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RESUME

Cette these présente une nouvelle approche pour controéler des algorithmes de suivi d’objets mobiles.
Plus précisément, afin de s’adapter aux variations contextuelles de suivi, cette approche apprend a ré-
gler les parametres des algorithmes de suivi d’objets basés sur 'apparence ou sur les points d’intérét.
Le contexte de suivi d'une vidéo est défini par un ensemble de caractéristiques : la densité des objets
mobiles, leur niveau d’occultation, leur contraste et leur surface 2D. Dans une phase d’apprentissage
supervisée, des valeurs de parametres satisfaisantes sont déterminées pour chaque séquence d’appren-
tissage. Puis ces séquences sont classifiées en groupant leurs caractéristiques contextuelles. A chaque
contexte sont associées les valeurs de parametres apprises. Dans la phase de contréle en ligne, deux
approches sont proposées. Pour la premiere approche, quand le contexte change, les parametres sont
réglés en utilisant les valeurs apprises. Pour la deuxiéme, le réglage des parametres est réalisé quand
le contexte change et quand la qualité de suivi (calculée par un algorithme d’évaluation en ligne) n’est
pas assez bonne. Un processus d’apprentissage en-ligne met a jour les relations contextes/parametres.
L’approche a été expérimentée avec des vidéos longues, complexes et plusieurs ensembles de vidéos
publiques. Cette these propose cing contributions : (1) une méthode de classification des vidéos pour
apprendre hors-ligne les parametres de suivi, (2) un algorithme d’évaluation en-ligne du suivi, (3) une
méthode pour contréler en ligne le suivi, (4) un algorithme de suivi pouvant s’adapter aux conditions de

la scéne, (5) une méthode de suivi robuste basée sur le filtre de Kalman et un suivi global.

Mot clés : contrdleur, réglage des parametres en ligne, suivi d’objets, apprentissage, évaluation en

ligne.






ABSTRACT

This thesis presents a new control approach for mobile object tracking. More precisely in order to
cope with the tracking context variations, this approach learns how to tune the parameters of tracking
algorithms based on object appearance or points of interest. The tracking context of a video sequence is
defined as a set of features : density of mobile objects, their occlusion level, their contrasts with regard to
the background and their 2D areas. Each contextual feature is represented by a code-book model. In an
offline supervised learning phase, satisfactory tracking parameters are searched for each training video
sequence. Then these video sequences are classified by clustering their contextual features. Each context
cluster is associated with the learned tracking parameters. In the online control phase, two approaches
are proposed. In the first one, once a context change is detected, the tracking parameters are tuned
using the learned values. In the second approach, the parameter tuning is performed when the context
changes and the tracking quality (computed by an online evaluation algorithm) is not good enough.
An online learning process enables to update the context/parameter relations. The approach has been
experimented on long, complex videos and some public video datasets. This thesis proposes five contri-
butions : (1) a classification method of video sequences to learn offline the tracking parameters, (2) an
online tracking evaluation algorithm, (3) a method to tune and learn online the tracking parameters,
(4) a tunable object descriptor-based tracking algorithm enabling adaptation to scene conditions, (5) a

robust mobile object tracker based on Kalman filter and global tracking.

Keywords : controller, online parameter tuning, self-adaptation, object tracking, machine learning,

online tracking evaluation.
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INTRODUCTION

1.1 Motivations

Nowadays video surveillance systems are installed worldwide in many different sites such as
airports, hospitals, banks, railway stations and even at home (see figure 1.1). The surveillance
cameras help a supervisor to oversee many different areas from the same room and to quickly
focus on abnormal events taking place in the controlled space. However one question arises :
how can a security officer analyse and simultaneously dozens of monitors with a minimum rate
of missing abnormal events (see figure 1.2) in real time ? Moreover, the observation of many
screens for a long period of time becomes tedious and draws the supervisor’s attention away
from the events of interest. The solution to this issue lies in three words : intelligent video
monitoring.

The term “intelligent video monitoring” expresses a fairly large research direction that is
applied in different fields : for example in robotics and home-care. In particular, a lot of re-
searches and works are already achieved in video surveillance applications. Figure 1.3 presents
a processing chain of a video interpretation system for action recognition. Such a chain includes
generally different tasks : image acquisition, object detection, object classification, object tra-
cking and activity recognition. This thesis studies the mobile object tracking task.

Mobile object tracking has an important role in the computer vision applications such as
home care, sport scene analysis and video surveillance-based security systems (e.g. in bank,
parking, airport). In term of vision tasks, the object tracking task provides object trajectories
for several tasks such as activity recognition, learning of interest zones or paths in a scene and

detection of events of interest.
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d. At building entrance e. At cash machine f. In airport

Figure 1.1 - Illustration of some areas monitored by video cameras

Figure 1.2 — A control room for video surveillance (source [securite-surveillance.com, 2009])
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— Object Object
g detection classification

Forbidden access
=> alarm

Figure 1.3 - Illustration of a video interpretation system. The first row presents the task names. The
second row presents result illustrations of corresponding tasks.

The tracking quality can be influenced by the quality of vision tasks performed at lower le-
vels such as object detection, object classification, or by some video features such as complexity
of object movements, scene illumination intensity, low contrast, high density and occlusion fre-
quence of mobile objects. Therefore, the performance of a tracking algorithm often depends
on the considered video sequence. In particular, for a long video sequence (i.e several hours
or days) in which the variation of these properties happens frequently, the tracking quality is
still an issue. The problems are the following : How can an automatic system robustly track
mobile objects in different conditions and situations such as the ones cited above. And in those
complex cases, how can the user regulate the tracking parameters to get an optimal tracking

quality ?

1.2 Objectives and Hypotheses

1.2.1 Objectives

In this thesis, we propose a new method for controlling tracking algorithms. The first
ideas about an automatic control system which helps to adapt system performance to the pro-
blem of contextual variations, have been studied by [Shekhar et al., 1999, Thonnat et al., 1999,
Khoudour et al., 2001]. Depending on the existence of a human interaction (e.g with an expert,
an end-user) during the testing phase, we can classify the control methods in two categories :
manual control (i.e. with human interaction) and automatic control (i.e. without human inter-
action).

The objective of the proposed method is to define an automatic control algorithm which
is able to adapt online the tracking task to the scene variations in a long video sequence (i.e.
several hours or days) by tuning the tracking parameters over time.

We aim to build a control algorithm which is : generic, flexible and intelligent. The term
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“generic” means that our method can handle different tracking algorithms. In this work, our
objective is to control object tracking algorithms which rely on object appearance or on points of
interest. These algorithms are selected because their approaches are largely studied in the state
of the art. The term “flexible” implies that the structure of the proposed control algorithm can
be applied for handling other tracking algorithm classes (e.g. object contour-based tracking)
just by changing the definition of the video context. The term “intelligent” means that this
approach requires less human interaction than the control methods in the state of the art.

In order to reach these three objectives, the four following issues have to be tackled :

— Define the video context : The quality of object appearance-based tracker usually de-
pends on some features such as the density, contrast, size of mobile objects appearing in
the scene. In order to optimize the tracking quality in all situations, we need to model the
videos according to these features. The first issue is thus to define a video context based
on pertinent features characterizing the video sequences.

— Optimize the tracking parameter values for a video context : Once a video context
is computed, we need to find the best tracking parameter values for this context. In this
work, we rely on the ground-truth data of detection and tracking as well as an opti-
mization algorithm (e.g. exhaustive search, Genetic algorithm, Adaboost algorithm) to
compute these values. The second issue is to define an optimization task to find the best
tracking parameters for a given video context.

— Context classification : Similar contexts can obtain different tracking parameter values
because the optimization algorithm does not find the best solution or the context is not
accurate enough to play the role for determining the best parameter values. Therefore we
need to classify the contexts and compute the best parameters for context clusters. For
each video sequence, we also need to determine the learned context cluster to which the
current video context belongs. The best parameter values associated to this cluster are
used for tuning the tracking parameters. Therefore the third issue is to define a classifica-
tion task for video contexts.

— Evaluate online the tracking quality : In the tracking process, when the tracking quality
is not sufficient, the tracking parameters need to be tuned to improve the tracking quality.

To this end, the fourth issue is to define an online tracking evaluation algorithm.

1.2.2 Hypotheses

The control method presented in this manuscript is done with the five following assump-

tions :

1. The considered tracking algorithms have at least one tunable parameter which influences
significantly the tracking quality. The idea of our control algorithm is to tune tracking
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parameters to adapt the tracker performance to the scene variations. Therefore this as-
sumption is mandatory. The performance of our method is directly proportional to the
influence levels (i.e. significances) of the controlled parameters on the tracking quality. In
this work, our study is limited to numeric parameters.

2. There exists a training set of videos representative of the video contexts. In our method,
we propose an offline phase to learn the tracking parameters for different video contexts.
Greater the number of learned contexts is, more precise the training phase is.

3. There exists a number of contexts which have an impact on the tracking quality. In other
words, for a tracking algorithm, there exists a function f mapping a video context ¢ to
satisfactory parameter values p (i.e. parameter values for which the tracking quality is
greater than a predefined threshold € ) :

3f: C =P
c+—p

(1.1)

where C is the set of video contexts and P is the set of the satisfactory tracking parameters.

Let g be a function mapping a video v to its context c :

g: V-=C

vV — C

(1.2)

ci = ¢(vi) is the context of v;. The function f is assumed to satisfy the following property :

Yvi,vy o if |C1 — C2| < €1 (1.3)
=>[Q(v1,f(c1)) — Q(va,f(c2))l <e2 1.4

where €1, €, are predefined thresholds; Q(vy,f(ci)) represents the tracking quality for

video v; when parameters f(c;) are used.

4. The video context in the training phase keeps unchanged within an enough large number
of frames (e.g greater than 100 frames) so that the proposed controller can detect it and

adapt the parameters to it.

5. The input video is produced by a monocular camera. This assumption is given to limit the
tracking algorithm approaches which are considered in the control process.

1.3 Context of Study

This work is done in the PULSAR (is STARS now) project-team at INRIA Sophia Antipolis
(The French National Institute for Research in Computer Science and Control). PULSAR means
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“Perception, Understanding and Learning Systems for Activity Recognition”. PULSAR research
direction focuses on the real-time semantic interpretation of dynamic scenes observed by sen-
sors. Thus, PULSAR studies long-term spatio-temporal activities performed by human beings,
animals or vehicles in the physical world. PULSAR proposes new techniques in the field of
cognitive vision and cognitive systems for physical object recognition, activity understanding,
activity learning, system design, evaluation and focuses on two main application domains :
safety/security and healthcare. PULSAR has accumulated a strong expertise in this area throu-
ghout the last decade. The team has participated in many French and European projects in this
domain such as CARETAKER (Content Analysis and REtrieval Technologies to Apply Extraction
to massive Recording), GERHOME(GERontology at HOME), CoFriend (Cognitive and Flexible
learning system operating Robust Interpretation of Extended real scenes by multi-sensors da-
tafusion), VideoID, SIC... Working in PULSAR team, we have opportunity to test the proposed
method on several video datasets recorded in real world, and to apply the result of the proposed
method for the activity recognition.

1.4 Contributions

Compared to the state of the art, this thesis brings five significant contributions in which
the first three ones relate to the control task and the two last ones concern the mobile object
tracking task.

1.4.1 Contributions on the Control Task

— A New Video Classification Method for Learning Offline Tracking Parameters : In the
state of the art, many approaches have been proposed to improve the tracking quality, but
most of them either use prior scene information [Chau et al., 2009a] or are only specific
for their tracking algorithms [Kuo et al., 2010, Santner et al., 2010]. Therefore these ap-
proaches cannot be generic enough for different tracking algorithms or video scenes. In
this work, we define the notion of “context” of a video chunk that includes a set of six fea-
ture values influencing the tracking quality. These six contextual features are : the density,
the occlusion level of mobile objects appearing in this video sequence, their contrast with
regard to the surrounding background, their contrast variance, their 2D area and their
2D area variance. Thanks to this context notion, we can divide automatically a video se-
quence into chunks of uniform feature values. Video chunks are classified by clustering
their contextual features to create context clusters. The best satisfactory parameter values
are learned for each context cluster. Therefore, the proposed control method can be ap-
plied for any scene type and for several tracking algorithms whose quality is influenced



1.4 Contributions 31

by the defined contextual features.

— An Online Tracking Evaluation Algorithm (published in ICDP 2009 [Chau et al., 2009b]) :
In order to tune and learn online the tracking parameters, an online tracking quality
evaluation is necessary. Therefore we propose an algorithm to evaluate online the per-
formance of tracking algorithms. In this work, the trajectory confidence is computed by
considering the coherence of object appearances (i.e. 2D size, color), speed, movement
direction. We also take into account the temporal length and exit zone of a trajectory for
determining its confidence. This algorithm gives as output a score estimating online the
tracking performance over time. The advantages of the approach over the existing state
of the art approaches are : (1) little prior knowledge is required (only exit zones in the
camera view are required), (2) the method can be applied in complex scenes containing
several mobile objects.

— A New Approach to Tune and Learn Online the Tracking Parameters (published
in ICIP 2012 [Bak et al., 2012]) : While parameter tuning for static image applica-
tions or for object detection in videos has been largely studied in the state of the art
[Martin and Thonnat, 2008, Bhanu and Das, 1995, Nghiem, 2009], online parameter tu-
ning for the tracking task is not really addressed. In this thesis, we present a new method
to tune and learn online the tracking parameters thanks to a learned database resulting
from a supervised or an unsupervised learning phase. This parameter tuning helps to
adapt the tracking algorithms to the video context variation.

1.4.2 Contributions on Tracking Algorithms

In this work, we present three tracking algorithms to experiment the proposed control me-

thod in which two trackers are original.

