf; — gj =, forall ;5 =1,...,N. That is, reordering the phase
index, 0; = 6, i = 1,...,qo, for some 0y € [0,27), and 0; = 0y +m, i = qo + 1,..., N, where
0<g <N.

CASE 1: N s odd.
In the case N is an odd number (4.27) is not compatible with the condition a(f) = b(f) = 0
imposed in . Indeed, for any 0 < gg < N, it holds that

a(f) = go cos(fy) — (N — qo) cos(Bp) # 0, Vb & {g, 3%} )

If g € {3, %}, then

b(#) = qosin(6o) — (N — qo) sin(bh) # 0,
for all 0 < go < N. Hence (4.27) is not satisfied for all § € . We conclude that, in the
case when N is odd, the Jacobian (4.26) of F has rank 2 on N/. Hence, N is a submanifold of
codimension 2.
Since N is a submanifold of codimension 2, we can develop a stability analysis on its orthogonal
subspace N'*. In view of (4.8), a base for this subspace at § € A is given by (Va ()T, Vb(6)T).
We start by computing the expression of the Hessian of W restricted to N that we denote as

H(0) == H|n(0),

for all # € N. Notice that the elements s;, defined in (4.19), satisfy

N
silan(0) = cos(0; + 05)]a(e)=b(8)0
7=1
N
= [cos(6;) cos(0;) — sin(6;) sin(0;)] a(o)=b(6)=0
=1
cos(0;)a(0) — sin(0;)0(0)] |a6)=b(6)=0

)

I
O'_'k"

for all  =1,..., N. Consequently, recalling (4.18), we have that
Hij(0) = —kocos(0; +6;), VO e N, Vi,j=1,...,N. (4.28)

Moreover, each element of the vector H(0)Va() satisfies

N
[H(G)VG(H)T] = = —3 (Z(— sin @;)(cos 6; cos 0; — sin §; sin Hj)>

1
j=1
ko N N
= — | —sin¥; Z sin? 0; + cos b; Z sin 0; cos 6
2 j=1 j=1
ko

N N
= 5 <Va(9),~ Z sin? 0;+Vb(0); Z sin 6; cos 0j> :

J=1 J=1

4All this reasoning holds modulo 27. We omit to write the modulo operator for clarity.



It follows that, for all § € NV,
ko N N
H(O)Va(9)T = 5 Va(0)" > sin® 0,4 Vb(0)" > sinb;cos; | . (4.29)
j=1 j=1
With similar computations, we have that, for all § € NV,
L N N
H(O)VDb(O)T = 50 Va(0)T Z sin 0 cos 0; + Vb(0)" Z cos?0; | . (4.30)
j=1 Jj=1

Defining
HE(0) = Hpo(6),

for all @ € N, it follows from (4.29) and (4.30), that, in the basis (Va(8)T, Vb(0)T), H(0) is

given by . ) )
wo-b(s )
where
N
a(f) = Z sin? 0,
j=1
N
B(0) := Z cos®0;,
j=1
and

N
~v(0) = Z sin 0 cos 0.

J=1

The eigenvalues of H* are then given by

2
N N
N N2
Ar(0) = % (Z sin? 0j> -3 + v <Z sin 0; cos 9j> . (4.32)
j=1

=1

The following claim (proved in Section 4.6.1) ends the proof of the lemma in the case N is odd.

Claim 4.6. The functions A_ and Ay defined in (4.32) satisfy A_(0) < 0 < A4(0) for all
feN.

CASE 2: N is even.
In the case when N is an even number, consider the groupings of indexes

IO:{z'l,...,i%}, Lr:{i%H,...,iN},
where i; € {1,...,N} forall j =1,..., N, such that
To NI, = 0.
Let

No = {0eRN:0;=00,Yi€ Ly, 0; =00+m,Vi€ L0 €R}. (4.33)



Ny is a 1-dimensional manifold parametrized by 6y. Condition (4.27) is satisfied for all points
in NMp. Moreover, since a(f) = b(f) = 0, for all § € Ny, it holds that Ny C N. Note that there
exists exactly 2V different groupings {Zy,Z,}. Let Ny; be the set of the form (4.33) relative
to the i-th grouping. With the same reasoning as in CASE 1, no other sets than U?;Vl Ny in
which (4.27) is satisfied are contained in A/. Define

N =N\ No.

With the same computation as in CASE 1, A is a normally hyperbolic submanifold of codi-
mension 2 with normal eigenvalues Ay as defined in (4.32).

It remains to show that, for each i = 1, ..., 2", the stable set of Np; is contained in a subman-
ifold of dimension N/2. In the following, if no confusion can arise, we omit the index i. Let
e; € RN/2 be the vector with all zero entries apart 1 in the i-th position, that is {eit;—; «w

X
forms the canonical base of RV/2, Recalling (4.18) and (4.33), the Jacobian of the dynamics
(4.4) on Ny can be written, after a reordering of the indexes, as

Ho(00) = —kosin(26p) { Inj2xn/2 —1nj2xn/2
—Lnjoxny2 Inj2xny2

For all i,7 =1,...,N/2 and all §y € R,

Hy(60) ( Z] ) =0.

Hence, for all 6* € Nj the tangent space to Ny at 8* contains an N/2-dimensional center space

Ec; Satisfying
EC-SP&H{( 1)7( 2)7..-,( /2 >}
€1 €2 62\//2

This center space is tangent to the N/2-dimensional linear submanifold M., defined as

N/2
M, = {GERN: 9:9*+Zai< i ) a; € R, izl,...,N/Q}

i=1 €
Noticing that, by construction, M, C N, all the points in the center submanifold M. are fixed
points of (4.4), and, thus, they do not belong to the stable set of Ny. From (Sijbrand, 1985,
Theorem 3.2” - Case (ii)) this central manifold is unique. By the central manifold theorem
(Guckenheimer and Holmes, 2002, Theorem 3.2.1), for all 8* € N, the only other invariant
set that contains 6* is given by a N/2-dimensional submanifold M~ that is tangent to E}.
Since Ny C M., and since the stable set of ANy is an invariant set, it is contained in the
N/2-dimensional submanifold M.

4.5.4 Proof of Proposition 4.4

CASE 1: N is even.

Let N be asin (4.8), let N be defined as in Lemma 4.3, and let A”® denote the stable manifold of
N. Since, by Lemma 4.3, N is normally hyperbolic with one unstable direction, it follows from
(Hirsch et al., 1977, Theorem 4.1) that N® has zero Lebesgue measure. Moreover, by Lemma
4.3, all the points of A/ which are not in N form a finite set of 1-dimensional manifolds N,
i=1,...,2". The stable set of each of the Ap; is contained in a N/2-dimensional submanifold



Ng;. Define the set
2N
i=1
It follows that p(Co) = 0. Consider the domain
D :=RY\ C.

By definition D is open, forward invariant for (4.4), and contains only isolated critical points.
Hence by (Hirsch and Smale, 1974, Theorems 1 and 4), the restriction of (4.4) to D is a
well defined gradient dynamics that contains only isolated critical points, and, for almost all
0y € D, the trajectory starting in 6y converges to the global minima W, of the potential
function. Recalling that 1(Cy) = 0, we conclude that, for almost all §y € RY, the trajectory
starting at 6y converges to Wi,.

CASE 2: N is odd.
Let N be as in (4.8), and let N'° be its stable manifold. Since, by Lemma 4.3, N is normally
hyperbolic with one unstable direction, it follows from (Hirsch et al., 1977, Theorem 4.1) that

N* has zero Lebesgue measure. The rest of the proof follows along the same line of the even
case with Cp = N5.

4.5.5 Proof of Theorem 4.5

The potential function W, defined in (4.11) is nothing else than the potential function W
defined in (4.5), perturbed by the function F". From Lemmas 4.1, 4.2, and 4.3, all the invariant
sets of (4.4), given by the critical points of (4.5), are either hyperbolic fixed points or normally
hyperbolic invariant manifolds. Hence, they persist under sufficiently small perturbations along
with their stable and unstable manifolds (Hirsch et al., 1977, Theorem 4.1). Nonetheless, we can
not conclude almost global convergence to the local minima of (4.11) directly since, (4.11) being
lower unbounded, there may exists trajectories that run off to infinity. After having introduced
some notation and a technical result, we organize the proof in two steps. In the first, we study
the boundedness of the trajectories, whereas in the second we exploit the perturbed gradient
structure and the classical persistence result of Hirsch et al. (Hirsch et al., 1977, Theorem 4.1)
to conclude.

We start by introducing some notation that we use in the remainder of the proof. Given a
bounded function F : RN — RN we denote by ||F| its sup-Euclidean norm, that is ||[F|| :=
supgern |F(0)|. We next introduce the C°°-topology in the space of smooth bounded functions
with bounded derivative (Golubitsky and Guillemin, 1973, Chapter 2, Section 3). In order to
formally define this topology, we need some further notation. Given n € N, my,...,m, € N,
and M € R"™*>*™Mn we denote as | M| the (entry-wise) Euclidean norm of M, that is |[M| :=

S M2 . Note that | - | is a norm on R™ X" a5 can be formally shown
11=1 in=1 11 4eeesln

by isomorphically mapping R"1%-*™Mn to R™™M2--Mn_ For instance, in the case n = 1, | - |
is the Fuclidean norm, while for n = 2 it is the Frobenius norm. Given a smooth bounded

function F : RN — R™*X™Mn e denote its sup-Euclidean norm as ||F|| := supgegpn |F(0)]-
Finally, given r € N, we define the C"-norm of a smooth bounded function ' : RV — R with
n+1 times

bounded derivatives as | F||, := SUpP,—q,..r | E™[, where F(™) : RN — R V*-*N denotes the n-

th partial derivative of F, that is, for all ¢,41,...4, € 1,..., N, (Fi(n)) -~ (0) = 89@%(9),
i1...0n i1 @in

if n > 1, and FZ-(O) (0) = F;(6). The C* topology is the topology generated by the collection
of all the open balls defined by the C" norms, » € N. Convergence in this topology is denoted



by %, Given a family of functions {F"}, crnxm parametrized by v € R"*™ it holds that
v |C|—OO> 0 if and only if F¥ and all its partial derivatives (F ”)(T), r € N, converge uniformly
v|—0

to zero as |v| — 0 (Golubitsky and Guillemin, 1973, Page 43).

We next state the following claim, whose proof is provided in Section 4.6.2, which shows that
the perturbation f” converges to zero in the C* topology as |n| tends to zero. In particular,
f™1is small in the C"-norms, provided that |n| is small. We use this technical result at different
steps of the proof.

Claim 4.7. Consider the function f7 defined in (4.2) and the parameter matrix n € RV*1+2N)

introduced in (4.3). Then it holds that
COQ

0.
[n]—0

In particular, for all 7 € N, there exists a Ko, function g, such that [|f7], < o(|n|).

The proof then follows from the two following steps.

STEP 1: Boundedness of the trajectories.

We use the potential function W as a (lower bounded) Lyapunov function for (4.1). Since (4.1)
is a gradient dynamics with potential function W, the derivative of W along the trajectories
of (4.1) reads

W (0) := —VW, (0)VW(0) —V (W () + F"(6))" VIV (6)

— YW+ (F1(6)TIW(6). (4:34)
Equation (4.34) implies that

VWP

VW (@) > 2| = W) < 5

(4.35)

Note that, since f"7 is 2m-periodic and smooth, it is bounded, and thus Hf”ﬂ is well defined.
Let Fp be the set of critical points of W as defined in Lemma 4.1. By definition

VW(@)=0 <« 6ekF,. (4.36)

Consequently, the continuous function [VW| : RY — R> is positive outside Fp. In view of the
periodicity of [VW], it follows from (Khalil, 2001, Lemma 4.3) that there exists a K function
o such that

VW (8)] > o(|6]r,), V8 € RY, (4.37)
Let 1
0o 1= 5 Jim o(s). (4.38)

Note that, by (4.37), 0 € K\ Kw (d.e. o is bounded) and thus d, is well defined. If 1] < 65,
then o~} (2”]”7”) is well defined and Equations (4.35) and (4.37) yield

VW)

5 (4.39)

0lr, > o~ (21"]) = W) <



In other words, the derivative of W is negative outside the set B (FO, ot (2ﬂf’7ﬂ>). Let 41 be
the minimum Fuclidean distance between any two critical sets of W, i.e.
d1 := min { min 10, — 03], inf |0|N} . (4.40)
04,0, € AgUBoUWr UWhr,007#05 6 AgUBoUWpr UW) s

We claim that §; > 0. Indeed, by periodicity of W, we can compute §; on any hypercube
Cor C RN of side 2w, which defines a compact subset of RY. Since N is an embedded
submanifold, its intersection with any compact subset is compact. Moreover, the intersection
of the set AgU BoUW,, UW,; with any compact subset contains only a finite number of points.
01 is thus defined as the Euclidean distance between a finite number of points and a disjoint
compact set, which shows its positivity.

Relation (4.39) permits to study the decrease of W far from its critical sets, which are separated,
in the light of §; > 0. This study, together with an analysis of the behavior of (4.1) near the
unstable critical sets of W, permits to compute an upper bound on the size of 7, and thus of
f" (cf. Claim 4.7 above), such that the trajectories of (4.1) converge in finite time to a forward
invariant neighborhood of the minima of W, thus ensuring boundedness. The following claim,
whose proof is provided in Section 4.6.3 and is inspired from (Angeli and Praly, 2011, Proof of
Claim 1), proves this conjecture.

Claim 4.8. There exists 6 > 0, such that, if || < §, then there exists a sublevel set Q. of W,
with Q. C B (Wm, %), such that, for almost all initial conditions 8y € RY, there exists T > 0,
such that the trajectory of (4.1) starting in 6y satisfies

0(t:00) € Qe, VE>T.

In particular, for almost all initial conditions, the trajectory of (4.1) is bounded.

STEP 2:Almost global convergence.

Since almost all the trajectories of (4.1) are bounded, all the trajectories that do not start on
the stable manifolds of unstable critical points must converge to the minima of the potential
function W;,. It thus remains to show that, also in the perturbed case f7 # 0, the stable set
of all the critical points of W, which are not local minima is of zero Lebesgue measure. We
do this invoking the normal hyperbolicity of these sets and (Hirsch et al., 1977, Theorem 4.1),
where it is shown that a normally hyperbolic invariant manifold persists under sufficiently small
smooth perturbations, along with its stable and unstable manifolds. The qualifier “small” here,
is intended in the C'*°, or Whitney, topology sense (Golubitsky and Guillemin, 1973, Chapter
2, Section 3), as introduced above.

More precisely, Claim 4.7 ensures that perturbation f7 are small in the C'"*°-norm, provided that
|n| is small. Then, for each hyperbolic critical point 8* of (4.5) contained in AgUByUW,, UWhy,
where Ay and By are defined in (4.6) and (4.7) and W, and W, are defined in (4.9a) and
(4.9b), (Hirsch et al., 1977, Theorem 4.1) implies the existence of some dg« > 0 such that, if
|n| < dp+, then the perturbed potential function (4.11) still has a unique hyperbolic critical
point 0 that is [n|-near to 6*, that is

lim |0 — 6| = 0.



In addition, the stable and unstable manifolds of 6 have the same dimensions as and are
|n|-near in the C*° topology® to those of §*. Let

Oisolated = min{&m : 0* e AgUBoUW,, U WM},

which is positive, since the set Ag U Bg U W,,, U W) is 2m-periodic and contains only a finite
number of points in each hypercube Co; C RN of side 2r. Invoking again Claim 4.7 and
(Hirsch et al., 1977, Theorem 4.1), there exists d > 0, such that, if |p| < dz, then f” has a
unique smooth normally hyperbolic invariant manifold N,), |n|-near to N in the C* topology,
that is

[e'e]

N, —— N,

n
In|—0

and whose stable and unstable manifolds have the same dimensions as and are |n|-near in the
C* topology to those of N. For |n| < min{da, disolatea}, all the isolated local minima of W),
are contained in the set W), which is non empty, and which satisfies

li 1 =0.

This also implies the existence of a Ko, function p satisfying (4.12) (Khalil, 2001). The first
part of the statement of the theorem is thus proved for all

o< min{52, 5isolated}'

For the rest of the statement, we proceed as in Proposition 4.4 and we construct an open,
forward invariant set that contains only isolated critical points, and whose complement is of
zero Lebesgue measure. For |n| < d2, let N, denote the stable manifold of A, and consider
the domain

D, =R\ N;.

Since N has one unstable orthogonal direction, so does N;. Thus u(N;) = 0, that is the
complement of the domain D,, has zero Lebesgue measure. Moreover, if || < min{d;soiated, 92}
by definition D, is open, forward invariant for (4.4), and contains only isolated critical points.
Hence, the restriction of (4.1) to D, is a well defined gradient dynamics that contains only
isolated critical points. From (Hirsch and Smale, 1974, Theorems 1 and 4) almost all the
bounded trajectories belonging to D,, converge to the set W)l of local minima of W,), which
is non-empty since of || < isorated- Invoking Claim 4.8, it follows that, for all n such that
|n| < 6, almost all trajectories are bounded. Therefore, for

|77’ < 0= min{éisolatedv 5275}7

almost all trajectories belonging to D, converge to the set of isolated local minima W], of W,,.
Recalling that the complement of D, in RY has zero Lebesgue measure, the second part of the
statement of the theorem is proved. ]

5The C* topology for embedded submanifolds is induced by the C°° topology on the space of smooth em-
beddings with image in the embedding space. Embedded submanifolds are indeed in one-to-one correspondence
with smooth embeddings (Lee, 2006, Corollary 8.4)



4.6 Technical proofs

4.6.1 Proof of Claim 4.6

We start by showing that A+ (6) # 0 for all § € N. Suppose, on the contrary, that A+ () = 0.
This implies from (4.32) that

N N 2
2Zsin20j—N::F, N2 -4 Zsinﬁjcosﬁj ,

=1 j=1
that is

N 2 N N 2
Z sinf; | — N Z sin? 0; + Z sinfjcost; | =0. (4.41)
j=1

j=1 j=1

2
Noticing that (Zé\le sin? 9j> = Zf}le (sin 0; sin 6;)?, using the trigonometric identity sin asin b =
1 (sin(a — b) —sin(a + b)), it follows that

2
N ’ R 2
Z sin?f; | = 1 Z [cos(&i —0;) — cos(0; + 9]-)] . (4.42)
j=1 ij=1

Noticing that
N 2N
Zsin 6 cos 0; = Z sin 6; cos ¢; sin 0; cos 0,
j=1 ij=1
and using the trigonometric identity sinacosb = % (sin(a + b) + sin(a — b)), it follows that

N 2
Z sin 0; cos 0; =
j=1

[sin2(92~ +6;) — sin?(0; — 93‘)}

RNy
MZ

@
<
Il

—

1 N
2 — Z Z QSin(Qi + Oj)SiH(tgi — Hj) -

ij=1

[sin(@i +0;) + sin(0; — ej)]

1
-
MZ

@
S
Il

—

2sin?(6; — 6;)

-
MZ

s
<
Il

—

N
[sin(@i +6;) + sin(0; — 0]-)}2 — i Z 2sin?(0; — 6;),
ij=1

Il
RNy
MZ

@
<
Il

—

where the third equality comes from the fact that Zz]'szl sin(6; + 0;) sin(6; — 0;) = 0 for all 6.
Moreover we have that

N

i[ Z (cos(@i —0;) — cos(6; + Qj))2 + (sin(@i +6;) + sin(6; — Gj))Q}
ij=1
1, 1 . :
= 5N —5 Z [(COS(QZ' — 0;) cos(0; + 0;) — sin(6; + 6;) sin(6; — 9]-))}
ij=1
1 1 N N
= N =N+ N} sin®0; =N} sin*0;, (4.43)

Jj=1 Jj=1



where in the third equality we have used the fact that

N N N N
1
E cos(8; — 0;) cos(0; + 6;) = E i(cos 20; 4 cos20;) = N E cos20; = N* —2N E sin? ;.
ij=1 ij=1 j=1 j=1

Finally, plugging (4.42)-(4.43) into (4.41), we have that

N
Ar(0)=0 = > 2sin’(6; —0;) =0,
ij=1

that is sin(¢; — 0;) = 0, for all 4,5 = 1,..., N. Recalling (4.27), we conclude that A+ (6) # 0,
for all 9 € N.

Since A4 are continuous functions that do not cross zero, they cannot change sign. To prove
the claim it then remains to find *, such that A, (6*) > 0 and A_(6*) < 0.

Consider 6* such that 0] = 2%%, that is the oscillator phases are uniformly distributed on
the circle®. Recalling (4.32), it holds that

N
AL(0%) =2 sin®07 — N £ N.
j=1

That is

N
Ap(0F) =2 sin0; >0,
j=1

and, since Zé\f:l sin? 07 <N,

N
A_(0F) = —2N — 2 sin® 05 < 0.
j=1

4.6.2 Proof of Claim 4.7

The statement of the claim is equivalent to requiring that f7 and all its partial derivatives
converge uniformly to zero as || — 0 (Golubitsky and Guillemin, 1973, Chapter 2, Section 3).
That is we have to show that, for all n € N and for all € > 0, there exists § > 0, such that, if
In| <6, then |[(f1)™]| < e. In the rest of the proof we let S be the set of functions defined as
S := {sin(-), —sin(-), cos(-), — cos(-) }.

6This phase configuration is called the split configuration in (Sepulchre et al., 2007).



In order to give an estimate of ||(f7)™|| we claim that, for all n € N and for all 4,41,...,i, €
1,..., N, it holds that, for all # € RV,

N N
(a)sz+Zkzg+%g (0 Z ii$2(05 + 0), or
J=1 J=1
8"f-” N
50 a0 ) =10): > (ki + Fij)sa(0; — 6;) — Z%j%(@j +65), or (4.44)
in 11 j=1 7=1
() + (Kiiy + Fii; )5 (0, — 0:) — viij6(0s; + 6i), G €{1,...,n} or
(d): 0,

where ¢1,...,56 € S. Since (4.44) holds for n = 0, we proceed by induction. Suppose that
(4.44) holds for some n € N. Then, in cases (a), (b), simple computations lead to

N N
8”+1fi77 () = Z(k’u + ij )s7 (0 Z ijss(05 + 0;) if ing1 =1,
80\ ...00;, )77 = .
(kiin-!—l + ﬁiin+1)g9( Intl ) 7iin+1§10(9in+1 + 91’)? if Z.nJrl 7é ia
where ¢7,...,610 € S. Furthermore, in case (c),
ol (0) = (kii; + i, )s11(05; — ;) — vii;12(6s, + 05),  if i1 € {i,45),
aain+1 ... 00;, 0, if iny1 & {4, ij}y

where 611,612 € S. Finally, in case (d),

gl en
N UE
0;, ., ...00;
which proves that (4.44) holds for n + 1. By induction, (4.44) therefore holds for all n € N.
Given a matrix M € R™ ™ let |M|mq. denote its max (entry-wise) norm, that is |M|maer =
max;—1,..n, |M;j|. Then, noticing that |¢(¢)] < 1, for all ¢ € S and all ¥ € R, it follows from

7j=1,....m

(4.44) that, for all § € R

o f7
‘ae» o6;, )

in **

< (14 3N)max {’W|max» |E’maxv |ﬁ|mam} )

and, thus,

1™ < N™Y(1+ 3N) max {|wlmaa |klmaz, [lmas }
N™ (14 3N)|n|. (4.45)

IN

Hence, given n € N and € > 0, it holds that [|(f7)™]| < e for all  such that || < NF(T3N)

which proves the first part of the statement of the claim. Given r € N, the second part follows
from (4.45) by picking, for all € R>q, o(x) = N""}(1 + 3N)x



4.6.3 Proof of Claim 4.8

We start by noticing a useful relationship, which follows directly from Claim 4.7: there exists
a class Ko function pq, such that, for all n € RV*(+2N) it holds that

1711 < pa(ln)- (4.46)

Relation (4.39) implies that, if || f7] < d5, then the trajectories of (4.1) can spend at most a
finite time outside the set B <F0,J*1 (2Hf’7H>> To show this, note that, from (4.37),

2
.y VIV (6),

10 oL (2] £ NI
BERM\B(Foo—1 (2] /7)) 2 =y (= (20))" = 201 (4.47)

Relations (4.39) and (4.47) imply that, for all initial conditions 6y € R, the solution of (4.1)
satisfies o
W (6(t,00)) < W (60) — 21| £, (4.48)

for all ¢ such that 6(s;6p) € RV \ B (Fo,a_l (2Hf77ﬂ)> for all s € [0,¢). Suppose that
0(t,00) € RN\ B(Fo,o~" (2[[£7]])), V¢t > 0.

Then, from (4.48), W(0(t,6y)) — —oo as t — +oo, which contradicts the fact that W is lower
bounded. Hence, for all initial condition 6, there exists 0 <T' < oo, such that the solution of
(4.1) starting at 0y enters the set B (F(), o1 <2Hf’7\|)) at time 7. Without loss of generality,

we can then assume that the initial condition g lies in B (Fg, ot (2”]‘””)).

CASE 1: 6y € B (Wi, o= (2]1/7]]))-

We construct explicitly a forward invariant sublevel set (). of W that contains B <Wm, -1 (2” f"ﬂ))
In order to do this, consider the largest sublevel set Q. of W contained in B (Wm, j) Note
that, by the definition (4.9a) of W,,, Q. can be written as

> Q

Qe = |J Qe (4.49)
keZ
where
T 01
Qup =B ((5 k) Ly, Z) NQ., ke, (4.50)

is compact. Moreover, recalling the definition of d; in (4.40), it holds that B ((% + k:7r) 1y, %) N
B ((g + k'm) 1n, %) =0, for all k, k' € Z, k # k', and thus

Qc,k N Qc,k’ = @,
whenever k # k'. Pick d,, > 0 small enough that
B(Wm, o™ (26m)) C Q. (4.51)

If | /7] < min{én, 65}, then for all § € JQ, it holds that |8y, > o~ (2[|f7]]) and (6] g\, >
%1 > o~ Y(2||f7|). Tt thus follows from (4.39) that, if || f7|| < min{d,, 5y}, then

max W () < 0,
0€0Q.



which implies (cf. e.g. (Isidori, 1999, Remark 10.1.2)) that Q. is forward invariant. By (4.51),
if |7 < min{d,,,d,}, then B(V\/m,a*1 (2Hf”ﬂ>> C @, and thus the trajectories of (4.1)
satisfy

0o € B(Wm,o " (21f7)) = 6(t;60) € Qc, Yt > 0.

