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Résumé

Ce mémoire présente une nouvelle méthode pour l’acquisition 3D basée sur la lumière

structurée. Cette méthode unifie les techniques de depth from focus (DFF) et depth

from defocus (DFD) en utilisant une projection dynamique (dé)focalisée. Avec cette

approche, le système d’acquisition d’images est construit de manière à conserver la totalité

de l’objet nette sur toutes les images. Ainsi, seuls les motifs projetés sont soumis aux

déformations de dé-focalisation en fonction de la profondeur de l’objet. Quand les motifs

projetés ne sont pas focalisés, leurs Point Spread Function (PSF) sont assimilées à une

distribution gaussienne. La profondeur finale est calculée en utilisant la relation entre les

PSF de différents niveaux de flous et les variations de la profondeur de l’objet. Notre

nouvelle estimation de la profondeur peut être utilisée indépendamment. Elle ne souffre

pas de problèmes d’occultation ou de mise en correspondance. De plus, elle gère les

surfaces sans texture et semi-réfléchissante. Les résultats expérimentaux sur des objets

réels démontrent l’efficacité de notre approche, qui offre une estimation de la profondeur

fiable et un temps de calcul réduit. La méthode utilise moins d’images que les approches

DFF et contrairement aux approches DFD, elle assure que le PSF est localement unique.
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Abstract

A Novel 3D recovery method by dynamic (de)focused projection

This paper presents a novel 3D recovery method based on structured light. This method

unifies depth from focus (DFF) and depth from defocus (DFD) techniques with the use

of a dynamic (de)focused projection. With this approach, the image acquisition system is

specifically constructed to keep a whole object sharp in all of the captured images. There-

fore, only the projected patterns experience different defocused deformations according

to the object’s depths. When the projected patterns are out of focus, their Point Spread

Function (PSF) is assumed to follow a Gaussian distribution. The final depth is computed

by the analysis of the relationship between the sets of PSFs obtained from different blurs

and the variation of the object’s depths. Our new depth estimation can be employed

as a stand-alone strategy. It has no problem with occlusion and correspondence issues.

Moreover, it handles textureless and partially reflective surfaces. The experimental results

on real objects demonstrate the effective performance of our approach, providing reliable

depth estimation and competitive time consumption. It uses fewer input images than

DFF, and unlike DFD, it ensures that the PSF is locally unique.
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Chapter 1

Introduction

In the extensive field of computer vision, depth recovery approaches have been broadly

developed and have attracted substantial attention over recent decades. It is a challenging

problem to recover the 3D information (i.e., depth) that is lost during the projection of a

3D scene onto a 2D image plane. Several 3D reconstruction algorithms have already been

proposed; the effectiveness of each method, both qualitative and quantitative, has been

studied. However, there is still no unique satisfactory solution that applies to all kind of

scenes. Moreover, our new approach, which entails a combination of depth from focus

(DFF) and depth from defocus (DFD) with the use of a light pattern projection, has not

yet been explored. In this thesis, we develop a prototype of the range sensor from our

new depth estimation system.

1.1 Role of 3D reconstruction in computer vision

Nowadays, many advanced applications require 3D data. The depth information plays an

important role in the analysis of dynamic or static environments. It is the fundamental clue

for other relevant machine vision and artificial intelligence applications such as recognition,

classification, modeling. Real world applications also include the surveillance and robotic

field that exploit depth information to gain better environmental analysis. In the medical
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Introduction

field, new technologies and researches also applied more and more reliable depth data.

Broadly speaking, the domains of 3D image processing, digital photography, multimedia,

3D visualization and augmented reality have increasingly utilized 3D information. For our

specific system, the prototype is developed for a small object and has ability to deal with

difficult surface textures. In addition, the system uses video projector as a light source.

Therefore, live objects (animal and plant) can be safely tested. Other particular examples

can be found in biological specimen analysis, and defect metallic component detection for

industrial purpose.

1.2 Motivations and Objectives

Different scenes may appear identical from certain viewpoints. Figure 1.1 shows straight

run stair and spiral stair with similar steps appearance, returning same top view images.

Clearly, it is difficult to distinguish such scenes without depth information.

(a) (b)

Figure 1.1: Top views and 3D views of (a) Straight run stair (b) spiral stair

In general, there are 2 types of 3D data to be considered: photometric and geometric

information. The 3D shapes and distances of objects in the scene constitute the geometric

information (i.e., depth map), which is also related to the spatial distribution occupied

by the object. While, light energy of the image constitutes the photometric information

(i.e., brightness).

2
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For a given optical setting, scene points lying on focal plane located at certain distance

from the lens will be correctly focused on the sensor. Only finite range of the distances

called depth of field (DOF) are acceptably sharp. While, scene points at further distances

away from the focal plane will appear increasingly blurred due to the defocus. This

suggests that the defocus and the geometry are related. Therefore, it is possible to estimate

the geometry of a scene by measuring the blur levels in an image. However, we cannot make

the distinction between the blurred image of an object with sharp texture, and the sharp

image of an object with blurred texture. Alternatively, when two scenes are defocused at

different degrees, they can produce identical images. Hence, a single defocused image is

not sufficient to obtain a unique reconstruction of the scene unless additional information

is available. To deal with this problem, we need to analyze two or more defocused images

obtained with different focus settings, as shown in figure 1.2. Four images of the same

scene taken with different camera settings. (a) The building is brought into focus. (b) The

car is brought into focus. (c) and (d) Nothing is brought into focus. Both the building

and the car are defocused. In addition, the building is more blurred than the car since it

is farther from the focus plane. Therefore, when the images are taken at various amount

of blurs, we can quantify the blur levels (e.g., size of blur, defocus measure) which can be

eventually used for depth estimation and 3D reconstruction, respectively.
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(a)

(b)

(c)

(d)

Figure 1.2: Scene with different camera settings [1]
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Our aim is to introduce a new and alternative 3D reconstruction system that can re-

cover the depth of objects from a collection of defocused images, and solve some specific

problems found in classical approaches such as weak texture surface, occlusion problem,

and correspondence problem. We focus on the novelty, uniqueness, and feasibility of the

system.

1.3 Challenges in depth retrieval

There are numbers of conditions either the object itself or the system environment that

create difficulties to the depth recovery system (see figure 1.3). Some of the prominent

challenges in this area are listed below:

Figure 1.3: Some prominent challenges in depth retrieval

Occlusion. It is one of the major problems that occurs when surface or parts of the

surface is not visible from a certain viewpoint. In addition, as the aspect changes,

one part may be occluded by another part of the same object (self-occlusion).

Correspondence matching. Correspondence matching and feature tracking are

the problem found in traditional approaches such as stereo and shape from motion,

and are time consuming.

5
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Lack of texture. A weak textured surface does not provide sufficient details for

depth estimation because both focus and defocus give the same representation. Ex-

ample of textureless objects is illustrated in figure 1.4.

Figure 1.4: Example of textureless objects

Transparent and dark surfaces. When an object surface totally or partially

pass/absorb the light, it is difficult to identify the object or to infer the shape from

acquired images.

Reflectance. High reflectivity can lead to specularity problem (see figure 1.5), in

both normal image based algorithms and structured light based algorithms.

(a) (b)

Figure 1.5: Reflectance problem (a) Specularity problem, and (b) highly specular surface

Illumination, scale variation. Variation in environmental illumination causes

large variations in the intensity values of pixels. Some related common issues are

formation of shadow, non-linear transformation in pixels, scaling, and shifting due

to the change in position of light source.

Noise. Noise can degrade the image by causing some information loss.

6
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We aim to develop practically usable system, that can address most of these challenges.

Moreover, the successful approach to the object reconstruction should also emphasize on

minimizing financial system cost. While, making it robust, accurate, and computationally

efficient.

1.4 Contribution of the thesis

In this thesis, we have proposed a new solution to the 3D recovery system using dynamic

defocused projection. Short note on each of the contributions is given below:

The demonstration of a novel 3D retrieval approach. The first contribution is

the demonstration of a novel 3D retrieval approach based on active structured light. We

address our methods as the combination of two related 3D recovery approaches, which

are depth from focus (DFF) and depth from defocus (DFD). We formulate a principle

and prototype of the new depth estimation by analyzing the point spread function (PSF)

of the defocus model. This study provides the results in both qualitative and qualitative

aspects. However, the decisive goal of this work is to verify the novelty, uniqueness, and

feasibility of the system.

The investigation of the benefits of this approach over other 3D recovery meth-

ods. Our approach can be employed as a stand-alone strategy returning effective dense

depth maps. The method has tested on the real objects that has textureless surface and

has some reflectivity. By projecting the illumination pattern, the method can overcome

the problem of weak texture, which is the common bottleneck among all passive 3D re-

construction algorithms. Moreover, it does not suffer neither from the correspondence

problem nor the occlusion problem found in traditional approaches. Our system is devel-

oped specifically for small object reconstruction. However, the scale of the setup can be

enlarged without altering the system principle.

7
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The derivation of new depth estimation. The system prototype is derived from

our new depth estimation. We construct the specific system, in which the PSF is locally

unique. It is composed of 3 main subsystems: the light pattern projection system, the

main optical system, and the acquisition system. The projecting light patterns are also

carefully designed for the distortion optimization. The system requires the calibration to

be done only once for each type of object material. The image acquisition, the image profile

analysis, the pattern localization, and the spread parameter calculation are performed for

both calibrated objects and test objects to obtain the blur estimates. Eventually, the

depth is evaluated from the analysis of the relationship between the sets of PSFs obtained

from different blurs and the variation of the object’s depths.

1.5 Organization of the thesis

The remainder of the thesis is structured as follows. In chapter 2, we have summarized the

detailed survey of the literatures found in shape recovery field especially for non-contact

based methods. Next, we focus on the depth from focus and depth from defocus method.

Some related works and the fundamental background of camera geometry and the blur

properties are explained in Chapter 3. Chapter 4 provides the prototype principle, the

system components, and the depth estimation. We describe the implementation and ob-

tained experimental results in Chapter 5. In the last chapter, we conclude by summarizing

the performance expectations and limitations of this new technique and also discussing

further possible research perspectives.

8



Chapter 2

Literature Review

One of the goals of computer vision is to predict the shape of the 3D scene by extract-

ing useful information from 2D images. Either absolute depth or relative depth can be

recovered. The absolute depth cues (i.e., distance perception) can be used to determine

the exact spatial location of an object or physical distance. It is based primarily on the

monocular depth cues. While, the relative depth cues (i.e., depth perception) can indicate

which objects are closer or further with respect to other objects. It is based on monocular

and binocular depth cues.

A well established classification divides shape recovery approaches into 2 types: contact

and non-contact methods (see figure 2.1). Contact-based methods generally provide high

accuracy and are suitable for a wide range of the applications. However, these meth-

ods involve mechanical movements of a probe device from one measurement point to

another. Consequently, the data acquisition can be very time consuming. There is also

the disadvantage of having to be in contact with the objects. It is sometimes inadmissible

particularly very soft object. Example of device using contact-based method is the Co-

ordinate Measuring Machine (CMMs). We often find this digitization systems using the

lasers mounted on some sort of the jointed arms with the high degree of freedom. These

arms can either be operated manually or automatically. Through their internal positioning

system, the geometry information is transferred to the controlling software. The machine

are very large in size and capable for measuring large object dimensions. They require

9
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the spacious platform and need to be placed in protected environment rooms against

temperature variation and vibrations.

The current development of 3D modeling is therefore mainly achieved by using non-contact

based methods.

Figure 2.1: Hierarchy of shape acquisition

2.1 Non contact depth recovery methods

Here, we clarify 2 possible ways to classify non-contact 3D recovery approaches:

1. 2 Classes: Passive and active techniques or

2. 3 Classes: Time delay based, triangulation based, and imaging cue based.

