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General Introduction 

 

Motivation 

Copper indium gallium diselenide (CuIn1-xGaxSe2 or CIGSe) solar cells present the highest 

conversion efficiency ever reported in thin film technology, with a record value of 20.3% 

recently reported by ZSW 1. Over the past decade, the CIGSe field experienced an increasing 

industrial development with the commercialization of high efficiency modules 2. It is now 

considered as one of the most promising alternative technology to silicon-based solar cells, 

and to meet the production milestone of 0.5 $ per watt for cost parity with other energy 

sources. In the scope of increasing the development of the CIGSe technology up to the Giga-

Watt, the issue of possible material scarcity arises. While copper and selenium are abundant 

materials, gallium and more importantly indium are limited resources, and their availability 

may become a problem for future development of CIGSe-based solar cell 3; moreover, indium 

is already a widely used material for indium tin oxide (ITO) production which is strongly 

related to the overwhelming flat screen industry. Therefore, the future of the CIGSe 

technology seems closely tied with the question of materials savings. 

In this scope, several alternatives have been proposed in the recent years, such as replacing In 

and Ga by more abundant materials such a Zn and Sn (kesterite material). Although recent 

improvements have been achieved (with efficiencies up to about 11% 4), the efficiency of 

these solar cells is still 2 times lower than record CIGSe solar cells. Another idea to reduce 

the material utilization in CIGSe solar cells is to reduce their dimensions, either by reducing 

the lateral dimensions 5 of the device, or the thickness of the device. In recent review 3, V. 

Fthenakis suggested that an extensive R&D is needed on developing thinner layers, which has 

not been sufficiently studied so far.  

In this PhD thesis, we will focus on developing CIGSe solar cells with very thin and ultrathin 

absorber layers, down to 100-200 nm, while the standard thickness of CIGSe layers is 2500 

nm. Besides using 25 times less indium in the fabrication of a solar cell, such an achievement 

will markedly reduce the deposition time of the material, and thus significantly increase the 

throughput of the process and the machinery utilization, leading major cost reduction. 
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However, the competitiveness of the CIGSe material relies on its high efficiency compared to 

other thin film technologies; therefore, the reduction of the CIGSe absorber thickness must 

not be linked to an efficiency decrease of the solar cell. It is thereby necessary to develop 

innovative theoretical and experimental designs that could allow to maintain the efficiency of 

ultrathin absorber solar cells at the same level as the current thick absorber solar cells.  The 

main objective of our researches is to propose new front contact and back contact engineering 

on ultrathin absorber solar cells, to overcome the various efficiency limitations that exists 

when reducing the CIGSe thickness in a solar cell. For that, we will propose a novel approach 

combining chemical etching of the absorber, and low temperature back contact processing. 

 

Scientific approach 

In the first Chapter of this thesis, we will introduce the general state of the art of thinning the 

CIGSe absorber for very thin and ultrathin solar cells, with a short overview of the available 

literature on this subject. In a second Chapter, we will study from a theoretical point of view 

the effect of reducing the absorber thickness in a CIGSe solar cell by using numerical tools 

(SCAPS, and optical simulation ). New solution to increase the performances of the very thin 

and ultrathin absorber CIGSe solar cells will be proposed, and theoretically evaluated. In the 

third Chapter of this thesis, we will experimentally reduce the CIGSe thickness using a 

chemical bath etching based on a bromine solution. The resulting CIGSe films will be 

characterized by various tools in order to evaluate the chemistry, the crystallinity, the 

composition and the optical properties of the etched CIGSe films. Solar cells with very thin 

and ultrathin absorber thickness down to 200 nm will be realized and electrically 

characterized, in order to compare the experimental photovoltaic parameters with our 

simulations. In Chapter IV, we will investigate on the front contact engineering to improve 

the light absorption of very thin absorber CIGSe solar cell. Various solutions will be tested, 

including the introduction of new materials in the stack and nanostructuration of layers. In the 

final Chapter (V), we will study the back interface engineering of very thin and ultrathin 

absorber CIGSe solar cell. We will propose an innovative methodology for the replacement of 

the back contact of the CIGSe solar cell by alternative materials and structures, and 

demonstrate the feasibility of high efficiency ultrathin devices with proof of concept devices. 

At the beginning of each chapter, a specific state of the art of the current literature on the topic 

will be presented, in complement of the short overview from Chapter I. 
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I) The Copper Indium Gallium DiSelenide (Cu(In,Ga)Se2) 

solar cell  

 

Copper indium gallium diselenide (CuIn1-xGaxSe2 or CIGSe) solar cells is a multi layer thin 

film technology which has been increasingly developed in the last decade thanks to its 

relatively low cost combined with high efficiencies 1,6. CIGSe is a direct bandgap 

semiconductor with a chalcopyrite structure, a p-type doping and a bandgap varying 

continuously with the gallium content x from about 1 eV (for pure CuInSe2) to about 1.7 eV 

(for pure CuGaSe2). Thanks to the very high absorption coefficient of more than 105.cm-1 for 

1.5 eV and higher energy photons 7,  CIGSe solar cells require a much thinner film (~2 µm) 

than most of the other semiconducting materials. Although alternative plastic or metallic 

substrate can be used 8,9, we focus in this work on the study of CIGSe solar cells deposited on 

soda lime glass (SLG) which is both the most widely used substrate and the one giving the 

best efficiencies. The solar cell stack is presented figure 1. A Mo layer is deposited on the 

glass substrate by sputtering with a thickness of about 500 nm. This layer is the back contact 

of the solar cell. Mo has been chosen because of its excellent chemical compatibility with 

CIGSe (no interdiffusion of the species throughout the absorber during thermal stress) and its 

ability to form an ohmic contact with the CIGSe, because of the presence of a thin MoSe2 

layer at the interface between the two materials 10–13. The p-CIGSe layer can be grown by 

several vacuum and non vacuum methods, such as co-evaporation 1,6, sputtering 14,15, 

electrodeposition 16,17 or nano-particles based techniques 18; in this work, we focus on the 

study of a 2.5 µm CIGSe layer deposited by co-evaporation using an industrial three stages 

process described in reference 2. This process allows to obtain high efficiencies along with a 

very good reproducibility. A n-doped buffer layer is deposited on top of the absorber; the 

most widely used is chemical bath deposited cadmium sulfide (CdS) 19 with a bandgap of 2.4 

eV and a thickness of 50 nm. This layer allows the formation of the p-n junction with the 

CIGSe and passivates the absorber surface which strongly reduces recombination at the p-n 

interface. The band offset of the CdS on CIGSe is particularly suitable for the following 

ZnO:i/ZnO:Al bi-layer. However, the relatively low bandgap of this material has been 

highlighted as a major issue to overcome for increasing the photon absorption in the CIGSe. 

Cd toxicity is also pointed out as a reason for replacing this buffer layer by an alternative 

buffer. The top zinc oxide bi-layer is deposited by sputtering as a transparent front contact for 
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the solar cell. The thin (between 50 and 70 nm) intrinsic n-doped ZnO:i layer (IZO) provides 

an efficient isolation of potential small shunt conductance, along with protecting the 

CIGSe/CdS interface from the rest of the process. Degenerate n-doped ZnO:Al (AZO) with a 

thickness of about 400 nm is the most commonly used transparent conducting oxide in the 

CIGSe field, and act as a transparent front contact. 

The band diagram of the complete solar cell under illumination is presented in figure 2. We 

see that the p-n junction between p-CIGSe and n-CdS/ZnO creates a space charge region 

which extends in the p-region of the structure, due to the much lower doping level of the p-

region compared to the n-region. The difference in the work function between the p and the n 

materials creates a built-in potential VBI.  Incident light passes through the wide gap 

ZnO:i/ZnO:Al ( eVevEg 5.33.3 −= ) front window, and through the CdS buffer layer 

( eVEg 4.2= ) where high energy photons are partly absorbed but do not contribute to the 

photocurrent output. When the photons reach the CIGSe absorber, they are absorbed in the 

material, which separates the holes and the electrons by exciting them in the conduction band. 

This increases the density of electrons and holes above their equilibrium values leading to a 

splitting of the quasi Fermi levels (i.e. a difference in the chemical potential of electrons and 

holes). Migration of the electrons from the p-doped region to the n-doped region creates a 

minority carriers current, and the electrons are collected at the ZnO:Al front contact while the 

hole reach the metallic back contact.  
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Figure 1. Material stack of a standard CIGSe solar cell 

 

Figure 2. Band diagram of a standard CIGSe solar cell with no polarization and under 

illumination. 
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The quasi fermi level splitting drives the maximum value of the Open-Circuit Voltage (Voc) of 

the solar cell. The short circuit current (Jsc) is defined as the current delivered by the cell at 0 

voltage. When the diode is polarized in direct, the maximum power output mmm JVP .=  is 

reached, also called the operating point, for a voltage ocm VV <  and a current scm JJ < . The 

Fill Factor FF is defined as 
scoc

mm

JV

JV
FF

.

.
= . The efficiency η  of the solar cell is the ratio 

between the maximum power output mP  and the incident power sP . Under standard A.M. 1.5 

solar radiation, 1000=sP 2. −mW . Therefore, in standard conditions, we have 

1000

..

1000

. FFJVJV scocmm ==η . Several factors may limit the solar cell efficiency; the most 

important ones are shunt resistance arising from leakage of current through the cell, series 

resistance coming from each layer composing the solar cell and the interfaces between the 

layers, and carrier recombination that may occurs in the stack. The main recombination 

processes in solar cells are schematized figure 3. The band to band recombination process is 

basically the inverse process of the electron-hole pair generation from light absorption in the 

material (Figure 3.a). An electron from the conduction band falls back to the valence band and 

releases its energy in the form of a photon νh . Another very important recombination process 

is the recombination by phonon emission (Figure 3.b), also called Shockley-Read-Hall (SRH) 

recombination. This type of recombination is trap-assisted utilizing a defect at the energy Et 

within the material bandgap Eg. The excess energy during the recombination of the carrier is 

transferred to the crystal lattice by phonons. The theory describing this effect can be found in 

references 20,21. Interfaces, because of their higher defect density, are often region of high 

SRH recombinations. Back contact recombination (Figure 3.c), occurring when electron reach 

the metallic back contact, are often neglected for standard CIGSe solar cell due to the 

important thickness of the absorber. However, their influence becomes of major importance 

for thinner absorber layer, particularly for low energy photons that are absorbed deeper in the 

CIGSe, and thus closer to the back contact. Finally, recombination at the CIGSe/CdS interface 

which could be assisted by tunneling can also occur, due to interface defects (Figure 3.d). 
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Figure 3. Schematic representation of the major recombination processes in a CIGSe solar 

cell. (a) radiative band-to-band; (b) Shockley-Read-Hall; (c) back contact; (d) interface 

recombination with possible tunneling 

 

 

When reducing the absorber thickness, the device becomes more sensitive to various 

parameters such as the material absorption, the increased recombination etc… In the 

following, we will expose a general overview of previous studies related to thinning the 

CIGSe absorber, which will give us leads to follow throughout our experiments. 
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II) State of the art in thinning of CIGSe absorber 

 

 

Since reducing the absorber thickness in CIGSe solar cell has been pointed out as a key issue 

in this sector, several groups have tackled the task both from a theoretical and experimental 

points of view and designed devices with thinner absorbers. Systematic study of the reduction 

of the absorber thickness was first reported by Shafarman et al. in 1997 22 and Negami et al. in 

1998 23. Since then, the most active groups have been the NREL group 24 25 26 and the Uppsala 

University group 27 28 with extensive studies on this topic. Those two groups proposed the 

same approach for reducing the absorber thickness, consisting in directly growing the CIGSe 

layer at a lower level, thus adapting the existing process to a lower thickness.  

When reducing the absorber thickness of a photovoltaic device, the most expected problem is 

the reduction of the light absorption and so the decrease of the photocurrent generation in the 

solar cell. Although the absorption coefficient of the CIGSe material is very high, all the 

studies have shown that the amount of light absorbed is strongly affected when decreasing the 

absorber thickness to the sub-micrometer level. Moreover, other problems may appear due to 

the ultra-low scale of the devices. Negami 23 reported that the solar cells were electrically 

shunted when the absorber thickness became close to 0.5 µm; this was related to the natural 

roughness of as-grown CIGSe layers which was of the same order as the film thickness itself. 

Shafarman et al. 22 also reported a strong decrease of the parallel resistance when reducing the 

CIGSe thickness, most likely related to an increased shunt effect due to pinholes in the 

absorber. However, Karpov et al. predicted, in a theoretical simulation study, the existence of 

a critical device thickness in the submicron region, below which the leakage currents will 

harm the device performance 29. Gloeckler and Sites 30 also investigated on the properties of 

very thin and ultrathin absorber CIGSe solar cells from a theoretical point of view. Their 

simulations indicated that reducing the absorber thickness leads to a reduction of the short 

circuit current due to a combination of a reduced light absorption and increased back contact 

recombination. When the absorber is fully depleted however (thickness lower than the space 

charge region width), the authors state that the back contact recombination become negligible 

and the current of the cell depends only on the absorption in the CIGSe. 
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The Uppsala group’s first publication 27 on the topic used a Cu-poor fabrication process 

giving a relatively smooth surface (RMS ~ 40 nm), which strongly reduces the risk of 

shunting for thin CIGSe absorbers. However, a much smaller grain size is achieved when 

compared to a classical three stage process. In this study, a 1.8 µm solar cell with an 

efficiency of about 16 %, a Fill Factor (FF) of 75 % and an Open Circuit Voltage (Voc) of 650 

mV is taken as a reference thick absorber solar cell, and solar cells with thinner absorbers are 

realized using the same process, down to 0.15 µm. Efficiencies close to 13 % are achieved 

down to 0.8 µm, showing a moderate decrease when reducing the absorber thickness; 

however a more pronounced decrease is observed for the lower thicknesses down to 8 % for a 

0.36 µm absorber solar cell. The results indicate that the dominant loss is seen in short circuit 

current. External Quantum Efficiency (EQE) and absorption measurements are performed on 

the devices (figure 4), showing that the light absorption is only slightly reduced when 

decreasing the absorber thickness from 1.8 µm to 0.8 µm; the EQE was however strongly 

affected in the long wavelength range. This reduced carrier collection for low energy photons 

is interpreted to an increased back contact recombination, thus confirming the simulations 

from Gloeckler & Sites 30. For the ultrathin 0.36 µm device, the absorbed light was strongly 

reduced compared to a thick CIGSe layer in the red and infrared range. Moreover, the 

difference between absorbed light and collected carriers is even more important and a high 

fraction of the generated carrier do not contribute to the current. On the other hand, the Voc 

and the FF are essentially not affected down to ~0.5 µm absorber thickness, maintaining high 

values close to 650 mV and 73 % respectively. At the ultrathin scale however (d < 0.4 µm), 

the Voc and the FF are reduced although still at relatively high values (600 mV and 70 % 

respectively).  
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Figure 4. Comparison between the calculated absorption curves (solid) and the corresponding 

QE curves (dotted) for CIGS thicknesses of 1.8, 0.8 and 0.36 µm 27 

 

This paper also studies the influence of a back surface field (BSF) on the devices created by 

inserting a CuGaSe2 layer. It has been shown that by using graded compositional profiles, i.e. 

increasing the Ga content at the back side of the solar cell, the conduction band level in the 

CIGSe increases 31. This leads to a reduced back contact recombination as reported in 

reference 32. With the introduction of this layer, the FF increases above 75 % while the Voc is 

increased by about 30 mV, whatever the CIGSe thickness. The short circuit current however, 

which is the dominant loss responsible of the efficiency drop, is not improved by the 

introduction of the BSF. Diode analysis using a 1-diode model with dark and illuminated J-V 

measurements revealed that reducing the absorber thickness leads to a gradual increase of the 

saturation current J0, which is governed by the recombination processes, and an increase of 

the diode ideality factor A. This is interpreted as related to the reduction of the Voc of thinner 

absorber devices, while the reduction of the FF is accounted to the increase of J0 and a 

decrease of the shunt resistance Rsh. The authors attribute the increase of the saturation current 

to a combination of different phenomena; firstly, thinner absorber increases the back contact 

recombination and thus reduces the carrier collection. The fact that the FF is improved by the 

back CGSe layer is an indication that some loss mechanism can be reduced with a BSF, but 

the losses observed in the EQE curves remain however unchanged with the BSF. The thinner 

CIGSe layers also have smaller grain and thus larger grain boundaries than thick layers, which 
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could also account for the increased recombination losses. Finally, according to reference 33, 

the fact that the EQE of the 360 nm absorber solar is reduced in the short wavelength range 

combined with an increased ideality factor indicates tunneling recombination in the region 

close to the CIGSe/CdS interface. 

Ramanathan et al. 24 investigated the influence of the thermal evaporation growth process on 1 

µm thick CIGSe solar cells; they compare a three stage process with simultaneous co-

evaporation of all the elements in one step. The three stage process consists here in the 

deposition of a (In, Ga)2Se3 layer, then reacted with Cu and Se. The composition is controlled 

by detecting the temperature change of the substrate during Cu-poor to Cu-rich transition at 

the end of the second stage. The third stage is the evaporation of In and Ga in the presence of 

Se. The reduction of the CIGSe thickness in the three stage process is achieved by reducing 

the thickness of the precursor film in the first stage. On the other hand, several co-depositions 

were made, starting with a Cu-rich CIGSe layer or a CuGaSe2 layer, and the flux were 

adapted to obtain films with the desired element ratio.  

These different methods were successfully adopted to deposit absorbers in the thickness range 

of 0.4-1 µm and a bandgap grading was achieved in all the scenarios. Table 1 presents the 

best solar cell results as a function of the absorber thickness. A reference thick absorber solar 

cell is also presented. 

 

Table 1. Photovoltaic properties of thin CIGSe solar cells 24 
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Figure 5. External Quantum Efficiency for a thin 1000 nm CIGSe solar cell (solid line) and 

thick 2500 nm CIGSe solar cell (dotted line) 24 

 

The highest efficiency for a 1 µm CIGSe solar cell was achieved for a three stage process 

absorber with 17.1 %. When comparing the EQE of this solar cell with the thick 2.5 µm solar 

cell (figure 5), they notice that the long wavelength energy edge is at higher energy for the 

thin absorber, which is an indication of a higher Ga content. The Voc is however lower than 

expected in this configuration by about 50 mV, which is the most significant loss that 

contribute to the difference in the efficiency between a thin and a thick absorber solar cell as 

seen on table 1. Dark J-V curves analysis shows that while the diode ideality factors are 

identical between a thin and a thick solar cell, the reverse saturation current is slightly higher 

in the case of a thin absorber (8.10-11A.cm-2 versus 3.10-11A.cm-2) which partly explains the 

decrease in Voc observed for thin absorbers. Drive-level capacitance profiling (DLCP) 

measurements were performed on three stage absorbers with different thicknesses in order to 

evaluate their free carrier and defect density. This characterization reveals an increasing trend 

in both the carrier and defect density when decreasing the absorber thickness. The increase in 

the free carrier density does not results in an increase of the Voc due to the counter effect of 

the increasing defect density. This is attributed to a non-optimum growth of the thinner CIGSe 

layers. 

Instead of directly growing the absorber to a thinner scale, which may lead to the problems 

previously reported, more fundamental studies can be performed by reducing the thickness of 

a standard absorber by chemical etching. The chemical etching of CIGSe surface was first 

introduced by Birkmire and McCandless in 1988 34, who realized specular CIGSe surface 



Confidential 24

with this technique. This paper was followed by a publication from Canava et al. who 

reported a method to reconstruct the surface termination of CIGSe after etching by using a 

KCN post treatment 35. Based on these results, Shafarman’s team also investigated the etching 

of CIGSe films, but for reducing the absorber thickness 36. They performed a systematic 

comparative study between etched absorbers and as-deposited absorbers of the influence of 

reducing the CIGSe thickness on the photovoltaic parameters of the solar cells (Figure 6).  

They reported a similar trend for the Jsc when etching absorber as what was observed for as-

deposited CIGSe, with a progressive decrease due to the reduction of the thickness of the 

active material. However, in the case of etched absorbers the FF is found much more stable 

when reducing the CIGSe thickness than for as-deposited absorbers. On the other hand, the 

Voc of etched absorber solar cells is reported as slightly lower although the important 

dispersion of the results makes it difficult to interpret. Overall, the efficiency trend and value 

is identical between etched and as-deposited absorbers.  

 

Figure 6. Compared photovoltaic parameters for CIGSe solar cells with different absorber 

thicknesses realized with two different techniques: direct deposition of the absorber (blue 

dots), and chemical etching of thick absorbers (red dots) 36 
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In this Chapter, we had an overview of the general literature on CIGSe solar cells with 

thinned absorber. When reducing the CIGSe thickness, the short circuit current has been 

identified as the dominant loss in the solar cell. This has been attributed to a contribution of 

both incomplete absorption of incident photons due to the thinning of the absorber, and 

increased back contact recombination due to the increased proximity of the back interface for 

thin CIGSe layers. Open Circuit Voltage and Fill Factor are also affected although in much 

lower proportions, especially for very thin CIGSe absorber (less than 500 nm). 

In this work, our goal is to study the feasibility of very thin and ultrathin absorber device with 

photovoltaic properties comparable to standard thick absorber solar cells. In the following 

Chapter, we will firstly study the influence of reducing the absorber thickness in a state of the 

art CIGSe solar cell by numerical simulation. We will try to investigate the physical factors 

that are involved in the decrease of the performances of the device, in order to address new 

and adapted techniques to significantly enhance the photovoltaic parameters of very thin 

(down to 400 nm) and ultrathin (down to 100 nm) absorber CIGSe solar cells. These materials 

and structures will be implemented in a numerical modeling to evaluate their potential in the 

scope of future application to experimental proof of concept devices.  
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Chapter II 

 

 

 

 

 

 

 Theoretical Analysis: Effect of thinning of 

CIGSe absorber layers on solar cells 

characteristics and potential improvements 

for ultrathin devices 
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II.1) Introduction 

As presented in the previous chapter, thin film solar cells and especially chalcogenide thin 

film solar cells have been extensively studied in the last three decades, and significant 

advances have been achieved leading to an increasing development of this technology. We 

however pointed out that although the current material cost is only a small fraction of the total 

solar panel cost, this rising evolution may lead to a major increase of the material price (both 

for CIGSe and CdTe) in a near future 3 37, and the limited material resources (for In and Te) 

may become an important limitation to upcoming developments of the sector. In order to limit 

the bottleneck due to the availability of the material, recent researches have been carried out 

to reduce the material consumption by thinning the absorber layer, both in CdTe 37 38 39 and 

CIGSe 22 23 24 27; this is the topic of our present study. In order to evaluate the influence of 

reducing the absorber thickness in a CIGSe solar cell, it is important at first to perform 

numerical simulations of very thin and ultrathin absorber solar cells, and to establish 

interpretations and hypothesis that will give us a trail to follow in the experiments. 

In this Chapter, we focus on modeling a standard CIGSe solar cell using SCAPS 2.904, that 

will be used as a baseline. We will then study the influence of progressively reducing the 

CIGSe absorber thickness down to 100 nm. SCAPS is a worldwide recognized simulation 

software created by Prof. Burgelman from the University of Gent 40. Numerical simulations 

allow us to discriminate the key parameters of the solar cell that are affected by the absorber 

thickness reduction, and SCAPS, being both a user-friendly and a powerful tool for 1-D 

simulation of thin films solar cell, is a very well suited program for this study. 

Previous theoretical work shows that sub-micrometer CIGSe solar cells could be greatly 

improved with a suitable engineering of the device 30, 41. To supplement these results, we will 

suggest some realistic improvements to the solar cell and evaluate their potential in the 

perspective of a performance improvement. Optical simulations of novel CIGSe solar cell 

structures with very thin absorbers will be presented. 
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II.2) Modeling of a standard CIGSe solar cell 

II.2.a) Definition of the input parameters 

The first stage in modeling the influence of the absorber thickness on the photovoltaic 

parameters of a CIGSe solar cell is to establish a “baseline” solar cell; the parameters used to 

model this state of the art solar cell are either taken from literature 42 43 or from direct 

characterizations of a standard CIGSe solar cell from Würth Solar 2. The modeled baseline 

solar cell should match as close as possible the experimental solar cell. 

Numerical simulations were performed using the program SCAPS in order to theorically 

evaluate the influence of the absorber thickness on the properties of the solar cell, and to 

investigate possible improvements of the device both with an optical and an electrical 

engineering of the solar cell. SCAPS is a free program developed at the Gent university by M. 

Burgelman et al. designed for thin film solar cells 1-D modeling 40 and made available to 

university researchers in the photovoltaic community in 1998. The version used in this work 

is the 2.904. SCAPS allows to model the main electrical characterizations of solar cells, i.e. 

Current-Voltage (dark and illumination), Spectral Response, and Capacitance-Voltage and 

Capacitance-Frequency which will not be used in this work. The user enters electronic and 

optical parameters to define the different materials and interfaces that compose the solar cell. 

Recombination model including different types of defects (Neutral, Single/Double 

Donor/Acceptor, Amphoteric…) are also input parameters. The main limitation of this 

software simulation tool is that a very good knowledge of the parameters of the materials 

composing the cell is needed, and experimental characterizations must be performed as much 

as possible to sharpen the simulations results. 

In order to establish a reference solar cell, which will be used as a baseline for the study of the 

influence of the absorber thickness reduction, the electrical and optical parameters of each 

layer of the solar cell have been chosen according to experimentally measured parameters and 

compared to reference 42 and 43. Table 1 shows the main material parameters used in this 

study, and the Appendix I summarizes the complete parameters set for simulation of a 

standard CIGSe solar cell. Repeated simulation by varying each parameter highlighted the 

fact that some parameters such as the doping level of the CIGSe absorber are of the utmost 

importance and need to be determined with high precision and reliability. For example, the 

majority carrier concentration in CIGSe that we use in our simulation is 2.1016 cm-3; this 
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carrier concentration was deduced from an experimental Capacitance-Voltage curve of a 

standard CIGSe solar cell at room temperature (no illumination). It is in perfect agreement 

with the references 42 and 43 and thus can be used as one of our baseline parameter for further 

simulations. Different set of parameters may lead to similar results in the photovoltaic 

parameters, this is why the user has to be very cautious. 

 

  CIGSe CdS ZnO:i ZnO:Al 

εr    [-] 13.6 10 9 9 

χ    [eV] 4.5 4.2 4.45 4.65 

Eg   [eV] 1.15 2.4 3.3 3.5 

µe  [cm2.V-1.s-1] 1.00E+02 1.00E+02 1.00E+02 1.00E+02 

µh  [cm2.V-1.s-1] 25 25 25 25 

Nc  [cm-3] 2.20E+18 2.20E+18 2.20E+18 2.20E+18 

Nv  [cm-3] 1.80E+19 1.80E+19 1.80E+19 1.80E+19 

NA [cm-3] 2.00E+16 1.00E+00 1.00E+00 1.00E+00 

ND [cm-3] 1.00E+01 1.00E+17 1.00E+18 5.00E+20 

νe  [cm.s-1] 1.00E+07 1.00E+07 1.00E+07 1.00E+07 

νh [cm.s-1] 1.00E+07 1.00E+07 1.00E+07 1.00E+07 

Table 1. Material parameters used for the simulation of a reference CIGSe solar cell.                  

εr: dielectric permittivity (relative); χ : electronic affinity; Eg: bandgap; µe/h: electron/hole 

mobility; Nc/v: conduction/valence band density of states; NA/D: acceptor/donor density; νe/h:  

electron/hole thermal velocity. 

 

 



Confidential 31

An accurate definition of the optical properties of the different layers is needed for sharp 

simulation to match well the experimental characterizations. Some baseline absorption 

coefficients (Numos) are included in the SCAPS folder, coming from different sources: 

Numos_ZnO 44, Numos_CdS 44 and Numos_CIGS 28. Although these data showed good 

agreement with our experiments, it is also possible to input absorption coefficients from 

spectroscopic ellipsometry in the simulation for a better accuracy; the 

reflectivity/transmission at the front and at the back contact of the solar cell are also 

parameters that can be implemented in the definition of the solar cell. Finally, it is also 

possible to include a generation function G(x), which can be simulated using an optional 

program that we developed in our laboratory 45 and included as a .txt file in the SCAPS 

simulations. In our simulations, however, G(x) was calculated by SCAPS, and Numos files 

will be used for ZnO and CdS absorption. The absorption of the CIGSe layer is determined 

from ellipsometry measurements and is presented figure 1.a. The reflectivity Ri of the back 

contact at the CIGSe/metal interface is also determined using spectroscopic ellipsometry (see 

Chapter V) for the CIGSe and the back contact (see figure 1.b), and it is calculated using the 

Fresnel’s equation: 

2

~~

~~

CIGSeMetal

CIGSeMetal
i nn

nn
=R

+
−

 

where ñMetal and ñCIGSe are the complex optical indexes of the CIGSe and the metal 

determined from spectroscopic ellipsometry measurements. The reflectivity of the front side 

of the solar cell is experimentally determined by reflectivity spectroscopy measurements of a 

complete CIGSe solar cell stack (ZnO:Al/ZnO:i/CdS/CIGSe/Mo) in our laboratory using an 

integrating sphere and implemented in the SCAPS simulations (figure 1.b).  
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Figure 1. (a) Absorption coefficient of a standard CIGSe layer from spectroscopic 

ellipsometry measurements; (b) Measured front side reflectivity of a standard CIGSe solar 

cell (orange curve) and calculated back contact reflectivity (green curve) from ellipsometry 

data 

After the complete definition of the material and optical properties of the solar cell stack, we 

perform simulations of the Current-Voltage (J-V) curve and Spectral Response, and compare 

the results with the measurements performed on a reference 2500 nm CIGSe solar cell. 
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II.2.b) Modeling of current-voltage and spectral response 

The CIGSe absorber thickness taken as the default thickness for a reference solar cell is 2500 

nm. Figure 2.a shows a superposition of the J(V) curve of an experimental (dots) and a 

simulated (solid line) reference CIGSe solar cell and Figure 2.b shows the corresponding 

external quantum efficiencies.  