— A Tunable Object Descriptor-based Tracking Algorithm Enabling Adaptation to Scene
Conditions (published in ICDP 2011 [Chau et al., 2011a] and in ICVS 2011 workshop
[Zaidenberg et al., 2011]) . Object appearance is widely used in the state of the art for
object tracking [Zhou et al., 2006, Kwolek, 2009, Bak et al., 2009, Monari et al., 2009]
but most of them cannot perform robustly in different contexts. We propose in this ma-
nuscript a tracking algorithm which is effective in different scene contexts. First an object
descriptor pool is used to compute the matching score between two detected objects. This
pool includes 2D, 3D positions, 2D sizes, color histogram, histogram of oriented gradient
(HOG), color covariance and dominant color descriptors. In the tracking process, a tem-
poral window is defined to establish the matching links between the detected objects. The
temporal window enables to find the object trajectories even if the objects are misdetected
in some frames. A trajectory filter is defined to remove trajectories considered as noise.
The object descriptor weights have a strong influence on the tracker quality. We propose
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to use a Adaboost algorithm in which each descriptor plays the role as a weak classifier to
learn offline their values for each tracking context. The descriptor weights can be tuned
online to cope with the contextual variations. This tracking algorithm brings some contri-
butions over the state of the art trackers : (1) a robust tracking algorithm based on an
object descriptor pool, (2) a new method to quantify the reliability of HOG descriptor, (4)
a combination of color covariance and dominant color descriptors with a spatial pyramid
kernel to manage the case of object occlusion. .

A Tracking Algorithm based on Kalman Filter and Global Tracking (published in VI-
SAPP 2011 [Chau et al., 2011b]). In this work, we propose an algorithm to track mobile
objects based on their trajectory properties. The proposed tracker includes two stages :
tracking and global tracking. The tracking stage follows the steps of a Kalman filter in-
cluding estimation, measurement and correction. First for each tracked object, its state
including position and 2D bounding box is estimated by a Kalman filter. Second, in the
measurement step, this tracked object searches for the best matching object based on
four descriptors : 2D position, 2D area, 2D shape ratio and color histogram. Third, the best
matching object and its estimated state are combined to update the position and 2D boun-
ding box sizes of the tracked object. However, the mobile object trajectories are usually
fragmented because of occlusions and misdetections. Therefore, the global tracking stage
aims at fusing the fragmented trajectories belonging to the same mobile object and remo-
ving the noisy trajectories. The advantages of our approach over the existing state of the
art ones are : (1) no prior knowledge information is required (e.g. no calibration and no
contextual models are needed), (2) the tracker can be effective in different scene condi-
tions : single/several mobile objects, weak/strong illumination, indoor/outdoor scenes,

(3) a global tracking stage is defined to improve the object tracking performance.

We have tested the proposed control and tracking algorithms on three public datasets :

Caviar! , ETISEO?, TRECVid [Smeaton et al., 2006], and on some long and complex videos be-
longing to the following projects : Gerhome?, the Caretaker* and Vanaheim® European projects.

1.5 Manuscript Organization

This manuscript is organized as follows.

Chapter 2 presents first a state of the art on the mobile object tracking. Tracking algorithms

are classified according to their approaches. Second, a state of the art on the control methods is

http ://homepages.inf.ed.ac.uk/rbf/ CAVIAR/

http ://www-sop.inria.fr/orion/ETISEQ/

Shttp ://gerhome.cstb.fr/en/home/introduction.htm]
“http ://sceptre.king.ac.uk/caretaker

Shttp ://www.vanaheim-project.eu/
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described. These methods are divided into three different approach categories : offline-based,
online-based and hybrid approaches combining the two previous approaches.

Chapter 3 presents a general description of the proposed control method including two
phases : offline learning and online control. We describe the execution process step by step in
both phases.

Chapter 4 details a scheme to learn the best satisfactory tracking parameters for each video
context. First, we present the definition of video context (or called tracking context) in this
work. The video contexts are classified by clustering their features. An optimization process is
performed to determine the best satisfactory parameter values for each context cluster.

Chapter 5 describes the proposed online control process. The objective of this process is to
to tune and learn online the tracking parameters to adapt the tracking task to context variations
using a learned database. It includes two stages : initial parameter configuration and parameter
adaptation. For the parameter adaptation stage, we will present two approaches called context-
based parameter adaptation and evaluation-based parameter adaptation.

Chapter 6 presents three tracking algorithms used for testing the proposed controller. The
first tracker relies on a pool of eight object descriptors. In this tracker, a trajectory filter is de-
fined to remove trajectories considered as noise. The second tracking algorithm uses a Kalman
filter associated with a set of four object descriptors. A global tracker is proposed for this tracker
to track mobile objects in the case of misdetections and also to remove the noisy trajectories.
The last tracker relies on the tracking of Kanade-Lucas-Tomasi (KLT) features located on mobile
objects.

Chapter 7 is dedicated to the experimentation and validation of the proposed methods. We
present the results of the tracking task in both cases without and with the control process. A
comparison with several trackers from the state of the art is also described to highlight the
proposed approach performance.

Chapter 8 presents the concluding remarks and limitations of the thesis contributions. We
also discuss about the short-term and long-term perspectives of this study.
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2

STATE OF THE ART

This chapter presents first a state of the art in object tracking. Object tracking algorithms
are classified into three categories : point tracking, appearance tracking and silhouette tracking.
Second, we describe a state of the art in control methods whose goal is to adapt vision tasks
to contextual variations of images or video sequences. These methods are divided into three
different categories : offline-based, online-based and hybrid (i.e. combining the two previous
ones) approaches.

2.1 Tracking Algorithms

The aim of an object tracking algorithm is to generate the trajectories of objects over time by
locating their positions in every frame of video. An object tracker may also provide the complete
region in the image that is occupied by the object at every time instant.

The tracking algorithms can be classified by different criteria. In [Motamed, 2006], based
on the techniques used for tracking, the author divides the trackers into two categories : the
model-based and feature-based approaches. While a model-based approach needs the model
for each tracked object (e.g. color model or contour model), the second approach uses vi-
sual features such as Histogram of Oriented Gradients (HOG) [Dalal and Triggs, 2005], Haar
[Viola and Jones, 2003] features to track the detected objects. In [Almanza-Ojeda, 2011], the
tracking algorithms are classified into three approaches : appearance model-based, geometry
model-based and probability-based approaches. The authors in [Aggarwal and Cai, 1997] di-
vide the people tracking algorithms into two approaches : using human body parts and without
using human body parts.

In this manuscript, we re-use the object tracking classification proposed by [Yilmaz et al., 2006]

35
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Figure 2.1 — Taxonomy of tracking methods (adapted from [Yilmaz et al., 2006]).

because this classification represents clearly and quite completely the tracking methods existing
in the state of the art. This taxonomy method relies on the “tracked targets”. The tracked targets
can be points of interest, appearance or silhouette of mobile object. Corresponding to these tar-
get types, three approach categories for object tracking are determined : point tracking, appea-
rance tracking and silhouette tracking. Figure 2.1 presents the taxonomy of tracking methods
proposed by this paper.

— Point tracking : The detected objects are represented by points, and the tracking of these
points is based on the previous object states which can include object positions and mo-
tion. An example of object correspondence is shown in figure 2.2(a).

— Appearance tracking (called “kernel tracking” in [Yilmaz et al., 2006]) : The object ap-
pearance can be for example a rectangular template or an elliptical shape with an asso-
ciated RGB color histogram. Objects are tracked by considering the coherence of their
appearances in consecutive frames (see example in figure 2.2(b)). This motion is usually
in the form of a parametric transformation such as a translation, a rotation or an affinity.

— Silhouette tracking : The tracking is performed by estimating the object region in each
frame. Silhouette tracking methods use the information encoded inside the object region.
This information can be in the form of appearance density and shape models which are
usually in the form of edge maps. Given the object models, silhouettes are tracked by
either shape matching or contour evolution (see figures 2.2(c), (d)).
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Figure 2.2 - Illustration of different tracking approaches. (a) Multipoint correspondence, (b) Para-
metric transformation of a rectangular patch, (¢, d) Two examples of silhouette matching. (Source
[Yilmaz et al., 2006]).

2.1.1 Point Tracking
2.1.1.1 Deterministic Approaches

According to [Wikipedia, 2011b], a deterministic system is a system in which no random-
ness is involved in the development of the future states of the system. A deterministic model
thus always produces the same output from a given starting condition or initial state. In order to
apply this idea for object tracking, the object movements are generally assumed to follow some
trajectory prototypes. These prototypes can be learned offline, online, or constructed based on
a scene model. We can find in the state of the art many tracking algorithms based on this idea
[Scovanner and Tappen, 2009, Bilinski et al., 2009, Baiget et al., 2009].

In [Scovanner and Tappen, 2009], the authors present a method to learn offline some tra-
cking parameters using ground-truth data. In the offline phase, the authors define an energy
function to compute the correctness of the people trajectories. This function is denoted E(x¢)
where x; is a 2D vector containing the pedestrian’s location at time t.

The authors assume that a pedestrian path is constrained by the four following rules. Each

rule is represented by an energy function.

1. The displacement distance of people between two consecutive frames is not too large.
The energy function expressing this rule is denoted Eq(x¢).

2. The speed and direction of people movement should be constant. The energy function
corresponding to this rule is denoted E,(x¢).

3. People movements should reach their destinations. The energy function representing this
rule is denoted E3(x¢).

4. People movements intend to avoid people in the scene. The energy function of this rule is
denoted E4(xy).

The complete energy E(x) is a weighted combination of these components :

4
E(xe) =) 0iFi(xt) 2.1)
i=1
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Figure 2.3 — Examples of pedestrian paths, shown in black, and predicted paths, shown in red.
The model accurately predicts the deflection of pedestrians due to oncoming obstacles (source
[Scovanner and Tappen, 2009]).

where 0; represents the weight of the energy function i. This complete energy function is used to
predict the pedestrian locations in the next frame. The pedestrians should move to the locations
that minimize this energy. The objective of the training phase is to learn the values 0; that
make the predicted pedestrian tracks match corresponding tracks in the ground-truth data. To
accomplish this, the authors define a loss function L(x*, g) that measures the difference between
a predicted track x* and the ground-truth track g as follows :

N
Lix*,9) =) y/lxi—gdl>+e (2.2)
i=1

where x and g are locations of predicted track and ground-truth track at time t, and Ny is the
number of positions of the considered track. The learned values 0; are used later in the testing
phase to predict pedestrian trajectories. Figure 2.3 shows some examples of the predicted paths
(in red color) and their corresponding reference paths (in black color).

The advantage of this approach is that its performance does not depend on quality of the ob-
ject detection process. However the used rules can be incorrect for complex people movements.
The pedestrian destination can be changed. Obstacles are often not neither stable throughout
the time. Pedestrian velocity is only correct if he/she is always detected correctly. Experimenta-
tion is only done with simple sequences.

In [Bilinski et al., 2009], the authors present a tracking algorithm based on a HOG des-
criptor [Dalal and Triggs, 2005]. First, the FAST algorithm [Rosten and Drummond, 2006] is
used to detect the points of interest. Each point is associated with a HOG descriptor (including
gradient magnitude and gradient orientation). The authors compute the similarity of the HOG
points located in the consecutive frames to determine the couples of matched points. The object
movements can be determined using the trajectories of their points of interest (see figure 2.4).
In the case of occlusion, the authors compare the direction, speed and displacement distance
of the point trajectories of occluded objects with those of objects in previous frames to split
the bounding box of occluded objects (see figure 2.5). This approach can be well performed in
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(a) Frame: 1. (b) Frame: 5.

(¢) Frame: 27. (d) Frame: 37.

Figure 2.4 - Illustration of a point tracker for KTH dataset (source [Bilinski et al., 2009]).

the case of occlusions in which object appearance is not fully visible. However, the HOG des-
criptor reliability decreases significantly if the contrast between the considered object and its
background is low.

2.1.1.2 Probabilistic Approaches

Probabilistic approaches represent a set of object tracking methods which rely on the pro-
bability of object movements. In this approach, the tracked objects are represented as one or
many points. One of the most popular methods of this approach is Kalman filter-based tracking.
A Kalman filter is essentially a set of recursive equations that can help to model and estimate the
movement of a linear dynamic system. Kalman filtering is composed of two steps : prediction
and correction. The prediction step uses the state model to predict the new state of variables :

Xy =DX{ ;+W (2.3)

P, =DP;/ ;D" +Q" (2.4)

where X and X/ ; are respectively the predicted and corrected states at time t and t — 1; P
and P, ; are respectively the predicted and corrected covariances at time t and t — 1. D is the
state transition matrix which defines the relation between the state variables at time t and t—1,
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a. Frame 12 b. Frame 40 c. Frame 41

Figure 2.5 - Illustration of split a merged-object bounding box for a synthetic video sequence : a. Before
merging b. Merging c. Split (source [Bilinski et al., 2009]).

New Measurement

Initial Seed

Figure 2.6 — Illustration of Kalman filter steps (source [Johnson, 1998]).

W is a noise matrix, Q is the covariance of the noise W. Similarly, the correction step uses the
current observations Z to update the object’s state :

K¢ =Py MTIMP;MT + Ry (2.5)
X{ = X{ +KilZe — MX{] (2.6)

where M is the measurement prediction matrix, K is the Kalman gain and R is the covariance
matrix of noise in measurement. An illustration of the Kalman filter steps can be found in figure
2.6. The Kalman filter is widely used in the vision community for tracking [Beymer and Konolige, 1999,
Broida and Chellappa, 1986, Brookner, 1998].
In [Robert, 2009], the authors present a tracking algorithm for vehicles during the night
time (see figure 2.7). In this work, vehicles are detected and tracked based on their headlight
pairs. Assuming that the routes are linear, a Kalman filter is used to predict the movement of
the headlights. When a vehicle turns, its Kalman filter is re-initialized.
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Figure 2.7 - Illustration of a night time traffic surveillance system (source [Robert, 2009]).