There are a number of methods that fall under each of these categories. In this chapter,

we first give a brief overview of the previous related works in the optical field. More details

emphasized on the focus/defocus and our approach are provided in the latter chapter.

2.1.1 Passive and active techniques

As seen from figure 2.2, within the optical field, there is a clear distinction between passive

and active techniques whether some sort of energy projection (e.g. lasers, structured

10
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light) or the relative motion between camera(s) and objects are considered or not. Active

techniques (e.g. laser, sonar ranging) use either laser beam or sound wave to sense the

shape of the scene objects. While, passive techniques work under ambient lighting to

acquire data for 3D recovery. Both methods have advantages and disadvantages.

Figure 2.2: Hierarchy of 3D reconstruction methods in the optical field

Passive techniques, such as stereo and shape from motion, use at least two images to

perform multiple view correspondence matching [2], [3]. The depth is extracted from

either the disparity or motion vectors after matching. The main drawbacks of these

techniques are that they are computationally expensive to either perform correspondence

matching or feature tracking as well as the occlusion problems in scene areas that are

visible only by one camera [4]. Other passive techniques include shape from shading

and shape from texture. By using only a single image, the depth ambiguities can be

retrieved. However, these techniques are only complementary to other strategies. Overall,

the common bottleneck shared among all of the passive techniques is that the depth

cannot be computed accurately in the case of weak texture or textureless scenes [5].

More details with references of these popular passive methods can be found in Section

2.1.2. Meanwhile, active techniques use active illumination to solve texture problems

and are generally based on the principle of structured light. The most well-known active

techniques are the Light striping method, Moiré interferometry, and Fourier-transform

profilometry [6],[7]. Depth can be extracted from the image deformation of projected

11



Chapter 2 Literature Review

pattern [8],[9]. Nevertheless, Moiré interferometry and Fourier-transform profilometry

return only a relative depth, not an absolute depth.

Overall, the active technique usually requires specific hardware and setting to produce

accurate and reliable estimation. In contrast, the passive technique has relatively lower

system cost and less complexity. However, the accuracy and global performance may not

be as good as the active methods in some aspects.

2.1.2 Time delay, Triangulation, Imaging cue based Methods

In this section, we propose alternative strategy to categorize the non-contact depth recov-

ery methods. Figure 2.3 shows a hierarchical representation of the existing approaches.

Figure 2.3: Hierarchy of non-contact 3D recovery approaches

Time delay based

The first category is called time delay based approaches, where a transreceiver system

computes the delay or any deterioration in reflected signal after sending and returning

back from object surfaces. The elapsed time between emission and detection yields the

distance to the object since the speed of the laser light is precisely known.

12



Chapter 2 Literature Review

Figure 2.4: The operational principles of a generic time-of-flight sensor

Time-of-flight is the principle mode of operation for most radar, laser and active acoustic

devices. The operational principles of a generic Time-of-flight sensor is illustrated in

figure 2.4. This technique measures the time between the transmission of a pulse and the

reception of an echo to provide range according to the following equation:

R =
v∆T

2
(2.1)

where






























R is the range (m)

v is the wave propagation velocity (m/s)

∆T is the round trip time (s)

Because the round-trip time is calculated, there is a factor of 2 in the formula as shown

in equation 2.1. To operate efficiently, a narrow beam must be formed to concentrate

the transmitted energy, the transducer must be matched to the characteristics of the

medium, and the receiver must match the transmitter characteristics [10]. The sensors

operational principles are the same for electromagnetic (e.g. radar, laser) and active

acoustic sensing. Such method provides useful rough depth maps for extensive distance

scene but the scanning time can be very long. Example of pulsed time-of-flight radar is

shown in figure 2.5, where the echoes from the nearer houses return to the radar first, and

the echoes from the last two houses overlap and appear to the radar as a single return.

13
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Figure 2.5: The operational principles of a pulsed time-of-flight radar

Triangulation based

The second class of approaches uses a geometric formulation to infer depth, known as

triangulation. Shape from video, shape from silhouettes, structured light, and traditional

laser scanner are example of this approach. Some prominent examples are discussed below:

Laser scanning. A system consists of a laser source and an optical detector. The laser

source emits light in the form of either a line or a pattern on the object surface. While, the

optical detector (i.e., digital camera) is used to detect this line or pattern on the objects.

By applying the triangulation principle as shown in figure 2.6, the system is able to deduce

the distance from the objects and extract their geometry, accordingly. The advantage of

using laser sources is that laser light is very bright and highly focused for long distances.

As a result, the emitted pattern is always focused on the surface of the objects. These laser

scanning techniques are typically used independently, but can also use in combination to

create a more versatile scanning system. Moreover, it provides high accuracy in geometry
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measurements. The main drawback is the high cost of such system, which render this

method useful to only certain applications. Additionally, special attention should be paid

for surfaces with specific properties, such as reflectance and transparency. Lastly, in terms

of productivity and portability, it can vary significantly [11], [12].

Figure 2.6: The operational principles of a laser scanner

Structured Light. This method is also based on triangulation, but does not need to

use specific laser sources. As seen in figure 2.7, the method works by projecting a

predefined light pattern to cover the whole/partial surface of the objects. The scene is

then captured by a detector and processed in order to deduce the geometry from the

pattern deformations in the digital image. These patterns can be simple multiple fringes

of different colors or complex patterns with curves, either time or space coded [13],[14].

The method is accompanied by texture acquisition and can lead to high accuracy and

productive results. Moreover, the systems are usually portable and easy to use.

15
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Figure 2.7: The operational principles of a Structure light scanner

Shape from silhouette. This technique recovers the object shape maximally consistent

with the silhouettes (i.e., the visual hull) [15], [16]. It is basing on multiple photographic

capturing of the object from different viewing angles. Then, we can deduce the geometry

from their object’s silhouettes. Due to its simplicity and the speed, it is often used in

the real-time system. Moreover, the automated process can be high productivity and

low cost. It can capture both geometry and texture. The main disadvantage is that it

cannot recover concavities (that is not visible in the silhouettes). Figure 2.8 illustrates

the operational principle and its concavity issue.

(a) (b)

Figure 2.8: Shape from silhouette method (a) and its concavity problem (b)

Shape from video. This method is a variant of shape from stereo. Two photo cameras

in stereo vision are replaced by a video camera. It captures the object in a sequence of
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images from different views. A requirement for the system is that the object need to be

fixed completely with no movable parts. A key point of the algorithm is the identification

of common points between different images and the registration of these points onto a

virtual 3D scene. There is no prior knowledge about the position of the camera or the

objects. Advantages of this method are the portability, the ability to capture both texture

and geometry, and also relatively low cost. Significant disadvantage is the low resolution

in capturing the geometry and sensitivity of noise in video sequences [17].

Imaging cues

The last category is based on imaging cues. It is also known as shape from X approaches,

where X can be stereo, texture, shading, motion and defocus. Some detailed description

of these approaches are summarized below:

Shape from Stereo. Stereo imaging depicts how the human eyes works. The system

uses a pair or more number of stereo images to calculate the relative displacement (i.e.,

disparity) between the image features in the frames. The basic stereo system principle is

illustrated in figure 2.9. Since the disparity is inversely proportional to the depth, this

leads to depth estimation. The major difficulty of this technique is to obtain accurate

correspondence between the image features. The image features can be either sparse (e.g.

Harris corners, SIFT features) or dense based in pixel intensity values at each pixel loca-

tion. We can classify correspondence algorithms into correlation-based and feature-based

algorithms. In correlation-based algorithms, the elements to match are image windows of

fixed size, and the similarity criterion is a measure of the correlation between the windows

in the two images. These algorithms typically give dense measurements of depth. On

the other hand, feature-based methods use a set of features to find correspondence in two

images. The distance between feature descriptors is measured with the numerical and

symbolical properties of the features. Corresponding elements are given by the most sim-

ilar feature pair. Other related works solve the correspondence problem by formulating

an error function which can be solved using dynamic programming [18], [19], graph based
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methods [20], belief propagation [21], and simulated annealing [22]. In multi-view stereo,

there are multiple views of the scene to obtain the three-dimensional information [23],

[24], [25]. The output of shape from stereo is the disparity map or depth map.

Figure 2.9: The basic stereo vision

Shape from Shading (SFS). Figure 2.10 shows the principle of shape from shading.

It uses a gradual variation of shading in an image to infer the shape of the surface. The

key idea is the relation between the image intensity and the surface slope. The radiance on

each image point is used to calculate the surface normal, the direction of the illumination

pointing towards the light source, and the albedo of the surface. After calculating the

radiance for each point, we obtain the reflectance map of the image. The parameter of

the reflectance map might be an unknown. In this case, the albedo and illuminant can be

computed by assuming a Lambertian model with local surface smoothness. We can then

estimate local surface normals, which can be integrated to give local surface shape. The

techniques can be divided into four groups: minimization approaches obtain the solution

by minimizing the energy function [26], [27], [28], Propagation approaches propagate the

shape information from a set of surface points to the whole image [29], [30], [31], Local

approaches derive the shape based on the assumption of surface type [32], [33], and Linear
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approaches compute the solution based on the linearization of the reflectance map [34],

[35]. The output of shape from shading is the surface orientation or needle map.

Figure 2.10: The principles of shape from shading

Shape from Motion (SFM). It refers to the process of extracting a 3D model of a

scene from the spatial and temporal changes occurring in an image sequence or video of

a moving rigid object (see figure 2.11). It exploits the relative motion between cam-

era and scene. Regarding correspondence, the fact that motion sequences provide many

closely sampled frames for analysis is an advantage. Firstly, tracking techniques, which

exploit the past history of the motion to predict disparities in the next frame can be used.

Secondly, the correspondence problem can also be cast as the problem of estimating the

apparent motion of the image brightness pattern (optical flow). Two kinds of methods

are commonly used to compute the correspondence. Differential methods use estimates

of time derivatives and require therefore image sequences sampled closely. This method

is computed at each image pixel and leads to dense measurements. Matching methods

use Kalman filtering to match and track efficiently sparse image features over the time.

This method is computed only at a subset of image points and produces sparse measure-

ments. Various extensions of their approach have been proposed recently, including the

incremental recovery of structure and motion [36], [37]. The factorization approach has

been generalized to perspective case [38], to incorporate uncertainty [39], for independent
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moving objects [40], articulated objects [41], for dynamic objects [42], [43] and with out-

liers and missing points [44]. The output of shape from motion is the polyhedron or point

cloud.

Figure 2.11: The principles of shape from motion

Shape from texture (SFT). It deals with the distortion of the individual texel (i.e.,

an element of the texture). As seen from figure 2.12, texture provides cues about shape

or distance. Their variation across the image allows to estimate the shape of the ob-

served surface. The shape reconstruction exploits the perspective distortion, which makes

objects far from the camera appear smaller and denser. Also, foreshortening distortion

makes objects not parallel to the image plane. The amount of both distortions can be

measured (e.g. shape distortion and distortion gradient) from an image. To calculate

the surface curvature at any point is a difficult problem. Therefore, the surface shape

is reconstructed by calculating the surface orientation (surface normal). A map of sur-

face normals specifies the surface’s orientation only at the points where the normals are

computed. But, assuming that the normals are dense enough and the surface is smooth,

the map can be used to reconstruct the surface shape. Early work on shape from texture

were feature based methods [45], [46]. An alternative approach uses spectral information

[47], [48] like Fourier transform, wavelet decomposition and Gabor transform. Most of the

techniques [49], [50] assumed that the textures were stationary. Forsyth [51] solves SFT
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without making any assumptions of isotropic, homogeneity or stationary as was done by

earlier works. The output of shape from texture is the disparity map or depth map.