 

 

Figure 2. Comparison between a state of the art 2500 nm CIGSe solar cell from Würth Solar 

(solid line) and our baseline simulated solar cell (circles). a: J-V curve; b: Spectral Response. 
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From the J-V curves presented figure 2.a, the photovoltaic parameters of the SCAPS baseline 

solar cell are: 

Voc = 667 mV, FF = 73.9%, Jsc = 28.6 mA.cm-2 and Eff = 14.1% 

Which are similar to those of the experimental reference CIGSe solar cell are: 

Voc = 663 mV, FF = 73.3%, Jsc = 28.1 mA.cm-2 and Eff = 13.7% 

We can achieve a very good agreement between the simulated and the experimental results; 

we can also note that the slight differences are much lower than the usual spreading of the 

parameters observed on standard solar cells.  

In addition, the Spectral Response curves presented in figure 2.b show a very close match 

between the experimental and the simulated curves. The CdS absorption in the UV range is 

well reproduced, along with the CIGSe absorption plateau in the visible range. The curves 

however slightly differ in the 800 nm to 900 nm, maybe due to some small interference 

effects that may appear in the ZnO layer for the experimental solar cell, even if the interfaces 

of a standard CIGSe solar cells is relatively rough. Also, the bandgap between the two curves 

seem slightly different. This is attributed to the fact that the ellipsometry data that are used to 

input the absorption coefficient has to be extrapolated in the vicinity of the bandgap due to the 

very low absorption of the material in the region, and therefore may lead to a lack of 

precision. 

The agreement between experiments and simulations being good both for the J(V) 

characteristic and the spectral response, this validates our set-of parameters as a baseline 

state-of-the-art solar cell for simulating the influence of the absorber thickness on the 

photovoltaic parameters of the device. However, it is important to highlight the fact that the 

array of parameters to input in SCAPS is very large; As pointed by M. Burgelman et al. 40, 

one cannot be sure that another set of parameters does not exist and may lead to calculations 

which could be judged equally well as the one in figure 2. To prevent this from happening, we 

performed as many possible characterization on our material and compared it to state-of-the-

art literature. 

 In the following, the thickness of the absorber will be progressively reduced and we will 

investigate on the evolution of the photovoltaic parameters together with proposing some 

interpretations. 
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II.3) Influence of CIGSe thickness on photovoltaic 

parameters 

 

In this section, we study the effect of the progressive reduction of the absorber thickness from 

the reference 2500 nm down to 100 nm on the J-V characteristics, the recombination currents 

in the device and the External Spectral Response (EQE). The doping level of the CIGSe, the 

mobility µ and the density of states in the conduction band and the valence band are 

considered homogenous throughout the layer. Using SCAPS 2.904, the absorber thickness is 

reduced from 2500 nm down to 100 nm starting from the baseline reference solar cell 

previously established in part I. 

 

II.3.a) Modeling of the current-voltage curves 

The figure 3 shows the simulated J-V curves (3.a) and the corresponding photovoltaic 

parameters (3.b and 3.c) for the different absorber thicknesses. We clearly see that two 

different regimes in the variation of the parameters emerge. The first one is from 2500 nm to 

around 500 nm, where the variations of the parameters is moderate. In this configuration, the 

absorber thickness is roughly higher or of the same order than the mean absorption length of 

the photons. The absorber layer can still be considered as relatively optically thick.  In the 

second regime, from 500 nm to 100 nm, the variation of the parameters is much more abrupt; 

in this case, the absorber thickness and so the mean absorption length and the layer cannot be 

considered as optically thick anymore. 

 



Confidential 36

 

Figure 3. Simulated J-V characteristic (a) of CIGSe solar cells with different absorber 

thicknesses from 2500 nm down to 100 nm (from dark blue to orange); (b) and (c) are the 

photovoltaic parameters of the solar cells extracted from the J-V curves. 

 

In the first regime, both the open circuit voltage and the fill factor remain stable down to 500 

nm absorber thickness with respective values close to 650 mV and 72-73 % respectively 

(figure 3.b). On the other hand, the short circuit current is linearly reduced from 28 mA.cm-2 

for a 2500 nm thick absorber down to 20 m.A.cm-2  for a 500 nm absorber (figure 3.c). This 

drop is both related to non absorption of the photons due to the reduced absorber thickness 

and to an increased recombination current at the back contact (Jback). To illustrate 

quantitatively the effect of an increase of the recombination current at the back contact when 

the efficiency decreases, we plot on figure 4.a the calculated back recombination current 

(calculation by SCAPS). The recombination current Jback increases from 1.2 mA.cm-2 at zero 
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voltage for the reference 2.5 µm thick absorber up to 2.8 m.A.cm-2 for the 0.5 µm absorber 

solar cell, so an absolute loss of 1.6 mA.cm-2. The rest of the losses are therefore attributed to 

non absorption of the photons due to an insufficient absorber thickness. The observed loss is 

however moderate, with a 29% relative decrease of the current for a removed thickness of 

about 80 % relatively to the initial 2500 nm absorber. Ultimately, the efficiency drops down 

to 11 % for a 500 nm thick absorber solar starting from a 14 % reference efficiency for a 2500 

nm thick absorber; this efficiency loss is only related to the decrease of the Jsc as shown on 

figure 3.c when reducing the absorber down to 500 nm. 

Since the majority carrier concentration in the CIGSe is fixed at 2.1016 cm-3, it is possible to 

evaluate the space charge region width SCRW when no voltage is applied to the diode with 

the simplified formula BI
a

r V
qN

SCRW 02 εε
=  where VBI is the built-in potential (VBI~1 V), Na 

the acceptor density, εr the relative permittivity of the CIGSe (εr = 13.6), and ε0 the absolute 

vacuum permittivity (ε0 = 8.85.10-12 F.m-1). In our case, we obtain SCRW = 275 nm; 

therefore, when the second regime is reached and the absorber thickness is lower than 500 nm 

(ultrathin absorber), it becomes of the magnitude (or even smaller) than the space charge 

region width and is fully depleted. This results in a ∆V shift of the conduction band that limits 

the Voc (460 mV for a 100 nm absorber solar cell) of the cell as it is illustrated figure 5. In this 

case, the quasi fermi level separation is incomplete because of the early “cut” of the band 

bending region. This particular effect becomes noticeable for an absorber thickness at about 

300 nm, thus very close to the value of the space charge region width. The Fill Factor is also 

slightly affected, although only for the 300 nm and 200 nm samples, where it decreases from 

its previously stable value of 72% down to 68%, before returning to its ~72% value for the 

100 nm sample. The Jsc is dramatically decreased for the ultrathin absorbers (300 nm, 200 nm 

and 100 nm), and drops down to 12 mA.cm-2 for a 100 nm absorber solar cell.  
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Figure 4. (a) Back recombination current calculated for CIGSe solar cells with different 

absorber thicknesses, from reference 2500 nm (dark blue curve) to 100 nm absorber (orange 

curve); (b) calculated band diagram of a 200 nm CIGSe solar cell under 4 different bias: 0 V, 

0.3 V, 0.4 V and 0.6 V (from dark blue to light blue). 
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Figure 5. Band diagram of a thinned (500 nm) CIGSe solar cell, illustrating the effect on Voc 

that has an ultrathinning of the absorber. 

 

It might seem surprising that the back contact recombination is greatly reduced in our 

simulations for the samples 300 nm, 200 nm and 100 nm, as shown Figure 4.a; there is 

however a very consistent explanation to this. The absorber being completely depleted, every 

generated carrier is being driven to the p-n junction by the band bending and the strong 

electric field in the absorber prevents the generated carriers to drift to the back contact. 

Gloeckler & Sites 30 already highlighted this phenomenon when the absorber thickness is 

lower than the space charge region width and they showed that the Jsc is nearly independent of 

the back contact and is only governed by the absorption of the CIGSe layer. The back 

recombination current curves figure 4.a for fully depleted absorbers are however not parallel 

to the rest of the curves (absorbers thicker than 500 nm) and they increase with a much more 

important slope: close to the operating point (450-500 mV), the back recombination currents 

of the ultrathin solar cells with fully depleted absorbers (300 nm, 200 nm and 100 nm) 

increase and exceed the recombination currents of the thicker absorber solar cells (> 500 nm). 

This is due to the fact that the positive polarization of the diode tends to reduce the band 

bending in the absorber by leveling the -p and the -n sides as it is schematized Figure 4.b. 
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Therefore, an increasing proportion of photons are absorbed in a quasi flat band region for 

ultrathin solar cell when applying a positive bias to the diode. While the 100 nm sample is 

still fully depleted at its much lower operating point, this is not the case for the 200 nm and 

300 nm sample where a flat band region appears in the absorber. Therefore, back contact 

recombination is possible and it slightly reduces the photocurrent at this voltage; it directly 

affects the FF, which drops from 72% to 68% for the 200 nm and 300 nm sample as shown 

figure 3.b. For the 100 nm sample, the photocurrent is almost unchanged between V = 0V and 

the operating point, and so the FF recovers its initial level. As a result from the combined 

decrease of the Voc and the accelerated decrease of the Jsc, the efficiency is strongly reduced 

from 11% for a 500 nm CIGSe solar cell down less than 4% for a 100 nm.  

Eventually, the decrease of the short circuit current is clearly the dominant parameter limiting 

the efficiency of thinned solar cell although the open circuit voltage becomes an issue at 

ultrathin scale. In the perspective of using optical management techniques to improve the 

properties of the solar cell, it is important to investigate the spectral region where the losses 

occur and so spectral response of the solar cell. 

 

II.3.b) Modeling of Spectral Responses 

In this part, we simulate the External Spectral Response (External Quantum Efficiency EQE) 

of the solar cells when varying the absorber thickness. For these simulations, we used SCAPS 

2.904 with exactly the same parameters as used previously for the J-V simulations. No 

interference effects within the device are being taken into account in these simulations. The 

obtained EQE curves are presented on figure 6. In the short wavelength region (λ = 400-600 

nm), the absorption and carrier collection is almost not affected down to 500 nm of absorber 

thickness (first regime), with the EQE slightly decreasing from 83% for the reference 2500 

nm thick CIGSe to 80% for the 500 nm thick CIGSe solar cell at λ = 550 nm. For the lower 

thicknesses however (second regime/ultrathin), an accelerated decrease of the EQE is 

observed. Despite the high energy of the incident photons, the film thickness is insufficient 

for a complete absorption on the whole spectrum. When the wavelength is increased, the 

losses due to the absorber thickness reduction become more important. From thicknesses 

between 2500 nm to 2000 nm, almost no change is observed; however, as the thickness is 

reduced down to 500 nm, the EQE is significantly reduced especially in the low energy range. 
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According to reference 30, this is partly due to an increased back contact recombination for 

carriers generated outside the depletion region close to the back contact, the non-absorption of 

the thinned CIGSe absorber being the other limiting factor. To support this assumption, we 

plot on figure 7 the photon absorption depth 
α

δ 1=p  in the CIGSe versus the wavelength, and 

the CIGSe thickness is schematically shown on the right side of the graph; this figure clearly 

illustrates the fact that a non negligible part of the spectrum is not absorbed when the CIGSe 

thickness is reduced from 2500 nm to 500 nm. In this range, the average absorption depth 

decreases by 100 nm on the spectrum (from about 1000 nm down to 900 nm). This is in direct 

relation with the decrease observed in this wavelength range in the EQE curves. Moreover, it 

confirms the fact that a non negligible part of the photons are also absorbed very close to the 

back contact, which tends to enhance the back contact recombination. For absorber 

thicknesses lower than 500 nm, the non absorption by the CIGSe becomes nearly the only 

parameter limiting the EQE as the back contact recombination is strongly reduced as 

previously stated. We see on figure 6 that for the 100 nm thick absorber, the EQE is 

dramatically lowered and it becomes less than 30% after 750 nm. Figure 7 shows that the 

absorber thickness is significantly lower than the absorption depth and so that the intercept 

between those two is at 510 nm (dark grey square); after this wavelength, the absorption of 

the 100 nm film is very poor as confirmed by the EQE simulation figure 6. 
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Figure 6. External Quantum Efficiencies of CIGSe solar cells with different absorber 
thicknesses from 2500 nm down to 100 nm (from dark blue to orange). 

 

 

Figure 7. Penetration depth in the CIGSe plotted with the photons incident wavelength. The 

colored rectangles and the right side of the figure are illustration of the potential absorption of 

CIGSe layers with different thicknesses. 
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II.3.c) Conclusion 

We have evaluated with numerical simulations the influence of reducing the absorber 

thickness in a CIGSe solar cell. It was possible to establish a “baseline” state of the art solar 

cell with SCAPS by using realistic parameters most of the time deduced from experimental 

data or from literature for the different layers composing the device. The baseline solar cell is 

in very good agreement with our state of the art experimental solar cell. In our simulations, 

the absorber thickness was varied from 2500 nm down to 100 nm while keeping constant the 

other parameters of the device. These simulations, although one-dimensional, gave us a fairly 

clear idea of the influence of the absorber thickness on the photovoltaic parameters of the 

solar cell. Two different regimes were identified:  

- From 2500 nm down to 500 nm absorber thickness, the short circuit current is the only 

parameter that is affected by the absorber thickness reduction, decreasing from 28 

mA.cm-2 (2500 nm CIGSe) down to 20 m.A.cm-2 (500 nm CIGSe). We attribute this 

drop to a combination of non absorption of low energy photons and back contact 

recombination affecting the carriers that are generated close to the back contact. 

Accordingly to the evolution of the Jsc, the efficiency decreases from 14% (2500 nm 

CIGSe) down to 11% (500 nm). Although substantial, this variation is rather moderate 

when one considers the amount of active material that is removed, and at this stage, 

the CIGSe absorber could still be roughly considered as optically thick. 

- From 500 nm down to 100 nm absorber thickness, the absorber becomes fully 

depleted, being thinner than the space charge region. The intense electric field forces 

the generated electrons to migrate to the p-n junction and almost completely prevents 

back contact recombination when no voltage is applied; accordingly to previous 

results from Gloeckler & Sites 30, the short circuit current is in this case only 

dependent on the absorption of the CIGSe. The absorption of ultrathin CIGSe layer is 

very low, which results in very important decrease of the photocurrent down to 12 

mA.cm-2 for the 100 nm absorber solar cell; moreover, the fact that the absorber is 

thinner than the space charge region leads to an incomplete separation of the quasi 

fermi levels which limits the Voc (~460 mV for a 100 nm absorber solar cell). The 

combination of these different losses dramatically reduces the efficiency of the solar 

which decreases down to 4% for a 100 nm CIGSe solar cell. 
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We have highlighted the main issues encountered when one reduces the thickness of the 

CIGSe absorber down to 100 nm. Both optical (light absorption) and electrical (limited 

voltage and back recombination) aspect are impacted in the perspective of very thin (500 nm) 

and ultrathin (100 nm) absorber solar cell. In the following part, optical simulations are done 

to suggest potential solutions that may allow to overcome the parameter’s limitations 

previously reported. Our solutions will first focus on the intermediate 500 nm CIGSe 

thickness (first regime), which already provides a substantial saving of material where the 

photocurrent is the only parameter that needs to be improved compared to a state of the art 

thick solar cell. Solutions to increase the efficiency of an ultrathin 100 nm CIGSe solar cell 

will also be presented. 
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II.4) Analysis of potential improvements for ultrathin 

CIGSe solar cells 

 

II.4.a) Introduction 

In order to improve the performances of thinned absorber solar cells, an engineering of both 

the front and the back side of the device is needed. In this part, our study will focus on an 

intermediate 500 nm CIGSe, which cannot be considered as ultrathin, but offers interesting 

experimental short and mid-term perspectives along with a need for optimizations that can be 

realized as a first step in efficient thinner CIGSe solar cells. The purpose here is to improve 

the carrier collection and to increase the broadband light absorption in the active layer 

(CIGSe), which will allow the Jsc of the thinned CIGSe solar cell to match the Jsc of a standard 

thick absorber device. The effect of reducing the losses in the supporting layers (front and 

back side) is modeled, by using an anti-reflection coating (ARC), a buffer layer with a wider 

bandgap, and a more reflective back contact. In addition, the effect of a p+ doped electron 

blocking back layer to reduce the back contact recombination is also presented. 

II.4.b) Front and back side optical engineering for efficient light 

management 

Identifying the regions of the thinned absorber solar cell where the optical losses occur is a 

key issue for designing light management solutions. In the following, a complete CIGSe solar 

cell stack Mo-500 nm/CIGSe-500 nm/CdS-50 nm/ZnO:i-70 nm/ZnO:Al-400 nm is modeled 

and the light absorption of each layer depending on the wavelength is calculated. These 

calculations were performed at the Institut d’Optique by Dr. Nir Dahan and Prof. Jean-

Jacques Greffet. For the optical modeling, the structure is considered as a stratified media 

with flat interfaces where the electromagnetic waves can be calculated at each position for 

any wavelength λ, incident angle θi, and polarization p. Here, the transfer-matrix method  is 

used to calculate the spectral absorption in layer m with thickness L by 

Aλ (θi,m, p) =
S(m,0)−S(m,L)[ ] ⋅ ˆ z 

Si (λ,θi, p) ⋅ ˆ z 
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where S(m,l) is the Poynting vector of the electromagnetic field in layer  m  at position l, Si  

is the Poynting vector of the incident field, and ˆ z  is a unit vector normal to the interface (here 

in direction z). It is assumed that the solar light is unpolarized; therefore, the spectral 

absorption is given by an average of both polarizations 

Aλ (θi,m) = 1
2

Aλ (θi,m,TE)+ Aλ (θi,m,TM)[ ]  

where TE and TM are the transverse electric and magnetic modes respectively. The back 

contact is regarded as a semi-infinite layer since its thickness is much larger than the 

penetration depth of light. It is found that the absorption in the layers does not depend on the 

angle of incidence up to almost 80° (not shown here). Therefore, for simplicity, only 

calculations when illuminating light in normal direction are shown.  

Figure 8.a presents the simulated absorption in each different layers of a 500 nm thick 

standard CIGSe solar cell. In this default configuration, the total absorption in the CIGSe 

layer is only 57 % (grey area) which corresponds to a Jsc of 25.03 mA.cm-2 if a 100% internal 

quantum efficiency in the CIGSe is considered. We can identify two major sources of loss 

(yellow area and black area). As can be seen on the yellow area, a significant part of the 

incident photons is absorbed in the 400-500 nm wavelength range and these photons do not 

contribute to the Jsc; this is due to the CdS buffer layer, which has a relatively low bandgap 

(2.4 eV). This problem has been extensively studied in the past decade based on the 

development of alternative buffer layers such as ZnS or In2S3 
46. In this study, the use of the 

buffer bilayer ZnS/ZnMgO 47, 48 has been proposed. Thanks to its higher bandgap compared 

to CdS (3.6 eV versus 2.4 eV), the ZnS/CIGSe junction efficiently collects the carrier 

generated by the 400-550 nm photons. When changing the initial stack to the Mo-500 

nm/CIGSe-500 nm/ZnS-50 nm/ZnMgO-70 nm/ZnO:Al-400 nm stack, the absorption in the 

complete device increases up to 63% as shown figure 8.b. In this configuration, the absorption 

in CIGSe is greatly enhanced in the 400-550 nm wavelength range without affecting the rest 

of the spectrum which leads to a total absorption increase of +6 % in the active layer. This 

leads to a significant improvement of the short circuit current which increases from 25.03 for 

the default configuration up to 27.78 mA.cm-2. Figure 9.a summarizes the expected 

photocurrent increase depending on the CIGSe thickness when the CdS buffer layer is 

replaced by ZnS. Electrical losses are not taken in account in these calculations. Whatever the 

CIGSe thickness, the Jsc increase is roughly constant. 
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Figure 8. Spectral absorption calculated in the different layers of (a) a standard CIGSe 

structure (CdS buffer and Mo back contact); (b) alternative ZnS buffer layer; (c) ZnS and Au 

back contact; (d) ZnS, Au and ARC 

 

Figure 9. Jsc of CIGSe solar cells when varying the absorber thickness with standard and 

modified conditions: (a) CdS versus ZnS buffer layer: (b) Mo versus Au back contact; (c) 

Cd/Mo versus ZnS/Au; (d) No Arc versus ARC. 
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In Figure 8.a, we can also observe that another important loss in a standard CIGSe solar cell 

stack occurs in the 600 nm to 1100 nm (CIGSe bandgap) range due to light absorption by the 

Mo back contact (black area); a significant part of the low energy incident photons is not 

absorbed in the first pass through the thinned 500 nm absorber (see the penetration depth in 

the CIGSe figure 6) and decays into the back contact due to the poor reflectivity of the metal 
49. To overcome this, it is required to replace the Mo by a more reflective metal as it was 

suggested by different groups 3041. When replacing Mo by a reflective metal such as Au as 

back reflector, we clearly see on figure 8.c that the absorption in the back contact vanishes 

almost completely and the total absorption in CIGSe increases up to 70 % if combined with 

ZnS buffer layer. Figure 9.b presents the Jsc comparison between a Mo back contact and an 

Au back contact for a CIGSe solar cell with different absorber thickness. We see that the Au 

mirror allows to maintain the Jsc of a 500 nm thick CIGSe solar cell to a high value (28.3 

mA.cm-2) close to the reference thick solar cell Jsc (30.8 mA.cm-2) while the Jsc progressively 

decreases for the Mo back contact solar cell and is only 25 mA.cm-2 for a 500 nm CIGSe solar 

cell. While the replacement of CdS by ZnS leads to a constant gain in the Jsc whatever the 

CIGSe thickness, replacement of Mo by Au leads to a shift in Jsc that increases when reducing 

the CIGSe thickness. Figure 9.c illustrates the direct impact on the Jsc of the combination of 

an Au back contact with a ZnS buffer layer compared to the default Mo back contact with 

CdS buffer layer configuration. In this case, the Jsc is maintained at 31.1 mA.cm-2 for a 500 

nm CIGSe solar cell, which is higher than the reference thick CIGSe solar cell with CdS 

buffer layer and Mo back contact (30.8 mA.cm-2).  

Figure 8.d shows the impact of the addition of an antireflection coating (ARC) on the stack 

with a ZnS buffer layer and an Au back contact. The total absorption in CIGSe is increased up 

to 77 % and the only remaining parasitic absorption comes from the ZnO:Al in the U.V. range 

(~3.4-3.5 eV bandgap); the complete ZnS buffer layer-Au back contact-ARC stack increases 

the Jsc of a 500 nm CIGSe solar cell up to 33.80 mA.cm-2. Figure 9.d shows the direct impact 

on the photocurrent of an ARC on a CIGSe solar cell with different absorber thicknesses and 

a standard CdS buffer layer – Mo back contact. Similar to the case of ZnS, the improvement 

due to the ARC is constant whatever the thickness of CIGSe. 

 

We have demonstrated that it is possible, in a 500 nm CIGSe solar cell, to fully recover and 

even to exceed the absorption and the short circuit current of a standard 2500 nm thick CIGSe 
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solar cell with CdS buffer layer and Mo back contact. This was made possible thanks to the 

replacement of the CdS buffer layer by a higher bandgap material (ZnS), but more 

importantly to the replacement of the poorly reflective Mo back contact by a more reflective 

back contact (Au), while the addition of an ARC on top of the solar cell allows an increase of 

the CIGSe almost equally over the entire spectrum. While the ARC and the ZnS buffer layer 

lead to a roughly constant increase of the Jsc independent from the absorber thickness, the 

replacement of the Mo back contact by Au leads to a greater Jsc increase for thinner absorber. 

However, the Jsc that we calculated here does not take in account the recombinations that take 

place in the device. We have previously seen that the reduction of the absorber thickness 

substantially increases the back contact recombination (figure 4.a), due to the increasing 

proximity of the back interface with the absorption region of the low energy photons 

particularly (figure 6 and figure 7). In the following, we study the effect of reducing this back 

contact recombination with energy band engineering at the rear interface of the solar cell. 

 

 

II.4.c) Reduction of the back contact recombination by energy band 

engineering 

We previously observed that when reducing the absorber thickness down to 500 nm, the back 

contact recombination becomes an important factor that has to be overcome in order to 

maintain an efficient carrier collection in the solar cell and the short circuit current. The idea 

is to realize a contact which would block the electrons (electron mirror) while having an 

ohmic behavior with the holes, as schematically illustrated in figure 10. This type of effect is 

similar to the CuGaSe2 back layer that was introduced by Lundberg et al. 27 32. Several options 

are available; the most direct is to adapt the work function of the back metal in order to obtain 

the desired band bending on a p-doped semiconductor as CIGSe. This will be developed in a 

first part. In a second part, we will discuss on the introduction at the back contact of an 

interfacial p+ doped semiconductor layer with an ideal energy band positioning that will act 

as a perfect electron mirror at the rear side of the solar cell and so blocking the back contact 

recombination. 
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Figure 10. Illustration of the effect of an ideal electron blocking at the rear side of a CIGSe 

solar cell. The hole is transmitted to the metal while the electron is “reflected” toward the n-

doped region 

 

II.4.c.i) Tuning the energy bands with the metal work function 

If we don’t consider any intermediate layer between the CIGSe and the back contact, and 

without any surface state or other anomalies, the semiconductor-metal contact can be 

described as shown in figure 11.a 50: the electronic energy relations of a high work function 

metal and a p-type semiconductor which are not in contact. As shown in figure 11.b and based 

on the Anderson model approach 51, when they are brought together, charge will flow from 

the semiconductor to the metal and thermal equilibrium is established as a single system, and 

the Fermi level on both sides lines up. Relative to the Fermi level in the metal, the Fermi level 

in the semiconductor is lowered by an amount equal to the difference between the two work 

functions (figure 11.b).  

In the vacuum, the work function is denoted Mφ  for the metal and SCφ  for the semiconductor, 

with CFSC EE −+= χφ  where χ is the electronic affinity of the semiconductor, Ec is the 

edge of the conduction band and EF is the Fermi level of the semiconductor in the vacuum. 

The potential difference between the two work functions is called the contact potential. When 

the metal and the semiconductor are brought into contact, the junction becomes transparent to 

the holes, and the electrons are blocked by the barrier in the conduction band of the 

semiconductor, which thus acts as an electronic mirror. The built-in potential BIϕ  represents 

in this case a barrier for the electrons, whereas the holes can transfer from the semiconductor 

to the metal. This example is the ideal case where the work function of the metal is slightly 
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higher than the work function of the semiconductor. When SCM φφ < , the band bending of the 

semiconductor at the junction is reversed and in this case, the back contact acts as a sink for 

the electrons which can therefore drift from the semiconductor to the metal and recombine. In 

addition, a wrong sided band bending may reduce the Voc of the solar cell because of 

incomplete quasi-Fermi level separation. It is the case for an ultrathin absorber where the 

influence of both the back contact and the p-n junction are close enough to overlap within the 

absorber. 

 

 

Figure 11. Illustration of the metal / p-doped semiconductor contact. (a) before the contact; 

(b) after the contact 

 

The electronic affinity of the CIGSe is eV5.4=χ  (see Gloeckler baseline 42), the bandgap is 

eVEg 1.1= and the majority carrier concentration is 31610.2 −= cmnp . The CIGSe being p-

doped, its Fermi level is eVEeV F 6.505.5 <<  at equilibrium. The only metal which work 

function is high enough to achieve SCM φφ >  is the platinum Pt ( eVPt 7.5=φ ) whereas Au 

that was used previously for the optical simulation has a lower work function ( eVAu 1.5=φ ) 

52. Mo, the most commonly used back contact, has an even much lower work function 

( eVMo 6.4=φ ). 
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Using SCAPS, we plot the band diagram of CIGSe solar cells with a Pt back contact, an Au 

and a Mo back contact (Figure 12 a., b. and c. respectively). When using Au or Mo as back 

contact, we obtain a rectifying diode at the back side, whereas Pt allows an ohmic contact 

formation for the holes with a small barrier for the electrons. This results is in contradiction 

with experimental observations where both Mo and Au are reported to form an ohmic contact 

on CIGSe. This is an indication that in the case of these two metals, the Anderson model fails 

to describe their electrical interface with CIGSe, and the formation of additional interfacial 

layer needs to be considered. 

 

 

Figure 12. Influence of the work function of the back metal on the band bending of the 

CIGSe. (a) ohmic Pt back contact; (b) rectifying Au back contact; (c) rectifying Mo back 

contact 
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In the case of Mo, the modeling of a 500 nm solar with the eVMo 6.4=φ  work function led to 

a 0.06% efficient solar cell and presenting the results here would not be of any interest. 

Therefore, only Au will be taken as an illustration of a rectifying back contact on CIGSe for 

the following discussion. 

The simulated J-V characteristic along with photovoltaic parameters of the 500 nm CIGSe 

solar cells with Au and Pt back contact are presented on figure 13.a, and the back contact 

recombination current is presented figure 13.b. The reflectivity of the different back contacts 

is not taken in account in these simulations in order to decouple the optical and the electrical 

issues. In this configuration, the Jsc of the Pt solar cell is much higher than the Au solar cell 

(25 mA.cm-2 versus 21 mA.cm-2); this 4 mA.cm-2 difference perfectly matches the shift 

between the two solar cells observed in the back contact recombination currents presented on 

figure 13.b. The recombinations also impact the FF of solar cells which is reduced from 75 % 

for the Pt back contact down to 68 % for the Au back contact. As expected from the band 

diagram of figure 12, the Voc is reduced for the Au back contact at 520 mV, compared to the 

Pt back contact (700 mV) because of the overlapping influence of the Au rectifying back 

contact and the p-n junction. The back contact recombinations are clearly visible on the EQE 

curves of figure 13.c, where the low energy photons are much more affected in proportion 

with the Au back contact because of their more important penetration depth, whereas the 

barrier with the Pt back contact prevents the electrons from reaching the metal; in the case of 

the Pt back contact, the photocurrent is only dependent on the absorption of the 500 nm 

CIGSe layer. 
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Figure 13. (a) Simulated J-V characteristic of a 500 nm CIGSe solar cell with Au and Pt back 

contact. The reflectivity of the back contact is fixed a 0% in each case; (b) corresponding back 

recombination currents; (c) corresponding External Spectral Response curves. 

