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Experimental investigation of the deep mantle melting properties

During the final stage of accretion, terrestrial planets experienced violent and highly energetic giant 
impacts. As a consequence of impact heating, the early Earth was partially or wholly molten, forming a 
magma ocean in the outer layer of Earth. Subsequent cooling of the magma ocean has led to fractional 
crystallization of the primitive mantle. Many unknowns remain about accretion of the early Earth, such 
as extension depth and life time of the magma ocean(s), role of mantle recrystallization on the chemical 
segregation between the different Earth reservoirs, and so on. The knowledge of melting properties of 
the deep mantle is also important to investigate the possibility of partial melting at the present time. 
 The aim of this study was to tackle a few major questions concerning the Earth lower mantle: 
What is the melting sequence between the main lower mantle phases? Can we explain the ultra-low-
velocity zones (ULVZ) by partial melting of pyrolitic (or chondritic) mantle? How does iron partition 
between liquid and solid silicate phases in the deep mantle? Can we provide new information on the 
properties of the deep magma ocean based on the melting curve of the primitive mantle? 
 Melting curves and melting relations have been investigated using the laser-heated diamond anvil 
cell (LH-DAC) for pressure between 25 and 135 GPa and temperature up more than 4000 K, i.e. at P-T 
conditions corresponding to the entire Earth’s lower mantle. Compositions investigated were the join 
between MgO and MgSiO3 and a model chondritic-composition for the Earth mantle. Two different in 
situ synchrotron radiation techniques have been used to infer melting properties at high pressures; X-
ray diffraction and X-ray fluorescence spectroscopy. 
 The new results obtained in this study include:  

a) Eutectic melting curve in the MgO-MgSiO3 join; for this simplified model-composition, the 
eutectic melting temperature is found to be 4830 ±150 K at 135 GPa. It plots at ~700 K higher 
than the solidus for a chondritic type mantle composition (see below). 

b) Liquidus and solidus melting curves for a chondritic mantle composition; at 135 GPa, solidus 
and liquidus temperatures were measured at 4150±150 K and 4725±150 K, respectively. Our 
measurements also confirmed that MgSiO3-perovskite is the liquidus phase in the deep lower 
mantle. When the solidus melting curve is compared with the different temperature profiles 
available for the lower mantle and the D" region, it suggests that partial melting in the lower 
mantle is unlikely, except in the D”-layer if the core is very hot and/or for a mantle material 
containing a high concentration of incompatible elements (i.e. Na, K, H or CO2), in order to 
decrease the melting point compared to that of the mean mantle. Concerning properties of the 
Early Earth, our results suggest that complete melting of the Earth's mantle is incompatible 
with a reasonable surface temperature. Thus, it is unlikely that the mantle has experienced 
complete melting after the Earth has been accreted completely. 

c) Calcium and iron partition coefficients between liquid and solid mantle; this work provides 
maps of elemental (Ca and Fe) and phase fractions for sample of chondritic-type compositions 
that have been partially molten in the LH-DAC at the lower mantle P-T conditions. The Fe 
partitioning coefficients extracted from the maps show a large preference of Fe for the liquid 
phase. This behavior could be compatible with the production of dense liquids when the lower 
mantle encounters partial melting, which can be related to sinking down of liquid phases. 

Keywords: partial melting, lower mantle melting curves, properties of the magma ocean, phase 
relations, high-pressure experiments in LH-DAC, partition coefficients, iron. 



Etude expérimentale des propriétés de fusion du manteau inferieur 
Au cours de la dernière phase d’accrétion, les planètes terrestres ont connus des impacts géants violents 
et très énergétiques. A la suite du chauffage causé par les impacts, la Terre primitive était partiellement 
ou totalement fondue, et un océan magmatique a été formé dans la couche externe de la Terre. Le 
refroidissement successif de l’océan magmatique a causé la cristallisation fractionnée du manteau 
primitif. Cependant, ils restent beaucoup d’incertitudes à propos de l’accrétion de la Terre primitive, 
comme la profondeur et la durée de vie d’un (ou plusieurs) océan(s) magmatique(s), l’effet de la 
recristallisation du manteau sur la ségrégation chimique entre les différents réservoirs de la Terre et 
ainsi de suite. La connaissance des propriétés de fusion du manteau profond est important aussi pour 
examiner la possibilité d’une fusion partielle actuellement. 
 L’objectif était d’aborder quelque problème concernant le manteau inferieur terrestre: Quelle 
est la séquence de fusion entre les phases dominantes dans le manteau inferieur? Est-ce qu’on peut 
expliquer la zone à ultra-basse vélocité (ULVZ) avec la fusion partielle d’un manteau pyrolytique (ou 
chondritique)? Quel est le partage du fer entre les phases silicatées liquides et solides dans le manteau 
profond? Est-ce qu’on peut donner des informations nouvelles sur les propriétés d’un océan 
magmatique profond  à partir des courbes de fusion du manteau primitif? 
 Dans cette étude les courbes de fusion et les relations de fusion ont été analysés en utilisant la 
cellule à enclume de diamant chauffé au laser (LH-DAC) pour des pressions entre 25 et 135 GPa et des 
températures jusqu’à plus que 4000 K, i.e. pour des conditions de P-T qui correspondent au manteau 
inferieur terrestre entier. Les compositions utilisées ont été le raccord entre MgO and MgSiO3 et une 
composition de type chondritique pour le manteau terrestre. J’ai utilisé deux techniques in-situ de 
radiation-synchrotron pour déduire les propriétés de fusion à hautes pressions; la diffractométrie au 
rayons-X et la fluorescence au rayons-X. 
 Les nouveaux résultats obtenus dans cette étude sont : 

a) La courbe de fusion eutectique pour le system MgO-MgSiO3 ; pour ce type de model simplifié, 
on a trouvé une température de fusion eutectique à 4830 ±150 K et 135 GPa. Elle est à ~700 K 
au dessus du solidus  pour une composition du manteau chondritique (voir ci-dessous). 

b) Les courbes de fusion de liquidus et solidus pour une composition du manteau chondritique;
Les températures de solidus et liquidus mesurées à 135 GPa, sont respectivement 4150 ±150 K 
et 4725 ±150 K. Ces mesures ont confirmé que la MgSiO3-perovskite est la phase liquide dans 
le manteau inferieur. Donc, on a mis en comparaison ces résultats avec les profiles de 
températures disponibles pour le manteau inferieur et la région-D", et on en conclue que la 
fusion partielle dans le manteau inferieur est improbable, sauf dans la région-D" si le noyau est 
très chaud et/ou pour un matériel mantellique avec une concentration élevée des éléments 
incompatibles (i.e. Na, K, H ou CO2) qui baissent le point de fusion comparé à celui du manteau 
moyen. Pour ce qui concerne les propriétés de la Terre initiale, ces résultats suggèrent qu’une 
fusion complète du manteau terrestre est incompatible avec les températures superficielles 
attendues. Donc, est vraiment improbable que le manteau ait subie une fusion complète une fois 
que la Terre a terminé son accrétion.  

c) Les coefficients de partage pour le calcium et le fer entre le manteau liquide et solide ; cette 
étude donne les cartographies des fractions pour les éléments (Ca et Fe) et pour les phases, dans 
le cas d’un matériel chondritique qui a été partiellement fondue dans une LH-DAC pour les 
conditions de P-T du manteau inferieur. Les coefficients de partage obtenues à partir de ces 
cartographies, montrent que le fer préfère la phase liquide. Ce comportement pourrait être 
compatible avec la production  des liquides denses quand le manteau subie une fusion partielle, 
et ça peut être corrélé avec une préférence des phases liquides à plonger.

Mots-clés : fusion partielle, courbes de fusion dans le manteau inferieur, propriétés de l’océan 
magmatique, relations des phases, expériences de hautes pressions, coefficients de partage, fer. 
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Preface 

Context: Earth’s lower mantle 

The Earth’s lower mantle is the region of the planet at depth between 670 km (transition zone) 

and ~2900 km (outer core). This portion of the Earth presents extreme conditions of pressure and 

temperature, i.e. 25<P<135 GPa and ~2000<T<~3800 K. The main problem for the investigation 

of the deep mantle is its inaccessibility by direct observation, since we have no rock samples 

from this region. 

Three major methods are at present used for the understanding of this inaccessible layer: 1) 

computational interpretation of seismic data; 2) study of isotopic data (i.e. Sm/Nd and Hf/W; 

Boyet and Carlson, 2005) in comparison with primitive meteorites; 3) experiments at high 

pressure like this work. Then, understanding of Earth’s deep mantle is straightly linked to the 

improvement of experimental techniques based on high pressure observations, such as in situ 

diamond anvil cell experiments. 

The lower mantle is mainly composed by three phases, for both pyrolite or chondrite model: Al-

bearing (Mg,Fe)SiO3 and CaSiO3 perovskites and (Mg,Fe)O ferropericlase, resulting from 

transformation of majorite garnet and olivine at high pressure (P>25GPa). Obtaining new 

constrains on the properties of these primary constituents of lower mantle is fundamental to our 

understanding of the dynamics of this deep terrestrial region. 

Two more heterogeneities are present in the lowermost mantle: the ultra-low velocity zone 

(ULVZ) and the D" region at the core-mantle boundary. In particular, the presence of ULVZ has 

been interpreted as the result of partial melting (Williams and Garnero, 1998). 
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Scientific issue 

Partial melting has been an important factor during terrestrial accretion and differentiation and it 

still remains extremely important for the mantle evolution, because it induces segregation of 

incompatible elements and could be responsible for the most of the mantle heterogeneities. 

Phase relations have been largely studied using the multi-anvil press (MAP) apparatus up to ~35 

GPa (Ito and Takahashi, 1987; Zhang and Herzberg, 1994; Presnall et al., 1998; Litasov and 

Ohtani, 2002; Ito et al., 2004; Liebske et al., 2005). 

At higher pressures, experimental studies have been performed using the DAC up to ~65 GPa 

(Zerr and Boehler, 1998; Boehler, 2000). However, no more information is available for pressure 

above 65 GPa, except for shock wave experimental data at ~130 GPa (Holland and Ahrens, 1997; 

Luo et al., 2004) or ab initio calculations (Stixrude and Karki, 2005). 

More recently, using the LH-DAC Fiquet et al. (2010) determined melting curve for peridotite 

composition. 

My PhD thesis is focused on the investigation of melting properties of constituents of the lower 

mantle and determination of the partitioning coefficients of iron between liquid and solid in this 

deep region of the planet. Geophysical implications for early to present day Earth mantle are also 

discussed. During my study, in situ experiments have been carried out in LH-DAC using X-ray 

diffraction and X-ray fluorescence techniques for Mg2SiO4 and Cl-chondrite starting materials, in 

the interval of pressure and temperature typical of lower mantle (25<P<135 GPa and more than 

4000 K).
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Plan of the manuscript 

This manuscript is made up of five chapters briefly described below: 

1) The first chapter is an introduction that presents both preliminary works and current 

knowledges on early melting and crystallization of the Earth. It details why it is important 

to study composition and thermal structure of the terrestrial planet, in order to better 

constrain and understand the early Earth’s differentiation. Previous determinations of 

partition coefficients between minerals and liquids, and density inversions are also 

discussed.

2) The second one gives a description of experimental and analytical techniques used during 

my thesis. In particular a detailed description of X-ray diffraction (XRD) and X-ray 

fluorescence (XRF) techniques using laser-heated diamond anvil cell is made, in order to 

explain how I carried out my experiments. Moreover, I extensively describe the different 

methods to calibrate and quantify XRF data. 

3) The chapter three presents the eutectic melting curve determined for the MgO-MgSiO3

system. This eutectic curve, compared with previous works, has been found in agreement 

at lower pressures. At the same time, is reported the melting curve of platinum which 

extends our knowledges on this metal melting up to ~100 GPa. 

4) The fourth chapter presents results of recent study on solidus and liquidus profiles of 

chondritic mantle at very high pressures and temperatures. In this chapter, we present a 

discussion on thermal structure and melting in D" region. We show also our observations 

about formation and extension of magma oceans across Earth history. This chapter 

corresponds to a paper already published (Andrault et al., 2011). 
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5) The chapter five describes a new is-situ method consisting on the use of coupled XRD 

and XRF at the ERSF (Grenoble), to determine iron partitioning coefficients between 

liquid and solid phases. Moreover, it presents major implications on compositional and 

thermal properties of deep mantle, and especially on floatability of silicate liquids at the 

same extreme conditions. Buoyancy of liquids and density crossovers are of primary 

importance for the comprehension of dynamics in the Earth lower mantle. This chapter 

will be submitted for publication in a close future. 
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Chapter 1: introduction 

1.1 The structure of the Earth’s mantle 

The interior structure of the Earth, similar to the outer, is layered. These layers can be defined by 

either their chemical or their rheological properties. Recording of both compressional and shear 

waves (P- and S-waves respectively) generated by earthquakes or large explosions, as well as 

oscillations of the entire planet caused by large earthquakes, make it possible to derive the 

elastic-wave velocities and density as a function of depth. 

Primary waves (P-waves) are pressure waves that are the initial set of waves produced by an 

earthquake. Their speed (VP) is function of �, KS and �: 

                                                               
�

�
3
4

�
�

S

P

K
V                                                          (1.1) 

where �, KS and � are density, bulk modulus and shear modulus, respectively. 

Secondary waves (S-waves) tipically fellow P-waves during an earthquake and deplace the 

ground to the direction of propagation. The speed of S-waves depends on � and �: 

                                                                      
�
�

�SV                                                                (1.2) 

Since propagation speed of wave depends on material properties, discontinuities of earth’s mantle 

are evidenced when phase transitions of minerals phases occur at specific pressures and depths. 

Moreover, S-wave cannot travel through liquids and molten materials when the shear modulus 

(�) is zero or weak (Fig. 1.1).  
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Figure 1.1 Profiles for Earth’s properties: density, �; speed waves P, VP; speed waves S, VS; and 
�V  ( 22 3/4 SP VVV ��� ). Reproduced from PREM model (Dziewonski and Anderson, 1981). 

 

The mantle is the ~2850 km thick shell of rock surrounding the metallic core of the Earth. 

Because it contains the bulk of the planet’s rocky material, the mantle is the ultimate source of 

the silicate magmas that cause volcanic eruptions, even though the mantle itself is predominantly 

crystalline, not molten.  

In particular, the top of the mantle is identified by the depth at which the velocity of 

compressional waves jumps discontinuously from values typically less than 7 km/s to greater 

than 8 km/s (the Mohorovicic discontinuity). The base of the mantle, at a depth of 2890 km, is 

defined by the disappearance of rigidity. Unlike the mantle, the outer core is liquid; also, it is far 

denser than the overlying rock. Indeed, the core-mantle boundary is the most significant 

discontinuity of the Earth in that the contrast in observed properties is even greater than that 

between the atmosphere and crust.  
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Two smaller but still significant discontinuities in seismic-wave velocities define the primary 

subdivision of the mantle, transition zone, and lower mantle (Fig. 1.2). These velocity jumps 

appear to be globally present at about 410- and 650-km depths, although the exact depths can 

vary by a few tens of kilometers from one location to another. 

At a more subtle level, there are at least three additional structures that are pervasive, and are 

considered important: the low-velocity zone (ULV), in the upper mantle, the D” region at the 

base of the mantle (Bullen, 1942; Kellogg et al., 1999; Merkel et al., 2007) and the ultra low 

velocity zone (ULVZ) (Williams and Garnero, 1996; Stutzmann et al., 2000) at the core-mantle 

boundary (CMB). Tomographic inversions of seismic data yield maps of seismic-wave speed 

heterogeneity throughout the mantle, with a resolution greater then 1000 km (Fig. 1.3). These 

regions, which are explained by partial melting (Revenaugh and Sipkin, 1994; Revenaugh and 

Mayer, 1997; Lay et al., 2004; Labrosse et al., 2007; Mosenfelder et al., 2009; Hernlund and 

Jellinek, 2010), have not been detected to be laterally continuous and have a thickness ranging 

from a few kilometers up to about 50 km (e.g. Thorne and Garnero, 2004; Garnero and 

McNamara, 2008). 
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Figure 1.2 Earth’s mantle mineralogy for a pyrolitic composition (Andrault, personal 
communication). 
 

 

 

Briefly, several mechanisms have been proposed for the origin of ULVZs: a) partial melting of 

the mantle, which is the most probable scenario (Williams and Garnero, 1996); b) core-mantle 

reactions (Knittle and Jeanloz, 1991); c) lateral infiltration of core material in the CMB (Kanda 
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and Stevenson, 2006); d) subduction and segregation of late Archean banded-iron formations 

(Dobson and Brodholt, 2005); e) upward compaction of sediments crystallizing from the outer 

core (Buffett et al., 2000); f) highly Fe-enriched forms of PPv (Mao et al., 2006); g) and more 

recently, iron rich (Mg,Fe)O as a robust candidate for a compositionally distinct ULVZ (Wicks et 

al., 2010; Bower et al., 2011).   

 

 

 
Figure 1.3 Tomographically high and low seismic shear velocity variations in Earth’s mantle 
(blue and red, respectively) are shown in an equatorial cross section (right) viewed from the 
south, along with an enlarged panel (left) depicting several seismic findings in the D” region. 
LLSVP is a large low-shear-velocity province found beneath the Pacific Ocean and Africa. 
ULVZ is the ultralow-velocity zone in the CMB and can be swept around in lateral currents. STZ 
is the spin transition zone at ~1500 km depth and represents a change in the spin state of Fe2+ to 
Fe3+. Reproduced from Garnero and McNamara (2008). 
 

FOZO 
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1.2 Early Earth differentiation 

The first 860 My of the Earth’s lifetime are generally referred to as the “Hadean” (4.6-3.8 billion 

years ago), a stage during which the Earth underwent major episodes of differentiation. During 

this time, the metallic core separated from the silicate mantle, and the silicate mantle may have 

developed much of its internal characteristics. 

The final stages of terrestrial planetary accretion involved violent and tremendously energetic 

giant impacts among core-segregated Mercury to Mars sized objects and planetary embryos (Fig. 

1.4) (Canup, 2008; Wetherill, 1990). As a consequence of impact heating, the early Earth was at 

times partially or wholly molten (Fig. 1.5 and 1.6), increasing the likelihood for high pressure and 

high temperature equilibration among core and mantle forming materials (Walter and Trønnes, 

2004). During its accretion period, Earth would have periodically had an extensively molten outer 

layer (a magma ocean) of variable thickness. In summary, the Earth accreted over a period of at 

least 107 years from smaller bodies, most of which had already segregated metallic cores. 

High velocity impacts of planetesimals into the growing Earth have been considered to occur 

during accretion, which results in degassing of volatiles contained in the Earth forming 

planetesimals (as a consequence of rocks melting). The result was a (H2O-CO2)-rich atmosphere 

surrounding the accreting Earth. This steam atmosphere formation from vaporization of rocks 

(Nagahara and Ozawa, 1996), for temperature above 1700-1800 K, prevents rapid cooling of a 

magma ocean (Abe and Matsui, 1988; Zahnle et al., 1988). Such rock vapor atmosphere conducts 

heat easily so that the magma ocean would cool down in a few thousand years (~20 ky), as 

reported by Karki and Stixrude (2010), before the magma ocean surface temperature comes back 

to 1700-1800 K (Sleep et al., 2001). 
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Figure 1.4 The leading current theory, about Moon formation, is that a huge ball of rock about 
the size of Mars struck Earth a glancing blow. The impact melted both planets, and a huge plume 
of molten rock spewed off and began orbiting the single remaining planet. Gradually this splash 
of rock condensed to form the Moon (From Canup, 2004).
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Figure 1.5 Cutaway view of Earth in the Hadean and today (from Ballantine, 2002). During 
accretion, large bodies are efficiently degassed on impact (left), yet noble gas measurements 
suggest that reservoirs within Earth’s mantle remain volatile-rich today (right). 
In this sketch is shown an overview of the Earth’s accretion, differentiation and fractionation 
causes (i.e. giant impacts, steam atmosphere, magma ocean formation, and convection). 
 

Figure 1.6 Schematic illustration of the pattern of heat deposition in a planet struck by a 
projectile of comparable size (between Mars and the young Earth sizes). Adjacent to a melted 
region roughly twice the projectile’s diameter, the shock level, and thus temperature, falls off 
steeply with increasing distance from the impact site. From Melosh (1990) modified. 
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1.2.1 Core formation 

Many meteorites are samples from the asteroid belt between Mars and Jupiter, and are probably a 

remnant of the early days of accretion. The occurrence of distinct populations of iron and 

achondritic silicate meteorites attests to early differentiation in planetesimals that were 

subsequently destroyed during collisions (Taylor and Norman, 1990). Parent/daughter 

fractionation of short and long lived radionuclides during core formation generates isotopic 

signals that constrain the timing of accretion and core formation in terrestrial objects. In 

particular, tungsten isotopes (182Hf-182W, Kleine et al., 2002) confirm early core formation and 

place strict time limits on the timing of segregation of metal from silicate (Yin et al., 2002). 

Thanks to this method, it has been estimated that core formation in the terrestrial planets and the 

formation of the Moon must have occurred during first ~30 million years of the life of the Solar 

System (Kleine et al., 2002).  

Radiogenic isotope tracers are often used to understand the chemical evolution of planetary 

bodies. The 182Hf–182W systematics of meteoritic and planetary samples provide firm constraints 

on the chronology of the accretion and earliest evolution of asteroids and terrestrial planets and 

lead to the following succession and duration of events in the earliest solar system. 

The strong fractionation of lithophile Hf from siderophile W during core formation makes the 

Hf–W system an ideal chronometer for this major differentiation event. However, for larger 

planets such as the terrestrial planets the calculated Hf–W ages are particularly sensitive to the 

occurrence of large impacts, the degree to which impactor cores re-equilibrated with the target 

mantle during large collisions, and changes in the metal-silicate partition coefficients of W due to 

changing fO2 in differentiating planetary bodies. Hafnium–tungsten chronometry also provides 
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constraints on the duration of magma ocean solidification in terrestrial planets (Kleine et al., 

2002). 

In an other system, Sm decays to Nd via two radioactive decay schemes: 146Sm-142Nd and 147Sm-

143Nd. Both Sm and Nd are refractory lithophile (prefer silicates over metal) elements, whose 

relative abundances should not be affected by either volatile loss or core formation. 147Sm-143Nd 

system has been widely used to trace planetary-scale processes such as the evolution of the bulk 

silicate Earth (BSE, defined as all the Earth except for its metallic core) and its chemical 

differentiation into crust and mantle over Earth’s history. The early epic of Earth’s differentiation 

is better investigated with the short-lived chronometer 146Sm-142Nd (Boyet and Carlson, 2005). 

Growth of the Earth from planetary embryos and planetesimals resulted in the substantial 

partitioning of siderophile elements into the metallic core, leaving lithophile elements in the 

silicate mantle. Primitive mantle is estimated from analyses of mantle peridotites (McDonough 

and Sun, 1995; Allegre et al., 1995), bulk Earth from the compositions of undifferentiated 

protoplanetary material, represented by the Cl carbonaceous chondrite meteorites (chondritic 

reference model) and the core is obtained by calculating the difference (Wood et al., 2006).  
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1.3 Differentiation of Earth’s mantle and floatability of silicate melts 

Except for the first 50-100 million years of the Earth’s history (during this period most of the 

mantle was molten), the differentiation of Earth’s silicate mantle has been controlled by solid-

state convection (Abe, 1997; Lee et al., 2010). As the mantle upwells and decompresses across its 

solidus, it partially melts. These low-density melts rise to the surface and form the continental 

and oceanic crust, driving the differentiation of the silicate part of the Earth. Because many trace 

elements, such as U, Th and K (heat-producers) and noble gases, preferentially partition into 

melts, when melt separates and forms crust, it concentrates these incompatible elements into the 

crust or atmosphere in the case of noble gases. Then, nearly half of the Earth’s amount of these 

elements now is concentrated into the crust.    

In contrast, the upper mantle is depleted in incompatible elements. For this reason, it is inferred 

that the other half of these incompatible elements resides in the Earth’s interior. The most 

accredited hypothesis is that this reservoir represents primordial material never processed by 

melting or degassing. Lee et al. (2010) suggest that during the Earth’s first billion years a whole-

mantle convection (van der Hilst et al., 1997) occurred, resulting in the production of dense 

liquids that crystallized and sank into lower mantle. These sunken phases would present 

primordial chemical signatures. 

Alternatively to the primordial layer, Fe-rich layers formed by sinking of Hadean magma ocean 

liquids or by subduction of oceanic crust have been proposed (Christensen and Hofmann, 1994; 

Abe, 1997; Boyet and Carlson, 2005; Stixrude et al., 2009).  

The behavior of liquids tends to change depending on high-pressure conditions and iron content. 

For example, peridotite partial melts at 9-23 GPa (270-660 km) are suggested to be denser than 
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solid peridotite, because such liquids are Fe-rich and more compressible than solids (Herzberg et 

al., 1996; Miller et al., 1991; Stolper et al, 1981; Suzuki et al., 1998). 

In order to determine the floatability of liquid silicate, the knowledge of Fe partitioning 

coefficient between liquid and solid phases is primordial (Lange and Carmichael, 1987; Ohtani 

and Maeda, 2001). 

At pressures lower than 10 GPa (<300 km) and higher than 14 GPa (>410 km), liquids are less 

dense than the Preliminary Reference Earth Model (PREM) (Dziewonski and Anderson, 1981) 

and hence rise (Fig. 1.7). However, in the range of pressure 10-14 GPa, partial melts of peridotite 

are denser than PREM. This means that melts generated within the transition zone, buoyant in 

this region, are denser than PREM in the interval 10-14 GPa. For pressures higher than 22 GPa 

and the upper part of the lower mantle, the melts tend to sink down because its Fe-content 

preferentially partition into ferropericlase (Lee et al., 2010).  

 

Figure 1.7 Density crossovers for silicate melts (Lee et al., 2010). Densities of 10, 14, 16 and 18 
GPa are from Herzberg and Zhang, 1996 and Ohtani and Maeda, 2001; density of 22 GPa is from 
Trønnes and Frost, 2002. 
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Not much additional information is available for the lower mantle, except the proposition by Lee 

et al. (2010) that Fe-rich rock should sink into the lower mantle, eventually forming a Fe-rich 

layer (FOcus ZOne or FOZO) at the core-mantle boundary. 

Recent works on diamond anvil cell (Nomura et al., 2011) and shock wave experiments 

(Mosenfelder et al., 2009) confirm this hypothesis (Fig. 1.8). In Figure 1.8, density for 

ferropericlase (Ricolleau et al., 2009), Ca-Perovskite (Komabayashi et al., 2010) and PREM 

(Dziewonski andAnderson, 1981) are also shown for comparison. In particular, Ricolleau et al. 

(2009), calculate densities of KLB-1 peridotite up to 112 GPa and T=2000 K; Komabayashi et al. 

(2010) calculate calculate densities for Mg0.86O0.14 and T=1600-1900 K; Nomura et al. (2011) 

determine densities for (Mg, Fe)SiO3 liquid and (Mg0.92Fe0.08) SiO3 perovskite up to 140 GPa and 

T=4000 K. 

These studies (Mosenfelder et al., 2009; Nomura et al., 2011) show density crossovers at very 

high pressures typical of deep mantle. As shown in Fig. 1.8, it is evident that melts become 

denser than surroundings minerals at P>76 GPa (Melt (No-11)) and P>130 GPa (grey and red 

Melt (Mo-09)) depending strictly on Fe partitioning. Recent works on first principles molecular 

dynamics (FPMD) simulations (Wan et al., 2007; Stixrude et al., 2009) agree with this suggestion 

and propose a pressure above 120 GPa and T>4000 K to obtain liquid denser than solid, with 

possible enormous implications on deep lower mantle properties. 
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Figure 1.8 Density of silicate melts and phases calculated with Birch-Murnaghan EoS. Density 
of (Mg,Fe)SiO3 liquid (Melt (No-11); Nomura et al., 2011) coexisting with (Mg0.92Fe0.08)SiO3 
perovskite (Mg-Pv (No-11); Nomura et al., 2011) is calculated at 4000 K. Are also shown those 
for: (Mg0.86Fe0.14)O ferropericlase (Fp (Ko-10); Komabayashi et al., 2010); Ca-perovskite (Ca-Pv 
(Ri-09); Ricolleau et al., 2009). And for comparison: MgSiO3 perovskite (Mg-Pv (Mo-09); 
Mosenfelder et al., 2009); liquid densities along MgSiO3 and Mg2SiO4 liquidus (red and grey 
Melt (Mo-09), respectively; Mosenfelder et al., 2009); and PREM (PREM (D&A-81); 
Dziewonski and Anderson, 1981). 



 35

These conclusions have major consequences for the dynamics of mantle upwellings and therefore 

hot spots (Williams and Garnero, 1998) and plume characteristics (Kumagai, 2008). Indeed, it is 

well known that plume or superplume interactions with phase transition generate a thick thermal 

boundary (Brunet and Yuen, 2000). 

In Figure 1.10 (Arndt, 2000) are different model of plumes. In model A, a plume that raises from 

the boundary between lower and upper mantle forms a head after it reaches the lithosphere 

(White and McKenzie, 1989). In model B, a plume grows a large, and cooler, head as it ascends 

from a source at the CMB (Campbell and Griffiths, 1990). In model C, in which a plume stalls at 

the boundary between the lower mantle and the upper mantle and gives rise to smaller 

“plumelets” (Thompson and Tackley, 1998; Brunet and Yuen, 2000).  
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Figure 1.9 Mantle plume world map 

Figure 1.10 Different models for mantle plumes, Arndt (2000). 
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1.4 The composition of the Earth 

Establishing the composition of the silicate Earth (or primitive mantle) is critical to understanding 

of the composition of the Earth. The determination of the chemical composition of the Earth 

depends on three main sources of information: 

1. The seismic profile of the Earth and its interpretation (see paragraph 1.1); 

2. Comparisons between primitive meteorites (i.e. chondrites) and the solar nebula 

composition; 

3. Chemical and petrological models of peridotite-basalt partial melting (i.e. the pyrolite 

model). 

Elements can be classified in lithophiles, siderophiles, chalcophiles and atmophile (see Table 

1.1). The two major divisions of the Earth are the metallic and silicate portions, the core and the 

mantle (including the crust), respectively. 

The silicate portion of the Earth is subdivided into the crust, upper mantle, transition zone and 

lower mantle, with each region separated by a seismic discontinuity and having a distinct seismic 

velocity gradient. Present mantle is ~99% of the Earth silicate portion. The core, or metallic 

Earth, is subdivided into an outer liquid shell and inner solid region that is dominantly composed 

of a mixture of Fe and Ni, which is assumed to be in chondritic proportions (Fe/Ni �17). 
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Table 1.1 Classification of the elements as a function of their preferred host phases and volatile 
attitude. 
 
 
For the upper mantle has been proposed the pyrolite model (Ringwood, 1962). Pyrolite is a 

theoretical rock consisting of about three parts peridotite and one part basalt, which correspond to 

PYRoxenes and OLivine (PYROLite). This rock yields to basaltic magmas by partial melting. 

For a pyrolitic model, the upper mantle is composed of (Mg,Fe)2SiO4 olivine, pyroxenes 

(Ca,Mg,Fe)(Mg,Fe,Al)(Si,Al)2O6 and garnets (Ca,Mg,Fe)3(Mg,Fe,Al)2(Si,Al)3O12 (see Fig. 1.2).  

