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PART I 
 

 

 
INTRODUCTION AND RELATED WORK 

 

 
 

 
 

In Chapter I, I introduce the context of this thesis with a particular focus on Computer-Assisted 

Surgery. Then, Chapter II is a methodological review of the literature on the creation and analysis of 

Surgical Process Models, around which this thesis is organized. Both Chapters will permit to introduce 

the motivations and the problematic of this research.  
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Chapter I.  Introduction 

I.1. Présentation de l’équipe VisAGeS 

Cette thèse s’est déroulée au sein de l’équipe VisAGeS (VISion, Action, et Gestion d’informations En 

Santé), rattachée à l’IRISA (UMR CNRS 6074), et commune à l’INRIA (Institut de Recherche en 

Informatique et Automatique, http://www.inria.fr), l’université de Rennes I (http://www.univ-

rennes1.fr) et l’INSERM (Institut National de la Santé et de la Recherche Médicale, 

http://www.inserm.fr) puis au sein de l’équipe MediCIS (Modélisation des connaissances et 

procédures chirurgicales et interventionnelles, http://www.medicis.univ-rennes1.fr), équipe INSERM 

au sein de l’UMR 1099 Laboratoire du Traitement de Signal et de l’Image, Université de Rennes 1. 

 

Les activités de l’équipe VisAGeS (https://www.irisa.fr/visages) concernent le développement de 

nouveaux algorithmes dédiés à l’analyse d’images médicales et à leurs intégrations dans la salle 

d’opération. Elles se situent aussi dans le développement de nouveaux algorithmes de traitement de 

l’information et des interventions assistées par ordinateur dans le contexte des pathologies du système 

nerveux central. Les travaux de l’équipe sont plus particulièrement centrés sur la conception de la salle 

d’opération du future, une meilleure compréhension des pathologies du cerveau à différentes échelles. 

Trois principales thématiques liées à des domaines d’application différents se dégagent des travaux de 

l’équipe.  

La première thématique, portée par Christian Barillot, s’intéresse aux biomarqueurs d’imagerie dans 

les pathologies du cerveau. Plus particulièrement, des workflows de traitement d’images et d’analyse 

sont mis en œuvre pour extraire et exploiter des biomarqueurs d’imagerie. Les champs de recherche 

sont variés, de la physique médicale à l’acquisition des données, en passant par le traitement, l’analyse 

et la fusion des images médicales. Avec ces outils, les applications médicales concernent la sclérose en 

plaque, la maladie de Parkinson, la neuro-pédiatrie, l’Arterial Spin Labeling et la morphométrie 3D 

endocrânienne. 

La seconde thématique, portée par Bernard Gibaud, se situe dans la gestion d’informations en 

neuro-imagerie. L’idée de ces travaux est d’annoter des données image ainsi que les méta-

informations en découlant en se référant à des ontologies de domaine, dans le but de rendre explicite 

leur sémantique. Ces travaux facilitent le partage et la réutilisation des données pour des recherches en 

neuro-imagerie. 

La troisième et dernière thématique, portée par Pierre Jannin, se porte sur la neurochirurgie assistée 

par des modèles. Devant l’apparition de nombreux outils dans les salles d’opération, des nouveaux 

systèmes assistés par ordinateur sont crées dans le but d’aider le chirurgien dans la tâche opératoire. 

Ces systèmes peuvent être basés sur des informations préopératoires et intra-opératoires ainsi que sur 

des modèles de procédures décrivant le scénario chirurgical. Dans ce contexte, les objectifs de ces 

travaux sont d’aider le planning préopératoire, par exemple en Stimulation Cérébrale Profonde, 

d’étudier les déformations intra-opératoires dues au brain-shift et de créer des modèles de procédures 

basés sur le processus chirurgical ou sur des analyses cognitives des chirurgiens. 

http://www.inria.fr/
http://www.univ-rennes1.fr/
http://www.univ-rennes1.fr/
http://www.inserm.fr/
http://www.medicis.univ-rennes1.fr/
https://www.irisa.fr/visages
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Figure 1 - Trois thématiques de l'équipe VisAGeS 

 

Les activités de l’équipe MediCIS (Modélisation des connaissances et procédures chirurgicales et 

interventionnelles, http://www.medicis.univ-rennes1.fr) regroupent les activités de Bernard Gibaud et 

Pierre Jannin pour la conception de systèmes d’aide à la décision chirurgicale par l’étude et la 

construction de modèles de connaissances et de procédures. Ces modèles sont étudiés par des 

approches à la fois symboliques et numériques. 

I.2. Chirurgie assistée par ordinateur 

I.2.a. Contexte  

A l’heure actuelle, la présence des nouvelles technologies dans le domaine médical se fait ressentir. La 

salle d’opération, cœur de la prise en charge des patients à l’hôpital, a subie de profondes 

transformations pour évoluer vers un environnement complexe et riche en technologie de pointe. Les 

technologies de l’informatique sont maintenant essentielles à son bon fonctionnement. Celles-ci sont 

de plus en plus utilisées au cours de l’intervention chirurgicale : du planning pré-opératoire à 

l’évaluation post-opératoire, en passant bien sûr par l’aide intra-opératoire. C’est dans ce contexte que 

sont nés les systèmes de Chirurgie Assistée par Ordinateur (CAO). La CAO est définie comme 

l’ensemble des systèmes aidant le praticien dans la réalisation de ses gestes diagnostiques et 

thérapeutiques. 

En phase pré-opératoire, ces systèmes fournissent un accès aux images multimodales et aux 

informations des patients. Ils permettent ainsi de préparer, voire de simuler, un scénario chirurgical 

propre à chaque patient. Pendant la chirurgie, ils apportent une interface de visualisation en intégrant 

ces différentes données. Des robots peuvent aussi assister, à différents degrés (aide passive, semi-

active ou active) le geste chirurgical selon le degré d’indépendance du robot vis-à-vis de la tâche 

chirurgicale. En phase post-opératoire, ils fournissent des outils d’aide pour l’analyse et l’évaluation 

de la procédure.  

Ces systèmes de CAO ont donc pour avantage d’aider à la prise de décision et d’améliorer la prise 

en charge du patient. La pertinence clinique de ces nouveaux outils technologiques étant partiellement 

démontrée, les enjeux actuels résident donc dans la création d’outils pour une prise en charge 

chirurgicale codifiée, sécurisée, et optimisée à chaque patient. Ces questions ont été discutées par 

Cleary et al. (2005), Rattner et Park (2003), Xiao et al. (2008), Satava et al. (2001), Avis (2000) ou 

Gorman et al. (2000).  

Pour une optimisation de ces systèmes, deux aspects sont fondamentaux dans la CAO : 

l’établissement de modèles spécifiques au patient et la modélisation des procédures. 

http://www.medicis.univ-rennes1.fr/
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I.2.b. Modèles spécifiques aux patients 

Le chirurgien a besoin d’un ensemble d’images pré-opératoires multimodales pour tenir compte de la 

complexité anatomique, physiologique et métabolique des cibles et de l’environnement chirurgical. 

Ces modèles établissent un lien direct entre le patient en salle d’opération, dans le référentiel de la 

salle, et ses multiples images.  

Durant la phase pré-opératoire de planning, le chirurgien a besoin d’établir une cartographie 

spécifique de son patient. Celle-ci est établie à partir des images anatomiques (Scanner CT, IRM) ou 

fonctionnelles (IRM de diffusion, TEP, TEMP, IRMf) spécifiques au patient. Des outils de traitement 

d’images sont couramment appliqués pour extraire les informations pertinentes pour le chirurgien ( 

Figure 2), comme la segmentation d’une tumeur ou la visualisation des faisceaux de fibres. Lorsque 

plusieurs séquences d’images sont acquises, un recalage, linéaire et/ou non-linéaire, est nécessaire 

pour les regrouper dans un repère commun et ainsi permettre la cartographie. De même, des données 

propres au patient (âge, sexe, pathologies, etc...) peuvent être intégrées dans ces modèles pour aider à 

la prise de décision ou créer des groupes homogènes de patient.  

Pendant la chirurgie, l’opérateur doit maitriser la relation spatiale entre le patient et son modèle. 

Cette mise en relation des deux repères peut être effectuée par un repérage anatomique de points ou de 

surfaces dans l’espace du patient reportés ensuite dans le modèle. Premier exemple de repérage 3D en 

neurochirurgie : la chirurgie stéréotaxique, un cadre fixé à la tête du patient définit un repère commun. 

Deuxième exemple, incontournable : la neuronavigation. Cela est rendu possible grâce à des 

localisateurs installés en périphérie de la table d’opération, autour du patient et agissant comme des 

systèmes GPS (Global Positioning System). Ceux-ci permettent de localiser, en temps réel, des cibles 

positionnées sur des objets physiques et de connaître leur position dans le repère du modèle du patient. 

La chirurgie est alors guidée par l’imagerie. Grâce à ce type de système, la chirurgie devient plus sûre, 

le chirurgien dispose d’une aide considérable pour se repérer et éviter ainsi de potentielles erreurs. 

Troisième et dernier exemple : la réalité augmentée. Celle-ci s’attache à surajouter à l’environnement 

de la chirurgie (réel) des informations numériques préalablement acquises (virtuelles). Couplé aux 

modèles spécifiques au patient, la réalité augmentée fait partie des nouveaux systèmes qui apportent 

une aide non-négligeable aux chirurgiens.  

Au-delà de cette approche de modèles spécifiques au patient, l’optimisation des nouveaux systèmes 

de CAO passe par la mise en place de la modélisation des procédures chirurgicales. 

 

  
 

Figure 2 - Exemple de modèles spécifiques au patient en neurochirurgie tumorale. 
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I.2.c. Modèles de procédures chirurgicales 

Il est important de concevoir une salle d’opération qui offre au chirurgien et à son équipe une facilité 

de travail par un accès aux images, informations ou outils disponibles. Ainsi une connaissance du flux 

d’actions est primordiale pour spécifier et définir la salle d’opération du futur (Cleary et al. 2005). La 

procédure est décrite de manière principalement symbolique comme une succession d’étapes et 

d’actions réalisées avec différents outils et selon différentes techniques. La connaissance du flux 

d’action à travers des modèles de procédures a donc pour but de créer une nouvelle génération de 

systèmes de CAO qui s’appuie sur une formalisation du processus chirurgical et des connaissances. 

Cette formalisation peut être construite à partir soit des procédures réalisées par des chirurgiens, soit 

d’un consensus d’experts. Elle doit permettre de décrire le plus précisément possible les procédures en 

respectant le déroulé de la chirurgie et en se rapprochant de la réalité.  

Les objectifs de ces modèles sont multiples. Ceux-ci doivent permettre d'expliquer pourquoi la 

procédure suit ce déroulé, c’est-à-dire savoir pourquoi à un moment donné de la procédure, une 

activité particulière est réalisée. Ils doivent également aider à distinguer les différences entre des 

procédures. Ces modèles doivent aussi aider à prévoir quelle sera l'étape suivante lors d'une procédure, 

et de manière plus globale quelle sera la procédure utilisée pour un patient donné. Lors de la phase de 

planning, le chirurgien pourra se référer soit à des scénarios-types issus de combinaisons et fusions de 

cas, soit à des cas semblables déjà effectués. 

 

La modélisation des procédures chirurgicales a été introduite pour des applications multiples. Un 

exemple est la visualisation sur écran des informations pertinentes pour le chirurgien. Celles-ci 

peuvent être adaptées et triées tout au long de l’acte chirurgical en fonction du modèle de la procédure. 

Un deuxième exemple est celui du développement d’outils d’apprentissage de la chirurgie. En effet, la 

formalisation permet de définir, entre autre, une terminologie adaptée pouvant être réutilisée et servir 

de base pour des descriptions explicites de la procédure. Cela pourrait contribuer aux progrès des 

systèmes assistés par ordinateur dans la salle d’opération (Lemke and Vannier, 2006; Cleary et al, 

2005; Burgert et al, 2006a, 2006b). D’autres méthodes venant de domaines non médicaux ont été 

adaptées à l’environnement chirurgical. Dickhaus et al. (2004) ont démontré que la méthode BPR 

(Business Process Reengineering) pouvait aider les systèmes assistés par ordinateur. Lemke and 

Berliner (2007) ont introduit un concept pour l’interopérabilité des données entre composants des 

systèmes chirurgicaux. Ce type de système fut conçu pour améliorer les communications et le 

management des images dans la salle d’opération.  

 

La modélisation des procédures chirurgicales a aussi motivé le développement de suppléments dans 

le format d’images médicales DICOM (Digital Imaging and COmmunications in Medicine) (Lemke, 

2007). DICOM définit la représentation, le transfert, le stockage et la génération des données images. 

Ainsi, Burgert et al. (2007) ont proposé une analyse basée sur les workflows chirurgicaux qui aident à 

la prise en charge des informations du patient en plus des données images. Des modèles géométriques 

furent utilisées, représentant les différents aspects du workflow chirurgical, comme les structures 

anatomiques, les outils chirurgicaux, etc. Cette étude a expliqué le processus de spécification dans le 

but de fournir un template pour la définition de nouvelles classes DICOM. Les workflows ont enfin 

été introduits pour assister les systèmes de réalité augmentée (Navab et al., 2007) et pour les nouveaux 

challenges en télé-médecine (Kaufman et al., 2009). 
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Une attention particulière a récemment été donnée à la création de modèles de procédures 

chirurgicales. La modélisation du processus chirurgical est ainsi la base des nouveaux systèmes de 

CAO autour duquel s’inscrit cette thèse. Le chapitre suivant va permettre d’effectuer un état de l’art 

complet sur les modèles de processus chirurgicaux, i.e. Surgical Process Model (SPM), et d’introduire 

en détail la problématique de cette thèse. 
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Chapter II. Review on creation and analysis 

of Surgical Process Models 

II.1. Introduction 

II.1.a. Context 

As introduced in the previous Chapter, the Operating Room (OR) has particularly undergone 

significant transformations to evolve into a highly complex and technologically rich environment. 

Computer technologies are now essential and increasingly used throughout the intervention, from pre-

operative planning to post-operative assessment. Computer-Assisted Surgery (CAS) (or Computer-

assisted Intervention-CAI) systems have now a vital role in current surgeries performance. Following 

the progress of models of surgical procedures, the necessity is now to understand the process of the 

surgery in order to better manage the new generation of CAS systems. A new terminology has been 

defined around this aspect of models of surgical procedures. The term surgical workflow has been 

defined by Jannin and Morandi (2007). It follows the glossary of the Workflow Management Coalition 

(WFMC 1999), defining a surgical workflow as “the automation of a business process in the surgical 

management of patients, in whole or part, during which documents, information, images or tasks are 

passed from one participant to another for action, according to a set of procedural rules”. This idea of 

decomposing the surgery into a sequence of tasks was first introduced by MacKenzie et al. (2001), and 

was later formalized by Neumuth et al. (2007). They defined a Surgical Process (SP) as a set of one or 

more linked procedures or activities that collectively realize a surgical objective within the context of 

an organizational structure defining functional roles and relationships. This term is generally used for 

denominating a surgical procedure course. They also defined a Surgical Process Model (SPM) as a 

simplified pattern of a SP that reflects a predefined subset of interest of the SP in a formal or semi-

formal representation. It is related to the performance of a SP with support of a workflow management 

system. SPMs have been first introduced for supporting the surgical intervention thanks to a model of 

the surgery progress. Indeed, the precondition of a computer supported surgical intervention is the 

specification of the course model describing the operation to be performed (Cleary et al., 2005). 

Typically, even if every surgery is different, the same type of procedure shares common sequences of 

states that can be extracted. Being able to extract information such as activities, steps or adverse events 

in a surgery and having the possibility to rely on a surgery model is therefore a powerful tool to help 

surgeons.  

 

SPM methodology could be crucial for future components of CAS systems since it may have a 

direct impact on many aspects of the procedure. The use of SPM may prove its efficiency for 

facilitating the surgical decision-making process as well as improving the pre-operative human-

computer interface and medical safety.It would have direct impact on the process of care-based 
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decisions. It could find its applications in the anticipation of patient positioning, the optimisation of 

operating time, the evaluation of surgeons, tools, or the analysis of technical requirements. We 

propose in this Chapter a first methodological review of the literature focusing on the creation and the 

analysis of SPMs. 

II.1.b. Search methodology 

The review was done according to a search on Google Scholar on the specific keywords: “surgical 

process model”, “surgical process analysis”, “surgical ontology”, and “surgical workflow analysis”. In 

addition to the Google Scholar results, we added another list of possible citations that were extracted 

from the references of the publications. We included articles published in peer-reviewed journals as 

well as full papers published in international conference proceedings that were concerned with the use 

of SPM. International conferences proceedings were included because the area is very recent resulting 

in many conference publications but few peer-reviewed journals. Only English language has been 

accepted. Included researches have been published from 1998 until December 2011. In order to get an 

overview of publications that focused on the creation and analysis of SPMs, we were interested in 

studies that model the procedural approach, i.e. works that took into account the sequential aspect of 

the surgical procedure. Moreover, we were interested in works that focused at least one part of their 

analysis on the act of surgery, beginning when the surgeon performs the first task on the patient and 

ending when the surgeon closes with the suture. When a project has been published multiple times 

with no change in the dedicated elements of the diagram, either the more recent or the one in the best 

journal was kept. The entire process of selection is shown on Figure 3. From a first selection of N=250 

publications, a total of N=43 publications were finally conserved for full-text review. 

 

 
 
 

Figure 3 - Process used in the selection of publications for full-text review. 
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Figure 4 shows the results of the Google scholar results only before the process of selection. We can 

see that the area of creation and analysis of SPMs is very recent. It has particularly evolved from 2007 

that shows the recent evolution of the domain. 

 
 

 
 

Figure 4 - Evolution of the number of papers in the field from 1998 to December 2011 

 
 

II.2. SPM methodology 

In order to clarify the review and the discussions, we propose a model for describing and classifying 

the methods using five components and their corresponding elements (Figure 5). Each of the five 

components addresses one major aspect of the SPM methodology, and every element that is resulting 

can be instantiated with its set of possible values. The first component is the modelling, where the goal 

is to describe the work-domain of the study and its formalism. The next component is the acquisition 

which is the second step of a SPM methodology that allows the acquisition of data by human 

observations or by sensor systems. The third one is the analysis that tries to make the link between 

data acquisition and the information that we want to model. Another component specifies the different 

applications of the systems based on SPMs and finally the last component describes the different kind 

of validation and evaluation that are conducted for assessing these systems. The whole review is 

organized according to this diagram. In the following subsections, each component and each element 

are explained in detail. 



 

 

 
 
 

Figure 5 - Overview graph of the field 
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II.2.a. Granularity level 

The whole SPM methodology, and especially the acquisition and modelling component, is organized 

around the aspect of granularity level. Surgery can be studied at different granularity levels defined as 

the level of abstraction for describing a surgical procedure. New terms describing the different levels 

have been introduced and adapted to SPMs for a better standardisation of surgical descriptions.  The 

group of MacKenzie (Cao et al., 1996; Ibbitson et al., 1999; MacKenzie et al., 2001) first proposed a 

model of the surgical procedure that consists of different levels of granularity: the procedure, the step, 

the substep, the task, the subtask and the motion. Each (sub)task can be for instance decomposed in 

various motions and forces primitives. Then they used a hierarchical decomposition for structuring the 

complex environment and the interaction between the surgical team and new technologies. Because of 

the large differences of terminology employed by the studied papers, in this Chapter we will use the 

following terminology for describing the different granularity levels of surgical procedures. The 

highest level would be the procedure itself, followed by the phases, the steps, the activities, the 

motions and lastly all other low-level information such as position of instruments or images (Figure 6). 

One assumption is that each granularity level describes the surgical procedure as a sequential list of 

events, except for the surgical procedure itself and for lower-levels where information may be 

continuous. The motion is defined as a surgical task involving only one trajectory but with no 

semantics. This granularity level would be identical to the definition of “dexemes” by Reiley and 

Hager (2009). The activity is defined as a surgical task with a semantic meaning involving only one 

surgical tool, one anatomical structure and one action, as formalized by Neumuth et al. (2006). This 

level would be identical to the “surgemes” definition. At a higher level, a step is defined as a sequence 

of activities toward a surgical objective, which have been often called “task” in the literature. Finally, 

the phase level is defined as a sequence of tasks at a higher level that may involve other members of 

the surgical staff. It would be identical to the surgical episode of Lo et al. (2003). 

 

 
 

Figure 6 - Different levels of granularities of a surgical procedure. 

 

 

II.2.b. Modelling 

The first component describes and explains the work-domain of the study, i.e. what is studied and 

what is modelled. Two information are needed: 1) the granularity level of the surgical information and 

2) the operator. A third element completes this component: 3) the formalization of the information. In 

many cases, a phase of formalization is necessary for representing the collected knowledge before the 

analysis process. Knowledge acquisition is the process of extracting, structuring and organizing 

knowledge from human experts. It has to be part of an underlying methodology and incorporate a 

strong semantic aspect.  
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Granularity level 

Similar to the data acquisition process, information that is studied (i.e. information that is modelled) is 

disposed on the granularity axis previously defined. The activities have been mainly investigated, but 

all granularity levels have been studied. At the highest level, the global procedure has been studied 

(Bhatia et al., 2007; Hu et al., 2006; Sandberg et al., 2005; Xiao et al., 2005), as well as the phases 

(Ahmadi et al., 2007; James et al., 2007; Katic et al., 2010; Klank et al., 2008; Lo et al., 2003; Nara et 

al., 2011; Padoy et al., 2007, 2008, 2010; Qi et al., 2006; Suzuki et al., 2010), the steps (Blum et al., 

2008; Bouarfa et al., 2010; Fischer et al., 2005; Jannin et al., 2003, 2007; Ko et al., 2007; Lemke et al., 

2004; Malarme et al., 2010; and the motions (Ahmadi et al., 2009; Lin et al., 2006; Nomm et al., 

2008). Some studies integrated two or more of these granularity levels in their modelling (Burgert et 

al., 2006; Ibbotson et al., 1999; MacKenzie et al., 2001; Münchenberg et al., 2001; Xiao et  al., 2005; 

Yoshimitsu et al. 2010). No low-level information was considered here. 

Operator 

Information that is studied involves one or many of the actors of the surgery: the operator can be the 

surgeon, the nurses, the anaesthetist, the patient or many of these operators 

Formalization 

Formalization is necessary for allowing automated treatment and processing by computers. It is also 

necessary for bottom-up approaches to have a representation of the sequence of the surgery trough 

ontologies or simple list of phases/steps/activities. At the highest level, we find the heavy-weighted 

ontologies, which have been used to represent the detailed context of a SPM study. Then, in the 

category of light-weighted ontologies, we find UML class diagrams along with XML schema. Both 

approaches define entities and relation between these entities. We then find all 2D graphs 

representations, with the hierarchical decompositions, the state-transition diagram and the non-

oriented graphs. Lastly, at the lower level, simple sequential list were also used, proposing an ordered 

list of word for representing one or many levels of granularity of the surgery (Figure 7). 

 

 
 

Figure 7 - Different levels of formalisation of the surgery. 

II.2.c. Data Acquisition 

The second component of the diagram is the acquisition, i.e. the collection of data on which the 

models are build. Four main elements can be defined for the acquisition process: 1) the level of 

granularity of the surgical information that is extracted, 2) the operator(s) on which information are 

extracted, 3) the moment when the acquisition is performed, and 4) the recording method. This section 

is divided according to these four elements. 
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Granularity level 

The level of granularity of the surgical information that is extracted allows characterizing the 

acquisition, as it determines in which detail the SP is recorded. Studies have focused on the recording 

of the entire procedure (Sandberg et al., 2005), the phases (Qi et al., 2006), the steps (Burgert et al., 

2006; Fischer et al., 2005; Lemke et al., 2004), the activities (Forestier et al., 2011; Meng et al., 2004; 

Neumuth et al., 2006, 2009, 2001a, 2011b; Riffaud et al., 2011) and the motions (Kragic and Hager, 

2003). But efforts have been particularly made on the extraction of low-level information from the 

OR: images (Jannin et al., 2003, 2007; Münchenberg et al., 2001), videos (Bhatia et al., 2007; Blum et 

al., 2008; Klank et al., 2008; Lo et al., 2003; Speidel et al., 2008), audio, position data (Houliston et 

al., 2011; Katic et al., 2010; Ko et al., 2007; Sudra et al., 2007), trajectories (Ahmadi et al., 2009; 

Ibbotson et al., 1999; Lin et al., 2006; Miyawaki et al., 2005; Nara et al., 2011; Nomm et al., 2008; 

Yoshimitsu et al., 2010), information of presence/absence of surgical tools (Ahmadi et al., 2007; 

Bouarfa et al., 2010; Padoy et al., 2007) or vital signs (Xiao et al., 2005). Several of these low-level 

information can also be combined (Agarwal et al., 2007; Hu et al., 2006; James et al., 2007; Malarme 

et al., 2010; Padoy et al., 2008, 2010; Suzuki et al., 2010). 

Operator 

Surgery always directly involves several operators. All staff members can have an impact on the 

surgery and their roles and actions can be studied. The most important operator is of course the 

surgeon, which is performing the surgery or surgical tools when positions, trajectories or information 

of presence of surgical tools are extracted. But other operators can be involved: the nurse (Miyawaki 

et al., 2005; Yoshimitsu et al., 2010) for trajectories data extraction, the patient (Agarwal et al., 2007; 

Hu et al., 2006; Jannin et al., 2003, 2007; Münchenberg et al., 2011; Sandberg et al., 2005; Suzuki et 

al., 2010; Xiao et al., 2005) for images or vital signs extraction, or the anaesthetist (Houliston et al., 

2011). Global studies on the entire surgical staff have also been proposed (Agarwal et al., 2007; Bhatia 

et al., 2007; Fischer et al., 2005; Hu et al., 2006; Lemke et al., 2004; Nara et al., 2011; Qi et al., 2006; 

Sandberg et al., 2005; Suzuki et al., 2010), where the surgeon, the nurses and possibly the anaesthetist 

are concerned. For tracking systems, we can also specify, when it is clearly defined, the corresponding 

human body parts involved, such as hand, eye, forehead, wrist, elbow, and shoulder. 

Moment of acquisition 

The moment when the data acquisition is performed (timeline) is also vital information for 

discriminating acquisition techniques. The acquisition most of the time extracts data from intra-

operative recordings, but for it can also be post-operative acquisitions (retrospective) in the case of 

observer-based recording from video or some tracking systems, or pre-operative acquisitions 

(prospective) in the case of manual collect of information. Additionally, the term peri-operative 

generally refers to the three phases of the surgery. Some acquisitions integrate all of these three phases 

for having information from the entire patient hospitalization process. 

Methods for recording 

Two main recording approaches have been proposed: observer-based and sensor-based approaches. 

Observer-based approaches are performed by one person who needs a certain surgical background. For 

off-line recording, the observer used one or multiple videos from the OR to retrospectively record the 
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surgical procedure (Ahmadi et al., 2007, 2009; Bouarfa et al., 2010; Fischer et al., 2005; Ibbotson et 

al., 1999; Lemke et al., 2004; MacKenzie et al., 2001; Malarme et al., 2010; Padoy et al., 2007). For 

on-line recording, the observer is directly in the OR during the intervention (Forestier et al., 2011; 

Neumuth et al., 2006a, 2006b, 2009, 2011; Rifaud et al., 2011). Lemke et al. (2004) first presented 

interests of studying OR using on-line observer-based approaches to progress in both ergonomic and 

health economic.  

Sensor-based approaches have been developed for automating the data acquisition process and/or 

for finer granularity descriptions. The principle is to extract information from the OR thanks to one or 

multiple sensors in an automatic way, and to recognize activities or events based on these signals. 

Sensors can be of different types, from electrical to optical systems. First, studies have used sensors 

based on Radio Frequency IDentification (RFID) technologies directly positioned on instruments or on 

the surgical staff during the intervention to detect the presence/absence of the positions (Agarwal et 

al., 2007; Houliston et al., 2009). Then, efforts have been made on robot-supported recording (Ko et 

al., 2007; Kragic and Hager, 2003; Lin et al., 2006; Münchenberg et al., 2001), including surgeon's 

movements and instruments use. Robots have been used as a tool for automatic low-level information 

recordings. Tracking systems (Ahmadi et al., 2009; James et al., 2007; Katic et al., 2010; Miyawaki et 

al., 2005; Nara et al., 2011; Nomm et al., 2008; Sudra et al., 2008; Yoshimitsu et al., 2010) have also 

been used in various studies, with eye-gaze tracking systems positioned on surgeons or staff members 

tracking devices. Other types of methods have also been tested for recording information: Patient 

monitoring systems (Agarwal et al., 2007; Hu et al., 2006; Sandberg et al., 2005; Xiao et al., 2005), or 

audio recording systems (Agarwal et al., 2007; Suzuki et al., 2010). Lastly, the use of on-line video-

based recording, sometimes combined with other data acquisition techniques, has particularly received 

increased attention recently (Bhatia et al., 2007; Blum et al., 2008; Hu et al. 2006; James et al., 2007; 

Klank et al., 2008; Lo et al., 2003; Padoy et al., 2008, 2010; Speidel et al., 2008; Suzuki et al., 2010), 

with either macro-view videos recording the entire OR or micro-view videos such as endoscope 

videos. 

 

Observer-based approaches Sensor-based approaches 

Observer-

based 

recording 

from video 

(off-line) 

Observer-

based 

recording 

(on-line) 

Manual 

collect of 

information 

Robot-

supported 

recording 

(on-line) 

Robot-

supported 

recording 

On-line 

video-based 

recording 

Patient 

monitoring 

systems 

 

RFID 

technologies 

 

Tracking 

systems 

 

Audio 

recording 

systems 

 
Table 1 - List of possible data acquisition methods. 

II.2.d. Analysis 

Analysis methods can be divided into three types: the methods that go from the data to the final model, 

the methods that aggregate or fuse information and the methods that classify or compare data for 

extracting a specific parameter. The three approaches are presented in the next subsections. 

Additionally display methods of the analysis results have been studied to have a visual representation 

after the analysis process. 

From data to model 

The challenge here is to use the data collected during the acquisition process to create an individual 

model (i.e. iSPM) and to make the link between the acquisition process and the modelling. The type of 
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approach used can be determined by comparing the level of granularity of the acquisition information 

and of the modelling. Top-down approaches are described as analyses that go from a global overview 

of the intervention with patient-specific information and a description of high-level tasks (such as 

phases or steps) to fine-coarse details (such as activities or motions). On the contrary, a bottom-up 

approach takes as input low-level information from sensor devices and tries to extract semantic high-

level information. The methodology employed for either bridging the semantic gap in the case of 

bottom-up approaches or generalize and formalize individual recordings in the case of top-down 

approaches is based on statistical, informatics, or data-mining concepts. The level of automation 

during the creation of the model has to be defined here. The issue is to determine if the model needs a 

training step or not. This step is needed for assigning classes to the training set. In such cases, the 

creation of the model isn't fully automatic and may be entirely manual or a mix between human 

intervention and automatic computation. 

Within supervised approaches, simple Bayes classifier and neural networks have been tested in the 

case of activity/step/phase recognition. For analysing patient vital signs, signal processing tools have 

been used. In the case of top-down analysis, description logic has been widely studied. Towards more 

complex models, graphical probabilistic models are often useful to describe the dependencies between 

observations. Bayesian Networks (BN) have recently proven to be of great interest for such 

applications, with an extension in the temporal domain using Dynamic BNs (DBN). Temporal 

modelling allows evaluating the duration of each step and the entire process during the execution. 

Many time-series models, such as Hidden Markov Model (HMM) (Rabiner, 1989) or Kalman filter 

models, are particular examples of DBNs. Indeed, HMM, which are statistical models used for 

modelling non-stationary vector times-series, have been widely used in SPM analysis. Another time-

series analysis tool has been often tested with success because of its capacity of temporal registration, 

the Dynamic Time Warping (DTW) algorithm. Computer vision techniques have also been employed 

but for extracting high-level information before using supervised approaches. Computer vision 

techniques allow going from a low-level description of images and videos to high-level semantic 

meaning. Within unsupervised methods, no extensive works have been done. We only find the motif 

discovery approach (Ahmadi et al., 2009) that doesn't need any à priori model. Statistical analysis, 

sequential analysis or trajectories analysis have also been used. Lastly, using text-mining for 

extracting data and create model has been also tested. The idea is to automatically analyse post-

operative procedure reports as well as patient files (Meng et al., 2004).  

A SPM whose data acquisition and modelling stay at the same level of granularity is also possible. 

In such cases, the goal of the analysis is not to create a real model, but to perform either 

aggregation/fusion or comparison/classification. 

Comparison-Classification 

The principle is to use SPMs to highlight a specific parameter (i.e. meta-information) that explains 

differences between populations of patients, surgeons or systems. Simple statistical comparisons (such 

as average, number of occurrence or standard deviation) have been used (Ibbotson et al., 1999; Riffaud 

et al., 2010; Sandberg et al., 2005) to compare populations. Similarity metrics have also been proposed 

by Neumuth et al. (2011a) to be able to compare different SPs. DTW along with K-Nearest Neighbour 

(KNN) algorithm have been tested within unsupervised approaches (Forestier et al., 2011).  
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Aggregation-Fusion 

The goal here is to create a global model (gSPM) of a specific procedure by merging a set of SPMs. 

One possibility is to merge similar paths as well as filter infrequent ones to create average SPs for 

having a global overview of the surgery. Another is to create gSPMs that represent all possible 

transitions within SPs. A step of synchronization may be necessary for both approaches in order to be 

able to merge all SPs. Probabilistic analysis have been most of the time used for the fusion, but 

Multiple Sequence Alignment has also been tested. 

Display 

Once data are acquired and the model is designed it is generally useful to have a visual representation 

of the data to easily explore them and to illustrate results. However, complex data structures 

sometimes prevent straightforward visualisation. High-level tasks recordings of SPMs can be 

displayed according to two types of visualizations: the temporal and the sequential aspect (Neumuth et 

al., 2006a). The temporal display more focuses on the duration of each action, whereas the sequential 

display focused on the relation between work steps. Moreover, in the sequential display, one 

possibility is to create complete exhaustive tree of each possibility of sequence of work steps. Sensor-

based recordings are easier to visualize. As it is represented by time-series data, index-plot can be 

used. The idea of an index-plot is to display the sequence by representing an activity as a rectangle of 

specific color for each value, and a width proportional to its duration. Sequence of information can be 

easily visualized and a quick visual comparison can be performed. 

II.2.e. Clinical applications 

Clinical applications that are aimed by the analysis and the modelling of surgical procedures are 

covering multiple surgical specialities, issues and challenges. Five major applications have particularly 

been of increased attention: 1) evaluation of surgical tools/systems/approaches, 2) training and 

assessment of surgeons 3) optimization of the OR management 4) context-aware systems, and 5) 

robotic assistance.We first present surgical specialities that are covered by these systems, and the five 

main applications are then detailed. A last subsection will permit to present other potential 

applications. 

