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M. VILOTTE Jean-Pierre IPG Paris
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“The test of science is its ability to predict.”
Richard Feynman

“It’s hard to make predictions, especially about the Future”
variously attributed to Yogi Berra, Neils Bohr or Mark Twain





Abstract

Ice sheets are amongst the main contributors to sea level rise. They are dynamic systems;
they gain mass by snow accumulation, and lose it by melting at the ice-ocean interface,
surface melting and iceberg calving at the margins. Observations over the last three decades
have shown that the Greenland and Antarctic ice sheets have been losing more mass than
they gain. How the ice sheets respond to this negative mass imbalance has become today one
of the most urgent questions in understanding the implications of global climate change. The
Intergovernmental Panel on Climate Change (IPCC) has indeed identified the contribution
of the ice sheets as a key uncertainty in sea level rise projections. Numerical modeling is the
only effective way of addressing this problem. Yet, modeling ice sheet flow at the scale of
Greenland and Antarctica remains scientifically and technically very challenging.

This thesis focuses on two major aspects of improving ice sheet numerical models. The
first consists of determining non-observable ice properties using inverse methods. Some
parameters, such as basal friction or ice shelf hardness, are difficult to measure and must be
inferred from remote sensing observations. Inversions are developed here for three ice flow
models of increasing complexity: MacAyeal/Morland’s shelfy-stream model, Blatter/Pattyn’s
higher order model and the full-Stokes model. The inferred parameters are then used to
initialize large-scale ice sheet models and to determine the minimum level of complexity
required to capture ice dynamics correctly.

The second aspect addressed in this work is the improvement of dataset consistency for
ice sheet modeling. Available datasets are often collected at different epochs and at varying
spatial resolutions, making them not readily usable for numerical simulations. We devise here
an algorithm based on the conservation of mass principle and inverse methods to construct
ice thicknesses that are consistent with velocity measurements. This approach therefore
avoids the artificial mass redistributions that occur in existing algorithms for mapping ice
thickness, hence considerably improving ice sheet model initialization.

The advances made here are important steps towards the ultimate objective of accurate
characterization of ice sheets and the realistic modeling of their evolution.

Key-words: glaciology, glaciers, ice caps, ice sheet dynamics, numerical modeling, inverse
methods, PDE-constrained optimization, mass conservation.





Résumé

Les calottes polaires, ou inlandsis, sont parmi les principaux contributeurs à la montée des
océans. Ces systèmes dynamiques gagnent de la masse par accumulation de neige, et en
perdent par fonte au contact de l’océan et à la surface, ainsi que par le vêlage d’icebergs.
Depuis plus de trois décennies, les observations ont montré que les calottes polaires de
l’Antarctique et du Groenland perdent plus de masse qu’ils n’en gagnent. L’évolution des
glaciers suite à ce déséquilibre de masse est devenue aujourd’hui l’une des problématiques
les plus importantes des implications du changement climatique. Le Groupe d’experts
intergouvernemental sur l’évolution du climat (GIEC) a identifié la contribution des glaciers
comme l’un des facteurs clés d’incertitude de prédiction de l’élévation du niveau des mers. La
modélisation numérique est le seul outil efficace pour répondre à cette question. Cependant,
modéliser l’écoulement de glace à l’échelle du Groenland ou de l’Antarctique représente un
défi à la fois scientifique et technique.

Deux aspects clés de l’amélioration de la modélisation des glaciers sont abordés dans
cette thèse. Le premier consiste à déterminer certaines propriétés non mesurables de la glace
par méthode inverse. La friction ou la rigidité des barrières de glace, sont des paramètres qui
ne peuvent être mesurés directement et doivent donc être déduits à partir d’observations par
télédétection. Nous appliquons ici ces inversions pour trois modèles d’écoulement de glace
de complexité croissante: le modèle bidimensionnel de MacAyeal/Morland, le modèle dit
d’ordre supérieur de Blatter/Pattyn et le modèle full-Stokes. Les propriétés ainsi calculées
sont ensuite utilisées pour initialiser des modèles grande-échelle et pour déterminer le degré
de complexité minimum nécessaire pour reproduire correctement la dynamique des glaciers.

Le second aspect abordé dans ce travail est l’amélioration de la consistance des données
pour la modélisation numérique. Les données disponibles sont souvent issues de campagnes
de mesures s’étalant sur plusieurs années et dont résolutions spatiales varient, ce qui rend leur
utilisation pour des simulations numériques difficiles. Nous présentons ici un algorithme basé
sur la conservation de la masse et les méthodes inverses pour construire des épaisseurs de glace
qui sont consistantes avec les mesures de vitesse. Cette approche empêche la redistribution
artificielle de masse qu’engendrent généralement les autres méthodes de cartographie de
l’épaisseur de glace, ce qui améliore considérablement l’initialisation des modèles découlement
de glace.

Les avancées présentées ici sont des étapes importantes afin de mieux caractériser de
manière précise les glaciers et de modéliser leur évolution de manière réaliste.

Mots-clés: glaciologie, glaciers, calottes polaires, modélisation numérique, méthodes in-
verses, optimisation sous contraintes d’EDP, conservation de la masse.
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accepted almost five years ago to take me in his team for an internship. With his enthusiasm
and his inspiration, he makes Glaciology the most fascinating field of Earth sciences.

This thesis would not have been possible without my co-advisor Denis Aubry, I thank
him for supervising this work, for his thoughtful advice and guidance along these years
despite the geographical distance. My thanks also go to Hachmi Ben Dhia who has always
been enthusiastic about this work.

I would like to thank my colleagues, Éric Larour, Hélène Seroussi and Ala Khazendar,
for their superb partnership and excellent teamwork. Éric Larour took care of me since
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Notations

Matrices, Vectors and scalars

Scalar variables are generally written in lower case letters, matrices in upper case bold letters
and vectors in italic bold letters. The components of a vector or a matrix are written in
lower case. For example: the components of a vector X with regards to some particular
coordinate system are written xi and those of a matrix A are aij .

We use ex, ey and ez for the three unit vectors that define a Cartesian coordinate system.
Note that the suffix relates to the individual vectors and not the vector components.

Set symbols

∂Ω : Bounding surface of the open Ω
Lp (Ω) : Lebesgue space of p-power-integrable functions defined on Ω
L2 (Ω) : Lebesgue space of square-integrable functions defined on Ω
H1 (Ω) : Sobolev space W1,2 (Ω)
Mm,n : Set of m× n matrices with entries in R
Mn : Set of square matrices with entries in R of dimension n

Algebraic symbols

· : Euclidian space inner product
〈·, ·〉 : Inner product of an inner product space V
〈·, ·〉V′,V : Duality brackets of a space V and its dual V ′
I : Identity matrix
AT : Transpose of a matrix A
A−1 : Inverse of a regular square matrix A
A−T : Transpose of the inverse of a regular square matrix A
Tr (A) : Trace of a square matrix A
aij : Component of line i and column j of matrix A
Ae : Effective value or second invariant of a square matrix A
xi : Component i of vector X



Functional symbols

∇f : Gradient of the scalar function f
∇ · v : Divergence of the vector function v
∇ · σ : Vector divergence of the tensor σ
f |Ω : Restriction of the function f to the domain Ω

Glacier geometry

b : Glacier’s lower surface z-coordinate (m)
s : Glacier’s upper surface z-coordinate (m)
H : Glacier’s Thickness (m)

Glacier

till

Bedrock

H (x, y)

Sea
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z
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Figure 1: Schematic cross section of a glacier

Physical parameters and constants

B : Glen’s ice hardness (Pa a1/n)
c : Ice specific heat capacity (2093 J kg-1 K-1)
cpM : Mixed layer specific heat (3974 J kg-1 K-1)
g : Acceleration due to gravity (9.81 m s-1)
g : Acceleration due to gravity norm (9.81 m s-1)
G : Geothermal heat flux (∼0.05 W m-2)

k : Basal drag parameter (Pa
1−r

2 s
s
2 m−

s
2 )

kth : Ice thermal conductivity (2.4 W m-1 K-1)
L : Ice specific latent heat of fusion (3.34 × 105 J kg-1 3.34 × 105)

Ṁb : Basal melting rate (m a-1 ice equivalent)

Ṁs : Surface mass balance (m a-1 ice equivalent)



n : Glen’s flow law exponent (dimensionless)
Tpmp : Pressure melting point (K)
v : Ice velocity vector (m s-1)
vx, vy, vz : velocity components (m s-1)
p : Ice pressure (Pa)
β : Rate of change of melting point with pressure (9.8 × 10-8 K Pa-1 9.8 × 10-8)
γ : Thermal exchange velocity (∼1.00 × 10-4 m s-1)
ε̇ : Strain rate tensor (s-1)
ε̇e : Effective strain rate tensor (s-1)
ρ : Ice density (916 kg m-3)
ρw : Water density (1000 kg m-3)
σ : Cauchy stress tensor (Pa)
σ′ : Deviatoric stress tensor (Pa)
σ′e : Effective shear stress (Pa)
τb : Friction stress (Pa)





Introduction

“The tradition of glacier studies that we inherit draws upon two great legacies of the eighteenth
and nineteenth centuries: classical physics and romantic enthusiasm for Nature. This
compelling mixture of the classical and romantic has drawn many of us to glaciology and
brings both substance and vitality to the science. It is easy to undervalue the romantic
contribution, but in glaciology it would be a mistake to do so.” (Clarke, 1987)

History of ice sheet mechanics

Scientific perspectives on the nature of glaciers and their role in the Earth System have
evolved dramatically over the past centuries. For example, in the middle ages, popular belief
held rock crystal to be a harder form of ice (Walker and Waddington, 1988). Scientists
started to give attention to glacier flow only in the eighteenth century. Johann Jacob
Scheuchzer (1672 - 1733), a Swiss naturalist, proposed in 1705 that glaciers would expand
due to meltwater that flows into the cracks and fissures and refreezes: the dilation theory.
This idea was later revived by Toussaint von Charpentier in 1819. Louis Agassiz (1807 -

Figure 2: Fissures and cracks in the dilation theory. left: A picnic near the Zermatt Glacier,
from Louis Agassiz, Etudes sur les glaciers, 1840. Right: Crevasses on Exit Glacier, Alaska
(provided by the National Snow and Ice Data Center).

1873), a Swiss geologist, was an ardent defender of the dilation theory. In “Etudes sur les
glacier (1840)”, he came to the following conclusions, that only careful fieldwork could prove
wrong:

• The ice moves faster at the edges than at the center (greater heat from the valley walls)

• Glaciers do not move in winter (no meltwater in the cracks)



INTRODUCTION

• Glaciers are reservoirs of cold (they cause meltwater to refreeze)

Another theory was developed by Altmann (1751) and Gruner (1760). They suggested
that rather than advancing by dilation, a glacier slid on its bed under its own weight assisted
by melting on its sides. The glacier would move forward, being stopped intermittently by
obstacles, until these were overcome by melting of the ice beneath the glacier, or by the
accumulative weight due to ice and snow above and behind it (Walker and Waddington,
1988).

Figure 3: Ogives (arch-shaped sediment bands) or Forbes bands on Mer de glace at Chamonix.
Left: schematic of Mer de glace from Tyndall (1896). Right: photo of Mer de glace (Wikipedia,
2011).

James David Forbes (1809 - 1868), a Scottish physicist, showed in 1842 that neither the
sliding theory, nor the dilation theory could explain the observations. The sliding theory, for
example, could not explain why glaciers could move down a shallow valley, the slope of which
might be less than 3◦, or, how a rigid glacier could move over an uneven bed and around
corners. The dilation theory, on the other hand, was also hard to believe for Forbes, who
thought the resistance to dilation must be considerable both across and along the glacier,
and consequently one might expect most of the expansion on freezing to be directed upwards,
towards the surface, rather than along the length of the glacier.
Several observations showed that the dilation theory was inadequate:

• The ice moves faster in the middle than on the edges (Agassiz 1841)

• Glaciers move in the winter (Forbes 1942)

• Glacial temperatures are near the melting point of water and are not reservoirs of cold
(Agassiz 1840)
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Forbes was the first to believe that glaciers behave like viscous bodies. But the lack of a
general physical and mathematical theory of materials rheology at that time made it hard
for Forbes to explain ice viscosity. It was paradoxical to allow solid ice, of brittle nature,
to flow like a fluid. Thus, Forbes’ theory was the source of a most bitter and acrimonious
controversy (Walker and Waddington, 1988). Forbes himself gave a number of contradictory
explanations for the deformation of ice. His only criterion for acceptance appears to have
been that it had to be compatible with his own viscous theory. In the 1880s, it was generally
admitted that ice could be slowly bent or drawn in tension without fracture, marking the
threshold of present theories of glacier flow and creep of ice.

It is only in the past 50 years, by the application of modern ideas in material sciences
and metallurgy that a proper understanding of the mechanism of glacier flow has been
achieved (Paterson, 1994). This followed the realization that, because ice is a crystalline
solid, it should deform like other crystalline solids, such as metals, at temperatures near
their melting points. John W. Glen in the 1950s (Glen, 1955) derived a “flow-law” for ice
from laboratory experiments. His power-law was confirmed by in-situ measurements of
the closure of boreholes and tunnels (Nye, 1953). John F. Nye developed a mathematical
representation of glacier flow (Nye, 1957a; Blatter et al., 2010). He extended Glen’s flow law
to cover multiaxial states of stress by writing Glen’s flow law in tensorial form (Nye, 1957b).
He became the first to apply plasticity theory to understand glacier flow: in his theory, no
flow takes place until a “yield stress” is attained. The mechanisms of sliding were enunciated
by Weertman (1957), who developed a sliding law for glaciers moving over a wet bed, and a
flow law for floating ice spreading under gravity. These, and other glaciologists, constitute
the founding generation of modern glaciology. A detailed history of modern glaciology can
be found in Blatter et al. (2010).

Icebergs Sea ice 

Evaporation from ocean 

Bedrock 

Grounding line 

Ocean 

Ice sheet  
(resting on bedrock) 

Sea Level 

Ice shelf  
(floating in sea) 

Snow accumulation 

Ice Stream 
within ice sheet 

Figure 4: Schematic diagram, Illustration courtesy of Kevin Hand, Scientific American,
adapted from Bell (2007)
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Ice Sheet Systems

Ice sheets are masses of glacier ice that cover more than 50,000 km2 of the Earth’s surface.
They are also called continental glaciers or ice caps. The only current ice sheets are confined
to polar regions: the Antarctic and the Greenland ice sheets. Ice sheets are formed by

Figure 5: Antarctica and Greenland InSAR derived surface velocity, logarithmic scale (Rignot
et al., 2011)

the slow transformation of snow into ice, by compaction. Solid ice then deforms under its
own weight as a very viscous fluid (Fig. 4). The flow of an ice sheet is not uniform; it is
organized like a hydrological system (Fig. 5), with rivers of ice channelling much of the ice
flow through narrow corridors or exit gates. The glaciers typically result from the merging
of many tributaries, which meander and reach far out in the interior of the ice sheet. Only a
limited number of fast glaciers, called ice streams or outlet glaciers, control the ice sheet
discharge into the oceans. In Greenland, a set of 30 outlet glaciers control most of the
discharge. In Antarctica, 40 to 50 glaciers control most of the ice discharge. The ice may
melt along low lying coastal areas and reach the ocean either to form a floating extension,
ice shelf, or calve directly into the sea to form icebergs.

Ice Sheet Response To Global Warming

In the last 100 years, Earth’s average surface temperature increased by about 0.8◦C with
about two thirds of the increase occurring over just the last three decades (IPCC-AR4, 2007).
Many scientists agree that documented increases in the Earth’s temperature in the past half
century are a direct result of increasing concentration of manmade greenhouse gases (Hegerl
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et al., 2007).
Scientific evidence supports the claim that current sea level rise is largely caused by

global warming, and that sea level will continue to increase over the coming century and
beyond. There are two major roughly equal contributors to sea level rise:

1. expansion of ocean water in response to higher temperatures (thermal expansion)

2. increases in the amount of meltwater and ice discharge from ice sheets.

Global warming has caused annual ice loss from the Antarctic ice sheet to surge by 75%
in a decade (Rignot et al., 2008). Instead of simply adding huge volumes of meltwater to
the sea, it has been shown that rising temperatures are causing glaciers, including those in
Alaska, Greenland and now Antarctica, to break up and slip into the ocean at a faster rate
than expected. Antarctica supports a layer of ice up to four kilometer thick and as big as
the United States and Mexico combined. Antarctic ice contains 90% of the world’s ice (70%
of the world’s fresh water).

Figure 6: Components of the cryosphere and their time scales from the IPCC 4th assessment
report (Lemke et al., 2007)

Fig. 6 shows all the components of the cryosphere. Even if they are all affected by global
warming, the time scales at which changes can be observed are still significantly different
depending on their dynamic and thermodynamic characteristics. Table 2 shows the potential
of sea level rise for all components of the cryosphere.

If all the ice of Greenland and Antarctica were to melt it would cause a global sea level
increase of nearly 64 meters. Although this scenario is unlikely, studies show that sea level
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Ice component Area Ice volume Sea Level Equivalent
(106 km2) (106 km3) (m)

Snow on land 1.9 - 45.2 0.0005 - 0.005 0.001 - 0.01

Sea ice 19 - 27 0.019 - 0.025 ∼ 0

Glaciers and ice caps 0.51 - 0.54 0.05 - 0.13 0.15 - 0.37

Ice shelves 1.5 0.7 ∼ 0

Ice sheets 14.0 27.6 63.9

Greenland 1.7 2.9 7.3

Antarctica 12.3 24.7 56.6

Seasonally frozen ground 5.9 - 48.1 0.006 - 0.065 ∼ 0

Permafrost 22.8 0.011 - 0.037 0.03 - 0.10

Table 2: Area, volume and potential sea level equivalent of cryospheric components from the
IPCC 4th assessment report (Lemke et al., 2007)

could rise between 80 cm and 2 meters by the end of the century (Pfeffer et al., 2008)
threatening ecosystems, altering the flow of ocean currents and causing numerous economic,
social and political severe consequences.
There are three mechanisms by which ice sheets can lose mass:

1. Direct surface melt

2. Melting at the ice-ocean interface

3. Iceberg calving

Historically, direct surface melt was thought to be the primary mechanism of ice loss. Current
measurements indicate that it represents around 50% of ice loss in Greenland, and is less
than 10% of the ice loss from the Antarctic ice sheet. Indeed, the surface temperatures in
Antarctica are below the pressure melting point almost year round, which prevents ice from
melting.

Melting at the-ice ocean interface has been shown to represent around 50% of ice loss
for both continents (i.e., Rignot et al. (2008, 2010)). The remaining mechanism, iceberg
discharge, represents only a small fraction of ice loss for the Greenland ice sheet, and must
account for about 40% of the ice discharge from the Antarctic ice sheet.

Global warming is affecting the ice sheets in two ways: increased surface temperatures
and increased ocean temperatures. The snow accumulation seems to remain unchanged (i.e.
Ettema et al. (2009)).

Effect of warmer surface temperatures

An increase in air temperatures leads to enhanced surface melt. Even if the mass lost by
increased melt is almost negligible, meltwater affects the ice sheet dynamics and induces
mass loss by dynamic thinning.

Increased surface melt and drainage of supraglacial lakes increases the water content
at the base of the glacier. This increased lubrication may lead to glacier speed-up, A
phenomenon called Zwally effect (Zwally et al., 2002). The climatic significance of the effect
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is controversial. Schoof (2010) for example showed that an increase in surface melt could
suppress ice thinning.

Meltwater also percolates into the depths of the glaciers, possibly resulting in cryo-
hydrologic warming (Phillips et al., 2010). This mechanism warms the entire ice column
which leads to a decrease of the ice viscosity, such that the ice accelerates. This mechanism
is still not well understood.

Effect of warmer ocean temperatures

An increase in ocean temperatures can have dramatic effects on the ice sheets, because the
enhanced basal melting may trigger destabilizing feedbacks (Joughin and Alley, 2011). The
loss of buttressing of the glacier due to ice shelf collapse, front terminus or grounding-line
retreat has been observed on many glaciers (e.g. De Angelis and Skvarca (2003); Rignot
et al. (2004); Nick et al. (2009)) and is responsible for most of the observed increase in ice
discharge (Dupont and Alley, 2005; Gagliardini et al., 2010). It is sometimes referred to as
the Helheim effect, after a glacier in Greenland whose ice front retreat correlates with an
ice speed-up. The ice-ocean interactions play a major role in ice dynamics, since increased
ocean temperatures can increase dramatically ice shelf thinning, ice front and grounding-line
retreat, which results in a loss of buttressing. This loss of buttressing can lead to a significant
acceleration of the tributary glaciers (Rott et al., 2002; De Angelis and Skvarca, 2003; Rignot
et al., 2004). For example, Pine Island Glacier, in West Antarctica, has been thinning,
accelerating and retreating since at least the 1970’s (Rignot, 2008a). The ice stream has
sped-up by 40 % since 1975, its grounding-line retreated inland at a rate of 1 km/yr during
the 1990’s, and its thickness decreased along a section extending at least 150 km upstream of
the grounding-line (Bindschadler, 2002; Rignot, 2006; Thomas et al., 2011). These dramatic
changes are believed to be due to warmer ocean temperatures.

Intergovernmental Panel on Climate Change

The United Nations created the Intergovernmental Panel on Climate Change (IPCC) in 1988.
It is a scientific body tasked with evaluating the risk of climate change caused by human
activity. The IPCC does not carry out research, nor does it monitor climate or related
phenomena. A main activity of the IPCC is publishing special reports on topics relevant to
the implementation of the UN Framework Convention on Climate Change (UNFCCC). The
IPCC bases its assessment mainly on peer reviewed and published scientific literature. In its
third Assessment Report (2001) the IPCC expected the Antarctic ice sheet to gain mass:

“The Antarctic ice sheet is likely to gain mass because of greater precipitation, while
the Greenland ice sheet is likely to lose mass because the increase in runoff will exceed the
precipitation increase” (IPCC-AR3, 2001).

Scientific evidence has shown however that Antarctica is losing mass, especially the West
Antarctic Ice Sheet (WAIS), because of its marine-based configuration (e.g. Alley et al.
(2005); Rignot and Thomas (2002); Rignot et al. (2008)). As a result, in its latest report,
the IPCC stated that global climate models are fundamentally limited because they do not
include changes in ice sheet dynamics:

“Future changes in the Greenland and Antarctic ice sheet mass, particularly due to
changes in ice flow, are a major source of uncertainty that could increase sea level rise
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projections. [...] Large-scale ocean circulation changes beyond the 21st century cannot be
reliably assessed because of uncertainties in the melt-water supply from the Greenland ice
sheet and model response to the warming.” (IPCC-AR4, 2007).

Ice Sheet modeling at the Jet Propulsion Laboratory

The Jet Propulsion Laboratory (Pasadena, California) is a research center that builds and
operates unmanned spacecraft for the National Aeronautics and Space Administration
(NASA). At least 10 JPL satellites and instruments orbit Earth, returning images while
monitoring atmospheric activity, and various aspects of the ocean and the cryosphere. This
unmatched data collection capability is used to better understand the Earth system and the
effects of climate change. Models are an important area of research at the lab, because they
help define mission requirements. Models are also useful in interpreting satellite observations.

One important aspect of climate modeling is the representation of the ice sheets. The
ISSM (Ice Sheet System Model) was born in 2009, as a successor to an in-house, massively
parallelized, finite element software package CIELO inspired by NASTRAN (Nastran, 1972).
Modeling the evolution of an ice sheet the size of a continent such as Antarctica (14,000,000
km2) is a major challenge notably in terms of computing capability. The convergence of
multiple tools (parallel solvers, dynamic memory management, object orientation, mesh
anisotropy, finite element method and data assimilation), combined with the recent availability
of continent-wide surface velocities (Rignot et al., 2011), are central to the ability of ISSM
to perform a realistic simulation of ice flow across the entire continent of Antarctica or
Greenland, at an unprecedented level of spatial detail and accuracy.

Objectives of this Thesis

Estimating current and future ice sheet contributions to sea level rise is a very active area
of research. Despite recent advances in ice sheet modeling, many physical processes are
still poorly understood. The aim of this work is to improve the present-day state of ice
sheet models by developing calibration methods for higher-order ice sheet flow models and
for reconciling datasets. Modeling Antarctica requires knowledge of several physical and
geometrical parameters. Some of them can be directly measured (surface height, velocity,
etc.) but not all of them (basal properties, sliding law, etc.). Inverse modeling techniques
can be applied to make quantitative inferences about these characteristics. Another problem
that arises is inconsistency between datasets. Low-resolution ice thickness data is usually
inconsistent with high-resolution ice surface velocities (Seroussi et al., 2011), which makes ice
sheet modeling difficult. This thesis addresses these two subjects: (1) the need for improved
ice flow model calibration, and (2) dealing with dataset inconsistencies using optimization
techniques.

This thesis is divided in six parts. The first chapter describes general concepts of
continuum mechanics and inverse modeling, as a background for subsequent chapters. The
second chapter derives the equations that govern ice flow from conservation laws: mass
balance, momentum balance and energy balance. We present four different ice flow models:
the Shallow Ice approximation, the Shelfy Stream model, a higher order model and the
full-Stokes model. The third chapter deals with the numerical resolution of the models,
from software architecture to mesh adaptation. This was a teamwork effort and only
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the key aspects of the implementation are presented. We also show how to optimize the
computational mesh using anisotropic adaptation. The fourth chapter presents how ice shelf
rigidity and basal friction can be determined from InSAR-derived surface velocities. We then
present an example from Pine Island Glacier, West Antarctica. We infer the basal friction
for three different ice flow models corresponding to different levels of sophistication. We use
the resulting patterns of basal drag to determine where each model is valid. The last chapter
presents a new technique to infer ice thickness between flight track measurements using mass
conservation. We also show that a straightforward calculation of the mass balance equation
does not yield satisfactory results because of measurement errors.
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1.1. COORDINATE SYSTEMS

This chapter describes general principles of continuum mechanics. We first introduce
the coordinate systems that are used to describe a moving fluid: Eulerian, Lagrangian and
ALE. The general conservation laws are then presented: mass conservation, balance of linear
momentum, balance of angular momentum and conservation of energy. These conservation
laws are very general and valid for any material body (solids and liquids). We then discuss
the specific case of incompressible fluids, which is a property of ice. In a second part, we
give an overview of inverse problems and present some strategies of resolution.

1.1 Coordinate systems

Two different approaches are generally adopted to describe a moving continuum. One
can remain fixed in space and describe the continuum from this referential (the Eulerian
approach), or one can also follow the material particles on their journey through space
(the Lagrangian approach). Both approaches have their advantages and drawbacks. The
Arbitrary Eulerian-Lagrangian (ALE) method (Donea and Belytschko, 1992) consists of
combining the advantages of both techniques. A third referential is introduced, the reference
configuration, which does not need to adhere to the material (Lagrangian) nor to be fixed in
space (Eulerian).

1.1.1 Spatial, Material and Reference configurations

We introduce three different configurations corresponding to these different descriptions:

• Spatial configuration Ωx ⊂ R3, corresponding to the Eulerian description: each vector
x ∈ Ωx represents a fixed point of the Euclidean space. Ωx is the current domain of
the continuum being described.

• Material configuration ΩX ⊂ R3, where each particle has a fixed material coordinate
X ∈ ΩX . For example, X ∈ ΩX can be taken as the coordinate of the material particle
in the initial configuration, t = 0.

• Reference configuration Ωχ ⊂ R3, where reference coordinates χ ∈ Ωχ are introduced
to identify the grid points, which remain fixed in this configuration.

We assume that there is a one-to-one mapping between the material, the spatial and the
reference configurations (Fig. 1.1). Therefore, there exist three applications:

• Φ : ΩX × [0, T ]→ Ωx

• Ψ : Ωχ × [0, T ]→ Ωx

• ϕ : ΩX × [0, T ]→ Ωχ

that map the body from one configuration to another such that:

x = Φ (X, t) x = Ψ (χ, t) χ = ϕ (X, t) (1.1)

To ensure one-to-one mapping between these configurations, we require the determinant of
the Jacobian of these transformations to be non-zero (Donea et al., 2004):

det

(
∂Φ

∂X

)
> 0, det

(
∂Ψ

∂χ

)
> 0 and det

(
∂ϕ

∂X

)
> 0 (1.2)
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e1

e3

· X

· χ

· x

e2

Material configuration (Lagrangian) ΩX

Reference configuration (ALE) Ωχ

Spatial configuration (Eulerian) Ωx

x = Φ(X, t)

x = Ψ(χ, t)

χ = ϕ(X, t)

Figure 1.1: Three coordinate systems: Spatial, Material and Reference configurations

1.1.2 Material and frame velocities

One can define the material velocity, v, of a particle X, as the rate-of-change of the position
of that particle in the spatial configuration:

Material velocity

v =
∂Φ (X, t)

∂t
(1.3)

One also defines the frame velocity, w, as the velocity of any χ ∈ Ωχ in the spatial
configuration. This velocity is sometimes referred to as the velocity of the reference coordinate
or mesh velocity:

Frame velocity

w =
∂Ψ (χ, t)

∂t
(1.4)
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1.1. COORDINATE SYSTEMS

1.1.3 Material and local time derivatives

We have to make a clear distinction between the rate-of-change of a given variable (tem-
perature, thickness, etc.) at a specific point in space x ∈ Ωx (Eulerian approach) and
the rate-of-change of that variable as we follow a particle on its journey through space
(Lagrangian approach). For example, the temperature at some specific point in space may
not change in time. If, however, the temperature changes from one point in space to another,
the temperature of a material particle moving through that space will change with time.