Figure 2.12: Example of texture distortion

2.2 Depth from focus and defocus (DFF/DFD)

Recently, another prominent technique, shape from focus/defocus has gained remarkable

interest. Traditional DFF and DFD belong to imaging cue based category.

Depth from focus (DFF). According to image formation, only particular plane is

brought into focus while, other parts of the image become blur. This blur can be used as

the cue for depth estimation. The focus and the depth are also directly related. Depth

from focus (DFF) applies this technique by using the sharpness of the scene to indicate

how focused it is and recover the depth, respectively. The method requires several images

to be taken with small incrementing focus settings [52], [53],[54]. The aim is to search for

the best focused point (with minimum or zero blur) through the image stack. By using

camera parameters and thin lens equation, the depth of this particular image point can

be retrieved. The focus measure at each pixel location is the critical calculation used

to define sharpness level around a pixel. Numerous criterion have been proposed in the
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literature including gradient, Laplacian, and energy of the texture. Some related work

done in DFF field are summarized in table 2.1.

Summary Reference
Choi et al. recovered 3D shape from focused image sur-

face instead of planar image frames. By lo-
cating the mode of the criterion function,
it would be equivalent to the getting the
sharpest focus.

[55]

Darrel et al. generated Laplacian and Gaussian pyramids
to calculate the sharpness map of scene, us-
ing the pipelined image processing hardware.

[56]

Horn described a Fourier-transform method in
which the normalized high-frequency energy
from a 1-D FFT is used as an objective cri-
terion.

[57]

Tenenbaum used a thresholded gradient magnitude in
which the Sobel operators are used to esti-
mate the gradient. The criterion function is
the sum of gradient energy over a local win-
dow centered around all pixel locations in the
image.

[58]

Krotkov applied a Fibonacci search over the focus
measure profile for any pixel location across
the set of multi focus images.

[57]

Jarvis introduced sharpness measures based on en-
tropy, variance and gradient.

[59]

Nayar et al. developed a sum-modified-Laplacian opera-
tor to obtain local measures of the image fo-
cus quality.

[53]

Subbarao et al. proposed the energy maximization of
unfiltered,low-pass filtered, high-pass filtered
and band-pass filtered images as focus
measure functions.

[60]

Shafer et al. proposed a combination of Fibonacci search
and curve fitting for finding the minima of
the Tenegrad focus criteria based error pro-
file. Due to the window based approach and
local equifocal assumption in conventional fo-
cus measure, these techniques result in arti-
facts near the edges in the image.

[61]

Ning et al. proposed a focus measure handling artifacts
at these edges, and apply graph cuts to ob-
tain smooth omnifocus image.

[62]

Table 2.1: Summary of DFF related works
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Depth from defocus (DFD). Instead of finding out the best focus point in DFF,

method of DFD measures the blur amount (e.g. defocus parameters) explicitly, and infer

the geometry of the scene. The method requires as few as two images with different optical

geometric settings to evaluate the difference of blur level between each point in defocused

images[63], [64], [61], [65], [66]. Pentland introduced one of the earliest approach to recover

depth by defocused image. He simply used the pin hole model to produce sharp and large

aperture image. As the distance between the imaged point and surface of exact focus

changes (either increasing or decreasing), the imaged objects become progressively more

defocused. The estimate change in focus is then used to relate the depth of the scene.

Several models have been studied, and assume to define the blurring characteristic. The

Gaussian model, the wave optic model, and the geometric optics model are the examples

of Point Spread Function (PSF) assumption. Some related works in DFD are summarized

in table table 2.2.

Summary Reference
Markov et al. modeled shape and appearance of defocus as

a Markov random field. But, the computa-
tional cost of theses techniques is quite high.

[67]

Surya et al. used a spatial domain convolu-
tion/deconvolution approach. With this
method, they modeled the image with a
local cubic polynomial and the PSF as an
arbitrary circularly symmetric function.

[68]

Watanabe et al. proposed a Fourier domain approach to uti-
lize the defocused information, and obtain
the depth information of an object.

[69]

Nayar et al. projected an active illumination pattern on
the scene. A defocused set of the images is
captured, which is then used for shape esti-
mation.

[6]

Gokstorp et al. obtained a multi resolution local frequency
representation of the input defocus image
pair. It is used to estimates the blur in the
scene and geometry of the scene.

[70]
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Mennucci et al. studied and analyzed the accommodation
cues for shape reconstruction. Accommoda-
tion cues are defined as all measurable prop-
erties of the images, which are associated
with a change in the geometry of the imaging
device.

[71]

Soatto et al. proposed a solution to the generic bilinear
calibration and estimation problem for 3D
scene reconstruction.

[72]

Favaro et al. introduced an optimal method to infer 3D
geometry from defocused images. It involves
computing orthogonal operators, which are
regularized via functional singular value de-
composition.

[73]

Favaro et al. explained depth recovery approach via diffu-
sion process

[74]

Zhou et al. adapted new acquisition system by using
coded aperture pairs for depth from defocus

[75]

Moreno et al. worked on a new DFD approach based on
active refocus of image and videos

[76]

Hermans et al. recovered depth by sliding projector (velocity
related)

[77]

Zhou et al. proposed a very new challenging of depth re-
trieval by using only single image

[78]

Table 2.2: Summary of DFD related works

In comparison, the DFD has advantage over the DFF during image acquisition process,

when scene objects may change their position dynamically. Overall, it requires less number

of images, and therefore less computation. However, it needs more information about the

defocused characteristics of the camera and generally returns less accurate result than in

the DFF. The DFF/DFD is an example of the case where it can be specified either passive

or active approach depending upon whether or not it is possible to project a structure of

light onto the scene. Further substantial works of the DFF and DFD are detailed in the

next chapter.
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2.3 Summary of literature

Although a lot of solutions for the depth recovery problem have been introduced, still the

goal of developing real time, robustness, and efficient algorithm for all kind of scenes has

not been achieved. We have presented the key methods for 3D reconstruction in the field

of computer vision. Each method has strength and weakness regarding the type of object

and the system conditions. In the next chapter, we summarized the useful theoretical

background for depth recovery system. Furthermore, some important works related to

the DFF and DFD approaches are also explained.
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Depth from focus and depth from

defocus

In this chapter, we first investigate the theoretical background of the methods used in this

dissertation, such as focus and defocus geometric optics, camera parameters, Lens law,

point spread function and blur analysis. The related selection of DFF and DFD works

are also discussed in the second part.

3.1 Theoretical background

3.1.1 Camera geometry

The simplest image formation of a 3D scene is often explained by a pinhole model. As seen

from figure 3.1, the ray of light passes through a pinhole and forms an inverted image of

the object on the image plane. If the pinhole is narrow down (small aperture), only small

amounts of light can get in. In this case, the image sharpness is limited by the diffraction.

Through the small size of aperture, the light is scattered in many direction. Therefore,

in practice, the lens is used to duplicate the pinhole geometry with similar focal distance,

but larger aperture to admit more light.
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Figure 3.1: Pinhole Model

The scene can be captured either sharp or blur, depending on the convergence of all light

rays from a single point on the object. The object appears sharp, if each point on the

object plane is projected onto the image plane. The simple lens imaging system (in focus)

is illustrated in figure 3.2, where object is placed at a distance u along the axis in front of

a positive lens of focal length f and aperture diameter D. A sensor is placed at a distance

v behind the lens. For simplicity, the thickness of lens in air is negligible. The distance

from the object to the lens and the distance from the lens to the image are given by the

thin lens equation:

1

f
=

1

u
+

1

v
, (3.1)

where






























f is the focal length.

u is the object distance.

v is the image distance.
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Figure 3.2: Imaging system in focus

3.1.2 Circle of Confusion

In the defocus case, when some of the sensor planes and the image plane are misaligned

(see figure 3.3 ), the images are distributed over a circular patch called Circle of Confusion

(CoC) on the sensing element, resulting in blur image [5]. The blur level can be determined

from the diameter of CoC, which also increases in proportional to the distance from the

object in focus. This phenomenon allows us to estimate the geometry of the scene by

measuring the amount of blur in the image.

Figure 3.3: Circle of confusion from multi-focus system

Figure 3.4 represents the camera geometry of the single convex lens, with variable camera

parameters (s , f , D).
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Figure 3.4: Camera geometry of single convex lens

Here, s specifies the sensor distance, f the focal length, and D the aperture diameter. The

camera parameter setting is denoted by ei where ei = ( si , fi, Di ) is a vector representing

the ith camera parameter setting. According to paraxial geometric optics, in order to

define the radius of the circle of confusion, the knowledge of similar triangles is applied

tan α =
D/2

v
=

d/2

s − v
(3.2)

By employing the Lens law (Eq. 3.1), the normalized diameter and the radius of CoC

becomes

d = Ds
(1

f
− 1

u
− 1

s

)

(3.3)

R =
Ds

2

(1

f
− 1

u
− 1

s

)

. (3.4)

3.1.3 Model of defocus

In this section, we investigate the model of defocus in spatial domain analysis, and Fourier

domain analysis.
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Spatial Domain Analysis

An image I(x) captured on the image sensor is formed a sharp image I0(x), which can be

blurred by the optics, the defocus, and the finite size of the pixels. We can describe the

image I(x) via the convolution of in-focus image I0(x) with the point spread function h(x)

as follow:

I(x) = h(x) ∗ I0(x) + e(x) (3.5)

where



















x =
{

x, y
}

is an image coordinate in the two dimensional image, and

e(x) is an additive noise.

The point spread function h(x) can be considered as a convolution of several blur kernels

as shown in the figure 3.5.

h(x) =

∫ ∫

ρ(x − I0)η(I0 − t)µ(t)dI0dt (3.6)

where






























µ(x) is the optical blur,

η(x) is the defocus blur, and

ρ(x) is the sampling blur.

Figure 3.5: The overall blur kernels
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According to [79], accurate models of blur kernel (µ(x), η(x), and ρ(x)) are technically

difficult to determine. It requires a special software and detailed physical model of the

lens and the sensor, which are generally unavailable. Instead, we can consider one well-

known measure of lens quality called Modulation Transfer Function (MTF). It is defined

as the ratio of relative image contrast divided by the relative object contrast, where the

object is the sinusoidally varying brightness at some spatial frequency [80]. The MTF

depends on the location on the image plane, and inversely proportional to the spatial

frequency. Without the relationship of MTF and the lens resolution, the optical blur

kernel µ(x) can not be derived. Regarding the F-number of the lens, the blur decreases

at lower F-number due to the improvement of the optical wavefront, and then increases

at higher F-number due to the increasing diffraction blur, until it reaches the diffraction

limit [81]. With respect to figure 3.6, the optical kernel can be written as,

µ(x) =

[

2J1(γ)

γ

]2

(3.7)

Figure 3.6: The defocus spot size

Here, J1 is a Bessel function [82],γ = π|x|D
λl

, λ = 0.7µm is the wavelength of the light, l is

the distance from the lens to the image plane, and D is the lens diameter (see figure 3.6).

In practical cases l ≈ f , where f is the focal length of the lens. Using the definition of the

F-number, F ≡ f

D
, we can write γ ≈ π|x|λF

.

For the second blur kernel, the defocus kernel is assumed to have a cylindrical shape given

by
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η(x) =



















1

πr2
d

, |x| ≤ rd

0, |x| > rd

(3.8)

Here, r2
d
is the radius of the cylinder [83]:
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The derivative ∂l
∂L is obtained from the thin lens formula, connecting between the focal

length f , the distance L to the object, and the distance l to the focused image of the

object (see figure 3.6)

1

f
=

1

l
+

1

L
. (3.10)

Lastly, the sampling kernel ρ(x) describes the averaging over a square pixel of size ∆x

ρ(x) =



















1
∆x2 , max (|x1|, |x2|) ≤ ∆x

2

0, otherwise
(3.11)

Let assume an image in focus I(x) = ρ∗µ∗I0(x) and a defocused image J(x) = ρ∗η∗µ∗I0(x).