The transition zone, at 410 km and 13 GPa, is attributed to the phase transition of olivine to its 

high pressure polymorph wadsleyite (e.g. Katsura and Ito, 1989; Morishima et al., 1994). 

Wadsleyite transforms within the transition zone at ~520 km to another (Mg,Fe)2SiO4 polymorph 

ringwoodite (e.g. Katsura and Ito, 1989). 

Regarding to the lower mantle, the composition is assumed to be similar to that of the upper 

mantle. For pressures higher than 17-18 GPa, CaSiO3 perovskite forms from majoritic garnet 

(Canil, 1994). These phases transform to a mixture of MgSiO3 perovskite (76%), (Mg,Fe)O 

magnesiowüstite (17%) and CaSiO3 perovskite (7%) in the lower mantle (Wood, 2000). In 

Lithophile elements (rock/oxygen -loving):

Refractory Be, Al, Ca, Sc, Ti, V, Sr, Y, Zr, Nb, Ba, REE, Hf, Ta, Th, U
Transitional Mg, Si, Cr
Moderately volatile Li, B, Na, K, Mn, Rb, Cs
Highly volatile F, Cl, Br, I, Zn

Siderophile elements (iron -loving):

Refractory Mo, Ru, Rh, W, Re, Os, Ir, Pt
Transitional Fe, Co, Ni, Pd
Moderately volatile P, Cu, Ga, Ge, As, Ag, Sb, Au
Highly volatile Tl, Bi

Chalcophile elements (sulphur -loving):

Highly volatile S, Se, Cd, In, Sn, Te, Hg, Pb

Atmophile elements (gas -loving):

Highly volatile H, He, C, N, O, Ne, Ar, Kr, Xe
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particular, the transition of ringwoodite to magnesian perovskite is considered to cause the 

seismic discontinuity at 670 km (Ito and Takahashi, 1989). 

A second class of models can be referred to as the CI chondrite type, where the Earth is assumed 

to have a bulk “major-element” composition equal to that of CI chondrites (McDonough and Sun, 

1995). CI carbonaceous chondrites, the most primitive of the chondritic meteorites, possess the 

highest abundances of the moderately-volatile and volatile elements relative to the refractory 

elements, and have a composition that closely matches that of the solar photosphere. A CI 

chondritic model is a good starting point from a historical perspective (see Table 4.1 for 

composition in this study). Earth mantle, compared with CI carbonaceous chondrites, is depleted 

in Mg and Si relative to the refractory lithophile elements.  

In the table 1.2 are shown different compositions for pyrolitic and chondritic models. 

 

Table 1.2 Different compositions (Wt%) for the mantle. 1) McDonough and Sun (1995); 2) 
Jagoutz et al. (1979); 3) Green et al. (1979); 4) Allègre et al. (2001); 5) Andrault et al. (2011); 6) 
Taylor and McLennan (1985).

In this study (chapter 4-5) we chose a chondritic material in order to model the primitive mantle 

after core segregation. 

Pyrolitic models Chondritic model CI
1 2 3 4 5 6

SiO2 45.00 45.16 45.00 48.34 49.60 49.90
TiO2 0.201 0.217 0.17 0.15 0.00 0.16
Al2O3 4.45 3.97 4.40 4.30 3.40 3.65
Cr2O3 0.384 0.46 0.45 0.63 0.00 0.44
MnO 0.135 0.13 0.11 0.16 0.00 0.13
FeO 8.05 7.82 7.60 3.44 8.48 8.00
NiO 0.25 0.27 0.26 0.11 0.00 0.25
MgO 37.80 38.30 38.80 40.00 35.10 35.15
CaO 3.55 3.50 3.40 2.49 3.30 2.90
Na2O 0.36 0.33 0.40 0.38 0.00 0.34
K2O 0.029 0.031 0.003 0.02 0.00 0.022
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1.5 Magma ocean hypothesis 

Current understanding of the last stages of planetary accretion suggests that mass and energy 

accumulation are dominated by a few large impacts (i.e. the giant collision of a Mars-sized 

impactor with proto-Earth, which caused the formation of the Moon). An important thermal 

consequence of such impacts is melting and the formation of a large melt pond, which upon 

isostatic readjustment would spread like a blanket over the surface, forming a deep magma ocean 

(Hayashi et al., 1979; Melosh, 1990; Tonks and Melosh, 1993; Canup, 2008). The extent and 

depth of the magma ocean (see chapter 4) depend on many factors including the impactor/target 

mass ratio, impact velocity and initial temperatures of the objects. 

Experimental melting studies show that crystallization in the deep mantle (>~700 km) would be 

dominated by Mg-Perovskite, with minor amounts of Ca-Perovskite and ferropericlase, whereas 

crystallization at shallower levels would be dominated by olivine and its high-pressure 

polymorphs, majorite garnet, and lesser amounts of pyroxenes (Ito et al., 2004; Trønnes and 

Frost, 2002; Zhang and Herzberg, 1994; Andrault et al., 2011). 

Magma ocean solidification process is sensitive to many factors, including surface temperature, 

cooling rate, crystal nucleation and growth rates and melt crystal-mush viscosities (Ito et al., 

2004; Solamotov and Stevenson, 1993). 

Anyway, the conventional view is that differentiation of a magma ocean occurs by fractionation 

of perovskite at the bottom of the ocean (Miller et al., 1991; Liebske et al., 2005; Solomatov, 

2000). Opposed to this scenario, Mosenfelder et al. (2009) assert that cooling of a deep magma 

ocean could result in crystallization from the top down (or near the top, at pressures 

corresponding to the modern-day transition zone). 
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1.6 The magma ocean models 

1.6.1 Tonks and Melosh, 1990 

In this work the term magma ocean refers to a global magma layer of approximately uniform 

depth formed by giant impacts on the Earth with thermal effects on the terrestrial planet, 

including vaporization and melting. Because impacts between the proto-Earth and bodies with 

masses larger than Mercury may occur several times during late accretion (Wetherill, 1990), 

multiple magma ocean formation episodes may have taken place. 

In this model, the melt generated from the impact can form a magma ocean in one of two ways.  

a. The shock wave produced by the giant impact generates a large, intact volume of melt 

(Fig. 1.12a). Some of this melt is excavated in the cratering flow; the remainder stays 

behind. They refer to this as the “retained melt”. If sufficiently thick, the excavated melt 

could spread out to approximately uniform depth on the surface after emplacement. 

Additionally, the resulting crater and the retained melt body are not isostatically stable. 

b. Consequently, the retained melt may be extruded onto the surface by isostatic adjustment 

of the planet (Fig. 1.12b). A magma ocean formed by this process occurs only if the 

isostatic adjustment time scale of the planet is short compared to the magma cooling time. 



 42

 

Figure 1.12 Mechanism of a magma ocean from Tonks and Melosh (1993). 
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1.6.2 Abe, 1997 

In this study, Abe asserts that there are several types of magma oceans.  

a. Firstly, he distinguishes between “sustained” and “transient” magma oceans. If the 

growing Earth has a thick blanketing atmosphere, the surface temperature of the Earth is 

kept above the melting temperature and a magma ocean is sustained during accretion of 

the Earth. On the contrary, a deep magma ocean formed by a single impact would cool 

and solidify within a relatively short period, if there is no atmospheric blanketing effect. 

b. Secondly, he distinguishes between “deep” and “shallow” magma oceans. The chemical 

differentiation of a deep magma ocean may be very different from that of a shallow one, 

because the former may be affected by fractionation of high pressure minerals.  

c. Thirdly he distinguishes “soft” and “hard” magma oceans. The soft magma ocean is 

characterized by high melt fraction and low viscosity, whereas the hard magma ocean is 

characterized by low melt fraction and solid-like viscosity. In the soft magma ocean, 

vigorous convection disturbs melt-solid separation and prevents chemical fractionation 

(Abe, 1993; Miller et al., 1991; Solomatov and Stevenson, 1993; Tonks and Melosh, 

1990). In the hard magma ocean, on the contrary, convective mixing is less vigorous and 

chemical fractionation may proceed. 

Abe concludes that there are three cases of magma ocean evolution depending on the cause of 

magma ocean. 

1. A giant impact would produce a “transient deep” magma ocean and differentiation at 

lower mantle pressure seems unlikely. However, if a thick transient atmosphere is formed, 

differentiation likely proceeds. On the contrary, differentiation at the upper mantle 

pressure proceeds irrespective of lower mantle differentiation;  
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2. The blanketing effect of a solar-type proto-atmosphere likely produces “sustained deep” 

magma ocean and differentiation proceeds at the lower mantle pressure. Then, 

composition of the early mantle is affected by fractionation of high pressure minerals such 

as Mg- and Ca-perovskite; 

3. The blanketing effect of impact-induced steam atmosphere likely produces “sustained 

shallow” magma ocean and differentiation proceeds mainly at the upper mantle pressure. 

Then, the composition of the early mantle is not affected by fractionation of high pressure 

minerals. Even in this case, however, lower mantle composition is affected by chemical 

differentiation in the upper mantle, because differentiated materials are buried in deep 

mantle owing to growth of the Earth. 

For all three cases, differentiation at the upper mantle pressure is indicated. It means that all 

models of Earth formation suggest a differentiated early upper mantle. 
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1.6.3 Solomatov, 2000 

A giant impact melts a significant part of one hemisphere of the Earth. Isostatic adjustment 

quickly redistributes the mass to create a more stable spherically symmetric configuration. In the 

beginning of crystallization of the magma ocean, the temperatures in the deepest parts of the 

Earth were probably near the solidus and depended on the poorly constrained pre-impact thermal 

state of the mantle. This implies that some portion of the lower mantle could retain substantial 

amounts of primordial volatiles. 

In this model, crystallization is assumed to start from the bottom and in less than 1000 yr 

propagates through the lower mantle. The product of this period of crystallization is essentially 

undifferentiated mantle with the remaining shallow partially molten layer. Small amounts of 

crystals might settle down and contribute to the formation of a Fe-rich D” layer. 

 The shallow magma ocean is the only part of the mantle that undergoes any substantial 

differentiation.  

In Figure 1.13 is illustrated a possible thermal structure of the growing proto-Earth: a shallow 

magma ocean where crystal settling/flotation and segregation of liquid Fe delivered by impacts 

take place; a solid lower mantle with liquid Fe diapirs and a liquid Fe core. The bottom of the 

shallow magma ocean is located at P= 28 GPa (Li and Agee, 1996; Righter et al., 1997; Righter 

and Drake, 1997). 
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Figure 1.13 A possible thermal structure of the growing proto-Earth, from Solomatov (2000). 
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1.6.4 Liebske et al., 2005 

The existence of Earth’s deep magma ocean during the Hadean (4.5-3.8 Ga before present) may 

have led to significant chemical differentiation and possibly stratification of the mantle by crystal 

fractionation (Fig. 1.14). Liebske envisaged three possible scenarios for the evolution of the 

Earth’s mantle. 

1. Crystal fractionation at lower mantle pressure took place and resulted in the formation of 

a chemically distinct reservoir in the lower mantle. This reservoir was not remixed with 

the overlying mantle by subsequent solid-state state convection. 

2. Crystal fractionation took place but the crystal cumulate and the overlying mantle were 

extensively or completely re-homogenized by whole-mantle convection. 

3. Magma ocean crystallization occurred without any significant amount of fractionation and 

subsequent initial mantle differentiation. 
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Figure 1.14 Possible processes during magma ocean crystallization. Reproduced from Liebske 

(2005). 
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1.6.5 Wood et al., 2006 

Numerical simulations (Abe, 1997; Solomatov, 2000) indicate that a magma ocean extending to 

the core-mantle boundary would be short-lived and that the lower mantle would crystallize in a 

few thousand years. A shallower, partially molten layer would crystallize much more slowly, 

however, and could remain as a mixture of crystals and melt for 100 Myr. Considering these 

results and the energetics of impact and core segregation leads to a dynamic view of the growing 

Earth in which the outer molten part deepened and shallowed many times after episodic impact. 

The pressure and temperatures recorded by core-mantle partitioning are therefore values averaged 

over numerous cycles of metal accumulation and segregation such as that depicted in Fig. 1.15.  

Impacting planetesimals disaggregate and their metallic cores break up into small droplets in the 

liquid silicate owing to Rayleigh-Taylor instabilities. These droplets descend slowly, re-

equilibrating with the silicate until they reach a region of high viscosity (solid), where they pond 

in a layer. The growing dense metal layer eventually becomes unstable and breaks into large 

blobs (diapirs), which descend rapidly to the core without further interaction with the silicate. 
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Figure 1.15 Woods’s deep magma ocean model. Reproduced from Wood et al. (2006).  
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1.6.6 Labrosse et al., 2007 

The existence of patches of dense partial melt at the base of the Earth’s mantle (Williams and 

Garnero, 1996), together with estimates of melting temperature for deep mantle phases (Zerr et 

al., 1998; Andrault et al., 2011), indicates the presence of a deep melting occurrence in the past. 

In this model is shown that a stable layer of dense melt formed at the base of the mantle early in 

the Earth’s history would have undergone slow fractional crystallization, and would be an ideal 

candidate for an unsampled geochemical reservoir hosting a variety of incompatible species for 

an initial basal magma ocean thickness of about 1.000 km (Labrosse et al., 2007). 

This model is schematically illustrated as in Figure 1.16: 

a. Iron-rich liquid descends as a rain of droplets in the shallower magma ocean, accumulates 

on top of the solid mantle and undergoes diapiric instability and rapid transport to the 

core; 

b. The molten layers formed at the top and the bottom of the mantle crystallize, and deposit 

material onto a solid mantle layer that grows upward at the top and downward at the 

bottom at two vastly different rates; 

c. After the surface magma ocean has fully crystallized, the slowly cooling basal melt layer 

fractionally crystallizes increasingly Fe–enriched solids that are deposited upwards onto 

the bottom of the solid mantle; 

d. After a substantial part of the basal magma ocean has frozen, the solid that forms may 

itself contain enough dense components to become stable against complete entrainment in 

the solid mantle, hence forming piles under upwelling currents.  

The remaining thin mushy layer of melt is thicker where mantle flow converges along the 

core-mantle boundary, leading to seismically detectable ultralow-velocity zones. Solid-state 
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convection in the mantle controls the rate of crystallization of the bottom magma ocean and 

the possible entrainment of FeO-enriched dense material accumulating at the base of the solid 

mantle (dark grey in c and d of Fig. 1.16). 

 

 

Figure 1.16 Schematic illustration of the formation and evolution of an Earth’s magma ocean at 
the base of the mantle. Reproduced from Labrosse et al. (2007). Yellow zone is the ocean 
magma; grey zone is the mantle; orange zone is the core. 
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1.6.7 Elkins-Tanton, 2008 

In this model Elkins-Tanton affirms that magma ocean solidification and subsequent planetary 

evolution proceeds through three major phases (Fig. 1.17).  

a. First, the magma ocean solidifies, partitioning volatiles between solid cumulates, evolving 

liquids, and a growing primordial atmosphere. These cumulates are gravitationally 

unstable to overturn (Elkins-Tanton et al., 2003). 

b. In step two, the unstable solidified mantle cumulates overturn to a stable configuration. 

The overturn process creates a mantle that is gravitationally stable and therefore resistant 

to the onset of thermal convection. Hot cumulates that formed deep in the magma ocean 

rise to shallower depths during overturn and may melt adiabatically, producing the earliest 

basaltic crust.  

c. In step three, the planet conducts heat through its solidified mantle and radiates it to space 

through the primordial atmosphere formed in step one. 
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Figure 1.17 Mineral phases assumed to solidify from a 2000-km deep terrestrial magma ocean 
(Elkins-Tanton, 2008). 
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1.6.8 Nomura et al., 2011 

During Earth’s history any melts that form below ~1800 km depth sink and accumulate at the 

base of the mantle, while any crystals that form owing to cooling of this dense magma will rise 

upward into the solid mantle (Fig. 1.18a). Perovskite crystals forming in the basal magma ocean 

(BMO) would have been relatively depleted in iron and floated to the top of magmas below 1800 

km depth. Then, Fe-poor perovskite crystallization leaves a residual liquid enriched in FeO and 

depleted in SiO2 and crystals forming from this evolved liquid may become dense enough to form 

thermo-chemical piles at the base of the solid mantle (Fig. 1.18b). The finals stage of 

crystallization (Fig. 1.18c) involves a composition close to wüstite, leaving behind a very dense 

thin layer that is consistent with the seismic properties inferred inside ULVZs (Wicks et al., 

2010). Such material would be maintained at or near the solidus over geological scale time scales 

because the residual liquid will sequester incompatible species that in turn depress the melting 

temperature. 

 



 56

 

Figure 1.18 Evolution and crystallization of dense melts in the deep mantle (Reproduced from 
Nomura et al., 2011). White arrows indicate schematic flow patterns in the convecting solid 
mantle. White arrows indicate schematic flow patterns in the convecting solid mantle. 
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1.6.9 Summary of different magma ocean models  

There three main scenarios for the evolution of the Earth’s mantle (Liebske et al., 2005): 

1. Crystal fractionation at lower mantle conditions and subsequent formation of a chemically 

distinct reservoir in this region (Abe, 1997; Labrosse et al., 2007). This reservoir was not 

remixed by solid-state convection; 

2. Crystal fractionation with partial or complete re-homogenization of crystal cumulates by 

solid-state convection (Abe, 1997). Convection and chemical fractionation are function of 

melt fraction amount and viscosity, i. e. for high melt fraction and low viscosity 

conditions we have a vigorous convection which prevents chemical fractionation (Abe, 

1997; Miller et al., 1991; Solomatov and Stevenson, 1993; Tonks and Melosh, 1990).   

3. Crystal formation without fractionation and subsequent mantle differentiation (Abe, 

1997).   

In this paragraph are summarized (Table 1.3) main theories of magma ocean formation from our 

(Andrault et al., 2011) and previous works.  
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Authors Magma Oceans Properties 

Tonks and Melosh, 1990 Large volume of melt Melt flows into surface 
 

Abe, 1997 SUSTAINED 
 
TRANSIENT 
DEEP 
SHALLOW 
SOFT 
 
 
HARD 
 
 
TRANSIENT DEEP 
 
 
SUSTAINED DEEP 
 
 
 
SUSTAINED SHALLOW 

Because of a blanketing 
atmosphere 
No blanketing effect 
 
 
High melt fraction and low 
viscosity>>vigorous 
convection>>no fractionation 
Low melt fraction and high 
viscosity>>less vigorous 
convection 
No differentiation at lower 
mantle pressure (LMP), no 
transient atmosphere 
Differentiation at LMP and 
blanketing effect>> 
fractionation  of Ca- and Mg-
Pv 
No differentiation at lower 
mantle pressure (LMP), steam 
atmosphere 
 

Solomatov, 2000 Isostatic adjustement and 
stable spherically 
configuration 

Crystallization from the 
bottom (at 28 GPa). 
Differentiation only in a 
shallow magma ocean 
 

Liebske, 2000 Crystallization at LMP and 
distinct reservoir in the LM 
Crystallization at LMP 
Crystallization 

No remixing by convention 
 
Remixing by convection 
No fractionation, no 
differentiation 
 

Wood et al., 2006 Crystallization P of equilibrium (Peq) = 40 
GPa and 3150 K 
Metallic cores break up into 
droplets in the liquid silicate 
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Labrosse et al., 2007 Basal magma ocean (~1000 
km thick) 
Fe droplets in shallow magma 
ocean 
Crystallization at the top and 
the bottom  
Basal magma ocean frozen 

Fractionated crystallization, 
solid rich in Fe 
Diapirs to the core 
 
Different rates of 
crystallization 
Solid formed 
 

Elkins-Tanton, 2008 Magma ocean solidifies Unstable mantle cumulates 
become stable 

Nomura et al., 2011 Basal magma ocean 
 
Cumulates rich in Fe and 
depleted in Si 

Pv depleted in Fe and float to 
the top (below 1800 km) 

This study (Andrault et al., 
2011) 

Transient magma ocean 
 
Fully molten chondritic 
mantle at Peq 
If T>1700-1800 K, no 
blanketing effect 
Basal magma ocean for 

No blanketing effect, Peq= 40 
GPa and 3150 K 
Surface T=2450 K, transient 
magma ocean 
Quick cooling 
 

1) composition enriched 
in incompatible 
elements 

2) middle-depth solid 
mantle is mainly 
composed of Al, Mg-
Pv 

Table 1.3 Summary of magma ocean models from previous works and this study.  
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1.7 Temperature profiles of the lower mantle 

We can obtain more direct information on temperature in the mantle by associating phase 

transformations with seismic discontinuities, if the phase boundaries of selected transformations 

are reliably defined (Ito and Katsura, 1989; Hernlund et al., 2005; Ono and Oganov, 2005; 

Katsura et al., 2010). In order to obtain a better description of the Earth’s composition and 

thermal structure, seismic data must be compared with mineralogical data and thermodynamic 

models (Wang, 1972; Brown and Shankland, 1981; Anderson, 1982; Ito and Kastura, 1989; 

Stacey, 1992). Moreover, because of uncertainties and limitations in previously used models, 

there are considerable discrepancies between the various proposed descriptions of the Earth’s 

thermal and compositional structure (da Silva, 2000). 

The agreement between body wave and normal data suggest that the lower mantle is likely to be 

nearly adiabatic (Masters, 1979; Dziewonski and Anderson, 1981; Bunge et al., 2001) and 

modeled geotherms have been found in good agreement with the adiabat (Shankland and Brown, 

1985). Therefore, an adiabatic geotherm is used as a reference mantle temperature profile 

(Dziewonski and Anderson, 1981; Matas et al., 2007), which assumes that the convective mantle 

is homogeneous and adiabatic. Then, geotherms are derived by comparison with the PREM 

model (da Silva, 2000). 

A constraint of the Earth density profile is given by the observation of the Bullen parameter � 

(Bullen, 1963),  
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where the bulk sound velocity �V  � �222 3/4 Sp VVV ���  is deduced from a radial body-wave 

model, and � � � �drdPdrd ///�  reflects the actual density-pressure relationship along a radial 

profile of the Earth.  The Bullen parameter is observed to be 1±0.02. 

In a homogeneous mantle, the departure of � � � �drdPdrd ///�  from the adiabatic value 

� � 2/ ���� �� VP S  can only be due to the fact that the mantle geotherm � �EdrdT /  is not adiabatic 

and one has  
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where �, Cp and g are the thermal expansion, the specific heat, and the gravitational acceleration, 

respectively. The Bullen parameter would, therefore, be �H where 
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and �H=1 in a homogeneous mantle implies a so-called adiabatic geotherm defined by  

   0���
	



�
�



pE C
gT

dr
dT � (Turcotte and Schubert, 1982) (1.6)             

While temperatures are relatively well constrained in the shallow mantle due to anchoring by 

phase transitions at 410 km and 670 km depth in (Mg,Fe)2SiO4 (Ito and Katsura, 1989), the 

profiles of temperatures are determined using the adiabatic geotherm (eq. 1.5) to the lower mantle 

conditions (Fig. 1.19). Differences in adiabatic geotherms are up to ~250 K at the bottom of the 

mantle yielding in general 2500 K±250 at 2700 km depth (Brown and Shankland, 1981; Bunge et 

al., 2001; Stacey and Davis, 2004).Whereas models using inversion of seismic radial profiles 
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indicate hotter temperatures of 2800 to 3400 K at 2700 km (Matas et al., 2007), dependent on the 

Mg/Si ratio. 

The adiabatic temperature gradient gradually decreases with increasing depth without a phase 

transition, and abruptly changes in association with phase transitions. Then, the temperature at 

the 410 km discontinuity has been re-evaluated by comparing the depth of the discontinuity with 

the olivine-wadsleyte transition pressure (Katsura et al., 2010). The temperature at a depth of 

2700 km is found to be 2730±50 K (Katsura et al., 2010). 

Earth’s temperature profile in the D"-region has been mostly constrained in light of the new post-

perovskite phase of MgSiO3 (Murakami et al., 2004; Ono and Oganov, 2005). It was proposed 

that the observation of pairs of positive and negative S-wave velocity discontinuities in the D"-

region are due to double-crossing of the perovskite to post-perovskite transition (Hernlund et al., 

2005). 

Regarding the outer core temperature, it is generally estimated extrapolating the adiabatic 

temperature profile from the inner-core boundary (ICB) through the outer core. However, the 

range of ICB temperatures is very large.  
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Figure 1.19 Temperatures profiles estimated for the lower mantle. Are reported estimates of the 
mantle geotherm (Brown and Shankland, 1981; Bunge et al., 2001; Hernlund et al., 2005; Ono 
and Oganov, 2005; Matas et al., 2007; Katsura et al., 2010) and temperature anchor points (Ito 
and Katsura, 1989). Phase transition Pv/PPv (Black line) is from Ono and Oganov (2004). 
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1.8 Liquidus and solidus phase relations in the lower mantle 

In order to understand the details of the early melting and crystallization history of the Earth, 

melting phase relations of the mantle at very high pressures must be known. 

The system MgO-MgSiO3 is the most fundamental starting point for development of an 

understanding of these phase relations (Presnall et al., 1998; Liebske et al., 2005). In Figure 1.20 

is reported the eutectic melting curve for this system at pressures between 10 and 22 GPa, 

obtained using a multi-anvil press (Presnall et al., 1998 (P-98 in Fig. 1.20)). Melting of 

(Mg,Fe)SiO4 olivine was determined using shock-wave experiments (Ahrens and Holland, 1997; 

Luo et al., 2004 (L-04 in Fig. 1.20)) and was reported at 4300 K and 130 GPa. Regarding to the 

classic pyrolite model for the lower mantle, many information are available for pressures up to 

~60 GPa (Litasov and Ohtani, 2002; Trønnes and Frost, 2002; Zerr et al., 1998 (LO-02, TF-02, 

and Z-98 respectively in Fig. 1.20)). 

Recently, have been determined liquidus and solidus melting curves for peridotite compositions 

between 36 and 140 GPa, using laser-heated diamond anvil cell (LH-DAC) (Fiquet et al., 2010 

(F-10l and F-10s in Fig. 1.20)). In particular, it has been shown that for peridotite compositions, 

olivine is the liquidus phase up to 13-16 GPa (Takahashi and Scarfe, 1985; Walter, 1998), but is 

replaced at higher pressures by majorite (Mj) garnet (Ito and Takahashi, 1987; Herzberg et al., 

1990; Zhang and Herzberg, 1994). At 22-23 GPa, the liquidus phase is ferropericlase (Fp) (Zhang 

and Herzberg, 1994; Trønnes and Frost, 2002; Fiquet et al., 2010). At higher pressures, P>30 

GPa, ferropericlase is replaced by MgSiO3 perovskite (Mg-Pv) as liquidus phase (Ito et al., 2004; 

Fiquet et al., 2010). 

The melting curve of end-member phases is relatively well determined using the LH-DAC 

technique (Boehler, 2000 (B-00 in Fig. 1.20)) or shock-wave experiments (Luo et al., 2004 (L-04 
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in Fig. 1.20)). However, for phase relations of chondritic compositions, at pressure higher than 

~30 GPa, not much information is available. Anyway, it is well known that olivine is the liquidus 

phase up to ~10-15 GPa (Herzberg et al., 1990; Ohtani et al., 1986), majorite replaces it up to 

approximately 24-25 GPa (Ohtani et al., 1986) and Mg-perovskite is observed to replace majorite 

at 25 GPa (Ito et al., 2004). 

 

 

Figure 1.20 Melting points and curves from previous works on the melting of lower mantle 
materials. Where: MgO-MgSiO3 system: P-98 is Presnall et al., 1998; Olivine: L-04 is Luo et al., 
2004; Peridotite: F-10l and F-10s is Fiquet et al., 2010 (liquidus and solidus); Pyrolite: LO-02 is 
Litasov and Ohtani, 2002; TF-02 is Trønnes and Frost, 2002; Z-98 is Zerr et al., 1998; Simple 
oxides: B-00 is Boehler, 2000.   
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1.9 Partition coefficient 

Simple concentration ratios between two phases are termed partition coefficients (Denbigh, 

1966), and will be given the symbol D (Nernst, 1891). Phases can be minerals, liquids or gases.  

Here we present the partition coefficients following the terminology of Beattie et al. (1993), 

which is an extension of that suggested by Takahashi and Irvine (1981) and Yardley (1989). 

According to the terminology of Beattie et al. (1993), partition coefficient is written as: 

 ������
MOMOMM CCDD /// ��   (1.7) 

Where, subscripts refer to the element M of interest and superscripts refer to the phases � and � 

concerned. CMO is concentration (C) for a component MO. Here we will use this terminology for 

Ca and Fe partitioning between minerals and melts as: MeltMin
CaD /  and MeltMin

FeD / , respectively (Min 

= mineral, i.e. Garnet, Ca- and Mg- perovskites, Magnesiowüstite, Olivine) (see also the chapter 

5). 

Determination of DCa and DFe is of primary importance for the understanding of the lower mantle 

properties up to the core mantle boundary and for modeling differentiation in the early Earth 

(Agee, 1998; Mosenfelder et al., 2009). Indeed, it is well known that density crossovers and 

floatability of liquids in the deep mantle depend on many factors including Fe partitioning 

between solid and liquid (Agee, 1998). 

Calcium and iron partitioning coefficients between solid and liquid phases have been at the center 

of a number of studies (Fig. 1.21 and 1.22-1.23, respectively). These values concern pressures up 

to 35 GPa, using multi-anvil press (MAP) apparatus (Agee, 1990; Corgne et al., 2002, 2005; 

Drake et al., 1991, 1992, 1993; Gasparik and Drake, 1995; Hirose et al., 2004; Ito et al., 2004; 

Kato et al., 1988, 1996; Liebske et al., 2005; Longhi, 1995; McFarlane et al., 1990, 1991, 1992, 

1994; Ohtani et al., 1989, 1991, 1995, 1998; Taura, 2001; Trønnes and Frost, 2002; Walter et al., 
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2004; Zhang and Herzberg, 1994) and up to ~90 GPa, using the diamond anvil cell (DAC) 

(Nomura et al., 2011) and various mantle compositions such as pyrolite, peridotite and chondrite. 

Ca is strongly compatible with Ca-Pv and incompatible with liquidus phases up to 35 GPa, for 

higher pressures no information is available (Fig. 1.21). 

 

Figure 1.21 Several previous works for DCa between phases and silicate melts for various mantle 
materials and pressures up to 35 GPa. 
 

DFe has been reported to vary from ~0.3 to ~0.7 when we consider partitioning between liquidus 

(solid phases) and melts, and pressures up to 35 GPa (Fig. 1.22). At higher pressures, exists a 

recent study (Nomura et al., 2011) that reports a decrease of MeltPv
FeD / from ~0.4 to ~0.06, for 

pressures between 35 GPa and 85 GPa (Fig. 1.23). These results imply an increasing 

incompatibility of iron at increasing pressure. Data reported in chapter 4 confirm the 

incompatible character of Ca and Fe elements, in the extended range of pressure up to ~113 GPa. 

D
C
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Figure 1.22 Several previous works for DFe between phases and silicate melts for various mantle 
materials and pressures up to 35 GPa. 
 

Figure 1.23 Comparison of previous works for DFe between Mg-perovskite phase and silicate 
melt for different mantle materials from MAP (Ito et al., 2004) and DAC (Nomura et al., 2011) 
experiments. 