A physical quantity or state variable (temperature, energy, density, etc.) is described by
a function of space and time. One of three representations are used. depending on whether
we are using the Eulerian, Lagrangian or ALE approach. These provide the same value at a
given point in space, but require different arguments:

• f : Ωx × [0, T ] (spatial configuration)

• F : ΩX × [0, T ] (material configuration)

• f̃ : Ωχ × [0, T ] (reference configuration)

The mappings between the three configurations impose:

f (x, t) = F (Φ (X, t) , t) = f̃ (Ψ (χ, t) , t) (1.5)

The local time derivative is the rate-of-change at a given point in space. It is hence
simply the partial derivative with respect to t:

Local time derivatives

The local time derivatives of a physical quantity in its three configurations are:

∂F

∂t
=

∂F (X, t)

∂t
(Lagrangian)

∂f

∂t
=

∂f (x, t)

∂t
(Eulerian)

∂f̃

∂t
=

∂f̃ (χ, t)

∂t
(ALE)

(1.6)

We also define the material derivative as the rate of change of a variable as seen by an
observer following the material particle X ∈ ΩX :
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Material derivatives

The material derivatives of a physical quantity in its three configurations are:

DF

Dt
=

∂F (X, t)

∂t
(Lagrangian)

Df

Dt
=

∂f (Φ (X, t) , t)

∂t

∣∣∣∣
X

=
∂f

∂t
+ v · ∇f (Eulerian)

Df̃

Dt
=

∂f̃ (ϕ (X, t) , t)

∂t

∣∣∣∣∣
X

=
∂f̃

∂t
+ (v −w) · ∇f̃ (ALE)

(1.7)

Proof
See Donea and Belytschko (1992) or Donea et al. (2004).

This derivative denotes the rate-of-change of the field variable as we follow the material
particle through space. The material derivative is sometimes called the total derivative and
we use a capital D symbol to distinguish it from other derivatives.

In its Eulerian form, we see that the material derivative is the sum of the local time
derivative and a second term that represents the changes in f due to advection. The local
time derivative accounts for all the changes in f due to other processes.

We also see that in the ALE form, if the frame velocity is zero, we recover the Eulerian
case because the reference configuration remains fixed. If we take the frame velocity equal
to the material velocity, we recover the Lagrangian case because the reference configuration
is following the motion of the body.
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1.2. CONSERVATION LAWS

1.2 Conservation laws

Certain quantities of a system are conserved and the conservation laws that result can
be considered fundamental principles of mechanics. In mechanics, examples of conserved
quantities are mass, momentum and energy. We present here the local forms of these laws,
their proofs can be found in any book of continuum mechanics (e.g. Irgens (2008); Liu
(2002)).

1.2.1 Mass conservation

The law of mass conservation is a fundamental concept of physics. It states that the mass of
a closed system remains constant over time. A local form of mass conservation is derived:

Let Ω ⊂ R3 (an open subset of Euclidean space) be a material body of:

– density ρ : Ω× [0, T ]→ R∗+
– velocity v : Ω× [0, T ]→ R3

for a time frame [0, T ]. The mass conservation imposes:

∀x ∈ Ω ∀t ∈ [0, T ] ,
Dρ

Dt
+ ρ ∇ · v = 0 (1.8)

1.2.2 Balance of linear momentum

The balance of linear momentum is the generalization of Newton’s second law to bodies of
continuously distributed mass. The local form of linear momentum conservation requires
the introduction of the stress tensor, σ.

For the same system as above, subjected to a body force ρ b : Ω × [0, T ] → R3. Let
σ : Ω× [0, T ]→M3 be the Cauchy stress tensor. The balance of linear momentum is:

∀x ∈ Ω ∀t ∈ [0, T ] , ρ
Dv

Dt
= ρb+∇ · σ (1.9)

1.2.3 Balance of angular momentum

The balance of angular momentum states that in an inertial frame the time rate-of-change
of angular momentum of an arbitrary portion of a continuous body is equal to the total
applied torque acting on the considered portion.

Let Ω ⊂ R3 be a non-polar material body, and σ its Cauchy stress tensor. The balance of
angular momentum imposes that the stress tensor be symmetric.

∀x ∈ Ω ∀t ∈ [0, T ] , σ = σT (1.10)
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1. THERMODYNAMICS AND INVERSE PROBLEMS

1.2.4 Conservation of Energy

The last conservation law is the conservation of energy. This empirical law states that the
total amount of energy in an isolated system remains constant over time. A local energy
conservation equation is derived from this axiom assuming that the heat conduction follows
Fourier’s law.

Let Ω ⊂ R3 be a material body of:

– density ρ : Ω× [0, T ]→ R∗+
– velocity v : Ω× [0, T ]→ R3

– temperature T : Ω× [0, T ]→ R+

– heat capacity c : Ω× [0, T ]→ R+

If the heat conduction follows Fourier’s law, with a thermal conductivity kth, and if we write
Φ the local heat production, the conservation of energy imposes:

∀x ∈ Ω ∀t ∈ [0, T ] , ρ
D

Dt
(cT ) = ∇ · kth ∇T + Φ (1.11)

1.2.5 Incompressible fluids

We now examine the case of incompressible fluids. We will see in Chap. 2 that ice is treated
as an incompressible material. We first need to make a distinction between incompressible
materials and incompressible flow. Let’s first introduce the isothermal compressibility
coefficient.

Compressibility coefficient

The isothermal compressibility coefficient of a material body Ωχ ⊂ R3 of:

– density ρ : Ω× [0, T ]→ R∗+
– pressure p : Ω× [0, T ]→ R

is defined as:

χT =
1

ρ

(
∂ρ

∂p

)
T

(1.12)

χT is a measure of the relative volume change of a fluid or solid in response to a pressure
(or mean stress) change at constant temperature. It is the inverse of the bulk modulus.

The volume of a homogeneous perfectly incompressible material does not change for any
applied pressure. The compressibility coefficient is therefore zero and the bulk modulus
infinite. We therefore have the following properties:
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Incompressible material

For a homogeneous perfectly incompressible material in Ω ⊂ R3, its mass density ρ :
Ω× [0, T ]→ R∗+ is constant throughout:

∀x ∈ Ω ∀t ∈ [0, T ] ,
∂ρ

∂t
= 0 ∇ρ = 0 (1.13)

A flow is said to be incompressible if the density remain constant with motion, which is less
restrictive:

Incompressible flow

The flow of a continuum is said to be incompressible if its density ρ : Ω × [0, T ] → R∗+
remains unchanged during motion. The rate-of-change of the density ρ as the motion of a
material particle is followed is therefore zero:

∀x ∈ Ω ∀t ∈ [0, T ] ,
Dρ

Dt
= 0 (1.14)

The flow of an incompressible material is incompressible, but the reverse is not true: the
atmosphere is generally modeled as an incompressible flow but air is obviously compressible.
An important quantity to introduce is the strain rate tensor, which measures how the velocity
components change in all directions.

Strain rate tensor

The strain rate tensor or stretch rate tensor, ε̇, associated with a velocity field v is defined
as the symmetric part of the velocity gradient:

ε̇ij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(1.15)

where i, j are the three directions of the Cartesian space x, y and z.

The dot in ε̇ does not imply that the strain rate tensor is the time derivative of a quantity
that is defined. It is only indicating that it is a rate of deformation. This tensor is sometimes
referred to as D in the literature.

A simple condition of incompressible flow can now be derived by using the mass conservation
equation (Eq. 1.8):
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1. THERMODYNAMICS AND INVERSE PROBLEMS

Condition of incompressibility

Let v : Ω× [0, T ]→ R3 be the velocity of a material body Ω ⊂ R3:

∀x ∈ Ω ∀t ∈ [0, T ] , ∇ · v = 0 ⇐⇒ incompressible flow (1.16)

This condition can be equivalently written in terms of strain rate tensor ε̇:

∀x ∈ Ω ∀t ∈ [0, T ] , Tr (ε̇) = 0 ⇐⇒ incompressible flow (1.17)

This last equation (Eq. 1.17) shows that the strain rate tensor is only deviatoric for
incompressible materials. This property affects the material constitutive law, which connects
the stress tensor to the kinematic state of the body (e.g. strain tensor for elastic materials,
strain rate tensor for viscous materials). Indeed, because one can apply any pressure to an
incompressible solid without changing its shape, the stress cannot be uniquely determined
from the deformation (Rajagopal and Saccomandi, 2006). To overcome this difficulty, the
Cauchy stress tensor is split into a volumetric stress, σv, and deviatoric stress, σ′:

σ = σ′ + σvI (1.18)

where σ′ is the stress that is constitutively determined, and σv is the mean hydrostatic stress
or the isotropic stress:

σv =
1

3
Tr (σ) (1.19)

The isotropic stress does not work due to the incompressible nature of the material (Tr (σvε̇) =
0). The constitutive relation of perfectly compressible fluids only involve the deviatoric
stress. The pressure, p, is introduced as a Lagrange multiplier (e.g. Hauret (2004)) to
enforce the condition of incompressibility. It can be shown that this Lagrange multiplier is
the mechanical pressure, which is the opposite of the isotropic stress:

σ = σ′ +
1

3
Tr (σ) I = σ′ − pI (1.20)

Lastly, we define the effective strain rate and the effective shear stress, that will be
needed for the ice behavior law. These are defined as the second invariants of their respective
tensors:

ε̇e =
1√
2

 ∑
i,j=1..3

ε̇2
ij

1/2

σ′e =
1√
2

 ∑
i,j=1..3

σ′2ij

1/2

(1.21)

All the notions introduced in this section are used in Chap. 2 to derive the system of
equations that govern ice sheet dynamics. Some parameters of this system of equations
cannot be measured directly and must be inferred from observations. The resolution of this
inverse problem is discussed next.
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1.3. ELEMENTS OF INVERSE PROBLEM THEORY

1.3 Elements of inverse problem theory

Inverse problems are widely used in many fields of science to relate measured data to
physically relevant model parameters. Generally speaking, inverse problems consist of
recovering the input and characteristics of a system, given certain aspects of its output. We
will show in the following chapters that solving inverse problems is very useful for recovering
non-measurable parameters and improving dataset consistency.

1.3.1 Problem description

We present here a brief introduction to inverse problem theory. Interested readers can refer
to textbooks on the topic (e.g., Tarantola (2005); Vogel (2002); Bonnet (2007); Wunsch
(2006)).

Inverse problems can be defined in opposition to direct problems. In a direct problem,
one computes a solution field d ∈ D that is solution of a given set of equations completed by
boundary conditions. The model equations and boundary conditions use some parameters,
p ∈ P, which are known. For example, an explicit problem can be written as:

d = G (p) (1.22)

where G : P → D is an operator representing the model equations.

For inverse problems, the solution is known, or partially known, by direct observations:
d = dobs, whereas desired model parameters, p, are unknown. The inverse problem consists
of finding these parameters in a control space, P, such that the solution of the standard
problem fits the observations:

p = G−1
(
dobs

)
(1.23)

Unfortunately, most of the time, we do not have an explicit formulation for G−1. Furthermore,
these problems are generally either over-determined (a solution might not exist) or under-
determined (the solution might not be unique) as Dim(P) 6= Dim(D). For example, in ice
sheet modeling, we want to fit the surface velocities by changing the basal friction coefficient.
For a two-dimensional mesh of N nodes, there are 2N observations (vx and vy), and only
N parameters; therefore a solution to this inverse problem generally does not exist, as it is
over-determined.

Because an explicit expression of G−1 does generally not exist, we write the inverse
problem as a least square problem. We introduce a minimization problem such that the
model output is as close as possible to the observations:

min
p∈P
‖G (p)− dobs‖ (1.24)

Inverse problems are ill-posed, in opposition to a well-posed problem as defined by Hadamard
(1902):
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1. THERMODYNAMICS AND INVERSE PROBLEMS

Hadamard’s well-posedness

A mathematical problem is well-posed if all following conditions are satisfied:

1. A solution exists

2. The solution is unique

3. The solution depends continuously on the data, in some reasonable topology

The solution of an inverse problem might not exist, might not be unique and might
be unstable. Hadamard considered that ill-posed problems were not physically and/or
mathematically meaningful. However it turned out that the majority of the problems
of mathematical geophysics are ill-posed. In the middle of the 20th century Tikhonov
developed the theory of ill-posed problem solutions (Tikhonov, 1943). He notably introduced
regularization operators, which impose stability while recovering model parameters that do
not contain more complicated features than can be justified by the data.

1.3.2 Inverse problem resolution strategy

To cover both explicit and implicit problems, we now write the model equations as a function
of the model output and desired parameter:

G (d,p) = 0 (1.25)

We assume that this direct problem is well-posed, therefore for any model parameter p ∈ P ,
a solution d (p) ∈ D exists and is unique.

The observations are also generally only part of the model output. For example, in
the context of ice sheet modeling, the model output might be the three-dimensional ice
velocity. Only the two-dimensional surface velocities can be measured. A model-equivalent
of the observation needs to be calculated to enable comparison in observation space Dobs.
We introduce the observation operator H : D → Dobs, which provides this link to enable
comparison of model output and observations. In other words, for a model output d ∈ D,
the quantity H (d) ∈ Dobs is the model-equivalent to the quantity being observed dobs. For
the case we are interested in, H is a simple operator that calculates from three-dimensional
velocities, the horizontal modeled surface velocities for the region where observations are
available.

Solving for an inverse problem can be reduced to the resolution of a minimization problem,
under the constraint that the model output must satisfy the model equations, which, in the
problems that we will be interested in, are partial differential equations (PDE). We therefore
need to solve a PDE-constrained optimization problem. The strategy that is adopted here
is to apply a steepest-descent algorithm, where we follow the negative gradient of what is
known as the cost function with respect to the parameter, p.

Parametric optimization formulation

We first need to define a cost function or objective function that measures the misfit between
the model output and the observations. We assume that the space of model output D is a
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1.3. ELEMENTS OF INVERSE PROBLEM THEORY

vector space equipped with a norm ‖·‖. We define a cost function as j : D → R+ such that:

j (d) = ‖H (d)− dobs‖ (1.26)

We define the parametric optimization by seeking to minimize the cost function, j, with
respect to the model parameter, p, under the constraint that d satisfies the model equations.
The optimization reads:

min
p∈P, G(d,p)=0

j (d) (1.27)

We introduce another cost function J : P → R+, which is function of the model parameter,
p, such that:

J (p) = j (d (p)) = ‖H (d (p))− dobs‖ (1.28)

where d (p) is the solution of the model equations for the parameter p. Therefore, minimizing
J is equivalent to minimizing j under the constraint that d satisfies the model equations:

min
p∈P
J (p)⇐⇒ min

p∈P, G(d,p)=0
j (d) (1.29)

Since we are trying to minimize J , we define the local and global minima:

Local and global minima

p̄ is a local minimum of J on P if and only if:

p̄ ∈ P, ∃δ > 0, ∀p ∈ P, ‖p− p̄‖ < δ ⇒ J (p) ≥ J (p̄) (1.30)

p̄ is a global minimum of J on P if and only if:

p̄ ∈ P, ∀p ∈ P, J (p) ≥ J (p̄) (1.31)

Differentiability

To find the minimum of the objective function, we need to calculate the variation of the
objective function, J , with respect to changes in the model parameter, p, because we want
to apply a gradient-descent algorithm. Because P is not a finite-dimensional space a priori,
it is essential to define the gradient of J for such spaces. Let P ′ be the dual space1 of P:

1For any vector space V , the dual space V ′ is defined as the set of all linear functionals on V (scalar-valued
linear maps on V ′)
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Fréchet Derivative

The functional J : P → R is Fréchet-differentiable in the neighborhood of p ∈ P if a
continuous linear functional L : P → R exists, such that:

∀q ∈ P J (p+ q) = J (p) + L (q) + o (q) with lim
q→0

o (q)

‖q‖
= 0 (1.32)

L ∈ P ′ is called the derivative or the gradient of J on p, and is written J ′ (p) or
〈J ′ (p) , q〉P′,P

From now on, P is assumed to be a Hilbert space. We can apply the Riesz representation
theorem, which states that for every element of P ′, dual of a Hilbert space P, there exists a
unique vector v ∈ P, such that:

L (q) = 〈v, q〉 (1.33)

There are other definitions of differentiability. The Fréchet differentiability is strong because
it requires a continuous linear functional that is common to every direction q. The Gâteaux
derivative is less strong because it is directional.

Gâteaux Derivative

The functional J : P → R is Gâteaux-differentiable in the neighborhood of p ∈ P if the
following limits exist:

∀q ∈ P lim
ε→0+

J (p+ εq)− J (p)

ε
= DJ (p, q) (1.34)

DJ (p, q) is called the Gâteaux derivative of J in the direction q.

This notion of differentiability is sometimes more convenient, because it is easier to
prove Eq. (1.34) than Eq. (1.32). Besides, the two definitions are linked by the following
proposition:

If J : P → R is Fréchet-differentiable, then it is also Gâteaux-differentiable and its Fréchet
and Gâteaux derivatives agree:

DJ (p, q) = L (q) (1.35)

The converse is not true.

This means that one can use Eq. (1.34) to determine the Fréchet derivative of a given
function if it is Fréchet-differentiable.
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Optimality conditions

Euler’s Inequality: Necessary condition

If p̄ ∈ P, convex, is a local minimum of J , differentiable at p̄, then:

∀p ∈ P 〈J ′ (p̄) ,p− p̄〉 ≥ 0 (1.36)

Proof
For p ∈ P and δ ∈ ]0, 1], because P is convex: p̄+ δ (p− p̄) ∈ P . If p̄ is a local minimum of
J :

J (p̄) ≤ J (p̄+ δ (p− p̄)) (1.37)

and therefore:

J (p̄+ δ (p− p̄))− J (p̄)

δ
≥ 0 (1.38)

We can take the limit of the previous equation.

The previous theorem only gives a necessary condition. In general, there is no sufficient
condition except for the case of convex functionals. In practice, the objective function is
almost never convex.

Adjoint method

We consider here an optimization under an infinite number of constraints, or, a finite
number of constraints with values in a space of infinite dimensions. This is the case of
PDE-constrained optimization, where a finite number of partial differential equations must
be satisfied. For our purposes, this applies to the non-discretized ice flow equations, where
the modeled velocity components are in an infinite-dimensional Hilbert space

(
H1 (Ω)

)3
.

The generic optimization problem we consider here is:

min
p∈P, G(d,p)=0

j (d) (1.39)

where G : D × P → V is the operator representing the model equations with values in V. It
is convenient to introduce the Lagrangian associated with the problem:

Lagrangian

The Lagrangian of the optimization problem (Eq. 1.39) is the functional L : D×V ×P → R

L (d,λ,p) = j (d) + 〈λ, G (d,p)〉 (1.40)

The new variable λ ∈ V of the system is called Lagrange multiplier or adjoint state for
the constraint G (d,p) = 0. This Lagrange multiplier is introduced because it can be used
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to calculate the gradient of the cost function J . Indeed, we have the following relation:

J (p) = j (d (p)) = L (d (p) ,λ,p) (1.41)

If we take the derivative of the previous equation with respect to the parameter p for a
direction q:

〈J ′ (p) , q〉 = 〈∂L
∂d

(d (p) ,λ,p) , 〈∂d
∂p

(p) , q〉〉

+ 〈∂L
∂λ

(d (p) ,λ,p) , 〈∂λ
∂p

(p) , q〉〉

+ 〈∂L
∂p

(d (p) ,λ,p) , q〉

(1.42)

The idea is to choose λ such that the first two derivatives are zero, and the gradient of the
cost function is equal to the partial derivative of the Lagrangian with respect to the desired
parameter, which is easy to compute in practice. We therefore require the Lagrangian to be
stationary with respect to d and λ. These two equations are sometimes referred to as the
normal equations (Heimbach and Bugnion, 2009; Wunsch, 2006) or the Karush-Kuhn-Tucker
conditions (Karush (1939); Kuhn and Tucker (1951)).

Requiring the Lagrangian to be stationary with respect to the Lagrange multiplier is
equivalent to choosing d to be the solution of the model equations:

∀µ ∈ V 〈∂L
∂λ

,µ〉 = 〈µ, G (d,p)〉 = 0 (1.43)

The stationarity of the Lagrangian with respect to the model output, d, gives an equation
on the Lagrange multiplier, λ. They are the Adjoint equations:

∀f ∈ D 〈∂L
∂d

,f〉 = 〈j′ (d) ,f〉+ 〈λ, 〈∂G
∂d

,f〉〉 = 0 (1.44)
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1.3. ELEMENTS OF INVERSE PROBLEM THEORY

Adjoint and Cost function gradient

If d (p) is solution of the model equations:

G (d,p) = 0 (1.45)

and if λ (p) is solution of the following variational formulation:

∀f ∈ D 〈λ, 〈∂G
∂d

,f〉〉 = −〈j′ (d) ,f〉 (1.46)

The gradient of the objective function with respect to the model parameter, a, for a direction
b is:

〈J ′ (p) , q〉 = 〈∂L
∂p

(d (p) ,λ (p) ,p) , q〉 (1.47)

1.3.3 Steepest-descent numerical algorithms

The adjoint method allows us to compute the gradient of the cost function J with respect
to the parameter p. The minimization problem being:

min
p∈P
J (p) (1.48)

The idea of a descent algorithm is to move from a given pn to the next point pn+1 by
following the line of greatest slope from an initial point p0 ∈ P:

pn+1 = pn − µgn (1.49)

where µ is a positive scalar coefficient. If µ is small enough:

J (pn+1) = J (pn)− µ〈J ′ (pn) , gn〉+O
(
µ2
)

(1.50)

The fastest way to descend is therefore to take gn collinear to the gradient of the cost
function on pn: J ′ (pn). This method is called the gradient descent algorithm.

– Initialization: choose p0 ∈ V

– Iteration n ≥ 0:

pn+1 = pn − µ
J ′ (pn)

‖J ′ (pn)‖
(1.51)

The scalar µ (the step size) must be chosen for each iteration. This can be done in several
ways. The simplest is the “fixed step size algorithm” for which µ ∈ R+ is fixed. This method
is simple and easy to implement, but in most cases it is difficult to find a good step size µ.
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1. THERMODYNAMICS AND INVERSE PROBLEMS

The solution is to make it small enough to acheive a good solution, causing the model run
to be computationally expensive. A better approach is the “optimized step size algorithm”,
where µn ∈ R+ is chosen such that:

J (pn+1) = inf
µ∈R+

J
(
pn − µJ ′ (pn)

)
(1.52)

The minimization algorithm is presented in Fig. 1.2. We use an optimized step size
projected adjoint-derived gradient descent algorithm. Each iteration involves the following
steps:

1. Solve a forward problem (compute d)

2. Solve the adjoint problem (compute λ)

3. Compute the objective function gradient

4. Find a step size that gives the new distribution of the inverted parameter

Initialize parameter p0

Solve the forward problem

Solve the adjoint problem

Compute gradient J ′ (pn)

Exit

Test step size µn

pn+1 = pn − µnJ
′ (pn)

Evaluate misfit J

Brent search

G (d,pn) = 0

Figure 1.2: Minimization algorithm

The step size is usually estimated by a Brent search method described in App. D. We stop
whenever the cost function reaches a value below a given threshold.

Very often, one wants p ∈ Q ⊂ P, where Q is a non-empty bounded subset of P. For
example, we do not want the basal friction to be more than 200 kPa, which bounds the
admissible space for the friction parameter. For each iteration, n, we use the operator of
projection onto Q, PQ:

pn+1 = PQ
(
pn − µnJ ′ (pn)

)
(1.53)
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For example, P = RM and we might want p to be in a bounded space Q =
M∏
i=1

[ai, bi]:

PQ (p) = p′ where p′i = min (max (ai,vi) , bi) (1.54)

1.3.4 Regularization

Because of its ill-posedness, the solution of the inverse problem is generally unstable: small
changes in the observations, dobs, such as noise, can induce large changes to the solution
p. Tikhonov’s idea was to add explicitly all a priori information on the model parameters
to give preference to a particular solution with desirable properties (Tarantola, 2005). A
regularizing operator, R, is added to the function to be minimized:

min
p∈P

(J (p) + αR (p)) (1.55)

where α is the regularization factor. For example, if p0 is an a priori estimate of p, and we
know that the solution of the inverse problem, p, should not deviate too much from this
initial guess, we can solve the following regularized inverse problem:

min
p∈P

(J (p) + α‖p− p0‖) (1.56)

α is known as the Tikhonov parameter. A large α will lead to a solution that is close to
the initial guess, but the model solution could deviate significantly from the observations,
whereas a small α will give priority to fit the observations. This Tikhonov parameter must
therefore be well balanced in order to find a solution that is close enough to the initial
guess, while avoiding over-fitting the observations, especially when there is noise in the
observations.

In some applications, one wants the solution to be smooth. One way to accomplish this
is to add a Tikhonov regularization that penalizes wiggles in the solution:

min
p∈P

(
J (p) + α

1

2
‖∇p‖2

)
(1.57)

Again, α needs to be adjusted so that the model fits the observations reasonably well, while
forcing the parameter to be smooth enough at the same time.

Several methods have been developed to find the best value for α. One of them is
Morozov’s discrepancy principle (Morozov, 1984). It consists of using any α that satisfies:

‖H (d)− dobs‖ = δ (1.58)

where δ is “empirically” fixed according to the quality of the measurements and the ability
of the model G to reproduce observations (Bonnet, 2007; Puel and Aubry, 2011). In this
context, δ is often taken as the noise level in dobs. In ice sheet modeling, the noise level
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in the observations is very small (a few meters per year) and δ is chosen to be orders of
magnitude larger.

In practice, we employ the L-curve analysis (Hansen, 2000; Jay-Allemand et al., 2011)
to find a Tikhonov parameter that is large enough to prevent the formation of wiggles in the
solution, but small enough so that the model fits the observations well. This method is a
tradeoff curve between the two quantities that both should be controlled: the cost function
and the regularizing term. The L-curve analysis consists of calculating the cost function, J ,
and the regularizing term, R, for different values of α. The results are displayed on a log-log
plot (Fig. 1.3).

lo
g(
R
)

log(J )

α = 1

α = 0.01

α = 10

α = 100

α = 0

Figure 1.3: Generic L-curve analysis: log-log plot of the cost function, J , with respect to a
regularizing term, R, for different values of Tikhonov parameter, α. The optimal value is
α = 1.

The L-curve generally presents a corner, which allows to objectively estimate the optimal
regularization parameter. The corner corresponds to the maximum value of α, such that
the cost function is not too much affected by the regularization. In the case of Fig. 1.3, the
optimal value of α is 1.
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Conclusion

In the first part of Chap. 1, we presented the different coordinate systems that are employed
in the modeling of fluid flow, such as ice sheets: Eulerian, Lagrangian and ALE. We then
derived all the conservation laws that govern continuum thermodynamics: the conservation
of mass, angular and linear momentum, and energy. We also presented the specific case of
perfectly incompressible bodies. Ice sheet thermodynamics is derived from these general
principles.

In the second part this chapter, we introduced some tools to solve inverse problems using
the adjoint method. Inverse problems are generally transformed into minimization problems,
in which an objective function has to be optimized under constraints. These constraints are
generally PDEs. We showed that the optimization of a discretized system leads to the same
expression for the gradient of the cost function. Since this problem is ill-posed, we have to
keep in mind that a solution might not be unique and the optimization algorithm might not
converge.
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2.1. ICE SHEET MASS BALANCE

We now apply the general principles from Chap. 1 to ice masses. This chapter is divided
into three sections. In the first section we introduce the equations of ice sheet mass balance.
The second section deals with the momentum balance, the details of the approximations
generally employed in ice sheet modeling, and describes four common ice sheet models of
different levels of sophistication. The final section describes the thermal model from the
energy balance.

2.1 Ice sheet mass balance

2.1.1 Incompressibility

Ice is treated as an incompressible material. Two effects are therefore neglected: thermal
expansion (effect of temperature) and isothermal compressibility (effect of pressure). We
analyze here these two effects.