The minimal depth resolution ∆L is the depth change in which the difference between these

two images becomes distinguishable.

The simulation result of the diffraction and defocus blurs are represented in figure 3.7.

The sharp pre-image I0(x) has a step-like profile as shown in black dashed line. The

focused image of this profile blurred only by the optics diffraction with λF = 1, is shown

by a red solid line; I = µ(1) ∗ I0(x). The blue dotted lines show the defocused images,

blurred by defocuses with rd = 1 and rd = 2 ; J1 = η1 ∗µ1 ∗ I0and J2 = η2 ∗µ1 ∗ I0. Arbitrary

small defocus blur will result in some difference between the focused and defocused blurs.

In practical cases such difference is obscured by the image quantization and the noise.
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Therefore, the difference between the images should exceed the quantization and noise

level, in order to be reliably detectable.

(a) (b)

Figure 3.7: Step-like profile on sharp pre-image, smoothed by optics blur and different defocus

blurs.

Fourier Domain Analysis

In Fourier domain, the blur can be depicted by a low-pass filter, which suppresses high

frequencies. The cutoff starts from some characteristic frequency υ ≈ 1
ς , where ς is the

scale of the blur kernel in the spatial domain. At the reasonable signal to noise ratios, the

scales of defocus and optical blurs must be comparable. This implies that in the Fourier

domain, their characteristics frequencies must also be comparable. The diffraction blur in

Fourier domain is transformed into

F(µ(x)) =



















F2(ς − sinγ),
√

u2 + v2 ≤ 2
λF

0,
√

u2 + v2 > 2
λF

(3.12)

where the scale of the blur kernel ς = 2arccos(λF
√

u2+v2

2
), u and v denote spatial frequency

parameters in the x and y direction, respectively.

The defocus blur then becomes
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F(η(x)) =
L2F

2π f 2∆L
√

u2 + v2
J1(

2π f 2
∆L

L2F

√
u2 + v2). (3.13)

Finally, the sampling blur kernel is given by

F(ρ(x)) =
1

2π

1

∆x2
sinc

u∆x

2
sinc

v∆x

2
. (3.14)

Let assume two images: in-focus image I and out of focus image J. Then, I(x) = h(x,L) ∗
I0(x) and J(x) = h(x,L + ∆L) ∗ I0(x). In Fourier domain, we obtain

F(I) = F(ρ(x))F(µ(x))F(I0(x)). (3.15)

F(J) = F(ρ(x))F(η(x))F(µ(x))F(I0(x)). (3.16)

The minimum depth resolution ∆Lmin is the value in which the difference between F(I)

and F(J) is detectable.

3.1.4 Point Spread Function

The PSF can be used to describe the imaging system response to a point input. It

is analogous to the impulse response for a focused optical system. A point input can

be either point source or point object representing as a single pixel in the ideal image.

However, it will be reproduced by more pixels in the real image. The PSF in many

contexts (e.g. defocus domain) can be thought of as the extended blob in an image. The

degree of blurring (i.e., spreading) of the point object can determine an imaging system

quality. The image of an object is therefore the convolution between the true object and

the PSF.

I(x, y) = I0(x, y) ∗ h(x, y) (3.17)

Several approximated models of the PSF have been investigated including the pillbox

and Gaussian function. The representations and intensity plots of these 2 possible PSF
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models are illustrated in figure 3.8 and figure 3.9. Each model of blur function had its

own advantages and disadvantages.

(a) (b)

Figure 3.8: Point spread Function (a) Pillbox model, (b) Gaussian model

(a)

(b)

Figure 3.9: Intensity graph and corresponding images of (a) Pillbox model, (b) Gaussian model

The pillbox function can be seen as cone of light emerging from the lens with the point

of the cone in the focal plane. If the sensor plane is shifted from the focal plane, then it
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cuts the cone in circle with the diameter d. The pillbox function as the PSF model is

hp(x, y) =



















4
πd2 , x2

+ y2 ≤ d2

4

0, otherwise
(3.18)

However, if within the circle, the brightness is not uniform, the PSF of the camera sys-

tem at a point (x, y) may approximately modeled as a circularly symmetric 2-D Gaussian

function. In addition, for the conceptual simplicity, the Gaussian model becomes more

practical usable reference for PSF model when paraxial geometric optic is used and diffrac-

tion effects are negligible. The Gaussian function as the PSF model is

h(x, y) =
1

2πσ2
e

(

−x2
+y2

2σ2

)

. (3.19)

If the brightness is assumed to be constant over a region of the image projected onto the

CCD element, the spread parameter σ is proportional to the diameter d.

σ = kd, (3.20)

where k is a constant of proportionality characteristic for every camera and can be deter-

mined from the camera calibration.

Figure 3.10 illustrates the original light pattern image compared to the resultant images

after Gaussian blur and lens blur. The output suggests that Gaussian blur and lens blur

provide similar effect. Another advantage is that the Fourier transform of a Gaussian

function is also a Gaussian.

The Fourier transform of the PSF is called the Optical transfer function (OTF):

ĥ(ωx, ωy) = e−
σ2(ω2

x+ω
2
y)

2 . (3.21)
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Thus, the defocus image in Fourier domain becomes,

Î(ωx, ωy) = Î0(ωx, ωy)e−
σ2(ω2

x+ω
2
y)

2 . (3.22)

Eventually, once we know the input and output images, we can determine the PSF.

Figure 3.10: Comparison between Gaussian blur and lens blur

In the following section, we provide related works done using focus and defocus cues for

shape estimation.

3.2 Depth from focus (DFF)

There has been considerable researches done on the the methods to recover the depth

information from focus. Some of the main works proposed by Nayar et al. [53] and

Subbarao et al. [84]. The method suggested that the different focus levels can be obtained

by adjusting the camera parameters such as the lens to image plane distance v, the focal

length f , or the aperture size D (see figure 3.4). Many observations for the different
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camera parameters are done in order to estimate the focus measure using various criterion

functions.

Choi et al. recovered the 3D shape from focus image surface instead of planar image

frames [55]. The method is based on approximation of the Focused Image Surface (FIS)

by a piecewise curved surface which tracks the realistic FIS in image space. The focused

image surface in image sequences is illustrated in figure 3.11. The piecewise curved

surface is estimated by interpolation using the Lagrangian polynomial. The methods

involve in obtaining many images for the various camera parameters, and estimating the

focus measure using various criterion functions.

Figure 3.11: Focused image surface in image sequences [55]

Krotkov has experimentally evaluated several such criterion functions including the Lapla-

cian and Teningrad operators [57]. Instead of using window-based blur estimation opera-

tors, Asada proposed a method in which the blur can evaluate from the intensity change

along corresponding pixels in the multi-focus images [85]. The fundamental drawbacks

of the DFF method is that it is time consuming for both image acquisition and depth

estimation. Practically, about ten or more images are required to estimate the depth of a

scene for a reasonable level of accuracy [86].
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3.3 Depth from focus (DFD)

There are a number of papers in the literature addressing the methods to recover the

depth information from defocus. The fundamental methodology is to estimate the depth

from the measurement of the relative defocus between images. It can be classified into 2

types: passive DFD and active DFD.

Passive DFD. Two or more images of a scene are taken with different camera parame-

ters. Based on the difference in defocus blur between at least two observations, the depth

in the scene is estimated. This method was first introduced by Pentland [87], where he

used a half mirror to split the observation and then passing the observation through two

lenses with varying apertures. For each image, we can use a patch based Fourier transform

and the ratio of the windowed Fourier transforms to obtain the relative defocus. If one of

the images is in-focused, we can achieve the depth estimate from this relative blur.

Based on this work, Subbarao et al. considered the method of blur estimation from blurred

edges [88]. They proposed a closed form solution for estimating the blur parameters and

extended the earlier assumption of the point spread function (PSF) from being Gaussian

to the more general case of being rotationally symmetric. In the later work, he also

considered the usual case of depth estimation from defocus by allowing changing of more

than one camera parameters simultaneously. The methods based on estimation of blur

from step edges were too restrictive and could not be widely used. The approach for depth

from defocus based on using two or more images from different camera parameters was

further explored. In the earlier cases, ratio of windowed Fourier transforms were taken

for estimating the depth in the scene. This approach was refined by Gokstorp [70]. In

their work, a local frequency representation was adopted in which the local estimates of

instantaneous frequency, amplitude and phase were computed. A set of complex-valued

Gabor filters are used to obtain the representation. The final estimate of blur is computed

by averaging the result from the various filters. A similar method was also proposed by

Xiong et al. [61]. They proposed moment filters to address the problem of tuning the

individual frequency components. The property of moment filters is that it is a polynomial
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approximation with the order of the polynomial being tuned for obtaining a large number

of narrow band filters. Due to the recursiveness in frequency and spatial domain moment,

the filters can be implemented efficiently. While, the methods based on narrow band

filters are attractive, it is typically computationally extensive and also the accuracy is

a function of averaging over a large number of such filters. A different approach was

adopted by Watanabe et al. [69]. They suggested to use the broadband rational filters.

The technique uses a normalized ratio of near and far focused images, which is then

convolved with a small number of broadband rational filters (invariant to the texture).

However, a drawback of the method is under the assumption that the normalized ratio

of the near and far focused images is linear in nature. This assumption is therefore valid

only when the amount of defocus between the near and far images is very small, and will

not work for a general class of defocused images. These concluded the passive DFD based

on Fourier domain, the method based on spatial domain is summarized as the following.

Ens et al. suggested a method for estimating depth from defocus by using a matrix based

approach [52]. They propose the estimation of the transfer function from the near image to

the far image using a regularization based approach. An approach for depth from defocus

using spatial deconvolution was proposed by Surya et al. [64]. This is achieved by using

an operation termed S-Transform. By assuming a cubic polynomial form of an image, the

convolution and deconvolution can be expressed in terms of a simple Laplacian operator

modulated by the second moment of the PSF. The resultant depth maps obtained were

however not very accurate.

Recently, Favaro et al. solve the problem of depth from defocus by considering two

specific cases. The first case is when the form of the PSF is known, and the second case

is when the form of the PSF is unknown. When the form of the PSF is known, they use

a least squares solution in solving the projection between finite and infinite dimensional

Hilbert spaces and this is achieved by estimating a set of orthogonal operators. They

use functional singular value decomposition for estimating the operators. The values

are truncated beyond a certain singular value and this results in regularization being

incorporated into the solution. However, if the form of the PSF is unknown, they first
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learn the set of projection operators from blurred images. Then, they use this learnt set

of projection operators to estimate the shape in the least square sense as done previously.

Active DFD. Pentland introduced the active depth from defocus, where a known pat-

tern of light is projected onto the scene [89]. The optical path of the projected pattern is

maintained and similar to the observing camera by using an optical beam splitter. The

structured light source projects a pattern on the scene while the camera records it. Since

the original projected light source is known, the defocus blur introduced by the depth in

the scene can be measured against the original pattern and the blur introduced due to

defocus. Consequently, the depth in the scene can be measured. The method was refined

by Noguchi et al. for microscopic shape from defocus [8].