D
Fe

 

D
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Chapter 2: experimental and analytical methods 

2.1 Starting materials and sample assembly 

2.1.1 Chondritic composition 

The starting material concerning the studies on melting curves and iron partitioning coefficients 

(chapter 4 and 5, respectively), consisted of a synthetic glass with a model composition for a C1-

chondritic mantle (McDonough and Sun, 1995; Wasson and Kallemeyn, 1988). The bulk 

composition was prepared from oxide and carbonate mixes through repeated cycles of grinding 

and fusion at around 1800 K and rapidly cooled to obtain a glass of homogeneous composition 

(Bouhifd and Jephcoat, 2003). In order to make sure that we have a glass, we did Raman 

spectroscopy. Therefore, we used microprobe in order to choose glasses with the same color. 

Our sample consisted of a synthetic CMASF glass with oxide contents in chondritic proportions 

(except for iron) so as to model the primitive mantle after core segregation (Wasson and 

Kallemeyn, 1988) (Table 2.1). We did not include minor and trace elements, which most 

abundant are Na (4900 ppm) and K (560 ppm).  
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                                     Chondritic mantle (this study)            Pyrolite  

Oxide 

SiO2

Al2O3

FeO 

CaO 

MgO 

(Wt%) 

49.6 

3.4 

8.48 

3.3 

35.1

(Mole %) 

43.5 

1.8 

6.2 

2.6 

45.9

(Wt%) 

45.1 

3.3 

8.0 

3.1 

38.1

Table 2.1 Composition of starting material used in this study, as measured by electron 

microprobe analyses. At lower mantle P-T conditions, the Ca-Pv, Mg-Pv, and Fp phase 

proportions are expected to be 4.5, 75.7, and 19.8 mol%, respectively. This composition is 

representative of a chondritic-type mantle (Wassen and Kallemeyn, 1988), and it is also quite 

close to pyrolite (Ringwood, 1975). 

 

2.1.2 Forsterite 

The forsterite specimen used for calorimetric measurements, of industrial origin, was given by O. 

Jaoul (Université Paris XI). Its composition, as determined from electron-microprobe analyses 

with the automated CAMEBAX microprobe of the Université Paris VI is 0.11 (2) wt % A1203, 

42.61 (3) wt% SiO2, 57.36 (4) wt% MgO and 0.05 (2) wt % CaO, total of 100.15 (6). This 

compares favorably with the nominal composition, namely 42.70 and 57.30 wt% SiO2 and MgO, 

respectively. The lattice parameters = 4.760( 1), b = 10.201(2 ) and c = 5.985(1 ) Å were derived 

from an X-ray powder diffraction pattern in which the reflections of only forsterite were apparent 

(Gillet et al., 1991). 

The Raman spectra were recorded with the multichannel microprobe (Microdil 28, from Dilor) of 

the MLRO service of the University of Nantes. The light was collected in the backscattering 
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direction through a Leitz UTK 40 or UTK 50 objective (focal distance of 8 or 18 mm; numerical 

aperture of 0.63 or 0.32, respectively). The spectra were obtained from about 10 accumulations 

lasting each 20 to 40 s, and peak positions were identified within ±1cm-1.  

 

2.1.3 Sample assembly 

 

Our samples consisted of 5 to 10 μm thick pellets of:  

1. Mg2SiO4-forsterite mixed with a YAG-laser absorber embedded between two MgO 

pellets: we used Pt as pressure standard; 

2. CMASF glass embedded between two NaCl or KCl pellets as thermal insulators: for this 

chondrite-sample we did not mix it with any YAG-laser absorber or pressure standard. 

 

We used rhenium (forsterite) or tungsten (Cl-chondrite) gaskets pre-indented to a thickness of 30-

45 �m and laser-drilled to diameters of 50-80 �m (Fig. 2.1). 
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Figure 2.1 Sample assemblies in this study.   
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2.2 ESRF and ID27 

2.2.1 The European Synchrotron Radiation Facility (ESRF) 

ESRF was the first third generation synchrotron source, starting its user operation in 1995. 

Located in Grenoble, France, it is one of the three high energy 3rd generation SR sources 

operational worldwide (Fig. 2.2).  

 

 

Figure 2.2 The European Synchrotron Radiation Facility (ESRF). 

 

The source is optimized to produce hard X-rays in the 1 to 100 KeV range. The ID27 beamline 

uses an insertion device (ID) as a source point which generates high fluxes and brilliance in the 

20 to 90 KeV range of photon energy. 
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Figure 2.3 ESRF circular track off which beamlines branch and an internal image of the storage 
ring. 
 

Figure 2.2 and 2.3 show different parts of ESRF. Electrons are produced with an electron canon 

and accelerated with a linear accelerator (LINAC). The booster accelerates particles up to a 

relativistic speed and energy of 6 GeV. Once accelerated, electrons are injected into the ring 

storage with a circumference of 844 m. 

The ESRF consists of 40 beamlines. Beamlines placed on the bending magnets (BM) are 

intercalated between the beamlines that work with undulators (ID). 

 

2.2.2 The ID27 beamline  

ID27 is specialized in high-pressure applications employing diamond-anvil and large-volume 

cells. ID27 is fully optimized for monochromatic high-resolution XRD under extreme pressure 

and temperature for diamond anvil cell experiments. The monochromatic beam is selected using 

a nitrogen-cooled Si(111) monochromator and focused on the sample using multilayers mirrors in 

the Kirkpatrick-Baez (KB) geometry (Fig. 2.4). These mirrors possess a very board energy band 

pass from 6 KeV to 80 KeV with a maximum of 80% reflectivity at 30 KeV. 
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Figure 2.4 Photograph of the pair of 300 mm-long KB mirrors (Mezouar et al., 2005) and its 

focusing system. 

 

 

Figure 2.5 Schematic diagram of the laser heating system at the ID27 beamline (Mezouar, 2010).

The experimental hutch (at 48 m from the X-ray source) is equipped with an XYZ translation to 

accommodate the high-precision two-circle diffractometer suitable for powder and single crystal 
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diffraction in DACs. The diffraction signal is collected on a Bruker CCD detector or a MAR345 

image plate that are easily interchanged using high-precision motorized translations (Fig. 2.5). 

In this study, the hutch was equipped with an energy dispersive solid-state Si(Li) Vortex detector 

to X-ray fluorescence experiments. In fig. 2.6 is an image of ID27 hutch during my experiments 

of X-ray diffraction and X-ray fluorescence. 

 

 

Figure 2.6 Image of ID27 assembly during my XRD and XRF experiments. 
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2.2.3 Mirrors 

Focusing of hard X-rays has long been considered unfeasible. This was mainly the consequence 

of the weak refraction of this type of electromagnetic radiation with matter, resulting in a 

refractive index n very close to unity. While lenses for visible light are made of a transparent 

material with an index of refraction substantially different from 1, there is no equivalent material 

for X-rays. First solutions for X-ray focusing were proposed by M.A. Kumakhov, and were 

originally thought out as the total reflection of X-rays from smooth surfaces (Gibson and 

Kumakhov, 1992). Today, several focusing solutions exist for hard X-rays also including 

refractive and diffractive optics as illustrated by Fig. 2.7. There has been tremendous progress 

over the last ten years in X-rays optics. An extrapolation of the current trend is shown in Fig. 2.8. 

 

 

 

Figure 2.7 Schematic illustration of various X-ray optical elements. Reproduced from Bouvet et 

al. (2007).   
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Figure 2.8 Historical evolution of the measured spot size for different hard X-ray focusing 

elements. KB: Kirkpatrick-Baez mirror pair; MLL: multilayer Laue lenses; CRL: compound 

refractive lenses; FZP: Fresnel zone plate. Reproduced from Bouvet et al. (2007). 

A classical way of focusing an X-ray beam is using mirrors. To achieve total external reflection 

of the high-energy X-rays, the incident angle has to be extremely small, typically around 0.5 

degrees, a value which reduces for higher energies. The mirror thus acts as a low-pass, i.e. it 

filters out high energy X-rays, an effect which can be useful for e.g. the elimination of higher 

harmonics from the monochromatized beam. The focusing effect of a mirror always originates 

from the way it is curved. Two designs are commonly used. A toroidal mirror is curved in two 

directions, called tangential and sagittal.  

The Kirkpatrick-Baez (KB) design uses two separate elliptical mirrors, each of which focuses the 

beam in one direction. The most prominent advantage of KB mirrors is the ability to capture the 
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primary beam in a large collection angle and focus it with high transmission efficiency in an 

achromatic manner down to �m or sub-�m diameters. Another advantage is that they can be 

combined with bent graded multi-layers, where alternating layers of a high and low electron 

density material are deposited by a lateral thickness gradient on the surface of the substrate to 

account for the variation of the Bragg angle, which allows mono-chromatisation and focusing at 

the same time (Hignette et al., 2005). 
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2.3   High pressure and high temperature experiments 

2.3.1 Diamond anvil cell 

When a material is pressurized using two opposed anvils, a uniaxial force is applied on the 

sample. Pressure undergone by material is dependent on applied force and the sample contact 

with the surface. Fortunately, the Re or W gasket helps to transform this uniaxial pressure into a 

hydrostatic pressure. 

The best material for the anvils is the diamond because of: its extreme hardness (10 in the 

hardness scale) and it is transparent over a large range of wavelengths (from the ultraviolet up to 

the far infrared). The diamond transparency allows us to do spectrometric analyses and in-situ 

observations. Diamond anvil cells are generally made of tungsten carbide (WC) or steel. Physical 

properties of diamond and WC allow big conical opening of the seat for diamond cells. Thanks to 

conical opening and transparency of diamond, laser heating of sample and X-ray diffraction are 

possible for high pressure and high temperature conditions. The main inconvenient for the DAC 

is the little size of the sample, ~50-100 μm in diameter. 

Le Toullec and Chervin refined the concept of “membrane” diamond anvil cell (Le Toullec et al., 

1988; Chervin et al., 1995). These DACs allow performing X-ray diffraction at high pressure and 

high temperature with a large diffraction cone. These cells have been optimized to obtain an 

opening at the bottom of diamond very large. The pressurization system is separated from the 

body of the cell. Pressure is transmitted to the diamond by a steel membrane blown up with 

helium gas. It is injected onto the membrane with an external pump. During my thesis I used both 

Le Toullec and Chervin cell (Fig. 2.9 and 2.10-2.11 respectively). 
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Figure 2.9 Diamond anvil cell, Le Toullec type. 
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 Figure 2.10 Diamond anvil cell, Chervin type. 

 

 

Figure 2.11 Schema of a DAC Chervin type.

Membrane

Piston Cylinder
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2.3.2 Diamonds and sample loading 

The choice of the diamond culet is directly linked to the maximum pressure applicable. The, so-

called “bevel” diamonds allow to obtain very high pressures by truncating the diamond edges in 

order to prevent the contact during deformation at high pressure. These bevels, with internal 

diameter of 70 or 100 μm and external diameter of 300 μm, allow us to reach pressures higher 

than 70 GPa. 

The gasket provides a radial constraint to the sample. It prevents the diamonds to touch each 

other and the increase of pressure, because plastic deformation of the gasket absorbs part of 

deformations. In this study I used tungsten or rhenium gaskets, suitable for high pressure, with an 

initial thickness of about 250 μm. 

Firstly, we have to pre-indent the gasket with the diamonds using a membrane pump (Fig. 2.12). 

Thickness changes from 250 μm to ~40-45 μm. After decompression, we drill a hole in the centre 

using the laser drilling system available at the ERSF. Ideal diameter of hole is function of the 

culets size and target pressure. Once the gasket is drilled, it is replaced into the DAC respecting 

its initial direction to minimize the risk of break diamonds at high pressure (Fig. 2.13). 
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Figure 2.12 Membrane pump for diamond anvil cell. 

 

 

Figure 2.13 Schema of a classical loading in the DAC. 
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The sample should be significantly smaller than the gasket hole to leave room for the transmitting 

medium and to prevent the contact among the diamonds. In this study we used glass pieces or 

pellets made of powder samples as starting materials. 

 

2.3.3 Pressure transmitting medium 

In order to obtain correct information about structure, elastic and lattice parameters for phases 

present in the sample at high pressure, it is required to limit constraints deviations that move 

pressure from hydrostaticity. To keep hydrostaticity, uniaxial and radial constraint could not be 

sufficient; it is preferable to add a liquid pressure transmitting medium. However, any material 

rest in liquid phase for pressure higher than 12 GPa and ambient temperature. For this reason, at 

very high pressure it is necessary the use of solid pressure transmitting medium. We can choose 

among several materials in function of sample and pressure. The more a solid is compressible 

(“soft”) the more its shear modulus is weak, the more the medium can be considered hydrostatic. 

Moreover, it is preferable do not have chemical reactions between transmitting medium and 

sample. For this, rare gases in the solid state are considered the best materials (e.g. He, Ar, N). 

We can also use salts or oxides as MgO, Al2O3 or SiO2; during my experiments I used MgO 

(chapter 3), NaCl or KCl (chapters 4-5). Briefly, we have to choose materials in function of 

experiments.  

We used the pressure transmitting medium as an internal pressure standard mixing standard and 

sample.  
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2.3.4 High temperature and temperature gradient 

We can use two types of laser, CO2 or YAG laser in function of the sample characteristics. 

Wavelengths are 10.6 and 1.06 μm for CO2 and YAG laser, respectively. They produce different 

size of heating laser spot. I will present briefly the YAG laser, because it was used during the 

experiments. It works by interaction with valence electrons of metals or transition elements, e.g. 

Fe in (Mg,Fe)SiO3. The YAG laser is focused on the sample surface with a diameter lower than 

10 μm and then it produces very high gradient of temperature. The YAG laser does not heat 

white oxides, and for this is ideal for pressure transmitting medium as NaCl, KCl, MgO or Al2O3. 

This type of laser is particularly appropriate for extreme pressure, and then for this study. The 

YAG laser can cause elemental migration under chemical gradient (Soret diffusion), even if the 

segregation is very limited when the sample is heated between the NaCl insulation layers without 

additional laser absorber (Sinmyo and Hirose, 2010). 

The temperature distribution within the laser-heated sample can be modeled based on the thermal 

diffusion equation (Li et al., 1996): 

                                                               ATk
t
TC �����
�
��                                                   (2.1) 

Where T, �, C and k are temperature, density, specific heat and thermal conductivity of the 

sample. The absorbed power density is described by A. 

The accuracy and precision of temperature measurement in the laser heated diamond anvil cell 

have been much improved in the past with the use of spectral radiometry (Boehler, 1986). This 

method is adopted in this study. Temperatures are determined by fitting the thermal radiation to 

the Planck radiation formula, assuming constant emissivity with respect to wavelength: 

 I�= c1 � (�) �-5 / [exp (c2 / � T) – 1] (2.2) 
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where I� is spectral intensity, � emissivity, � wavelength, T temperature, and c1= 2�hc2= 3.7418 X 

10-16 W m2, c2= hc / k= 0.014388 mK, h= Planck constant, c=speed light, k= Boltzmann constant. 

 

 

2.4 X-ray diffraction (XRD) 

Thanks to X-ray diffraction of samples we are able to measure volume. It is necessary an X-ray 

beam focalized and highly energetic, as that of ID27 beamline at European Synchrotron 

Radiation Facility in Grenoble, France. 

2.4.1 Principle 

Diffraction phenomena are linked to the crystal structure. A crystal is homogeneous and periodic: 

it is composed of a pattern, a set of atoms arranged in a particular way, and a lattice exhibiting 

long-range order and symmetry. Crystal structure of a material can be described in terms of its 

unit cell (a spatial arrangement of atoms). 

The unit cell is given by its lattice parameters: the length of the cell edges and the angle between 

them. Unit cell is defined by three integer vectors, cba ,,  forming angles �, � and 	. Unit cell 

repeats itself parallelly to �, � and 	 angles with translator movement  to form direct lattice. In 

particular a lattice plane intersects three or more vertices of the lattice (the basis) and cut three 

axes  cba ,,  at distance from origin equal to a/h, b/k and c/l. h, k and l are Miller indices (Fig. 

2.14). 
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Figure 2.14 Periodic lattices with parameters and planes of lattice (hkl) equidistant from dhkl.  

 

An incident X-ray beam interacts partially in elastic mode with electron orbital of atoms forming 

crystalline material. Photons scattering from a crystal lattice is directly linked to the equidistance 

between lattice planes (hkl) in case of constructive interference. 

Interference is constructive when the phase shift is a multiple of 2�; this condition can be 

expressed by Bragg’s law (Fig. 2.15): 

 

 n �= 2dhkl sin
 (2.3) 

where n (an integer) is the “order” of reflection, � is the wavelength of the incident X-rays, d is 

the interplanar spacing of the crystal, 
 is the angle between incident X-ray and scattering planes. 
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Figure 2.15 Schema of Bragg’s diffraction for a set of planes with spacing distance dhkl. X-ray 

beam deviation is 2
. 

 

Bragg’s diffraction is possible only if � � 2dhkl. Because 2dhkl is only a few Å, � must be lower or 

equal to few Å and this is the case of X-rays. 

In order to measure d we have two possibilities: 

- either we fix � and determine different 
: this is the angular dispersive diffraction (WDX); 

- or we fix 
 and use several �: this is the energy dispersive diffraction (EDX). 

In case of angular dispersion, we have to use a monochromatic X-ray beam with, for example, �= 

0.3738 Å at the ID27 beamline of the ESRF. 
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2.4.2 Treatment of data 

The pattern of diffraction has to be integrated for all the 2
 values available to give diffraction 

spectrum (intensity= f (2
)) exploitable. I used the Fit2d program for integration of patterns (Fig. 

2.16a) and GSAS program to treat it (Fig. 2.16b). 

Thanks to GSAS program we are able to carry out refinements in Rietveld and Le Bail mode. 

Diffraction spectra give several information: 

- 2
 for each peak, which corresponds to phase dhkl. We are able to identify phases with 

lattice parameters; 

- Intensity of peaks gives information about the type and the positions of atoms in the 

crystal lattice. The refinement of intensities is the Rietveld refinement. Le Bail refinement 

fits automatically the intensities but doesn’t take into consideration atomic positions; 

- Volume of phases once Rietveld refinement is done. 
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Figure 2.16 a) X-ray diffraction pattern recorded at 300 K and 50 GPa. Dark spots and rings of 
diffraction correspond to phase crystallization; b) spectrum corresponding to diffraction pattern 
(Fig 2.16a), refined (Rietveld method) using GSAS program. 
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2.5 X-ray diffraction (XRD) procedure 

2.5.1 XRD procedure: study of forsterite melting curve (chapter 3) 

The sample properties were investigated in situ thanks to the use of the X-ray diffraction set-up 

available at the ID27 beamline of the ESRF (Mezouar et al., 2005). Wavelength was fixed to 

0.3738 Å (HE3084 experiments) or 0.2647 Å (HS3258 experiments). The X-ray beam has been 

focused to 2x3 μm2 using two bent KB-mirrors. Typical acquisition time was 20-30 seconds 

using imaging plate or MAR345 detector. Position of the X-ray beam was determined from 

optical observations of the Re-gasket fluorescence. For integration of 2D-images and further data 

treatment we used the Fit2d (Hammersley, 1996) and GSAS packages (Larson and Von Freele, 

1988), respectively.  

Melting criteria can be defined according to changes in the X-ray diffraction pattern. We search 

for first order changes such as (i) disappearance from the imaging plate of diffraction rings of 

Mg-Pv, (ii) reappearance of these diffraction rings after temperature quench, (iii) major variation 

of the intensity of diffraction lines on integrated spectra (Figures 3.1 to 3.4). These criteria can be 

complemented with observations of the sample optical changes as well as analysis of relationship 

between laser-power and sample temperature. In particular, crossing of flash temperatures (when 

increasing of temperature is very abrupt) is indicative of sample melting. 

For determination of the Pt melting curve, it is the disappearance of the diffraction lines that 

represents the main criterion. 
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2.5.2 XRD procedure: study of chondrite melting curves (chapter 4) 

Ultra-brilliant X-ray beams are now available from Synchrotron ring for in situ investigation of 

the melting behavior in the laser-heated diamond anvil cell (LH-DAC). We used a membrane-

type DAC mounted with 250 �m or 75/300 �m culet-diameter diamonds. Re gaskets were pre-

indented to 40 �m or 20 �m and laser-drilled to 80 �m or 50 �m, respectively.  

In order to probe the sample properties in-situ, we used the X-ray diffraction set-up available for 

LH-DAC at the ID27 beamline (Mezouar et al., 2005). Wavelength was fixed to 0.3738 Å. X-ray 

focusing to better than 2x3 �m2 was achieved by two bent KB-mirrors. Typical acquisition time 

is 20-30 seconds using an imaging plate or a CCD detector. The X-ray beam position was 

determined from optical observations of the Re-gasket fluorescence. Therefore, combined images 

of X-ray beam and YAG lasers could be perfectly positioned on the pinhole of the entrance of the 

spectrometer used for temperature measurements. Integration of 2D-images and further data 

treatment were performed using the Fit2d and the GSAS packages, respectively. 

In general, the onset of melting can be detected using X-ray diffraction by the appearance of a 

diffuse x-ray scattering band typical of liquids. Such band is easily observed if the sample is 

composed of relatively high Z elements such as iron (Andrault et al., 2006; Shen et al., 2004). If 

the sample is composed of low Z-elements, such as is the case for a mantle silicate, the sample 

thickness should be important to enable observation of the diffuse band. This is not the case of 

our samples, which are intentionally thin in order to minimize axial thermal gradients. 

Additional criteria based on X-ray observations are (1) the rapid re-crystallization of the sample 

at high temperature, with appearance and disappearance of X-ray spots, indicative of coexistence 

of crystal and melt. (2) At the same time as solid and liquid coexist, the temperature reaches a 

plateau while laser power is continuously increased, just before the liquid diffuse scattering 
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appears and temperature simultaneously increases (Dewaele et al., 2007). In the following we 

used the fast disappearance of diffraction peaks of the solidus phase and re-crystallization as a 

sign of solidus temperature and the end of the temperature-power plateau as the sign of liquidus 

temperature. 

2.5.3 XRD procedure: study of chondrite (chapter 5) 

We performed experiments at high pressure and high temperature using the LH-DAC technique. 

We used diamond anvils with flat culets of 250 �m diameter or bevel type 100-300 �m culets. 

We used tungsten gaskets pre-indented to a thickness of 30-45 �m and laser-drilled to diameters 

of 50-80 �m.  

Our procedure for the samples synthesis is as follows: we compressed each sample to the target 

pressure at ambient temperature. We then adjusted the optical path for the lasers and the 

temperature measurements, keeping the two lasers at minimum power. We then observed the 

sample crystallization at a moderate temperature and verified the sample quality (mineralogical 

content and chemical composition), using X-ray diffraction and X-ray fluorescence (see details 

below). Finally, we increased the laser power until the liquidus temperature was reached at the 

center of the sample. The laser power was maintained for a couple of minutes before shut-down. 

We report typical microphotographs of the recovered samples (Figure 5.2). For some samples, we 

also performed sample analyzes using scanning electron microscope (JEOL JSM-5910 LV). Prior 

to the measurement, we immersed the W-gasket in water in order to remove the NaCl pressure 

medium. We then extracted the sample using a needle and positioned the sample chip on a 

graphite adhesive foil (Figure 5.3). 
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We then investigated the sample properties using X-ray diffraction (2.5.3) and X-ray 

fluorescence (2.7). Some of the X-ray measurements were performed in situ in the DAC at high P 

and T: XRD to monitor the sample evolution during laser heating; X-ray fluorescence (XRF) in 

order to check the sample composition. However, most of the measurements reported in this 

study were recorded after pressure release on samples trapped in the W-gasket. It insures a better 

signal, for XRF in particular, due to the strong absorption of the diamond-windows at low 

energies. All X-ray measurements were performed at the ID27 beamline of the ESRF. The X-ray 

beam generated by the ondulator was tuned to 0.3738 Å wavelength and focused by two 

Kirkpatrick-Baez (KB) mirrors to a 2*2 �m2 FWHM spot on the sample.  

For X-ray diffraction, we used the MAR345 image plate detector. Typical acquisition time was 

20-30 seconds. Diffraction images were analyzed and integrated using the Fit2d program 

(Hammersley, 1996). We refined phase contents by performing multiphase Rietveld refinements 

using the GSAS code (Larson and Von Dreele, 1988). We note (i) a weak Ca-Pv signal for some 

of the samples, firstly because the Ca-Pv amorphorizes partially upon decompression and also 

because rapid quenching from the molten state could lead to other Ca-rich polymorphs, such as 

the calcium-ferrite form, and (ii) a weak precision for the determination of Fp contents, since its 

major diffraction peaks overlap with those of the major Mg-Pv phase. 
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2.6 X-ray fluorescence 

Photon is an elementary particle, the quantum of the electromagnetic interaction and the basic 

unit of light. Photons are emitted in many natural processes. For example, when a charge is 

accelerated it emits synchrotron radiation. Planck’s energy formula 

 E=h � (2.4) 

 

is used to define the energy of a photon, where E is energy, h is Planck constant and � is the 

frequency. 

2.6.1 Principle of absorption 

When a X-ray beam hits a material, photons can interact with it. This interaction is  

photon/electron or photon/core interaction and is related to one type of physical process: 

absorption, scattering (Compton or Rayleigh) or pair production (Fig. 2.17). 

When an X-ray beam interacts with matter, a certain fraction of the photons will be absorbed 

inside the material or scattered away from the original path. The intensity I0 of an X-ray beam 

transmitted through a layer of thickness x and density � is reduced to intensity I according to the 

well-known law of Lambert-Beer: 

 ��
x

x eIeIxI L
�� �� 00)(        (2.5) 
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Figure 2.17 Different processes of photon-matter interaction. 

 

 

Where �L[cm-1] is called the linear attenuation coefficient, � =1/ �L[cm] is the attenuation length 

and � = �L/ �[cm2/g] is the mass attenuation coefficient. In the energy range of 1-100 KeV the 

mass attenuation coefficient can be described as: 

 � = � + �R + �C       (2.6)  

where �(E,Z) is the photo-electric effect,  �R(E,Z) is the Rayleigh (elastic/coherent) scattering and 

�C(E,Z) is the Compton (inelastic/incoherent) scattering (Van Grieken and Markowicz, 2002). At 

most X-ray energies, the mass attenuation coefficient � is a smooth function of energy, with a 

value that depends on the sample density �, the atomic number Z, atomic mass A, and the X-ray 

energy E approximately as (Newville, 2009): 
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Z�� �                        (2.7)  

When the sample consists of a mixture of several chemical elements, the mass attenuation 

coefficient � can be calculated from the mass attenuation coefficients of the n constituting 

elements: 

 i

n

i
iwcompound �� �

�

�
1

)(          (2.8)  

where wi is the weight fraction of element i. 

Fig. 2.18 shows the contributions of the photo-electric, Rayleigh and Compton scattering to the 

photon mass attenuation coefficient of Fe within the energy range of 10-3-10 4 MeV. A sharp 

absorption K-edge can be observed at 7.112 keV. 

 

Figure 2.18 Mass attenuation coefficients for iron provided by NIST's XCOM database. E=7.112 
KeV is coicident to iron X-ray emission energy and correspond to a peak of Fe in a spectrum of 
fluorescence. 

E= 7.112 KeV= Fe K-ray
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Each type of interaction is associated with an effective cross section depending on incident 

photon energy and atomic number Z of the target atom. These interactions in function of E and Z 

are shown in Fig. 2.19, where 
ph, 
c and 
pair are the effective cross section for photoelectric 

effect, Compton effect and pair production respectively. Cross section for photon interaction with 

matter corresponds to the sum of the cross sections: 

 paircphtot ���� ���       (2.9) 

Probability of interaction for Compton effect is quite independent of the target atomic number. 

On the other hand, photoelectric effect and pair production are proportional to the atomic 

number.  Then, the range of energy corresponding to Compton effect is more important when 

target atomic number is little.   

 

Figure 2.19 Photon cross sections of interaction with the matter. 
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2.6.2 Photoelectric effect 

In the photoelectric effect, the incoming X-ray photon with energy Ex interacts with a bound 

atomic electron and is absorbed as shown in Fig. 2.20a. The excited atom emits a photoelectron 

with energy E=Ex-Eshell, where Eshell is the binding energy of the electron. As a secondary effect, 

the hole in the atomic shell is immediately filled by less bound electrons from outer shells, 

resulting in a cascade process involving the emission of fluorescence X-rays characteristic for the 

absorbing atom as in illustrated in Fig. 2.20b. A fraction of the absorbed energy is also emitted by 

ejection of Auger electrons. The intensity of this characteristic radiation is directly related to the 

amount of each element in the material (Beckhoff et al., 2005). 

 

 

 

Figure 2.20 In Fig 2.20A is shown the photo-electric effect, in which an X-ray is absorbed and a 
core-level electron is promoted out of the atom. When a less bound electron from the L or M 
shell falls back to a hole created in the K-shell by the photo-electric effect, causing X-ray 
fluorescence as a secondary effect (fig. 2.20B). Reproduced from Newville (2009). 

 

A) B)
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2.6.3 Fluorescence yield 

An atom in an excited state emits an X-ray photon in its first transition rather than an Auger 

electron. For K-lines is given by: 

 I
K

X
K

K �
�

 �       (2.10) 

where X
K�  , is the efficient section to producing emitted photons and I

K�  is the efficient section 

of ionization (Fig. 2.21). The measurement of the fluorescence yield is more complicated for the 

higher orbitals because are composed of several sub-shells. What’s more, Coster-Kronig 

transitions can occur: Coster-Kronig transition is an Auger transition in which the vacant electron 

level is filled by an electron from a higher sub-shell of the same shell. In case of absence of 

Coster-Kronig transitions, the yield for the sub-shell I of the s-shell (s=K, L, M,…) is given by: 
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And total yield 	s of the s-shell is: 

 �
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Where 
iSN are the efficient sections of ionization for the sub-shell I of the s-shell and corresponds 

to: 
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moreover the sum of 
iSN  is equal to 1.  

 



 102

 

Figure 2.21 X-ray fluorescence yield (%) in function of the atomic number (Z). It is clear that the 
yield for the light elements is very low, and this is reflected in achievable sensitivity for these 
elements (Z is 20 and 26 for Ca and Fe, respectively).
 

2.6.4 Anisotropic fluorescence emission 

While photoelectric interactions result in an isotropic emission of characteristic radiation, 

scattering produce photons having highly anisotropic angular distributions. Therefore the ratio of 

fluorescence/scatter intensities can be strongly influenced by the choice of excitation/detection 

geometry. Quantitatively, the intensity of Rayleigh/Compton scattered radiation can be 

characterized by the so-called differential scattering cross-sections !dd /� , which characterize 

the angular distribution for the scattered photons. For the description of a linearly polarized 

photon beam, the local coordinate system is chosen in such a way that the photon beam (heaving 

an initial propagation vector 0k ) travels along the Z-axis prior to the interaction and its (net) 

electric field vector 0" is parallel with the X-axis (Fig. 2.22). After the scattering event, the new 
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direction of photon propagation is characterized by the (unit) propagation vector 1k  and the net 

vector 1"  (Vincze, 2004). 

