INFLUENCE OF MECHANICAL AND GEOMETRICAL PARAMETERS ON THE STATIC BEHAVIOR OF A VIOLIN BOW IN PLAYING SITUATION

Frédéric Ablitzer

Laboratoire d'Acoustique de l'Université du Maine - UMR CNRS 6613

PhD defence Le Mans. France – December 5th, 2011

Examining committee

A. Askenfelt | KTH, Stockholm (Examiner)
R. Caussé | IRCAM, Paris (Reviewer)
A. Chaigne | ENSTA ParisTech, Palaiseau (Chairman)
G. Chevallier | SUPMÉCA, Saint-Ouen (Examiner)

- B. Cochelin | LMA, Marseille (Reviewer)
- J.P. Dalmont | LAUM, Le Mans (Supervisor)
- N. Dauchez | SUPMÉCA, Saint-Ouen (Supervisor)
- N. Poidevin | Bow maker, Dinan (Invited)

Paganini's 24th Caprice (1819) played by Alexander Markov

Paganini's 24th Caprice (1819) played by Alexander Markov

Evolution of the bow

$\bullet\,$ lengthening of the stick

- lengthening of the stick
- development of a head

- lengthening of the stick
- development of a head
- mechanism to adjust hair tension

- lengthening of the stick
- development of a head
- mechanism to adjust hair tension
- inversion of the curvature

The modern bow

Almost the same bow for 200 years

The modern bow

Almost the same bow for 200 years

François-Xavier Tourte (1747-1835)

The modern bow

Almost the same bow for 200 years

- Pernambuco wood
- standardized design

François-Xavier Tourte (1747-1835)

The modern bow

Almost the same bow for 200 years

- Pernambuco wood
- standardized design

François-Xavier Tourte (1747-1835)

The modern bow

Almost the same bow for 200 years

- Pernambuco wood
- standardized design

François-Xavier Tourte (1747-1835)

An achieved compromise

Why study the bow?

Why study the bow?

• Little scientific studies on the bow

- Little scientific studies on the bow
- Questions from bow makers about the physics behind the bow during "Journées Facture Instrumentale et Sciences" (ITEMM, Le Mans)

Why study the bow?

- Little scientific studies on the bow
- Questions from bow makers about the physics behind the bow during "Journées Facture Instrumentale et Sciences" (ITEMM, Le Mans)
- Pernambuco listed as endengered species since 2007 in CITES, Appendix II

Why study the bow?

- Little scientific studies on the bow
- Questions from bow makers about the physics behind the bow during "Journées Facture Instrumentale et Sciences" (ITEMM, Le Mans)
- Pernambuco listed as endengered species since 2007 in CITES, Appendix II
- Supply makers with dedicated characterization and simulation tools within the project PAFI supported by ANR (2009-2012) ("Plateforme d'Aide à la Facture Instrumentale")

3 points of view

3 points of view

The player

What does he need?

3 points of view

The player

What does he need?

The bow maker

How does he meet the player's demand?

3 points of view

The player

What does he need?

The bow maker

How does he meet the player's demand?

The scientist

How can he help the maker?

What does the player need?

What does the player need?

playability

= allows to play a variety of bow strokes

What does the player need?

playability

= allows to play a variety of bow strokes

• tonal qualities

= allows to achieve a good tone

What does the player need?

playability

= allows to play a variety of bow strokes

tonal qualities

= allows to achieve a good tone

- aesthetics
- price

•••

How does the maker meet the player's demand?

How does the maker meet the player's demand?

wood

- density
- elasticity
- damping

How does the maker meet the player's demand?

wood

tapering

- elasticity
- damping

 $\space{-1.5ex} \downarrow$ distribution of mass and stiffness

Bow maker's point of view

How does the maker meet the player's demand?

wood

- density
- elasticity
- damping

tapering

distribution of mass and stiffness

camber

↓ adjustment of playing and tonal qualities Making and adjustment mainly empirical...

Making and adjustment mainly empirical...

...sometimes combined with a scientific approach

measuring stiffness

Lucchimeter

Lutherie Tools

Scientist's point of view

How to characterize or model a bow?

Scientist's point of view

How to characterize or model a bow?

For the acoustician: bow = vibrating structure

Scientist's point of view

How to characterize or model a bow?