In particular, since Q. is given by the disjoint union of compact sets (cf. (4.49)), for all ini-
tial conditions 6y € B ()/Vm,a*1 <2||f77||))7 the trajectory of (4.1) is bounded, provided that

Inl < pyt(min{d,, 65 }), where the Ko function py is defined in (4.46).

CASE 2: 0y € B (5,0‘1 <2Hf77ﬂ)>, with £ € Fy, where Fj := {N, {{:p} (T € {AOUBOUWM}}.
We stress that by € € Fp we mean that £ is either a singleton made of an unstable isolated
critical point, i.e. & = {x}, with € Ag U By U Wy, or that £ is the unstable normally
hyperbolic invariant manifold N, i.e. £ = N. We start by showing that, for sufficiently small
|n], all the trajectories starting in the set B (f,a‘l <2Hf"ﬂ)), & € Fo, leaves the set B( ,%1)
in finite time, where ¢; is defined in (4.40). From Lemmas 4.2 and 4.3, £ is either made of
an isolated hyperbolic fixed point, or an invariant normally hyperbolic manifold. As proved in
Claim 4.7 above, in the C* topology, the perturbation f7 is small provided that |7| is small.
More precisely,
250,
[n]—0
Theorem 4.1 in (Hirsch et al., 1977) then implies that there exists §¢ > 0 such that, if || < d¢,
then the perturbed dynamics (4.1) still has a hyperbolic fixed point, or an invariant normally
hyperbolic manifold, &,, that is also |n|-near from & in the C°° topology, that is
& —— &,
In[—0
and whose stable and unstable manifolds have the same dimension as and are |n|-near in the
C™ topology to those of £&. For

. at 01
il < min o (50 (%)) b}

it follows from (4.39) that no other critical sets apart from &, are contained in B (§ , %) It also

follows from (Hirsch et al., 1977, Theorem 4.1) that the only forward invariant set in 5 (5 ) %1)
is the stable manifold of ,. Since, for all { € Fo, £ has at least one unstable direction, the
stable manifold of ¢, and thus that of §,, has zero Lebesgue measure. By construction, if

9l < min {p7" (30 (%)) .0}, then

B(eo (2) cB(e %) cB(e ).

It follows that, for almost all initial conditions 6y € B (5, ot (2||f77 |)), there exists 0 < T <
Ts, such that the trajectory of (4.1) satisfies

0(T1;60) ¢ B (fa %) , 0(Tz;600) ¢ B (5, %1) :

Let

J = min J¢,
EEFo

which is positive, by the 2w-periodicity of W and since the set Fy contains only a finite number
of elements in each hypercube Cor C RY of side 2.



As already shown, using (4.48), the trajectories of (4.1) can spend at most a finite time outside

the ball B (Fg, o1 <2Hf’7 ])), where Fj is defined in (4.36). At the light of the above analysis,

if
o (57(3)) 2}
‘77‘<m1n{p1 (20 4 7é 9

we can find, for almost all 6y € B ({,a‘l (2“]”7“)), & € Fp, a succession of time instants
0<7 <7 <73 <74 <75, such that the trajectory of (4.1) starting in 6y satisfies

10(71,60)[e = o~ (2] 71]) , (4.52a)
0(72,00)|c = %1, (4.52D)
0(73,00)|c = %1, (4.52¢)
73, 60) e = (4.524)
0(75,60)le = " (201/71]) (4.52¢)

where

&eFRu {{x} s w € Wm}
We now show that, if |n| is sufficiently small then it necessary holds that

re&aed = W) < W),

that is the trajectory has moved toward a critical set corresponding to a lower W-level set. We
know from (4.39) that W is strictly decreasing on |71, 72) U (74, 75]. Moreover, we can give an
explicit estimate of the decreasing of W on [r2, 74]. Let
€ == min VIV (0)| (4.53)
2 6erRN\B(Fo, %L )

be half of the minimum rate of decreasing of W away from the critical points in the unperturbed
case (w = 0). It follows from (4.34) that there exists &’ > 0 such that, if || f"|] < ¢’, then in the
perturbed case we have

max W, (0) = max  (—|[VW(0)]*+ f1(0) 'VIW(0)) < —e. (4.54)
eeRN\B(Fo,%) eeRN\B(FO,%)

Moreover, let
My :=2 max VIV (0)], (4.55)

0erRN\B(Fo, 2L

be an upper bound on the magnitude of the vector field away from the critical points in the
unperturbed case, and, again by continuity, pick 6” > 0 such that

<o = max _|[VW(0)+ f1(0)] < M;. (4.56)
6erRN\5(Fy, %)

It follows from (4.52b), (4.52c), and (4.52d) that in the time interval [ro,74] the trajectory
has traveled a distance at least equal to %1. From (4.56) it then follows that, if || <



min {pfl (%0 (%)) .0, pf1(5”)}, then the time interval 1o, 74] to travel this distance satisfies

>761
T4 — T .
P oM

Using (4.54), if
) (1 (¢ _ _
il < min {pr (50 (1)) 6,01 007" )
then

01

W(9(7_47 90)) - W(9(7_27 90)) < Aszn == (457)

Define the maximum variation Wi, (||f7]|) of W inside the sets B (f, ot (2ﬂf’7_])), for £ € Fy
as

SWin (1) = max( max  W(0) — min W(@)) : (4.58)
£F0 \0eB(eo-1(20f])) oeB(&0=1(2071))
If AWinin > 6Win([|f]]), then the trajectory of (4.1) must enter at time 75 a set B (5’, ot (QHfWH))
with W(z') < W(z), for all 2’ € ¢ and all z € £ Indeed, by definition, for all § €
B (& 071 (2] f7])), it holds that
w (o) > max_ W(0) — sWin ([ f7])).
6eB(¢.01 (201/71)))

Since

W(B(,60)) < 966(5,51—1?()(2ann)) W),

if AWopin > (SWm(an D, then

W (0(ts,6p)) < max__ W(0) — Wi, (|l ).
0eB(&a1(21171))

Hence necessarily W (z') < W (x), for all 2’ € £’ and all x € {. Noticing that, by continuity,
SWin (|| f™|) tends continuously to zero as ||f"|| — 0, we can find §” > 0, such that, if || /"] <
5" then

Wi (I FM) < AWiin.-

By construction, if

(1 (S o )
| < win {p;? (50 (j)) o (8,07 (). o (0

almost all the trajectories starting in B (5, ot (QHfUH)), for £ € Fp, converge in finite time to
some set B <§’, ot <2ﬂf"ﬂ)), &eFouU {{a:} DX E Wm}, with £ such that

re&red = W) <W(a).

Repeating this construction iteratively, and noticing that W assumes only a finite set of values
at its critical points, we conclude that almost all trajectories converge to B <Wm, ot (2”]"”])),
in finite time.



From the analysis developed in CASE 1 and CASE 2, it follows that, if

1
In| < min {pfl (50 (%)) 0,7t (min{&',&",é"',50,5m})} ,

then, for almost all initial condition 6y, there exists 7' > 0 such that the trajectories of (4.1)
satisfies 0(t;6p) € Qcx, for some k € Z, for all t > T, where Q. is defined in (4.50) and is
compact for all k& € Z, which proves the claim by picking

5= min {p;” (%a (%1)) . py ! (mindd, 87,6 5,.5,})}



Chapter 5

Desynchronization via mean-field
feedback

In this chapter we explore the possibility of eliminating the pathological neuronal synchroniza-
tion by effectively desynchronizing the population activity.

While desynchronization owns quite an intuitive meaning, its formal definition is not straight-
forward. One way of guaranteeing sufficient disorder in a network of oscillators is to induce
chaos in the incremental dynamics of their outputs (i.e. the dynamics ruling the phase differ-
ences of each pair of oscillators). This is the approach followed by chaotification techniques, cf.
e.g. (Zhang et al., 2009; Gao and Chau, 2002; Chen, 2003; Chen and Yang, 2003). However,
chaos may be too strong a requirement in some particular applications and most anti-control
techniques may require too much knowledge on the oscillators state to be practically imple-
mented in a DBS device.

On the other hand, simply guaranteeing that phases are not synchronized is not enough in
most practical applications. To see this, consider a pair of oscillators whose phases difference,
although not constant, remains at all times in a small neighboorhood of a given value. In this
case, all classical definitions of synchronization are violated as the oscillators are neither phase
synchronized (Strogatz, 2000), nor phase-locked or frequency-synchronized (Blekhman et al.,
1997), as their phases difference is not constant. Nevertheless, for practical concerns, such
a system cannot be considered as desynchronized since the phases difference remains “almost
constant” at all times. In fact, such a situation would rather correspond to “approximative
synchronization” as defined in (Blekhman et al., 1997). In a nutschell, desynchronization is
not simply the negation of synchronization.

In the textbook (Pikovsky et al., 2001), and references therein, desynchronization is implicitly
intended as the absence of approximate synchronization. This requirement translates in asking
that the phase difference between each pair of oscillators grows unbounded when lifted to the
real line. The existence of unbounded trajectories is treated in a general framework in (Orsi
et al., 2001). As we show in Example 5.1, asking that the phase-difference is unbounded may
not suffice to exclude asymptotic synchronization either.

The objective of this chapter is to define desynchronization in a rigorous manner for general
networks of interconnected phase oscillators, and to provide a geometric and topological in-
terpretation of this property by linking it to existing concepts of instability (Nemytskii and
Stepanov, 1960). Roughly speaking, a pair of oscillators will be considered as desynchronized
if their phases are permanently drifting away. This concept (referred to as strong desynchro-
nization in Section 5.1) is quite demanding due to the requirement of all-time phase drift.
We therefore propose a relaxed notion, called practical desynchronization, that imposes phase



drift only in average over a given time window (Section 5.2). For each of these properties, we
propose a characterization involving the grounded variables of the system, i.e. the differences
between the oscillators’ phases and their mean.

Based on this theoretical background, we show, by relying on the model derived in Chapter 2,
that practical desynchronization can be induced in an interconnected neuronal population via
mean-field feedback (Theorem 5.10). More precisely, we provide a sufficient condition involv-
ing the differences in the natural frequencies, the interconnection topology, and the stimula-
tion /registration setup to ensure that a given pair of oscillators is practically desynchronized.
This condition can readily be used for mean-field feedback control design, and to compute a
lower bound on the number of desynchronized pairs. We specialize this analysis to the all-to-all
case in Corollary 5.11.

The chapter is structured as follows. In Section 5.1 we derive the proposed definition of
strong desynchronization and mathematically characterize it. We derive the notion of practical
desynchronization and characterize it mathematically in Section 5.2. A rigorous analysis on
how these properties can be induced in the Kuramoto system via proportional mean-field
feedback is provided in Section 5.3. We give the proofs of the main results in Section 5.4, while
technical proofs are given in Section 5.5.

5.1 Strong desynchronization

The dynamics of a network of coupled nonlinear phase oscillators can be expressed as

6=F(,1), (5.1)

where F : TV x R — R satisfies the Caratheodory conditions (Hale, 1969) and F(-,t) is
locally Lipschitz for each ¢ € R. Since F(-,t) is defined on T, it is 2n-periodic, and since it
is also locally Lipschitz, it is bounded and globally Lipschitz. This ensures, together with the
Caratheodory conditions, existence and unicity of the solution of (5.1), cf. e.g. (Hale, 1969,
Theorems 3.1 and 5.1). Each component 6;, i = 1,..., N, of 6 is the phase of the oscillator
i. The function F' describes both the internal dynamics of each oscillator and the coupling
between different oscillators. This class of systems encompasses the phase oscillators studied
in (Brown et al., 2003), of which the Kuramoto system (Kuramoto, 1984) is probably the most
famous representative (cf. Section 5.3 for a deeper analysis). In what follows we derive a
suitable definition of desynchronization and provide a mathematical characterization.

5.1.1 Definitions

A pair (i,7) € Nﬁ of coupled oscillators (5.1) undergoes frequency synchronization (Blekhman
et al., 1997) if, given to € R and 6y € TV,

16:(t) — 6;(t)| =0, VteR, (5.2)

where ;(-) := 0;(-; to, ) and similarly for 6;(-). This relation, which is also referred to as phase-
locking, guarantees a constant phase difference between the oscillators ¢ and j. A particular
case of phase-locking is when this phase difference is zero, thus making 6;(t) and 6;(t) equal at
all times. This stronger property is referred to as phase synchronization. When these properties
hold asymptotically (i.e. as time goes to infinity), we refer to these properties as asymptotic
phase-locking and asymptotic synchronization respectively (Strogatz, 2000; Pikovsky et al.,
2001).



Asymptotic phase-locking is guaranteed (at least locally) if an asymptotically stable fixed point
exists for the incremental dynamics ruling ¢; — 6;. In the presence of exogenous disturbances
or unmodelled dynamics, this asymptotically stable fixed point may present some robustness
properties. We speak in this case of practical phase-locking (see Chapter 3), which can be
formally characterized as’

‘Gl(t) — 9j (t) — 501]| < Eijs vVt € R, (53)

where 660;; € [0;27) and € > 0. When (5.3) holds only for a subset of pairs of oscillators, it
is also referred to as partial entrainment (Aeyels and Rogge, 2004). Since § € TV, the above
constraint is trivially satisfied if €;; is greater than 7. On the other hand, for small values of
€ij, the condition (5.3) imposes that the phase difference between oscillators ¢ and j, while not
remaining constant, exhibit small oscillations around some constant values 66;;.

For desynchronization to have a practical relevance in most applications, it must exclude the
two situations described by (5.2) and (5.3) and their asymptotic counterparts. Simply asking
that the phase difference between two oscillators becomes unbounded when lifted on the real
line may not be enough, as illustrated in the following example.

Example 5.1. Given tg > 0, consider the non-autonomous dynamics
: 0 ow
Qi(t;to, Hi) =wx 7, Vit > t().

Then
04 (t;to,00) — 0_(t:t0,0%) = 20w(In(t) — In(to)) + 0% — 6°,

which grows unbounded, yet
. (4 0\ _ g (4. 0V) —
tli)r& (0+(t7t079+) 9—(t7t0a07)) 07
meaning that asymptotic phase-locking is achieved.

Another natural requirement to make sure that the system is desynchronized is then to ask
that the phases of oscillators ¢ and j permanently drift away from one another, i.e.

10;(t) — 0;(t)| >0, Vt € R.

However, this requirement alone may not be enough either, since, for example, asymptotic
phase-locking, that is
Jlim 6;(t) — 6;(t) = 0,

may satisfy it (if the convergence is achieved in infinite time only). For a pair of oscillators to be
desynchronized, we therefore ask that the relative drift be uniformly bounded away from zero.
This requirement ensures that the considered oscillators have their phases mutually drifting at
all times and keeping on evolving in the torus with uniformly non-zero frequency difference.
These conditions can be cast in a compact form in the following definition.

Definition 5.1. A pair (i,j) € Nﬁ of oscillators is said to be strongly desynchronized for (5.1)
if there exists €;; > 0 such that, for all 6y € TV and all ¢, € R,

|éi(t; to, 90) — éj(t; to, (90)’ > Qij> VvVt € R. (5.4)

'We stress that the constant §6;; and ¢;; may depend on the inital conditions (¢, 6o).



N(N-1)
2
strongly desynchronized if it contains m distinct pairs of desynchronized oscillators. If m =

w then (5.1) is said to be completely strongly desynchronized.

Given m € {1, ey }, the network of coupled phase oscillators (5.1) is said to be m-

Definition 5.1 satisfies two basic requirements: 1) it excludes synchronization and practical
synchronization, also asymptotically; 2) it is naturally satisfied by an ensemble of uncoupled
oscillators, provided the natural frequencies are not identical. We stress, however, that Defini-
tion 5.1 does not exclude p : ¢ resonances® with p # q.

5.1.2 Mathematical characterization of desynchronization

In order to give a geometrical interpretation of this property, we introduce the grounded variable
Y € RY associated to (5.1). Given some 6y € T and some ¢y € R, the evolution of v is defined
as

. 1 .
¢(t;t0, (90) = (IN — NlNl;) Q(t;to, (90), Vi e R
Y(to;to,0o) = 6o (5.5)

which constitutes a non-autonomous dynamics on RY. We refer to (5.5) as the grounded
dynamics of (5.1). We stress that (5.5) could have been equivalently defined on either RY or
TN. Note indeed that, since the right hand side of (5.1) satisfies the Charatheodory conditions
and is globally Lipschitz in 6, (5.1) is forward complete (Khalil, 2001, Theorem 3.2). Hence,
O(t; to,00) € RN, for all t,ty € R and all §p € TV, and thus (5.5) induces a well defined non-
autonomous vector field on both RY and TV. For future convenience we define here (5.5) as
non-autonomous dynamics on RY. Noticing that

1

leO = 29@7

this dynamics describes the evolution of the system (5 1) in a moving reference frame with speed
equal to the instantaneous mean frequency 3 Zj 1 0;(t). This implies that (t) € 1% C RY,
for all ¢t € R, where ¥(-) := ¥(+;to,00), that is the grounded dynamics has zero mean- drlft,
and 11(t) = 16p. In addition, it is possible to show that asymptotic phase-locking of (5.1)
corresponds to the existence of an asymptotically stable set for (5.5) (cf. e.g. (Jadbabaie et al.,
2004)), and, similarly, that practical phase-locking corresponds to bounded trajectories.

We introduce here some concepts that serves as the basis of the mathematical characterization
of strong desynchronization. This concept pertains to non-autonomous dynamical systems of
the form

T = G(x,t), (5.6)

where G : R" x R — R" satisfies the Caratheodory conditions, and G(-,t) is continuous
and locally Lipschitz, which ensures existence and unicity of the solution (Hale, 1969, Theo-
rems 3.1 and 5.1).

Definition 5.2. (Nemytskii and Stepanov, 1960). The dynamical system (5.6) is said to be
completely unstable if all its points are wandering, that is for all xo € R™ and all ty € R, there
exists a neighborhood U of xp and a time 7" > 0, such that

x(t;to,U)ﬂU:(D, Vit > T + ty.

2 A pair of oscillator is said to be in a p : ¢ resonance, if the difference |pd; — gf;| lifted to the real line remains
bounded for all time, for some p,q € Nxo.



Complete instability can be considered as the complementary of asymptotic stability. Indeed,
complete instability implies that, given any point, one can find a sufficiently small neighborhood
around it, such that, after a sufficiently long time, the trajectories of the system leave the
neighborhood and never go back in. The above definition is of no relevance to systems evolving
in a compact space, as in this case the a- and w-limit sets® are always non-empty (Bhatia and
Szego, 1970).

In the following lemma we give a sufficient condition for (5.6) to be completely unstable. Its
proof is provided in Section 5.4.1.

Lemma 5.3. Suppose that (5.6) is forward complete. Suppose moreover that there exists a
vector a € R™ and a constant @ > 0 such that, for all xg € R™ and all ty € R, the solution of
(5.6) satisfies

o G(z(t;to, x0),t) >a, VteR.

Then (5.6) is completely unstable.

Based on the above considerations, we now state the following theorem, which gives a geomet-
rical and topological characterization of strong desynchronization in the sense of Definition 5.1.
The proof is provided in Section 5.4.2.

Theorem 5.4. The pair (i,7) € Nﬁ of oscillators is strongly desynchronized for the system
(5.1), if and only if there exists a constant & > 0, such that, for all 6y € TN and ty € R, the
grounded dynamics (5.5) satisfies

1b(t;t0,(90)—r(€i — €j) >a, VteR, (57)

along the solutions of (5.1). In particular, if the pair (i, j) is strongly desynchronized, then the
grounded dynamics (5.5) associated to (5.1) is completely unstable.

Theorem 5.4 highlights two properties of desynchronized dynamical systems: one geometrical,
and the other topological. The first one, geometrical property, is contained in (5.7). It states
that the grounded dynamics (5.5) is uniformly drifting away along the direction given by
e —ej € 1]%,. If we plug the mean-drift back in, and project the resulting dynamics on the
torus (to recover the original phase dynamics (5.1)), this means that in the (6;, ;) sub-torus the
trajectories of (5.1) are (locally) uniformly drifting away from the synchronization sub-manifold

Dij = {9 S TN : 91 = 93}

This is described by Figure 5.1.

The topological characterization comes directly from the second part of the statement. In
particular the grounded dynamics associated to a desynchronized system satisfies the complete
instability property of Definition 5.2. We point out that this characterization complements the
one associated to phase-locking, that is the asymptotic stability of the grounded dynamics.

Given m € {1, ey N(A;_l) }, the following corollary, which is a direct consequence of The-

orem 5.4, gives a characterization of m-strong desynchronization and therefore of complete
strong desynchronization. We stress that the above geometrical interpretation (Figure 5.1)
extends to all the m pairs of strongly desynchronized oscillators.

Corollary 5.5. Given m € {1, ey N(]g_l) }, if the system (5.1) is m-strongly desynchronized

then its associated grounded dynamics (5.5) is completely unstable.

3The w- (resp. a-) limit set of a point z is the union of all the points Z for which there exists an increasing
(resp. decreasing) and unbounded sequence of time instants {¢, }neny C R such that limy,—e0 2(tn;to, o) = T.
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FIGURE 5.1: Geometric interpretation of desynchronization

5.2 Practical desynchronization

5.2.1 Definition

For particular applications, strong desynchronization may appear to be too demanding a re-
quirement. For example, in electrical treatment of neurological diseases, only the average rate
of discharge of the neurons is of interest (Volkmann et al., 1996; Sarma et al., 2010; Lopez-
Azcarate et al., 2010; Plenz and Kital, 1999; Rosa et al., 2010). More generally, the presence
of exogenous disturbances, small coupling, or unmodelled dynamics may let the requirement
of Definition 5.1 be too restrictive. The permanent phase drift imposed in Definition 5.1 im-
pedes the instantaneous frequencies to be equal even on short time intervals. Intuitively, such
a frequency similarity would not affect the overall desynchronization if it happens sufficiently
rarely. Hence, we relax that definition by replacing the pointwise inequality (5.4) by the less
restrictive assumption that the difference of frequencies be bounded from below in average,
uniformly over some moving window of length 7.

Definition 5.6. A pair (i,j) € fo of oscillators is said to be practically desynchronized for
(5.1) if there exists €;;,T;; > 0 such that, for all 6y € TN and tg € R,

1 +Tij .
r /t <9i(T; th 90) - 9]'(7‘; to, (90)) dr 2 Qij, (5.8)
for all t € R. Given m € {1, ce N(]gfl) }, the network of coupled phase oscillators (5.1) is said

to be m-practically desynchronized if it contains m distinct pairs of practically desynchronized
oscillators. If m = w then (5.1) is said to be completely practically desynchronized.

Even though the computation of the time window length 7;; can seem a hard task in general,
the intrinsic periodicity of phase oscillators can help to find it. As shown in Theorem 5.10
and Corollary 5.11 below, in the case of Kuramoto oscillators under mean-field feedback (2.6),
T;j can simply be picked as twice the mean period of the uncoupled and unforced oscillations,
i.e. Tij = Z, where 0 := % Zf\il w; 1s the mean natural frequency of the ensemble. Note that
(5.8) implies that the scalar function 6;(-) — 6;(-) is persistently exciting on each time interval
[t,t + T;;] (Panteley et al., 2001). The converse implication is not necessarily true.



The following example, inspired by the textbook (Pikovsky et al., 2001) (see also (Pazo et al.,
2003; Popovych et al., 2007)), illustrates another important case in which Definition 5.6 applies
4

Example 5.2. An interesting phenomenon exhibited by some coupled oscillators is that of
“phase-slips” (Pikovsky et al., 2001, Sections 3.1.3 and 8.4.2). See also (Pazé et al., 2003;
Popovych et al., 2007). Roughly speaking, two oscillators undergo phase-slips when their phase
difference remains constant, or with small variations, most of the time, apart from periods in
which it abruptly increases (a slip). The typical time-course of the phase difference between two
coupled oscillators undergoing phase-slips is depicted in Figure 5.2.

01 — 62 2A
2A —

Tr—1 Tk t

FIGURE 5.2: Time-course of the phase difference between two couple oscillators undergoing
successive phase-slips on the intervals [T, — A, Ty + A]. The constants €, A are defined in
(5.11) below.

If the length of the time intervals between two successive phase-slips varies in an unpredictable
way, it might be hard to figure out a suitable time window over which the property (5.8) can
be checked. In order to find conditions under which this is possible, let us formalize the phase-
slip behavior in a slightly more general context. Given initial conditions to € R, 69,609 € TV,
consider a pair of forced coupled oscillators

91 = F1(01,92,u1(t)), (5.9)
92 = F2(01,92,u2(t)), (5.10)
for all t € R, where ui,us : R — R are exogenous inputs. Suppose that the time instants
{T;}rez C R at which phase-slips occur form a lower and upper unbounded increasing sequence

and that, moreover, the_mcrements Ty —Tr_1 are uniformly bounded, that is there exists T > 0
such that Ty, — Ty_1 < T for all k € Z. Defining, for all t € R, the set Ay as

keZ

we can then formalize the phase-slip behavior depicted in Figure 5.2 as follows. For all tg € R,
all 09,05 € T, and all k € Z, there exists ¢ > 0 and A € (0,T/2), such that

' /A (61(7) — bo(7)) dr
f1(t) — ba(t) > %, Vt € [T, — A, Ty + Al (5.11b)

<e VtER, (5.11a)

4The authors are thankful to an anonymous reviewer of the first version of this paper for bringing their
attention to this example.



where 61(-) = 01(-t0,60Y), and similarly for 6. Condition (5.11a) implies that outside the
intervals [T, — ATy, + A], k € Z, the two oscillators remain practically phase-locked. In
particular their phase difference does not vary more than €. Conversely, (5.11b) implies that
on each time interval [T, — A, T, + A] the phase 01 slips away from 02 faster than e/A.