Ice density is usually taken as ρ = 917 kg m−3. This value strictly applies to temperatures
near 0◦C and near atmospheric pressure. This is a good assumption for mountain glaciers
and the upper layers of ice sheets (Cuffey and Paterson, 2010, p.12). The linear thermal
expansion of ice is approximately 5× 10−5 ◦C−1, so the ice density for a given temperature
difference ∆T is given by:

ρ =
917

(1 + a∆T )3 (2.1)

In Antarctica, ice temperature can reach −40◦C. Ice density can therefore increase to about
922 kg m−3.

The second effect is isothermal compressibility. Indeed, the confining pressure, p, also
increases ice density. The compressibility as defined in Eq. (1.12) for ice is (Cuffey and
Paterson, 2010, p.12):

χT =
1

ρ

(
∂ρ

∂p

)
T

' 1.2× 10−10 Pa−1 (2.2)

In the center of the East Antarctic Ice Sheet, ice thickness is typically around 4 km. The
pressure should thus increase the ice density from 917 to about 921 kg m−3. Because ice
at these depths is close to melting point, there is little temperature effect to increase the
density further.

At mid-range depths in the ice sheet, where both low temperature and high pressure
prevail, ice density reaches its highest value around 923 kg m−3 (Cuffey and Paterson, 2010,
p.13). This represents a deviation of about 0.6% from a constant density of 917 kg m−3.
Considering ice as incompressible is therefore a good assumption for what we are interested
in (Hooke (2005), p.13 and Paterson (1994)).

2.1.2 Mass balance equation

Since ice is treated as an incompressible material, its mass balance equation is reduced to
the continuity equation (Eq. 1.16):

∀x ∈ Ω ∀t ∈ [0, T ] , ∇ · v = 0 (2.3)
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2. ICE SHEET THERMODYNAMICS

2.1.3 Mass balance boundary conditions

Mass is locally added to the system and removed from system through snow fall, melting,
evaporation, wind transport, or other phenomena. The specific balance rate represents a
change of mass per unit area per unit time, and usually has units of kg m−2 yr−1. The specific
mass balance is generally subdivided into surface and basal mass balances, as englacial
mass balance is negligible. We write Ṁs(x, y, t) the surface mass balance, in m yr−1 ice
equivalent. Accumulation is positive and ablation negative. Similarly we write Ṁb(x, y, t)
the melting/freezing rate, in m yr−1 ice equivalent. Melting is positive.

It is convenient to first define the notion of material surfaces. In the special case where
the surface and basal mass balances are zero, the upper and basal surfaces of a glacier would
be material surfaces:

Material surface

A material surface is a surface which consists of the same material particles at all time.

Material surfaces have a fundamental property, which is that the material derivative of
the functional that describes their position is zero:

Material surface property

Let S ⊂ Ω be a surface defined as:

S = {x ∈ Ω, ∀t ∈ [0, T ] F (x, t) = 0} (2.4)

where F : Ω× [0, T ]→ R. We have the following property:

DF

Dt
= 0 ⇐⇒ F (x, t) = 0 defines a material surface (2.5)

Proof
We use here the classical ALE notations:

(i) Consider a point on the material surface defined by (2.4) at t = 0. Let X ∈ ΩX be the
Lagrangian coordinate of the material particle at P . Since this surface is a material
surface, it must consist of the same particles at all times. The material particle P will
then stay on the surface forever and

∀t ∈ [0, T ] , F (Φ (X, t) , t) = 0 (2.6)

The rate-of-change of F along path of P is therefore zero and this is true for any
material particle on the surface. Therefore:

F (x, t) = 0 defines a material surface =⇒ DF

Dt
= 0 (2.7)

(ii) Assume DF/Dt = 0. It follows from the definition of the material derivative that the
value of F (Φ (X, t) , t) does not change as some material particle P is followed. This
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2.1. ICE SHEET MASS BALANCE

implies that F (Φ (X, t) , t) = C where C is a constant. The set of all such material
particles fulfilling F (x, t) = C forms a surface for some t. The equation F (x, t) = C
hence defines a material surface for any value of C. Setting C = 0 concludes the proof.

Glacier surface kinematics

Let the vertical position of the glacier surface be described as a function of x and y:

F (x, y, z, t) = s (x, y, t)− z = 0 (2.8)

The upper surface of a glacier is not a material surface as described in the previous section.
It would be a material surface if there was no accumulation/ablation. If we take the surface
mass balance into account, we have a kinematic boundary condition at the surface:

Kinematic boundary condition at the surface

Let F (x, y, z, t) = s (x, y, t)− z = 0 be the equation of the glacier’s surface and Ṁs(x, y, t)
the accumulation/ablation rate. We have the following equation:

∂s

∂t
+ vx (s)

∂s

∂x
+ vy (s)

∂s

∂y
− vz (s) = Ṁs (2.9)

Proof
If there was no accumulation ablation, the glacier’s surface would be a material surface.
Therefore we would have:

DF

Dt
=
∂F

∂t
+ (v · ∇)F = 0 (2.10)

This would give:

∂s

∂t
= −vx (s)

∂s

∂x
− vy (s)

∂s

∂y
+ vz (s) (2.11)

If there is accumulation and ablation, the surface rate-of-change is offset by this mass flux,
and Ṁs must be added to ∂s/∂t:

∂s

∂t
= −vx (s)

∂s

∂x
− vy (s)

∂s

∂y
+ vz (s) + Ṁs (2.12)

where vx (s) is the x component of the velocity at the glacier surface: vx (s) = vx (x, y, s (x, y))
(ditto for y and z).

Glacier’s bed kinematics

Let the vertical position of the glacier bed be described as a function of x and y:

F (x, y, z, t) = b (x, y, t)− z = 0 (2.13)
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The glacier’s lower surface would be a material surface if there was no melting/freezing but
in general this is not the case.

Kinematic boundary condition at the bed

Let F (x, y, z, t) = b (x, y, t)− z = 0 be the equation of the glacier’s bed and Ṁb(x, y, t) the
melting/freezing rate. We have the following equation:

∂b

∂t
+ vx (b)

∂b

∂x
+ vy (b)

∂b

∂y
− vz (b) = Ṁb (2.14)

Proof
Analogous argument
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2.2 Ice sheet momentum balance

This section presents the three ice flow models that are implemented in ISSM, from the most
complex to the simplest. They all use the set of equations described in the first part of this
chapter (mass balance, momentum equilibrium and constitutive relation), but have different
assumptions to simplify these initial equations to different degrees. It is expected that the
simpler the equations, the faster the computation time, but the less accurate the model will be
in terms of evaluation of physical quantities. Other approximations of ice flow are described
in Hindmarsh (2004). We here limit ourselves to three approximations: Blatter/Pattyn’s
Higher-order 3d Model (Blatter, 1995; Pattyn, 2003), MacAyeal/Morland’s Shelfy-stream 2d
model (Morland, 1987; MacAyeal, 1989) and Hutter’s Shallow Ice Approximation (Hutter,
1983).

2.2.1 Quasistatic approximation (Stokes flow)

We now derive the governing equations of ice flow from the initial linear momentum balance
equation (Eq. 1.9). There are two body forces acting on glaciers: the acceleration due to
gravity, g, and the Coriolis force due to the Earth rotation. We write Ω the angular velocity
vector of the rotating reference frame. The conservation of linear momentum becomes:

ρ
Dv

Dt
= ρ

(
∂v

∂t
+ (v · ∇)v

)
= ∇ · σ + ρ g − 2ρ Ω× v (2.15)

We aim to simplify this equation. To this end we estimate the order of magnitude of
the various terms and eliminate those that are small compared to the others. We do this
by scaling all the variables with their respective magnitude: for any variable a, we write
a = A0a

∗, where A0 is constant and a∗ = O (1).

v = V0 v
∗ g = G0 g

∗ r = R0 r
∗ Ω = Ω0 Ω∗

σ = σ0 σ
∗ ρ = ρ0 ρ

∗ t = T0 t
∗ (2.16)

where r = (x, y, z) is the position vector. Eq. (2.15) becomes:

ρ0V0

T0
ρ∗
∂v∗

∂t∗
+
ρ0V

2
0

R0
ρ∗ (v∗ · ∇∗)v∗ =

σ0

R0
∇·σ∗+ρ0G0 ρ

∗g∗−2ρ0Ω0V0 ρ
∗Ω∗×v∗ (2.17)

If we multiply this equation by
R0

ρ0V 2
0

R0

T0V0

∂v∗

∂t∗
+ (v∗ · ∇∗)v∗ =

σ0

ρ0V 2
0

1

ρ∗
∇ · σ∗ +

R0G0

V 2
0

g∗ − 2R0Ω0

V0
ρ∗Ω∗ × v∗ (2.18)
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Four dimensionless numbers can be introduced: the Strouhal number, the Reynolds number
the Froude number and the Rossby number:

St =
R0

T0V0
Re =

ρ0V
2

0

σ0
Fr =

V 2
0

R0G0
Ro =

V0

2Ω0R0

(2.19)

Introducing these parameters in the last equation gives:

St
∂v∗

∂t∗
+ (v∗ · ∇∗)v∗ =

1

Re

1

ρ∗
∇ · σ∗ +

1

Fr
g∗ − 1

Ro
ρ∗Ω∗ × v∗ (2.20)

The order of magnitude of these parameters is given in table 2.1 (Reist, 2005). The Reynolds
number and the Froude number are at least 10 orders of magnitude smaller than the Strouhal
number for a mountain glacier, and ice sheet and an ice stream.

Variable Glacier Ice sheet Ice stream

V0 10−6 10−5 10−4

G0 10 10 10

R0 104 106 105

Ω0 10−4 10−4 10−4

σ0 105 105 105

ρ0 103 103 103

T0 R0/V0 R0/V0 R0/V0

St 1 1 1

Re 10−14 10−12 10−10

Fr 10−17 10−17 10−14

Ro 10−6 10−7 10−7

Table 2.1: Estimated orders of magnitude of scaling parameters

The comparison of the different orders of magnitudes shows that the acceleration and
inertia are negligible, even in the most extreme surges or stream flow that may occur in a
glacier. This type of fluid flow is called Stokes flow or creeping flow. The Coriolis force is
also negligible as it is at least seven orders of magnitude smaller than the pressure gradient.
These assumptions show that the Navier-Stokes equations can be reduced to a quasi-static
model:

∇ · σ′ −∇p+ ρ g = 0 (2.21)

2.2.2 Ice Constitutive Equations: Glen-Nye flow law

Ice is considered a perfectly isotropic incompressible viscous material (Hooke (2005) p.13,
Paterson (1994)). The stress tensor is therefore expressed as a function of the strain rate
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and the pressure:

σ = 2µε̇− pI (2.22)

where the viscosity µ is a scalar, because ice is assumed to be isotropic. It would be a
fourth-order tensor for anisotropic materials.The most common flow law is Glen’s flow law,
based on Glen’s experiments (Glen, 1955). He used the form:

ε̇e =

(
σ′e
B

)n
(2.23)

where B is a viscosity parameter, which increases as the ice becomes stiffer (MPa.a
1
n ), n is

empirically determined (most studies have found that n ' 3 (Hooke (2005) p.15, Paterson
(1994) p.86 and Cuffey and Paterson (2010) p.55) and is known as the flow law exponent. ε̇e
and σ′e are the effective strain rate and the effective shear stress (Eq. 1.21).

Nye (1957b) extended this flow law to cover multiaxial states of stress by writing Glen’s
flow law in tensororial form. Since ice is assumed to be isotropic, the principal axes of the
deviatoric stress σ′ and the strain rate tensor ε̇ coincide. The ice that constitutes glaciers
is neither isotropic nor perfectly incompressible, but this approximation is a convenient
starting point for calculations of glacier flow. If the principal axes of deviatoric stress and
strain rate coincide, the flow law becomes (Hooke, 2005, p.269):

ε̇ =
σ′e
n−1

Bn
σ′ (2.24)

Then, combining Glen’s flow law to eliminate σe, we obtain:

ε̇ =
ε̇
n−1
n

e

B
σ′ (2.25)

The viscosity, µ (Eq. 2.22), is therefore defined by:

µ =
B

2

(
ε̇

1− 1
n

e

) (2.26)

This flow law is widely employed in ice sheet modeling (Cuffey and Paterson, 2010, p.61).
Nevertheless, ice is not an isotropic material because the viscosity of polycrystalline ice
depends strongly on the c-axis fabric, which in glaciers often displays some degree of preferred
orientation (Cuffey and Paterson, 2010, p.78). This is ignored by nearly all theoretical
analyses of glacial flow. Some anisotropic laws are being developed (e.g. Gillet-Chaulet et al.
(2005); Ma et al. (2010); Thorsteinsson (2001)), but are beyond the scope of this thesis. For
the remainder of this thesis, we will always rely of Glen’s flow law, which provides a good
first estimate of ice behavior.
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2.2.3 Mechanical boundary conditions

The mass conservation, the momentum balance and the constitutive relation of ice give a set
of equations that completely describe the ice sheet system dynamics. However, one needs
boundary conditions to constrain these equations. There are many boundary conditions
depending on the interface: ice/atmosphere boundary (air pressure), ice/ocean boundary
(water pressure) and ice till boundary (friction). These boundary conditions are described in
this section.

Ice/Atmosphere boundary

Since atmospheric pressure, p0, is negligible compared to the ice lithostatic pressure, the
upper surface of the glacier is considered to be a free surface.

σ · n = −p0n ' 0 (2.27)

Ice/Water boundary

Water applies pressure on the ice front equal to pw = −ρwgz:

Ice Sheet Ice Shelf
Water pressure

Grounding line
till

Bedrock

ρ

ρw

HH

Sea

Figure 2.1: Water pressure on the front of an ice shelf

The boundary condition is thus:

σ · n = −pwn (2.28)

Ice/Till interface

The Ice/Till interface is constrained by two boundary conditions. The first one is a Neumann
boundary condition describing basal friction (tangent to the interface) and the other one is
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a Dirichlet boundary condition that ensures a non-interpenetrating condition between the
ice and the bedrock following Eq. (2.14):

v · n = Ṁb (2.29)

Basal friction is a fundamental control on ice stream dynamics that remains poorly understood.
Generally, a viscous friction law is employed (Paterson (1994) p.151 and Cuffey and Paterson
(2010) p.240):

‖vb‖ = kN−q‖τb‖p (2.30)

• vb is the velocity component, tangential to the bedrock surface

• N = gρH + ρwb is the effective pressure at the base, b.

• τb is the friction stress component, tangential to the bedrock surface: τb = σ ·n− σnnn
• k, q and p are positive constants

n

v(b)

σ · n

τb
vbIce

/B
ed
ro
ck

int
erf
ac
e

Figure 2.2: Ice/Till interface geometry

Weertman’s relation is a special case of this law for which p = 3 and q = 1. This friction
law may be written in vector form:

τb = −k2N r‖v‖s−1vb
def
= −α2vb (2.31)

with r = q/p and s = 1/p. We use k2 to be sure that this quantity is positive (i.e. stress
opposes the motion).
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2. ICE SHEET THERMODYNAMICS

2.2.4 Full Stokes Model (1845)

The full Stokes model (FS) consists in resolving Eq. (2.21) without approximation. It is
a 3d incompressible ice flow model. The pressure p becomes a variable like the velocity
v = (vx, vy, vz).

Full Stokes Approximation

With no further approximation, Eq. (2.21) is:



∂

∂x

(
2µ
∂vx
∂x

)
+

∂

∂y

(
µ
∂vx
∂y

+ µ
∂vy
∂x
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∂

∂z

(
µ
∂vx
∂z
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∂vz
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)
− ∂p

∂x
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∂

∂x

(
µ
∂vx
∂y

+ µ
∂vy
∂x

)
+

∂

∂y

(
2µ
∂vy
∂y

)
+

∂

∂z

(
µ
∂vy
∂z

+ µ
∂vz
∂y

)
− ∂p

∂y
= 0

∂

∂x

(
µ
∂vx
∂z

+ µ
∂vz
∂x

)
+

∂

∂y

(
µ
∂vy
∂z

+ µ
∂vz
∂y

)
+

∂

∂z

(
2µ
∂vz
∂z

)
− ∂p

∂z
− ρg = 0

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0

(2.32)

2.2.5 Blatter/Pattyn’s Higher-order 3d Model (1995/2003)

Blatter (1995) introduced a three-dimensional higher-order ice sheet model (HO), that has
been written in terms of velocities by Pattyn (2003). It is a numerical model in which
the vertical velocity is deduced from the horizontal components of velocity that are solved
independently, which makes this model much less computationally intensive than solving for
the Full-Stokes equations. The two main assumptions of this model are:

1. the horizontal gradients of the vertical velocity are small compared to the vertical
gradient of the horizontal velocity,

2. Bridging effects (described below) are negligible.

Figure 2.3: Bridging effect, arch bridges use a semicircular structure to push the weight
outward along the arch to the abutments
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The bridging effect is shown in Fig. 2.3. In the case of bridges, the weight of the arch is
pushed outwards. The bridge piers support their own weight and the weight of the arch.
The variations in vertical normal stress lead to shear-stress gradients. A paper by van der
Veen and Whillans (1989) suggests that bridging effects could be important at distances
that are shorter than a few ice thickness at most. At small scales, part of the glacier can act
like a bridge in which the vertical stress at the underside of the bridge span is less than the
weight of ice above, while that under the abutment exceeds the weight of material above.

Neglecting the bridging effect for the ice means that the vertical normal stress is purely
lithostatic, or equal to the weight of ice vertically above. If the Bridging effect (van der Veen
and Whillans, 1989) is negligible, the vertical equation of the momentum balance (Eq. 2.21)
is simplified to:

∂σzz
∂z
− ρg = 0 (2.33)

Blatter/Pattyn’s Higher-order Approximation

Under the following assumptions:

• ∂σxz
∂x

� ∂σzz
∂z

• ∂σyz
∂y

� ∂σzz
∂z

• ∂vz
∂x
� ∂vx

∂z

• ∂vz
∂y
� ∂vy

∂z

Eq. (2.21) is:



∂

∂x

(
4µ
∂vx
∂x

+ 2µ
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)
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∂y

(
µ
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∂y
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)
+

∂

∂z

(
µ
∂vx
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∂
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∂
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4µ
∂vy
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+ 2µ
∂vx
∂x

)
+

∂

∂z

(
µ
∂vy
∂z

)
= ρg

∂s

∂y

vz (x, y, z) = vz (x, y, b)−
∫ z

b(x,y)

∂vx
∂x

+
∂vy
∂y

dz′

(2.34)

Proof
With the first and second assumptions (bridge effect negligible), the third equation of
Eq. (2.32) reduces to:

∂

∂z

(
2µ
∂vz
∂z

)
− ∂p

∂z
− ρg = 0 (2.35)
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If we integrate this equation from z to the surface s, we obtain:

p (x, y, s (x, y))− p (x, y, z) = 2 µ
∂vz
∂z

∣∣∣∣
s

− 2 µ
∂vz
∂z

∣∣∣∣
z

− ρg (s− z) (2.36)

The boundary conditions at the ice/atmosphere interface Eq. (2.27) impose:

σzz (x, y, s (x, y)) = 2 µ
∂vz
∂z

∣∣∣∣
s

− p (x, y, s (x, y)) ' 0 (2.37)

Finally the pressure is:

p (x, y, z) = 2µ
∂vz
∂z

+ ρg (s− z) (2.38)

With this approximation, full Stokes equations (Eq. 2.32) become:
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+
∂vy
∂y

+
∂vz
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= 0

(2.39)

Lastly, the third and fourth assumptions simplify the first two equations:
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(2.40)

The vertical component of the velocity is deduced from the incompressibility equation, which
is integrated from b to z.
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2.2.6 MacAyeal/Morland’s Shelfy-stream 2d model (1989)

This model was first introduced for an unconfined ice shelf by Morland (1987), and extended
by MacAyeal (1989) for ice flow over a viscous basal sediment. It is usually referred to as
the Shelfy-Stream or Shallow-Shelf approximation (SSA). It is a 2d model that includes
Blatter/Pattyn’s assumptions, and, the horizontal components of the velocity are assumed
to be constant with depth. The basal drag associated with deforming basal sediment is
assumed not to induce significant vertical gradients of the horizontal velocity.

MacAyeal’s Shelfy-stream Approximation

Under the following assumptions:

• ∂σxz
∂x

� ∂σzz
∂z

• ∂σyz
∂y

� ∂σzz
∂z

• ∂vx
∂z

= 0

• ∂vy
∂z

= 0

• ε̇xz = 0

• ε̇yz = 0

• bedrock slope negligible

Eq. (2.21) is:
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+ α2vy

(2.41)

Where µ̄ is the depth-averaged non-linear viscosity defined as: Hµ =

∫ s

b
µdz, and α the

friction coefficient (Eq. 2.31).

Proof
These assumptions are stronger than Blatter/Pattyn’s. Therefore, we can use Pattyn’s higher
order model equations (Eq. 2.34) as a starting point. If we use the first two assumptions,
the first equations of Pattyn’s model become:


∂

∂x

(
4µ
∂vx
∂x

+ 2µ
∂vy
∂y

)
+

∂

∂y

(
µ
∂vx
∂y

+ µ
∂vy
∂x

)
= ρg

∂s

∂x

∂

∂x

(
µ
∂vx
∂y

+ µ
∂vy
∂x

)
+

∂

∂y

(
4µ
∂vy
∂y

+ 2µ
∂vx
∂x

)
= ρg

∂s

∂y

(2.42)
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One can integrate these equations from the bed b(x, y) to the surface s(x, y):
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We can use Leibniz integral rule (Eq. C.2), which gives:
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(2.43)
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(2.44)

The boundary conditions at the ice/atmosphere interface Eq. (2.27) imposes:

σ′(s) · n = 0 (2.45)

If we assume that the bedrock is horizontal, the boundary conditions at the ice/till interface
is:

(σ′(b) · n)x = −α2vx

(σ′(b) · n)y = −α2vy

(2.46)

Eq. (2.43) and Eq. (2.44) become:
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One of the assumptions here is that horizontal velocities (vx and vy) do not depend on z:
there is no need to use Leibniz integral law here.
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2.2.7 Hutter’s Shallow Ice Approximation (1983)

Hutter (1983) introduced the most widely used ice sheet flow model: the Shallow Ice
Approximation (SIA). It is the most computationally efficient model, but it is also one of
the simplest because of the number of assumptions that are made as only vertical shear is
taken into account. SIA is also derived from Blatter/Pattyn’s model, but the assumptions
are opposed to the one of MacAyeal/Morland’s.

Shallow Ice Approximation

Under the following assumptions:

• The only components of the stress tensor that are not negligible are σ′xz and σ′yz

• ∂vz
∂x
� ∂vx

∂z

• ∂vz
∂y
� ∂vy

∂z

Eq. (2.21) is:


vx = vx(b)− 2 (ρg)n

∂s

∂x
(∇s · ∇s)

n−1
2

∫ z

b

(
s− z
B

)n
dz

vy = vy(b)− 2 (ρg)n
∂s

∂y
(∇s · ∇s)

n−1
2

∫ z

b

(
s− z
B

)n
dz

(2.47)

Proof
Under these strong assumptions, the stress balance equation (Eq. 2.21) is reduced to:



∂σ′xz
∂z
− ∂p

∂x
= 0

∂σ′yz
∂z
− ∂p

∂y
= 0

−∂p
∂z
− ρg = 0

(2.48)

The pressure is therefore simply linear with depth: p(z) = ρg (s− z). We can reduce the
system to the first two equations only:

∂σ′xz
∂z

= ρg
∂s

∂x

∂σ′yz
∂z

= ρg
∂s

∂y

(2.49)

The boundary conditions on the upper surface impose that σ′xz(s) = σ′yz(s) = 0, which gives
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an analytical solution from these two stress components:

σ′xz = −ρg ∂s
∂x

(s− z)

σ′yz = −ρg ∂s
∂y

(s− z)
(2.50)

The effective deviatoric stress is thus:

σ′e
2

= σ′xz
2

+ σ′yz
2

= (ρg)2 (s− z)2 (∇s · ∇s) (2.51)

Glen’s flow-law in its effective stress form (Eq. 2.24) imposes:

ε̇xz =
σ′e
n−1

Bn
σ′xz

ε̇yz =
σ′e
n−1

Bn
σ′yz

(2.52)

With the second and third assumptions, this gives:

∂vx
∂z

= − 2

Bn
(ρg)n (s− z)n (∇s · ∇s)

n−1
2
∂s

∂x

∂vy
∂z

= − 2

Bn
(ρg)n (s− z)n (∇s · ∇s)

n−1
2
∂s

∂y

(2.53)

The integral of this equation between b and z gives the final equations.
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2.3 Ice sheet energy balance

2.3.1 Thermal model

A thermal model is essential to predicting an ice sheet system’s evolution, as several physical
properties of the ice are functions of the temperature. The viscosity parameter, B, is highly
temperature-dependent. Temperature also affects melting, which in turn affects the glacier
geometry and sliding.

We will see in Chap. 3 that it is convenient to employ the ALE formulation (see Chap. 1).
The thermal model in the ALE configuration is the following.

ALE thermal model

Assume ice to be enclosed in a volume Ω ⊂ R3 with the following properties

– density ρ : Ω× [0, T ]→ R∗+
– velocity v : Ω× [0, T ]→ R3

– temperature T : Ω× [0, T ]→ R+

– heat capacity c : Ω× [0, T ]→ R+

– thermal conductivity kth : Ω× [0, T ]→ R+

and a source term (here due to viscous heating) Φ. For a frame velocity w the equation of
conservation of energy is:

ρ
∂ (cT )

∂t
= −ρ (v −w) · ∇ (cT ) +∇ · kth ∇T + Φ (2.54)

Proof
We have shown that the conservation of energy (Eq. 1.11) was:

ρ
D

Dt
(cT ) = ∇ · kth ∇T + Φ (2.55)

The advection appears when one takes the Eulerian or ALE version of the material derivative
In Eulerian, this equation becomes:

ρ
∂ (cT )

∂t
= −ρ v · ∇ (cT ) +∇ · kth ∇T + Φ (2.56)

and in ALE, the frame velocity w must be accounted for:

ρ
∂ (cT )

∂t
= −ρ (v −w) · ∇ (cT ) +∇ · kth ∇T + Φ (2.57)

Several assumption can be employed for ice (Hooke, 2005, p117). These assumptions
simplify the previous equations by taking c and kth constant.
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Simplified thermal model

Under the following assumptions:

1. spatial and thermal dependence of the heat capacity, c, are neglected

2. spatial and thermal dependence of the thermal conductivity, kth, are neglected

Eq. (2.54) becomes:

∂T

∂t
= − (v −w) · ∇T +

kth
ρc

∆T +
Φ

ρc
(2.58)

The local heat transfer is thus a result of advection, conduction and internal deformation
heating. In many thermal models, the horizontal advection is neglected (Paterson (1994),
p.216 and Hooke (2005), p.118). Horizontal conduction is often neglected as well (Hulbe
and MacAyeal (1999) and Hooke (2005), p.118). These assumptions are not employed here.

Viscous heating

The viscous heating of the ice can equivalently be written as:

Φ = Tr (σε̇) = 2ε̇eσ
′
e = 4µε̇2

e (2.59)

Proof
The energy of deformation is

Φ = Tr (σε̇) (2.60)

One can use the deviatoric stress tensor and use the incompressibility:

Φ = Tr
(
σ′ε̇− P ε̇

)
= Tr

(
σ′ε̇
)
− p Tr (ε̇) = Tr

(
σ′ε̇
)

(2.61)

And in terms of effective strain rate ε̇e and effective deviatoric stress σe:

Φ2 =
(
Tr
(
σ′ε̇
))2

=

∑
i,j

σ′ij ε̇ji

2

=

∑
i,j

σ′ij ε̇ij

2

=

∑
i,j

σ′ij ε̇ij

∑
k,l

σ′klε̇kl



=

∑
i,j

2µε̇ij ε̇ij

∑
k,l

σ′kl
1

2µ
σ′kl

 =
∑
i,j

ε̇2
ij

∑
kl

σ′kl
2

= 2ε̇2
e 2σ′e

2

(2.62)

2.3.2 Thermal boundary conditions

Ice/Atmosphere interface

On the upper surface, the temperature is imposed as the mean annual air temperature at
the surface, Ts. Indeed, the temperature measured at 10 or 15 m in a glacier, beneath the
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zone of seasonal variation, equals the mean annual air temperature (Cuffey and Paterson,
2010, p.404). This assumption is made in the vast majority of ice sheet thermal models (i.e.,
Hulbe and MacAyeal (1999); Pattyn (2003); Morlighem et al. (2010)).