For the acoustician: bow = vibrating structure

eigenmodes (modal analysis, FE model)

[Bissinger 1993, Caussé et al. 2001, Pickering 2002, Ravina et al. 2008]

Scientist's point of view

How to characterize or model a bow?

For the acoustician: bow = vibrating structure

- eigenmodes (modal analysis, FE model) [Bissinger 1993, Caussé et al. 2001, Pickering 2002, Ravina et al. 2008]
- admittance presented to the string

[Schumacher 1975, Askenfelt 1995]

Scientist's point of view

How to characterize or model a bow?

For the acoustician: bow = vibrating structure

- eigenmodes (modal analysis, FE model) [Bissinger 1993, Caussé et al. 2001, Pickering 2002, Ravina et al. 2008]
- admittance presented to the string [Schumacher 1975, Askenfelt 1995]
- vibrations during playing [Askenfelt 1993]

 \rightarrow may help to better understand and model the bow/string interaction

however, difficult to relate to bow maker's adjustment and player's perception

Axes of investigation

• offer a certain compliance

• how to control compliance?

Results

- Static behavior
- Stability

Playing tests

Introduction

Modelling

2 Experimental characterization

Results

• Static behavior

Stability

Conclusion

Modelling

bow without hair tension

Modelling

bow without hair tension

Assumptions

• stick = Euler-Bernoulli beam

Modelling

bow without hair tension

- stick = Euler-Bernoulli beam
- stick oriented along the grain of the wood: longitudinal Young's modulus is considered

Modelling

↓ tightened at playing tension *T*₀ **prestressed state**

bow without hair tension

- stick = Euler-Bernoulli beam
- stick oriented along the grain of the wood: longitudinal Young's modulus is considered

Modelling

bow without hair tension ↓ tightened at playing tension T₀ prestressed state ↓ loaded by a force F on the hair playing situation

- stick = Euler-Bernoulli beam
- stick oriented along the grain of the wood: longitudinal Young's modulus is considered

Modelling

bow without hair tension ↓ tightened at playing tension T₀ prestressed state ↓ loaded by a force F on the hair playing situation

- stick = Euler-Bernoulli beam
- stick oriented along the grain of the wood: longitudinal Young's modulus is considered
- hair has longitudinal stiffness

Modelling

bow without hair tension ↓ tightened at playing tension T₀ prestressed state ↓ loaded by a force F on the hair playing situation

- stick = Euler-Bernoulli beam
- stick oriented along the grain of the wood: longitudinal Young's modulus is considered
- hair has longitudinal stiffness
- material is elastic

Modelling

bow without hair tension

↓ **(i)**

tightened at playing tension T_0 prestressed state

↓ (ii)

loaded by a force *F* on the hair **playing situation**

- stick = Euler-Bernoulli beam
- stick oriented along the grain of the wood: longitudinal Young's modulus is considered
- hair has longitudinal stiffness
- material is elastic
- \bullet (i) and (ii) are large transformations \rightarrow geometric non-linear model

Corotationnal approach: Illustration

Cantilever beam subject to end moment

Corotationnal approach: Illustration

Cantilever beam subject to end moment

Corotationnal approach: Illustration

Cantilever beam subject to end moment

Local deformation (small)

Corotationnal approach: Illustration

Rigid body-motion (large)

Cantilever beam subject to end moment

Local deformation (small)

Finite element model of the stick

- 2D Euler-Bernoulli beam elements, corotational formulation
- external load : force $\mathbf{T} = \begin{bmatrix} T_x & T_y \end{bmatrix}^{\mathsf{T}}$
 - \rightarrow follower force

 \rightarrow amplitude depends on displacements

Finite element model of the stick

- 2D Euler-Bernoulli beam elements, corotational formulation
- external load : force $\mathbf{T} = \begin{bmatrix} T_x & T_y \end{bmatrix}^{\mathsf{T}}$ \rightarrow follower force

 \rightarrow amplitude depends on

displacements

Model of the hair

- equivalent single hair
- compliance per unit length c_h
- relationship between **T** and playing force F_{γ} at relative abscissa γ

•
$$T_y = \gamma F_y$$

• $f(T_x, F_y, L_h, \cdots) = 0$

Finite element model of the stick

- 2D Euler-Bernoulli beam elements, corotational formulation
- external load : force $\mathbf{T} = \begin{bmatrix} T_x & T_y \end{bmatrix}^{\mathsf{T}}$ \rightarrow follower force