A similar behavior is observed in forced coupled oscillators subject to strong noise, as the ones
considered in (Pikovsky et al., 2001, Section 3.4.2), in which case uy,us are the realization of a
given stochastic process. Another example is provided by coupled chaotic oscillators before the
“phase-synchronization” transition, like the ones considered in (Pikovsky et al., 2001, Section
3.1.8) and (Pazo et al., 2003; Popovych et al., 2007). In these cases, if condition (5.11) holds,
then

" .
;,/j (61(7) — bs(r)) dr

> % ‘ /[t o, (00 =)
_% ’/A (01(7) — Os() ) dr
2¢e

€ €
> ===,
- T T T

that is the two oscillators are practically desynchronized in the sense of Definition 5.6. This ex-
ample thus illustrates the fact that phase-slips do not prevent practical synchronization, provided
that the slips are sufficiently important. &

In the following proposition, whose proof is provided in Section 5.4.3, we show that if (5.1) is
time-invariant, then uniformity of (5.8) in g suffices to ensure its uniformity in time. This lets
(5.8) be easier to check in practice (see also Theorem 5.10 below).

Proposition 5.7. Suppose that (5.1) is time-invariant. Given T;j,$; > 0, assume that there
exists a pair of oscillators (i,7) € fo satisfying (5.8) for all g € TV, and for somet = T* € R.
Then (5.8) holds for all t € R.

5.2.2 Characterization of practical desynchronization

In order to extend the interpretation developped in Section 5.1.2 to the case of practical syn-
chronization, we introduce an averaged system associated to (5.1). Given any 7' > 0, any
0y € TV, and any ty € R, the T-averaged system associated to (5.1) is defined as

— 1 tt7
Ot:to,00))r = T/T 0(7 to, 6 )dr,
(0(tos to,00))r = b, (5.12)

for all t € R. The averaged system evolves with the average instantaneous frequency of the
system (5.1) over a sliding time window of length 7. We point out that, since, by forward
completeness of (5.1),

1 t+T
—/ (7;to,00)dr € RY, Vt € R,
T Jr

the system (5.12) is a well defined non-autonomous dynamics on T,
The following lemma, whose proof is trivial and is omitted, shows that the practical desyn-

chronization of (5.1) corresponds to the strong desynchronization of its averaged system.

Lemma 5.8. There pair (i,j) € Nﬁ of oscillators is practically desynchronized for the system
(5.1), that is 6;,0; satisfy (5.8) for some Q;,Ti; > 0, if and only if the T;j-averaged system



(5.12) associated to (5.1), satisfies, for all to € R and all § € TV,

1(0:(t; to, 00)) 1, — (0;(t: to, 00))m, | > Quj, Wt € R, (5.13)
that is (0;)1,; and (0;)1,, are strongly desynchronized.

At the light of the above lemma we are able to give a characterization of practical desynchro-
nization. For all T' > 0, the T-averaged grounded dynamics 17 € RY associated to (5.12) is
given by

. 1 —
drltsto,00) = (In = An1k) @ to, 60))r

Yr(tosto,0o) = 6o (5.14)

The following corollary, which is a direct consequence of Theorem 5.4 and Lemma 5.8, provides
a complete characterization of practical desynchronization.

Corollary 5.9. There exists a pair (i,j) € Nﬁ of practically desynchronized oscillators for
system (5.1) if and only if there exist some constants &, T > 0, such that, for all 0y € TV and
all ty € R, the T-averaged grounded dynamics (5.14) satisfies

&T(t;to,Ho)T(ei — €j) >a, VieR (5.15)

In particular, if the pair (i,7) is practically desynchronized, the T-averaged grounded dynamics
(5.14) associated to (5.1) is completely unstable.

5.3 Desynchronization of the Kuramoto system through mean-
field feedback

Let us recall the phase model derived in Chapter 2 for an interconnected neuronal population
under mean-field feedback:

N N
éi = Wy + Z (kij + ’Yij) Sin(aj — 61) — Z’}/ij Sil’l(@j + Hi), VZ = 1, . ,N, (516)
7=1 7j=1

where 0; represents the phase of the oscillator 7, the parameters k;; represent the intercon-
nection gains between two oscillators, and «;; are gains resulting from the application of the
proportional mean-field feedback.

It was shown in Chapter 2 that, for almost all interconnection topology and almost all value of
the feedback gain, phase-locking is impossible under MFF. In the next theorem, whose proof is
provided in Section 5.4.4, we show that practical desynchronization can actually be achieved by
MFF. In other words, we give a sufficient condition to assure that a given couple of oscillators
is practically desynchronized while the ensemble keeps on oscillating (Figure 5.3).

Theorem 5.10. Suppose that there exists i,j € Nf,, such that

N 2 N
T v
Qij o= |wi —wjl = > van +vnl | 5= + —=5 ) = D_ lein +€jul >0, (5.17)
20w 6w
h=1 h=1
. ~ N —._ 19T e o .
where v := 2maxh:1,m,N <|wh\ + Zh’:l ’7hh’ + Ehh’D; W= Nle, Wp = wp — W, and Eppr =
knn + Yune, for all h,h/ =1,...,N.
Then the pair of oscillators (i,7) is practically desynchronized.
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feedback induces desynchronization.

The sufficient condition (5.17) can readily be used in practical applications to explicitly compute
the minimum number of desynchronized pairs of oscillators. The term

N 2
S i +nl o= + g
= 2w 6w?

is small provided the mean natural frequency @ is large. In the opposite case, one rather
expects the mean-field feedback to block the oscillations, as described in Chapter 4. The term

N

> lein + €5l

h=1

guides the feedback gain design to obtain oscillators desynchronization by imposing to mini-
mize the closed-loop diffusive coupling strength k;; + «;;. In terms of the grounded dynamics
associated to (5.19), Corollary 5.9 implies that its average system is completely unstable (Fig-
ure 5.4).

Note that, in order to minimize the closed-loop diffusive coupling strength, the feedback gains
must be of the same magnitude as the diffusive coupling gains. This ensures that, if the open-
loop diffusive coupling strength satisfies the small coupling condition (2.4), i.e. || < dp, then
the same holds for the closed-loop coupling. In particular, the practical desynchronization suffi-
cient condition of Theorem 5.10 extends to the full dynamics (2.3), provided that the open-loop
coupling strength is sufficiently small. The sufficient coupling strength ensuring phase-locking
solely depends on the natural frequency dispersion, whereas the small coupling condition (2.4)
solely depends on the natural radius. Thus, imposing a sufficiently large diffusive coupling to
ensure phase-locking of the open-loop system (i.e. without mean-field feedback) is compatible
with the small coupling condition (2.4), provided the natural frequency dispersion is sufficiently
small.

In the case when the coupling is given by the all-to-all topology, and each oscillator contributes
in the same way at the measured mean-field and receives the input with same intensity, the
interconnection and feedback gains become k;; = ko and v;; = o, for all 4,5 = 1,...,N. In
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FIGURE 5.4: Evolution of the grounded dynamics of (5.18) for large natural frequencies when
a proportional mean-field feedback with gain vy = —kq is switched on at time ¢ = 20
this case (5.16) reduces to
. N N
0; = wi+ (ko+7)> sin(0; —0;) —v0 > sin(0; +6;), Vi=1,....N.  (5.18)
J=1 J=1

The diffusive coupling term (ko + 7o) Zé\le sin(6; —6;) can be eliminated by choosing o = —ko,
and (5.18) reduces to

N
éi:wi—i—konin(ﬁj—i—Gi), Vi=1,...,N. (5.19)
j=1

Theorem 5.10 then relaxes in this case to the following corollary, whose proof is a direct
consequence of Theorem 5.10 and is omitted.

Corollary 5.11. Suppose that there exists i,j € Ni, such that

T U2
Qi j = wi —wj| —2Nko (2w + W) > 0, (5.20)
where v :=2maxp—1 N (|@p| + Nko), @ := %lxw, and &y, == wp — @, for allh=1,...,N.

Then the pair of oscillators (i,7) is practically desynchronized.

Inequality (5.20) is always satisfied, provided that w; # w; and @ is sufficiently large (Figures
5.3 and 5.4). Indeed, the minimum coupling strength that ensures asymptotic phase-locking
of (5.18) in the absence of mean-field feedback does not depend on the absolute magnitude of
the natural frequencies, but only on their dispersion (Dérfler and Bullo, 2011; Jadbabaie et al.,
2004; Aeyels and Rogge, 2004; Chopra and Spong, 2009). One thus expects the value of kg
guaranteeing phase-locking in the absence of MFF to be independent of @.

Interestingly, conditions (5.20) and (5.17) provide somehow complementary results to those in
(Aeyels and Rogge, 2004). There the authors derive, in the case of a three oscillators network,
several sufficient conditions for a pair of oscillators to be practically phase-locked (partial
entrainment). Conversely, Theorem 5.10 and Corollary 5.11 provide sufficient conditions for a
pair of oscillators to be practically desynchronized. A combination of the two investigations



might shade more light on both partial entrainment and desynchronization under mean-field
feedback.

5.4 Main proofs

5.4.1 Proof of Lemma 5.3.
From the assumption of the lemma it simply holds by integration that
o (z(t;to, x0), ) — 20) > @t — to). (5.21)

Recalling that, by the Cauchy-Schwartz inequality, for all y € R™, |a||y| > oy, (5.21) implies

that _
e

|af
Given T > 0, consider the neighborhood U of xy defined as U := B(xo,r¢), where ¢ := %.
From (5.22) it follows that x(¢;to, z0),t) € U for all t > L + #;, which ends the proof. O

|[2(t;t0, 20), ) — 20| = 7 (¢t —to). (5.22)

5.4.2 Proof of Theorem 5.4

Necessity: Assume that the pair (4, j) is strongly desynchronized. Then there exists a constant
Q;; > 0 such that, given any 6y € TV and t, € R, it holds that |0;(t) — 0;(t)| > Q;; for all
t € R, where 6(-) := 0(+;to,6p). Without loss of generality, we can pick i,j in such a way that
0:(t) — 0;(t) > Q;; for all t € R (otherwise, just flip the indexes i and j). Then, it holds from
(5.5) that, for all t € R,

D(t)" (e — e5) = i(t) — ;) = 0;(t) — 0;(t) > Qj,

where ¥(-) := ¥(;t0,6p). In particular, the solutions of (5.5) integrated along (5.1) satisfy
()T (& — é;) > Quj. The necessity part is then proved by picking @ = Q5.

Sufficiency: Given 6y € TV and ty € R, let (5.7) hold for some @ > 0. Then, for all ¢ € R, it
holds that

a < (1) (e — ej) = Pi(t) — (1) = 6:i(t) — 6;(1).
The sufficiency part is then proved by picking €2;; = @.

The rest of the statement follow by Lemma 5.3. g

5.4.3 Proof of Proposition 5.7

Since the dynamics (5.1) is time invariant we can pick, without loss of generality, 7% = 0
in the statement of the proposition. Let 6y € TV. Since (5.1) defines a smooth bounded
dynamics, 6(t;to,0p) exists for all time, (Khalil, 2001, Theorem 3.2). Fix any ¢ € R, and let
0(t) := 0(t;to,00). The system (5.1) being time invariant, and since (5.8) holds uniformly in



the initial conditions, it also holds that

1 t+Tij . )
T, /t (6s(73t0,00) — 0;(7:t000) ) dr
1 Tij . )
= Tiz] /0 <9i(7-;t0a0(t)) _9]’(7';?50,9(75» dr
> Qij-
Since t € R is arbitrary, the proposition is proved. 0

5.4.4 Proof of Theorem 5.10

The whole proof is based on the following claim, whose proof is provided in Section 5.5.1.

Claim 5.12. For all 6y € TV, the trajectory of (5.19) satisfies, for all 4,5 = 1,..., N,

(Y
~\2w  6w?

Invoking Proposition 5.7 and Claim 5.12, it follows that, for all 6y € TV, all 4,5 € Nﬁ, and all
t € R, the trajectory of (5.19) satisfies

ENERS

/W
/0 sin (91'(7') + Gj(7)>d7

o t+m/w . .
v b:(r) — 6,(r)) d
ST i) by ar
> |wi — wj
N = | pt+r/@
Sy y e / sin(6y(r) + Op (7)) dr
I= z‘,jh 14 YT
t4m/w
-y Z 2. / sin(0,(7) — On(7))dr|, Vi >0
l=i,j h=1
>Wz_w]|_Nth’Yzh+’Y]h|<2 60 ) Z‘5zh+5]h|
> 0,

where the last inequality comes from assumption (5.17). Recalling Definition 5.6, this proves
the theorem. O

5.5 Technical proofs
5.5.1 Proof of Claim 5.12

Foralli,j=1,...,N, let

@i (t) == wzt—i-wjt%—/ > Z ein sin(0r(7)=0,(7)) =Y sin(Hh(T)—i—Hl(T)))dT, Vit > 0. (5.23)
l=i,j h=1



where, for all h,l = 1,..., N, g is defined as in the statement of Theorem 5.10. Note that,
forall i,j=1,...,N and all t > 0,

lpi; ()] < @i+ @t + D> lem +ymlt < vt (5.24)
1=i,j h=1

Moreover, integrating (5.16) we obtain that, for all 4,5 =1,..., N and all ¢t > 0,
0;(t) —wt—l—wzt%—/ Z gi; sin(0 — 0;(7)) — iz sin(0; () + 6;(7 )))d7+90i,
and, recalling (5.23),

6’1(75) + 9j(t) = 2wt + Oy; + 90]' + goij(t). (525)
It then follows that

/W
/0 sin <9i(7') +6; (T))dT

3| €|

3| €|

/W
/ sin(2wt + Oo; + Ooj + @i;(t))dt
0

o /W
< + = / sin(2wt 4 Oo; + bo;) cos p;;(t)dt| ,
7 |Jo

3| €|

/W
/ cos(2wt + Bo; + o) sin p;;(t)dt
0

where the first equality comes from (5.25), and the second inequality from the trigonometric
identity sin(a 4+ b) = cosasinb + sina cosb and the triangular inequality.

From (5.24) it follows that sin ¢;;(t) < vt for all t > 0. Hence, we can give the following upper
bound:

— — /@

w < f/ vtdt < 2. (5.26)
T T Jo 2

W

/W
/ cos(2wt + Oo; + Oo;) sin p;;(t)dt
0

Furthermore, note that

w
™

/W
/ sin(2wt 4 Oo; + o) cos p;;(t)dt
0

— /W — /W
hd / sin (2wt + 0p; + eoj)dt + hd / sin (2wt + Op; + 00j)(cos Pij (t) —1)dt
T {Jo m™1J0

w

/W
~-04Y / sin(20t + 00; + 0o;) (cos v () — 1)dt| .
7 |Jo

Recalling that cos p;;(t) > 1—1¢;;(t)?, it follows from (5.24) that cos ¢;;(t) > 1 — 3(vt)?, that
is cos p;j(t) — 1 > —3(vt)?, and, finally, | cos ¢;;(t) — 1| < 1(vt)?, for all ¢t > 0. It then follows



that

w/w
/ sin (2wt + Oo; + 90]') COS i (t)dt
0

w/w
/ sin(2wt + Oo; + 6o;)(cos pi;(t) — 1)dt
0

woEL
< — —(vt)=dt
- 71'/0 2(V )
< . (5.27)

The claim follows directly from (5.26), (5.26) and (5.27). O






Appendix A

Extensions to Part I!

In this chapter we will study a generalization of the closed-loop dynamics proposed in Chapter
2. More precisely, in Section A.1, we consider more general form of diffusive coupling and
mean-field proportional feedback. The importance of such generalizations is discussed below.
Based on the generalized dynamics, we provide in Section A.2 a formal derivation of the small
coupling condition permitting to introduce Assumption 1 in a less artificial way. All the results
of Chapter 2 are then rigorously re-derived in Section A.3 for the new extended dynamics.
Finally, in Sections A.4, A.5, and A.6, we provide sufficient conditions for and a sketch of some
possible extensions of the results in Chapters 2, 3, 4, and 5 to the new generalized dynamics.

A.1 A more general model

This section extends the model derivation of Chapter 2 to a wider class of interconnected

oscillators. Given p; > 0,4 =1,..., N, consider the following dynamics on C
N . . .
z; = (iwz- + p? — ‘ZZ|2)ZZ + Z Hz‘jel(sij (emjzj — e””zi) + u; (A.l)
j=1
where k := [Kijlij=1,.. N € RNXN
N . . .
u; = Z i€ [cos @;Re(eY7 2;) + isin p;Tm(e¥ zj)], (A.2)
j=1
¥ = [Fijlij=1,..N € RN*N " and where

@ = ([0ij]ij=1.. N, Mili=1, N, [Pilim N [Diflijmt s ()i, v) € RVXENED (A 3)

The phase matrix ® accounts for possible imprecision in the association between physical
(voltages, conductances, ion concentrations, etc.) and mathematical (real and imaginary parts)
variables. For instance:

e The phases [1;]i=1,... n rotate the oscillator contributions to the diffusive coupling. This
permits to consider the case when, in the simplification from the full coupled limit cycles
to the reduced ones, we can not exactly associate the voltages and recovery variables of
each oscillator to the real and imaginary parts, respectively.

!This chapter results for the reviewer’s (Prof. Ermentrout and Prof. Aeyels) comments on a preliminary
version of this thesis.



e The phases [0;;]; j—1,..,n rotate the diffusive coupling terms in such a way that the imag-
inary part of the coupling influences the real one and vice-versa.

e Similarly, the phases ([¢sli=1,.. N, [@ijlij=1,..,N, [¥i]i=1,..,n) accounts for the same type
of inaccuracies in the feedback coupling. In particular, the phases [¢;]i=1,. .~ permit to
consider the case when the real and the imaginary parts of the oscillations contribute to
the mean-field measurement with different gains.

We point out that this generalized model includes two important situations as special cases:

Reduction to the original mean-field proportional feedback scheme in Equation (2.3)
By picking 0;; = 17; = ¢i; = ¥; = ¢; = 0 and by setting 7;; = S5, foralli, 5 =1,..., N,
trivial computations reveal that (A.1) reduces to

N N
2 = (iwi 4+ p? — |z:)®) 2z + Z kij(z5 — 2zi) + Bi Zosze(zj),
- =

thus recovering the dynamics in Equation (2.3).

Reduction to the normal form (A.4) in (Aronson et al., 1990) . With the choice p; =
T =i =0,and ¢;; = d;;, forall 4,5 = 1,..., N, the sum of the coupling and feedback
terms in Equations (A.1)-(A.2) can be re-written as

N N y
3" € (ki + Fig) 2 — kiga] = D (kg + Fig) € {Zj - %Zz} - (A

j=1 j=1 Kij + Yij

Clearly, for x;; = 0, we obtain a purely direct coupling, which recovers the coupling term
in Equation (A.4) of (Aronson et al., 1990) with &; = 0. Otherwise, given &; € (0, 1], we
let o
= ~ = /%zﬁ
Rij + Yij

which is equivalent to asking
Yij = —————. (A.5)

By plugging (A.5) into (A.4), we can further transform the coupling and feedback terms

as
N ~

1-— Kj i5: 2
> kg + k5 ) €% (2 — Rizi) Z’i €0 (25 = Riz),
=1 i

where rj; 1= K” , which recovers the coupling term of Equation (A.4) of (Aronson et al.,

1990) with 7 € (0, 1].

The normal form (A.4) in (Aronson et al., 1990) constitutes the basis of many theoretical works
on synchronization phenomena between coupled oscillators, including, in particular, works on
desynchronization via mean-field feedback, e.g. (Hauptmann et al., 2005a; Popovych et al.,
2006a) and references therein.

A.2 Formal reduction to the phase dynamics

The goal of this section is to derive the phase dynamics of the closed-loop system (A.1)-(A.2).
More precisely, we rigorously derive conditions justifying Assumption 1, that is conditions for
which the oscillator radius variations can be neglected in the associated phase dynamics.



We start by writing the oscillator states in polar coordinates, that is z; =: 7el%, for all
i=1,...,N, where r; = |z] € R>o and 0; = arg(z;) € T'. We stress that the oscillator phases
0; are defined only for |z;| = r; > 0. In these coordinates the dynamics (A.1)-(A.2) reads

N
€% + iri0;e% = (iw; + p? — r2)riel? + > ki€ (eMip el — eMip,elfi) 4y,
J=1
with

N
ui =y Jijel?i [cos pijRe(eir;el%) + isin p;Tm (e rjeiej)].
i=1

By multiplying both sides of this dynamics by e;fi, extracting the real and imaginary part,
and using some basic trigonometry, we get, for r; > 0,¢=1,..., N,
éi = w; + fl(e) K, 5/7 q)) (AG&)
i =i} = 11) + (0,7, 5,7, @), (A.6b)

where, foralli=1,..., N,

N N
N . KijTj
fil0, 7, K, 7, @) i= = > kigsin(di; +mi) + > Z Lsin(0; — 0; + 6ij + 1)
=1 j=1 T

N ~ .
;i [SInws; + CoS Y, .

+2 77{. . { = 2 L sin(0; — 0; + iy + ;) (A7)
=1 "
PRI EB T sin(0; + 0 — iy + 1)

2
N N
90,7, K, Y, ®) == —1; Z Kkij cos(di; + i) + Z Kijrjcos(0; — 0; + 0i; + n;)
j=1 J=1
N sin ; + cos @;
+>_Figrs {—j 5 cos(0; — 0 + i + ) (A.8)
j=1

COS pj — sin @;

5 cos(0; + 0; — ¢ij + 1))

which defines the phase/radius dynamics of (A.1)-(A.2) on TV x RY,.

Let f := [fili=1,..~v and g := [gi]i=1,..n. When the diffusive coupling and the mean-field
proportional feedback are both zero, that is kK = 4 = 0, it holds that f = g = 0. Hence, in this
case, (A.6) reduces to

éi = W (A9a)
i =ri(pf — 1), (A.9b)

foralli =1,...,N. Let p := [pi]i=1,..N € RNXN 1t is evident that the N-torus TV x p C
TN x RY, is invariant for (A.9), since all its points are fixed points of the radius dynamics

(A.9b). Moreover, it is normally hyperbolic, since the linearization of (A.9) on its tangent

space? is % = 0, whereas the linearization on the orthogonal space, i.e. %, has eigenvalues

.....

12}
or;

}, i=1,...,N.
(6,[pili=1,...,N)



—2p2 i=1,...,N. Thus, it is also (exponentially) attractive.

We are now going to apply a classical result of Hirsch et. al (Hirsch et al., 1977, Theorem 4.1)
to show that, if x, 7 are sufficiently small, then (A.6) still has an attractive normally hyperbolic
invariant torus in a neighborhood of T := T x p.

Proposition A.1. Given p; > 0, i = 1,..., N, there exists constants 6, Cp, > 0 depending
only pi, i = 1,...,N, such that, if |(k,7)| < On, then there exists an altractive invariant
manifold T, C TN x RY, normally hyperbolic for (A.6) and satisfying

= pl < Chlw.7)l, Y(O,7) €Ty, (A.10)

Proof Even though for k = 4 = 0 it holds that f = g = 0, as soon as (k,%) # 0, f and ¢
are unbounded, due to singularities at r; = 0 and r; = oo, for some i € {1,..., N}. However,
the persistence of the normally hyperbolic invariant torus solely relying on local arguments, we
can construct a locally defined auxiliary smooth dynamical system, which is identical to (A.6)
near 7o. The auxiliary system possesses a normally hyperbolic invariant manifold 7, near 7
if and only if the same holds for the original dynamics (A.6).

STEP 1: Compactification.

The result of (Hirsch et al., 1977, Theorem 4.1) applies for dynamical systems defined on com-
pact manifolds. Thus, we construct our auxiliary dynamics on a compact manifold containing
To. To this end, we consider some smooth functions G; : R>¢g — [0, 1] such that (see (Lee,
2006, Page 54))

0 ifr; € [0, %]
Gi(ri) = Q1 ifr; € [, 21 (A.11)
0 ifr; > 2%
By denoting
P— {reR;VO: r; € {% 7’)} 1:1,...,1\/},
we let M be the compact submanifold
M:=TN xP.

We define our auxiliary dynamical as a dynamical system on the compact submanifold M as
follows:

éi =w; + fi(evra "Q”?v (I))’ IS TN (A12a)
7y = 1i(pf —r7) + Gi(ri)gi (0,7, 5,7, ®), € P. (A.12b)

Note that, by definition, the two dynamics (A.6) and (A.12) coincide on
M:=TN x P, (A.13)

where

B:: {TGRQO: T € {%a %}7 Z:LaN}

In particular (A.6) has an attractive normally hyperbolic invariant manifold 7, C M if and
only if (A.12) does.

STEP 2: Invariance.
In order to apply (Hirsch et al.; 1977, Theorem 4.1) to (A.12) with s and 7 as the perturbation
parameters, we also have to show that the compact manifold M is invariant with respect to



the flow of (A.12) independently of (x,7) € RYV*2N | In this case, the flow of (A.12) maps M
into itself independently of the perturbation parameters, as required by (Hirsch et al., 1977,
Theorem 4.1). By construction of the functions G; in (A.11), the border of M, i.e.

3p

—— P N
OM:=TN xEur
M ><2 X 5

are fixed points of the radius dynamics (A.12b), independently of the value of the parameters
k,%,®. In other words, for all (k,%, ®) € RV*(N+3) the border of M is given by the union
of the two invariant torus TV x £and T N x 3—;. This in turn ensures that M is invariant for
(A.12). Indeed, if a trajectory exists crossing the border of M, then the image of the crossing

point through the flow of (A.12) falls out of M, which violates its invariance.

STEP 3: The nominal tnvariant manifold and construction of the perturbed one.
For k = 4 = 0, the N-torus 7o = TV x p is attractive normally hyperbolic invariant for (A.12),
since Top C M and the same holds for (A.6).

It remains to show that, if |(k,7)| is small, then the Cl-norm? of the functions
M:— RN
(0.7) — f| 0,757, @)

and
M :— RY
(6.7) — G| (r)g| (0.7 5,7, @)
where G := [G}li=1,.. v, is small as well. To this aim, note that f and its derivative BBT};) are

linear in (k,7). Furthermore, the coefficients, which depend only on (8,7, ®), are uniformly
bounded on M x RN*@ZN+3) - Similarly, for the function Gg and its derivative 9(G9) 1t follows

a(0,r)
that there exists Cy, Cy > 0, Cy, C,4 independent of &, 4, w, and ®, such that
. 15,5, @)1 < Oyl )] (A.14a)

that is both f and g are |(k,7)|-small in the C*-norm. Note that the constants Cy, Cy4 solely
depend on the natural radius p;.