Ice/Water boundary

On the Ice/Water interface, the simplest boundary condition is given by Holland and Jenkins
(1999). A heat flux is imposed at the boundary that is proportional to the temperature
difference between the ice shelf surface Tb and the ocean T = Tpmp.

kth ∇T |b .n ' −kth
∂T

∂z

∣∣∣∣
b

= −ρwcpMγ (Tb − Tpmp) (2.63)

With:

– n = (nx, ny, nz) normal vector pointing outward

– cpM mixed layer (Holland and Jenkins, 1999, p5) specific heat capacity (J kg-1 K-1)

– γ thermal exchange velocity (m s-1)

– Tpmp pressure melting point (melting point of ice under pressure in K) (Paterson, 1994,
p.212)

If the ocean temperature is above the ice shelf base temperature, the heat flux is positive
with respect to the normal (heat goes from the ocean to the ice shelf), whereas when the ice
shelf base is warmer than the ocean, the flux is negative (heat goes from the ice shelf to the
ocean). Interested readers can refer to Holland and Jenkins (1999) for more details.

Ice/Till boundary

The basal thermal boundary condition is supplied by a geothermal flux, G, at the ice sheet
bottom and the heat due to basal friction:

kth ∇T |b · n ' −kth
∂T

∂z

∣∣∣∣
b

= G+ τb · ub (2.64)

The basal temperature in the ice mass is kept at the pressure melting point Tpmp = 273.15−βp
(Paterson, 1994, p212) whenever it is reached (Pattyn, 2003). In other words, the boundary
condition at the ice/till interface is an imposed flux. When this imposed flux generates ice
temperatures above the pressure melting point, the boundary condition is changed into an
imposed temperature Tb = Tpmp.
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Conclusion

In this chapter, we used the mass conservation, momentum balance and Glen’s flow law
to define the system of equations governing ice flow. This system of equations constitutes
the full-Stokes equations. This model requires huge computational resources in terms of
computer memory and execution time: it is a 3d model that solves 4 unknowns (vx, vy, vz, p).
Thus, we also presented two simplified models: Blatter-Pattyn’s higher-order model (BP)
and MacAyeal-Morland’s shelfy-stream model (SSA). Both models are hierarchically derived
from the full-Stokes equations. BP still uses a 3d mesh, but decorrelates the horizontal
velocity components from the vertical component. There are hence only 2 unknowns (vx, vy).
MacAyeal goes further by vertically integrating the equations, neglecting vertical shear.
Finally, we presented the simple Shallow Ice Approximation (SIA) that gives analytical
equations for the horizontal velocities. These four models offer four different refinement
levels and their computational efficiency is also different, which is very useful for modeling
a continental ice sheet, such as Antarctica, since one can use different models on different
areas depending on the accuracy needed and the phenomena involved. In the last section of
this chapter, we presented the thermal model and its boundary conditions, derived from the
energy balance.

Full-Stokes (FS) Blatter-Pattyn (BP) MacAyeal-Morland (SSA)

(vx, vy, vz, P ) (vx, vy) (vx, vy)

Hutter (SIA)

(vx, vy)

Figure 2.4: Ice flow models
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3.1. NUMERICAL MODELING STRATEGY

The equations presented in Chap. 2 have been implemented in the massively-parallelized,
multi-purpose, finite element framework provided by the Ice Sheet System Model (ISSM). In
this chapter, we first present a general algorithmic strategy for solving transient simulations
of ice sheet flow using the finite element method and an Arbitrary Lagrangian Eulerian
configuration (Chap. 1). We then discuss the software architecture designed for massively
parallel runs. Only the key aspects of the implementation are presented, as this was a team
effort. Finally, we present an algorithm for anisotropic mesh adaptation.

3.1 Numerical modeling strategy

3.1.1 Sequential resolution

In the previous chapter, we introduced the thermomechanical equations that govern large-
scale ice sheet dynamics. These are summarized below:

Mass balance equation



∇ · v = 0

∂s

∂t
+ vx (s)

∂s

∂x
+ vy (s)

∂s

∂y
− vz (s) = Ṁs

∂b

∂t
+ vx (b)

∂b

∂x
+ vy (b)

∂b

∂y
− vz (b) = Ṁb

Momentum balance equations ∇ · σ′ −∇p+ ρ g = 0

Constitutive equation: σ′ = 2µε̇

Glen’s flow law µ =
B

2

(
ε̇

1− 1
n

e

)
Energy balance equation

∂T

∂t
= − (v −w) · ∇T +

kth
ρc

∆T +
Φ

ρc

There are 7 unkowns: the three velocity components (vx, vy, vz), the pressure (p), the
temperature (T ) and the surface and bed elevations (s,b). For grounded ice, only the surface
elevation is unknown, as the bedrock topography is assumed to remain constant. All of these
variables are coupled, the geometry directly affects the velocities, which are also affected by
the temperature, since the viscosity, B, is temperature dependent. The velocities in turn
affect the geometry of the system and the advection in the thermal model. To reduce the
numerical cost that a resolution of the full system requires, we use a sequential coupling in
an explicit formulation. The steps are described in Fig. 3.1.

We start with an initial geometry, velocity (observed or taken as zero) and temperature
fields. We first compute the temperature for this time step. The viscosity is then updated
following its temperature dependency. We then perform a diagnostic to compute the new
velocities. We go to the next time increment (following the CFL condition) and calculate
the new geometry of the system. We stop whenever the final time is exceeded.
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Initial state

Energy balance (thermal)

Update viscosity accordingly momentum balance (diagnostic)

mass balance (prognostic)

v0x, v
0
y , v

0
z , b

0, s0, T 0

ET

(

v
n, pn, Tn+1, sn, bn

)

= 0

B = B
(

Tn+1
)

EV

(

v
n+1, pn+1, Tn+1, sn, bn

)

= 0

EM

(

v
n+1, pn+1, Tn+1, sn+1, bn+1

)

= 0

Time increment:

Time: t0 = 0

tn+1 = tn +∆t

Figure 3.1: Solution sequence of a transient ice flow simulation. ET , EV and EM symbolize
the thermal, mechanical and prognostic equations respectively

3.1.2 Finite-Element Method

To solve the three problems (thermal, diagnostic and prognostic), ISSM relies on the Finite
Element Method (FEM). This method is not described in detail here. Interested readers
can refer to (Zienkiewicz and Taylor, 1989). To summarized, one begins with a weak or
variational formulation of the model equations, then applies the Galerkin approximation. To
illustrate, let’s consider the MacAyeal-Morland equations for an ice shelf:

∂

∂x

(
4Hµ̄

∂vx
∂x

+ 2Hµ̄
∂vy
∂y

)
+

∂

∂y

(
Hµ̄

∂vx
∂y

+Hµ̄
∂vy
∂x

)
= ρgH

∂s

∂x

∂

∂y

(
4Hµ̄

∂vy
∂y

+ 2Hµ̄
∂vx
∂x

)
+

∂

∂x

(
Hµ̄

∂vx
∂y

+Hµ̄
∂vy
∂x

)
= ρgH

∂s

∂y

(3.1)

For this two dimensional model, we consider two boundary conditions: water pressure applied
on the ice front Γσ, and a homogeneous Dirichlet boundary condition applied on the other
boundaries Γu: 

σ′ · n =

(
1

2
ρgH2 − 1

2
ρwgb

2

)
n on Γσ

v = 0 on Γu

(3.2)

We define the force f =

(
1

2
ρgH2 − 1

2
ρwgb

2

)
n.

Weak Formulation

We define the kinematically admissible velocity field as:

V =
{
v ∈

(
H1 (Ω)

)2
, ∀x ∈ Γu v = 0

}
(3.3)
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H1 (Ω) is the standard notation for the Sobolev space, which contains all the square-integrable
functions defined on Ω that have a square-integrable first derivative. It can be shown that
the primal problem (Eq. (3.1) and Eq. (3.2)) is strictly equivalent to its weak formulation:

∀ϕ = (ϕx, ϕy) ∈ V (3.4)

∫
Ω

2Hµ

(
2
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∂x

+
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)
∂ϕx
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)
∂ϕy
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dΩ

=

∫
Γ
f ·ϕ dΓ−

∫
Ω
ρgH∇s ·ϕ dΩ (3.5)

Galerkin approximation

Now, instead of using the entire space V, which is an infinite-dimensional vector space, we
use a sub-space Vh, which is finite-dimensional. Let {ϕi, i = 1 . . . n} be a basis of this
space. We now consider all basis functions to be test functions in the weak formulation:
∀i ∈ [1 n]:

∫
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∫
Ω
ρgH∇s ·ϕi dΩ (3.6)

If we approximate the solution by decomposing v on this basis, we get:

v =

n∑
j=1

vjϕj (3.7)

The weak formulation becomes:
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vj
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This gives n equations (all test functions ϕi) and n unknowns (the velocity components vj).
Let K be a matrix representing the left hand side, such that:

kij =

∫
Ω

2Hµ
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∂ϕjx
∂x
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∂ϕix
∂x

+Hµ
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∫
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∂ϕjy
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)
∂ϕiy
∂y

dΩ (3.9)

and F a vector, such that:

fi =

∫
Γ
f ·ϕi dΓ−

∫
Ω
ρgH∇s ·ϕi dΩ (3.10)

For a linear viscosity, the solution of the problem is equivalent to solving the following linear
system:

KU = F (3.11)

In the case of Glen’s flow law with n = 3, the viscosity depends on the velocity, and the
above system becomes non-linear. In such cases, we rely on the iterative fixed-point method
(or Picard’s scheme). The solution of this system gives all the components of the velocity
on the basis of the solution space, and the velocity vector can be recovered. The basis of
the solution space is usually chosen such that, for a mesh discretization of the continuous
domain, each basis function is equal to 1 on one vertex and 0 on all other vertices. The
discretization of the model domain is therefore crucial, as it defines the solution space on
which the solution is sought.

The finite element method is widely employed in solid mechanics, but is a relative
newcomer to computational fluid dynamics. It provides advantages over both the finite
difference method and the finite volume method, because it can use unstructured meshes
and possesses the best approximation property (Céa’s Lemma) when applied to elliptic and
parabolic problems at relatively low Péclet numbers. In other words, the Galerkin solution
vh ∈ Vh is as close to the exact solution v ∈ V as any other vector in Vh.

3.1.3 Mesh deformation with ALE

The Eulerian approach is widely used in fluid dynamics, as large distortions of the continuum
motion can be easily handled. The computational mesh remains fixed. The disadvantage of
this approach is that moving interfaces are difficult to follow and require specific treatment,
such as the level-set method. In the context of ice sheet modeling, the surface and the ice
shelf base can move dramatically and these changes must be precisely captured: the driving
stress is proportional to the surface gradient. A fine description of the surface elevation is
therefore required. An Eulerian approach would be difficult to apply.
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xx

yy t = t0 t = t0 +∆t

Figure 3.2: Eulerian mesh after a time increment. The two-dimensional mesh in black
remains fixed, while the system represented with a blue line moves.

The Lagrangian approach is generally used in structural mechanics. Each node of the
computational mesh follows a given material particle. This approach makes it easy to track
free surfaces and interfaces between different materials. However, the Lagrangian approach
is not well suited for large distortions, because it requires frequent remeshing to avoid an
excessive distortion of the finite element mesh. This is the case for ice sheets, especially in
fast moving regions where large shearing deformations can take place.

xx

yy

t = t0 t = t0 +∆t

Figure 3.3: Lagrangian mesh after a time increment. The two-dimensional mesh in black
follows the deformation of the system represented in blue.

The Arbitrary Eulerian-Lagrangian method (Donea and Belytschko, 1992) consists in
combining the advantages of both techniques: the nodes of the mesh may move arbitrarily
alleviating the drawbacks of the traditional Lagrangian and Eulerian approach. This method
was first introduced for finite difference, and extended to finite elements (Hughes et al., 1981).
It is now a popular tool for simulation of continuum mechanics problems with large shear
deformation such as fluid flow and metal forming. Compared to pure Eulerian methods, it is
also better suited for moving boundaries and large volume changes of the computational
domain.
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3. ICE SHEET NUMERICAL MODELING

xx

yy

t = t0 t = t0 +∆t

Figure 3.4: ALE mesh after a time increment. The mesh in black moves arbitrarily: here
the horizontal layers follow the vertical evolution of the system surface, but the vertical
edges remain fixed. The mesh follows the boundary of the system, but is not dramatically
deformed.

In the context of ice sheet modeling, it is convenient to use a mesh that is horizontally
fixed in space (Eulerian), and vertically equidistributed between the moving base and the
surface. The mesh velocity is zero horizontally, and its vertical component is calculated after
each iteration as the ratio between the node vertical displacement and the time step. This
velocity is the frame velocity that needs to be incorporated in the ALE formulation of the
system equations. Only the thermal model is affected by the mesh deformation, because the
mechanical model is quasi-static.

3.1.4 ISSM Software Architecture

The Ice Sheet System Model (ISSM) is a massively-parallelized object-oriented framework
that we have been developing since 2009. It is inspired by NASTRAN (Nastran, 1972),
which is a Finite Element Analysis program that was originally developed for NASA in the
late 1960s. ISSM is already capable of tackling systems with several millions of degrees of
freedom within times on the order of hours, including cases where full-Stokes is used (Larour
et al., 2012). We present here briefly some of the characteristics of ISSM: code languages,
parallelism and solvers.

Languages

ISSM relies mainly on the C and C++ languages (Kernighan, 1988; Stroustrup, 1997), and
is hosted in MATLAB (Mathworks, 2008), a common scientific platform.

MATLAB is an interpreted language (no need to compile), which is platformm indepen-
dent and comes with a extensive library of predefined functions. It also comes with very
powerful plotting capabilities, which makes it ideal for display and analysis of large and
complex datasets. But as with any interpreted language, it is slow when dealing with loops.
The C/C++ language on the other hand is a fast language for which many compilers and
math kernels are well optimized. It also gives strong emphasis to the use of polymorphism,
which brings object oriented methodologies to its full potential. ISSM combines the advan-
tages of both languages: the C/C++ core is interfaced with the MATLAB environment,
using the MATLAB External API (mex modules).
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Parallelism

ISSM can be run in serial/sequential mode (only one CPU), within MATLAB, but its
focus is mainly on massively parallel computations, run on large clusters such as the NASA
Advanced Supercomputing (NAS) Pleiades cluster (which possesses 111,104 cores). ISSM is
at its core a parallel architecture and uses a static domain decomposition (DD) methodology.
This subdivision has two main purposes :

1. to distribute element computations to CPUs in an even manner to minimize memory
requirements

2. to distribute a system of equations evenly amongst CPUs for maximum computational
efficiency

Each element of the system “belongs” to only one CPU. The subdomains are connected
at the interfaces by sharing degrees of freedom. Nodes on the boundary between two
subdomains are assigned to only one subdomain. Other CPUs have “clones” of these same
nodes, but the “master” nodes belong to one CPU. Communication between CPUs is required
when the matrices are assembled so that the connections between subdomains can be made.

ISSM uses METIS (Karypis and Kumar, 1998) to partition the elements. METIS
ensures that each partition has an equal number of elements, and that there are as few
elements intersecting a partition boundary as possible, in order to minimize the amount of
communication required between processes. Fig. 3.5 shows an example of element partitioning
for 26 CPUs (one color per CPU).

Parallelism is achieved by using the Message Passing Interface (Gropp et al., 1996; Gropp
and Lusk, 1996). This library is flexible enough to allow runs on distributed as well as
shared memory clusters (Fig. 3.6). The difficulty that arises from the use of distributed
clusters is that the memory is not shared. Each CPU has its elements and cannot access
properties of elements that are not in its partition in a simple manner. This had to be taken
into account in the code development.

Solver

Parallel objects and solvers rely on the Portable Extensible Toolkit for Scientific Computation
package (PETSc) (Balay et al., 1997, 2008, 2009). PETSc is an object-oriented toolkit for
the parallel numerical solution of PDEs. PETSc provides implementations of basic objects,
such as matrices and vectors, linear solvers (primarily Krylov methods with a variety of
preconditioners), and nonlinear solvers (primarily Newton-type methods).

Most of the time, ISSM relies on a direct solver. The MUltifrontal Massively Parallel
Sparse direct Solver, or MUMPS (Amestoy et al., 2001, 2006). MUMPS is a software
application for the solution of large sparse systems of linear algebraic equations on distributed
memory parallel computers. It has been designed to solve a wide range of problems, which
makes it ideal for the problems encountered in ice sheet modeling.
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Figure 3.5: Example of Mesh partitioning, using a domain decomposition method on Pine
Island Glacier (each color represents one of the 26 partitions)

Figure 3.6: (a) Distributed-memory architecture. (b) Shared-memory architecture
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3.2 Anisotropic mesh adaptation

One of the major challenges of large scale modeling is dealing with computationally intensive
problems. Mesh generation is a crucial component, as one has to minimize the number
of elements in the computational mesh without losing accuracy. Here we rely on static
anisotropic mesh adaptation following the work of Habashi et al. (2000); Dompierre et al.
(2002) and Ait-Ali-Yahia et al. (2002). The idea is to generate a mesh that minimizes
interpolation error for a given field, generally the velocity. Smaller elements are introduced
where the variations in velocities are high, and larger elements are used where the ice is
stagnant. We detail here how this adaption is automated.

3.2.1 Interpolation Error

Let u : Vd → R be a scalar function defined in a space of dimension d, Vd ⊂ Rd, which is
infinitely differentiable on its domain of definition. Let uh : Vd → R be an interpolant of u,
taken here as piecewise linear (See Fig.3.7). In our case, u can be the known magnitude of
the observed surface velocity or the bedrock topography, and uh the P1 interpolation of this
field onto a triangular mesh that is to be optimized. We define the absolute error as follows:

Interpolation error

The error between a function u : Vd → R and its linear interpolant uh : Vd → R is defined
as:

∀x ∈ Vd ε (x) =
∣∣∣u (x)− uh (x)

∣∣∣ (3.12)

u(x)

uh(x)

ǫ (x)

x

y

a b

Figure 3.7: 1d interpolation error ε (x) =
∣∣u (x)− uh (x)

∣∣
In our case, we have a triangulation Th of the domain. Fields, such as surface velocities,

ice thickness or bed topography, are interpolated onto this mesh. We want to minimize the
error between the exact fields and their interpolations. We therefore need an upper bound on
the error for each element K ∈ Th, the idea being to decrease the size of the elements where
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the error, ε, is high, and increase the size of the elements where this error is small. Alauzet
and Frey (2003) showed that the interpolation error of P1 elements (piecewise linear) in a
space of dimension d is as described below.

Generalized interpolation absolute error

Let uh be a P1 interpolation of an infinitely differentiable field u, for a triangulation Th. For
every element K of this triangulation we have the following error upper bound:

∀K ∈ Th ‖u− uh‖∞,K ≤ cd sup
x,A,B∈K

〈
−−→
AB, |Hu (x)|

−−→
AB〉 (3.13)

where:

• cd =
1

2

(
d

d+ 1

)2

is a constant that depends only on the space dimension d

• Hu (x) is the Hessian matrix of u on x, and |Hu (x)| the modified Hessian matrix for
which all eigenvalues are positive.

3.2.2 Anisotropic formulation of the interpolation error

Let EK be the set of all edges for an element K of the triangulation. Any vector
−−→
AB ⊂ K

can be expressed as a linear combination of the edges of the triangle K. Eq. (3.13) becomes:

∀K ∈ Th ‖u− uh‖∞,K ≤ cd max
x∈K

max
e∈EK

〈e, |Hu (x)| e〉 (3.14)

In practice, the right hand side is difficult to estimate, since the maximum of the Hessian
matrix |Hu (x)| is unknown. To overcome this, we assume that we can build a metric tensor
M (K) that verifies:

∀e ∈ EK max
x∈K
〈e, |Hu (x)| e〉 ≤ 〈e,M (K) e〉 (3.15)

In the next section, we will show how the Hessian matrix is estimated and how the metric
tensor, M, is built. This gives the following inequality:

∀K ∈ Th ‖u− uh‖∞,K ≤ cd max
e∈EK

〈e,M (K) e〉 (3.16)

We define the error εK for any element of the triangulation as:

εK = cd max
e∈EK

〈e,M (K) e〉 (3.17)

This means that for any element K of the mesh, the interpolation error of P1 elements is
strictly proportional to the square of its longest edge in the metric M (K). The control of
the element edges allows us to control the error interpolation.
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3.2.3 Mesh quality

In the mesh generation procedure, the goal is to equi-distribute the interpolation error in
each direction over each element to control the global interpolation error. Let ε be the
maximum authorized error for all elements of the mesh. For any element K of the mesh,
(3.17) we impose that:

∀e ∈ EK ε = cd max
e∈EK

〈e,M (K) e〉 (3.18)

If we define the metric tensor as:

M (K) =
cd
ε

M (K) (3.19)

the edges must satisfy:

∀e ∈ EK 〈e,M (K) e〉 = 1⇐⇒
(
lM(K) (e)

)2
= 1 (3.20)

where lM(K) (e) is the length of the edge e in the metric M (K). This means that the
interpolation error is ε if the edge length in the metric M (K) is 1. We then have to modify
the scalar product that is used to evaluate the distance in the mesh generator with the
anisotropic metric tensor M (K), which replaces the standard Euclidean metric.

In 2d, the quality of the elements can be estimated as being the proportion of equilateral
triangles in the metric M (K). For a triangle, the quality Q is the ratio of its volume, vM (K)
and the sum of its edge lengths in the metric. A coefficient is added so that the quality is 1
for equilateral triangles.

Q (K) = 4
√

3
vM (K)

3∑
i=1

lM (ei)
2

(3.21)

3.2.4 Metric construction

We show here how to construct the metric M, which is defined for each node of the mesh
and linearly interpolated to be continuous over the domain. We also want to control the
smallest and largest sizes of element edges. We use the following notations:

• ε maximum interpolation error allowed

• hmin smallest edge length allowed

• hmax longest edge length allowed

We employ here the metric proposed by Alauzet and Frey (2003); Alauzet (2003) and Alauzet
and Saiac (2007). For each node of the mesh, the metric is defined as:

M = RΛ̃R−1 (3.22)
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where R is the matrix of eigenvectors of the Hessian matrix Hu. The matrix Λ̃ is defined
as:

Λ̃ =

(
λ̃1 0

0 λ̃2

)
(3.23)

λ̃i = min

(
max

(
cd |λi|
ε

,
1

h2
max

)
,

1

h2
min

)
(3.24)

where λi are the eigenvalues of the Hessian matrix Hu and cd the constant that appears in
(3.13).

This metric tensor is anisotropic, as its principal directions are given by the eigenvectors
and its lengths by the modified eigenvalues of the Hessian matrix.

We have introduced in the metric definition the minimum and maximum edge lengths to
avoid any “unrealistic” metric tensor. We would, for instance, have elements of infinite length
where the solution is linear. The minimum length is used to avoid having a concentration of
very small elements close to singularities.

If the adaptation is done with multiple fields, for example surface velocities and bedrock
topography simultaneously, one needs to use two different metric tensors M1 and M2 that
are based on their respective Hessian matrices. Alauzet and Frey (2003) showed that the
relation

N = M1
−1M2 (3.25)

provides a metric tensor, N, that satisfies both metric tensors M1 and M2. The tensor
M1 being symmetric can be diagonalized. This operation is called simultaneously matrix
reduction. This process can be repeated with all the metrics that need to be taken into
account.

The final metric tensor is also smoothed to avoid large variations of element size. We
limit, for example, the ratio between two neighboring elements to be at most 2. This means
that the characteristic length of two connected elements varies by a maximum factor of 2.

3.2.5 Hessian matrix estimate

The upper bound of the error estimate equation (3.13) involves the Hessian matrix of the
exact solution, u, and is hence also present in the metric construction (3.22). But in practice,
the exact solution, u, is not always known: we only know a discrete solution uh. In ice sheet
modeling, for instance, we have InSAR derived velocity maps that have a spatial resolution
of about 100 meters. These velocities are interpolated on the mesh node, which constitutes
our discretized uh. If InSAR data are not available, one can also use a model result, which
would give the velocity estimate for each node. Since u is interpolated, it is piecewise linear
and its Hessian matrix is zero over the elements and infinite over the edges. The Hessian
matrix Hu is estimated over each element by a double L2 projection or a least mean square
method (See Alauzet (2003); Alauzet and Saiac (2007) for more details).
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3.2.6 Adaptation algorithm

In ice sheet modeling, the unknown is the velocity field v. An estimate of this velocity field
is given by InSAR data. This observed velocity is interpolated on a given initial mesh. The
metric is computed using (3.22) for each node of the mesh. Then we use an edge-based
anisotropic mesh optimization methodology inspired by Frey (2001) (YAMS) and Hecht
(2006) (BAMG) to generate a new mesh. The main steps of the adaptation algorithm are as
follows:

1. Generate a new mesh with only vertices on the domain outline (boundary)

2. Apply to all the vertices of the initial mesh:

(a) Calculate the distance between the current vertex to the closest vertex of the new
mesh

(b) If this distance is greater than 1: insert the vertex in the new mesh, while keeping
the triangulation Delaunay conforming

3. Apply to all the edges of the initial mesh:

(a) Calculate the edge length in the metric provided

(b) If the edge length is smaller than 1, go to next edge

(c) Calculate the number of subdivisions (floor of the edge length)

(d) Calculate the position of the additional vertices

(e) Introduce additional vertices one by one in the new mesh so that the triangulation
remains Delaunay conforming

The observed velocities are re-interpolated on this new mesh and the previous step is
repeated several times to make sure that all the ice streams are captured (See Fig.3.8).

During development, we tried to base our metric on fields such as the bed topography or
surface elevation, but the final mesh was always close to isotropic and uniform. We therefore
base our metric on the surface velocities, but limit the maximum element size to capture the
geometrical features that we would miss otherwise.

Once a satisfying mesh is reached, it is kept fixed horizontally in time. It is therefore a
static mesh adaptation. We assume that ice streams and shear margins remain at the same
locations as today for short term projections, which is supported by observations.

3.2.7 Application to Jakobshavn Isbræ

An example of static adaptive anisotropic mesh refinement is shown on Fig. 3.9 for Jakobshavn
Isbræ, West Greenland. Fig. 3.9a shows a uniform mesh (with elements of approximately
equal area) comprising about 1,500 elements. Fig. 3.9b shows a mesh refined using InSAR
surface velocities with the same number of elements. Shear margins are well captured by
the algorithm, while the interior of the ice sheet, where ice flow deformation is weak, is
captured by a coarser mesh. Fig. 3.10 shows the quality of the elements for both meshes and
the distribution of the adapted mesh is centered around 1, which shows that most of the
elements of the adapted mesh are close to equilateral in their Euclidean metric. Comparison
between the two meshes shows that for the same number of elements, static anisotropic
mesh refinement captures ice flow far more efficiently, resulting in tremendous computational
gains.
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Initial isotropic mesh

Observed velocity interpolation

Hessian computation Metric computation

New mesh generation

BAMG

Figure 3.8: Anisotropic mesh adaptation procedure

Conclusion

In this chapter, we presented how ISSM solves the equations that govern transient ice sheet
flow. These equations are solved sequentially using the finite element method. We then
briefly presented key details regarding ISSM and its parallel architecture. In the second
part, we showed how the computational mesh can be optimized to minimize the number of
elements (which limits the computational cost) while preserving precision. We now have all
the tools to model an ice sheet flow. Nevertheless, some parameters, such as basal friction,
cannot be directly measured, but are required to run a simulation. To overcome this difficulty
we use inverse modeling. This is the subject of the next chapter.
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Figure 3.9: Uniform and adapted mesh of Jakobshavn Isbræ, West Greenland. (a) InSAR
surface velocity from Rignot (2008b) interpolated on a uniform mesh (in white). (b) InSAR
surface velocity interpolated on adapted mesh. Both meshes comprise 1,500 elements.
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Figure 3.10: Histograms of mesh quality: (a) uniform mesh, (b) adapted mesh

71





4
Inferring ice sheet properties from

surface observations

4.1 Inverse problems in ice sheet modeling . . . . . . . . . . . . . . 75

4.1.1 Poorly-known parameters . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Continuous and discrete inverse problem formulations . . . . . 77

4.2.1 Simplified optimization problem . . . . . . . . . . . . . . . . . . . 77

4.2.2 Continuous formulation . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3 Discrete formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.4 Are these two approaches equivalent? . . . . . . . . . . . . . . . . 85

4.2.5 Comparison of the two gradients . . . . . . . . . . . . . . . . . . . 86

4.3 Adjoints and gradients for viscosity and basal drag inversions . 91

4.3.1 Adjoint problems for the three models . . . . . . . . . . . . . . . . 91

4.3.2 Basal drag gradients for the three models . . . . . . . . . . . . . . 92

4.3.3 Ice viscosity gradients for the three models . . . . . . . . . . . . . 93

4.4 Application to Pine Island Glacier . . . . . . . . . . . . . . . . . 95

4.4.1 Data and model setup . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.2 Choice of objective functions . . . . . . . . . . . . . . . . . . . . . 96

4.4.3 Algorithm convergence . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.4 Comparison of basal friction patterns . . . . . . . . . . . . . . . . 98

4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100





4.1. INVERSE PROBLEMS IN ICE SHEET MODELING

Many ice sheet properties can be directly measured from remote sensing or in-situ
observations (surface height, velocity, etc.). Other parameters, such as basal friction or
ice hardness, are poorly understood, because they cannot be measured directly. Accurate
knowledge of some of these parameters is critical, because they control ice speed. MacAyeal
(1992, 1993) introduced inverse problems in glaciology, sometimes referred to as “control
methods”. The idea is to use observed surface properties, namely ice velocity, to infer these
poorly known parameters. We extend this technique to higher-order and full-Stokes models,
and present some significant improvements in solving these inverse problems.