Because the Kalman filter assumes that the variation of the considered variables draws from
a Gaussian distribution, these approaches can be only applied for tracking objects with linear
movements, or with movements of simple variations of direction, speed. In order to overcome
these limitations, an Extended Kalman filter [Bar-Shalom and Fortmann, 1988] or particle filter
[Almeida et al., 2005] can be used.

2.1.2 Appearance Tracking

Appearance tracking is performed by computing the motion of the object, which is represen-
ted by a primitive object region, from one frame to the next. The tracking methods belonging to
this type of approaches are divided into two sub-categories : single view-based (called template-
based in [Yilmaz et al., 2006]) and multi view-based.

2.1.2.1 Single View-based Approaches

This approach category is widely studied in the state of the art for tracking mobile objects
in a single camera view. Many methods have been proposed to describe the object appearance.
In [Snidaro et al., 2008], the authors present a people detection and a tracking algorithm using
Haar [Viola and Jones, 2003] and Local Binary Pattern (LBP) [Ojala et al., 2002] features com-
bined with an online boosting (see figure 2.8). The main idea is to use these features to describe
the shape, the appearance and the texture of objects. While Haar features encode the generic
shape of the object, LBP features capture local and small texture details, thus having more dis-
criminative capability. First, the image is divided into cells and the Haar features are applied in
each cell to detect people. Each detected person is divided into a grid of 2 x 3 blocks. Each
block is divided in 9 sub-regions. For each region, the pixel grey values are used to apply the
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Figure 2.8 — A Haar-like features classifier is employed as a generic detector, while an online LBP fea-
tures recognizer is instantiated for each detected object in order to learn its specific texture (source
[Snidaro et al., 2008]).
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Figure 2.9 - Illustration of the LBP features computation (source [Snidaro et al., 2008]).

8-neighbours LBP calculus scheme (see figure 2.9). The LBP features are then used to track
people.

Both classifiers (Haar and LBP) are combined with an online boosting [Grabner and Bischof, 2006].
The application of these two features in each cell (for the Haar features) or in each region (for
the LBP features) is considered as the weak classifiers. These weak classifiers cluster samples by
assuming a Gaussian distribution of the considered features. This online boosting scheme can
help the system to adapt to specific problems which can take place during the online process
(e.g. change of lighting conditions, occlusion). However, the online training is time consuming.
Also, the authors do not explain clearly enough how to determine positive or negative samples
in this training. It seems that the system has to learn in a sequence in which there is only one
person before handling complex detection and tracking cases. The tested sequences are still
simple (e.g few people in the scene, simple occlusion).

In [Zhou et al., 2006], the authors present a method to detect occlusion and track people
movements using the Bayesian decision theory. Mobile object appearance is characterized by
color intensity and color histogram. For each object pair detected in two consecutive frames,
if the similarity score is higher than a threshold, these two objects are considered as matched
and their templates are updated. If the matching score is lower than this threshold, the authors

assume that an occlusion occurs. A mobile object is divided into sub-parts and the similarity
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scores are computed for these parts. If the matching score of one object part is high enough
while the other ones are low, an occlusion is detected. The mobile object can be still tracked
but its template is not updated. This paper proposes a method to detect and track objects in
occlusion cases. The authors define a mechanism to distinguish between an object appearance
change due to occlusion or a real change (e.g due to the change of scene illumination or object
distance to camera location). However the features used for characterizing the object appea-
rance (i.e. intensity and color histogram) are not reliable enough in the case of poor lighting
condition or weak contrast. The tested video sequences are not complex enough to prove the
effectiveness of this approach.

2.1.2.2 Multi-view Approach

The methods belonging to this type of approaches are applied for tracking objects in a
multi-video camera system. Because cameras can be different in rendering of colors or illumi-
nation, a color normalization step is usually necessary to make comparable object colors from
different cameras (e.g. use grey intensity or compute mean and standard deviation values of
color distributions).

In [Monari et al., 2009], the authors present an appearance model to describe people in a
multi-camera system. For each detected object, its color space is reduced using a mean-shift-
based approach proposed in [Comaniciu and Meer, 1997]. Therefore, the color texture of the
observed object is reduced to a small number of homogeneous colored body segments. For each
color segment, the area (in pixels) and the centroid are calculated and segments smaller than
5% of the body area are removed. Figure 2.10 illustrates the steps of this object appearance
computation. Finally, for approximative spatial description of the detected person, the person is
subdivided in three sections as follows : starting from the bottom, the first 55% as lower body,
the next 30% as upper body, and the remaining 15% as head. The appearance descriptor is now
composed, by assigning the color segments to the corresponding body part by its centroids.
Identical colors, which belong to the same body part, are merged to one. In doing so, the
spatial relationships within a body part are lost but at the same time this approach leads to an
invariant representation of the object in different camera views.

Let C = (c1,¢2, ..., ¢n) be the collection of all n color segments, with cq = [Lg, uq, va, wa, bpal’,
where

-d=1mn

— L, u are the chromatic values and v is the luminance value of the homogeneous segment

in CIE L x u x v color space [Wikipedia, 2011a].

— w € {0..1} (weight) is the area fraction of the color segment relative to the object area.

- bp = {head, upperbody, lowerbody} is the body part index which the centroid of the

segment belongs to.
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Figure 2.10 — Extraction of significant colors and mapping to dedicated body parts using a simple an-
thropometric model (source [Monari et al., 2009]).

The appearance feature set is defined by F*PP C C, with F9P is the subset of the color
segments, with a body part related fraction (wq) higher than a minimum weight (e.g. 10%).
For the similarity calculation of two appearance feature sets Fll‘pp and Fﬁpp, the Earth Mover’s
Distance (EMD) [Rubner et al., 1998] is used.

In [Bak et al., 2010a], the authors define a signature for identifying people over a multi-
camera system. This method studies the Haar and dominant color features. For each single
camera, the authors adapt the HOG-based technique used in [Corvee and Bremond, 2009] to
detect and track people. The detection algorithm extracts the histograms of gradient orienta-
tion, using a Sobel convolution kernel, in a multi-resolution framework to detect human shapes
at different scales. With Haar features, the authors use Adaboost [Freund and Schapire, 1997]
to select the most discriminative feature set for each individual. This feature set forms a strong
classifier. The main idea of dominant color feature is to select the most significant colors to cha-
racterize the person signature. The human body is separated into two parts : the upper body
part and the lower body part. The separation is obtained by maximizing the distance between
the sets of dominant colors of the upper and the lower body (see figure 2.11). The combination
of the dominant color descriptors of upper and lower body is considered as a meaningful fea-
ture to discriminate people. An Adaboost scheme is applied to find out the most discriminative
appearance model.

In [Colombo et al., 2008], the authors compare and evaluate three appearance descriptors
which are used for estimating the appropriate transform between each camera’s color spaces.
These three appearance descriptors are : (1) mean color, (2) covariance matrix of the fea-
tures : color, 2D position, oriented gradients for each channel and (3) MPEG-7 Dominant Color
descriptor. In order to compare the color descriptors from two cameras, two techniques are
presented to normalize color space and to improve color constancy. The first one (First-Order
Normalization) consists in computing the mean value for each color component (YcbCr) over
a training set of tracked objects in both cameras and to compute the linear transformation bet-

ween both mean values. In the second one (Second Order Normalization), the authors consider
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(a) original image (b) upper body part (c) lower body part

Figure 2.11 — The dominant color separation technique : a) original image ; b) upper body dominant
color mask; ¢) lower body dominant color mask (source [Bak et al., 2010a]).

the possibilities of rotation and translation of pixel color values. The term “rotation” means the
difference of luminance and chromatic channels between two cameras. If there is no mixing
between the luminance and the two chromatic channels, the rotation is not considered. The
authors have tested these techniques for tracking the movement of a pedestrian over a camera
network in subway stations. The result shows that the application of the color normalization
techniques does not improve significantly the performance of covariance and dominant color
descriptors. Also, the mean color descriptor brings the best result (compared to the two other
techniques) when it is combined with the second normalization color technique. The paper gets
some preliminary results on evaluation of different descriptors but the authors should extend

their work on the case of multi-object tracking.

2.1.3 Silhouette Tracking

Objects may have complex shapes, for example, hands, head, and shoulders that cannot be
well described by simple geometric shapes. Silhouette-based methods provide a more accurate
shape description for these objects. The object model can be in the form of a color histogram or
the object contour. According to [Yilmaz et al., 2006], silhouette trackers are divided into two
categories, namely, shape matching and contour tracking. While the shape matching methods
search for the object silhouette in the current frame, the contour tracking evolves from an initial
contour to its new position in the current frame by either using the state space models or direct
minimization of some energy functions.
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2.1.3.1 Contour Tracking

In [Xu and Ahuja, 2002], the authors present an object contour tracking approach using
graph cuts based active contours (GCBAC). Given an initial boundary near the object in the first
frame, GCBAC can iteratively converge to an optimal object boundary. In each frame thereafter,
the resulting contour in the previous frame is taken as initialization and the algorithm consists
in two steps. In the first step, GCBAC is applied to the image area which is computed by the
difference between a frame and its previous one to produce a candidate contour. This candidate
contour is taken as initialization of the second step, which applies GCBAC to current frame
directly. If the amount of difference within a neighbour area of the initial contour is less than a
predefined threshold, the authors consider that the object is not moving and the initial contour
is sent directly to the second step. So the initialization of the second step will be either the
contour at the previous frame, or the resulting contour of the first step. Figure 2.12 presents
this object contour tracking algorithm sketch. By using the information gathered from the image
difference, this approach can remove the background pixels from object contour. However, this
approach only works effectively if the object does not move too fast and/or the object does
not change a lot in consecutive frames. It means that this approach cannot handle the cases
of object occlusion. Figure 2.13 presents a head tracking result when the head is rotating and
translating.

The authors in [Torkan and Behrad, 2010] present a contour tracking algorithm based on
an extended greedy snake technique combined with a Kalman filter. The contour of a mobile
object includes a set of control points (called snaxels). Firstly the system computes the centroid
of an object contour by calculating the average value of the coordinates of its control points.
A contour is represented by its centroid and the vectors corresponding to the coordinates of
the control points relatively to the centroid. The tracking algorithm then uses a Kalman filter
to estimate the new centroid position in the next frame. The new control points are calculated
based on this new centroid, the vectors determined in the last frame, the shape scale and the
scaling factor. A new initial contour is also constructed thanks to its new control points. After
that, the greedy snake technique is applied to reconstruct the contour of the mobile object.
For each point of the 8 neighbour points of a snaxel, the algorithm computes a snake energy
value and the control point is updated with the neighbour point which has minimum energy.
The contour is so updated according to the new control points. The snake energy includes
an internal and an external energy. In the internal energy there are continuity energy and
curvature energy. While the internal energy determines the shape of the contour, the external
energy prevents contour from improper shrink or shape change and always holds it close to
the target boundary. In this paper, the authors use the Kalman filter to estimate the position of
contour centroid in the next frame. The field energy value and the application of the Kalman
filter are useful for tracking targets with high speed and large displacement. However, only
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(r,8)

Figure 2.14 — Computation of the color and shape based appearance model of detected moving blobs
(source [Kang et al., 2004])

three illustrations are provided. These illustrations are too simplistic. The object to track is
black on a white background. A classical color segmentation should be able to detect correctly
the unique object in the scene.

2.1.3.2 Shape Matching

In [Kang et al., 2004], the authors present an approach to compute the shape similarity
between two detected objects. The object shape is described by a Gaussian distribution of RGB
color of moving pixels and edge points. Given a detected moving blob, a reference circle Cg is
defined as the smallest circle containing the blob. This circle is uniformly sampled into a set
of control points P;. For each control point P;, a set of concentric circles of various radii are
used to define the bins of the appearance model. Inside each bin, a Gaussian color model is
computed for modeling the color properties of the overlapping pixels between a circle and the
detected blob. Therefore, for a given control point P; we have a one-dimensional distribution
vi(Pi). The normalized combination of the distributions obtained from each control point P;
defines the appearance model of the detected blob : A =3 v;(P;).

An illustration of the definition of the appearance model is shown in figure 2.14 where the
authors sample the reference circle with 8 control points. The 2D shape description is obtained
by collecting and normalizing corresponding edge points for each bin as follows :

() = =150

N max;(d_; Ej(Pi)) 28
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where E(j) is the edge distribution for the j*" radial bin, and E;(P;) is the number of edge points
for the j*" radial bin defined by the it" control point P;.

The defined model in this approach is invariant for translation. Rotation invariance is also
guaranteed, since a rotation of the blob in the 2D image is equivalent to a permutation of the
control points. This is achieved by taking a larger number of control points along the reference
circle. Finally, the reference circle defined as the smallest circle containing the blob guarantees
an invariance to scale. This approach is interesting but the authors only test with simple video

sequences in which there are only two moving people.

The classification of the tracking algorithms presented in [Yilmaz et al., 2006] are only re-
lative because there are still many tracking algorithms which combine different approaches
such as between point-based and appearance-based [Kuo et al., 2010], between contour-based
and shape-based [Yilmaz and Shah, 2004], or between contour-based and deterministic-based
[Erdem et al., 2003].

2.2 Control Algorithms

Although many tracking approaches are proposed in the state of the art, object tracking
quality always depends on the properties of the considered scenes such as illumination, camera
position, scene path complexity or the properties of mobile objects such as number, density,
occlusion frequence and size of objects. A tracker can produce good performance for a scene
at an time instant, but fails in other cases (i.e other scenes, or the same scene but at another

moment).

In order to overcome these limitations, automatic control systems have been studied to
adapt the system to context variations. The main idea of the control approaches is to perceive
the context information (the notion “context” is dependent on problems, approaches) and to
handle the vision algorithms (e.g tuning parameters, activating pertinent algorithms) to adapt
themselves to the variations of the considered images or video sequences.