We can finally apply (Hirsch et al., 1977, Theorem 4.1) to conclude the existence of d;, > 0,
independent of k, ¥, w, and ®, such that, if

(K, )] < 0, (A.15)

then (A.6) still has an attractive normally hyperbolic invariant N-torus 7, C M, which is
|(k,7)|-near in the C'-norm to 7p. The fact that ) depends only on the natural radius p;,
comes from the fact that the linear part of the unperturbed dynamics (A.9) solely depends on
pi, i =1,...,N. In particular, there exists C, > 0 such that, if |(x,7)| < J},, then

Ir—pl < Crl(k, 9], V(0,r) €Ty, (A.16)

where again (Y}, is independent of k, 7, w, and ®.

3The C'-norm of a C* bounded function with bounded derivatives F' : M — R" is defined as ||F|[|; :=
max{max_ 57 |F(z)|, max, 77 |0F/0x(z)|}, where |F'(x)| (resp. |0F/0z(x)|) is the Euclidean (resp. Frobenius)
norm of F(z) (resp. 0F/0z(x)).



To prove the proposition, it remains to pick |(x, )| sufficiently small that 7, C M, where M,
defined in (A.13), is the region where (A.12) coincides with (A.6). To this aim, from (A.15),
(A.16), and the definition (A.13) of M, it suffices to pick

mini:17.._7N Pi

= Al
(5h 4Ch ) ( 7)
and
(5, )| < On, (A.18)
]

Remark A.2. We refer to condition (A.18) as the small coupling condition. Note that the
constant &, and thus the small coupling condition, depends only on the oscillator natural
radius p;. In particular, it is independent of the natural frequencies w.

If the small coupling condition is verified, then Proposition A.1 has two important consequences:

1. On the attractive normally hyperbolic invariant torus 7, the oscillator radius variations
around their natural radius are bounded by |r(t) — p| < Ch|(k,7)|, for all £ > 0. In
particular, they are small, provided that |(k,7)| is small.

2. To the first order in |(k,7)| the phase dynamics does not depend on the radius dynamics.
Indeed from (A.10) and (A.14) it follows that

of ~ of -
- — < | ZL _
(0.7 B = p)| < |20k 5,2)| = g
< Cf‘(/"i,’i/)|0h|(/"i,’?>|
= CyChl(k, 7).

Items 1 and 2 justify Assumption 1. In particular, to the first order in |(k,7)|, .e. to the first
order in the coupling and feedback strength, if the small coupling condition (A.18) holds true,
then

N
éi = Ww; — Zlﬂj Sin((si]‘ +777L) +ﬁ(9,k,v,<1>), (A19a)
j=1
where
B N N
fZ(H, k,~, (I)) =W — Z Kij Sin(5ij + 77@) + Z kij Sin(ej —0; + 5@‘ + 77j) (AQO&)
j=1 j=1
N sin ¢ + cos @,
+> i {—] 5 sin(0; — 0 + i + ¢y) (A.20b)
j=1
SR G0 10— by )| (A200)
with k = [kijlij=1,.. N = [%] and v = [Vijlij=1,..N = [%;—zp]] We stress that the error

between the nominal phase dynamics (A.6) and (A.19) is of the same order as |(k,¥)[%. It is
thus small provided that |(k,%)| is small.

The generalized phase dynamics (A.19) constitutes the object of our analyses in this chapter.



A.3 Generalization of the results of Chapter 2

In this section we extend the results contained in Lemmas 2.3 and 2.4 and Theorem 2.2, to
the generalized phase dynamics (A.19). We stress that all the forthcoming analysis is valid,
provided that the small coupling condition (A.18) is satisfied, independently of the natural
frequencies.

A.3.1 Generalized fixed point equation

Similarly to Chapter 2, we start by identifying the phase-locked solutions or, equivalently, the
fixed points of the incremental dynamics of (A.19), i.e. §; —0; =0, for all 4,5 = 1,..., N.
Given some initial conditions 6*(0), this fixed points equation reads

N N
0=w;— Y kipsin(Gn +m) + Y kinsin(Ag, + dip + 1) (A.21a)
h=1 h=1
N sin p, 4 cos ¢y, .
+> Yih 5 sin(Agp + ¢in + ¥n) (A.21b)
h=1
N N
—wji+ Y g sin(Gin +nj) — Y kjnsin(Ajn + Gin + nn) (A.21¢)
h=1 h=1
a sin gy, + cos pp, .
=D wh——y—— sin(Ajh + Gjn + Un) (A.21d)
h=1
N .
+> w sin(2Aq(t) + A + 207 (0) — din + 1n) (A.2le)
h=1
N .
sin ¢y, — cos ) .
- M sin(20q(t) + Ajp + 205 (0) — ¢jn + Un). (A.21f)
h=1

where the phase differences A € RV*N and the common frequency of oscillation  : R — R

are defined in (2.12) and (2.13), respectively.

Let us introduce some notation. The fixed point equation (A.21) must be solved in A and

Q. It is parametrized, apart from the natural frequencies w, by the elements of the matrix
T e RVXUN+3)  which is defined as

Y= (k,k, ®). (A.22)

Let us denote the first four (time-independent) lines of (A.21) as the function <I>Z-le : RV x
RNV*X(AN+3) o RNXN _, R that is

N N
O (w, 0, A) =wi = Y Kipsin(Sin + i) + Y kinsin(Aip + Sin + 1)
h=1 h=1

N .
Sin ©p + Cos Yy .
+ Z YVih—— sin(Aqp + ¢in + ¥n)
h=1
N N
—wj + Z Kjh sin(5jh + T]j) - Z kjh SiIl(Ajh + 5jh + ﬁh)
h=1 h=1

N .
sin + cos .
=Y A sin( Ay + dgn + vn). (4.23)
h=1



Similarly we denote the last two (time-dependent) lines of (A.21) as the function @;TZ.D : R x
RNVX(AN+3) o RNXN o RN 5 R, that is

N .
OIP(1, T, 8,07(0)) i= Y TR sin(2Aq(t) + Ain + 260;(0) — Gun + ¥n) (A24)
h=1

N .

5 sin(2Aq(t) + Ajh + 29; (0) — jn + Yp).

h=1
Then we can generalize Lemma 2.3 as follows.

Lemma A.3. For all initial conditions 0*(0) € TV, all natural frequencies w € RN, all
parameters T € RVXUN+3) if sustem, (A.19) admits an oscillating phase-locked solution start-
ing in 0*(0) with phase differences A and collective frequency of oscillation §, then, for all
1<i<j<N, the functions defined in (A.23) and (A.24) satisfy
TI _
®;i (w, T,A) =0, (A.25a)
TD * o
;7 (¢, T, A,60%(0)) = 0. (A.25b)

Proof The proof follows along the same lines as those of the original lemma. Firstly, note
that, by definition, the fixed point equation (A.21) can be rewritten as

ol (w, T, A) +@]P(t, T, A,6%(0)) = 0.
Since CDg;I (w, Y, A) is constant, this is equivalent to writing
@z;l(w, T, A) = Cija

for some constant c¢;; € R. We claim that, if the phase-locked solution is oscillating, then
necessarily ¢;; = 0. To see this, differentiate (A.26) with respect to time. We obtain, for all
t>0,

0= 2Q(t)x

N
{ Z Yih {cos p, cos(2Aq(t) + Ay — ¢i + 267(0)) — sin ¢y, sin(2Aq(t) + Ay — ¢i + 29;(0))}
h=1

N
_ Z yjh[cos Pn cos(2hq(t) + Ajn — @5 +205(0)) — sin ey sin(2Aq () + Ajn — @5 + 20;-‘(0))] }
h=1

(A.27)
Since the solution is oscillating, €2 is a non-identically zero continuous function, and, thus,
there exists an open interval (¢,t), such that Q(t) # 0, for all ¢ € (¢,t). Hence, (A.27) implies
that

N

Z Yih [cos p cos(2Aq(t) + Ay — ¢ + 267(0)) — sin oy, sin(2Aq(t) + A — ¢i + 26] (O))}
h=1

N
- Z Vih {cos Y cos(2Aq(t) + Ajp — @5 +207(0)) —siny, sin(2Aq(t) + Ajp — ¢ + 205 (0))} =0,

h=1
(A.28)



for all t € (¢,¢). By differentiating (A.28) with respect to time and considering once again that
Q(t) #0 for all t € (¢,t), one gets

@Z;D(t,’r,A,e*(O)) =0

for all ¢ € (¢,t), that is, at the light of (A.26), ¢;; = 0, which concludes the proof. O

A.3.2 Invertibility of the time-independent part of the generalized fixed
point equation

In the following lemma, which generalizes Lemma 2.4, we show that the time-independent
part (A.25a) of the fixed point equation (A.21) can be inverted for a generic choice of the
parameters.

Lemma A.4. There exists a set N' C RN xRN*UN43) and a set Ny € N satifying p(No) = 0,
such that (A.25a) with natural frequencies w* € RN and parameters T* € RN*ENT3) qdmits
a solution A* € RN if and only if (w*,Y*) € N. Moreover, for all (w*,T*) € N\ N,
there ezists a neighborhood U of (w*, ™), a neighborhood W of A*, and an analytic function
f+ U — W, such that, for all (w,Y) € U, <w, T, A= f(w,T)) is the unique solution of
(A.25a) in U x W.

Remark A.5. In this generalized version, we prove the analyticity of f, instead of simply
smoothness as for Lemma 2.4, since this permits to largely simplify the proof of the existence
Theorem A.6.

Proof (SKETCH) The first part of the proof follows exactly the same steps as that of
Lemma 2.4, with the matrix T at the place of the matrix I', and with the two function F'
and F (currently defined in (2.21) and (2.33), respectively) redefined as follows. By letting
Y; = AiN,i:1,...,N—1,W€ let

Fi(wa T7 y) = q)?]\g(w? T7 A(?J))’
and .
(@i, T, y) == 98 (0, T, Aly)) + &,

where Ain(y) :==yi,i=1,...,N—=1,and Ay () =Y —Yn,n=1,...,Nym=1,... N —1.
The end of the proof is slightly different since, to prove the analyticity of f, instead of just
smoothness, one has to invoke the fact that F' is analytic and then apply the analytic implicit
function theorem (Krantz and Parks, 2002, Theorem 2.3.5). For more details, we invite the
reader to retrace the proof of Lemma 2.4, with the above modifications in mind. O

A.3.3 Non-existence of oscillating phase-locked solutions in the generalized
dynamics

In the following theorem, which generalizes Theorem 2.2, we show that, for a generic choice of
the parameters, no oscillating phase-locked solution exists in the phase dynamics (A.19).

Theorem A.6. For all initial conditions 0*(0), and for almost all w € RN and T € RN*(4N+3),
(A.19) admits no oscillating phase-locked solution starting in 6*(0).

Proof



Observe that, if (w, T) € N, then, by Lemma A .4, the time-independent part of the fixed point
equation (A.25a) admits no solutions and, thus, by Lemma A.3, the phase dynamics (A.19)
admits no oscillating phase-locked solution.

Therefore, let us assume that (w, T) € N. We claim that there exists My C N, with pu(Mg) =
0, such that, given initial conditions 6*(0), if there exists an oscillating phase-locked solution
of (A.19) starting in 6*(0), then (w,Y) € Ny U My, where Ny is defined in Lemma A.4 in
Section A.3.2. If our claim holds true, noticing that u(Moy U Np) = 0, then the theorem is
proved.

We want to construct My as the zeros of a suitable analytic function, thus ensuring that it has
zero Lebesgue measure (Krantz and Parks, 2002, Page 83).

Given (w,T) € N\ Ny, it follows from Lemma A.4 that there exists a unique A(w,Y) such
that (w, T, A(w, T)) is solution to (A.25a). That is the function

N\No — ]RNXN
(w, 1) +— Aw,T)

is well defined. It is also analytic, since, again by Lemma A.4, for all (w,Y) € N\ Ny it is
analytic in a neighborhood U 3 (w, ). Given a pair of indexes i # j, consider the function

NAMNy :— R (A.29a)
(W, 1) — G(w, 1) =2 (0,7, Alw,T),0%(0)) (A.29D)

where <I>g;-D is defined in (A.24). The function G defined by (A.29) is analytic on N\ N, since
it is the composition of two analytic functions (Krantz and Parks, 2002, Proposition 1.4.2).
We define M as the zero set of G, that is

Mo :={(w,T) e N\ Ny : G(w,Y) =0}. (A.30)

As anticipated above, since G is analytic, u(Mjp) = 0. By construction, if (w, T) € (N \ No) \
My, then G(w, T) # 0, that is, by the definition of G in (A.29), the time-dependent part of the
fixed point equation (A.25b) admits no solutions. By Lemma A.3, this implies that, if there
exists an oscillating phase-locked solution starting from 6*(0), then necessarily

(W, 1) € N\ [(N\No) \Mo}
=N\ [N\(NOUMO)]
= Nop U Mo,

which proves the claim. O

A.3.4 A particular parameter configuration

Theorem A.6 holds only generically in the space of natural frequencies and parameters. This
means that there exist sets of zero Lebesgue measure in this space where oscillating phase-
locked solutions may indeed exist. In Section 2.4.2 we provide one examples (Example 2.3).
Here we relate this zero measure set to the normal form (A.4) in (Aronson et al., 1990).

It is proved in that reference that the normal (A.4) admits asymptotically stable (oscillating)
phase-locked solutions. At the same time, as discussed in Section A.1l, this normal form can
be obtained from our generalized dynamics via a suitable choice of the parameter matrix ®,
defined in (A.3). However, this does not contradict Theorem A.6. The normal form (A.4) falls
indeed in the parameter zero measure set for which Theorem A.6 does not apply.



We stress that this intrinsic difference between our analysis and the analysis in (Aronson et al.,
1990) reflects the different assumptions in the derivation of the phase-dynamics:

* Under the assumption that the attractivity of the limit cycles in (A.1) is large, compared
to the diffusive coupling and feedback strengths, to the first order, the radius dynamics
can be ignored and the phase dynamics has the form (A.19), as derived in Section A.2.

*x Under the assumption that the oscillators are near the Hopf bifurcation, as in that refer-
ence, the attractivity of the limit cycle is small and, to the first order, the phase dynamics
depends only on the phase differences. At the same time, the effects of the radius varia-
tions are not negligible.

Beyond the purely existence result of Theorem A.6 (which is not so informative about the
possible phenomena that can be observed), we stress in Section 4.3 and Section A.5 below
that the presence of non-diffusive terms in the phase dynamics is crucial to obtain robust
oscillation inhibition without death of the oscillation amplitude. The same fact is thoroughly
stressed in (Ermentrout and Kopell, 1990). In other words, oscillation inhibition can not be
robustly observed in the normal form (A.4) derived in (Aronson et al., 1990) without death
of the oscillation amplitude. At the same time, ignoring the radius dynamics necessarily leads
to ignoring the existence of other types of phenomena, in particular, the existence of stable
phase-trapped and phase-drift solutions, as defined and observed in that reference.

It would be interesting to explore an ensemble, or a couple, of Landau-Stuart oscillators in the
intermediate case between the strong attractivity assumption considered here and the weak
attractivity assumption considered in (Aronson et al., 1990). This is left to future work.

A.4 Extension of the results of Chapters 3

The result of Theorem 3.4, which characterizes the robustness of phase-locking between Ku-
ramoto oscillators, relies on the existence of an ISS Lyapunov function for the incremental phase
dynamics, whose local minima characterize asymptotically stable phase-locked solutions. In
this section we provide sufficient conditions for which the generalized incremental dynamics
associated to (A.19) still admits a Lyapunov function. The phase-locking robustness analysis
can then be generalized by retracing the steps in Chapter 3.

A.4.1 The generalized incremental dynamics with inputs

In the more general case (A.19), the incremental dynamics with inputs reads, for all i,j =

1,....N,
_ . N N

0i(t)—0;(t) = @i(t) —@;(t)+ > kin sin(0n —0i+8n+nn) — Y _ kjn sin(0p —0;+0;,+n5) (A.31)
h=1 h=1

where, for all i = 1,..., N and all t € R, the grounded inputs @w;(¢) are given by

1 N
Gi(t) = @it) = = > (1), (A.32)
=1

and, as in (3.2), the time-varying natural frequencies tw; account for generic time-varying
perturbations to the oscillators, including, in particular, heterogeneities and the effects of



mean-field proportional feedback. They are given by

N
wl(t) = pi(t) + w; — Z Kij sin(éij + "71)

j=1
N sin ¢, + cos p;
+ % {# sin(0;(t) — 0:(t) + dij + ;) (A.33)
=1
sin ; — cos ;.
+ L in(0,(t) + 6,(t) — by + )|
and p;, :R— R, ¢=1,..., N, are measurable functions.

A.4.2 The generalized Lyapunov function

We want to find and ISS Lyapunov function for the generalized incremental dynamics with
inputs (A.31). To this aim, consider the following function

N N
5 o (05— 040 +m;
V[(H)::2§:§:Eijsm2(] 5 J J), (A.34)
i=1j=1

where F;; = %, and K = max;; |k;;|, if k # 0, or K = 1, otherwise.

We now provide sufficient conditions on the parameter matrix Y, defined in (A.22), for which
(A.34) is an ISS Lyapunov function for the incremental dynamics (A.31) with inputs @. More
precisely, we require that the coupling matrix k is symmetric and that, moreover, the phases
0i; + n; are antisymmetric under the exchange of ¢ and j, that is

kij :kji Vi,j: 1,...,N, (A35&)

Condition (A.35a) is the same symmetric coupling assumption made in Chapter 3, whereas
(A.35b) ensures that the diffusive coupling terms sin(¢; — 6; + 6;; + ;) are antisymmetric.
We stress that, if (A.35) is not exactly verified, the resulting dynamical uncertainties can be
embedded in the perturbation term p; in (A.33). This ensures, in particular, that our robustness
analysis extends to a full neighborhood of the subset of parameters defined by (A.35).

If (A.35) holds, then the derivative of the Lyapunov function V; along the trajectories of the
incremental dynamics (A.31) reads

Vi(0) = (V3V)'o

N
= = D Bysin(0; — 0; + 0 +n;)(0; — 0;)
ij=1

N
= -2 Z Eijsin(0; — 0; + 045 + n;)0;,
ij=1

where the last equality comes from the fact that, since by definition and (A.35a) E is a sym-
metric matrix, whereas, by (A.35b), sin(6; — 0; + 9;; +n;) is antisymmetric, Zﬁszl E;;sin(0; —
0; + 0i; + nj)éj = — Zf}szl E;jsin(0; — 0; + 0,5 + nj)éz-. Since, for the same reason, it also holds



that Z%:l Eij sin(ﬁj —0; + 61']‘ + 77]') Zthl wh(t) = 0, we finally get that

N /N N
Vi o= -2 <Z Eijsin(0; — 0; + ;5 + ﬁj)) <K > Einsin(0, — 0; + 6i5 +1;)) + @)

i=1 \j=1 h=1
= 2(KVVIVV +vVTw),

which proves that V is, at least locally near its local minima, an ISS Lyapunov function for
(A.31).

A.4.3 Statement of the generalized result

Based on the function (A.34), we can retrace the same steps of Chapter 3 for the generalized
phase dynamics (A.19) and derive the following result.

Theorem A.7. Let k be a given symmetric interconnection matriz and suppose that 0;; +n; =
—0j; —m; for all i,5 = 1,...,N. Suppose, moreover, that the set Oy of asymptotically stable
fized points of the unperturbed, i.e. @ = 0, incremental dynamics (A.81) in non-empty. Then
Oy s locally input-to-state stable with respect to small ©.

Similarly to the original Theorem 3.4, the proof of Theorem A.7 relies on the existence of
the explicit (incremental) Lyapunov function (A.34), which permits to compute explicitly the
different ISS gain and bounds. At the light of this, a similar result to Corollary 3.6 also holds.
More precisely, if no other exogenous disturbances but the mean-field proportional feedback
are present, then the necessary condition for desynchronization becomes:

1N N ‘ N ' i
Wi = > wi = > kigsin(di +m) — N > Kngsin(6p; + mn)| + 29NV N < 4,
j=1 j=1 h=1

where again 7 is the feedback intensity and is defined as in 3.10, and where the constant d,, > 0
depends only on the interconnection matrix k.

A.5 Extension of the results of Chapters 4

The analysis of Chapter 4 entirely relies on the gradient nature of the closed-loop dynamics.
In the all-to-all case analyzed in Chapter 4, we show, in particular, that the critical set of the
potential function consists of only normally hyperbolic invariant manifolds (including isolated
critical points, which are zero-dimensional invariant manifolds) and that all its minima are
isolated. This ensures robust almost-global convergence to the set of isolated local minima,
corresponding to robust oscillation inhibition.



A.5.1 Generalized gradient dynamics

Here we want to derive conditions on the parameter matrix Y, defined in (A.22), for which
(A.19) still admits a gradient dynamics structure. We claim in particular that, if

kij = kj, Vi, j=1,...,N, (A.36a)
Yij = Vji» V4,j=1,...,N, (A.36b)
i =¢j Vi, j=1,...,N, (A.36c)
dij +nj = =05 —ni, Vi, j=1,...,N, (A.36d)
Yi=—¢y Vi, j=1,...,N. (A.36e)

then (A.19) can be written as a gradient dynamics. Condition (A.36a) is the known symmetric
coupling assumption. Simple computations, reveal that conditions (A.36b,c) are equivalent to
asking that both v;;(sin ¢ + cos ;) and 7;;(sin ¢; — cos ;) are symmetric under the exchange
of ¢ and j. This ensures that the effective gains

sin ¢; =+ cos

: (A.37)

%-? =Yg
in front of both the diffusive and the additive feedback terms (A.19¢) and (A.19d) are sym-
metric, that is v;; = 7, for all 4,5 = 1,..., N. As in Section A.4, condition (A.36d) ensures
that the diffusive coupling terms sin(f; — 9 + 0i; + ;) are antisymmetric. Finally, simple
computations reveal that (A.36e) is equivalent to asking that the diffusive feedback terms
sin(0; — 0; + ¢;; + ;) are antisymmetric, whereas the additive terms sin(0; + 6; — ¢;; + ;) are

symmetric.

Consider the function

N
0; —0; + 0;5
W0, w,k,k,v,®) = Z ki s1n2< J z J +773> (A.38a)
ij=1
a 0; — 0 + iy +U;
+ Z Vi sin? ( J 5 J J) (A.38b)
ij=1
al 0; +0i — ¢ij +
- Z 7% sin? ( 5 ! J) (A.38c)
ij=1

i=1 j=1

|
™=
VR
§
=

Z Kij sin(d;; + 771)) 0;. (A.38d)

We claim that, if (A.36) holds true, then (A.19) can be written as the gradient dynamics
6 = —VoW. Let us denote by 22 38@, where ¢ € {a,b,c} and h € {1,..., N}, the partial
derivatives of the different right terms in (A.38) with respect to 8. Then we have

0(A.38a 1 N ] N '
_(%h) =3 > kngsin(0; — O + 0pg +n5) — Y ki sin(0, — 0; + 0 + Uh)}
=1 i=1
1 N -|
=3 Z kg sin(0; — O, + 6p; + 1) + Y knisin(0; — 0y + 0p; + Uz)J
=1 i=1
N
=D _ kg sin(0j — On + onj + ;) (A.39)

1

<.
Il



where the second equality comes from the fact that, by assumption (A.36a,d), for all 4,j =
1,...,N, —kj;sin(0; — 0; + ;i + n;) = ksjsin(6; — 0; + ;5 + n;). Similar computations for the
diffusive feedback term (A 38b) reveal that

K A 38b N
( Z Vhy sin(0; — Oy + on; + V;). (A.40)

For the diffusive additive term (A.38c), we have

O(A.38) 1| N ‘
_((%h) = Z Z Yhj sin(6; + 0, — dnj + ) + Z’y;,g sin(fy, + 0; + ¢in + th)}
L7=1 i=1
1 [ N
= 5 Z hj bll’l(e +0h —Qf?h] +¢] —|—Z’ym51n 9 +9h+¢hz+wz)
=1 =1
N
=D Yy Sin(0; + On = bnj + 1), (A.41)
7j=1

where the second equality come from the fact that, by assumption (A.36b,c.e), for all 7,5 =
N, ’Yz‘—; sin(6; + 0; — ¢ij + ;) = ’yﬁ sin(6; + 0; — ¢;; + 1;). Finally, by noticing that

o N N N
_870h — Z Wi — Z Kij sin(dij + 771‘) Gi = WhH — Z Khj Sin((shj + ﬁh),

i=1 j=1 j=1

Equations (A.39)-(A.40)-(A.41) show that, if (A.36) holds true, then — 89 = 6}, which shows
that W is a potential function for (A.19).

A.5.2 Statement of the generalized result

In Sections 4.2.1, 4.2.2, and 4.2.3 we thoroughly analyze the critical set of the potential function
W in the ideal case of all-to-all coupling and feedback, and zero natural frequencies. A similar
analysis can be developed for the generalized potential function (A.38). More precisely, one
should analyze the critical set of (A.38) under condition (A.36) and in the ideal case w; —
Zéyzl kijsin(d;; +1;) =0, for all ¢ = 1,..., N. This translates into studying the critical set of
the unperturbed potential function

Wo(0,k,~,® Z k;; sin? (9j =00y 77j) (A.42a)
,J 1 2
+ Z 7;; sin ( — it i+ %) (A.42b)
,J 1 2
— Z ’yw sin (ej + i _2¢ij i ¢j) , (A.42¢)
i,j=1

under the assumption that (A.36) holds true. Note that —VoWy = f(0,k,~, ®), where f is
defined in (A.19b). Similarly to Chapter 4, if the parameters are such that the critical set of Wy
consists of only normally hyperbolic invariant manifolds and all its minima are isolated, then
one can plug the effective natural frequencies w; —Z;V:l Kij sin(d;; +1;) back in as perturbations
and conclude robust oscillation inhibition. We can formalize this discussion as follows.



Theorem A.8. Consider the dynamics (A.19) and suppose that (k,~,®) satisfy (A.36). Sup-
pose, moreover, that the critical set of the unperturbed potential function Wy is made of only
normally hyperbolic invariant manifolds, and that the set W, of its local minima is non-empty
and made of isolated critical points. Then, there exists § > 0 and a class Koo function p such

that, if

N
w — IVZ Kij sin(éij + nz)-l <4 (A.43)
[J'Zl J i=1,..,N
then there exists a set of isolated points Win, satisfying
} N
Wil < p | |w— | kijsin(6i; + n;) ;
szl Ji—l N

=1l,...,

which contains all the local minima of the potential function W and which is almost globally
attractive for (A.19).