 \rightarrow amplitude depends on displacements

Model of the hair

- equivalent single hair
- compliance per unit length c_h
- relationship between **T** and playing force F_{γ} at relative abscissa γ

•
$$T_y = \gamma F_y$$

• $f(T_x, F_y, L_h, \cdots) = 0$

2D model

Finite element model of the stick

- 2D Euler-Bernoulli beam elements, corotational formulation
- external load : force $\mathbf{T} = \begin{bmatrix} T_x & T_y \end{bmatrix}^{\mathsf{T}}$ \rightarrow follower force
 - \rightarrow follower force

 \rightarrow amplitude depends on displacements

Model of the hair

- equivalent single hair
- compliance per unit length c_h
- relationship between **T** and playing force $F_{\rm v}$ at relative abscissa γ

•
$$T_y = \gamma F_y$$

• $f(T_x, F_y, L_h, \cdots) = 0$

- player frequently tilts the bow
 - \rightarrow lateral bending of the stick during playing

- player frequently tilts the bow
 - \rightarrow lateral bending of the stick during playing
- bow maker adjusts the lateral compliance of the bow (tapering, camber)

- player frequently tilts the bow
 - \rightarrow lateral bending of the stick during playing
- bow maker adjusts the lateral compliance of the bow (tapering, camber)

Results

• Static behavior

Stability

Conclusion

Experimental characterization

Measurement of bow shape

Method to determine the shape of the bow in a given state Example: determination of camber

Experimental characterization

Measurement of bow shape

Method to determine the shape of the bow in a given state Example: determination of camber

• picture of the bow

Experimental characterization

Measurement of bow shape

Method to determine the shape of the bow in a given state Example: determination of camber

- picture of the bow
- detect lower and upper edges along the bow

Measurement of bow shape

Method to determine the shape of the bow in a given state Example: determination of camber

- picture of the bow
- detect lower and upper edges along the bow
- approximate neutral curve with polynom of appropriate order

Procedure in 4 steps

Geometry

Procedure in 4 steps

Tapering

• measurement with digital caliper

Procedure in 4 steps

Tapering

measurement with digital caliper

Camber

image processing

Determination of bow properties: Step 2

Procedure in 4 steps

Geometry

@ Young's modulus of the stick E

bow without hair tension

Procedure in 4 steps

@ Young's modulus of the stick E

- bow without hair tension
- force F_z at the tip

Procedure in 4 steps

@ Young's modulus of the stick E

- bow without hair tension
- force F_z at the tip
- find *E* that minimizes difference between measured and simulated deformed shape

comparison in the hair reference frame \downarrow elimination of rigid body motion

$$E = 26.7 \pm 0.7$$
 GPa (3%)

Determination of bow properties: Step 3

Procedure in 4 steps

Geometry

 $\ensuremath{\mathfrak{O}}$ Young's modulus of the stick E

\bullet Hair tension T_0

• bow without hair tension

Procedure in 4 steps

@ Young's modulus of the stick E

\odot Hair tension T_0

- bow without hair tension
- tighten the bow

Procedure in 4 steps

@ Young's modulus of the stick E

\odot Hair tension T_0

- bow without hair tension
- tighten the bow
- find T₀ that minimizes difference between measured and simulated deformed shape

$$T_0 = 66.7 \pm 3.9$$
 N (6%)

Determination of bow properties: Step 4

Procedure in 4 steps

Geometry

 $\ensuremath{\mathfrak{O}}$ Young's modulus of the stick E

\bullet Hair tension T_0

4 Stiffness of the hair E_h

bow under hair tension

Procedure in 4 steps

 \boldsymbol{O} Young's modulus of the stick \boldsymbol{E}

\bullet Hair tension T_0

• Stiffness of the hair E_h

- bow under hair tension
- force F_z at the tip

Procedure in 4 steps

@ Young's modulus of the stick E

Hair tension T₀

• Stiffness of the hair E_h

- bow under hair tension
- force F_z at the tip
- find *E_h* that minimizes difference between measured and simulated deformed shape

$$E_h = 7.2 \pm 1.7$$
 GPa (24%)