 

In this part, we have investigated on the influence of the metallic back contact work function 

in the back contact recombination process of a 500 nm CIGSe solar cell. We have seen that 

when no interfacial layer is considered, a high work function metal is required to achieve a 

good ohmicity and not degrading the photovoltaic properties of the solar cell. In addition, if 

the work function of the metal is lower than the Fermi level of the CIGSe, the overlap of the 

influence of both the p-n junction and the back contact becomes a problem by affecting the 

quasi-Fermi level separation and thus reducing the Voc, which would less be the case for a 

thick 2500 nm CIGSe solar cell. However, the Anderson model that we used in this study 

does not consider any interfacial layer that may results from the reaction between the metal 

and the semiconductor. Experiments showed that a perfect metal-semiconductor interface like 

we considered here almost never occurs in a real device; when the Mo/CIGSe is studied using 
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the Anderson model only ( eVMo 6.4=φ ), the quality of the back contact would be very poor 

compared to what it is in reality. The well known MoSe2 interfacial layer greatly improves the 

ohmicity of the metal/semiconductor in the CIGSe solar cell. Similarly, Moons et al. 53 

reported a good ohmicity for the Au/CIGSe contact. Therefore, some relatively low work 

function metals offering interesting optical properties should not be excluded from the 

experiments. 

Instead of relying on tuning the back contact with the metal work function, another idea is to 

introduce a p-doped interfacial layer with the desired band positioning. In the following, we 

will discuss on the influence of this so called electron blocking layer or back surface field 

(BSF) at the back contact of a 500 nm CIGSe solar cell. 

 

II.4.c.ii) Introduction of an electron blocking layer (back surface field) 

The introduction of a very thin interfacial layer between the CIGSe and the metal may help to 

reduce the increasing influence of the back contact recombination when reducing the absorber 

thickness. This “back surface field” (BSF) should act as a perfect electron mirror while being 

an ohmic contact for the holes; a p+ doping ( 1810.2=aN  in our simulations) along with a 

relatively wide gap ( eVEg 4.1=  in our example) for a good transparency is required. This 

layer should be as thin as possible. SCAPS simulations of a 500 nm thick CIGSe solar cells 

are performed and the influence of a 10 nm BSF is studied. The parameters of the BSF are 

summarized in Appendix I of this chapter. Figure 14.a shows the band diagram of a 500 nm 

thick CIGSe solar cell where an BSF is introduced at the back side of the device, and a 

comparison of the J-V characteristic, the EQE and the back contact recombination with and 

without the BSF are shown on figure 14.b, 14.c and 14.d respectively. For the default 

configuration without BSF, the band alignment between the CIGSe and the metallic back 

contact is meant so that the bands of the CIGSe are relatively flat; the work function of the 

metal is taken at a value close to the fermi level of the CIGSe(~5.5 eV). The short circuit 

current increases from 22.6 mA.cm-2 without the electron blocking layer up to 25.2 mA.cm-2 

with the BSF (figure 14.b). As can be seen figure 14.d, this 2.6 mA.cm-2 increase corresponds 

exactly to the reduction of the back contact recombination by the ideal electron mirror at the 

back contact, compared to the flat band default configuration. Moreover, the introduction of 

this large bandgap interfacial buffer layer enhances the quasi fermi level separation, and the 
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open circuit voltage increases from 600 mV without BSF up to about 680 mV. The overall 

efficiency increases from 9.9% without BSF up to 12.9% with the BSF. 

 

Figure 14. (a) band diagram of a 500 nm CIGSe solar cell with an interfacial 10 nm thick  

back surface field (BSF); (b) External Quantum Efficiency of a 500 nm CIGSe solar cell with 

and without BSF; (c) corresponding back recombination currents.  

In order to fully take advantage to both electrical and optical improvement, the ideal situation 

is to combine a reflective back contact with an electron blocking layer. Moreover, achieving a 

good ohmicity at the back side with an interfacial buffer layer allows one to use a back 

contact which has a higher reflectivity than a metal. This situation is illustrated in the 

following.  Figure 15.a present the SCAPS simulated EQE of a 500 nm CIGSe with no 

reflectivity at the back contact and no electron blocking layer. In this case, the combination of 

non absorption of low energy photons and back contact recombination dramatically reduces 

the EQE in the IR wavelength range as previously discussed. The short circuit current in this 

configuration is 22.4 mA.cm-2. The EQE of a 1000 nm CIGSe solar cell without BSF and no 

back reflectivity is plotted as a comparison, showing an absolute current increase of 2.9 
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mA.cm-2 (at 25.3 mA.cm-2) compared to the 500 nm solar cell. This increase is only related to 

the absorption of the extra +500 nm of material. When a back surface field and an ideal 100 % 

reflective mirror are added to the 500 nm solar cell, it largely outperforms the 1000 nm solar 

cell and the Jsc is 28.1 mA.cm-2, representing an increase of + 5.7 mA.cm-2. The 

corresponding J-V characteristic are shown figure 15.b. The combination of both a perfect 

optical and electrical management allows to fully recover the current of the standard thick 

solar cell that was previously presented at the beginning of this chapter (figure 2). As a result, 

the efficiency of the 500 nm CIGSe solar cell with BSF and 100 % back reflectivity is 

%2.14=η  (9.8% for 500 nm CIGSe 0% reflectivity and no BSF, and 11.7% for the 1000 nm 

CIGSe). It is very important to highlight the fact that these improvements have been achieved 

with simple one-dimensional structures and realistic material properties for the BSF.  

 

Figure 15. (a) External quantum efficiency curves of a 500 nm CIGSe solar with no 

reflectivity at the back contact and no electron blocking layer (dark solid grey line); same 

solar cell with a BSF and a 100 % reflective back contact (dark grey dotted line). Light grey 

line: 1000 nm CIGSe, no BSF, 0% reflectivity; (b) J-V characteristic 
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II.4.d) Potential improvements for an ultrathin 100 nm CIGSe solar cell 

 

To increase the efficiency of an ultrathin 100 nm CIGSe absorber solar cell, the challenge is 

to overcome the very low absorption of the material along with the limitation of the Voc that 

appears when the absorber thickness is lower than the space charge region width. In the 

following part, we address potential solutions to significantly enhance the performances of 

ultrathin CIGSe solar cells by focusing on back side engineering of the device. 

 

II.4.d.i) Increasing the light absorption in the 100 nm CIGSe solar cell 

We previously reported the use of very reflective metals as alternative back contact on very 

thin 500 nm CIGSe absorber solar cells, with a significant increase of the absorption of low 

energy photons. Figure 16.a presents the simulated EQE curve for a 100 nm CIGSe solar cell 

with a 0% reflectivity at the back side, confronted to a 100% reflective back contact. The 

following simulations have been performed using SCAPS. We see that with a 0% back 

contact reflectivity (solid green line), the EQE curve is very low, even for the high energy 

photons. The curve peaks at nm450=λ  with a value of 55%, before decreasing down to less 

than 20% at nm900=λ . We see on the J-V curve figure 16.b that the corresponding Jsc is 

very poor ( 2.2.12 −= cmmAJsc ). While the FF is maintained at a relatively high value (71%), 

the Voc is also very low (480 mV) which leads to a %2.4=η  efficiency.  

When a 100% reflectivity is added at the rear interface of this 100 nm CIGSe solar cell 

(dotted green line), the Jsc increases up to 2.8.17 −= cmmAJsc  due to the double pass of the 

light through the absorber. We see on the EQE curve that there is still room for a lot of 

improvements in the red and infrared spectral regions. Since the FF and the Voc are 

unchanged, the efficiency only increases up to %2.6=η . 

Standard flat 2-D mirrors, even with an ideal 100% reflectivity, are therefore found to be 

insufficient to achieve an efficient light absorption is a 100 nm CIGSe layer. This is of course 

not surprising as a flat mirror can only “double” the optical path through the absorber. 
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Figure 16. (a) EQE curves of a 100 nm CIGSe solar cell with: no BSF and a 0% reflectivity 

at the back side (solid green line); no BSF and 100% reflectivity (dotted green line); Bsf and 

0% reflectivity (dot-dash line); BSF and 100% reflectivity (solid blue line). (b) Corresponding 

J-V curves. 
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In his PhD thesis, Malmström suggested the use of a lambertian back reflector to increase the 

light pathway through the absorber (28, page 46 of his Thesis). Considering a lambertian 

reflection with an Ag mirror, he simulated the current generated in the absorber layer Jgen, 

without taking into account electric losses, and found that a 100 nm CIGSe with an Ag 

lambertian back reflector had a Jgen of 30 mA.cm-2. If this ideal value is combined with the 

Voc and the FF we simulated for a 100 nm CIGSe solar cell without BSF, the efficiency 

becomes %2.10=η . In this case, the Voc is the only parameter limiting the efficiency of the 

ultrathin 100 nm CIGSe solar cell. To overcome this, we introduce the same BSF as 

previously done for very thin absorber solar cells. 

 

II.4.d.ii) Increasing the voltage of the 100 nm CIGSe solar cell 

The parameters of the BSF are identical to that from part II.4.c.ii) (with the 500 nm CIGSe 

solar cell). The SCAPS simulated EQE curve of a 100 nm CIGSe solar cell with a BSF and a 

0% back surface reflectivity is presented Figure 16.a, and the corresponding J-V curve is 

shown Figure 16.b. We see that the Jsc of the solar cell is in this case only slightly affected at 

13.2 mA.cm-2, unlike what was observed in a 500 nm. This is consistent with the previous 

assessment whereby the back side recombination only has a minor influence in the case of 

fully depleted absorber 30. We see on the J-V curve that the Voc increases up to 680 mV, 

equivalent what was observed in the 500 nm CIGSe solar cell, and the FF is significantly 

increased up to 77%. As a result, the efficiency of the 100 nm CIGSe solar cell with the BSF 

and 0% back reflectivity is %9.6=η . When the BSF is combined with an ideal 100% 

reflective flat mirror, the addition of both effects leads to an efficiency of %10=η . Although 

much higher than what is obtained without any modification, this efficiency is still 

insufficient to compete with a reference 2500 nm thick absorber CIGSe solar cell. If we use 

the Jsc value from Malmström with lambertian back reflector 28, the efficiency of the solar cell 

becomes %4.15=η . In this ideal case, our simulations indicate that the 100 nm CIGSe solar 

cell can outperform the reference thick solar cell. 

The simulated photovoltaic parameters of the 100 nm CIGSe solar cell with the different 

configurations are presented Table 2. 
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Configuration Voc (mV) FF (%) Jsc (mA.cm-2) Eff (%) 

no BSF R=0% 480 71.5 12.2 4.2 

no BSF R=100% 490 70.3 17.8 6.2 

with BSF R=0% 680 77 13.3 6.9 

with BSF R=100% 670 77 19 10 

with BSF and Lambertian 670 77 30 15.4 

Table 2. Photovoltaic parameters of a SCAPS simulated 100 nm CIGSe solar cell with 

different configurations. 
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II.5) Chapter Conclusion 

In this Chapter, we firstly achieved the realistic simulation of a standard thick absorber (2500 

nm) CIGSe solar cell using SCAPS. The material parameters have been introduced from 

experimental data wherever possible, and compared to state of the art solar cells parameters. 

Our simulated reference solar cell showed a good agreement with a reference CIGSe solar cell 

from Würth Solar, and so the input parameters are taken as a baseline for further simulations.  

Our purpose was to study the influence of reducing the absorber thickness only (down to 100 

nm) of a CIGSe solar cell on the photovoltaic parameters, and to identify the different sources 

of loss that affect the efficiency of the device. Two different regions, depending on the 

remaining absorber thickness, were identified: 

- In the first regime from 2500 nm down to 500 nm, the short circuit current is the only 

parameter that is affected by the thickness reduction, dropping from 28 mA.cm-2 down 

to 20 mA.cm-2. Simulation of the back recombination current shows that a non 

negligible part of the Jsc comes from the increasing proximity between the region 

where the photons are absorbed when reducing the CIGSe thickness and the back 

contact which acts as a recombination surface for the electrons. The other source of 

loss in the Jsc is due to the reduced absorber thickness: despite the high absorption 

coefficient of the CIGSe, reducing its thickness increasingly affects the absorption of 

low energy photons. 

- In the second regime, where the thickness is reduced from 500 nm down to 100 nm, 

the absorber thickness is of the same magnitude of the space charge region, and the 

absorber is fully depleted. The consequence is that the back contact recombinations 

are blocked by the strong electric field inside the absorber and the current depends 

only on the absorption by the CIGSe. However, the absorption of such an ultrathin 

layer is very low which results in an extremely poor current for the 100 nm solar cell 

(12 mA.cm-2). On the other hand, the fact that the absorber is fully depleted also 

impact the Open Circuit Voltage which is reduced from 650 mV approximatively 

down to 460 mV. This is due to the early “cut” of the band bending by the extreme 

thickness of the absorber, which leads to an incomplete separation of the quasi Fermi 

levels in the CIGSe. 
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In order to increase the efficiency of thinned CIGSe solar cells,  we decide in a first stage to 

focus on the absorber thickness down to 500 nm thickness; at this scale, the only issue is to 

increase the current of the device, and the absorber being of the same magnitude as the 

wavelength, simple geometrical optics engineering is still possible to apply. An optical model 

that calculates the different regions of the solar cell where the absorption occurs depending on 

the incident wavelength is used and shows that the two major losses are due to the CdS buffer 

layer that absorbs a non negligible part of U.V. photons, and to the poorly reflective Mo back 

contact. We show that by replacing the CdS buffer layer by a wider bandgap material, i.e. 

ZnS, it is possible to increase the absorption in the CIGSe layer by an absolute 6% value, 

corresponding to the U.V. photons that previously did not contribute to the photocurrent. This 

corresponds to an absolute 2.5 mA.cm-2 photocurrent increase. Similarly, replacing the Mo 

back contact by a more reflective Au back contact allows a 7% absorption increase inside the 

CIGSe, which leads to a 3.3% absolute increase of the photocurrent of the solar cell. Finally, 

we showed that combining the alternative ZnS buffer layer with the Au back contact and an 

antireflection coating on a 500 nm CIGSe solar allows to outperform the Jsc of a standard 

thick CIGSe solar cell. However, these Jsc values don’t take in account the recombination that 

reduces the current. Since the back contact recombination has been identified as the dominant 

electrical mechanism that impacts the short circuit current, we theoretically investigated on 

solutions that would reduce or block its influence. An illustration of the importance of the 

back metal work function in the p-CIGSe/metal contact is proposed using the Anderson 

model. We demonstrate that a high work function metal such as Pt (5.7 eV) is required in 

order to achieve both a good holes ohmicity and an electron barrier to prevent recombination 

at the back contact. In addition, we study the impact of a thin wide gap interfacial layer at the 

back contact with an ideal band positioning as an electron mirror. The back contact 

recombination is reduced to 0 and the wide gap of this material allows to increase the quasi 

Fermi level separation inside the CIGSe which leads to a substantial Voc increase. By 

combining electron blocking and full solar light reflection at the back side of a 500 nm CIGSe 

solar cell, we show that it is possible to increase the photocurrent to the value of a standard 

thick device. The solutions that have been proposed are either well controlled (ZnS, ARC…) 

or 1D optical and electrical engineering (Mirror at the back side, electron blocking layer). 

In a final part, we have investigated on improving the efficiency of an ultrathin 100 nm 

CIGSe solar cell. Standard flat mirrors are found insufficient to achieve a good light 

absorption in the CIGSe at this scale, and only the use of a lambertian back reflector leads to a 
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light absorption that is equivalent to that of a standard 2500 nm CIGSe solar cell. Combined 

with an efficient back surface field to increase the Voc, it is theoretically possible to achieve a 

100 nm CIGSe solar cell with an efficiency of %4.15=η , starting from a reference 2500 nm 

solar cell with an efficiency of %2.14=η . 

In the next Chapter, we will investigate on the effect of reducing the absorber thickness from 

an experimental point of view. A comparison between simulations and experience results will 

be proposed. 
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Chapter III 

 

 

 

 

Experimental results on chemically etched 

thin of CIGSe absorbers layer; solar cells 

elaboration and characterizations 
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III.1) Introduction 

 

In the previous Chapter about modeling the influence of the thinning of the CIGSe absorber 

on the solar cell, we found that the light absorption and carrier collection were the parameters 

limiting the efficiency of the device. These simulations have been performed assuming flat 

interfaces and homogeneity of the optical and the transport properties of the absorber, and no 

parasitic change in the properties of the material were considered. When reducing the CIGSe 

absorber thickness, one can unfortunately expect unwanted spreading of the material 

properties of the films, especially as it was reported with a direct growth method  22 23 24 27 39. 

It is important to develop a technique that would allow to only reduce the absorber thickness 

without affecting its intrinsic properties; moreover, the well known natural texturation of the 

as-grown CIGSe may be a problem both for fundamental understanding of the phenomena 

occurring in a thinned device, as well as for the actual reduction of film thickness itself, and 

achieving sub-micrometer CIGSe with relatively flat interfaces is one of the challenges that 

must be addressed. In this chapter, we propose an alternative approach for thinning the CIGSe 

without altering the properties of the material. This chemical based approach allows us to 

have a better control of the thinning parameters, and so to get closer to the conditions of the 

numerical simulations. 
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III.2) State of the art in thinning of CIGSe absorbers 

 

The first studies on the influence of the absorber thickness on CIGSe-based solar cells  were 

based on a process where the absorber is directly grown at the desired thickness 22 23. In 

Chapter I, we reported the recent progresses on the study of thinned and ultrathin CIGSe solar 

cells  with a direct growth process 24 27. Although directly growing the absorbers as it is done 

in those two studies has the advantage of being directly industry-compatible, while reducing 

the material use and the deposition time, it forces one to adapt its deposition process to the 

reduced thickness of the CIGSe layer. It results in an absorber with a quality that does not 

necessarily match the quality achieved for standard thick CIGSe layer: pinholes due to the 

surface roughness 23, smaller grain size with an increased defect density 24 27. This lack of 

control in the quality of the absorber layer makes fundamental study of the properties of the 

solar cells more complicated.  A solution to maintain the quality of the film while reducing its 

thickness is to carve a reference thick layer down to the desired thickness, starting from a 

standard 2.5 µm CIGSe absorber. This allows to maintain the high quality of the as-grown 

film (large grains, controlled composition, good electronic properties) while reducing the 

thickness of the absorber with a high precision. However, it is important to prevent the films 

from any damage that the etching could cause, and an advanced characterization of the film’s 

surface chemistry after etching is needed. 

The first study on etching a CuInSe2 (CISe) surface was carried out by Birkmire and 

McCandless 34 in 1988, using 3µm-thick CISe films that were deposited by physical vapor 

deposition on glass/Mo substrates in two steps as described in reference 54. In this work, the 

authors reported a technique to produce specular CuInSe2 films by etching the surface of the 

absorber with a bromine-based solution with a [Br2] concentration which was varied in the 

range of 0.02 mol.L-1 to 0.25 mol.L-1; by varying the bromine concentration, the etching rate 

of the surface at room temperature varied from ~0.1 µm.min-1 to ~5.5 µm.min-1. The nominal 

as-deposited surface texture was in the 1-5 µm range. The changes in the surface morphology 

due to the chemical etching were monitored both by scanning electron microscopy (SEM) of a 

fractured cross section, and by total reflectivity measurements over the 400-1400 nm 

wavelength range. After etching, the surface texture decreased down to less than 0.25 µm, and 

the total front surface reflectivity was increased from 4 % to 15 %. Energy dispersive x-ray 
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spectroscopy (EDX) and x-ray diffraction (XRD) measurements showed that little or no 

change in bulk composition or structure occurred due to the etching. The authors fabricated 

CuInSe2/CdZnS solar cells from which 3 % to 50 % of the as deposited 3-µm-thick films was 

removed. The photovoltaic parameters are presented on table 1. These results show that the 

open circuit voltage Voc is comparable to what is measured on as-deposited CISe films, but 

the short circuit Jsc is lower. This is attributed the increased reflectivity of etched CISe films; 

when corrected with the reflectivity difference, the Jsc of etched CISe films become 

comparable to as-deposited CISe. Moreover, since more than 50 % of the initial thickness is 

removed without affecting neither the Voc or the Jsc in large proportions, it is possible to make 

the assumption that both the bulk generation and collection properties of the CuInSe2 films 

must be uniform. This is in contradiction with the results from Noufi et al. 55 who showed that 

two steps grown CuInSe2 films were compositionally inhomogeneous, having a low-doped 

surface layer of about 0.2 – 0.4 µm (Ordered Vacancy Compound OVC). 

 

Voc 

(V) 

Jsc 

(mA.cm-2) 

Fill Factor 

(%) 

Efficiency 

(%) 

Thickness 

of CISe 

layer (µm) 

0.39-0.43 33.6-34.4 63.2-67.2 8.3-9.9 3 

0.431 31.4 60.6 8.2 2.6 

0.415 29.5 64.6 7.9 2 

0.4 29.5 50.1 5.9 1.5 

0.41 30 58.6 7.2 1 

Table 1. Best cell parameters for CuInSe2/CdZnS devices, by Birkmire and McCandless 34 

In this study 34 however, the purpose was more to study the feasibility of smoothing CISe 

surface without altering the performances rather than reducing the absorber thickness in the 

perspective of studying its influence over the photovoltaic parameters. However, we can note 

that (excepted for lower Voc), the results are in relative agreement with the theoretical study 

showing no important decrease of the photocurrent down to 1 µm CISe. 
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A chemical etching process derived from the previously described method was used in 2003 

by Canava et al. 35 on CIGSe surfaces; the purpose was to prepare well defined surfaces of 

CIGSe thin films in order to answer to basic questions about the relationship between bulk 

and surface composition. The CIGSe surface used were deposited by co-evaporation at ZSW 
56 in order to take advantage of the well controlled industrial process which allows to obtain 

very reproducible CIGSe films with a composition in atomic per cent of: Cu 21.5 %, In 17.9 

%, Ga 8.8 % and Se 51.8 %. In this study, the CIGSe surface was etched using a KBr/Br2 

solution with a bromine concentration in the range of 0.001-1 mol.L-1. After etching of the 

surface, the authors observed the same surface morphology modification as Birkmire et al. 34 

with an average roughness decreasing from 75 nm for non etched samples down to ~ 2 nm as 

determined with a mechanical Profilometer (Figure 1). The film thickness is also determined 

using the same characterization tool. 

 

 

Figure 1. Step height and surface roughness variations as function of etching time in a 

bromine solution. Concentration of bromine in solution: 0.02 mol.L-1 35 

 

The CIGSe film remains compact after etching, without pinholes thanks to the lack of any 

preferential etching along the grain boundaries. The measured etching rate is about 

1min.5.3 −≈ mµ  with a 0.02 mol.L-1 bromine concentration. In a previous paper, the authors 

showed that Br2 etch leads to the formation of a thin Se0 layer on the CIGSe surface which 

can be specifically removed using a KCN treatment 57. The KCN treatment slightly increases 
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the roughness of the films. The authors focus their study on the surface composition of the 

CIGSe during the Br2 etching process, and on the influence of the KCN treatment; this study 

was carried out using high resolution XPS (VG 220i XL system). The surface composition of 

Br2 etched surface is different from the bulk CIGSe composition; the atomic compositions and 

atomic ratios are summarized in Table 2. 

 

 

Table 2. Global composition of CIGSe surfaces. Bromine solution concentration: 0.2 mol.L-1 
35 

 

The formation of the thin Se0 layer after Br2 etching explains the excess in Se for etched 

surfaces; the KCN treatment (70°C, 2 hours) allows to obtain a CIGSe stoichiometric surface 

by removing Se0 via the formation of SeCN- complexes, and possible CuxSe phases since CN- 

is also a strong complexing agent for Cu+ and Cu2+ species. After etching, the surface 

composition is situated on the Cu2Se-(In,Ga)2Se3 pseudo binary tie line, which is remarkable 

since this composition was found for the first time after etching, while it was so far only been 

found on as grown surface in ultra high vacuum. Under specific conditions, the surface 

composition was close to that of the defect compound Cu(In,Ga)3Se5 which is indeed 

observed for as grown CIGSe. This can be interpreted by the fact that affinity of CN- ions for 

Cu is probably able to remove Cu from CIGSe. Therefore, KCN treatment after Br2 etching 

showed a great potential in driving the surface chemistry back to the situation of the as-grown 

co-evaporated surface, which is of a great importance for devices on etched CIGSe films, 

since the CdS/CIGSe interface is known to be very sensitive to changes in the absorber 

surface composition. 
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A fairly preliminary study of the photovoltaic properties of Br2-etched CIGSe solar cells was 

performed by Shafarman et al. in 2006 58. Etching the absorber allowed a precise 

determination of the optical constants n and k by using Spectroscopic Ellipsometry data, 

which requires a relatively smooth surface. The calculated values of n and k show a good 

agreement with previous results 59 obtained on CIGSe peeled from the Mo substrates (figure 

2). The small differences in magnitude might be due to different surface contamination 

(oxidation for peeled CIGSe, Se excess for etched CIGSe). Working with flat interfaces also 

allowed to characterize with a higher precision the CdS grown by Chemical Bath Deposition 

(CBD) on CIGSe as it is deposited in the device; significant differences in the n and k 

between single crystal CdS and CBD CdS deposited on CIGSe are found, which suggest a 

poorer crystallinity of the CBD grown films as opposed to the bulk single crystals. 

 

 

Figure 2. Index of refraction and extinction coefficient for Cu(In,Ga)Se2 samples from a 

single run with smooth surfaces created by peeling and Br-etching 58 

 

In the work by Shafarman et al. 58, a comparison was carried out between etched samples and 

as-grown samples with the same thickness d, from 1.8 µm down to 0.4 µm. The results for the 

as-grown samples are mostly comparable to those obtained by Lundberg et al. 27. The 

complete set of results comparing etched and as-grown samples is presented Figure 3. There 

is no decrease of the Voc which remains close to 650 mV for the as-grown samples, and close 

600 mV for the etched samples except for  md µ5.0<  where it decreases in both cases. The 

FF remains remarkably constant at about 75 % for etched absorbers down to 0.4 µm, whereas 
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it decreases at about md µ8.0≈  for the as-grown samples, down to 60 % for the 0.4 µm 

sample. The decrease in Jsc observed for md µ1<  , although expected due to incomplete light 

absorption, is greater than expected from device simulations 30. There is no difference 

between etched and non etched samples for this parameter, which suggests that the 

unaccounted loss in current is not due to light scattering effects which would be greater in the 

case of as-grown absorbers. To conclude, the authors stated that the surface termination of the 

as-deposited film is not as critical for the device as one could have imagined, and it can be 

chemically reconstructed by the KCN treatment. No change in the electronic properties of 

etched samples were observed compared to standard as-grown thick samples. 

 

 

Figure 3. J-V parameters comparing devices with etched Cu(In,Ga)Se2 and with as-deposited 

absorber layers grown for different times 58 

 

On the basis of these previous studies, we have seen that for fundamental investigations, 

etching the CIGSe absorber in order to reduce its thickness presents numerous advantages 

compared to directly growing the film at the desired thickness. The chemical etching does not 

degrade the electronic properties of the material and allows to work with flat interface which 

will facilitates the theoretical investigations of the devices properties. This method gives the 

opportunity to work with a constant grain size and crystallinity, and “carving” the absorber 

permits to precisely select a slab of the CIGSe. Moreover, the smoothing effect of the 
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chemical etching may allow to decrease the absorber thickness to a lower level than as grown 

CIGSe without increasing too much the shunt effect due to the pinholes that have been 

observed for ultrathin as-grown CIGSe films 23.  

Based on the results from literature, in this chapter we will investigate the chemical HBr/Br2 

etching on CIGSe from Würth Solar 2. The surface chemistry will be investigated, along with 

the optical properties of the absorber prior and after the chemical etching. Solar cells on 

etched absorber using a standard CdS/ZnO:i/ZnO:Al process will be realized then optically 

and electrically characterized. We will also investigate on the specific influence of the CIGSe 

roughness over the photovoltaic properties of the solar cells. 
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III.3) Chemical etching of CIGSe 

 

III.3.a) Experimental setup 

In this study, we used the chemical Br2 based etching process developed at Institut Lavoisier 

de Versailles by A. Etcheberry and his team and first described on CISe films by Birkmire 

and McCandless in 1988 34, and  further investigated on CIGSe by Canava  et al. in 2003 35. 

However, HBr is preferred to KBr as a stabilizing additive for Br2: previous experiments 60 

have shown that although the dissolution rate and the asymptotic roughness remains the same 

between the two solutions, the surface roughness decreased significantly faster when using 

HBr instead of KBr. Moreover, some In and Ga oxides on the etched CIGSe surface have 

been observed when using a KBr/Br2 solution; using HBr instead of KBr allows the 

dissolution of these oxide and leaves the CIGSe surface almost unchanged compared to a non 

etched surface. 

The chemical process of the etching consists in an oxidation of the CIGSe surface by Bromine 

in two steps, as described in reference 35. The first step is a preferential dissolution of the 

metals, leaving Se0 on the surface: 

                      Cu{In,Ga}Se2 + 
2

5
Br2 � Cu(II) + {In(III) + Ga(III)} + 2Se0 + 5Br-               (1) 

The oxidation of the Se0 occurs in a second step, which is rate determining, following the 

equation: 

                                              Se0 + 2Br2 � Se(IV) + 4Br-                                                        (2) 

Etching experiments have been carried out in a thermostated cell in order to keep the 

temperature close to 273 K; it has been demonstrated 60 that the etching rate of the CIGSe is 

temperature dependent. The samples were fixed on a horizontal rotating disk at a rate of 40 

rpm. After etching, the samples were carefully rinsed in high purity de-ionized water (18.3 

MΩ.cm) and dried under Nitrogen flux. The etching process was studied by titration using 

graphite furnace atomic absorption spectrometry (GF-AAS) for the quantification of the Ga, 

In and Cu dissolved during the etching treatment, and so to determine the kinetics of the 

etching process depending on the experimental parameters, which is a critical step when one 
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wants to reach ultra-thin layers without deteriorating the surface. In this study, the CIGSe 

surfaces are etched from the front side, but back side etching using the same process is also 

possible. 