Surgical speciality 

SPMs have been applied to many surgical specialities, but Minimally Invasive Surgery (MIS), 

including endoscopic and laparoscopic procedures and neurosurgical procedures have been preferred. 

Within laparoscopic and endoscopic procedures, Cholecystectomy and Functional Endoscopic Sinus 

Surgery (FESS) surgeries have been widely studied. Eye surgery (Neumuth et al., 2006b, 2011a, 

2011b), maxillofacial surgery (Münchenberg et al., 2001), trauma surgery (Agarwal et al., 2007; 

Bhatia et al., 2007; Xiao et al., 2005), dental implant surgery (Katic et al., 2010), urological surgery 

(Meng et al., 2004) and otorhinolaryngology (ORL) surgery (Neumuth et al., 2006b) have also been 

tested. In general, systems were specific to a surgical speciality or even a particular surgery, but a few 

papers describe more generic surgical systems. 
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Application 

Evaluation of tools/surgical approach/systems: The evaluation of surgical tools or systems has been 

the first application that has been aimed by research laboratories, on surgeons' demand. Analysis 

methods that are used in such cases are the comparison and classification methods that allow 

highlighting a specific parameter such as about surgical tool use, surgical approaches or surgical 

systems. 

 

Training and assessment of surgeons: All junior surgeons are currently learning with the teaching help 

of senior surgeons. This is a very time-consuming, interactive and subjective task. From the other 

hand, there is a growing pressure on surgeons to demonstrate their competences. The need of new 

automatic training systems with tools for surgeons' evaluation has motivated extensive research into 

the objective assessment of surgical skills (Hager et al., 2006, Rosen et al., 2001). It would allow 

surgeons to benefit from constructive feedback, and to learn from their mistakes. Surgical skill can be 

assessed based on five factors: knowledge, decision making, technical skills, communication skills and 

leadership skills. From these five factors, technical skills, and especially the dexterity, are vital and 

based on the surgeon's experience. Historically, this point has been the hardest aspect of assessment to 

be quantified. It is indeed very subjective because generally performed with questionnaire or human-

based observations. Traditional approaches for the assessment of surgical performance rely on prior 

classification of surgeon technical skills. With automatic techniques, and using a coherent 

methodology for describing activities, surgical tasks are scored for both precision and speed of 

performance and are not biased by humans. The ability to precisely recognize simple gesture is a very 

powerful tool to automate surgical assessment and surgical training. Similar methods can also be 

employed for training and assessing other members of the surgical team. For a complete discussion on 

motivations of objective skill evaluation, one can refer to Reiley et al. (2010). 

 

Optimization of the OR management: The need for perioperative surgical workflow optimization has 

recently emerged, especially regarding the specifications of the OR of the future (Cleary et al., 2005). 

With the increase number of CAS systems and new technologies, being able to manage and coordinate 

correctly all these systems is becoming vital. The optimization of the use of physical and human 

resources required in an OR suite can reduce efforts and therefore improve patient outcomes, reduce 

hospital's costs and increase efficiency. Moreover, being able to identify different phases within the 

OR could be useful to know how to assign staff, prepare patient or prioritize OR clean-ups. 

Additionally, there are some adverse events to take into account. It can be long-time surgical 

interventions or urgencies that require the use of OR without prior planning. That's why schedule OR 

has been of increased attention recently (Dexter et al., 2004; Hu et al., 2006) for better management of 

OR equipments and to facilitate effective allocation of human and material resources. 

 

Context-aware systems: Many CAS systems, such as Augmented Reality (AR) systems or new 

imaging protocols, have been recently developed and integrated in the OR, but they are used only for a 

short period of time, and the visualization of additional information strongly depends of the current 

state of the intervention. Moreover, surgeons have to deal with adverse events during operations, 

coming from the patient itself but also from the operation management. The idea is to be aware of the 

difficulties and better handle risks situations. Variations of live signals can be used to warn the 

surgical staff for anomaly detection. These assistance systems would consequently be of great use for 

helping, supporting decision making and better managing all CAS systems. 
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Robotic assistance: Many researches have demonstrated the importance of robots for assistance in 

surgery, and particularly using SPMs (Ko et al., 2007; Kragic and Hager, 2003; Münchenberg et al., 

2001; Miyawaki et al., 2005). They play a vital role in improving accuracy as well as time efficiency 

in surgical procedures. Two families of robots have been introduced for intra-operative assistance: the 

semi-active and the active robots. Semi-active robots are making the link between surgeon and patient. 

Surgeons are performing their tasks outside the OR using the robot that is reproducing surgeon’s 

gesture on the patient. These types of robots are used for specific tasks only such as biopsy or 

endoscopy for MIS. Active robots are used directly in the OR for replacing the surgeon in certain 

tasks. Both types of robots could take the benefit of SPMs for supporting these tasks using pre-defined 

models. The use of robotic assistance also aims at compensating the lack of human resources in many 

hospitals, and in particular the lack of nurses. The new generation of robots that are currently under 

testing are situating the intervention progress by automatically acquiring data from the surgical 

environment and creating SPMs for replacing certain actors of the surgery. 

 

Two other applications that are often implicit in multiple publications are the automatic generation 

of surgery reports and the help for pre-operative planning.  

Surgical reports are papers or informatics files that are generated post-operatively by the surgeon 

for documenting surgical procedures. Procedures are described as a succession of actions and steps 

that are manually included into a “log-file” of the surgery for further filing. This step of the procedure 

is very tedious and time-consuming. The idea of automating this process is to automatically extract as 

much information as possible from the surgery with the help of multiple sensors, for creating pre-filled 

reports (Coles and Slavin, 1976). All studies that retrieved information from the OR, regardless to 

their level of granularity have potentially the possibility of automatically creating pre-filled reports 

from extracted information. 

For helping the pre-operative planning, the recognition of the intervention progress could motivate 

post-operative discussions between experts in order to better plan next surgeries. The objective is to 

better anticipate adverse events and possible problems during surgery by using formalized knowledge 

acquired by previous intervention and also by having an idea of all SPs possibilities. Aggregation and 

fusion techniques may be helpful in such cases for creating gSPMs.  

II.2.f. Validation - Evaluation 

We distinguished validation, defined as studying if the system or method is actually doing what it is 

intended to do, from evaluation, defined as the study of the added value of a system or a method. Each 

aspect of the SPM methodology is subject to validation. The design of a validation study includes 1) 

the specification of a validation objective, 2) the definition of input parameters, 2) the computation or 

estimation of a reference (validation data sets) against which the results of the method to be validated 

will be compared, 3) the definition of validation metrics that will quantify the comparison, and 4) the 

operator using the system. 

Mainly two principal aspects have been validated; the data acquisition process and the modelling 

phase. Validation data sets consisted in fully simulated data from computers, data coming from 

simulated OR, from phantoms or real data directly from surgical interventions and patients. Computer 

simulations are one possibility of validation data that are easy to create, process and analyse, but are 

very far from the clinical reality. Similarly, virtual environment (simulated OR) are also quite far from 

the reality. While both approaches allow a real flexibility for developing new studies, it remains very 
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difficult to realistically model a surgical environment, like haptic feedbacks or visual effects of the 

surgeon/patient interaction. Moreover, even if the simulation is close to the reality, the human factor is 

missing and could bias applications that are intended to be used in real OR environments. The third 

possibility is to use real surgery devices on phantoms instead of humans. Even if the environment is 

closer to the reality than complete virtual environments, it remains a part of the procedure that is not 

realistic. The validation strategies generally consisted in, leave-one-out or k-fold cross-validation 

approaches. The comparison metrics were the recognition rate (accuracy), the reproducibility, the 

specificity and the sensitivity.  

Few evaluation studies have been conducted and reported in the literature. Some papers indirectly 

show the added value of SPM approach through its use for comparison of populations of surgical cases 

performed with different systems or by surgeons with different surgical expertise. For the few papers 

that are evaluating their systems, same elements than the validation part can be defined. 

II.2.g. List of publications 

We propose an exhaustive list of publications (Table 3) that have been reviewed according to the 
selection process of Figure 3 and classify according to diagram of Figure 5. 

II.3. Scope of the materials 

In this section, we explain why we didn’t include some publications into our review. 

From the beginning of the 90s, many clinical studies were published using the principle of time-

motion analysis. Time was the first information chosen by teams to evaluate surgical systems, tools, 

approaches or assess surgeons. Publications covering time-motion analysis are very close to the papers 

that are cited here from the data acquisition aspect. Indeed, they used off-line observer-based 

recording from videos (installed in the OR, on the surgeon, or in the operating field) for acquiring 

sequences of phases/steps/activities that are then processed trough statistical analysis. However, these 

papers are not methodological papers, restraining the analysis to statistical computations of time or 

number of occurrences. They are also always published in clinical journals, which make their impact 

in term of methodology for our review low. We therefore didn't include them into the review, but 

some major examples of publications are listed here: Weinger et al., 1994; den Boer et al., 2001; 

Sjoerdsma et al., 2000; Darzi and Mackay, 2002; Bann et al., 2003; Dosis et al., 2004; Mehta et al., 

2001; Malik et al., 2003; Cao et al., 1999; Claus et al., 1995; Payandeh et al., 2002. A classification of 

their data acquisition techniques and modelling is proposed here on Table 2. 
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Table 2 - Classification of time-motion analysis publications, for the data acquisition and the modelling 

component. 
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Agarwal et al. 

(2007) 

Low-level 

(presence/absence, 

vital signs, audio) 

Surgical staff/tools 

Patient 

Surgical staff 

Peri 

RFID tags (on-line)  

Patient monitoring systems (on-line) 

Audio recording systems (on-line)  

Activities 

Surgical staff 

Surgeon 

Patient 

Sequential list Bottom-up 
Statistical 

analysis  
X X Traumatologic surgery 

Context-aware 

systems 
Analysis  Phantom 

Recognition 

rate 
X 

Ahmadi et al. 

(2007) 

Low-level 

(presence/absence) 
Surgical tools Post Observer-based recording from video (off-line) Phases Surgeon Sequential list Bottom-up DTW X X 

Laparoscopic surgery – 

Cholecystectomy 

Context-aware 

systems 
Analysis  Clinical data 

Recognition 

rate 
Surgeon 

Ahmadi et al. 

(2009) 

Low-level  

(trajectories) 
Surgeon 

Post 

Intra 

Observer-based recording from video (off-line) 

Tracking devices (on-line) 
Motions Surgeon Unsequential list  Bottom-up Motif discovery X X 

Laparoscopic surgery – 

Cholecystectomy 

Context-aware 

systems 
Analysis  Clinical data 

Motif 

discovery 

indices 

Surgeon 

Bhatia et al. 

(2007) 
Low-level (video) Surgical staff Intra Video-based recording (on-line)  

Surgical 

procedure 

Surgical 

staff/patient 

State-transition 

diagram 
Bottom-up SVM + HMM X X Traumatologic surgery 

Optimization OR 

management 
Analysis  Clinical data 

Recognition 

rate 

Surgical 

staff/ 

patient 

Blum et al. 

(2008) 
Low-level (video) Surgeon Intra Video-based recording (on-line)  Steps Surgeon 

State-transition 

diagram 
Bottom-up HMM X X 

Laparoscopic surgery – 

Cholecystectomy 

Context-aware 

systems 
Analysis  Clinical data 

Recognition 

rate 
Surgeon 

Bouarfa et al. 

(2010) 

Low-level 

(presence/absence) 
Surgical tools Post Observer-based recording from video (off-line) Steps Surgeon 

State-transition 

diagram 
Bottom-up HMM X X 

Laparoscopic surgery – 

Cholecystectomy 

Context-aware 

systems 
Analysis  Simulation 

Recognition 

rate 
Surgeon 

Burgert et al. 

(2006) 
Steps/activities Surgeon Pre Manual collect of information (off-line) Steps/activities Surgeon 

Heavy-weight 

ontology 
Top-down Description logic X X Neurosurgery 

Context-aware 

systems 
X X X X 

Fischer et al. 

(2005) 
Steps Surgical staff Post Observer-based recording from video (off-line) Steps Surgeon 

Heavy-weight 

ontology 
Top-down Description logic X X Endoscopic surgery – FESS 

Evaluation of 

tools/systems 
X X X X 

Forestier et al. 

(2011) 
Activities Surgeon Intra Observer-based recording (on-line)  Activities Surgeon 

Hierarchical 

decomposition 
Same level X X DTW + HAC 

Neurosurgery – Lumbar 

discectomies 

Training/assessm

ent of surgeons 
Analysis  Clinical data 

Recognition 

rate 

(clustering) 

Surgeon 

Houliston et al. 

(2011) 

Low-level 

(positions) 
Anaesthesist Intra RFID tags (on-line)  Activities Anaesthesist Sequential list Bottom-up Neural network X X Unidentified 

Evaluation of 

tools/systems 
Analysis  Clinical data 

Recognition 

rate 

Anaesthes

ist 

Hu et al. (2006) 
Low-level (video, 

vital signs) 

Surgical staff/ 

Patient 
Intra 

Video-based recording (on-line)  

Patient monitoring systems (on-line) 

Surgical 

procedure 

Surgical 

staff/patient 
Sequential list Bottom-up Signal processing X X Unidentified 

Optimization OR 

management 
Analysis  Clinical data 

Recognition 

rate 

Surgical 

staff/patie

nt 

Ibbotson et al. 

(1999) 

Low-level 

(trajectories) 
Surgeon (eyes) Post Observer-based recording from video (off-line) 

Phases/Steps/ 

activities 
Surgeon 

Hierarchical 

decomposition 
X X X 

Statistical 

comparisons 

Endoscopic/Laparoscopic 

surgery 

Evaluation of 

tools/systems 
Analysis  Clinical data 

Time/ 
Frequence 

comparisons 

Surgeon 

James et al. 

(2007) 

Low-level 

(trajectories,video) 

Surgeon (eyes) 

Surgeon 
Intra 

Tracking devices (on-line) 

Video-based recording (on-line)  
Phases Surgeon Sequential list Bottom-up 

Computer vision 

+ neural network 
X X 

Laparoscopic surgery – 

Cholecystectomy 

Context-aware 

systems 
Analysis  Clinical data 

Recognition 

rate 
Surgeon 

Jannin et al. 

(2003) 

Low-level 

(images) 
Patient Pre Manual collect of information (off-line) Steps Surgeon 

UML class 

diagram 
Top-down 

Model 

instantiation 
X X Neurosurgery 

Context-aware 

systems 
Analysis  Clinical data 

Semantic 

validation 
Surgeon 

Jannin et al. 

(2007) 

Low-level 

(images) 
Patient Pre Manual collect of information (off-line) Steps Surgeon 

UML class 

diagram 
Top-down 

Clustering/Decisi

on tree 
X X Neurosurgery 

Context-aware 

systems 
Analysis  Clinical data 

Recognition 

rate 
Surgeon 

Katic et al. 

(2010) 

Low-level 

(positions) 

Surgical tools 

Patient 
Intra Tracking devices (on-line) Phases Surgeon 

Heavy-weight 

ontology 

Top-down 

Bottom-up 
Description logic X X Dental implant surgery 

Context-aware 

systems 
Analysis  Phantom 

Recognition 

rate (situation 

recognition) 

Surgeon 

Klank et al. 

(2008) 
Low-level (video) Surgeon Intra Video-based recording (on-line)  Phases Surgeon Sequential list Bottom-up 

Computer vision 

+ SVM 
X X 

Laparoscopic surgery – 

Cholecystectomy 

Context-aware 

systems 
Analysis  Clinical data 

Recognition 

rate 
Surgeon 

Ko et al. (2007) 
Low-level 

(positions) 
Surgical tools Intra Robot-supported recording (on-line) Steps Surgeon 

State-transition 

diagram 

Step/tool/camera 

view model 

Top-down 

Bottom-up 

Sequential 

analysis  
X X 

Laparoscopic surgery – 

Cholecystectomy 

Robotic 

assistance 
X X X X 

Kragic and Hager 

(2003) 
Motions Surgical tools Intra Robot-supported recording (on-line) Activities Surgeon 

State-transition 

diagram + XML 
schema 

Top-down 

Bottom-up 

Sequential 

analysis  
X X 

Endoscopic/Laparoscopic 

surgery 

Robotic 

assistance 
X X X X 

Lemke et al. 

(2004) 
Steps Surgical staff Post Observer-based recording from video (off-line) Steps Surgical staff 

2D graph 

Hierarchical 

representation 

Top-down Description logic X X 
Neurosurgery 

Maxillofacial surgery 

Evaluation of 

tools/systems 
X X X X 

Lin et al. (2006) 
Low-level 

(trajectories) 
Surgeon Intra Robot-supported recording (on-line) Motions Surgeon Unsequential list  Bottom-up 

LDA + Bayes 

classifier 
X X 

Endoscopic/Laparoscopic 

surgery 

Training/assessm

ent of surgeons 
Analysis  Phantom 

Recognition 

rate 
Surgeon 

Lo et al. (2003) Low-level (video) Surgeon Intra Video-based recording (on-line)  Phases Surgeon 
State-transition 

diagram 
Bottom-up 

Computer vision 

+ Bayesian 

network 

X X 
Endoscopic/Laparoscopic 

surgery 

Training/assessm

ent of surgeons 
Analysis  Clinical data 

Recognition 

rate 
Surgeon 



 

 

 

 

Table 3 - Classification of the 43 publications that have been peer-reviewed. 

MacKenzie et al. 

(2001) 

Phases/Steps/Activ

ities/Motions 

Surgeon 

Surgical tools 
Post Observer-based recording from video (off-line) 

Phases/Steps/ 

Activities/ 

Motions 

Surgeon 

Surgical tools 

Hierarchical 

decomposition 
Same level X 

Probabilistic 

analysis  
X 

Endoscopic/Laparoscopic 

surgery 

Evaluation of 

tools/systems 
X X X X 

Meng et al. 

(2004) 
Activities Surgeon Pre Manual collect of information (off-line) Activities Surgeon 

UML class 
diagram 

XML schema 

Same level X 
Multiple 

Sequence 

Alignment 

X Urological surgery 
Evaluation of 

tools/systems 
Analysis  Clinical data 

Recognition 

rate 
Surgeon 

Miyawaki et al. 

(2005) 

Low-level 

(trajectories) 

Surgeon/Nurse 

(forehead,wrist, 

elbow,shoulder) 

Post Tracking devices (off-line)  
Activities 

Steps 
Nurse 

State-transition 

diagram 
Bottom-up Model checking X X 

Endoscopic surgery – Lung 

resection 

Robotic 

assistance 
X X X X 

Malarme et al. 

(2010) 
Low-level data Surgeon Post Observer-based recording from video (off-line) Steps Surgeon 

Heavy-weight 

ontology 

Top-down 

Bottom-up 

Temporal 

rescaling method 

Inference engine 

X X Neurosurgery - Spine 
Context-aware 

systems 
Analysis  

Simulated 

OR 

Recognition 

rate (situation 

recognition) 

Surgeon 

Münchenberg et 

al. (2001) 

Low-level 

(images) 
Patient Intra Robot-supported recording (on-line) 

Phases/Steps/ 

Activities 
Surgeon 

Hierarchical 

decomposition 
Top-down 

Sequential 

analysis  
X X Maxillo-facial surgery 

Robotic 

assistance 
X X X X 

Nara et al. (2011) 
Low-level 

(trajectories) 
Surgical staff Intra Tracking devices (on-line) Phases Surgical staff Sequential list Bottom-up 

Trajectories Data 

Mining 
X X Neurosurgery 

Optimization OR 

management 
Analysis  Clinical data 

Recognition 

rate  

Neumuth et al. 

(2006b) 
Activities Surgeon Intra Observer-based recording (on-line)  Activities Surgeon 

UML class 

diagram 

XML schema 

Same level X 
Probabilistic 

analysis  
X 

ORL surgery 

Neurosurgery 

Eye surgery 

Evaluation of 

tools/systems 
X X X X 

Neumuth et al. 

(2009) 
Activities Surgeon Intra Observer-based recording (on-line)  Activities Surgeon 

Hierarchical 

decomposition 
Same level X X X Endoscopic surgery – FESS 

Evaluation of 

tools/systems 

Acquisitio

n 
Clinical data 

Live Vs 

Video 

acquisition 

comparisons 

Surgeon 

Neumuth et al. 

(2011a) 
Activities Surgeon Intra Observer-based recording (on-line)  Activities Surgeon 

Hierarchical 

decomposition 
Same level X X 

Similarity 

metrics 

Eye surgery – Cataract 

Neurosurgery 

Evaluation of 

tools/systems 

Analysis  

Acquisitio

n 

Clinical data Correlation Surgeon 

Neumuth et al. 

(2011b) 
Activities Surgeon Intra Observer-based recording (on-line)  Activities Surgeon 

Hierarchical 

decomposition 
Same level X 

Statistical 

analysis  
X Eye surgery – Cataract 

Evaluation of 

tools/systems 
Analysis  Clinical data 

Time/ 

occurrence 

comparisons 

Surgeon 

Nomm et al. 

(2008) 

Low-level 

(trajectories) 
Surgeon Post Tracking devices (off-line)  Motions Surgeon Unsequential list  Bottom-up 

Statistics + 

Neural network 
X X 

Endoscopic/Laparoscopic 

surgery 

Robotic 

assistance 
Analysis  Clinical data 

Recognition 

rate 
Surgeon 

Padoy et al. 

(2007) 

Low-level 

(presence/absence) 
Surgical tools Post Observer-based recording from video (off-line) Phases Surgeon Sequential list Bottom-up DTW X X 

Laparoscopic surgery – 

Cholecystectomy 

Context-aware 

systems 
Analysis  Clinical data 

Recognition 

rate 
Surgeon 

Padoy et al. 

(2008) 

Low-level (video, 

presence/absence) 
Surgical tools 

Intra 

Post 

Video-based recording (on-line)  

Observer-based recording from video (off-line) 
Phases Surgeon 

State-transition 

diagram 
Bottom-up 

Computer vision 

+ HMM 
X X 

Laparoscopic surgery – 

Cholecystectomy 

Context-aware 

systems 
Analysis  Clinical data 

Recognition 

rate 
Surgeon 

Padoy et al. 

(2010) 

Low-level (video, 

presence/absence) 
Surgical tools 

Intra 

Post 

Video-based recording (on-line)  

Observer-based recording from video (off-line) 
Phases Surgeon 

Sequential list 

State-transition 

diagram 

Bottom-up DTW/HMM X X 
Laparoscopic surgery – 

Cholecystectomy 

Context-aware 

systems 
Analysis  Clinical data 

Recognition 

rate 
Surgeon 

Qi et al. (2006) Phases Surgical staff Post Manual collect of information (off-line) Phases Surgical staff 
State-transition 

diagram 
Top-down Workflow engine X X Unidentified 

Optimization OR 

management 
X X X X 

Riffaud et al. 

(2011) 
Activities Surgeon Intra Observer-based recording (on-line)  Activities Surgeon 

Hierarchical 

decomposition 
Same level X X 

Statistical 

comparisons 

Neurosurgery – Lumbar 

discectomies 

Training/assessm

ent of surgeons 
Analysis  Clinical data 

Time/ 

occurrence 

comparisons 

Surgeon 

Sandberg et al. 

(2005) 
Surgical procedure Surgical staff/Patient Peri Patient monitoring systems (on-line) 

Surgical 

procedure 

Surgical 

staff/Patient 
Sequential list 

Same 

granularity 

level 

X X 
Statistical 

comparisons 

Endoscopic/Laparoscopic 

surgery 

Optimization OR 

management 
Analysis  

Simulated 

OR 

Time/occurre

nce 

comparisons 

Surgical 

staff/ 

patient 

Speidel et al. 

(2008) 
Low-level (video) Surgeon Intra Video-based recording (on-line)  Activities Surgeon 

Heavy-weight 

ontology 

Top-down 

Bottom-up 

Computer vision 

+ Description 

logic 

X X 
Endoscopic/Laparoscopic 

surgery 

Context-aware 

systems 
X X X X 

Sudra et al. 

(2007) 

Low-level 

(position) 
Surgical tools Intra Tracking devices (on-line) Activities Surgeon 

Heavy-weight 

ontology 
Top-down Description logic X X 

Laparoscopic surgery – 

Cholecystectomy 

Context-aware 

systems 
Analysis  Phantom 

Recognition 

rate 

(Reasoning 

process) 

Surgeon 

Suzuki et al. 

(2010) 

Low-level (video, 

audio) 
Surgical staff/patient Intra 

Video-based recording (on-line)  

Audio recording systems (on-line)  
Phases Surgeon Sequential list Bottom-up Signal processing X X Neurosurgery 

Context-aware 

systems 
Analysis  Clinical data 

Recognition 

rate 

Surgical 

staff/ 

patient 

Xiao et al. (2005) 
Low-level (Vital 

signs) 
Patient Intra Patient monitoring systems (on-line) 

Surgical 

procedure 

Surgical 

staff/Patient 
Sequential list Bottom-up Signal processing X X Traumatologic surgery 

Optimization OR 

management 
Analysis  Clinical data 

Recognition 

rate 

Surgical 

staff/ 

patient 

Yoshimitsu et al. 

(2010) 

Low-level 

(trajectories) 

Surgeon/Nurse 

(forehead,wrist, 

elbow,shoulder) 

Intra Tracking devices (on-line) 
Activities 

Steps 
Nurse 

State-transition 

diagram 
Bottom-up Timed automata X X 

Endoscopic/Laparoscopic 

surgery 

Robotic 

assistance 
X X X X 
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On the other hand, other recent papers using robot-supported recording, like for instance the paper 

of Hager et al. (2006) or Rosen et al. (2006), are closer to our review in term of methodology than 

those using time-motion analysis. Fully connected HMMs are used in these papers for classifying hand 

trajectories for assessing the level of expertise of surgeons. The reason why we didn't consider them is 

because they don't incorporate any sequential aspect of the surgical processes into their analysis. The 

model incorporate sequences of activities but that are not constrained. An existing recent review has 

already been published on the methods for objective surgical skills evaluation (Reiley et al., 2010), 

which include all papers using trajectories analysis for surgical skills assessment. A non-exhaustive 

list of these papers is given here: Hager et al. (2006), Rosen et al. (2001, 2002, and 2006), Voros and 

Hager (2008), Lin et al. (2006). A classification of their data acquisition techniques and modelling is 

also proposed on Table 4. 

 

 
Data acquisition Modelling 

 
Granularity level 

Operator +/- 

body part 

Moment of 

acquisition 

Method for 

recording 

Granularity 

level 

Operator 

+/- body 

part 

Formalization 

Surgical skill 

evaluation 
Motions Surgeon 

Intra-

operative 

Robot-supported 

recording (on-line) 
Motions Surgeon 

Sequential list 

of words 

 
Table 4 - Classification of surgical skills evaluation using robot-supported recording publications, for the data 

acquisition and the modelling component. 

 

Others studies focused on the pre-processing steps before a SPM analysis. Radrich et al. (2008, 

2009) presented a system for synchronizing multi-modal information using various signals for surgical 

workflow analysis. Sielhorst et al. (2005) synchronized 3D movements before the comparison of 

surgeons' activities. Speidel et al. (2008, 2009) focused on the identification of instruments in MIS, 

with the goal of improving current intra-operative assistance systems. These studies, as being just pre-

processing steps for further SPM analysis, were identically not integrated to the review. 

 Around the wide field of human and resource modelling for healthcare, some research also don’t 

focused on the modelling of the surgical process, but on hospital systems (Wendt et al., 2003; Winter 

et al., 2003), hospital data (Maruster et al., 2001; Rosenbloom et al., 2006), or medical process in the  

hospital focusing on surgical workers activities (Favela et al., 2007; Sanchez et al., 2008). Other 

research focused on the modelling of the environment of the OR (inside and outside) but without 

looking at the surgery itself (Riley and Manias, 2005; Sandberg et al., 2005; Archer and Macario, 

2006). Purposes are multiple but every project has a unique objective, which is the improvement of the 

quality of patient care along with a superior medical safety by studying flows or activities. Also, from 

an anaesthetist point of view, works have been made by looking at the ergonomic and organisation 

inside the OR (Seim et al., 2005; Schleppers and Bender, 2003; Decker and Bauer, 2003; Gehbard and 

Brinkmann, 2006). In spite of this consequent number of works for healthcare systems, most interest 

has been given last few years for the understanding and the comprehension of the OR, and specifically 

of the surgery. These studies are all not focusing on process of surgery and were therefore not included 

in the study.  



II.4.  Discussion 

 

41 
 

II.4. Discussion 

II.4.h. Modelling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8 - Repartition of granularity levels of the modelling. 

 

 

As we can see from Figure 8, all granularity levels have been studied, with a particular focus on 

steps and activities. Moreover, a consequent number of these studies are using multiple granularity 

levels in their modelling. This type of approach seems to be required for creating global SPMs 

integrating all aspects of the surgical procedure, and future studies on SPMs should certainly based 

their modelling aspects on this hypothesis.   

 

From the methods used for formalization, XML schema, which is a light-weighted ontology, 

defines a grammar that characterizes the structure of a document or the type of data used. They haven't 

class concept and they also aren't totally dynamic. Actually, XML schema can be a solution for 

describing SPM at a high level of granularity, to structure data with a well-defined grammar, but they 

don't respect important concepts such as the classes or the organization into a hierarchy. As XML 

schema, UML class diagram doesn't allow defining unique and uniform entities. Both approaches 

seem to be less adapted to the formalization of a surgical context than heavy-weight ontologies. These 

latter ones allow specifying that two elements correspond to the same unit. In opposition to 

taxonomies that define classes and relation between these classes, ontology allows defining inference 

rules. Jannin et al. (2003) proposed a model based on pre and post-operative acquisition of data, 

including interview of surgeons. The type of surgical procedure, steps and actions were extracted and 

permit the creation of the model. Additionally, information related to images were linked to classes. 

Lemke et al. (2004) first defined a surgical ontology as a formal terminology for a hierarchy of 

concepts and their relationship in the specialized clinical context of surgical procedures and actions. 

Later, Burgert et al. (2006) proposed an explicit and formal description in an upper-level-ontology 
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based on General Ontological Language (GOL) for representing surgical interventions. These works 

were the first one introducing heavy-weight ontologies in the context of surgery. 

One important message of this aspect of a SPM methodology is that formalization is needed for 

being able to compare and share studies between different centres. Even though two centers acquire 

data on the same surgical procedure using the exact same terminology, a heavy-weighted ontology is 

still needed to be able to use both data in a common study. The observer based acquisition approach 

requires the selection of terms from a list to describe the procedure. Two observers may use the same 

word for two different meanings. Ontology would help making explicit relationships between these 

two meanings. The more formalization will be used into the modelling, the more semantic will be 

considered and the more sharable will be the SPM. A heavy and rich formalization is therefore the key 

for future analysis of SPM to tackle all these issues. 

II.4.a. Data acquisition 

Both observer-based and sensor-based data acquisition approaches present advantages and drawbacks. 

Within observer-based approaches, data acquisition process can be supported by two levels of 

knowledge: the activity recording is performed either according to common standards of surgical 

procedures or according to fixed-protocol created by local experts. In the first case, standards surgical 

terms and activities are reported for describing the surgery whereas in the second case, the first step 

consists of building up its own vocabulary. A new terminology is employed and permits a knowledge 

representation that is proper to the own surgeon's experience and to the specific surgical environment. 

The related models are most of the time not based on an ontology, and they are thus not an efficient 

formal representation of the knowledge and are also not easily sharable between centres. Moreover, 

the major concern of on-line observer-based approach is the necessity of doing manual labelling that 

makes the system not automatic and time-consuming. The necessity of having one person in the OR 

for recording only, whom is often an expert surgeon for reliable information labelling, is also a bias of 

this approach. At the same time, it's the best way for recording finer details and capture high semantic 

level, which makes this technique advantageous compared to sensor-based approaches that don’t 

acquire data at this level of semantic.  

 

Sensor-based approaches are now more and more adopted. For motions detection using tracking 

systems, the main drawback is that it relies on tools only and motions may not be efficiently detected 

with rare movements. Compared to other data acquisition techniques, analyses of videos would permit 

not only to avoid the installation of additional materials in the OR, but also to have a source of 

information that has not to be controlled by human. For instance, acquiring information from the 

endoscopic view is very promising for higher level information recognition. Videos are a very rich 

source of information, as demonstrated on laparoscopy by Speidel et al. (2008). Using image-based 

analysis, it is possible to acquire relevant information on surgery without disturbing the intervention 

course. Unfortunately, current image-based algorithms, even with progress in computer vision, don’t 

allow to completely capturing the well-known semantic gap, in which low-level visual features cannot 

correctly represent the high-level semantic content of images. Using image-based algorithms, users 

usually do not think in terms of low-level features, resulting in a bad recognition of the high-level 

semantic content of images. For model of instruments' use, in spite of high detection accuracies, the 

major concern is that the recording of signals is not automatic when RFID tags are not used. The entire 

annotation is performed manually, which makes the system not usable in clinical routine. In practice, 

RFID tags are too much intrusive, and some vital information that could improve the detection rates 
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are missing, such as the anatomical structures treated. Generally speaking, all type of sensors 

additionally installed in the OR show promising results for the challenge of workflow recovery, but 

the main drawback is the modification of the OR set-up and the necessity of managing such new 

devices. In particular, eye-gaze tracking systems are interesting because it takes into account the 

perceptual behaviour of the surgeon, but it would demand large modifications during the intervention 

course not to alter the clinical routine so far. 

In conclusion, observer-based approaches have the capacity to cover high granularity levels for 

describing surgery, from the lower level (time) to the highest one letting the observer taking the 

responsibility of acquiring semantic information from pre-defined terminologies and ontologies. On 

the other hand, it is a very time consuming and costly approach, with the necessity to have a surgeon 

with a certain clinical background in the OR during the whole procedure. Sensor-based approaches 

haven’t this ability to capture information with semantic meanings, but have the advantage to record 

live signals automatically or semi-automatically, which is less time-consuming. 

 

For now, no papers are covering multiple levels of granularity, which shows the difficulty of 

combining different data acquisition methods at different granularity levels. Multiple sensors can be 

used for instance for both capturing videos and positions of instruments, but the combination of 

observer-based and sensor-based approaches turns out to be very difficult to set up. We see from 

Figure 9 that no predominant techniques have been employed.  

 

 
 

Figure 9 - Repartition of data acquisition techniques 

 

II.4.b. Analysis 

The choice of analysis methods that allow going from data to model is vital in current SPM 

methodology. It allows in the case of bottom-up approaches to bridge the semantic gap between 

numeric and symbolic data. Based on a preliminary formalization, these methods are all using 

supervised techniques based on a training stage, except the work of Ahmadi et al. (2007). This type of 

approach is also the most current one (Figure 10). People reports recognition rates from 70% up to 

99% but these values are very difficult to compare due to the differences of validation strategies but 
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also due to the differences of surgical specialities or number and type of data used. The two others 

approaches (approaches that stay at the same granularity level and top-down approaches), even if they 

have still not completely shown their interest in the field, are now more and more used and it would be 

no surprising that the number of publications using both approaches raise in the close future.  