4.1 Inverse problems in ice sheet modeling

4.1.1 Poorly-known parameters

One of the central difficulties in many models of glacier and ice sheet flow lies in the
prescription of boundary conditions at the bed. Often, processes that occur there dominate
the evolution of the ice mass, as they control the speed at which the ice is able to slide over
the bed. The basal friction expression chosen here is (See section 2.2.3):

τb = −α2vb (4.1)

The constant α depends on the thermal and mechanical properties of the ice and inversely
on the bed roughness. It is extremely difficult to evaluate the spatial distribution of this
parameter given the number of unknowns. In most cases, α is treated as an adjustable
parameter and inferred using control methods. (MacAyeal, 1992, 1993) applied an inverse
method on Ice Stream E, Antarctica, with his 2d Shelfy Stream model to infer the distribution
of shear stress under ice streams using surface velocity data. Joughin et al. (2004b) modified
the method to yield a direct inversion for the basal stress corresponding to a weak plastic
bed.

Another parameter that is poorly known is the ice hardness of the ice shelves. The ice
viscosity is defined by Eq. (2.26)

µ =
B

2ε̇
1− 1

n
e

The ice hardness is B. It is highly temperature dependent, as shown in Table 4.1.

The spatial distribution of temperature can vary significantly for a glacier of several
thousands of km2. Moreover the ice hardness also depends on the fabric, impurity, water
content (Paterson, 1994) and damage (fractures) that can lead to ice shelf collapse (Khazendar
et al., 2007, 2009, 2011).

Rommelaere and MacAyeal (1997) extended MacAyeal’s algorithm to infer the ice
hardness, B, of the Ross ice shelf, Antarctica, with the same 2d shelfy stream model, from
surface velocity observations. Larour (2005) applied a similar method to infer the ice hardness
of the Ronne ice shelf, Antarctica.

The problem with these two parameters is that they both control the ice velocity.
Decreasing B is generally equivalent to decreasing the basal friction, k. If we invert for
the two parameters at the same time and at the same locations, the solution is not unique
because different distributions of B and k can have the same effect on the surface velocities.
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Temperature (◦C) B (kPa a1/3)

0 167
-2 236
-5 271
-10 402
-15 478
-20 571
-25 696
-30 854
-35 1055
-40 1313
-45 1655
-50 1994

Table 4.1: viscosity parameter B as a function of the ice temperature (Paterson, 1994, p.97)

The solution that we propose here is to limit the inversion of ice hardness to floating ice
only, and rely on thermal modeling to infer the ice hardness on grounded ice (Table 4.1). By
doing so, we limit the number of solutions.

Special care must be taken when analyzing the results of the inversion, because the
inferred parameters have been calculated so that the model fits the observations. The inferred
basal friction, for example, might not be the true basal friction, but is the friction that must
be applied to the model in order to match the velocity measurements. The pattern of basal
friction might depend on the model assumptions and parameterization, as we will see in the
application to Pine Island Glacier. If, for example, the thermal model is not accurate, the
inferred basal friction will compensate for these deviations in order for the model to fit the
measurements. The basal friction might not reflect the true physical distribution, but rather
the errors in ice temperatures.

4.1.2 Methodology

Several approaches can be employed to solve these inverse problems. The goal is to minimize
the misfit between the modeled ice velocity resulting from the solution of the stress-balance
equations, and surface measurements of ice velocity derived from satellite synthetic-aperture
radar interferometry (InSAR). This technique, described further in App. A, consists of
measuring the surface displacement from space between two passes. We apply here the
classical adjoint method introduced in Chap. 1.

Other approaches have been proposed. Arthern and Gudmundsson (2010) presents
a method that does not require a separate adjoint model, by solving a Robin problem.
Another completely different approach has been investigated by Raymond and Gudmundsson
(2009), which consists of estimating basal properties of glaciers using a probabilistic Bayesian
approach to estimate bedrock topography and basal slipperiness at the same time, from
surface velocities and surface elevation. This latter technique is still under development:
its application on real cases is complex as many assumptions must be taken, such as space
periodicity, which are not verified in real cases.
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4.2 Continuous and discrete inverse problem formulations

An important question that is not always addressed is the following: should we discretize the
optimization problem first and solve a discrete optimization problem, or should we optimize
the continuous problem first and obtain a set of equations to discretize? The first approach
is often referred to as “Discretize-Optimize” (DO) and the second approach is known as
“Optimize-Discretize” (OD).

In Chap. 1, we derived the adjoint and the gradient from a continuous formulation and
adopted an OD approach, but this is not always the preferred approach. In most climate
models, the DO approach is used (Wunsch, 2006; Heimbach and Bugnion, 2009), because
the adjoint is generated by automatic-differentiation (AD). The gradient of the cost function
is generated by a program from the implementation of the discretized model equations. An
important challenge in optimization is that, in general, these two steps do not commute.
As a result, the two different approaches could lead to two different solutions (Haber and
Hanson, 2007).

We derive here the adjoint and gradient for a simple optimization problem of ice sheet
modeling, which consists of identifying the ice viscosity, assumed to be linear for the sake
of simplicity, with the full-Stokes equations from surface velocity measurements. We then
compare the two approaches, OD and DO. This section has two purposes: (1) introduce the
technique to derive the adjoint equations and gradient in detail for a simplified case and (2)
compare the Discretize-Optimize and Optimize-Discretize approaches.

4.2.1 Simplified optimization problem

As an illustration, we consider here a simplified problem of identification. We invert for the
ice viscosity assumed to be linear (µ is a scalar independent of the velocity) for a full-Stokes
problem, using a quadratic cost function. The method of derivation of the adjoint and
gradient presented in this section would be similar for other models, other cost functions
and other parameters.

We want to find the viscosity, µ ∈ K, assumed to be linear here, that minimizes the
misfit between the modeled and measured horizontal surface velocities. We introduce the
local cost function, j, such that:

j (v) =
1

2

((
vx − vobs

x

)2
+
(
vy − vobs

y

)2
)

(4.2)

where v = (vx, vy) is the modeled velocity and vobs =
(
vobs
x , vobs

y

)
is the observed velocity.

We define the objective function as the integral of the local cost function over the glacier
upper surface, S:

J (v) =

∫
S
j (v) dS (4.3)

As in Chap. 1, we introduce another cost function, J , which is a function of the ice viscosity,
µ, such that:

J (µ) = J (v (µ)) (4.4)
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where v (µ) is the solution of the full-Stokes equations for the viscosity µ. It is convenient
to introduce J because finding the viscosity that minimizes J under the constraint that the
velocity must satisfy the model equations, is equivalent to minimizing J wihtout constraint.

The model domain is Ω and we impose homogeneous Dirichlet constraints on Γu and a
force f on the Neumann boundary Γσ. This is a PDE-constrained optimization problem:

Objective function: J (v) =
1

2

∫
S

(
vx − vobs

x

)2
+
(
vy − vobs

y

)2
dS

PDE constraint:


∇ · σ + ρ g = 0 in Ω

∇ · v = 0 in Ω
σ = 2µε̇− pI in Ω
v = 0 on Γu

σ · n = f on Γσ

Control parameter: µ

(4.5)

4.2.2 Continuous formulation

Let’s first derive the adjoint equations and gradient using a continuous formulation. The
state variables are (v, p) and we introduce the adjoint state (λv, λp). The Lagrangian of this
optimization problem is:

L (v, p,λv, λp, µ) = J (v) +

∫
Ω
λv · (∇ · σ + ρ g) dΩ +

∫
Ω
λp∇ · vdΩ (4.6)

We introduce the following notation: ε̇(v) and σ(v,p) are respectively the strain rate tensor
and the stress tensor associated to the velocity, v, and pressure, p. It is convenient to express
the Lagrangian in different forms, using several integrations by parts.

We have the following identities:

L (v, p,λv, λp, µ) = J (v) +

∫
Ω
λv · (∇ · σ + ρ g) dΩ +

∫
Ω
λp∇ · vdΩ

L (v, p,λv, λp, µ) = J (v) +

∫
Ω
λv · (ρ g) dΩ−

∫
Ω

2µTr
(
ε̇(λv)ε̇(v)

)
dΩ

+

∫
Ω
p ∇ · λvdΩ +

∫
Γσ

λv · fdS +

∫
Ω
λp∇ · vdΩ

L (v, p,λv, λp, µ) = J (v) +

∫
Ω
v · ∇ · σ(λv ,λp)dΩ−

∫
Γσ

v ·
(
σ(λv ,λp) · n

)
dS

+

∫
Ω
p ∇ · λvdΩ +

∫
Γσ

λv · fdS +

∫
Ω
λv · (ρ g) dΩ

(4.7)
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Proof
We integrate by part the second term of the Lagrangian, L:

∫
Ω
λv · ∇ · σdΩ = −

∫
Ω

Tr
(
ε̇(λv)σ(v,p)

)
dΩ +

∫
∂Ω
λv ·

(
σ(v) · n

)
dS

= −
∫

Ω
Tr
(
ε̇(λv)σ(v,p)

)
dΩ +

∫
Γσ

λv · fdS

= −
∫

Ω
Tr
(
2µε̇(λv)ε̇(v)

)
dΩ +

∫
Ω
p ∇ · λvdΩ +

∫
Γσ

λv · fdS

=

∫
Ω
v · ∇ · 2µε̇(λv)dΩ−

∫
∂Ω
v ·
((

2µε̇(λv)

)
· n
)
dS

+

∫
Ω
p ∇ · λvdΩ +

∫
Γσ

λv · fdS

We also integrate by part the last term of the Lagrangian:

∫
Ω
λp∇ · vdΩ = −

∫
Ω
v · ∇λpdΩ +

∫
∂Ω
λpv · ndS

= −
∫

Ω
v · ∇λpdΩ +

∫
∂Ω
v · (λpI · n) dS

(4.8)

If we combine these two equations, we have the following Lagrangian:

L (v, p,λv, λp, µ) = J (v) +

∫
Ω
v · ∇ · 2µε̇(λv)dΩ−

∫
Ω
v · ∇λpdΩ

−
∫
∂Ω
v ·
((

2µε̇(λv)

)
· n
)
dS +

∫
∂Ω
v · (λpI · n) dS

+

∫
Ω
p ∇ · λvdΩ +

∫
Γσ

λv · fdS +

∫
Ω
λv · (ρ g) dΩ

(4.9)

And finally:

L (v, p,λv, λp, µ) = J (v) +

∫
Ω
v · ∇ · σ(λv ,λp)dΩ−

∫
Γσ

v ·
(
σ(λv ,λp) · n

)
dS

+

∫
Ω
p ∇ · λvdΩ +

∫
Γσ

λv · fdS +

∫
Ω
λv · (ρ g) dΩ

(4.10)
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Adjoint and gradient

If (v, p) is the solution of the forward model:


∇ · σ + ρ g = 0 in Ω

∇ · v = 0 in Ω
σ = 2µε̇− pI in Ω
v = 0 on Γu

σ · n = f on Γσ

(4.11)

If µ and f do not depend on v or p and if (λv, λp) is the solution of the adjoint problem:



∇ · σ(λv ,λp) = 0 in Ω

∇ · λv = 0 in Ω
σ(λv ,λp) = 2µε̇(λv) − λpI in Ω

λv = 0 on Γu
σ(λv ,λp) · n = 0 on Γσ\S
σ(λv ,λp) · n = j′ (v) on S

(4.12)

Then the gradient of the objective function with respect to the viscosity, µ, for a direction ν
is:

〈J ′ (µ) , ν〉 = 〈∂L
∂µ

(v, p,λv, λp, µ) , ν〉 (4.13)

Proof
We write Vv the space of kinematically admissible velocities, Vp the space of admissible
pressures. Similarly, Wv andWp are the spaces of admissible adjoint velocities and pressures.
If (v, p) is solution of the forward problem, then:

J (µ) = L (v, p,λv, λp, µ) (4.14)

if we take the derivative of this equation with respect to the viscosity and apply the chain
rule:

〈J ′ (µ) , µ′〉 = 〈∂L
∂v

(v, p) , 〈∂v
∂µ
, µ′〉〉+ 〈∂L

∂p
(v, p) , 〈 ∂p

∂µ
, µ′〉〉

+〈 ∂L
∂λv

(v, p) , 〈∂λv
∂µ

, µ′〉〉+ 〈 ∂L
∂λp

(v, p) , 〈∂λp
∂µ

, µ′〉〉

+〈∂L
∂µ

, µ′〉

(4.15)

The first form of the Lagrangian in Eq. (4.7) gives:

∀µv ∈ Wv 〈 ∂L
∂λv

,µv〉 =

∫
Ω
µv · (∇ · σ + ρ g) dΩ (4.16)
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∀µp ∈ Wp 〈 ∂L
∂λp

, µp〉 =

∫
Ω
µp∇ · vdΩ (4.17)

And because (v, p) is solution of the forward model, these derivatives vanish:

∂L
∂λv

(v, p) = 0 and
∂L
∂λp

(v, p) = 0 (4.18)

The third form of the Lagrangian in Eq. (4.7) gives:

∀w ∈ Vv 〈∂L
∂v

,w〉 = 〈J ′ (v) ,w〉+
∫

Ω
w · ∇ ·σ(λv ,λp)dΩ−

∫
Γσ

w ·
(
σ(λv ,λp) · n

)
dS (4.19)

∀q ∈ Vp 〈∂L
∂p
, q〉 =

∫
Ω
q ∇ · λvdΩ (4.20)

And because (λv, λp) is solution of the adjoint problem, these derivatives are zero:

∂L
∂v

(λv, λp) =
∂L
∂p

(λv, λp) = 0 (4.21)

We therefore have for (v, p) and (λv, λp) the following equation:

〈J ′ (µ) , ν〉 = 〈∂L
∂µ

(v, p,λv, λp) , ν〉 (4.22)

Now that there is a simple relationship between the gradient of the objective function and
the Lagrangian, we can deduce an analytical formulation of this gradient:

Expression of the gradient

Under the same assumptions, the gradient of J with respect to the viscosity, µ, for a direction
ν is:

J ′ (µ) = −2Tr
(
ε̇(λv)ε̇(v)

)
(4.23)

Proof
The second form of the Lagrangian in Eq. (4.7) gives:

〈∂L
∂µ

(v, p,λv, λp) , ν〉 = −
∫

Ω
2νTr

(
ε̇(λv)ε̇(v)

)
dΩ (4.24)
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Summary

• Forward equations:
∇ · σ + ρ g = 0 in Ω

∇ · v = 0 in Ω
σ = 2µε̇− pI in Ω
v = 0 on Γu

σ · n = f on Γσ

(4.25)

• Adjoint equations:

∇ · σ(λv ,λp) = 0 in Ω

∇ · λv = 0 in Ω
σ(λv ,λp) = 2µε̇(λv) − λpI in Ω

λv = 0 on Γu
σ(λv ,λp) · n = 0 on Γσ\S
σ(λv ,λp) · n = j′ (v) on S

(4.26)

• Cost function gradient:

J ′ (µ) = −2Tr
(
ε̇(λv)ε̇(v)

)
(4.27)

4.2.3 Discrete formulation

We now derive the gradient of the objective function from the discrete finite element equations.
The model equations once discretized can be written in matrix form:

KU = F (4.28)

where K is the stiffness matrix, F is the load vector and U is a vector that holds the
unknown nodal values of the velocity (See Chap. 3). There are N ∈ N model equations:

∀i ∈ J1 NK fi −
N∑
j=1

kijuj = 0 (4.29)

Now, we want to derive the gradient of the cost function, J , with respect to a discretized
parameter. The ice viscosity, µ, is discretized on the mesh as follows:

µ =

M∑
k=1

µkφk (x) (4.30)

where φk : R3 → R are the nodal functions. The gradient of the cost function is here a vector
that measures the variations of the cost function with respect to each component, µk:

∂J
∂µ

=

[
∂J
∂µ1

· · · ∂J
∂µk

· · · ∂J
∂µM

]T
(4.31)
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The Lagrangian associated to the minimization of the objective function, under the
constraints of the N model equations is1:

L (U ,Λ) = J (U) +
N∑
i=1

λi

fi − N∑
j=1

kijuj

 = J (U) + ΛT (F −KU) (4.32)

We can here express the gradient of the objective function with respect to every µk.

Adjoint and gradient

If U is solution of the forward model:

KU = F (4.33)

If the viscosity µ and the load vector f do not depend on the discretized velocity, U , and if
Λ is solution of the adjoint problem:

KTΛ =
∂J

∂U
(4.34)

where
∂J

∂U
=

(
∂J

∂u1
, . . . ,

∂J

∂uN

)T
, then the gradient of the objective function with respect

to the nodal viscosity, µk, is:

∂J
∂µk

=
∂L
∂µk

(U ,Λ) (4.35)

Proof
If U is solution of the forward model, we have:

J (µk) = L (U ,Λ, µk) (4.36)

If we take the derivative of this equation with respect to µk

∂J
∂µk

=
N∑
i=1

∂L
∂ui

(U ,Λ, µk)
∂ui
∂µk

+
N∑
i=1

∂L
∂λi

(U ,Λ, µk)
∂λi
∂µk

+
∂L
∂µk

(4.37)

If we admit that neither the stiffness matrix K nor the load vector F depend on the velocity
(in practice the stiffness matrix depends on the velocity but its effect is neglected), we have
the following derivatives:

∂L
∂ui

=
∂J

∂ui
−

N∑
j=1

λjkji (4.38)

1 We could equivalently write L (U ,Λ) = J (U) + ΛT (KU − F ), and this would only change the sign of
the Lagrange multipliers. The gradient would then be of opposite sign.
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∂L
∂λi

= fi −
N∑
j=1

kijuj (4.39)

Because U is solution of the forward model:

∀i ∈ J1 NK
N∑
j=1

kijuj − fi = 0 (4.40)

And if Λ is solution of the adjoint problem:

∀i ∈ J1 NK
N∑
j=1

λjkji =
∂J

∂ui
(4.41)

Therefore, for U solution of the forward problem and Λ solution of the adjoint problem:

∂J
∂µk

=
∂L
∂µk

(U ,Λ, µk) (4.42)

Expression of the gradient

Under the same assumptions as before, the gradient of J with respect to the viscosity at
the node k, µk, is:

∂J
∂µk

= −
N∑
i=1

N∑
j=1

∂kij
∂µk

ujλi = −
∫

Ω
2φkTr

(
ε̇(Λ)ε̇(U)

)
dΩ (4.43)

Proof

∂J
∂µk

=
∂L
∂µk

(U ,Λ, µk) =
∂

∂µk

J (U) +

N∑
i=1

λi

fi − N∑
j=1

kijuj

 (4.44)

and only the stiffness matrix depends on the viscosity µk, which gives the first equality. It
can be shown that the finite element formulation gives the second equality.

Summary

• Forward equations:

KU = F (4.45)
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• Adjoint equations:

KTΛ =
∂J

∂U
(4.46)

• Cost function gradient:

∂J
∂µk

= −
∫

Ω
2φkTr

(
ε̇(Λ)ε̇(U)

)
dΩ (4.47)

4.2.4 Are these two approaches equivalent?

Adjoint equations

It can be shown that the stiffness matrix associated to the full-Stokes equations is symmetric
positive definite. We therefore have:

KTΛ = KΛ =
∂J

∂U
(4.48)

This means that the adjoint uses the exact same stiffness matrix as the full-Stokes solution
but where the forcing is only the derivative of the objective function with respect to each
velocity nodal value. This objective function is evaluated at the surface, since only surface
velocities are available. The discretized adjoint is therefore equivalent to the following
continuous formulation:

∇ · σ(λv ,λp) = 0 in Ω

∇ · λv = 0 in Ω
σ(λv ,λp) = 2µε̇(λv) − λpI in Ω

λv = 0 on Γu
σ(λv ,λp) · n = 0 on Γσ\S
σ(λv ,λp) · n = j′ (v) on S

(4.49)

This shows that the discretized adjoint is strictly equivalent to the discretization of the
continuous adjoint. The advantage of continuous adjoints is that there is no need to know
how the forward model is solved. One can even use different methods to solve the forward
problem and the adjoint equations (for example finite element and finite difference).

Gradients

The discretized form of the continuous gradient (OD approach) is:

J ′ (µ) = −2Tr
(
ε̇(Λ)ε̇(U)

)
(4.50)

and the kth component of the gradient of the discrete problem (OD approach) is:

∂J
∂µk

= −
∫

Ω
2φkTr

(
ε̇(Λ)ε̇(U)

)
dΩ (4.51)
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These two gradients are not equal, as one is obviously a vector, and the other a scalar field.
The continuous gradient was defined such that:

J (µ+ εν) = J (µ) + ε〈J ′ (µ) , ν〉+O
(
ε2
)

(4.52)

and in the discrete case, we have:

J (µ+ εν) = J (µ) + ε

[
∂J
∂µ

]T
ν +O

(
ε2
)

(4.53)

We see here a fundamental difference between the two gradients: the continuous gradient
is not directly sensitive to the discretization because it has been defined for any direction.
The discrete gradient, on the other hand, is designed to evaluate the sensitivity of the cost
function with respect to each nodal value of the discretized viscosity. How this difference
affects the inversion is discussed in the next section.

We can recover the discrete gradient from the continuous gradient, since the kth component
of the discrete gradient is the sensitivity of the cost function in the direction of the nodal
function φk:

∂J
∂µk

= 〈J ′ (µ) , φk〉 (4.54)

Because the discretized continuous gradient is J ′ (µ) = −2Tr
(
ε̇(Λ)ε̇(U)

)
and by definition

of the scalar product in this space:

∂J
∂µk

= −
∫

Ω
2φkTr

(
ε̇(Λ)ε̇(U)

)
dΩ (4.55)

4.2.5 Comparison of the two gradients

To illustrate the differences between the two approaches, we focus here on the identification
of basal friction. The identification of linear viscosity was chosen for its pedagogical value
as the equations were easy to derive. We move here to the identification of basal friction
that is further described in the next section. We consider here a square ice sheet and a
sinusoid basal drag (Fig. 4.1a). We first calculate the velocity for this pattern of basal
friction (Fig. 4.1b).

We take the exact same mesh and now take the model results (Fig. 4.1b) as observations.
We set the basal drag to a constant value (Fig. 4.2a), which corresponds to an almost
constant velocity (Fig. 4.2b). From this initial state, we try to match the surface velocities
calculated with the sinusoidal basal drag. Because it is the exact same model, we could
theoretically find the exact solution of the inverse problem and find the sinusoidal pattern.

The inferred basal friction with a continuous gradient (OD approach) is shown in Fig. 4.3a.
It is smooth and looks like the exact basal drag. On the other hand, the basal friction
inferred using the discrete gradient (DO approach) is extremely noisy and the length of
the wiggles is about the same as the mesh size (Fig. 4.4a). The modeled velocity of the
approaches matches reasonably well the observed velocities (Fig. 4.1b).
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Figure 4.1: Exact basal drag and observed velocities (a) “true” basal drag (b) observed
velocities (forward model for this basal drag)
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Figure 4.2: (a) Initial basal drag (b) modeled velocities for this basal drag
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Figure 4.3: Inferred basal drag with continuous gradient (a) inferred basal drag (b) modeled
velocities
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Figure 4.4: Inferred basal drag with discrete gradient (a) inferred basal drag (b) modeled
velocities
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The wiggles that arise from the DO approach are due to the nature of the discrete
gradient, which gives priority to nodes that are connected to the largest number of elements.
Indeed, the gradient for the node i measures the sensitivity of the cost function for the ith

nodal value of the basal drag. If the elements connected to node i are large, the gradient
on i will be large, whereas if the surface of the elements connected to node i is small, the
cost function will be less sensitive to the basal friction on node i because it affects a smaller
region of the model. The gradient being irregular, the inferred basal friction becomes noisy.
The continuous gradient on the other hand is very smooth because it generally involves
smooth fields.

There are two ways one can remedy the problem of regularity of the DO approach. The
first, the most common method, is to add a regularizing term, R, that penalizes wiggles in
the cost function (see Tikhonov regularization in Chap. 1):

J (v) =
1

2
‖v − vobs‖2 +R (a) (4.56)

with:

R (a) =
1

2
α‖∇a‖2 (4.57)

where α is a parameter used to adjust the influence of the regularization with respect
to the initial cost function. A large α will result in a smoother basal drag but surface
velocities deviate more from the observations whereas a small α will result in a good fit
with observations but the basal drag may vary strongly. Fig. 4.5a shows the basal drag for
the unstructured mesh with the addition of regularization. The basal drag is smoother and
the surface velocities (Fig. 4.5b) well captured. The addition of regularization is therefore
crucial so that the inversion is less mesh-dependent for the DO approach.

The second method is to use uniform structured meshes. Nodes of structured meshes
have the same weight because the total area associated with each node is the same for every
node (except on the boundaries). This is why the gradient of the cost function with respect
to the nodal values of the basal drag is naturally smoother, which makes the inferred basal
friction also smoother (Fig. 4.5). Most global climate model are based on finite difference
schemes and therefore use structured grids. This explains why most of them are not affected
by these problems of regularity.

In this thesis we always use the Optimize-Discretize approach. We are in the process
of implementing automatic differentiation in ISSM and the problem of regularization will
need to be be dealt with. One solution is to precondition the gradient by dividing each
component by the integral of its associated nodal function. This process will reduce the
gradient’s dependency on the mesh’s structure.
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Figure 4.5: Inferred basal drag for the unstructured mesh with Tikhonov regularization (a)
inferred basal drag (b) modeled velocities
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Figure 4.6: Inferred basal drag for the structured mesh (a) inferred basal drag (b) modeled
velocities
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4.3 Adjoints and gradients for viscosity and basal drag inver-
sions

Here we present the adjoint equations and the gradients used to infer ice hardness and basal
friction from surface velocities with three different ice flow models: Morland/MacAyeal’s
Shelfy-Stream approximation (SSA), Blatter/Pattyn’s Higher Order model (HO) and the
full-Stokes model (FS). We do not detail the derivation of these adjoints, since the same
methodology as the one presented in the previous section (Section 4.2.2) is employed.

4.3.1 Adjoint problems for the three models

We detail here the adjoints for the three ice flow models. These adjoints are all incomplete
in the sense that the viscosity is assumed to be linear. This assumption is not correct as
the viscosity, µ, depends on the strain rate, but it allows an easier calculation of the adjoint
state for the three ice flow models and this approximation is widely employed (MacAyeal,
1993). The viscosity is only considered linear in the adjoint equations, but the forward model
includes the non-linear viscosity.

Full-Stokes adjoint

For a linear viscosity, the adjoint state (λv, λp) of the Full-Stokes equations is the solution
of the following problem:


∇ · σ(λv ,λp) = 0 in Ω

∇ · λv = 0 in Ω
λv = 0 on Γu

σ(λv ,λp) · n = 0 on Γσ\S
σ(λv ,λp) · n = j′ (v) on S

(4.58)

With the following derivatives for the cost function derivative:

j′ (v) =


vx − vobsx

vy − vobsy

0

 (4.59)

Proof
See previous section 4.2.2

The equations governing the adjoint of the full-Stokes equations are very similar to the FS
equations. The only difference is that here, we apply forcing only on the ice surface, imposed
as the derivative of the cost function with respect to the velocity. The third component of
this forcing is always zero because the only available measurements are in the horizontal
direction. The adjoint equations of HO and SSA are very similar:
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Higher-Order Adjoint

For a linear viscosity, the adjoint state λv of the Higher-Order equations is solution of the
following problem:



∂

∂x

(
4µ
∂vx
∂x

+ 2µ
∂vy
∂y

)
+

∂

∂y

(
µ
∂vx
∂y

+ µ
∂vy
∂x

)
+

∂

∂z

(
µ
∂vx
∂z

)
= 0 in Ω

∂

∂x

(
µ
∂vx
∂y

+ µ
∂vy
∂x

)
+

∂

∂y

(
4µ
∂vy
∂y

+ 2µ
∂vx
∂x

)
+

∂

∂z

(
µ
∂vy
∂z

)
= 0 in Ω

λv = 0 on Γu

σ(λv) · n = 0 on Γσ\S

σ(λv) · n = j′ (v) on S

(4.60)

Proof
Analogous proof

Finally, the adjoint problem for SSA is similar except that the forcing does not appear as a
boundary condition because it is a two-dimensional model.