Validation: Measurement of compliance

Distribution of compliance along the bow? \rightarrow simultaneous measurement of force and deflection at several abscissas

$$\gamma = 0$$
 $\gamma = 1$

Validation: Measurement of compliance

Distribution of compliance along the bow? \rightarrow simultaneous measurement of force and deflection at several abscissas

Validation: Measurement of compliance

Distribution of compliance along the bow? \rightarrow simultaneous measurement of force and deflection at several abscissas

- compliance $c = \frac{\partial u}{\partial F}$ at F = 1 N
- measurement in vertical and lateral directions

Comparison between measured and simulated compliance

Comparison between measured and simulated compliance

Comparison between measured and simulated compliance

Good agreement between numerical and experimental results \rightarrow predictive model

[Ablitzer, Dauchez, Dalmont, submitted to Acta Acustica]

- Static behavior
- Stability

Introduction

2) Experimental characterization

Conclusion

Results Static behavior

Adjustment of camber allows to reach another hair tension for the same distance

Compliance of the tightened bow

Compliance of the tightened bow

Two contributions:

- compliance of the hair
- compliance of the stick

Two contributions:

- compliance of the hair
- compliance of the stick

- hair length L₀
- hair tension T₀
- stiffness of the stick at the tip K_b

Two contributions:

- compliance of the hair
- compliance of the stick

- hair length L₀
- hair tension T₀
- stiffness of the stick at the tip K_b

Vertical compliance along the bow $c = \frac{\partial u}{\partial F}$ $F_{z} = 0.5 \text{ N}$ 25 stick Pitteroff's model 20 compliance (mm/N) 15 10 5 0 0.2 0.4 0.6 0.8

 $\gamma = 0$ $\gamma = 1$

relative abscissa γ

Two contributions:

- compliance of the hair
- compliance of the stick

- hair length L₀
- hair tension T₀
- stiffness of the stick at the tip K_b

Two contributions:

- compliance of the hair
- compliance of the stick

- hair length L₀
- hair tension T₀
- stiffness of the stick at the tip K_b

Vertical compliance along the bow $c = \frac{\partial u}{\partial F}$ $F_z = 1.5 \text{ N}$

Two contributions:

- compliance of the hair
- compliance of the stick

- hair length L₀
- hair tension T₀
- stiffness of the stick at the tip K_b

Results Static behavior

Compliance of the tightened bow: Non-linearity

Vertical compliance along the bow $c = \frac{\partial u}{\partial F}$

Consider compliance at low forces (0 N) and high forces (1.5 N)

Results Static behavior

Compliance of the tightened bow: Non-linearity

Vertical compliance along the bow $c = \frac{\partial u}{\partial F}$

Consider compliance at low forces (0 N) and high forces (1.5 N)

- near the middle
 - \rightarrow stiffening behavior
- near the tip
 - \rightarrow softening behavior

Compliance of the tightened bow: Effect of hair tension and camber

Compliance of the tightened bow: Effect of hair tension and camber

Results Static behavior

Compliance of the tightened bow: Effect of hair tension and camber

Results Static behavior

Compliance of the tightened bow: Effect of hair tension and camber

[Ablitzer, Dalmont, Dauchez, J. Acoust. Soc. Am. 123 (2012)]

Frédéric Ablitzer (PhD defence)

Bow frequently tilted in playing (up to about 30°)

Effect of bow tilt

Effect of bow tilt

Lateral compliance is higher than vertical compliance

Frédéric Ablitzer (PhD defence)

Université du Maine

Effect of bow tilt

Lateral compliance is higher than vertical compliance

Frédéric Ablitzer (PhD defence)

Université du Maine

Results

Static behavior

Stability of the bow

Load case

Stability of the bow

0 without perturbation force (F_z only)

Load case

 Θ with perturbation force $(F_z + \varepsilon F_y)$

Stability of the bow

0 without perturbation force (F_z only)

Load case

The bow may be unstable in two ways:

- limit point instability (snap-through)
- bifurcation instability (lateral buckling)

 $\boldsymbol{\Theta}$ with perturbation force $(\boldsymbol{F}_z + \varepsilon \boldsymbol{F}_y)$