 

In case of linearly polarized radiation having a degree of polarization p with respect to the 

reference plane XZ, the expression for the Rayleigh ( !dd R /� ) and Compton ( !dd C /� ) 

differential scattering cross-sections are, respectively, given by: 
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Figure 2.22 The coordinate system attached to the photon used to describe the scattering 
phenomenon (from Vincze et al., 1999).  
 



 104

where !dd T /�  denotes the Thomson, !dd KN /�  the Klein-Nishina (1928) differential cross-

section. ),( ZxF  and ),( ZxS  are the atomic form factor and the incoherent scattering function 

respectively, for an element with atomic number Z. 39.12/)()2/sin( keVEx #�  is the momentum 

transfer of the photon and er  is the classical electron radius (Vincze, 2004). 

The previous equations show that 0�
!d

d R�  and that 
!d

d C�  reaches a minimum for p=1, # =90° 

and � =0°. Since the degree of linear polarization can approach 99.8% at 3rd generation 

synchrotron sources and also the angle between the incoming beam and the scattering angle is not 

exactly 90° for the complete detector surface, implying that there will still be an influence of the 

Rayleigh and Compton scatter. However, for X-ray fluorescence experiences in this study, the 

angle between the incoming beam and the detector in the plane of the synchrotron (assuming 

p~1) is set to ~60° (see chapter 5 for more details). 

 

 Photoelectic effect is dominant for low energy photons, in particular for elements with high Z. 

The cross section per atom at the K-line is: 

 2/75
4

)/2(
2

"��� ZTh
K
ph �      (2.17) 

Where Th� =0.665 barn (1 barn=10-24cm2) is Thomson cross section per electron and � =1/137 is 

the fine structure constant. Independently of lines this cross section can be estimated with: 

 3

35.4

E
Z

ph $�     (2.18) 

Photoelectric effect decreases at increasing energy of the incident photon for a given element 

(this is important for quantification of chemical contents). Most photoelectrons are emitted in the 

direction of polarization of the incident photon.  
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2.6.5 Processing of X-ray fluorescence data 

Micro X-ray fluorescence (micro-XRF) has been developed very rapidly since 1990, mainly due 

to the use of synchrotron radiation (SR) (Janssens et al., 2010). Nowadays, micro-XRF is a well-

established, non-destructive analytical method in a large variety of fields of application. Since the 

interaction of individual photons of a specific energy with individual atoms of specific atomic 

number can be very well described, in principle, any form of XRF has the potential to be used for 

quantitative analysis. Several calibration schemes and variants thereof have been developed since 

the 1970s and are used in many commercial and self-built instruments. These approaches are 

either based on the use of extensive sets of calibration standards that are similar to the materials 

to be investigated (so-called type standards) and empirical calibration models or make use of 

theoretical models that describe the interaction between X-rays and matter. These theoretical 

models allow the use of a smaller number of calibration standards. It is possible to calculate the 

theoretical X-ray intensities using fundamental parameters (e.g. tube excitation voltage, X-ray 

optical geometry). The fundamental parameter (FP) uses the calculated theoretical intensities and 

the measured intensities to determine the composition of a sample. In order to use a conventional 

FP method, one needs to have one or more standards with a matrix similar to the unknown 

samples or at least a set of standards that contain the analyze elements. There are many situations 

in which “standards” do not exist. This is particularly true in laboratories developing new 

materials and those involved in one of a kind and/or trouble shooting production problems. For 

this reason, the standardless fundamental parameter method has been developed. During the 

experiments on XRF (chapter 5), we used FP and standardless methods. When X-ray 

fluorescence analysis is performed with solid state detectors (e.g. Si(Li)) as shown in Figure 2.23, 
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method of choice is the energy-dispersive XRF (ED-XRF). Due to the relatively low resolving 

power of solid state detectors, the process of evaluating ED-XRF spectra is prone to many errors 

and requires dedicated software. 

 

Figure 2.23 Schematic diagram of an Energy Dispersive X-Ray Si(Li) detector. Incident photons 
create pair electron vacancies. Electrons emit an electric signal which is amplified and analyzed.  
 

Whatever the detector used, it is essential a collimator to filter noise signals (scattering 

phenomena). In this work we used an Ag collimator. The need for a spectrum evaluation 

procedure which can be applied in an increasingly unsupervised manner, without having to 

compromise on the accuracy of the net peak area determination is critical for micro-XRF where 

vast amounts of spectra need to be processed. Therefore, several softwares were developed: e.g. 

AXIL (Analysis of X-Ray Spectra by Iterative Least Squares) which is based on the non-linear 

fitting of a mathematical function (Vekemans et al., 2004). PyMca (Python multichannel 

analyzer) program, developed by the Beamline Instrumentation Software Support (BLISS) group 

of the ESRF (Solé et al., 2007), was used in this work. This fitting application is based on the 

Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963). For the end user, PyMca is 
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a ready to use, and in many aspects state-of-the-art, set of applications implementing most of the 

needs of X-ray fluorescence data analysis. It allows the processing of large numbers of individual 

spectra generated during micro-XRF mapping experiments as well as manipulation and 

presentation of the resulting elemental maps in a variety of ways. Its implementation of a 

complete description of the M-lines of the elements is particularly helpful for analysis of data 

collected at low energies. 

Measurement of intensity corresponds to calculating the area under the peak of fluorescence 

using a Gaussian function after subtracting background noise (Fig. 2.24). For these measurements 

I used PyMca program (Solé et al., 2007) thanks to the FP method. 

A Gaussian peak is characterized by three parameters: the position, width and height or area. It is 

desirable to describe the peak in terms of its area rather than its height because the area is directly 

related to the number of X-ray photons detected, while the height depends on the spectrometer 

resolution. The first approximation to the profile of a single peak is then given by: 
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where A is the peak area (counts), s the width of the Gaussian expressed in channels and x0 the 

location of the peak maximum. The full-width-half-maximum (FWHM) is related to s by 

FWHM=2.3548 s. 
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Figure 2.24 Example of intensity measurements for a peak of fluorescence. Green curve 

corresponds to the raw spectrum. Red and blue curves are Gaussian function and base line 

respectively (from PyMca). Hatched zone is the area under the Gaussian after subtracting 

background noise (gray zone).  

 

We are able to quantify X-ray fluorescence for an element only if its intensity is: 

 Bi II 3�          (2.20) 

where Ii is the intensity of the element and IB intensity of the background noise. 
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2.6.6 Quantification methods 

2.6.6.1 Semi-quantitative elemental analysis 

Analytical determinations with accuracy of 30-50% are known as semi-quantitative. A semi-

quantitative analysis requires the measurement of a single multi-element standard reference 

material. Afterward, an element yield can be calculated for each element and element yield 

curves can be rendered, providing valuable information on how many fluorescence counts for a 

specific element are generated per second in the targeted area by the micro-beam. If standard 

reference material which contains an element I in a concentration Ci generates Ii counts while 

measuring during a life time Treal, then the elemental yield Yi is for example given by:  

 i
real

i
i C

T
IY /�        (2.21) 

The elemental yields for elements that are not present in the calibration standard can be 

graphically derived by fitting a curve through the data points obtained for the calibration standard 

in a diagram where the intensity is plotted versus the analyte mass. These relative sensitivity 

factors will vary for each element depending on the photoelectric cross-section and the operating 

conditions selected for the determination. Concentrations of analyte in unknown samples can be 

estimated by dividing the measured netto line intensities by the elemental yields for the specific 

element under investigation. Because elemental yields are dependent on the specific operating 

conditions, they should be re-established whenever adjustments or modifications are made to 

instrumental parameters.  

On the other hand, analytical determinations with accuracy of 10% are known as quantitative 

analyses. Below, four calibration approaches for quantitative analysis are discussed: (1) external 

standardization (2) internal standardization (3) fundamental parameter approach and (4) Monte 
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Carlo simulation. Statistical error calculation of the three procedures (Cauzid et al., 2006), shows 

that the standardless quantification method yields more accurate results than the internal or 

external standard procedures.  

2.6.6.2 External standardization 

In quantitative analysis via external standardization, several multiple concentration standards 

containing the analyte(s) of interest are involved. Scans of these standards are performed before, 

during, and after samples are scanned under the same operating conditions. The fluorescence 

intensities are obtained and then a calibration curve of intensity vs. concentration generated. 

Matrix-matched standards are required for improved accuracy which features same thickness, 

density and bulk composition. While this is the most accurate approach, matrix matched 

standards that are spatially homogeneous at the �m scale are scarce. 

 

2.6.6.3 Internal standardization 

In this type of standardization one of the elements present in the sample is used as an internal 

standard, establishing that the K� X-ray peak intensity of this element corresponds to a known 

concentration (Menez et al., 2002; Philippot et al., 2001). This method has been used to establish 

a calibration procedure potentially appropriate to all samples, for conducting quantitative analysis 

of fluid inclusions (Menez et al., 2002). Is important to point out that, owing to the strong 

sensitivity of light elements to absorption, the propagated error on calculated concentrations of 

the heaviest elements (Z>Mn) can be minimized using light elements (e.g. Cl or Ca in Menez et 

al., 2002) as internal standard. The internal standard method is based on the addition of an 

element (or a compound) in a known, constant proportion to a (series of) specimen(s), in order to 
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minimize the effect of variations in matrix effects. The same proportion has to be added to the 

standards as well as to the unknowns. The compound added is called an added internal standard. 

For the added internal standard, pure elements, pure compounds, mixtures, and solutions can be 

used. When using solutions or mixtures, it is vital that their composition be constant. There is 

basically only one selection criterion for the compound added: the added internal standard should 

have at least one characteristic line of sufficient intensity, which is subject to similar matrix 

effects as the analytical line(s) of interest. 

 

2.6.6.4 Fundamental parameter (FP) methods 

The expected count rate of an element group of lines can be written as: 

 &!
� �

j
jRCIA

%40       (2.22) 

where 0I  is the incident beam rate, C is the mass fraction of the element in the sample, %4/!  

represents the detector geometric efficiency and &
jR the relative intensities of the lines. Measured 

the areas A, the only unknown terms to calculate the mass concentrations are the incident photon 

flux and the detector efficiency. These parameters are given by the user asking the program 

(PyMca in this work) to take one of the matrix elements as internal reference. Influence of 

secondary fluorescence excitation is neglected in all these calculations and should be estimated 

with standards or evaluated by Monte Carlo methods. This method needs the use of a 

standardization (external or internal) or standardless (such as in this work) method to verify 

relative intensities of the fluorescence lines. 
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2.6.6.5 Monte Carlo methods 

Monte Carlo methods are numerical methods of statistical simulation. In XRF, they are 

sometimes used when a problem can be only (or more successfully) described by statistical 

models rather than by closed equations. Examples are inhomogeneous samples or samples with 

irregular shapes. Quantification is based on a Monte Carlo technique describing the relevant 

photon-matter interactions as a photon beam in the energy range of 1-100 KeV illuminates an 

arbitrary heterogeneous specimen. The exciting radiation can have any given energy distribution 

in the above energy range and can be either unpolarized or linearly polarized. The modeled multi-

element sample can contain a maximum 92 elements from H to U. The simulated interaction 

types include (1) photoelectric effect (2) Rayleigh (elastic) scattering (3) Compton (inelastic) 

scattering. By simulating a statistically significant number of these interactions within the sample 

and its environment and calculating the probability of subsequent fluorescence or scattered X-ray 

emission within the solid angle of the modeled detector, the complete spectral response of a given 

sample can be calculated. The simulated spectrum can be compared directly to the experimental 

data in its entirety, including the scattered background of the XRF spectra, as well as the 

fluorescence line intensities (Vincze, 2004). 

2.6.6.6 Standardless quantification 

Any X-ray spectrometer will determine just intensities, i.e. the number of photons of a given 

energy which hit the detector in a given time. In other words, XRF is a relative analytical method 

and will always require an analytical function, which relates the measured intensities to 

concentrations of elements or compounds. A method without specific standards has to cover a 

maximum range of elements in as wide a variety of materials as possible, and there is clearly a 
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need for a universal and comprehensive matrix correction method. Empirical methods cannot 

fulfill these requirements; they are too limited in concentration range and element coverage. The 

only choice is the use of matrix corrections based on FPs. Any standardless method has to face a 

series of challenges: first of all, correct net intensities have to be determined.  This task requires: 

1. A set of measurements conditions covering concentrations from trace to 100% for all 

elements to be analyzed by XRF. One way is to adjust the tube power depending on the 

intensity of the current sample; 

2. A reliable method for background determination and background subtraction; 

3. A universal correction method for spectral interference (line overlaps). 

Once these intensities are available, the concentrations can be determined. This will require: 

a. The calculation of concentrations in the specimen as measured based on a universal 

calibration; 

b. Ways to handle non-measured elements; 

c. Correction procedures for size and thickness of the specimen; 

d. Calculation of the composition of the original sample without preparation agents. 

For many applications (e.g. this work), optimized standardless methods can ensure the same 

quality of results obtained using standardized methods without the need for a special calibration 

process. 
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2.6.7 Mapping 

The software used (PyMca in this work) during the acquisition should allow to automatically 

make point analysis where the coordinates of each points of interest are stored in a file, line scans 

(not restricted to horizontal or vertical lines) simply by setting the coordinates of the end points 

and of course polygonal maps of various areas of the sample. 

The program places the sample in the starting position, already referenced on the indexed 

external microscope, then starts the acquisition for a present time, stores the data, and repeats this 

cycle of operations until all points have been analyzed. 

For some positions in the sample we may find locally very high concentrations of highly 

fluorescent elements. This will introduce dead time corrections and we must record for each 

analyzed point the exact real and live (active) times.  

Below is presented some example of XRF mapping obtained during my experiments (Fig. 2.25); 

for a detailed description, see chapter 5.  

This technique is most useful to visualize phase and elemental distributions, and consequently to 

partitioning coefficients determination of major elements between silicate phases (this study, 

chapter 5).  
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Figure 2.25 X-ray fluorescence maps for samples recovered from 41 GPa (A1-A2) and 103 GPa 
(B1-B2). Each pixel is 2.5*2.5 μm and 1.5*1.5μm, respectively. 

A1 A2

B2B1 
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2.7 X-ray fluorescence (XRF) procedure: study of chondrite  

We performed experiments at high pressure and high temperature using the LH-DAC technique. 

We used diamond anvils with flat culets of 250 �m diameter or bevel type 100-300 �m culets. 

We used tungsten gaskets pre-indented to a thickness of 30-45 �m and laser-drilled to diameters 

of 50-80 �m. Samples were loaded between two NaCl pellets. Our procedure for the samples 

synthesis is illustrated in 2.5.3. 

For XRF measurements, we used an energy dispersive solid-state Si(Li) Vortex detector, set at 

around 60° from the incident beam. This angle position is the best that can be achieved in the 

transmission mode when using W-gaskets, in order to maximize the photoelectric effects and 

minimizes Compton and Rayleigh diffusions. The detector was protected from incoherent X-ray 

signal using an Ag collimator. We detected K-lines of Ca and Fe from the sample, K-line of Cl 

from the NaCl pressure medium, L-line of W from the gasket material, and L-line of Pb used as 

X-ray absorber on the beamline. Elemental analyzes are derived from fluorescence spectra using 

the PyMca program (Solé et al., 2007). We fixed the fundamental parameters to: X-ray flux= 

8.4e+11 photons/s; Acquisition time= 100 or 150 sec.; Active area= 4 �m2; Sample to detector 

distance= 20mm. 

The XRF method usually requires the use of standards for quantitative determination of the 

element contents. In our samples, there are parts where the samples has not encountered melting 

or phase segregation and one could try to use these regions as an internal calibrant, since their 

chemical composition should be similar to that of the starting material. However, the presence of 

a thin NaCl layer above the sample makes the situation more complicated. Indeed, based on the 

intensity of the Cl fluorescence signal measured at the different sample positions, it is clear that 

this layer is heterogeneous in thickness in the recovered samples (Figure 5.3). We estimated the 
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NaCl thickness at all sample positions from the measured intensity of the Cl fluorescence signal 

and included a correction for NaCl absorption when refining the Ca and Fe contents from their 

respective XRF signals. This correction brings additional uncertainty for determination of the Ca 

contents, since 65% of the Ca fluorescence signal can absorbed by a 10 �m thick layer of NaCl. 

On the other hand, the correction for NaCl absorption is less than 20% at the Fe fluorescence 

energy. Altogether, our XRF measurements provide quantitative information for the relative 

variations of Fe and, to a minor extent, for Ca, for each given XRF map. 
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2.8 Scanning electron microscope 

This electron microscope provides images of the sample surface by scanning a high-energy beam 

of electrons in a raster scan pattern. The electrons interaction with the sample produces signals 

that contain information about the sample’s surface topography, composition and other properties 

such as electrical conductivity. A primary beam of incident electron exits the sample surface. 

Detectors collect either the secondary or backscattered electrons (imagery mode), or photons 

(analysis mode). The use of secondary electrons emitted by the sample surface provides an image 

of the surface topography (Secondary Electron Imaging, SEI). The backscattered electrons (Back 

Scattered Electrons Imaging, BSEI) are emitted from the effect of the primary beam penetration 

deeper in the sample, and their energy depends on the average atomic numbers of the elements it 

came across. The produced image roughly illustrates chemical contrast between different phases, 

or phase zoning in the sample: with the increasing average atomic number, the image becomes 

brighter. Using the analytical mode, photons emitted by the EDS detector are retrieved and 

picked up by a receptor. 

For conventional imaging, the scanning electron microscope (SEM) requires that specimens be 

conductive for the electron beam to scan the surface and that the electrons have a path to ground. 

Our sample was coated with carbon by a low vacuum sputtering system, in order to prevent the 

accumulation of static electric charge on the specimen during electric irradiation and improve 

contrast and resolution.  

SEM micrographs have a very large depth of focus yielding a characteristic three-dimensional 

appearance useful for understanding the surface structure of a sample. We used a JEOL JSM-

5910 LV SEM equipped with a PGT microanalysis system at the Laboratory of Magmas and 

Volcanoes, Clermont-Ferrand, France (Fig. 2.26). Moreover there is an EDS micro-analysis 
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system with a Si(Li) captor and an ultra thin window (UTW) which permits the detection of light 

elements. The Spirit system of PGT gives semi-quantitative and quantitative chemical analyses, 

as do the concentration profiles and chemical EDS mapping. This type of SEM uses X-ray for 

imaging mode. The electron beam, which has energy of 20 KeV, is focused by one or two 

condenser lenses into a beam with a very fine focal spot.   

The aim was obtain SEM micrographs of samples (Fig. 2.27 and 2.28) to compare it with X-ray 

diffraction and X-ray fluorescence maps, and at the same time to better understand the behavior 

of the samples when heated. 

 

 

Figure 2.26 Schematic diagram of a SEM microscope. 
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We get an energy spectrum that allows qualitative phase identifications. The comparison of the 

peak intensity on this spectrum identifies phases. 

 

 

Figure 2.27 Scanning electron microphotographs of two samples recovered from 30 and 48 GPa 
respectively, showing the central laser-heated zone that underwent complete melting. It formed 
an independent liquid ball separated from the rest of the sample. 

Figure 2.28 Scanning electron microphotographs showing a central zone of two samples 
recovered from 30 and 53 GPa respectively. These samples encountered laser heating between 
the solidus and liquidus temperatures.  

5 µm 

5 µm 20 µm
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2.9 Inductively coupled plasma atomic emission spectroscopy (ICP-

AES)

It is an analytical technique used to detect major, minor and trace elements. The spectrometer 

used in this study is a Horiba Jobin-Yvon ULTIMA C, at the Laboratory of Magmas and 

Volcanoes, Clermont-Ferrand, France. We used this technique in order to determine exactly the 

chemical composition of our chondritic samples. 

This technique uses the inductively coupled plasma (ICP) to produce excited atoms and ions that 

give off electromagnetic radiation at wavelengths characteristic of a particular element. The 

detector within the ICP detects this wavelength and also its intensity and can therefore calculate 

the amount of each element present within the sample previously put in solution. 

An ICP-AES is composed of an ICP and an optical spectrometer (Fig. 2.29). Argon gas was used 

to create the plasma. Then is generated a flame with a temperature of about 7000 K. A pump 

delivers the sample into a nebulizer where it is atomized and introduced directly inside the 

plasma flame. The sample collides with the electrons and charged ions in the plasma and is itself 

broken down into charged ions. The various molecules break up into their respective atoms which 

then lose electrons and recombine repeatedly in the plasma, giving off radiation at the 

characteristic wavelengths of the elements involved. 

 

 

 

 

 

 



 122

 

   

Figure 2.29 A diagram showing the ICP-AES process. 
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2.10 Electron microprobe (EMP) 

The electron microprobe is also known as an electron probe micro-analyzer (EPMA) or electron 

micro probe analyzer (EMPA). The electron microprobe is an analytical tool used to non-

destructively determine the chemical composition of small volumes of solid materials.  

The polished surface of the sample is bombarded with an electron beam accelerated by a 15 kV 

potential, emitting X-rays at wavelengths characteristic to the elements being analyzed. Intensity 

is measured with a detector and its wavelength is known thanks to the Bragg diffraction law (see 

paragraph 2.2). Comparing the wavelength and the intensity of X-rays emitted from the sample 

with those of standards, we are able to quantify elemental concentrations in the samples.  

The type used during my thesis is the CAMECA SX 100, with four wavelength dispersive 

spectrometers (WDS) and twelve diffraction crystals (Fig. 2.30 and 2.31). 

I used the electron microprobe to quantify the chemical composition of the some grain in the 

chondritic samples (Table 2.2).  
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Figure 2.30 Schematic cartoon of a Cameca SX 100; reproduced from the Cameca official site 
(www.cameca.com). 
 
 

Figure 2.31 Picture of a Cameca SX 100, available at the LMV, Clermont-Ferrand, France. 



 125

 
 SiO2 MgO FeO Al2O3 CaO 

grain1 51.859 33.538 6.3232 4.8961 3.3832

grain2 54.981 28.510 7.3195 5.0360 4.1531
grain3 43.387 53.960 2.0356 0.3168 0.3008

grain4 58.965 23.682 7.4602 5.6979 4.1950
grain5 44.018 53.227 2.5160 0.1127 0.1262
grain6 46.090 51.040 2.4255 0.2324 0.2128
grain7 52.443 32.156 6.6926 4.9690 3.7397

grain8 53.525 32.000 6.4000 4.3750 3.7000

Table 2.2 Oxides Wt% for some grain of the chondritic glass (Chapter 4 and 5) obtained with 
EMP analyses (See Table 2.1 for starting composition).  
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Chapter 3: Melting in the MgO-MgSiO3 system: A 

simplified chemical model for the lower mantle 
 

 

3.1 Abstract 

In this chapter, we present melting relations in the system MgO-MgSiO3 investigated using the 

laser-heated diamond anvil cell at typical lower mantle pressures. This binary chemical 

composition is used as a simplified model for the pyrolitic or chondritic mantle composition. We 

determined the pressure evolution of the eutectic temperature. Our melting curve plots in good 

agreement with previous work performed at lower pressures (Presnall et al., 1998). Also, as 

expected for this simplified system, it plots significantly higher than the solidus melting curves 

determined recently for chondritic (Andrault et al., 2011) or pyrolitic (Fiquet et al., 2010) mantle. 

The difference with our previous study increases from ~250 K to ~600 K with increasing 

pressure from 30 GPa to 135 GPa. 

In the same experiments, we could also determine the melting curve of platinum which was use 

as an IR-laser absorber. The Pt melting curve is found in good agreement with the precedent 

determination performed up to 70 GPa (Kavner and Jeanloz, 1998).  
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3.2 Introduction 

One of the most fundamental questions in the field of geology is related to the understanding of 

the physical and chemical processes that controlled formation and differentiation of the Earth’s 

planet across its history (Wetherill, 1990). It is well accepted that our planet experienced partial 

melting early in its history as a consequence of energy release due to accretion. Investigating the 

melting properties is primordial to improve our knowledge on the segregation of the different 

Earth’s reservoirs and the dynamics of our planet. Partial melting could still happen today in the 

lowermost mantle and could explain several chemical and thermal heterogeneities evidenced by 

seismic investigation (Lay et al., 2004; Garnero and McNamara, 2008; Stixrude et al., 2009), i.e. 

the ultra low velocity zone (ULVZ) at the core-mantle boundary (CMB). 

For these reasons, melting relations at high pressure and high temperature have been investigated 

in the past by various techniques. For pressure below 35 GPa, melting relations have been 

extensively investigated using the multi-anvil press apparatus. These studies show that both 

solidus temperature, the liquidus temperature and the liquid compositions are affected by pressure 

(Presnall et al., 1998; Litasov and Ohtani, 2002; Ito et al., 2004). At higher pressures, using the 

laser heated diamond anvil cell (LH-DAC), Zerr et al. (1998) and Fiquet et al., (2010) determined 

the melting properties of pyrolite, then we determined those of a chondritic mantle (Andrault et 

al., 2011). While the solidus melting curves appear relatively similar and compatible between the 

different studies, the liquidus melting temperature of the mantle remains today largely 

controversial. 

In this study, we investigate the eutectic melting temperature in the simplified MgO-MgSiO3 

system. Our interest is the change in melting temperature compared to the melting curves of pure 

MgO-periclase (Pe) and MgSiO3-perovskite (Mg-Pv) lower mantle phases.  Melting of forsterite 
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was previously reported at ~2700 K for a maximum pressure of 22.6 GPa (Presnall et al., 1998).  

No information exists about the melting properties in this system at very high pressures. Only one 

single point is reported for the melting of (Mg,Fe)2SiO4 olivine at 4300 K and ~130 GPa, using 

shock wave experiments (Holland and Ahrens, 1997). This temperature has been successively 

revised by Luo et al. (2004), suggesting that melting point of olivine at the CMB is 4000 ± 300 

K. 

Our experimental set-up also gave us the opportunity to discuss the melting curve of platinum.  

Melting curves of metals is of considerable importance in applied physics and geophysics. In 

particular, platinum (Pt) is used in high-pressure shock experiments and diamond anvil cell 

measurements as a pressure standard (as in this study). The use of Pt is due to its relative 

chemical inertness, structural stability in the face-centered-cubic (FCC) phase to very high 

pressure, high density, low strength, and easy availability. Its melting temperature was reported to 

increase from ~2500 K to ~3300 K with increasing pressure from 20 to 75 GPa, respectively, 

using spectroradiometric and visual observations in a LH-DAC (Kavner and Jeanloz, 1998). 

Computational methods also suggest a melting temperature of ~2600 and ~3300 K at the same 

pressure conditions (Wang et al., 2001).  
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3.3 Technical details 

We used a membrane-type DAC mounted with 75/300 beveled diamonds. Temperatures were 

provided by two YAG lasers aligned on both sides of the sample. Axial temperature gradient was 

limited by the presence of MgO that provides good thermal insulation (Shen et al., 2001). Hot 

spot with diameter larger than 30 μm were obtained by defocusing the two YAG lasers, in order 

to minimize the radial temperature gradient. Temperatures were measured in situ from sample 

thermal emission using reflective lenses to prevent any chromatic aberration (Schultz et al., 

2005). For solid samples, temperature stability was better than 20 K during the 20 to 30 seconds 

of data acquisition. The total temperature uncertainty is estimated to 50 K and 10 K for solid and 

molten samples respectively, including uncertainties on the thermal emissivity factors. 

 The sample properties were investigated in situ thanks to the use of the X-ray diffraction set-up 

available at the ID27 beamline of the ESRF (Mezouar et al., 2005). Wavelength was fixed to 

0.3738 Å (HE3084 experiments) or 0.2647 Å (HS3258 experiments). The X-ray beam has been 

focused to 2x3 μm2 using two bent KB-mirrors. Typical acquisition time was 20-30 seconds 

using imaging plate or MAR345 detector. Position of the X-ray beam was determined from 

optical observations of the Re-gasket fluorescence. For integration of 2D-images and further data 

treatment we used the Fit2d (Hammersley, 1996) and GSAS packages (Larson and Von Freele, 

1988), respectively. 

Our samples consisted of a thin pellet of Mg2SiO4 forsterite mixed with a few Wt% of Pt or W 

and loaded between two MgO pellets. Pt or W acts as a YAG absorber and pressure marker 

(Jamieson et al., 1982) at high pressure and temperature. Experiments with W were performed in 

order to check for artifacts potentially associated with the melting of Pt (Ono et al., 2005). We 

obtained melting temperatures very similar in both case. However, W tends to react with the 
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sample after long time heating, which limits the sample life time. To estimate pressure at high 

temperature, we applied a pressure correction (�P) for each heating temperature (�T) on the basis 

of the �P obtained for the experiments performed in the MgSiO3-MgO system (because, as 

expected, Mg2SiO4 forsterite undergoes disproportionation into a mixture of Pc and Mg-Pv at 

lower mantle conditions (Presnall, 1995)). This is quantitatively equivalent to applying �P of 

~50% of the theoretical thermal pressure (�Pth= �K�T, where � and K are thermal expansion and 

bulk modulus, respectively) calculated from the thermoelastic parameters of the main Mg-Pv 

component (Andrault et al., 1998; Fiquet et al., 2000). The value of �P is ~2.5 10-3 GPa/K. Both 

methods give results similar within a couple of GPa. Pressure error at high temperature is 

estimated to 3 GPa. 



 132

3.4 Experimental Methodology 

Since our samples (Fig. 3.1) consisted of 5 to 10 μm thick pellets of Mg2SiO4-forsterite mixed 

with a YAG-laser absorber embedded between two MgO pellets, it represents a large MgO-

excess in the pressure chamber. For this reason, eutectic melting in the MgSiO3-MgO system can 

be detected by disappearance of the diffraction lines of the MgSiO3-perovskite phase. In case the 

eutectic composition is enriched in MgSiO3 compared to the forsterite pellet, extra-MgO can float 

in the partially molten sample until it joints (or not) the interface with the MgO pressure medium. 

In case the eutectic composition is enriched in MgO, melting of the entire forsterite pellet is 

achieved by dissolution of some MgO from the external pellets (the pressure medium) into the 

central liquid blob. According to previous studies, we expected the eutectic composition enriched 

in MgSiO3 with increasing pressure (Liebske et al., 2005). 

Melting criteria can be defined according to changes in the X-ray diffraction pattern. We search 

for first order changes such as (i) disappearance from the imaging plate of diffraction rings of 

Mg-Pv, (ii) reappearance of these diffraction rings after temperature quench, (iii) major variation 

of the intensity of diffraction lines on integrated spectra (Figures 3.2 to 3.5). These criteria can be 

complemented with observations of the sample optical changes as well as analysis of relationship 

between laser-power and sample temperature. In particular, crossing of flash temperatures (when 

increasing of temperature is very abrupt) is indicative of sample melting. 