 

 

 
 

Figure 10 - Repartition of the type of approaches used for “data to model” approaches. 

 

The category of aggregation/fusion analysis method is important because it is a smart way for 

creating gSPMs that can be used as a supplementary tool for assisting surgeons. It allows creating 

knowledge models based on an automated SPMs analysis and not on traditional knowledge acquisition 

methods. The problem of this kind of approach is that it only represents the SPMs that are studied. 

Even if it clearly seems to be a vital aspect for improving surgery performance, no extensive work has 

been performed while this type of approach proposes large perspectives in the future. Efforts have 

therefore to be put here for integrating and automating average models of surgical processes in the 

clinical routine. 

Similar to the previous category of analysis approach, the comparison and classification using 

surgical processes has not motivated lots of studies yet, but it may also be a direction to take into 

account. Comparisons of tool uses, surgeons or surgery performance using these kinds of methods 

allow quantitatively validating and assessing impacts on the surgical procedure. 

II.4.c. Applications 

We restrained in the diagram potential applications to the 5 most common cited ones in the papers. 

Additionally, when multiple applications were cited in the papers, we only kept the major clearly 

identified one. Figure 11 shows the repartition of applications as well as surgical specialities. 
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Figure 11 - Repartition of surgical specialities (above) and clinical applications (below). 

 

The majority of the papers describes SPM to be used either in the context of neurosurgery or 

endoscopy/laparoscopy. This is not surprising, as neurosurgery and MIS have been the most common 

applications for computer-assisted surgery research. In the case of endoscopic and laparoscopic 

procedures, surgeries are often very standardized, with a well-defined protocol, widely documented, 

and inter-patient variabilities remain very low. Data are also easily available for engineers for this 

surgical speciality. In neurosurgical procedures, data can also be easily acquired. In the case of eye 

surgeries, new studies are using this surgical speciality because of the very brief procedures.   

On the other hand, the repartition of applications is more homogeneous. Even if systems aiming at 

improving intra-operative assistance are predominant, the four other applications have been seriously 

and similarly considered. Ahead of the large number of applications cited in publications, we see that 

SPMs can be useful in the entire surgery timeline, from pre-operative use to post-operative analysis. It 

can be used in every medical process and adapted to every surgical speciality which shows the 

potential importance of SPMs. 
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II.4.d. Validation-Evaluation 

The majority of the papers performed validation studies (Figure 12, left) on the analysis part (69%), 

while a very few of them validated the acquisition step (4%). It also remains some studies that don’t 

validate their systems at all (27%). When used, validations studies were performed (Figure 12, right) 

using clinical data in majority (78%). Few of studies are using phantoms, simulated OR or computer 

simulations. 

 

 
Figure 12 - Repartition of the types of validation (left) and types of validation data (right). 

 

From the 43 publications that were peer-reviewed, only three of them performed evaluation studies. 

Table 5 shows the different elements of their evaluation studies.  

 

 

 

Evaluation 

 

 

System evaluated 

Validation objective 

(Medical context) 
Dataset Metric Operator 

Katic et al. (2010) 

Context-aware 

augmented reality 

system 

Drilling planned implant Phantom 
Medical usability (questionnaire) 

Implant position comparison 
Surgeon 

Ko et al. (2007) 

System for intelligent 

interaction scheme with 

a robot 

Porcine 

Cholecystectomy 
Clinical data Number of voice command Surgeon 

Yoshimitsu et al. (2010) Scrub nurse robot Endoscopic surgery Clinical data Instrument targeting time Nurse 

 
Table 5 - Classification of the 3 publications performing evaluation studies 

 
However, no validation combined to evaluation has been conducted at the same time. There 

different results on the validation part shows that researches on the field, while being under 
considerable development, have not been introduced in the clinical routine so far and work remains to 
be done on the validation part.  

II.4.e. Correlations to other information 

The correlation of SPMs with other information, such as patient-specific models, is an important 

perspective of the domain. Patient-specific models are constructed from pre and post-operative patient 

data such as clinical data or images (Edwards et al., 1995; Biagioli et al., 2006; Verduijn et al., 2007; 

Kuhan et al., 2002). Correlation between patient outcomes and pre-operative data can then for instance 

be conducted with the help of probabilistic models such as Bayesian networks.  
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One other possibility would be to correlate SPMs with the decision-making process of surgeons 

during the intervention. The decision making in surgery can be conceptualised by two steps, the 

assessment and the diagnosis of the situation that must be used to select a specific action. The major 

aspect of the decision-making is that the decision depends on the level of expertise and tasks demand. 

Dedicated models can be designed for surgical decision-making support by integrating this aspect. 

Moreover, correlation between pre and post-operative interviews of surgeons with the intra-operative 

intervention strategy can allow analysing the decision-making process of surgeons, especially under 

time pressure, and better understand and anticipate further adverse events (Flin et al., 2007; Jalote-

Parmar et al., 2008; Morineau et al., 2009). 

II.5. Conclusion and problematic of the thesis 

Following the growing need of a new generation of CAS systems for the OR, new techniques have 

emerged based on the modelling of surgical processes. Research studies have been performed toward 

the development of sophisticated techniques for optimizing, understanding and better managing 

surgeries and the OR environment based on SPMs. We presented in this Chapter a methodological 

review on the creation and the analysis of SPMs, focusing on works that model the procedural 

approach. For structuring the review we proposed a diagram that classifies existing works based on the 

definition of 5 major aspects of the SPM creation methodology: the acquisition, the modelling, the 

analysis, the application and the validation/evaluation. Using this classification we presented the 

existing literature and discussed the different methods and approaches followed by the community. 

One of the conclusions of this methodological review is that SPMs created by these different 

approaches may have a large impact in future surgery innovations, whatsoever in planning or intra-

operative purposes. The main message to remember around analysis approaches is that no papers 

currently combined these approaches within one SPM. As no experiments were already performed it is 

hard to evaluate the impact of such combinations but we could imagine that the use of average models 

in the case of top-down or bottom-up approaches, or the use of classification techniques combined 

with average models could be benefit in further studies. Even if the clinical applications are multiple, 

lot of works remains to be done in the domain, especially on the development of aggregation/fusion 

and classification analysis methods. Evaluation studies are also missing in the majority of the papers, 

which shows the relative novelty of the domain that has to be further investigated and developed. 

 

From this literature review, the problematic of the thesis was centred on four main aspects. First, the 

idea was to develop new methods and tools for the detection of low-level surgical tasks (i.e. the 

sequence of activities in a surgical procedure) and high-level surgical tasks (i.e. the surgical phases) in 

the OR trough a bottom-up approach. Second, following the creation of new sensor-based systems 

using videos in the OR, the idea was to use microscope videos data as the only source of information 

of the recognition systems. This technique allowed automating the data acquisition process. Third, 

with this approach, one objective was to cover multiple granularity levels and, finally, to introduce a 

strong semantic to the models. 
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PART II 
 

 
METHODOLOGY FOR AUTOMATIC RECOGNITION OF 

HIGH-LEVEL AND LOW-LEVEL TASKS IN THE OR 

 

 

 

 
 

This part of the manuscript is composed by the core of the research performed during my PhD work. 

In Chapter II, I first present the two data-sets used for our experiments. Chapter IV describes the first 

method for detecting surgical tasks from microscope videos. This method is based on an image 

classification problem within a static approach. It shows the feasibility of the detection using global 

image features only. Then, in Chapter V, the dynamic aspect is incorporated as well as local image 

features within a global recognition framework in order to improve the recognition rate. In Chapter V, 

the methodology is extended to address recognition of tasks at a lower granularity level. The proposed 

methodology relies in additional knowledge of the surgical procedure. In Chapter VII, I propose a 

general discussion on the advantages of using microscope videos for the recognition task and possible 

clinical applications. I finally conclude the thesis in Chapter VIII and open the research area to new 

perspectives. 
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Chapter III. Data-sets presentation 

All studied algorithms and frameworks were evaluated on two data-sets coming from two different 

surgical specialities. The first one is a data-set of videos of pituitary surgeries. The second one is a 

data-set of videos of cataract surgeries. We present both data-sets in the next two subsections as well 

as the different surgical tasks of each surgical procedure, at both high- and low- granularity levels. 

III.1. Dataset 1: Pituitary surgery 

III.1.a. Surgical procedure 

Neurosurgery is a surgical speciality that concerns all pathologies of the central nervous system. From 

the high number of tumours in neurosurgery, we choose the pituitary adenoma surgeries (Ezzat et al., 

2004) which are tumours that occur in the pituitary gland and represent around ten percent of all intra-

cranial tumour removals. Neurosurgeons mostly use a direct trans-nasal approach, where an incision is 

made in the back wall of the nose. Rarely, a craniotomy is required. In this study, all surgeries were 

performed according to the first approach. This first dataset included 16 pituitary surgeries (with mean 

surgical time of 50 +/- 8 min), all performed at the neurosurgical department of the University 

Hospital of Rennes by three expert surgeons. Videos were recorded using the OPMI Pentero surgical 

microscope (Carl Zeiss® Medical Systems1, Germany). The initial video resolution was 768 x 576 

pixels at 33 frames per second (fps). Recordings were obtained from nasal incision until compress 

installation, where the microscope was continuously used.  

III.1.b. Surgical phases identification 

An expert neurosurgeon was asked to decompose a standard pituitary surgical procedure into a set of 

sequential ordered phases. The initial consign was to identify a set of phases (high-level tasks) that all 

have a well-defined surgical objective. Mathematically, a surgical process defined at a high granularity 

level HLsp  can be defined as a sequence of phases belonging to the set of phases PH : 

 

PHphphphphphphsp innHL ,...,,, 1321

   

(1) 

 

with nn phphphphph 1321 ...  and n the number of phases. 

 

Six phases (considered as the high granularity level) were defined. These phases are: 1) nasal incision, 

2) nose retractors installation, 3) access to the tumour along with tumour removal, 4) column of nose 

                                                   
1 http://www.meditec.zeiss.com/ 
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replacement, 5) suturing, and 6) nose compress installation. These six phases were also validated by 

another expert neurosurgeon (Figure 13). 

 

 
 

Figure 13 - Example of typical digital microscope images for pituitary surgeries. 

III.2. Dataset 2: cataract surgeries 

III.2.a. Surgical procedure 

The second dataset included cataract surgeries, which is one of the most frequent ophtalmological 

surgeries in the world. The term cataract refers to the clouding of the normally clear lens of the eye. 

The corresponding surgery removes the natural lens and inserts an artificial one (namely an 

IntraOcular Lens, IOL) in order to restore focusing power. This second dataset included 20 cataract 

surgeries (with mean surgical time of 15 +/- 4 min), all performed at the University Hospital of 

Munich by two expert surgeons. Videos were recorded using the OPMI Lumera surgical microscope 

(Carl Zeiss® Medical Systems, Germany) with a resolution of 720 x 576 at 25 fps. 

III.2.b. Surgical phases identification 

Similar to the definition of the phases for pituitary surgeries, an expert ophthalmological surgeon was 

asked to decompose a standard cataract surgical procedure into a sequence of phases. Eight surgical 

phases were defined: 1) preparation of the patient, 2) betadine (antiseptic) injection, 3) access to the 

anterior chamber through a corneal incision and viscoelastic injection, 4) hydrodissection + 

capsulorhexis, 5) phacoemulsification, 6) irrigation + cortical aspiration of the remanescent lens, 7) 

implantation of the artificial IOL, and 8) IOL adjustment + wound sealing. These eight phases were 

also validated by another expert ophtalmological surgeon (Figure 14).  
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Figure 14 - Example of typical digital microscope images for cataract surgeries.  

III.2.c. Surgical activities identification 

For identifying the lower granularity level consisting in surgical activities, we relied in a formalism 

introduced in Neumuth et al. (2006, 2007, and 2008). According to this formalism, an activity 
iac  is 

defined by a triplet: 

 

siaaci ,,           ,,, SsIiAa     (2) 

 

where A  is the set of possible actions (e.g. irrigate, cut), I  the set of possible instruments (e.g. 1.1 

mm knife, micro spatula), and S  the set of possible anatomical structures (e.g. cornea, conjunctiva). 

An example of activity in the context of cataract surgery could be <aspirate, aspiration cannula, 

lens>. The definition domain is thus defined by: ISA . Each activity has also a starting point 

)( iacstart  and a stopping point )( iacstop . Note that )()( ii acstopacstart  and 

)()( 1ii acstartacstop . As the surgeon can hold two surgical tools at the same time, one in each hand, 

a surgical process defined at a low granularity level LLsp  can then be defined as a sequence of 

activities performed with the right and left hand simultaneously. Each activity belongs to the set of 

activities AC performed during this dedicated type of surgery: 
 

ACacacacacacac

ACacacacacacac
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  (3) 

 

with 
Ln and 

Rn the number of activities for the left and right hand respectively.  
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According to this formalization, a cataract terminology was defined by the surgeon. Twelve actions, 

13 surgical tools and 6 structures were identified. Using this terminology, 18 activities (as 

combinations of the three components) were then defined (Figure 15). Then, from the possible list of 

all combinations of activities (i.e. one activity for the left hand and one activity for the right hand), 

only 24 were kept. In addition to these 24 possible pairs of activities, we defined an activity 

“background” representing a frame with no activity, i.e. a frame with no tool. We therefore finally 

obtained set of 25 possible pairs of activities. The videos were post-operatively labelled using the 

ICCAS editor software (Appendix A) for creating the ground truth. 

 

 

 
 

 

Figure 15 - Example of image frame for each activity. 

 

 

 

 

 

 

 

 



 III.2.  Dataset 2: cataract surgeries 

   
 

59 
 

Table 6 - List of the 18 activities (corresponding to the numbering of Figure 15). 
 

Activity Action Surgical tool Structure 

n°0 Background Background Background 

n°1 Wash Irrigation cannula Conjunctiva and cornea 

n°2 Swab Swab pagasling Conjunctiva and cornea 

n°3 Disinfect Betaisodona tool Conjunctiva and cornea 

n°4 Incise 1.1 mm knife Cornea 

n°5 Irrigate Sauter cannula Conjunctiva and cornea 

n°6 Hold Colibri tweezers Bulbus oculi 

n°7 Incise 1.4 mm knife Cornea 

n°8 Irrigate Irrigation cannula Anterior chamber 

n°9 Inject Methocel tool Anterior chamber 

n°10 Cut Wecker scissors Lens 

n°11 Phacoemulsificate Chopper Lens 

n°12 Hold Micro spatula Bulbus oculi 

n°13 Aspirate Syringe Anterior chamber 

n°14 Aspirate Aspiration cannula Lens 

n°15 Irrigate  Irrigation cannula Lens 

n°16 Implant IOL tool Anterior chamber 

n°17 Place Reposition hooklet Lens 

 

III.2.d. Visualization of surgical processes 

Once the formalization and the definition of activities have been performed, a visual representation of 

the data is required to easily explore them and to illustrate results. However, complex data structures 

sometimes prevent straightforward visualization. In the case of SPs, we propose the use of index plots 

(Scherer, 2001), which have already been used for sequence visualization (Brzinsky et al., 2006). The 

idea of an index plot is to display the sequence by representing an activity as a rectangle of a specific 

color for each activity, and a width proportional to its duration (i.e. )()( ii acstartacstop ). By this 

mean, SPs can easily be visualized and a qualitative visual comparison can be performed. The 

following gives an example of one SP.  

 

 
 

Figure 16 - Example of 3 activities of the right hand of one SP. 

 

Using this technique, the activity recording of the entire surgery can be represented using index-

plots (Figure 17). 
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Figure 17 - Index-plot visual representation of 15 videos of cataract surgeries and the colour legend. 
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III.3. Discussion 

III.3.a. Choice of surgical procedures 

We choose pituitary and cataract surgeries due to their relative good reproducibility. Both surgeries 

are common procedures where few particular adverse events can occur and where surgeons always 

follow identical surgical processes. Even if differences between surgeons can be found, these 

differences are minimal. It can be differences in term of surgical time or dexterity but it doens’t affect 

the surgical processes, being at a high- or low- granularity level. Moreover, they are also very 

standardized procedures, already widely studied by both the clinical community and the 

methodological community. A kind of consensus on the terminology for describing these surgeries has 

emerged and this standardization is very important for sharing ideas and results between research 

teams.  

 

The choice of reproducible and standardized procedures is not restricted to these two examples. In 

neurosurgery, we also collected a set of cervical disc herniation removal procedures by antero-lateral 

cervicotomy (mean time of microscope use ~ 45min) that could have been included for further 

analysis. Due to the small number of cases that we collected (<10) for this type of surgery, we decided 

not to perform experiments on this dataset. Concerning the number of cases for pituitary (16 videos) 

and cataract (20 videos) surgeries, it is sufficient to perform cross-validation studies but studying more 

cases is of course always better. It would allow a better evaluation of systems performance, and we 

could imagine that around 100 videos per surgery could be a solid base for accurately evaluating 

performances. 

III.3.b. Identification of high- and low- level tasks 

During the identification of high-level tasks, no formalization was asked for the definition of the each 

phase. On the contrary of low-level tasks that had a strong formalization, free text was used for 

defining each surgical phase. For the dataset of pituitary surgery videos, we decided to fuse the initial 

possible “access to the tumour” and “tumour removal” phases because, for this type of surgical 

procedure, it is currently hard to distinguish them with image-based algorithms alone. The transition 

between both is not clearly defined due to the similar tools and microscope zooms used while 

performing these tasks. Others 5 surgical phases follow the overall workflow of usual pituitary 

surgery. 

For the dataset of cataract surgery videos, three high-level tasks that can be seen as overall surgical 

phases have been merged with other phases: viscoelastic injection, performed just before 

capsulorhexis to stabilise the anterior chamber, hydrodissection just before phacoemulsification and 

wound sealing at the end of the operation, providing complete waterproofness of the anterior chamber. 

With an image-based analysis, these phases are quite impossible to detect because very small 

instruments are used and there are no major change in colour, form or texture. That is why we merged 

them with their consecutive phases. Other common tasks frequently performed by a surgeon during 

cataract surgery are hydration of the eye and the act of sponging, which generally occur more than ten 

times during a normal procedure. These tasks also were not detected, as they cannot be considered as 

real phases that follow a sequence. 
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Chapter IV. Surgical phases detection     

static approach 

IV.1. Introduction 

The challenge we aimed at addressing in this Chapter was to study if surgical phases can be 

automatically recognized from video images only. The first method we studied consisted in classifying 

each frame of surgical microscope videos independently without taking into account the sequential 

aspect of the surgical phases. We addressed such static approach as an image classification problem. 

Image features are first extracted from each frame in order to create image signatures. After a step of 

feature selection, a supervised classification is performed to assign each frame to a surgical phase. 

This chapter is organized as follow. We first propose a specific state-of-the-art of SPMs using on-line 

video-based recording, and give a short overview of the main approaches for low-level feature 

extraction in image processing. Then, we present the method we proposed and the validation studies 

we conducted using the pituitary data-set. We finally discuss some important aspects of this method. 

IV.2. SPMs using on-line video-based recording 

Recently, several studies focused on the recognition of surgical tasks in the OR from videos. Based on 

Table 3, 10 studies used on-line video-based recording. These studies can be distinguished according 

to the type of videos used: studies using external OR videos and studies using endoscope videos. 

Firstly, the use of external OR videos has been tested. Bhatia et al. (2007) analysed overall OR view 

videos. After identifying 4 phases of a common surgical procedure, relevant image features were 

extracted and HMMs were trained to detect OR occupancy. Padoy et al. (2008, 2010) also used low-

level image features through 3D motion flows combined with hierarchical HMMs to recognize on-line 

surgical phases. Hu et al. (2006) combined patient vital signs with visual features for detecting OR 

status. Suzuki et al. (2010) used multichannel visual information and quantified the motion in the OR 

using video file size for having an idea of the progression phase of the intervention. 

Secondly, the use of endoscope videos in MIS has been mainly investigated. The main constraints 

in MIS range from the lack of 3D vision to the limited feedback. However, studies on the subject have 

recently shown that the use of videos in this context was relevant. Speidel et al. (2008) focused on 

surgical assistance for the construction of context-aware systems. Their analysis was based on 

augmented reality and computer vision techniques. They identified two scenarios within the 

recognition process: one for recognizing risk situations and one for selecting adequate images for the 

visualisation system. Lo et al. (2003) used vision and particularly visual cues to segment the phases. 

They used colour segmentation, shape-from-shading techniques and optical flows for instrument-

tracking. These features, combined with other low-level visual cues, were integrated into a Bayesian 
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framework for classification. Klank et al. (2008) extracted image features for further scene analysis 

and frame classification. A crossover combination was used for selecting features, while Support 

Vector Machines (SVMs) were used for the supervised classification process. Also in the context of 

endoscopic interventions, Blum et al. (2010) automatically segmented the surgery into phases. A 

Canonical Correlation Analysis was applied based on tool usage to reduce the feature space, and 

resulting feature vectors were modelled using DTW and HMM. James et al. (2007) used visual 

features combined with an eye-gaze tracking system following the eyes movements of the surgeon to 

detect one important phase (i.e., clipping of the cystic duct). 

 

A third family of video-based analysis can also be defined: videos coming from robot in the context 

surgical skill evaluation (see subsection II.3). With videos coming from the Da Vinci robot, Voros and 

Hager (2008) used kinematic and visual features to classify tool/tissue interactions in real-time. 

Similarly, Reiley and Hager (2009) focused on the detection of activities for surgical skill assessment. 

IV.3. Low-level image features extraction 

A vital requirement for reliable vision systems is the ability to extract relevant spatial and temporal 

image features from the video. The step of image feature extraction is traditionally included in more 

complex processes of multimedia data-mining. It allows the input image to be transformed into a 

reduced representation set of features. Multiple axes have been proposed in computer vision for 

extracting information in colour images. The work of Marr (1982) first defined the different steps 

toward the creation of a computer vision system, from low-level features extraction to high-level 

interpretation of the image. The gap between these two levels has been widely addressed and is called 

“the semantic gap”. Moreover, the increasing number of multimedia in daily life has motivated 

researches on Content-Based Image Retrieval (CBIR). The goal is not to give an exhaustive list of 

current methods for extracting features from images, but to introduce the main approaches. In this 

subsection, we focus on the static low-level feature extraction process. Such image features are 

extracted using various methods that can be differentiated by two aspects: the type of features (color, 

texture or form) and the method for the extraction (global or local approach). 

 

Color is one of the primary visual features used to represent and compare visual content. Its study 

has been an active area of research in image processing. An image can be described as linear 

combinations of 3 basis colors called primaries. It is a subjective characteristic that is often 

represented with color histograms. Challenges and problems of image classification using color 

histograms have been discussed by Gong et al. (1998). For the representation, different color spaces 

have been proposed. The RGB (Red Green Blue) representation is closely relates to human perception, 

as it is designed to match the input channel of the eye. It is the first space that has been employed by 

the community and that showed satisfactory results in image classification problems. The limitation of 

this representation is that the three components are not independent. Then, the HSV (Hue-Saturation-

Value) or HSL (Hue-Saturation-Lightness) representation has been selected for its invariant properties. 

It’s a cylindrical coordinate representation of the RGB space. The chrominance components (Hue-

Saturation) are invariant to changes in illumination intensity and shadows. Moreover, the hue is 

invariant under the orientation of objects with respect to the illumination and camera direction and 

hence more suited for object retrieval. It is also well adapted for multi-resolution, where data can be 

analyzed with fine details. Other color spaces, using the same principles that these two main 
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representations have also been proposed: the CIE LUV (Park et al., 1999), the HVC (Gong et al., 

1998), or the YIQ and the YUV used for television. Fusion or mix of these representations may be 

adapted for correctly representing an image through its color.  

 

Texture is another type of feature that can be extracted from images. The texture is defined as a 

tactile or visual characteristic of the surface. It generally captures patterns or lack of patterns in the 

image data. Statistical measures are simply used, e.g. entropy, homogeneity or contrast. The co-

occurrence matrix of the Haralick descriptors (Haralick et al., 1973) has been also mostly employed. 

Another important texture extraction technique is the use of multi-resolution simultaneous 

autoregressive models-MRSAR (Jianchang and Jain, 1992). Gabor filters (Feichtinger and Strohmer, 

1998) have also been used, where statistical features (e.g. average, variance) are extracted from the 

image after applying the Gabor filter. Other ones use Markov models (Ashlock and Davidson, 1999). 

The use of wavelets has also gained attention (Daubechies, 1992) due to their local properties, as well 

as the use of fractals (Varma and Garg, 2007). 

 

Form is the third main feature that can be extracted from images. It is the most important visual 

feature that can describe an image. However, the description of form is a difficult task, as it requires a 

preliminary segmentation step that may not be reliable. That’s the reason why many current systems 

don’t use this type of features. When used, the form is often characterized using invariant moments. 

The most employed ones have been the Hu (Hu, 1962) moments and the Zernicke moments (Teague, 

1979). 

 

In addition to these three components, the use of image-processing operations that transpose the 

image into another representation can be used. Once the transformation is performed, features can be 

extracted on the new representation space allowing the accentuation of specific features. Algorithms 

like the Discrete Fourier Transform, Fourier-Mellin (Derrode and Ghorbel, 2001), Principal 

Component Analysis, Discrete Cosine Transform (Ahmed et al., 1974) are possible ways of 

transforming the image for further extraction of features. 

 

These different types of low-level features can be extracted either using a global approach over the 

entire image or a local approach after a pre-segmentation of the image. A system based on global 

features only cannot capture the local information (e.g., objects) and provides a rough representation 

of the content of the image only. On the contrary, the local approach alone doesn’t preserve the 

significance and the coherence of the global image. A compromise has to be found between both 

approaches according to the application. Within local approaches, two methods are usually employed. 

The first one, which is the easiest one, consists in the division of the image using a grid where features 

are then computed for each region. The second one consists in the segmentation of the image in order 

to partition the image into objects and create areas of similar image features. The main issue of this 

approach remains the choice of the segmentation method which is never perfect and which may 

impact the feature extraction. 

 

A large number of algorithms have been proposed for extracting low-level image features, but the 

choice of a particular one for a specific image classification problem remains very difficult. The 

solution that teams have principally followed is the extraction of many features using different 

complementary algorithms of colour-, texture- and form- oriented features and then to launch feature 
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selection algorithms that are able to select the most discriminant ones that are adapted to the problem. 

That’s the solution that we will also follow in this Chapter. 

IV.4. Methods 

We present here the methodology for classifying video frames using a static approach. After a step of 

pre-processing, a feature extraction process was first performed for each frame, resulting in image 

signatures composed of 185 complementary features. Discriminant ones were chosen with a specific 

feature selection method that combines a filter and a wrapper approach. Supervised classification was 

then used to classify the frames. The framework is shown on Figure 18. We assessed this process with 

cross-validation studies. These different steps are described in the next sub-sections. 

 
 

 
 

Figure 18 - Workflow of the recognition process. 

IV.4.a. Pre-processing 

Frames were first sequentially extracted from microscope videos and pre-processed. The video 

sequences were downsampled to 1 frame every 2s (0.5 Hz). We also spatially downsampled frames by 

a factor of 8 with a 5-by-5 Gaussian kernel2. 

                                                   
2 Internal studies have shown that up to this downsampling rate, there was no impact on the 

classification process 
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IV.4.b. Feature extraction 

We defined for each video frame a feature vector that represented a signature. According to the 

overview of low-level image feature perform in subsection IV.3, image signatures were composed of 

the three main types of information that usually describe an image: colour, texture and form (Figure 

19). The most common methods of low-level image feature extraction were chosen. 

 

 
Figure 19 - Feature vector (i.e. image signature) for one frame of the pituitary data-set. 

 

Colour was extracted from two complementary spaces (Smeulders et al., 2000): RGB space (3 x 16 

bins) along with Hue (30 bins) and Saturation (32 bins) from HSV space.  

Texture was extracted with the co-occurrence matrix along with Haralick descriptors. The co-

occurrence matrixC was used to describe the patterns of neighbouring pixels in an image I at a given 

distance. Mathematically, the matrixC was defined with an image n x m  and an offset: 
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Four matrices were computed for different orientations (horizontal, vertical and two diagonal 

directions). A kind of rotation invariance was achieved by taking the four matrices into account. 

Haralick descriptors were then used by computing the contrast, the correlation, the angular second 

moment, the variance of the sum of squares, the moment of the inverse difference, the sum average, 

the sum variance, the sum entropy, the difference of variance, the difference of entropy and the 

maximum correlation coefficient of the co-occurrence matrix. 

Form was represented with spatial moments describing the spatial distribution of values. For a 

greyscale image, the moments ji,M are calculated by: 
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The 10 first moments were included in the signatures. We then computed the Discrete Cosine 

Transform (DCT) (Ahmed et al., 1974) coefficients pqB that reflect the compact energy of different 

frequencies. DCT is calculated by: 
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The pqB coefficients in the upper left corner represent visual information of lower intensities, whereas 

higher frequency information is gathered in the right lower corner of the block. Most of the energy is 

located in the low frequency area, which is why we took the 25 features in the upper left corner. After 

this step, each image signature was finally composed of 185 complementary features. 

IV.4.c. Feature selection 

It is well established that the use of too many variables in a classification procedure may decrease 

classification accuracy. Therefore, image signatures have to be reduced to improve classification 

results but also to decrease computation time. This step has to be performed once only for each 

learning database, and then selected features are used for each recognition run. Two techniques are 

mainly used for this task: Principal Component Analysis (PCA) and feature selection. We tested both 

methods on our data. 

 

PCA (Jolliffe, 1986) is a statistical method used to decrease the data dimension while retaining as 

much as possible of the variation present in the dataset to process the data faster and more effectively. 

The set of observations is transformed into a new space with uncorrelated variables, named as the 

principal components, each of which is a linear combination of the original variables. The first 

principal component is computed to have the highest variance (i.e. to capture the variability of the 

data), and succeeding components are also ranked according to their variance. Most of the time, the 

first few components capture the majority of the observed variation. 

 

 Similarly, the main goal of feature selection methods (Saeys et al., 2007) is to remove redundancy 

information and to keep the essential features for the recognition step that follows. The resulting 

chosen features are often a good compromise between computation time and recognition performance. 

In order to decrease the data dimension, and knowing that too many features can decrease the correct 

classification rate, we performed feature selection studies to find the best combination of features. 

Typical feature selection methods can be divided into two groups (Duda and Hart, 1973) depending on 

their evaluation procedure, the filter and the wrapper methods. Algorithms from these groups can be 

supervised or non-supervised. Filter techniques do the feature selection by looking at the intrinsic 

properties of the data only. They are therefore independent of the inductive algorithm, which is a 

disadvantage. In wrapper methods (Kohavi and John, 1997), various subsets of features are generated 

and evaluated. A classification algorithm is used as the outcome for evaluation. We fused these two 

feature selection algorithms using the method described in Mak and Kung (2008). In their work, they 
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argued that both types of selection techniques are complementary to each other. Two algorithms are 

independently applied to find two feature subsets of identical size. They are then merged by selecting 

one feature at a time from both subsets, starting with the highest ranking feature. The final feature 

subset is then a combination of results from one filter and one wrapper. The Recursive Feature 

Elimination (RFE) SVM (Guyon et al., 2002) was chosen for wrapper methods. The principle is to 

generate the ranking of features using backward feature elimination. The mutual information 

(Hamming, 1980) represents the filter methods. A feature is more important if the mutual information 

between the target and the feature distributions is larger. 

IV.4.d. Supervised classification 

With the representation of image into descriptor vectors, we are now able to train classification 

algorithms following the principle of an image classification problem (Figure 20). The m images are 

represented by a set of n features (matrix n x m corresponding to the training database of features), and 

are all described by a set of m classes (matrix m x p corresponding to the training database of classes). 

Supervised classification is then used for classifying every query image by assigning the p classes to 

the query image. 

 

 
 

Figure 20 - Training database and the corresponding classes (e.g. phases). 

 

For the recognition process, we tested five classification algorithms: Support Vector Machines 

(SVM), K-Nearest Neighbours (KNN), Neural Networks (NN), Decision Trees and Linear 

Discriminant Analysis (LDA). Parameters chosen for these 5 algorithms are presented on Table 7. 

SVMs (Vapnik, 1998) are supervised learning algorithms used for classification and regression. The 

goal of SVMs is to find the optimal hyperplane that separates the data into two categories. SVMs are 

often known to produce state-of-the-art results in high dimensional problems. The multiclass SVMs 

(Crammer and Singer, 2001) extends it into a K-class problem, by constructing K binary linear SVMs. 

Mathematically, given training data ))...(( (1 nxx  where
dx and their labels ))...(( 1 nyy  

where )11,(y , the goal is to find the optimal hyperplane 0. =b+xw  that separates the data into 

two categories. The idea is to maximize the margin between the positive and negative examples. The 

parameter pair )( bw; is finally the solution to the optimization problem: 
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following constraints:  

 

ib)+w(xy ii 0,1.      (8) 

 

The KNN algorithm (Dasarathy, 1990) is the simplest method for classification. Each point in the 

space is assigned to class C if it is the most frequent class label among the k-nearest training samples. 

NNs (Haykin, 2008) are non-linear statistical methods inspired by biological neural networks. They 

are often used to model complex relationships between inputs and outputs. We used these in a 

supervised way with a back-propagation neural network. The Decision Tree (Breiman et al., 1984) is a 

quick classification algorithm where each internal node tests an attribute. It is notably used when data 

are noised and classes are discrete. Lastly, LDA (Mclachlan, 2004) is based on a Fisher analysis. It is a 

linear combination of features that best separates two or more classes. 

 
Table 7 - Parameters of the 5 classification algorithms tested for extracting binary cues. 

 
Algorithms Parameters 

SVM Kernel : Linear 

KNN Distance : Euclidean 

Neural Network Feed-forward back propagation network 

Transfer function : linear 

Training algorithm :  Levenberg-Marquardt 

Decision tree Criterion : Gini index 

LDA Discriminant function : Linear 

IV.4.e. Validation studies 

Two studies were performed in order to assess this first approach toward automatic surgical phase 

detection. The first study was performed to select the optimal data dimension reduction technique 

along with the optimal number of image features for image signatures. With the best settings found, 

we also studied classification algorithms for the recognition of the surgical phases. The feature 

selection method was used to select the most discriminant features between phases. 

Both studies were performed using a random 8-fold cross-validation (Duda et al., 2001). From the 

initial image database of 16 videos of pituitary surgeries, the dataset was divided into 8 random 

subsets (i.e. 2 videos and their corresponding frames per subsets), where seven were used for training 

while the prediction was made on the eight’s subset. The procedure was repeated 8 times and 

accuracies were averaged. In addition, sensitivity and specificity were also computed.  