Critical buckling loads

Buckling occurs

- when $T = T_c$ critical hair tension
- when $F_z = F_c$ critical playing force

Influence of hair tension

Influence of hair tension

Results Stability

Influence of camber

Results Stability

Influence of camber

Introduction

1 Modelling

2) Experimental characterization

Results Static behavior

Stability

Conclusion

Idea: vary only 2 parameters: camber and hair tension

Idea: vary only 2 parameters: camber and hair tension

O Selection of 3 bows

- same properties (stiffness, mass, center of inertia...)
- same aspect
- high-quality bows in Pernambuco after Tourte model

Idea: vary only 2 parameters: camber and hair tension

- **O** Selection of 3 bows
 - same properties (stiffness, mass, center of inertia...)
 - same aspect
 - high-quality bows in Pernambuco after Tourte model

O Adjustment of the bows

- one bow with more camber ($\kappa = -3 \text{ mm}$)
- one bow with less camber ($\kappa = 2 \text{ mm}$)

selection and adjustment by bow maker Jean-Grunberger

Idea: vary only 2 parameters: camber and hair tension

- O Selection of 3 bows
 - same properties (stiffness, mass, center of inertia...)
 - same aspect
 - high-quality bows in Pernambuco after Tourte model

O Adjustment of the bows

- one bow with more camber ($\kappa = -3 \text{ mm}$)
- one bow with less camber ($\kappa = 2 \text{ mm}$)

O Characterization of the bows

selection and adjustment by bow maker Jean-Grunberger

Selection and adjustment of bows

Idea: vary only 2 parameters: camber and hair tension

- O Selection of 3 bows
 - same properties (stiffness, mass, center of inertia...)
 - same aspect
 - high-quality bows in Pernambuco after Tourte model

2 Adjustment of the bows

- one bow with more camber ($\kappa = -3 \text{ mm}$)
- one bow with less camber ($\kappa = 2 \text{ mm}$)

- camber + - reference - camber -

selection and adjustment by bow maker Jean-Grunberger

O Characterization of the bows

Expert 2

Stability (unstable ↔ stable) bow doesn't tremble on long notes

● *Stability* (unstable ↔ stable) bow doesn't tremble on long notes

 Attack (consonants) (few ←→ many) timbre of transients

- *Stability* (unstable ↔ stable) bow doesn't tremble on long notes
- Attack (consonants) (few ↔ many) timbre of transients
- *Playing at the frog* (difficult ↔ easy) ease to play at the frog
- String crossings (difficult ↔ easy) ease to make smooth string crossings

- *Stability* (unstable ↔ stable) bow doesn't tremble on long notes
- Attack (consonants) (few ↔ many) timbre of transients
- *Playing at the frog* (difficult ↔ easy) ease to play at the frog
- String crossings (difficult ↔ easy) ease to make smooth string crossings

- *Stability* (unstable ↔ stable) bow doesn't tremble on long notes
- *Spectrum* (less rich ↔ more rich) timbre on long notes
- **Reactivity** (slow \leftrightarrow rapid) time necessary to produce the tone
- Spring (little \leftrightarrow much) ability to separate notes

- Stability (unstable ↔ stable) bow doesn't tremble on long notes
- Attack (consonants) (few ↔ many) timbre of transients
- Playing at the frog (difficult ↔ easy) ease to play at the frog
- String crossings (difficult ↔ easy) ease to make smooth string crossings

- Stability (unstable ↔ stable) bow doesn't tremble on long notes
- **Spectrum** (less rich ↔ more rich) timbre on long notes
- *Reactivity* (slow ↔ rapid) time necessary to produce the tone
- Spring (little \leftrightarrow much) ability to separate notes
- descriptors relative to playability and tonal qualities

- **Stability** (unstable ↔ stable) bow doesn't tremble on long notes
- Attack (consonants) (few ↔ many) timbre of transients
- Playing at the frog (difficult ↔ easy) ease to play at the frog
- String crossings (difficult ↔ easy) ease to make smooth string crossings

- Stability (unstable \leftrightarrow stable) bow doesn't tremble on long notes
- **Spectrum** (less rich ←→ more rich) timbre on long notes

- Spring (little ↔ much) ability to separate notes
- descriptors relative to playability and tonal qualities
- 2 descriptors common to both experts: stability and attack

Pair-wise comparison task

For each configuration to be tested

play & compare against reference bow

evaluate

		Enni V
	205	
inshike.		• _364k
cana data	the loss returns	
مند مند	-0-0-0-0-0-0	
case:0	•-[]-[]-[]-[]-[X]-[]	l+ ai da
man and		
one:_Alt	hit a gale	
-bł		
116w	ant	
	•0000	* .housey
Connectures		