For determination of the Pt melting curve, it is the disappearance of the diffraction lines that 

represents the main criterion. 
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Figure 3.1 Electron microphotograph of a forsteritic sample recovered from 30 GPa.  
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Figure 3.2 Typical 2D-diffraction images recorded at increasing temperature at pressures of (a) 
~65 GPa, (b) 78-86 GPa and (c) 107-130 GPa. Images at 300 K after laser heating are also 
reported. Orange, green, and blue arrows correspond MgO, Mg-Pv, and Pt, respectively. 
Diffraction rings are largely reduced in intensity (from B1 to B2), eventually disappear (from C2 
to C3) and reappear after temperature quench (B3 and C4), as a proof of sample melting at very 
high temperature. 
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Figure 3.3 X-ray diffraction spectra recorded at increasing pressure and temperature. Melting of 
Mg-Pv is evident above 130 GPa and 4750 K. 
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Figure 3.4 X-ray diffraction spectra recorded at increasing pressure and temperature. Melting of 
Mg-Pv and Pt is clearly evident above ~80 GPa and 4300 K. 
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Figure 3.5 Diffraction patterns as function of temperature, from 2300 K (bottom) to 5000 K 
(top). Sample pressure is simultaneously increased from 70 to 90 GPa, due to the thermal-
pressure effect (see text). Melting is observed at ~4000 K, as evidenced by changes in peaks 
intensity of the Mg-Pv. 
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3.5 Results and Discussions 

3.5.1. Silicate melting 

Our new data set includes nine successful loadings in the LH-DAC. Each melting point has been 

determined after laser-heating of at least one fresh piece of sample (Figure 3.6). Eutectic 

temperature is found to increase smoothly from 2800 K to 4300 K with pressure increasing from 

25 to 120 GPa. The melting curve is perfectly fitted by modified Simon and Glatzel equation 

(Simon and Glatzel, 1929) [T=T0*(P/(a+1))1/c] with a= 24 GPa and c= 1.75, and the extrapolated 

melting temperature at ambient pressure T0=1650 K. Extrapolation to the CMB pressure of 135 

GPa yields a melting temperature of ~4830±150 K. Our melting curve is not affected by the Pv to 

post-Pv phase transition that is expected to occur at a significantly higher pressure for 4830 K. 

Indeed, this TCMB is reported at 3500 K for 135 GPa (Tateno et al., 2009). Our eutectic melting 

curve plots well below the melting curves of the pure end-member phases MgSiO3-perovskite, 

MgO and CaSiO3-perovskite (Boehler, 2000) (Figure 3.7). The temperature difference is huge, 

about 1000 K at 60 GPa, for example. This behavior is not surprising, since it is an intrinsic 

property of eutectic liquids to show the lowest melting temperature in a given chemical system. 

At low pressures, our data set fits very well with the eutectic melting curve of the Mg2SiO4-

MgSiO3 system (Presnall et al., 1998). On the other hand, the data set plots about ~200 K higher 

than the melting curves for pyrolite determined in a large-volume press (Herzberg and Zhang, 

1996; Litasov and Ohtani,, 2002; Trønnes and Frost, 2002). Finally, our melting curve plot ~750 

K higher than the single data point reported at 4000±300 and ~130 GPa for melting of 

(Mg,Fe)2SiO4 olivine from shock-experiments (Luo et al., 2004). These comparisons between 

melting curves of Fe-free and Fe-bearing materials suggests important melting temperature 

depletion due to the presence of FeO in the sample. 
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Figure 3.6 Experimental determination of the eutectic melting curve of MgO-MgSiO3 system. 
Black dots, green dots, red dots and red arrows correspond to P-T conditions where all phases are 
solid, where the Mg-Pv phase is mostly disappeared and where the temperature raises abruptly to 
extremely high temperatures, respectively. The interval between solid (black and green dots) and 
red dots corresponds to the melting curve and it is fitted with Simon-Glatzel equation (black 
line). Black and green dots correspond to solid for sample with Pt or W YAG absorber, 
respectively. 
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3.5.2. Platinum melting 

We observed a smooth increase of the melting temperature of platinum from 2600 K to 3600 K 

with pressure increasing from 20 to ~100 GPa, respectively. Our melting curve is in good 

agreement with the melting curve of Kavner and Jeanloz (1998), expect at the highest pressure 

where our curve plots, and thus extrapolates, to higher melting temperatures (Figure 3.8). As for 

the MgSiO3-MgO system, the melting curve is perfectly fitted by modified Simon and Glatzel 

equation with a=102 GPa, c=2.0, and T0=2046 K. These parameters are similar to those 

previously reported for Pt (Babb, 1963). 

We note that the melting curve of platinum plots below that of the MgO-MgSiO3 system (Figure 

3.9), which could potentially affect our determination of the melting curve in the MgO-MgSiO3 

system. However, we did not observe any significant change in the laser heating procedure after 

Pt-melting. We interpret this effect by stability in their positions of the submicronic Pt particles 

which remain well embedded in the silicate matrix, until the later stars to melt. No other 

diffraction lines than those representative of Pt, Pe and Mg-Pv are observed in the diffraction 

pattern after the laser shutdown, which confirms the Pt inertness toward Pe and Mg-Pv. Also, our 

results disagree with the recent suggestion that platinum could react with the carbon of the 

diamond anvils to form PtC (we did not find diffraction lines and peaks corresponding to PtC 

phase) at high pressure and temperature (Ono et al., 2005; Ono and Oganov, 2005). This 

discrepancy results from the use of MgO pellets to insulate the sample from the diamonds in our 

experiments.  
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Figure 3.7 Comparison between our MgO-MgSiO3 eutectic melting curve and previous works 
performed for various materials: B-00 for simple oxide phases (Boehler, 2000); P-98 for melting 
of MgO-MgSiO3 system (Presnall et al., 1998); L-04 for Olivine (Luo et al., 2004); A-11 for 
synthetic chondrite solidus and liquidus (Andrault et al., 2011); F-10 for peridotite liquidus and 
solidus (Fiquet et al., 2010); LO-02, TF-02 and Z-98 for melting of pyrolite by (Litasov and 
Ohtani, 2002), (Trønnes and Frost, 2002; full and open circle for solidus and liquidus, 
respectively) and (Zerr et al., 1998, upper and lower estimation of the solidus), respectively. 
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Figure 3.8 Melting curve of platinum. Yellow and orange points correspond to solid and molten 
platinum, respectively. These results are fitted with the Simon-Glatzel model (red line) and 
compared with previous work (Grey line: Kavner and Jeanloz, 1998). 
 

Figure 3.9 Melting curve of MgO-MgSiO3 system compared with that of platinum
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3.6 Conclusions 

We have determined the eutectic melting curve of the MgO-MgSiO3 system for the lower mantle 

pressure conditions. Our measurements are in good agreement with all data sets, basically: (i) at 

low pressures with the multi-anvil experiments performed in the Mg2SiO4-MgSiO3 system; (ii) at 

mid-mantle pressures with the melting curves of pure MgO and MgSiO3 which plot at 

significantly higher temperatures; and (iii) at all pressures with the melting curve of Fe-bearing 

samples that plot at lower temperatures.  

Beside the own interest of the MgSiO3-MgO eutectic melting curve that is described above, our 

main goal while performing these experiments was to set-up an experimental procedure for in

situ determination of the melting properties at extreme P-T conditions in the LH-DAC. The 

quality of our results demonstrated that this is done. The next two chapters present experimental 

results for geologically relevant sample compositions. 

Finally, could be very important determine the weight percentage of MgO periclase and MgSiO3 

perovskite in the eutectic liquid. 

In this way, we can be able to: 

' Obtain a diagram weight perentage (wt%) versus pressure; 

' Constrain the ocean magma properties. 
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Chapter 4: Solidus and liquidus profiles of chondritic 

mantle: Implication for melting of the Earth across its 

history 
 

This chapter introduces results of liquidus and solidus melting curves for a chondritic 

composition and implications for melting of the Earth from beginning to present day. 

Those results are presented in the form of a paper published by Earth and Planetary Science 

Letters, in 2011. 

In that study, we present: 

1. Liquidus and solidus melting curves of chondritic mantle up to core-mantle boundary 

conditions; 

2. Geophysical implications of melting curves for chondritic mantle; 

3. Comparison of melting with the geotherm; 

4. Discussions on an early magma ocean. 

 

This work was made in collaboration with Denis Andrault (my advisor), Nathalie Bolfan-

Casanova and Ali Bouhifd. This chapter must be considered as a first part of the work on 

chondritic mantle including iron partitioning (chapter 5). 
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4.1 Abstract

We investigated the melting properties of a synthetic primitive mantle up to core-mantle 

boundary (CMB) pressures, using laser-heated diamond cell. Melting criteria are essentially 

based on the use of X-rays provided by synchrotron radiation. We report a solidus melting curve 

lower than previously determined using optical methods. The liquidus curve is found between 

300 and 600 K higher than the solidus over the entire lower mantle. At CMB pressures (135 

GPa), the chondritic mantle solidus and liquidus reach 4150 (±150) K and 4725 (± 150) K, 

respectively. 

We discuss that the lower mantle is unlikely to melt in the D"-layer, except if the highest estimate 

of the temperature profile at the base of the mantle, which is associated with a very hot core, is 

confirmed. Therefore, recent suggestions of partial melting in the lowermost mantle based on 

seismic observations of ultra-low velocity zones indicate either (1) a outer core exceeding 4150 K 

at the CMB or (2) the presence of chemical heterogeneities with high concentration of fusible 

elements. 

Our observations of a high liquidus as well as a large temperature gap between solidus and 

liquidus temperatures have important implications for the properties of the magma ocean during 

accretion. Not only complete melting of the lower mantle would require excessively high 

temperatures, but also, below liquidus temperatures partial melting should take place over a much 

larger depth interval than previously thought. In addition, magma adiabats suggest very high 

surface temperatures in case of a magma ocean that would extend to more than 40 Gpa, as 

suggested by siderophile metal-silicate partitioning data. Such high surface temperature regime, 

where thermal blanketing is inefficient, points out to a transient character of the magma ocean, 

with a very fast cooling rate. 
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4.2 Introduction 

A large proportion of our planet has experienced melting in the course of its accretion history as a 

consequence of the energy release associated with a large impacts, radioactive decay and core 

formation. Major unknowns remain about this early time, in particular the extension depth of the 

magma ocean and the chemical signature inherited from mantle crystallization during cooling. 

The melting curve of the primitive mantle thus has major consequences for the existence of 

chemical heterogeneities and the survival of primitive mantle reservoirs. In the modern Earth 

seismology evidences heterogeneous properties of the D"-region which extends from the core-

mantle boundary (CMB) upwards 250 km (Lay et al., 1998). There are, indeed, evidences for 

large-scale patterns of heterogeneities, with anomalous set of VP-VS sound velocities, which can 

hardly be explained by phase transitions in minerals or thermal anomalies. Instead, they seem to 

evidence chemical heterogeneities, which can be of different origins: (i) partial melting in the D"-

layer (Lay et al., 2004), leading to chemical segregation of the mantle; (ii) relics of descending 

slabs rich in mid-ocean ridge basalts (MORB); (iii) zones enriched in incompatible elements 

associated to the progressive crystallization of an ancient magma ocean and trapped in the 

lowermost mantle (Labrosse et al., 2007).; and/or (iv) lower mantle material affected by chemical 

exchanges with outer core. Each hypothesis has specific implications for our comprehension of 

the dynamics of the Earth, as well as for elemental segregation between the different geological 

reservoirs. Unfortunately, it remains difficult to distinguish between the different scenarios. 

Indeed, the thermo-elastic parameters of the main lower mantle minerals are known with 

insufficient accuracy for inferring the mineralogy of this very remote using the seismic features. 

Especially, it remains a challenge to infer any chemical anomaly other than Mg/Si and 

Fe/(Mg+Fe) ratios. 
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In order to assess the potential occurrence of partial melting in the D"-region, one must refine the 

melting curves of the different geological materials. For pressures up to 25 GPa, melting curves 

of mantle silicates and phase relations in a partially molten mantle have been investigated using 

the multi-anvil press. It has been shown that pressure affects significantly the solidus and liquidus 

temperatures as well as composition of the eutectic liquids (Ito et al., 2004; Liebske et al., 2005; 

Litasov and Ohtani, 2002). At higher pressures, while the melting curve of end-member phases is 

relatively well documented using laser-heated diamond anvil cell (LH-DAC) (e.g. Boehler, 

2000), shock wave experiments (e.g. Luo et al., 2004) or ab initio calculations (e.g. Stixrude and 

Karki, 2005), melting of material with relevant geological composition was much less 

investigated. For pyrolite, optical observations have been used to determine the melting curve as 

a function of pressure using the LH-DAC (Zerr et al., 1998), but only up to ~60 GPa. This 

pressure range remains too limited for quantitative extrapolation to the ~130 GPa representative 

of the D"-layer. On the other hand, using shock-wave experiments, melting of (Mg,Fe)2SiO4 

olivine was reported at 4300 K and ~130 GPa (Holland and Ahrens, 1997). Recently, the same 

group corrected this value to 4000 (300) K, after improvement of the temperature estimation (Luo 

et al., 2004). 
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4.3 Methods 

Ultra-brilliant X-ray beams are now available from Synchrotron ring for in situ investigation of 

the melting behavior in the laser-heated diamond anvil cell (LH-DAC). We used a membrane-

type DAC mounted with 250 �m or 75/300 �m culet-diameter diamonds. Re gaskets were pre-

indented to 40 �m or 20 �m and laser-drilled to 80 �m or 50 �m, respectively. Small glass flakes 

were loaded in between two NaCl or KCl pellets, and a few experiments were performed without 

pressure medium. Salts provide good thermal insulation from the diamond and can be used as 

pressure standards at 300 K (Sata et al., 2002; Walker et al., 2002). Hot spots with diameter 

larger than 30 �m were obtained by two YAG lasers aligned on both sides of the sample. 

Temperatures were measured from sample thermal emission reflective lenses to prevent any 

chromatic aberration (Benedetti and Loubeyre, 2004). The intrinsic temperature uncertainty is 

estimated to be 50 K, including uncertainties on the thermal emissivity factors. For solid samples, 

temperature stability was better than 20 K during the 20 to 30 seconds of data acquisition. 

However, when the sample starts melting, the temperature stability deteriorates. In this study, we 

discarded those measurements where temperature fluctuation exceeded 50 K. Also, the emissivity 

factor is less documented for liquid phases. Therefore, the temperature uncertainty is estimated to 

be 50 K and 100 K, for solid and molten samples, respectively. 

Our sample consisted of a synthetic CMASF glass with oxide contents in chondritic proportions 

(except for iron) so as to model the primitive mantle after core segregation (Wasson and 

Kallemeyn, 1988) (Table 4.1). We did not include minor and trace elements, which most 

abundant are Na (4900 ppm) and K (560 ppm). We believe that their effect on solidus and 

liquidus curves can be neglected as a first approximation because these elements are easily 

inserted in the CaSiO3 perovskite phase (Ca-Pv) (Corgne et al., 2003). We did not mix our 
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sample with any YAG-laser absorber or pressure standard, such as Pt or W, in order to avoid any 

chemical reaction. Finally, we estimate that the melting behavior of our starting material should 

be comparable to that of pyrolite, due to their related compositions (Ringwood, 1975) (Table 

4.1).   

 

 

                                     Chondritic mantle (this study)            Pyrolite  

Oxide 

SiO2

Al2O3

FeO 

CaO 

MgO 

(Wt%) 

49.6 

3.4 

8.48 

3.3 

35.1

(Mole %) 

43.5 

1.8 

6.2 

2.6 

45.9

(Wt%) 

45.1 

3.3 

8.0 

3.1 

38.1

Table 4.1 Composition of starting material used in this study, as measured by electron 

microprobe analyses. At lower mantle P-T conditions, the Ca-Pv, Mg-Pv, and Fp phase 

proportions are expected to be 4.5, 75.7, and 19.8 mol%, respectively. This composition is 

representative of a chondritic-type mantle (Wassen and Kallemeyn, 1988), and it is also quite 

close to pyrolite (Ringwood, 1975). 

 

In order to probe the sample properties in-situ, we used the X-ray diffraction set-up available for 

LH-DAC at the Id27 beamline (Mezouar et al., 2005). Wavelength was fixed to 0.3738 Å. X-ray 

focusing to better than 2x3 �m2 was achieved by two bent KB-mirrors. Typical acquisition time 

is 20-30 seconds using an imaging plate or a CCD detector. The X-ray beam position was 

determined from optical observations of the Re-gasket fluorescence. Therefore, combined images 



 151

of x-ray beam and YAG lasers could be perfectly positioned on the pinhole of the entrance of the 

spectrometer used for temperature measurements. Integration of 2D-images and further data 

treatment were performed using the Fit2d and the GSAS packages, respectively. 

For estimating pressure at high temperature, we used two different methods. The first one is 

based on the PVT equation of state (EoS) of CaSiO3 (Shim et al., 2000) from which pressure is 

derived from the Ca-Pv volume at a known experimental temperature. Due to a non-negligible 

Al-solubility in Ca-Pv (Nishio-Hamane et al., 2007), its EoS could be affected, which would 

increase the experimental error. The second method is based on an estimation of the pressure 

correction (�P), which is a fraction of the theoretical thermal pressure (�Pth). The latter consists 

on an increase of pressure due to heating (�T) at constant volume, �Pth= �K�T, where � and K 

are thermal expansion and bulk modulus, respectively. Experiments and calculations show that, 

due to partial volume relaxation at high-temperature, the effective �P corresponds to about half 

of the theoretical thermal pressure (Andrault et al., 1998). According to the thermo-elastic 

parameters of the main Mg-Pv component (Fiquet et al., 2000), the value of �P is ~2.5 10-3 

GPa/K. Both methods give results similar within a couple of GPa. So, pressure error at high T is 

estimated to be about 3 GPa. 

We investigated the melting temperature using NaCl and KCl as thermal insulators, but also 

tested without insulating pellets in a few experiments, in order to make sure that the results are 

not affected by the nature of the pressure transmitting medium. NaCl happens to melt at 

temperatures similar, or even below, the liquidus temperatures of the primitive chondritic mantle 

composition used. Therefore, all liquidus temperatures reported here were determined using KCl 

insulator. The data set presented in here includes 19 successful high-pressure loadings. Each 

melting point has been determined after laser-heating of at least one fresh piece of sample, i.e. 

melting at one single pressure. 
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4.4 Results 

4.4.1 Melting criteria 

In general, the onset of melting can be detected using X-ray diffraction by the appearance of a 

diffuse x-ray scattering band typical of liquids. Such band is easily observed if the sample is 

composed of relatively high Z elements such as iron (Andrault et al., 2006; Shen et al., 2004). If 

the sample is composed of low Z-elements, such as is the case for a mantle silicate, the sample 

thickness should be important to enable observation of the diffuse band. This is not the case of 

our samples, which are intentionally thin in order to minimize axial thermal gradients. 

Additional criteria based on X-ray observations are (1) the rapid re-crystallization of the sample 

at high temperature, with appearance and disappearance of X-ray spots, indicative of coexistence 

of crystal and melt. (2) At the same time as solid and liquid coexist, the temperature reaches a 

plateau while laser power is continuously increased, just before the liquid diffuse scattering 

appears and temperature simultaneously increases (Dewaele et al., 2007). In the following we 

used the fast disappearance of diffraction peaks of the solidus phase and re-crystallization as a 

sign of solidus temperature and the end of the temperature-power plateau as the sign of liquidus 

temperature. 

 

4.4.2 Determination of solidus temperature 

At sub-solidus temperatures, the phases present are CaSiO3-perovskite (Ca-Pv), (Mg,Fe)O 

ferropericlase (Fp), and Al-bearing (Mg,Fe)SiO3 perovskite (Mg-Pv), in the order of increasing 

abundance. The first phase to disappear from the diffraction patterns when increasing temperature 

is Ca-Pv (Fig. 4.1), in agreement with a previous study using multi-anvil press (Ito et al., 2004). 

Concerning Fp, persistence or disappearance of this phase is difficult to detect, first because its 
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content is limited to 20 mole% for this chondritic-type composition and secondly because most of 

its diffraction lines overlap with those of Mg-Pv (Andrault, 2001). Thus, disappearance of Ca-Pv 

and Fp could be almost simultaneous. The Ca-Pv disappearance is concomitant with rapid grain 

growth of the Mg-Pv phase, as evidenced by larger diffraction spots on the diffraction image 

(Figs. 4.1A and 4.1B). Also, a number of diffraction peaks typical of the three phases reappear on 

the imaging plate after laser shut-down. Note that for such mineralogy, where at least three 

phases coexist, the kinetics of grain growth are extremely sluggish in the solid state (Yamazaki et 

al., 1996). Thus, changes of peak intensity can only be attributed to non-solid state diffusion, i.e. 

diffusion assisted by melt. Another source of information is based on the sample shape after 

laser-heating. In the case of heating to the solidus temperature, the shape of the sample is affected 

only moderately (Fig. 4.1D). Thermal expansion in the laser spot induced a circular-shaped 

structure, and some cracks in the surrounding material, at more than 10-15 microns from the 

center, where the material has not been heated at high temperatures. This shape contrasts largely 

with what is observed when heating to the liquidus temperatures (Fig. 4.2D). 

We found that melting at the solidus temperature is very difficult to detect for those LH-DAC 

runs where we did not use any thermal insulator. The reason is that solidus melting is dispersed 

over a broad range of laser power, due to a large axial temperature gradient across the sample, 

given that the diamond remain basically cold compared to the center of the laser spot. Also, it is 

possible that a sample fraction remains below the solidus temperature at the diamond surface, 

before the central part of the sample reaches the liquidus temperature. Therefore, clear 

disappearance of CaSiO3 (and/or Fp) diffraction lines cannot be observed in this case. 
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Figure 4.1 Experimental evidences of sample partial melting and determination of the solidus 
temperature upon temperature increase from 300 K (A): at 2650 K (B) and a nominal pressure of 
48 GPa, we observe first order changes in the position and intensity of diffraction peaks. First, 
disappearance of the CaSiO3-perovskite diffraction peaks (pointed by arrows in (A) and (C)). 
Altogether, changes in peaks intensity are compatible with loss of 90% and 20% of the Ca-
bearing and Mg-bearing perovskite phases, respectively. Simultaneously, we observe at 2650 K 
new spots of Mg-Pv phase (B) indicative of re-crystallization on a short time scale; this can only 
be due to the presence of melt at grain boundaries. (D) Electron microphotograph showing a 
central zone of a sample recovered from 30 GPa that encountered laser heating between the 
solidus and liquidus temperatures (see Fig. 4.2D for comparison).   
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4.4.3 Determination of liquidus temperature 

When approaching the liquidus temperature, we first observe a plateau where increasing laser 

power does not yield an increase in temperature, just before a sudden temperature jump of more 

than 500 K (Fig. 4.2C). A similar criterion has been used for melting determination in metals 

(Dewaele et al., 2007). We explain the plateau by a progressive disappearance of Mg-Pv with 

increasing laser power, with a coexisting liquid phase absorbing the YAG-radiation less than Mg-

Pv. Indeed, a higher absorption efficiency for the solid is expected since Al-bearing (Mg,Fe)SiO3 

perovskite contains high Fe3+-content (Lauterbach et al., 2000). The last data point on the plateau 

corresponds to the laser power required to finally achieve a good coupling between YAG-

radiation and the silicate melt, i.e. once the phase that absorbs the YAG-radiation better (i.e. the 

Mg-Pv) is consumed. Moreover, the flatness of the plateau indicates that the melt fraction has no 

significant effect on melting temperature. Such a high liquid productivity is expected when 

incompatible elements are not abundant in the bulk composition, which clearly is our case, and 

when the liquid composition gets closer to the remaining solid phase, which is also our case for 

high degree of partial melting due to the fact that Mg-Pv, the liquidus phase, is very abundant in 

our samples (Asimow et al., 1997) (Table 4.1). 

A very important feature is the total disappearance of the fine and continuous diffraction lines of 

the Mg-Pv phase in the high-temperature X-ray spectrum, evidencing that this phase is 

completely molten at that temperature (Fig. 4.2A). The diffuse X-ray scattering is not clearly 

visible in our samples because the sample is too thin. The re-appearance of sparse and large 

diffraction spots upon temperature quench is typical of crystallization from a melt (Fig. 4.2B). 

After quenching from the liquidus temperature, we observe a drastic change in the sample shape 

(Fig. 4.2D). The central part of the sample presents a round-shape with a diameter ~15-20 



 156

microns. This sample piece is detached from the rest of the sample. This part has undergone 

complete melting which induced deformation of the surrounding NaCl and KCl pressure medium 

to form a kind of sample droplet. 

 

 

 

Figure 4.2 Criterion used for determination of the liquidus temperature: X-ray diffraction pattern 
recorded (A) at 4400 K and (B) after quenching from 4800 K at a pressure of 100 GPa. Quench 
from the liquid phase (B) yields larger and new spots typical of sample re-crystallization from a 
fully molten sample. Indeed, while these two diffraction patterns were taken a few minutes apart 
from each other, the patterns are radically different in peak positions and intensities. Also, we 
observe total disappearance of all fine and continuous diffraction lines (indicates by arrows in 
(A)), which evidences the complete melting of Mg-Pv liquidus phase. (C) Sample temperature 
plotted as a function of the laser power. A discontinuity occurred at the liquidus temperature due 
to change in the absorption of the YAG-laser by the liquid sample. (D) Electron microphotograph 
of a sample recovered from 34 GPa showing the central laser-heated zone that underwent 
complete melting. It formed an independent liquid-ball separated from the rest of the sample. 
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4.4.4 Melting curves 

The solidus temperature is found to increase smoothly with pressure from ~2500 K to ~4200 K at 

30 to 140 GPa. The liquidus is found at 300 to 600 K above the solidus (Fig 4.3). Both melting 

curves are well fitted by modified Simon and Glatzel equation � �� �( )caPTT /1
0 1/ �*�  with 0T = 

2045 K, a= 92 GPa and c= 1.3 for the solidus, 0T = 1940 K, a= 29 GPa and c=1.9 for the liquidus, 

where 0T  is the virtual (this mineral assemblage is only stable above 24 GPa) melting 

temperature at ambient pressure (Simon and Glatzel, 1929). The interpolation to the CMB 

pressure of 135 GPa yields solidus and liquidus temperatures of 4150 ±150 K and 4725 ±150 K, 

respectively. At low pressures, both solidus and liquidus curves are compatible with previous 

determinations using multi-anvil press (Litasov and Ohtani, 2002; Trønnes and Frost, 2002). Our 

liquidus curve falls between upper and lower bounds of the solidus curve reported previously 

using LH-DAC (Zerr et al., 1998). However, it is unlikely that the speckle method used by Zerr et 

al. can precisely determine solidus and liquidus temperature in the absence of in-situ X-ray 

diffraction observation. In addition, their melting curves must be shifted to higher pressures 

because they neglected the effect of thermal pressure inherent to the use of LH-DAC (~2.5 

GPa/1000 K, see above). Such uncertainties, leading to overestimation of the melting temperature 

using optical methods, explain why the MORB melting curve of Hirose et al. (1999) is observed 

at higher temperature than the solidus of our primitive mantle composition, although MORB is 

more fusible. Finally, the data point reported at 4300 K and ~125 GPa for melting of 

(Mg,Fe)SiO4 olivine from shock-experiments (Holland and Ahrens, 1997) falls in between our 

solidus and liquidus melting curves, showing a relatively good agreement between the two 

different data sets. Indeed the forsterite liquidus is observed to be lower than that of enstatite at 

high-pressures (Mosenfelder et al., 2009). Most recently, liduidus and solidus melting curves for 
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a natural KLB-1 peridotite has been reported (Fig. 4.4) by Fiquet et al. (2010). Temperature 

differences on melting curves are supposed be due to: starting material composition and assembly 

(No thermal insulator in Fiquet et al. (2010) experiments) and experimental set-up. 

 

Figure 4.3 Solidus (red squares) and liquidus (green squares) melting points and curve fits using 
the Simon-Glatzel model (continous red and green lines) obtained for our chondritic-type mantle 
composition. These results are compared with previous works on the melting of lower mantle 
materials (Pyrolite: LO-02 (Litasov and Ohtani, 2002) and TF-02 (Trønnes and Frost, 2002) (full 
and open circle for solidus and liquidus, respectively) and Z-98 (Zerr et al., 1998) upper and 
lower estimations of the solidus; Mid-ocean ridge basalt: H-99 (Hirose et al., 1999); Olivine: L-
04 (Luo et al.; 2004); Simple oxides: B-00 (Boehler, 2000)).  
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Liquidus        Solidus
Pressure (Gpa) Temperature (K) Pressure (Gpa) Temperature (K) 

141 4750 140 4200 
135 4725 139 4180 
110 4400 135 4150 
85 3950 125 4000 
70 3650 109 3650 
68 3500 108 3800 
65 3500 102 3700 
60 3300 98 3550 
50 3150 82 3350 
45 3050 74 3250 
43 3120 65 3000 
35 2950 63 3100 
28 2750 62 3050 
21 2550 57 2850 
    47 2700 
    39 2650 
    33 2620 

Table 4.2 Pressure-Temperature conditions for liquidus and solidus melting points (green and red 
squares, respectively in Fig. 4.3). 
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Figure 4.4 Solidus (red squares) and liquidus (green squares) melting curves (this study) 
compared with previous works (Peridotite: F-10 (Fiquet et al., 2010) liquidus and solidus melting 
curves and Pyrolite: LO-02 (Litasov and Ohtani, 2002) and TF-02 (Trønnes and Frost, 2002)). 
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4.5 Discussions 

4.5.1 Thermal structure of the D" layer 

In order to identify melting in the mantle, melting curves must be compared to the geotherm. 

While temperatures are relatively well constrained in the shallow mantle due to anchoring by 

phase transitions at 410 and 670 km depth in (Mg,Fe)2SiO4 (Ito and Katsura, 1989), extrapolation 

of the adiabatic geotherm ( pCgTdzdT // �� , where �, g, pC , are the thermal expansion, the 

gravity constant and heat capacity at constant pressure) to the base of the mantle using the elastic 

parameters of constitutive mantle minerals bears a much larger uncertainty (Fig. 4.5). Differences 

in adiabatic geotherms are often within 0.1 K/km but translate into up to 250 K difference at the 

bottom of the mantle yielding in general 2500 K ± 250 at 2700 km depth (Brown and Shankland, 

1981; Bunge et al., 2001; Stacey and Davis, 2004). Whereas more sophisticated models using 

inversion of seismic radial profiles indicate hotter temperatures of 2800 to 3400 K at 2700 km 

depth (Matas et al., 2007), dependent on the Mg/Si ratio. 

The temperature profile in the D"-layer should be much steeper accounting for the difference in 

temperature between the mean mantle above and the molten outer core. The present-time 

temperature gradient in this zone depends on the initial difference in temperature between the 

outer core and the mantle a few hundreds kilometres above the CMB, the core energy budget 

since its formation (Labrosse et al., 1997), the thickness of the boundary layer and the thermal 

conductivities. Recently, the thermal structure of the D" region has been tentatively constrained 

in light of the new post-perovskite phase of MgSiO3 (Murakami et al., 2004; Oganov and Ono, 

2004). It was proposed that the observation of pairs of positive and negative S-wave velocity 

jumps in the D" region are due to double-crossing of the perovskite to post-perovskite (PPv) 

transition (Hernlund et al., 2005). Based on the latest measurements of the Pv-PPv Clapeyron 
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slope in MgSiO3, this would mean that the temperature at the CMB could be around 3700 K 

(Tateno et al., 2009). Still, it can be argued that the lower mantle contains Fe and Al that are 

known to influence the depth and thickness of phase transitions in general and have been 

demonstrated recently to considerably broaden the Pv-PPv transition due to the very different 

iron partitioning between the two phases (Andrault et al., 2010; Catalli et al., 2009). The 

interpretation of the seismic discontinuities in terms of temperature should thus be revised in 

order to take this into account. 