Although there are some studies on control process for tracking task, these studies are quite
specific for their tracking algorithms [Kuo et al., 2010, Santner et al., 2010]. Our objective is
to address a generic control which can handle different tracking algorithms, therefore many
studies presented in the following sections are not related to the object tracking task, but the
principle of these control approaches can still be inherited for defining a control method for
the object tracking algorithms. We divide the control approaches into three categories : offline-
based, online-based and hybrid approaches.
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2.2.1 Offline-based Approaches

The main idea of these approaches is to use an offline phase for training or building a know-
ledge base to adapt the system performance to the contextual variation of the processed image
or video sequence. The knowledge mentioned here can be either the optimal parameter values
for a given context [Martin and Thonnat, 2008, Thonnat et al., 1999, Yong et al., 2005] or a set
of rules for tuning the parameters [Shekhar et al., 1999, Sherrah, 2010]. The offline learning
process helps the online adaptive task to decrease significantly the processing time. Also, this
approach can benefit the human interaction and knowledge when building a knowledge base.

In [Moisan et al., 1995], the authors present a real time knowledge-based system for pro-
gram supervision in a vehicle driving assistance system. The objective of the program super-
vision is to select and adapt perception modules with respect to a goal and to the available
resources. In order to reach these objectives, an knowledge base is built offline. This knowledge
base contains the request-to-action mapping rules, the context description, the requests, the
perception module descriptions and their tasks. The supervision task depends on the current
context. In this paper, the following contexts are defined : none, motor way, road, intersection
and stop at intersection. Depending on the detected context, the suitable task is performed.
For example, in the “motorway” context, the front and rear cameras are switched on, while in
the “intersection” context the left and right cameras are switched on. The experimental results
show that the system can handle with three situations : driving on a straight road, at intersec-
tion, and detection of obstacles. This study gets some satisfactory results. The principles are
quite general and applicable to various control approaches. However a limitation of this work
is not to control the result.

The authors in [Thonnat et al., 1999] present a framework which is able to integrate expert
knowledge and uses it to control the image processing programs. The framework is experimen-
ted on three different applications : road obstacle detection, medical imaging and astronomy. By
considering both context and evaluation criteria, the system can find the best algorithm among
a predefined algorithm set and tune its parameters to obtain the best possible performance.
However, the construction of a knowledge base for this system requires a lot of time and data.
The paper limits its study to static image processing and not to video processing.

In [Hall, 2006], the author presents an architecture for a self-adaptive perceptual tracking
system including three stages : “auto-criticism”, “auto-regulation” and “error recovery” (see
figure 2.15). The “auto-criticism” stage plays the role of an online evaluation process. This
stage returns the goodness score of trajectories. To do that, in the offline phase, the system
takes as input typical trajectories and uses K-means clustering [MacQueen, 1967] to learn the
scene reference model. In the online phase, the obtained trajectories are compared with the
learned clusters using the Gaussian Mixed Model (GMM) to compute their goodness scores.

The goal of the “auto-regulation” stage is to find a parameter setting that increases the
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Figure 2.15 — Architecture of a self-adaptive tracking system (source [Hall, 2006]).

system performance. Two strategies for tuning parameters are performed : enumerative strategy
and genetic algorithm. With the enumerative strategy, the system scans the parameter values in
a predefined parameter space and searches for the best parameter set. In the second strategy,
the system uses a genetic algorithm [Goldberg, 1989] to search for the parameter values.

The “error recovery” stage plays the role of repairing trajectory errors. It includes three
components : “Error Detector”, “Error Classifier” and “Error Processor”. The “Error Detector”
monitors the output of a perceptual component and is responsible for error detection. When the
“Error Detector” detects an abnormal trajectory in the system output, it extracts the trajectory
properties that serve then as input for the “Error Classifier”. The task of the error classifier is to
classify the observed trajectory. If the classifier is unable to classify the trajectory, the example
is labeled as “unknown”.

The “Error Processor” takes an error trajectory and its error-class label as input. It then
applies the learned repair rule associated with the corresponding class to repair the error (e.g.
remove noise, update the background image, merge the neighbour targets...). If the trajectory
is classified as “unknown”, no repair rule is executed. Instead, the trajectory is stored in a
database for later manual treatment, and is incorporated into the training data. In this way,
new examples of error cases are collected automatically, to ensure that there is a sufficient
number of available error examples for the design and test of the knowledge base.

Let s be the score at instant t representing online the tracking performance provided by
the “auto-criticism” stage, S denotes a predefined threshold, the authors define a mechanism
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for activating the “auto-regulation” and “error recovery” stages as follows :

— continue processing as normal if sy > S and sy At > S

— activate “error recovery” if sy > S and sy At < S

— activate “auto-regulation” if sy < S and syt < S

In this paper, the control of the tracking process is able to interact with the detection algo-
rithm to improve the tracking quality (e.g. change background image). However, this approach
is too expensive in terms of processing time. The parameter tuning in the online phase is time
consuming. Also, the searching methods for optimal parameters have some limits. The enume-
rative strategy is only appropriated for low dimensional parameter space and small range for
each parameter. The genetic algorithm can output only local solutions. This approach requires
an offline training process of the typical trajectories to evaluate online the tracker quality. It
cannot be applied for the scenes where there are not clearly paths or roads (e.g. park, place).

In [Yong et al., 2005] the authors present a method to select a segmentation algorithm for
a given image using a supervised training phase. Images are classified by clustering their grey
intensity histograms. Each image cluster is segmented by all candidate algorithms. The system
then searches for the best segmentation algorithm for each image cluster thanks to the user
evaluation. In the testing phase, the system determines the cluster to which the processing
image belongs, and the corresponding learned algorithm is used to perform the segmentation.
In this paper, the authors assume that the same segmentation algorithm for images sharing
the same features can produce the same performance. While the notion of “image features”is
general, this assumption is too strong because it depends on the segmentation approach.

The paper [Sherrah, 2010] presents a method for automatic tuning of parameters for object
tracking. Two assumptions are given. First, the algorithm quality expression is a function of the
considered parameters and this function has no local extremums. Second, the optimal parame-
ter values change slowly over time so that the presented method can successfully find them. In
the training phase, the system studies the relation between parameter variations and the algo-
rithm quality to define the rules for parameter tuning. In the online phase, the system can tune
parameter values to improve the performance using these rules. While the first assumption is
too strong, the authors do not mention how to compute online the algorithm quality. The ex-
perimental results should be compared with ground-truth data to validate the performance of
this approach.

In [Shekhar et al., 1999], the authors present a knowledge-based framework which can au-
tomatically select algorithms and set parameters until the desired results are obtained. Figure
2.16 presents the functioning of the control engine. The knowledge base in this work is defined
as a set of rules supporting the control process involving in different stages : planning, evalua-
tion and repair. We can find below an example of a rule in the planning stage which helps to

select an operator. This framework has been tested in two applications. The first one relates
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Figure 2.16 — Functioning of the control engine (source [Shekhar et al., 1999]).

to identify objects such as targets, buildings and roads. The second application is on vehicle
detection in aerial images.

the data have property x
AND context field f has value y
AND the request has a constraint z
then
choose an operator with characteristic b

AND do not choose operator w

Depending on the size, the properties of training data and the mechanism of the training
scheme, a knowledge base might contain some incorrect or redundant knowledge. In these
cases, a filtering process for knowledge base is necessary. In [R. Vincent and Thonnat, 1994],
the authors propose a method to refine the knowledge base by combining several learned rules
or solving the conflicts between them. A method for computing the similarity of two contexts
is also described using premises belonging to each context. However, the priorities of premises
are not considered. Also this approach does not remove the premises which might be useless.

In [Caporossi et al., 2004], the authors compare the tracker results with corresponding
ground-truth data to exploit the importance of each parameter for each context and to ex-
ploit the influence of each parameter variation on tracker performance. The authors assume
that parameter variations are independent. This is a strict hypothesis because the parameters
are usually dependent on each other.

An open problem is how to find the optimal parameter values for a given context? The

parameter space is in general very large. An exhaustive search cannot be effective. In order to
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Figure 2.17 — Illustration of a training scheme for fusing object tracklets (source [Kuo et al., 2010]).

solve this problem, in [Bhanu and Das, 1995] the authors present a new method to search for
optimal parameters. The main idea is to combine a Genetic algorithm (GA) [Goldberg, 1989]
and a hill climbing algorithm (HC) [Russell and Norvig, 2003]. When the GA finds a new opti-
mal point (i.e. parameters), the HC takes this point as a starting point. The HC then scans all
“adjacent points”. Adjacent points of a given point are defined in two ways. First, it can denote
a set of points that are at an Euclidean distance apart from the given point. Thus the adjacent
points are located in the neighbourhood of the given point. Second, adjacent points can denote
the set of points that are at a unit Hamming distance apart from the given point. If the local
maximum point is found, it will replace the initial maximum point and the GA proceed with the
updated population.

2.2.2 Online-based Approaches

The offline-based approaches require generally a lot of processing time and human inter-
vention. Also, the application of an offline learned knowledge for an online process phase (i.e.
the decision step) can produce some errors leading to a decrease of performance of the proces-
sing task. Moreover, these approaches cannot handle the new cases for which the knowledge
base has not learned yet. In order to overcome these limits, we present in this section some ap-
proaches based completely on an online process (i.e. without offline phase) to adapt their tasks
to the context variations [Crowley and Reignier, 2003, Kuo et al., 2010, Santner et al., 2010].

The authors in [Kuo et al., 2010] present a method to associate tracklets using online lear-
ned discriminative appearance models (see figure 2.17).

First, the object tracklets are determined based on considering simple object features : posi-
tion, size and color histogram in two consecutive frames. Second, the authors use an Adaboost
algorithm for training automatically the appearance models of tracklet pairs belonging to a
same trajectory. The training samples are collected assuming the two hypotheses : (i) one tra-
cklet describes exactly one target, (ii) two tracklets which overlap in time represent different
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Figure 2.18 — The overview of the process of obtaining online training samples. (a) : The raw detection
responses. (b) The result of reliable tracklets. (c) Positive training samples. (d) Negative training samples
(source [Kuo et al., 2010]).

targets. Figure 2.18 illustrates the process of collecting the training samples.

The tracklets are described by several local features. These features are constructed based
on RGB color histogram, covariance matrix and histogram of oriented gradients (HOG). The
RGB color histogram is used to represent the color appearance of a local image patch. The goal
of the covariance matrix [Tuzel et al., 2006] is to describe the image texture. The HOG feature
[Dalal and Triggs, 2005] is used to capture object shape information. In this paper, a 32D HOG
feature is extracted over the region R; it is formed by concatenating 8 orientation bins in 2 x 2
cells over R. These features are computed at different object locations and scales to increase
the descriptive ability. A feature similarity computation between corresponding sub-regions of
two objects is considered as a weak classifier. An Adaboost algorithm is used to learn online the
weights (i.e. importance) of the weak classifiers. At the end of the Adaboost algorithm, a strong
classifier is defined as a weighted combination of the weak classifiers. This strong classifier is
able to compute the similarity between two tracklets to decide to associate tracklets considered
as belonging to the same mobile object.

In this paper, for the training task, the two given assumptions are too strong. In the case
of occlusions or crowded scenes, it seems that these hypotheses cannot be true because the
features used for tracklet construction (i.e. position, size and color histogram of mobile objects)
are too simple. The authors should experiment with videos with poor illumination and/or low
contrasted videos because these elements influence strongly the color appearance model.

The paper [Crowley and Reignier, 2003] presents a method to build a context aware system
for computer vision applications. The system is organized as a multi-stage system. Each stage
corresponds to a specific task and process. In order to control the processes, the authors asso-
ciate each process with the three following capabilities : “auto-regulation”, “auto-description”
and “auto-criticism”. An “auto-regulation” process means that this process is able to tune para-
meters for keeping the optimal quality. The second capability means that the process can pro-

vide its services or its command set to a more abstract meta-controller. Finally, an auto-critical
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process means that this process can estimate online its quality.

In [Santner et al., 2010], the authors present a tracking framework which is able to control
a set of different trackers to get the best performance. The system runs three tracking algorithms
in parallel : normalized cross-correlation (NCC), mean-shift optical flow (FLOW) and online
random forest (ORF). FLOW is used firstly as a main tracker. If the tracker quality of ORF is
better, FLOW is replaced by ORF. When NCC quality is better than the one of OREF, it takes the
main role of ORF. The approach is interesting but the authors do not mention how to evaluate
online the tracker quality. Also, the execution of three trackers in parallel is very expensive in
terms of processing time.

2.2.3 Hybrid Approaches

The notion of “hybrid approach” means a method using an offline process for building a
knowledge base or for training data, and also including an online control strategy to adapt
themselves to context variations of the video sequences. This type of approach benefits from
the advantages of both previous approaches. Typical works of this type of approach can be
found in [Georis et al., 2007, Nghiem, 2009].

The method proposed in [Georis et al., 2007] can be considered as a typical method of this
approach. In this paper, the authors present a controlled video understanding system based on
a knowledge-base. The system is composed of three main components : a library of programs,
a knowledge base and a control process (see figure 2.19). Two additional components (the
evaluation and the learning tool) enable the expert to evaluate the system and to learn system
parameters.

The library of programs is organized following a model of the video understanding process
which consists in three main tasks : 1) object detection and classification, 2) spatio-temporal
analysis and 3) event recognition.