Theorem A.8 provides a condition on the coupling and feedback gains, and on the phases ®,
for which oscillation inhibition can be robustly achieved via mean-field proportional feedback.
We stress that the analysis of the critical set of W can be a hard task in general. However,
once the system dimension N is fixed, numerical analysis can come into play to check whether
this set is hyperbolic or not.

Remark A.9. The phase dynamics associated to the normal form (A.4) derived in (Aronson
et al., 1990) does not satisfy the assumptions of Theorem A.8. Recalling the discussion in
Ttem 2 in Section A.1, it is easy to verify that for the set of parameters associated to this
normal form, the phase dynamics (A.19) and, thus, the potential function W contain only
diffusive terms. As a consequence, all the critical points of W are non-isolated. Indeed,
given a critical point 6%, all the points of the form 6* 4+ aly, with a € R, are again critical
points of W. When the closed-loop dynamics contains only diffusive coupling terms, robust
oscillation inhibition is thus impossible. Indeed, all the fixed points are at most stable, but
never asymptotically, thus excluding robustness by converse Lyapunov theorems (Khalil, 2001,
Theorem 4.17),(Sontag and Wang, 1999). The same fact is stressed, with different arguments,
in the introduction of (Ermentrout and Kopell, 1990), where the authors study oscillation
inhibition (without death of the amplitude) in pairs or chains of coupled neuronal oscillators.

A.6 Extension of the results of Chapters 5

The practical desynchronization condition in Chapter 5 relies on two main points:

A) The mean natural frequency must be sufficiently large, in such a way that the average
contribution of the additive coupling terms is small (¢f. Claim 5.12 in the proof of
Theorem 5.10).

B) The closed-loop diffusive coupling must be small.

A): In the general case (A.19), the average contribution of the additive feedback terms can
still be analyzed via Claim 5.12 in the proof of Theorem 5.10. Indeed, Claim 5.12 naturally
extends to the case when an arbitrary phase is added in the sine argument. Thus, the average
contribution of each additive term admits the same upper bound as for the original phase
dynamics (2.6).



B): The closed-loop diffusive coupling requires more attention.
With the notation (;; := ¢i; +1¥; — 05 — ¥, for all 4,5 = 1,..., N, we start by rewriting the
diffusive feedback terms as follows:

sin(0; — 0; + ¢ij + ;) = sin(0; — 0; + 655 + n;) +sin(0; — 6; + 05 + nj + Gij)
—sin(6; — 6; + 6i5 + n;)
=sin(0; — 0; + ;5 + n;) (A.44)

+2sm(c23)cos(0 —0; + 0 +n; + C”),

where the second equality comes from the trigonometric identity sin a—sin b = 2 sin (“T_b> cos (“TH’>

By plugging (A.44) in (A.19), the closed-loop diffusive coupling becomes, for all i =1,..., N

7

+
kasm — 0+ 555 + ) +Z%M in(0; — 0; + 01 + 1) =
7=1
- - Gis Gij
Z (Kij +7;;) sin(0; — 0; + 655 +1;) +2 ) 7,; sin 5 ) cos (05 = 0i+ 65+ + 5 ) - (A45)
7j=1 7j=1
where ;; are defined in (A.37). In the ideal case
5ij+77j:¢ij+wja Vi,7=1,..., N, (A.46)

it holds that (;; = 0 and thus the closed-loop diffusive coupling can be directly modified via
7;;- In this case, we fall back to the same analysis as the the original case. In particular,
if (A.46) holds true, by retracing the proof of Theorem 5.10, it follows that the practical
desynchronization condition (5.17) becomes

N 2 N
o v
Qij o= wi —wj| = > (|vh] + ”Y]h’) ( W) =" (leanl + lejnl) >0,
h=1 h=1
where
N
v:=2 max <|d2h| + Z (|7;[h,\ + lehh/|>> , (A.47a)
h=1,..,N =
|
1S, AATH
Af;g;w“ ( )
G = wn—@, Yh=1,... N, (A.47¢)
Ent = Ky + s VoW =1, N (A.47d)
Conversely, if [¢ij]ij=1..n # 0, the term — >0V, (%h sm(gh "y]h sm(cg‘)‘) must be

added to the desynchronization condition. To summarize, we have the following result, which
generalizes Theorem 5.10 to the extended phase dynamics (A.19).

Theorem A.10. Suppose that there ezists (i,7) € N N such that

N 2 N
WV
Qj = |wi = wjl = Y (k] + 1l) ( + 6wg> =" (leanl + lejnl)
h=1 h=1
i Clh C]h
— V;p, Sin + |7 sin 5 > 0. (A.48a)

h=1



where v, W, 0p, epp, by =1,...,N, are defined in (A.47). Then the pair of oscillators (i, j)
is practically desynchronized for (A.19) in the sense of Definition 5.6.

Remark A.11. We stress that the generalized practical desynchronization condition (A.48)

can be robustly obtained on an open set of parameters. Indeed, if (A.46) is not exactly verified,
(Jinsin (% )] + 555 (%32)
is small, provided that those uncertainties are small. This ensures that, if (A.48) holds true in

the ideal case ¢;; = 0, for all 4,5 = 1,..., N, then we can find an upper bound dgesynch > 0,

such that (A.48) is still verified in the perturbed case (;; # 0, provided that |(;j| < Sgesynchs
foralli,j=1,...,N.

)

the contribution associated to the parametric uncertainties, i.e. —S%_,

A.7 Numerical simulations on Van der Pol and Hodgkin-Huxley
models

In this section we numerically explore the effect of proportional mean-field feedback on ensem-
bles of coupled Van der Pol and Hodgkin-Huxley oscillators. We pick the parameters in such
a way that, in the absence of stimulation, the ensembles are frequency synchronized.

The main result is the (numerical) evidence that the phenomenology observed and analyti-
cally explained for strongly attractive Landau-Stuart oscillators in Chapter 3 (robustness of
phase-locking to small feedback intensity), Chapter 4 (oscillation inhibition for small natural
frequencies), and Chapter 5 (desynchronization for large natural frequencies) also hold for these
more complex models. This opens the way to future analytical investigation.

A.7.1 Van der Pol oscillators under proportional mean-field feedback

We consider an ensemble of all-to-all interconnected Van der Pol oscillators under the effect of
a homogeneous proportional mean-field feedback. Their dynamics read

. ) K N N
Vi:5Vi—VZ—3—aiwi+N(ZV}—NV;)—I—XTZV} (A.49)
j=1 =1

K N
Wi = aiVi + 015 ; w; — Nw; (A.50)

for all ¢ = 1,...,N. In order to obtain a heterogeneous ensemble, in the large frequency
configuration, the coefficients a; are centered at a = 1 as follows

i—1
; = 0.95+0.1——
a; + N_1’
i=1,..., N, whereas in the small natural frequency configuration they are centered at a = 0.1
as follows .
Z [R—

a; = 0.095 + O.OlN 7

i =1,...,N. The coupling strength is given by K = 0.5. The small feedback configuration is
obtained for v = —1.7K, whereas the large feedback configuration for v = —2K. The result of
simulations, is provided in Figures A.1, A.2, and A.3.

As illustrated in Figure A.1, when the oscillator frequency is large, the effect of the mean-field
feedback is to desynchronize the oscillators, provided that the feedback gain is sufficiently large



(cf. Chapter 5 and Section A.6). For smaller feedback gain, phase-locking robustly persists
(Figure A.2), even though the irregularity increases (cf. Chapter 3 and Section A.4). Con-
versely, as illustrated in Figure A.3, for small natural frequencies, the mean-field proportional
feedback inhibits the oscillations (cf. Chapter 4 and Section A.5). We stress that, as depicted
in Figure A.3(right), even though oscillation inhibition is robustly achieved, the trajectories of
the single oscillators remain close to the original limit cycle attractor (cf. Section A.2).
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FIGURE A.1: Response of all-to-all coupled (N = 5) Van der Pol oscillators to proportional
mean-field feedback. The feedback is switched on at ¢ = 50. Large natural frequencies:
desynchronization. Left: voltages. Right: ensemble mean-field.
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FIGURE A.2: Response of all-to-all coupled (N = 5) Van der Pol oscillators to proportional

mean-field feedback. The feedback is switched on at ¢ = 50. Small feedback gain: robust

phase-locking. Left: voltages. Right: ensemble mean-field before and after the feedback is
switched on.
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FIGURE A.3: Response of all-to-all coupled (N = 5) Van der Pol oscillators to proportional

mean-field feedback. The feedback is switched on at ¢ = 50. Small natural frequencies:

oscillation inhibition. Left: ensemble mean-field. Right: trajectory behavior in the V;, w;
planes.

A.7.2 Hodgkin-Huxley neurons under mean-field proportional feedback

We consider an ensemble of N = 7 diffusively coupled Hodgkin-Huxley dynamics under pro-
portional mean-field feedback

CVi = Ly — gximi (Vi — Vi) — gnaimihi(Vi — Vva) — ai(Vi = Vi)
5 [N , &
Y <ZVJ ‘NVZ') Ty Y
= =
g = on(Vi)(1—ni) — Bu(Vi)n
i (Vi)(1 —mi) — B (Vi)m;
hi = an(Vi)(1 — hi) — Br(Vi)hi,

m;

forallt=1,...,7, where the functions oy, 8, * = n, m, h, can be found in the paper Hodgkin
and Huxley (1952). The value for the potassium Nernst potential Vi = —12 is the same as
in Hodgkin and Huxley (1952), while the sodium Nersnt and the leak Nernst potentials are
rounded to Vi, = 120 and V; = 10.6, respectively. The leak current conductance is g = 0.3. In
order to obtain an heterogeneous ensemble, the maximum sodium and potassium conductances
are defined as

gk, = g (1 +1)
9Na,i = gNa(l + 21)7

where gg = 36 and gy, = 120. The large natural frequencies configuration is obtained for
I,pp = 60, whereas the small natural frequency configuration for I,,, = 0. The coupling
strength is given by K = 2. The large feedback configuration is obtained for v = —2K,
whereas the small feedback configuration for v = —1.41K. The result of simulations is provided
in Figures A4, A.5, and A.6.

Asg illustrated in Figure A.1, when the oscillator frequency is large, the effect of the mean-field
feedback is to desynchronize the oscillators, provided that the feedback gain is sufficiently large
(cf. Chapter 5 and Section A.6). For smaller feedback gain, phase-locking robustly persists
(Figure A.2), even though the irregularity increases (cf. Chapter 3 and Section A.4). Con-
versely, as illustrated in Figure A.3, for small natural frequencies, the mean-field proportional



feedback inhibits the oscillations (cf. Chapter 4 and Section A.5).
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FIGURE A.5: Response of all-to-all coupled (N = 7) Hodgkin-Huxley neuron model to pro-

portional mean-field feedback. The feedback is switched on at ¢ = 250. Small feedback gain:

robust phase-locking. Left: voltages. Right: ensemble mean-field before and after the feedback
is switched on.
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More realistic neuron models






Chapter 6

Reduced modeling of calcium-gated

Hodgkin-Huxley neuronal dynamics!

Motivated by the need for a deeper mathematical understanding of the synchronization phe-
nomena exhibited by dopaminergic neurons (Drion et al., 2011a,b) illustrated in Section 1.6,
we develop in this chapter a mathematical analysis of calcium-gated Hodgkin-Huxley dynam-
ics based on reduced models. Calcium currents are involved in the regulation of the spiking
behavior of a large family of neurons, including dopaminergic, but also STN, and other central
nervous system’s neurons, suggesting that they might play a central role also in the electro-
physiological mechanisms behind PD. We refer the reader to Sections 1.4.2 and, in particular,
page 16 for more details and some references.

Hybrid reduced models of the Izhikevich type (Izhikevich, 2010) offer a valuable tool for the
mathematical modeling of neuron dynamics. In their simple form they are indeed able to
reproduce with fidelity the behavior of a large family of neurons (Izhikevich, 2003).

We show, however, that the Izhikevich model fails at reproducing some physiological behaviors
exhibited by dopaminergic neurons, namely robust periodic spiking (pacemaking) and after-
depolarization potentials, or ADPs, (Guzman et al., 2009). We show that this deficiency is
intrinsically due to a specific type of bifurcation in the fast voltage dynamics of calcium-gated
neurons that is absent in the Izhikevich model. We therefore propose a new hybrid neuron
model, embedding this calcium-gated bifurcation and reproducing the robust pacemaking of
dopaminergic (DA) neurons, as we are going to briefly illustrate in this introduction.

The pacemaking activity of DA neurons, as the one depicted in Figure 6.1, is characterized
by ADPs, a hallmark of voltage-regulated calcium currents (Chen and Yaari, 2008). See also
Section 1.4.2. ADPs are tightly linked to the excitability properties of neurons, since they are
associated to a post-spike phase of high excitability that is due to the persistent activation
of depolarizing calcium currents (Chen and Yaari, 2008; Beurrier et al., 1999). At the same
time, DA neurons pacemaking and ADPs generation are very robust in biologically meaningful
conditions (Guzman et al., 2009), meaning that the spiking rhythm and ADPs shape are barely
influenced in the presence of small exogenous perturbations.

'The results presented in this chapter were obtained under the supervision of Prof. R. Sepulchre at the
University of Liége, Belgium. This work was supported by the Belgian Network DYSCO (Dynamical Systems,
Control, and Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian
State, Science Policy Office, and by the European Union Seventh Framework Programme [FP7/2007-2013] under
grant agreement n.257462 HYCON2 Network of excellence. The obtained results were also the motivating
subject of a submitted “CALL CREDITS AND PROJECTS F.R.S.-FNRS 2011 (CC)” project.
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FIGURE 6.1: Robust pacemaking and afterdepolarization potentials in a detailed computa-
tional model of dopaminergic neurons. The gray trace depicts the injected stimulus.

In order to study DA neurons mathematically, we proceed with a planar hybrid reduction
by fitting the parameters of the Izhikevich model to the DA neurons spiking pattern. In
the absence of exogenous inputs, the obtained hybrid dynamics reproduces with fidelity the
behavior of DA neurons. Interestingly, however, even tiny amounts of current completely
disrupt its pacemaking activity and ADPs shape. These numerical observations are reported
in Figure 6.13. This lack of robustness compromises the realism of the obtained modeling,
thus making it unsuitable to use in biologically meaningful conditions and, in particular, in the
presence of exogenous inputs. The forthcoming analysis thus aims at deriving an alternative
simple neuron model that captures the essential dynamical mechanisms behind the robustness
of pacemaking and ADPs.

More precisely, since we are interested in qualitative aspects, instead of considering a particular
and detailed neuron model, we propose in Section 6.2 a simple modification of the original
Hodgkin-Huxley dynamics exhibiting the typical behaviors of calcium-gated neurons, that is
ADPs (Chen and Yaari, 2008), plateau oscillations (Brown and Randall, 2009), and spike
latency (Molineux et al., 2005). See also Section 1.4.2 for an informal description of this
phenomena and other references. Following the standard reduction of the Hodgkin-Huxley
equations, we reduce the proposed model to a planar dynamics exhibiting the same qualitative
behavior, and explain in Sections 6.2.2 and 6.2.3 the origin of ADPs, plateau oscillations, and
spike latency via phase-portrait and numerical bifurcation analysis. In Section 6.3, we deepen
further this investigation. We show, in particular, the existence of a transcritical bifurcation
in the fast voltage dynamics of the reduced model. The same bifurcation is absent in the
Izhikevich model, as well as in other existing simple neuron models, such as FitzHugh-Nagumo
(FitzHugh, 1961) or Hindmarsh-Rose (Hindmarsh and Rose, 1984). We identify this bifurcation
as the mathematical signature of calcium-gated neurons.

Based on normal forms, we derive a simple dynamics that captures the qualitative behavior
associated to this transcrtical bifurcation. We prove analytically, with the help of geometrical
singular perturbations, the existence of a saddle-homoclinic bifurcation, as highlighted by the
numerical bifurcation analysis on the calcium-gated Hodgkin-Huxley model.

Inspired by the above normal form, we propose in Section 6.4 a novel reduced hybrid neuron
model. Similarly to the Izhikevich model, its parameters can be chosen to reproduce qual-
itatively the spiking pattern of DA neurons. As opposed to the Izhikevich model, however,
the proposed model exhibits the same robustness properties of DA neurons. At the light of
the analysis developed in the rest of the chapter, we illustrate how this difference is closely
related to the different bifurcations of the fast voltage dynamics in the two models: fold, for
the Izhikievich model, and transcritical, for the proposed model.

As a conclusion to this analysis, we propose the novel reduced model as a suitable choice
for the mathematical analysis of calcium-gated neurons and, in particular, for the study of



the response of the latter to exogenous inputs. As discussed in Section 1.6.1, apart from
neuronal synchronization analysis and control, the potentiality of the proposed hybrid modeling
of neurons involved in PD/DBS could also be relevant for the DBS computational model-based
approach (Schiff, 2010).

6.1 A short survey on the ionic basis of spiking

We start with a brief recall of the ionic mechanism underlying neurons electrical activity that
will be useful in the sequel.

6.1.1 Electrical properties of the neuron membrane

Neurons, as living cells, have a membrane that separates them from the outside world (Trevors
and Saier Jr, 2011, Second Law of Biology). The electrical activity of neurons is due to a
potential difference between the interior and the exterior of the cell and to currents across
its membrane. In the following, we briefly describe this mechanism. All the information
reported here, and many more details, can be found elsewhere. For an electro-physiological
perspective, see in (Hille, 1984, Chapters 1-5), and references therein. For an elementary
dynamical perspective, see (Izhikevich, 2007, Chapters 5-9), and references therein. For a
more advanced mathematical discussion, see (Ermentrout and Terman, 2010, Chapters 1-7),
and references therein.

The neuron membrane is endowed with ionic channels that transport different ions, mainly
sodium Na™, potassium K+, and calcium Ca?* ions. The flow of these ions through the neuron
membrane generates a net current l;ons, and the difference in ions concentration between the
intracellular and extracellular mediums a net membrane voltage Vi,.

The neuron membrane plays itself an electrical role. Via its lipid bilayer, it acts as an insulator
between two charged mediums (the interior and the exterior), that is it acts as a capacitance
Cin- The rate of change of V,,, under a current [;,,s is thus given by
dv,
Cm d];m = Lions- (61)
Since it is also a conductive medium, the neuron membrane must also satisfy Ohm’s law. Let
I be an externally applied current. If g is the membrane conductance, then it holds that

I+ Iipns + gV = 0. (6.2)
By plugging (6.2) into (6.1), we get
de
Cn——=—9Vm +1

that is the membrane voltage dynamics can be described by a RC-circuit. As such, a neuron
would not even be able to autonomously generate an oscillatory electrical activity. The complex
behavior exhibited by real neurons relies on a number of important properties that we have
hidden until now, and that we present in what follows.



6.1.2 Ionic dynamics in the neuron membrane

Due to chemical kinetics, each ion crossing the neuron membrane possesses a different equilib-
rium Nernst? potential. Ions with a negative Nernst potential (like K1) tend to flow outside the
cell generating negative (outward) currents. Conversely, ions with a positive Nernst potential
(Na™ and, even more, Ca?") tend to generate positive (inward) currents.

The membrane conductance is also ion-dependent, meaning that its permeability, through
selective ionic channels, depends on the ion type. Moreover, the different conductances are not
static, but they change dynamically and nonlinearly following voltage changes.

More precisely, each selective ionic channel is endowed with voltage-sensitive gates. There
are two types of gates: activation gates, and inactivation gates. Activation gates open (acti-
vate) ionic channels, and, conversely, inactivation gates close (inactivate) ionic channels. Tonic
channels can exhibit activation, inactivation, or both types of gates. The probability that a
sodium activation gate is in the open state is usually denoted by m, while the probability
that a sodium inactivation gate is not closed by h. Similarly, we use n and d for potassium
and calcium activation gates®. As a representative example, in the Hodgkin-Huxley model
(Hodgkin and Huxley, 1952) the membrane conductances gy, and gx with respect to sodium
and potassium ions are given by

INa = GNam>h, g = grnt, (6.3)

where gng, g > 0 are the maximal conductances and are proportional to the number of ionic
channels of the given ion type. The exponent on each gating variable is the number of gates
of that type for each channel. So, for instance, when all the potassium activation gates are
open, then n = 1 and the potassium conductance is maximal. Similarly, if the 20% of the
sodium activation gates are open, and the 60% of the inactivation gates are not closed, then
INe = GNa0.230.6 = 0.048gn, -

The different gates evolve dynamically following voltage changes and the rapidity with which
they react is ion-dependent. In particular, the Na™ activation gate m is much faster to react
than its inactivation h, and both Kt and Ca?T activation gates n and d. Conversely, h, n,
and d, evolve on a similar time-scale.

The co-operation of all these properties transform the first order linear RC-circuit (6.1.1)
in a higher order nonlinear RC-circuit with voltage dependent conductances and timescale
separations. The first conductance-based model able to capture all these important properties
of neuron dynamics is the aforementioned Hodgkin-Huxley model (Hodgkin and Huxley, 1952),
whose equivalent circuit is depicted in Figure 6.2. As an emblematic choice, we pick the
Hodgkin-Huxley model for all the forthcoming analysis.

6.2 Reduction of a calcium-gated Hodgkin-Huxley models

Consider the Hodgkin-Huxley model (Hodgkin and Huxley, 1952) provided with an extra non-
inactivating calcium current Io, = —gcad®(V — Vo), where gog is the maximum calcium
conductance, Vg, is the calcium Nernst potential, and a is the number of activation gates per
calcium channel. Since they evolve on a similar time-scale, we assume for simplicity that the
behavior of the calcium activation gating variable d can be well approximated as a function

2The Nerst potential Vx of an ion X is the voltage of a permeable membrane separating two mediums
containing X for which kinetic equilibrium is achieved. It depends on the difference in ion concentration
between the two mediums. More precisely, Vx  log % (Hille, 1984, Chapters 1).

out

3In the following we only consider potassium and calcium channels that do not inactivate.
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FIGURE 6.2: Electrical circuit equivalent to the Hodgkin-Huxley model. ), denotes the

neuron membrane capacitance. Vy, and Vi are, respectively, the sodium and potassium

Nernst potential. The nonlinear conductances gy, and gx are given by (6.3). Ic = C,,,dV/dt

is the current at membrane capacitance. Iy, and [x are the ionic currents generated by,

respectively, sodium and potassium ions. The leak current I; approximates passive properties
of the cell. Adapted from (Skinner, 2006), with permission.

f(n) of the potassium activation gating variable n, for some function f : [0,1] — [0,1]. The
obtained model reads

V=1-gxn'(V Vi) = gnam’W(V = Vo) = a(V = V) = Geaf (M) (V = Vea) + Tpump
n=ay,(V)(1—-n)—5,(V)n

m = an(V)(1—=m)— Bn(V)m

h=ap(V)(1=h) = Bu(V)h, (6.4)

where the extra DC-current I, accounts for the effects of outward calcium pumps currents
(Hille, 1984, Chapters 4). For the Hodgkin-Huxley part, we use the parameters of the original
paper (Hodgkin and Huxley, 1952). As a simple choice, we pick in our analysis f(n) := n,
and a := 3, corresponding to calcium activation gates with the same kinetics of potassium
activation gates and three activation gates per channel. In the following, we let the state “Icq-
off” correspond to gcq = Ipump = 0, and the state “Icq-on” to goq = 2.7 and Ipymp = —19.
Such parameters do not reflect any precise physiological calcium current. We choose them as a
simple prototypical example. Figure 6.3 depicts the spiking behavior in the two configurations.

Compared to the original Hodgkin-Huxley model (see Figure 6.3a), the presence of the calcium
current (see Figure 6.3b) is characterized by three hallmarks: A) spike latency (the burst
initiates with a delay with respect to the onset of the stimulation); B) plateau oscillations
(spike train oscillations are generated at higher voltage than the hyperpolarized state); C)
after-depolarization potential, or ADP, (the burst terminates with a small depolarization).
Such behavior is typical for neurons with sufficiently strong calcium currents. See for instance:
spike latency (Rekling and Feldman, 1997; Molineux et al., 2005), plateau oscillations (Beurrier
et al., 1999), ADPs (Azouz et al., 1996; Chen and Yaari, 2008). See Sections 1.4.2. In the
following we analyze and explain the origin of this behavior mathematically, relying on reduced
models.
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FIGURE 6.4: Exogenous bursting in the reduced Hodgkin-Huxley model with and without
calcium current.

6.2.1 Planar reduction

The original Hodgkin-Huxley model can be reduced in a standard way to a two dimensional
system by: i) assuming an instantaneous sodium activation, m = meso(V'), where mqo (V) =
am(V)/(am (V) + Bm(V)); ii) exploiting the approximate linear relation, originally proposed
in (FitzHugh, 1961), h + sn = ¢, with s,c ~ 1. Applying the same reduction to (6.4) with
parameters as above we obtain the planar system

V =T1—ggn*(V = Vi) — Gnames(V)3(0.89 — 1.1n)(V — Va) — qi(V — W)
_gCang(V - VCa) + Ipump
= an(V)(1—n) = Ba(V)n (6.5)

exhibiting the same qualitative behavior as the full model, as depicted in Figure 6.4.



6.2.2 Phase portrait analysis

The beauty of planar reductions is that they permit to understand complex phenomena through
phase-portrait analysis. In what follows, we define the “nullcline” associated to a variable x,
with z = V,n, as the set {(V,n) € R?: & = 0}.

Figure 6.5 (left) depicts the phase-portrait of the reduced Hodgkin-Huxley model. This phase
portrait and the associated reduced dynamics are well studied in the literature. See (FitzHugh,
1961) for FitzHugh paper, and (Ermentrout and Terman, 2010, Section 3.6) and (Izhikevich,
2007, Section 5.2) for a recent discussion and more references. We recall them for comparison
purposes only. The resting state is a stable focus, lying near the minimum of the V-nullcline,
which exhibits the familiar N-shape. When the stimulation is turned on, this fixed point
loses stability in a subcritical Andronov-Hopf bifurcation, as discussed in Section 6.2.3 through
bifurcation analysis, and the trajectory rapidly converges to the periodic spiking limit cycle
attractor. As the stimulation is turned off, the resting state becomes again globally stable, and
the burst terminates with small subthreshold oscillations (cf. Figure 6.4 (a)).