Accuracy was defined by 
TN+FN+FP+TP

TN+TP
=Acc  and represented the percentage of correctly 

classified frames. Specificity was defined by 
FP+TN

TN
=Spe  and sensitivity by 

FN+TP

TP
=Sen ,  

where FP is False Positive, defined as images belonging to phase i not identified as part of phase i, TP 

is True Positive, FN is False Negative, defined as images not belonging to phase i identified as part of 

phase i, and TN is True Negative.  
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IV.5. Results 

Figure 21 shows that PCA was more suitable for the recognition of binary cues when fewer than 30 

features were kept for the classification. From this threshold, the hybrid feature selection gave the best 

accuracy and reached its maximum for a number of 40 features. These results are borne out with the 

two classical classifiers, the KNN and the SVM. When using PCA and a SVM classifier specifically, 

the accuracy sharply decreased from 40 features, whereas with the same classifier but the other feature 

selection method the accuracy was almost unchanged and stayed at a high recognition rate. When 

using a KNN, neither data dimension reduction method had any major impact on accuracies, which 

stagnated from 40 features. 

 

 
 

 
 

 

Figure 21 - Correct classification rate (accuracy) according to the number of features kept for two classifiers 

(SVM and KNN), with two different data dimension reduction methods (PCA and hybrid feature selection). 

 

When applying a PCA transformation on a set of data, it’s often useful to have an idea of the energy 

(i.e. variance) when using the new representation space for each number of features (Figure 22). For 

instance, using our data, the 40 principal components represented 91.5% of the total energy. 
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Figure 22 - Cumulative variance of the PCA. 

 

With 40 features taken from the hybrid feature selection method (according to results of Figure 21), the 

other three classifiers were tested in Table 8 in order to find the best classifier. The SVM classifier 

gave the best results (91.5%), with good detection accuracy for the LDA and KNN classifiers. On the 

other hand, the decision tree and NN gave the worst results. We also can see from Table 8 that 

specificity was always greater than sensitivity for all algorithms. Maximum specificity was obtained 

when using SVM (95.2), whereas LDA seemed to be robust when high sensitivity was needed 

(72.3%). The decision tree showed its limits (specificity: 58.8%). 

 

 
Table 8 - Correct classification rate (accuracy), sensitivity and specificity of classification algorithms. Image 

signatures are composed of the 40 first principal components. 

 
Algorithms Accuracy Sensitivity Specificity 

Multiclass SVMs 82.2% 78.7% 98.1% 

KNN 74.7% 66.0% 95.4% 

Neural Network 71.3% 65.1% 92.8% 
Decision tree 66.2% 52.3% 94.0% 

LDA 81.5% 77.0% 97.6% 

 

IV.6. Discussion 

Our global workflow, including image database labelling, features extraction, feature selection, and 

supervised classification, makes possible the recognition of surgical phases. After experiments, we 

finally kept 40 features from the hybrid feature selection method and the multiclass SVMs as 

supervised classifier for a global accuracy of 82%. 

IV.6.a. Data dimension reduction 

Two methods were tested for reducing the initial image signature dimension: a PCA and a hybrid 

method combining a wrapper with a filter approach. Intuitively, wrapper approaches seem more 

advantageous, since the image features are selected by optimising the discriminative power of the 
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underlying classifier. The main drawback of such methods is the large amount of computation needed 

to cover the entire search space. In the filter approach, features are selected with no regard to what 

classifier will be adopted, by evaluating the individual predictive power of each feature. There are thus 

some limitations, given the fact that the evaluation is performed without any knowledge of class 

labels. The algorithm does not take into account the power of discrimination of feature combinations, 

affecting classification accuracy.  

The value of combining both methods is to leverage advantages from both to achieve the optimum 

strategy. We also performed this selection strategy in order not to bias the classification studies. As 

many machine learning algorithms were tested for evaluating the binary cues extraction, the choice of 

taking only a wrapper method with a specific classifier would have affected the results by clearly 

emphasising this classifier in the classification accuracy computation. Moreover, Table 8 shows that 

SVMs outperform other classifiers, a result that could be explained by the selection of SVM-RFE as 

the wrapper method. Nevertheless, internal studies have shown that whatever the wrapper method 

chosen, it had no impact on the superiority of SVM performances compared to others. Figure 21 also 

shows that the hybrid feature selection method outperforms PCA for data dimension reduction. The 

main limitation of PCA as the filter method is that it makes no use of class labels. The hybrid feature 

selection method has thus been used for the rest of this first study. 

IV.6.b. Explanation of classification errors 

From the pituitary surgery data-set, we decided to fuse the initial possible phases “access to the 

tumour” and “tumour removal” since it's currently hard to distinguish them with image features only, 

for this type of surgical procedure. The transition between both is not clearly defined due to similar 

tools and same microscope zoom values used while performing these tasks.  

The correct classification rate includes the results of the cross-validation study for the six phases. 

From these results, we noticed frequent confusions mainly between phase n°3 and n°4, and also 

between n°1 and n°5. These errors are explained by the very close image features of these phases. 

Same microscope zoom values, along with similar colours and same surgical instruments make the 

recognition task very difficult. One solution of this issue would be to integrate one other signal: the 

surgery time. This information would for instance permit to correctly recognize an image originally 

identified as part of phase n°5 or part of phase n°1. On the other hand it would still be hard to separate 

consecutive phases. 

IV.6.c. Classification algorithms 

In the binary cues extraction study, SVMs and LDA gave the best correct classification rates. The high 

accuracy of SVMs, associated with small standard deviation, indicates that SVMs are very robust for 

microscope image classification. Additionally, a validation study using a Gaussian kernel has been 

performed, showing no differences compared to a linear kernel. LDA is, like many others, optimal 

when features have a normal distribution. Results have also shown that this classifier was well suited 

to this setting. On the other hand, the decision tree, NN and KNN gave worse results. Our dataset was 

probably too variable (in colour and texture) and not discriminant enough to train accurate models 

with decision trees and KNN. NNs were quite surprising in their ability to improve their performances 

when the amount of data increases. Non-linear algorithms are generally more suitable for complex 

systems, which is not the case here. On the other hand, linear algorithms are more straightforward and 

easy to use, which is why they seem to be more adaptable for our system. 
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The correct classification rates for SVMs, KNN and NN are almost constant up to 185 features, 

whereas the accuracy of the decision tree and especially LDA decreases. This is due to the high 

dimension of inputs, which usually decreases the results of classifiers. It is also why we only kept 40 

features for image signatures. If data reduction had not been performed, we would only have obtained 

an accuracy of 78% (best result obtained with KNN), which demonstrates the usefulness of this step in 

our workflow. 

According to Table 8, most of the difference between classifiers is made by sensitivities, which are 

lower than specificities. High specificity is due to the absence of false positives, whereas low 

sensitivity is due to a high false negative rate. Thus, the challenge in the future will be to decrease FN 

rates. When unexpected events occur, such as bleeding or a sudden microscope move, specificity 

decreases slightly and thus affects overall accuracy. As such situations are unpredictable, they sharply 

limit classification from static images only. 

IV.6.d. From static approach to dynamic approach 

With large images database of the same surgery, we are now able to recognize surgical phases of every 

query video frame, by computing every frame signature and then launching machine learning 

techniques. We have validated our methodology with the pituitary surgery data-set, but it can easily be 

extended to other type of interventions. This type of recognition process is a first step toward the 

construction of CAS systems based on automatic signals extraction. Unfortunately, the major 

limitation of this approach remains the lack of sequential information within the recognition process. 

Confusions between distant phases can occur. For instance, a frame belonging to the first phase can be 

classified as being part of the last phase, avoiding any application to be considered. That’s the reason 

why this first approach, while being important for computer vision experiments, has to be improved. 

In order to model the entire surgical workflow by taking into account the sequential aspect of the 

surgical phases, the next chapter will therefore present the use of time-series analysis for incorporating 

the information of time within the recognition process. 
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Chapter V.  Surgical steps detection     

dynamical approach 

In the previous chapter, we studied an approach for the recognition of surgical phases using static 

image features only. Performance evaluations have shown promising results. In this chapter, we 

present the methods we studied to improve the recognition performance. The extension included three 

aspects. First we integrated in the framework temporal aspects, and particularly sequential aspects. 

Second, we studied the addition of spatial local features. Third, we studied the addition of temporal 

features. Since a sequence of surgical phases can be seen as particular cases of a time series, this 

chapter will start by an overview of current time series analysis methods. Then, we present an 

overview of methods for local spatial features identification, object detection and recognition, and 

temporal features. Then we present the approach we implemented, extending the previous framework 

with additional computer vision techniques, image processing methods, and time-series algorithms. 

This new framework was validated on the pituitary data-set as well as on the cataract data-set. 

Discussions on limitations and perspectives of this framework will conclude this chapter. 

V.1. Time-series modelling 

Time-series are defined in statistics as sequence of data-points measurements along a time period. It is 

for instance the air temperature computed every minute during a day (=1440 data-points), or the 

CAC40 values extracted every hour over an entire month (=720 data-points). These both examples are 

evenly spaced time-series as every interval between data-points is identical. The opposite of evenly 

spaced time-series are called unevenly spaced. The difference between time-series and all others 

sequences is that they has a temporal ordering and they represent a stochastic process. The main 

methods for investigating time-series are presented in the next subsections: the Dynamic Bayesian 

Networks, including HMMs, Maximum Entropy Markov Models (MEMMs) and Kalman filter 

models, the Gaussian Mixture Models (GMM), Conditional Random Fields (CRFs), and Dynamic 

Time Warping (DTW) algorithms. All techniques presented here are dynamic systems, i.e. systems 

that vary in time. These techniques allow the analysis and the modelling of time-series, but cannot be 

considered as predictive tools. For being use as a predictive tool, in the context of time-series 

modelling, we can for instance cite the ARIVA method (Box and Jenkins, 1970) that has been the 

most current method employed. 
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V.1.a. Dynamic Bayesian networks 

Bayesian Networks 

BNs are defined as directed graphical models that represent dependencies between a set of random 

variables in a probabilistic model. Each node of the model represents a random variable, and the lack 

of arcs represents conditional independence assumptions. It encodes the local Markov assumption: a 

variable is conditionally independent of its non-descendant. BNs have recently proven to be of great 

interest for various applications, and can be extended in the temporal domain using DBNs. For 

instance, a BN does not work for analyzing a system that changes over time, that’s why DBNs were 

created. DBNs are also directed graphical models but that represent a sequence of variables, i.e. a 

stochastic process. DBNs are trainable, encode causality in a natural way, and algorithms exist for 

learning the structure of the networks and doing predictive inference. Particular examples of DBNs are 

HMMs, MEMMs or Kalman model filters. 

Hidden Markov Models 

HMMs (Rabiner, 1989) are statistical models used for modelling non-stationary vector times-series. 

HMMs are graphical models that have a simple definition of independence: Two sets of nodes A and 

B are conditionally independent given a third set, C, if all paths between the nodes in A and B are 

separated by a node in C. An HMM is formally defined by a five-tuple )( BA,Π,S,O, , where 

))...(( 1 Nss=S  is a finite set of N states, ))...(( 1 Moo=O  is a set of M symbols in a vocabulary, 

))(( iπ=Π  are the initial state probabilities, ))(( ija=A  the state transition probabilities and 

)))((( kob=B i
the output probabilities. Given the observations and the HMM structure, the Viterbi 

algorithm (Viterbi, 1969) finds the most likely sequence of states. In other words, two probability 

distributions are studied: )( ssP and )( soP . Compared to the DBN, an HMM represents the state of 

the world using a single discrete random variable, whereas a DBN represents the state of the world 

using a set of random variables. Hence, a DBN shows how variables affect each other over time, 

whereas a HMM shows how the state of the system evolves over time. DBNs can learn dependencies 

between variables that were assumed independent in HMMs, and provide a unified probability model 

as opposed to having one model per activity as in discriminative HMMs. There are two main 

drawbacks in using HMMs for time-series modelling. The first one appears when observations are 

represented with a rich and complex vocabulary that creates overlap between features and therefore 

decrease the accuracy of the recognition. When the set of possible observations is not entirely known 

or fully controlled, a parameterization of the features could be useful. The second problem is that 

HMMs use a generative joint model in order to solve a conditional problem, which is not optimized. 

The MEMMs, describe in the next subsection, have been created to handle these two drawbacks. 
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Figure 23 - Structure of a simple HMM. 

 

Maximum Entropy Markov Models 

An extension of HMMs is the MEMMs (McCallum, 2001), which do not assume the independency 

between features and allow observations to be represented as arbitrary overlapping features (Figure 

24). This model represents the probability of reaching a state given an observation and the previous 

state, i.e. )(),( osPossP s . The conditional probabilities that are used in the models are specified 

by exponential models based on arbitrary observation features. One other advantage of this method is 

the training, which is very efficient compared to other time-series analysis methods. 

 

 
 

Figure 24 - Structure of a simple MEMM. 

Kalman filter models 

Kalman filter models (Kalman, 1960), as the HMM, are particular examples of DBNs also used for 

modelling a discrete time process. They are linear dynamic systems using recursive estimation. For 

estimating the internal state of a system, the principle is to produce estimates of the true values of 

noisy measurements by computing weighted averages of the predicted values. This estimation process 

can be decomposed into two main phases: the prediction and the update that have both dedicated 
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equations. At each time step, the estimated state from the previous time and the current measurement 

are provided by minimizing the mean of the squared error. Hence, it support estimations of past, 

present and future states. Kalman filters present the advantage to support real-time on-going. 

V.1.b. Conditional Random Field 

CRFs are undirected probabilistic graphical models (Lafferty et al., 2001), in opposition to DBNs that 

are directed. CRFs have a single exponential model for the joint probability of the entire sequence of 

labels given the observation sequence. Models define a log-linear distribution of sequences given the 

observation sequence. One advantage of CRFs compared to MEMMs for example is that they do not 

suffer from the label bias problem, defined when states with low-entropy transition distribution ignore 

their observations. 

 

 
 

Figure 25 - Structure of a simple CRF. 

V.1.c. Dynamic Time Warping 

The Dynamic Time Warping (DTW) algorithm (Keogh and Pazzani, 1998) is a method to classify the 

image sequences in a supervised manner. DTW is a well-known algorithm used in many areas (e.g. 

handwriting and online signature matching, gesture recognition, data mining, time series clustering 

and signal processing). The aim of DTW is to compare two sequences ),......,,(: 21 Nxxx=X  of 

length N and ),......,,(: 21 Myyy=Y of length M. These sequences may be discrete signals (time-

series) or, more generally, feature sequences sampled at equidistant points in time. To compare two 

different features, one needs a local cost measure, sometimes referred to as local distance measure, 

which is defined as a function. Frequently, it is simply defined by the Euclidean distance. In other 

words, the DTW algorithm finds an optimal match between two sequences of feature vectors, which 

allows for stretched and compressed sections of the sequence (Figure 26). 
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Figure 26 - Minimum cost path for two examples. 

 

Additionally, global constraints (also called windowing functions) can be added to the conventional 

algorithm in order to constrain the indices of the warping path. With this method, the path is not 

allowed to fall within the constraints window. The two major constraints in DTW are the Sakoe-Chiba 

band and the Itakura parallelogram (Figure 27). 

 

 
 

Figure 27 - Two global constraints for the DTW algorithm
3
. 

V.1.d. Examples of time-series applications 

Time-series modelling have been used in different domains that are presented here. For modelling 

human activities and behaviours, Xiang and Gong (2006) defined activities as a set of discrete events 

and the modelling is done by reasoning on the temporal correlation between these different events. For 

                                                   
3 http://izbicki.me 
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integrating the temporal aspect, authors use derived version of HMMs. In Cuntoor et al. (2008), 

authors stated that a human activity can be decomposed into a sequence of events having a natural 

physic interpretation. This decomposition can be performed using a semantic or a statistic approach. 

The second possibility has been kept, where the modelling is based on the recognition of events from 

observed data. HMMs were trained for modelling activities. Bhuyan et al. (2006) presented a method 

for gesture recognition based on the DTW algorithm. Sequences that are used as input for the DTW 

algorithm are object trajectories representing movements. A sequence of reference was constructed 

and represented one or multiple gestures. The DTW algorithm was then applied to unknown sequences 

in order to be timely wrapped to the reference one and recognize the dedicated gestures by 

transposition. 

V.2. Local spatial analysis 

The description of the image using low-level image features, as performed in Chapter IV., is 

intuitively not sufficient, and it is necessary to evolve towards semantic representation of images. 

Between the extraction of low-level image features and the introduction of semantic, there is a major 

step. From an algorithmic point-of-view, this step is the transition between basic image processing 

techniques and more complex computer vision algorithms. From a description point-of-view, this step 

is the extraction of image features an intermediate-level. While image processing techniques focus on 

the representation of the image, such as compression or enhancement, and computer vision techniques 

mainly focus on image understanding, the intermediate-level image features focus on shape-based 

analysis, edges detection or selection of ROIs. In this section, we present some well known methods 

for such a purpose. We will therefore investigate the use of edge detection for the creation of masks, 

morphological operations as pre-processing tools, but also the use of connected component detection 

for the creation of ROIs. These aspects of intermediate-level image analysis will be used later in the 

framework to evolve into a more precise description of microscope video frames. 

V.2.a. Edge detection 

Edge detection is an important part of image processing techniques that convert, in the case of 2D 

images, an image in a set of curves. The detection of edges is based on the detection of sharp changes 

in image brightness. Many operators have been proposed for detecting edges, most of them based on 

gradient operations. All the gradient-based algorithms have kernel operators that calculate the strength 

of the slope in directions which are orthogonal to each other commonly vertical and horizontal. Here 

are the most common one:  

 

 The Laplacian filter (Shubin et al., 2001). The locations of the edges can be detected by the 

zero-crossings of the second-order difference of the image.  It is often applied to an image that 

has first been smoothed with Gaussian filter in order to reduce its sensitivity to noise. 

 

 The Canny edge detector (Canny, 1986). This technique finds the function that optimizes a 

given functional by the sum of 4 exponential terms. In practice, it can be approximated by the 

first derivative of a Gaussian. 
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 The Prewitt edge detector (Senthilkumaran and Rajesh, 2008). It is defined as a discrete 

differentiation operator that computes an approximation of the gradient. 

 

 The Roberts edge detector (Roberts, 1965). The Roberts operator performs a simple, quick to 

compute, 2-D spatial gradient measurement on an image. Pixel values at each point in the 

output represent the estimated absolute magnitude of the spatial gradient of the input image at 

that point. 

 

 The Sobel edge detector. It is very similar to the Roberts edge operator, as it performs a 2D 

spatial gradient measurement on an image to emphasize regions of high spatial frequency. 

V.2.b. Morphological operations 

The development of morphological operations has been inspired by image processing issues, where it 

finds its main application domain. In particular, dedicated tools provide filter, segmentation, and 

image quantification tools. The idea of mathematical morphology is to study a set of pixels using 

another set of pixels called the structuring element. In image processing, the first set corresponds to a 

binary image, and the structuring element to a ROI of size 3x3, 5x5 or 7x7, for instance. The 

structuring element is located by its centre and is characterized by its shape, its size and its origin. In 

the case of image processing, the structuring element parameters are defined as: 

 

Size: 3x3, 5x5 or 7x7. 

Shape: square 

Origin: Middle of the square 

Space: discrete 

 
 

At each position of the structuring element, a response is obtained function of its interaction with the 

initial set that permits to build the output set. Many operators have been proposed, such as the erosion 

and the dilatation. Let’s denote B  the structuring element, which is defined according to its center, E  

the image space, X the input image. In both techniques, B  is moved in order to browse all positions 

of E .  

For the erosion, and for each position of E , we study if B  is completely included into E . 

Mathematically, the positive responses are defined by: 

 

),(),( XBExBXE x      (9) 

 

For the dilatation, we study if B  intersects X . Mathematically, the positive responses are defined 

by: 
 

 )0,(),( XBExBXD x           (10) 

 

During erosion, the qualitative properties are: the size of objects decreases, small objects and small 

details disappear, and an object with concavities or holes can be divided into multiples objects. For the 

dilatation, the properties are: size of objects increases, concavities and holes can be filled in, 

neighbouring objects can connect with each other.  Here are examples of both techniques. 
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Figure 28 - Examples of erosion (left) and dilation (right) principle (circles=structuring elements). 

 

V.2.c. Connected component detection 

This technique, also called in the pattern recognition community blob extraction or region extraction, 

uses a sequential algorithm based on a heuristic for labelling connected component elements. In the 

specific case of image processing, this method allows identifying regions within the image, but is not a 

segmentation process. 

 

For instance, in the simple case of a binary image and of a 4-neighbor metric (Figure 29), two passes 

are mandatory: 

- First pass: the image pixels are scanned from left to right and from top to bottom. For every 

query pixel of value 1, the left and top pixels are tested: 

o If 2 of the neighbours are 0: assign a new label to the query pixel 

o If only one of the two neighbours is 0: assign the neighbour’s label to the query pixel 

o If 2 of the neighbours are 1: assign the left neighbour’s label to the query pixel. 

- Second pass: For each pixel the smallest label of his neighbour is assign. This step is 

performed until no more assignment is possible. The different labels found are the connected 

component of our study. 

 
 

 
 

Figure 29 - Examples of a connected component analysis in the case of a binary image and of a 4-neighbour 

metric. 
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V.3. Object detection and recognition 

One step further for the understanding of images content is object detection and recognition. This is 

one of the primary and challenging aspects of computer vision. Object recognition can be difficult 

when the object appears with different scales, orientations, colours, rotations or when it appears 

partially hidden. Two main approaches have been used for detecting and recognizing objects in 

images. The first is the appearance-based approach, which uses example images of the object 

(templates) in order to recognize it into new images. From the various methods that have been 

proposed last few years, we decided to present the two most popular ones: the Haar classifier method 

and the template matching. The second approach is the feature-based approach, which first extracts 

specific key-points such as corners or edges from images before recognizing objects using supervised 

classification algorithms. In this category, we will present and use the bag-of-word approach, which 

has already shown state-of-the-art results in object recognition. 

V.3.a. Haar classifier 

The Haar classifier (Viola and Jones, 2001), which is a well-know method used by the pattern 

recognition community, was originally developed for human faces detection, but the method can be 

used for real-time detection of any types of objects. The Haar classifier is a supervised classifier, 

which uses the main principles of the Viola-Jones detector. The idea is to create a rejection cascade of 

nodes (Figure 30) where each node is a multitree AdaBoost classifier designed to have high detection 

and low rejection rates. 

 

Figure 30 - Rejection cascade used in the Viola-Jones classifier: each node represents a weak classifier tuned 

to rarely miss a true object while rejecting a possibly small fraction of non-object. 

 

In particular, the use of this method is based on two main stages: the first one consisting in learning 

the description of the object (training stage) from a database of examples, and the second one 

consisting in the classification where the object will be recognized in new images. 
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 Training stage: The Viola-Jones method is based on the use of boosting to select the best 

features. Boosting consists of constructing a strong classifier from combinations of weighted 

weak classifiers. Weak classifiers are Haar-like features. Figure 31 shows examples of Haar 

features. This method is based on comparing the sum of intensities in adjacent regions inside a 

detection window. A black region of the window means “add this area”, whereas a light one 

means “subtracts that area”. The method of boosting is the one named AdaBoost proposed by 

Freund et al. (1995), which combines weighted weak learners to generate a strong learner. 

Strong learners are then arranged in a classifier cascade tree in order of complexity. The 

cascade classifier is therefore composed of stages each containing a strong learner. The training 

needs to be realized over a large number of positive images (i.e. with the object) and negative 

images (i.e. without the object). 

  Detection stage: the cascade classifier is applied to each window of the query image. Haar-

like features used by the current level are computed, and then the classifier response. If the 

response is positive, the next level is considered and the same computations are performed. If 

the response is negative, the selected window doesn’t contain the object and the next window is 

treated. The window is declared positive if all levels of the cascade classifier have positive 

responses, making it through the entire cascade. This method enables a high number of sub-

windows to be very rapidly rejected. As a result, the false positive rate and the detection rate are 

the product of each rate of the different stages. 

 
 

Figure 31 - Examples of Haar-like features
4
 

V.3.b. Template matching 

The template matching algorithm (Brunelli, 2009), is an algorithm to search areas of an image that 

match to a template image. To identify the area where the matching is strong, the template image has 

to be compared with the source image by sliding it. A metric has to be calculated to compare each 

match at each location. This metric comparing intensities value over a window can be a Sum of Square 

Difference (SSD), a correlation or other intensity-based metrics. Let us denote T  the template image 

and I  the input image to be tested. If the SSD metric is used, the results matrix of matching M is 

computed as: 

 

                                                   
4 Fileadmin.cs.lth.se 
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If the cross-correlation metric is used, M is computed as:  
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    (12) 

 

The matching matrix M  then allows finding the most probable location of the template image in the 

input image. Compared to the Haar classifier method, this technique is much simpler but also less 

efficient, as only one image is used for the template. It is not rotation-invariant, scale-invariant and the 

template and the input image must have same brightness for good recognition performance. Finally, 

the Haar classifier is adapted to video analysis and computationally very efficient. 

V.3.c. Bag-of-visual-word approach 

From the category of feature-based approaches for object recognition, the use of key-points (or points 

of interest) revealed satisfactory results. Key-points and their local descriptors are very useful for 

detecting important regions in images that can be studied. Indeed, the repeatability is one of the major 

characteristics of key-point detection methods. For instance, it is easier to identify and track a key-

point on a corner of a table than a key-point in the middle of the table within a uniform colour. These 

key-points may also have particular parameters, such as scale or orientation invariance. Each key-

point is then described (represented) by a vector according to its spatial neighbouring. We first present 

methods for detecting key-points, then we show the different method for describing the key-points 

previously detected and we finally present the bag-of-word-approach.  

Key-points detection 

Given an image I  in 2 dimensions, where ),( yxI  is the intensity value at point ),( yx , four key-

points detectors are presented: the Harris, SIFT and SURF key-points, as well as key-points based on 

mutual information. 

 

Harris key-points 

 

This method has been described by Harris et al. (1988) and focuses on the detection of corners into the 

images. A corner is a particular point where intensity varies in both space directions, characterized by 

large variations in x and y. Based on this idea, the second moment matrix A  is defined as:  

 

yyyx

xyxx

II

II
A          (13) 

 

where xxI and yyI are the second-order partial derivatives with respect to the x and y axis respectively, 

xyI  the first-order partial derivative with respect to the x axis followed by a first-order partial 

derivative with respect to the y axis. Variations can be determined based on the two eigenvalues of the 
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matrix A . In the case of only one strong eigenvalue, it is an edge of the image and not a corner. For 

direct determination of eigenvalues proportions, this formula is used: 

 

)()det( 2 AtracekAM     (14) 

 

where )det( A is the A determinant matrix, and )(Atrace the trace of the matrix A . The value of the 

k  parameter is empirically determined, but often set in the literature between 0.04 and 0.15. ),( yx  is 

considered as a key-point when M is superior to a threshold defined according to use conditions. 

 

SIFT key-points 

 

This method has been described by Lowe (1999) and Lowe (2004). It allows the detection of key-

points that are invariant to scale, translation, rotation and illumination which make the detection 

robust. The detection is based on four steps. 

 

The first step allows the creation of a scale space (invariant to scale variations). The input image is 

convoluted with a Gaussian filter for blurring. This operation allows small details of the image to be 

blurred or removed. 

 

),(),,(),,( yxIyxGyxL        (15) 

 
where 
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 being the standard deviation of the Gaussian. An increase of the blurring effect appears when the 

standard deviation of the Gaussian increases. After the creation of multiple burred images at the initial 

resolution, a downsampling by a factor of 4 is done and same convolutions are performed. It is 

repeated so that the scale space is finally obtained. The convolved images are grouped by octave (an 

octave corresponds to doubling the value of ). Figure 32 gives an example of scale space using an 

image extracted from a video of cataract surgery: 
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Figure 32 - Scale-space using cataract surgery images. 

 

The second step consists of the creation of Differences of Gaussian (DoG) from the set of images 

previously created (Figure 33). This operation is close to the Laplacian of Gaussian, but instead of 

computing second-order partial derivatives of images (Laplacian) that are extremely sensitive to noise 

and that are computationally heavy, the scale space is used. Differences between two successive 

images within an octave are computed.   

 

 
 

Figure 33 - DoG construction using two scale spaces 

 

In a third step, the maxima and minima positions of the DoG are studied. For each DoG, and for 

each pixel, the extrema is searched over its neighbors (8 neighbors in 8-connexity) as well as over the 

previous and next DoG (9 neighbors in 8-connexity), having a total of 26 neighbors to be compared. 

The key-point is conserved only if it is an extremum over its 26 neighbors.  
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The fourth step allows the refinement of results by elimination of points being either on edges or on 

region with light contrast. The method for detecting the Harris key-points is used here but for 

removing possible points, i.e. when the two gradients (i.e. in both directions) of a point are strong the 

point is removed. For light contrast points, points are kept only if their values into the DoG are 

superior to a threshold.  

 

SURF key-points 

 

This method, quite recent and described in Bay et al. (2006), is an improvement of the SIFT key-

points in term of robustness and rapidity. In order to accelerate image processing, the fast-hessian 

approach has been introduced instead of the classical DoG used in the SIFT key-points detector. The 

fast-hessian is based on the Hessian matrix ),,( yxH , defined as:  

 

),,(),,(
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    (17) 

 

where ),,( yxLxx
and ),,( yxLyy  are the convolutions of the second-order partial derivative of 

),,( yxL , with respect to the x and y axis respectively. Similarly, ),,( yxLxy  and ),,( yxLyx  are 

defined as the first-order partial derivative with respect to the x axis followed by a first-order partial 

derivative with respect to the y axis. The determinant of ),,( yxH is therefore: 

 

)),,(),,(),,(()),,(det( 22 yxLyxLyxLyxH xyyyxx    (18) 

 

By searching for local maxima of this determinant, a list of K points that are associated with a value 

of  is first established. The number of points depends on the scale space (defined for the SIFT key-

points) and on a threshold for local maxima. A way to avoid heavy computation time is to approximate 

the second-order partial derivative of Gaussian filter (with =1.2) with box filter of 3x3 (Figure 34), 

denoted xxD yyD and xyD . 

 

 
 

Figure 34 - Gaussian approximation for the SURF method
5
. Left to right: the (discretised and cropped) Gaussian 

second order partial derivatives in y-direction and xy-direction, and the approximations using box-filters. 

 

In the case of approximations using box-filters, a new determinant of the Hessian 

matrix ),,( yxH  is computed:  

 
2)),,(9.0(),,(),,()),,(det( yxDyxDyxDyxH xyyyxxapprox   (19) 

 

                                                   
5 Bay et al. (2006) 
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with the parameter 0.9 obtained using: 
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and 
F

x being the Frobenius norm (Golub and Van Loan, 1996). 

 

Mutual information key-points 

 

This method, described by Dame and Marchand (2009), proposes the detection of key-points using the 

entropy of the image. A metric based on mutual information is used instead of a sum-square-difference 

(SSD) metric because mutual information is less sensitive to illumination variations and some non-

linear transformations. Mutual information is defined as the quantity of information shared between 

two random variables (here two images). The method is also based on the Hessian matrix, which is 

based in this case on the joint probability: 
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A circular Gaussian centred on key-points is used as a weighted function in order to compute the 

joint probabilities: 
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cx is the coordinate vectors of the center of the window and 
2
 is the variance of the selected 

Gaussian.  

In presence of key-points, this matrix contains strong eigenvalues. These eigenvalues are computed 

using a Singular Value Decomposition (SVD).  

Key-points descriptors 

Six key-point descriptors are presented here for 2D images: The Harris, SIFT, SURF, GLOH, SIFT-

Rank and PCA-SIFT descriptors. Others extensions or improvements of these methods have been 

recently proposed, such as the Histogram of Oriented Gradient (HOG) or the Local Energy based 

Shape Histogram (LESH) descriptors, but the 6 following methods allow having a good overview of 

current local key-point descriptor methods. 
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Harris descriptors 

 

A region of size 16x16 is chosen around the key-point, and then this region is subdivided into sub-

regions of size 4x4. For each sub-region, a vector (histogram) composed of eight parameters is 

computed, each of the parameter representing an orientation according to the Freeman representation 

(Figure 35). The final histogram will be of size (16x16)/(4x4)x8=16x8=128. In order to fill each sub-

region, the magnitude and the orientation of the gradient are computed for each point. Histograms will 

be filled from these values and using the Freeman representation. In each point, a projection of the 

gradient vector ),( dydxV on two nearest directions is performed. The histogram is then 

incremented with both projection values. Magnitude values are normalized in order to obtain the 

maximum value after the projection equal to 1. 

 

 
 

Figure 35 - Freeman representation. 

 

SIFT descriptors 

 

Similar to the Harris descriptors, a region of size 16x16 is considered around the key-point, and then 

this region is subdivided into sub-regions of size 4x4. For each sub-region, an histogram of 8 

parameters is computed according to the following representation: 

 
Figure 36 - Representation of orientations for SIFT descriptors. 

 

To fill the histogram of sub-regions, the gradient magnitudes and orientations are also computed. The 

histogram is incremented according to the most probable orientation. This value is of course 

dependant of the magnitude and of the distance of the key-point. A weight is applied using a Gaussian 
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function where  is equal to ½ of the size of the region. Once the 128 values are obtained, 

normalization is performed in order to reduce illumination change effects. Here is a simplified 

representation: 

 

 
 

Figure 37 - Simplified representation of the SIFT descriptor method
6
 

 

SURF descriptors 

 

The same regions and sub-regions are computed, but with 4 parameters per sub-regions instead of 8 

used for Harris and SIFT descriptors. Haar wavelets are used to compute values for the vector. Let us 

denote dx  the response of the Haar wavelet on horizontal direction, and dy  the response in vertical 

direction. Both directions are defined according to the key-point orientation. For each sub-region, the 

vector v  is computed as:  

 

),,,( xxyx ddddv     (24) 

 

SIFT-Rank descriptors 

 

This ranking method is very advantageous when descriptors are of big size (e.g. SIFT). The idea is to 

re-organize descriptor vector values in an ordinal manner. The initial descriptor vector is transformed 

into a rank vector. In order to be able to compare two vectors, methods like Squared Euclidean 

Distance, Spearman correlation coefficient or Kendall coefficient can be used. 