Before completing the etched sample with the standard solar cell process, i.e. deposition of 

the CdS buffer layer and ZnO front contact, the surface was superficially treated using the 

following [KCN] = 0.1 M process: ambient temperature and 5 minutes of treatment. This 

treatment does not influence the layer thickness nor its bulk composition; it is used to clean 

the surface from binaries compounds and Se0, and allows to reconstruct the initial surface 

chemistry of as-deposited CIGSe films. 

 

III.3.b) Results  

 

During this study,  we work on co-evaporated CIGSe coming from industrial lines of Würth 

Solar. Different batches of samples have been studied, and small variations appeared in their 

morphology or chemical composition; it is however possible to identify certain general trends 

that we will outline in the following. 

The most critical parameter to investigate when the purpose is to reduce the absorber 

thickness to less than 500 nm is the etching rate, which depends on the parameters of the 

etching, especially the Br2 concentration. A systematic study was carried out at the Institut 

Lavoisier de Versailles, by varying the Br2 concentration  in a thermostated medium, and 

following the concentration of the dissolved species in the solution by AAS. The [HBr]/[Br2] 

concentration ratio is maintained constant at about 125. The bromine etching allows a large 

concentration range for the [Br2] concentration: concentrations from [ ] MBr 002.02 =  to 

[ ] MBr 2.02 =  have been investigated.  

Figure 4 presents the etching kinetics calculated determined for different [Br2] concentrations. 

This figure shows the etched thickness versus etching time extracted from the titration of the 

Cu, the Ga and the In. The resulting CIGSe thickness is calculated using the formula 

Sd

m
e = where e is the resulting CIGSe thickness, m is the mass of the element that has been 
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dissolved, S is the surface of the sample and d is the density. When the solution is highly 

concentrated (0.04M in our example), the surface roughness is rapidly etched and full 

dissolution is reached in less than 10 minutes. For a bromine concentration of [Br2] = 0.02 M, 

the full dissolution of the CIGSe occurs after about 16 minutes. For this experiment, we used 

a different CIGSe batch, and so the thickness of CIGSe is slightly different than for other 

experiments. For lower Br2 concentration however ([ ] MBr 002.02 = ), working with low Br2 

concentration increases the effect of Br2 evaporation: the etching velocity is significantly 

reduced in this case and after 180 minutes, the dissolution of the sample is still incomplete. 

Moreover, the evaporation of Br2 leads to higher uncertainty in the data. 

 As we can see on figure 4, the etching rate is roughly constant throughout the complete 

dissolution of the CIGSe, whatever the Br2 concentration; the etching rates are summarized in 

table 3. We see that the etching rate is roughly linear with the Br2 concentration. 

 

Br2 concentration (mol.L-1) 0.04 0.02 0.01 0.001 

Average rate (nm.min-1) 345.9 176.7 80.7 6.3 

Table 3. Average etching kinetics calculated from AAS measurements of Cu, Ga, Se and In 

species in the dissolution solution 

 

In the following, we use [Br2] = 0.02M; this concentration presents the advantage of being 

important enough so that the Br2 evaporation is not much of a problem, and the dissolution 

rate is stable enough to control precisely the amount of CIGSe that is removed. A serie of 

samples from the same batch is etched with thicknesses evaluated ranging from 0.3 µm to 2.5 

µm (the complete set of results is presented in reference 61).  
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Figure 4. etched “thickness” for Cu, Se, Ga and In elements deduced from the GF-AAS 

titration of these elements. (a) x-axis up to 300 minutes to show the evolution of [Br2] = 

0.002M; (b) x-axis up to 25 minutes. 

 

The quasi linear time dependency of the amount of dissolved species supports the steady state 

character of the process which can be considered as constant on the basis of the chemical data 

provided by the titration procedure. We have however observed that for short etching times, 

the etching rate is much higher than the calculated rate for the whole CIGSe dissolution; such 
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observations have previously been reported by Canava et al. 35, and are attributed to the higher 

surface roughness of the non etched sample compared to etched sample. The determination of 

the etching velocity for a given batch is very important to carve the films with a very high 

precision, in the magnitude of nm50± which is perfectly suitable in the perspective of 

achieving ultrathin CIGSe layers. However, some edge effects on the sample are visible when 

the film thickness becomes lower than 1 µm; it is possible to reduce this effect by working at 

a temperature close to 0°C and with a relatively high Br2 ( M01.0≥ ) concentration. 

GF-AAS allows to monitor, during the etching process, the composition of the CIGSe 

throughout its thickness by dosing the Cu, Ga, Se and In; we present the atomic percentage of 

each element in the CIGSe throughout the complete etching of the film in Figure 5.  

 

Figure 5. Atomic percentage for Cu, In and Ga elements deduced from SAA dosage 

 

Both Cu and In content exhibit a stable trend throughout the etching, with atomic percentage 

of about %5.2%5.20 ±  and %1%16 ±  respectively. The Se content is also stable down to 1.7 

µm of etched absorber, at about %5.1%55 ±  which is slightly higher than expected from the 

stoichiometric composition of CIGSe. There seems to be a small Se content decrease down to 
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%5.0%51 ±   at the back of the CIGSe after 1.7 µm of etched material. The Ga content is 

roughly stable at %1%5.8 ±  down to 1.7 µm of etched CIGSe, before increasing up to about 

%1%11 ±  at the back side of the absorber. Such Ga enrichment at the back side of the 

absorber is well known in CIGSe, and has also been observed more markedly in different 

batches during our study. The Ga grading in the CIGSe leads to a variation of the bandgap of 

the material from 1 eV to 1.7 eV (from pure CuInSe2 to pure CuGaSe2) 
62. 

After etching, the CIGSe seems undamaged and increasingly reflective with naked eye. A 

systematic analysis of the evolution of the surface with the etching is needed to investigate the 

potential implication that the absorber etching will have on the solar cells properties. 
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III.4) Characterization of etched CIGSe films 

 

III.4.a) Material characterization 

Analyzing the CIGSe films evolution (roughness, thickness, composition) is a key point in 

understanding the variation of the parameters of etched solar cells, since it will influence 

directly the light absorption/carrier collection, dependent both from the surface roughness and 

the doping profile of the CIGSe, and also the p-CIGSe /n-CdS interface which is highly 

dependent on the surface chemistry of the CIGSe. Potential damages on the CIGSe film, that 

may include chemical pollutions or pinholes occurrence in the layer, need to be evaluated for 

both validation and potential improvements of the chemical etching process. 

Moreover, a precise characterization of the CIGSe thickness evolution is also needed in the 

perspective of the preparation of ultra-thin CIGSe layers; homogeneity and accurate etching 

rate are binding condition for below-500 nm thick layers in order to avoid shunts in the final 

solar cell stack. 

Several characterization techniques have been used in this work, to monitor from surface 

chemistry to the layer geometry, and will be detailed in the following. More details on the 

characterization tools can be found in Appendix II 

 

III.4.a.i) Surface analysis by X-Ray Photoelectron Spectrometry (XPS) 

X-Ray Photoelectron Spectroscopy (XPS) is a quantitative spectroscopic non-destructive 

technique which allows sharp measurements of the empirical formula of chemical 

compounds, elemental composition, chemical state and electronic state of the elements within 

a material. The basic principles are described in Appendix II. 

XPS surface chemical analyses were achieved in “Institut Lavoisier de Versailles” with a 

Thermo Electron K-Alpha spectrometer using a monochromatic Al-Kα X-Ray source (1486.6 

eV). The Thermo Electron K-alpha spectrometer procedure was used to calibrate the 

spectrometer. It was verified using Cu and Au (Au 4f7/2 at 84.0 eV) samples following the 

ASTM-E-902-94 standard procedure. Charge compensation was requisite to overcome the 
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charging effects induced by the glass substrate. Acquisition parameters imposed in this study 

were the following: 400 µm spot size, 12 kV primary energy, 6.0 mA emission intensity, CAE 

mode (50 eV or 10 eV for high energy resolution) and 0.1 or 0.05 eV energy step size. The 

quantification of analyses and high energy resolution spectra fitting procedure was performed 

with the Thermo Fisher scientific Avantage© data system. 

In order to obtain reference spectra and a reference XPS composition, the non etched CIGSe 

surface has been analyzed after a 2 min HCl treatment ([HCl] = 1 M) and the global survey of 

the surface is presented figure 6. The HCl treatment allows to deoxidize the surface, without 

affecting the global composition as it was demonstrated by our colleagues from “Institut 

Lavoisier de Versailles”. In the following, the HCl treated de-oxidized surface will be taken 

as the reference CIGSe surface. 
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Figure 6. XPS survey of an as deposited CIGSe after a HCl treatment. 

 

For clarity reasons, only the major peaks, used for species quantification, are mentioned in the 

figure: Cu 2p, Ga 2p, In 3d, Se 3d (core levels). Auger lines which interfere with some of the 

peaks are also mentioned (especially the Auger line Se-L3M23M45 which interferes with C 
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1s), along with the O 1s and C 1s peaks that are also visible and are attributed to an almost 

impossible to avoid carbon contamination. Na is also observed on this reference sample, but it 

is however not reproducible. Besides the presence of carbon, no pollution are observed on the 

HCl treated CIGSe surface. 

An XPS analysis of the CIGSe surface after the HBr/Br2 etching is performed for different 

etching durations. The figure 7 shows a comparison of the XPS spectra of Cu 2p, Ga 2p, In 

3d, Se 3d and O 1s from the reference surface to a surface etched for 15.3 min (~1.2 µm of 

etched CIGSe) in a solution with a concentration of [Br2] = 0.01M. The binding energies and 

width at half maximum (FWHM) are presented on table 4. The spectra are presented after 

normalization in intensity. These spectra and the shape of the peaks highlight a remarkably 

constant surface chemistry throughout the chemical etching of the CIGSe. 

 

960 950 940 930
2,0

2,5

3,0

3,5

 

 

 

Cu 2p

1150 1140 1130 1120 1110
2

3

4

 

 

 

Ga 2p

460 455 450 445 440

4

6

8

10

 

 

 

In 3d

62 60 58 56 54 52 50

0,8

1,2

1,6

 

 

 

Se 3d

536 532 528

4,5

5,0

5,5

 

 

 

O 1s

 

Figure 7. Superposition of the XPS spectra of Cu 2p, Ga 2p, In 3d, Se 3d and O 1s from 

thinned CIGSe samples in a HBr/Br2 solution for different etching times 
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Peak name Binding Energy, eV FWHM, eV 

Cu 2p3/2 932.25 ± 0.05 1.00 ± 0.05 

Ga 2p3/2 1117.80 ± 0.05 1.40 ± 0.05 

In 3d5/2 444.75 ± 0.05 0.90 ± 0.05 

Se 3d 54.45 ± 0.05 1.60 ± 0.05 

Table 4. Binding energies and width at half maximum for different elements (15.3 min of 

etching) 

 

The Se 3d peak from figure 7 presents a particular shape with a splitting that highlights an 

additional contribution; a peak reconstruction, using the Avantage©  software is presented 

figure 8. This additional contribution is attributed to the Se0 already mentioned by Canava et 

al. 35 57, which is a chemical intermediate in the surface oxidation process shown with 

equation (1) and (2). The ratio between Semat and Se0 evolves between 0.1 and 0.2, closer to 

0.1.  

 

Figure 8. Reconstruction of the Se 3d peak based on a two components set : the Se 3d matrix 

peaks (red) and the Se0 superficial peaks (black) 
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The surface composition determined with XPS analysis is presented figure 9. This 

composition is in good agreement with the composition determined previously by GF-AAS, 

and also very close to the stoichiometric composition of CIGSe. During the first stages of the 

etching however, we notice some variations in the XPS composition; they may be related to 

the original surface roughness of the as-deposited CIGSe which decreases quickly with the 

bromine etching. An important surface roughness produces a scattering of the photoelectrons 

and therefore impacts the measurements, particularly by broadening the peaks. 

 

 

Figure 9. XPS composition of the CIGSe surface at different etching stages of the thinning of 

the film 
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These XPS measurements show that the chemical HBr/Br2 etching does not degrade the 

CIGSe surface, whatever the etched thickness. No pollution was observed and the films after 

etching are almost not oxidized. Previous studies 35 have shown that the Se0 issue is resolved 

with a KCN treatment which allows to create the p-n junction with a specific and well 

controlled surface chemistry. Chemical etching of the CIGSe films is therefore perfectly 

suited for the realization of thinned and ultrathin solar cells and will permit to fabricate proof 

of concept devices starting from a state of the art solar cell.  

 

III.4.a.ii) Raman spectroscopy and X-ray diffraction analysis 

In order to push further the comparison between etched and non etched absorbers, a Raman 

spectroscopy study was performed on the samples. The Raman Spectra of a raw non etched 

absorber and a 4 minutes flat etched ([Br2] = 0.02 M) CIGSe absorber (etched thickness of 

about 500 nm) are very similar as observed on figure 10. The chalcopyrite characteristic mode 

A1 frequency is observed at about 177 cm-1. Extra mixed B2/E modes at 220 cm-1 and 250 

cm-1 and a broad mode at about 150 cm-1, are also observed which are typical of CIGSe 

absorbers deposited by co-evaporation with composition of Cu/(In+Ga)<0.8 and Ga/(Ga+In)= 

0.3.  

X-Ray Diffraction analysis were also performed both on non etched and 4 min etched flat 

CIGSe absorbers. Figure 11 presents XRD spectra through grazing incidence angle of a non 

etched and a 4 minutes etched CIGSe surface. As can be seen the XRD spectra are very 

similar and the absorbers present, whatever the thickness, a (112) preferential orientation with 

additional odd reflections such as (101), (103) and (211) indicating a chalcopyrite structure 

typical of coevaporated CIGSe absorbers. These considerations about XRD and Raman 

spectroscopy both support the fact that the HBr/Br2 etching has only a minor influence on the 

CIGSe absorber crystalline structure and composition, and only reduces the film thickness and 

roughness. 
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Figure 10. Raman spectra of an as deposited CIGSe absorber and a 4 min etch CIGSe 

absorber 

 

Figure 11. X-ray diffraction patterns of an as deposited CIGSe absorber and a 4 min etch 

CIGSe absorber 
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III.4.a.iii) Observation of the surface by Scanning Electron Microscopy 

Besides the thickness reduction, the first purpose for which chemical Br2 etching of the 

CIGSe surface was develop was to take advantage of the smoothing effect resulting from the 

etching and obtain quasi-specular films 34. The smoothing effect of the etching is indeed 

remarkable and needs an accurate characterization.  

 

The films were observed using Scanning Electron Microscopy (SEM) for an overview of the 

effects of the etching on the geometry of the CIGSe surface. The SEM setup used was a Leo 

Supra 35 field emission gun (FEG). The Br2 concentration is 0.02 M. Two different series of 

etched samples from the same batch are realized, in order to separate the specific study of the 

smoothing effect of the etching on the CIGSe surface from the reduction of the absorber 

thickness. For the first serie (1), the purpose was to observe the smoothing effect of the 

chemical etching on the absorber while maintaining the CIGSe thickness higher than 2 µm. 

Short etching steps of 30 seconds are used up to 4 minutes etching, which is equivalent to 

approximatively 500 nm of etched material for [Br2] = 0.02M. The SEM cross section 

pictures of the samples are shown in figure 12. We observe progressive smoothing of the 

surface, with the sharp tips of the grains being preferentially etched. The average thickness of 

the absorber is not significantly modified, remaining at about 2 µm after 4 minutes of etching, 

which from an optical point view won’t affect the global light absorption in the film compared 

to an as-deposited 2.5 µm CIGSe. The apparent original roughness is almost vanished after 4 

minutes of bromine etching. 
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Figure 12. SEM images (cross sections, 65° tilt) of (a) standard non etched (2500 nm) as-

deposited CIGSe absorber; and etched CIGSe surfaces after (b) 30 seconds; (c) 2 minutes and 

(d) 4 minutes of etching. 

 

In the second serie (2), we aim to reduce significantly the CIGSe thickness, from the non 

etched 2.5 µm initial absorber down to 2 µm, 1.5 µm, 1 µm, 0.7 µm and 0.5 µm. The SEM 

pictures in figure 13 show  the 65° tilted cross sections of the initial absorber surface and of 

two etched absorber layers with a nominal thickness of 2 µm and 0.5 µm, respectively (a, b 

and c). In addition the cross sections of the same samples are shown after the deposition of the 

standard CdS/i-ZnO/n-ZnO layer structure (d, e, f). In contrast to the  rough surface of the as-

deposited absorber, the surfaces of the etched samples are much smoother. As previously 

observed, a strong surface modification already occurs  within the first minutes of etching, as 

can be seen for the 2 µm sample compared to the reference non-etched sample. With 

increasing the etching time, this effect continues and a further smoothing of the surface is 

observed. Small cavities are also randomly observed at the basis of the CIGSe grains, at the 

CIGSe/Metal interface as highlighted in figure 13.b. They are most likely reminiscences of 

the 3-dimensionnal nucleation of the CIGSe crystals on the Mo surface at the early deposition 

stages, and their impact on ultrathin layers will be discussed in Chapter V. A very thin 
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superficial layer for the 0.5 µm sample is observed on top of the etched absorber whose origin 

is not clear. It seems to be caused by the etching process, but it is very unlikely that it is 

related to the residual Se0 that was observed on XPS. Up to now, no convincing interpretation 

has been proposed.  

 

 

Figure 13. SEM images (cross sections, 65° tilt) of: (a) (b) (c) standard non etched (2500 nm) 

and etched (2000 nm and 500 nm) CIGSe surfaces respectively. (d) (e) (f) standard non 

etched (2500 nm) and etched (2000 nm and 500 nm) CIGSe surfaces respectively with 

CdS/ZnO/ZnO:Al windows layer 

 

III.4.a.iiii) Surface roughness characterization by Atomic Force Microscopy 

Atomic Force Microscopy AFM is used on non etched and etched CIGSe surfaces in order to 

follow the evolution of the CIGSe films roughness during the etching process. Two different 

batches are used for this study (ZI and ZG), and the Br2 concentration is [Br2] = 0.02M. The 

AFM principle is described in Appendix II. In this study, the AFM images are obtained on 50 

x 50 µm2 zones with a D3100 microscope and nanoscope IIIa controller, using contact mode 

with DNP-20 tips (20 nm nominal tip radius). Figure 14 presents the AFM images of the 

evolution of the surface roughness; based on these images, the Root Mean Square (RMS) of 

the surface is calculated as defined: 
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Where n is the number of total data points and Zi is the ordinate of the data point i. Figure 15 

presents the evolution of the RMS throughout the etching of the CIGSe surface. As expected 

from the SEM observations, the roughness decreases very fast during the first stages of the 

etching, with a RMS dropping from about 230 nm for the reference non-etched 2.5 µm CIGSe 

down to about 90 nm for the short etched 2 µm thick CIGSe. This phase corresponds to the 

preferential etching of the sharp tips of the grains which was observed in the sample serie (1). 

In a second phase, from 2 µm to the complete dissolution of the CIGSe absorber, the RMS 

continues to decrease and reaches a quasi asymptotic value of about 70 nm for ~1 µm of 

CIGSe left (it is possible that the CIGSe layer is fully dissolved for the last two measurement 

points). The RMS obtained after etching are slightly higher than those from literature; 

Shafarman et al. reported a RMS of about 21 nm after Br2 etching, and even as low as 8 nm 

after KCN treatment of the surface 58. This may be related to the much larger scanning area 

(50 x 50 µm) of this study compared to the scanning area (5 x 5 µm) in the work by 

Shafarman et al. The three different series of CIGSe samples presented on figure 15 show a 

remarkable reproducibility in the evolution of their roughness with the etching, even for 

sample from different batches (ZI and ZG batches).  

 

Figure 14. AFM images for different etching times. The remaining CIGSe thickness is also 

indicated. The initial RMS is about 230 nm. 
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Figure 15. RMS measurements versus CIGSe thickness reduction on different batches (ZI 

and ZG). 

 

 

III.4.a.iiiii) Conclusion 

We performed several analyzes on the CIGSe surface before and after the chemical etching. 

XPS measurements show that the surface chemistry is almost not affected by the chemical 

etching, which leaves a very “clean” surface free from oxides and pollution. Raman spectra 

and XRD measurements did not indicate any other modification of the film composition or 

the crystalline structure. Ultimately, the only parameter that is affected by the HBr/Br2 

solution, beside the film thickness, is the surface roughness. Both SEM observations and 

AFM measurements showed that the smoothing of the surface occurs much faster than the 

effective thickness reduction, which allows the de-correlation of both parameters (film 

roughness and thickness).  



Confidential 94

Etching of the CIGSe absorber has been performed on the front side and after the etching, the 

visual aspect of the film is strongly modified: being smoother, the surface looks much more 

specular and reflective. Moreover, SAA measurements allowed to characterize the well 

known Ga grading in the CIGSe. Successive etching of the Ga-poor top region may result in 

different optical properties of the film. Based on these considerations, a systematic study of 

the optical properties before and after etching is needed, and is presented in the following. 

 

III.4.b) Optical characterization of etched CIGSe films and solar cells by 

spectroscopic reflectivity and Photoluminescence 

 

III.4.b.i) Reflectivity measurements 

The first observation that can be made when comparing an etched CIGSe surface to a standard 

as deposited CIGSe, without any characterization tool, is the higher and more specular 

apparent reflectivity of the etched surface. AFM confirmed that the roughness of the surface 

was strongly decreased when etching the CIGSe and so this observation with the naked eye is 

consistent. In order to quantitatively evaluate the evolution of the reflectivity properties of the 

CIGSe layers, we performed total and diffuse reflectivity using a Perkin-Elmer Lambda 900 

UV/VIS/NIR spectrometer with an integrated sphere. Figure 16 shows the total reflectivity of 

three absorber films with a thickness of 2500 nm (non etched), and etched 2000 nm and 500 

nm, respectively. As the thickness is reduced, interference fringes emerge in the IR range after 

the bandgap ( nm1050≥λ ). In this wavelength range the light is not absorbed by the CIGSe 

material; the appearance of these fringes is caused by the smoothing of the absorber surface 

providing a more homogeneous thickness of the absorber film, which thus acts as an 

interference layer. From the interferences, it is possible to calculate the thickness of the films 

using the formula 63: 
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where d is the film thickness, 12 λλ −  are two adjacent maxima, and n is the real part of the 

refractive index of the material. On the other hand, the as-deposited CIGSe sample does not 
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exhibit any interference fringes in this range due to its high texturation. In the CIGSe 

absorption range (i.e. wavelength between 1100 nm and 400 nm), the total reflectivity 

increases with increasing the etching time. The enhancement of the reflectivity for the 500 nm 

sample represents a relative loss of light intensity penetrating the absorber of about 25% 

compared to the as-deposited non etched CIGSe sample. The difference between etched and 

non etched sample is roughly constant with the wavelength. Figure 17 shows the ratio of 

diffusive reflectivity with the total reflectivity (Haze factor). As it is anticipated for a 

smoother surface, the etched samples show a much lower diffuse reflectivity compared to the 

rough as deposited CIGSe. The ratio strongly decreases due to the reduced light scattering 

effect, especially for non absorbed photons when nmEg 1050≈≥λ . This is expected from 

the mirror-like aspect of etched CIGSe samples. 

 

 

Figure 16. total reflectivity of CIGSe absorbers with different thicknesses; the thick black 

solid line is the reference non etched 2500 nm absorber; the thin black solid line is the etched 

2000 nm thick absorber; the dotted line is the etched 500 nm absorber. 
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Figure 17. Ratio of the diffusive reflectivity with the total reflectivity when increasing the 

etching duration (from the black curve to the red curve) 

 

 

These observations about the different light scattering properties of the etched and non etched 

sample, are forecasting different light trapping and carrier collection effects between etched 

and non etched samples. 

It is interesting to note that when the cells are completed by deposition of the standard CdS/i-

ZnO/ZnO:Al layer structure, the difference in reflectivity between standard and etched CIGSe 

is strongly reduced (figure 18). This pseudo anti-reflecting effect occurs due to the improved 

adaptation of the optical indexes at the interfaces air/ZnO/CIGSe compared to the interface 

air/CIGSe, as the real part of the optical index of the ZnO is about 2 on the whole analyzed 

wavelength spectrum and the index of the CIGSe is about 2.9 64. The ZnO window layer 

causes additional interference fringes even in the CIGSe absorption range due to the multi-
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reflection occurring in the window layer, and affect the effective light intensity penetrating 

the absorber bulk. It is possible to verify that the spacing between two successive maxima of 

the reflectivity curve matches the ZnO layer thickness using the formula (2). In the non 

absorption range, these fringes superpose with the interference fringes originating from the 

absorber layer, giving the non periodic fringe structure observed. 

 

Figure 18. Total reflectivity of the complete solar cell stack for a non etched thick absorber 

solar cell (solid black line) and a etched 500 nm absorber solar cell (dotted line) 

 

Even if the absorber reflectivity is increased by the etching of the surface, this effect is 

strongly reduced in the complete solar cell stack; therefore, the absorption of both etched and 

non etched solar cell is comparable. 

 



Confidential 98

III.4.b.ii) Photoluminescence measurements 

Another optical phenomenon which needs investigation is the relation between the gallium 

grading throughout the CIGSe layer and the resulting bandgap grading. From this grading 

may result both a change in light absorption, and in the voltage of the complete solar cell 

device. Photoluminescence using a home made setup was performed on CIGSe samples with 

different etching time. These experiments have been carried out with Dr. Laurent Lombez 

from IRDEP. The measurements are performed with a laser at an excitation energy of 514 nm. 

Figure 19 shows the photoluminescence spectra obtained for differently etched sample from 

the reference 2500 nm thick CIGSe down to 500 nm. The photoluminescence intensity is 

governed by the generalized Planck law: 
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where A(ν) is the absorption depending on the frequency ν of the incident photon, E is the 

energy, k is the Boltzmann constant, T is the temperature and ∆µ is defined as 

FpFn EE −=∆µ  where EFn and EFp are the quasi Fermi level energies for the electrons and 

the holes respectively, in the CIGSe absorber. On the left edge of the peak in figure 19, the 

energy of the photons is high enough to be fully absorbed by the material so we can consider 

the absorption term to be A(ν)~1; moreover, we consider that 1>>
∆−

kT

E

e
µ

. Therefore, in this 

wavelength range, the shift between the different curves is governed by the kT

E

e
µ∆−

 term, i.e. 

the open circuit voltage of the solar cell ocV  depends on µ∆e  where e is the elemental charge 

1.6 10-19 C. When the thickness of the CIGSe is chemically reduced from 2500 nm to 1000 

nm, we notice on figure 19 that the high energy edge of the peak (left) increases, meaning that 

the open circuit voltage should increase in the photovoltaic device. Between 1000 nm and 500 

nm however, no variation of the high energy edge of the photoluminescence peak is observed, 

leading to the assumption that the Voc should be roughly constant in this CIGSe thickness 

range. 

When the wavelength is increased and gets closer to the bandgap, after the maximum of the 

photoluminescence peak, the shape of the peak is governed  by the absorption term A(ν) 

which cannot be considered equal to 1 anymore, and so is related to the bandgap of the 
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material. For CIGSe, the penetration depth of the λ=514 nm laser is about 100 nm. Hence, the 

observed shift toward higher energies of the right part of the peak (low energy) with 

increasing the etching time (i.e. etching depth)  indicates an increase of the bandgap within 

this surface region.  This bandgap grading is consistent with the previously highlighted 

gallium grading throughout the CIGSe, as an increase of the Ga/(In+Ga) ratio results in larger 

bandgap in the absorber. However, the effect in the PL spectra is very strong between etched 

2000 nm and etched 1000 nm, while in figure 5, the effect seems to appear sooner. It is 

important to notice that the shape of the bandgap grading, from small to large, leads to re-

absorption and re-emission of emitted photons from the deep large bandgap region by the 

surface small bandgap region; this makes the PL spectra difficult to interpret in a quantitative 

point of view. Bandgap grading in CIGSe is a well known property that has been found to be 

benefic to improve light absorption in CIGSe 65. 
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Figure 19. Photoluminescence spectra for a reference non etched CIGSe 2500 nm absorber 

(thick solid line), and three etched absorbers with different thicknesses : 2000 nm (thick 

dotted line), 1000 nm (thin dotted line) and 500 nm (thin solid line) 
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III.4.b.iii) Conclusion 

The characterization of etched absorbers revealed that the surface chemistry was almost not 

affected by the chemical etching, while the surface roughness was strongly reduced. This 

leads to an increased reflectivity and more specular surfaces. Photoluminescence analysis 

indicates a shift toward higher energies (increased bandgap) of the right part of the 

photoluminescence peak; this is consistent with the variation of the Ga content in the layer 

that was previously highlighted by GF-AAS. 

In the next part, both the etched and non etched CIGSe solar cells are electrically 

characterized in order to extract the main photovoltaic parameters, and evaluate the influence 

on the device of the different parameters that are modified by the etching: absorber thickness, 

bandgap and surface roughness. 
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III.5) Electrical characterization of CIGSe solar cells with 

absorber thinned by chemical etching 

 

To investigate the impact of the etching on the solar cell parameters, electrical 

characterizations on etched-absorber CIGSe solar cells have been performed. The samples are 

co-evaporated from the same batch, with a Ga grading, and are processed with the standard 

CdS/ZnO:i/ZnO:Al stack. The two electrical characterizations performed are Current Voltage  

(J-V) measurements under illumination, and Spectral Response (EQE). 