In any case, refining the outer core temperature remains essential for our knowledge of the 

temperature profile in the D"-layer. This temperature is generally estimated by extrapolating the 

adiabatic temperature profile from the inner-core boundary (ICB) through the outer core. 

However, there are several sources of uncertainties. A first uncertainty arises from controversial 

melting curves for pure Fe determined firstly by LH-DAC, ranging from 4850±200 K (Boehler, 

1993) to 7600±500 K (Williams et al., 1987) at ICB pressures. On the other hand, shock-wave 

experiments and ab-initio calculations suggest melting temperatures of more than 6000 K at 330 

GPa (Alfè, 2009; Nguyen and Holmes, 2004). A second source of uncertainty is associated to the 

presence and nature of light elements, which should cause severe melting temperature depletion. 

Depending on the major light element considered for the outer core, extrapolations of the melting 

temperature to the ICB yields temperatures from 4100±100 K in the Fe-Si system (Asanuma et 

al., 2010) to 5500±500 K in the Fe-S eutectic system (Kamada et al., 2010), for example. And, if 

the outer core contains a mixture of light elements S, Si and O (Badro et al., 2007; Poirier, 1994), 

the resulting melting temperature should be lower than measured in binary compounds. 

Altogether, the broad range of ICB temperatures reported in the literature yields a large range of 

CMB temperatures and it is difficult to conclude if the outer core is indeed much hotter than the 

lower mantle at a fex hundreds kilometers above the CMB or not. 
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Figure 4.5 The melting curves of synthetic chondritic mantle plotted together with available 
estimates of the mantle geotherm (Brown and Shankland, 1981; Bunge et al., 2001; Hernlund et 
al., 2005; Matas et al., 2007) and temperature anchor points (Ito and Katsura, 1989). 
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4.5.2 Melting in the D" region of the ULVZ 

From the available geotherms, only the highest temperature estimation, based on an extremely 

steep temperature gradient in the D"-layer allows partial melting of a chondritic-type mantle in 

the D"-layer for which we report a solidus temperature of 4150 K (Fig. 4.5). However, we insist 

on tha fact that this very steep temperature profile is derived from the Clapeyron slope of the Pv-

PPv transition for pure MgSiO3 (Hernlund et al., 2005), and that in the mantle the transition does 

not occur at the same depths. Therefore, if partial melting of the chondritic (or pyrolitic) lower 

mantle is not totally precluded in the D"-layer, it remains unlikely as long as the occurrence of a 

very hot core is not better established. 

The observation of ultra-low velocity zones (ULVZ) exhibiting P- and S-wave velocity 

reductions of 10 and 30% just above the CMB (Lay et al., 2004) has been interpreted as being the 

result of partial melting. Since the solidus and liquidus determined in this study are not in favor 

of partial melting of the chondritic (or pyrolitic) mantle, a probable way for inducing melting in 

the ULVZ of the D"-layer is a local enrichment in incompatible elements, in particular volatiles 

(Na, K, H CO2) which are known to depress the solidus temperatures. Some of these elements 

(Na and K) may have a moderate effect on the solidus temperature, since they are easily inserted 

into the Ca-Pv at sub-solidus conditions (Corgne et al., 2003). In the case of water, however the 

effect could be large, becuase the solubility of H in the main lower mantle phases is low (Bolfan-

Casanova et al., 2006). Once partial melting is induced, the degree of partial melting is difficult 

to estimate since solid-liquid phase relations are basically unknown at CMB conditions. Local 

concentration of the most fusible elements associated with chemical heterogeneities is compatible 

with the fact that ULVZ features are not ubiquitous but instead observed only in one third of 

investigated areas (Wen and Helmberger, 1998). 
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4.5.3 Depth extension of the early magma ocean 

The energy deposited on the Earth during its accretion was sufficient to completely or partially 

melt it, especially just after the Moon-forming giant impact (Canup, 2008; Tonks and Melosh, 

1993). Under such conditions, a magma ocean undoubtedly existed. It is interesting to discuss the 

implications of the new melting curve for our understanding of the nature of the magma ocean. 

The inventory of siderophile elements in the modern indicates equilibration between silicates and 

iron at high pressures and temperatures (Li and Agee, 1996; Righter et al., 1997). In addition, in 

order to efficiently segregate the core, the silicate has to be molten in order to overcome the high 

surface tension of iron in a solid silicate matrix. Consequently, it was proposed that iron droplets 

sink through the molten silicate layer and pond at the base of a magma ocean, followed by metal 

descending through the solid mantle in the form of diapirs (Karato and Murthy, 1997; Stevenson, 

1990). Thus, a widely accepted model is that equilibration occurred just before the iron droplets 

reach the Fe-pond at the floor of a magma ocean (Li and Agee, 1996; Wood et al., 2006). The 

apparent pressure of equilibrium is comprised between 30-60GPa, 45-85 GPa, or 20-50 GPa, 

based on metal-silicate partition coefficients of nickel and cobalt (Bouhifd and Jephcoat, 2003; 

Chabot et al., 2005), oxygen solubility in molten iron (Rubie et al., 2004), or metal-silicate 

partitioning of tungsten (Cottrell et al., 2009), respectively. A recent refinement of such model 

explains the mantle enrichment in several siderophile elements by a continuous accretion at a 

pressure of equilibrium of 40 GPa and 3150 K (Wood et al., 2006). The pressure of equilibrium is 

given by the partitioning of Ni and Co that is very sensitive to pressure while the temperature of 

equilibrium is estimated from the partitioning of V which is very sensitive to temperature. 

However, complications may arise from the fact that diffusion kinetics suggest metal-silicate 

equilibration during a “metal rainfall” so that the resulting chemical composition of the mantle 
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probably results from a polybaric process (Rubie et al., 2003), extending the pressure range of 

equilibrium to depths shallower than the base of the magma ocean. 

We should also mention here that the model of equilibrium core segregation is challenged by 

numerical modeling results indicating that the core of the impactors possibly merged with the 

Earth’s core or that the impact did not emulsify efficiently the metal and silicate liquids (Dahl 

and Stevenson, 2010). Both imply that the core segregated without equilibrating with the mantle. 

In this case, the pressure of equilibration is meaningless. Still, the geochemical constraints (Hf-

W, U-Pb, siderophile elements) do not seem to be enough in order to conclude whether the core 

and mantle fully or partly equilibrated. It seems that the siderophile pattern of the mantle can be 

reproduced under non-equilibrium conditions assuming oxygen fugacity conditions higher than 

previously thought and embryos that have equilibrated at excessively high-temperatures (450 K 

above liquidus of chondritic mantle) (Rudge et al., 2010). In the following, since the 

disequilibrium core formation model creates more questions than answers, we will assume 

equilibrium core-mantle segregation at 45-50 GPa in agreement with metal-silicate partitioning 

experiments). 

We report in Figure 4.6 liquidus and solidus curves measured for a chondritic mantle 

superimposed with the adiabats for the liquid (Mosenfelder et al., 2009; Stixrude and Karki, 

2005). Here we focus on isentropes calculated by Mosenfelder et al. (2009), based on their latest 

shock-wave equation of state (EoS) of molten MgSiO3. Such liquid is comparable to the 

chondritic mantle composition used here that contains ~70 mole% MgSiO3 end-member. In the 

classical model of equilibrium at the base of a magma ocean, it is implicitly assumed that 

equilibrium occurs at 45-50 Gpa on the solidus (e.g. Wood et al., 2006). According to our 

measurements of the liquidus, a fully molten chondritic mantle that would extend to a pressure of 

45-50 (±10) GPa exhibits a temperature of ~3175 (± 250) K at a depth of ~1175 (±250) km. Such 
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conditions correspond to a surface potential temperature of 2450 K (±150 K) (See red curves in 

Fig. 4.6). Such a hot surface is not stable and is only compatible with a transient magma ocean. 

Indeed, it has been demonstrated that surface temperatures significantly higher than 1700-1800 K 

prevent formation of an (H2O-CO2)-rich atmosphere required to produce an efficient thermal 

blanket to the magma ocean. Without such blanketing the magma ocean will cool down very 

rapidly (Abe and Matsui, 1988; Zahnle et al., 1988). Indeed, above 1700-1800 K significant 

silicate vaporization occurs (Nagahara and Ozawa, 1996) and such rock vapor atmosphere 

conducts heat easily so that the magma ocean would cool down in a few thousand years, before 

the magma ocean surface temperature comes back to 1700-1800 K (Sleep et al., 2001). Note that 

only shallow magma oceans (shallower than 5 GPa) are consistent with surface temperatures of 

1700-1800 K (Miller et al., 1991) and can survive for long periods. 
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Figure 4.6 The melting curves of synthetic chondritic mantle plotted together with isentropic 
temperature profiles of the magma ocean calculated for different potential surface temperatures 
(Mosenfelder et al., 2009). Green- and red- lines correspond to a surface temperature of ~2000 K 
and 2450 K respectively. Here is proposed a possible mantle geotherm (blue line, calculated 
interpolating and extrapolating Fig. 12A in Mosenfelder et al., 2009) compatible with 
crystallization of the liquidus phase Mg-Pv at the center of the mantle. 
 

 

 

On the other hand, Hf-W chronology indicates that ~80% of the core formed within the first 30 

million years of the earth’s history (Kleine et al., 2002). As discussed above, deep mantle ocean 

extending to 45-50 GPa pressure can only last for a few thousand years, and such time scale is 

radically different from that inferred from Hf-W isotopes. Thus, one must refine the scenario of 

core-mantle segregation in order to explain these apparent contradictions:  
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a) If the metal droplets do not rain faster than the crystallization rate of the hot (transient) 

magma ocean (Rubie et al., 2003; Solomatov, 2000), they fall in the liquid mantle to 

intermediate depth until the silicate phases crystallize. Then, the metal remains embedded 

in the solid mantle until the next melting event. We note here that the descent of iron 

droplets is intrinsically associated with heat production by release of gravitational energy. 

Thus, in order to stop the Fe rain, the heat flux at the Earth’s surface should be higher 

than the gravitational energy release. The droplet can also descend slowly by percolative 

flow (Yoshino et al., 2003). In this scenario (Fig. 4.7A), the equilibrium pressure of 45-50 

GPa corresponds to the mean extension depth of the last magma ocean before the Fe 

droplets coalesce into larger diapirs and fall into the core.  

b) A second possible scenario involves a magma ocean defined by its solidus located at 

~1175 km depth (45-50 GPa) (Fig. 4.7b). From the base of this magma ocean upwards, 

coexistence of solid and melt is expected to occur over a broad depth interval due (i) to 

the large temperature difference between solidus and liquidus (Fig. 4.6) and (ii) to the fact 

that the adiabats of partially molten mantle are sub-parallel to the liquidus (Miller et al., 

1991). It follows that this magma is on its liquidus at depth close to 300-400 km, 

corresponding to the actual upper mantle. As a consequence, the melt adiabats indicate a 

surface temperature approaching 2000 K, compatible with a blanketed magma ocean, 

which would thus cool down slowly. In this situation, the metal rains and equilibrates in a 

mush rather than in a completely molten magma ocean. 
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Figure 4.7 Models for core-mantle segregation that respect (i) an equilibrium pressure of 45-50 
GPa as suggested by metal-silicate partitioning experiments and (ii) a shallow completely molten 
magma ocean that can be compatible with a moderate surface temperature. In model (a) 
representative of transient magma oceans cooling very fast, the metal droplets remain embedded 
in the solid mantle and their progression to greater depths is aided by successive melting events. 
In model (b) representative of a sustained magma ocean cooling slowly, metal droplets fall in a 
partially molten mantle until the fraction of solid mantle becomes too high, at temperatures close 
to the solidus. 
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4.5.4 Formation of a basal magma ocean? 

Finally, our new melting curve can be used to discuss the possible existence of an ancient magma 

ocean starting its crystallization in the mid-lower mantle, with formation of a basal magma ocean 

(Labrosse et al., 2007). First, we should note that complete melting of the Earth mantle implies a 

surface temperature higher than 2800 K (Fig. 4.6), wich is much above the vaporization 

temperature of the silicate mantle (Nagahara and Ozawa, 1996). Thus, cooling and crystallization 

of the mantle should occur very quickly, as discussed in the previous paragraph. In addition, this 

scenario implies temperatures higher than the liquidus in both the shallow and lowermost mantle, 

and temperatures becoming lower than the liquidus at intermediate depth due to secular cooling. 

Such a temperature profile requires a very hot core in order to induce a geotherm steeper than the 

liquidus in the lowermost mantle (see blue curve in Fig. 4.6). However, such temperature 

gradient is unlikely to be relevant to the primitive Earth for a long time. High thermal 

conductivities expected for both the liquid in the D"-layer and the partial melt at mid mantle 

depth should help to propagate heat from the CMB to shallower mantle depth and resolve a 

potential steep temperature gradient in the lowermost mantle. Therefore, it appears unlikely that 

the outer core temperature could exceed 4725 K at the CMB after crystallization of the magma 

ocean. 

In the context of a complete (or almost complete) melting of the mantle, it is unlikely that the 

temperature profile could reach the solidus in the mid-lower mantle given (i) the large 

temperature difference found between solidus and liquidus temperatures; (ii) the fact that the 

solidus and liquidus are almost straight curves that remain steep at CMB conditions; and (iii) 

because the isentropes of partially molten mantle are steeper than melt adiabats (Fig. 4.6). Due to 

the later effect, it was argued that the partially molten mantle could extend up to the core mantle 
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boundary when the depth of a completely molten mantle to a pressure of more than 40 GPa 

(Kojitani and Akaogi, 1997; Miller et al., 1991; Stixrude et al., 2009). Therefore, the mantle 

fraction defined as “solid mantle” by Labrosse et al. (2007) could only correspond to a partially 

crystallized mantle, where the solid phase would essentially be the liquidus phase i.e. Mg-Pv 

(Fig. 4.1 and Ito et al., 2004). If Crystallization of the magma ocean from the middle is associated 

to formation of a perovskite layer, geochemical arguments constrain it to be at most 13% of the 

whole mantle, a minimum for which the upper mantle refractory elements budget still remains 

chondritic (Liebske et al., 2005). 

Alternatively, a basal magma ocean could be possible if its composition is enriched in 

incompatible (i.e. fusible) elements, which would facilitate melting at lower temperatures at the 

base of the mantle. The persistence of such fusible material until today would be compatible with 

the observation of ULVZ, as mentioned in a previous paragraph. It could also explain major 

geochemical signatures, such as the one associated to “primitive mantle” with high 3He, for 

example (Allègre et al., 1995; Kurz et al., 1982). 
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4.6 Conclusions 

Were have determined solidus and liquidus curves of a chondritic mantle up to CMB pressures. 

Our melting criteria include in-situ X-ray diffraction and temperature-power relationships. We 

confirm that the MgSiO3-bearing perovskite is the liquidus phase in the deep lower mantle. The 

solidus melting curve is found at lower temperature than reported previously, especially at mid-

lower mantle depth, while the liquidus is found at significantly higher temperatures at all mantle 

depths. At the CMB, we report solidus and liquidus melting at 4150 ± 150 K and 4725 ± 150 K, 

respectively. 

We then discussed the geophysical implications of the new melting curve for chondritic mantle. 

First, it appears unlikely that the ULVZ, which is interpreted to experience ~20% partial melting, 

is of chondritic (or pyrolitic) composition. Indeed, the solidus of 4150 ± 150 K appears to be too 

high compared to estimates of the temperature profile in the D" region, except if the core is 

extremely hot. Thus, in order to be explained by melting the ULVZ should rather be associated to 

high concentration of fusible elements that decrease the melting point compared to the chondritic 

mantle. 

We also show that the pressure of 45-50 GPa typical of metal-silicate equilibrium, as reported by 

several experimental studies in the context of core-mantle segregation, is associated to a magma 

ocean surface temperature incompatible with a sustained magma ocean. It strongly suggests that 

the metal-silicate equilibrium occurred in a partially molten mantle, covered by a fully molten 

magma ocean much thinner than 1000 km. 

Finally, by examining the relationships between magma ocean temperatures at depth and 

potential surface temperatures, our melting diagram is compatible with the formation of a basal 

magma ocean only if the middle-depth solid mantle is mainly composed of Al-bearing 
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(Mg,Fe)SiO3-perovskite and if the basal magma ocean has a chemical composition significantly 

different than the chondritic mantle.              
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Chapter 5: Phase relations in partially molten lower 

mantle: A X-ray fluorescence study at very high-

pressures
 

5.1 Abstract 

We investigated melting relations in a model composition for chondritic mantle using X-ray 

diffraction (XRD) and X-ray fluorescence (XRF) methods at synchrotron facility ESRF. Samples 

were synthesized using the laser-heated diamond anvil cell between 19.5 GPa and 113 GPa, 

corresponding to conditions that extend from the mantle transition zone to the lowermost mantle. 

We recorded XRD and XRF maps which translate into maps of mineral fraction and maps of Fe 

and Ca contents, respectively. We observe (i) a good correlation between zones with maximum 

Ca and Fe contents and (ii) a clear mismatch between these zones and those with maximum Mg-

bearing perovskite (Mg-Pv) content. Since Mg-Pv is the liquidus phase, we conclude that Ca and 

Fe have a similar incompatible behavior upon sample melting. 

By comparing the different sample regions, we extracted the Fe partition coefficient (DFe) 

between melt and the solid at the liquidus temperature. The refined Melt
Fe

Pv
FeFe XXD /�  decreases 

slightly from 0.6-0.7 to 0.5-0.65 with increasing pressure. Our data set plots sightly higher than 

the previous data sets performed in multi-anvil press at low pressures, which could be due to a 

higher degree of melting in our experiments. Our DFe are found at significantly higher values than 

a recent work performed in an Al-free system, a well-known effect for Fe partition coefficients 

when the Al-bearing silicate perovskite phase is involved. Altogether, the incompatible character 

of Fe is not very high, which put into questions the negative floatability of the liquids in the deep 

mantle. 
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5.2 Introduction 

5.2.1 Mantle melting in the past and at present time? 

Recently, melting of the lowermost mantle has been at the center of a number of experimental 

and theoretical studies. The great interest for this subject was enhanced after seismological 

studies suggested that partial melting in the lowermost mantle could explain the ultra-low 

velocity zones (Lay et al., 2004; Williams and Garnero, 1996). Indeed, it was suggested that 5 to 

30% partial melting of the mantle would induce a reduction of P and S seismic wave velocities up 

to 10-30%, for specific geometry of liquid-enclaves in the solid-liquid mixture, in agreement with 

the seismological observations (Hernlund and Jellinek, 2010; Lay et al., 2004; Rost et al., 2005). 

Note, however, that this matter remains controversial, since other studies show that the presence 

of a melt layer does not explain satisfactorily all seismic features (McNamara et al., 2010; 

Stutzmann et al., 2000). Instead, mantle heterogeneities in the D”-layer could arise from other 

causes associated with core-mantle interactions (Buffett et al., 2000; Goarant et al., 1992) or 

large-scale convection of the mantle, leading to the presence of foreign material stored in this 

region. It was proposed, for example, that iron-rich Archean rocks could have subducted down to 

the core mantle boundary (CMB) (Dobson and Brodholt, 2005). 

Still, partial melting remains a likely explanation for the D” seismic features and this hypothesis 

needs to be investigated. Its occurrence could be of major importance for the formation of distinct 

geochemical reservoirs, as a consequence of solid-liquid segregation at high mantle depth 

(McNamara et al., 2010). Solidus and liquidus melting curves were recently investigated in the P-

T ranges covering the whole Earth's lower mantle (Andrault et al., 2011; Fiquet et al., 2010). 

Despite the fact that both studies are in significant disagreement with each other, especially for 

the liquidus temperature, the solidus melting temperature tend to converge to 4150 K at the core-
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mantle boundary pressure of 135 GPa. The question of whether the temperature profile in this 

region is higher or not than the solidus melting temperature remains open. 

At mid-mantle depths, solid-liquid segregation has probably occurred early in the Earth’s history, 

when the planet experienced large degrees of melting due to giant impacts (Boyet and Carlson, 

2005; Canup, 2008). The depth extension and the degree of melting in early magma oceans are 

still in discussion (Andrault et al., 2011; Miller et al., 1991). It was proposed recently that the 

actual ULVZ is a direct consequence of the dynamics of the early magma ocean, if a basal 

magma ocean took place in the primitive Earth (Labrosse et al., 2007). 

 

5.2.2 Liquid floatability in the Earth mantle 

A parameter of major importance for the fate of liquids in the mantle is their buoyancy. In this 

respect, density crossovers between solid and liquid phases should have a major impact on the 

dynamics of the mantle. Sinking of dense melts and accumulation at the CMB could explain, for 

example, the ULVZ in the D”-region. This would have enormous implications for thermal 

properties in the lowermost region and for the formation of deep mantle plumes. 

At upper mantle pressures, various experimental techniques have been used to investigate the 

liquid floatability such as the relative sink-float method (Agee and Walker, 1988; Suzuki et al., 

1998), the modeling of liquid density based on sound-velocity measurements (Ahrens et al., 

1998; Stolper et al., 1981), and the measurement of the liquid equation of state (EoS) based on 

Hugoniot equation and shock-wave data (Miller et al., 1991; Ridgen et al., 1984). All these 

studies indicate that silicate liquids are less dense than PREM, and hence rise, at pressures lower 

than 10 GPa. A density crossover was suggested at 14 GPa, which would make the melt denser 

than the mantle material (Ohtani and Maeda, 2001). Then, phase transitions encountered by 
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minerals in the transition zone are likely to increase the solid-mantle density sufficiently to 

produce another density crossover in the transition zone (Lee et al., 2010). At lower mantle 

pressures, the silicate melts floatability remains uncertain. From a theoretical point of view, the 

liquid floatability at mantle P-T conditions depends mainly on the evolution with pressure of (i) 

the atomic packing of the liquid silicate network and (ii) the solid-liquid phase relations and thus 

the chemical composition of the melt, in particular its iron content. 

 

5.2.3 Atomic packing 

At shallow pressures, while silicate melts are less dense than the solid mantle, the liquids are 

more compressible than the minerals. In the transition zone, solids undergo a series of phase 

transitions that increase the atomic packing of their atomic structure, and thus their density. 

Similar changes in polyhedral linkage are also expected in the liquid phases, however, with a 

more progressive evolution. At lower mantle pressures, the liquid density was investigated by ab 

initio calculations. The different studies available agree for an increasing coordination number of 

the cations with increasing pressure: Si-Al-Mg coordination numbers are reported to change from 

4-4-5 at room pressure to 6-6-8 with increasing pressure to 135 GPa. Also, polymerization of the 

melt is expected to increase with increases pressure, an effect potentially associated with changes 

in SiO2-ring configurations in the liquid (Guillot and Sator, 2007; Karki, 2010; Stixrude and 

Karki, 2005). 

Recently, polyamorphic phase transitions were reported experimentally in MgSiO3-glass, in 

agreement with ab-initio calculations (Sanchez-Valle and Bass, 2010). On the other hand, shock 

wave experiments provide values for the melt density at extreme conditions of pressure and 

temperature. The P-V-T equation of state could be determined for MgSiO3 and Mg2SiO4 liquids 
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up to the CMB pressure of 135 GPa (Mosenfelder et al., 2009). A major result is an increase with 

pressure of the Grüneisen parameter, in very good agreement with a molecular dynamic 

simulation based of first principles (Stixrude et al., 2009). For MgSiO3, the density excess of the 

solid compared to the liquid is estimated to about 4% at the CMB (Mosenfelder et al., 2009; 

Stixrude and Karki, 2005). On the other hand, by comparing the compressibility difference 

between MgO and SiO2 components in the liquid, it was suggested that the MgO/SiO2 ratio has a 

major effect on the liquid floatability in the lower mantle, with increasing buoyancy for SiO2-rich 

liquids (Funamori and Sato, 2010). 

 

5.2.4 Melt composition 

In previous melting experiments performed on various types of mantle composition, the liquidus 

phase was reported to change from majoritic garnet (Ito and Takahashi, 1987) to ferropericlase at 

22-23 GPa (Zhang and Herzberg, 1994), before becoming Mg-bearing perovskite in the 

lowermost mantle (Ito et al., 2004). By itself, this change in nature of the liquidus phase is 

already a proof of change with pressure of the liquid composition in a partially molten mantle. In 

particular, the MgO/SiO2 ratio is affected, as demonstrated in a previous experimental study 

performed up to 26 GPa (Liebske et al., 2005). While the MgO/SiO2 ratio certainly plays a role in 

the liquid density (Funamori and Sato, 2010), the Fe partitioning coefficient between solid and 

liquid phases ( Liq
Fe

Sol
FeFe XXD /� , where XFe is the molar Fe-content) has been at the center of a 

number of studies. Using multi-anvil press apparatus, DFe has been reported to vary from ~0.3 to 

~0.6, when the solid phase considered is the liquidus phase, namely olivine, majoritic garnet and 

Mg-Pv, with increasing pressure from a few GPa to more than 25 GPa (see Figure 5.1a and 

references in Figure caption). We note that this figure compares experimental results obtained for 
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different starting materials, with model compositions being pyrolitic, peridotitic, or chondritic 

mantle. The figure shows that despite the phase transitions occurring in the 15-25 GPa pressure 

range and the change in nature of the liquidus phase (from olivine to Mg-Pv), the DFe appears 

relatively constant up to 35 GPa. On this basis, Fe can be recognized as an incompatible element 

in the deep mantle, with a concentration ~1.5 to ~3.0 times higher in the melt. 

At higher pressures, there are several reports on the Fe partition coefficient between Mg-Pv and 

ferropericlase, but much less exists about the Fe-partitioning between solid phases and silicate 

melts. A very recent work reports the solid-liquid phase relations up to 85 GPa in (Mg,Fe)2SiO4 

using analytical transmission electron microscope (ATEM) on samples recovered from laser-

heated diamond anvil cell (LH-DAC) (Nomura et al., 2011). This study reports a decrease of DFe 

Pv/melt from ~0.4 to ~0.06, for pressures from 35 to 85 GPa, respectively. This corresponds to a 

strong increase of the incompatible character of Fe with increasing pressure. The authors also 

report a steep change of DFe Pv/melt at ~75 GPa, which is interpreted to be due to the spin 

crossover of iron in the melt. We note that this previous study was performed on an Al-free 

system which could be too simplified to be fully representative to the lower mantle conditions 

(Andrault et al., 2010; Wood and Rubie, 1996). Here we present an alternative method based on 

LH-DAC coupled to in situ fluorescence measurements. 
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5.3 Experimental methods 

5.3.1 Laser heating in the diamond anvil cell 

The starting material consisted of a synthetic glass with a model composition for a C1-chondritic 

mantle (McDonough and Sun, 1995; Wasson and Kallemeyn, 1988). The bulk composition was 

prepared from oxide and carbonate mixes through repeated cycles of grinding and fusion at 

around 1800 K and rapidly cooled to obtain a glass of homogeneous composition. It is the same 

starting material than used in a previous study (Andrault et al., 2011). 

We performed experiments at high pressure and high temperature using the LH-DAC technique. 

We used diamond anvils with flat culets of 250 �m diameter or bevel type 100-300 �m culets. 

We used tungsten gaskets pre-indented to a thickness of 30-45 �m and laser-drilled to diameters 

of 50-80 �m. Samples were loaded between two NaCl pellets. This material remains sufficiently 

soft at high pressure to insure hydrostatic pressure. NaCl does not melt and react with silicate 

phases. It insure a good thermal insulation between the laser-heated sample and the diamonds, 

and thus minimizes the axial temperature gradient in the sample. The thickness of the NaCl-layer 

between the sample and the diamond surfaces is estimated between 5 and 10 �m in our different 

experiments. Samples were heated by two Nd-YAG lasers with a laser spot size of more than 20 

�m diameter. Temperatures were determined spectro-radiometrically using the Planck function. 

We used the NaCl equation of state (EoS) to derive the pressure at room temperature, before and 

after laser heating. In this paper, we report experimental runs performed at 5 different nominal 

pressures, 14 GPa, 41 GPa, 48 GPa, 60.5 GPa and 103 GPa. We estimate the pressure correction 

(�P) associated to the laser heating in a partially isochoric regime using the same technique than 

in a previous study (Andrault et al., 2011). This yields �P (GPa) = 2.5*10-3 �T (K), where 

�T=T-300. The liquidus temperatures were observed at 2550 K, 3200 K, 3350 K, 3600 K and 
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4450 K for the nominal pressures reported above, in agreement with the melting criteria 

described elsewhere Andrault et al. (2011). Pressures encountered by the sample at high 

temperatures are therefore 19.5 GPa, 48 GPa, 55.5 GPa, 68.5 GPa and 113 GPa, respectively. 

These pressures extend from the transition zone to the deep lower mantle. 

Our procedure for the samples synthesis is as follows: we compressed each sample to the target 

pressure at ambient temperature. We then adjusted the optical path for the lasers and the 

temperature measurements, keeping the two lasers at minimum power. We then observed the 

sample crystallization at a moderate temperature and verified the sample quality (mineralogical 

content and chemical composition), using X-ray diffraction and X-ray fluorescence (see details 

below). Finally, we increased the laser power until the liquidus temperature was reached at the 

center of the sample. The laser power was maintained for a couple of minutes before shut-down. 

We report typical microphotographs of the recovered samples (Figure 5.2). For some samples, we 

also performed sample analyzes using scanning electron microscope (JEOL JSM-5910 LV). Prior 

to the measurement, we immersed the W-gasket in water in order to remove the NaCl pressure 

medium. We then extracted the sample using a needle and positioned the sample chip on a 

graphite adhesive foil (Figure 5.3). 

 

5.3.2 X-ray methods 

We then investigated the sample properties using X-ray diffraction (XRD) and X-ray 

fluorescence (XRF). Some of the X-ray measurements were performed in situ in the DAC at high 

P and T: XRD to monitor the sample evolution during laser heating; XRF in order to check the 

sample composition. However, most of the measurements reported in this study were recorded 

after pressure release on samples trapped in the W-gasket. It insures a better signal, for XRF in 
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particular, due to the strong absorption of the diamond-windows at low energies. All X-ray 

measurements were performed at the ID27 beamline of the ESRF. The X-ray beam generated by 

the ondulator was tuned to 0.3738 Å wavelength and focused by two Kirkpatrick-Baez (KB) 

mirrors to a 2*2 �m2 FWHM spot on the sample. For X-ray diffraction, we used the MAR345 

image plate detector. Typical acquisition time was 20-30 seconds. Diffraction images were 

analyzed and integrated using the Fit2d program (Hammersley, 1996). We refined phase contents 

by performing multiphase Rietveld refinements using the GSAS code (Larson and Von Dreele, 

1988). We note (i) a weak Ca-Pv signal for some of the samples, firstly because the Ca-Pv 

amorphizes partially upon decompression and also because rapid quenching from the molten state 

could lead to other Ca-rich polymorphs, such as the calcium-ferrite form, and (ii) a weak 

precision for the determination of Fp contents, since its major diffraction peaks overlap with 

those of the major Mg-Pv phase. 