 

PCA-SIFT descriptors 

 

This method has been described by Ke and Sukthankar (2004) and is based on SIFT descriptors. A 

region of size 41x41 around the key-point is extracted. A rotation is then performed so that its 

principal direction is aligned with a direction from the canonical base (e.g. vertical). From this initial 

step, PCA-SIFT can be resumed into 3 steps. The first step, which has to be done off-line, is the pre-

computation of an eigen-vectors space to express gradients of the local region. Around 21000 key-

points have to be computed with the SIFT method, and vectors of 3042 elements are created from the 

local horizontal and vertical gradients of each region. This vector is normalized in order to minimize 

illumination variations. A PCA is then performed on the covariance matrix of these values. The matrix 

having the n best eigen-vectors is kept and will correspond to the eigen-vectors space. A projection of 

                                                   
6 cs.washington.edu 
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the gradient vectors in the eigen-vectors space is finally performed to obtain the descriptor vector. The 

size of the final descriptor vector is therefore inferior to the one obtain using the SIFT method. An 

Euclidean distance can be used between two PCA-SIFT descriptors in order to determine if both 

vectors belong to the same key-point in different images. 

 

GLOH descriptors 

 

Gradient Location-Orientation Histogram (GLOH) descriptors have been described by Mikolajczyk 

and Schmid (2005) and are extension of SIFT descriptors. In addition to the 8 angular parameters of 

the SIFT descriptors, 3 radials directions are added considering that no subdivision is performed in the 

smallest radius zone (Figure 38). Histograms of sub-regions have therefore a size of 17 instead of 8, 

which is too important. A PCA is finally done to reduce histograms size to 128 or even 64. 

 
Figure 38 - Representation of orientations for GLOH descriptors. 

 

Bag-of-visual-word algorithm  

For whole-image categorization tasks, or for recognition of objects in images based on local 

information, bag-of-visual-words (BVW) representations, which represent an image as an orderless 

collection of local features, have recently demonstrated impressive levels of performance along with 

relative simplicity of use. The idea of BVW is to treat images as loose collections of independent 

patches, sampling a representative set of patches from the image, evaluating a visual descriptor vector 

for each patch independently, and using the resulting distribution of samples in descriptor space as a 

characterization of the image. Given the occurrence histograms of positive and negative regions of a 

training database, a classifier can then be trained. Three steps can be defined, and a fourth one 

corresponding to the creation of a vocabulary can be additionally considered. 

 

 Step n°1: The methods previously described are used here to extract key-points. These key-

points are also called word. For each image, a set of key-point is obtained. Figure 39 shows an 

example for one cataract surgery image. 
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Figure 39 - Representation of key-points obtained using the SIFT method over one entire cataract image. 

 
 

 Step n°2: After detection, a key-point is then described as a local, rectangular or circular, patch 

of the image and is represented in a formal way. Each key-point is thus represented by a 

descriptor vector whose length is variable and highly correlated to the chosen descriptor 

method. The different methods previously enumerated (Figure 39) can be applied here. After 

this step, an image is represented by a collect of vectors of same dimension (e.g. 128 for SIFT).  

 

 Step n°3: A training database has to be created in which the object has to be incorporate. For 

each image of the database, a set of descriptor vectors is created. Using all vectors, a global 

clustering (using a k-means algorithm) is performed, and the number of cluster (i.e. word) to be 

kept has to be set by the user according to the context. Lastly, each image of the database is 

transformed into a histogram where for each word is associated its number of occurrence found 

in the image (a bag of keypoints is expressed as a histogram recounting the number of 

occurrences of each particular pattern in an image, Figure 40). During this phase, each 

descriptor vector is associated to the closest word in the vocabulary in term of a metric (often an 

Euclidean distance). Figure 40 shows a visual representation using a cataract image again.   

 

 Step n°4: it’s the final step of the method, which involves the use of a vocabulary of the object 

to be identified. From the descriptor vectors of the input image and a supervised classifier (e.g. 

SVM) trained over the image database, a class is assigned to the input image. For this step, a 

class has to be first assigned to each image of the database according to the goal of the study. 

 

This technique, used for instance in the context of medical imaging by Andre et al. (2009), have been 

widely used for object recognition in image or videos and will be used in this thesis for recognizing 

local information such as local texture or objects. 
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Figure 40 - Representation of an image using a histogram of words from a vocabulary. 

 

V.4. Temporal features 

As previously outlined, it could be of interest to extend the concept of spatial features to the temporal 

domain. In this subsection, we will investigate the use of temporal features as possible information 

that can be extracted from videos. Two main possibilities exist for such approach. The first one is the 

possibility of extracting spatio-temporal features that can enrich image signatures by integrating 

complementary features. The second possibility is the detection of movement in videos, including 

object tracking. 

V.4.a. Spatio-temporal features 

Spatio-temporal features allow characterizing objects that are moving in the video. They belong to the 

family of low-level features but are still very robust. The method described by Laptev and Lindeberg 

(2006) is presented here. This technique is an extension of the Harris method with a temporal 

component. The idea is to start from a classical Hessian matrix where the time parameter has been 

added. For an image ),( yxI : 
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For the second derivatives, convolutions with Gaussian are done. A spatial Gaussian as long as a 

temporal Gaussian are used with their dedicated parameters: 
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     (26) 

 

By following the same principle than for the Harris method, spatio-temporal key-points are points 

where eigenvalues are high in every direction, i.e. when ),,( tyxR is superior to a threshold: 

 

 
3)),,((),,(det(),,( tyxHtracektyxHtyxR     (27) 

 

V.4.b. Object tracking 

Object tracking techniques have various applications, from human/machine interfaces  to surveillance, 

video compression, augmented reality or medical imaging. It’s a highly time computational challenge 

and the complexity often increases when object recognition techniques are associated. It can be very 

difficult when the object has a rapid movement compared to the video flow. One way to detect 

movements in video is the use of optical flow (Beauchemin and Barron, 1995; Fleet and Weiss., 

2006). This technique allows the detection of visible and significant movements of structures (objects, 

surfaces, corners), induces either by a displacement between the camera and the surgical scene or by 

the own object displacement. The algorithm computes a displacement for each pixel between a video 

frame at time t  and a frame at time tt . In the case of a tD2 video, with a pixel ),( yx  of 

intensity ),( yxI  at time t : the pixel will move of x , y , t , which can be written by: 

  

),(),( yyxxIyxI tttttt
     (28) 

 

Multiples algorithms have been proposed to compute the optical flow: 

 

 Block-matching algorithm: the goal is to find a matching between a block of the frame at time 

t  and the frame at time 1t . The positions of both blocks then allow the computation of a 

displacement vector.  

 

 Lucas-Kanade algorithm (Lucas and Kanade, 1981): the algorithm is based on three 

assumptions: the intensity conservation between two consecutives frames, the temporal 

persistence and the spatial coherency (neighbouring pixels follow a similar displacement). 

Windows of 5x5 around each pixel are defined and a least-square minimization is computed to 

solve the problem and find the displacement. 

 

 Horn-Schunck method (Horn and Schunk, 1981): the estimation of the optical flow is 

performed by incorporating a constraint of smoothness. The main assumption of this method 

is the spatial coherency. The optical flow is formulated as a global energy function, and its 

minimization is performed using the Euler-Lagrange equations (Fox, 1987). 
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One limitation of such local methods appears in the case of big displacements. In such cases, the new 

position can be out of the local window defined for the estimation. One solution to this problem is the 

use of multi-resolution that permits to detect a big displacement at the top of the pyramid (low 

resolution) and then refines the results along the pyramid. Without multi-resolution, this technique 

remains computationally heavy, and the complexity increases when object recognition techniques are 

added. Moreover, it turns out to be difficult when objects have fast movements.  

V.5. Methods 

In this section, we present how we extended the previous framework for incorporating local features, 

temporal features and object detection and recognition in order to improve the performances of 

surgical phases recognition from video images. 

V.5.a. Framework presentation 

The proposed framework (Figure 41) was created to be adapted and adjusted, if needed, to different 

types of surgical procedures. The idea of this extended framework is first to manually defined visual 

cues that can be helpful for discriminating high-level tasks. These visual cues are the important 

information of the surgery that allows an observer to segment the surgical workflow into phases. It can 

be, for instance, the presence of a surgical tool, a particular colour that appears in the surgical scene or 

even a particular texture. These visual cues were automatically detected using the local features 

presented in the previous subsections or using the low-level image features presented in the previous 

chapter. The recognition of these visual cues, as statically extracted at each time step, allows the 

creation of a feature vector for each video frame that can be seen as a particular frame signature 

composed of some high-level information. The sequences of frame signatures are then analysed using 

time-series analysis to recognize surgical phases. The DTW algorithm and the HMM algorithm were 

used to recognize surgical phases.  

Compared to traditional video understanding algorithms, this framework extracts generic 

application-dependant visual cues. The combination of image-based analysis and time series 

classification enables high recognition rates to be achieved. We validated each part of the framework 

with both data-sets through various cross-validation studies, and finally compared global recognition 

rates obtained using of the DTW approach and the HMM classification. 

 



 V.5.  Methods 

   
 

99 
 

 
 

Figure 41 - Framework of the recognition system. 

 

V.5.b. Pre-processing steps 

Pre-processing steps were applied to both datasets separately, but with more efforts on the cataract 

one. Indeed, the microscope in cataract surgery has the same focus as well as the same magnification 

values all along the surgery. The only microscope parameter that varies in time is its displacement, 

which makes the pupil not always perfectly centred. This parameter allows us to automatically apply 

image processing operations without modifying any parameters in the pre-processing algorithms. For 

the pituitary dataset, the zoom is always changing, removing the possibility of using any segmentation 

processes. That’s the reason why, after a down-sampling performed on both datasets, segmentation 

and connected component detection were applied to cataract surgery videos only, while no further 

investigations were made for the pituitary video pre-processing. 
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Down-sampling 

For this second framework, the same time and spatial down-sampling than the previous study was 

performed for the pituitary surgery videos, i.e. 1 fps (1Hz) and a spatial down-sampling by a factor of 

4. For the cataract surgery videos, and similarly to the pre-processing of the first dataset, we down-

sampled the videos to 1 fps and performed a spatial down-sampling by a factor of 8 using a Gaussian 

kernel. 

Pupil Segmentation 

For the dataset of cataract surgery, some visual cues are identifiable inside the pupil only. The regions 

around the pupil may therefore bias the detection and a preliminary segmentation step is needed to 

ensure good detection. Detecting this ROI will allow the retrieval of more specific visual cues, 

consequently improving phase recognition. The pupil segmentation procedure can be divided into 

three steps and is based on the colour difference between the pupil and the remaining eye regions.  

 

 The first step allows the creation of an outline mask from the input image transformed into the 

YUV colour space. Within this first step, smoothing (Gaussian filter 5x5), thresholding (set to 

127 over 256 greyscale values) and morphological operations (as presented in subsection 

V.2.b.) were performed to the input image, obtaining a binary mask (Figure 42, middle left). 

 

 Using this binary mask, the second step consists in determining circles through the image using 

the Hough (Hough, 1959) transform (Figure 42, middle right). A choice between the different 

circles has to be done, based on a reference diameter.  

 Figure 43 shows an example of multiple circles found using the Hough transform. 

 

 The third step can be considered as a normalisation step. As no zooms are performed by 

surgeons during the intervention, all pupil have sensibly the same diameters. The circle that was 

kept is therefore re-adjusted using a reference radius and applied to the input image. The 

reference radius was defined according to the average of 100 radiuses computed from manually 

segmented images. Following this procedure, the ROI around the patient pupil can be retrieved 

(Figure 42, right). 

 

 
 

Figure 42 - Different steps of the pupil segmentation. From left to right: input image, 1
st
 step: creation of the 

mask, 2
nd

 step: Hough transform computation, 3
rd

 step: final segmentation of the pupil. 
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Figure 43 - Illustration of multiple Hough circles found in an image. 

 

Sometimes, incomplete circle outlines in the mask may occur, leading to Hough circle detection 

failure. To tackle this problem, we proposed a second method that has been also implemented. An 

iterative search was performed on the binary mask to identify the most probable circular zone. This 

search was based both on pixel counting and circle radius assumption. Even if this alternative method 

showed satisfactory results, we didn’t integrate it into the framework. Indeed, it could have been used 

as an alternative method when the first method was not accurate, but no reliable solutions were found 

to detect when errors occurred in the Hough circle detection, which didn’t permit to use this second 

method. 

Connected components detection 

The extended recognition framework aims at integrating information about tools and zones. For 

analyzing this type of information, the first step consists in extracting ROIs using connected 

components for being able to detect surgical tools. The goal was to create as many ROIs as surgical 

tools in the image. The better the ROIs around the tools are, the better the identification will be. As 

this step is also mandatory for analyzing the zone where tools are used, we consider it as a pre-

processing step. 

First, the input image is transformed into a binary mask, as performed for the pupil detection step. 

Image processing operations were applied: Gaussian smoothing, Laplacian, threshold and a dilatation. 

The dilatation increases the size of the detected zones, which compensates the size decrease induced 

by the primary processing (Figure 44). 

 

 
 

Figure 44 - Illustration of the binary mask for the creation of the ROIs. 

 
 

Then, the mask is refined by applying connected component operation, as presented in subsection 

V.2.c., in order to remove artifacts. By applying a connected component method to the mask, we were 

able to detect and remove all small connected components which were assumed to be noise. We used 

an 8-connexity metric for the processing, and the threshold was empirically defined (Figure 45). 



Chapter V.  Surgical steps detection     dynamical approach  

   
 

 102 

 

 
 

Figure 45 - Illustration of the connected components operation. 

 

The mask now only contains important ROIs resulting from strong edges of the input image. In the 

specific case of cataract procedures, more than 2 surgical tools can’t be present at the same time in an 

image (one per hand). That’s the reason why we retrieved the two largest (in term of number of pixels) 

remaining connected components respectively and created a mask for each one. At this stage, these 

selected connected components are very likely to be the instruments. By applying these masks to the 

input image, we obtained two different images, each one with only a ROI of the input image (Figure 

46, Figure 47). 

 

 
 

Figure 46 - 1
st
 illustration of the creation process of the two ROIs. From left to right: input image, ROI n°1 

corresponding to the first connected component, ROI n°2 corresponding to the second connected component. 

 
 

 
 

Figure 47 - 2
nd

 illustration of the creation process of the two ROIs. From left to right: input image, ROI n°1 

corresponding to the first connected component, ROI n°2 corresponding to the second connected component.  
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V.5.c. Application-dependant visual cues 

Five sub-systems based on different image processing tools were implemented. Each of these sub-

systems is related to one type of visual cue. Visual cues recognizable through colour were detected 

with simple histogram intersection. For shape-oriented visual cues such as object recognition, a Haar 

classifier was trained. For texture-oriented visual cues, we used a bag-of-words approach using local 

descriptors, and finally for all other visual cues we used a conventional image classification approach 

including a feature extraction process, a feature selection process and a supervised classification with 

SVM. In all cases, the features were considered to be representative of the appearance of the cues to be 

recognized. 

Colour-oriented visual cues 

Colour histograms have a long history as a method for image description, and can also be used for 

identifying colour shade through images. We used here the principle of histogram intersection to 

extract colour-oriented visual cues, by creating a training image database composed of positive and 

negative images. Two complementary colour spaces (Smeulders et al., 2000) were extracted: RGB 

space (3 x 16 bins) along with Hue (32 bins) and Saturation (32 bins) from HSV space. For classifying 

visual cues, we used a KNN classifier with the correlation distance to compare histograms composed 

of feature vectors. 

Texture-oriented visual cues 

Based on the key-points detection and description, a BVW approach (as presented in subsection V.3.c) 

is used here to identify and classify particular texture in the image. The detection of key-points is 

performed only on the pupil after preliminary segmentation. The final supervised classification step 

was performed using a KNN algorithm. Global image texture can be categorized using this approach. 

Figure 48 shows 2 examples of the extraction of local features after the pupil segmentation step. 

 
 

  
 

Figure 48 - SIFT features detected on 2 images and shown as blue circle. 
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Shape-oriented visual cues - surgical tools categorization or detection 

The detection of tools in the surgical layout is a vital piece of information to access finer details in 

surgical process analysis. The main limitation is that instruments frequently have similar shapes and 

are therefore very difficult to recognize through image-based analysis only. Two methods were thus 

implemented: one for categorizing highly recognizable surgical tools, and one for detecting the 

presence or not of any tools. 

We implemented a Haar classifier, as presented in subsection V.3.a, for recognizing and 

categorizing recognizable surgical tools with strong edges. We chose this approach for computational 

reasons, getting a robust method that minimizes computation time while achieving high detection 

accuracy. This algorithm is known to work well for rigid objects, so we applied it in the case of 

representative surgical tools categorization. 

A second method was implemented for tools that have similar shapes and low edges. This required 

the use of local information. We used a BVW approach using a preliminary ROIs segmentation step 

(explained in subsection V.5.b) compared to texture-oriented visual cues where the detection of key-

points was performed only on the pupil. Then, for the description step, the aim was to provide a robust 

and reproducible method for describing the ROIs that have been isolated by the segmentation step. 

The final supervised classification step was also performed using a KNN algorithm. Figure 49 shows 

an example of the extraction of local features for the input image of Figure 46. If the same instrument 

appears with various scales and orientations, we will be able to extract the same feature points with the 

same descriptors. Using this approach, two classes can be defined: one class including all surgical 

tools, and one class including the background.  

 

      
 

      
 

Figure 49 - SURF features detected on different ROIs and shown as blue circles. 
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Alternative method 

This approach is the one presented in Chapter IV. It was created to be used in particular cases where 

the visual cues are not detectable through only texture, colour or shape analysis. As explained in the 

previous chapter, it combines complementary features that allow creating complex image signatures 

that can then be classified using state-of-the-art supervised classification techniques. Table 9 gives all 

parameter values used in all of the 6 visual cues detection methods. 

 
Table 9 - Parameters of the classification algorithms used for extracting visual cues. 

 
Type of visual cues Algorithm Parameters 

Colour-oriented 
Color histogram 

intersection 

Type of color space: RGB, HSV 

Classifier: KNN 

Distance: correlation 

Texture-oriented BVW approach 

Classifier: SVM with Gaussian kernel 
Key-points detector: SIFT/SURF/Harris/STAR 

Key-points descriptor: SURF 

Codebook generation: KNN 

Instrument categorization Viola-Jones approach 

Features: Haar-like rectangular 

Number negative images: 2000 

Number positive images: 500 

Detection of other instruments BVW approach 

Classifier: SVM with Gaussian kernel 
Key-points detector: SIFT/SURF/Harris/STAR 

Key-points descriptors: SURF 

Codebook generation: KNN 

Alternative method 
Global features 

classification 

Spatial features: RGB, HSV spaces, Haralick descriptors, 

DCT, spatial moments 

Wrapper method: RFE-SVM 
Filter method: MI 

Classifier: SVM with Gaussian kernel 

 

V.5.d. Visual cues definition and extraction 

The purpose of this step was first to define relevant binary cues from the microscope images that can 

differentiate surgical phases. In other words, the surgeon was asked to define visual information that 

was linked to each specific phase. It was requested that such binary cues should be easily identifiable 

through image-based analysis, and that each of them should take two values only (i.e. binary signal) be 

taken. This could be, for instance, the presence/absence of a specific surgical object in the operating 

field, or the microscope view (zoom or not). When the visual cues are defined, each phase must have 

different reference signature compared to its precedent and consecutive phase so that the time-series 

analysis could explicitly differentiate them. After the definition of the visual cues, one of the five 

methods presented in subsection V.5.c has to be chosen for each visual cue. 

Pituitary surgery videos 

Four discriminant pieces of binary cues were defined for this surgery: global-zoom views, 

presence/absence of nose retractors, presence/absence of the column of nose and presence/absence of 

the compress. Experiments have been conducted in order to choose the best type of algorithm for 

detecting these visual cues. The more coherent choice would be to use a Haar classifier for the 

detection of nose retractors due to its particular shape, a colour histogram for the presence of the 

compress due to its white colour and the alternative method for the presence of the column of noise 



Chapter V.  Surgical steps detection     dynamical approach  

   
 

 106 

and for global-views zoom that are visually not identifiable through only shape, texture or colour. This 

choice was validated and details of these experiments can be seen on subsection V.5.f. Relations 

between these visual cues and the surgical phases are shown on Table 10. In this surgery, phase n°1 

and phase n°5 have for instance same image signatures, but they were all different between 

consecutive phases.  

 

 

Phase 
1-Nasal 

Incision 

2-Nose 

retractor 

installation 

3-Access to the 

tumour + tumour 

removal 

4-Column of 

nose 

replacement 

5-Suturing 

6-Nose 

compress 

installation 

Global-zoom 

View 
False False True True False False 

Presence-

absence nose 

retractors 

False True True True False False 

Presence-

absence 

column of nose 

False False False True False False 

Presence-

absence 

compress 

False False False False False True 

 
Table 10 - Relations between the surgical phases and the binary cues for the pituitary data-set. 

 

Cataract surgery videos 

Six discriminant pieces of binary cues were defined here. The pupil colour range, defined as being 

orange or black, was extracted using a preliminary segmentation of the pupil as explained in 

subsection V.5.b, along with a colour histogram analysis. Also analysing only the pupil after the 

segmentation step, the global aspect of the lens (defined as parcelled out or not) was recognized using 

the BVW approach only on the pupil with local spatial descriptors, as being a texture-oriented visual 

cue. The presence of antiseptic, recognizable by virtue of its specific colour, was detected using colour 

histogram analysis, but on the entire image without any pre-processing step of segmentation. 

Concerning the detection of surgical instruments, only one had a characteristic shape, the knife. We 

trained a Haar classifier for detecting this specific surgical tool. All other instruments have very 

similar shapes and are very difficult to categorize. For this reason, we chose to use the BVW approach 

using the preliminary step of ROIs segmentation. Lastly, the IOL instrument was not readily 

identifiable through only colour or shape analysis and we chose a classical approach using many 

spatial features along with a SVM classification to detect this visual cue. The different choices of 

algorithms have been validated. Please see subsection V.5.f for details. Similar to the pituitary data-

set, relations between these visual cues and the surgical phases are shown on Table 11. Similar to the 

other dataset, some image signatures are not unique (e.g. phase n°1 and phase n°8). 
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Phase 
1-

Preparation 

2-Betadine 

injection 

3-Corneal 

incision + 

viscoelastic 

injection 

4-

Hydrodissection  

+ capsulorhexis 

5-

Phacoemulsifi

cation 

6-Irrigation +  

aspiration of  

remanescent 

lens 

7-Implantation 

of the artificial 

IOL 

8-Adjustment 

of the IOL + 

wound sealing 

Pupil colour  

Range 
False False False False True False False False 

Presence-absence 

antiseptic 
False True True False False False False False 

Cataract  

aspect 
False False False False True True False False 

Presence-absence 

knife 
False False True True False False False False 

Presence-absence  

IOL instrument 
False False False False False False True False 

Presence-absence 

surgical tools 
True False True True True True True True 

 
Table 11 - Relations between the surgical phases and the binary cues for the cataract data-set. 

 

V.5.e. Time-series modelling 

Once every visual cue of a particular surgery has been defined and detected, creating a semantic 

signature composed of binary values for each frame, the sequences of frame signatures (i.e. the time 

series) must be classified using appropriate methods. From the wide choice of time-series analysis 

methods presented in subsection V.5.e, two different approaches were tested here: the HMM 

modelling and the classification by DTW alignment. This choice has been motivated by works of 

Blum et al. (2010) or Padoy et al. (2010) that stated that these two algorithms were very efficient for 

such time-series analysis. Compared to the DBN that is much more complex, the HMM presents the 

advantage to be model a single discrete random variable which is well adapted to our application. 

HMM 

For the first approach, we modelled the sequential aspects of the surgical procedure broke down into 

phases with a first-order HMM (left-right HMM). According to subsection V.1.a, an HMM is defined 

by a 5-tuples )( BA,Π,S,O,  representing the states, the vocabulary, the initial state probabilities, the 

state transition probabilities and the output probabilities. States were represented by the surgical 

phases that generated the HMM (Figure 50). Indeed, for the pituitary dataset the HMM was composed 

of 6 states, and for the cataract dataset the HMM was composed of 8 states. Outputs of the visual cues 

recognition were treated as observations for the HMM that create the vocabulary. The initial state 

probability was defined by a single value on the first state, as both surgeries always begin by the same 

phase. Transition probabilities from one state to its consecutive state were computed for each training 

video, and then averaged. If we set one probability to α , the probability of remaining in the same state 

is then α1 . Transition probabilities of both models were low because of the low frame sampling 

rate. Finally, output probabilities were computed as the probability of having an observation in a 

specific state. Training videos were applied to the supervised classification for extracting binary cues 

and output probabilities were obtained by manually counting the number of occurrence for each state. 
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Figure 50 - Left-right HMM used for the analysis. 

 

DTW 

In order to use the DTW algorithm as a classifier, an average surgery has to be created based on a 

learning dataset using the method described by Wang and Gasser (1997). Each “query” surgery is first 

processed in order to extract visual cues, and then the sequence of image signature is introduced in the 

DTW algorithm to be compared to the average surgery. Once warped, the phases of the average 

surgery are transposed to the unknown surgery in a supervised way. For surgery modelling, we used 

the Itakura parallelogram, presented in subsection V.1.c that adds a constraint to the warping path. 

This prevents the warping path from straying too far away from the diagonal path. Moreover, 

considering that we are using binary vectors, we used the Hamming distance for the local distance 

measure. 

V.5.f. Validation studies 

Images and videos databases  

The majority of algorithms used in the framework were based on machine learning techniques 

requiring a training stage. We therefore decided to validate each part of the framework through cross-

validation studies. This technique is very efficient to have an estimate of the accuracy of a recognition 

system, but requires a complete labelling of the data-set. Initial indexing was therefore performed by 

surgeons for each video of both data-sets. In order to be less time-consuming, and knowing that phases 

always appear on a sequential way, surgeons only defined phase's transitions which considerably 

reduced the labelling time. The same work has been done for the labelling of all visual cues. 

Unfortunately, this work was very time consuming and no good strategies were found to reduce time. 

After deep explanations from surgeons on how the labelling of visual cues should be performed, we 

therefore did it on our own.  

 

We created two types of databases for each surgery: one image database for the assessment of 

visual cue detection and one video database along with their corresponding frames from the image 

database for the assessment of the entire framework. For the image database of pituitary surgeries, 200 

frames were randomly extracted from each video, resulting in a database of 3000 labelled images. For 

the images database of the cataract surgeries, 100 frames were randomly extracted from each video, 

resulting in a database of 2000 labelled images. The video databases were simply composed of the 

entire frames from the dedicated videos. With these two types of databases computed for each surgery, 

we were finally able to evaluate both aspects of our framework, i.e. detection of the different visual 

cues and the global recognition rate of the entire framework. 
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Pre-processing validation 

The first aspect of our framework that was validated was the spatial down-sampling. It was validated 

by comparing results of the alternative method for classifying visual cues. We don’t present these 

results here, but internal studies have shown that the decrease of size by a factor of four had no impact 

on the classification results. It can be explained by the fact that the Carl Zeiss® microscopes provide 

videos with high quality that can be partially decrease without altering image processing 

performances. 

The preliminary step of pupil segmentation, only applied to cataract videos, didn't require any 

training stage. This step was therefore simply validated over the entire video database by testing each 

frame of each video. During this validation, a pupil was considered correctly segmented if and only if 

the circle found by the Hough transform precisely matched the pupil. A percentage was then obtained 

corresponding to the accuracy of the segmentation. 

Feature selection study 

The feature selection method (as described in subsection IV.4.c), used only for the alternative 

approach of subsection IV.4, was applied to select the most discriminant features between phases. In 

this study, we computed for each visual cue from both datasets, the percentage of image features 

selected by the hybrid feature selection method by merging them into three categories: colour, form, 

and texture. For each visual cue, we therefore obtained the percentage of colour, form and texture 

features that was selected by the algorithm for further supervised classification. 

BVW optimization 

Before validating all visual cues recognition, we first optimized the BVW approach for both the 

recognition of the lens aspect and the detection of instruments presence. The goal was here to find the 

best combination between key-point detectors and key-point descriptors, as well as the optimal 

number of words for creating the vocabulary. For key-point detector, we tested 4 keypoints detection 

methods: SIFT, SURF, Harris and STAR, presented in subsection V.3.c that all provide access to local 

image information. All of them provided a similar result, which is a sample of keypoints, though they 

differed radically in the methods used to obtain them and by the nature of the keypoints found. For 

key-points descriptor, we focused on SURF descriptors for computational reasons. Indeed, the vector 

space dimension was reduced by a half (from 128 to 64) when switching from SIFT to SURF 

descriptors. This optimization was performed under the same conditions than the detection of other 

visual cues. 

Validation of visual cues recognition 

The second aspect of our framework that was assessed was the recognition of all visual cues for both 

data-sets. Only one type of visual cue classifier was not validated through cross-validation studies: the 

detection of the 1.4mm knife with the Haar classifier. In that case, the training stage was performed 

using manually selected positive and negative images for better object training. 2000 negative images 

and 500 positive images were used.  

 

The four visual cues from the pituitary dataset, as well as the five (excluding the recognition of the 

1.4mm knife) from the cataract dataset were assessed through 10-fold cross-validation studies. For 
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each surgery, the image database was divided into 10 randomly selected subsets. The subsets were 

composed of 300 images for the pituitary dataset, and 200 images for the cataract surgery. Nine were 

used for training while the prediction was made on the 10 th subset. This procedure was repeated 10 

times and results were averaged. Accuracies, specificities and sensitivities were computed. After 

evaluating each visual cue classifier, we validated their use compared to a classical image-based 

classifier, i.e. compared to feature extraction, selection and classification as performed by the 

alternative method. 

Entire framework validation 

Lastly, we evaluated the global extended framework, including visual cue recognition and the time 

series analysis with the same type of cross-validation studies. Particularly, we used a leave-one-out 

method for validating both datasets. This involves that at each step of the cross-validation process, one 

video was used for the test while the others (15 in the case of pituitary dataset and 19 in the case of 

cataract dataset) were used for the training stage. For this assessment, the criterion chosen was the 

Frequency Recognition Rate (FRR), defined as the percentage of frames correctly recognized over a 

video by the recognition framework. The final results of the DTW approach were therefore compared 

to the HMM classification. In addition to this computation, the confusion matrix was extracted, 

showing exactly where states were misclassified. 

V.6. Results 

We present here the results of the different validation studies that we performed. 

Pre-processing validation 

Taking all frames from each video (at 1 fps), the pupil was correctly extracted with an accuracy of 

95% (Table 12). The worse video was very difficult to segment, with 78% of all frames correctly 

segmented. The best video, on the other hand, had almost its entire frame correctly segmented (99%). 

 
Table 12 - Mean, minimum and maximum accuracy of the segmentation of the pupil over the entire video 

database. 

 
 Accuracy (Std) Minimum Maximum 

Detection (%) 95(6) 78 99 

 

Feature selection study  

In Figure 51, we can see that the type of features selected for binary cues extraction really depends on 

the type of dataset. For instance, colour was the main category of features selected for the recognition 

of the microscope view for the pituitary dataset. Not surprisingly, it was not involved in the detection 

of the column of nose or nose retractor, where form features were more significant. For the cataract 

dataset, colour was the most important feature category selected for all binary cues. 

 

 

 



 V.6.  Results 

   
 

111 
 

 

 
 

 
 

 
Figure 51 - Type of features (colour, texture or form) selected with the hybrid selection method for each 

binary cue. Below: Pituitary dataset. Above: cataract dataset. 

 

BVW optimization 

Figure 52 shows the BVW study for choosing the best parameters for both the detection of instrument 

presence and the texture-oriented classifier respectively. Surprisingly, for both figures, the number of 

visual words did not appear to be a major parameter to be enhanced. Indeed, the accuracy didn’t vary 

significantly from 1 to 60 visual words, and this result was true for the 4 key-point detectors and the 

two BVW studies. For both studies, the best accuracy was still obtained for a number of visual words 

equal to 12. On the contrary, the influence of key-point detectors was significant. For the detection of 

instruments presence (Figure 52, above), the SURF keypoint detector showed best recognition 
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accuracies (with 12 visual words: ~86%), the SURF key-points detector shows best results, whereas 

for the detection of the lens aspect (Figure 52, below), the SIFT key-points detector outperformed 

other algorithms (with 12 visual words: ~83%).  

 

 
 

 
 

Figure 52 - BVW validation studies comparison of accuracies with different number of visual words and 

different keypoints detectors and descriptors. Above: detection of the instruments presence. Below: recognition 

of the lens aspect. 
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Validation of visual cues recognition 

The results of the cross-validation study for the recognition of all visual cues (Table 13) showed that 

very good detection accuracies were obtained for both datasets using specific image-based classifiers, 

which often outperformed the classical classifier. 

In particular, for the pituitary dataset, the detection of the zoom of the microscope as well as the 

detection of the presence of the column of nose showed reasonable results (88.9% and 94.8% 

respectively) with the traditional approach. On the contrary, the Haar classifier was not adapted to the 

detection of the nose retractors (65.2%), where the classical approach seems to be well sufficient to 

have a high detection rate (89.4). Finally, the detection of the compress using only colour histogram 

had sensibly the same accuracy than using the classical approach. 

For the cataract dataset, all specific image-based classifier outperformed the classical approach. The 

best recognition was obtained for the presence of the 1.4mm Knife with the Haar classifier, achieving 

a recognition rate of 96.7%, whereas the lower rate was obtained for the recognition of the instrument 

presence (84.1%). The detection of the lens using a BVW approach on the pupil (the aspect of the 

lens) had not a very high accuracy (87.2%). Colour histogram approaches showed good results (96.2% 

for the pupil colour range detection and 96.1% for the antiseptic detection), whereas the IOL 

instrument had also a good recognition rate of 94.6%, even detected with the classical classifier. 

 
Table 13 - Mean accuracy (standard deviation) for the recognition of the binary visual cues, using specific 

image-based classifier and using a classical approach. Above: Pituitary dataset visual cues. Below: Cataract 

dataset visual cues. 

 

 
Global-zoom 

view 

Presence  

nose retractors 

Presence 

 column of nose 

Presence 

compress 

Specific image-based classifier (%) 88.9 (2.2) 65.2 (8.4) 94.8 (1.3) 87.5 (2.4) 

Classical approach (%) X 89.4 (1.1) X 88.3 (1.6) 

 
 

 
Pupil 
colour 

range 

Presence 
antiseptic 

Presence 
Knife 

Presence 
IOL 

instrument 

Lens 
 aspect 

Presence 
instrument 

Specific image-based classifier (%) 96.2 (3.6) 96.1 (0.7) 96.7 (3.4) 94.6 (1.1) 87.2 (5.4) 84.1 (8.6) 

Classical approach (%) 94.1 (4.6) 95.6 (0.4) 88.5 (4.3) X 54.1 (3.6) 58.7 (6.1) 

 

Entire framework validation 

The entire validation study (Table 14) showed that the pituitary dataset obtained a lower recognition 

rate than the cataract dataset using both the HMM or the DTW approaches, even with less phases to be 

detected and a highest duration time. From an algorithmic point of view, the time series study showed 

better results using the DTW approach than with HMM classification. Taking example on the cataract 

dataset, with HMM a mean FRR of 91.4% was obtained, whereas the DTW approach showed a mean 

FRR of 94.4%. Moreover, the results of the pituitary dataset were highly scattered (resulting in a high 

standard deviation), whereas results on the cataract dataset were more homogenous.  