 

III.5.a) Experimental Setup 

The investigated Cu(In,Ga)Se2 absorbers (CIGSe) are deposited on Mo covered glass by 

coevaporation at Würth Solar 2. The absorber layers with a standard thickness of 2.5�m are 

chemically etched using an aqueous solution of HBr/Br2. A KCN treatment on the CIGSe 

surface is applied before the deposition of the CdS buffer by chemical bath deposition. By 

increasing the etching time stepwise from 4 min to 18 min, we obtain layers with a nominal 

layer thickness of 2 �m, 1.5 �m, 1 �m, 700 nm, 500 nm, 300 nm, and 200 nm respectively, 

estimated by GF-AAS during the etching process. The electrical properties of cells were 

characterized by current voltage measurements at 25 °C under illumination (AM 1.5 global 

spectrum). Individual cells of 0.1 cm2 were delimited by mechanical scribing. Absolute 

spectral response measurements were made with a monochromator (Spectral Products CM 

110) under chopped illumination and a lock-in technique. These two characterization tools are 

described in the Appendix II. Numerical Simulations using SCAPS 2.9 of photovoltaic 

parameters from J-V curves and Quantum Efficiency Curves are also presented as a 

comparison to the experimental data. In these simulation, the reflectivity of the surface has 

been implemented according to the surface reflectivity measured for each corresponding 

experimental sample. 
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III.5.b) Current-Voltage characterization  

The J(V) measurements are performed under illumination using standard conditions (AM 1.5, 

25°C). The obtained photovoltaic parameters as a function of CIGSe thickness are shown in 

figure 20, and compared to simulated parameters using SCAPS 2.9 40, figure 21. As predicted 

by the simulations, the Fill Factor (FF) remains roughly constant at a high value between 70 

% and 75 % for all samples down to 500 nm (figure 20.a and 21.a), which indicates the good 

quality and homogeneity of the material throughout the thickness. For thinner absorber, and 

contrary to the simulations, the FF dramatically decreases and the 100 nm thick CIGSe solar 

cell is not functional. The simulations do not highlight such a decrease (figure 21.a) and the 

simulated FF has an almost constant trend throughout the absorber thickness reduction. Back 

contact investigations on the sample reveal the presence of pinholes (cavities) on the back 

side of the absorber (figure 12), which can strongly decrease the shunt resistance and so the 

FF by some short-circuit pathways for the carriers between Mo and CdS. This particular point 

will be discussed in chapter V and cannot be modeled using SCAPS.  

The open circuit voltage (figure 20.a) slightly increases with increasing etching time when 

thinning the absorber down to 500 nm, which can be attributed to the grading of the band-gap 

inside the absorber. The band-gap of the absorber surface is smaller than the bulk value; when 

the “original” absorber surface is removed, the band-gap of the “new” surface increases, 

approaching the bulk value with increasing etching time. This is in good agreement with the 

results from photoluminescence measurements previously discussed. The shift of a few 10 

meV in the Photoluminescence spectra between the non-etched absorber and the 500nm 

sample matches very well the increase of Voc between both samples. No bandgap grading is 

introduced in the SCAPS simulations and so no effect on the Voc is observed. For thicknesses 

thinner than 500 nm CIGSe however, the Voc shows a strong decrease in our experimental 

data, from 0.67 V for the 500 nm absorber down to 0.4 V for the 200 nm, and 0 V (no 

working solar cell) for the 100 nm. This is consistent with the SCAPS simulations where a 

Voc decrease is also visible, although it is not so important (figure 21.a).  

Two interpretations can be addressed for the strong Voc decrease for thicknesses under 500 

nm: the first is related to the width of the space charge region (SCR). As it was shown on 

chapter II, when the absorber thickness becomes lower than the SCR width, the quasi Fermi 

level separation does not reach its maximum amplitude and therefore limits the Voc compared 

to a thicker absorber. The second possible interpretation is related to the previously mentioned 
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“pinholes” at the back side of the absorber, that are revealed by the etching to ultrathin values 

of the CIGSe. This last problem is specific to the use of an etching technique and will be 

discussed in chapter V. 

The Jsc evolution for the experimental solar cells can be divided into three parts; in a first 

stage from 2500 nm to 2000 nm of CIGSe thickness, we observe a strong decrease of the 

current from 28.1 mA.cm-2 to 25 mA.cm-2. This decrease is stronger than expected from the 

simulations, since the CIGSe thickness is much more important than needed for a complete 

absorption of the photons; the increased reflectivity of etched solar cells is not sufficient 

either to explain this Jsc drop. It could be related to the roughness decrease that was previously 

highlighted. In a second stage, where the CIGSe thickness is reduced from 2000 nm down to 

500 nm, the Jsc value decreases from 25 mA.cm-2 down to 21 mA.cm-2. This decrease occurs 

rather slowly linearly compared to the first one, and is consistent with numerical SCAPS 

simulations presented on figure 21.b. The reduction of the CIGSe thickness is the main 

parameter involved in the Jsc drop, since both the reflectivity and the surface roughness 

remain unchanged. Thinning the layer leads to an increased back contact recombination along 

with non absorption of low energy photons. The bandgap shift also contributes to the 

absorption decrease by excluding the lower energy photons from the absorption edge. When 

the absorber thickness is below 500 nm, a strong drop of the Jsc is observed, from 21 mA.cm-

2 for 500 nm of CIGSe down to 16 mA.cm-2 for 200 nm CIGSe. This decrease is observed 

both in the simulations and experimentations, and as showed Chapter II, it is only related to 

incomplete absorption of the photons in the ultrathin layer whereas back contact 

recombination is not involved; the electric field in the fully depleted absorber allows a 

complete separation and collection of electron hole pairs in this case.  

The fact that Voc does not decrease with reduced thickness is a strong advantage of the etching 

technique. In comparison Ramanathan et al. showed that the absorber layer thickness has a 

strong impact on Voc for directly grown thin CIGSe films with a strong degradation in the 

efficiency by about 50 % for sub-micron CIGSe absorber films was reported 24. In our study, 

the efficiency decreases from 13.7 % for the reference 2500 nm sample to 10.3 % for the 500 

nm etched sample. As both FF and Voc remain at high values, this efficiency drop is only 

correlated to the Jsc decrease (Figure 20.b). For thinner absorbers, all the parameters are 

dramatically degraded and so the efficiency rapidly drops to 0%. 
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Figure 20. (a) experimental Open Circuit Voltage (filled squares) and Fill Factor (empty 

squares) Vs CIGSe thickness deduced from J(V) measurements under AM 1.5 illumination; 

(b) experimental Short Circuit Current (empty triangles) and Efficiency (filled triangles) Vs 

CIGSe thickness 
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Figure 21. (a) SCAPS simulated Open Circuit Voltage (filled squares) and Fill Factor (empty 

squares) Vs CIGSe thickness deduced from J(V) measurements under AM 1.5 illumination; 

(b) SCAPS simulated Short Circuit Current (empty triangles) and Efficiency (filled triangles) 

Vs CIGSe thickness 
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III.5.c) Spectral Response 

The Jsc is found to be the key parameter driving the efficiency decrease when thinning an 

absorber down to 500 nm, and so EQE measurements are performed on the samples for a 

better analysis of the absorption and carrier collection in these solar cells (figure 22.a). 

Corresponding simulated EQE are presented on figure 22.b. Interference fringes can be 

observed for the etched CIGSe samples originating from the ZnO layer. The positions of the 

maxima correspond to the positions of the minima of the reflective curves (compare figure 

19), and vice versa. Figure 22.a also shows EQE spectra which are corrected for the 

reflectivity losses (dotted lines) compared to the non-etched sample. Therefore the EQE data 

was multiplied by the adjusted ratio of the reflectivity data of the standard absorber Rstandard 

and the etched sample Retched (1−Rstandard)/(1−Retched). These data show the direct impact of the 

absorber layer thinning on the EQE, the interference fringes of the ZnO are vanished. From 

the reference 2500 nm thick absorber solar cell down to 500 nm, the UV part of the EQE is 

relatively unaffected, with a drop from 0.83 to 0.74 at a wavelength of 550 nm; this is 

consistent with the well known high absorption coefficient of the CIGSe at those wavelength 

(Chapter II, Figure 1.a) and it is nicely reproduced in the EQE simulations (Figure 22.b). As 

the energy of the photons decreases, the absorption in the CIGSe is less efficient and so 

carriers are generated deeper in the absorber. Therefore, when the penetration depth  Lpenetration 

becomes larger than the space charge region (SCR) width, some carriers generated outside of 

the SCR may recombine in the CIGSe before reaching the p-n junction. If the absorption 

occurs at a distance larger than Leff = W + Ln, a higher fraction of the generated electrons can 

recombine in the CIGSe. For an ultrathin absorber, the low energy photons may not even be 

absorbed in the CIGSe and so be absorbed in the Mo back contact, which has a very low 

reflectivity. These simplified mechanisms are illustrated in figure 23, showing the calculated 

penetration depth deduced from α measurements by ellipsometry. In the EQE curves, we 

observe a strong decrease of the carrier collection for etched absorber as the wavelength 

increase (i.e. energy decreases), the EQE of the solar cell dropping, at a wavelength of 900 

nm, from 0.7 for the reference thick absorber down to 0.3 for the 500 nm absorber and 0.2 for 

the 200 nm absorber. The EQE SCAPS simulation are slightly overestimated compared to the 

experimentation for the samples with a reduced absorber thickness. This is attributed to the 

surface morphology which is not taken in account by the SCAPS simulations and will be 

discussed later in this chapter. However, we obtained a good agreement between the 
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experiments and the simulations concerning the evolution of the quantum efficiency when 

reducing the absorber thickness. 

For thicknesses higher than 500 nm, the decrease of the EQE in the IR range is most likely 

due to back contact recombination combined with non-absorption of the photons; when low 

energy photons are absorbed in the flat band region, the increasing proximity of the back 

contact leads to a situation where Lb < Ln, where Ln is the diffusion length of the generated 

photon in the absorber, Lb is the distance from the absorption point to the back contact of the 

cell, which is defined as Lb = d – Lpenetration(λ) where d is the absorber thickness and 

Lpenetration(λ) is the penetration depth before absorption for a photon of a given wavelength λ. 

For the ultrathin absorber devices (d < 500 nm) where the SCR width is approximatively as 

large as the absorber thickness (fully depleted absorber), it is most likely that most of the low 

energy photons are not absorbed in the absorber and so are absorbed in the Mo, which 

explains why the EQE drops down to 0.6 at a wavelength of 550 nm for the 200 nm CIGSe 

sample. We showed in chapter II that a fully depleted absorber was nearly independent of 

back contact recombination and that the CIGSe absorption was the only parameter limiting 

the quantum efficiency of the cell.  

The bandgap shift from reference to etch absorber is also evident in figure 22.a and is 

calculated using the onset of the reflectivity data or the position of the inflection point of the 

EQE curve. As illustrated in figure 24, both methods are in very good agreement. The 

calculated bandgap varies from 1.21 eV to 1.26 eV for the 500 nm thick sample; bandgap 

determination was impossible both for the 300 nm and 200 nm thick samples due to the low 

value of their EQE curves which leads to interference fringes becoming preeminent over the 

general shape of the curve. According to reference 62 and the Ga content measured by SAA in 

part III.3.b., the band gap should vary from 1.17 eV to 1.25 eV. These differences with the 

experimentally found values are most likely due to the relative inaccuracies in the EQE 

measurements, even though they are in the same range. 
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Figure 22. Experimental (a) and SCAPS simulated (b) EQE of four samples with different 

CIGSe thickness. The dashed lines show the EQE data after correction of the reflectivity 

losses caused by surface smoothing 
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Figure 23. Absorption Depth as a function of the wavelength of the incident photons. The 

different absorption regions in the absorber are represented with shades of grey. The space 

charge region width and the diffusion length are determined for a flat interface using a method 

described in chapter III part d. 

 

Figure 24. Bandgap determination using the Quantum Efficiency derivative and compared to 

the reflectivity of the absorber. 
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III.5.d) Conclusion 

The decrease of the efficiency of the solar cell when reducing the absorber thickness has been 

mostly attributed to reduced short circuit current (figure 20.b); however, the CIGSe thickness 

is not the only parameters that is influenced by the chemical etching of the absorber. In the 

part III.4.a.iiii), we showed with AFM measurement (Figure 14 & 15) that the surface 

roughness was strongly reduced during the etching process, leading to a more specular surface 

for the etched samples compared to the reference as-deposited CIGSe. This evolution of the 

morphology strongly influences the solar cell. In the next part of this chapter, we will 

investigate on the specific influence of the surface roughness of the absorber on the 

photovoltaic parameters of the solar cell, while keeping the CIGSe thickness at a roughly 

constant value. 
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III.6) Influence of the surface roughness on the CIGSe solar 

cells 

 

As it was previously highlighted, the reduction of the absorber thickness and the enhanced 

reflectivity of the solar cell due to etching are not sufficient to explain the strong Jsc drop that 

is observed within the first stages of the etching. This important decrease of the Jsc 

corresponds to the thickness decrease from 2.5 µm down to 2 µm and the etching time 

between 0 min to 4 min with a [Br2] = 0.02 M. In this range, we previously highlighted an 

important decrease of the surface roughness (AFM observations Figure 14 & 15). 

The surface roughness of the CIGSe is a key parameter for the solar cell which needs to be 

investigated independently from the absorber thickness variation. In this part, we focus on the 

study of short etched solar cells with an almost constant absorber thickness, but with a 

progressive smoothing of the surface. An interpretation of the evolution of the photovoltaic 

parameters with the surface roughness regarding theorical hypothesis is proposed. 

 

III.6.a) Device characterization 

The studied solar cells are from the serie (2), batch ZI 13, previously presented in the part III 

of this chapter. The bromine concentration is [Br2] = 0.02M, and the etching times is varied 

by steps of 30 seconds from 0 to 4 minutes. A KCN treatment was done on the absorbers prior 

to the deposition of the standard CdS/ZnO:i/ZnO:Al stack. The solar cells are characterized 

by spectroscopic reflectivity, J-V measurements and Spectral Response. 

 

III.6.a.i) Current-Voltage characterization 

The photovoltaic parameters of the solar cells, extracted from the J-V curves, as a function of 

the CIGSe surface roughness  (RMS) are presented on figure 25. Each measurements are 

separated by 30 seconds of etching. As observed on Figure 25.a, both the open circuit voltage 

(Voc) and the fill factor (FF) remain remarkably constant, which is a strong indication that the 
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chemical etching of the surface does not degrade the quality of the CdS/CIGSe interface. This 

is in good agreement with the constant surface chemistry of the CIGSe after etching deduced 

from XPS measurements. However, the solar cell efficiency decreases, from 14 % for the 

rough non etched  CIGSe solar cell (RMS = 230 nm) down to 11 % for a smooth surface solar 

cell (RMS = 90 nm) (Figure 25.b). This decrease is clearly related to the decrease of the short 

circuit current (Jsc) from 29 mA.cm-2 to 24 mA.cm-2 as shown figure in 26.b.  This 

corresponds to a drop of about 17 % which is much higher than the increase of the reflectivity 

of the complete solar cell with the etching (Figure 26). These key results are a strong 

indication that the decrease in the short circuit current is directly related to the effect of 

CIGSe smoothing on photocurrent generation in the CIGSe layer.  

 

 

Figure 25. Photovoltaic parameters from J(V) characterization for CIGSe solar cells as 

function of the surface  roughness of the CIGSe absorber: (a) Open Circuit Voltage (Voc) and 

Fill Factor (FF); (b) Efficiency and Short Circuit Current (Jsc). 
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Figure 26. Evolution of the total reflectivity of the completed solar cells stack with different 

CIGSe roughness 

 

III.6.a.ii) Spectral Response 

EQE measurements have been performed on the solar cells (Figure 27.a) as a function of the 

roughness surface of the CIGSe absorbers. As can be seen, with the decrease of the CIGSe 

roughness, there is a small downward shift in the overall spectrum corresponding to the drop 

of the photocurrent. Moreover interference fringes appear in the external quantum efficiency 

curves for flat CIGSe cells, corresponding to interferences in the ZnO layer. As observed on 

figure 26, the reflectivity measurements show that the decrease of the roughness of the CIGSe 

surface leads to the presence of interference fringes. However the reflectivity of the solar cell 

remains approximatively unchanged after smoothing the surface, and although the 

interference fringes may have a small contribution in the current drop, this cannot explain the 

strong EQE decrease observed. 

EQE ratio of each etched sample with the reference sample is also presented on figure 27.b. 

When the surface becomes flat, the losses are increased at higher wavelength, which means 

that the low energy carriers are either generated or collected less efficiently with a flat 

surface. Textured surface produces light scattering in the absorber and thus increases light 

absorption; in this study however, the absorber is more than 2 µm thick and considering the 
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high absorption coefficient of CIGSe 66, it is unlikely that light trapping is needed for a 

complete absorption of light in the absorber. This is supported by the reflectivity 

measurements from figure 26 which show a roughly equivalent absorption between a rough 

(RMS = 230 nm) and a flat (RMS = 90 nm) complete solar cell. 

 

 

Figure 27. (a): Spectral Response (EQE) for different etching times; (b): EQE ratio for 

different etching times 
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III.6.b) Discussion 

Smoothing the absorber surface does not significantly reduce the absorption of the solar cell. 

In order to interpret the reduction of the Jsc, one hypothesis would be that the photocurrent 

decrease has to be related to an incomplete carrier collection at the p-n junction when the 

absorber surface is smoother. Since the CIGSe surface composition and the structural 

properties remain unchanged whatever the surface roughness of the absorber (part III..4.a), it 

is possible to make the assumption that the p-n interface geometry is influencing the effective 

volume of the space charge region in a way that would favor the carrier collection for a rough 

interface compared to a flat interface.  

The typical roughness peak-to-valley of a co-evaporated as deposited CIGSe is about 1 µm, 

and the RMS is about 250 nm. In this case where the RMS is of the same order of magnitude 

as W, it is very likely that the surface morphology will increase the effective volume of the 

space charge region; by increasing the region width where the electric field is developed, it 

allows a complete separation of electrons-holes pairs for photons with lower energy and thus 

increase the short circuit current (Jsc) and the efficiency, as it is observed in our rough samples 

compared to flat samples. 

A simple geometrical model that gives a first order insight of the possible influence of the 

surface roughness of the absorber on the space charge region and the effective diffusion 

length in the absorber is presented in Figure 28. In this figure Wflat is the space charge region 

width for a flat ZnO-CdS (medium 1) / CIGSe (medium 2) interface and Wrough is for a rough 

interface corresponding to as deposited co-evaporated CIGSe. The rough surface is 

schematized as a regular pyramid with a top angle 2θ with n1  corresponding to the refractive 

index of medium 1 and n2 to the refractive index of medium 2. When a normal incident 

photon reaches the interface with an angle of θπϕ −=
2

, the incident angle becomes ζ 

following the Snell-Descartes law: 
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from the scheme figure 28, we immediately deduce the formula: 
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It is possible to make the same consideration on the diffusion length Ln, however it is very 

likely that it won’t be affected at the same level than the space charge region which is in 

direct contact with the p-n junction. A more realistic behavior of the space charge region and 

diffusion region is shown with dotted lines on figure 28. 

 

Figure 28. Schematic representation of the space charge region for a rough p-n interface 

 

To support this hypothesis, we plot on Figure 29 the experimental internal quantum efficiency 

(IQE) extracted from the formula  

                                           ( )[ ] ( )λλλ EQERIQE −= 1)(                                                (3)                         
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with R(λ) being the reflection coefficient of the complete solar cell device, given on figure 27 

for the different samples, and EQE(λ) being the experimentally measured External Quantum 

Efficiency given on figure 28. We observe on figure 29 a moderate decrease of the IQE for 

high energy photons, with an IQE at 550 nm passing from 0.92 for the non etched (rough) 

sample to 0.87 for the 4 minutes etched sample (smooth). The IQE decrease becomes 

however more important for the low energy photons; at 900 nm, it drops from 0.74 for the non 

etched sample down to 0.54 for the etched sample. Since the reflectivity contribution is 

eliminated, this drop of the quantum efficiency has to be related to the carrier collection 

mechanism which is influenced by the roughness of the CdS/CIGSe interface. 

 

 

Figure 29. Internal Quantum Efficiency (IQE) for different etching times; inset: fitting of the 

tail of the IQE for a smooth CIGSe sample. 
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III.6.c) Analytical expression of the Spectral Response 

In the following, we simulate the IQE of a CIGSe solar cell depending on the space charge 

region width W and the minority carrier diffusion length Ln. For an incident light with a 

wavelength λ on the surface of a semiconductor absorber, the generation function is defined 

as follows: 

                                                  ( ) ( ) ( ) ( )[ ] ( )( )xRFxG λαλλλαλ −−= exp1,                             (4) 

where R(λ) is the reflectivity of the surface, F(λ) is the number of incident photons per cm2 

per sec per unit bandwidth, α(λ)  is the absorption coefficient of the material, and x is the 

distance in material from the surface. For low injection level condition (no concentration), the 

minority carrier continuity equation is: 
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And the electron current is: 

                                              (6) 

Where E is the electric field, q is the elemental charge q = 1.6.10-19 C, µn is the electron 

mobility in the absorber, τn is the electron lifetime in the absorber, Dn is the diffusion 

coefficient of the electrons in the material, n is the photogenerated electron density and n0 is 

the electron density in equilibrium in the dark. In our model, we consider that both sides of 

the p-n junction have are uniform in doping, mobility and lifetime. When combining equation 

(5) and (6) and after resolution of the differential equation, we obtain the general equation: 
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where Ln is the diffusion length nnn DL τ= . The boundary conditions are: 

00 =− nn  for x = W where W is the width of the space charge region.  









+=

dx

dn
qDnEqJ nnn µ



Confidential 119
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0  for x = xBC where nS  is the back contact recombination 

velocity,  and xBC is the abscissa of the back contact (equal to the absorber thickness when the 

origin is taken at the p-n junction).  

This leads to the following equation for the photocurrent due to the electrons: 
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where Wxx BC −= . When recombination is neglected, this equation can be written in the 

simple form: 
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which is the well known Gärtner’s equation 67. Both for equation (8) and (9), the internal 

spectral response is obtained by ( )RqF

J
IQE n

−
=

1
 

In the case of the CIGSe solar cells, the Mo back contact is well known for its ohmic behavior 

thanks to the formation of a MoSe2 interfacial layer. In this case, the back contact is 

considered as a perfect trap for the electron and the recombination velocity ∞→nS . The 

Taylor’s development of equation (8) with ∞→nS  leads to the analytical formula: 
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This is the equation that will be used in this part to simulate the influence of the space charge 

region width on the IQE. Figure 30 summarizes the geometry and the boundary conditions in 

the following. 

 

Figure 30. Schematic geometry and boundary conditions for analytical approximation of 

photocurrent collection  

From Capacitance-Voltage measurements at ambient temperature, we have deduced the 

CIGSe acceptor density being Na=2.1016 ; the space charge region W for a flat interface is 

determined with the following simplified equation: 

                                                          )(
2 0 VV
qN

W BI
a

r −= εε
                                                (11)  

Where VBI is the built-in potential (VBI~1), Na the acceptor density, εr the relative permittivity 

of the CIGSe (εr = 13.6), ε0 the absolute vacuum permittivity, and V an applied potential. 

When no voltage is applied, the W is equal to Wflat = 275 nm. It is then possible to determine 

Ln for a flat interface by fitting the tail of the IQE of the 4 minutes etched sample with the 

Gärtner’s equation 67: 
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where α is the absorption coefficient of the CIGSe deduced from ellipsometry measurements 

68. The fit is presented as an inset in figure 29 and the value for Ln is nmLn 380= . 
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In order to evaluate the preeminence of W and Ln the one over the other, we simulate the IQE 

of a CIGSe solar cell using equation (12) and vary both parameters while keeping 

nmLWL neff 655380275 =+=+=  at a constant value. The simulated IQE are presented in 

figure 31. As we can see, the lowest IQE is obtained for a 0=W  and nmLL neff 655==  

(configuration 1). In this extreme case, the generated electrons are not assisted by any 

potential when diffusing to the p-n junction and the carrier collection is less efficient. As 

observed on Figure 31, when increasing W and reducing Ln, the IQE increases, mainly 

between 520 nm and 950 nm (from 0.68 to 0.89 at nm800=λ ), because of the potential 

which enhances carrier collection for photons absorbed in the space charge region; when 

0=nL and nmWLeff 655==  (configuration 2), the best IQE is achieved. This clearly 

highlights the preeminence of W over Ln as a critical parameter enhancing the IQE. This is in 

direct relation with the fact that the separation of electron-hole pairs in the space charge 

region is complete due to the assistance of the electric field while the diffusion region is 

electrically neutral (E=0).  

 

Figure 31. Simulated IQE curves where the space charge region W and the minority carriers 

diffusion length Ln are varied while keeping W + Ln at a constant value Leff. 
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In the hypothesis of the roughness influencing Leff, it is clear that the space charge region will 

be the most affected parameter, being much thinner and closer to the p-n junction than Ln. It 

results in an effective volume of the space charge region more important for a very rough 

CIGS/CdS interface compared to a flat surface. The preeminence of W over Ln as a critical 

parameter influencing the carrier collection have been demonstrated, leading to a behavior of 

the simulated IQE when increasing W comparable to what is observed in our experimental 

data. The penetration depth increases with the wavelength, therefore, the absorption in the 

space charge region and so the carrier collection is reduced in the case of a flat surface 

compared to a highly textured surface.  

This situation points out the interest of having a low doped region where the electric field can 

develop. This situation is similar to the n-i-p structure found in thin film silicon solar cells. To 

maintain the voltage, it is important to maintain a higher doped p-type region in the back of 

the CIGSe layer, which is indeed the case. An additional effect which has not been considered 

in this study is the driving force created by bandgap grading, which enhance the effective 

diffusion length in the quasi-neutral region of CIGSe 65 69. 

 

III.6.d) Conclusion 

CIGSe surfaces have been chemically etched to reduce their surface roughness from a RMS 

of 230 nm to 90 nm, while keeping approximately the same structure, surface composition 

and absorber thickness (over 2 µm). The influence of the CIGSe roughness over the electrical 

and optical properties of CIGSe solar cells have been investigated. Reflectivity measurements 

shows that the reflectivity of the smooth solar cells (completed with CdS and ZnO) slightly 

increases. J(V) measurements and spectral response show that both FF and Voc are constant 

with the surface roughness, whereas the Jsc and thus the efficiency decreases with the 

decrease of the roughness RMS, indicating a strong dependence between CIGSe roughness 

and short circuit current. This Jsc decrease with the surface smoothing is more important than 

expected from the losses due to the increased reflectivity. We made the hypothesis that the 

surface roughness influences the effective space charge region width, leading to an increased 

carrier collection for the case where the absorber is textured compared to a flat absorber. 

Numerically simulated IQE highlight the importance of the space charge region width 

compared to the diffusion length as a critical parameter to enhance the carrier collection in the 
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solar cell and show results comparable to the results observed in the experiments. The 

roughness of the CIGSe/CdS interface is therefore found to be a major parameter for efficient 

state of the art solar cells. Moreover, this situation highlights the interest of having a low 

doped absorber region at the CdS/CIGSe to increase the space charge region and thus the 

carrier collection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Confidential 124

III.7) Chapter Conclusion 

 

A chemical etching process, based on oxidation of the CIGSe by Br2, has been developed for 

the purpose of reducing the absorber thickness without altering the properties of the film. The 

work from Institut Lavoisier shows that it is possible to have a remarkable control on the 

etching rate of the CIGSe, and Atomic Absorption Spectrometry allows to precisely monitor 

the etched thickness. A precision of nm50± over the etched thickness is possible, which is in 

the range of what is needed for ultrathin  < 500 nm CIGSe solar cells.  

XPS analysis, along with Raman spectroscopy and X ray diffraction analysis show a very 

good stability of the surface chemistry and the material composition and crystallinity. The 

KCN treatment enables to reconstruct on etched CIGSe the initial surface configuration of as-

deposited  CIGSe. In agreement with literature, the chemical etching of the absorber has a 

strong smoothing effect which was characterized by Atomic Force Microscopy. This 

smoothing of the surface results in a modification of the optical properties of the films. 

A systematic study of the photovoltaic properties of the solar cells when varying the absorber 

thickness has been carried out. As expected, the main limitation of the efficiency when 

thinning the absorber comes from the reduced absorption and the increased back contact 

recombination, which affect directly the photocurrent. For ultrathin devices (<500 nm), the 

incomplete quasi Fermi level splitting limits the Voltage and the Fill Factor is also reduced. 

The surface roughness is also of great influence over the photocurrent generation of CIGSe 

solar cells, regardless of the thickness of the absorber. Very short etching of the surface 

allowed to precisely monitor the smoothing of the CIGSe without affecting its thickness in 

significant proportions; a study of the parameters of the cells with the variation of the 

roughness of the CIGSe/CdS interface was performed, and surprising findings showed that the 

decrease of the photocurrent was not only related to the increased reflectivity of the solar cell, 

but also to the carrier collection which is different for a flat and a rough CIGSe surface. An 

interpretation consisting in a modification of the Space Charge Region effective width for a 

rough interface is proposed, and numerical simulations of Internal Quantum Efficiency by 

varying the space charge region width confirm the observed trend.  
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The decrease of the efficiency, from 14% for a reference as-deposited solar cell down to less 

than 10% for ultrathin devices, has to be overcome with an engineering both on the front side 

and on the back side of the solar cell. The Quantum Efficiency measurements show that there 

is a significant room for improvement of the properties of the cell, especially in the absorption 

of IR photons.  
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Chapter IV 

 

 

 

 

 

 

Front contact engineering of thin CIGSe 

solar cells 
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IV.1) Introduction 

 

In Chapter II and III, we had an overview of the phenomena responsible of the decrease of the 

photovoltaic performances of CIGSe solar cells when reducing the absorber thickness from its 

initial value (2500 nm) down to an ultrathin level (100 nm). We highlighted the fact that non 

absorption of incident photons in the thinned CIGSe is the main issue that needs to be solved, 

by an optical engineering of the device. In this Chapter, we will study the aspects concerning 

front contact optical engineering. 

We briefly recall the principle behind an Anti-reflection coating (ARC) which is already a 

widely used technique to increase the proportion of the incident light entering in the solar cell. 