The second component is a knowledge base which includes three knowledge types. The first
type is the end-user goal. This knowledge type is defined to enable a goal-directed control and
to ensure that the system will match end-user expectations. The second type is the knowledge of
the scene environment. This kind of knowledge helps the system to obtain the necessary infor-
mation for adapting the system to the variations of the scene. The authors build this knowledge
thanks to data provided about the camera, the scene (e.g. 3D geometric model), the physical
objects (e.g. object type) and the video sequences (e.g. frame rate). The third knowledge type
is the knowledge of the video processing programs. This knowledge defines the operators (i.e.
primitive and composite operators) for different contexts. A learning tool helps the experts to
complete a prior knowledge. This knowledge base is built using a supervised learning.

The last component is a control component which includes steps for managing all of the
online processes of the system (see figure 2.20).
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Figure 2.19 - A knowledge-based controlled video understanding platform (source
[Georis et al., 2007]).
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— Planning : This phase analyses the end-user request in order to select the best operator.
Then, it creates a plan to solve the request.

— Program execution : This phase runs the video processing programs that have been orde-
red by the previous phase after having assigned values to parameters. Results are produ-
ced at this phase.

— Result evaluation : This phase evaluates the returned results and produces assessment
values. If the evaluation results are good enough, the process can go on.

— Repair step : If the result assessment is negative, this phase decides the appropriate cor-
rective actions to execute. This may lead to either reconsidering the arrangement of pro-
grams or changing some parameter values.

For repair step, the authors define five strategies :

— Goal-directed behavior : This strategy helps the system to satisfy the end-user request.
For example, the system decides to use the people group tracking algorithm (instead of a
single person tracking algorithm) for recognizing a fighting event.

— Data-driven behavior : The input data (e.g. video sequence, scene environment informa-
tion) can help the system to take decision.

— Closed-loop behavior : this strategy corresponds to a feedback of information from high-
level to low-level processes : the new processed results become the available information
for the reasoning at the next time step.

— Local or global repair behavior : this strategy first needs the evaluation of results. Only a
bad evaluation triggers the execution of repair criteria. In a local repair strategy, a repair
criterion decides to re-execute the process and triggers parameter adjustment criteria. In
a global repair strategy, a repair criterion can transmit the problem to a father process in
the hierarchy.

— Real-time behavior : The system enforces an execution in a specified time so that the
reasoning engine can keep the processing time to be faster than the video frame rate.

This approach is interesting, but it does not address specifically the tracking task. Also, the
authors do not explain clearly enough the online evaluation algorithm. The notion “context” is
not clearly formalized. The tested sequences are not complex enough.

In [Nghiem, 2009], the author presents an adaptive method for detecting mobile objects in
videos. The objective of this method is to tune the parameter values of a background subtraction
algorithm to adapt its functions to the current video context.

The processing chain includes three phases : execution, evaluation, and repair. While the
execution phase is performed by a foreground detection task, the two other phases are done by a
controller. In the evaluation phase, the authors define five error indicators (e.g. number of noisy
pixels, area of unknown-classification objects) to evaluate the quality of the object detection
task. When this quality is low, the repair phase is activated. This phase tries to find the optimal
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Figure 2.20 — Main phases of the reasoning engine (source [Georis et al., 2007]).

parameter values so that the foreground detection results are consistent with the feedback from
the classification and tracking tasks. To do this, the controller has a set of parameter tuners.
Each tuner is responsible for reducing the values of one or several error indicators. Depending
on their approaches, these parameter tuners are divided into two categories : context-based
and evaluation-based. The tuning process works as follows :

1. The controller takes as input the foreground detection results and computes the values of
the five error indicators for each region in the image.

2. The controller uses the expert knowledge to verify if the values of the error indicators are
good or not.

3. If the value of one error indicator in one region is not good, the controller activates the
corresponding parameter tuner.

4. If the parameter tuner can improve the value of this error indicator, the controller requests
the foreground detection task to change its parameter values at the affected region.

5. If the parameter tuner fails or if no parameter tuner can reduce the value of this error
indicator, the controller informs human operators and stores the current video sequence
for further offline analysis.

When a parameter tuner is activated (at step 3), the context-based tuner is called first.
This tuner is specific to one particular background subtraction algorithm. It has two phases :
online and offline. The set of learned contexts is empty at the beginning and it is constructed
incrementally.

In the online phase, the tuner determines the context of the current video and then applies
the corresponding optimal parameter values as follows :
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1. The tuner verifies if the context of the current video belongs to one of the learned contexts.

2. If the context of the current video belongs to the learned context c; then the tuner applies
the learned optimal parameter values p; for the detecting objects.

3. If the condition of the current video does not belong to any learned context, the tuner
requests the controller to store the video for an offline phase.

The objective of the offline phase is to find the optimal parameter values for unknown
contexts given by the online phase. This phase works as follows :

1. For each video stored by the controller in the online phase :
a. Create ground-truth data for this video.
b. Find optimal parameter values for this video using the ground-truth data.

2. Compare the optimal parameter values of different learned contexts. If two contexts c1,

c2 have the same optimal parameter values, merge them to make c3.

If the context-based tuner cannot solve the error, the “evaluation-based parameter tuner” is
then activated. This parameter tuning process is based on the value of the error indicator for
that this tuner is responsible. The tuning process works as follows :

1. The auto-critical function computes the value of the error indicator related to the para-
meter tuner.

2. If the error indicator value is good :
a. The evaluation-based parameter tuner tries to improve the current parameter value.
b. If the tuner cannot, the tuning process finishes successfully with the current parameter
values as the tuned parameter values.

3. If the error indicator value is not good :

a. The evaluation-based parameter tuner tries to produce how new parameter values
which may help the foreground detection task to improve the values of the error indicator.
b. If the evaluation-based parameter tuner cannot produce such new parameter values,
the tuning process is considered unsuccessful.

c. If the evaluation-based parameter tuner can produce such new parameter values, the
controller requests the foreground detection task to set the new parameter values.

d. The foreground detection task uses these new parameter values to detect the fore-
ground in the next frame, then the tuning process returns to step 1.

While the context-based parameter tuner needs a knowledge base which is learned in an
offline phase, the evaluation-based parameter tuner relies completely on information retrieved
during the testing phase.
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This work has several limitations. First, in the context-based parameter tuner, the author
assumes that a same context cannot own different optimal parameter values. This is a strong
assumption because in many cases, due to the optimization process, we find only the local
optimal parameter values. Also, in general, the context definition can be not good enough to
determine the unique optimal parameter values. Second, the authors assume no relationships
between parameters when finding the optimal parameter values. Another important assump-
tion is that this method requires the knowledge of the tuned parameters (e.g. which parameter
to change for a given problem, the effect of changing parameter values). This prevents this
method from being generic enough to control other object detection algorithms without this
knowledge.

An important task in the control process of tracking algorithms is the online tracking quality
evaluation. The objective of this task is to estimate online the performance of a tracking algo-
rithm. Thanks to this, a controller can detect in real time (or with a low temporal delay) when
the tracker fails and proposes suitable strategies for improving the tracking performance. In the
following section, we will present some methods to evaluate online the object tracking quality.

- Online tracking quality evaluation

Online evaluation of tracking algorithms receives some attention in the existing litera-
ture [Erdem et al., 2004, Wu and Zheng, 2004, Wu et al., 2007]. In [Erdem et al., 2004], the
authors define a metric called inter-frame color histogram metric for evaluating the tracking
quality. The objective of this metric is to compare the color histogram of an object at every time
instant t (denoted Hy) with the average color histogram of object within interval [t —1, ..., t+1]
(denoted Hy). As the total number of pixels in the two histograms can be different, a norma-
lization step is done. In this paper, the authors propose to use one of four different distances
named L;, L,, x? and histogram intersection distances to compute the difference between two
histograms H; and Hj.

In [Wu and Zheng, 2004], the principle is to consider the coherence of five object descrip-
tors over time : velocity, distance displacement, area, shape ratio and color. The quality of an
output trajectory is said good if the values of the above descriptors corresponding to objects
belonging to this trajectory do not undergo a large variation. At each frame, for each tracked
object, the authors compute the variation of these descriptors by comparing the values of object
descriptors between two consecutive frames. For each descriptor, by using predefined thre-
sholds, this variation is mapped into a binary score : if the variation is not significant (i.e. lower
than the corresponding threshold) then score is set to 1, otherwise score equals 0. These five bi-
nary scores (corresponding to the five object descriptors) are combined to quantify the tracking
quality for the considered tracked object.



62 Chapter 2 : State of the Art

These two methods can well perform in videos in which the detection quality is good. Howe-
ver many drawbacks can be found. For the first one, the color histogram is not reliable enough
to evaluate the tracking quality in some cases, for example in the case of occlusion. For the
second method, with the five presented descriptors, there are still some tracking errors that the
algorithm cannot take into account. For example the tracker can lose an object track even if this
object remains in the scene. It is a popular error of most tracking algorithms and no descriptor
presented in this method has been proposed to characterize this error. The experimentation of
both methods are only done with some simple sequences in which there are only single object

movement.

Beside the two mentioned methods, there exist several tracking approaches using an on-
line evaluation. The tracking algorithms [Yang et al., 2005, Souded et al., 2011] which rely on
particle filter belong to this category. The notion of “particle” (or sample) represents elements
used to describe an object state. Although the objective of these algorithms are not to evaluate
directly the tracking quality, they only evaluate online particles to filter out the low quality
particles. This idea can be used to evaluate the object tracking quality. The particle filter is a
Bayesian sequential importance sampling technique, which recursively approximates the pos-
terior distribution using a finite set of weighted samples. First, a set of samples is created. Each
sample is associated with a weight value representing its reliability. The particle filter algo-
rithm consists in three steps : prediction, correction and re-sampling. In the prediction step,
for each sample, a new sample is generated by a transition model. In the correction step, the
new samples are corrected using the predicted and measurement results. Each new particle is
weighted by its likelihood. In the re-sampling step, the particles whose weights are small en-
ough are removed. The best particles are used to produce a new set of particles to ensure a
constant number of particles over time. Depending on the notion of particle (e.g. object local
feature such as Shift or HOG descriptor, or object global feature such as object color, size ), we
can use the particle filter to evaluate online the tracking quality in different cases. Moreover,
a control process on the prediction (e.g. change the transition model) and re-sampling steps
(e.g. change the re-sampling method or the number of particles) can be proposed to adapt the
tracker performance to the context variation. However, the reliability of this method depends
on the reliability of particles. The selection of suitable features for describing a particle is a hard
task.

In this thesis, we propose a control algorithm for trackers based on object appearance or
on points of interest in a single camera because these approaches are the most common ones.
The algorithms belonging to this category are classified in “single view” or “point tracking”

approaches in the taxonomy tree (see figure 2.1). In order control this tracker category, we
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need to study the scene/object conditions which have significant influences on the tracking
quality. We propose some following features to study :

Contrast of objects, denoted C.
2D area of objects, denoted A.

Scene illumination intensity, denoted I.

Complexity of object trajectories, denoted Comp.

We divide the feature values into three levels from low to high, denoted 1, 2, 3.

Table 2.1 presents some object tracking approaches and the studied feature values of the
tested videos. From this table, for each tracking approach, we can find that the tested video
sequences have the same levels on contrast and 2D area of objects. Only one change is found
in [Kwolek, 2009] (at the contrast condition). Otherwise, the values of the two left conditions
(scene illumination and object complexity) vary. It means that the tracking approaches presen-
ted in this table can only cope with constant conditions on the contrast and 2D area of objects.
So, these two conditions might influence significantly the quality of the object appearance-based
tracking algorithms.

2.3 Discussion

Since the appearance of the first papers on object tracking in the years 1980s [O’Rourke and Badler, 1980],
this topic has always attracted the attention of researchers. Many object tracking methods have
been proposed in the state of the art and obtain some good results. However, as other vi-
sion tasks, the object tracking is dependent on processed video sequences. The variations of
occlusion level, contrast and size of mobile objects within the processed video sequence can
influence significantly the tracking performance. In order to solve this problem, some tracking
control approaches have been proposed in the recent years. These studies can be classified
into three categories : offline-based [Hall, 2006, Sherrah, 2010, Caporossi et al., 2004], online-
based [Kuo et al., 2010, Santner et al., 2010] or hybrid approaches [Georis et al., 2007]. There
are also many other approaches whose objective is to control other vision tasks [Thonnat et al., 1999,
Yong et al., 2005, Martin and Thonnat, 2008, Nghiem, 2009]. However their ideas can be inhe-
rited to define a tracker controller. These methods have the following issues.
The first issue relates to the context notion. Depending on the property and objective of the
study, each method has its proper definition of context. Moreover most of them relate to the sta-
tic image applications [Martin and Thonnat, 2008, Shekhar et al., 1999, Thonnat et al., 1999,
Yong et al., 2005]. Only few of them address video processing [Caporossi et al., 2004, Georis et al., 2007].
We have not found any paper about context study for object tracking.
The second issue pertains to the assumptions of these studies. Many approaches have too
strong assumptions. For example in [Sherrah, 2010], the algorithm quality expression is descri-
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Approach Object des- | Video description C|A|TI| Comp
criptors
[Snidaro et al., 2008] | Haar and Building hall (Caviar data- | 1 | 1 | 3 1
set)
LBP Shop corridor (Caviar da- | 1 | 1 | 2 2
taset)
Parking 1/1/3 1
[Bak et al., 2009] color and Airport (TRECVid dataset) | 3 | 2 | 3 1
texture Home-care 31212 2
[Kwolek, 2009] color Two persons occluded 3113 1
covariance Shop corridor (Caviar da- | 1 | 1 | 2 2
taset)
Building hall (PETS 2006) | 3 | 1 | 2 1
[Maggio et al., 2007] | color and Person head (6 sequences) | 2 | 1 | 3 1
gradient di- | Outside scenes (6 se- |2 |13 2
rection quences : Pets, Caviar)

Table 2.1 — An enumeration of features influencing the tracking quality. The column Object descriptors
presents the object descriptors used for these tracker approaches. C : Contrast of objects; A : 2D area
of objects; I : Scene illumination intensity ; Comp : Complexity of object trajectories. The features have
three values 1, 2, 3 representing the feature value level from low to high.