For XRF measurements, we used an energy dispersive solid-state Si(Li) Vortex detector, set at 

around 60° from the incident beam. This angle position is the best that can be achieved in the 

transmission mode when using W-gaskets, in order to maximize the photoelectric effects and 

minimizes Compton and Rayleigh diffusions. The detector was protected from incoherent X-ray 

signal using an Ag collimator. We detected K-lines of Ca and Fe from the sample, K-line of Cl 

from the NaCl pressure medium, L-line of W from the gasket material, and L-line of Pb used as 

X-ray absorber on the beamline. Elemental analyzes are derived from fluorescence spectra using 

the PyMca program (Solé et al., 2007). We fixed the fundamental parameters to: X-ray flux= 

8.4e+11 photons/s; Acquisition time= 100 or 150 sec.; Active area= 4 �m2; Sample to detector 

distance= 20mm. 

The XRF method usually requires the use of standards for quantitative determination of the 

element contents. In our samples, there are parts where the samples has not encountered melting 
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or phase segregation and one could try to use these regions as an internal calibrant, since their 

chemical composition should be similar to that of the starting material. However, the presence of 

a thin NaCl layer above the sample makes the situation more complicated. Indeed, based on the 

intensity of the Cl fluorescence signal measured at the different sample positions, it is clear that 

this layer is heterogeneous in thickness in the recovered samples (Figure 5.3). We estimated the 

NaCl thickness at all sample positions from the measured intensity of the Cl fluorescence signal 

and included a correction for NaCl absorption when refining the Ca and Fe contents from their 

respective XRF signals. This correction brings additional uncertainty for determination of the Ca 

contents, since 65% of the Ca fluorescence signal can absorbed by a 10 �m thick layer of NaCl. 

On the other hand, the correction for NaCl absorption is less than 20% at the Fe fluorescence 

energy. Altogether, our XRF measurements provide quantitative information for the relative 

variations of Fe and, to a minor extent, for Ca, for each given XRF map. 
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5.4 Results 

5.4.1 Diffraction results 

Using XRD, we first followed the glass crystallization into the stable mineralogical assemblage at 

moderate laser-heating up to typically 2000 K. For a pressure of 19.5 GPa, the analysis reveals 

the presence of a majoritic garnet and Ca-perovskite, in agreement with previous reports (Zhang 

and Herzberg, 1994). Three phases are present for samples synthesized at higher pressures; Ca-

Pv, the ferromagnesian perovskite (Mg-Pv) and ferropericlase (Fp). According to the composition 

of starting material, proportions of Mg-Pv, Ca-Pv and Fp phases are expected to be 75.7, 4.5 and 

19.8 mol%, respectively. Diffraction rings of the NaCl pressure medium are clearly visible on all 

diffraction patterns (Figure 5.4), which suggests good sample insulation from the sample. Weak 

diffraction lines of the W-gasket are sometimes visible. 

After the samples had experienced melting, we performed X-ray diffraction measurements at 

several positions around the laser hot-spot (LHS). The result of this procedure is a clear variation 

of Bragg-line intensities as a function of sample position relative to LHS (Figure 5.5), which 

evidences the samples heterogeneity around the molten zone. Phase contents were refined at each 

sample positions, by performing multiphase Rietveld analysis on each diffraction patterns. The 

results are presented in form of a map presenting the mineralogical content as a function of the 

sample position (Figure 5.6). A circular shape around the LHS center is observed for all phase 

contents. There is also a large decrease of the diffraction signal intensity at long distances from 

the LHS center, where the glassy sample has not been sufficiently heated for recrystallization. 

The ring shape is particularly clear for the main phase, Mg-Pv or garnet, but it is also visible for 

the Ca-Pv phase in some of our samples (Figure 5.6c). Interestingly, the rings representative of 
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the different phases do not overlap with each other. The Ca-Pv phase appears to be more 

concentrated on the external part of the laser spot, compared to Mg-Pv. 

 

5.4.2 Fluorescence results 

We recorded various X-ray fluorescence spectra at same sample positions than for the XRD 

mapping. Visible peaks arise from Cl in NaCl, Ca and Fe in the sample and W in the gasket 

(Figure 5.7). As for XRD, we observe a clear variation of XRF peak intensities from one sample 

position to another (Figure 5.8). Refinement of the XRF spectra provides maps of contents in Cl, 

Ca, and Fe (Figure 5.9). The chemical zoning is clearly apparent for Fe and Ca. We first note the 

good correlation between zones where Ca and Fe are found at higher concentrations. It creates a 

circular ring around the LHS center, in a similar manner than for the diffraction features. This is 

first evidence that Fe and Ca have a similar incompatible character during partial melting. For 

some samples, there is a lack of Ca and Fe at the LHS center. For samples synthesized at 68.5 

GPa and 113 GPa, there is a higher Fe-concentration at the center. This difference in behavior, 

for a harder NaCl pressure medium at increasingly high pressures, reduces the sample migration 

away from the LHS center (Figure 5.3). 
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5.5 Discussions 

5.5.1 Sample heterogeneity 

To explain the chemical zoning observed in our samples, one could invoke artifacts generated by 

strong thermal gradient in the LH-DAC, such as the Soret-diffusion (Lesher and Walker, 1988). 

However, it has been demonstrated in a previous study specifically devoted to the analysis of the 

Soret-effect that it is largely reduced by using the NaCl pressure medium (Sinmyo and Hirose, 

2010). Also, convection in the liquid state is expected to be severely more efficient than Soret 

diffusion to produce a chemical segregation in our samples. In any case, it is clear that our 

samples have been fully molten at the LHS center, while they remained solid at the border, and 

partially molten in between those two sample regions (Figure 5.3). Similar sample configuration 

is also observed in multi-anvil press studies (Ito et al., 2004; Liebske et al., 2005; Zhang and 

Herzberg, 1994). In all these studies, a higher concentration of the liquidus phase is observed in 

contact with the zone that encountered the highest temperatures, while the solidus phases are 

concentrated in the region of lower temperatures. In our experiments, similar chemical gradient 

can be interpreted as a migration of the liquid toward zones at lower temperatures, while the 

liquidus Mg-Pv phase has remained very close to the center of the LHS. At this point, it is 

interesting to note that our samples synthesized at the lowest pressures show a hole with almost 

no sample at the LHS center, while the two samples synthesized above ~65 GPa show a ball of 

quenched-liquid at the center (Table 1). This effect could be due to the stiffness of the NaCl 

pressure medium which is severely increased with increasing pressure, an effect that could reduce 

the liquid mobility in the LH-DAC. 
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5.5.2 Fe Partition coefficient 

The Fe partition coefficient (DFe) between melt and solid at the liquidus temperature can be 

derived from the difference in Fe-content at different sample positions. In order to do this, we 

combine maps of Fe-contents and liquidus Mg-Pv phase concentrations (Figure 5.10). It appears 

clear that the zones with major Fe concentration do not overlap with those of major Mg-Pv (or 

garnet) concentrations. The Mg-Pv (or garnet) appears severely depleted in Fe, at least in the 

most central part of the ring of major Mg-Pv (or garnet) concentration. This observation confirms 

the incompatible character of Fe. For the two samples presenting a central balls of fully molten 

sample (Figures 5.3, 5.10b, 5.10c), the Fe partition coefficient can be calculated by comparing 

the Fe-content in the inner part of the Mg-Pv ring and the Fe-content at the center. We obtain DFe 

ball ( ballinner
Fe

ringinner
Fe XX �� / ) values of 0.50-0.59 and 0.62-0.64 for samples synthesized at 68 GPa 

and 113 GPa, respectively. We here report upper and lower bounds for DFe which correspond to 

two different calculations using a smaller and a larger zone of selection in the Fe-maps, 

respectively. For these two samples, we also calculated the partition coefficient DFe by comparing 

the Fe-content in the inner part of the Mg-Pv ring and the Fe-content at the most external part of 

the LHS. The refined DFe outer-ring ( ringouter
Fe

ringinner
Fe XX �� / ) values in good agreement with the 

DFe  ball refined above (Table 1). The strong similitude between these two values validates our 

assumption of radial liquid migration in our samples. For the samples synthesized at low 

pressures, we refined DFe outer-ring to values between 0.58 and 0.77 (Table 1). 

Altogether, we find that DFe decreases slightly from 0.6-0.7 to 0.5-0.65 with increasing the 

pressure from 19.5 GPa to 113 GPa (Figure 5.1b). Our data set is in good agreement with the 

previous data sets, since they all point out to an incompatible character of Fe in the deep mantle. 

Our DFe values also plot at about 30% higher than the multi-anvil press results obtained up to 35 
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GPa (Figure 5.1a; (Ito et al., 2004)). On the other hand, our results are significantly higher than 

the most recent data set using the ATEM technique on LH-DAC samples (Nomura et al., 2011). 

The discrepancy could be due to the fact that previous study used an Al-free starting material, 

which is known to affect significantly the Fe partition coefficient significantly. At ~65 GPa, the 

amplitude of the DFe change due to the presence of Al, from ~0.2 to ~0.6 for previous study and 

our work, respectively, is similar to the amplitude of change from 0.36 to 1 reported in a previous 

study for the effect of Al at ~25 GPa (Wood and Rubie, 1996). 

 

5.5.3 Geophysical consequences 

As mentioned in the introduction, the knowledge of the liquid buoyancy is critical for our 

comprehension of the dynamic properties of the Earth lower mantle. Our results indicate a 

definite preference of Fe for the liquid phase, with DFe around 0.5-0.7 for the entire lower mantle. 

This implies that one should expect a liquid Fe-content between 1.4 and 2 times that of Mg-Pv 

phase, which corresponds to Liq
FeX ~0.15-0.2 for partial melting a pyrolitic or chondritic mantle. In 

order to translate this information in liquid buoyancy, one needs to evaluate the other 

contributions to the solid-liquid difference in density. Melting itself could contribute to a 

difference in density of +3-4 % generated by difference atomic structure and composition 

between solid and liquid phases (Mosenfelder et al., 2009; Stixrude et al., 2009). It was also 

demonstrated that the MgO/SiO2 ratio should play a major role in the liquid density (Funamori 

and Sato, 2010). Based on this later study, our DFe values are compatible with production of a 

buoyant liquid in most of the lower mantle. In the lowermost mantle, where our DFe value is of 

0.60(5), Liq
FeX is expected to be 0.18(1), and silicate liquid could become denser than the mantle if 

its SiO2-content is below 20%. This value is to be compared with the 40% SiO2 reported at 33 
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GPa (Ito et al., 2004). Even if this value could be reached, since it is observed that the SiO2 

content increases with increasing pressure (Ito et al., 2004; Liebske et al., 2005), it is unlikely to 

expect a large density difference, even for pressures found in the D”-layer. This suggests that 

melts are unlikely to remain trapped at long geological times in the D”-layer, due to their excess 

density. 

Nevertheless, our results confirm the incompatible character of Fe in the deep mantle. Partial 

melting in the lower mantle should therefore generate liquids with high Fe-concentrations, 

together with a high proportion of incompatible elements as expected for mantle liquids. In this 

framework, it is rather normal that geological material with high Fe-content can be present in the 

deep lower mantle, if this material is involved in the large scale mantle convection. 
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Table 5.1 Experimental conditions and results summary for each of the 5 experiments performed 
in this study. (Ext.) and (Ball) concern the external and central parts, respectively, for the two 
samples showing a ball of quenched-liquid at the center of the laser spot. 

 
 
 

Mg-Pv Ca-Pv Fp NaCl-B1 W P (Gpa) 
He3218_DAC_01G 26.00 0.50 0.69 72.54 0.29 48
He3218_DAC_02G 18.91 0.03 0.98 62.19 16.89 60
He3218_DAC_03G 3.35 0.39 0.07 75.66 20.53 14
He3218_DAC_04G 12.60 0.11 1.44 72.73 13.12 41
He3218_DAC_05G 4.91 0.04 0.15 91.97 2.93 103

 
Table 5.2 Phases amount (Wt%) for samples synthesized at different pressures.   
 

03G 04G 01G 02G (Ext.) 02G (Ball) 05G (Ext.) 05G (Ball)
Pressure at 300 K (GPa) 14 41 48 60.5 60.5 103 103
Liquidus temperature (K) 2550 3200 3350 3600 3600 4450 4450
Pressure at high T (GPa) 19.5 48 55.5 68.5 68.5 113 113
K Fe (lower bounds) 0.66 0.58 0.62 0.57 0.5 0.55 0.62
K Fe  (upper bounds) 0.75 0.77 0.68 0.7 0.59 0.65 0.64
Map resolution (�m) 2.0x2.0 2.0x2.0 2.5x2.5 2.0x2.0 2.0x2.0 1.5x1.5 1.5x1.5
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Figure 5.1 Change of Fe-partition coefficients between silicate melts and liquidus phases as a 
function of pressure for various mantle compositions. (a) Results obtained from multi-anvil press 
experiments. The liquidus phases are olivine (Circles: green (Ohtani et al., 1989), grey (Zhang 
and Herzberg, 1994)), majoritic garnet (Squares: black (Kato et al., 1988), red (Ohtani et al., 
1989), blue (McFarlane and Drake, 1992), brown (Zhang and Herzberg, 1994), orange (Tronnes 
and Frost, 2002), green (Walter et al., 2004)) and Mg-bearing perovskite (stars: yellow (Ohtani et 
al., 1998), light blue (Drake et al., 1993), pink (McFarlane et al., 1994), purple (Hirose et al., 
2004), red (Corgne et al., 2005), orange (Tronnes and Frost, 2002), green (Walter et al., 2004), 
black (Ito et al., 2004), dark blue (Liebske et al., 2005)). (b) Results obtained from LH-DAC 
experiments. Green stars (Nomura et al., 2011) correspond to melting of olivine. We also report 
one MAP data point (Ito et al., 2004). Upwards and downwards triangles stand for lower and 
upper bounds of our experimental determination of the DFe, respectively (see text). 
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Figure 5.2 Optical micro-photographs of samples synthesized at pressures of (a) 19.5 GPa, (b) 
55.5 GPa, and (c) 113 GPa. All samples were first compressed to the target pressure before 
progressive laser-heating until melting at a temperature up to more than 2500 K. 
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Figure 5.3 Scanning electron microphotograph of the sample recovered from 55.5 GPa. We 
present below schematic representation of the temperature gradient and the sample shape in 
between the two diamonds. We used a NaCl pressure medium for all experiments. 
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Figure 5.4 Typical 2-dimensional X-ray diffraction images recorded for samples synthesized at 
(a) 19.5 GPa, (b) 55.5 GPa, and (c) 113 GPa. At a pressure of 19.5 GPa, the sample contains a 
mixture of majoritic garnet and wadsleyite phases. At all other pressures, the sample contains a 
mixture of Mg-Pv, Fp and Ca-Pv phases. Fp and Ca-Pv phases are relatively week, however, due 
to the composition of the starting material rich in Mg-Pv. Also, Ca-Pv is only visible in certain 
sample regions, and not close to the center of the laser spot, as discussed in the text. 



 196

 
 
Figure 5.5 Integrated X-ray diffraction patterns recorded at different positions for the sample 
synthesized at a pressure of 55.5 GPa. Spectra [1-2] show some Ca-bearing perovskite, spectra 
[3] show some ferropericlase, and spectra [4-5] show exclusively the major Mg-bearing 
perovskite. 
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Figure 5.6 Maps of relative phase contents extracted from the X-ray diffraction results using a 
Rietveld analysis. The intensity in the map corresponds directly to the intensity observed in the 
diffraction spectra, without any further method of normalization. Maps correspond to content of 
(a) Garnet at 19.5 GPa, (b) Mg-Pv and (c) Ca-Pv at 55.5 GPa, respectively, and (d) Mg-Pv at 113 
GPa. Pixel size (in μm) is: 2.0x2.0 (a), 2.5x2.5 (b) and (c) and 1.5x1.5 (d), respectively. CLHS 
corresponds to the center of the laser hot-spot. 

CLHS 

CLHS 

CLHS 

CLHS 
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Figure 5.7 Typical X-ray fluorescence spectrum measured on a sample recovered from 55.5 GPa. 
We report the experimental spectrum (black) as well as the adjusted theoretical profile including 
the Cl, Ca, Fe, and W contributions. 
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Figure 5.8 Comparison of XRF spectra recorded at different location in the sample synthesized at 
55.5 GPa. Blue, green and red zones correspond to the same colored zones in Figg. 5.10a. 
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Figure 5.9 Maps of relative elemental contents extracted from the X-ray fluorescence results. 
The intensity in the map corresponds directly to the intensity observed in the fluorescence 
spectra, without any further method of normalization. We report maps for Ca (upper) and Fe 
(lower) for sample synthesized at (a) (b) 19.5 GPa, (c) (d) 68.5 GPa and (e) (f) 113 GPa. Pixel 
size (in μm) is: 2.0x2.0 (a)-(b), 2.0x2.0 (c) and (d) and 1.5x1.5 (e) and (f), respectively. 
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Figure 5.10 Contours of Mg-bearing perovskite phase contents. Black lines are extracted from 
Figure 6 and plotted in superposition of Fe-contents maps for samples synthesized at (a) 55.5 
GPa, (b) 68.5 GPa, and (c) 113 GPa. Pixel size (in μm) is: 2.5x2.5 (a), 2.0x2.0 (b) and 1.5x1.5 
(c), respectively. 
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Conclusions and Outlooks 

My PhD work is an experimental investigation of the melting properties at lower mantle pressure 

and temperature conditions. Several melting experiments have been carried out in order to 

determine the melting profiles of the deep mantle and possible geophysical implications on Earth 

differentiation across its history. I determined also the partition coefficients between liquid and 

solid phases for iron major element, to investigate the behavior of mantle liquids as a function of 

partial melting and density up to core-mantle boundary (CMB) pressure conditions. In the 

following sections, I summarize the main results obtained in this work and I suggest new 

outlooks to pursue and improve this scientific work. 

Summary of the study melting in the MgO-MgSiO3 system: A simplified 

chemical model for the lower mantle. 

This study determined the melting relations for the system MgO-MgSiO3 at pressures covering 

the entire lower mantle from the transition zone up to the base of lower mantle. I present the 

pressure-temperature eutectic melting curve for this compositional simplified model that provides 

basis for more complex systems such as peridotite and chondritic compositions. 

Firstly, it is confirmed that Mg2SiO4-forsterite disproportionates in MgO+MgSiO3 (Pc+Mg-Pv) at 

lower mantle pressure and temperature conditions. Eutectic melting curve has been determined 

for the reaction MgO+MgSiO3=liquid, which was unknown for pressures higher than 26GPa. 

Eutectic temperature at 135 GPa, corresponding to the CMB, is found to be 4830±150 K that is 

~700 K higher than the solidus for a chondritic type mantle composition (determined here, see 
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chapter four). Determination of periclase and Mg-perovskite weight percentages in the eutectic 

liquid would be of primary importance in order to better constrain early magma ocean properties. 

Moreover, I presented the melting curve of platinum up to ~100 GPa, whereas it was determined 

in a previous work only up to 70 GPa (Kavner and Jeanloz, 1998). In this work it was shown that 

melting of platinum does not affect the determination of the melting of MgO+MgSiO3 material. 

Also no reaction between platinum and carbon of diamond anvils was detected (that is, PtC phase 

did not occur). These data agree with the main property of platinum: the inertness, which is the 

reason we use it in high pressure experiments. 

Summary of the study on implication of solidus and liquidus profiles of 

chondritic mantle for melting of the Earth across its history 

The aim of this work was to determine liquidus and solidus curves for a chondritic mantle 

composition in order to investigate major implications on melting behavior of the Earth planet.  

Melting phase relations have been investigated at pressure and temperatures typical of the entire 

Earth’s lower mantle, i.e. from 25 up to 135 GPa and up to more than 4000 K. Results show 

MgSiO3-perovskite as the liquidus phase in the lower mantle, confirming previous works. Solidus 

and liquidus temperature at 135 GPa (CMB pressure) have reported to be of 4150±150 K and 

4725±150 K, respectively. These data when compared with adiabatic profiles for Earth deep 

mantle and D" region indicate that partial melting in the lower mantle is unlikely because of 

highest temperatures required. Anyway, partial melting should be allowed in D" region if: 1) we 

consider an outer core very hot and/or 2) a mantle composition containing a high concentration of 

incompatible elements and in particular volatiles (i.e. Na, K, H, and CO2), whose effect is to 
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decrease the melting point compared to the lower mantle one. In these particular conditions we 

can assume ULVZs as a consequence of partial melting at the CMB. 

Melting curves have been compared with isentropic temperature profiles of the magma ocean for 

different potential surface temperatures. We paid a particular attention to the pressure interval of 

45-50 GPa, corresponding to metal-silicate equilibrium at the base of a magma ocean. In this 

range of pressures (at a depth of ~1750 (±250)), liquidus temperature for chondritic composition 

is ~3175 K (±250) and (according to isentropic profiles) 2450 K (±150) in surface (0 km depth). 

It is inferred that, complete melting of the Earth’s mantle is incompatible with a reasonable 

surface temperature. Thus, it is the most unlikely that the early Earth mantle, after accretion of 

the planet, has experienced complete melting. 

Summary of the study on phase relations in partially molten lower mantle: A 

X-ray fluorescence study at very high-pressures 

The objective of this work was to improve our knowledge on melting relations at lower mantle 

conditions of pressure and temperature for a chondritic composition starting material (see chapter 

4). For this, partitioning coefficients for iron between liquid and solid silicate phases have been 

determined. An in-situ method, consisting in the use of coupled X-ray diffraction and X-ray 

fluorescence techniques, was developed. This work provides maps of elemental (Ca and Fe) and 

phase fractions for sample that have been partially molten in the laser-heated diamond anvil cell. 

Melt
Fe

Pv
FeFe XXD /�  was found decrease slightly from 0.6-0.7 to 0.5-0.65 at increasing pressure. 

These Fe partitioning coefficients extracted from the maps show incompatible character of Fe (Ca 

presents a similar incompatible character during partial melting). This incompatibility was not 
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found high enough to exclude that liquids tend to float in the deep mantle. But at the same time, it 

therefore confirms the incompatible character of Fe which, in turns, has a major effect on the 

liquid density. Liquids could have negative floatability and to sink down in the lower mantle.  

These results on phase relations and partitioning coefficients have several implications: 

' Affect directly the crystal-liquid density inversions (the so-called density crossovers): 

liquids produced by partial melting and rich in iron are denser than surroundings silicate 

crystals and thus are expected to sink down; 

' Density crossovers could explain partial melting hypothesis for ULVZ, especially in light 

of the preference of calcium and iron for liquids; 

' These denser liquids could accumulate at the CMB and float atop the ULVZ, with 

enormous implications for chemical and thermal heterogeneities;  

' Would influence dynamics of the entire mantle and would have repercussions for mantle 

plumes and superplume upwellings and mantle convection. 

It should be important to consider the participation of volatiles, especially water, since volatile 

amounts in silicate melts may cause density crossovers in the D" region and affect the floatability 

of hydrous melts which are likely to become negatively or neutrally buoyant. 

The presence of neutrally or negatively buoyant melt in the deep mantle would have fundamental 

implications for our understanding of the Hadean Earth and of the structure and chemical 

evolution of the core-mantle boundary. If melting extended to the base of the mantle during 

accretion, perovskite may have floated in coexiting liquid as it crystallized out of the magma 

ocean, providing a possible means of large-scale chemical differentiation. In the present-day 

Earth, dense melt may provide a natural explanation for the ultralow velocity zone at the base of 

the mantle.
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We investigated the melting properties of a synthetic chondritic primitive mantle up to core–mantle
boundary (CMB) pressures, using laser-heated diamond anvil cell. Melting criteria are essentially based on the
use of X-rays provided by synchrotron radiation. We report a solidus melting curve lower than previously
determined using optical methods. The liquidus curve is found between 300 and 600 K higher than the solidus
over the entire lower mantle. At CMB pressures (135 GPa), the chondritic mantle solidus and liquidus reach
4150 (±150) K and 4725 (±150) K, respectively.
We discuss that the lower mantle is unlikely to melt in the D″-layer, except if the highest estimate of the
temperature profile at the base of themantle, which is associated with a very hot core, is confirmed. Therefore,
recent suggestions of partial melting in the lowermost mantle based on seismic observations of ultra-low
velocity zones indicate either (1) a outer core exceeding 4150 K at the CMB or (2) the presence of chemical
heterogeneities with high concentration of fusible elements.
Our observations of a high liquidus temperature as well as a large gap between solidus and liquidus tem-
peratures have important implications for the properties of the magma ocean during accretion. Not only
complete melting of the lower mantle would require excessively high temperatures, but also, below liquidus
temperatures partial melting should take place over a much larger depth interval than previously thought. In
addition, magma adiabats suggest very high surface temperatures in case of a magma ocean that would
extend to more than 40 GPa, as suggested by siderophile metal–silicate partitioning data. Such high surface
temperature regime, where thermal blanketing is inefficient, points out to a transient character of the magma
ocean, with a very fast cooling rate.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A large proportion of our planet has experienced melting in the
course of its accretion history as a consequence of the energy release
associated with large impacts, radioactive decay and core formation.
Major unknowns remain about this early time, in particular the
extension depth of the magma ocean and the chemical signature
inherited from mantle crystallization during cooling. The melting
curve of the primitive mantle thus has major consequences for the
existence of chemical heterogeneities and the survival of primitive
mantle reservoirs. In the modern Earth, seismology evidences
heterogeneous properties of the D″-region which extends from the
core–mantle boundary (CMB) upwards 250 km (Lay et al., 1998).
There are, indeed, evidences for large-scale patterns of heterogene-
ities, with anomalous set of VP–VS seismic velocities, that can hardly

be explained by phase transitions in minerals or thermal anomalies.
Instead, they seem to evidence chemical heterogeneities, which can
be of different origins: (i) partial melting in the D″-layer (Lay et al.,
2004), leading to chemical segregation of the mantle; (ii) relics of
descending slabs rich in mid-ocean ridge basalts (MORB); (iii) zones
enriched in incompatible elements associated to the progressive
crystallization of an ancient magma ocean and trapped in the
lowermost mantle (Labrosse et al., 2007); and/or (iv) lower mantle
material affected by chemical exchanges with the outer core. Each
hypothesis has specific implications for our comprehension of the
dynamics of the Earth, as well as for elemental segregation between
the different geological reservoirs. Unfortunately, it remains difficult
to distinguish between the different scenarios. Indeed, the thermo-
elastic parameters of the main lower mantle minerals are knownwith
insufficient accuracy for inferring the mineralogy of this very remote
region using the seismic features. Especially, it remains a challenge to
infer any chemical anomaly other than Mg/Si and Fe/(Mg+Fe) ratios.

Inorder to assess thepotential occurrence of partialmelting in theD″
region, one must refine the melting curves of the different geological

Earth and Planetary Science Letters 304 (2011) 251–259

⁎ Corresponding author.
E-mail address: D.Andrault@opgc.univ-bpclermont.fr (D. Andrault).

0012-821X/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.epsl.2011.02.006

Contents lists available at ScienceDirect

Earth and Planetary Science Letters

j ourna l homepage: www.e lsev ie r.com/ locate /eps l



materials. For pressures up to 25 GPa, melting curves of mantle silicates
and phase relations in a partially moltenmantle have been investigated
using the multi-anvil press. It has been shown that pressure affects
significantly the solidus and liquidus temperatures as well as compo-
sition of the eutectic liquids (Ito et al., 2004; Liebske et al., 2005; Litasov
and Ohtani, 2002). At higher pressures, while themelting curve of end-
member phases is relatively well documented using laser-heated
diamond anvil cells (LH-DAC) (e.g. Boehler, 2000), shock wave
experiments (e.g. Luo et al., 2004) or ab initio calculations (e.g. Stixrude
and Karki, 2005), melting of material with relevant geological
composition was much less investigated. For pyrolite, optical observa-
tions have been used to determine the melting curve as a function of
pressure using the LH-DAC (Zerr et al., 1998), but only up to ~60 GPa.
This pressure range remains too limited for quantitative extrapolation to
the ~135 GPa representative of the D″-layer. On the other hand, using
shock-wave experiments,melting of (Mg, Fe)2SiO4 olivinewas reported
at 4300 K and ~130 GPa (Holland andAhrens, 1997). Recently, the same
group corrected this value to 4000 (300) K, after improvement of the
temperature estimation (Luo et al., 2004).

2. Methods

Ultra-brillant X-ray beams are now available from synchrotron
rings for in-situ investigation of the melting behavior in the LH-DAC.
For these experiments, we used a membrane-type DACmounted with
250 μm or 75/300 μm culet-diameter diamonds. Re gaskets were pre-
indented to 40 μm or 20 μm and laser-drilled to 80 μm or 50 μm,
respectively. Small glass flakes were loaded in between two NaCl or
KCl pellets, and a few experiments were performed without pressure
medium. Salts provide good thermal insulation from the diamonds
and can be used as pressure standards at 300 K (Sata et al., 2002;
Walker et al., 2002). Hot spots with diameter larger than 30 μm were
obtained by two YAG lasers aligned on both sides of the sample.
Temperatures were measured from sample thermal emission using
reflective lenses to prevent any chromatic aberration (Benedetti and
Loubeyre, 2004). The intrinsic temperature uncertainty is estimated
to be 50 K, including uncertainties on the thermal emissivity factors.
For solid samples, temperature stability was better than 20 K during
the 20 to 30 s of data acquisition. However, when the sample starts
melting, the temperature stability deteriorates. In this study, we
discarded those measurements where temperature fluctuation
exceeded 50 K. Also, the emissivity factor is less documented for
liquid phases. Therefore, the temperature uncertainty is estimated to
be 50 K and 100 K, for solid and molten samples, respectively.

Our sample consisted of a synthetic CMASF glass with oxide
contents in chondritic proportions (except for iron) so as to model the
primitive mantle after core segregation (Wasson and Kallemeyn,
1988) (Table 1). We did not include minor and trace elements, which
most abundant are Na (4900 ppm) and K (560 ppm). We believe that
their effect on solidus and liquidus curves can be neglected as a first
approximation because these elements are easily inserted in the

CaSiO3 perovskite phase (Ca–Pv) (Corgne et al., 2003).We did notmix
our sample with any YAG-laser absorber or pressure standard, such
as Pt or W, in order to avoid any chemical reaction. Finally, we esti-
mate that the melting behavior of our starting material should be
comparable to that of pyrolite, due to their related compositions
(Ringwood, 1975) (Table 1).

In order to probe the sample properties in-situ, we used the X-ray
diffraction set-up available for LH-DAC at the ID27 beamline of
ESRF (Mezouar et al., 2005). Wavelength was fixed to 0.3738 Å or
0.2647 Å. X-ray focusing to better than 2×3 μm2 was achieved by
two bent KB-mirrors. Typical acquisition time is 20–30 s using an
imaging plate or a CCD detector. The X-ray beam position was
determined from optical observations of the Re-gasket fluorescence.
Therefore, combined images of X-ray beam and YAG lasers could be
perfectly positioned on the pinhole of the entrance of the spectro-
meter used for temperature measurements. Integration of 2D-
images and further data treatment were performed using the Fit2d
and the GSAS packages, respectively.

For estimating pressure at high temperature, we used two dif-
ferent methods. The first one is based on the PVT equation of state
(EoS) of CaSiO3–perovskite (Shim et al., 2000) from which pressure is
derived from the Ca–Pv volume at a known experimental tempera-
ture. Due to a non-negligible Al-solubility in Ca–Pv (Nishio-Hamane
et al., 2007), its EoS could be affected, which would increase the
experimental error. The second method is based on an estimation of
the pressure correction (ΔP), which is a fraction of the theoretical
thermal pressure (ΔPth). The latter consists on an increase of pressure
due to heating (ΔT) at constant volume, ΔPth=αKΔT, where α and K
are thermal expansion and bulk modulus, respectively. Experiments
and calculations show that, due to partial volume relaxation at high-
temperature, the effective ΔP corresponds to about half of the
theoretical thermal pressure (Andrault et al., 1998). According to
the thermo-elastic parameters of the main Mg–Pv component (Fiquet
et al., 2000), the value of ΔP is ~2.5·10−3 GPa/K. Both methods give
results similar within a couple of GPa. So, pressure error at high T is
estimated to be about 3 GPa.