Other studies on this framework have shown that the maximum detection rate for both datasets 

using the DTW, obtained for the same video, was higher than 99%, whereas the lowest detection rate 

was also obtained on the same video and was lower than 75%. 
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Table 14 - Mean FRR of both datasets using the HMM and the DTW approaches. 

 
 HMM DTW 

Pituitary surgeries 90.2 (6.4) 92.7 (4.2) 

Cataract surgeries 91.4 (5.3) 94.4 (3.1) 

 
 

A recognized sequence compared to the true sequence is shown in Figure 53 for both datasets. In this 

particular example, each state was correctly classified with a maximum delay of 40s for the pituitary 

dataset and 10s for the cataract dataset. 
 

 

 

 
 

 

Figure 53 - Phase recognition of a video made by the HMM compared with the ground truth. Above: pituitary 

surgeries. Below: cataract surgeries. 
 

From Table 15 (above), we see that state n°3 contained the largest number of frames, and confusion 

was always between neighbouring states due to the sequentiality introduced by the HMM. The most 

significant error was for state n°5, where detection was approximately 75%. The highest accuracy 

(excluding the first and the last state) was for state n°4, where detection reached 95%. Table 15 

(below), shows similar results, but with more homogeneous phases. On this matrix, we see that errors 

can occur between non-consecutive phases, but that the majority of errors still occur between 

consecutive ones. 
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Table 15 - Confusion matrix for surgical phase detection with the HMM method. Rows indicate the surgical 

steps recognised and columns the ground truth. Above: pituitary dataset. Below: cataract dataset. 

 
 1 2 3 4 5 6 
1 5.68 0.97 0 0 0 0 
2 0 4.68 4.09 0 0 0 
3 0 0 72.99 0.2 0 0 
4 0 0 0.45 3.04 0.07 0 
5 0 0 0 0.04 3.31 0 
6 0 0 0 0 0.99 3.49 

 

 
 1 2 3 4 5 6 7 8 
1 4.1 0.3 0.1 0.7 0 0 0 0 
2 0 5.6 0.1 0 0 0 0 0 
3 0 0.2 0.5 0 0 0 0 0 
4 0.3 1.2 0.4 6.4 0.1 0 0 0 
5 0 0 0 4.8 22.1 3.1 0.1 0.3 
6 0 0 0 1.1 1.6 22.4 0.3 0.2 
7 0 0 0 0 0 0.1 0.5 0.2 
8 0 0 0 0 0 0 0.1 23.1 

 

 

 

 
 

Figure 54 - Distance map of two surgeries and dedicated warping path using the Itakura constraint (above), and 

visual cues detected by the system (below). 
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Figure 54 shows an example of video recognized by the system with the warping path from the 

DTW approach and also with the different visual cues detected. The presence of instrument was not 

surprisingly the most frequent visual cue that is detected, whereas the presence of the IOL instrument 

or even the presence of the antiseptic were not often detected.    

V.7. Discussion 

In this chapter, we proposed a recognition system based on application-dependant image-based 

classifiers and time series analysis, using either an HMM or DTW algorithm. Using this framework, 

we are now able to recognize the major surgical phases of every new procedure. Compared to the 

previous chapter, we introduced on one hand local features that allowed an accurate definition of the 

video frames, and on the other hand the sequential aspect that allowed a better modelling of the phases 

of a surgery. This combined approach allowed a high degree of automatic recognition system 

accuracy. We have validated this framework with pituitary and cataract surgeries, where the sequences 

of surgical phases were recognized achieving recognition rate of around 92% for the pituitary dataset 

and 94% for the cataract dataset. 

V.7.a. Content-based image classification 

Our method for automatic surgical phase recognition addresses the well-known issue of the semantic 

gap, in which low-level visual features cannot correctly represent the high-level semantic content of 

images. Good classification requires an understanding of the important semantic categories that 

humans use for image classification and the extraction of meaningful image features that can correctly 

represent and discriminate these semantic categories. Moreover, required manual annotation for 

learning is time-consuming, and varies by user. Here, image annotation was a risky process, especially 

for binary cues definition. For this task, experts were asked to define the best combination of binary 

visual cues that efficiently differentiates surgical phases. For both datasets, the definition of binary 

cues was not exhaustive, and many other combinations may have provided the same phase recognition 

results. The multiplicity of solutions, along with the semantic gap issue, was the reasons why defining 

binary cues and assigning these labels to surgical microscope images remains a challenging task. On 

the other hand, the annotation of surgical phases was quite simple and quick. Manually capturing the 

semantic meaning of an image is much easier because it is close to human knowledge. Furthermore, 

both tested surgical procedures were highly reproducible and transitions between phases were 

distinctly defined, making the phase annotation process robust. 

V.7.b. Pre-processing adaptation 

The detection framework is based on the recognition of visual cues within the surgical scene. The 

recognition of such information allows the modelling of the surgical procedure and final surgical 

phase recognition. Due to the varying facilities between surgical departments, the numbers of phases, 

as well as the colours, tools and shapes could differ. Consequently, considering that surgical 

environments are different in each hospital, one recognition system should be tuned for each 

department. The adopted solution was to create a framework using specific image-based sub-systems 

in order to be as generic as possible, and to provide as many tools as possible for being exhaustive. 

This way, our method addresses the issue of system adaptability. 
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Even though the framework was created to be adaptable, each kind of surgical environment has its 

own particularities and characteristics. This is why preliminary pre-processing steps may be 

mandatory in order to tune the recognition system according to the type of surgery. For instance, in the 

case of low-resolution video images, the purpose would be to improve image quality for further 

processing. In the context of cataract surgery, the microscope field of view is precisely delineated, thus 

enabling the use of a preliminary step of segmentation to restrict the search for a specific visual cue 

within a ROI defined by the pupil outlines. This is the only step that is specific to cataract surgery. For 

the adaptation to other surgical procedures, this segmentation step could be either adapted or even 

removed. Taking as example neurosurgical procedures and specifically pituitary surgeries, 

segmentation would not be necessary as the field-of-view is already zoomed and adapted for image-

based analysis and visual cues extraction. Pre-processing steps for image quality enhancement would 

also not be required because of the high-resolution of neurosurgical microscopes, neither intensity 

corrections nor specular reflection removal. This example would be true for this specific type of easy 

and reproducible surgical procedures. However, other adaptations could be conducted. Dealing with 

more complex surgeries would involve further researches on the pre-processing step, on the 

segmentation of surgical tools before their categorizations and possibly on the definition of other sub-

systems for the detection of visual cues. We proposed in this chapter a complete framework that we 

tested on two surgical procedures, but the evolution to other surgical procedures should be 

experimented. 

 

Once the framework has been tuned a dedicated surgical procedure, its use is fully automatic and 

will work with any microscope video of this type of surgery in its environment. Similarly, other 

variability factors may affect recognition, such as the manner in which surgeons operate. With this 

system, a training stage is necessary for each surgical department, assuming that the surgeons within 

the department use identical materials and follow the same sequence of phases during the procedure, 

making image features invariant to task distortion. 

V.7.c. Pupil segmentation 

Using an adapted method composed of image-based analysis, the segmentation of the pupil provides 

highly accurate results. For 95% of the frames, the ROI correctly contained the entire pupil. Moreover, 

to avoid distorting any further detection that could be done within the pupil, we decided to define a 

constant diameter value. Thus, each time a ROI was detected, the centre was kept and the 

circumference value was reset to the default value. Due to its high accuracy over the entire video 

database, it allows all potential colour-associated noise to be removed from around the pupil for 

further recognition. The very low accuracy obtained for one video can be explained by the presence of 

the retractors, rendering the field of view very narrow. Automatic segmentation turns out to be 

difficult when the retractors, or even the surgical instruments, around the eye, occupy too much space 

within the field of view. 

Incomplete circle outlines in the image mask may occur, leading to Hough circle detection failure. 

For this 5% failure detection, where pupils were not correctly segmented, an alternative simple method 

could be used. This method could also be based on the binary mask created in Figure 42. The idea is to 

go through the mask and search for the circular zone of a predefined diameter that contains the most 

number of white (or black) pixels. It is an iterative search that identifies the most probable circular 

zone (Figure 55). 
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Figure 55 - Alternative method to the Hough transform. 

 

Unfortunately, due to the difficulty of detecting errors in the recognition process using the Hough 

transform, this method was not implemented within the global framework.  

 

As another drawback, our approach, which always returns a ROI, was not always perfectly centred 

on the middle of the pupil. We can explain this issue by the fact that the pupil was not always 

completely inside the microscope’s field of view. Sometimes the pupil outlines were too distorted due 

to surgical tools or the surgery itself. Sometimes the retractor was as wide as the pupil and sometimes 

the surgeon’s fingers were in the field of view. In that case, it was difficult to extract the exact position 

of the pupil and its outlines and to adjust an intensity threshold accordingly. If the surgical microscope 

had a permanent position, or if we could precisely estimate the position of the pupil in each image, it 

would be possible to automatically adjust a threshold for the segmentation. 

V.7.d. Application-dependant visual cues 

The purpose of this step of our procedure was to extract relevant binary cues from the microscope 

images that can differentiate surgical phases. In other words, the surgeon was asked to define visual 

information that was linked to each specific phase. It was requested that these binary cues be easily 

identifiable through image features analysis, and that only two values (binary signal) be taken. A few 

pieces of information that are relevant for the detection of SPMs were removed and replaced because 

they were not detectable with a standard image-based analysis. 

 

Before the visual cue recognition training stage, the user will need to choose the visual cues and the 

associated image-based recognition classifier. In image classification problems, users usually do not 

think in terms of low-level features, resulting in poor recognition of the high-level semantic content of 

the images. Here, during the stage of visual cue definition, the colour, texture and shape behaviour of 

the visual cues are often intuitively known, allowing the most effective classifiers to be chosen. When 

visual cue is unknown or undocumented, the solution proposed is to choose the generic approach, 

integrating a large number of image features. This approach, combining global spatial features and 

SVM, may therefore be adapted to the recognition of any type of cue. The feature selection step allows 

the user to select discriminatory features and remove unsuitable ones, which is the intended objective. 

To improve recognition, however, the three other specific classifiers seem to be well-adapted when the 

behaviour of the visual cue is well perceived. 

 

Generally, the main drawback of a global colour histogram representation is that information 

concerning object shape, and texture is discarded. In our case, however, it was only used for colour-
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related visual cue detection. Similarly, the main drawback of shape-based approaches is the lack of 

well-defined outlines. The Haar classifier was used in our framework for specific objects only, e.g. the 

knife, which is significantly different from all others instruments used in cataract surgery. The use of 

this approach to categorize other instruments, such as the cannula, was tested, but gave very poor 

results due to the narrow field of view and the difficulty in discriminating that specific instrument 

from the others. For this reason, we chose to use a second approach for object recognition, allowing 

the system to gain information concerning object presence, without categorizing it. This type of 

information was still relevant for phase detection and allowed complete image signatures to be 

achieved using other information with a different level of granularity. The use of a BVW approach 

combined with local descriptors was also validated. Local descriptor comparisons enabled selection of 

the most appropriate features, and application with the recognition of the global aspect of the lens gave 

very promising results. 

 

With the exception of the Haar classifier, the three other classifiers are all based on a training image 

database. The power of discrimination of the image database is thus vital. We can easily imagine that 

accuracy may decrease sharply if the images do not efficiently represent all phases or all scene 

possibilities within the phases. Additionally, the training stage is time-consuming and requires human 

efforts. In our particular case, the best method, used here in our validation studies, was to annotate 

surgical videos before randomising the initial sample. The randomisation process is thus no longer 

performed on all frames, but on each video independently, extracting the same number of frames per 

video. 

V.7.e. Time series analysis 

Combined with state-of-the-art computer vision techniques, time series analysis showed very good 

performance, opening the way for further promising work on high-level task recognition in surgery. 

Without this step of time series analysis, results are less accurate (~80%). This can be explained 

because some visual cues don’t appear during one particular phase only, and the information of 

sequentiality is needed. For instance, the knife always appears twice during cataract surgery: once 

during phase n°4 (principal corneal incision), and once during phase n°10 (expansion of the principal 

incision). All other visual cues are not present during these two phases. The discrimination of both 

phases appears to be possible with an information of time only that the HMM or the DTW can bring. 

In particular, DTW captures the sequence of surgical phases and is well-adapted to this type of 

detection. The cost function between 2 surgical procedures with the same sequence of phases, but with 

phase time differences, will be very low. The advantage is that it can accurately synchronize two 

surgical procedures by maximally reducing time differences. The main limitation concerning the use 

of DTW, however, is the phase sequence differences that may appear between two surgeries. The 

warping path would not correctly synchronize the phases and errors would occur. In the context of 

cataract surgery, the procedure is standardized and reproducible, justifying the very good results of the 

recognition. But we can imagine that for surgeries that are not completely standardized, DTW would 

not be adapted. In this case, HMM could be used by adding bridges between the different states of the 

model (the transition matrix should be adapted in that case), allowing the sequence to be resumed and 

to perform the same phase multiple times. The state machine would not be a left-right structure but 

would include more complex possibilities with many bridges between states. As a drawback, the 

complexity of such HMMs could completely affect the recognition accuracy. For each surgical 

procedure, the HMM structure should be created by minimizing the possibilities of transitions from 
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states to states not to affect the classification phase. In the particular case of cataract surgery, the 

results showed that the DTW algorithm was, not surprisingly, quite better than HMM.  

 

Another limitation appears when an adverse-event occurs in the OR, which never happened in any 

video of the training sample. In such cases, image signatures are not linked to any phase and it could 

affect the recognition process. Using HMM, it could affect the transition probabilities and therefore 

the entire recognition system. Using DTW algorithm, it could modify the warping path and therefore 

alter the detection of surgical phases. One solution to this issue, in the case of HMM classification, 

would be to detect such images (containing features that are very different from others, and therefore 

easily detectable) and to create a specific state for unknown images in the HMM, as done in Padoy et 

al. (2008). This state would be connected to all other states and the path would cross this state every 

time image features are too different from the training sample. 

V.7.f. Temporal features 

We tested both approaches presented in subsection V.4 on the cataract surgery images. 

 

For experimenting the spatio-temporal key-points detection method, a set of parameters were 

empirically chosen: 2st
, 04.0k . At each time step, the current video frame was analyzed 

with the previous and next frame (after the pre-processing step, i.e. the video at 1Hz). The analysis 

was therefore performed over a period of 3 seconds, allowing surgical tools to have significant 

displacements in the video. The key-points detection threshold was set to 6000. An example of spatio-

temporal features on one video frame is shown on Figure 56. 

 

 
 

Figure 56 - Illustration of spatio-temporal features obtained with our parameters. 

 

Even if these key-points were intuitively accurately extracting movement information, such as the 

movement of the colibri tweezer in Figure 56, this information was difficult to integrate into our 

framework. During the visual cues extraction step or during the time-series modelling step, no optimal 

solution was found to improve the recognition rate thanks to this temporal feature information. One 

possibility would have been to use the STIP key-points as a preliminary step for detecting the different 

surgical tools before launching the BVW approach. The problem of STIP key-points is that it also 

detects the background movement, and the differentiation between pixels belonging to a surgical tool 

or pixel belonging to the background was hard to identify. We therefore decided not to integrate this 

method into the framework. 
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For experimenting the optical flow method, we choose the Farneback algorithm (Farneback, 2001), 

which is very close to the Horn-Schunck algorithm. The analysis was also performed over a period of 

3 seconds. Using this method, a displacement vector was computed for each pixel of the frame (Figure 

57). 

 

 
 

Figure 57 - Illustration of the optical flow method at time t, t+1 and t+2 (from left to right). 

 

After the computation of displacements vectors for a set of video frames, one way to analyse the 

results is to extract the primary movements. First, null displacement vectors as well as light ones were 

removed. The computational benefit was non-negligible. Thresholds were fixed to x =5 and y =5. 

Then, a clustering (i.e. non-supervised classification) was performed on remaining displacement 

vectors by integrating a spatial component (Figure 58). Displacement vectors were transformed into 

one value corresponding to the angle, and forces of displacement were removed. Instead of having 5 

features (position of the pixel, displacement vectors and force), the clustering was performed over 3 

features in order to take into account a strong spatial component. K-means technique was used and the 

number of cluster was incremented until intra-classes variability was superior to a pre-defined 

threshold. Results showed the extraction of between 2 and 5 classes per image, corresponding to the 

different objects of the images and to the background displacement. The last step consisted of 

averaging displacement vectors of each class in order to have one primary movement vector per 

object.  

 

 
 

Figure 58 - Illustration of the clustering applied on displacement vectors. On the right image, the dark-blue 

class corresponds to the displacement of the 1.4mm knife, the light-blue class to the colibri tweezers, the green 

class to the global background displacement and the yellow and red ones to other background elements.  

 
 

The idea of having one displacement vector per object is to associate this result to the recognition of 

the surgical tools. To make the link between both analyses, surgical tools are associated with 
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displacement vectors that are spatially close. Moreover, the general background displacement could be 

extracted and its value should be subtracted to each displacement vectors of objects for computing the 

absolute displacement vectors of surgical tools. Similarly to the detection of STIP key-points, results 

of this approach, even very interesting, presented some errors and turned out to be less efficient than 

the segmentation into 2 ROIs of the surgical tools. We also didn’t use it into the recognition 

framework. 

V.7.g. From high-level tasks to low-level tasks recognition 

We proposed in this Chapter a recognition system based on application-dependant image-based 

classifiers and time series analysis, using either an HMM or DTW algorithm. Using this framework, 

we are now able to recognize the major high-level tasks of every new surgery that would have been 

previously adapted to the framework. After this successful step, we decided to experiment the 

detection of tasks with a lower granularity level. Even if the recognition of high-level tasks would be 

interesting for many clinical applications (see the general discussion of subsection VII.3), addressing 

the recognition of surgical tasks at lower granularity levels from microscope videos only is 

challenging and of great interest for SPM methodology. Image-based analysis may not be sufficient 

for this type of detection, but we will see in the next Chapter that the addition of top-down reasoning 

to the traditional bottom-up analysis is a promising way of addressing this challenge. 
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Chapter VI. Surgical activities detection   

knowledge-based approach 

We have seen in Chapter II that extensive work has already been performed on the creation of SPMs, 

though a few studies have focused on the automatic recognition of low-level surgical tasks, i.e. 

activities from sensor data (Kragic and Hager, 2003; Speidel et al., 2008; Agarwal et al., 2007; 

Houliston et al., 2011; Miyawaki et al., 2005; Yoshimitsu et al., 2010). In such cases, a hierarchical 

decomposition of the procedure is always provided in order to establish a link between the different 

granularity levels. Only a few of these studies attempted to automatically recognize the activities from 

low-level data, and none of them used videos. In this last Chapter, we show how we further extended 

our approach by going one level down on the granularity axis toward the detection of surgical 

activities. This level of granularity is symbolized by the use of one surgical tool for one surgical 

activity performed on one anatomical structure, as seen in Chapter III. One statement on which we 

relied for this new study was the following. The sequential nature of the surgical phases that we 

detected in previous Chapters can serve as a temporal constraint for activity detection. Indeed, even if 

activities do not follow any strong sequential behaviour that inhibits the use of any time-series 

algorithm, the majority of activities occurs in one or two phases only, limiting the possible number of 

activities per phase. Based on this statement, and using a 2D graph formalized as a hierarchical 

decomposition of the surgery with phases and activities, surgical activity detection becomes feasible. 

In addition to the phase information, we adapted the surgical tool detection algorithm based on BVW 

approach and the pupil segmentation process that were both presented in the previous Chapter to this 

problem. Knowing the surgical phases before the activity recognition and instead of using one 

supervised classification algorithm for the entire video, one supervised classification was launched per 

phase. The addition of knowledge to the framework makes the issue of activity detection easier, 

combining a traditional bottom-up approach with top-down reasoning. The main novelty of this 

approach is that we tackle the problem of low-level task extraction using existing sensors in the OR. 

Following the results of Chapter V, we experimented our methods on cataract surgeries only. This 

type of surgery offers the possibility to be very standardized and allows the definition of surgical 

activities.  

VI.1. Methods 

For the automatic detection of activities, and according to the formalization introduced in subsection 

III.2.c where each activity is defined by a triple <action, surgical tool, anatomical structure>, the 

three components of an activity should be extracted for accurate recognition. Unfortunately, the 

actions, represented by verbs describing the movements of the surgeon’s hands, are very hard to 

identify and classify. Studies on movement detection were conducted in subsection V.7.f, but without 

any satisfactory results. We therefore focused on the two other components. Then, a hierarchical 
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decomposition was proposed, making the link between high-level (surgical phases) and low-level 

(surgical activities) tasks in the context of cataract surgeries. 

VI.1.a. Pre-processing 

The same spatial downsampling than the previous chapter was performed on the cataract videos (i.e. 

decrease by a factor of 4), but the spatial downsampling was different. Indeed, the detection of lower 

activity level requires a more precise time description in order to capture all dynamic information. We 

therefore decided to downsample to 2fps. 

VI.1.b. Surgical tools detection 

Detecting and recognizing surgical tools in cataract surgery can be relatively complex using image-

based analysis due to the similar shapes of tools, and to differences in orientation, scale, or 

illumination. The method we propose here is able to automatically detect and categorize tools, and is 

entirely based on the first work presented in subsection V.5.c Here, instead of defining only two 

classes for categorizing the ROIs as being a surgical tool or only background, we defined 7 classes 

including six for the surgical tools and one for the background class that doesn’t contain any tools. 

Many of tools in cataract surgeries are highly similar, and one class cannot be created for each tool. 

Specifically, 4 tools are very similar and hard to distinguish: the irrigation cannula, the sauter canula, 

the aspiration cannula and the micro-spatula. These 4 tools were regrouped into one class. Finally, six 

classes were defined: class n°1: Irrigation cannula, Sauter cannula, Aspiration cannula, Micro-spatula; 

class n°2: 1.1 mm knife; class n°3: Methocel tool; class n°4: Wecker scissors; class n°5: colibri 

tweezers; class n°6: Chopper, and class n°7: background. Examples of these surgical tools are shown 

on  

Figure 59. 

 
 

Figure 59 - Examples of surgical tools used in cataract surgeries. Left to right: colibri tweezers, wecker 

scissors, 1.4mm knife, micro spatula, aspiration cannula and 1.1mm knife. 

 

Each of the 7 classes was built using 100 representative images from the dataset that were manually 

chosen. Following results of the first study using BVW for the detection of instruments presence 

(V.6), we kept the SURF key-points detector, the SURF key-points descriptor and we also kept 12 

visual words according to the results of Figure 52. Moreover, instead of using a SVM classifier that is 

well suitable for binary classification, we used a KNN algorithm (k=5) in order to obtain for each ROI 

its probability of containing each surgical tool. We finally obtained a percentage of belonging to each 

class, which appears to be more flexible than using a strong SVM classifier. For instance, some pairs 

of surgical tools have very similar shapes (e.g. micro the spatula and the aspiration cannula) and 

having a percentage gives much more information that having only its most likely class. 
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VI.1.c. Anatomical structures detection 

The other useful information to be extracted is the anatomical structure on which the tool is used. As 

depth information is missing from microscope videos, 3 zones were identified on each image, based 

on the segmentation of the pupil presented in subsection V.5.b. The first zone corresponds to the pupil 

in the centre of the image; the second zone includes the iris around the pupil, whereas the third zone is 

the remaining part of the image. For segmenting the three zones, the first step consisted in the 

segmentation of the pupil previously proposed. On 100 images, the pupil and the iris were manually 

segmented, resulting in an average radius for the second zone corresponding to the iris. This second 

constant value was also applied to the circle centre for determining the second and the third zones 

(Figure 60). Using this segmentation, and knowing the exact shape and location of the two ROIs 

previously extracted, we could affect an occupation percentage of the three zones to each ROI. 

 

 
 

Figure 60 - Illustration of the three zones: zone 1: pupil, zone 2: iris, zone 3: rest of the image. 

VI.1.d. Colour-based activity detection 

Three activities remained undetectable through surgical tool detection only: 

<implant, IOL injector, anterior chamber> (Figure 61 – left) 

<swab, swab pagasling, conjunctiva & cornea> (Figure 61 – middle) 

<disinfect, betaisodona tool, conjunctiva & cornea> (Figure 61 – right) 

 

       
 

Figure 61 - Example of the three activities that are undetectable through surgical tool detection only. 

 

The first activity is very difficult to detect with a BVW approach because the IOL injector is hard to 

segment due to its relative transparency on its tip. The second activity is the only one that is not 

composed of a surgical tool. It was included into the activity terminology because it appears many 

times during a cataract procedure and this gesture can be assimilated to a specific activity. Finally, the 

third one is also difficult to detect because the betaisodona tool may not appear into the microscope 



Chapter VI.  Surgical activities detection   knowledge-based approach  

   
 

 128 

field-of-view. Even if these 3 activities were not identifiable by their surgical tools, they can be 

detected through their particular colour. The IOL injector was recognizable by its blue colour, the 

swab by its white colour, and the betaisodona by its red colour. A colour histogram approach was 

therefore used for the recognition of these 3 visual cues and integrated into the final image signature. 

VI.1.e. Knowledge-based supervised classification 

Activity recognition was based upon the fact that most activities occur in only one or two phases, thus 

limiting the scope of activity possibilities per phase. Therefore, a 2D graph formalized as a 

hierarchical decomposition of the surgery with phases and activities was created. For each of the 8 

phases of a cataract procedure, we associated its set of possible activities ( 

Figure 62). At this point in the analysis, information concerning surgical tools and their corresponding 

zones could be extracted from each image comprising a signature of 23 features: 2 ROIs * (7 surgical 

tools classes + 3 zones) + IOL injector detection + swab detection + Betaisodona detection. Instead of 

using one training stage for the entire video using all pairs of activities, knowing the surgical phases 

before activity recognition enabled us to launch one supervised classification per phase. Surgical phase 

recognition isn’t fully accurate (accuracy~94%), but errors always occur between consecutive phases. 

In order to take this error into account, each supervised classification will contain pairs of activities of 

the on-going phase, along with pairs of activities from the previous and next phases. Including 

activities from adjacent phases will still permit to decrease the set of possible values. Instead of the 25 

initial pairs of activities, each training was launched using between 6 and 13 classes (average=8 

classes). The multiclass SVMs algorithm (Crammer and Singer, 2001) was chosen for the supervised 

classification. 
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Figure 62 - Surgical phases and their corresponding possible activities. 

 

VI.2. Results 

The average recognition rate, taken from the entire system was not very high with a value for the 

frame-by-frame detection of 64.5 +/- 6.8% (Table 16). The sensitivity (76.6%) is also better than the 

specificity (54.9%). 
 

Table 16 - Mean FRR, specificity and sensitivity of the surgical activities. 

 
 Mean FRR (std) Specificity Sensitivity 

Accuracy (%) 64.5 (6.8) 54.9 76.3 

 
 

We noticed, based on Figure 63, that there was a strong recognition disparity between pairs of 

activities. The two major pairs of activities were correctly identified, with detection rates greater than 

70%. Other activities show good detection accuracies, such as the <swab, swab-pagasling, 

conjunctiva & cornea> or <irrigate, irrigation-cannula, anterior-chamber> activities, but these 

activities occurred during less than 10% of total surgery time. The detection rates of some activities, 

on the other hand, were very low and even close to zero for <hold, colibri-tweezers, bulbus-oculi>. 

We also noticed that three activities had occurrence percentages close to zero, whereas 7 activities 

appeared during less than 1% of total surgery time. The results of Figure 63 illustrate the low 

sensitivity value that we previously obtained.  

VI.3. Discussion 

We proposed in this Chapter to tackle the problem of surgical activity recognition in the OR using 

existing sensors, by adding top-down reasoning to the traditional bottom-up approaches. Based on a 

hierarchical decomposition of the procedure containing the links between activities and phases, we 

used a multiclass SVMs algorithm to classify each frame of surgery videos. In addition to the phase 

information, image signatures were also composed of surgical tool information, including 

categorization of the tools and zone segmentation. We validated our methodology with the dataset of 

cataract surgeries. Eighteen activities were identified, containing up to 25 pairs of activities. A frame-

by-frame recognition rate of 64% was achieved using leave-one-out cross-validation. 



 

 

 

 
 

 
 

Figure 63 - Percentage of recognized and non-recognized frames for each possible pair of activities, normalized over the entire data-set (i.e. percentage of total surgery time).
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VI.3.a. Action detection 

The first component of an activity, the action, is impossible to identify using image-based analysis 

only. Spatio-temporal analysis (STIP points; Laptev and Lindeberg, 2006) and optical flow 

(Beauchemin and Barron, 1995) were tested for the extraction of trajectories, but no particular patterns 

were identified for each action. For instance, the 3 actions irrigate, wash, and disinfect, or the 4 

actions replace, aspirate, implant, and inject have identical trajectory patterns and very close spatio-

temporal features. Even between these groups, differentiation remained difficult. Moreover, the 

trajectory may differ according to the surgical tool used within the activity, rendering the extraction of 

patterns for each action difficult. Over the set of 6 actions, the only one that involved a unique pattern 

was the action cut belonging to the activity <cut, wecker scissor, lens>. In that particular case, the 

surgeon executes a circular trajectory in order to perform the capsulorhexis phase. In all other cases, 

surgical tools enter very quickly into the surgical scene with a linear trajectory, execute some small 

slow movements in the same area and go out of the scene with a linear trajectory. Another main issue 

for action recognition is that the microscope doesn’t remain immobile, and the pupil is never in the 

same position within the field of view. Consequently, in addition to the detection of action patterns, 

detecting the background movement pattern (due to microscope displacement) would be required. It 

would finally be necessary to combine these two movement patterns to be sure to isolate an action 

pattern only. Because of these difficulties, efforts have focused on surgical tool and anatomical 

structure detection. 

VI.3.b. Surgical tools detection 

Using information obtained from the connected components, and hence from the surgical tools, is a 

logical option as each activity is linked to the use of a surgical tool. However, imperfections in 

surgical tool detection have a direct impact on the final supervised classification result. Tool detection 

is therefore the aspect of our work that needs the most significant improvement. This step, like zone 

segmentation, has been tuned for this type of surgery, and shows reasonable results (84.1%). Some 

tools are easier to segment by virtue of their bigger size (e.g. 1.1 mm knife), or because of more 

important color gradients (e.g. irrigation cannula). A drawback is that connected components obtained 

during the first stage of the method did not always contain whole surgical tool. This incomplete 

detection induced lower recognition rates. Moreover, it was quite difficult to build a complete 

background class (i.e. class “not a tool”). Random images were chosen but may not correctly represent 

the field of possibilities of the background. Another limitation was the high number of class 1 tools. 

The highly similar shapes of class 1 tools prevented the creation of one class per tool. It had a direct 

impact on activity recognition as some pairs of activities can finally possess the same image 

signatures. 

One possibility would have been to use surgical tool detection for surgical phase recognition also. 

The difficulty of this method resides in the fact that most surgical tools are used in every phase, which 

would have overloaded the image signatures. This information is not of major importance for the 

recognition of surgical phases, explaining why it was only used for activity detection. 

 

In order to further increase the accuracy of our surgical tool detection method, a solution could be to 

expand the training image database. Instead of using 100 training images for each surgical tool, we 

could use dynamic learning through a cross-validation approach. The number of images for each 
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surgical tool could significantly increase. The best solution for this type of method would be to 

manually create a huge database with more than 500 images per class. Another way would be to 

improve the segmentation step by injecting a priori knowledge of shapes. The segmentation process is 

the key of the BVW approach. With perfect segmentation of ROIs containing the surgical tools, the 

BVW approach should be very accurate. Segmentation methods used in traditional image processing 

problems, such as graph-cut algorithm, could be further investigated. 

VI.3.c. Knowledge-based classification 

The strategy consisting in using image signatures composed of visual cues with a constraint on the 

phases appears promising. Validation studies show modest results (65%) compared to the surgical 

phase detection results (94%), though these results should be contrasted with the high number of 

activities (25 possible pairs of activities instead of 8 phases) and the non-sequential aspect of the 

activities. Indeed, by comparison to phase detection with only 8 classes appearing sequentially only 

once in the video, many activities appeared more than 5 times during surgery, complicating the 

recognition task. 

 

The modest value of specificity (54.9%) shows that the system is not very efficient for detecting 

true positive results, i.e. when activities occur in a frame. On the contrary, it is easier to identify when 

no activities occurs in the frames (sensitivity = 76.3%). The low value of specificity can be explained 

by the fact that it is not a binary class problem with just a positive or negative result. Moreover, seven 

classes were defined for detecting the surgical tools and the assignment of one class for the 

background allows a good description of this class (using a set of multiple possibilities) in the training 

database. Using these accurate image signatures, it is therefore easier to identify when no activity 

occurs during the classification process.  

As we can see in Figure 63, there are high disparities of recognized and non-recognized frames for 

each pair of activities. For 5 activity pairs, the numbers of frames over the entire data-set are quite low 

and the detection is almost null. These 5 pairs are: <incise, 1.4mm knife, cornea>, <aspirate, 

aspiration cannula, lens>, <implant, IOL, anterior chamber>, <irrigate, irrigation cannula, 

conjunctiva and cornea>, <wash, irrigation cannula, conjunctiva and cornea>+<irrigate, irrigation 

cannula, lens>. Those pairs are due to the way we performed the ground truth. For instance, <incise, 

1.4mm knife, cornea> is usually paired with <hold, colibri tweezers, bulbus oculi>, but this last 

activity was usually stopped a short amount of time before <incise, 1.4mm knife, cornea>. These pairs 

can therefore be considered as side effects. For other disparities, we can see that some activity pairs 

are better recognized than others. This is mainly due to the recognition of the surgical(s) tool(s) 

involved in the dedicated triplets. Moreover, the two pairs of activities that often appear during the 

surgery (i.e. <aspirate, syringe, anterior-chamber>+<microspatula, hold, bulbus-oculi> and 

<aspirate, aspiration cannula, lens>+<hold, microspatula, bulbus oculi>) have recognition rates 

higher than 60%, probably due to the association of the two surgical tools within the pair that is unique 

over the set of possible pairs, making easier the recognition. 