Pair-wise comparison task

For each configuration to be tested

Pair-wise comparison task

For each configuration to be tested

Significant correlations

 playing at the frog | attack (subjective – subjective)

Significant correlations

- playing at the frog | attack (subjective – subjective)
- hair tension | reactivity (objective – subjective)

Significant correlations

- playing at the frog | attack (subjective - subjective)
- hair tension | reactivity ۲ (objective - subjective)
- hair tension | attack ۹ (objective - subjective)

- playing at the frog | attack (subjective – subjective)
- hair tension | reactivity (objective - subjective)
- hair tension | attack (objective – subjective) \rightarrow result common to both players

Playing tests: Conclusions

✓ Influence of hair tension on player's peception

reactivity

 \nearrow with hair tension

attacks

Playing tests: Conclusions

✓ Influence of hair tension on player's peception

• reactivity

 \nearrow with hair tension

attacks

X Stability

• instability = trembling bow? \rightarrow find relevant dynamic property

Playing tests: Conclusions

✓ Influence of hair tension on player's peception

reactivity

 \nearrow with hair tension

attacks

X Stability

- instability = trembling bow? \rightarrow find relevant dynamic property
- instability = buckling? \rightarrow tests with bows of lower stiffness

Playing tests: Conclusions

✓ Influence of hair tension on player's peception

reactivity

 \nearrow with hair tension

attacks

X Stability

- instability = trembling bow? \rightarrow find relevant dynamic property
- instability = buckling? \rightarrow tests with bows of lower stiffness

Characterization of bows for the test

differences in bow properties
state in which the bow is played

Introduction

Modelling

2 Experimental characterization

Results

• Static behavior

Stability

Playing tests

Conclusion

Conclusion

Conclusion

• static behavior of the bow strongly depends on prestress

Conclusion

- static behavior of the bow strongly depends on prestress
- bow played near its limit of stability

Conclusion

- static behavior of the bow strongly depends on prestress
- bow played near its limit of stability
- camber has a strong influence on

playing hair tension compliance limit of stability

Conclusion

- static behavior of the bow strongly depends on prestress
- bow played near its limit of stability
- camber has a strong influence on \overline{A}

playing hair tension \nearrow compliance \nearrow limit of stability \searrow

NUMERICAL MODELS + PROCEDURE TO DETERMINE BOW PROPERTIES predictive using affordable and easy-to-use equipment

Perspectives

NUMERICAL MODELS + PROCEDURE TO DETERMINE BOW PROPERTIES predictive using affordable and easy-to-use equipment

Assistance to bow making

- Characterization in workshop
- Prediction upstream from fabrication or adjustment
- Looking for alternative woods

Perspectives

NUMERICAL MODELS + PROCEDURE TO DETERMINE BOW PROPERTIES predictive using affordable and easy-to-use equipment

Assistance to bow making

- Characterization in workshop
- Prediction upstream from fabrication or adjustment
- Looking for alternative woods

Organology

- Categorization of bows in museums
- Information on bows in playing situation

Perspectives

Perspectives

How do they affect playability?

- Perceptive studies
 +
- Measurement of gesture

Perspectives

Dynamic properties How do they affect playability? **Dynamic properties** How do they affect the tone?

- Perceptive studies
 +
- Measurement of gesture

INFLUENCE OF MECHANICAL AND GEOMETRICAL PARAMETERS ON THE STATIC BEHAVIOR OF A VIOLIN BOW IN PLAYING SITUATION

Frédéric Ablitzer

Laboratoire d'Acoustique de l'Université du Maine - UMR CNRS 6613

PhD defence Le Mans. France – December 5th, 2011

Examining committee

A. Askenfelt | KTH, Stockholm (Examiner)
R. Caussé | IRCAM, Paris (Reviewer)
A. Chaigne | ENSTA ParisTech, Palaiseau (Chairman)
G. Chevallier | SUPMÉCA, Saint-Ouen (Examiner)

- J.P. Dalmont | LAUM, Le Mans (Supervisor)
- N. Dauchez | SUPMÉCA, Saint-Ouen (Supervisor)
- N. Poidevin | Bow maker, Dinan (Invited)