Nayar et al. proposed a real-time focus range sensor [90], where the illumination pattern

used for depth estimation is analyzed in detail. They performed a Fourier transform

analysis in the various aspects of the defocus, illumination pattern, and the focus operator,

in order to optimize the illumination pattern. Furthermore, the focus operator is tuned

to enhance the depth estimation. These refinements were used to develop a robust real

time focus range sensor. The comparison of tuned focus operators are illustrated in figure

3.12.
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Figure 3.12: (a) The 3 x 3 Laplacian and its (b) Fourier transform, (c) The kernel structure

for a 3x3 operator that is symmetric, (d) The kernel of a 3 x 3 operator that is insensitive to

the zero frequency component, (e) The second moment of each of the four operator peaks is

minimized, and (f) Response of the tuned focus operator (sharper peaks than the Laplacian)

[90].

Moreno-Noguer et al. demonstrated active refocusing of images and videos [76]. A dot-

pattern is used instead of a stripe pattern so that the dot-pattern projected can be easily

removed while refocusing the image. They also use segmentation techniques for obtaining

a dense depth map. A similar work has been done by Zhang et al. [91] where they use

the projector for projecting a shifting light pattern and a set of images of the scene is

taken. The depth of a pixel is computed by analyzing the temporal variation of the pixel
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brightness due to the defocus. While, these works demonstrate the effectiveness of active

depth from defocus, the main drawback is that they require elaborate set-up and can be

done only in carefully controlled environments with calibrated illumination conditions.

These requirements preclude the use of these techniques in outdoor environments and

natural conditions.

3.4 Our approach

Our approach uses novel active range sensor and combines both depth from focus and

depth from defocus with the help of light pattern projection. This method falls into both

the imaging cues approach and the active structure light based approach. The aim is to

introduce a new and alternative approach to solving some of the specific problems found

in classical approaches, such as the weak texture surface and occlusion problem. With this

approach, the projected light pattern images are acquired within certain ranges, similar to

the DFF approach, but the numbers of captured images are much smaller, and the images

do not need to be sharp. In traditional DFD, blur estimation is a very difficult problem

because a point that represents the defocus information has contributions from several

PSF that are induced by different depths. Our method avoids this problem because we

can control the deformation by placing an additional semi-transparent screen after the

light source. Therefore, by considering the light pattern as a plane, one point on the

object representing defocus information corresponds to only one PSF. Moreover, when

the projected patterns are out of focus, we assume that their PSFs follow a Gaussian

distribution. Eventually, the relationship between the set of PSFs obtained from different

blurs and the variation of the object depths can be determined.

3.5 Chapter summary

We have presented the theoretical background and the fundamental knowledge that is

useful for the depth recovery system. The defocus model has been analyzed in both spatial
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domain and Fourier domain. Furthermore, we have discussed also about the Point spread

function, which is one of the key parameter to our final depth derivation. Some previous

interesting works on the DFF and DFD are also summarized. The detail explanations of

our approach are presented in the following chapters.
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Methodology

In this chapter, we first discuss about our prototype principle including the light pattern

projection system, the main optical system, and the acquisition system. With this solid

knowledge, we then derive our depth estimation system. Lastly, we mention about the

design and deformation of the dynamic light pattern which is another important part of

the system.

4.1 Our prototype principle

A new prototype of range sensors has been developed. We integrate both depth from

focus and depth from defocus with the use of dynamic structured light. A video projector

is used as a light source, to produce strong projecting light patterns. It is much more

powerful compared to normal lamps and much simpler compared to LEDs. Moreover,

it moderates the additional pattern modifications that are needed for different types of

surface textures.
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Figure 4.1: Proposed approach model

Figure 4.1 illustrates the overall design of the system. The main purpose of using a semi-

transparent screen is to control the defocus level that corresponds to each screen position.

It also helps to solve the magnification problem caused by the fact that the projected light

patterns from the video projector are originally small compared to the patterns projected

on the object without passing through the screen. Reducing the intensity of the powerful

light is additional advantage. Because the normal lamp provides insufficient brightness,

the video projector sometimes produces too strong a light, which can be adjusted by a

projector setting or by putting in some blocking element(s). The beam splitter is mainly

used to observe the object on the sensor, and it allows for the projection of a light pattern

onto the object.

The entire set-up can be separated into 3 systems:

4.1.1 Light pattern projection system

In figure 4.2, the video projector projects the elementary light pattern of size N × M

pixels. Consequently, we observe a light pattern of size H × L mm on the screen. The

size of the input pattern from the video projector (N ×M) and the size of the pattern

that appears on the screen (H×L) indicate the resolution of the light pattern. We aim to
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project the sharp elementary pattern of size P on the screen regardless of the positions.

However, at some screen displacements, we may need to adjust the video projector to

maintain the pattern sharpness.

Figure 4.2: Light pattern projection system

4.1.2 Main optical system

The system is considered from the light pattern on the screen (size P), projecting through

a specific optical system onto the object. The optical components of the system consists

of a semi-transparent screen, a compound lens, and a beam splitter. An elementary size

of the light pattern that appears on the object is denoted as P′. The optical path of the

system is illustrated in figure 4.3.
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Figure 4.3: Main optical system

The magnification of this system can be written as

γ =
P′

P
=

d′

d
. (4.1)

Thus,

P′ =
Pd′

d
, (4.2)

where































γ is the main optical system magnification,

d is the distance from the light pattern on the screen to the additional compound lens, and

d′ is the distance from the additional compound lens to the object.

In general, for the ideal case where the object is placed in or very close to the surface of

the best focus, an output image formed on the sensor is sharp or identical to the input.

The relationship between the input and output images is the following:

I = I0 ∗ δ
F−→ Î = Î0. (4.3)

However, our concern is deformation when a semi-transparent screen’s displacements are

varied at different depths of field. The blurring function has an influence on the system and
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therefore needs to be taken into account. The defocused output image can be rewritten

as the convolution between the input image and a blurring function h, as follows:

I = I0 ∗ hd,d′ , (4.4)

where hd,d′ are the blurring functions (PSF) corresponding to distance d and d′.

As explained in subsection 3.1.4 , we assume the PSF follows the Gaussian distribution.

This extracted PSF will be used for depth computation.

4.1.3 Acquisition system

The acquisition system captures objects with projected light patterns (size P′) to the

sensor via a beam splitter. The observed pattern size on the sensor is denoted as P′′. The

optical path of the system is simplified, as shown in figure 4.4. The magnification of this

system is

γ′ =
P′′

P′
=

l′

l
. (4.5)

Hence,

P′′ =
P′l′

l
=

Pd′l′

dl
, (4.6)

where































γ′ is the acquisition system magnification,

l is the distance from the light pattern on the object to the camera lens, and

l′ is the distance from the camera lens to the sensor.

The relationship between the sizes (in pixels) of the pattern P′′ on the sensor and of the

elementary pattern from the video projector is used for the light pattern specification

(width and density). Only one pixel of the light pattern (from the light source) may

require several representing pixels on any of the captured images.
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Figure 4.4: Acquisition system

This concludes the prototype principles. The corresponding practical implementation is

detailed in Chapter 5. We now explain the theoretical relationship between the blur level

(the spread parameter) and the depth.

4.1.4 Depth Estimation

We use the camera lens (compound lens) instead of single convex lens as shown in fig-

ure 4.5. Here, s specifies the sensor distance (
∥

∥

∥H′C′
∥

∥

∥), f specifies the focal length (
∥

∥

∥H′F′
∥

∥

∥),

v is the object distance (
∥

∥

∥H′A′
∥

∥

∥), and D is the aperture diameter. According to paraxial

geometric optics, to define the radius of the circle of confusion, the knowledge of similar

triangles is applied.

tan α =
D/2

∥

∥

∥F′A′
∥

∥

∥

=
φ

∥

∥

∥A′C′
∥

∥

∥

=
φ

x
. (4.7)

The normalized diameter of CoC can be rearranged into the following:

φ = x · D/2
∥

∥

∥F′A′
∥

∥

∥

, (4.8)
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where


















x is the object distance and

φ is the diameter of Circle of Confusion (CoC).

The higher the degree of blur is, the larger the CoC. The CoC is also proportional to the

value of spread parameter σ and can be written as

σ = K1φ, (4.9)

where K1 is a positive constant.

Given a spread parameter σ, aperture size D, and the controllable distance
∥

∥

∥F′A′
∥

∥

∥, the

only unknown of the system (see equation 4.8) is x. Eventually, we can derive the object

distance x, which directly relates to the real depth of the object as

x = ±
2σ ·

∥

∥

∥F′A′
∥

∥

∥

K1D
(4.10)

x = ±K2σ (4.11)

where K2 is a positive constant for a given position of the screen.

The aim of the whole system is to achieve the object depth x. The extracted PSFs are

used for spread parameter σ computation. However, K2 is an unknown variable. Another

concern is that the pattern on the screen at different displacements may not be constant,

even after tuning a video projector for the best sharpness. Moreover, the distance l

varies according to the object depths, which is also an unknown variable. To solve these

problems, the calibration process is required. The depth is eventually computed by using

a derived depth formula with the parameters obtained from calibration.
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Figure 4.5: Camera geometry of compound lens.

4.2 Illumination pattern

4.2.1 Design of dynamic light pattern

All passive techniques share the same inherent weakness when the nature of an object’s

texture is poor. A weakly textured surface does not provide sufficient details for depth

estimation because both the focus and defocus give the same representation. An effective

solution to solve this problem is to employ an active illumination pattern. The structured

light source projects a pattern on the scene through specific optical setting while the

camera captures it. Because the original projected light source is known, the defocus blur

introduced by the depth in the scene can be measured against the original pattern. The

choice of an appropriate light pattern is important to optimize our final reconstruction.

Highly textured light patterns are forced onto the object, improving the overall depth

recovery system to be reliable and more precise. Moreover, to avoid rotational variance,

it should be designed in a symmetrical or semi-symmetrical arrangement. The density

of the projected pattern or its spatial frequency should correspond to the frequency of

the height variation to be captured. For example, an object with a high level of detail

requires a finer texture, whereas an object with smooth structural changes can use a sparse

pattern instead. To be specific, for the object with small depth variations, we can reduce

the processing time by projecting the sparse pattern instead. There are fewer intensity
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profiles to be analyzed, and it returns sufficient results that are similar to the results

from a denser pattern projection. For our experiment, we employ a set of parallel stripes

with regular spacing. Spacing and shifting step sizes are determined from the scale of

the texture to be analyzed. The width of the lines and the density of the pattern are

selected according to equation 4.6, to cover as much of the reconstructed area as possible.

Figure 4.6 illustrates a sample of a stripe light pattern with a width of 1 pixel and 20

pixels for spacing in between.

(a) (b)

Figure 4.6: Example of illumination pattern used (a) horizontal stripes (b) vertical stripes.

4.2.2 Deformation of projected texture

The projected texture is deformed by depth variation and physical properties of the sur-

face. The deformation due to depth variation is the transformations of a ray of projected

light due to variations in surface depth. This results in pattern shifting and pattern

deformation. For pattern shifting, the position where a particular projected pattern is

imaged by the camera depends on the absolute height from which the pattern is reflected.

The amount of shift depends on the height difference between the objects as well as the

angle between the projector axis and the height axis. While, for pattern deformation,

any pattern that is projected on an uneven surface gets deformed in the captured image

depending on the change in depth of the surface. These deformations depend on the ab-

solute angle between the projector axis and the normal to the surface at a point as well

as its derivative.
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The deformations due to physical properties of the surface concern with other factors, such

as reflectance and natural texture, that contribute to the changes in the projected texture.

The physical property that mainly affects the final deformed pattern is the reflectance of

the surface. Various problems due to the reflectance include specular surfaces, transparent

surfaces, translucent surfaces, natural texture, and dark surface. The solution to these

deformation problems is explained in Chapter 5.

4.3 Chapter summary

This chapter is dedicated to the prototype principle, which consists in 3 main systems:

the light pattern projection system, the main optical system, and the acquisition system.