Shelfy-Stream Adjoint

For a linear viscosity, the adjoint state λv of the Higher-Order equations is solution of the
following problem:



∂

∂x

(
4Hµ̄

∂vx
∂x

+ 2Hµ̄
∂vy
∂y

)
+

∂

∂y

(
Hµ̄

∂vx
∂y

+Hµ̄
∂vy
∂x

)
= j′ (vx) in Ω

∂

∂y

(
4Hµ̄

∂vy
∂y

+ 2Hµ̄
∂vx
∂x

)
+

∂

∂x

(
Hµ̄

∂vx
∂y

+Hµ̄
∂vy
∂x

)
= j′ (vy) in Ω

λv = 0 on Γu

σ(λv) · n = 0 on Γσ

(4.61)

Proof
Analogous proof

4.3.2 Basal drag gradients for the three models

The gradient of the cost function with respect to the basal drag coefficient is derived from
the partial derivative of the Lagrangian with respect to this parameter. Again, we do not
prove these results, but the methodology is the same as the one in Section 4.2.2. It involves
both the model result, v, and the adjoint state, λ:
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Full-Stokes basal drag gradient

For a cost function that does not depend on basal drag (no regularization), its derivative
with respect to basal friction is:


J ′ (α) = 0 in Ω

J ′ (α) = −2α vb · λb on Γb

(4.62)

Proof
Analogous proof is an Section 4.2.2

The gradient is zero except on the ice bedrock interface because friction is only applied at the
ice sheet base. For HO, the gradient is similar but only involves the horizontal components:

Higher-Order basal drag gradient

For a cost function that does not depend on basal drag (no regularization), its derivative
with respect to basal friction is:


J ′ (α) = 0 in Ω

J ′ (α) = −2α (vxλx + vyλy) on Γb

(4.63)

Finally, for SSA, basal friction appears as a “body force” and not as a boundary condition.

Shelfy-Stream basal drag gradient

For a cost function that does not depend on basal drag (no regularization), its derivative
with respect to basal friction is:

J ′ (α) = −2α (vxλx + vyλy) in Ω (4.64)

4.3.3 Ice viscosity gradients for the three models

We consider here the inversion of the ice hardness B. The gradient of the cost function with
respect to this parameter for all three models are:

Full-Stokes viscosity gradient

For a cost function that does not depend on the viscosity (no regularization), its derivative
with respect to µ is:

J ′ (µ) = −
Tr
(
ε̇(λv)ε̇(v)

)
ε̇

1− 1
n

e

(4.65)

Proof
See previous section 4.2.2
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Higher-Order viscosity gradient

For a cost function that does not depend on the viscosity (no regularization), its derivative
with respect to µ is:

J ′ (µ) = −
Tr
(
ε̇(λ)ε̇(v)

)
ε̇

1− 1
n

e

(4.66)

Shelfy-Stream viscosity gradient

For a cost function that does not depend on the viscosity (no regularization), its derivative
with respect to µ is:

J ′ (µ) = −H
Tr
(
ε̇(λ)ε̇(v)

)
ε̇

1− 1
n

e

= − H

2ε̇
1− 1

n
e

((
2
∂λx
∂x

(
2
∂vx
∂x

+
∂vy
∂y

))
+

(
2
∂λy
∂y

(
2
∂vy
∂y

+
∂vx
∂x

))
(
∂λx
∂y

+
∂λy
∂x

)(
∂vx
∂y

+
∂vy
∂x

))
(4.67)
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4.4 Application to Pine Island Glacier

We apply here the methods developed in this chapter to a real glacier, West Antarctica. The
key aspects of the experiments presented in this section have been published in Morlighem
et al. (2010).
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Figure 4.7: Pine Island Glacier surface velocity field in 1996 from Rignot et al. (2002) and
2D anisotropic mesh of 15,000 elements, which is vertically extruded to generate a 3D mesh.

Pine Island Glacier has been retreating, thinning and accelerating steadily since at least
the 1970s (Rignot, 2008a). The glacier acceleration at present is several times larger than
that estimated for the 1970-1980 and is increasing every year (Rignot, 2008a). The changes
taking place on Pine Island Glacier cannot be explained using simple ice flow models such as
the Shallow Ice Approximation (SIA) (Hutter, 1983) where stresses are determined locally
and all components other than vertical shear are neglected. This limitation has raised the
issue of the degree of sophistication needed from numerical models to reproduce the observed
ice dynamics. We compare here the patterns of basal friction obtained using three different
ice sheet models: full-Stokes, higher-order and shelfy stream. We will also show that the
classical quadratic cost function is not optimal for ice sheet systems and will introduce an
alternate solution.
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4.4.1 Data and model setup

We generated an anisotropic mesh (Fig. 4.7) based on the observed surface velocities following
the method presented in Chap. 3. The surface velocities are from Rignot et al. (2002).

Surface topography is from a digital elevation model of Antarctica from Bamber et al.
(2009), a firn depth correction from van den Broeke (2008) and ice thickness is from Vaughan
et al. (2006). We use a thermal model to calculate the ice hardness over grounded ice,
assuming that the ice is in thermal steady-state. The surface temperature is the mean annual
air temperature from Giovinetto et al. (1990). The geothermal heat from was provided by
Maule et al. (2005).

4.4.2 Choice of objective functions

To infer the ice properties from surface observations, we must choose a cost function. We
present here three different functions that are compared after runs of ten steps (we compute
ten times a new gradient and follow the steepest descent). The classical cost function is the
mean square error:

J (v) =

∫∫
Ω

1

2

(
vx − vobs

x

)2
+

1

2

(
vy − vobs

y

)2
dΩ (4.68)

We have noticed that this cost function is very efficient where the velocities are high, but less
efficient in slow moving regions. Fig. 4.8a shows the initial misfit between the modeled and
observed surface velocities. This misfit is very high on the ice shelf and on the ice stream
where the velocity is highest. Fig. 4.8b shows the final velocity (after optimization) and
Fig. 4.8c the final basal friction coefficient. We see that we are missing the tributary glaciers,
the main ice stream is well captured but the streams that feed the trunk are missing, which
also shows on the basal friction, which is pretty uniform.
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Figure 4.8: “Absolute” cost function (a) Initial misfit distribution, (b) final velocity after
convergence, (c) identified basal friction

To capture slower velocity, we tried a relative misfit, defined by:

J (v) =

∫∫
Ω

(
vobs
x − vx
vobs
x + ε

)2

+

(
vobs
y − vy
vobs
y + ε

)2

dΩ (4.69)

where ε is a minimum velocity used to avoid the observed velocity being equal to zero.
But this form of the objective function is not adequate because too much weight is given to
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the slow moving region. Even if the absolute misfit is small, the relative misfit can reach
extremely large values and the optimization procedure concentrates on these regions as
shown in Fig. 4.9. The final velocity does not match the observations well, and the basal
friction shows peaks, where the algorithm concentrates.
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Figure 4.9: “Relative” cost function (a) Initial misfit distribution, (b) final velocity after
convergence, (c) identified basal friction

The objective function that gave the best results measured the logarithmic magnitude
misfit:

J (v) =

∫∫
Ω

ln


√
v2
x + v2

y + ε√
vobs
x

2
+ vobs

y
2

+ ε

2

dΩ (4.70)

It is not a norm because only the magnitude of the velocity is calculated. Nevertheless, the
direction of ice flow is controled by the driving stress, which is defined by the surface slopes.
The modeled flow direction is therefore naturally close to the observed direction but not
the magnitude of the velocity. Fig. 4.10a shows the initial misfit. We see all the tributary
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Figure 4.10: “Logarithmic” cost function (a) Initial misfit distribution, (b) final velocity after
convergence, (c) identified basal friction

glaciers very clearly. The optimization after only ten steps is very satisfying because the
basal friction is identified over the entire domain, not only over the regions of high velocity,
and the velocity reproduces the observations very accurately. This cost function is the one
that we use here to compare the patterns of basal friction between the three ice flow models.
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4.4.3 Algorithm convergence

The surface velocities are shown in Fig. 4.11.
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Figure 4.11: Observed surface velocity

We then initialize the basal drag coefficient with a uniform value (Fig. 4.12a). We
compute the gradient of the cost function and show the results after 1, 5 and 10 iterations
of the steepest descent algorithm (See Fig. 1.2 in Chap. 1). The final velocity (Fig. 4.12h) is
very close to the observed velocity.

4.4.4 Comparison of basal friction patterns

We run the same experiment for the three ice flow models using the same mesh and boundary
conditions. The inferred patterns of basal drag and the velocity misfits are shown in Fig. 4.13.
The optimization scheme converges well for the three models and the modeled velocities
reproduce the observed velocities with an excellent accuracy, even in slow-moving regions
where InSAR observations are less accurate. The average misfits for the entire domain
are: M̄SSA=27 m/yr for SSA, M̄BP=11.1 m/yr for BP and M̄FS=10.4 m/yr for FS. The
largest errors are found on fast flow areas. On the ice stream proper, we have M̄SSA=62
m/yr, which represents 5% of the average speed in this area, M̄BP=22.9 m/yr (1.8%) and
M̄FS=19.5 m/yr (1.6%).

The spatial patterns of basal drag inferred from the three models (Fig. 4.13) are similar
to those inferred from simpler models (Joughin et al., 2009; Vieli and Payne, 2003). The
basal drag from FS is closer to BP, as expected since SSA is the most simplified solution.
In most areas, the difference in basal drag between solutions is minimal and the agreement
between observed and modeled velocity remains excellent. Near the grounding-line, however,
SSA and BP exhibit a high basal drag (80 kPa), while the basal drag inferred from FS is
less than 10 kPa Fig. 4.14.
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Figure 4.12: Inferred basal friction (left column) and modeled velocity (right column) after
0 (a,b), 1 (c,d), 5 (e,f) and 10 (g,h) iterations
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Figure 4.13: Magnitude of the basal drag, τb, in kPa, inferred from observations using (a)
SSA (b) BP (c) FS, and velocity misfits between observed and modeled velocities in m/yr,
using (d) SSA (e) BP and (f) FS.

4.4.5 Discussion

The bed elevation of Pine Island Glacier rises steeply downstream toward the grounding-line:
in 20 km the bed rises from -1200m to -550m, i.e. a slope of +3%. It is in this region that
the difference in basal drag patterns between the three models is the largest.

BP and SSA both neglect the bridging effect, which simplifies the vertical equation of
the momentum balance. Applying the stress-free boundary condition on the upper surface
gives:

σzz = ρg (z − s) (4.71)

At the base of the glacier, we therefore have σzz = −ρgH, where H is the ice thickness.
Although this approximation is generally true almost everywhere, our calculation of σzz
at the base of the glacier using FS shows that σzz and ρgH differ by up to 2% in the
grounding-line region. The vertical stress applied by the bedrock is indeed slightly larger
than the ice column weight, ρgH, as the rising bedrock pushes the ice upward. In FS,
the rising bed reduces the ice velocity without additional basal drag. In SSA and BP, the
bridging stress is neglected, and the models can only fit the data by increasing basal drag.
This increase is not physical but is instead due to an incomplete physics in the two simplified
models.

Interestingly, the low basal drag inferred from FS corresponds to a region where the
grounding-line probably retreated between 1996 and 2007 (Rignot, 2008a). In this area, the
ice surface was only 15 to 40 meters above hydrostatic equilibrium in 2002 (Thomas et al.,
2004). Basal drag should not be high in this region since it is proportional to the overburden
pressure, which is expected to be small. The FS solution is therefore more consistent with
the ice physics near the grounding-line.
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To model dynamic glacier changes, e.g. grounding-line retreat, it would seem essential to
employ a model that fully represents the ice flow dynamics. As we discussed above, SSA
and BP are not adequate near the grounding-line because of simplified physics. If the FS
solution is not used, the model would be initiated using values of basal drag that are too
high and this would impact the simulation of grounding-line retreat.

Using a FS solution near the grounding-line is also mandated by theoretical studies to
be essential to the analysis of grounding line stability (Nowicki and Wingham, 2008) and
migration in dynamic models (Durand et al., 2009).

However, because FS is computationally intensive, it is prohibitive for large-scale modeling.
We therefore recommend hybrid models that use a simple two-dimensional model on ice
shelves, a 3D BP on grounded ice but FS near the grounding-line.

The conclusion of our experiment has a broader character than just the case of Pine
Island Glacier. We would expect similar issues with other fast-moving glaciers that have
a steeply rising bed near the grounding-line and high stresses of all orders in that region.
This clearly suggests that near the grounding-line of ice streams, treating ice flow with the
complete physics of FS is essential
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Conclusion

In this chapter we detailed a very powerful method for identifying poorly-known parameters:
ice hardness and basal friction, given velocity measured at the ice surface. We showed that
the Optimize-Discretize approach was better suited for our problems. We then applied this
technique to compare the patterns of basal friction for three ice flow models and saw that
parameter identification could be used to analyze the validity of ice sheet models. We showed
that FS was required near the grounding-line, but that simpler models gave good results
over the rest of the model domain.
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5.1. MOTIVATIONS: FLUX DIVERGENCE ANOMALIES

In the previous chapter, we developed a technique to optimize unknown parameters to
match surface velocity measurements. We show here that even if the modeled velocities
fit perfectly the observations, the inconsistencies between datasets can lead to unrealistic
model behavior. The traditional method for interpolating ice thickness data from airborne
radar sounding surveys onto regular grids is to employ geostatistical algorithms, e.g., kriging
(Deutsch and Joumel, 1997). While this approach provides continuous maps of ice thickness,
it generates products that are not consistent with ice flow dynamics and are impractical for
high-resolution ice flow simulations as shown by Seroussi et al. (2011). Here, we present a
novel approach that combines sparse ice thickness data collected by airborne radar sounding
profilers with high-resolution swath mapping of ice velocity derived from satellite synthetic-
aperture interferometry to obtain a high-resolution map of ice thickness that conserves mass
and minimizes the departure from observations.

5.1 Motivations: Flux divergence anomalies

We show in this section that the velocity and thickness measurements are not consistent
in terms of mass conservation and must be reconciled. We first derive a depth-averaged
version of the mass balance equation, and then show that for fast moving glaciers at a
high-resolution, this depth-averaged mass conservation equation is violated.

5.1.1 Depth-integrated mass conservation

Depth-averaged velocity

The depth-averaged velocity v̄ = (vx, vy)
T is defined as:

Hvx =

∫ s

b
vxdz

Hvy =

∫ s

b
vydz

(5.1)

2d Mass conservation

For a given point x ∈ Ω in the horizontal plane, the mass conservation (Eq. 1.16) imposes:

∂H

∂t
+∇ ·Hv̄ = Ṁs − Ṁb (5.2)

Proof
we integrate the equation of incompressibility Eq. (1.16) from the bed, b, to the ice surface,
s: ∫ s(x,y)

b(x,y)

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
dz = 0 (5.3)
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The last term is integrated:

vz (x, y, s(x, y))− vz (x, y, b(x, y)) +

∫ s(x,y)

b(x,y)

(
∂vx
∂x

+
∂vy
∂y

)
dz = 0 (5.4)

We then use the Leibniz integral rule (Eq.C.2) for the two terms under the integral which
gives:

vz (x, y, s(x, y))− vz (x, y, b(x, y)) +

∂

∂x

∫ s(x,y)

b(x,y)
vxdz + vy (x, y, b(x, y))

∂b

∂y
− vx (x, y, s(x, y))

∂s

∂x

+
∂

∂y

∫ s(x,y)

b(x,y)
vydz + vx (x, y, b(x, y))

∂b

∂x
− vy (x, y, s(x, y))

∂s

∂y
= 0 (5.5)

So we have from the incompressibility:

vz (s)− vz (b) +
∂

∂x

∫ s

b
vxdz +

∂

∂y

∫ s

b
vydz

− vx(s)
∂s

∂x
− vy(s)

∂s

∂y
+ vx(b)

∂b

∂x
+ vy(b)

∂b

∂y
= 0 (5.6)

and with the boundary conditions provided by the bed and surface kinematics (Eq.2.14 and
Eq.2.9):

∂

∂x

∫ s(x,y)

b(x,y)
vxdz +

∂

∂y

∫ s(x,y)

b(x,y)
vydz +

∂s

∂t
− Ṁs −

∂b

∂t
− Ṁb = 0 (5.7)

and H = s− b.

5.1.2 Velocity and thickness measurements

Important ice sheet characteristics such as ice thickness, surface elevation or surface velocity
are most efficiently derived from airborne and satellite platforms carrying instruments
operating at different spatial resolutions and deployed at different epochs. As a consequence,
datasets are not always consistent with one another, and this complicates their combined use
in numerical ice sheet models. This is especially true for surface velocities and ice thicknesses.

Surface ice velocity are generally derived from satellite synthetic-aperture radar interfer-
ometry (InSAR). This technique, extensively described in App. A, consists in measuring the
surface displacement from space between two passes. The resulting displacement provides a
very high resolution product (30-300 m), with low error margins (a few m/yr). The surface
velocities of the entire Greenland and Antarctic ice sheets are shown in Fig. 5.1.

Ice thicknesses on the other hand are difficult to measure. Airborne Ground Penetrating
Radar (GPR) is generally employed. This technique provides high-resolution images of
the dielectric properties of the top few hundreds of meters of the ice. When the ice is
dry (as it is the case in Antarctica), the GPR can penetrate the entire ice column (several
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5.1. MOTIVATIONS: FLUX DIVERGENCE ANOMALIES

Figure 5.1: Antarctica and Greenland InSAR derived surface velocity, logarithmic scale
(Rignot et al., in prep.)

thousands of meters), whereas in temperate glacier (outlet glaciers of Greenland), the pockets
of water block the transmission of the electromagnetic field after a few tens of meters. When
the signal reaches the bedrock, the transition between two media of different dielectric
properties, ice and rock, can be detected and a measure of the travel time gives the bedrock
elevation (See the CReSIS echogram Fig. 5.2). The downside of this technique is that the ice
thickness is measured only on flight-tracks (Nadir-only viewing). Fig. 5.3 shows an example
of NASA’s Operation IceBridge (OIB) and the Center for Remote Sensing of Ice Sheet
(CReSIS) Greenland and Antarctic ice thickness measurements campaigns. These linear
measurements are then extrapolated to generate a complete map of ice thickness for the
whole continent, using geostatistical algorithms, e.g. kriging (Deutsch and Joumel, 1997).
The grid size selected for ice thickness mapping, typically 5 km in Greenland, is often much
smaller than the actual average spacing between tracks (e.g. Bamber et al. (2001)), which
means that the true spatial resolution of the data is much larger than the grid spacing.

5.1.3 Flux divergence of Nioghalvfjerdsfjorden

We examine first the case of Nioghalvfjerdsfjorden, also called 79North glacier, in north
Greenland, because this glacier has been mapped extensively by N. Reeh et al. in the late
1990s and constitutes one of the most surveyed glaciers in Greenland (Seroussi et al., 2011).

The depth-integrated mass conservation equation (Eq. 5.2) states that the flux divergence
is entirely balanced by the accumulation and melting rates and the thickness rate of change.
For Nioghalvfjerdsfjorden, observations show that the sum of these terms should not exceed
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Figure 5.2: Echogram of a GPR along a flight track above Jakobshavn Glacier (Jilu Li, PhD
Dissertation)

Figure 5.3: Flight lines of CReSIS (left) used to generate a thickness map of the Green-
land ice sheet https://www.cresis.ku.edu/data/greenland, and flight lines of Operation
IceBridge (NASA)
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5.1. MOTIVATIONS: FLUX DIVERGENCE ANOMALIES

a few meters per year. When we combine the gridded thickness data from Reeh with InSAR
velocities, we obtain a a flux divergence that exhibits large spatial variations over grounded
ice, exceeding ±50 m/yr, that are physically untenable (Fig. 5.4).
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Figure 5.4: (a) Ice velocity (m/yr) of 79north Glacier, NE Greenland, measured from
ERS-1/2 radar interferometry in 1996, (b) ice thickness from N. Reeh with flight tracks from
1998 indicated as black lines, (c) ice flux divergence combining ice velocity and ice thickness
reveals large rates of thinning/thickening on grounded ice that are not physical.

5.1.4 Flux divergence of Jakobshavn Isbræ

We find these anomalies not only for 79North glacier but for all fast-moving glaciers that
control the ice discharge from Greenland. Another example is Jakobshavn Isbræ in west
Greenland (Fig. 5.5).

If we combine the the 1km SeaRISE datasets: the CReSIS thickness and InSAR derived
surface velocities (Joughin et al., 2010), we get anomalous patterns of flux divergence
(Fig. 5.6), that largely exceed ±200 m/yr (600 m/yr in some regions!), which makes transient
ice sheet models impossible: after a one year run, the model would have deep hollows and
bumps that significantly change the driving stress resulting in unphysical behavior. The
square that arise from this combination are due to the bilinear interpolation from the 5 km
grid to the mesh.

These variations are not caused by uncertainties in surface mass balance, errors in
long-term thickness change or errors in ice velocity, but by the interpolation of ice thickness
data from individual tracks to a regular grid without insuring that the results obey mass
conservation. These anomalies are not minor disturbances in a model set up; they are very
large and must be dealt with in order to make numerical models work. Indeed, the mass
conservation equation is used by numerical models to compute the thickness rate of change.
If the flux divergence is anomalous, the ice thickness is directly affected and the model
immediately starts building new bumps and hollows in ice thickness from these anomalies,
which yields a thickness map significantly different from the original one, regardless of the
state of the mass balance of the observed area.

These anomalies were not a problem in the past for two reasons. Ice sheet models used
to run at very low-resolution (20 to 50 km), and relied on long spin-ups from last interglacial
maximum (Huybrechts et al., 2003; Pollard and DeConto, 2009) for initialization. These
anomalies were therefore not critical, because the glacier is close to steady-state after these
runs, and the flux divergence is close to zero. The computational costs and these long
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simulations is prohibitive for ice sheet numerical models that include a higher-order or
full-Stokes stress balances (Chap. 2). We therefore need to make these datasets consistents.
These observations highlight the importance of consistency between datasets and the need
for thicknesses that conserve mass for a given velocity field.

If we have measurements of elevation changes and a surface mass balance map, we know
what the flux divergence should be. We can compute the ice thickness so that the mass
conservation equation is verified as shown in the following section.

5.1.5 Balance thickness

To reconcile velocity and thickness measurements, we calculate the ice thickness that satisfies
the mass conservation equation. The idea of using ice velocity to infer a spatially consistent
map of ice thickness is not new. Rasmussen (1988) used this approach on Columbia Glacier
using a finite difference scheme. Fastook et al. (1995) used a polynomial solution of the fourth
degree derived from the Shallow Ice Approximation (SIA) to calculate the ice thickness
of Jakobshavn Isbræ, in West Greenland. Warner and Budd (2000) employed the SIA to
calculate the ice thickness over the Antarctic Ice Sheet using mass flux conservation (Budd
and Warner, 1996). Farinotti et al. (2009) employed a method, derived from the same
principle, to determine the ice volume of Swiss alpine glaciers. All these studies, however,
suffer from significant deviations from the original thickness data, i.e., by hundreds of meters
in the case Fastook et al. (1995) and Warner and Budd (2000), and an average 25% in
Farinotti et al. (2009). We will see that the optimization sequence of the method proposed
here reduces these deviations.

Let Ω be the two-dimensional ice domain and ∂Ω its boundary. We define the inflow and
outflow boundaries Γ− ∪ Γ+ = ∂Ω as follows:

Γ− = {x ∈ ∂Ω v̄ (x) · n (x) ≤ 0}
Γ+ = {x ∈ ∂Ω v̄ (x) · n (x) > 0} (5.8)

with n the outward-pointing unit normal vector. We also define T ∈ Ω as the flight tracks
where data are collected within the model domain. The balance ice thickness is calculated
by solving: {

∇ ·Hv̄ = ȧ in Ω
H = Hobs on Γ−

(5.9)

where ȧ = Ṁs − Ṁb − ∂H/∂t, is the apparent mass balance following (Farinotti et al., 2009)
and Hobs is an observed thickness. Equation 5.9 is a special case of transport equation,
with a purely convective transport. It constitutes a steady hyperbolic partial differential
equation of first order. Such equations are difficult to solve numerically (e.g. Donea (1984)).
Information is transported at finite speeds along the streamlines of the velocity field v̄. The
nature of hyperbolic problems requires that boundary conditions be specified only on the
inflow part Γ−. It would be inappropriate and incorrect to prescribe any boundary conditions
elsewhere.

Note that even though we call this solution “balance thickness”, it shall not be confused
with the steady-state glacier thickness because it incorporates the rate of thickness change,
∂H/∂t. We discuss in App. B different numerical strategies to solve this equation as the
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standard Continuous Galerkin approximation produces spurious oscillations, also known as
wiggles. We implemented all these strategies and the Streamline Upwinding (SU) method
proved to be the most robust method for our problem. The artifacts due to the addition of
artificial diffusivity are minor and the solutions are very similar to the ones obtained with a
Discontinuous Galerkin (DG) formulation. The latter is very sensitive to errors in velocities
and in some cases does not converge because there is no artificial diffusion.
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5.2 Balance thickness optimization

We present here a method that can be used to minimize the deviation between calculated
and measured ice thicknesses. We formulate an optimization problem and allow input data
to be changed according to their error margins in order for the calculated thickness to fit
the measurements along track.

5.2.1 Inverse problem

The depth-averaged velocity is usually taken as the measured surface velocity, the accumula-
tion is given by reliable atmospheric models, the thickness rate of change is usually small
but can be derived from surface elevation change. The melting rate is usually small under
grounded ice (a few cm per year), and is usually neglected.

Now, the modeled thickness usually deviates significantly from measurements on flight
tracks. We can use these measurements on flight tracks to optimize all parameters with
their error margins, so that the misfit between the modeled and the measured thickness is
small. We formulate the following optimization problem:

Objective function: J (H) =

∫
T

1

2
(H −Hobs)

2 dΩ

PDE constraint:

{
∇ ·Hv̄ = ȧ in Ω

H = Hobs on Γ−

Control parameters: v̄x, v̄y, ȧ

(5.10)

5.2.2 Mesh management

a) Unconstrained b) Flight track c) Flight track + Trough

Figure 5.7: Example 2d mesh management in ISSM. (a) Unconstrained unstructured regular
mesh, (b) mesh constrained to follow a flight track (red), and (c) mesh constrained to follow
a flight track (red) and local refinement on a central trough (blue area)

To solve the balance thickness equation, we use the finite element method. We use
a 2 dimensional (2D) unstructured triangular mesh. To minimize the misfit between the
calculated thickness and along-track thickness measurements, we constrain the mesh so
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that there are vertices along flight tracks. To minimize interpolation errors between the
measurements and the mesh, we constrain some vertices to coincide with flight tracks so we
use the original data with no interpolation. Moreover, we need to refine the mesh in some
regions, such as deep troughs, so that the algorithm correctly captures the ice thickness
variations (Fig. 5). We implemented a mesh generator in ISSM, which uses an edge-based
anisotropic mesh optimization methodology (See Fig. 5.7).

5.2.3 Adjoint and gradients

The optimization (Eq. 5.10) is PDE-constrained and we must first introduce the Lagrangian:

Lagrangian

The Lagrangian associated to Eq. (5.10) is:

L (H,λ, v̄, ȧ) = J (H) +

∫
Ω
λ (∇ ·Hv̄ − ȧ) dΩ (5.11)

where λ : Ω→ R is the Lagrangian multiplier associated to the PDE constraint.