In the presence of the calcium current the phase-portrait changes drastically, as in Figure
6.5 (right). In the “stimulation off” configuration, the resting state is a stable node lying on
the far left of the phase-plane. The V-nullcline exhibits an original “hourglass” shape. Its
left branch is stable and guides the relaxation toward the resting state after a spike has been
generated. In this phase 1% changes sign from positive to negative approximately at the funnel
of the hourglass, corresponding to the ADP apex. The right branch is unstable and its two
intersections with the n-nullcline are a saddle and an unstable focus. When the stimulation
is turned on, the V-nullcline breaks up in two branches. The upper one exhibits the familiar
N-shape and contains an unstable focus surrounded by a stable limit cycle. Around this branch
the dynamics is basically equivalent to that of the original Hodgkin-Huxley model. Note that
a comparison between Figure 6.5 (b) and (d) of the position of, respectively, the resting state
and the spiking limit cycle explains the presence of plateau oscillations. The lower branch of
the V-nullcline lies now below the m-nullcline, and no more fixed points are present in this
region. While converging toward the spiking limit cycle attractor, the trajectory, originally at
rest, travels in the small region between the two nullclines where the vector field is small. As a
consequence, the first spike is fired with a latency with respect to the onset of the stimulation,
as observed in Figures 6.3 and 6.4 in the presence of the calcium current.

6.2.3 Bifurcation analysis

We can shed more light on the transition mechanism between the stimulation-on and off con-
figurations by computing the bifurcation diagram of (6.5) with I as the bifurcation parameter,
as depicted in Figure 6.6. We use XPPAUT (Ermentrout, 2002, 2004) for this numerical anal-
ysis. In both the Io4-on and off configurations we draw the bifurcation diagram only for small
I, corresponding to the hyperpolarized-spike transition. In both cases the stable limit cycle
disappears for higher values of I in a supercritical Andronov-Hopf bifurcation, which leads to
a stable depolarized, i.e. high-voltage, state.

Figure 6.6 (left) illustrates the bifurcation diagram of the original Hodgkin-Huxley model. As
anticipated, for I < I4y the unique fixed point is a stable focus that loses stability at [ = [4y
in a subcritical Andronov-Hopf bifurcation. At this bifurcation the trajectory converges to
the stable spiking limit cycle. When I is lowered again below Ignrc, the spiking limit cycle
disappears in a saddle-node of limit cycles, the unstable one (not drawn) being born from the
subcritical Andronov-Hopf bifurcation, and the trajectory relaxes back to rest.
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FIGURE 6.5: Phase portraits of the reduce Hodgkin-Huxley model with and without calcium

current. The V-nullcline is drawn as a solid thin line, the n-nullcline as a dashed thin line.

Trajectories are drawn as solid oriented lines. Black circles denote stable focus, black squares
stable nodes, white circles unstable focus, and white square saddle points.

Figure 6.6 (right) illustrates the bifurcation diagram of the calcium-gated Hodgkin-Huxely
model. For I < Igy there are a stable node (lower branch), a saddle (central branch), and
an unstable focus (upper branch), like in Figure 6.5 (b). The node and the saddle coalesce in
a supercritical fold bifurcation at I = Igy, and disappear for I > Igy letting the trajectory
converge toward the stable limit cycle. The spike latency observed in the I¢,-on configuration
unmasks the ghost of this bifurcation, when we expect the lower branch of V-nullcline in Figure
6.5 (d) be tangent to the n-nullcline, as depicted in Figure 6.7. The stable limit cycle disappears
in a saddle homoclinic bifurcation as I diminishes below Igfr, which lets the trajectory relax
back to the hyperpolarized state. Note that this bifurcation diagram is qualitatively identical
to that of the detailed computational model of dopaminergic neuron derived in (Drion et al.,
2011a).

In the next section we provide further mathematical details about the mechanism underlying
the homoclinic bifurcation exhibited by the calcium-gated Hodgkin-Huxley model.



120 T T T T T T T 120

- - T r T - -
V -
100 max | 100k \V\
max
80f 7 8or
60 1 g0
40( 1 q0r
-~ ~
20+ B 20 SRRl v
______________ sub.SN STl min
or sub.AH Vinin or S
sup.SN
_20} ] 20|
—40 -40

(a) Icq off (b) Icq on

FIGURE 6.6: One parameter bifurcation diagram of the reduced Hodgkin-Huxley model with

and without calcium current. Thin solid lines represents stable fixed points, while dashed

lines unstable fixed points or saddle points. The thick lines labeled V,,,;, and V,,,., represent,

respectively, the minimum and the maximum voltage of limit cycles. (a): Hodgkin-Huxley

model. (b): calcium-gated Hodgkin-Huxley model. I, with «+ = SNLC, AH,SH,SN, de-
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the text for more details.

FIGURE 6.7: Saddle-node in the reduced Hodgkin-Huxley model with calcium current for
I ~ Ign. The gray thick trajectory depict the stable manifold of the saddle-node.

6.3 Calcium gated transcritical and saddle-homoclinic bifurca-
tion

As highlighted in Figure 6.5, the sharp time scale separation

dv S dn‘
dt dt
between V and n lets the trajectory spend most of the time near the attractive branches of the

V-nullcline. The shape of this set is thus crucial in determining the behavior of the associated
dynamics.

In this section, we first provide a qualitative description of the shape of the V-nullcline. We do
this based on the existence of an algebraic bifurcation in the defining equation that is associated



to a transcritical bifurcation of the fast V-dynamics. We then exploit this analysis to derive
rigorously the mechanisms underlying the homoclinic bifurcation discussed in Section 6.2.3.

6.3.1 Transcritical bifurcation of the fast dynamics

A graphical comparison of Figure 6.8 (a) and (b) suggests that, by the differentiability of V
with respect to I and the implicit function theorem (Lee, 2006), there must exist a critical
value I, € (2.4,2.46) of the input current for which the V-nullcline has a self-intersection.
Let fy(V,n,I) be the voltage dynamics of the reduced model (6.5) in the presence of calcium
currents, that is

fv(Vin,I) =V (6.6)

‘I(;a—on

where V is defined in (6.5) and all the other parameters are unchanged. We claim that there
exists (Vie, n4e) € R2, such that

fV(%C? Titc, Itc) =0 (67&)
0
%(%c: Nte, Itc) =0 (67b)
0
%(Vim TN, Itc) =0 (6 7C)
0? 02
T‘Q(Vtc,nt&fm) %(%Cvntmltc)
anV a2fv <0 (67d)
m(‘/}c;ntaltc) W(‘/tmntc;jtc)
& fv
ov? (Vies e, Ite) # 0, (6.7e)

describing a non-degenerate (transversal) self-intersection (Seydel, 2010, Section 5.5.2, Th. 5.7)
of the V-nullcline at (Vi., nsc), and satisfying the additional condition that both intersecting
branches are not parallel to the V' axis, as implied by Condition (6.7e). Condition (6.7a) is
the V-nullcline equation. Noticing that % and % do not depend on I, conditions (6.7b)
and (6.7c) follows by the fact that, as I < I, varies, as in Figure 6.8(a), the right and left
extrema of, respectively, the left and right branches of the V-nullcline lie, by definition, on
the line 88{;/ = 0, and, similarly, as I > I, varies, as in Figure 6.8(b), the minimum and the
maximum of, respectively, the upper and lower branches of the V-nullcline lie, by definition,
on the line %Ji}’ = 0. Since at the intersection the four extrema coincide, conditions (6.7b) and
(6.7c) follow. We stress that (6.7b) and (6.7c) define the point (Vic, ns) in a unique way as the
intersection of two planar lines (cf. Figure 6.8 (a)). Conditions (6.7d) and (6.7e) are generic
and can be easily verified numerically.

In the singular limit n = 0, the self intersection described by conditions (6.7) corresponds to
a transcritical bifurcation (Strogatz, 2001) of the voltage dynamics, with n as the bifurcation
parameter. That is, as sketched in Figure 6.9, for I = I, the two intersecting branches
exchange their stability at n = ns. More precisely, the two branches lying in the region on
the left of the line 2% = 0 are stable, since there 2% < 0. Conversely, the two branches on

v v
the right of the line g—g = 0 are unstable. This bifurcation is absent in the reduced Hodgkin-

Huxley equation without calcium current and constitutes the mathematical signature of the
new reduced model.
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FIGURE 6.8: Phase portrait in the Io4-on configuration for different values of the input

current. The V-nullcline is drawn as a solid thin line, the n-nullcline as a dashed thin line.

W, denotes the stable manifold of the saddle point, and W, its unstable manifold. L denotes
a saddle-homoclinic trajectory.

FIGURE 6.9: Sketch of the voltage dynamics of (6.5) for I = I;. near the V-nullcline self-
intersection in the singular limit n = 0. Thick lines are stable fixed points, dashed lines
unstable. The dotted line is the locus g% = 0. Arrows delineate the sign of V in the
different regions. The intersection point is a degenerate singular point of the voltage dynamics,

corresponding to a transcritical bifurcation.



6.3.2 A normal form lemma

In this technical section we compute a normal form of (6.5) associated to conditions (6.7).
Let
eg(V,n) :=n, (6.8)
where 7 is defined in (6.5), and
go ‘= g(‘/tth ntc)a (69)

where Vi, and ny. satisfy the defining conditions (6.7b)-(6.7b). The form (6.8) is a rescaling
of the recovery variable dynamics to highlight the timescale separation between V' and n. The
following lemma is an application of (Krupa and Szmolyan, 2001b, Lemma 2.1) to the reduced
calcium-gated Hodgkin-Huxley model.

Lemma 6.1. Suppose that go < 0. Then there exists an affine change of coordinates and a
rescaling of € and I that transform the dynamical system

V= fy(V,n,I) (6.10a)
n=eg(V,n), (6.10b)

where fy and g are respectively defined in (6.6) and (6.8), into the following normal form

b =02 —w? + 1+ hi(v,w,e) (6.11a)
w = €(—1+ ha(v,w,e)), (6.11b)

where hi(v,w,€) = O(v3, v2w, vw?, w3, ev, ew, €2) and ha(v,w, €) = O(v,w, €).

2 2 2
Proof Let a := %%‘;‘Q/ (‘/tC»ntCaItC)v B = %%(chntcahc)y Vo= %887{;/ (V;tantcyltc)a and
A= — . From (6.7) and (Krupa and Szmolyan, 2001b, Lemma 2.1), it follows that, for

VB2 —ya
I = I, the affine change of variable v = a(V — Vi) + B(n — nge), w = /B2 — ya(n — ng),
transforms (6.10), after a suitable rescaling of €, into the equation

b = v* —w? 4+ Xe + hy (v, w, €)
W = €(—=14 ha(v,w,€)).

Noticing that fy is affine in the input current, in the case I # I, the extra term a(l —Ii.) must
be added to ©. The result follows by defining the rescaled input current I := Xe + (I — I;.).
O

For the dynamical system (6.11) with I = 0 the self intersection of the V-nullcline discussed
in Section 6.3.1 becomes evident, with the two intersecting branches given by w = +vv2.

6.3.3 Singularly perturbed saddle-homoclinic bifurcation

Figures 6.8 (b),(c),(d) provide a graphical evidence of the calcium-gated homoclinic bifurcation
highlighted in Section 6.2.3 through numerical bifurcation analysis. In order to prove the
existence of this bifurcation rigorously, we rely on the normal form introduced in Lemma 6.1 and

exploit the timescale separation between v and w through geometrical singular perturbations
theory (GSPT).

Let us briefly recall some basic of GSPT. The interested reader will find in (Jones, 1995)
an excellent introduction to the topic, and in (Krupa and Szmolyan, 2001c,b,a) some recent
extensions on which we rely for the forthcoming analysis.



FIGURE 6.10: Phase-portrait of (6.11) for different values of € and I. (a): fast-slow dynamics
of (6.11) for e = I = 0. (b): Continuation of the slow attractive S¢ and repelling S¢ manifolds
for e > 0 and I > I.(y/€), where I.(y/€) is defined as in Theorem 6.2. (c): Continuation of S
and S¢ for € > 0 and I = I.(y/€). (d): Continuation of S¢ and S¢ for € > 0 and I < I.(\/e).

The time rescaling ¢ := er transforms (6.11) into the equivalent system

€0 = v* —w? + I+ hi(v,w,e€) (6.12a)
W= (—1+ ha(v,w,e€)), (6.12b)

which describes the dynamics (6.5) in the slow timescale 7. In the limit € = 0, commonly
referred to as the singular limit, one obtains from (6.11) and (6.12) the two new dynamical
systems

0=1v—w? + 1+ hi(v,w,e) (6.13a)
W= (=14 ha(v,w,e¢)), (6.13b)

called the reduced problem and evolving on the slow timescale 7, and

=02 —w? + T+ hi(v,w,e) (6.14a)
W =0, (6.14b)

called the layer problem and evolving on the fast timescale t. Figure 6.10 (a) depicts the
fast-slow dynamics associated to (6.13)-(6.14). The main idea behind GSPT is to combine
the analysis of the reduced and layer problems to derive conclusion on the behavior of the
associated non-singular system, i.e. with € > 0.

The reduced problem (6.13) is a dynamical system on the set Sy := {(v,w) € R? : v? —
w? + I + hi(v,w,e) = 0}, usually called the critical manifold. The points in Sy are indeed



critical points of the layer problem (6.14). More precisely, portions of Sy on which % is non-
vanishing are normally hyperbolic invariant manifolds of equilibria of the layer problem, whose
stability is determined by the sign of %. Conversely, points in Sy where % = 0 constitute
degenerate equilibria. In particular, the layer problem (6.14) exhibits, for I = 0, two degenerate
fixed points. As depicted in Figure 6.10 (a), they are given by the self-intersection of the V-
nullcline, corresponding to a transcritical singularity, and and by the fold singularity at the

right knee of the upper branch of the V-nullcline.

The basic result of GSPT, firstly derived by Fennichel (Fenichel, 1979), is that, for e sufficiently
small, non-degenerate portions of Sy persist as nearby normally hyperbolic locally invariant
manifolds Se of (6.10). More precisely, the slow manifold S, lies in a neighborhood of Sy of
radius O(e). The dynamics on S, is a small perturbation of the reduced problem (6.13). We
point out that S. may not be unique, but is determined only up to O(e/<), for some ¢ > 0.
That is, two different choices of S, are exponentially close (in €) one to the other. Since the
presented results are independent of the particular S, considered, we let this choice be arbitrary.
The trajectories of the layer problems perturb to a stable and an unstable invariant foliations
with basis Se.

The analysis near degenerates point is more delicate. Only recently some works have treated
this problem for different types of degenerate singularities (Krupa and Szmolyan, 2001c,b,a).
Figure 6.10 (b),(c),(d) sketch the extension of the slow manifold Se after the fold point, and
the three possible way in which S¢ can continue after the trascritical singularity, depending on
the injected current.

The result depicted in Figure 6.10 relies on the following theorem, adapted from (Krupa and
Szmolyan, 2001b).

Let A := {(v,w) € R?: v_ <wv < wy, w=p}, be the section depicted in Figure 6.10, where
p < 0 and |p| is sufficiently small, and v_, v, are such that AN ST # 0. For a given € > 0, let
Qo :=ANS; and g, := AN S be the intersections, whenever they exist, of respectively the
locally attractive and locally repelling invariant submanifolds S and St with the section A.
The following theorem reformulates in a compact way the discussion contained in Remark 2.2
and Section 3 of (Krupa and Szmolyan, 2001b)* for systems with inputs of the form (6.11).

Theorem 6.2 (Krupa and Szmolyan (2001b)). Consider the system (6.11). Then there exists
€0 > 0 and a smooth function 1.(\/€), defined on [0, ey] and satisfying I.(0) = 0, such that, for
all € € (0, €], the following assertions hold

1. Ga,e = qrye if and only if I = Ic(\/g)

2. there exists an open interval A 5 I.(\/€), such that, for all T € A, it holds that ANSS # 0,

ANSE#0, and
0

ﬁ (Qa,e - QT,E) > 0.

Figure 6.10 illustrates this result.

Remark 6.3. The function I.(1/e) is related to the function A.(y/€) defined in (Krupa and
Szmolyan, 2001b, Remark 2.2) by I.(y/€) := eA.(y/€). Similarly, for ¢ > 0, the parameter I
appearing in Theorem 6.2 is just the re-scaling I = e\ of the parameter \ appearing in (Krupa
and Szmolyan, 2001b, Remark 2.2 and Sections 3).

Theorem 6.2 can readily be applied to prove the existence of a saddle-homoclinic bifurcation for
the dynamics (6.11). By Lemma 6.1, the same result then holds for the reduced calcium-gated
Hodgkin-Huxley model (6.5).

4The author is thankful to Prof. Szmolyan for his useful comments in this regard.



Firstly, note that, as depicted in Figure 6.10, the slow repelling one-dimensional manifold S¢
coincides with the stable manifold of the saddle point W. To see this, assume that the saddle
point belongs to S:. Then for all initial condition in S¢ the trajectory converges to the saddle
point, that is S¢ C W;. Since from the stable manifold theorem (Guckenheimer and Holmes,
2002, Theorem 1.3.2) Wy is also a one dimensional submanifold, W, = St. It remains to show
that the saddle point belongs to Sy. Suppose the converse is true. Then for € > 0, the slow
manifold S passes in a neighborhood U of the saddle of radius O(e) and is roughly parallel to
the repelling branch of the critical manifold Sy. Pick e sufficiently small in such a way that: i)
no other critical points but the saddle lie in U; ii) the unstable invariant foliation, and thus the
unstable manifold of the saddle W,,, are approximately horizontal in U. Under these conditions
St and W, must intersect somewhere in U. Since this intersection is an invariant point, it is a
fixed point, which contradicts the fact that no other fixed points but the saddle lie in U.

We also claim that S§ can be chosen in such a way that S5 = W,,, as depicted in Figure 6.10.
Consider the branch of W, leaving on the left of the saddle. For e sufficiently small, this
branch follows the unstable invariant foliation toward the right attractive branch of the critical
manifold. There, from standard GSPT arguments, it slides up toward the fold point at the right
knee. From (Krupa and Szmolyan, 2001a, Theorem 2.1), it follows that W, continues after the
fold point, approximately following the associated critical fiber®, and arrives in the vicinity of
the left attractive branch of the critical manifold. Again, by standard GSPT arguments, W,
continues there as a perturbation S of Sy, which proves the claim.

At the light of this analysis the existence of the homoclinic bifurcation is a direct corollary
of Theorem 6.2. For I > I.(y/€), the unstable manifold of the saddle W,, continues after the
transcritical singularity on the right of Wy, and spirals toward an exponentially stable limit
cycle, whose existence can be proved with similar GSPT arguments (see for instance (Krupa
and Szmolyan, 2001c)). This situation is the one depicted in Figure 6.8 (d) and Figure 6.10
(b). As I tends to I.(y/€), W, tends to Ws. At I = I.(y/€), W, extends after the transcritical
point to Wy, forming the saddle-homoclinic trajectory, as depicted in Figure 6.8 (c) and Figure
6.10 (c). For I < I.(y/€), the unstable manifold W, continues after the transcritical singularity
on the left of Wy, toward the stable node. See Figure 6.8 (a) and (b) and Figure 6.10 (d).

6.4 A new reduced hybrid model of calcium-gated neuronal dy-
namics

Inspired by the normal form (6.11) computed in Lemma 6.1, and in the same spirit of the
Izhikevich reduction of neuronal dynamics to simple hybrid models (Izhikevich, 2010), we
consider the following hybrid dynamical system as a simple representation of the calcium-gated
Hodgkin-Huxley model

b= —w? + 1T if v > vy, then (6.15a)
W = e(av —w + wy) V¢, ud, (6.15b)

where a,c,d, wg, I,vy, € R are parameters. Hybrid neuronal models are intended to capture
the neuron subthreshold dynamics, in particular the bifurcation mechanism involved in the
resting-spiking transition. The spike generation mechanism is accounted for by the hybrid
reset mechanism: when v reaches a high threshold vy, both v and w are reseted to fixed
values ¢ and d respectively. This reset mechanism has essentially the same role of the return

The critical fiber is defined as the trajectory of the layer problem passing by the fold point, cf. Figure 6.10
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FIGURE 6.11: Simple model (6.15) with a = 0.6,¢ = 2,d = 35,wy = —15,v, = 120.

exhibiting the same qualitative behavior of the calcium-gated Hodgkin-Huxley model. The
legend for the phase-portrait is the same as Figure 6.5.

mechanism provided by the left attractive branch of the V-nullcline in the full model, as
depicted in Figures 6.5 and 6.10, and discussed in Section 6.3.3 in terms of GSPT.

As illustrated by Figure 6.11, the hybrid dynamics (6.15) captures the qualitative properties of
the subthreshold dynamics in the reduced calcium-gated Hodgkin-Huxley model (Cf. Figure
6.5). As discussed in the Sections 6.2.2 and 6.3, due to the time scale separation between v
and w, the shape of the v-nullcline plays a major role in generating the observed behavior.
That is why we do not expect other hybrid neuron models with a concave v-nullcline, like the
aforementioned Izhikevich model, to exhibit the same characteristics.

6.4.1 Hybrid singularly perturbed saddle-homoclinic bifurcation

The saddle-homoclinic bifurcation analysis provided in Section 6.3.3 for the reduced calcium-
gated Hodgkin-Huxley model naturally extends to the hybrid dynamics (6.15). By construction
indeed, if wg < 0, this model can be transformed in the normal form (6.11) derived in Lemma
6.1, and Theorem 6.2 applies directly.

Similarly to the derivation in Section 6.3.3, we can associate to (6.15) two new dynamical
systems describing its singular dynamics, é.e. with ¢ = 0, in the fast timescale ¢ and in the
slow timescale 7 := t/e, respectively. More precisely, the dynamics

0=v>—w?+1 if v > vy, then (6.16a)

W= av —w + wy v4—c, u<d, (6.16b)
and

v=0v—w?+1 if v > vy, then (6.17a)

w=0 V¢, u<+d, (6.17b)

define, respectively, the hybrid reduced problem and hybrid layer problem associated to (6.15).
Figure 6.12 (a) depicts the associated slow-fast hybrid dynamics for parameters as in Figure
6.11.

The analysis of the non-singular limit follows the same line of the analysis developed in Section
6.3.3 for the continuous time case. The only difference is that the return mechanism provided by
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FIGURE 6.12: Phase-portrait of the hybrid dynamics (6.15) for different values of ¢ and I.
(a): Fast-slow dynamics for ¢ = I = 0. (b): Continuation of the slow manifolds for ¢ > 0
and I > I.(y/€), where I.(y/€) is defined as in Theorem 6.2. (c): Continuation of the slow
manifolds for € > 0 and I = I.(y/€). (d): Continuation of the slow manifolds for e > 0 and

I < I.(Ve).

the right attractive branch of the critical manifold Sy is replaced by the hybrid reset mechanism.
The result is summarized in Figure 6.12 (b),(c),(d). The slow attractive manifold S is chosen
as the continuation of the trajectory starting at the reset point. In this way it also coincides
with the image of the unstable manifold of the saddle W, through the hybrid reset mechanism.
As in the continuous time case, the stable manifold of the saddle Wy can be shown to coincide
with the slow repelling manifold St. Let I.(1/€) be defined as in Theorem 6.2. For I > I.(1/e),
the unstable manifold W, is brought by the rest mechanism on the right of W, and directly into
the hybrid limit cycle attractor, as in Figure 6.12 (b). At I = I.(1/€) the hybrid reset connects
W, and Wy, corresponding to a hybrid homoclinic bifurcation. The associated phase-portrait
is shown in Figure 6.12 (c). Finally for I < I.(y/€), the unstable manifold W, is brought back
on the left of Wy, and the resting state becomes globally stable.

We stress that the existence of the hybrid homoclinic bifurcation in (6.15) is independent of
the reset point (¢, d), provided that the trajectory starting from it is attracted toward the left
upper branch of the critical manifold, as in Figure 6.12. As discussed in Section 6.3.3, under
this condition two different choices of the reset point are associated to two slow manifolds
that are O(e“/€) near, for some ¢ > 0. By the result in Theorem 6.2, the two values of the
critical current 1. for which the slow attractive manifold extends to the slow repelling manifold
are again O(e®¢) near. This also ensures that the value for which the hybrid homoclinic
bifurcation happens is independent of the reset point, modulo variations that are O(ec/ ). The
same robustness properties do not hold for other hybrid models with a concave v-nullclines.
There, the existence and the critical value of a hybrid homoclinic bifurcation heavily relies on
the reset point. The main reason for this is the lack in these models of an attractive singular
connection between the stable and the unstable manifold of the saddle, as in Figure 6.12 (a),
that can persist in the non-singular limit.



6.4.2 Hybrid modeling of calcium gated neurons

For quantitative modeling purposes we can modify (6.15) to obtain the equivalent dynamics

b =0+ bow—w?+ 1 if v > vy, then (6.18a)
w = e(av —w + wo) Ve, u+d. (6.18b)

The extra parameter b € R changes the inclination of the v-nullcline branches, similarly to the
reduced Hodgkin-Huxley model in Figure 6.5, and permits to fit with more fidelity the behavior
of (6.18) to that of more detailed models. In this section we illustrate this possibility by
reproducing the behavior of the dopaminergic neuron model developed in (Drion et al., 2011a),
and which also constitutes, as discussed in Section 1.6, the main experimental motivation for
the analysis developed in this chapter. We compare the observed behavior with that of the
original Izhikevich model (Izhikevich, 2010), and explain the observed phenomena through the
analysis developed in Section 6.4.1.

More precisely, we focus on the generation of robust ADPs. By robust we mean that the
model behavior is only slightly perturbed in biologically meaningful conditions, i.e. in the
presence of small disturbances and parameters uncertainties and variability. Figure 6.13(top)
depicts the robust pacemaking activity and ADPs generation in the detailed computational
model of dopaminergic neurons (Drion et al., 2011a). A small amplitude DC current step or
an alternating current of the same amplitude only slightly change the pacemaking rhythm and
the ADP shape.

In order to generate a similar pacemaking activity in both the reduced model (6.18), and in the
Izhikevich model, we provide them with a slower adaptation variable z modeling the variation
of the intracellular calcium concentration. The adaptation variable variable z follows the linear
dynamics

Z=—€,2, if v > vy, then 2z < 2 +d,. (6.19)

The term —z, accounting for outward calcium pumps currents, is added to the v dynamics of
both the reduced models (6.18) and Izhikevich model. The dynamics equations and parameters
used for the Izhikevich model can be found in Appendix A on page 154.