The system components and their optical paths are explained in detailed. The second

part of the chapter described the design of the light pattern and its textured deformation.

In the next chapter, we present the detail explanations of our implementation.
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Implementation

This chapter is focused on the implementation of our new depth estimation system. In

our experiment, a Canon SX80 Mark II video projector with a resolution of 1400x1050

is used as the light source. The horizontal stripe illumination patterns with a width of

1 pixel and 20 pixels for spacing are applied. The beam of the projecting light pattern

then reaches the semi-transparent screen and an additional lens (Canon telephoto lens

135 mm). The light rays passing through the lens are split into 2 directions by the beam

splitter. One beam is projected onto the object, and another is transmitted from the ob-

ject to the sensor. The scene object is captured using a Canon EOS-1Ds Mark II camera

with an attached 50 mm lens. The data flowchart illustrated in figure 5.1 describes the

main operations. The process is divided into two steps: object calibration, and object

reconstruction. The image acquisition, image profile analysis, pattern localization, and

spread parameter calculation aim at extracting depths, and are performed for both cali-

brated objects and test objects. The object calibration process provides the reference map

and the depth calibration. Depth calibration is performed only once and is also identical

for the similar object material; while the object reconstruction process returns candidate

depths in which the reference map is required to evaluate the final depth. The detailed

implementation are described in the following sections.
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Figure 5.1: Flowchart

5.1 Image Acquisition

The camera settings (e.g., F, ISO, shutter speed) are carefully tuned such that the system

keeps the whole object sharp in all of the images and only the defocused patterns experi-

ence varied deformation according to the object’s depth. All of the optical components in

this set-up are fixed. Only the semi-transparent screen is moved, which results in several

scene images with different blur levels. With this specific setting, we can analyze the

defocus of the light pattern projected on the object. The entire experimental set-up is

shown in figure 5.2.
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Figure 5.2: Experimental set-up

5.1.1 Camera setting

In order to determine the appropriate camera setting, we refer to the exposure triangle

(see figure 5.3). It illustrates the relationship of the 3 important settings that directly

affect the exposure, the quality, and the type of the captured images. The detail of the

camera settings are summarized in table 5.1 and the corresponding impact of camera

setting are in table 5.2.

Camera setting Summary Our setting

Exposure mode By using the manual mode, we can specify the
aperture, ISO and shutter speed regardless of
whether or not these values lead to a correct ex-
posure.

Manual(M)
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Aperture The function of the aperture is similar to the Iris
in our eye. We can control the amount of light or
how large the area where the light allow through
the camera lens by adjusting the aperture. This is
specified in terms of the F-stop value. The higher
the number of F-stop, the smaller the aperture is.
The smaller aperture also means the larger depth
of field (DOF).

F/8

Shutter speed It is used to control the amount of time, that the
light is allowed to expose the image sensor on the
camera. A slower shutter speed means the sensor
is exposed to the light for a longer time and there-
fore it is suitable for less available light situation.
However, the slower shutter speed also means a
greater risk for motion blur ( e.g. moving object,
camera shake).

1.3 sec

ISO The ISO speed is used to determine how sensitive
the camera is to the incoming light. Similar to the
shutter speed, it also correlates 1:1 with how much
the exposure increases or decreases.

ISO 200
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However, unlike the aperture and the shutter
speed, the lower ISO speed is almost always de-
sirable. Because the higher ISO speeds can dra-
matically increase the image noise.

Table 5.1: Camera setting

F-stop Aperture size Required Depth of field
shutter speed (DOF)

Higher Smaller Slower Wider
Lower Larger Faster Narrower

Table 5.2: Corresponding impact of camera setting

In our experiment, we work under the dark room with less available light from only the

video projector source. Therefore, we choose a long shutter speed of 1.3 seconds to let

the light exposed to the sensor for a long time. By employing this slower shutter speed,

we also put the camera on the tripod to avoid the motion blur. While, for the aperture

size, we set it at F/8 as it allows the light to the lens covering our working DOF range.

Lastly, we select ISO 200 to minimize noise on the image.
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Figure 5.3: Exposure triangle

As explained in section 4.1, our prototype principle of the set-up consists in 3 main

systems: the light pattern projection system, the main optical system, and the acquisi-

tion system. The practical set-up used in this experiment and its observation view are

illustrated individually in figure 5.4, 5.5, and 5.6.

Figure 5.4: Experimental set-up of the first system (light pattern projection system)
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Figure 5.5: Experimental set-up of the second system (main optical system)
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Figure 5.6: Experimental set-up of the third system (image acquisition system)

5.1.2 Calibration procedure

The object for the calibration is designed to have the slots to insert the planar planes

corresponding to each depth as shown in figure 5.7 (a). It is also used as the fixed

envelope for other test objects during the depth estimation process (see figure 5.7 (b)). We

calibrate the system using a planar surface at 5 different depths (D1−D5) as exemplified

in figure 5.7 (c).
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(a) (b) (c)

Figure 5.7: Object envelope

Each plane is captured through the projection of 6 screen displacements (Pl1 − Pl6),

resulting in a total of 30 calibrated images. The captured images of the calibrated objects

are illustrated in table A.1 in Appendix. Similarly, we apply the same procedure to the

test object, and we obtain 6 images. Before starting the main algorithm, the acquired

images are pre-processed to keep only the meaningful part of images. First, we convert

image from the RGB to the grayscale level. Then, we crop the images, selecting only the

effective areas, which are object-projecting regions within the beam splitter. Figure 5.8

exemplifies the image pre-processing of our test objects.
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Figure 5.8: Image preparation from left to right: original image, grayscale image, cropped

image
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5.2 Image profile analysis

A 3D object can be thought of as the variation in depth over the object. However, these

depth variations are missing during the process of imaging, and what remains is the

intensity variations that are induced by the shape and the lighting. The profile analysis

is performed, to extract the intensity values along multiline paths of the images. The

algorithm computes equally spaced points along the specified path and uses interpolation

to determine the image intensities for each point. This operation is performed along an

orthogonal direction to the axis of the pattern projection as illustrated in figure 5.9.
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(a)

(b)

Figure 5.9: Profile analysis in an orthogonal direction to the axis of the pattern projection (a)

horizontal pattern (b) vertical pattern

To be precise, when the projected pattern is the horizontal stripes, the vertical profile

analysis will be applied column by column, while for the vertical stripe pattern, the hor-

izontal profile will be analyzed row by row. The output is stored in the profile stacks

regarding their intensities and pixel coordinates. In either column-wise or row-wise ap-

proaches, profile analysis will provide numbers of peaks corresponding to the numbers of
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stripe patterns. Each peak occurs at the center of its pattern and decays along both sides

with a different speed. This scenario is based on the same concept that explains why

the focused or sharp pattern gives a smaller width and higher profile intensity than the

blurred pattern (see figure 5.10).

Figure 5.10: Different blur levels and their corresponding image profiles

5.3 Pattern localization

Each single profile contains either important data or noise. The difficult task is to dif-

ferentiate the noise from the important signal before localizing the illumination pattern.

The aim is to smooth the noisy part and to maintain the important intensity details

simultaneously. Example of extracted intensity profile is shown in figure 5.11.
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Figure 5.11: Example of extracted intensity profile

5.3.1 Profile smoothing

The smoothing of 1D signals is a well-known problem. We applied some of the most

effective filters to the same sample of image profile. The comparison among different filters

(Mean, Median, Wienner, and Sgolay filters) are shown in figure 5.12. In figure 5.13

(a), the result showed that the Wienner filter (in yellow) maintains the original intensity

profile the most. While, the mean (in green) and the median (in magenta) filters smooth

the profile more. However, our aim is to smooth only the cap of the profile to help the

peak detection procedure. Nevertheless, it must maintain the width of each representing

pattern profile because this is an important parameter used for our depth estimation. The

width directly relates to the size of blur (spread parameter).
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Figure 5.12: The comparison among different filters

Therefore, we selected the Savitzky-Golay(Sgolay) filter [92], which is a smoothing poly-

nomial or a least-squares smoothing filter. It is very effective and suited for our type of

signal, unlike typical Finite Impulse Response (FIR) filters that tend to filter out a signif-

icant portion of the signal’s high frequency content along with the noise. The Sgolay filter

essentially performs a local polynomial regression (of degree k) on a series of values (of

at least k+1 points which are treated as being equally spaced in the series) to determine

the smoothed value for each point. The Sgolay filtering algorithm allows us to define 2

parameters: frame size and polynomial order. The frame size indicates numbers of points

to be evaluated each time. The polynomial order indicates how close the fitting to the

original data. The higher degree polynomial makes it possible to achieve a high level of

smoothing without attenuation of data features. In addition, the span must be odd, the

polynomial degree must be less than the span, and the data points are not required to

have uniform spacing. The results from 3rd and 6th orders are illustrated in red and blue

lines, respectively. In our specific case, the 6th order polynomial fits with 41 data points is

preferable because it preserves features of the distribution such as relative maxima, min-

ima and width. To be precise, we obtain perfect smooth at the cap, and also the closest
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width to the original profile as desired. The mentioned effects can be clearly observed in

figure 5.13 (b).

(a)

(b)

Figure 5.13: Effect of the smoothing filters
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5.3.2 Cutoff determination

After smoothing the image intensity profile, the next task is to define a pattern cutoff

coordinate. Therefore, the individual part of the profile can be fit with Gaussian model.

We extracted the local maximum and minimum by an absolute peak detection algorithm.

We prefer a non-derivative method because finding the zero-crossing of first derivative can

yield false results in the presence of noise. This algorithm is adapted from the peakdet

algorithm proposed by [93]. The strategy is to realize that a peak is the highest point

between the valleys. To find one peak, it needs to have lower points around it on both

sides. One constrain is the peak threshold, which is a minimum difference between a peak

and its surrounding in order to declare it as the absolute peak. Similar scheme also goes

with valley detection. The algorithm returns local maximum and local minimum with

their respective positions. Figure 5.14 illustrates the comparison of the results with and

without the absolute peaks determination.
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(a)

(b)

Figure 5.14: Example of profile without (a) and with (b) absolute peaks and valleys determi-

nation
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Moreover, instead of assuming the cutoff profile at the fixed ratio (e.g. 50% or 75% of

the maximum), we compute another controlled parameter (α1 and α2) regarding the slope

ratio between the local maxima and local minima on both spans. This approach is applied

to guarantee that we optimize the cutoff portion of the significant information as much as

possible (see also figure 5.15). The results can be separated into 3 cases as illustrated in

figure 5.16, where the green and red marks indicate the local minima and local maxima,

respectively. The blue and magenta marks indicate the controlled parameters at the

distance away from the minima. The black dashed lines indicate the cutoff, where they

are previously shifted to the higher intensity values. In addition, some profiles of the

same depth can have different maximum intensities due to illumination variant over the

object surface. Example of this position dependence problem is illustrated in figure 5.17.

Therefore, the further computations have to always estimate the depth with respect to

the individual location of the calibrated object.

Figure 5.15: Example of profile with the controlled parameter
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(a) (b) (c)

Figure 5.16: Possible cases of cutoff controlled parameter

Figure 5.17: Example of profile with proper cutoff

5.3.3 Contrast Criterion

When the object sharpness varies over a wide range of depths, the blur levels in the far

focus region are also considered as noise. To eliminate these high defocused profiles, a

contrast criterion is also applied. The contrast threshold can have many possible values

because there is a significant different between the important profile we want to keep,
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and the low contrast profile we want to remove. Therefore, by setting this significant

contrast, we can discard the defocused profile, in which the ratio between the maximum

and minimum is lower than the contrast value.

it concludes the pattern localization process. We now obtain proper cutoffs to isolate

the light pattern in each intensity profile. It is worth to mention that the criterion to

determine the cutoff (e.g. maxima and minima detection, contrast thresholding, etc.) are

computed using the profile from Sgolay filtering. However, once we obtain the cutoff, it

is applied to the original image profile for the spread parameter calculation.