Besides the classically used ARC, we suggested in Chapter II the replacement of the U.V. 

absorbing CdS buffer layer by a wider bandgap material such as ZnS. This already proven 

technology 47,48,70–74 showed a great potential enhancement for the absorption of U.V. light 

inside the absorber and thus for an efficiency improvement. To the best of our knowledge, this 

type of buffer layer has never been used on an etched CIGSe surface;  in this chapter, we will 

compare the photovoltaic properties of CIGSe solar cells with different absorber thickness 

between a standard CdS buffer layer and an alternative ZnS buffer layer.  

However, the best to expect from the alternative ZnS buffer is an absorption enhancement in 

the U.V. range (about 400 nm to 500 nm) whereas the whole spectrum, and particularly the 

low energy IR photons, are concerned by the reduced absorption of the CIGSe when reducing 

its thickness. It is therefore needed to increase the optical path in the absorbing layer by light 

scattering. This problem, which is common to every ultrathin solar cell, is already widely 

studied for the amorphous silicon (a:Si) technology in order to obtain “optically thick, 

electrically thin” materials. The random texturation of the front Transparent Conducting 

Oxide (TCO) has been increasingly developed in the past decades 75–77, even at the industrial 

level with the Asahi U-type SnO2:F (which is a standard in the a:Si technology) and more 

recently the VU-type and the HU-type 78. In this chapter, we investigate on the possibility to 

transfer similar techniques to thinned and ultrathin CIGSe solar cells, and we give an 

overview of the limitations encountered during this study. 
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An alternative solution could come by using nanowires and nanorods 79–82. These TCO pillar-

shaped structures are well known for their extremely high light scattering properties 83–86 and 

thus could provide an alternative and more efficient way to improve ultrathin devices than 

random texturation of flat TCO layers. This option will also be studied in this Chapter. 
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IV.2) State of the art 

IV.2.a) Anti-reflecting coating layers 

An anti-reflecting coating (ARC) is a thin film coating applied on the top of a surface to 

reduce its reflectivity in a particular wavelength range. The basic principle is that the reflected 

light from different interfaces cancel each other by destructive interferences, maximizing the 

light transmission. In the simplest case, an ARC is a single layer deposited on the top of the 

surface of which the reflectivity has to be reduced; the goal is to obtain a quarter-wave layer 

of a material, with a refractive index close to the average value of the refractive indexes of the 

two adjacent media (air and ZnO:Al in our case). In that situation, two reflections of equal 

magnitude arise at the two interfaces, and cancel each other by destructive interference. An 

illustration of this particular effect is shown figure 1. 

 

Figure 1. Schematic representation of anti reflecting effect 

The layer 1 increase the optical path of one of the two reflected rays. If the layer thickness e is 

14n
e

λ=                      (1) 

 and if  
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1 2
1

n
n

+=                  (2) 
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 then the shift D between the two reflected rays is  

2
2 1

λ=−×= dnlD                    (3) 

and the two rays are in opposite phase which leads to destructive interferences at the 

wavelength λ. However, this type of ARC is centered on a certain wavelength λ while a solar 

cell needs a broadband anti-reflecting effect. A multi-stack of ARC layers with intermediate 

optical indexes is required to achieve broadband antireflection. It is also possible to use a 

coating with a graded optical index. 

An alternative option is to create an optical gradient with pyramidal shaped ARC layer,with 

dimensions of the order of the incident wavelength to the layer of which one wants to reduce 

the reflectivity. This particular shape gives a pseudo-progressive index to the medium in the 

vicinity of the surface, simulating a smooth transition of the refractive index by smoothly 

reducing the amount of solid material in a plane parallel to the surface 87 88. It provides an 

antireflection effect on a fairly large spectral and angular range. 

The most commonly used ARC in CIGSe solar cells is single layer MgF2 ARC 89 with an 

optical index of about 38.12 =MgFn  in the CIGSe absorption spectral region, deposited on the 

front ZnO:Al window. 
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IV.2.b) Light scattering effect by texturation of the front ZnO:Al window 

 

IV.2.b.i) Theoretical aspect 

Scattering light at the front interface aims to increase the optical path in the absorber as 

schematized figure 2. The surface morphology of a film is defined by the RMS roughness rσ   

and the height function ),(yxη  which can be randomly or periodically modulated. The light 

scattering properties of the film are characterized by the haze factor ( )λH  given by the ratio 

between scattered light with total light; the angular distribution function ( )λθ ,ADF  where θ  

is the scattering angle, defines the intensity distribution of scattered light as a function of the 

angle at which the scattered light propagates. It is given by the magnitude of the Poynting 

vector. K. Jäger and M. Zeman 90 predicted the ( )λθ ,ADF  of a surface from its morphology, 

using ),( yxη  as an input parameter and the first order Born approximation: 

( ) 2)(cos, ∫∫
+−=

A

yKxKiopt dydxZe
r

F

A

A
ADF yxθθλ              (4) 

where 
A

Aopt  is the normalization of the surface of the sample depending on the optical 

measurement system, Kx,y is the wave vector in the x and y directions, and Z contains the 

height function and is given by 

( )[ ]{ }yxiK
iK

Z Z
Z

,exp1
1 η−−=                  (5) 
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Figure 2. Illustration of the scattering of light on a thin film with a rough surface  90 

 

4 different samples are tested to validate the model; a Fluorine-doped tin oxide (FTO) Asahi 

U-type with a nmr 40≈σ , two ZnO:Al layer etched in HCl for 20’’ and 40’’ leading to 

nmr 50≈σ  and nmr 100≈σ  respectively (AZO 20’’ and AZO 40’’), and a boron doped zinc 

oxide with a pyramidal structure and a nmr 220≈σ  (BZO). 

This theoretical model is in reasonable agreement with experimental data of AZO 20’’ and 

FTO as shown figure 3.a, but doesn’t match for AZO 40’’ and BZO. It is known that the Born 

first order approximation works better for moderate RMS roughness 91, and equation (5) was 

modified for higher rσ  leading to the equation 

( )[ ]{ }yxik
ik

Z II ,exp1
1)( η−−=        (6) 

where zyxKk ,,= . In this case, known as modified Fraunhofer scattering, the measured and 

calculated intensities for AZO 40’’ and BZO match much better than with the Born first order 

approximation as shown figure 3.b. 
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Figure 3. Four samples at λ = 600 nm (Color line) (a) Measurements and the application of 

equation (4) with first order Born approximation (equation (5)); (b) With a modified 

Fraunhofer scattering extension (equation (6)) 90 

Numerical tools allows to predict the light scattering behavior of a textured rough surface. 

Different types of structures have been investigated to achieve broadband and efficient light 

scattering, especially for Silicon thin film solar cells; in the following, we will present an 

overview of recent progresses in the field. 
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IV.2.b.ii) Light scattering by texturation of the front ZnO 

Texturing the front transparent conducting oxide (TCO) has been reported as one of the most 

effective solution to increase the light trapping in very thin absorbers, leading to the 

development of the reference industrial SnO2:F substrate in thin film silicon solar cells Asahi 

U-type 78. Kluth and Löffl reported a method that allows to texture a magnetron sputtered 

ZnO:Al layer by wet chemical etching in HCl 75 92 to enhance the light scattering. This 

method has been widely used since then in the field of a:Si solar cell as one of the most 

effective one to achieve low cost and efficient light scattering at the front interface of the solar 

cell 93–99. Starting from a ZnO:Al film with a thickness typically between 500 nm to 1000 nm, 

the film is dipped in a HCl solution with a concentration of 0.5 % in most cases 95 94 for a few 

seconds (less than a minute). This leads to a thickness reduction between 100 nm to about 400 

nm, and to the texturation of the ZnO:Al film due to the preferential etching of the material at 

the grain boundaries. The purpose is to obtain films with high light scattering properties 

without degrading its electrical properties (i.e. not increasing the resistivity), with a sheet 

resistance in the range of 5-15 Ω/sq 94. The two important optical parameters that determine 

the quality of the light scattering are the haze parameter H and the angular distribution 

function ADF. The haze parameter is described as the ratio of light that is scattered with the 

total intensity of light at the interface. The ADF defines the intensity distribution of scattered 

light as a function of the angle at which the scattered light propagates. In a paper from 2003 
93, J. Krc and M. Zeman report that by varying the etching duration from 1s to 30s in a 0.5% 

HCl solution, it is possible to vary the root mean square of the surface roughness σr from 25 

to 120 nm. Optical measurements using a spectrometer coupled with an integrating sphere 

show that the haze increases with increasing σr both for the transmitted and reflected light, 

and decreases with increasing the wavelength λ for both (figure 4). The comparison of H for 

reflected HR and transmitted HT light of the same substrate reveals that the scattering process 

is more effective in reflection than in transmission. The calculated HT for transmitted light is 

much higher than the experimental one, whereas the reflected HR seems in better agreement 

with the experiments although far from matching. 
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Figure 4. Measured (symbols) and calculated (lines) haze parameters in transmission (a) and 

reflection (b) of the air/glass/ZnO:Al/air stack. 93 

On the other hand, angular resolved scattering measurements show that increasing σr leads to 

a decrease of the ADF parameters, i.e. high σr samples have a more pronounced light 

scattering into smaller angles centered around the specular direction (figure 5). Whatever the 

σr, the ADF of the etched ZnO:Al remains lower than for the commercial SnO2:F Asahi U-

type, and of course than lambertian light scattering.  

 

Figure 5. Measured (symbols) and approximated (curves) angular distribution functions of 

diffused transmitted (a) and reflected (b) light for the glass/ZnO:Al stack with different σr. 

For comparison, the measured and approximated ADF of an Asahi U-type SnO2:F and a 

lambertian diffuser are added.   93 
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Although encouraging, these results show that there is still room for improvement in light 

scattering by the front TCO. In order to evaluate the potential enhancements of the light 

trapping by textured films, Krc, Smole and Topic 100 performed numerical simulation of the 

effect of an hypothetic high haze parameter and ADF of a textured conductive oxide on the 

quantum efficiency and short circuit current on a a:Si solar cell. They observe a significant 

improvement of the parameters of the cell up to a haze factor of 40%. Beyond that point, 

optical simulations do not show any significant enhancement on the Jsc, indicating saturation 

with respect to haze parameter. Similarly, a saturation is observed for very broad ADF, due to 

absorption by the thin p-side of the a:Si instead of the active intrinsic layer. However, this 

would not be the case for CIGSe solar cells since neither the buffer layer nor the front window 

are likely to absorb in the same spectral region than CIGSe. 

Tuning the surface morphology of ZnO:Al is therefore found to be a key issue in controlling 

the light scattering properties for photovoltaic applications. In a publication from 2007 95, F. 

Ruske and W. Werner showed that it is possible to modify the etching behavior of sputtered 

ZnO:Al films by changing the oxygen partial pressure during the deposition. Different surface 

morphologies are realized depending on the pressure as shown in figure 6. For low oxygen 

partial pressure (10 mPa), the surface shows a low roughness which progressively increases 

when the pressure is increased up to 17.5 mPa, with a structure size of about 200 nm. Further 

increase of the oxygen partial pressure above 20 mPa leads to a very rough film with steep 

structure, which size decreases below 200 nm. Optical characterizations with an integrating 

sphere (not shown, see reference 95) indicates that the highest haze value is reached for an 

oxygen partial of 17.5 mPa. 
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Figure 6. SEM cross section images of the surface structure of ZnO:Al films after HCl 

etching as a function of the oxygen partial pressure during the deposition 95. 

 

 

High haze ZnO:Al films such as presented in the papers previously discussed lead to 

significant improvements in the quantum efficiency of a:Si or µc:Si solar cells. An example 

from the review of Müller and Vanecek et al. 94 is shown in figure 7. It demonstrates the 

influence of the ZnO:Al surface roughness for two µc:Si cells deposited on glass/ZnO:Al 

superstrate. Both the QE and the (1-R) curves are shown (R is the reflectivity). The cell with 

the rough ZnO:Al shows as expected a much higher QE, and the main gain in the generated 

Jsc comes from the red/IR region due to the introduced light trapping. Additionally, QE is 

increased due to an antireflection effect which was already reported by reference 101. 
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Figure 7. Quantum efficiency and (1-R) curves of µc:Si pin solar cells with thin textured-

etched (dashed lines) and smooth ZnO:Al (solid lines). Resulting Jsc are 20.8 mA.cm-2 and 

15.3 mA.cm-2 respectively 94. 

 

Unlike thin film Si solar cells, CIGSe is a substrate-only technology since it involves a high 

temperature process and materials that are incompatible with the superstrate process. 

Therefore, texturing the front ZnO can only be performed after full deposition of the solar cell 

stack, and the air/ZnO interface is the only one that can be modified. Moreover, the high 

absorption coefficient of CIGSe makes light trapping unnecessary in the standard conditions. 

A recent study based on numerical simulations by Campa and Topic et al. 41 evaluated the 

potential of a textured front ZnO:Al for CIGSe solar cells application. It is demonstrated that 

a high haze parameter and broad ADF at the air/ZnO:Al does not lead to large scattering 

angles in the CIGSe, and so does not significantly enhance the light absorption in this layer. 

This is due to the refractive index of CIGSe which is 9.2≈n , that is larger than the one of 

ZnO:Al 2≈n . According to Snell-Descartes law, large scattering angles are transformed into 

smaller ones when entering in the CIGSe and greatly reduces the impact on the solar cells 

parameters. However, the authors show that a substantial increase of the QE is expected if the 

CIGSe/CdS interface is textured, similarly to what happens in the superstrate thin film Si solar 

cells. The second effect related to additional roughness at air/ZnO:Al interface is the 

decreased reflectivity of the solar cell, according to the antireflection effect of textured 
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surface that was discussed in the beginning of this chapter. This effect is observed in the 

simulations and increases light absorption in the CIGSe 41. 

 

IV.2.b.iii) Light scattering by ZnO nanorods 

Although light scattering at the front interface is a lot more complicated in the case of CIGSe 

solar cells compared to the thin film Si technology, we demonstrated in the simulations 

chapter II that an effective antireflection (AR) layer on top of the CIGSe has the potential to 

increase the absorption in the CIGSe by an absolute value of 7 %. AR can be achieved either 

by etching the ZnO as previously discussed, but it is possible to achieve a much higher 

surface roughness by deposing ZnO nanorods on top of the ZnO:Al. Previous studies from 

different groups already investigated on the use of ZnO nanorods and nanotubes for dye 

sensitized solar cells and ETA cells 81 83 84 102 103. The interest is to take advantage of the 

important developed surface and the light scattering properties of such structures. Moreover, 

in a 2008 publication from Lee et al. 104, ZnO nanorods (NR) are reported as a very efficient 

solution to achieve AR effect in solar cells. The authors use a RCWA method to simulate the 

reflectivity of a NR film, and they demonstrate that control of tip tapering of the NR allows to 

significantly reduce the reflectivity of the films. A comparison of the reflectivity of differently 

shaped NR is showed figure 8. We see that a reflectivity lower than optimized SiN ARC can 

be obtained for highly tapered NR. 

 

Figure 8. Front reflectance spectra of flat top NR (red), tapered NR (orange), sol-gel ZnO 

film (green), optimized SiN ARC on Si PV cell with metallic contact (blue), and highly 

tapered NR (black) 104 
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We reported an experimental observation of the reduced reflectivity of vertically oriented 

ZnO nanorods electrodeposited on ZnO:Al films 86. A recent study 105 demonstrates 

experimentally the potential of ZnO NR as an effective ARC on CIGSe solar cell. The NR are 

deposited by electrodeposition from an aqueous solution of 4.5 mM Zn(NO3)2 × 6H2O and 70 

µM HNO3 directly on the ZnO:Al front window of the solar cell. As expected, the reflectance 

of the solar cell is significantly reduced while the EQE in increased and the interference 

fringes in the ZnO are vanished (figure 9.a). The effect is comparable to standard MgF2 ARC 

(figure 9.b) and further improvements are possible with future optimizations. 

 

Figure 9. EQE of a solar cell before (dashed line) and after (solid line) deposition of ZnO NR 

(a); after (solid line) MgF2 single layer coating (b) 105 

 

 

 

 

Another solution to improve the light absorption in the CIGSe layer is to replace the CdS 

buffer layer by a material with a wider bandgap, such as ZnS. Simulations from Chapter II 

showed that such a buffer layer could greatly improve the efficiency of solar cells; in the 

following, we will present a summarized state of the art on this topic. 
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IV.2.c) Alternative ZnS/(Zn,Mg)O buffer layer for CIGSe solar cells 

The standard buffer layer used in the CIGSe solar cells is the Cadmium Sulfide (CdS), 

deposited by chemical bath deposition (CBD). Its excellent band matching with CIGSe 

(bandgap Eg = 2.4 eV and electron affinity χ=4.2 eV) associated with its very good coverage 

of the absorber makes it an appropriate material for the p-n junction. However, the Cd toxicity 

and  the relatively low bandgap of the CdS, which absorbs light in the U.V. range, led to an 

increasing development of alternative solutions 46,48,106–109. One of the most proven solution of 

alternative buffer layer is the CBD deposited ZnS buffer layer, which is already used as a 

standard buffer layer in some industrially produced CIGSe modules 70. Its high bandgap (3.6 

eV), associated to a surface passivation due to the incorporation of sulfur and short deposition 

times (<10 min) makes it an excellent alternative to CdS.  

In 2009, two joint publications 47 48 investigated on the combination of both a CBD deposited 

ZnS layer and a sputtered Zn1-xMgxO layer, in replacement to the standard CdS/ZnO:i bilayer, 

leading to significant improvements of the efficiency and the stability compared to previous 

alternative buffer layer solar cells. The deposition process is as follow: co-evaporated CIGSe 

films 2 are chemically treated in a KCN solution 35. The ZnS layer is then grown by CBD  

from aqueous solutions of zinc sulfate (0.1 M), thiourea (0.4 M), and ammonia (1.5 M). The 

deposition temperature is tested between 60°C and 90°C. The Zn1-xMgxO layer is deposited 

by radio-frequency magnetron sputtering. Its bandgap varies from 3.3 eV for pure ZnO to 4.1 

eV for Zn0.6Mg0.4O. In this study, the bandgap of Zn1-xMgxO was 3.6 eV. More details on the 

ZnS/ Zn1-xMgxO bilayer deposition and composition can be found in Appendix III. 

A comparison with standard CdS buffer is carried out; the devices parameters are summarized 

in table 1. The higher bandgap of ZnS leads to a higher transmission of the ZnS buffer in the 

350-550 nm wavelength range, the Cd-free solar cells show a significantly enhanced quantum 

efficiency in this spectral region (figure 10). At the absorption edge of the CIGSe, the EQE of 

the Cd-free cells is identical to the one with CdS buffer, which indicates that the collection 

length is not affected by the new buffer layer. However, the Voc of Cd free cells is 

systematically lower by an average of 40 mV compared to standard CdS/ZnO:i buffer solar 

cells. The relative gain of about 12% in Jsc of Cd-free cells leads to a relative increase of about 

9% in the efficiency as illustrated table 1. 
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Buffer layer CdS/ZnO:i ZnS/ZnMgO 

Voc (mV) 690 665 

FF (%) 76.4 77.4 

Jsc (mA.cm-2) 26.5 29.7 

Efficiency (%) 14 15.3 

Table 1. Compared photovoltaic parameters for CIGSe solar cells with CdS and ZnS  buffer 

layers 47 

 

 

Figure 10. Compared EQE for CdS/ZnO:i and a ZnS/ Zn0.74Mg26O  buffer layer 47 

 

 

According to Serhan et al. 110, the CIGSe/ZnS interface is the critical parameter that controls 

the metastabilities observed in the solar cells; we have highlighted in the previous chapter 

with XPS analysis that the bromine etching of CIGSe surfaces does not lead to any major 

surface modification of the films, and KCN treatment allows to reconstruct the surface 

termination of the reference as-grown CIGSe 61. In the experimental part of this chapter, we 

will investigate on bromine etched absorber solar cells with an alternative ZnS buffer layer 

and discuss our results regarding literature and the optical simulations presented in Chapter II. 
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IV.2.d) Conclusion 

Using textured TCO for light scattering has been proven as a very efficient way to improve 

the light absorption in thin film solar cells such as amorphous silicon base solar cells; 

Theoretical studies however suggest that one should not expect a gain as important in the 

CIGSe technology, because of the index matching between the layer that reduces the 

scattering angle. Recent studies on the influence of ZnO nanorods on the front side of a 

CIGSe solar cell demonstrated that a very good antireflection effect can be achieved with 

such a structure. 

As already discussed in Chapter II, the replacement of CdS by ZnS as a buffer layer is a key 

point to increase the short circuit current of the solar cell. Literature however does not report 

the deposition of ZnS on etched CIGSe surface. 
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IV.3) Experimental Results 

 

IV.3.a) Light scattering and antireflection effect for ultrathin CIGSe solar 

cells by ZnO:Al chemical texturation and electrodeposition of ZnO 

nanorods 

Increasing the light broadband absorption is a major issue when reducing the absorber 

thickness like it was highlighted both in Chapter II and III. The thin film Si solar cells 

technology developed several ways to texture transparent conducting oxides (TCO) and thus 

increase the light pathway through the absorber while decreasing the front side reflectivity. In 

the following, we will transpose these techniques to the CIGSe technology and study the 

feasibility of increasing the light absorption in very thin absorber. In the first part, we discuss 

on the optical properties of chemically etched ZnO:Al films, and then apply these etch to the 

ZnO:Al window layer of thinned absorber CIGSe solar cells. A comparative study with a 

standard MgF2 antireflection coating is proposed. In the following part, we push further the 

surface texturation by electrodeposing ZnO nanorods on ZnO:Al films. We study the optical 

properties of the nanorods films compared to etched ZnO:Al films, especially their light 

scattering properties. ZnO nanorods are then applied to thinned absorber CIGSe solar cells 

and electrical characterizations are performed. 

 

IV.3.a.i) Texturation of ZnO:Al surfaces by chemical etching 

Films on glass substrate 

ZnO:Al films are deposited by sputtering with the standard solar cell conditions on glass. The 

film thickness is doubled (800 nm) compared to classic solar in order to avoid full dissolution 

when etching the films and maintain good electrical properties. The sheet resistance of the 

films is characterized with a 4 probes Pro4 setup (LUCAS LABS), and the films morphology 

is observed using SEM. The optical properties of the films are characterized in reflectivity and 

transmission with a spectrometer (Perkin Elmert lambda 900 UV/VIS/NIR) and an integrating 

sphere. Both direct and diffused transmission and reflection are measured, unfortunately, 

angle resolved measurements are not possible with our experimental setup and thus the ADF 
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cannot be characterized. The etching is performed in an HCl solution and the effect of both 

the etching time and the concentration of HCl is studied. The chemical reaction involved is  

OHZnHZnO 2
22 +→+ ++  

The experimental protocol is as follows:  

The ZnO:Al surface is rinsed for two minutes with Millipore quality water (18.2 Ω.cm). This 

is to make sure that the surface is completely wet. 

The sample is etched for a given time in the HCl solution (see table 2 for conditions) 

The surface is again rinsed for two minutes in Millipore water 

The whole process takes place at room temperature. 

 

Sample Number C1 C2 C3 C4 C5 C6 C7 

HCl Concentration 

(% mass) 0.01% 0.03% 0.05% 0.10% 0.30% 0.50% 0.70% 

Etching 

duration (s) 15 90 5 10 5 2 1 

 25 120 20 20 10 5 2 

 40 150 50 45 20 10 5 

 60  60 60 40 15 10 

 90  90 75 60 30  

 120       

 150       

 180       

Table 2. Etching conditions of ZnO:Al on Glass 
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In order to maintain the good electrical properties of the front TCO, we set the limit of the 

maximum acceptable sheet resistance of the film at 20 Ω/sq. The sheet resistance of the 

standard 400 nm ZnO:Al film is about 8-10 Ω/sq, and the one of a 800 nm film as used in this 

study is about 4 Ω/sq. The sheet resistance being partly related to the film thickness, we 

expect it to increase when etching the films. Similarly, the preferential etching at the grain 

boundaries may further affect the electrical transport properties of the films. The variation of 

the sheet resistance as a function of different HCl concentrations and etching times is 

presented on figure 11. 

 

Figure 11. Sheet resistance of etched ZnO:Al films with different HCl concentrations and 

etching durations 

We observe a relatively important spreading of the results. As expected, low HCl 

concentrations leads to lower sheet resistance, even after a very long etching (> 100 seconds). 

The 0.01% HCl solution does not seem to significantly affect the surface since its sheet 

resistance is almost unchanged; The 0.5% HCl solution, which is the most reported 

concentration in the thin film Si solar cells field, leads to a sheet resistance of ZnO:Al lower 
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than 20  Ω/sq up to approximatively 20 seconds of etching. The 0.05% HCl solution offers a 

sheet resistance lower than 20 Ω/sq up to 90 seconds of etching, and the aspect of the film 

seems very diffusive to the eye. These data have to be compared to optical measurements in 

order to determine the best etching condition to apply to solar cells. All samples are tested in 

total and diffuse transmission and reflection. Our purpose is to determine the best conditions 

in terms of light diffusion, total transmission, along with a low reflectivity. The amount of 

data being considerable, more details can be found in reference 111. The optimal films 

properties are obtained with the following conditions: 

- 0.05% HCl and 90 seconds 

- 0.1% HCl and 45 seconds 

- 0.3% HCl and 40 seconds 

Figure 12 presents the diffused transmission curve that is achieved for these three samples. 

 

Figure 12. Diffuse transmission for different of etched ZnO:Al films for different HCl 

concentrations and etching times. The stack is Glass/ZnO:Al. 
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In these conditions, the reflectivity of the ZnO:Al film is lower  than non etched ZnO:Al, 

while the ratio of scattered transmitted light is remarkably increased. The three sample have 

almost equivalent light diffusion properties; the diffusion peaks at about 60% for nm500=λ  

in each sample before decreasing in the red and infrared spectral region. As a result, the 

diffusion is only 20% for nm900=λ  which is the spectral region where light scattering is the 

most needed for ultrathin absorber CIGSe solar cells. 

However, the only condition that leads to a film with a sheet resistance that is acceptable for a 

TCO application on CIGSe is the 0.05% HCl and 90 seconds of etching. This HCl 

concentration is surprisingly lower to what is usually reported in literature. We hint that this 

may be related to the different deposition conditions for the ZnO:Al layer. The SEM cross 

section view of the surface of each sample is presented on figure 13. We see that the film 

thickness is much lower (approximatively 200 nm) for 0.1% and 0.3% HCl which explains 

why the sheet resistance is much higher than for the 0.05% HCl sample (approximatively 500 

nm thick). The three films present a high surface texturation with random pyramids about 200 

nm wide and 100 nm high. 

 

 

Figure 13. SEM cross section of HCl etched ZnO:Al films on glass substrate 

 

The optical properties of the 90-seconds etched ZnO:Al film with concentration 0.05% HCl 

compared to the standard non etched ZnO:Al are presented on figure 14.a (reflection) and b 

(transmission). The interference fringes in the reference sample correspond to the ZnO:Al 

film thickness and appear due to the smoothness of the film. These interference fringes are 

still visible for short etching times (not shown), which allowed us to estimate the etching rate 
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to about 3.5 nm per second for this HCl concentration (0.05% in mass). The interference 

fringes vanish when the surface is highly textured (etched sample curves on the figure). In the 

CIGSe absorption range, the reflectivity of the film is lowered (figure 14.b), however in 

smaller proportion than expected if the films were deposited on CIGSe. This is due to the 

differences in optical indexes between glass (n~1.5) and CIGSe (n~2.9); while the reflectivity 

of the air/ZnO interface is as expected reduced by the surface texturation, the inverse effect of 

antireflection occurs (enhanced reflectivity) at the ZnO/glass interface (nglass < nZnO). The 

overall reflectivity of the stack is therefore only slightly lowered, meaning that the ZnO:Al 

texturation overcompensates the enhanced reflectivity effect due to the deposition of ZnO:Al 

on glass. In both cases (etched and non etched) the ratio between total and diffuse reflectivity 

is very high; this high reflectivity haze is consistent with previous observations from literature 
93.  

The average total transmission is almost not affected by the texturation of the films with a 

transmission plateau of about 70% in the 400 nm – 1100 nm range, which corresponds to an 

absorption of about 8% on the complete stack for the etched films. This relatively high value 

can be explained by the fact that the optical path in the ZnO:Al is enhanced by the surface 

texturation, and the scattering angle is even more increased in the glass substrate because of 

its lower optical index, which leads to total reflections inside the glass for some rays and so 

losses in the transverse direction. While the measured diffuse part of the transmission is 

extremely low for non etched sample, around 5% on the whole spectrum, the etched  textured 

sample has a very high diffuse part which starts at about λ=1000 nm and peaks at 520 nm 

with a value close to 60% of diffusion. This results in a haze factor Hetched that increase from 

about 30% at λ = 1000 nm to Hetched = 90% at 520 nm. In comparison, the haze factor for the 

reference non textured sample is Href < 10% on the whole spectral range. The expected effect 

on light scattering of the surface texturation is here clearly visible. Unfortunately, all our 

samples had a diffusion curve centered around 500 nm – 550 nm. The scale of the texturation 

is related to the average size of the grain. In order to tune the diffusion properties, it would be 

interesting to vary the size of the ZnO:Al grains, which was not performed in this study. 
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Figure 14. Reflectivity (a) and Transmission (b) of non etched (black) and etched (blue) 

ZnO:Al films on Glass. Both the total (solid line) and diffuse part (dashed line) are presented. 

The curves are the total ZnO:Al/Glass stack, and the glass substrate has not been subtracted 

from the data. The Haze factor H is represented in red for the etched Hetched and non etched 

Href sample. 