Figures 6.13 and 6.14 provides a comparison of the nominal and perturbed pacemaking, and
of the ADPs generation mechanism in the two reduced hybrid models.

As already described in Section 6.2.2 for the calcium-gated Hodgkin-Huxley model and in Fig-
ure 6.11 for the reduced model (6.15), the voltage reaches the ADP apex approximately at the
hourglass funnel of the voltage nullcline. As illustrated in Figure 6.14, the mathematical anal-
ysis in Section 6.4.1 highlights the presence in that region of an attractive normally hyperbolic
manifold S. This manifold attracts the trajectories and steers them through the ADP apex
and toward the resting point. That is why the ADP height and shape barely depend on the
chosen reset point. At the same time, the persistence to small perturbations of this invariant
manifold (Hirsch et al., 1977) ensures, as required in biologically meaningful conditions, the
robustness of the pacemaking and ADP generation mechanism to small inputs.

To generate ADPs in the Izhikevich model we follow (Izhikevich, 2007, Section 8.1.4) and we
use the parameters provided in http://www.izhikevich.org/publications/figurel.m (see the end of
the chapter for the used equations and parameters).

In the Izhikevich model, ADPs are generated when trajectories cross the v-nullcline from below.
The unperturbed pacemaking activity of the Izhikevich model is strikingly similar to that of
the complex computational model in Figure 6.13(top). As illustrated in Figure 6.14, the lack
of any attractive structure lets, however, the ADP height and shape heavily rely on the reset
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FIGURE 6.13: Nominal and perturbed pacemaking in (a) the computational model of DA

nuerons (Drion et al., 2011a), (b) the new reduced hybrid model (6.15), and (c¢) the Izhikevich

model (Izhikevich, 2010). The parameter for the novel reduced model (6.15) are: b = —1.5,1 =

100,e = 1,a = 0.25,wy = —5, vy, = 40,¢c = —10,d = 20,¢, = 0.1,d, = 150. Equations and

parameters for the Izhikevich model and the computational model are provided in Appendix
A on page 154.
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FIGURE 6.14: ADPs generation comparison in the proposed and in the Izhikevich hybrid

models. Legend as in Figure 6.5. Parameters for the new reduced model (6.15) as in Figure

6.13, apart that here I = 1. Equations and parameters for the Izhikevich model are provided
at the end of the chapter



point. When a step of DC current is applied the model barely changes the spiking pattern and
ADP shape, indicating that the perturbation intensity is small. Conversely, when a sinusoidal
current of the same amplitude is applied, the pace-making and ADP generation mechanisms
are completely disrupted. Even if small, due to the time-varying input the reset point changes
indeed at each spiking cycle and the lack of a robust attractive structure makes the spiking
behavior non robust to these variations. The proximity of the stable manifold of the saddle
lets even the reset point falls out of the basin of attraction of the stable fixed point, generating
doublets. This behavior does not correspond to the one exhibited by the detailed computational
model and is not satisfactory in biologically meaningful conditions.

In conclusion, even though in the absence of perturbations the Izhikevich model reproduces
with fidelity the spiking pattern of the computational model, its lack of robustness makes it
unsuitable to analyze the neuron response to exogenous inputs. Conversely, the simple model
(6.15) captures the dynamical essence of the pacemaking and ADP generation mechanism of
dopaminergic neurons in the normally hyperbolic invariant manifold structure associated to the
the transcritical bifurcation of its voltage dynamics. That is why we propose (6.15) as a sim-
ple choice to analyze mathematically synchronization and control properties of dopaminergic
neurons, and, more in general, of calcium-gated neurons.

Appendix A - Equations and parameters of Izhikevich and dopamin-
ergic neuron models

Equations and parameters for the Izhikevich model in Figures 6.13 and 6.14

O =0.040" + 50+ 140 —w + I — 2 if v > vy, then
w = a(bv —w) V¢, u+—u+td,
Z = —Q,z z24+ z+d,.

where I = 0 for the phase-portrait analysis and ADPs comparison and I = 5 for the time plots,
and a =1,b=0.2,v4, = 30,c = —60,d = —21,d, = 5,a, = 0.1.

Equations and parameters for the DA neuron model in Figure 6.13

Ky
Ky + [Ca2+]

Kup\ ' _ [Ca®t] \?
_ N VAR 1 ; _ =7 _
gl(v ‘/l) Ca,pump,mazx ( + [C’a2+] ) 9K ,Ca (KD [C’a2+] (V VK)7

CV = —gnam®h(V = Viva) — gxn* (V = Vi) — Gour) dr(V — Vea)

= (Moo(V) —m)/mm(V),
h= (hoo(V) = h)/ma(V),
ﬁ = (noo(V) = n)/m(V),
dr = (dreo(V) = di)/7a, (V),

[Ca2t] = —k1(Ica(r) + Icapump) — k2INa,

where C' = 1073 uF/cm?, Vg, = 50 mV, Vi = =95 mV, V; = —54.3 mV, Vi, = 120 mV,
gna = 0.16 S/em?, g = 0.024 S/em?, g; = 0.3107% S/em?, Goor) = 3.11073 S/em?, gi.ca =
51073 S/em?, Icapumpmaz = 0.0156 mA/em?, Ky p = 0.0001 mM, Ky, = 0.00018 mM,
k1 =0.1375 1073, Kp = 0.4 1073 mM, ky = 0.018 10~



Chapter 7

Neuronal synchrony from an
input-output viewpoint!

Motivated by the generalization of the results in Part I to more realistic neuron models, in the
present chapter we extend an input/output approach recently proposed to analyze synchro-
nization in networks of nonlinear operators and apply this result to a network of heterogeneous
Hindmarsh-Rose neurons. We also provide in this way an analytical justification of rather
counter-intuitive and physiologically meaningful synchronization phenomena observed in sim-
ulation.

As already discussed, synchronization in a network of agents can be interpreted as the appear-
ance of a correlated behavior among its constituting dynamical systems. It finds applications
in many physical, engineering, medical, and biological fields. The problem of finding sufficient
conditions under which synchronization can be guaranteed is particularly challenging when the
components of the network are heterogeneous. Nonetheless, such a heterogeneity is common in
many biological applications, in particular in the study of neuronal synchronization. A similar
problem is cast in Chapter 3 for the particular case of periodically spiking neurons, modeled
as a simple complex oscillators.

Recently, a promising method has been developed (Scardovi et al., 2010) to provide explicit
conditions on the agents’ dynamics and on their interconnection topology for a network of
identical systems to synchronize. This approach relies on the input/output properties of the
agents involved, and thus requires little knowledge on the individual dynamics. This feature is
of particular interest for neuronal synchronization, in which parameter and identification are
often hard to achieve in a precise manner. However, that result imposes for the time-being
that all agents composing the network have the same dynamics, which constitutes a restrictive
constraint in view of the typical heterogeneities between neuronal cells. The aim of this chapter
is therefore to extend this method to make it cope some heterogeneity between the agents and
to apply it to a population of heterogeneous Hindmarsh-Rose neuronal models (Hindmarsh and
Rose, 1984).

As discussed in Section 1.6, in networks of neuronal cells, signaling occurs both internally,
through the interaction of the different ionic currents, and externally, through synaptic cou-
pling. Following the framework introduced in (Scardovi et al., 2010), the model we rely on
explicitly takes into account internal and external interconnections by viewing each component
of the network (referred to as a compartment) as an interconnection of subsystems (referred

!The results presented in this chapter were obtained under the supervision of Prof. L. Scardovi at TUM, Mu-
nich, Germany. This work was supported by the European Union Seventh Framework Programme [FP7/2007-
2013] under grant agreement n.257462 HYCON2 Network of excellence.



to as species) represented by nonlinear input-output operators. The input to each operator
includes both the influence of the other species within the same compartment, and a diffusive
coupling term between the same species in different compartments, as well as exogenous dis-
turbances. Similarly to (Scardovi et al., 2010; Arcak and Sontag, 2006; Sontag, 2006b; Arcak
and Sontag, 2008), the dynamical properties of the isolated subsystems as well as the alge-
braic properties of the interconnection are summarized in the so-called dissipativity matrix,
whose diagonal stability implies the robust synchronization of the network. This approach is
similar to classical works on large-scale systems such as (Vidyasagar, 1981; Moylan and Hill,
1978). The robustness property is quantified through Ly gain conditions that can be explicitly
computed for particular interconnection structures.

Recently, other works have approached the study of synchronization in networks of nonlinear
systems. In (Stan and Sepulchre, 2007; Hamadeh et al., 2008; Stan et al., 2007; Oud and
Tyukin, 2004) the authors exploits the incremental passivity of the underlying dynamics. In
(Spong, 1996; Pavlov et al., 2004, 2006; Pham and Slotine, 2007; Lohmiller and Slotine, 1998;
Wang and Slotine, 2004; Steur et al., 2009) the authors use a convergent and contracting
dynamics approach. All these works heavily use a state-space formalism, which requires a
detailed knowledge of the underlying dynamics, as opposed to the purely input-output approach
used in this chapter.

This chapter generalizes the results in (Scardovi et al., 2010) in the following ways: i) the
elements belonging to the same species are not required to be identical, ii) the obtained syn-
chronization conditions are weaker, and iii) the bound on the synchronization error is explicitly
computed, thus paving the way to the study of interconnected systems forced by external inputs
(e.g. control signals).

The chapter is organized as follows. In Section 7.1, we recall the formalism of (Scardovi et al.,
2010) and adapt it to heterogenous compartments. In Section 7.2, the needed input/output
properties are defined and illustrated through some academic examples. The main result is
provided in Section 7.3, and its application to a network of Hindmarsh-Rose neuronal models
is presented in Section 7.4. Proofs are given in Section 7.5.

7.1 Preliminaries and problem statement

The needed notation is recalled in Section Notation at page 25.

The system under analysis is given by the diffusive interconnection of n compartments, each
composed of N subsystems that we refer to as species (Scardovi et al., 2010). The compartments
are structurally identical, in the sense that they contain the same number of species, and that
the internal interconnection is common to all compartments. The heterogeneity comes into
play at the level of the species, i.e. the members of one species in different compartments are
allowed to be different. The class of heterogeneities that we can take into account with the
present approach will be detailed in the following sections.

Each species k € {1,..., N} in the compartment j € {1,...,n} is described through a nonlinear
operator Hy ; : Ly, — L5, and its input-output behavior is given by

Yr,j = Hijvkj, Vk;j € Lae. (7.1)
The inputs are given by
N n
Uk = Whj + > Okiig+ b (ke — Yky), (7.2)

i=1 z=1
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FIGURE 7.1: An illustration of the interconnection structure.

where wy ; models exogenous disturbances, vazl ok,iYi,; models the input-output coupling
among different species in the same compartment j, and >7_, aﬁz(yk’Z — Yk,;) represents the
diffusive coupling between the same species k in different compartments (see Figure 7.1). The

coefficients a¥ ., k=1,...,N,i,j = 1,...,n are non-negative. They represent the interconnec-

Z7j7
tion structure among different compartments. We assume no self-loops, that is aﬁj =0, for all
k=1,...,N and all j = 1,...,n. As highlighted by the species superscript k, the coefficient

k may vary from species to species, allowing for different interconnection topologies between

different species.

The internal interconnection structure is quantified by the N x N matrix

2= (o k=, (7.3)
Moreover, for all € RV, let

E, =% —diag(n1,...,nn). (7.4)

We respectively denote by Yy, := col(yg1,- -, Ykn), Vi := col(V1,. .., Vkn), Wk :=col(wi1, ..., Wkp),

the vectors of outputs, inputs, and exogenous disturbances of the same species k. Given a set of
vectors Zy, k =1,..., N, we indicate the stacked vector by Z := col(Zy,...,Zn), for example
we indicated the stacked vector of outputs by Y := col(Y3,...,Yy) € L5V,

The closed-loop input (7.2) can then be condensed as

N
Ve =Wi+ Y oxiVi— LYk, Vk=1,...,N, (7.5)
i=1
where L = [lf’j]uzl . € R™ "™ is the Laplacian matrix associated to the k-th diffusive
interconnection, defined as
k.= Lag, 0= (7.6)
Ty, i |

The connectivity properties of the diffusive interconnection can be associated to the algebraic



properties of L (Godsil and Royle, 2001). In particular, the algebraic connectivity A can be
extended to the case of directed graphs (Wu, 2005) as

M= min 2T Lz (7.7)

ze1d|zl=1

To analyze the synchronization of the interconnected system (7.1)-(7.2), we compare the out-
puts of the same species in different compartments. The mean output Y € L3} of a species k
is defined as

_ 12
Y ::EZy;w-, k=1,...,N. (7.8)
j=1

By defining the vector of synchronization error

YA = col(Ykt — Yooy Yk — Y i), (7.9)

we have that YkA = 0 if and only if the outputs are synchronized, meaning that y; 1 = yp2 =
... = Ykn. A natural quantity to characterize the degree of synchronization of the species k
over the time window [0,7T], T > 0, is thus given by [|Y;*||7. In the sequel, the same notation
is used to define the vectors VkA and WkA.

7.2 Definitions and first examples

In order to study synchronization properties of the system (7.1)-(7.2) we introduce some oper-
ator properties that will be extensively used in the paper

The next definition characterizes an incremental input-output property that relates output
differences to input differences for operators pairs. It thus constitutes a natural instrument to
study synchronization of input-output operators. This definition is the natural generalization
of (Scardovi et al., 2010, Definition 1) to the case of heterogeneous populations.

Definition 7.1. Giveny € Rand Z C N, a family H of input-output operators H; : L5, — L5,
t € Z, is said to be y-mutual relazed co-coercive if, for all 4, j € Z, there exists 3; ; € R, such
that, for all w;,u; € L3}, and all T' > 0,

Y Hiwi — Hyuj|F < (Hiwi — Hyug) (i = ug))p + Big- (7.10)
The constants 3; ; are called the biases.

Let us illustrate Definition 7.1 through some examples that will be useful for the development
of Section 7.4.

Example 7.1. With the same computation as in (Scardovi et al., 2010, Section V.A), a scalar
dynamical system & = —f(x) + u with arbitrary initial conditions and output y = x can be
shown to define mutually relaxed co-coercive operators, provided its right-hand side satisfies a
one-sided Lipschitz condition as the one studied in (Pavlov et al., 2004). In particular, a scalar
linear dynamics © = —ax + bu, with arbitrary initial conditions defines mutually co-coercive
operators with co-coercivity constant v = %

For state space models Definition 7.1 is satisfied by incrementally output feedback passive
systems (Stan and Sepulchre, 2007; Oud and Tyukin, 2004) with small heterogeneities as
shown in the following proposition, whose proof is given in Section 7.5.1.



Proposition 7.2. Consider a family of input-output dynamics

ij = flxj,uj) +6fi(zj,v5)
z;(0) = j (7.11)
yi = hi(zj)

where uj,y; € R™, x; € RP, and v; € RY, for all all j = 1,...,n. Note that f : RP x R™ — RP
is common to all x;, while the heterogeneity comes from the term o f; : RP x RY — RP. Suppose
that there exists a smooth function V : RP — R>q and a constant v € R such that along the
trajectories of (7.11), for all i,5 =1,...,n,

Viwi — ;) < =v(yi — ;)% + (ui —uj) " (yi — yj)+

oV r
{%(%‘ - 5'33')} (6 fi(wi,vi) — 0 fj(x5,v;)). (7.12)
Given two functions vi,vj : R>g — R, suppose that, for all initial conditions :U?,w?, there

exists a constant C' > 0 such that, for all input functions u;,u; € Ly}, along the trajectories of

(7.11),

T
G — )] Ofilaiv) = 85| <0, (7.13)

“av

T

for all T > 0. Then the input-output operators associated to (7.11) are mutually relazed co-
coercive with co-coercivity constant v and biases 3;; = V(29 — :1:9) +C.

The heterogeneity 6 f;j(z;,v;) depends both on the state of the system, and on the (possibly
time varying) parametric uncertainties v;. The right hand side of (7.13) represents the energy
added to incremental storage function V' by the presence of heterogeneities. Relation (7.13)
requires this energy to be finite and independent from the systems inputs. When df; = 0, for
all j = 1,...,n, the only heterogeneities are due to different initial conditions. In this case
Proposition 7.2 says that identical incrementally passive systems define a family of mutually
relaxed co-coercive operators. The following example illustrates a particular situation in which
condition (7.13) can be checked

Example 7.2. Consider a family of non-controllable passive system with (possibly nonlinear)
heterogeneities in the non-controllable part of the form

;= Ac:c§ + Buj + Ayey,

i = AOU:B;-‘ + 6 fi(x}) (7.14)
z;(0) = Zj

Yy = C’a;§

where yj,u; € R™, 2§ € RPe, x¥ € RPv, and [A., B] is controllable, for all all j = 1,... n.
Suppose that A, 1s Hurwitz, that 0 f; is continuous, and that the non-controllable part x7 s

exponentially stable, that is there exists o, b; > 0 such that, for all initial condition :E}‘(O),

|[2%(t)] < bjla¥(0)|e=", VE >0, (7.15)

forall j =1,...,n. Suppose moreover that controllable part x5 is output feedback passive.

From these assumptions, it follows that there exists a symmetric positive definite matriz ) :=

{ %C Cg }, where Q. € RP<*Pe gnd Q,, € RP*Pu_ and a constant v € R, such that, for all
u



t,7=1,...,n,

i — ) Qi — )
= (o~ 2T Qulaf — ) +
&t~ Qulat — )
< i =)+ (v — ) (wi — ) +
S =T (QuAy + ATQ) ) +
(o~ ) QuSh(at) ~ 54;(2))
< i =)+ (i — )" (wi =) +

(xf —a5)T Qu(dfi(a}) — 0 f;(a})), (7.16)

where the first inequality comes from the fact the controllable part is linear and output feedback
passive, hence, it is also output feedback incrementally passive, and the second inequality comes
from the fact that A, is Hurwitz. Moreover, recalling (7.15), and that 0f; is continuous, it

follows that, for all initial conditions x7(0), x(0),

T
| @t = e QuE Rt — 81t <

1
2 mavx(by [« (0)], byl (0)])——————C5, (7.17)

minj—1,..n Q;
where

max .
a€RPu, |a|<maxj—1,. . nbj |z;‘(0)|

It follows from (7.16) and (7.17) that (7.12) and (7.18) are satisfied, hence (7.14) defines a
family of mutually co-coercive operators.

7.3 Robust synchronization results

7.3.1 Main result

The following theorem is an extension of (Scardovi et al., 2010, Theorem 1) to the case of
heterogeneous dynamics. Its proof is given in Section 7.5.2.

Theorem 7.3. Consider the network (7.1)-(7.2). Suppose that the following assumptions are
satisfied:

1. Foreachk =1,...,N, the family of operators Hy, := {Hp, j}j=1,...n is Ye-mutually relaved
co-coercive, v € R.

2. For eachk=1,...,N, Y := v + X\ > 0, where A\ is the algebraic connectivity (7.7) of
the interconnection graph associated to the species k.

3. The dissipation matriz E5, as defined in (7.4), is diagonally stable?.

2 A matrix M is said to be diagonally stable if there exists a diagonal matrix D > 0 such that DM+MT™ D < 0.



Then, there exist p, 3 > 0, such that
V2 < pWAlr + 8, VT >0, (718)

In particular, letting d; > 0, « = 1,...,N, be such that DE5 + EgD < 0, where D =
diag(dy,...,dn), the Ly-gain p in (7.18) is given by
max;—1 . N{d;}

= . 7.19
P min {spect(—DEa - E%FD)} (7.19)

Theorem 7.3 ensures that the synchronization error Y2 of the system is small (in the Ly norm)
provided that the input dispersion W% is small. In particular the closed-loop system has finite
incremental Lo-gain from the incremental input W42 to the incremental output Y2. With
respect to (Scardovi et al., 2010), apart from the less conservative assumptions, Theorem 7.3
provides an explicit expression for the Lo-gain. Notice that the gain can be made arbitrarily
small, by reducing the eigenvalues of the matrix DE5 + Eg D.

7.3.2 Ly-gain for particular interconnection topologies

In the following lemmas, whose proofs are given in Section 7.5.3, we give the explicit computa-
tion of the incremental Lo-gain p, appearing in Theorem 7.3 for two particular compartmental
interconnection topologies.

Lemma 7.4. Suppose that the dissipativity matriz E5 has the form

[—5% 0 ... 0 —1 ]
1 —F 0
Es=1 0 1 -5 -+ |, (7.20)
: . .0
0 ... 0 1 —An

that is the compartmental coupling is given by a cyclic feedback (Arcak and Sontag, 2006). If
¥ >0, foralli=1,...,N, and

T
1— (7> 0, 7.21
reos| ) > (7.21)
where

(7.22)

then the dissipativity matriz E5 is diagonally stable, and the incremental Lo-gain (7.19) of the
closed-loop system is given by
1

1 —rcos (%)) mini:L,wN ’%5 (723)

"

where ) )
max {1,(r%2), (1%32%)” ..., ("N 1% . A}

min {1, (r92)*, (r23293)% ..., ("N 5 . An)?}




The form of the incremental Lo-gain for a cyclic interconnection (7.23) can be readily used for
synthesis purposes. It suggests in particular that the algebraic connectivity of the intercon-
nection topologies associated to different species must be chosen in such a way that the secant
condition (7.21) is satisfied with a large margin, that is r cos(7/N) < 1 and that the minimum
closed-loop co-coercivity constant min;—; . n 7; should be large. Noticing that r is given by
the inverse of the geometrical mean 7 of the algebraic connectivities, that is

the term & imposes that the set {7;}i=1,.. n should be as homogeneous as possible, meaning
that 2 ~ 1, for all ¢ = 1,..., N. The last condition can be interpreted as avoiding “bottle-
necks” effects in the feedback cycle given by species that synchronize with a slower rate than
the others. This kind of homogeneity conditions is often encountered in the study of the
synchronizability of a given interconnection topology (Motter et al., 2005; Hao et al., 2009).

In the following lemma we specialize the computation of the incremental Lo gain to the case
of antisymmetric input-output interconnections. Its proof is provided in Section 7.5.4

Lemma 7.5. Suppose that the dissipativity matriz E5 has the form

E:y = AN — diag(%a cee 7/7N)7

where Ay denotes an antisymmetric N X N matriz and 7; > 0 for all i =1,...,N. Then Ej5
is diagonally stable and the incremental Lo-gain (7.19) is given by

1

min;—  n{%}

The Lo gain obtained for antisymmetric input-output interconnections is independent of the
size of the system, and takes into account the minimum co-coercivity constant only. This fact
reflects the observation that any antisymmetric input-output interconnection can be decom-
posed into a family of two-dimensional negative feedbacks. Notice that both Lemma 7.4 and
Lemma 7.5 provide the same Lo-gain for a two-dimensional negative feedback.

7.3.3 Apllication to state-space representations

The results of Theorem 7.3 can be used to analyze synchronization in systems described with
a state space formalism
{ j:kvj = fk:j<xk7j7vk,j)7 (7 24)
Yk = hi (2., ;) '
where yg j,vp; € R™, 25 ; € RP* for all k = 1,...,N, and all j = 1,...,n. Its proof is a
straightforward application of Theorem 7.3 and is omitted.

Corollary 7.6. Assume that the nonlinear operators Hy ;, k=1,...,N, j=1,...,n, associ-
ated to (7.24) with some initial conditions x%j € RPx are well defined. Consider the closed-loop
system defined by (7.24), with inputs as in (7.2) and suppose that the conditions in Theorem
7.8 are satisfied. Then, there exists p, B > 0, such that

Y2l < pl[ W27 + 8, VT >0, (7.25)

where p is given as in the statement of Theorem 7.3. If in addition W2 € Lo, then the output
asymptotically synchronizes.



As opposed to (Scardovi et al., 2010, Corollary 1), the vector field does not need to be iden-
tical among different compartments. In particular, the requirement of zero-state reachability,
assumed in (Scardovi et al.; 2010, Corollary 1) is not required.

7.4 Robust synchronization in networks of Hindmarsh-Rose neu-
rons

7.4.1 The Hindmarsh-Rose model and its input-output representation

The Hindmarsh-Rose (HR) model, first introduced in (Hindmarsh and Rose, 1984), is a qual-
itative model of neuronal bursting dynamics. That is, its trajectories mimic the behavior of
bursting neurons. The HR dynamics is defined by three differential equations

T = —am3—|—bx2—|—l—|—y—zx,i—|—ux
= c—da?—y
= r(s(xr+z2+uy) — 2). (7.26)

The first variable x models the membrane voltage, the second y models fast Na~ and KT
currents through the membrane, and the third z models slow Ca®t currents. I is a parameter
that models external currents through the membrane. w, models other exogenous electrical
inputs (heterogeneities, coupling with other cells, noise, etc.), while u, models the diffusion of
Ca?T ions in the cell. a,b,c,d,r, s, Z are free parameters that change the qualitative behavior
of the system by inducing bifurcations in the underlying dynamics. In particular, r is a small
parameter (r < 1) that lets the time scales of the (z,y) and z subsystems be sharply sepa-
rated. From a dynamical point of view, the first two variables account for the excitable spike
generation mechanism, while the third plays the role of a slowly varying adaptation variable.
In particular, the (x,y)-subsystem exhibits a bistable dynamics, in which a stable limit cycle
(corresponding to spiking) and a stable fixed point (corresponding to resting) co-exist. Their
regions of attraction are separated by the stable manifold of a saddle point (Hindmarsh and
Rose, 1984). A slow adaptation dynamics for z let the (z,y) subsystem slowly switch between
the resting and spiking attractors, which corresponds to a bursting behavior. The isolated
dynamics of x or y does not correspond to any biologically relevant behavior when considered
separately. It is then natural to consider the (x,y)-subsystem as single bi-dimensional biolog-
ical species X := (x,7)7, that interacts in an input-output fashion with the (slow) z species.
Letting yx := « be the output of the X species, and y, := z be the output of the z species,
the HR neurons, with arbitrary initial conditions (g, 30, 20), can equivalently be modeled as
the interconnection of the input/output operators Hx and H,, modeling the X and z species,
respectively, defined by Hx : vx +— yx and H, : v, — ., where

X = F(X)+ Bux
yx = x (7.27)
X(0) = Xo:=(z0,90)"
z = r(s(Z+v,) —2)
Yy, = z (7.28)
2(0) = 2o
. —az® +bz? +y 1
with F(X) := - dz? —y , B = 0 ) VX = I +wxy —zand v, = w, + 2

are the inputs to the X and z species, and wx and w, are the external current and the



external calcium diffusion, respectively. This configuration corresponds to a compartmental
input-output interconnection matrix, as defined in (7.3),

YHR = ( (1) _01 ) (7.29)

In order to apply Corollary 7.6 to the synchronization of the family of operators (7.27)-(7.28)
according to the methodology developed in the previous sections, we have to check that the
operators are well defined and study their mutual co-coercivity.