5.4 Spread parameter calculation

The distribution of light energy within the blur circle is referred to as the PSF. Because

of the lens aberrations and diffraction effects, the PSF will be a circular blob, with its

brightness falling off gradually rather than sharply. Thus, most algorithms use the two-

dimensional Gaussian function instead of the Pillbox function. The fitting is done using

the following function,

f (x) = A ∗ e
−(x−µ)2

2σ2 . (5.1)

Here, coefficient A is the amplitude, µ represents the average, and σ denotes the spread

parameter. From the pattern patches isolated by the pattern localization, we determine

their PSF individually. The spread parameters σ is extracted from the fitting between

PSF and Gaussian model as exemplified in figure 5.18. The spread parameter is used to

indicate the blur level in defocused images. Consequently, the depth can be deduced and

assigned back to the pixel coordinates or the local maxima defined earlier. We iterate this

algorithm for all of the light patterns that cover the whole object.
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Figure 5.18: Example of Gaussian fitting

As mentioned earlier about the light pattern translation problem, the spread parameters

σ of the light pattern obtained from each screen may shift, or may not locate at the

same location. We solve the problem by defining a window, in which all the the spread

parameters from the same light pattern are gathered. The size of window varies and is

determined at every certain location of the image with respect to the number of light

pattern. Therefore, for each point, we actually assume a small window containing all six

screen estimates (σ1 − σ6). We do not select only one screen estimate but we do use all

the six screen estimates within that window. Each of the screen estimates is then used

to compute the final depth (following all steps as illustrated in figure 5.1) which is then

assigned back to its pixel within the considered window.

5.5 Depth calibration

Depth calibration is performed only once by using 5 planar surfaces (D1 − D5) at 6

different screen positions (Pl1 − Pl6). Theoretically, there is no maximum numbers of

screen position. Nevertheless, if many screen positions are used, less or no defocused
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information is extracted from the blurs, and our approach will become the DFF. On the

other hand, at least 3 screen positions are required to be able to determine the Parabola

parameters described in section 5.5.3. Therefore, six screen positions are the compromised

setting that ensures near-focus images are achieved for all the depths. We define the spread

parameter at plane position i and depth j as σPliD j
. The aim of depth calibration is to

find the relationship among the available information (the depth, the extracted spread

parameters, and the screen positions) for depth estimation. In the real experiment, the

test object is captured from 6 screen displacements. Some preliminary approaches were

investigated and summarized as the following.

5.5.1 Solution 1: Relationship between spread parameter and

plane position

Firstly, we analyzed the spread parameter of the calibrated depths at each screen position

(σPliD1−5
). From one screen position, we obtain different spread parameter values for each

depth. Furthermore, for the same depth at different screen positions, the spread parameter

values also vary. Then, we draw the depth plot (spread parameter versus the plane

position) as shown in figure 5.3. We expected to obtain spread parameter of the test object

somewhere linearly between the spread parameter of the calibrated depths. However, with

the test object, the curve does not follow the calibrated depth plot. To be specific, there

are no relationship and no repetition among the calibrated depths and therefore we cannot

predict the final depth. For instance, let consider the screen position Pl1 in table 5.3.

Depth D4 in (magenta) lie in between depth D2 in blue and depth D3 in red. This shows

that the depths are not ordered. Meanwhile, for depth D2 (in blue), D3 (in red) and D5

(in green) from the screen position Pl4, the depths are ordered but still not linearly.

Screen Spread parameter Spread parameter

Position in X-direction in Y-direction
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Pl 1

Pl 2

Pl 3

Pl 4
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Pl 5

Pl 6

Table 5.3: Relationship between spread parameter and

plane position

5.5.2 Solution 2: Confident weight map

This solution also uses the plot in figure 5.3. The strategy is to create the confident

weight map to determine the final depth. We first calculate the mean value and standard

deviation of the spread parameter at each depth. We assume that this relationship follows

the dsigm f function (see figure 5.19).
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Figure 5.19: dsigmf function

The membership function dsigm f depends on four parameters, m1, n1, m2, and n2, and

is the difference between two of these sigmoidal functions f1 and f2:

f (x; m,n) = f1(x; m1,n1) − f2(x; m2,n2) =
1

1 + e−m1(x−n1)
− 1

1 + e−m2(x−n2)
, (5.2)

where






























m is the mean value of each depth (m = m1 = m2),

n1 is the mean value subtracted by standard deviation, and

n2 is the mean value added with standard deviation.

However, our confident weight function W is slightly different,

W =

(

f (x; m,n)/ f (m)

(n2 − n1)/(min(SD) × 2)

)t

, (5.3)

where



















SD is the standard deviation, and

t is the tuned parameter for decay speed of the function (this case t =0.5).

The term n2−n1
min(SD)×2

is used for the normalization according to the nature of blur. When

the pattern is sharp ( n2−n1
min(SD)×2

= 1), it has high confident weight with small width. While,
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for the blur pattern ( n2−n1
min(SD)×2

> 1), it has lower weight and larger width. The confident

weight maps are illustrated in table 5.4, where the small spread parameters corresponding

to the sharp pattern are given the higher confident weight and thiner width than the large

spread parameters (blur pattern). We did not plot the confident weight map for screen

position 6 since some spread parameter of calibrated depths cannot be extracted (too

blurred). The depth is obtained by calculating the summation of all confident weights of

each depth over all screen positions (W j),

W j =

6
∑

i=1

WPliD j
. (5.4)

The two highest weights W j and their calibrated depth values D j are then used to deter-

mine the final depth.

Screen Position Confident weight map of calibrated depths

Pl 1

81



Chapter 5 Implementation

Pl 2

Pl 3

Pl 4
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Pl 5

Table 5.4: Confident weight map

The point cloud obtained from this approach is illustrated in figure 5.20. The true depth

for figure 5.20 (a) is 1 cm (b) is 1.5 cm, and (c) is 2.0 cm. We can see on the figures that

numerous points are not correctly computed, which implies that the proposed approach

still suffers inconsistency. The main problem came from the region where there are many

depths overlapping. We cannot ensure that from which calibrated depth the weight refers

to. In addition, it is very difficult to get good estimation for the intermediate depths

because of the lack of order relationship between plane position and spread parameter (as

seen in previous subsection).
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(a) expected depth = 1 cm.

(b) expected depth = 1.5 cm.

(c) expected depth = 2 cm.

Figure 5.20: Example of results obtained from confident weight approach.
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5.5.3 Solution 3: Relationship between spread parameter and

depth

Our final solution is achieved by building the model defining the depth according to the

value of the spread parameter σ at specific screen positions (Pli). In an ideal case, using

equation 4.11, we can plot the relationship of the depth x against the spread parameter

σ, as illustrated in Figure 5.21.

Figure 5.21: Ideal depth model and the practical conic model

This plot consists of 2 tangent lines having zero as a minimum at the center. Nonethe-

less, in practice, the elementary pattern has a minimum size on the captured image (see

equation 4.6), causing a non-proportional law. To be specific, the spread parameter σ

is not proportional to the object depth x for a small blurred interval around the center.

Moreover, the optical system has certain acceptable sharp ranges related to the depth of

field (DOF), resulting in a smooth valley instead of a sharp cut at the nadir. Therefore,

we assume that the closed form model follows the Parabolic Function as follows:

σPli = aix
2
+ bix + ci, (5.5)
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where ai, bi, ci are the coefficient of parabolic function. Generally, if we have 3 unknowns

and 3 equations, we can solve it as a linear problem. However, our system is dealing

with more constraints. For each screen position, we calibrate 5 depths, which lead up

to 5 equations. Therefore, with 3 unknowns (a, b, c) and 5 equations, we obtain an

overdetermined system, which is solved in the least squares sense using the well-known

Levenberg-Marquardt (LM) optimization algorithm [94]. The relationship between spread

parameter and depth at a given screen position i is illustrated in figure 5.22.

Figure 5.22: Relationship between spread parameter and depth

5.6 Candidate depth computation

For the real object used in the experiment, we follow the same manipulation for image

acquisition, image profile analysis, pattern localization, and spread parameter calculation.

Once we obtain σ, we can determine the candidate depths. By using the already extracted

parabola parameters (ai, bi, ci) from the depth calibration, we solve equation 5.5 for the

final depth x. As seen in figure 5.23, it returns 2 possible solutions x1 and x2 for the

depth, as follows:

x1 =
−b −

√

b2 − 4a(c − σ)
2a

, (5.6)
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x2 =
−b +

√

b2 − 4a(c − σ)
2a

. (5.7)

Therefore, we need an additional clue to make the decision. The solutions to determine

the final depth are explained in the following section.

Figure 5.23: Candidate depths

5.7 Final depth evaluation

One spread parameter σ corresponds to 2 candidate depths. We present the successive

attempts to determine the final depth.

5.7.1 Solution 1: Variance criterion

By assuming that the depths change gradually over small areas, we use the variance

criterion to help in selecting the final depth. The variance is one of several descriptors

of a probability distribution, which is used to measure the amount of the variation of

variables by taking into account their average values and their probabilities. We first

calculate 2 sets of candidate depths:
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1. Matrix LD contains all the the lower candidate depth values x1 computed from

equation 5.6

2. Matrix HD contains all the the higher candidate depth values x2 computed from

equation 5.7

Then, we extract a window of size 3× 3 from matrix LD and matrix HD as matrix L and

matrix H, as shown in figure 5.24. We compute the variance of non-zero values within

the matrix L and matrix H.

Figure 5.24: Illustration of the variance approach

var(L) = E[(L − µ)2] =

∑

(L − µ)2

N
, (5.8)

var(H) = E[(H − µ)2] =

∑

(H − µ)2

N
, (5.9)
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where











































L is the non-zero variables within lower candidate depths window (i.e. L1-L9)

H is the non-zero variables within higher candidate depths window (i.e. H1-H9)

µ is expected value (mean)

N is numbers of non-zero variable

Finally, the final depth x of the center pixel is selected from the candidate depth that

belongs to the window of smaller variance.

x =



















L5, var(L) < var(H)

H5, var(L) > var(H)
(5.10)

The algorithm iterates for all the pixels where candidate depths are located. Example

of depth estimation by this approach is illustrated in figure 5.25. The candidate depths

within both matrix are very close (small variance). In this case, the depth estimation is

accurate. The correct depth of this position is 2.25 cm. Figure 5.26 shows the depth map

of pyramidal object obtained from this approach. Numbers of correct final depths are

achieved, but there are still lots of errors at the intermediate depths. Another problem

comes from the position where both windows return high variance. Figure 5.27 exempli-

fied this wrong selection case. The variance of the matrix H return smaller value than in

the matrix L. Therefore, instead of the correct depth of 3.45 cm, the algorithm return 5.22

cm. Moreover, in the case where candidate depths exist in the window without neighbor-

hood, this strategy is void (see figure 5.28). We now present the retained approach that

works for all the cases.
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Figure 5.25: Correct depth estimation from the variance approach

Figure 5.26: Depth map of pyramid object obtained from variance approach

Figure 5.27: Wrong depth estimation from the variance approach
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Figure 5.28: Problem of candidate depths without neighborhood

5.7.2 Solution 2: Reference map

To select the correct depth value, we employ the reference map obtained from the spread

parameter calculation during the calibration process. It is the mapping of the spread

parameter at each screen position for all of the calibrated depths (σPliD j
).

Figure 5.29: Reference map

By considering the reference map shown in figure 5.29, we plot the spread parameters

of our object (to be reconstructed) according to their 6 observed screen positions (σPli).
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Then, we compute the minimum global distance, comparing them to 5 calibrated depths.