 

This combination of human knowledge and data coming from different granularity levels remains 

the best solution for passing from video images to semantic information. Introducing a priori 

formalized knowledge for the automatic recognition of surgical activities seems to be mandatory, as 

image-based approaches remain limited to low-level task detection. Moreover, creating only one 

image signature from a set of high-level features obtained from different algorithms is complex and 
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may not be optimized. One perspective of this work would be to create a more complex probabilistic 

model combining all the above information. Moreover, one improvement of the system could be the 

use of the surgeon’s laterality as knowledge before the classification. As surgical tools are used either 

with the left or right hand, models could be designed to integrate this aspect according to the laterality 

of the operating surgeon. At the moment, our system does not include this information and we did not 

assign a side to the activities that we detected. 

 

Additionally, as presented in Chapter II, SPMs using a strong formalization at surgical activity level 

may help. Such models can be more complex than our hierarchical decomposition making the link 

between low-level and high-level surgical tasks. Indeed, inside a particular phase, activities can have 

specific activity sequences where we can extract motifs. For such purpose, motif discovery could 

therefore be used for finding sequence motifs using computer-based techniques of sequence analysis. 

In such applications, the motifs are first unknown, and the final results after the analysis are the motifs 

contained in sequences. During the activity detection step, these results can be used for restraining the 

possibilities with a more detailed description than we did with our model. This solution would offer 

the possibility to add, via reasoning on sequence motifs, a strong semantic meaning. 
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Chapter VII. General discussion 

In this Chapter, we propose a general discussion about the research performed in this thesis based on 

the main aspects of the SPM methodology classification that we proposed in Chapter II. From the five 

aspects that composed a SPM methodology, the analysis methods as well as the validation part have 

been widely discussed all along the thesis within the specific discussions at the end of each Chapter. 

We therefore focused our general discussion here on the data acquisition, the modelling and the 

application aspects. We first discuss about the data acquisition process and propose a discussion on the 

advantages of using microscope videos as the only sensor from the OR. Then, we address the 

modelling aspect of this work and especially the level of granularity as well as the formalization that 

we used all along the recognition process. Finally, we present possible clinical applications that could 

be used in clinical routine with both the recognition of high- and low- level tasks. 

VII.1.  Data acquisition  

In the continuity of previous works on SPMs, this thesis has been conducted with the motivation of 

creating automatic recognition tools allowing automatic data acquisition solutions for SPM-based 

systems. Such data acquisition systems when operational would help the design of a new generation of 

CAS systems based on SPM. For this objective we decided to use microscope videos data as the only 

source of information for recognition. This data acquisition solution can be categorized as being low-

level information (video), with the surgeon operating intra-operatively, and the method for recording 

is an on-line video- (Table 17). 

 
Table 17 - Classification of our data acquisition technique 

 

 
Data acquisition 

 

 Granularity level Operator +/- body part Moment of acquisition Method for recording 

Our work Low-level (video) Surgeon Intra-operative 
Video-based recording 

(on-line) 

 
 

This choice has been motivated by different criteria. Indeed, as explained by Bouarfa et al. (2010), the 

information extracted from the OR must be “discriminant, invariant to task distortion, compact in size 

and easy to monitor”. Microscope video data turns out to meet all of these constraints. 

Firstly, image features are very discriminant for binary cues extraction, as studies on supervised 

classification indicated for both datasets, with best accuracies reaching 95% and worst accuracy at 

87%. Performance is closely linked to the diversity and the power of discrimination of the databases. 

That is why the training phase has a major impact on the classification process and must not be 

ignored. 

Secondly, even though it has to be rigourously demonstrated, it seems that within a same surgical 

environment, procedures are reproducible and image features are thus invariant to task distortion. This 



Chapter VII.  General discussion  

   
 

 136 

constraint addresses the issue of system adaptability that we addressed in subsection V.7.b. However, 

due to the different materials and equipment in each department, discriminant images features may 

differ and the system may be not flexible. For instance, the colour of surgical tissue in Rennes may be 

different elsewhere and the corresponding features would completely affect the training process. As 

already mentioned, the solution would be to train dedicated image databases for each surgery that 

would be adapted to the corresponding surgical environment and microscope scene layout. Using 

image features for the recognition also eliminates the need to train a dedicated image database for each 

surgeon. The performance differences between surgeons can be seen in the way that they operate, 

looking at the hand's motion and dexterity. Assuming that surgical instruments are identical in each 

hospital, one image database would be sufficient for multiple surgeons. Other variability factors within 

a dataset can also affect recognition. Ideally, one database should be created for each type of surgery 

associated with each surgical technique. As a result of this reproducibility, there was no need to use 

multi-level image annotation for better surgery differentiation, which was done, for instance, by 

Mueen et al. (2008) for medical image retrieval. In their work, the first step of their multi-level system 

consisted in capturing the semantic differences between images before more precise annotation. This 

prior classification is not helpful in our case. 

The third crucial parameter is the sample size of acquired data, which must be compact. Image 

signatures, after data dimension reduction, were composed of 40 features and were thus sharply 

reduced. Even with modifications in feature selections for another type of surgery, the sample size 

always stays constant and small. The computation time of the recognition process for one image 

(feature extraction + data transformation + classification) was 0.8s on a 2-Ghz machine. We did not 

take into account the computation time of the learning database, considering that this was done off-

line. 

Lastly, the real value of this project lies in the ease of use of the microscope. Not only is this 

device already installed in the OR, but also it does not need to be controlled by the surgical staff. It is 

thus very simple to monitor, enabling the system to be introduced in every department that currently 

owns a surgical microscope. The use of sensor-based systems that automate the whole recognition 

process is not restrained to the use of microscope video. The use of global-view videos, sensors 

positioned on instruments (e.g. RFID tags) or tracking systems has been already tested, validated, and 

could be a good complementary source of information for the creation of recognition systems. The 

multiplicity of available sensors in the OR as well as the use of automatic recording of data are the two 

aspects that need to be further investigated for improving recognition systems. 

VII.2.  Modelling 

As mentioned in Chapter II, the whole SPM methodology is organized around the aspect of granularity 

level. If we position this work compared to the proposed granularity axis of Figure 6, the modelling 

here focused on a granularity level between the activities and the phases. Adding for instance a source 

from a global-view video would allow handling the granularity level following the surgical phases, i.e. 

the surgical procedure. On the contrary, adding a source of information like tracking systems on 

instrument could allow the modelling handling a lower granularity level, i.e. motions.  

 

It’s also necessary for bottom-up approaches, approach that we follow in this thesis, to have a 

formal representation of surgery. The formalization that we used in Chapter I for recognizing high-

level tasks was very light and was represented as a simple state-transition diagram (Table 18). 
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Table 18 - Classification of our modelling 

 

 
Modelling 

 

 Granularity level Operator +/- body part Formalization 

High-level tasks Phases Surgeon State-transition diagram 

Low-level tasks Activities Surgeon Hierarchical decomposition 

 
 

Positioning this formalization on the axis of Figure 7 shows that it remains a light formalization that 

could be further developed. For the detection of low-level tasks, however, we used a more complex 

formalization, i.e. a hierarchical decomposition (Table 18). This was required to go down from one 

level and detect more details of the surgical procedure. The message here is that formalization is 

needed for being able to correctly recognized high- and low-level tasks of a surgical procedure. 

Moreover, it can be also necessary for comparing and sharing studies between different centres. A 

heavy and rich formalization is therefore the key of future analysis of SPMs, for helping the 

recognition process as well as for easy sharing between centres. 

VII.3.  Clinical applications of the developed frameworks 

The two main applications of the frameworks we developed are following (Table 19). Surgical videos 

are increasingly used for learning and teaching purposes, but surgeons often do not use them because 

of the huge amount of data in surgical videos (hours of video to be browsed) and the lack of data 

organisation and storage. It could therefore be introduced into clinical routine for post-operative video 

indexation and creation of pre-filled reports. One can imagine a labelled database of videos with full 

and rapid access to all surgical tasks for easy browsing. The video database created would contain the 

relevant surgical tasks of each procedure for easy browsing. We could also imagine the creation of 

post-operative reports, automatically pre-filled with recognised events that will have to be further 

completed by the surgeons themselves. For such clinical applications, even with few errors and an off-

line use, automatic indexation would be relevant, as there is no need for perfect detection and it has no 

impact on the surgery itself. In its present form, the computation time of the recognition process for 

one frame (visual cues detection + DTW/HMM classification) was evaluated to around 3s on a 

standard 2-Ghz computer, which makes possible the development of off-line applications. However, 

we did not implement any of these applications. We are therefore not able to demonstrate the 

feasibility or the added value brought by our methods. With the present methodology, however, both 

frameworks for the recognition of high-level and low-level tasks could only be introduced into the 

surgical routine as assistance for off-line applications only. The DTW algorithm requires knowing the 

entire performed procedure to determine the optimum path, avoiding on-line use. For on-line 

applications, the HMM classification should therefore be used. 

 

Once on-line automatic recognition approaches will be developed, the explicit computer based 

understanding of OR high-level and low-level tasks could help developing an intelligent architecture 

that analyses microscope images and transforms them into a tool for assisting the decision-making 

process. It could also support intra-operative decision making by comparing situations with previously 

recorded or known situations. This would result in a better sequencing of activities and improved 

anticipation of possible adverse events, which would, on the one hand optimize the surgery, and on the 
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other hand improve patient safety. Such context-awareness feature would also be very useful for 

improving ergonomy of the systems in the OR, for instance, by specifying which kind of information 

needs to be displayed for the surgeon's current task. This would also help to improve OR management 

(as in Xiao et al., 2005) and support CAS systems (as in Jannin et al., 2007; Speidel et al., 2008).  

 
Table 19 - Classification of our clinical applications 

 

 
Application 

 

 Surgical speciality Clinical application 

High-level surgical tasks 
Neurosurgery – Hypophyse 

Eye surgery - Cataract 

Intra-operative assistance 

Training/assessment of surgeons 

 

Low-level surgical tasks 

 

Eye surgery - Cataract 

 

Intra-operative assistance 

Training/assessment of surgeons 
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Chapter VIII. Conclusion 

Devant l'apparition de nombreux outils et nouvelles technologies dans les salles d'opération, le besoin 

de nouveaux systèmes de CAO se fait actuellement ressentir. La modélisation du processus chirurgical 

semble être un des élèments clés pour la construction de la salle d’opération du futur. En d'autres 

termes, un des challenges de le CAO est d'assister la procédure à travers la compréhension des 

évènements de la salle d'opération. C’est pourquoi une des branches des SPMs la plus étudiée jusqu’à 

présent est la reconnaissance de tâches haut et bas-niveaux dans les salles d’opération via des 

méthodes appelées méthodes bottom-up. Ces approches utilisent des signaux enregistrés par des 

capteurs ou par des humains dans la salle d’opération pour reconnaitre automatiquement des 

informations de plus haut niveau, telles que les phases, étapes, activités de la procédure chirurgicale. 

Devant ces avancées récentes, nous avons proposé dans cette thèse d’utiliser les vidéos des 

microscopes chirurgicaux comme unique source d’information afin de créer des systèmes 

automatiques de reconnaissance de tâches chirurgicales. 

 

Les raisons d’utiliser des signaux vidéo, et spécifiquement des signaux vidéo issus des microscopes, 

en entrée sont doubles. Premièrement, cela permet de collecter des informations sur la procédure sans 

pour autant altérer la routine clinique ni gêner le chirurgien. Devant le nombre important de capteurs 

déjà installés, il n'est pas nécessaire de surcharger cette salle. Cela amène à réfléchir à des solutions 

simples de contrôle et surveillance que peuvent être les vidéos. De même, comme vu dans le Chapitre 

II, de nombreuses études du domaine se sont déjà basées sur des capteurs ajoutés dans les salles 

d’opérations et qui pouvaient, dans des cas bien particulier, altérer le processus chirurgical. 

Deuxièmement, l’enregistrement de la vidéo est courante, standardisé, et permet de rendre le processus 

de reconnaissance entièrement automatique. A partir de ces vidéos de microscopes chirurgicaux, nous 

avons proposé deux types d’approches permettant la reconnaissance automatique des tâches 

chirurgicales se focalisant toutes les deux sur des niveaux de granularité distincts. Le premier système 

a été créé pour reconnaitre des tâches haut-niveaux, symbolisées par les différentes phases d’une 

procédure chirurgicale. Le deuxième système est descendu d’un niveau de granularité pour reconnaitre 

des tâches de bas-niveau, symbolisées par les activités détaillées du chirurgien. 

 

La première partie de la thèse s’est donc focalisée sur la reconnaissance automatique des phases 

chirurgicales. L’idée sous-jacente fut de combiner des techniques de vision par ordinateur robustes 

permettant d’extraire des attributs visuels, avec une analyse de séries temporelles pour prendre en 

compte l’aspect séquentiel des phases. Premièrement, des attributs visuels pertinents qui permettent de 

discriminer les différentes phases de la chirurgie furent manuellement définis. Cinq classifieurs furent 

implémentés pour reconnaitre ces attributs dans l’image, chacun étant relié à un type de 

caractéristiques à extraire. Les attributs reconnaissables à travers leurs couleurs furent extraits avec des 

histogrammes de couleurs. Pour les attributs reconnaissables à travers leurs formes, deux types de 

classifieurs furent implémentés. Le premier fut un classifieur de Haar pour catégoriser des objets à 

forts contours. Le deuxième fut une approche par sac-de-mots pour détecter des objets sans les 

catégoriser. Les attributs reconnaissables à travers leurs textures furent appréhendés par une approche 
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par sac-de-mot, et enfin tous les autres attributs ne rentrant pas clairement dans un de ces types de 

caractéristiques furent reconnus grâce à un classifieur standard mêlant extraction de caractéristiques 

spatiales, sélection de caractéristiques et classification supervisée. Cette première étape de traitement 

d’image pur permet de caractériser chaque frame de la vidéo de façon statique, et après concaténation 

des signatures images de créer des séries temporelles qui peuvent être ensuite présentées en entrée de 

système d’analyse de séries temporelles. Nous avons implémenté deux de ces méthodes, les chaînes de 

Markov Cachées et l’algorithme Dynamic time Warping.  

 

La seconde partie de la thèse s’est focalisée sur la reconnaissance automatique des activités 

chirurgicales (tâches bas-niveau). Ce niveau de granularité est formalisé par des triplets < action – 

outil chirurgical – structure anatomique >. Des informations plus précises sur les outils chirurgicaux 

ainsi que sur les zones d’apparitions de ces outils furent mixées avec les attributs visuels 

précédemment extraits au sein de signatures image plus détaillées. Ensuite, en se basant sur 

l’hypothèse que la plupart des activités apparaissent seulement dans une ou deux phases, une 

décomposition hiérarchique de la procédure fut créée pour faire le lien entre phase et activité. En 

utilisant cette décomposition hiérarchique, les résultats de la classification des phases ainsi que les 

nouvelles signatures images, la reconnaissance des activités devient possible.  

 

Les études de validation ont été menées sur deux jeux de données très différents : un jeu de 16 

vidéos de chirurgie hypophysaire, qui est un cas particulier de tumeur neurochirurgicale, et un jeu de 

20 vidéos de chirurgie de la cataracte, qui est une chirurgie courante de l’œil. Dans le cas de la 

chirurgie de l’hypophyse, des taux de reconnaissance de phases de l’ordre de 92% ont été obtenus. 

Dans le cas de la chirurgie de la cataracte, des taux de reconnaissance de 94% ont été obtenus pour la 

détection de phases, et de l’ordre de 65% pour les activités. Ces taux de reconnaissance permettent 

d'effectuer la modélisation des chirurgies en identifiant l'enchainement des différentes phases et 

activités.  

 

En ce qui concerne la reconnaissance des phases, le système est très performant et les résultats 

obtenus sont très convaincants. Pour la reconnaissance des activités, notre système offre des premiers 

résultats prometteurs. En effet, des améliorations peuvent être apportées. Notre architecture avec 

plusieurs niveaux de granularité (phases, activités) permet d'être modulable et de fournir des 

informations encore plus précises en fonction de la situation. Par exemple, en fonction des installations 

présentes dans la salle d'opération, il peut être possible d'enrichir les différentes signatures images 

avec des informations provenant d’autres senseurs, de type image ou non image. De même, nos 

méthodes de vision par ordinateur et d’analyse de séries temporelles, utilisées dans cette thèse sur des 

vidéos de microscope, sont tout-à-fait adaptables à d’autres types de vidéos, comme des vidéos grands 

champs de salle d’opération ou des vidéos focalisées sur un acteur spécifique de la chirurgie.  

 

Ces systèmes de reconnaissance de tâches chirurgicales, que ce soit au niveau des phases ou au 

niveau des activités, apparaissent comme une progression non négligeable vers la construction de 

systèmes intelligents (autrement dit sensibles au contexte) pour la chirurgie. Dans leurs versions 

actuelles, les systèmes peuvent être utilisés de manière postopératoire afin d'indexer les vidéos en fin 

de chirurgie et de créer des rapports chirurgicaux pré-remplis. Dans le cadre de l'enseignement, avoir à 

disposition une base de données de vidéos chirurgicales indexées peut être aussi utile et une navigation 

entre les différentes phases et activités des chirurgies pourrait être effectuée. Une des perspectives 

principales de cette thèse est l’utilisation de systèmes équivalents dans les salles d’opération en temps-
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réel. Pour le moment, certain algorithmes (DTW par exemple) ne fonctionnent uniquement lorsque la 

vidéo est entièrement terminée, ce qui limite les champs d’application du système. Vers cet objectif, 

une des applications temps-réel qui pourrait être amenée à voir le jour est l’assistance intra-opératoire, 

par exemple en permettant en temps réel de savoir quelles informations ont besoin d'être montrées au 

chirurgien pour la tache effectuée. Cela pourrait aussi permettre une meilleure anticipation de 

possibles évènements néfastes permettant d'une part d'optimiser la chirurgie et d'autre part de réduire 

les dangers pour le patient. Les systèmes de reconnaissances basées sur les vidéos des microscopes, 

que ce soit pour la détection des tâches de haut ou bas-niveau, offrent donc de réelles perspectives 

d’avenir dans le domaine de la CAO. 
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Appendix A – ICCAS editor software 

 

The ICCAS editor software allows recording surgical procedures directly in the OR or after the intervention 

on videos at the activities granularity level. It records activities with the same formalization that we 

presented in subsection III.2.c. A structured .xml file is generated at the end of the recording containing all 

needed information (start time and end time of each activity, meta-information, etc...). 

 

 

 

Figure 64 - Screenshots of the ICCAS editor software 
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Appendix B – C++/Qt GUI 

 

For the needs of the project, a graphical user interface (GUI) in C++/Qt was implemented by David Bouget 

(see Software development) in order to perform live experiments of image processing techniques. This 

software allows the user to modify a large set of parameters over the entire recognition framework. In 

particular, it includes a display and test mode, a spatial interface, a temporal interface and an interface for the 

detection of activities (Figure 65). This software was very helpful for optimizing all parameters and variables 

all along the project. 

 

 
 

 
 

Figure 65 - Screenshots of the GUI. Display mode (above) and test mode (below) of the spatial interface. 



  
 

147 
 

Appendix C – Matlab GUI 

 

Also for the needs of the project, a GUI in Matlab was implemented. The system is based on two 

development platforms, C++ and Matlab. The C++ part is used for imaging processing, and the Matlab part 

for the time-series algorithms. The feature extraction step has been done off-line, and then integrated to the 

GUI. The Demo is indeed an off-line application that has been created only to show the perspective of the 

system and to test potential combination of different time-series parameters. When launching the demo 

application, the user could choose among different parameters:  

  The type of image features that will compose the image signatures. The RGB and HSV spaces 

(color), the co-occurrence matrix (texture), the Hu moments and the DCT transform (form) are the 

features available. Three different combinations of these features can be chosen through the GUI: 

Color / Color + Texture / Color + Texture + Form. 

  The number of videos for the learning stage. A total of 20 videos of cataract is available. If x videos 

is chosen by the user for the learning, then the 20-x others will be used for the validation.  

 The type of time series approach for the modeling, choosing between HMM and DTW algorithms. 

When the user chooses the DTW algorithm, he can also choose a global constraint on the alignment 

sequence (Sakoe-Chiba constraint or Itakura parallelogram constraint). The parameters of both global 

constraints can be modified. 

 

Figure 66 shows a screen-shot of the demo. The user first has to choose the type of image features that he 

wants for the detection, then he has to load the database using the desired number of videos for training, and 

lastly, using a chosen method for modeling. All validation videos are processed and displayed. 

 

 
 

Figure 66 - Screen-shot of the Matlab GUI 
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Résumé étendu de la thèse 

 

 

I. Introduction 
 

I.1 Contexte 

 

Une forte augmentation de nouvelles technologies dans les systèmes de santé se fait actuellement 

ressentir, allant du management et de l’organisation de l’hôpital jusqu’aux solutions d’imagerie 

médicale. Dans les salles d’opération, les technologies de l’informatique sont maintenant essentielles 

et de plus en plus utilisées tout au long de l’intervention chirurgicale : du planning pré-opératoire à 

l’évaluation post-opératoire, en passant bien sûr par l’aide intra-opératoire. C’est dans ce contexte que 

sont nés les systèmes de Chirurgie Assistée par Ordinateur (CAO). La CAO est définie comme 

l’ensemble des systèmes aidant le praticien dans la réalisation de ses gestes diagnostiques et 

thérapeutiques, ou plus simplement par des procédures chirurgicales conduites à l'aide d’ordinateurs. Il 

est en effet important de concevoir une salle d’opération qui offre au chirurgien et à son équipe une 

facilité de travail et d’accès aux images, informations et outils disponibles. Notamment, la 

modélisation du processus chirurgical, c’est-à-dire du déroulé de l’intervention, est une information 

importante vers la construction de la salle d’opération du futur. Une procédure chirurgicale est décrite 

de manière principalement symbolique comme une succession d’étapes et d’actions réalisées avec 

différents outils et selon différentes techniques. Les modèles pouvant prendre en compte ces différents 

paramètres semblent ainsi être la base des nouveaux systèmes de CAO autour desquels s’inscrit cette 

thèse. Nous allons donc commencer par introduire les modèles de processus chirurgicaux, i.e. Surgical 

Process Model (SPM), puis nous introduirons la problématique de cette thèse. 

I.2 Etat de l’art en SPM 

Un même type de procédure chirurgicale est reproductible, et cette hypothèse rend possible une 

modélisation temporelle des procédures, dont le but est de collecter des données et de créer des 

modèles issus de ces données (Jannin and Morandi, 2007). Pour étudier les nombreuses publications 

couvrant le domaine, nous avons proposé une classification basée sur 5 aspects de la méthodologie de 

création des SPMs : l’acquisition de données, la modélisation, l’analyse, les applications et la 

validation. Une revue de la littérature basée sur une recherche Google Scholar fut effectuée, et 43 

papiers furent ainsi sélectionnés, rapportés et classés. Parmi ces 5 aspects, l’aspect d’acquisition de 

données sert de base aux modélisations. Les méthodes d’acquisition qui en découlent suivent deux 

stratégies différentes : acquisition par des opérateurs humains positionnés dans la salle d'opération, ou 

par des capteurs de façon automatique. Les approches basées « opérateur humain » ont la capacité de 

couvrir des niveaux de granularité supérieurs aux approches basées « capteurs » en incluant des 

informations sémantiques. Cependant, ces approches « opérateur humain » présentent la limite de ne 

pas être automatisées, et donc de nécessiter beaucoup de temps et de ressources humaines. C'est 

pourquoi les approches basées « capteurs » sont de plus en plus étudiées pour automatiser ce processus 

d'acquisition de données. Au sein de ces approches, on retrouve les études utilisant des simulateurs ou 

environnements virtuels complets (Darzi et al., 2002 ; Lin et al., 2006), pour étudier la gestuelle des 

chirurgiens et créer des modèles de reconnaissance de gestes. On retrouve également les systèmes de 

reconnaissance basés sur des capteurs installés sur les instruments (Ahmadi et al., 2007 ; Padoy et al., 
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2007). Des informations binaires de présence d'instruments sont analysées et des modèles graphiques 

probabilistes sont utilisés pour reconnaître des informations de haut niveau dans la salle d'opération. 

D'autres systèmes ont aussi été testés, comme la mise en place d'un outil de suivi du regard du 

chirurgien (James et al., 2007), ou d'un système de tracking 3D de la positon de chaque membre du 

staff (Nara et al., 2009). Le principal défaut de tous ces systèmes est qu'ils ne sont pas installés d'office 

dans les salles d'opération, et que la mise en place de trop nombreux outils pourrait à long terme gêner 

le déroulé de l'intervention.  

Pour pallier à ce problème, les nouvelles études se focalisent sur des sources d'informations déjà 

installées dans la salle d'opération, telles que les signes vitaux des patients (Xiao et al., 2005) ou les 

vidéos (Bhatia et al., 2007 ; Speidel et al., 2008; Klank et al., 2008; Lo et al., 2003). L'utilisation de 

vidéos, grand champs ou endoscopiques, permet d'automatiser l’acquisition de données sans altérer la 

routine clinique. Des outils de vision par ordinateur et de réalité augmentée sont utilisés pour extraire 

des informations pertinentes au chirurgien. Les images vidéos des différentes caméras se révèlent donc 

être une source riche en informations pouvant éventuellement remplacer les approches se basant sur 

des enregistrements humains. 

 
I.3 Problématique de la thèse 

 

Devant l’intérêt croissant des études sur les SPMs, et à partir de la revue de la littérature que nous 

avons effectuée, cette thèse s’est centrée sur quatre aspects principaux. Premièrement, l’idée fut de 

développer des nouveaux outils pour la reconnaissance de tâches chirurgicales haut et bas-niveaux. 

Deuxièmement, nous avons utilisé comme unique source d’information les vidéos des microscopes, 

utilisés de façon systématique tout au long d'une intervention neurochirurgicale ou ophtalmologique. 

Troisièmement, différents niveaux de granularités des tâches chirurgicales (i.e. phases et activités) ont 

été couverts. Enfin, nous  avons introduit une sémantique forte à notre modélisation.  

 

 

II. Jeux de données  
 

Les différentes méthodes que nous avons mises en place tout au long de cette thèse furent testées sur 2 

jeux de données différents. 

1) La chirurgie des adénomes hypophysaires, type particulier de neurochirurgie. Une voie 

d'abord transnasale est utilisée par les chirurgiens, qui atteignent ensuite l'hypophyse pour 

enlever la tumeur située dans cette région. Nous disposions de 16 vidéos (temps moyen de 

chirurgie : 50min), où le chirurgien a défini 6 phases (Figure 1, gauche).  

2) La chirurgie de la cataracte, type de chirurgie ophtalmologique. Le principe est d'enlever la 

lentille naturelle de l'œil (le cristallin) pour la remplacer par une lentille artificielle. Nous 

disposions de 20 vidéos (temps moyen de chirurgie: 15min) et huit phases furent identifiées 

(Figure 1, droite). Pour définir les activités, nous nous sommes basés sur la formalisation 

proposée par Neumuth et al. (2007), décrivant une activité comme un triplet : < verbe d’action 

– outil chirurgical – structure anatomique >. 12 verbes d'action, 13 outils chirurgicaux et 6 

zones d'action furent identifiés. Toutes les combinaisons ne sont bien évidemment pas 

possibles, car n'ayant aucun sens, ce qui a amené à identifier 17 activités puis 25 paires 

d’activités possibles (une activité par main du chirurgien). Dans ces 25 activités, l’activité « 

arrière-plan » est une activité à part entière. Un exemple de visualisation par « index-plot » est 

proposé sur la Figure 2. 



  

 

153 
 

Pour ces deux jeux de données, des sous-échantillonnages spatiaux et temporels furent effectués 

comme étape de pré-traitement. 

 

    
 

 
 

Figure 1 - Exemple d'images des microscopes pour les deux jeux de données : 
Haut : Chirurgie des adénomes hypophysaire : 1-incision nasale, 2-installation des écarteurs nasaux, 

3-exérèse de la tumeur, 4-remise en place de la cloison nasale, 5-suture, 6-installation des compresses 
nasales 

Bas : Chirurgie de la cataracte : 1-préparation, 2-injection de Bétadine, 3-incision de la cornée, 4-
hydrodissection, 5-phakoemulsification, 6-aspiration corticale, 7-implantation de la lentille artificielle, 

8-ajustement de la lentille 
 

 
 

Figure 2. Représentation par « index-plot » des activités pour 5 vidéos de chirurgie de la cataracte  
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III. Reconnaissance des phases : approche statique 
 

Dans la première partie de cette thèse, nous nous sommes focalisés sur la reconnaissance des phases 

de façon statique, c’est-à-dire sans prendre en compte l’aspect séquentiel des phases. Chaque image 

est donc classée indépendamment des autres en suivant une approche traditionnelle de classification 

d’image. 

 
III.1 Méthodes 

 

Le système de reconnaissance que nous avons suivi pour cette approche est le suivant : après une étape 

de pré-traitement, une extraction de caractéristiques fut effectuée pour chaque image, suivie d’une 

sélection des meilleures caractéristiques. Une classification supervisée a ensuite permis d’assigner une 

phase à chaque image des vidéos. Le système est présenté sur la Figure 3. 
 

 
 

Figure 3 - Système de reconnaissance de phases 

 
Extraction et sélection des caractéristiques 

 

Dans cette étape, nous nous basons sur une analyse de chaque image de vidéo chirurgicale de manière 

ponctuelle dans le but d'extraire de nouvelles caractéristiques images purement spatiales. Pour chaque 

image, une signature a été extraite, composée de caractéristiques de texture, de forme et de couleur, 

dans le but de chercher des similarités entre images de même classe. La couleur a été extraite avec 

deux espaces complémentaires (Smeulders et al. 2000), l'espace RVB (Rouge Vert Bleu) et l'espace 

TSV (Teinte Saturation Valeur). Pour la texture, nous avons opté pour les matrices de co-occurrences 

associées aux descripteurs d'Haralick (Haralick et al., 1973). La forme a été obtenue à partir des 

moments spatiaux (Hu, 1962). Enfin les coefficients de la Transformée en Cosinus Discrète (TCD) ont 

été calculés (Ahmed et al., 1974). 185 caractéristiques spatiales furent ainsi extraites. Nous avons 

ensuite utilisé une méthode hybride de sélection combinant une approche dit filter d'une approche dit 
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wrapper (Duda and Hart, 1973) pour réduire la taille de ces signatures tout en gardant le maximum 

d’informations pertinentes. La première approche exécute la sélection en regardant les propriétés 

intrinsèques des données. La deuxième utilise un classifieur en sortie pour évaluer la meilleure 

combinaison de variables d'entrée. Ces deux types d'approches sont complémentaires et peuvent être 

fusionnées par l’intersection des résultats des deux algorithmes. L'information mutuelle (Hamming, 

1980) et l'algorithme SVM Recursive Feature Elimination (RFE) furent choisis pour chaque approche. 

En complément de cette approche hybride de sélection, une analyse en composante principale (PCA) 

fut aussi comparée. 
 

Classification supervisée 

 

Plusieurs techniques classiques de classifications supervisées ont été testées : Machine à Vecteur de 

Support (SVM), Plus Proche Voisin (PPV), Réseaux neurones (RN), arbre de décision et Analyse 

Discriminante Linéaire (ADL). Ces algorithmes furent évalués grâce à une validation croisée 10-fold, 

sur les deux jeux de données séparément. En complément de la probabilité de bonne classification, la 

sensibilité et la spécificité furent aussi calculées.  

III.2 Résultats 

La Figure 4 montre que l'ACP est mieux adaptée pour un nombre de caractéristiques inférieur à 30. A 

partir de ce seuil, la méthode hybride de sélection donne de meilleurs résultats et atteint son maximum 

pour 40 caractéristiques. Pour l'ACP, la précision diminue à partir de 40 caractéristiques, alors qu'en 

utilisant l'autre approche de réduction de dimension, la précision reste pratiquement inchangée. 
 

 

Figure 4 - Probabilité de bonne classification selon le nombre de composantes gardées. 

Tableau 1 - Probabilité de bonne classification (Pbc), sensibilité et spécificité pour les 5 algorithmes étudiés et 

en ne gardant que 40 caractéristiques. 

 
Algorithmes Pbc Sensibilité Spécificité 

SVM 82.2% 78.7% 98.1% 
PPV 74.7% 66.0% 95.4% 

RN 71.3% 65.1% 92.8% 

Arbres decision 66.2% 52.3% 94.0% 

ADL 81.5% 77.0% 97.6% 



 

 156 

Avec 40 caractéristiques, les autres classifieurs sont testés sur le Tableau 1. Les SVMs donnent les 

meilleurs résultats (91.5%), suivis par l'ADl et les PPV. En revanche, les arbres de décision et les 

réseaux de neurones donnent les moins bons résultats. 

 
III.3 Discussion 

 

Réduction de dimensionnalité : Deux méthodes furent testées pour réduire la dimension des données 

images : l'ACP et une méthode hybride de sélection de caractéristiques combinant une approche 

wrapper avec une approche filter. Intuitivement, les méthodes wrapper semblent plus avantageuses, 

puisqu'elles utilisent les résultats des classifications pour faire la sélection. En revanche, la principale 

limitation reste le temps de calcul, qui augmente de façon exponentielle avec la taille des données. 

Pour les approches filter, la sélection est faite sans regarder les résultats des classifications, mais 

seulement sur les données d'entrée, en évaluant le pouvoir prédictif de chaque variable. La principale 

limite se trouve dans l'incapacité de telles méthodes à prendre en compte des combinaisons de 

caractéristiques, ce qui affecte la précision de la sélection. L'avantage de la combinaison est donc de 

bénéficier des avantages des deux méthodes. Une étude de comparaison (Figure 3.) de cette approche 

avec l'ACP a clairement montré la supériorité de cette méthode.  

 

Classification supervisée : La précision des SVMs, associée à une faible déviation standard, a montré 

la robustesse de cet algorithme pour ce type d'images. Les bonnes performances, en grande partie 

expliquées par leurs capacités de généralisation, ne sont pas surprenantes si on regarde la récente 

explosion de son utilisation. L'ADL, même si ses performances se dégradent rapidement, restent aussi 

une bonne méthode de classification. En revanche, les arbres de décision et l'algorithme des PPV ont 

montré leurs limites pour nos jeux de données. Ces derniers étaient vraisemblablement trop variables 

en couleur et en texture et pas assez discriminants pour utiliser des outils de classification simples. Le 

résultat des réseaux de neurones peut paraitre surprenant, compte tenu du type de données disponibles. 

Les algorithmes non-linéaires sont généralement adaptés aux systèmes très complexes, en revanche les 

algorithmes linéaires sont plus faciles et rapides à utiliser, ce qui les rend adaptés à notre 

problématique.   

 

De l’approche statique à l’approche dynamique : Après des études comparatives menées sur 2 jeux de 

données issus de vidéos de microscopes neurochirurgicaux, il a été démontré que la reconnaissance 

automatique des étapes d'une chirurgie était possible avec un taux de bonne classification de l'ordre de 

82%. Cependant, des confusions entre étapes distantes ont été repérées, et cette première approche, 

bien que nécessaire pour appréhender l’étude, n’est pas suffisante pour être intégrée dans des 

applications cliniques. 