These results show the potential of a textured ZnO:Al surface for light scattering and 

antireflection effect. However, these etching  parameters were optimized for a ZnO:Al 

deposited on a glass substrate; it is very likely that the deposition of the ZnO:Al on the 

CIGSe/CdS stack may change both the optical properties because of the optical index of 

CIGSe which is higher than that of glass, but also because of the film morphology which may 

change when the deposition is done on a different substrate. In the following, we will 

investigate on texturing the front ZnO:Al window of a 500 nm absorber CIGSe solar cell. We 

will compare the standard ZnO:Al with the etched one and a classic antireflection coating. 
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Texturation of the front window of CIGSe solar cells 

CIGSe solar cells with different absorber thickness are prepared using chemical Br2 etching of 

the absorber, and completed with the standard solar cell process that is described in Chapter 

III, except that the front ZnO:Al window layer thickness is 800 nm instead of 400 nm. Each 

solar cell is divided into smaller cells of 0.1 cm x 0.1 cm (8 cells per sample), and the 

photovoltaic parameters given are average values on the whole sample. The samples are 

electrically characterized before and after the etching (texturation) of the ZnO:Al. The front 

window of the solar cells is textured following the method described in the previous 

paragraph a.1. However, the direct application of the previously optimized process (90 

seconds, 0.05% HCl) on the Mo/CIGSe/CdS led to the complete dissolution of the ZnO:Al 

window layer and new conditions had to be found. The fact that the ZnO:Al dissolution is 

much faster on CIGSe/CdS than on glass may be related to the fact that the substrate greatly 

influences the crystallinity and the stresses within the films, which leads to a different etching 

behavior; such a study is however not carried out in this thesis, and we only focus on 

optimizing the photovoltaic properties of the solar cells by etching the ZnO:Al films. The 

concentrations and etching durations have been significantly lowered compared to our 

previous study about the etching of ZnO:Al on glass substrate. The etching parameters used 

on this study are summarized in table 3. 

 

HCl concentration 

(%mass) 0.01 0.025 0.2 0.4 

Etching Duration (s) 20 15 3 2 

 40 25 6 5 

 60 40 10 8 

 80 60 15 12 

Table 3. Etching conditions of ZnO:Al on Mo/CIGSe/CdS 

Firstly, we focus on solar cells with a 500 nm thickness in order to optimize the HCl etching 

time. In a second part, we study a complete solar cell serie with different absorber thicknesses 

and the optimized HCl etching. 
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Optimization of the HCl etching on a 500 nm CIGSe solar cell 

J-V characterization 

Each solar cell is characterized by J-V measurement under AM 1.5 illumination. The best 

solar cell serie is achieved for the 0.025% HCl concentration, we therefore present the results 

obtained for this sample. The average photovoltaic parameters for different etching times are 

presented in Figure 15 and are compared to the parameters of the same solar cells prior to the 

etching.  
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Figure 15. Photovoltaic parameters for a 500 nm CIGSe solar cell before (black dots) and 

after (blue dots) etching in a 0.025% HCl solution for different etching duration. The error 

bars are determined with the standard deviation of data on each solar cell with Originlab 

software. 

We clearly see a general increase of all the average photovoltaic parameters after etching of 

the front ZnO:Al window. However, the increase is below 4% relative to the non etched 

ZnO:Al film for the Voc and the FF, and cannot be considered as significant when considering 

the errors bars in the measurements. The only parameters that is enhanced to a value beyond 
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the error bars is the Jsc, with a significant + 8% increase for the 40 seconds etched sample, 

increasing from 19.3 mA.cm-2 for the standard flat ZnO:Al up to 20.8 mA.cm-2 for the 

textured ZnO:Al. Therefore, when texturing the ZnO:Al front window, the efficiency 

increases from 8.3 % to 9.6 % which represents a relative increase of 14% of the efficiency 

(figure 16.d) for this etching duration. One may be tempted to consider the +8% relative 

efficiency increase that is observed for the other etching durations as meaningful, it is 

however lower than the standard deviation of the data. This relatively important spreading of 

the results may be related to an insufficient stirring during the etching of the ZnO:Al, which 

led to inhomogeneities on the samples. 

As expected and observed on figure 15, the efficiency enhancement when texturing the front 

ZnO:Al can only be related to an increase in the short circuit current; evaluation of the 

spectral region where the absorption and/or the carrier collection is enhanced is a key issue for 

understanding the effect of the textured ZnO:Al on the thinned solar cell. We performed EQE 

measurements before and after the ZnO:Al texturation with a 0.025% HCl concentration and a 

40 seconds etching time, on a 500 nm CIGSe solar cell. The obtained curve is compared with 

a standard CIGSe solar cell with the same absorber thickness (500 nm) and no etching of the 

front ZnO:Al, and with a 500 nm absorber CIGSe solar cell with a standard MgF2 

antireflection coating (ARC) that was deposited at “Institut des Matériaux de Nantes” (IMN). 

The EQE curves are presented in figure 16. We first notice that the interference fringes are 

different for the two reference solar cells in figure 16.a and 16.b. This is due to the fact that 

the ZnO:Al thickness is 400 nm in the first case (standard conditions) and 800 nm in the 

second case (so that the HCl etching does not completely dissolve the film). By comparing 

figure 16.a and 16.b, we observe that the MgF2 ARC and the textured ZnO:Al film have a 

very similar effect on the quantum efficiency. The interference fringes are suppressed in both 

cases, and the EQE main increase is in the 400 nm - 700 nm; it also slightly increases in the 

infrared spectral region for the textured ZnO:Al, while the MgF2 ARC does not impact these 

wavelengths. Eventually, the impact of both techniques is very similar. This supports the fact 

that light scattering at the air/ZnO:Al interface is strongly limited by the optical indexes 

( 2≈ZnOn  and 9.2≈CIGSen ) when the ZnO:i/CdS/CIGSe interfaces are smooth, as it was 

previously reported in reference 41. Textured ZnO:Al is however found to be a very effective 

broadband antireflection coating. Its pyramid-type high texturation gives a pseudo-

progressive optical index at the air/ZnO:Al interface which results in a substantial increase of 

the short circuit current (+8%), that is confirmed by EQE measurements. 
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Figure 16. External Quantum Efficiency for a 500 nm CIGSe solar cell. (a) Without ARC 

(grey curve) and with MgF2 ARC (dark blue curve); (b) With the standard non etched 800 nm 

ZnO:Al front window (grey curve) and with a etched textured ZnO:Al front window 

 

Comparison between standard MgF2 ARC and textured front ZnO:Al for different 

CIGSe thicknesses 

We compare the results obtained with MgF2 ARC and HCl etching of the front ZnO:Al 

window, on a solar cell serie with different CIGSe absorber thicknesses: 2 µm, 1.5 µm, 1 µm, 

0.5 µm and 0.3 µm. The solar cells have been prepared using the same batch and the same 

CdS/ZnO process; each sample is cut in two parts, one being coated by the MgF2 ARC, the 

other being etched in HCl 0.025% for 40 seconds. The EQE are presented in figure 17.a for 

the MgF2 ARC serie, and in figure 17.b for the etched ZnO:Al serie. 
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It is clear that texturing the ZnO:Al window layer by HCl etching leads to an equivalent 

antireflection effect than a standard MgF2 ARC; for each CIGSe thickness, the interference 

fringes are vanished in both cases and the EQE is slightly increased, especially in the visible 

spectral region, up to about 750 nm. 

 

Figure 17. Compared EQE curves for different CIGSe thicknesses with: (a) MgF2 ARC 

(dotted lines) and no ARC (solid lines); (b) etched front ZnO (dotted line) and non etched 

ZnO (solid lines). 
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The photovoltaic parameters of the solar cells are presented figure 18. We see that both 

techniques (MgF2 and HCl etched ZnO:Al) lead to comparable results, although an important 

spreading of the data appears for the FF (figure 18.d). The overall efficiency improvement is 

very comparable between MgF2 ARC and HCl etched ZnO:Al.  

 

 

Figure 18. Compared photovoltaic parameters for different CIGSe thicknesses with MgF2 

ARC and ZnO:Al etching. (a) Efficiency; (b) Jsc; (c) Voc; (d) FF. 

 

In this part, we evaluated the potential of a textured front ZnO:Al window layer for a thinned 

absorber CIGSe solar cell. We observed a substantial +14% efficiency increase for an 

optimized surface texturation on a 500 nm thick absorber, which is related to an increase of 

the photocurrent of the solar cell. When comparing the quantum efficiency to the EQE of a 

solar cell with the same absorber thickness and a standard MgF2 antireflection coating, we see 

that the effect is almost similar, whatever the CIGSe thickness. While MgF2 ARC is a well 
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known and optimized process, it is interesting to note that we obtained results almost similar 

with texturation of the front ZnO:Al window. However, no improvement specific to a light 

scattering effect has been observed.  

 To go beyond the pyramid-type ZnO texturation, we investigate in the following the 

feasibility of ZnO surface with extreme light scattering properties and antireflection effect. 

 

IV.3.a.ii) Electrodeposited ZnO nanorods on ZnO:Al films for light scattering and 

antireflection effect 

ZnO nanorods aroused a great interest in the past decade because of the large variety of 

morphology that can be achieved and their resulting interesting optical and electrical 

properties. Among all the deposition techniques, electrodeposition has emerged as a very 

flexible effective way to deposit and tune the morphology of nanorods films 112 113. In this 

work, our purpose is to deposit ZnO nanorods on top of the ZnO:Al by electrochemistry, and 

to optimize the optical properties of the films to increase to the maximum their light scattering 

properties. We use a ZnCl2/KCl solution for the electrodeposition; this deposition process is 

based on the reduction of oxygen with the following reactions: 

−− →++ OHOHeO 424 22   and OHZnOOHZn 2
2 2 +→+ −+  

The solution is O2 saturated by bubbling, and the deposition temperature is fixed at 80°C. We 

use a saturated calomel electrode as a reference electrode (SCE), and the applied voltage 

versus SCE is –1.4V. We have demonstrated in a paper 86, which is at the margin of the 

subject of this thesis, that it is possible to tune the orientation of the nanorods  and so the 

optical properties of the films by varying the crystalline orientation of the substrate. Varying 

the deposition time, along with the ZnCl2 concentration are also important parameters that 

influence the nanorods length and surface density. We performed a complete comparative 

study about the influence of the substrate and deposition time on the nanorods film 

morphology and optical properties, and the reader is referred to reference 86 and 111 for further 

information on this topic. 

In this thesis, we only focus on showing the potential of ZnO nanorods as a light scattering 

film. We deposited the ZnO nanorods with a ZnCl2 concentration of 0.02 mM and a KCl 
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concentration of 0.1 M. The amount of deposited ZnO is monitored by the Total Charge 

Exchanged per surface units during the electrodeposition (TCE), which is in direct relation 

with the length of the nanorods and the amount of deposited material. The substrate used is a 

800 nm ZnO:Al film deposited on glass by sputtering. This film has been etched with an HCl 

solution like described in the previous part of this chapter. The pre-texturation of the substrate 

is necessary to reduce the density of nucleation sites and thus the density of grown nanorods; 

it also allows to grow non vertical nanorods. Figure 19 presents the SEM pictures of nanorods 

when deposited on a non etched ZnO:Al substrate (figure 19.a) and on an etched ZnO:Al 

substrate (figure 19.b). We clearly see a strong difference between the two films; when 

deposited on the non etched ZnO:Al, the nanorods are vertical and their density is very high, 

of the order of 100.µm-3. If the ZnO:Al substrate is pre-etched in HCl, the nanorods grow with 

a much lower density (20-30.µm-3), and are highly disoriented. We also show (figure 19.c), 

that is possible to grow vertical nanorods on the top of the pyramids, if the ZnO:Al substrate 

is HCl etched under certain conditions (very low HCl concentration < 0.02%). In this case, the 

pyramids have a flat tip, which is the nucleation center for the nanorods. However, this work 

is at the margin of our subject and we won’t expand on this topic. 

 

Figure 19. SEM cross section and top view of ZnO nanorods deposited on ZnO:Al substrate; 

(a) non etched substrate; (b) etched substrate 0.1% HCl and 25 seconds; (c) etched substrate 

0.01% HCl and 40 seconds 
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Growing non vertical and low density nanorods is needed for a maximum light scattering 

properties of the films as we highlighted it in reference 86. We present in figure 20 the optical 

properties (transmission and reflection) of nanorods films grown on a etched ZnO:Al 

substrate (0.1% HCl for 25 seconds) with a TCE of 30 C.cm-2. This film is the one with the 

highest light scattering properties that was achieved in our study 111. 

 

 

Figure 20. Optical properties of ZnO nanorods electrodeposited on ZnO:Al/Glass substrates. 

The Haze factors are shown in red. 

 

We first notice that the total transmission is reduced by an approximative value of 5-10% 

compared to the standard etched ZnO:Al film (see figure 14 for comparison). This might be 

due to multiple reflections in the highly nanostructured film; it may also be related to the fact 

that a large part of the scattered photons have a scattering angle higher than the total reflection 

in the glass and so are lost by multiple transverse reflections inside the glass. In the CIGSe 



Confidential 161

absorption range, the diffusive transmission curve almost matches the total transmission. The 

Haze factor is higher than 70% at λ = 1000 nm and increases to about 90-100% at λ = 900 

nm. This result is much higher than our previous results with etched ZnO:Al film as can be 

seen on the figure 20 (solid red line versus dotted red line), and also much higher to what was 

previously reported in literature 93. Moreover, the shift of the Haze factor toward the IR 

spectral range is of major importance for solar cell application as it allows to more efficiently 

scatter photons that have a lower energy and so are less absorbed when reducing the absorber 

thickness. In the mean time, the reflectivity of the film with ZnO nanorods remains at a high 

value (>20 %) when deposited on a glass substrate, for the reasons that are given in part a). 

 

The application of ZnO nanorods on 500 nm thinned absorber CIGSe solar cells has been 

carried out and the complete set of results is reported in the master thesis of Bo Chang 111. 

Figure 21 shows the SEM cross section view of a 500 nm CIGSe solar cell with 

electrodeposited nanorods on the front side of the cell. The TCE during deposition is 2.5 

C.cm-2. This relatively low TCE leads to short nanorods of about 500 nm in average value, 

with an average diameter of about 80 nm. The photovoltaic parameters of the solar cells were 

determined by J-V measurements. Compared to the solar cell before deposition of the 

nanorods, the Voc is unchanged at about 630 mV. The FF however is strongly decreased, from 

70% to about 60%. The ZnO nanorods are reported to have a lower carrier concentration than 

the ZnO:Al front window 114 which may therefore influence the making of the contact on the 

top surface of the solar cell. The Jsc of the solar cell is also roughly unchanged (at about 21 

mA.cm-2) compared to a solar cell with a HCl-textured ZnO:Al, as can be seen on the EQE 

curves figure 22. Overall, the addition of nanorods on top of the solar cell decreases the 

efficiency from 9.7% for a solar cell with a chemically textured ZnO:Al to 8.4% for a solar 

cell with nanorods, and no enhancement of the current is observed. Although the 

antireflection effect of the nanorods is confirmed, there is no additional gain due to the higher 

scattering of light in the IR range, and we also observed a decrease of the FF that was not 

reported in the paper from Aé et al. 105.  
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Figure 21. SEM cross section view of a 500 nm CIGSe solar cell with electrodeposited  ZnO 

nanorods of the front window 

 

 

Figure 22. Compared Spectral Response for a 500 nm absorber CIGSe solar cell with a 

standard non modified ZnO:Al front window (grey curve), an HCl-etched ZnO:Al front 

window (blue curve) and a ZnO:Al with ZnO nanorods front interface (green curve). 
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IV.3.a.iii) Conclusion 

 

Texturing a ZnO:Al film by HCl etching or by electrodeposition of ZnO nanorods showed a 

significant increase of the light scattering properties of the films. A Haze factor of nearly 

100% up to nm900=λ  has been achieved with ZnO nanorods deposited on a etched ZnO:Al 

film. However, we believe that light scattering at the air/ZnO interface is not suited for an 

application to thinned absorber CIGSe solar cells, no matter the haze at the front interface. 

The different refractive indexes in the layer strongly reduce the light scattering of the air-ZnO 

interface and thus no gain attributed to the diffusion of light in the absorber layer has been 

observed in the photovoltaic properties of the solar cells.  

Texturing with HCl the air/ZnO:Al interface demonstrated an important potential as a very 

effective antireflection coating, leading to a relative increase of 14% of the efficiency of a 500 

nm absorber solar cell, and the spectral response showed an effect that was comparable to a 

standard optimized MgF2 ARC. ZnO nanorods have a similar antireflection effect, although 

the FF of the solar cells has been degraded probably due to the lower conductivity of the 

nanorods. 
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IV.3.b) Comparative study between standard CdS and alternative ZnS 

buffer layers on chemically thinned CIGSe absorber solar cells 

 

In this part, we compare the photovoltaic parameters of two series of CIGSe solar cells from 

the same batch (batch J6) etched to different absorber thicknesses. The serie (1) is realized in 

the standard conditions with CdS-50 nm/ZnO:i-70 nm as buffer layer; serie (2) has an 

alternative ZnS/Zn1-xMgxO buffer layer. The deposition of the alternative buffer layer has 

been carried out in the frame of the PhD thesis of Thibaud Hildebrandt 115. The experimental 

process is as follows: co-evaporated CIGSe surfaces 2 are etched in a bromine solution and 

treated with a KCN solution, according to the method described in the Chapter III of this 

thesis. Different absorber thicknesses are realized: 1500 nm (non etched sample), 1000 nm, 

800 nm, 500 nm and 300 nm. For serie (2), the ZnS buffer layer is grown by Chemical Bath 

Deposition (CBD) from an aqueous solution of zinc sulfate (0.1 M), thiourea (0.4 M), and 

ammonia (1.5 M) at a temperature of 80°C. The deposition time is 8 minutes which leads to a 

layer thickness of about 40 nm. More details about the preparation of ZnS can be found in 

references 48 and 116. The Zn1-xMgxO layer is deposited by radio-frequency magnetron 

sputtering in a Plassys MP 300 device, with a base pressure of 5.10-8 mBar  and a working 

pressure of 10-3 mBar. More experimental details are given in reference 47. The ZnO:Al front 

window layer is grown in the standard conditions (same as chapter III) with a nominal 

thickness of 400 nm and a sheet resistance of about 8-10 Ω/sq. After deposition of the 

ZnO:Al, the solar cells are annealed in air for 10 minutes at 200°C and a light soaking under 

A.M. 1.5 illumination during 1 hour is performed. 

The solar cells are analyzed with current-voltage measurements J-V under standard A.M. 1.5 

illumination; the external quantum efficiency EQE of the solar cells is also characterized 

using the same experimental setup as in Chapter III. 
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IV.3.b.i) J-V characterization 

 

The photovoltaic parameters are extracted from the J-V curves and their average value is 

presented in Figure 23. An important spreading in the results for the CdS buffer layer solar 

cell is observed; this is interpreted as inhomogeneities in the CIGSe batch. It is possible to 

refer to Chapter III for a different set of results in the same conditions without this relatively 

important spreading of the parameters. From 1500 nm down to 800 nm of CIGSe, the ZnS 

buffer layer solar cells have a roughly equivalent voltage and fill factor to the CdS buffer 

layer solar cells, with value of 580 mV and 67-70%. As expected, the short circuit current Jsc 

is much higher with ZnS, decreasing from 31 mA.cm-2 (1500 nm absorber) down to 29 

mA.cm-2 (800 nm absorber), when the Jsc of the  CdS solar cell decreases from 27.5 mA.cm-2 

down to 26 mA.cm-2 in the same thickness range. This results in an overall efficiency superior 

for the ZnS buffer layer compared to CdS (figure 21.d) from 1500 nm to 800 nm absorber 

thickness. For lower thicknesses however, the behavior of the ZnS-buffered solar cells is 

different compared to the CdS-buffered solar cells. Both the Voc and the FF strongly decrease 

down to 0.47 V and 55 % respectively for the ZnS-buffered 300 nm absorber solar cell, while 

the CdS-buffered solar cell has a rather constant trend for those two parameters. The Jsc 

continues to decrease for both series, and still remains to a higher value with the ZnS buffer 

layer (24 mA.cm-2 versus 22 mA.cm-2 at 300 nm of CIGSe). This does not compensate the 

losses in Voc and FF, and the solar cells with standard CdS buffer layers outperform the ones 

with ZnS buffer layers for thicknesses lower than 800 nm (ultrathin), with an efficiency for 

the 300 nm CIGSe of 8.8% versus 6.4% respectively. 

The predicted increase of the Jsc with the replacement of CdS by ZnS is observed in our 

results. The fact that the alternative buffer layer is deposited on an etched absorber does not 

significantly impact the other parameters of the cell, with a roughly identical behavior as 

previously seen for standard 2500 nm thick CIGSe.  
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Figure 23. Comparison of the photovoltaic parameters of etched absorber solar cells with 

CdS and ZnS buffer layers. 

 

IV.3.b.ii) External Quantum Efficiency characterization 

 

To push further the characterization, we perform EQE measurements on both sample series. 

Figure 24 presents the selected EQE curves for three different absorber thicknesses: reference 

2500 nm, etched 1500 nm and etched 500 nm. The CdS and ZnS buffer layers are compared. 

For the reference thick solar cell, the gain in the U.V. range is visible with the ZnS buffer 

layer, however, the overall quantum efficiency is lower by about 5% on the rest of the 
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spectrum (from 550 nm to the bandgap); this may be related to an insufficient carrier 

collection due to defects at the P-N interface in case of ZnS. Experiments are being performed 

to fully optimize the ZnS and understand the mechanisms at stake at the absorber/buffer 

interface.  

 

Figure 24. Compared EQE for three different CIGSe thicknesses between a standard CdS 

buffer layer (solid lines) and an alternative ZnS buffer layer (dashed lines) 

 

This difference between CdS and ZnS in the 550 nm - 1000 nm spectral range is however not 

found for lower absorber thicknesses; in this case, the interference fringes, mainly due to ZnO 

window layer, are shifted between CdS and ZnS buffer, but the average EQE is roughly 

equivalent between the two buffer layers. The shift in the interference fringes is most likely 

due to the fact that the ZnS/ZnMgO stack has a different thickness than the CdS/ZnO:i. For 

these the etched CIGSe solar cells (1500 nm and 500 nm), the increase in the U.V. range 

(from 350 nm to 550 nm) is also clearly visible, and the important absorption of the CIGSe in 

these wavelengths, combined with two constructive interference fringes, allows the 1500 nm 
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and 500 nm CIGSe solar cells to surpass the reference 2500 nm solar cell. The measured EQE 

are consistent with the average Jsc that was deduced from the J-V curves, and reproduce well 

the expected behavior that was observed in the numerical simulations in Chapter II. These 

results are also in good agreement with the literature 47. 

 

IV.3.b.iii) Conclusion 

Similarly to what is commonly observed on state-of-the-art thick absorber CIGSe solar cell, 

replacement of the CdS buffer layer by ZnS significantly increases the short circuit current 

due to its higher bandgap that allows the CIGSe to absorb the incident light in the 350 nm - 

550 nm spectral range. ZnS was deposited on etched surface without any supplementary 

optimization compared to the standard conditions, and improvements are very likely in future 

developments 115. Similarly, an important drop of both the FF and the Voc are observed for 

ultrathin absorbers (500 nm and 300 nm) and further experiments are needed.  
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IV.4) Chapter Conclusion 

In this study, our purpose was to increase the short circuit current in a 500 nm CIGSe 

absorber solar by a front contact engineering of the device. Based on the simulation from 

Chapter II, and on previous studies especially in the thin film Silicon solar cells field, we 

investigated on two ways to increase the light absorption in the CIGSe: (1) the texturation of 

the ZnO:Al front contact by etching and nanorods electrodeposition for antireflection effect 

and light scattering; (2) the replacement of the standard CdS buffer layer by ZnS which has a 

higher bandgap energy. 

- The texturation of the front ZnO:Al window layer by HCl showed a broadband 

antireflection effect when applied to CIGSe solar cells, whatever the absorber 

thickness. The photocurrent increase was already at the same level as an optimized 

MgF2 ARC, and it is likely that there is still room for improvements. We also 

managed to significantly increase the light scattering properties, and shift the haze 

factor to the infrared wavelength by electrodeposing ZnO nanorods on top of the 

ZnO:Al; unfortunately, the application to solar cells degraded the fill factor without 

improving the photocurrent in the device due to the lower conductivity of the 

nanorods, which reduced the efficiency. ZnO nanorods led to the same antireflection 

effect that etching the front ZnO:Al window.  

- The ZnS buffer layer allowed a substantial increase of the absorption in the U.V. 

spectral range which led to an increase of the photocurrent and thus the efficiency of 

the solar cell. However, we noticed that the voltage and the fill factor were degraded 

when reducing the absorber thickness lower than 800 nm; further improvements are 

needed to optimize the ZnS/CIGSe interface in the case of an etched absorber, and a 

PhD thesis including this aspect is currently carried out at IRDEP 115.  

The front contact engineering that we used in this study allows to visibly increase the 

photocurrent in the solar cell, but no increase specific to thinned and ultrathin devices has 

been observed. Increasing the absorption in the infrared spectral range has been identified in 

Chapter II and III as the key issue for improving sub-micrometer absorber CIGSe solar cells, 

and the Spectral Responses here show us that there is still a lot of room for improvements in 

these wavelengths. In the next Chapter, we will study the back contact engineering of very 

thin and ultrathin CIGSe absorber solar cells. 
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Chapter V 

 

 

 

 

 

 

 

 

Back contact engineering for thin and 

ultrathin absorber CIGSe solar cells 
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V.1) Introduction 

 

 

In Chapter II, we proposed a theoretical insight on solutions to improve the performances of 

thin and ultrathin absorber CIGSe solar cells by increasing the light trapping and improving 

the quality of the electrical contacts. Although front contact engineering allowed to 

substantially enhance the  photovoltaic parameters of very thin absorber solar cells, the 

greatest scope for improvement is in the engineering of the back side of the device.  

Previous studies on the back contact of a CIGSe solar cell, especially for the purpose of 

ultrathin devices, are fairly rare; the high temperature substrate based process for the growth 

of the CIGSe absorber ( C°≥ 500 ) reduces the range of compatible materials. Molybdenum 

(Mo) has become the reference material as back contact in the field of CIGSe solar cells and 

alternative metals have most of the time performed poorly in comparison. In this Chapter, we 

decided to introduce a novel approach based on the lift-off (i.e. peeling) of a CIGSe layer 

from its original Mo substrate, allowing to process the back surface of CIGSe at low 

temperature (same approach as the front surface with the CdS). This method significantly 

broadens the range of compatible materials for back contact application.  

In the first part of this chapter, we will give an overview of previous works about alternative 

back contacts in CIGSe, specifically for ultrathin absorbers application. 

In a second part, we characterize chemically, optically and electrically the back surface of 

CIGSe using the lift-off process, and demonstrate the improvements that can be achieved by 

using Gold (Au) as a reflective alternative metal back contact with a very thin 300-400 nm 

absorber CIGSe solar cell. Different metals are also investigated, and their electrical and 

optical interface with CIGSe is characterized.  

In order to further reduce the absorber thickness to a thinner value, we showed in Chapter II 

that using a classical CIGSe/metal interface was insufficient to achieve enough light trapping, 

and alternative materials and structures are needed both for optical and electrical 

considerations. Therefore, in a final part, we investigate on the use of ZnO:Al transparent 

back contact that will allow to apply more advanced light trapping structures to ultrathin 
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CIGSe absorber ( nmd 300< ), and electrical characterizations of the CIGSe/ZnO contact are 

performed. An optical proof of concept device using a lambertian back reflector on a 200 nm 

absorber CIGSe solar cell will be presented, and compared to numerical simulations. A 

spectacular increase of the light absorption in a 200 nm CIGSe solar cell structure with a 

lambertian back reflector will be demonstrated. 
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V.2) State of the art 

V.2.a) Metallic back contact 

The “historical” back contact for CuInSe2 solar cells is molybdenum (Mo), although gold 

(Au) was also used in the first CISe solar cells in the late 70’s 117 118, but was later abandoned 

in order to meet the low cost objectives of the technology. In the early 80’s, Russell et al. 118 

investigated on the Mo/CIGSe interface; they showed that the contact has rectifying 

properties when processed at low temperature. In a paper from 1983, R.J. Matson et al. 119 

presented the results about the characterization of the interface between CuInSe2 and different 

metals including Mo using Electron-Beam-Induced Current, Capacitance-Voltage (C-V) and 

interface chemical analysis. Highly reflective metals such as silver (Ag) and copper (Cu) 

performed poorly whatever the deposition method due to interdiffusion of the metal 

throughout the CIGSe layer even at room temperature. In this paper, they showed that the 

Mo/CIGSe contact behavior was strongly dependent on the deposition method with a poor 

reproducibility, and only Au and possibly nickel (Ni) had a reproducible ohmic behavior. 

However, later studies showed that the high temperature deposition process of the CIGSe on 

Mo led to a reproducible ohmic contact formation 120 121 via the formation of an intermediate 

MoSe2 layer at the metal/semiconductor interface 12. Over the progress of the research on 

CISe/CIGSe based solar cells, Mo has become the reference back contact metal for CIGSe, 

meeting both the low cost requirements and the electrical compatibility with CIGSe. 

However, in a publication from 1988, Moons et al. showed that the best contact ohmicity on 

CIGSe can be achieved using Au 53, thanks to the high work function and chemical 

compatibility of CIGSe with Au. 

In standard CIGSe solar cells, the absorber thickness is typically between 1.5 µm and 2.5 µm 

as previously mentioned, which is sufficient for complete absorption of the incident light 

because of the high absorption coefficient of CIGSe. However, when the absorber thickness is 

reduced, the reflectivity of the back contact becomes a key parameter to optimize for not  

degrading the cell performances. The low reflectivity of Mo 49 does not meet the requirements 

for application to very thin absorber (<1 µm) solar cells and alternative metals have been 

considered. In an early publication in 2003, K. Orgassa et al. 122 fabricated Cu(In,Ga)Se2 solar 

cells with a variety of different back contact metals (W, Mo, Cr, Ta, Nb, V, Ti, Mn) and 

investigated the influence of reducing the absorber thickness. Three different CIGSe 
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thicknesses were tested (1800 nm, 900 nm and 450 nm) by direct deposition of CIGSe on the 

metallic substrate, and scaling of the deposition times. The composition of the CIGSe layer 

was analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis 

(EDX); the authors found that during the deposition of the CIGSe, the metal contacts W, Mo, 

Ta and Nb are almost inert whereas Cr, V, Ti and Mn tend to react with Se. For Ti and Mn, 

the reaction is total and the metal films are completely consumed whatever the deposited 

CIGSe thickness; therefore, it was impossible to fabricate a solar cell from these metal 

substrates. EDX analysis of the metal/semiconductor interface revealed the formation of a thin 

and well defined selenized metal film for Mo, Ta, and Nb. A similar selenized metal film, but 

with more graded boundaries, is also observed for Cr and V, in agreement with the fast 

interdiffusion process with these metals.  