2.3 Discussion 65

bed as a function of control parameters. This function is assumed not to have local extremumes.
This hypothesis might be right when there is only one control parameter. Otherwise, the quality
function varies depending on the number and properties of the control parameters.

The third issue relates to the online evaluation of the tracking quality. This evaluation task
is very useful because it can detect when the performance of tracking task decreases to activate
the parameter tuning process. Although different control approaches have been presented, only
few of them (for example in [Georis et al., 2007, Nghiem, 2009]) use an online evaluation as a
complementary information to support the control process. Moreover, this part is not explained
clearly enough in these papers.

The fourth issue is about the knowledge base used in some control methods. As presented
above, the knowledge base is often multiform. It can be either a set of rules for tuning para-
meters, or the optimal parameter values for a given context. The knowledge base construction
requires generally user or expert interaction. This can ensure a reliable knowledge base com-
pared to the unsupervised training acquisition of the knowledge. However, human interaction
is time consuming. So the open problem is how to reduce at most this interaction.

The fifth issue pertains to the generic level of the control methods. We can see that most
of the control studies address static image applications or video object detection. In the object
tracking process, some authors have proposed control algorithms to adapt the tracking per-
formance to the scene variations. However these methods are designed specifically for their
tracking algorithms and are not generic enough to handle the other tracking approaches.

In this manuscript, we propose a control method for object tracking algorithms addressing
these issues. The control strategies can regulate the tracking parameters for the current context
to improve the tracking quality. The objective of the proposed approach is generic (remove the
strong assumptions, control different tracking algorithms), flexible (easy to control other tra-
cker approach types) and intelligent (decrease as most as possible human interaction, evaluate
online the tracking quality).

We propose a method to control the object trackers based on object appearance and on
points of interest (see figure 2.1). These tracking approaches are selected because they are the
most popular ones and are largely studied in the state of the art.
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3

OVERVIEW OF THE PROPOSED APPROACH

In this manuscript, we propose a control method which is able to tune and learn online
tracking parameters to adapt the tracking task to the video scene variations. The proposed
approach includes two phases : an offline learning phase and an online testing phase. This
chapter presents a general description of these two phases. The details of these phases can be

found in the next two chapters.

3.1 Offline Learning

The objective of this learning phase is to create or update a learned database which supports
the control process of a tracking algorithm. This base contains the best satisfactory parameter
values of the tracking algorithm for various scene conditions on the density, occlusion level of
mobile objects, the object contrast and the object 2D area. The learned parameter values are
associated with two values representing their reliability.

The learning is done in an offline phase to avoid the constraint related to the processing
time. Also, thanks to this, we can use a manual annotation of the detection and tracking tasks
to increase the precision of the learned database.

This phase takes as input training video sequences, annotated detected objects (including
2D positions and 2D bounding box sizes), annotated trajectories, a tracking algorithm and its
control parameters. The term “control parameters” refers to parameters which are considered
in the control process ( i.e. to look for best satisfactory values in the learning phase and to be
tuned in the online phase). The performance of the control algorithm depends strictly on how
much the control parameters influence the tracking quality. For each control parameter, this

phase requires a name, range of values and step value. The step value of a parameter is defined
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Figure 3.1 - Illustration of the offline learning scheme

as the minimal variation which can cause a significant change on the tracking quality. This value
helps to avoid scanning the entire parameter space when searching its best satisfactory value

for the tracking quality.

At the end of the learning phase, a learned database is created (if this is the first learning
session) or updated (from the next learning sessions). A learning session can process many
video sequences. Fig 3.1 presents the proposed scheme for building the learned database.

In the following sections, we describe an overview of the learning process as well as the
execution steps including contextual feature extraction, context segmentation and code-book
modeling, tracking parameter optimization, and clustering. The clustering step includes two
sub-steps : context clustering and parameter computation for context clusters.

3.1.1 Learning Process Description

In this work, a tracking context of a video sequence is defined as a set of six features : the
density, occlusion level of mobile objects appearing in this video sequence, the object contrast,
object contrast variance, object 2D area and object 2D area variance. For each training video,
we extract the contextual features from the annotated object detection and then use them to
build a model of six code-books. In parallel, we perform the optimization process to determine
the best satisfactory tracking parameter values. These parameters and the model of code-books
are inserted into a temporary learned database.

After computing the best satisfactory parameters for all training videos, we perform a cluste-
ring of the contexts. At the end of a learning session, the learned database is created or updated

by new context clusters and new best satisfactory tracking parameters.



3.1 Offline Learning 69

3.1.2 Execution Steps
3.1.2.1 Contextual Feature Extraction

The notion of “tracking context” (or “context”) in this work represents elements in the vi-
deos which influence the tracking quality. For different tracking approach types, the “context”
definition can be different. For example, for tracking objects in a multi-camera network, the
distance between camera views is very important to decide the parameter value on the dura-
tion for the object displacement from a camera view to another one. Therefore, the context of
tracking algorithms for a multi-camera network should contain the information on the distance
between camera views belonging to this network.

In this manuscript, we focus on the tracking algorithms which rely on object appearances
(e.g. object color, texture). Therefore the context of a video sequence is defined as a set of
six features which influence strongly object appearances : the density, occlusion level of mobile
objects, the object contrast, object contrast variance, object 2D area and object 2D area variance.
This step takes as input a training video and its annotated mobile objects. The annotation
includes positions and 2D bounding box sizes of objects. This step gives as output the values of
the contextual features over time.

3.1.2.2 Context Segmentation and Code-book Modeling

The context of a training video sequence can undergo a large variation. Therefore it is
not correct enough to keep the same parameter values all along video. In order to solve this
problem, we propose an algorithm to segment the training videos in consecutive chunks whose
context has to be stable enough.

When a tracker fails in some frames, the tracking quality in the following frames are conse-
quently influenced. So some low frequent contextual feature values can take an important role
for keeping a good tracking quality. For example, when the density of mobile objects is high
in few frames, the tracking quality can decrease significantly from that moment, even if in the
following frames the density of objects decreases. Therefore, we decide to use a code-book mo-
del [Kim et al., 2004] to represent the contextual feature values of video chunks because this
model can estimate complex and sparse distributions.

For each training video chunk, this step takes as input the values of the six contextual
features. A contextual feature distribution is represented by a code-book model whose code-
words describe the values of the corresponding feature. At the end of this step, each training
video is divided into a set of chunks. Each video chunk context is represented by a model of
six code-books corresponding to the six contextual features : the density, occlusion level of
mobile objects, the object contrast, object contrast variance, object 2D area and object 2D area

variance.
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3.1.2.3 Tracking Parameter Optimization

The objective of the tracking parameter optimization step is to find the values of the control
parameters which ensure the best possible tracking quality for each video context chunk. This
quality is greater or equal to the threshold e presented in hypothesis 3, section 1.2.2. These
parameters are called “best satisfactory parameters”. The optimization task is done using the
manually annotated trajectories.

This step receives as input the annotated detected objects, a tracking algorithm, a video
chunk and a set of control parameters for this tracker. The annotated objects are used as the
object detection result. This step gives as output the best satisfactory parameter values. The
information of a control parameter includes its name, value range and step value.

If the search space of the control parameters is small, an exhaustive search can be used to
scan the values of these parameters. Otherwise, we use a genetic algorithm [Goldberg, 1989] or
enumerative search. In some cases, we can convert an optimization problem to a classification
problem, an Adaboost algorithm [Freund and Schapire, 1997] can be used for finding the best
satisfactory parameter values.

Thanks to the annotated trajectories, we can evaluate the tracking results using some pre-
defined tracking evaluation metrics to find the best satisfactory parameter values.

In order to represent the reliability, the best satisfactory parameter values are associated
with two values. The first one is the number of frames of the training video in which the
mobile objects appear (called “number of training frames”). The second one is the quality of
the tracking output compared to the manual annotated trajectories.

The best satisfactory parameter values, their reliability values and the contextual code-book
model corresponding to the training video chunk are stored into a temporary learned database.

3.1.2.4 Clustering

In some cases, two similar contexts can have different best satisfactory parameter values
because the optimization algorithm only finds the local optimal solution. Another problem is
that the context of a video sequence can be not sufficient for playing the role of a key value
for determining the best satisfactory tracking parameter values. A context clustering process is
thus necessary to group similar contexts and to compute the best satisfactory parameter values
for the context clusters. This process includes two sub-steps : context clustering and parameter
computation for context clusters.

The clustering step is done at the end of each learning session. This step takes as input the
data stored in the temporary learned database and in the learned database resulting from the
previous learning sessions. These data include a set of contexts or context clusters associated

with their best satisfactory tracking parameter values. The data from the learned database is
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only required as input from the second learning session and the followings. These contexts and
context clusters are then grouped by classifying the contextual features.

The reliability of the best satisfactory parameter values of a component context plays the
role of a weight value for computing context cluster parameter values. This weight value is
directly proportional to the number of training frames and to the tracking output quality. The
best satisfactory tracking parameter values of a context cluster are defined as a weighted com-
bination of the best satisfactory parameter values of contexts belonging to this cluster. The
best satisfactory parameters of a context cluster are also associated with the number of trai-
ning frames and tracking quality of the best satisfactory parameters in component contexts to
represent their reliability.

At the end of this step, a learned database is created (for the first learning session) or upda-
ted (for from the second learning session) with the new context clusters, new best satisfactory
tracking parameter values and their weights.

3.2 Online Testing

The objective of the online testing phase is to tune and learn online the parameter values
for obtaining the best tracking performance. This phase is divided into two stages : initial
parameter configuration and parameter adaptation stages. While the objective of the first stage
is to set values for control parameters at the first frame and for the parameters of the proposed
controller, the second stage is responsible for tuning and for learning these parameters over
time to adapt them to the video context variation.

3.2.1 Initial Parameter Configuration

At the first frames, as the control process does not have enough information to compute the
context (a context should be computed for a sequence of at least 50 frames), it cannot decide
how to set the tracking algorithm parameters. Therefore we define a mechanism to initialize
the parameter values, for example the mean values or preference values (defined by an expert
or user). Also, this step assigns the necessary values for the proposed controller parameters.

3.2.2 Parameter Adaptation

In the parameter adaptation, we propose two approaches called “context-based parameter
adaptation” and “evaluation-based parameter adaptation”. While the first approach only relies
on the information of the current video context to tune the tracking parameters (see figure
3.2), the second approach uses an online tracking evaluation and a clustering task to support
the online control process (see figure 3.3).
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Figure 3.2 — Illustration of the tracking task with the context-based parameter adaptation approach

3.2.2.1 Context-Based Parameter Adaptation Approach

The objective of the context-based parameter adaptation approach is to detect contextual
changes and to adapt the tracking parameter values to these changes. This approach takes as
input the test video stream, the list of detected objects at every frames, the offline learned
database and gives as output the adaptive tracking parameter values for every new contexts
detected in the test (see figure 3.2).

In the following section, we describe the approach as well as the different steps of this ap-
proach including the context detection and parameter tuning steps.

- Approach Description

At the first frames, the controller sets the initial parameter values for the object tracking
algorithm. After each predefined number of frames (e.g. 50 frames), if the context detection
step detects a variation of context, the parameter tuning step looks for the best satisfactory
parameters corresponding to the new detected context in the offline learned database. The tra-
cking parameters are set to the found parameter values. If the context is not in the database,
the tracking parameters are kept unchanged. In this case, the detected context is marked to be
learned in the next learning sessions.

- Execution steps

+ Context Detection

When the tested video stream context changes (i.e change of the density, occlusion level,
contrast, contrast variance, 2D area or 2D area variance of mobile objects), the current tracking
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parameters may not be effective anymore. The objective of this step is to extract the contextual
features of the current video chunk and to detect whether a contextual change has happened.
To do that, for each video chunk of similar temporal length, denoted N (e.g. N = 50 frames),
its context is computed based on the object detection results. Then we search for the closest
context cluster in the offline learned database. A contextual change is detected when the context
of the current video chunk does not belong to the context cluster of the previous video chunk. If

so, this step sends an activation signal to the parameter tuning step, otherwise nothing is done.

+ Parameter Tuning

The objective of the parameter tuning step is to find the best satisfactory parameter values
which are adapted to the current video context. This step receives as input the activation signal
and the current context from the “context detection” step and gives as output new adaptive
tracking parameter values. The principle is that once this task receives an activation signal,
it searches for the learned context cluster which best matches the input current context. The
best satisfactory parameters corresponding to this found cluster are then used to parameterize
the tracking algorithm. If no context cluster in the learned database matches with the current

context, this context is marked to be learned in an offline phase.

3.2.2.2 Evaluation-Based Parameter Adaptation Approach

Similar to the context-based parameter adaptation, the evaluation-based parameter adap-
tation approach also takes as input the video stream, the list of detected objects at every frame
and the learned database. However this approach requires the tracking result, control tracking
parameter values at every frame and the exit zones of the camera view. The learned database is
the result of the offline learning process but in this approach, this base can be updated online
with an unsupervised learning process. The output of this approach is the set of control para-
meter values corresponding to the video contexts detected over time and the updated learned
database.

Compared to the context-based parameter adaptation approach, we add two sub-tasks
which are “online tracking evaluation” and “clustering” (see figure 3.3) to better optimize the
control processing time, update online the learned database and to detect the limitations of this
database.

In the following sections, we present the approach description as well as the execution
steps including context detection, online tracking evaluation, parameter tuning and learning,
and clustering.

- Approach Description
After each predefined number of frames (e.g. 50 frames), we compute the outputs of the
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Figure 3.3 - Illustration of the tracking task with the evaluation-based parameter adaptation approach

context detection and online tracking evaluation tasks for the current video chunk. Using these
values, the parameter tuning and learning step decides whether to tune the tracking parameters
and to update the learned database (see the description of “parameter tuning and learning step”
for more details).