Since the operator associated to the slow z species is defined by the one-dimensional linear
system Z = r(s(Z+wv,) —z) with input v, and output z, it is well defined (Van der Schaft, 1999).
Moreover, it follows directly from Example 7.1 that an ensemble of input-output operators
(7.28) with arbitrary initial conditions defines a family of mutually co-coercive operators with

Ve i=1/s. (7.30)

The following propositions establish that the operators associated to the X species are well
defined, and form a family of mutually co-coercive operators. Their proofs are respectively
given in Sections 7.5.5 and 7.5.6.

Proposition 7.7. For all initial conditions Xo € R?, the operator Hx defined in (7.27) is well
defined.

Proposition 7.8. For all X19, X20 € R?, the input-output operators associated to (7.27) with
wmitial conditions X19 and Xog are mutually relaxed co-coercive with co-coercivity constant

2
VX = —% — b2

7.4.2 Network of Hindmarsh-Rose neurons

In the following we consider the diffusive interconnection of n € N>o HR neuronal compartment
(7.27)-(7.28). The initial conditions specifying the input-output behavior of each compartment
are assumed to be arbitrary. We let Ax and A, be the algebraic connectivity associated to the
X and z species, respectively. The dissipativity matrix Es, as defined in (7.4), is then given
by

Ix —1

E; = { 1A } , (7.31)

where yx = yx +Ax and 7, = 7.+ .. From Lemma 7.4 or Lemma 7.5 E5, is diagonally stable
provided Ax > —vx. Moreover, in the case of zero inputs, the boundedness of the trajectories
of each subsystem follows directly from (Oud and Tyukin, 2004, Proposition 1). Hence, from
(7.30), Proposition 7.7, and Proposition 7.8q2, all the conditions of Corollary 7.6 are satisfied,
provided that

d2

Ax > 5+ b2 (7.32)

At the light of these considerations, we are able to provide analytical results on the robust
synchronization of a network of HR neurons, as stated in the following proposition.

Proposition 7.9. Consider a network of n € N>o HR neurons (7.27)-(7.28). Let W& and
VVZA be the incremental input of the X and z species, respectively, and W2 the resulting incre-
mental input of the network, as defined in Section 7.1. Let Y)? and YZA be the synchronization
errors (7.9) associated to the X and z species respectively, and Y2 the resulting network syn-
chronization error. Suppose that (7.82) is satisfied. Then there exists B > 0, such that, for all
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FIGURE 7.2: Typical behavior of a neuron belonging to the active population (black) and

silent population (grey), before the diffusive coupling between the two populations is switched

on.
T >0,
Y2 < purlWr + 8, (7.33)
where 1
PHE = G, 5) (734)

We point out that, as opposed to (Scardovi et al., 2010), our approach does not require to
check the zero-state reachability of the HR model.

7.4.3 Numerical simulation

To illustrate the results, we run numerical simulations on a biologically meaningful intercon-
nection topology. The parameters used in the simulation are as follows: @ = 0.01,0 = 0.3,¢c =
0.1,d = 0.5, = 0.001,s = 4,z = 7. We have considered the interaction of two distinct neu-
ronal populations. Each populations is composed by qualitatively identical neurons. The first
population contains the active neurons, i.e. with an endogenous rhythmic activity. The second
population is composed of silent neurons, that is neurons that are endogenously at rest. The
two different behaviors are obtained by fixing different values of w,, which models the extra-
cellular calcium concentration. A low value (w, = 2) corresponds to the active population,
while silent neurons are characterized by a higher value (w, = 4). Moreover, each neuron is
affected by an heterogeneous electrical input wx. Figure 7.2 illustrates the typical behavior of
two neurons belonging to each of these populations.

We suppose that the electrical coupling between neurons belonging to the same population
is absent. On the contrary, each active neuron is connected to all the silent neurons, and
vice-versa, with the same coupling strength Kx. This kind of interconnection represents a
simplification of the interaction between different brain neuronal subpopulations. Indeed, for
neurons in the sub-thalamic zone, most of the synapses of a neuron belonging to some specific
area project outside the interested area (Sato et al., 2000). On the contrary, neurons that
are located inside the same area, share the same physical medium. In this way, the natural
diffusion in the cellular surrounding of the ions generating the currents in the neuron membrane
constitutes a further type of diffusive coupling (Rubin, 2007). In the HR neuron, this can
be modeled by a diffusive coupling in the z species, describing the dynamics of Ca?T ions
concentration in the cell. We thus suppose that each neuron belonging to a given population is
coupled to all the other neurons of this population through diffusive coupling in the z species
with homogeneous coupling strength K. If the two species have the same number M € Ny
of neurons, the Laplacian matrices associated to the interconnection topologies among the X
and z species are given by

;1
Ly = — | o Lanar oy (7.35)
Tyxm Omrxmr
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FIGURE 7.3: Evolution of the synchronization error ||Y2 ||z (solid line) and of the predicted
bound p||W# |7 (dashed line) after the diffusive coupling between the active and silent pop-
ulations is activated. The bias has been removed for clarity.
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FIGURE 7.4: Mean membrane voltage of the active (left) and silent (right) population before

and after the coupling between the two populations is switched on. After the coupling is

activated, the system shows a global bursting oscillation even though no interconnections are
present inside each neuronal population.

and

L, =— |t Oaoar | g (7.36)
Ovxnv Imsm

The interconnection between the X species corresponds to a complete bipartite graph. If
Kx is the coupling strength, the algebraic connectivity is given by Ay = M Kx (Bondy and
Murty, 1976, page 5). Since the graph associated to the z species is not connected its algebraic
connectivity is zero (Bondy and Murty, 1976). By picking Kx > (% + b2) /M and K, > 0,
all the assumption of Proposition 7.9 are satisfied. In the simulation we have picked M = 10,
Kx = (% + b? —1—0.5) /M and K, = 0.25/M. With this choice we get, from Lemma 7.4 or
Lemma 7.5, pgpr = 4. Figure 7.3 shows the evolution of the synchronization error. When the
coupling is switched on at time ¢ = 5000, The theoretical integral bound predicted by Theorem
7.3 is satisfied. The prediction of a robust synchronous behavior is associated to important
counterintuitive phenomena. Neurons belonging to the active population are not synchronized
before the coupling with the silent population is not present, due to heterogeneities (Figure 7.4,
left). Even though they are not directly coupled, they become synchronized once they start to
interact with the silent neuronal population. At the same time, the silent neuronal population
starts to show global oscillations at the same frequency (Figure 7.4, right). This kind of
mutually induced oscillations is typical of the interaction between excitatory and inhibitory
neuronal populations (Holgado et al., 2010).



7.5 Proofs

7.5.1 Proof of Proposition 7.2
Integrating both sides of (7.12) and considering (7.13), we get

V(ad —a9)

IN

V(2 (T) = 25(T)) = V(a7 — a3)

? J J

A

< Ay — yill® + (i = wg, Y — YT
+C,

showing the two associated input-output operators are mutually relaxed co-coercive with co-
coercivity constant v and bias 812 = V(2 — 29 ) +C. O

7.5.2 Proof of Theorem 7.3

The proof is a direct adaptation of that of (Scardovi et al., 2010, Theorem 1). Let the input
to the species k be given by Vi(t) = Ui(t) — LiYx(t), that is Uy contains both exogenous
disturbances and input-output compartmental coupling. Let the biases appearing in the mutual
relaxed co-coercive relation (7.10) associated to the species k be 52‘(;:)7 i,j=1,....,n, k =
1,...,N. With simple computations?, (Scardovi et al., 2010, Lemma 1) generalizes to the
mutual relaxed co-coercivity case in the form

WYE 7 < VA ViR r + B, k=1,...,N,

for all T'> 0 and all Vj, € L5, where
k
B = max 51, (7.37)

It then follows from® (Scardovi et al., 2010, Equation (23)) that, for all k =1,..., N,

YR F < Vi UR)r + B (7.38)

Equation (7.38) shows how the presence of the diffusive coupling increases the incremental
co-coercivity of the closed-loop system. Writing Uy (t) = Wi(t) + 2N, 04.:Yi(t), (7.38) gives
forall k=1,...,Nand all T > 0,

7k||Yk HT <Yk aWk: >T+ Yk )Zo-k:z T+Bka
=1

or, equivalently,

N
VA WE+Y on Y2 =Y+ >0, k=1,...,N. (7.39)
=1

Recalling the definition of the dissipativity matrix F5 := ¥ — diag(71,...,9n), (7.39) can also

be written as

N
(YA, WA+ (B30 L)Y+ Y B > 0. (7.40)

3Just add the bias in each line in the proof of (Scardovi et al., 2010, Lemma 1).
*Again, just add the bias in each line of (Scardovi et al., 2010, Equations (19-23))



Suppose that E5 is diagonally stable, that is there exists positive constants d;, ¢ = 1,..., N,
such that DE5; + EI'D < 0. Then, by defining 8’ := 37 di S

(D@ IL)Y2 WA + (B @ L) Y™ + 3
N N N
= Y YA WE+Y o0V - Y r + Y diB
=1 =1 =1
> 0, (7.41)

where the last inequality comes from (7.39) and the positiveness of d;, i = 1,...,N. Let d :=
min(spect(—DE5y — E%FD)) > 0. Noting that, for all matrix A, spect(A ® I,,) = {spect(A4)}",
it follows from (7.41) that

(D& L)Y2 W)+ 5

(D L)Y?,(E; @ I,)Y?)
|y 2. (7.42)

(AVANAY]

and, by defining d := max;—1,.. N d; > 0, it also holds that

(D® L)Y? WA

< <(D®I YA WA
Vd
fll\fWA - 7(D®I W)Y 27
1d 1d
= **HWAHQT §?H(D®In)YAH%
1d d
< HWAHT HYAH (7.43)

Plugging (7.43) into (7.42) we obtain

2

d 4
Dl = ?HWAII%Jr?g
/
< (G 25) ,
d
that is
1Y 2]l < pllW] + 8, (7.44)
where B
d
and 3 := 2%.



7.5.3 Proof of Lemma 7.4

The proof of Lemma 7.4 is directly inspired to that of (Arcak and Sontag, 2006, Theorem 1).

For notational purposes, let, for all i =1,..., N,
1
M= (7.46)
Let
Dn = diag(nla A 777N)7 (747)
and
Ay = DyE;5
[ -1 0 0 —mM ]
ne -1 . 0
= 0 n3 -1 "-. : . (7.48)
. S
L 0 0 nv -1 |
Moreover define
. 2 1273 m:-..."1NN
A:=d (1,——, ,...,7>, 7.49
18 r’or2 rN-1 (7.49)
and
D = A’D,
=: diag(dy,...,dn). (7.50)
Note that
d = max d;
i=1,..,N
< max  1); (7.51)
i=1,...,

r o\ 2 r2 2 FN-1 2
o {1 (2) () (2 )
72 1213 n2...MN

Moreover, by (7.48),(7.49), and (7.50), we can write

DE5+ EID = A7 (AT AgA + A4 AT ) AT (7.52)
Note that -~ -
1 0 0 (=1)Ntlp
r 1 . 0
—A M A= , 1 - : 7 (7.53)
: - -, - 0
0 ... 0 7 1]

that is —A~71AgA exhibits a circular structure when N is odd, and skew-circulant when N is
even. From (Davis, 1979) it then follows that —A~!AyA is diagonalizable with eigenvalues
ap =1+red@/NE =1 . N,if Nisodd, and oy, = 1 +re!@/N+@/N)k . — 1 N if N
is even. The eigenvalues of its symmetric part %(—A_IAOA — AApA~1) are given by the real



parts of the aj. In both the odd and even case, it holds that ming—; _ny Reay, = 1—rcos(7/N).
Recalling (7.52), it then follows that

d := min {spect(—DEa - EgD)}
> 2(1—7‘COS<;\T]>) (7.54)
P\ 2 r2 0\ 2 FN-1 2
ol V(2 o ()
{ 12 1273 N2 1N
Invoking (7.19),(7.46),(7.51) and (7.54), the lemma follows. O

7.5.4 Proof of Lemma 7.5

The result follows immediately from (7.19) and by noticing that %(E:ﬁ—Eg) = —diag(y1,...,9N)-
O

7.5.5 Proof of Proposition 7.7

The proof is inspired to (Oud and Tyukin, 2004, Appendix A). The operator Hx can be
equivalently defined as

X = F(X)+ B(vy — #)
2 = €e(s(x+2z)—2), e=0,
HX : yx = X (755)
X(0) = Xy
Z(0) = 0

Given c1,c9,c3 > 0, consider the function V(z,y,2') = %cle + %CQyQ + %2’2. With the same

computation as (Oud and Tyukin, 2004, Appendix A), it follows that along the trajectories of
(7.55) '
V< —(x—d)?+C +cirvy, (7.56)

where C' > 0 and d; € R. Integrating (7.56), and recalling that z(0) = 0, we get, for all T' > 0,

|z — leQ < ez, v+ CT + %(:13:(0)2 + %czy(O)2
= ci{z — di,ve)r + (d1,ve)7 + CT

+%clx(0)2 + %czy(())2

c1(x — di,vg)7 + c1(di, vz)7 + CT +

IN

1 1
iclx(O)Q + 502y(0)2 +

lerve = (2 = di)lI7
Lo

1
= Slvellf + Sl = dallF + erfdy, va)r +

1 1
CT + §clx(0)2 + 5623/(0)2. (7.57)
Since the constant dy € Lo, (7.57) implies that x — dy € Lo, whenever v, € Lg.. The
proposition follows noticing that, since Lo is a linear space and d; € Lo, * — d; € Lo if and
only if x € Lo,. O



7.5.6 Proof of Proposition 7.8

The proof is inspired to that of (Oud and Tyukin, 2004, Proposition 3). Given two input
functions vy 1, vz 2 € Loe, let Xi(-) and Xa(-) be the corresponding evolutions of (7.27) with
initial conditions Xjo and Xagg, respectively, and y1(-) and yo(:) the corresponding outputs
(from Proposition 7.7 in Ly, as well]). Consider the following function V(X1 — X») := $(z1 —
22)? + 522 (y1 — y2)?. The derivative of V along the trajectories of (7.27) can be expressed as

v
—(z1 — 2)? (962% + ;102% + (9014—2;1:2)2 —b(z1 + 562))+

(w1 — #2) (Va1 — Va2) + (y1 — y2) (21 — @2) —

e = w2) (o1 + 22) 01 — 18) — 5 — o) (7.58)

Following the same computation as (Oud and Tyukin, 2004, Equations (2.20)-(2.21)), it also
holds that

V< — (21 — 22)° @(xl B2y %(@ b2 d; - b2> +
((L‘l — 1'2)(1)3;71 — ’l)xg). (759)

Let
vx = ——= — b, (7.60)

then from (7.59) it follows that

Vo< —yx(en — @)’ + (21— 22)(ve) — vp2) +
(1 — 22) (V21 — Vz2)- (7.61)

Integrating (7.61) along the trajectories of (7.27) the proposition follows. O






Conclusion and perspectives

Summary

Motivated by a medical problem, in this dissertation we have investigated synchronization and
desynchronization phenomena in mathematical models of neuronal populations.

Parkinson’s disease and the control of neuronal synchronization. We have first recalled
the prominent role of neuronal synchronization in generating PD symptoms, and the weaknesses
of the present open-loop DBS in eliminating this pathological state. We have then formulated
in Chapter 1 a possible closed-loop DBS control goal, and made of it the main objective of
Part I. The goal was to investigate how a proportional mean-field feedback could bring a
pathologically synchronous neuronal population to either a desynchronized state or to a silent
inhibited state.

Mathematical modeling of closed-loop DBS. With the aim of formulating analytical
results, we have looked for a simple mathematical representation of this control problem. More
precisely, we have derived in Chapter 2 a simplified model of a neuronal population under
the effect of its mean-field proportional feedback. This model captures the rhythmic neuronal
oscillation and respects basic input/output constraints.

Existence of synchronously oscillating solutions. We have characterized the pathological
states in terms of oscillating phase-locked solutions. The existence of such states has been
shown to be generically incompatible with any nonzero proportional mean-field feedback, thus
supporting the proposed control strategy.

Robustness of the pathological states. Even though oscillating phase-locking mathemati-
cally disappears under mean-field feedback, we have proved in Chapter 3 that the pathological
states can persist as practically phase-locked solutions and provide necessary conditions for
desynchronization via mean-field feedback.

Neuronal inhibition. Under some simplifying assumptions, we have rigorously described
in Chapter 4 how the presence of mean-field feedback can actually achieve a first therapeutic
objective, that is neuronal inhibition, characterized as an almost globally asymptotically stable
fixed point of the phase dynamics. The energy efficiency of the proposed control scheme in
achieving this goal has also been rigorously addressed.

Neuronal desynchronization. In Chapter 5, we have approached the problem of desynchro-
nizing an ensemble of phase oscillators. We have proposed a simple definition of desynchroniza-
tion, and characterized it mathematically. We have then derived sufficient conditions to achieve
effective desynchronization via proportional mean-field feedback for a generic interconnection
topology and registration/stimulation setup.

In conclusion Part I let us derive a number of mathematical results supporting the efficiency of
proportional mean-field feedback DBS in eliminating PD pathological synchronous oscillations,
by either inhibiting or desynchronizing the neuronal population.



Part II was then motivated by the need of extending the analysis in Part I to more realistic
neuron models. We have approached this problem by looking for modeling principles that
are amenable to a comprehensive mathematical analysis and yet offer sufficient fidelity in
reproducing neurons behavior.

Hybrid modeling of calcium-gated neurons. In modeling dopaminergic neurons via hy-
brid dynamical systems of the Izhikevich type, we have highlighted in Chapter 6 a weakness
of the Izhikevich model in reproducing a robust pacemaking and ADPs activity. Based on
the mathematical analysis of a calcium-gated Hodgkin-Huxley model, we have explained the
origins of this deficiency rigorously and we have derived a novel hybrid model to overcome it.

Input-Output modeling. We have provided in Chapter 7 a theoretical extension of some
recent works analyzing synchronization in large scale interconnected systems via a purely input-
output approach. This extension allowed us to tolerate some heterogeneities between the units.
This approach is of interest since it does not require any detailed state-space representation of
the neuronal dynamics, and since it permits to naturally study the effects of exogenous inputs
via rigorous control theoretical tools. We have showed that the Hindmarsh-Rose neuron model
can effortlessly be modeled in this framework, and we have derived some robust synchronization
results in a heterogeneous network of such models, thus providing a first extension of the
robustness results derived in Chapter 3.

Limitations

Event though some of the theoretical results presented in this dissertation support a closed-loop
DBS strategy, the underlying analysis relies on harsh approximations.

Neurons modeling. In its simplicity the oscillators model employed in Part I ignores many
important properties of real neurons, as briefly highlighted in Section 1.4.2. More importantly
for PD, it does not account for the heterogeneous behavior exhibited by neurons in different
BG areas. See, e.g., (Rubin and Terman, 2004).

Synaptic coupling modeling. The assumption of diffusive coupling between neurons ignores
the complexity of real synaptic interactions. It does not account, for instance, for gain (the
post-synaptic action potential can be larger than the pre-synaptic one) and threshold (only
sufficiently large pre-synaptic inputs are able to generate a post-synaptic response) effects
typical of chemical synapses. See for instance (Destexhe et al., 1998).

DBS electrode neurons interaction. We have partially accounted for the heterogeneous
way in which neurons interact with the DBS electrode by allowing arbitrary input and output
gain in our model. Yet, the details of the real neurons-electrode interaction and the way in
which the electrical signal diffuse in brain tissues have been completely neglected.

Functional structure of BG. The BG network is characterized by multiple intra- and inter-
nucleus interaction loops and projections. The resulting interconnection structure is quite
complex and tightly related to the functional role of the BG (Bolam et al., 2000). Even
though the proposed model could include any interconnection topology, and both excitatory
and inhibitory coupling, analytical results can be derived only for simple, or at least symmetric
coupling topologies, which is very simplistic compared to the complexity of the BG network.

Artifacts. We have worked under the optimistic assumption that neurons local field potential
can be measured with arbitrary precision, independently of the injected input. This is unreal-
istic in the medical practice, where prominent artifacts coming from the DBS signal hide the
neurons activity. New technology might, however, help to overcome this limitation (Giannicola
et al., 2010; Priori et al., 2002; Rosa et al., 2010).



Open questions

The mathematical analysis derived throughout the thesis has highlighted a number of open
questions, both in mathematics and control theory.

Global phase-locking robustness analysis. The phase-locking robustness analysis devel-
oped in Chapter 3 is local. We firmly believe that under some non-degeneracy assumptions,
namely that all the fixed points are isolated and hyperbolic, this analysis can be made global
with a small effort by exploiting some recent results on almost global ISS on compact Rieman-
nian manifolds (Angeli and Praly, 2011).

Neuronal inhibition with respect to time-varying inputs. The same result (Angeli
and Praly, 2011) does not apply straightforwardly to the neuronal inhibition problem faced
in Chapter 4 due to the presence of non-isolated equilibria. One can envision, however, an
extension of this type of results to deal with the presence of exponentially unstable manifolds
of equilibria, as a generalization of exponentially unstable fixed points. This result would then
be applicable to the neuronal inhibition problem, at least in the case of an odd number of
oscillators, when the set of non-isolated equilibria is a normally hyperbolic unstable manifold.

Almost global convergence in the presence of degenerate sets of equilibria. In the
case of an even number of oscillators, the set of non-isolated fixed points in the neuronal
inhibition problem is not globally a manifold, due to the presence of degenerate equilibria. We
were not able to prove Conjecture 4.1 in Chapter 4, since, to the best of our knowledge, no
global stability and robustness analysis tools have yet been developed to deal with this case in
a systematic way.

Neuronal inhibition in the presence of non all-to-all interconnection. The oscillations
inhibition analysis has been developed under the assumption of an homogeneous interconnec-
tion and registration /stimulation setup. Similarly to what has been done in recent years for the
Kuramoto system (Sarlette, 2009), it would be interesting to understand which other coupling
topologies and feedback gains ensure the same convergence properties.

Tools to prove (practical) desynchronization. The proof of the desynchronizability of
the Kuramoto system via mean-field feedback in Chapter 5 relies at present on elementary
trigonometry. These computations do not generalize to phase-dynamics with non-sinusoidal
coupling. New tools have then to be developed. We have seen that the proposed definition
of desynchronization admits a topological characterization (complete instability) that is in
opposition with that of synchronization (asymptotic stability). It would be interesting to
investigate whether the stability tools usually exploited in synchronization analysis (Lyapunov,
gradient dynamics, ISS, etc.) admit a counterpart for the rigorous analysis of desynchronization
and the synthesis of desynchronizing controllers. The existence of an increasing incremental
Lyapunov function could, for instance, straightforwardly be used to prove desynchronization.

Non diffusive input-output coupling. The nonlinear operators-based synchronization the-
ory developed in Chapter 7 relies on the harsh constraint that neuronal coupling is of diffusive
type only, which is not realistic. Neuron coupling via synapses has indeed a more impulsive
nature, and does not directly depend on the neurons states difference, as imposed by diffusive
coupling. It is thus of interested to provide a general theoretical extension to the theory in
order to deal with more general types of couplings, such as the impulsive one.

Perspectives

We present here some possible research directions that naturally arise from the work presented
in this manuscript.



Experimental test of proportional mean-field feedback DBS. We have recently been in
contact with the medical and engineering research group of Prof. Rossi at University of Milan,
performing DBS implantation on humans. Prof. Rossi’s group has also a recognized expertise
in the development of technologies permitting the simultaneous recording and stimulation via
the DBS electrode (Giannicola et al., 2010; Priori et al., 2002; Rosa et al., 2010). Preliminary
discussions suggest that clinical tests on humans of the effects of a proportional feedback DBS
might be feasible.

Inhibition and desynchronization in the input-output framework. Similar to what we
have done for oscillators, the input-output synchronization analysis can be extended to include
the effects of a mean-field feedback. This would permit an input-output control theoretical
investigation on the possibility of inhibiting or desynchronizing an originally synchronized
nonlinear operators population.

Experimental input-output identification. We believe that the input-output approach
developed in Chapter 7 can find an efficient application in an experimental framework. The
characterization of the input-output properties of a given neuron type would indeed only require
the electrical measurement of the response of the neuron to a set of prototypical inputs, as
opposed to the present state-space characterization that needs a detailed study of many other
electro-physiological properties. The obtained input-output characterization can be used to
build large scale networks of interconnected non-linear operators, whose theoretically predicted
behavior could readily be compared to real neurons networks.

Mathematical analysis of calcium-gated synchronization. In its simple form, the re-
duced model derived in Chapter 6 captures the dynamics behind the behavior of dopaminergic
and other calcium-gated neurons, like STN and thalamic neurons. It might thus permit a
systematic analytical study of the synchronous oscillatory phenomena observed in the BG in
PD conditions, of the effects induced by a high frequency DBS, and of the possible directions
that can be undertaken to ameliorate this cure.

Link between our reduced model and antisynergistic ionic currents. The chief feature
of the novel reduced model of Chapter 6 can be directly related to the antisynergistic coop-
eration of potassium and calcium currents. Its distinct feature with respect to the Izhikevich
model stems indeed from the presence in the associated detailed model of depolarizing and
hyperpolarizing currents which can be simultaneously activated in a same timescale, several
times slower than the timescale of the current which generates the action potential. These
observations suggest the existence of a qualitative link between the proposed reduced mathe-
matical model and the antisynergistic cooperation of two particular ion currents, at least in the
specific case of the dopaminergic neuron. A speculative idea is that a similar link can actually
be established in any neuron exhibiting sufficiently pronounced calcium currents.
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