La solution envisagée fut l'ajout de l'information temporelle, qui permettra de résoudre une bonne 

partie de ces confusions et de générer des systèmes plus fiables et robustes. Dans la deuxième partie de 

cette thèse, nous avons ainsi pris en compte l’aspect séquentiel des phases en utilisant des algorithmes 

de classification de séries temporelles. 

 

IV. Reconnaissance des phases : approches dynamique 
 

Dans cette deuxième partie de la thèse, nous avons tenté d’améliorer le premier système de 

reconnaissance de phases en y intégrant des informations plus précises. Premièrement, nous avons 

ajouté une information séquentielle qui manquait dans le premier système. Deuxièmement, nous avons 

aussi ajouté des caractéristiques spatiales locales pour mieux décrire les images des vidéos. Une 
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extraction de caractéristiques temporelles fut aussi testée dans cette partie. Dans un souci de clarté, et 

pour intégrer ces différentes améliorations, nous présentons en premier lieu le nouveau système de 

reconnaissance. 

 
IV.1 Méthodes 

 
Système de reconnaissance 

 

Le processus complet de reconnaissance est présenté sur la Figure 5. La première étape de 

classification supervisée est utile pour extraire des attributs visuels spécifiques à chaque chirurgie. 

Pour cela plusieurs classifieurs associés à différents type de caractéristiques images (couleur, forme, 

texture) sont proposés. Une fois que ces attributs visuels ont été détectés, une signature sémantique 

pour chaque image est ainsi créée. Cette signature sémantique est composée de valeurs représentant 

les attributs visuels utilisés. La séquence de ces signatures images (i-e: série temporelle) est ensuite 

traitée par des algorithmes de classification de séries temporelles dans le but d'en déduire 

l'enchainement des phases de la chirurgie. Nous avons utilisé pour cela les Chaines de Markov Cachée 

(CMC) et l’algorithme Dynamic Time Warping (DTW) qui permettent de modéliser l'aspect temporel 

de la chirurgie. En sortie, nous obtenons des séquences correspondant aux différentes étapes 

chirurgicales. Les paragraphes suivants présentent en détail toutes les étapes de ce processus de 

reconnaissance automatique. 

 

 
 

Figure 5 - Nouveau système de reconnaissance de phases. 
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Pré-traitement 

 

Des étapes de pré-traitement peuvent être nécessaires avant de détecter les attributs visuels. Pour la 

chirurgie de la cataracte notamment, certains attributs sont identifiables seulement à l’intérieur de la 

pupille. Dans le but de rendre plus précis la détection de certain attributs, nous avons donc appliqué 

une segmentation de la pupille basée sur la transformée de Hough (Hough, 1959). Un masque binaire 

fut d’abord extrait, suivi d’une recherche de cercles par transformée de Hough et d’une normalisation 

par un diamètre de référence (Figure 6). 

 

 
 

 Figure 6 - Différentes étapes de la segmentation de la pupille. 

 

De même, le nouveau système tend à reconnaitre des informations sur les outils utilisés. Pour cette 

détection, une première étape de segmentation en Région d’intérêt (ROI) fut effectuée. Pour chaque 

image, 2 ROIs pouvant correspondre aux 2 outils maximum utilisés par le chirurgien en chirurgie de la 

cataracte furent extraits grâce à un filtre puis d’une analyse en composantes connexes (Figure 7).    

 

 

 
 

Figure 7 - Différentes étapes de la segmentation de la pupille. 

 

Classification des attributs visuels 

 

Cinq classifieurs furent proposés ici pour extraire les attributs visuels de la chirurgie. Chacun de ces 

classifieurs est lié à un type particulier d’attribut. Les attributs identifiables grâce à leur couleur furent 

détectés grâce à des histogrammes couleurs. Les attributs identifiables grâces à leur texture furent 

extraits grâce à une analyse par sac-de-mots couplés à des descripteurs locaux. Pour les objets 

facilement catégorisables (possédant de forts contours), un classifeur de Haar fut implémenté. Pour les 

objets difficilement catégorisables, une simple classification binaire (classe outil ou non) fut utilisée. 

Pour cela, la méthode par sac-de-mots fut appliquée sur les ROIs dans le cas de la chirurgie de la 

cataracte. Enfin, pour tous les autres attributs visuels qui ne peuvent pas être identifiés à partir 

uniquement d’une composante couleur, texture ou forme, nous avons utilisé la méthode de 

classification d‘image traditionnelle présentée dans le chapitre précédant. 

 



  

 

159 
 

Définition des attributs visuels et choix du classifieur 

 

L'objectif de cette étape est de définir des attributs visuels qui permettront de discriminer les phases 

d’une chirurgie particulière. Ces informations, de type binaires, sont considérées comme des attributs 

propres à chaque chirurgie. En d’autres termes, il a été demandé aux chirurgiens de définir différents 

attributs visuels pouvant être a priori identifiables à travers une analyse d'images. Ces attributs 

peuvent être, par exemple, la présence/absence d'un objet, le zoom du microscope ou encore une 

couleur particulière dans la scène chirurgicale. Ces attributs visuels, une fois détectés, sont ensuite 

extraits en utilisant le classifieur le plus adapté. 

Pour la chirurgie de l’hypophyse, 4 attributs visuels ont été défini: le zoom du microscope, la 

présence des écarteurs nasaux, la présence de la cloison nasale et des compresses. La combinaison de 

ces quatre attributs binaires permet de discriminer les 6 étapes. Nous avons ensuite choisi le type de 

classifieur à utiliser pour chaque attribut visuel. Le classifieur de Haar fut utilisé pour détecter les 

écarteurs nasaux, un histogramme couleur pour la compresse, et la méthode traditionnelle pour les 

deux autres attributs.   

Pour la chirurgie de la cataracte, 5 attributs visuels ont été identifiés : la couleur de l'iris (rouge ou 

noir), l’aspect globale du cristallin (morcelé ou non), la présence de l'antiseptique, la présence du 

scalpel et de l'instrument pour implanter la lentille. La couleur de la pupille fut reconnue à partir d’une 

analyse d’histogramme couleur uniquement sur la pupille après segmentation. Aussi après 

segmentation de la pupille, l’aspect global du cristallin fut détecté en utilisant une approche par sac-

de-mots. La présence de l’antiseptique fut détectée par histogramme couleur sur toute l’image. Pour le 

scalpel, le classifieur de Haar fut utilisé, ainsi que l’approche par sac-de-mots sur les ROIs pour la 

détection des instruments. Finalement, l’instrument d’implantation de la lentille fut détecté avec 

l’approche traditionnelle. 

 
Classification de séries temporelles 

 

Chaine de Markov Cachée (CMC) : Les modèles graphiques probabilistes sont souvent utilisés pour 

décrire des dépendances entre des données d'observations dans des domaines tels que la biologie. 

Notamment, les réseaux bayésiens (RB) ont récemment prouvé leur utilité dans ces applications. Les 

CMC, exemples particuliers de RB, peuvent être utilisées pour modéliser des séries temporelles. Ici, 

nous utilisons une CMC (Rabiner, 1989) du premier ordre (Figure 8) pour modéliser le déroulé de 

l'intervention. Mathématiquement, une CMC est définie par un 5-uplet )( BA,Π,S,O, , où 

))...(( 1 Nss=S  est un jeu fini de N  états, ))...(( 1 Moo=O  est un jeu de M symboles dans un 

vocabulaire, ))(( iπ=Π  sont les probabilités d'états initiales, ))(( ija=A  sont les probabilités de 

transitions et )))((( kob=B i
 les probabilités de sortie. Dans notre approche, les attributs visuels 

détectés, par la phase de classification supervisée qui précède, sont utilisés comme observations pour 

la CMC. Ensuite, les différents paramètres du modèle sont déterminés de façon ad hoc. Enfin, 

l'algorithme de Viterbi (Viterbi, 1969) trouve la séquence d'états la plus probable en sortie. 

 

 
 

Figure 8 - CMC gauche-droite, où chaque état correspond à une étape de la chirurgie 
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Algorithme DTW : L'algorithme DTW, décrit parKeogh et Pazzani (1998), est une méthode permettant 

de classifier une séquence d'images de manière supervisée. Il cherche le chemin optimal entre deux 

séquences de vecteurs caractéristiques X = (x1, x2, …, xN) de taille N et Y = (y1, y2, …, yM) de taille M. 

Ces séquences peuvent être des signaux discrets (séries temporelles) ou, de manière plus générale, des 

séquences de caractéristiques échantillonnées à des points équidistants dans le temps. Pour pouvoir 

comparer chaque chirurgie, une chirurgie moyenne a été créée à partir de la base d'apprentissage. 

Ainsi, chaque nouvelle chirurgie est dans un premier temps traitée pour en extraire les caractéristiques 

visuelles (et créer les signatures images). Ensuite, la séquence des signatures est envoyée à 

l'algorithme DTW pour être comparée avec la chirurgie moyenne. Une fois la synchronisation 

effectuée entre les deux séquences, les phases de la chirurgie moyenne sont transposées de manière 

supervisée à la chirurgie inconnue manipulée. Des contraintes globales (ou fonctions de fenêtrage) 

peuvent aussi être ajoutées à l'algorithme afin de contraindre les chemins possibles de lien. Ainsi, le 

chemin ne peut pas sortir de la fenêtre de contraintes. Pour notre modélisation des chirurgies, le choix 

s'est porté sur le parallélogramme d'Itakura, ce qui permet de conserver notre chemin de lien peu 

éloigné du chemin diagonal. 

 
Validation 

 

Plusieurs aspects du système de reconnaissance furent validés. Premièrement, la segmentation de la 

pupille fut comparée à une segmentation manuelle sur le jeu de données entier. Ensuite, l’approche 

par-sac-de-mots fut optimisée pour les deux classifieurs concernés. Des combinaisons entre différents 

détecteurs et descripteurs de points-clés furent testées (SIFT, SURF, Harris, STAR, etc.), et le nombre 

de mots optimal fut déterminé. De la même façon, la reconnaissance des attributs visuels fut analysée. 

Pour valider ces différents choix de classifieurs, nous avons appliqué la méthode traditionnelle pour 

détecter chaque attribut des 2 jeux de données et effectuer une comparaison de précision de 

reconnaissance. Enfin, le taux de reconnaissance global du système fut calculé. Toutes ces 

expérimentations furent effectuées grâces à des validations croisées.  

 
IV.2 Résultats 

 

Pour la détection de la pupille, une précision de 95 +/- 6% fut trouvée. Pour l’optimisation de 

l’approche par sac-de-mots pour la détection des instruments, la combinaison points SURF + 

descripteurs SURF donna les meilleurs résultats pour un nombre de mots égal à 12.  De la même 

façon, l’optimisation de l’approche par sac-de-mots pour l’aspect globale du cristallin, la combinaison 

points SIFT + descripteurs SURF donna les meilleurs résultats pour un nombre de mots égal à 12. Ces 

différents paramètres furent gardés pour la suite de l’étude.  

La validation des reconnaissances des attributs visuels (Tableau 2) montre de très bon résultats, aux 

alentours de 90% pour les attributs visuels de la chirurgie de l’hypophyse, et aux alentours de 95% 

pour ceux de la chirurgie de la cataracte. Dans l’ensemble, les classifieurs spécifiques donnent de 

meilleurs résultats que le classifieur traditionnel, justifiant leur utilisation dans le cadre de cette étude. 
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Tableau 2 - Précision des reconnaissances des différents attributs visuels, en utilisant les classifieurs 

spécifiques et le classifieur traditionnel. 

 

 
Zoom Rétracteurs 

nasaux 

Présence 

 cloison nasal 

Présence 

compresse 

Classifieur spécifique (%) 88.9 (2.2) 65.2 (8.4) 94.8 (1.3) 87.5 (2.4) 

Classifieur traditionnel (%) X 89.4 (1.1) X 88.3 (1.6) 

 

 

Couleur 

pupille 

Présence 

antiseptique 

Présence 

scalpel 

Présence 

instrument 

implantation 

Aspect 

cristallin 

Présence 

instruments 

Classifieur spécifique (%) 96.2 (3.6) 96.1 (0.7) 96.7 (3.4) 94.6 (1.1) 87.2 (5.4) 84.1 (8.6) 

Classifieur traditionnel (%) 94.1 (4.6) 95.6 (0.4) 88.5 (4.3) X 54.1 (3.6) 58.7 (6.1) 

 
La validation du système complet de reconnaissance (Tableau 3) montre que la reconnaissance des 

phases est moins bonne pour la chirurgie de l’hypophyse que pour la chirurgie de la cataracte. De 
même, l’algorithme DTW semble être plus adapté à ce problème de reconnaissance que l’algorithme 

HMM. Le meilleur taux de reconnaissance est obtenu pour la chirurgie de la cataracte en utilisant 
l’algorithme DTW (94.4%). 

 
Tableau 3 - Précision de reconnaissance des phases pour les deux jeux de données. 

 
 HMM DTW 

Chirurgie de l’hypophyse 90.2 (6.4) 92.7 (4.2) 

Chirurgie de la cataracte 91.4 (5.3) 94.4 (3.1) 

 
Une séquence reconnue par le système, comparée à la séquence réelle est montrée sur la Figure 9, 

pour les deux jeux de données. 
 

 
 

 
 

Figure 9 - Séquence reconnue par notre processus de reconnaissance et séquence réelle pour une vidéo : 

Haut : jeu de donnée n°1   

Bas : jeu de données n°2 
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IV.3 Discussion  

 

Segmentation de l'iris 

 

Le schéma global de reconnaissance a été développé de manière à être applicable à n'importe quel type 

de chirurgie. Cependant, comme chaque chirurgie possède ses propres particularités et 

caractéristiques, il s'avère nécessaire d'effectuer des étapes de prétraitements spécifiques telles que la 

segmentation de la pupille. Cela va ainsi permettre de pouvoir identifier des caractéristiques visuelles 

particulières se trouvant à l'intérieur de l'iris. En utilisant notre méthode basée sur une analyse de 

l'image, la segmentation de la pupille est assez précise. Dans environ 95% des images, la région 

d'intérêt détectée contient en grande partie la pupille. C’est un résultat suffisant, car l’apport de cette 

méthode dans le système global permet d’augmenter la détection des phases. Une plus faible précision 

dans la détection obtenue pour certaines vidéos vient du fait de la présence de rétracteurs dans le 

champ de vue du microscope optique ce qui restreint la partie visible de la pupille. Il existe d'autres 

inconvénients similaires qui abaissent la précision de la détection, par exemple lorsque l'iris est trop 

déformé, lorsque le doigt du chirurgien occulte le champ de vue, lorsque les outils prennent trop de 

place par rapport à l'iris dans le champ de vue. 
 

Détection des outils chirurgicaux 

 

Notre méthode de détection/reconnaissance des outils chirurgicaux offre des résultats prometteurs: 

84,1% de reconnaissance d'un outil chirurgical (sans différenciation de l'outil). C’est un premier 

résultat assez bon pour cette méthode. Son apport dans la détection des phases est réel mais minime 

(amélioration de l’ordre de quelques pourcents). Cependant, cette méthode comporte aussi ses 

inconvénients, principalement au niveau de la détection des composantes connexes (en amont de la 

reconnaissance). En effet, les masques crées sont automatiques et ne prennent pas en compte les types 

d'outils chirurgicaux recherchés, ainsi il arrive que seulement des parties des outils soient 

sélectionnées et non les outils entiers. Cette détection incomplète entraine donc une baisse des 

résultats pour la reconnaissance. De plus, la classe correspondant à l'arrière-plan (autrement dit, une 

composante connexe qui n'est pas un outil) a besoin d'un apprentissage plus conséquent du fait de 

toutes les possibilités qu'elle doit couvrir, ce qui n'est pas optimal car il est difficile de prévoir tous les 

cas possibles. Effectuer un apprentissage pour chaque classe en validation croisée pourrait permettre 

d'avoir plus d'images (plus que les 100 actuelles), ce qui devrait ainsi améliorer les résultats de 

l'algorithme PPV. 

 
Caractéristiques temporelles 

 

En ce qui concerne les méthodes testées pour extraire des caractéristiques temporelles, nous nous 

sommes focalisés sur le flot optique (Beauchemin and Barron, 1995) les points STIP (Laptev and 

Lindeberg, 2006). Bien que montrant des résultats satisfaisants, ces méthodes n'ont pour l'instant pas 

été ajoutées au schéma global. La combinaison entre caractéristiques spatiales et modélisation de série 

temporelle ne permet pas l’ajout de ce type d’information de mouvement. Dans une future version du 

ce système, ces méthodes pourraient néanmoins être utiles pour segmenter des zones en mouvement 

avant la phase de classification des instruments.   
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Analyse de séries temporelles 

 

Combinée avec des techniques de vision par ordinateur, l'analyse en séries temporelles montre de 

très bonnes performances et ouvre la voie pour des futurs travaux sur la reconnaissance de tâches de 

plus haut niveau en chirurgie. L'aspect principal du DTW est qu'il capture l’aspect séquentiel existant 

entre les phases d'une chirurgie, ce qui est bien adapté à notre étude. La valeur de la fonction de coût 

entre deux procédures chirurgicales possédant les mêmes enchainements de phases, mais avec des 

temps passés dans chaque phase différents, sera faible. L'avantage est donc la possibilité de 

synchroniser de manière précise deux procédures chirurgicales en réduisant les différences de temps 

passé. L'inconvénient majeur du DTW va survenir dans le cas où l'enchainement des phases n'est pas 

le même entre deux chirurgies. Dans ces cas, la synchronisation des phases ne se fera pas correctement 

et des erreurs apparaitront. Une autre limitation de l'algorithme DTW est son impossibilité de 

fonctionnement en temps réel car la totalité de la procédure chirurgicale est requise pour déterminer le 

chemin optimal. 

 
De la reconnaissance des phases à la reconnaissance des activités 

 

Comme vu avec ce système, la reconnaissance automatique des phases à partir uniquement des vidéos 

des microscopes chirurgicaux est tout à fait réalisable. Dans le but de pouvoir utiliser ce genre de 

systèmes de reconnaissance au sein d’applications cliniques, le challenge maintenant est de descendre 

d’un niveau de granularité pour détecter les activités de la procédure.  

 

V.  Reconnaissance des activités 
 

Une fois la détection des phases effectuée, on s'est intéressé à la détection des activités d'une chirurgie, 

les activités représentant un niveau de granularité inférieur à celui des phases. Pour cela, il s’avère 

nécessaire d’utiliser de la connaissance à priori en se basant sur la reconnaissance de phases pour 

restreindre le champ de possibilité des activités lors de l’étape de classification. Dans cette partie nous 

nous sommes focalisés sur les procédures de chirurgie de la cataracte. 

 
V.1. Méthodes 

 

Comme vu dans le chapitre présentant les jeux de données, une activité est représentée par un triplet 

du type: <verbe d'action - outil chirurgical – structure anatomique>.  Ici, le type d'outil utilisé et la 

zone d'action sont parmi les informations les plus pertinentes pour identifier l'activité correspondante. 

A l’inverse, le verbe d’action est quasiment impossible à détecter au sein d’une activité, car le 

mouvement associé est quasiment tout le temps identique (mouvement rectiligne dans la vidéo). Nous 

nous sommes donc concentrés sur la détection des outils et sur les structures anatomiques. De plus, 

nous avons intégré à la phase de classification une décomposition hiérarchique de la chirurgie. 

 

Reconnaissance des outils chirurgicaux 

 

Détecter et reconnaitre des outils chirurgicaux peut être relativement complexe du fait de leurs formes 

similaires, des changements d’illuminations, d’orientation, etc. Ici, nous avons proposé d’étendre 

l’approche par sac-de-mots, présentée précédemment, à 7 classes, correspondant à 6 types d’outils 

chirurgicaux et une classe d’arrière-plan. Deux composantes connexes par image furent utilisées, 

correspondant aux possibles outils chirurgicaux.  
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Reconnaissance des structures anatomiques 

 

L’autre information utile à extraire est la structure anatomique. Comme l’information de profondeur 

n’est pas disponible dans les vidéos, 3 zones furent identifiées dans l’image : la zone de la pupille au 

centre de l’image, la zone de l’iris autour de la pupille, et le reste de l’image. Pour la segmentation, 

nous nous sommes basés sur la segmentation de la pupille présentée précédemment. Un cercle d’une 

circonférence de référence correspondant à l’iris  fut calculé de la même façon que pour la pupille et 

ajouté à l’image (Figure 10). En utilisant ces informations de zones, et en connaissant la position 

exacte des différentes ROIs correspondant aux outils chirurgicaux, des pourcentages d’apparitions des 

outils dans chaque zone peuvent être calculés. 

 

 
 

Figure 10 - Illustration des 3 zones: zone 1: pupille, zone 2: iris, zone 3: reste de l’image. 

 
 

Classification 

 

Cette étape va se faire en injectant de la connaissance en mettant en place une décomposition 

hiérarchique (que l’on peut assimiler à une ontologie légère sans relation directe entre éléments). 

Grâce à cette décomposition hiérarchique définissant le lien entre activités et phases, la connaissance 

préalable des phases permet de restreindre les possibilités et de lancer des classifieurs de type 

supervisés (ici PPV) sur un nombre restreint de classes (couples d’activités). L’algorithme DTW fut 

utilisé pour la détection préalable des phases. Les résultats de la classification DTW n'étant pas 

parfaits, il existe un décalage entre la phase reconnue et la phase véritable, que l'on prend en compte 

en ajoutant lors de l’étape de classification les paires d’activités de la phase précédente ainsi que celles 

de la phase suivante. 

 
V.2 Résultats  

 
Tableau 4 - Taux de reconnaissance des activités, spécificité and sensibilité. 

 
 Moyenne (std) Spécificité Sensibilité 

Taux de reconnaissance (%) 64.5 (6.8) 54.9 76.3 

 

Le taux de reconnaissance des activités chirurgicales fut de l’ordre de 64% (Tableau 4). De même, des 

études sur les taux de reconnaissance par activités furent calculés et permirent de s’apercevoir que 

certaines paires d’activités étaient facilement reconnaissables (précision > 95%) quand d’autres étaient 

quasiment impossibles à détecter (précision < 10%). 
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V.3 Discussion  

 

Le choix d'effectuer la reconnaissance des activités en utilisant d'une part des caractéristiques visuelles 

et d'autre part des informations provenant de l'alignement DTW (utilisé pour la reconnaissance des 

phases) semble être opportun. En effet, les résultats préliminaires obtenus de cette manière permettent 

à notre système d'obtenir des taux de bonne reconnaissance des activités de l'ordre de 65%. Même si 

les résultats ne sont pas parfaits, cela permet d'avoir une bonne idée de l'enchainement des activités 

effectuées par le chirurgien au cours de la procédure et ce de manière automatique. 

L'utilisation d'un classifieur basique de type PPV avec des signatures images semble être une 

bonne solution pour effectuer la reconnaissance des activités car les résultats sont encourageants. 

Cependant, les valeurs prises en compte pour créer ces signatures images ne sont pas forcément 

optimales. Utiliser des informations provenant des composantes connexes et donc par extension 

relatives aux outils chirurgicaux manipulés est logique car une activité est directement liée à 

l'utilisation d'un outil. Toutefois, les imperfections liées à notre méthode de reconnaissance des outils 

se répercutent ici et entrainent une baisse des résultats. De plus, créer une seule signature image à 

partir des informations provenant des différentes composantes connexes et de la première passe de 

reconnaissance des phases est une tâche complexe. C'est en partie ce qui explique la limite de notre 

système concernant la reconnaissance automatique des activités. Toutes ces informations sont utiles et 

nécessaires pour l'identification des activités, il faut cependant réfléchir à d'autres manières de les 

mettre ensemble dans une seule signature image. 

VI. Discussion et conclusion 

La première partie de la thèse s’est focalisée sur la reconnaissance automatique des phases 

chirurgicales. L’idée sous-jacente fut de combiner des techniques de vision par ordinateur robustes 

permettant d’extraire des attributs visuels, à une analyse de séries temporelles pour prendre en compte 

l’aspect séquentiel des phases. Premièrement, des attributs visuels pertinents qui permettent de 

discriminer les différentes phases de la chirurgie furent manuellement définis. Cinq classifieurs furent 

implémentés pour reconnaitre ces attributs dans l’image, où chacun de ces cinq classifieurs fut relié à 

un type de caractéristiques à extraire. Les attributs reconnaissables à travers leurs couleurs furent  

extraits avec des histogrammes couleur. Pour les attributs reconnaissables à travers leur forme, deux 

types de classifieurs furent implémentés. Le premier fut un classifieur de Haar pour catégoriser des 

objets de fort contour. Le deuxième fut une approche par sac-de-mots pour détecter des objets, sans 

pour autant arriver à les catégoriser. Les attributs reconnaissables à travers leur texture furent aussi 

appréhendés par une approche par sac-de-mot. Enfin tous les autres attributs ne rentrant pas clairement 

dans un de ces types de caractéristiques, ou encore en associant plusieurs, furent reconnus grâce à un 

classifieur standard mêlant extraction de caractéristiques bas-niveau, sélection de caractéristique et 

classification supervisée. Cette première étape de traitement d’image pur permet de caractériser 

chaque frame de la vidéo de façon statique, et après concaténation des signatures images de créer des 

séries temporelles qui peuvent être ensuite présentées en entrée de système d’analyse de séries 

temporelles. Nous avons implémenté deux de ces méthodes, les chaînes de Markov Cachées et le 

Dynamic time Warping.  

 

La seconde partie de la thèse s’est focalisée sur la reconnaissance automatique des activités 

chirurgicales (tâches bas-niveau). Ce niveau de granularité est formalisé par des triplets < action – 

outil chirurgical – structure anatomique >. Des informations plus précises sur les outils chirurgicaux 
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ainsi que sur les zones d’apparitions de ces outils furent mixées avec les attributs visuels 

précédemment extraits au sein de signatures images plus détaillées. Ensuite, en se basant sur 

l’hypothèse que la plupart des activités apparaissent seulement dans une ou deux phases, une 

décomposition hiérarchique de la procédure fut créée pour faire le lien entre phase et activité. En 

utilisant cette décomposition hiérarchique, les résultats de la classification des phases et les nouvelles 

signatures images, la classification des activités devient possible. Des précisions globales de 

reconnaissance des phases et des activités ont été calculées, en se basant sur deux jeux de données : un 

jeu de données de vidéos de neurochirurgie, et un jeu de données de vidéos de chirurgie 

ophtalmologique. Nous avons obtenus des résultats de l'ordre de 95% pour la reconnaissance des 

phases de la chirurgie et de l'ordre de 65% pour la reconnaissance des activités. Ces résultats sont très 

bons pour la reconnaissance des phases et encourageant en ce qui concerne la reconnaissance des 

activités. 

 

Un des axes principaux de cette thèse fut l’utilisation de vidéos des microscopes chirurgicaux en 

entrée des systèmes de reconnaissance. Comme expliqué par Bouarfa et al. (2010), les informations 

extraites des salles d’opération doivent être discriminantes, facilement contrôlables, invariantes selon 

le chirurgien qui opère et ne pas demander beaucoup de ressources. Les données vidéos issues des 

microscopes réunissent toutes ces contraintes. Elles sont tout d'abord assez discriminantes pour 

pouvoir obtenir des taux de classification de l'ordre de 90% pour la détection des attributs images. La 

performance de cette classification est largement liée à la puissance de discrimination de la base de 

données images. Cette contrainte soulève le problème de l'adaptabilité du système pour les différents 

hôpitaux. Au sein d'un même service, les couleurs des instruments ou les particularités de la scène 

chirurgicale sont les mêmes, mais pour d'autres services hospitaliers, cela peut ne pas être le cas. Par 

exemple, la couleur des tissus utilisés à Rennes peut ne pas être la même que celle d'autres services. La 

solution serait alors d'entrainer une base de données pour chaque service, qui prendrait en compte 

l'environnement local. Un autre problème pourrait se poser avec la variabilité entre les chirurgiens. 

Mais en supposant que l'environnement est le même pour chaque chirurgien au sein d'un même 

service, cette variabilité est réduite au temps de chirurgie, qui ne biaise pas du tout notre modèle. 

Ensuite, les données sont toujours disponibles selon le même format, ce qui facilite l'utilisation qui va 

en être faite derrière. Enfin, l'atout principal de ce projet est l'utilisation du microscope. Cet appareil 

est non seulement déjà installé dans les salles d'opération, mais en plus l'enregistrement n'a pas à être 

contrôlé par une personne pendant l'intervention. Ce type de données est donc une bonne solution pour 

la création de nouveaux systèmes de chirurgie guidée par l'image incluant une connaissance explicite 

et formalisée de l’activité chirurgicale en cours. 

 

Ces systèmes de reconnaissance de tâches chirurgicales, que ce soit au niveau des phases ou au 

niveau des activités, apparaissent comme une progression non négligeable vers la construction de 

systèmes intelligents (autrement dit sensibles au contexte) pour la chirurgie. Dans leurs versions 

actuelles, les systèmes peuvent être utilisés en postopératoire afin d'indexer les vidéos en fin de 

chirurgie et de créer des rapports chirurgicaux pré-remplis. Dans le cadre de l'enseignement, avoir à 

disposition une base de données de vidéos chirurgicales indexées peut être aussi utile et une navigation 

entre les différentes phases et activités des chirurgies pourrait être effectuée. Une des perspectives 

principales de cette thèse est l’utilisation de systèmes équivalents dans les salles d’opération en temps-

réel. Pour le moment, certains algorithmes (DTW par exemple) ne fonctionnent que lorsque la vidéo 

est entièrement terminée, ce qui limite les champs d’application du système. Une des applications 

temps-réel qui pourrait être amenée à voir le jour est l’assistance intra-opératoire, par exemple en 
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permettant en temps réel de savoir quelles informations ont besoin d'être montrées au chirurgien pour 

la tache effectuée. Cela pourrait aussi permettre une meilleure anticipation de possibles évènements 

néfastes permettant d'optimiser la chirurgie et de réduire les dangers pour le patient. Les systèmes de 

reconnaissances basés sur les vidéos des microscopes, que ce soit pour la détection des tâches de haut 

ou bas-niveau, offrent donc de réelles perspectives d’avenir dans le domaine de la CAO. 

 

Références 

 Ahmadi A, Sielhorst T, Stauder R, Horn M, Feussner H, Navab N. Recovery of surgical workflow 

without explicit models. Proc MICCAI, Berlin: Springer. 2007; 420-8. 

 Ahmed N, Natarajan T, Rao KR. Discrete Cosine Transform. IEEE Trans Comp. 1974. 90-3.  

 Bhatia B, Oates T, Xiao Y, Hu P. Real-time identification of operating room state from video. 

AAAI.2007; 1761-6. 

 Beauchemin SS, Barron JL. The computation of optical flow. ACM New York, USA. 1995. 

 Darzi A, Mackay S. Skills assessment of surgeons. Surgery. 2002; 131(2): 121-4.  

 James A, Vieira D, Lo BPL, Darzi A, Yang GZ. Eye-gaze driven surgical workflow segmentation. Proc 

MICCAI. 2007; 110-7. 

 Duda, R.O. and Hart, P.E. Pattern classification and scene analysis. Guyon, John Wiley & Sons. 1973. 

 Hamming, R.W. Coding and Information Theory. Prentice-Hall Inc. 1980. 

 Haralick, RM., Shanmugam, K., Dinstein, I. Textural features for image classification. IEEE Trans. on 

Systems, Man, and Cybernetics. 1973; 3(6): 61-2. 

 Hough VC. Machine Analysis of Bubble Chamber Pictures. Proc Int Conf High Energy Accelerators 

and Instrumentation. 1959. 

 Hu MK. Visual pattern recognition by moment invariants. IRE Trans on Information Theory. 1962; 

8(2): 179-187. 

 Jannin P Morandi X. Surgical models for computer-assisted neurosurgery. Neuroimage. 2007; 37(3): 

783-91. 

 Keogh EJ, Pazzani MJ. An enhanced representation of time series which allows fast and accurate 

classification, clustering and relevance feedback. Prediction of the future: AI approaches to time-series 

problems. 1998; 44-51. 

 Klank U, Padoy N, Feussner H, Navab N. Automatic feature generation in endoscopic images. Int J 

Comput Assist Radiol Surg. 2008; 3(3,4): 331-9. 

 Laptev I, Lindeberg T. Local descriptors for spatio-temporal recognition. Spatial coherence for visual 

motion analysis. 2006. Springer 

 Lin HC, Shafran I, Yuh D, Hager GD. Towards automatic skill evaluation: Detection and segmentation 

of robot-assisted surgical motions. Computer Aided Surgery. 2006; 11(5): 220-30. 

 Lo B, Darzi A, Yang G. Episode Classification for the Analysis of Tissue-Instrument Interaction with 

Multiple Visual Cues. International Conference on Medical Image Computing and Computer-Assisted 

Intervention. 2003. 

 Nara A, Izumi K, Iseki H, Suzuki T, Nambu K, Sakurai Y. Surgical workflow monitoring based on 

trajectory data mining. New frontiers in Artificial Intelligence. 2011; 6797: 283-91. 

 Neumuth T, Trantakis C, Eckhardt F, Dengl M, Meixensberger J, Burgert O. Supporting the analysis of 

inter-vention courses with surgical process models on the example of fourteen microsurgical lumbar 

discectomies. Int J Comput Assisted Radiol Surg. 2007; 2(1): 436-8. 

 Padoy N, Horn M, Feussner H, Berger M, Navab N. Recovery of surgical workflow: a model-based 

approach. Int J Comput Assisted Radiol Surg. 2007; 2(1): 481-2. 

http://portal.acm.org/ft_gateway.cfm?id=212141&type=pdf&coll=GUIDE&dl=GUIDE&CFID=72158298&CFTOKEN=85078203


 

 168 

 Rabiner LR. A tutorial on Hidden Markov Models and selected applications in speech recognition, Proc 

of IEEE. 1989; 77(2). 

 Speidel S, Sudra G, Senemaud J, Drentschew M, Müller-stich BP, Gun C, Dillmann R. Situation 

modelling and situation recognition for a context-aware augmented reality system. Progression in 

biomedical optics and imaging. 2008; 9(1): 35. 

 Smeulders AW, Worrin M, Santini S, Gupta A, Jain R. Content-based image retrieval at the end of the 

early years. IEEE Trans on pattern analysis and machine learning intelligence. 2000; 22(12): 1349-80. 

 Xiao Y, Hu P, Hu H, Ho D, Dexter F, Mackenzie CF, Seagull FJ. An algorithm for processing vital sign 

monitoring data to remotely identify operating room occupancy in real-time. Anesth Analg, 2005; 

101(3): 823-2.  

 Viterbi A. Errors bounds for convolutional codes. IEEE TIT. 1967; 13(2): 260-9. 

 





 

 170 

 

 
 
 

 

 

 