After every predefined temporal interval (e.g. 5 minutes) or at the end of the processed
video stream, the clustering step is activated to re-group the learned database to add the new
contexts.

- Execution steps

+ Context Detection

The definition of the context detection step is similar to the one defined in the context-based
parameter adaptation approach (see the “context detection” description in section 3.2.2.1 for
more details).

+ Online Tracking Evaluation

The objective of the online tracking evaluation step is to evaluate online the tracking algo-
rithm performance without ground-truth data. This step receives as input the object trajectories,
exit zones of the camera view and gives as output every predefined number of N-frames (N is
defined in section 3.2.2.1) a score corresponding to the tracking quality. This score is high (e.g.
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greater than 0.5) when the considered tracker quality is good, and is low (e.g. lower than 0.5)
when the tracker fails.

+ Parameter Tuning and Learning

The objective of the parameter tuning and learning step is to find the best satisfactory
parameter values which are adapted to the current video context and to update the learned
database using an unsupervised learning process. For each predefined number of N-frames
(this number is equal to the one defined in context detection and online tracking evaluation
steps), this step receives as input the current video context from the “context detection” step, the
current tracking parameters and the tracking quality score from the “online tracking evaluation”
step. The output of this step is new adaptive tracking parameter values and the updated learned
database.

The execution mechanism is done as follows :

— If the tracking quality is good enough, the context of the considered chunk associated
with the current tracking parameters are updated into the learned database.

— If the tracking quality is low and a contextual change is detected, it searches for the lear-
ned context cluster which best matches to the input current context. The best satisfactory
parameters corresponding to this found cluster are then used to parameterize the tracking
algorithm. If no context cluster in the learned database matches with the current context,
the tracking parameters are kept unchanged. This context is marked to be learned in an
offline learning phase.

— If the tracking quality is low and a contextual change is not detected, it means that the
learned best satisfactory parameters for this video context are not sufficient. This testing
video is marked to be relearned within an offline learning later.

We can find that the online tracking evaluation task helps to better optimize the control pro-
cessing time because the parameter tuning is only activated when the tracker fails. Also, this
approach can update online the learned database using an unsupervised learning algorithm.
Finally it can detect the limitations of the learned database.

+ Clustering

In this approach, the learned database can be updated online with new detected contexts
and their best satisfactory tracking parameters. Therefore a clustering process for the learned
database is necessary to group the new added contexts. This step takes as input the learned
database and gives as output the updated learned database. This clustering process is similar
to the one defined in the offline learning phase (see section 3.1.2.4).
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3.3 Summary

In this chapter, we have presented a general description on the proposed control algorithm.
This algorithm includes two phases. An offline learning phase is first performed to determine
the best satisfactory tracking parameters for each learning video context. The learning contexts
are then classified by grouping their contextual features. Each context cluster is associated
with the learned best satisfactory tracking parameters, number of training frames and tracking
error. The online phase includes two stages : initial parameter configuration and parameter
adaptation. For the parameter adaptation stage, two approaches are proposed : context-based
parameter adaptation and evaluation-based parameter parameter adaptation. Compared to the
first approach, the second one is better in term of processing time and the learned database
can be updated online with an unsupervised learning process. However, the performance of
this approach depends mostly on the online tracking evaluation quality. The next two chapters

present in detail these two phases.
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4

OFFLINE TRACKING PARAMETER
LEARNING

This chapter describes in detail the execution steps of the offline learning phase of the pro-
posed method. The objective of this learning phase is to create or update a learned database
which supports the control process for a tracking algorithm. This base contains the best satis-
factory parameter values of the tracking algorithm for various scene conditions on the density,
occlusion level of mobile objects, their contrast with regard to the surrounding background,
their contrast variance, their 2D area and their 2D area variance. The learned parameter values
are associated with two values representing their reliability (see figure 4.24).

This phase takes as input training video sequences, annotated objects (including 2D posi-
tions and 2D bounding box sizes), annotated trajectories, a tracking algorithm and its control
parameters. The term “control parameters” refers to parameters which are considered in the
control process (i.e. to look for best satisfactory values in the learning phase and to be tuned
in the online phase). For each control parameter, this phase requires a name, range value and
step value. The step value of a parameter is defined as the minimal variation which can cause
a significant change on the tracking quality. This value helps to avoid scanning the entire pa-
rameter space when searching its best satisfactory value for the tracking quality. In this work
we consider only numeric parameters, however the proposed method can be applied also to
symbolic parameters.

At the end of the learning phase, a learned database is created (if this is the first learning
session) or updated (if not). A learning session can process many video sequences. Fig 4.1
presents the proposed scheme for building and updating the learned database.

In the following sections, first we study the influence of some contextual features for the
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Figure 4.1 - Illustration of the offline learning scheme

object tracking performance. Second, we describe the execution steps of the offline learning
process including contextual feature extraction, context segmentation and code-book mode-
ling, tracking parameter optimization, clustering (including context clustering and parameter

computation for context clusters).

4.1 Contextual Feature Study

The notion of “context” (or “tracking context”) in this work represents elements in the videos
which influence the tracking quality. The objective of this section is to search for contextual
features for object trackers. Table 2.1 analyses some features extracted from the tested videos
of some object appearance-based trackers. The analysed features are : the contrast of mobile
objects with regard to their surrounding background, their 2D area, their movement complexity
as well as scene illumination. The result shows that the three features : the object contrast and
the 2D area can have a strong influence on these trackers. In order to verify this conclusion, we
propose to study these features in this section. Moreover, we add two features to study which
is the density and occlusion level of mobile objects. The density of mobile objects is defined as
the ratio between the total of object 2D areas and the image 2D area.

In order to verify the influence of these features on the tracking quality, we test object
appearance-based trackers with some video sequences whose these features undergo largely.
If the tracking performances between these trackers are much different, we conclude that the
performance of this tracker category is influenced by these features.

The tested tracking algorithms rely on the similarities of object descriptors over time : po-
sition (including 2D and 3D positions), 2D size (including 2D area and 2D shape ratio), color
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Figure 4.2 - Illustration of the tracking result when object density changes : First row : 2D size descriptor-
based tracking ; Second row : color histogram descriptor-based tracking.

histogram and histogram of oriented gradients (HOG) to build object trajectories. The HOG-
based tracker includes two stages. First the points of interest are detected using Fast algorithm
[Rosten and Drummond, 2006]. Second, these points are tracked by computing the similarity
of their HOG descriptors [Bilinski et al., 2009].

The following sections study respectively the tracking performance variation for the change
of these four features.

4.1.1 Density of Mobile Objects

The density of mobile objects is defined as the occupancy of their 2D areas over the 2D ca-
mera view area. Figure 4.2 shows the object tracking in the sequence ThreePastShop1lcor (from
Caviar video dataset! at some frames in two cases : the first row illustrates the tracking result
using 2D size descriptor; the second row illustrates the tracking result using the color histo-
gram descriptor. When there are only three persons appearing in the scene (at frame 40 and
65), both cases give good tracking quality. At frames 475 and 940, when three more persons ap-
pear, while the color histogram descriptor-based tracker still keeps a high tracking performance
(in the second row), the tracking quality corresponding to the 2D size descriptor is very bad (in
the first row). This can be explained by the fact that the 2D sizes of the new three persons are
quite similar, so the size descriptors cannot discriminate them correctly. We conclude that the
object density influences the tracking performance.

http ://homepages.inf.ed.ac.uk/rbf/ CAVIARDATA1/
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Frame 1332 Frame 1336 Frame 1360

Figure 4.3 - Illustration of the tracking performance change when object occlusion occurs. First row :
color histogram descriptor-based tracking ; Second row : 2D size descriptor-based tracking.

4.1.2 Occlusion Level of Mobile Objects

We study in this section the tracking performance variation when the object occlusions
occur. Figure 4.3 shows the tracking result in the sequence ETI-VS1-BC-12-C1 (from ETISEO
dataset? at three frames in two cases : the first row illustrates the tracking result using the
color histogram descriptor ; the second row illustrates the tracking result when the object size
descriptor is used. When there is no object occlusion (at frame 1332), both trackers give good
results. At frame 1336, the object occlusion occurs, while the 2D size descriptor-based tracker
still ensures a good quality, the color histogram-based tracker cannot. We conclude that the
object occlusion level influences the tracking performance.

4.1.3 Object Contrast

The contrast of an object is defined as the color intensity difference between the object
and its surrounding background. Figure 4.4 shows the tracking result in the sequence ETI-VS1-
BC-13-C4 (from the ETISEO dataset) at some frames in two cases : the first row illustrates the
tracking result using the position descriptor ; the second row illustrates the tracking result using

http ://www-sop.inria.fr/orion/ETISEQ/
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a. Frame 1400 b. Frame 1425 c.Frame 1525 d. Frame 1600

Figure 4.4 — Illustration of the tracking performance variation when object contrasts change. First row :
position descriptor-based tracking ; Second row : HOG descriptor-based tracking.

the HOG descriptor. From frame 1400 to frame 1425, the object contrast does not change and
the tracking results are good in both cases. From frame 1425 to frame 1525, the object contrast
decreases, and from frame 1525 to frame 1600 it increases. While the 2D position-based tra-
cker still ensures a good performance during these two periods, the HOG-based tracker cannot
keep good tracking result. When the object contrast changes, the HOG descriptor reliability
decreases. Therefore the HOG tracking fails. So the variation of object contrasts influences the

tracking performance.

4.1.4 Object Area

In this section we study the tracking performance variation when object areas change. Fi-
gure 4.5 shows the tracking result in sequence ETI-VS1-BC-12-C1 (from the ETISEO dataset)
at some frames in two cases : the first row presents the HOG descriptor-based tracking result;
the second row shows the color histogram-based tracking result. There are two persons in the
camera view. The HOG-based tracker cannot track correctly the small person motion while the
large person is still tracked correctly. This can be explained by the fact that for the small per-
son, the number of points of interest is too small. Therefore the tracking of this person fails.
For the color histogram descriptor-based tracker, the tracking quality is good in both cases. We

conclude that the variation of object areas influences the tracking performance.
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a. Frame 850 b. Frame 852 c. Frame 854

Figure 4.5 — Illustration of the tracking performance variation when object areas change. First row :
HOG descriptor-based tracking ; Second row : color histogram descriptor-based tracking.
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4.1.5 Conclusion

From the above analyses, we find that the features : the occlusion level, the density of
mobile objects, their contrast with regard to the surrounding background, their 2D area in-
fluence significantly the tracking performance. In most cases, when one of these contextual
features changes, the tracking quality of some object appearance-based trackers varies too. For
example, when object density increases, the object 2D size descriptors are less reliable. Or when
the object contrast decreases, the HOG descriptor cannot ensure a good tracking quality.

Therefore, we select the six following features to represent the “tracking context” (or “context”)
of a video sequence : occlusion level, density of mobile objects, their contrast intensity with
regard to the surrounding background, the variance of their contrast, their 2D area and the
variance of their 2D area.

4.2 Contextual Feature Extraction

For every frame, we extract six contextual features from annotated objects. This section

presents in detail how this step can be done.

4.2.1 Density of Mobile Objects

The density of mobile objects influences significantly the tracking quality. A high density of
objects causes a decrease of object detection and tracking performance. In particular, a variation
of object density over time is challenging for tracking algorithms. Figure 4.6 illustrates the
variation of object density in a corridor over time. Figure 4.6a. shows the view at frame 135,
only one person appear in the scene. Figure 4.6b. presents the same camera view at frame 599
(around one minute later), many more people appear.

In this work, the density of mobile objects at instant t, denoted d is defined in function of
their 2D area occupancy over the 2D camera view area at t. Greater the object 2D areas are,
greater the occlusion probability and occlusion duration are. The mobile object density at t is
defined as follows :

REL 4.1)

dy = min(
Qimg

where 1 is the number of mobile objects appearing at instant t, al is the 2D area of mobile

object i at instant t and aimg is the 2D area of the camera view.
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a. Frame 135 b. Frame 599

Figure 4.6 — Illustration of scene in two cases : a. At frame 135 : Low density of mobile objects b. At
frame 599 : High density of mobile objects

4.2.2 Occlusion Level of Mobile Objects

The occlusion level of mobile objects is the first element which influences the tracking qua-
lity. An occlusion occurence makes the object appearance partially or completely not visible.
It decreases the object detection and tracking performance. In particular, a variation of object
occlusion level over time gives more challenges because the coherence of object appearance
changes significantly. Figure 4.7a. presents a camera view at an airport with low density of
mobile objects : only two persons appear in the scene. Figure 4.7b. presents the same camera
view after two hours. We see that many more people appear and many occlusions occur.

Given two objects 1 and j, we compute their occlusion level based on their area overlap as
follows :

4.2)

where k denotes the index value of this occlusion in the set of occlusions occuring at time t, a
is the overlap area of objects i and j at t. Two objects i and j are considered as in an occlusion
state if ol¥ is greater than The. Let m be the number of object occlusion occurrences at instant
t, 011[‘ is the occlusion level of case k (k = 1..m). The occlusion level of mobile objects in a scene
at instant t, denoted oy, is defined as follows :

m k
. ol x 2
Ot = mln(—Zk_1 t y

Nt

1) 4.3)



4.2 Contextual Feature Extraction 87

Figure 4.7 - Illustration of scene in two cases : a. At moment t : Low occlusion level of mobile objects b.
Att 4 2h : High occlusion level of mobile objects

Figure 4.8 - Illustration of object contrast variation over space : a. High contrast b. Low contrast

where n is the number of mobile objects at t. The multiplication by 2 in the formula is explai-
ned by the fact that an occlusion occurrence is related to two objects.