It is convenient to integrate by part the first term under the integral:

L = J (H)−
∫

Ω
Hv̄ · ∇λdΩ−

∫
Ω
λȧ dΩ +

∫
Γ−

Hobsλv̄ · ndS +

∫
Γ+

Hλv̄ · ndS (5.12)

Adjoint and gradient

If H is solution of the forward model:{
∇ ·Hv̄ = ȧ in Ω

H = Hobs on Γ−
(5.13)

and if λ is solution of the adjoint problem, defined by the following variational formulation:

∫
T
ϕ (H −Hobs) dx−

∫
Ω
ϕv · ∇λdΩ +

∫
Γ+

ϕλv · ndS = 0 (5.14)

Then the gradients of the objective function with respect to the v̄x, v̄y and ȧ for a direction
ϕvx, ϕvy and ϕ are:

〈J ′ (v̄x) , ϕvx〉 = 〈 ∂L
∂v̄x

(H,λ, v̄, ȧ) , ϕvx〉 (5.15)
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〈J ′ (v̄y) , ϕvy〉 = 〈 ∂L
∂v̄y

(H,λ, v̄, ȧ) , ϕvy〉

〈J ′ (ȧ) , ϕ〉 = 〈∂L
∂ȧ

(H,λ, v̄, ȧ) , ϕ〉

(5.16)

Proof
If H is solution of the forward problem, then:

J (v̄, ȧ) = L (H,λ, v̄, ȧ) (5.17)

And if we take the derivative of this equation with respect to v̄x and apply the chain rule:

〈J ′ (v̄x) , ϕvx〉 = 〈 ∂L
∂H

(H) , 〈 ∂H
∂v̄x

, ϕ〉〉+ 〈∂L
∂λ

(H) , 〈 ∂λ
∂v̄x

, ϕ〉〉+ 〈 ∂L
∂v̄x

(H) , ϕ〉 (5.18)

The first form of the Lagrangian (Eq. 5.11) gives:

∀µ ∈ Vλ 〈∂L
∂λ

, µ〉 =

∫
Ω
µ (∇ ·Hv̄ − ȧ) dΩ (5.19)

And because H is solution of the forward model, this derivative is equal to zero. The second
form of the Lagrangian (Eq. 5.12) gives:

∀ϕ ∈ VH 〈 ∂L
∂H

,ϕ〉 =

∫
T
ϕ (H −Hobs) dx−

∫
Ω
ϕv̄ · ∇λdΩ +

∫
Γ+

ϕλv̄ · ndS (5.20)

and if λ is solution of the variational formulation that defines the adjoint (Eq. 5.14), this
derivative is also zero. We showed that:

〈J ′ (v̄x) , ϕvx〉 = 〈 ∂L
∂v̄x

(H,λ) , ϕ〉 (5.21)

We can apply a similar analysis for v̄y and ȧ.

Expression of the Gradients

We have the following expressions for the gradients:

J ′ (v̄x) ' −H∂λ

∂x

J ′ (v̄y) ' −H∂λ

∂y

J ′ (ȧ) = −λ

(5.22)
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Proof
The second form of the Lagrangian (Eq. 5.12) provides the first two gradients:

〈J ′ (v̄x) , ϕvx〉 = 〈 ∂L
∂v̄x

(H,λ) , ϕvx〉 = −
∫

Ω
Hϕvx

∂λ

∂x
dΩ +

∫
Γ+

HλϕvxnxdS (5.23)

〈J ′ (v̄y) , ϕvy〉 = 〈 ∂L
∂v̄y

(H,λ) , ϕvy〉 = −
∫

Ω
Hϕvy

∂λ

∂y
dΩ +

∫
Γ+

HλϕvynydS (5.24)

and we approximate the gradients by neglecting the boundary term. The gradient with
respect to the apparent mass balance is recovered likewise:

〈J ′ (ȧ) , ϕ〉 = 〈 ∂L
∂v̄y

(H,λ) , ϕ〉 = −
∫

Ω
λϕ dΩ (5.25)

5.2.4 Error Analysis

We want to evaluate the error δH made on the balance thickness given errors in both velocity
δv̄ and apparent mass balance δȧ. The calculated thickness H + δH is solution of the mass
balance equation by definition:

∇ · (H + δH) (v̄ + δv̄) = ȧ+ δȧ (5.26)

If we neglect second order terms and assume that the thickness real H is solution of the
mass balance equation, the thickness error is solution of:

∇ · δH v̄ = δȧ−∇ ·Hδv̄ (5.27)

The error is known on the flight tracks T and δH is solution of:

{
∇ · (δH v̄) = δȧ+∇ ·Hδv̄ in Ω

δH = H −Hobs on Γ− ∪ T
(5.28)

This expression does not take into account the fact that the flux is well constrained upstream
of each flight track. The simplest way to take that into account is to solve two problems:

{
∇ · δH1 (+v̄) = δȧ+∇ ·Hδv̄ in Ω

δH = H −Hobs on Γ− ∪ T
(5.29)

{
∇ · δH2 (−v̄) = δȧ+∇ ·Hδv̄ in Ω

δH = H −Hobs on Γ− ∪ T
(5.30)
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So that the error propagates once downstream (δH1) and once upstream (δH2). The actual
error would be the minimum of the two:

δH = min (δH1, δH2) (5.31)

To evaluate the right hand side, we take δȧ = 0.5 m/yr, the error in velocities is 2 m/yr and
the error in strain rate is estimated as 3 10−4 yr−1 based on observation errors [Rignot et al,
unpublished ].
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5.3 Application to Nioghalvfjerdsfjorden

To illustrate, we focus on Nioghalvfjerdsfjorden and evaluate our algorithm. This experiment
part of a paper recently published (Morlighem et al., 2011).

5.3.1 Data and Method

In this section, we compare three methodologies to infer the ice thickness of 79North Glacier.
The goal is to illustrate that the proposed optimization scheme achieves the best results. In
experiment 1, we calculate the balance thickness by directly solving Eq.5.9, with ice thickness
only constrained on Γ−; the flux divergence is imposed as equal to the apparent mass balance.
In experiment 2, we impose ice thickness to be strictly equal to the measurements along
the original tracks: the ice thickness is therefore constrained on both inflow boundary and
flight tracks, T . Finally in experiment 3, we apply an optimization sequence that includes
uncertainties in velocity and apparent mass balance to best fit the observations without
strongly constraining the thickness on T .

The study area is the fast flowing portion of 79North Glacier, a large discharger of ice in
north Greenland (Fig.5.8). This glacier has been extensively surveyed in the late 1990s, is
not accelerating or changing in ice thickness at a significant level, hence providing a reliable,
reference glaciological setting to test our algorithm. We use ice thickness from (Thomsen
et al., 1997; Christensen et al., 2000) with a track spacing of 5 km on the upper part of the
glacier, and 2.5 km near the grounding zone (Fig.5.8). A gridded thickness map at 1-km
posting was generated by N. Reeh (unpublished, Fig.5.9a) using block kriging, here referred
to as Reeh’s thickness map.

Surface velocity is measured using ascending and descending tracks of the Earth Remote
Sensing Satellite (ERS) 1 and 2 in year 1996 (Rignot et al., 1997). The ice stream velocity
exceeds 1200 m/yr at the grounding-line. The model domain is set by the geographic limits of
Reeh’s thickness map. This ensures that the input ice flux, which is an important control on
the solution, is well constrained. Along parts of the inflow boundary where no measurement
is available, we use Reeh’s thickness map values to constrain the solution by default. We
exclude floating parts of the glacier from the model domain because the basal melt rates
on floating ice are not known well enough. Surface mass balance is from Ettema et al.
(2009) and ranges from -120 cm/yr to -50 cm/yr averaged over the time period 1961-1996.
Temporal changes in ice thickness are less than 1 m/yr (Thomas et al., 2006) and are thus
neglected. Basal melting on grounded ice is less than a few 10 cm per year and is neglected
as well (Fahnestock et al., 2001). The apparent mass balance is therefore taken here as equal
to the surface mass balance.

5.3.2 Results

When Reeh’s thickness map (Fig.5.9a) is combined with the observed surface velocities, we
find a flux divergence on grounded ice that exceeds ±100 m/yr (Fig.5.9e), which is not
physically acceptable. As mentioned earlier, if an ice flow model is initiated in this manner,
deep hollows and high bumps will rapidly appear, yielding a new glacier configuration
significantly different from the original one.

In experiment 1, we use an unstructured triangular mesh with a resolution of 400 m. The
balance thickness shown in Fig.5.9b compares well with Reeh’s thickness map, but deviates
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Figure 5.8: InSAR-derived surface velocity of 79North Glacier, in Greenland, color coded on a
logarithmic scale and overlaid on a MODIS (Moderate-resolution Imaging Spectroradiometer)
mosaic of Greenland. The flight tracks used in Reeh’s thickness map are shown as black
lines; the model domain is a white line; and the grounding-line is the green line.

significantly from the measurements, by several hundreds of meters in some areas, which is
not satisfactory.

In experiment 2, we use the same spatial resolution but constrain the mesh to follow the
flight tracks so that measurements can be imposed at their locations. Fig.5.9c shows that
the results fit the original data better but deviate rapidly from the measurements in between
tracks and exhibit large jumps when crossing tracks, hence resulting in a noisy appearance of
both ice thickness and flux divergence (Fig.5.9g). Indeed, the balance thickness hyperbolic
equation requires the thickness to be constrained only once; it is incorrect to prescribe the
thickness elsewhere. We therefore need to relax the constraints along the flight tracks by
formulating an optimization problem.

In experiment 3, we solve for Eq.5.9 without additional constraint (same as experiment
1) but optimize the ice velocity and apparent mass balance within tolerance levels for the
calculated thickness to best fit the thickness measurements along tracks. The resulting
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Figure 5.9: Thickness (m) of 79North Glacier, Greenland, from (a) N. Reeh, (b) experiment
1, (c) experiment 2, (d) experiment 3 (optimized); and flux divergence (m/yr) combining
InSAR velocities and the thickness map from (e) N. Reeh, (f) experiment 1 (apparent mass
balance), (g) experiment 2, (h) experiment 3 (optimized). Color bars associated with the
flux divergence in (e) and (g) have broader ranges to maintain visibility.

thickness map (Fig.5.9d) is close to Reeh’s thickness, fits the original data well, and yields
anomalies in flux divergence that are two orders of magnitude lower than the flux divergence
associated to Reeh’s thickness map (Fig.5.9h).

Fig.5.10a compares Reeh’s thickness data and the optimized balance thickness data in
experiment 3 with observations. The balance thickness method results in deviations from
observations that are a factor of three less than Reeh’s thickness map, i.e the error decreases
from 80 to 30 m.

Fig.5.10c shows error estimates for the balance thickness. The error is low along flight
tracks and increases along the flow direction. Maximum errors are reached in between flight
tracks, and the error increases when the track spacing increases. Errors are less than 30-50
m over the model domain. Along the sides of the domain, where ice thickness is weakly
constrained by observations and ice velocity is low, errors exceed 120 m.

Comparing our results with independent measurements of ice thickness from the Center
for Remote Sensing of Ice Sheet (CReSIS) and Operation IceBridge (OIB) of years 1997,
1999, 2004 and 2010 in Fig.5.10b, we find an average difference of 43 m with the balance
thickness and 73 m with Reeh’s thickness map. This comparison therefore illustrates that
our balance thickness is reliable and more accurate than the data obtained from kriging.

5.3.3 Discussion

Our mass conservation approach provides seamless ice thickness data that conserves mass by
combining ice velocity and ice thickness data in an optimum fashion, i.e., with no artifacts
in ice flow divergence. Kriging provides interpolated data that do not deviate largely from
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Figure 5.10: (a) Reeh’s thickness (red dots) and balance thickness (blue dots) vs measure-
ments used to generate both maps. (b) Reeh’s thickness (red dots) and balance thickness
(blue dots) vs CReSIS/OIB independent measurements. (c) Estimated maximum error in
balance thickness (m) overlaid by the error between balance thickness and CReSIS/OIB
measurements along flight lines. Flight tracks used in Reeh’s thickness map are shown as
black lines.

the measurements but that do not conserve mass between flight tracks. Our error analysis
shows that the maximum error in ice thickness is inversely proportional to ice velocity. Our
method therefore yields optimal results in fast flowing regions, which is also region highly
relevant to ice sheet flow models because fast flowing regions have a major impact on ice
sheet mass balance. The approach is less reliable in slow moving areas, but this is also a
part of the ice sheet where anomalies in ice flux divergence are quite small (Fig.5.9e). The
algorithm is therefore optimum where it matters most.

As demonstrated in this study, the solution to Eq.5.9 is very sensitive to small errors in
the input data. The hyperbolic nature of this equation leads to unstable solutions, especially
in slow moving areas. In order to use this method most effectively it is therefore essential to
have a good understanding of the error budget of the variables in Eq.5.9.

Our error analysis provides useful guidelines for ice thickness mapping in areas where ice
velocity data are available. Errors in balance thickness are proportional to the distance to
the closest track, so dense tracks are required, as expected. The preferable configuration
of tracks is one that crosses as many flow lines as possible in order to constrain the flux of
the largest possible region of the domain. In contrast, a flight track that follows a flow line
cannot constrain the flux of other flow lines. We therefore recommend use of glacier surveys
with preferential tracks perpendicular to the flow direction; tracks along the flow direction
will remain useful for flow line modeling and for estimating cross-track errors, but not as
useful for dense interpolation of ice thickness data using a mass conservation approach.

Our method is applicable to other glaciers provided that surface velocity is known, as
well as the apparent mass balance. On 79North Glacier, the apparent mass balance is
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small and almost negligible. On a fast changing glacier like Jakobshavn Isbræ, the rates of
thickness change are large (15-30 m/yr), the apparent mass balance is not negligible and
measurements of ∂H/∂t will be needed to reduce uncertainties in balance thickness.

On floating ice shelves, our method is difficult to apply because the high rates of basal
melting from the ocean are not well known, yet the anomalies in ice flux divergence are also
much smaller (Rignot and Steffen, 2008). But more importantly, ice-shelf thickness may
be more effectively deduced from digital maps of surface elevation assuming that ice is in
hydrostatic equilibrium, so the mass conservation approach is less critical.
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5.4 Application to Jakobshavn Isbræ

We apply the same experiments to the fast moving region of Jakobshavn Isbræ, West
Greenland, to illustrate that this method can be applied to other glaciers. Jakobshavn Isbræ
drains 6.5% of the Greenland ice sheet (Joughin et al., 2004a) and flows through a deeply
eroded bedrock trough, which extends about 80 km inland of the calving front. This glacier
has been extensively surveyed by the Center for Remote Sensing of Ice Sheets (CReSIS) and
Operation IceBridge (OIB), who produced a high-resolution thickness map.

Here, we use the 1 km SeaRISE datasets. The CReSIS observed thickness, is combined
with InSAR derived surface velocities (Joughin et al., 2010). We use a surface mass balance
from the Regional Atmospheric Climate Model Ettema et al. (2009) and ∂H/∂t from the
Airborne Topographic Mapper (ATM) Thomas et al. (2009). The basal melting is also
assumed to be negligible (Fahnestock et al., 2001) on grounded ice.

First, we calculate ice thickness by solving the balance thickness equation, i.e., imposing
ice thickness only at the inflow boundary. Fig. 5.11c shows that the algorithm creates a
trough, which has approximately the same shape as that observed by radar. A kriging
algorithm could not generate this trough. This illustrates that the use of surface velocities
improves our knowledge of bed topography, though the calculated trough is much deeper
than the one observed by CReSIS (5000 m vs. 2800 m). Hence, the modeled thickness
deviates again too significantly from measurements. In the second experiment, we constrain
the calculated thickness to be equal to the measurement along flight tracks. As with 79North,
the resulting ice thickness (Fig. 5.11e) is noisy and exhibits jumps when crossing a flight
track. The same jumps are visible in the map of ice flux divergence (Fig. 5.11f).

To apply the optimization, we first need to define the tolerance interval for the depth-
averaged velocity, v̄, and the forcing, ȧ. The surface velocities in this fast moving portion
of the glacier are assumed to be very close to the depth-averaged velocities, as basal shear
stress is generally small under ice streams. Errors in surface velocity measurements and
interpolation errors are on the order of 50 m/yr. The admissible space for v̄ is therefore
defined as:

∀x ∈ Ω v̄ (x) ∈ [vobs (x)− 50 vobs (x) + 50] (5.32)

For the forcing, ȧ, the error is equal to the sum of the errors in surface mass balance, basal
melting and ∂H/∂t. Although the exact error is not known, we estimate that it is on the
order of 3 m/yr. The admissible space for ȧ is:

∀x ∈ Ω ȧ (x) ∈ [ȧobs (x)− 3 ȧobs (x) + 3] (5.33)

The resulting thickness is shown in Fig. 5.11g. It is very close to the observed thickness
in Fig. 5.11a, except that we find a modeled thickness that is slightly deeper in the lower
reaches of the glacier than the CReSIS dataset. This could be due to a model error or to a
lack of data in this region (Fig. 5.5), but might also indicate that the trough is deeper than
expected in this region.
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Figure 5.11: Thicknesses (m) and flux divergences (m/yr) of Jakobshavn Isbræ. (a) observed
CReSIS thickness, (b) flux divergence from InSAR velocities (Joughin et al., 2010) and
CReSIS thickness, (c) balanced ice thickness, (d) observed flux divergence (Ṁs − Ṁb −
∂H/∂t), (e) constrained balanced ice thickness, (f) flux divergence from InSAR velocities and
constrained balance thickness, (g) optimized balance thickness, (h) optimized flux divergence.
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Conclusion

We presented in this chapter an alternate solution to the traditional mapping of ice thickness
with kriging, which has shown serious limitations for ice sheet modeling applications. Our
technique is applicable to any glaciated terrain for which information on apparent mass
balance data is available, specifically for those areas where there are dense measurements of
ice velocity. Our method is most effective in fast flowing regions, where ice sheet models need
it most. It provides datasets that can readily be used in ice sheet models, fit the observations
well and generate no anomalies in ice flux divergence, thereby increasing confidence in the
model results. In one example application, our approach reduces errors in ice thickness by a
factor 2, to less than 40 m, or 5% of the total thickness.
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Conclusion

Main results

In this thesis, we developed tools to infer ice sheet properties using a combination of remote
sensing and ice sheet modeling via inverse methods. We first introduced the general equations
governing ice sheet dynamics and thermo-dynamics and presented three different models
of varying complexity: MacAyeal/Morland’s shelfy-stream model, Blatter/Pattyn’s higher
order model and the full-Stokes model. Inverse methods to infer basal friction and ice
shelf hardness have been developed for all three models. We investigated two approches of
optimization: Discretize-Optimize and Optimize-Discretize and showed that the latter was
preferable for unstructured meshes. We also discussed different cost functions and found
that a logarithmic misfit gave very good results. All these improvements are believed to be
an original contribution developed in this thesis.

We applied these inversions to Pine Island Glacier, West Antarctica, using the same mesh
and boundary conditions for the three models. We saw that the inferred patterns of basal
drag were very similar, which suggest that full-Stokes is not required everywhere to model
ice sheet or ice shelf flow. Nevertheless, in the grounding-line region, bridging effects cannot
be neglected and only the full-Stokes model is able to capture what is believed to be the
exact basal friction. Because both MacAyeal/Morland and Blatter/Pattyn neglect bridging
effects, the basal friction was artificially high in order to match the observed velocity. These
high values are not real, but rather reflect the fact that these two models are not valid in
this region because of the steep bed and high velocities.

In the last chapter, we introduced a novel approach that combines sparse ice thickness
data collected by airborne radar sounding profilers with high-resolution swath mapping of
ice velocities derived from satellite synthetic-aperture interferometry, in order to obtain
a high-resolution map of ice thickness that conserves mass and minimizes the departure
from observations. We applied this approach to the case of Nioghalvfjerdsfjorden (79North)
Glacier, a major outlet glacier in northeast Greenland that has been relatively stable in
recent decades. The results show that our mass conserving method removes the anomalies in
mass flux divergence, yields interpolated data that are within about 5% of the original data,
and produces thickness maps that are directly usable in high-spatial resolution, high-order
ice flow models. We discussed the application of this method to the broad and detailed
radar surveys of ice sheet and glacier thickness.

This work was done in parallel with the development of the massively parallelized Ice
Sheet System Model (ISSM). Developing the theoretical tools and then implementing them
was very complementary.
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Perspectives

Many processes need to be better understood and better represented in climate models.
There are many capabilities that need to be implemented in ISSM. The first one is a calving-
law. Even for short term projections, the ice front can move dramatically following ice shelf
collapse or enhanced melting at the front. This requires the ice front to move in the model.
This aspect presents several challenges because the processes involved in iceberg calving are
still debated, and calving laws are difficult to derive. Implementing moving boundaries in a
parallel architecture is also a technical challenge because the ice front might move from one
processor to another and communication between CPUs needs to be limited.

Another area of possible improvement is basal hydrology. Basal friction inferred by
control methods needs to be related to water content at the base of the ice in order to
better constrain how the basal drag evolves with time. A hydrological model is already
implemented in ISSM, but the relationship between water content and inferred basal drag
remains difficult to derive.

Additionally, data assimilation needs to be extended to transient models. We now have
observations at different times and we need to take advantage of these datasets to better
constrain the models. This requires the implemention of a temporal adjoint. We are in the
process of implementing an automatic differentiation tool, but a “manual” adjoint could also
be developed.

Finally, grounding-line processes are one of the key aspects of ice sheet dynamics that
we need to better model. We currently use a simple hydrostatic criterion, but it is well
known that the ice is not in hydrostatic equilibrium in the first few kilometers downstream
of the grounding-line. Several schemes based on contact mechanics have been developed and
should be implemented in ISSM.
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A.1. OVERVIEW OF THIS TECHNIQUES

One often says that no recent development in the field of polar remote sensing has engen-
dered more excitement and interest than Synthetic Aperture Radar (SAR) interferometry, or
InSAR. This technique uses Earth-orbiting spacecraft to measure two ice sheet parameters:
surface elevation and motion. Considering that none of the currently deployed imaging radar
satellite platforms was designed with interferometric applications in mind, the high quality
and vast quantity of exciting results from this technique are astounding. Interferometry on
glaciers started to develop in the 1990s. The goal of this section is to give the reader an
overview of InSAR, since all the data we used during this internship came from InSAR. A
number of reviews on theory and applications of InSAR have been written, this section is
inspired by Burgmann et al. (2000), Zebker et al. (1994), Rosen et al. (2000) and Goldstein
et al. (1993). This report do not deal with Radar techniques, interested readers are urged to
follow up on Elachi (1988).

A.1 Overview of this techniques

A.1.1 SAR, How it works

The conventional radar (RAdio Detection And Ranging) imaging is a technique in which the
target is illuminated by an electromagnetic beam of microwaves. The signal is reflected by
the target and recorded by the radar. The processing of this reflected signal gives information
about the target. For instance, the round-trip travel time from multiple targets on the
ground are used to determine the distance to the targets. The amplitude of the signal
generates a rough two-dimensional image of the target area. Bright regions in a radar image
represent high amplitude of the returned wave energy, which depends on the surface slope
and roughness and dielectric characteristics of the surface material. The resolution of such a
real-aperture radar in space would be of about 5 to 10 km, limited by the power and size of
the footprint of the radar beam. Whereas Synthetic aperture radar (SAR) combines signal
processing techniques with satellite orbit information to produce a much-higher-resolution
(tens of meters) radar image.

By focusing the raw radar echoes, SAR processing significantly improves the resolution of
point targets in both the cross-track (range) and along-track (azimuth) (See Fig.A.1). Fine
resolution in the cross-track direction is achieved by using a radar signal of high bandwidth,
which improves the differentiation of radar echoes from closely spaced targets in the range
direction. Focusing in the along-track direction relies on the synthetic aperture provided by
a moving antenna. The radar return from a particular point target on the ground is present
in successively recorded radar echoes (note that the radar footprints of successive pulses
overlap). As the moving antenna passes by the image point, the Doppler frequency shift of
the return signal from the point and the round trip time of the signal can be used together
to differentiate image points in the azimuth direction. Because the Doppler frequency shift
depends on the location of the target fore or aft of the radar beam’s center, the frequency
of the return from the target sweeps out a band as the target passes through the radar’s
footprint. With this information, a signal of high bandwidth is constructed in the azimuth
direction using successive pulses of the radar. The echoes are combined to synthesize a larger
antenna aperture and thus achieve much improved resolution. A typical image point (pixel)
spacing in space-based SAR images is 20-100 m within a 100-km-wide swath.
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Figure A.1: Method of data acquisition of a synthetic aperture radar (SAR) system
(from Engineering & Science, Spring 1991)

A.1.2 InSAR, How it works

Two SAR images can be combined to produce a radar interferogram, which can reveal
information about the third dimension (elevation) of the target area or measure minute
changes in the range distance between two image acquisitions. After SAR focusing, the
radar image is a two-dimensional record of both the amplitudes and the phases of the
backscattered signals from targets within the imaging area. The amplitude is a measure of
target reflectivity, whereas the phase encodes changes at the surface.

InSAR uses the phase information in two SAR images to determine the phase difference
between each pair of corresponding image points, thus producing an interferogram. Thus,
if two SAR images of a target area are available and can be precisely aligned to a fraction
of a pixel width, the relative phase of each image point can be determined. Relative phase
data from two images taken from slightly different viewing angles provide information about
changes in range to targets on the ground, and thus the surface topography at the resolution
of the SAR image can be recovered with knowledge of the imaging geometry. Interestingly,
the first applications of InSAR were in Earth-based studies of topography of the Moon and
Venus (Zisk, 1972; Rumsey et al., 1974).

The phase difference of two images taken from the same viewpoint, but at different times,
can precisely measure any shifts of the returned phase. Thus, if the glacier’s surface moved
toward or away from the radar between the two imaging passes, phase changes would result
that can be measured with a precision corresponding to millimeter-level displacements. The
first demonstration of this technique used Seasat satellite data to detect vertical motions
caused by soil swelling of irrigated fields in the Imperial Valley, California (Gabriel et al
1989). In the following section we give a more detailed explanation of how InSAR can be
used to measure Ice sheet’s velocity and Tidal deformation.
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Figure A.2: Synthetic aperture radar interferometry process
(U.S. Geological Survey)
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A.2 Processing of InSAR data

We have seen that interferogram images were built from two SAR images of the same ground
surface and received by two antennas spatially offset so that the phase of the backscattered
signal is not the same for each antenna. The two antennas can be on the same spacecraft
but Jet Propulsion Laboratory often uses the same satellite that passes several times above
the same area, or even two different satellites.

The interferogram is constructed by multiplying the signal of the first image with the
complex conjugate of the other. The phase of the interferogram is a fringe pattern that
represents the difference in propagation phase of the two SAR images. This phase difference
can only be determined modulo 2π. The interferogram’s amplitude (brightness) is the
product of the image backscatter amplitudes. Interferograms are often displayed overlaying
the brightness rendered in gray-scale, and phase as color, where each cycle of color, or fringe,
represents a phase change of 2π.

The precision of InSAR depends on many factors: the atmosphere, the thermal noise, the
ionosphere,... but usually, the detection limit is about 1.5 millimeters for vertical motions and
about 4 millimeters for horizontal motions in the radar beam direction. The grounding-line
(The point at which a tidewater glacier, or ice stream feeding an ice shelf, floats free of its
bed), detected by tidal motions where the ice goes afloat, can be mapped at a resolution of
-0.5 kilometer (Goldstein et al., 1993).

A.2.1 Motionless surface

In this first step, we assume that the surface is motionless, or that the two images are taken
in the same time.

The phase difference measured in the case of two antennas A1 and A2 (see Fig.A.3)
receiving in ping-pong mode (each antenna sends and receives its own pulse) is:

∆Φ =
4π

λ
(ρ1 − ρ2) =

4π

λ
∆ρ (A.1)

Using Al-Kashi’s theorem, we have:

ρ2
2 = ρ2

1 +B2 − 2ρ1B cos
(π

2
− θ + α

)
= ρ2

1 +B2 − 2ρ1B sin (θ − α) (A.2)

Then

ρ1 − ρ2 =
1

ρ1 + ρ2

(
2ρ1B sin (θ − α)−B2

)
δρ =

1

2ρ1 − δρ
(
2ρ1B sin (θ − α)−B2

) (A.3)

to the first order in δρ:

δρ ≈ B sin (θ − α)− B2

2ρ1
(A.4)
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Figure A.3: SAR geometry

and finally:

∆Φ =
4π

λ

[
B sin (θ − α)− B2

2ρ1

]
(A.5)

Now we must take into account the fact that the Earth is curved, and there is a local
topography. We want to decompose the previous equation in order to have an expression of
this term. Let’s assume that θ0 is the look angle to each point in the image assuming zero
local height. With δθ = θ − θ0:

∆Φ =
4π

λ

[
B sin (δθ + θ0 − α)− B2

2ρ1

]

=
4π

λ

[
B sin (δθ) cos (θ0 − α) +B cos (δθ) sin (θ0 − α)− B2

2ρ1

] (A.6)

with B‖ = Bsin (θ0 − α) and B⊥ = Bcos (θ0 − α) which are in turn the parallel component
of the baseline B (parallel to the look direction) and the perpendicular component (with
respect to the across track direction),

∆Φ =
4π

λ

[
B⊥ sin (δθ) +B‖ cos (δθ)− B2

2ρ1

]
(A.7)
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A.2.2 Mobile surface

For a glacier or an Ice sheet, the target may have moved between the times t1 and t2 of the
signal acquisition. We call Vx, Vy and Vz the three components of the velocity vector of the
glacier, where x is the across track direction on the ground, y is the track direction and z
the vertical direction. The target is on P1 at t1 and P2 at t2. The target can move because
of the ice flow, but can also move vertically because of the tides if it is an ice shelf. The
phase difference is a little bit trickier, we need to use the distance ρint from Fig.A.4:

Φ12 = Φ1 − Φ2 =
4π

λ
(ρ1 − ρ2) =

4π

λ
(ρ1 − ρint) +

4π

λ
(ρint − ρ2) (A.8)

Figure A.4: InSAR geometry

For the first term, we can use the previous section, the geometry is exactly the same.