We investigated the melting temperature using NaCl and KCl as
thermal insulators, but also tested without insulating pellets in a few
experiments, in order to make sure that the results are not affected by
the nature of the pressure transmittingmedium. NaCl happens tomelt
at temperatures similar, or even below, the liquidus temperatures of
the primitive chondritic mantle composition used. Therefore, all
liquidus temperatures reported here were determined using KCl
insulator. The data set presented in this paper includes 19 successful
high-pressure loadings. Each melting point has been determined after
laser-heating of at least one fresh piece of sample, i.e. melting at one
single pressure.

3. Results

3.1. Melting criteria

In general, the onset of melting can be detected using X-ray
diffraction by the appearance of a diffuse X-ray scattering band typical
of liquids. Such band is easily observed if the sample is composed of
relatively high-Z elements such as iron (Andrault et al., 2006; Shen
et al., 2004). If the sample is composed of low Z-elements, such as is
the case for a mantle silicate, the sample thickness should be impor-
tant to enable observation of the diffuse band. This is not the case of
our samples, which are intentionally thin in order to minimize axial
thermal gradients.

Additional criteria based on X-ray observations are (1) the rapid
re-crystallization of the sample at high-temperature, with appearance
and disappearance of X-ray spots, indicative of coexistence of crystal
and melt. (2) At the same time as solid and liquid coexist, the
temperature reaches a plateau while laser power is continuously

Table 1
Composition of starting material used in this study, as measured by electron microprobe
analyses. At lowermantle P–T conditions, the Ca–Pv,Mg–Pv, and Fp phase proportions are
expected to be 4.5, 75.7, and 19.8 mol%, respectively. This composition is representative
of a chondritic-type mantle (Wasson and Kallemeyn, 1988), and it is also quite close to
pyrolite (Ringwood, 1975).

Oxide Chondritic mantle (this study) Pyrolite

(wt.%) (mol%) (wt.%)

SiO2 49.6 43.5 45.1
Al2O3 3.4 1.8 3.3
FeO 8.48 6.2 8.0
CaO 3.3 2.6 3.1
MgO 35.1 45.9 38.1
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increased, just before the liquid diffuse scattering appears and tem-
perature simultaneously increases (Dewaele et al., 2007). In the
following we used the fast disappearance of diffraction peaks of the
solidus phase and re-crystallization as a sign of solidus temperature
and the end of the temperature–power plateau as the sign of liquidus
temperature.

3.2. Determination of solidus temperature

At sub-solidus temperatures, the phases present are CaSiO3–

perovskite (Ca–Pv), (Mg, Fe)O ferropericlase (Fp), and Al-bearing
(Mg, Fe)SiO3 perovskite (Mg–Pv), in the order of increasing
abundance. The first phase to disappear from the diffraction
patterns when increasing temperature is Ca–Pv (Fig. 1), in agree-
ment with a previous study using multi-anvil press (Ito et al., 2004).
Concerning Fp, persistence or disappearance of this phase is difficult
to detect, first because its content is limited to 20 mol% for this
chondritic-type composition and secondly because most of its
diffraction lines overlap with those of Mg–Pv (Andrault, 2001).
Thus, disappearance of Ca–Pv and Fp could be almost simultaneous.
The Ca–Pv disappearance is concomitant with rapid grain growth of
the Mg–Pv phase, as evidenced by larger diffraction spots on the
diffraction image (Fig. 1A and B). Also, a number of diffraction peaks
typical of the three phases reappear on the imaging plate after laser
shut-down. Note that for such mineralogy, where at least three
phases coexist, the kinetics of grain growth is extremely sluggish

in the solid state (Yamazaki et al., 1996). Thus, changes of peak
intensity can only be attributed to non-solid state diffusion, i.e.
diffusion assisted by melt. Another source of information is based on
the sample shape after laser-heating. In the case of heating to the
solidus temperature, the shape of the sample is affected only
moderately (Fig. 1D). Thermal expansion in the laser spot induced a
circular-shaped structure, and some cracks in the surrounding
material, at more than 10–15 μm from the center, where the
material has not been heated at high temperatures. This shape
contrasts largely with what is observed when heating to the liquidus
temperatures (Fig. 2D).

We found that melting at the solidus temperature is very difficult
to detect for those LH-DAC runs where we did not use any thermal
insulator. The reason is that solidus melting is dispersed over a broad
range of laser power, due to a large axial temperature gradient across
the sample, given that the diamond remain basically cold compared to
the center of the laser spot. Also, it is possible that a sample fraction
remains below the solidus temperature at the diamond surface, before
the central part of the sample reaches the liquidus temperature.
Therefore, clear disappearance of CaSiO3 (and/or Fp) diffraction lines
cannot be observed in this case.

3.3. Determination of liquidus temperature

When approaching the liquidus temperature, we first observe a
plateau where increasing laser power does not yield an increase

Fig. 1. Experimental evidences of sample partial melting and determination of the solidus temperature upon temperature increase from 300 K (A): at 2650 K (B) and a nominal
pressure of 48 GPa, we observe first order changes in the position and intensity of diffraction peaks. First, disappearance of the CaSiO3–perovskite diffraction peaks (pointed by
arrows in (A) and (C)). Altogether, changes in peaks intensity are compatible with loss of 90% and 20% of the Ca-bearing and Mg-bearing perovskite phases, respectively.
Simultaneously, we observe at 2650 K new spots of Mg–Pv phase (B) indicative of recrystallization on a short time scale, this can only be due to the presence of melt at grain
boundaries. (D) Electronmicrophotograph showing a central zone of a sample recovered from 30 GPa that encountered laser heating between the solidus and liquidus temperatures
(see Fig. 2D for comparison).
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in temperature, just before a sudden temperature jump of more
than 500 K (Fig. 2C). A similar criterion has been used for melting
determination in metals (Dewaele et al., 2007). We explain the
plateau by a progressive disappearance of Mg–Pv with increasing
laser power, with a coexisting liquid phase absorbing the YAG-
radiation less than Mg–Pv. Indeed, a higher absorption efficiency for
the solid is expected since Al-bearing (Mg, Fe)SiO3 perovskite
contains high Fe3+-content (Lauterbach et al., 2000). The last data
point on the plateau corresponds to the laser power required to
finally achieve a good coupling between YAG-radiation and the
silicate melt, i.e. once the phase that absorbs the YAG-radiation
better (i.e. the Mg–Pv) is consumed. Moreover, the flatness of the
plateau indicates that the melt fraction has no significant effect on
melting temperature. Such a high liquid productivity is expected
when incompatible elements are not abundant in the bulk
composition, which clearly is our case, and when the liquid
composition gets closer to the remaining solid phase, which is also
our case for high degree of partial melting due to the fact that Mg–Pv,
the liquidus phase, is very abundant in our samples (Asimow et al.,
1997) (Table 1).

A very important feature is the total disappearance of the fine
and continuous diffraction lines of the Mg–Pv phase in the high-
temperature X-ray spectrum, evidencing that this phase is completely
molten at that temperature (Fig. 2A). The diffuse X-ray scattering is
not clearly visible in our samples because the sample is too thin. The
reappearance of sparse and large diffraction spots upon temperature
quench is typical of crystallization from a melt (Fig. 2B).

After quenching from the liquidus temperature, we observe a drastic
change in the sample shape (Fig. 2D). The central part of the sample
presents a round-shape with a diameter ~15–20 μm. This sample piece
is detached from the rest of the sample. This part has undergone

complete melting which induced deformation of the surrounding NaCl
and KCl pressure medium to form a kind of sample droplet.

3.4. Melting curves

The solidus temperature is found to increase smoothly with
pressure from ~2500 K to ~4200 K at 30 to 140 GPa. The liquidus is
found at 300 to 600 K above the solidus (Fig. 3). Both melting
curves are well fitted by modified Simon and Glatzel equation
[T=T0 (P/a+1)1 / c] with T0=2045 K, a=92 GPa and c=1.3 for
the solidus, T0=1940 K, a=29 GPa and c=1.9 for the liquidus,
where T0 is the virtual (this mineral assemblage is only stable above
24 GPa) melting temperature at ambient pressure (Simon and
Glatzel, 1929). The interpolation to the CMB pressure of 135 GPa
yields solidus and liquidus temperatures of 4150±150 K and
4725±150 K, respectively. At low pressures, both solidus and
liquidus curves are compatible with previous determinations using
multi-anvil press (Litasov and Ohtani, 2002; Tronnes and Frost,
2002). Our liquidus curve falls between upper and lower bounds of
the solidus curve reported previously using LH-DAC (Zerr et al.,
1998). However, it is unlikely that the speckle method used by Zerr
et al. can precisely determine solidus and liquidus temperature in
the absence of in-situ X-ray diffraction observation. In addition, their
melting curves must be shifted to higher pressures because they
neglected the effect of thermal pressure inherent to the use of LH-
DAC (~2.5 GPa/1000 K, see above). Such uncertainties, leading to
overestimation of the melting temperature using optical methods,
explain why the MORB melting curve of (Hirose et al., 1999) is
observed at higher temperature than the solidus of our primitive
mantle composition, although MORB is more fusible. Finally, the
data point reported at 4300 K and ~125 GPa for melting of (Mg,

Fig. 2. Criterion used for determination of the liquidus temperature: X-ray diffraction pattern recorded (A) at 4400 K and (B) after quenching from 4800 K at a pressure of 140 GPa.
Quench from the liquid phase (B) yields larger and new spots typical of sample recrystallization from a fully molten sample. Indeed, while these two diffraction patterns were taken a
few minutes apart from each other, the patterns are radically different in peak positions and intensities. Also, we observe total disappearance of all fine and continuous diffraction
lines (indicated by arrows in (A)), which evidences the complete melting of the Mg–Pv liquidus phase. (C) Sample temperature plotted as a function of the laser power. A
discontinuity occurred at the liquidus temperature due to change in the absorption of the YAG-laser by the liquid sample. (D) Electron microphotograph of a sample recovered from
34 GPa showing the central laser-heated zone that underwent complete melting. It formed an independent liquid-ball separated from the rest of the sample.
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Fe)2SiO4 olivine from shock-experiments (Holland and Ahrens,
1997) falls in between our solidus and liquidus melting curves,
showing a relatively good agreement between the two different data
sets. Indeed the forsterite liquidus is observed to be lower than that
of enstatite at high-pressures (Mosenfelder et al., 2009).

4. Discussions

4.1. Thermal structure of the D″ layer

In order to identify melting in the mantle, melting curves must be
compared to the geotherm. While temperatures are relatively well
constrained in the shallow mantle due to anchoring by phase
transitions at 410 and 670 km depth in (Mg, Fe)2SiO4 (Ito and
Katsura, 1989), extrapolation of the adiabatic geotherm (dT/dz=αgT/
Cp, where α, g, Cp are thermal expansion, gravity and heat capacity at
constant pressure) to the base of the mantle using the elastic
parameters of constitutive mantle minerals bears a much larger
uncertainty (Fig. 4). Differences in adiabatic geotherms are often
within 0.1 K/km but translate into up to 250 K difference at the
bottom of the mantle yielding in general 2500 K±250 at 2700 km
depth (Brown and Shankland, 1981; Bunge et al., 2001; Stacey and
Davis, 2004). Whereas more sophisticated models using inversion of
seismic radial profiles indicate hotter temperatures of 2800 to 3400 K
at 2700 km depth (Matas et al., 2007), dependent on the Mg/Si ratio.

The temperature profile in the D″-layer could be much steeper
accounting for the difference in temperature between themeanmantle
above and the molten outer core. The present-time temperature
gradient in this zone depends on the initial difference in temperature
between the outer core and the mantle a few hundreds kilometers
above the CMB, the core energy budget since its formation (Labrosse
et al., 1997), the thickness of the boundary layer and the thermal
conductivities. Recently, the thermal structure of theD″ region has been
tentatively constrained in light of the new post-perovskite phase of
MgSiO3 (Murakami et al., 2004;OganovandOno, 2004). Itwasproposed
that the observation of pairs of positive and negative S-wave velocity
jumps in the D″ region are due to double-crossing of the perovskite to

post-perovskite (PPv) transition (Hernlund et al., 2005). Based on the
latest measurements of the Pv-PPv Clapeyron slope in MgSiO3, this
would mean that the temperature at the CMB could be around 3700 K
(Tateno et al., 2009). Still, it can be argued that the lower mantle
contains Fe and Al that are known to influence the depth and thickness
of phase transitions in general and have been demonstrated recently to
considerably broaden the Pv−PPv transition due to the very different
iron partitioning between the two phases (Andrault et al., 2010; Catalli
et al., 2009). The interpretation of the seismic discontinuities in terms of
temperature should thus be revised in order to take this into account.

In any case, refining the outer core temperature remains essential
for our knowledge of the temperature profile in the D″-layer. This
temperature is generally estimated by extrapolating the adiabatic
temperature profile from the inner-core boundary (ICB) through the
outer core. However, there are several sources of uncertainties. A first
uncertainty arises from controversial melting curves for pure Fe
determined firstly by LHDAC, ranging from 4850±200 K (Boehler,
1993) to 7600±500 K (Williams et al., 1987) at ICB pressures. On the
other hand, shock-wave experiments and ab-initio calculations
suggest melting temperatures of more than 6000 K at 330 GPa (Alfe,
2009; Nguyen and Holmes, 2004). A second source of uncertainty is
associated to the presence and nature of light elements, which should
cause a severe melting temperature depletion. Depending on the
major light element considered for the outer core, extrapolations of
the melting temperature to the ICB yields temperatures from 4100±
100 K in the Fe−Si system (Asanuma et al., 2010) to 5500±500 K in
the Fe−S eutectic system (Kamada et al., 2010), for example. And, if
the outer core contains a mixture of light elements S, Si and O (Badro
et al., 2007; Poirier, 1994), the resulting melting temperature should
be lower than measured in binary compounds. Altogether, the broad
range of ICB temperatures reported in the literature yields a large
range of CMB temperatures and it is difficult to conclude if the outer
core is indeed much hotter than the lower mantle at a few hundreds
kilometers above the CMB or not.

4.2. Melting in the D″ region and origin of the ULVZ

From the available geotherms, only the highest temperature
estimation, based on an extremely steep temperature gradient in

0 500

200 40 60 80 100 120

1000 1500 2000 2500

Depth (km)

1500

2000

2500

3000

3500

4000

4500

Phase transition
from Pv to PPv

Brown & Shankland 1981
Bunge et al. 2001

Ito & Katsura 1989

Hot core

Cold core

Hernlund et al., 2005 
Matas et al. 2007

(L0-02)

Hot coreot coreot core

Mantle solidus

Mantle liquidus

T
em

p
er

at
u

re
 (

K
)

Pressure (GPa)

Fig. 4. Themelting curves of synthetic chondritic mantle plotted together with available
estimates of the mantle geotherm (Brown and Shankland, 1981; Bunge et al., 2001;
Hernlund et al., 2005; Matas et al., 2007) and temperature anchor points (Ito and
Katsura, 1989). Although the temperature estimates vary significantly from onework to
another, there is only one estimate for the D″-layer temperatures (Hernlund et al.,
2005) being higher than the experimentally determined melting curve for chondritic
mantle. It is based on the double-crossing of the MgSiO3 Pv to Post-Pv phase transition
and remains controversial (see text).

(TF-02)

(LO-02)

2000

2500

3000

3500

4000

4500

30 4010 20 50 60 70 80 90 100 110 120 130 140
Pressure (GPa)

T
em

p
er

at
u

re
 (

K
)

CMB

MgO

CaSiO3

MgSiO3

(B-00)

(L-04)

(Z-98u)

(Z-98l) (H-99)

Chondrite liquidus
Chondrite solidus

Liquidus
4725 K

Solidus
4150 K

5000

Fig. 3. Solidus (red squares) and liquidus (green squares) melting points and curve fits
using the Simon–Glatzel model (continuous red and green lines) obtained for our
chondritic-type mantle composition. These results are compared with previous works
on the melting of lower mantle materials (Pyrolite: LO-02 (Litasov and Ohtani, 2002)
and TF-02 (Tronnes and Frost, 2002) (full and open circle for solidus and liquidus,
respectively) and Z-98 (Zerr et al., 1998) upper and lower estimations of the solidus;
Mid-ocean ridge basalt: H-99 (Hirose et al., 1999); Olivine: L-04 (Luo et al., 2004);
Simple oxides: B-00 (Boehler, 2000)). Melting criteria used in our experiments are
described in Figs. 1 and 2. At the core–mantle boundary pressure of 135 GPa, we
interpolate solidus and liquidus melting temperatures at 4150 K and 4725 K,
respectively. Error bars for all points are shown at CMB pressures.

255D. Andrault et al. / Earth and Planetary Science Letters 304 (2011) 251–259



the D″-layer allows partial melting of a chondritic-type mantle in the
D″-layer for which we report a solidus temperature of 4150 K (Fig. 4).
However, we insist on the fact that this very steep temperature profile
is derived from the Clapeyron slope of the Pv−PPv transition for pure
MgSiO3 (Hernlund et al., 2005), and that in the mantle the transition
does not occur at the same depths. Therefore, if partial melting of the
chondritic (or pyrolitic) lower mantle is not totally precluded in the
D″-layer, it remains unlikely as long as the occurrence of a very hot
core is not better established.

The observation of ultra-low velocity zones (ULVZ) exhibiting P-
and S-wave velocity reductions of 10 and 30% just above the CMB (Lay
et al., 2004) has been interpreted as being the result of partial melting.
Since the solidus and liquidus profiles determined in this study are not
in favor of partial melting of the chondritic (or pyrolitic) mantle, a
probable way for inducing melting in the ULVZ of the D″-layer is a
local enrichment in incompatible elements, in particular volatiles (Na,
K, H or CO2) which are known to depress the solidus temperatures.
Some of these elements (Na and K)may have amoderate effect on the
solidus temperature, since they are easily inserted into the Ca-Pv at
sub-solidus conditions (Corgne et al., 2003). In the case of water,
however, the effect could be large, because the solubility of H in the
main lower mantle phases is low (Bolfan-Casanova et al., 2006). Once
partial melting is induced, the degree of partial melting is difficult to
estimate since solid–liquid phase relations are basically unknown at
CMB conditions. Local concentration of the most fusible elements
associated with chemical heterogeneities is compatible with the fact
that ULVZ features are not ubiquitous but instead observed only in
one third of investigated areas (Wen and Helmberger, 1998).

4.3. Depth extension of the early magma ocean

The energy deposited on the Earth during its accretion was
sufficient to partially or completely melt it, especially just after the
Moon-forming giant impact (Canup, 2008; Tonks and Melosh, 1993).
Under such conditions, a magma ocean undoubtedly existed. It is
interesting to discuss the implications of the new melting curve of
chondritic mantle for our understanding of the nature of the magma
ocean.

The inventory of siderophile elements in the modern mantle
indicates equilibration between silicates and iron at high pressures
and temperatures (Li and Agee, 1996; Righter et al., 1997). In addition,
in order to efficiently segregate the core, the silicate has to be molten
in order to overcome the high surface tension of iron in a solid silicate
matrix. Consequently, it was proposed that iron droplets sink through
the molten silicate layer and pond at the base of a magma ocean,
followed by metal descending through the solid mantle in the form of
diapirs (Karato and Murthy, 1997; Stevenson, 1990). Thus, a widely
accepted model is that equilibration occurred just before the iron
droplets reach the Fe-pond at the floor of a magma ocean (Li and Agee,
1996; Wood et al., 2006). The apparent pressure of equilibrium is
comprised between 30 and 60 GPa, 45 and 85 GPa, or 20 and 50 GPa,
based on metal–silicate partition coefficients of nickel and cobalt
(Bouhifd and Jephcoat, 2003; Chabot et al., 2005), oxygen solubility in
molten iron (Rubie et al., 2004), or metal–silicate partitioning of
tungsten (Cottrell et al., 2009), respectively. A recent refinement of
such model explains the mantle enrichment in several siderophile
elements by a continuous accretion at a pressure of equilibrium of
40 GPa and 3150 K (Wood et al., 2006). The pressure of equilibrium is
given by the partitioning of Ni and Co that is very sensitive to pressure
while the temperature of equilibrium is estimated from the
partitioning of V which is very sensitive to temperature. However,
complications may arise from the fact that diffusion kinetics suggest
metal–silicate equilibration during a “metal rainfall” so that the
resulting chemical composition of the mantle probably results from a
polybaric process (Rubie et al., 2003), extending the pressure range of
equilibrium to depths shallower than the base of the magma ocean.

We should also mention here that the model of equilibrium core
segregation is challenged by numerical modeling results indicating
that the core of the impactors possibly merged with the Earth's
core or that the impact did not emulsify efficiently the metal and
silicate liquids (Dahl and Stevenson, 2010). Both imply that the core
segregated without equilibrating with the mantle. In this case, the
pressure of equilibration is meaningless. Still, the geochemical
constraints (Hf–W, U–Pb, and siderophile elements) do not seem to
be enough in order to conclude whether the core and mantle fully or
partly equilibrated. It seems that the siderophile pattern of the
mantle can be reproduced under non-equilibrium conditions
assuming oxygen fugacity conditions higher than previously
thought and embryos that have equilibrated at excessively high-
temperatures (450 K above liquidus of chondritic mantle) (Rudge
et al., 2010). In the following, since the disequilibrium core forma-
tion model creates more questions than answers, we will assume
equilibrium core–mantle segregation at 45–50 GPa in agreement
with metal–silicate partitioning experiments.

We report in Fig. 5 liquidus and solidus curves measured for a
chondritic mantle superimposed with the adiabats for the liquid
(Mosenfelder et al., 2009; Stixrude and Karki, 2005). Here we focus on
isentropes calculated by Mosenfelder et al. (2009), based on their
latest shock-wave equation of state (Eos) of molten MgSiO3. Such
liquid is comparable to the chondritic mantle composition used in this
study that contains ~70 mol% MgSiO3 end-member. In the classical
model of equilibrium at the base of a magma ocean, it is implicitly
assumed that equilibrium occurs at 45–50 GPa on the liquidus (e.g.
(Wood et al., 2006)). According to ourmeasurements of the liquidus, a
fully molten chondritic mantle that would extend to a pressure of 45–
50 (±10) GPa exhibits a temperature of ~3175 K (±250 K) at a depth
of ~1175 (±250) km. Such conditions correspond to a surface
potential temperature of 2450 K (±150 K) (See red curves in Fig. 5).
Such a hot surface is not stable and is only compatible with a transient
magma ocean. Indeed, it has been demonstrated that surface
temperatures significantly higher than 1700–1800 K prevent forma-
tion of an (H2O–CO2)-rich atmosphere required to produce an
efficient thermal blanket to the magma ocean. Without such
blanketing the magma ocean will cool down very rapidly (Abe and
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Fig. 5. The melting curves of synthetic chondritic mantle plotted together with
isentropic temperature profiles of the magma ocean calculated for different potential
surface temperatures (Mosenfelder et al., 2009). Metal–silicate partitioning coefficients
determined experimentally evidence that core–mantle segregation occurred at a depth
of ~1175 (±250) km. Such depth corresponds to a surface temperature of ~2000 K
(green line) or 2450 K (red line) if this limit corresponds to solidus or liquidus
temperature of the magma ocean, respectively. On the other hand, we propose a
possible mantle geotherm (blue line) compatible with crystallization of the liquidus
phase Mg–Pv at the center of the mantle.
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Matsui, 1988; Zahnle et al., 1988). Indeed, above 1700–1800 K
significant silicate vaporization occurs (Nagahara and Ozawa, 1996)
and such rock vapor atmosphere conducts heat easily so that the
magma ocean would cool down in a few thousand years, before the
magma ocean surface temperature comes back to 1700–1800 K (Sleep
et al., 2001). Note that only shallow magma oceans (shallower than
5 GPa) are consistent with surface temperatures of 1700–1800 K
(Miller et al., 1991, see their Figure 8) and can survive for long periods.

On the other hand, Hf–W chronology indicates that ~80% of the
core formed within the first 30 million years of the Earth's history
(Kleine et al., 2002). As discussed above, deep magma ocean
extending to 45–50 GPa pressure can only last for a few thousand
years, and such time scale is radically different from that inferred from
Hf–W isotopes. Thus, one must refine the scenario of core–mantle
segregation in order to explain these apparent contradictions:

(a) If the metal droplets do not rain faster than the crystallization
rate of the hot (transient) magma ocean (Rubie et al., 2003;
Solomatov, 2000), they fall in the liquid mantle to interme-
diate depth until the silicate phases crystallize. Then, the
metal remains embedded in the solid mantle until the next
melting event. We note here that the descent of iron droplets
is intrinsically associated with heat production by release of
gravitational energy. Thus, in order to stop the Fe rain, the
heat flux at the Earth's surface should be higher than the
gravitational energy release. The droplet can also descend
slowly by percolative flow (Yoshino et al., 2003). In this
scenario (Fig. 6A), the equilibrium pressure of 45–50 GPa
corresponds to the mean extension depth of the last magma
ocean before the Fe droplets coalence into larger diapirs and
fall into the core.

(b) A second possible scenario involves a magma ocean defined by
its solidus located at ~1175 km depth (45–50 GPa) (Fig. 6B).
From the base of this magma ocean upwards, coexistence of
solid and melt is expected to occur over a broad depth interval
due (i) to the large temperature difference between solidus
and liquidus (Fig. 5) and (ii) to the fact that the adiabats of
partially molten mantle are sub-parallel to the liquidus
(Miller et al., 1991). It follows that this magma ocean is on
its liquidus at depth close to 300–400 km. As a consequence,
the melt adiabats indicate a surface temperature approaching

2000 K, compatible with a blanketed magma ocean, which
would thus cool down slowly. In this situation, the metal rains
and equilibrates in a mush rather than in a completely molten
magma ocean.

4.4. Formation of a basal magma ocean?

Finally, our new melting curve can be used to discuss the possible
existence of an ancient magma ocean starting its crystallization in the
mid-lower mantle, with formation of a basal magma ocean (Labrosse
et al., 2007). First, we should note that complete melting of the Earth
mantle implies a surface temperature higher than2800 K (Fig. 5),which
is much above the vaporization temperature of the silicate mantle
(Nagahara and Ozawa, 1996). Thus, cooling and crystallization of the
mantle should occur very quickly, as discussed in the previous
paragraph. In addition, this scenario implies temperatures higher than
the liquidus in both the shallow and lowermost mantle, and
temperatures becoming lower than the liquidus at intermediate depth
due to secular cooling. Such a temperature profile requires a very hot
core in order to induce a geotherm steeper than the liquidus in the
lowermostmantle (seeblue curve in Fig. 5).However, such temperature
gradient is unlikely to be relevant to the primitive Earth for a long time.
High thermal conductivities expected for both the liquid in the D″-layer
and the partial melt at mid mantle depth should help to propagate heat
from the CMB to shallower mantle depth and resolve a potential steep
temperature gradient in the lowermost mantle. Therefore, it appears
unlikely that the outer core temperature could exceed 4725 K at the
CMB after crystallization of the magma ocean.

In the context of a complete (or almost complete) melting of the
mantle, it is unlikely that the temperature profile could reach the
solidus in the mid-lower mantle given (i) the large temperature
difference found between solidus and liquidus temperatures; (ii) the
fact that the solidus and liquidus are almost straight curves that
remain steep at CMB conditions; and (iii) because the isentropes of
partially molten mantle are steeper than melt adiabats (Fig. 5). Due
to the later effect, it was argued that the partially molten mantle
could extend up to the core mantle boundary when the depth of a
completely molten mantle extends to a pressure of more than 40 GPa
(Kojitani and Akaogi, 1997; Miller et al., 1991; Stixrude et al., 2009).
Therefore, the mantle fraction defined as “solid mantle” by (Labrosse

A B
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Fig. 6. Models for core–mantle segregation that respect (i) an equilibrium pressure of 45–50 GPa as suggested by metal–silicate partitioning experiments and (ii) a shallow
completely molten magma ocean that can be compatible with a moderate surface temperature. In model (A) representative of transient magma oceans cooling very fast, the metal
droplets remain embedded in the solid mantle and their progression to greater depths is aided by successive melting events. Inmodel (B) representative of a sustained magma ocean
cooling slowly, metal droplets fall in a partially molten mantle until the fraction of solid mantle becomes too high, at temperatures close to the solidus.
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et al., 2007) could only correspond to a partially crystallized mantle,
where the solid phase would essentially be the liquidus phase i.e. Mg–
Pv (Fig. 1 and (Ito et al., 2004)). If crystallization of the magma ocean
from the middle is associated to formation of a perovskitic layer,
geochemical arguments constrain it to be at most 13% of the whole
mantle, a minimum for which the upper mantle refractory elements
budget still remains chondritic (Liebske et al., 2005).

Alternatively, a basal magma ocean could be possible if its com-
position is enriched in incompatible (i.e. fusible) elements, which
would facilitate melting at lower temperatures at the base of the
mantle. The persistence of such fusible material until today would be
compatible with the observation of ULVZ, as mentioned in a previous
paragraph. It could also explain major geochemical signatures, such
as the one associated to “primitivemantle”with high 3He, for example
(Allègre et al., 1995; Kurz et al., 1982).

5. Conclusions

We have determined the solidus and liquidus curves of a
chondritic mantle up to CMB pressures. Our melting criteria include
in-situ X-ray diffraction and temperature–power relationships. We
confirm that the MgSiO3-bearing perovskite is the liquidus phase in
the deep lower mantle. The solidus melting curve is found at lower
temperature than reported previously, especially atmid-lowermantle
depth, while the liquidus is found at significantly higher temperatures
at all mantle depths. At the CMB, we report solidus and liquidus
melting at 4150±150 K and 4725±150 K, respectively.

We then discussed the geophysical implications of the new
melting curve for chondritic mantle. First, it appears unlikely that
the ULVZ, which is interpreted to experience ~20% partial melting, is
of chondritic (or pyrolitic) composition. Indeed, the solidus of 4150±
150 K appears to be too high compared to estimates of the tem-
perature profile in the D″ region, except if the core is extremely hot.
Thus, in order to be explained by melting the ULVZ should rather be
associated to high concentration of fusible elements that decrease the
melting point compared to the chondritic mantle.

We also show that the pressure of 45–50 GPa typical of metal–
silicate equilibrium, as reported by several experimental studies in the
context of core–mantle segregation, is associated to a magma ocean
surface temperature incompatible with a sustained magma ocean. It
strongly suggests that the metal–silicate equilibrium occurred in a
partially molten mantle, covered by a fully molten magma ocean
much thinner than 1000 km.

Finally, by examining the relationships between magma ocean
temperatures at depth and potential surface temperatures, our melting
diagram is compatible with the formation of a basal magma ocean only
if the middle-depth solid mantle is mainly composed of Al-bearing
(Mg, Fe)SiO3-perovskite and if the basal magma ocean has a chemical
composition significantly different than the chondritic mantle.
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