4.2.3 Contrast of Mobile Objects

The contrast of an object is defined as the color intensity difference between this object
and its surrounding background. An object with low contrast means that its color is similar
to the color of its surrounding background. As consequence, the object detection quality is
significantly influenced. Second, a low object contrast level also decreases the discrimination of
the appearance between different objects. So the quality of tracking algorithms which rely on
object appearances decreases in this case. The contrast of an object can vary due to the change
of its spatial location (see figure 4.8) or of time (see figure 4.9).

Let B; be the 2D bounding box of object i which has center cg,, width wg, and height hg,.
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a. At 12:08:28, the 31 - arch - 008 b. At 13:07:29, the 14 - Apr - 2008

Figure 4.9 — Illustration of object contrast variation over time : a. High contrast b. Low contrast
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Figure 4.10 — Illustration of object surrounding background

« is a predefined value in interval [0, 1], and B is a 2D bounding box whose center cy+, width
wyg and height hg are respectively defined as follows :

Cgr = Cp 4.4
wg+ = wg, +amin(ws,,hg,) (4.5)
hgt =  hg, + OCTﬂiTL(V\)B,.L , hBi) (4.6)

The surrounding background of object i is defined as the area B; = B \ B; (see figure
4.10). Let HR, HE and HE be respectively the normalized intensity histograms of object i in
red, green and blue channels. Similarly, let H%i, H,/GBi and H%i be respectively the normalized
intensity histograms of the area B; in red, green and blue channels.

The contrast of object i, denoted c;, is defined as follows :

Y- rosEMD(Hg, HY
3

where EMD (H§, , H¥) is the Earth Mover Distance [Rubner et al., 1998] between H§; and HE.

The EMD distance is selected because it is used widely in the state of the art for comparing two

4.7)

Ci
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Figure 4.11 — An intuitive illustration of the transport of values from one bin to another bin in EMD
(source [Peters, 2011])

histograms.

- Earth Mover’s Distance (EMD)

The Earth Mover’s Distance (EMD) is a distance between two distributions which reflects
the minimal amount of work that must be performed to transform one distribution into the
other by moving “distribution mass” around. In this section we describe how to apply this
idea for comparing two histograms, denoted H; and H;. Let N; and N, be the number of
bins of histogram H; and H,. Intuitively, the EMD measures the least amount of cost needed
to transform values from every bin i of histogram H; into every bin j of histogram H, (see
illustration in figure 4.11). The transport cost from bin 1 to bin j is defined as the distance (i.e
difference) between bin i and bin j. The computation of the EMD is based on a solution to the
old transportation problem [Dantzig, 1951]. This is a bipartite network flow problem which
can be formalized as the following linear programming problem : each bin of H; is a supplier,
each bin of H; is a consumer, and c;;, called ground distance, is the cost to ship a unit of supply
from bini € H;j to bin j € H,, and is defined as follows :

cy = [ — il (4.8)

Figure 4.12 shows an example with three suppliers (corresponding to three bins of H;) and
three consumers (corresponding to three bins of H,). We want to find a set of flows fj; that
minimize the overall cost.
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Figure 4.12 — An example of a transportation problem with three suppliers (corresponding to three bins
of histogram H;) and three consumers (corresponding to three bins of histogram H;).

N; N2

Z Z Cij fi]' (49)

i=1 j=1
Let H(i) be the value of bin i in histogram Hj ; f;; satisfies the following constraints :

fy > 0 Vie[1,Nq], ¥jell,Ny (4.10)
N
Y fy=Ha(j), j € Hy (4.11)
i=1
N2
Y fy<Hi(i), ieH, (4.12)
j=1

Constraint 4.10 allows shipping of supplies from a supplier to a consumer and not inverse
direction. Constraint 4.11 forces the consumers to fill up all of their capacities and constraint
4.12 limits the supply that a supplier can send to its total amount.

A feasibility condition is that the total demand does not exceed the total supply :

Ny Ny
D Hafi) <) Hi(d) (4.13)
ji=1 i=1

When the total value resulting from all of the bins of the two considered histograms are not
equal, the smaller plays role as a consumer (i.e. H;) in order to satisfy the feasibility condition
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4.13. In this work, as we use the normalized histograms, the total value of all bins of each
histogram is equal to 1 :

N] Nz
D> Hi()) = ) Hif) =1 (4.14)
i=1 j=1

Therefore, the order of histograms in this EMD distance is not important. Once the transporta-
tion problem is solved, and we have found the optimal flow F*, the EMD between two histo-
grams H; and H; is defined as :

F N; N2
cyF,
REpEE L =3 Y wF (4.15)

N2
Z)]H i=1 j=1

EMD(Hy, Hz) =

Using formula 4.15, we compute the EMD(H§; , HY) for each color channel k € R, G, B.
The contrast of an object i is defined as in formula 4.7. The contrast value at t, denoted ¢y, is
defined as the mean value of all object contrast at this instant :

& = Zln : ct (4.16)

where c! is the contrast of object i at instant t, n is the number of mobile objects at instant t.

4.2.4 Contrast Variance of Mobile Objects

When different object contrast levels exist in the scene (see figure 4.13), a mean value
cannot represent correctly the contrast of all objects in the scene. Therefore we define the

variance of object contrasts at instant t, denoted ¢y, as their standard deviation value :

.] n

& = ;Z(Ci — Cy)? (4.17)
i=1

where c} is the contrast value of object i at t (computed in formula 4.7), C; is the mean value
of all object contrasts at instant t (computed in formula 4.16).

4.2.5 2D Area of Mobile Objects

2D area of an object is defined as the number of pixels within its 2D bounding box. The-
refore, this feature also characterizes the reliability of the object appearance for the tracking
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Figure 4.13 - Illustration of the contrast difference between objects at an instant

Figure 4.14 - Illustration of variation of object areas over time : a. At 10 :12 :58 : Large object areas b.
At 10 :13 :30 : Small object areas
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Figure 4.15 — Illustration of the area difference between objects at an instant

process. Greater the object area is, higher the object appearance reliability is. Figure 4.14 illus-
trates the variation of 2D areas of objects in a same camera view.

The 2D area feature value at t, denoted ay, is defined as the mean value of the 2D areas of
mobile objects at instant t :

e i
PR (4.18)
nt

where al is the 2D area of object i at instant t, n is the number of mobile objects at instant t.

4.2.6 2D Area Variance of Mobile Objects

When many objects exist in the scene (see figure 4.15), a mean value cannot represent
correctly the area of all objects in the scene. Therefore we define the variance of object 2D
areas at instant t, denoted @y, as their standard deviation value :

a, = lZ(a’; — a2 (4.19)

n
i=1

where al is the 2D area value of object i at t, @ is the mean value of all object 2D areas at
instant t (computed in formula 4.18).
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4.3 Context Segmentation and Code-book Modeling

4.3.1 Context Segmentation

The objective of the learning phase is to determine the best satisfactory parameter values
for each context. A long video usually has a varied context. As we have analysed above, the
contextual variation can influence significantly the tracking quality. Therefore it is not correct
enough to keep the same parameter values all along video. In order to solve this problem, we
propose an algorithm to segment the training videos in consecutive chunks whose context has
to be stable enough.

The minimal temporal length of a chunk, denoted 1, should not be too low to decrease
the processing time. This value should not be too high to ensure a stable enough context. The
proposed context segmentation algorithm is done as follows.

1. We segment the training videos in a set of parts of 1 frames. The last part can have a
temporal length lower than 1. Each video part is supposed to have a stable enough context.

2. The contextual feature values of the video first part is represented by a context code-book
model (see more details in section 4.3.2).

3. From the second video part, we compute the context difference between the current part
and the context code-book model of the previous part (see more details in section 4.3.3).
If their distance is lower than a threshold Th; (e.g. 0.5), the context code-book model
is updated with the current video part. Otherwise, a new context code-book model is
created to represent the context of the current video part.

At the end of the context segmentation algorithm, a training video is divided into a set of
chunks (of different temporal length) that are corresponding to the obtained context code-book
models. Each chunk has a stable enough context.

There are two open problems : How to represent a video context as a model of code-books ?
and how to compute the distance between a context code-book model and a context. The
following sections answer these two questions.

4.3.2 Code-book Modeling

During the tracking process, low frequent feature values can take an important role for
tuning tracking parameters. For example, when mobile object density is high in few frames,
the tracking quality can decrease significantly. Therefore, we decide to use a code-book mo-
del [Kim et al., 2004] to represent the values of contextual features because this model can
estimate complex and low-frequence distributions. In our approach, each contextual feature is
represented by a code-book, called feature code-book and denoted cb*, k = 1..6. So a video
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context is represented by a set of six feature code-books, called context code-book model and
denoted CB, CB = {cb¥, k = 1..6} (see illustration in figure 4.16). A feature code-book in-
cludes a set of code-words which describe the values of this feature. The number of code-words
depends on the diversity of feature values.

4.3.2.1 Definition of Code-word

A code-word contains the intensity and temporal information of a contextual feature. A
feature code-book can have many code-words. A code-word i of code-book k (k = 1..6), denoted
cwk, is defined as follows :

owk = (uf, mf, ME, 5 A% Y (4.20)

where

- E‘ is the mean of the feature values belonging to this code-word.

— m¥, MF are the minimal and maximal feature values belonging to this word.

— fFis the number of frames in which the feature values belong to this word.

— Ak is the maximum negative run-length (MNRL) defined as the longest interval during
the training period in which the code-word has not been activated by any feature values
(a code-word is activated if an incoming feature value belongs to this code-word).

- q'{ is the last access time instant that the code-word has been activated.

4.3.2.2 Algorithm for Updating Code-word

The training phase for updating code-word works as follows :
— At the beginning, the code-book cb* of a context feature k is empty.
— For each value p¥ of a contextual feature k computed at time t, verify if uf activates any
code-word in cb¥. pf activates code-word cwk if both conditions are satisfied :
+ ¥ is in range [0.7 x mk, 1.3 x MJ].
+ The distance between pf and cwk is smaller than a threshold e3. This distance is
defined as follows :
min(pf, uk)

k

dist(uf, cwy) =1 — (4.21)

max(uf, uk)

where pTlf is the mean value of code-word cw¥ (presented in section 4.3.2.1).
— If cb* is empty or if there is no code-word activated, create a new code-word and insert
it into cb*. The values of this new code-word is computed as follows :
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Figure 4.16 — Illustration of the code-book modeling for a training video chunk
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— If pf activates cw¥, this code-word is updated with the value of pf :

qdi

pk o=
me o=
M = uf
o=
A= 1
qgi = t

k

E‘f x fi+ u]t‘
it 1

= min(m¥, uf)

= max(MK, uf)

= fit

-t

(4.22)
(4.23)
(4.24)
(4.25)
(4.26)
(4.27)

(4.28)

(4.29)
(4.30)
(4.31)
(4.32)

As the temporal order of the contextual feature values within one code-word is not im-

portant, E’f in formula 4.28 is updated with the mean of all feature values belonging to

this code-word.
— A; is kept unchanged.

— For the other code-words which are not activated, increase the value of A :

Vi £ i A=A+ ]

(4.33)

— At the end, for a code-word cwj, the algorithm sets A; = max(Ai, N — q;) where N\ is the

number of frames in which mobile objects appear.

The code-words whose value f; is lower than a threshold, are eliminated because they are

corresponding to very low frequence feature values.

4.3.3 Context Distance

The context distance is defined to compute the distance between a context ¢ and a context

code-book model CB = {cb¥, k = 1..6).

The context c of a video chunk (of £ frames) is represented by a set of six values : the density,

occlusion level of mobile objects, their contrast with regard to the surrounding background,

their contrast variance, their 2D area and their 2D area variance over time. For each context
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function ContextDist(c, CB, £)

Input : context code-book model CB, context ¢, £ (number of frames of context c)
Output : context distance between cluster CB and context ¢

countTotal =0;
For each code-book cb* in CB (k = 1..6)
count =0;
For each value puf of context c
For each codeword cw¥ in code-book cb*
if (dist(ulf, Cwlf) <0.5)¢
count++;
break;
b
if (count / £ < 0.5) return 1;
countTotal + = count;

return ( 1 — countTotal/(£ * 6) )

Table 4.1 — Function for computing the distance between a context code-book CB and a video context ¢

feature k (k = 1..6), the contextual feature value at instant t is denoted u¥. For each such value,
we consider whether it matches any code-word of the corresponding feature of the feature code-
book cb¥. The distance between context ¢ and code-book cb¥ is expressed by the number of
times where matching code-words are found. This distance is normalized in the interval [0, 1].
Table 4.1 presents the algorithm that computes the distance between a context ¢ and a
context code-book model CB. The distance dist(uk, cw‘f) is defined as in formula 4.21.

4.4 Tracking Parameter Optimization

The objective of the tracking parameter optimization step is to find the values of the control
parameters which ensure the best possible tracking quality for each video context chunk. This
quality is greater or equal to the threshold e presented in hypothesis 3, section 1.2.2. These
parameters are called “best satisfactory parameters”. The optimization task is done using the
manually annotated trajectories.

This step receives as input the annotated detected objects, a tracking algorithm, a video
chunk and a set of control parameters for this tracker P = {p1, p2,..., pr}. The annotated
objects are used as the object detection result. This step gives as output the best satisfactory
parameter values. The information of a control parameter i includes its name, value range
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[p{“i“, p"“] and step value, denoted s;. Based on the number of control parameters and their

step values, the size of the search space S is computed as follows :

s P — P (4.34)
Si

Depending on the size of the search space of control parameters, we can select a suitable
optimization algorithm. In order to represent the reliability of the found parameters, we asso-
ciate them with two values. The first one is the number of frames of the training video chunk in
which mobile objects appear (called “number of training frames”). The second one is a F-Score
value representing the tracking quality of the considered context chunk for the found tracking
parameter values. The best satisfactory parameter values, their reliability 