136



A.2. PROCESSING OF INSAR DATA

For the second term, we have the following equations:

cos(i) =
h− zP2 +B12 sin(α12)

ρ2

sin(i) =
xP2 −B12 cos(α12)

ρ2

cos(i− δi) =
h− zP1 +B12 sin(α12)

ρint

sin(i− δi) =
h− zP1 −B12 cos(α12)

ρint

(A.9)

And we also have the following equations:

dx = xP2 − xP1 = Vx(t2 − t1)

dz = zP2 − zP1 = Vz(t2 − t1) + (Z2 − Z1)T ide

(A.10)

Therefore:

ρint cos(i− δi)− ρ2 cos(i) = Vz(t2 − t1) + (Z2 − Z1)T ide

ρint sin(i− δi)− ρ2 sin(i) = −Vx(t2 − t1)
(A.11)

By multiplying the first of the previous equations by cos(i) and the second one by sin(i) and
then sum them, we have:

ρint cos(i− δi) cos(i) + ρint sin(i− δi) sin(i)− ρ2 = ρint cos ((i− δi)− i)− ρ2

= ρint
(
1 +O

(
δi2
))
− ρ2

(A.12)

So to the second order in δi:

ρint − ρ2 = (−Vx sin(i) + Vz cos(i)) (t2 − t1) + (Z2 − Z1)T ide cos(i) (A.13)

Finally, the phase difference can be written as follows:

Φ12 =
4π

λ

[
B⊥ sin (δθ) +B‖ cos (δθ)− B2

2ρ1

]

+
4π

λ
(−Vx sin(i) + Vz cos(i)) (t2 − t1)

+
4π

λ
(Z2 − Z1)T ide cos(i) + Φnoise

12

(A.14)
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In the previous equation, the first term depends only on the Earth’s curvature and the
topography of the surface, the baseline and the wavelength of the radar. The second term is
due to the motion of the glacier, this term highlights that the interferometer measures only
the projection of the displacement vector in the radar line-of-sight direction. To construct
the velocity vector, observations must be made from different aspect angles. The third term
depends on the change in elevation due to the tide. Fig.A.5 shows an amplitude image and
the phase of Pine Island Glacier, West Antarctica.

By a very sophisticated post processing involving filters and spatial averages, it is possible
to reduce the noise so that it is negligible. We also can get rid of the first term by knowing
precisely the topography of the target and the exact position of the satellite. The remaining
signal, which is a combination of tidal deformation and glacial motion, is called the flattened
interferogram. In the following section, we will show how we can separate these two signals.

A.2.3 Tidal deformation

The technique used to separating the tidal deformation signal from the ice motion signal is
called double difference interferometry. The double difference interferograms are constructed
using three different SAR images of the same target. This allows us to generate two
interferograms using Φ12 and Φ23. To the first order, we have:

Φ23 =
4π

λ

[
B23⊥ sin

(
δθ(23)

)
+B23‖ cos

(
δθ(23)

)
−
B2

(23)

2ρ1

]

+
4π

λ
(−Vx sin(i) + Vz cos(i)) (t3 − t2)

+
4π

λ
(Z3 − Z2)T ide cos(i) + Φnoise

23

(A.15)

The two interferograms are processed to lower the noise, and the signal is flattened so that
the first term is eliminated. If the ground motion is stable (which is generally correct for
a glacier), the velocity vector (Vx, Vy, Vz) remains the same. If the time intervals are also
similar t2 − t1 = t3 − t2, we can eliminate the term due to the motion by subtracting the
phase differences of the two interferograms:

Φflat
12 − Φflat

23 =
4π

λ
(2Z2 − Z3 − Z1)T ide cos(i) (A.16)

This is called the flattened tidal interferogram. Fig.A.6 shows the tidal deformation term,
this is very useful to determine the position of the grounding line, which is needed to set up
the boundary conditions.

A.2.4 Unwrapping

Once we have the interferogram, it is not that easy to deduce the velocity or the displacements.
The measurements of each phase are known only modulo 2π. The total phase difference
between two image points in an interferogram, which may measure many multiples of 2π,
needs to be determined by counting the number of phase cycles, or fringes, between the
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points. This crucial step in the interferogram determination is called phase unwrapping,
which has been the focus of a variety of approaches and algorithm development. The
easiest way to determine the absolute phase was developed by Goldstein et al. (1988). The
algorithm unwraps the phase to within a common integer multiple of 2π. Then, this constant
is determined by using one point of known elevation or displacement in the image. Once the
absolute phase is determined, it is relatively easy to build a field of displacement or velocity
for the whole interferogram (See Fig.A.7).
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(a) Amplitude of the signal (b) Phase of the signal

Figure A.5: InSAR image of Pine Island Glacier (E. Rignot)
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Figure A.6: Tidal deformation of Pine Island Glacier (E. Rignot)
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Figure A.7: InSAR derived velocity of Pine Island Glacier (E. Rignot)
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B.1. WEAK FORMULATION

There are different ways to solve hyperbolic equations with the finite element method.
We present here four possibilities: the artificial diffusion method, streamline upwinding,
the Petrov-Galerkin method and the Discontinuous Galerkin method. To illustrate these
methods, we focus on solving the balance thickness equation:{

∇ ·Hv̄ = ȧ in Ω
H = Hobs on Γ−

(B.1)

B.1 Weak formulation

We derive here the variational formulation associated to the balance thickness problem
(Eq. B.1). We multiply and integrate Eq. (B.1) by a weighing function ϕ over the domain,
Ω:

∀ϕ ∈ H1 (Ω)

∫
Ω
ϕ ∇ ·Hv̄dΩ =

∫
Ω
ϕȧdΩ (B.2)

By integrating by part the first term and using Gauss formula (Eq. C.4):

∀ϕ ∈ H1 (Ω) −
∫

Ω
Hv̄ · ∇ϕdΩ +

∫
Γ+

ϕHv̄ · ndS +

∫
Γ−

ϕHobsv̄ · ndS =

∫
Ω
ϕȧdΩ (B.3)

In this formulation, we apply the Dirichlet condition in a weak sense. This weak formulation
can be employed but we generally apply the Dirichlet condition in the strong sense by
requiring both the solution, H, and the weighing function, ϕ to be in the admissible, V,
defined as:

V =
{
H ∈ H1 (Ω) , ∀x ∈ Γ− H (x) = 0

}
(B.4)

which gives:

∀ϕ ∈ V −
∫

Ω
Hv̄ · ∇ϕdΩ +

∫
Γ+

ϕHv̄ · ndS =

∫
Ω
ϕȧdΩ (B.5)

We define the bilinear forms a : V × V → R and b : V × V → R, as well as the linear form
f : V → R as:

a (H,ϕ) =

∫
Ω
−Hv̄ · ∇ϕdΩ

b (H,ϕ) =

∫
Γ+

ϕHv̄ · ndS

〈f, ϕ〉 =

∫
Ω
ϕ ȧdΩ

(B.6)

The weak formulation is now: find H ∈ V such that

∀ϕ ∈ V a (H,ϕ) + b (H,ϕ) = 〈f, ϕ〉 (B.7)
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The bilinear forms, a and b, are non-symmetric and exhibits very unfavorable properties.
Although the standard Bubnov-Galerkin approximation produces accurate solutions to
elliptic and parabolic problems (for small a Péclet number), the absence of diffusion in this
transport equation deprives it from best approximation property1 which it is known to possess
in the case of self-adjoint (symmetric) operators. The solution produces spurious oscillations,
also known as wiggles. Due to the lack of diffusive effects, hyperbolic conservation laws
admit discontinuous and, possibly, nonunique weak solutions. Such problems are particularly
difficult to solve numerically, although a lot of information about the properties of exact
solutions is available. The lack of robustness can be rectified by adding some artificial
diffusion, using modified test functions to construct an upwind-biased finite element scheme
or employing a Discontinuous Galerkin method.

B.2 Artificial diffusion

To overcome this difficulty, the first possible approximation consists of stabilizing the Galerkin
operator, a, by adding a linear stabilization term:

a′ (H,ϕ) = a (H,ϕ) + d (H,ϕ) (B.8)

where d : V × V → R is a stabilizing bilinear form. Ideally, this term should vanish if H the
exact solution of the continuous problem. For practical purposes, it is sufficient to make sure
that d (H,ϕ)→ 0 as the mesh size h goes to zero. In a classical artificial diffusion method
(Kuzmin, 2010), the stabilization operator is defined as:

d (H,ϕ) =

∫
Ω
−∇ϕ · (D∇H) dΩ (B.9)

where D is a diffusivity tensor. Solving for the new problem is equivalent to solving the
following equation:

∇ ·Hv̄ +∇ · (D∇H) = ȧ (B.10)

Typically, the amount of artificial diffusion depends on the local mesh size, h, and on
the magnitude of the velocity vector v̄. The simplest way to offset the intrinsic negative
diffusion of the Galerkin scheme (Brooks and Hughes, 1982; Donea, 1984) is to apply isotropic
balancing dissipation of the form D = δI, where

δ = α
‖v̄‖h

2
(B.11)

is a scalar diffusion coefficient and I the identity tensor. For convection-diffusion problem, α
is based on the local Péclet number:

α = coth

(
Peh
2

)
− 2

Peh
' min

{
1,

Peh
6

}
Peh =

‖v̄‖h
ε

(B.12)

where ε is the diffusivity. In this case, ε = 0 and we therefore take α = 1.

1 the Galerkin solution is as close to the exact solution as any other vector in its discretized space V
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B.3 Streamline Upwinding

In multidimensional problems, the velocity field determines the direction and speed of
convective transport. The results of simple artificial diffusivity results are frequently polluted
by numerical crosswind diffusion that could be removed without making the scheme unstable.
This led to the introduction of the anisotropic balancing dissipation (Donea, 1984; Kuzmin,
2010) that acts along the streamlines of the velocity but not transversely:

D = τ v̄ ⊗ v̄ τ =
δ

‖v̄‖2
=

αh

2‖v̄‖
(B.13)

if α = 1, it can be shown that this anisotropic diffusion is equivalent to a first-order upwinding
along the streamlines. The lack of crosswind diffusion results in a smaller deviation from
the isotropic artificial diffusion.

The stabilizing bilinear form d : V × V → R is:

d (H,ϕ) =

∫
Ω
−∇ϕ · (τ v̄ ⊗ v̄∇H) dΩ

=

∫
Ω
−τ (v̄ · ∇ϕ) (v̄ · ∇H) dΩ

(B.14)

B.4 Petrov-Galerkin Method

The Galerkin method is a method of weighted residuals: the equation is verified only for a
finite number of weighing functions:

∀ϕ ∈ Vh a (H,ϕ) + b (H,ϕ) = 〈f, ϕ〉 (B.15)

The idea behind Petrov-Galerkin is to use weighing functions different than the one used to
decompose the unknown, H. We modify the weighing functions as follows:

ϕ̃ = ϕ+ τ v̄ · ∇ϕ (B.16)

Fig. B.1 shows the difference between a standard Bubnov-Galerkin weighing function and a
Petrov-Galerkin nonconforming weighing function in 1d for linear elements. We see that
more weight is given upwind, which stabilizes the convection term.

The weak formulation becomes:

∀ϕ ∈ V a (H,ϕ+ τ v̄ · ∇ϕ) + b (H,ϕ+ τ v̄ · ∇ϕ) = 〈f, ϕ+ τ v̄ · ∇ϕ〉 (B.17)

With the linearity of the operators, it gives:

a (H,ϕ) + b (H,ϕ) + S (H,ϕ) = 〈f, ϕ〉 (B.18)
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i i+ 1i− 1

Bubnov-Galerkin

Petrov-Galerkin

Flow direction

Figure B.1: One dimensional comparision between Bubnov-Galerkin and Petrov-Galerkin
test functions

So we just added the operator S such that:

S (H,ϕ) = a (H, τ v̄ · ∇ϕ) + b (H, τ v̄ · ∇ϕ)− 〈f, τ v̄ · ∇ϕ〉 (B.19)

Franca et al. (2006) gives the expression of this operator for different problems.

B.5 Discontinuous Galerkin

The Discontinuous Galerkin (DG) method is becoming more and more popular in computa-
tional mechanics. This method combines features of the finite element and the finite volume
framework. It was introduced in the 1970s (Reed and Hill, 1973) and has been devised
to solve nonlinear hyperbolic systems and convection-dominated problem. This method is
therefore well-suited for our balance thickness problem.

The idea behind the Discontinuous Galerkin method is to allow the test functions to
be discontinuous across element interfaces. This leads to undefined inter-element terms or
numerical fluxes, which are chosen to enforce the consistency of the numerical scheme.

B.5.1 Jump and average definitions

Let Th be a regular family of decomposition of Ω into triangles K. Let Eh be the set of all
edges of Th. This set is decomposed in interior edges, Eoh, and boundary edges, E∂h . We have
of course Eh = Eoh ∪ E∂h .

Let e ∈ Eoh be an interior edge shared by two triangles K1 and K2. The unit normal
vectors n1 and n2 on e are pointing outward toward K1 and K2 respectively (Fig. B.2).
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K2

K1

e
n1

n2

E∂
h

Eo
h

Figure B.2: Triangulation, Th, of the domain, Ω. Interior edges, Eoh, are shown in red and
boundary edges, E∂h , are in blue. The edge e is shared by two triangles: K1 and K2.

Jump and Average operators

For any scalar function γ and any vector-valued function v piecewise smooth on Th, with
γi = γ |Ki

, we define the average operator accross e as:

∀e ∈ Eoh {γ} =
1

2
(γ1 + γ2) {v} =

1

2
(v1 + v2)

∀e ∈ E∂h {v} = v

(B.20)

The jump operator is defined as follows:

∀e ∈ Eoh JγK = γ1n1 + γ2n2 JvK = v1 · n1 + v2 · n2

∀e ∈ E∂h JγK = γ n
(B.21)

We leave the definition of JvK and {γ} undefined as they won’t be used. Notice that the
jump of a scalar function γ accross e ∈ Eoh is a vector parallel to the normal of e (n2 = −n1),
and the jump of a vector-valued function v is a scalar quantity.

B.5.2 Unstabilize discrete problem

We define the finite element space of discontinuous piecewise linear polunomial functions as:

Vh =
{
ϕ ∈ H1 (Ω) ∀K ∈ Th, ϕ |K ∈ P

1 (K)
}

(B.22)

where P 1 is the usual space of polynomials of degree 1 or less. The integration by parts is
done over individual elements. Eq. 5.9 is multiplied by a function ϕ ∈ Vh and integrated
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over the domain Ω:

∀ϕ ∈ Vh
∑
K∈Th

(∫
K
ϕ ∇ ·Hv̄ dK

)
=

∫
Ω
ȧ ϕ ds (B.23)

We integrate by part the first term of the previous equation:

∀ϕ ∈ Vh
∑
K∈Th

(∫
K
−Hv̄ · ∇ϕdΩ +

∫
∂K

ϕHv̄ · n dx
)

=

∫
Ω
ȧ ϕ ds (B.24)

For any vector v and scalar γ piecewise smooth on Th, we have the following identity2:∑
K∈Th

∫
∂K

γ (v · n) dΩ =
∑
e∈E∂h

∫
e
γv · n dx+

∑
e∈Eoh

∫
e
γ1v1 · n1 + γ2v2 · n2 dx

=
∑
e∈E∂h

∫
e
{v} · JγKdx+

∑
e∈Eoh

∫
e
JvK {γ}+ {v} · JγKdx

=
∑
e∈Eh

∫
e
{v} · JγKdx+

∑
e∈Eoh

∫
e
JvK {γ} dx

(B.26)

This gives here:∑
K∈Th

∫
∂K

ϕHv̄ · n dΩ =
∑
e∈Eh

∫
e
{Hv̄} · JϕKdx+

∑
e∈Eoh

∫
e
JHv̄K {ϕ} dx (B.27)

The flux continuity imposes that for every edge e shared by T1 and T2 we have:

JHv̄K = H1v̄1 · n1 +H2v̄2 · n2 = (H1v̄1 −H2v̄2) · n1 = 0 (B.28)

The last term of Eq. B.27 is hence zero. We rewrite the equation by decomposing the
integral over the edges belonging to Γ− and the others:

∑
K∈Th

∫
∂K

ϕHv̄ · n dΩ =
∑
e∈Eh

∫
e
{Hv̄} · JϕKdx

=
∑
e 6⊂Γ−

∫
e
{Hv̄} · JϕKdx+

∑
e⊂Γ−

∫
e
Hobsϕv̄ · n dx

(B.29)

2 For one edge e ∈ Eoh, we have the following relations:

JvK {γ} = (v1 · n1 + v2 · n2)

(
1

2
γ1 +

1

2
γ2

)
=

1

2
(γ1v1 · n1 + γ2v1 · n1 + γ1v2 · n2 + γ2v2 · n2)

{v} · JγK =

(
1

2
v1 +

1

2
v2

)
· (γ1n1 + γ2n2) =

1

2
(γ1v1 · n1 + γ2v1 · n2 + γ1v2 · n1 + γ2v2 · n2)

And since we have n1 = −n2, the sum is reduced to:

JvK {γ}+ {v} · JγK = γ1v1 · n1 + γ2v2 · n2 (B.25)
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This gives finally:

∀ϕ ∈ Vh
∑
K∈Th

∫
K
−Hv̄ · ∇ϕdΩ +

∑
e6⊂Γ−

∫
e
{Hv̄} · JϕKdx =∫

Ω
ȧ ϕ dx−

∑
e⊂Γ−

∫
e
Hobsϕv̄ · n dx (B.30)

Unstabilized discrete problem

With the following operators:

ah (H,ϕ) =
∑
K∈Th

∫
T
−Hv̄ · ∇ϕ dΩ

bh (H,ϕ) =
∑
e6⊂Γ−

∫
e
{Hv̄} · JϕK dx

(ȧ, ϕ) =

∫
Ω
ȧ ϕ dx

〈g, ϕ〉 =
∑
e⊂Γ−

−
∫
e
Hobsϕv̄ · n dx

(B.31)

the unstabilized discrete problem is defined as:


find H ∈ Vh

ah (H,ϕ) + bh (H,ϕ) = (ȧ, ϕ) + 〈g, ϕ〉
(B.32)

B.5.3 Upwind-value numerical flux

According to Brezzi et al. (2004), the formulation Eq.B.32 is stable but only with respect
to the L2-norm, which leads to discontinuities in the boundary data and may trigger large,
nonphysical oscillations in the numerical solution.

In order to design a solution that is stable in a stronger norm, the average {Hv̄}, which
appears in the bilinear form bh of Eq.B.32 is modified following the upwind scheme:

{Hv̄}u =


v̄H1 if v̄ · n1 > 0

v̄H2 if v̄ · n1 < 0

v̄ {H} if v̄ · n1 = 0

(B.33)
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Only the normal component of the term is involved as:

bh (H,ϕ) =
∑
e 6⊂Γ−

∫
e
{Hv̄} · JϕK dx (B.34)

and JϕK is along the normal of the edge. We have the following identity:

{Hv̄}u · n =
1

2
(Hh1 +Hh2) (v̄ · n) +

1

2
(Hh1 −Hh2) |v̄ · n|

=

(
{Hv̄}+

|v̄ · n|
2

JϕK
)
· n

(B.35)

B.5.4 Jump-penalty stabilization

It can be shown (Brezzi et al., 2004) that by choosing the following numerical flux:

{Hv̄}u = ({Hv̄}+ ceJHK) (B.36)

we achieve a stability in a norm stronger that L2, provided that ce is a nonnegative function
chosen on each e so that:

ce ≤ θ0 |v̄ · n| (B.37)

where θ0 is a positive constant independent of the mesh size. We therefore replace bh by its
stabilized version:

bsh (H,ϕ) = bh (H,ϕ) +
∑
e∈Eoh

∫
e
ceJHK · JϕK dx (B.38)

In ISSM we chose ce = |v̄ · n| /2. The jump-penalty stabilization is therefore equivalent to
the upwinding.
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C.1. LEIBNITZ THEOREM

Several integral formulas are used throughout this document. These formulas are
summarized here with or without proof as some of them are very common in the litterature.
For all these formulas:

• V (t) is a volume that encloses a body

• S (t) is its outer surface assumed to be a material surface

• ϕ (x, y, z, t) is a scalar variable (temperature, density,...)

• F (x, y, z, t) is a vector variable (velocity,...)

C.1 Leibnitz Theorem

The Leibnitz integral formula also known as Leibniz’s rule is very useful for integrals over a
moving domain.

3d case

D

Dt

∫
V (t)

ϕ (x, y, z, t) dV =

∫
V (t)

∂ϕ

∂t
dV +

∫
S(t)

ϕ (x, y, z, t)v · n dS (C.1)

1d case

D

Dt

∫ b(t)

a(t)
f (x, t) dx =

∂b (t)

∂t
f (b, t)− ∂a (t)

∂t
f (a, t) +

∫ b(t)

a(t)

∂f

∂t
dx (C.2)

C.2 Reynold’s transport formula

The well-known Reynold’s transport formula can be derived from (C.1) by taking ϕ = ϕ (r, t):

D

Dt

∫
V (t)

ϕ dV =

∫
V (t)

∂ϕ

∂t
dV +

∫
S(t)

ϕ v · n dS (C.3)

C.3 Integral formula of Gauss

The integral formula of Gauss is also known as the divergence theorem.

∫
V (t)
∇ · F dV =

∫
S(t)

F · n dS (C.4)
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C.4 Another useful integral formula

The mass conservation equation (Eq. 1.8)) can be used with Reynolds transport formula
(Eq. C.3) for F = ϕv:

∫
V (t)
∇ · ϕvdV =

∫
S(t)

ϕv · n dS (C.5)

The Reynold’s transport formula can now be rewritten:

D

Dt

∫
V (t)

ϕ dV =

∫
V (t)

∂ϕ

∂t
dV +

∫
V (t)
∇ · ϕvdV (C.6)

We can use the following identity:

∂ϕ

∂t
+∇ · ϕv =

Dϕ

Dt
+ ϕ∇ · v (C.7)

which transforms the previous equation:

D

Dt

∫
V (t)

ϕ dV =

∫
V (t)

Dϕ

Dt
+ ϕ∇ · v (C.8)

For ϕ = ρθ where ρ is the densityand θ some arbitrary variable, we have:

D

Dt

∫
V (t) ρθ dV =

∫
V (t)

D

Dt
(ρθ) + ρθ∇ · v

=
∫
V (t) ρ

Dθ

Dt
+ θ

(
Dρ

Dt
+ ρ∇ · v

) (C.9)

And finally, using the incompressibility, we have:

D

Dt

∫
V (t)

ρθ dV =

∫
V (t)

ρ
Dθ

Dt
dV (C.10)
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D.1. GOLDEN SECTION SEARCH

D.1 Golden section search

D.1.1 Introduction

We are trying to find the minimum of a single-function f(x) on a segment [a, b] assuming that
this minimum is unique. The golden section search is similar to the bisection in the sense
that one evaluates the function in the interval [a, b] and obtains a new, smaller bracketing
interval.

But instead of evaluating the function at one point only, the Golden section search scheme
uses two interior points c and d. At each iteration, one has a triplet of points a < c < b,
such that f(c) is less than or equal to both f(a) and f(b), only f(d) is to be computed. We
continue the process of bracketing until the distance between the two outer points of the
triplet is sufficiently small.

D.1.2 Strategy

Suppose that c is closer1 to a and is a fraction R of the way between a and b, i.e.

c− a
b− a

= R > 0 (D.1)

We choose the second guess d, such that (See Fig.D.1):

d− c
b− a

= R′ > 0 (D.2)

If f (c) > f (d), the interval is reduced to [c, b] and if f (c) < f (d), the interval is reduced to
[a, d]. The length of the new interval will hence be either (1−R) (b− a) or (R+R′) (b− a).
If we want to minimize the worst case possibility, then we will choose R′ to make them equal,
namely:

R′ = 1− 2R (D.3)

We see that R′ is positive only if R < 0.5. This implies that the new point is the symmetric
point to c in the interval:

|a− b| = |b− d|+ |d− c|+ |c− a|

= |b− d|+ (1− 2R) |b− a|+R |b− a|

|b− d| = R |a− b|

= |c− a|

(D.4)

This implies that the point d lies in the larger of the two segments [a, c], [c, b] (As shown on

1would the point c be closer to b, we would have had
b− c
b− a = R > 0
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D. BRENT FITTING

Figure D.1: Golden search scheme

Figure D.2: Repartition of c and d

Fig.D.2).
Depending on the value of f (d), the next triplet is (a′, c′, b′) = (a, c, d) or (a′, c′, b′) = (c, d, b).
We want to keep the same ratio between the min (c′ − a, b− c′) and b− a in order to apply
the same procedure. This implies:

R =
R′ (b− a)

b− a−R (b− a)
=

R′

1−R
=

1− 2R

1−R
(D.5)

Which finally yields the quadratic equation:

R2 − 3R+ 1 = 0 (D.6)

Since 0 < R < 0.5, there is only one acceptable root which is:

R =
3−
√

5

2
≈ 0.38197 . . . (D.7)

D.1.3 Iterations

The previous scheme is repeated at each iteration. We have a triplet of point. The inner
point can be either closer to b (it is c) or to a (it is d). The fourth point is computed as a
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fraction R of the current interval [a, b] located between the largest segment. The function is
evaluated on this new point and compared to its value on the other inner point. We obtain
a smaller bracketing interval as shown in Fig.D.3.

Figure D.3: Golden Search Scheme

161



D. BRENT FITTING

D.2 Parabolic interpolation

D.2.1 Introduction

Exactly as in the Golden Search Scheme, we assume to have a triplet of points a < c < b,
such that f(c) is less than both f(a) and f(b). At each iteration, we find the quadratic
function that goes through the three points (a, f (a)), (b, f (b)) and (c, f (c)). The minimum
of this parabola is easy to compute by searching the root of its derivative. This gives the
point d. The function is evaluated on this point and we obtain a smaller bracketing interval
by applying the same rule as in the GSS.

D.2.2 Parabola fitting

The equation of the parabola through f(a), f(b) and f(c) is:

P (x) = f (a)
(x− b) (x− c)
(a− b) (a− c)

+ f (b)
(x− c) (x− a)

(b− c) (b− a)
+ f (c)

(x− a) (x− b)
(c− a) (c− b)

(D.8)

The idea is that a quadratic function is uniquely defined by three points and the previous
parabola goes through the three points of the triplet, it is hence the parabola one is looking
for. Its derivative is easily computed:

dP

dx
= f (a)

(x− b)− (x− c)
(a− b) (a− c)

+ f (b)
(x− c)− (x− a)

(b− c) (b− a)
+ f (c)

(x− a)− (x− b)
(c− a) (c− b)

(D.9)

The minimum of the parabola is d where is derivative is equal to zero:

0 = f (a)
(d− b)− (d− c)
(a− b) (a− c)

+ f (b)
(d− c)− (d− a)

(b− c) (b− a)
+ f (c)

(d− a)− (d− b)
(c− a) (c− b)

(D.10)

We multiply with the denominator (a− b)(b− c)(c− a) and get:

0 = f (a) (c− b) (2d− b− c) + f (b) (a− c) (2d− c− a) + f (c) (b− a) (2d− a− b) (D.11)

This gives:

d =
1

2

f (a)
(
c2 − b2

)
+ f (b)

(
a2 − c2

)
+ f (c)

(
b2 − a2

)
f (a) (c− b) + f (b) (a− c) + f (c) (b− a)

= b+
1

2

f (a) (c− b) (c+ b− 2b) + f (b) (a− c) (a+ c− 2b) + f (c) (b− a) (b+ a− 2b)

f (a) (c− b) + f (b) (a− c) + f (c) (b− a)

= b+
1

2

(f (a)− f (b)) (c− b)2 + (f (b)− f (c)) (b− a)2

(f (a)− f (b)) (c− b) + (f (b)− f (c)) (b− a)
(D.12)
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This formula fails only if three points are collinear, in which case the denominator is zero
(minimum of the parabola is infinitely far away).

Figure D.4: Parabola fitting
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