G j =

6
∑

i=1

∥

∥

∥σPliD j
− σPli

∥

∥

∥ , 1 ≤ j ≤ 5. (5.11)

This step is to roughly define which calibrated depth our object belongs to. Eventually,

the nearest candidate depth value (or min(G j)) closest to the calibrated depth (D j) will

be selected as the final depth. With this approach, we obtained the final depths for all

existing candidate depths and solved all the problem found earlier.

5.8 Experiment

5.8.1 Set up detail

We conducted experiments using an acrylonitrile butadiene styrene (ABS) plastic built

by a 3D printer as the test objects. The model of the 3D printer is a Dimension Elite

produced by the Segway Inc. manufacturer. Without coating, the material has some

reflectivity. Four types of surfaces have been tested: a planar, a pyramidal, a cylindrical,

and a conic structure (see figure 5.30), they are all fitting in a bounding box of 2.5×4×6

cm.

(a) (b) (c) (d)

Figure 5.30: Scene objects: (a) staircase, (b) pyramid, (c) cylinder, and (d) cone.

92



Chapter 5 Implementation

A sequence of light pattern images is shown in table 5.5. They are acquired at different

projecting distances (physical displacement of 1 cm between each screen position). Be-

cause of some constraints of our optical setup (e.g. telephoto lens distortion and beam

splitter size), the effective reconstruction areas are limited only at the center of the beam

splitter.

Test objects Captured Images from different screen Positions

Staircase
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Pyramid

Cylinder
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Cone

Table 5.5: Captured images of the test objects

The input images are then put into the stack for profile analysis and pattern localization.

For each isolated light pattern, the spread parameter is extracted by fitting the PSF to

the Gaussian model. The candidate depths are then calculated by equation 5.6 and

equation 5.7 with the already known parabolic parameters from the calibration process.

Eventually, the final depth is determined by taking the reference map into consideration.

5.8.2 Results

The rough 3D model presents some preliminary results that are obtained from our im-

plementation. The depth map illustrated in Figure 5.31 demonstrates the effective per-

formance of the method in the case of the planar structure. A staircase object has a

minimum depth at 2 cm, increasing on both sides by 1 cm until the maximum depth of 4

cm is reached. The result shows that both the real object depth and our estimated depth

lie within close proximity. Figure 5.32- 5.34 illustrates the depth map of the pyramidal,
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cylindrical, and conic objects, respectively, in which we can also retrieve the intermediate

depths that do not exist during the calibration process.

(a)

(b)

Figure 5.31: Depth map of staircase object
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(a)

(b)

Figure 5.32: Depth map of pyramidal object
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(a)

(b)

Figure 5.33: Depth map of cylindrical object
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(a)

(b)

Figure 5.34: Depth map of conic object

By combining the point cloud acquired from the experiment and the pre-defined geometric

shapes, we can perform the 3D modeling and surface fitting using the Rapidform software.

The point cloud and the 3D reconstruction of the test objects are shown in Figure 5.35

- 5.38. The objects obtained by fitting are within the same dimensions than the real

objects.
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(a)

(b)

Figure 5.35: Rough 3D reconstruction of staircase: point cloud (a) and surface fitting (b)
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(a)

(b)

Figure 5.36: Rough 3D reconstruction of pyramid: point cloud (a) and surface fitting (b)
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(a)

(b)

Figure 5.37: Rough 3D reconstruction of cylinder: point cloud (a) and surface fitting (b)
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(a)

(b)

Figure 5.38: Rough 3D reconstruction of cone: point cloud (a) and surface fitting (b)

The results are compared to the actual depth provided for the 3D printer. The quantitative

evaluations are presented in table 5.6. Both test objects have an average error of less

than 0.35 mm.
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Staircase Pyramid Cone Cylinder

Numbers of Point cloud 8784 6375 6320 4967

Average Error (mm) 0.17780 0.28429 0.33697 0.3464

Standard Deviation 0.28609 0.34347 0.2170 0.24719

Computational Time (sec)a 31.901 19.150 12.843 14.908

Computational Time (sec)b 208.099 203.790 182.135 201.360

Table 5.6: Experimental results.

aexcluding offline profile analysis and calibration
boffline profile analysis and calibration

Denser point clouds and higher quality 3D reconstruction can be obtained once the vari-

ation and the number of projected light patterns increase. The total process can be time-

consuming. With non-optimized Matlab code, the program takes less than one minute

of computational time (on the machine equipped with a core 2 duo 2.2 GHz), excluding

profile analysis and calibration. However, the benefit of our approach is that most of the

processes that require a long time computation are offline processes. The calibration is

required only once for a certain object material. Therefore, if we already have calibration

data for a set of object materials, we will be able to create a 3D model quite quickly, as

reported in table 5.6.

In addition, our entire system, including the image acquisition system, the optical com-

ponents, and the light patterns has been designed specifically. To test different competing

approaches, it is required to adapt this system, while keeping the same environment and

components, which is complicated. As a preliminary work, we constructed the DFF and

DFD systems to perform comparison in term of accuracy. Nevertheless, during the DFF

experiment, we encountered a problem to define sharp regions within the captured im-

ages. This is because our test objects have almost textureless (and partial specularities)

surface, which cannot be identified by the edge detection algorithms (e.g. Laplacian op-

erator). Therefore, fair comparison using same objects cannot be directly performed, and

advanced DFF approaches should be considered. On the other hand, we also faced dif-

ficulties in the DFD experiment. The original systems have completely different scales
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and magnifications. Therefore, we cannot compare directly with our system unless many

optical components are replaced, which will not be appropriate to compare either the

qualitative or quantitative results over such systems. To sum up, our system is theoret-

ically prominent to the DFD approach because at least one focus or near-focus image

within depth of field exists in the computation. Moreover, it also has less computational

extensive comparing to the DFF approach that requires numerous input images.

5.9 Chapter summary

In this chapter, we described the implementation of our depth estimation system. We de-

tailed the specification and characteristic of the experimental setting including the math-

ematical explanations. The algorithm are in parallel for both the calibrated objects and

the test objects. Finally, we reported and discussed on the results obtained from this

new prototype. In the next chapter, we summarized the limitation, future work, and

perspectives of this approach.
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We have introduced a new 3D reconstruction method merging depth from focus and depth

from defocus. It can be employed as a stand-alone strategy returning reliable dense depth

maps. The method overcomes the problem of weak texture by projecting illumination

pattern. Moreover, it does not suffer neither from the correspondence problem nor the

occlusion problem found in traditional approaches. Example of applications can be found

in the biological specimen analysis, defect metallic component detection, etc.

Limitations and Future Works

Several components in the setup limit the size of the object itself and the maximum change

of object depths. However, it is only a matter of scale of the system. This issue can be

solved by adjusting smaller or larger optical components for smaller or larger object,

respectively, while the algorithm remains unchanged. Therefore, these restrictions are not

concerned with the approach methodology.

For further system improvements, we will try to determine the depth for every single

screen estimate and run the experiment systematically by robot, to minimize significantly

the human error and increase the overall precision of the system. Another future work

is to use several mini video projectors and beam splitters to develop a 3D progressive

feedback system by controlling the light patterns. Only useful defocused input images are

selected iteratively basing on rough 3D model.
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The first perspective of this work is to address the problem of depth and reflectance

discontinuities of the object (e.g. small and fast variation of the object’s depths). The

idea is to perform deep analysis of the Gaussian model. To be precise, Gaussian model

at these discontinuities will not be close to the reference model (Gaussian distribution).

Therefore, these asymmetrical models will be discarded. In order to determine the depth

of this problematic region, we plan to employ another type of light pattern within the 3D

progressive system. For instance, if this issue occurs from using horizontal stripe pattern,

it would not be a problem once we are using vertical stripe pattern. By doing so, we

avoid registration problem caused by object movements. Example of scene with depth

and reflectance discontinuities are illustrated in figure 5.39.

(a) (b) (c)

Figure 5.39: Scene with depth and reflectance discontinuities

Another perspective is to deal with the scene with multiple objects or with different types

of textures variations as exemplified in figure 5.40. The possible solution is to collect

sufficient numbers of calibration databases and/or reflectance indexes for all the object

materials existing in the scene. The key idea is that some materials provide different

reflectance, widths of the blur (CoC), and different spread parameter, accordingly. For

instance, some types of plastic have larger blur levels (bigger spread parameters) than

the ones observed from metallic materials at the same depth. Therefore, it should be

possible to make the order of reflectance and/or blur level with respect to the material

types. Then, by matching it with the test objects, we could identify material types and

use the current algorithm.
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(a) (b) (c)

Figure 5.40: Scene with multiple objects/materials

Our last perspective concerns the estimation of the surface normals by analyzing the

deformation of a projected pattern of circles. This elementary projected pattern will

be used together with the horizontal and vertical stripe patterns (using different colors

projection). The key idea is based on the fact that over smooth depth variations, the

circular shapes of the pattern will transform into ellipse shapes.

In order to define the 3D position and orientation of a circle from its projection onto

the image plane (an ellipse in the general case), the solution of pose from ellipse-to-circle

correspondence described in [95], and [96] is utilized. The solution consists of a series of

3D transformations to the circle and is carried out in two stages: first the orientation of

the 3D plane on which the circle lies is determined; and then the center of the circle is

computed.

An ellipse in the image plane is of the following form,

a1x2
+ a2xy + a3y2

+ a4x + a5y + a6 = 0. (5.12)

We assume the origin is at the principle point, the ellipse defines a cone in 3D becomes

a1x2
+ a2xy + a3y2

+
a4

f
xz +

a5

f
yz +

a6

f
z2
= 0, (5.13)
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where f is the focal length of the camera. Then, we follow the procedures explained in [97].

The camera calibration parameters are used to solve the rotation matrix, and eventually

return 4 possible solutions of the surface normal characterized by angle θ.

θ1 = |θ|

θ2 = − |θ|

θ3 = π + |θ|

θ4 = π − |θ|

We performed some experiment on the cylindrical object as seen in figure 5.41.

(a) (b)

Figure 5.41: (a) Captured image of cylindrical object (b) with color selection improvement

Three ellipses are extracted and converted into black and white color before computation

of surface normal (see figure 5.42).
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(a) (b) (c)

Figure 5.42: Extracted ellipse patterns

Because the circle corresponds to a boundary of the physical object it comes from, there

must be a direction associated with it and not only an orientation. Therefore, we must also

consider the 2 other cases for which the circle is flipped 180 degrees about its diameter.

These 4 possible solutions of 3 ellipses are illustrated in figure 5.43 .

Figure 5.43: Possible solutions of the normal to the object surface

Only one of them is physically correct. Two angles that correspond to the normals with

direction toward the object are discarded as shown in red on figure 5.43. We obtain the

normal vector N as the following:

Nellipse1 = (−0.349836,−0.362066, 0.864016), or (0.349835, 0.362063, 0.864017)

Nellipse2 = (−0.0530441,−0.445498, 0.89371), or (0.0530444, 0.445495, 0.893711)

Nellipse3 = (−0.273115, 0.425436, 0.862793), or (0.273116,−0.425439, 0.862791)
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Then, to determine between another 2 possibles angles of each ellipse, we require the

reconstruction information from vertical and/or horizontal pattern obtained earlier. The

correct angle is selected depending on the surrounding depths of this normal position.

Figure 5.44 shows the preliminary result obtained using this approach.

(a) (b)

Figure 5.44: Preliminary results of the surface normal (a) in 2D and (b) in 3D representations

By employing the normal to the surface information, it will help us determine not only the

depth but also the direction of the radiance through additional color channel. We expect

that this perspective will minimize the error and improve our final 3D reconstruction.
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