The reflectivity of Ta, Nb, W, Mo and Ag in air was calculated (figure 1.a) from the complex 

refractive index to evaluate the potential of each metal to provide sufficient reflection in the 

case of very thin absorber layer. Ag was only showed as an example of a very reflective 

metal, but is not applicable as previously reported 119. The reflectivity of Ta and Nb was 

found higher of about 10 % than Mo and W in the red and infrared (IR) part of the spectrum 

(λ > 700 nm). This spectral region being the most critical in the case of thinned absorber, the 

authors stated that replacing the back contact by Ta or Nb should allow a significant 

improvement of the optical properties of very thin CIGSe solar cells.  

 

Figure 1. (a) Optical reflectivity spectra for different metals in air; (b) Simulation of the 

optical absorption of different back contact metals in CIGSe solar cells as a function of the 

thickness CIGSed . Jloss is the calculated current density that is lost in the back contact by optical 

absorption 122. 
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In order to evaluate the current density loss at the back contact depending on the reflectivity 

of the metal, the author described the solar cell as stack of perfectly smooth plane-parallel 

layers with abrupt surfaces and used the matrix formalism to calculate the electromagnetic 

field distribution in the solar cell stack, the optical index and the thickness of the different 

layer being the only input parameter to fully determine the optical properties of the complete 

stack 122. Figure 1.b presents the calculated current density loss Jloss under A.M. 1.5 

illumination as a function of the absorber thickness CIGSed  for different metallic back contacts. 

They saw that for absorber with the standard thickness (around 2000 nm), the influence of the 

reflectivity of the back contact is negligible and the current loss is almost zero whatever the 

metal. The losses increase when reducing the absorber thickness, and for nmdCIGSe 1000≤ , 

the influence of the back contact reflectivity becomes clearly visible, the most reflective 

metals allowing to limit Jloss. The difference between Ta/Nb compared to Mo/W tends to 

increase when the absorber thickness is reduced. As mentioned by the authors, a reduction of 

Jloss does not result in an equal increase of the short circuit current of the solar cell Jsc, since 

light reflected from the back contact can escape from the front side of the solar cell if not 

absorbed in the second pass. They therefore suggest for very sub-micronic absorber devices  

the replacement of the conventional flat solar cell structure by structures using light trapping 

or light scattering. 

In this paper, the solar cells with alternative back contact were also electrically characterized 

using J-V measurement under A.M. 1.5 illumination, and the extracted photovoltaic 

parameters of two sets of solar cells are presented figure 2. The first set had an absorber 

thickness of nmdCIGSe 900=  without bandgap grading, and the second set had an increased 

bandgap at the back surface (Ga-grading) with an absorber thickness of nmdCIGSe 1400= . For 

the solar cells without graded bandgap, the authors 122 observed a successive decrease of the 

efficiencies for different back contacts in the order W, Mo, Ta and Nb. The losses are from a 

decrease in open circuit voltage Voc and fill factor FF, while the Jsc scatters from about 27 to 

28.5 mA.cm-2, most likely due to slight thickness variation of the absorber layer from a 

sample to an other. When a bandgap gradient is introduced, it causes a “reflection” of the 

minority carriers diffusing towards the back contact 123. For the back side graded solar cells, 

the authors observe that the Voc of devices with W and Mo remains unchanged, whereas the 

Voc of devices with Ta and Nb increases almost to the level of W and Mo. This indicates that 

the interfaces CIGSe/Ta and CIGSe/Nb are passivated by the graded bandgap at the back side 
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of the device while W and Mo seem to provide a sufficient self passivation. The short circuit 

current in this case differs by approximately 1.5 mA.cm-2, since the absorber is 500 nm 

thicker in this case (Ga-graded solar cells). However, no effect from the reflectivity of the 

back contact is observed by the authors in this set of experiment, and it is very likely that 

more reflective metals like Ag or Au should be used if one wants to increase the absorption in 

the CIGSe for thinned absorber solar cells. 

 

 

Figure 2. Conversion efficiency η, open circuit voltage Voc, Fill Factor FF and short circuit 

current Jsc of CIGSe solar cells with back contact W, Mo, Ta and Nb. The open circles 

presents solar cells with a Ga-grading at the backside ( nmdCIGSe 1400= ), the squares cells 

without Ga-grading ( nmdCIGSe 900= ) 122 

Such a Ga grading has been widely investigated by M. Edoff’s team in reference 27,32,65. In 

this case, the Ga grading was introduced during the first stage of the co-evaporation process to 

produce a CuGaSe2 interfacial layer between the CIGSe and the back contact. As we reported 

it in Chapter I, this Back Surface Field (BSF) layer on a 2 µm CIGSe solar cell allowed to 
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increase both the FF of about 5%, and the Voc of 30 mV, but surprisingly the Jsc was 

unchanged in reference 27. According to the authors from reference 27, the reduction of back 

contact recombination was counter balanced by increased bulk recombinations in the CIGSe. 

In reference 65, Lundberg et al. found that a Ga enrichment at the back side of the CIGSe 

allowed to increase the low energy photons generated carrier collection by reducing the back 

contact recombination, as can be observed in the Spectral Response figure 3. They showed 

that by reducing the CIGSe thickness down to 500 nm, the beneficial effect of the Ga-grading 

was increased, leading to an average +2.5% relative increase of the efficiency. 

 

Figure 3. EQE for devices with and without Ga-grading but similar Cu/(In+Ga) ratio. The 

CIGSe thickness is a standard 2000 nm. 65 

 

Transition metal nitride are credible alternatives for reflective back contact application, as 

they combine a relatively high reflectivity and a good chemical stability.  

Malmström et al. demonstrated in 2003 124 an optical gain in the EQE at 500 nm absorber 

thickness by using a TiN back reflector. However, ZrN yields to a higher reflectivity, and they 

reported in 2004 the application of ZrN as reflective back contact on a 500-600 nm absorber 
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CIGSe solar cells 125. In this study, different solar cell configurations are studied: a standard 

Mo back contact, a direct ZrN/CIGSe contact (configuration A), a direct ZrN/CIGSe contact 

with a Ga grading at the back side (configuration B), and a ZrN/CIGSe with an interfacial thin 

MoSe2 layer (configuration C). Figure 4 compares the specular device reflectance (R (λ)) and 

the EQE (λ) for the ZrN back contact samples (A,B,C) and the corresponding Mo reference 

samples. They noted that the reflectivity of all the samples with a ZrN back contact is 

significantly higher than with the standard Mo back contact; this corresponds to light reflected 

at the back contact that escapes from the solar cell. The difference between the three ZrN 

sample is most probably related to slight differences in the absorber thickness between the 

samples. As expected, the ZrN reflector cells exhibit interferences and an increase of the EQE 

in long wavelength range compared the solar cells with standard Mo back contact.  

 

Figure 4. Comparison of specular device reflectance and external quantum efficiency spectra 

of the best solar cells of reference samples with standard Mo back contact (dashed lines) and 

ZrN reflector samples (solid lines) in configuration A, B and C  125 

Table 1 summarizes the photovoltaic properties of the different solar cells. It is observed that 

unfortunately, the gain in the EQE is partly offset by a degradation of the Voc and the FF for 

configuration A and B. This indicates that the electronic properties of the device have been 

modified by the introduction of the new ZrN back contact. As pointed by the authors, the 
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band structure of the metal/CIGSe interface is determined by the difference in work functions 

and density of interface states, which directly impact the back contact recombination rate of 

the electrons as well as the contact resistance Rc of the holes. The FF and Voc decrease is 

interpreted as being related to the fact that the work function of ZrN is significantly lower (4.7 

eV) than the work function of CIGSe (5.3-5.5 eV) 125. With a Mo back contact, it is well 

known that a MoSe2 interfacial layer that lowers the recombination rate of the electrons and 

the contact resistance of the holes is formed during the CIGSe deposition process, which is 

not the case when deposing CIGSe on a ZrN substrate. Therefore, with the introduction of a 

thin MoSe2 layer at the ZrN/CIGSe interface (configuration C), it is possible to retrieve a 

series resistance equivalent to the reference solar cell with Mo back contact, as well as 

increase the Voc and FF. On the other hand, and despite the better optical properties of the 

ZrN back reflector, the average Jsc is at the same level as the reference solar cell, which is an 

indication of collection losses. In configuration B, the introduction of a Ga grading at the back 

side of the CIGSe allows to significantly increase the Jsc of the ZrN solar cell compared to the 

reference Mo back contact (26.9 mA.cm-2 versus 25.5 mA.cm-2). The authors anticipate 

further improvement of the performances of the solar cells by combining the Ga grading with 

the interfacial MoSe2 layer on a ZrN back reflector. 

Configuration A B C 

Voc (mV) 456 (535) 572 (637) 580 (518) 

FF (%) 62.8 (72.5) 66 (70.9) 70.5 (69.8) 

Jsc (mA.cm-2) 24.9 (25) 26.9 (25.5) 25.4 (25.5) 

η (%) 7.2 (7.9) 10.2 (11.4) 10.4 (9.2) 

Table 1. Average A.M. 1.5 solar cell parameters open circuit voltage (Voc), fill factor (FF), 

short circuit current (Jsc) and conversion efficiency (η) of the ZrN back contact solar cells (in 

parentheses: Mo reference devices for each configuration). The CIGSe thickness is 500-600 

nm.  125 

In order to further enhance the reflectivity of the back interface, different studies suggested 

the introduction of a Transparent Conducting Oxide (TCO) at the interface between the metal 

and the CIGSe. 
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V.2.b) Transparent back contact 

In a publication from 2007, Campa et al. 41 studied from a theoretical point of view the 

potential of a flat highly reflective TCO/metal back contact in thin CIGSe solar cells. The 

introduction of a thin TCO layer - in this case ZnO – allows to increase the reflectivity of the 

back interface thanks to an optical index matching. Moreover, the ZnO can be used as a 

protective layer to prevent diffusion of metal atoms in the CIGSe, and thus allows to use 

metals such as Ag. The authors used the optical simulator Sunshine 126 to carry out the 

simulations. In this study, a very thin 360 nm absorber CIGSe solar cell is simulated and the 

influence of different back contact configurations is analyzed. The ZnO layer at the back side 

is 100 nm thick and the metals considered are Mo and Ag. Figure 5 presents the simulated 

External Quantum Efficiency for the 360 nm absorber solar cell with three back contact 

configurations: ZnO/Ag, ZnO/Mo and a standard Mo back contact. The authors observed a 

slight improvement of the EQE for the ZnO/Mo configuration compared to the standard Mo 

back contact solar, with a 2.33.0 −=∆ cmmAJsc  . The increase is much more important for the 

ZnO/Ag configuration due to the much higher reflectivity of Ag, and a significant 

enhancement of the EQE is obtained in the long wavelength range compared to the standard 

solar cell ( 2.48.2 −=∆ cmmAJsc ). However, the authors also underline the fact that a large 

amount of the light that is reflected at the back contact still escapes from the solar cell due to 

the insufficient light trapping.  

 

Figure 5. Simulation of the effect of different back contacts on the EQE of a 360 nm CIGSe 

solar cell 41 
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Introducing a transparent conductive spacer at the back side of the solar cell is of particular 

interest in the scope of using alternative electrical insulator materials as back reflector; 

moreover, it could act as a barrier to prevent the interdiffusion of undesired species 

throughout the absorber during the high temperature process. Most TCOs are n-doped 

semiconductor, and interface with the p-CIGSe could lead to a rectifying behavior instead of 

ohmicity, which would irreversibly degrade the properties of the solar cell. The most 

extensive work on the topic of transparent back contact for CIGSe solar cell has been carried 

out by the team of Prof. Nakada during the last decade 127–129. They demonstrated that it was 

possible to achieve efficiency comparable to Mo back contact by using highly doped SnO2:F 

(FTO) or SnO2:In (ITO) as transparent back electrode in a standard 2.5 µm CIGSe solar cell 
127. The best efficiency achieved were about 15% both for FTO and ITO, although ITO 

showed a better temperature stability which is critical to further enhance the efficiency. Using 

these TCO back contacts, it was possible to fabricate bi-facial 1000 nm thick CIGSe solar 

cells for tandem application 128 with a 11.3 % efficiency for front side illumination and 8.9 % 

efficiency for back side illumination. This result is remarkable given the relatively low 

absorber thickness and the fact that the back contact is a n-doped semiconductor. 

ZnO:Al offers interesting properties if used as a back contact in CIGSe solar cells; it is both 

highly conductive, very low cost and is already used a front electrode in CIGSe solar cells. 

However, n-type ZnO:Al and p-type CIGSe interfaces forms a rectifying junction rather than 

an ohmic junction. Rostan et al. reported the realization of a transparent and ohmic 

ZnO:Al/MoSe2 contact for CIGSe solar cells 130 by selenizing a very thin Mo layer (less than 

20 nm) on top of the ZnO:Al using a NaF precursor film prior to the deposition of the CIGSe. 

The MoSe2 layer allows to modify the contact properties between n-ZnO:Al and p-CIGSe and 

leads to an ohmic behavior; figure 6 shows the dark current-voltage characteristic of different 

interfaces with CIGSe: Mo/CIGSe, ZnO:Al/Mo/NaF(MoSe2)/CIGSe, and a direct 

ZnO:Al/CIGSe interface. They saw that the ZnO:Al/MoSe2/CIGSe had a purely ohmic 

behavior with a contact resistance of 2.6.0 cmR Ω=  while the direct ZnO:Al/CIGSe interface 

forms a junction with a rectifying p-n diode characteristics and a zero voltage resistance 

of 2.2.27 cmR Ω= . The lowest resistance was however achieved with the standard Mo/CIGSe 

interface with a resistance of 2.045.0 cmR Ω= . By using the alternative transparent back 

contact, the authors realized a solar cell which photovoltaic parameters are listed in table 2, 

and compared to the parameters of a standard CIGSe solar cell with Mo back contact. The 

short circuit current and the open circuit voltage with the transparent back contact are even 
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higher than those of the Mo reference back contact device. However, the FF is degraded with 

the transparent ZnO:Al/MoSe2 (FF = 65.4%) back contact compared to standard Mo back 

contact (73.3%); this is directly related to the higher serie resistance in the first case 

( 2.9.2 cmR Ω=  versus 2.39.0 cmR Ω=  for the reference solar cell). 

 

Figure 6. Dark current-voltage characteristics of CIGSe/Au structures with different back 

contacts (inset). The considered back contacts are ZnO:Al, ZnO:Al/MoSe2, and as reference, 

pure Mo 130. 

 

Back contact 

 

Voc 

(mV) 

Jsc 

(mA.cm-2) 

FF 

(%) 

η 

(%) 

Rs 

(Ω.cm-2) 

Molybdenum 601.2 31.3 73.3 13.8 0.37 

ZnO:Al 

+ 10 nm MoSe2 613.8 33.5 65.4 13.4 2.9 

Table 2. Photovoltaic parameters of CIGSe solar cells on different back contact, from 

reference 130 
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As previously reported, the high temperature substrate-based process of the CIGSe deposition 

is a problem for using alternative materials as back contact. Another idea is to process the 

back contact at low temperature after deposition of the CIGSe, in a superstrate-like process, 

although standard superstrate process is not applicable to CIGSe without an important 

decrease of the performances of the solar cell. Minemoto and Anegawa et al. used a lift-off 

technique 131 132 to peel a CIGSe layer originally grown on Molybdenum from its substrate 

and transfer it to a polymer substrate, in the scope of realizing high performance flexible solar 

cells. The lift-off process that is used in these studies unfortunately creates damages in the 

CIGSe layer (cracks) that irreversibly decreases the solar cells performances. The authors 

proposed different techniques to reduce the strains in the material during the lift-off, and a 

efficiency of 6.6% is achieved after lift-off, starting from a reference 11.4% solar cell 132. 

 

V.2.b) Conclusion 

In the literature, we have seen that replacement of the back contact of a CIGSe solar cell is a 

key issue to design high performance thinned absorber and ultrathin CIGSe solar cells. 

However, the high temperature substrate based process complicates the use of alternative 

materials, and previous studies could not take advantage of the best candidates materials as 

light-trapping efficient layers; therefore, the gains in efficiency were only moderate compared 

to the reference Mo substrate. An extensive work has been done in the past decade to achieve 

ohmic transparent back contacts for CIGSe. This is very interesting since it significantly 

broadens the range of materials that can be used as a back contact for CIGSe solar cells. The 

lift-off process that has been used for flexible solar cells by Minemoto and Anegawa is an 

interesting path as it would allow us to process the back contact at room temperature, but it is 

necessary to control the technique sufficiently to avoid the degradation of the CIGSe films 

during the lift-off. 
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V.3) Metallic back contact 

 

V.3.a) Introduction 

In this section, we consider the use of alternative metals as reflective and ohmic back contacts 

on very thin absorber solar cells, down to 300 nm. A lift-off technique is used to separate the 

CIGSe layer from its original Mo substrate, and a material characterization of the back side of 

the solar cell is performed (SEM, Spectroscopic Ellipsometry, XPS). From these 

characterizations and based on literature data, we study the optical potential of a wide range 

of metals as reflective materials for the back side of CIGSe solar cells. Also, the different 

metals are electrically tested on CIGSe by Transmission Line Measurement (TLM) to 

evaluate their potential as low resistivity ohmic contact. The material that combines low 

resistivity and high reflectivity is used as an alternative back contact on a solar cell serie with 

different absorber thicknesses, from 1800 nm down to 300 nm, and compared to standard Mo 

back contact solar cells with the same absorber thicknesses. The complete serie is electrically 

characterized, and the alternative reflective back contact solar cells show an important 

increase in the performance of very thin absorber devices compared to the default 

configuration. 

 

V.3.b) Experimental 

The Cu(In,Ga)Se2 absorber samples are prepared on Mo/soda lime glass substrate by 

coevaporation at Würth Solar 2 (same as in Chapter III and IV). The absorber layers are 

etched from the front side using the chemical bromine process that was described in the 

Chapter III and the solar cells are completed with the standard CdS – 50 nm/ZnO:i – 70 

nm/ZnO:Al – 400 nm stack and a Ni contact grid (200 nm) is deposited on top of the device. 

The solar cells are encapsulated using a commercial 2 components epoxy (Araldite 2020) and 

a 2 mm soda lime glass, and the lift-off is performed by mechanical separation of the two 

glasses. When separated from its Mo substrate, both sides (Mo side and CIGSe back side) are 

characterized by X-ray Photoelectron Spectroscopy using a monochromatized AlKα 

excitation and a Thermo Scientific K-Alpha analyzer and spectroscopic Ellipsometry without 
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any additional treatment in order to investigate the properties of the Mo/CIGSe interface. It is 

possible to etch with the bromine solution the back side of the lifted-off CIGSe solar cell, thus 

combining front side and back side etching. The alternative metals on the back side of the 

solar cell are deposited by thermal evaporation at room temperature directly on the CIGSe 

surface. The solar cells are characterized using dark and under A.M. 1.5 illumination Current 

Voltage (J-V) measurements, and the resulting curves are fitted using a two diodes model. 

The ohmicity of the different metals on CIGSe are realized by Transmission Line 

Measurements after deposition of metal pads on the back side of a directly lifted-off CIGSe 

layer (no CdS or ZnO on the front side). 

The lift-off of the CIGSe consists in a mechanical separation of the CIGSe layer from its 

original Mo substrate. The different steps of the lift-off are schematically represented figure 7. 

After deposition of the CdS/ZnO:Al front window, we mechanically scratch the solar cell 

down to the Mo with a doctor blade at one edge (with a width of about 2 mm) of the sample 

before deposition of the Ni grid (figure 7 step a). By doing this, the Ni also deposits on a 

small area of the Mo, which is important for the following. The Ni grid is then evaporated on 

top of the solar cell (figure 7 step b); a 2 mm thick soda lime glass is bound on the device with 

the epoxy (figure 7 step c, the epoxy is represented transparent on this scheme). When the 

epoxy is completely dry (typically after 12 hours, although annealing at 60°C speeds up the 

process), we cut the epoxy on the edges with a doctor blade (figure 7 step d) to ease the 

cleaving. The final step consists in the lift-off itself. We started by applying a lateral opposite 

strain between the two glasses, but we noticed that a vertical strain leads to the same results 

and doesn’t degrade the CIGSe layer either (figure 7 step e). Our best results were achieved 

with a vertical strain that cleaves the two parts. The Ni/Mo interface having a low adhesion, 

the two metals separates during the lift-off as seen figure 7 step e. This allows to keep the 

electrical contact with the front side of the solar cell which is now recovered by epoxy and 

glass. If the operator performs correctly the different steps, the strength needed for the lift-off 

is very low because of the relatively weak interface between CIGSe and Mo. However, some 

relatively rare samples seemed much harder to lift-off than others without any relation to their 

efficiency and quality. Additional experiments are needed to determine the reason why some 

samples are more adherent than others. It is probable that the lamellar sheet structure of 

MoSe2 is beneficial for the lift-off. However, according to reference 133, it is possible to grow 

either vertically or horizontally oriented MoSe2 sheets depending on the CIGSe deposition 
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conditions. Such change may modify the adhesion properties of the CIGSe to the Mo 

substrate. 

 

 

Figure 7. Schematic representation of the different steps of a mechanical lift-off of a CIGSe 

solar cell 

 

It is also possible to perform a direct lift-off on a single CIGSe layer without CdS or ZnO:Al. 

In this case, there is no constraint due to the necessity of keeping an access to the front 

electrical contact, and the lift-off just consist in bonding the glass with the epoxy directly on 

top of the CIGSe and cleaving mechanically the CIGSe from its Mo substrate. This method is 

used for material characterization of the Mo/CIGSe interface (XPS), optical characterization 

(ellipsometry) and electrical characterization of the different metal contacts (TLM). 
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V.3.c) Chemical analysis of the Mo/CIGSe back contact interface 

After the lift-off of a single CIGSe layer, the sample is similar to what is shown figure 8 and 

both part (Mo side and CIGSe side) can be analyzed separately by XPS measurements. This 

XPS study has been done in collaboration with our colleagues from “Institut Lavoisier de 

Versailles”. 

 

Figure 8. Picture of a CIGSe single layer (right) after lift-off from its original Mo substrate 

(left) 

Figure 9 shows the XPS survey spectra of both CIGSe and Mo surfaces after the lift-off. The 

spectrum of the initial Mo back contact in Figure 9.a is dominated by core levels and Auger 

lines of Mo and Se, demonstrating the diffusion of Se into the Mo back contact. The Se/Mo 

ratio is estimated with the Se 3d and Mo 3d core levels. The Mo 3d peak is corrected from the 

Se 3s overlapping contribution. Quantification is performed with the Thermo Avantage© 

software using respective peak areas (Shirley type background subtraction) and taking into 

account the respective photo-ionization cross sections, inelastic mean free paths and the 

transmission factor of the spectrometer. The Se/Mo ratio is found to be close to 1.9 which 

indicates the formation of a MoSe2 layer on top of the Mo back contact, as it has been 

investigated by various groups 13 134 133. This interfacial layer has been reported as  essential 

for a quasi–ohmic contact between the Mo back contact and the absorber layer 121 11 26 135 

despite the low work function of Mo. The three detail spectra (insets) show the high 

resolution Ga 2p and In 3d spectra, whereas the Cu 2p lines are not detected. This is an 

indication of the diffusion of In and Ga into the Mo back contact, which, with an atomic 
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concentration of <1%, remains considerably weaker than the diffusion of Se. These results are 

coherent with investigations by Weinhardt et al. 136, who also reported the diffusion of Ga into 

the back contact, whereas a Cu diffusion was not observed. 

The XPS spectrum of the CIGSe back surface in Figure 9.b shows the core level and Auger 

lines of the absorber elements Cu, In, Ga, and Se. Using the intensities of the core level lines 

Se3d, Ga3d, In4d and Cu2p3/2, Ga2p3/2, respectively the overall XPS composition of the 

CIGSe back surface was calculated leading to Ga/In = 0.6, Cu/(Ga + In) = 0.2 and Se/(Cu + 

Ga + In) = 1.2 corresponding to 2Se/(Cu + 3Ga + 3In) = 0.9. The standard composition for 

front surface Cu(In1-x,Gax)Se2 absorbers is determined by atomic absorption spectroscopy 

(see Chapter III) titration and corresponds to 0.5, 0.5, 1.1 and 0.9 which are the reference 

values. In comparison to these values, we observe a Cu depletion and a Ga enrichment at the 

CIGSe back surface. At this surface, only traces of Na and a small amount of O are detected. 

 

Figure 9. (a) XPS survey spectra of the Mo back contact after lift-off. The three insets show 

detail spectra of the Ga2p, Cu2p and In 3d core level lines. (b) XPS survey spectra of the 

CIGSe absorber back surface 
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Figure 10 compares spectra in the energy range of Mo 3p and Mo 3d core levels for a 

reference front side CIGSe surface, a reference Mo surface and for the lifted CIGSe back 

surface. The CIGSe reference surface (front side) is prepared by wet chemical etching in a 

bromine solution which does not modify the composition and leaves a de-oxidized surface as 

previously studied in Chapter III. The Mo is dipped in HCl before reference spectra 

acquisition. Despite the presence of Se LMM and Ga LMM Auger lines and the overlapping 

between Se 3s and Mo 3d peaks 137, the comparison between the respective energy 

distributions in these spectral regions exclude the presence of Mo at the back side of CIGSe 

(within the 0.1 at.% detection limit of XPS) and thus a possible diffusion of Mo atoms into 

the absorber layer. This finding, combined with the absence of Cu on the back contact 

surface, shows that the lift-off technique allows to precisely separate the CIGSe from its 

substrate at the very interface between the two layers. This process is therefore directly 

applicable for the replacement of the back contact. Moreover, the lift-off as we perform it is a 

very powerful tool that opens the way for sharp and realistic optical characterizations of the 

back interface.  

 

 

Figure 10. XPS spectra of the CIGSe absorber back surface, CIGSe (front side) and Mo 

references in the Mo 3p (a) and Mo 3d (b) energy range windows 

 

In the following part, we optically analyze the Mo/CIGSe interface by using the lift-off and 

the potential of alternative metals as more reflective back contacts is also discussed. 
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V.3.d) Optical characterization of the Mo/CIGSe interface and alternative 

back contact interface 

In order to calculate the optical reflectivity of the Mo/CIGSe interface, we used Spectroscopic 

Ellipsometry measurements on both sides of a CIGSe samples after lift off (figure 8). We 

determine the complex refractive index iknñ −=  from measurements of the real and the 

imaginary parts ( CIGSeCIGSeMoMo knkn ,,, ) for the Mo side and the CIGSe side. In both cases the 

determined values describe the entire material compounds considering the intermixing at the 

interface and the resulting interface chemistry that is discussed in the previous part. Due to the 

high absorption of the 2500 nm CIGSe material, which inhibits the contribution of the 

epoxy/glass substrate, we assumed an infinite absorber film thickness and thus did not 

perform a multi-layer analysis as commonly done for ellipsometry data. The optical functions 

of CIGSe ( CIGSeCIGSe kn , ) are plotted in Figure 11 together with literature data. The extinction 

coefficient CIGSek  is in good agreement with the data by Alonso et al. 138, and is between the 

values of Orgassa et al. 122 and Theodoropoulou et al. 139. The values of CIGSen  are comparable 

to the data by Theodoropoulou et al. 139 and are considerably smaller than the data by Alonso 

et al. 138 and Orgassa et al. 122. In the range nm1000≥λ , interference fringes appear caused 

by the low absorption of the CIGSe material for low energy photons and the resulting 

reflection of light in the substrate. The assumption of a semi-infinite condition on the CIGSe 

film is no longer valid and the data become inaccurate; they are therefore shown as grey lines. 

Our data still show however a reasonable agreement with literature data. 

According to the simulations presented in Chapter II, increasing the reflectivity at the back 

interface of the solar cell is a key issue to significantly increase the absorption in a very thin 

CIGSe layer. High reflectance at the back contact can be obtained by a large contrast in 

refractive indexes between the absorber and the back contact material. In order to evaluate the 

potential of different metals as back contact reflectors, we simulate the reflectivity iR  at the 

metal/CIGSe interface by using the optical data that we previously obtained by ellipsometry 

on the back side of the CIGSe and on the Mo substrate, and refractive indexes for different 

metals from Palik 49 (Ag, Al, Cu, Au, Ni, Pt, pure Mo) computed in the Fresnel’s equation for 

normal incident direction on a flat interface:  
2

~~

~~

CIGSeMetal

CIGSeMetal
i nn

nn
=R

+
−  
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Figure 12 is the calculated reflectivity for those different metals on a lift-off CIGSe layer. The 

curve referred to as “real interface” is the calculated reflectivity on CIGSe of the Mo side of 

the sample (figure 8) after lift-off, i.e. the “real back contact”.  As observed, the real back 

contact shows a very poor reflectivity, below %20=iR  on the whole absorption spectrum of 

the CIGSe (~ 400 nm to 1100 nm) and it is even in the 0%-5% range for wavelength lower 

than 800 nm. This is attributed to the MoSe2 interfacial layer that was previously observed by 

XPS. Pt, Ni and metallic Mo show better reflectivity properties, but still with values below 

50% on the CIGSe absorption spectrum, decreasing down to %20≈iR  for a wavelength of 

nm500=λ , which means that these metals are not suitable as reflective back contacts for 

application to very thin absorber CIGSe solar cells. However, very high reflectivity values are 

obtained for Ag, Cu, Au and Al on CIGSe with a reflectivity %60>iR  for wavelength 

nm700>λ , which even increases up to %80>iR  for nm1000>λ . The long wavelength 

spectral region is critical for ultra-thin absorber devices due to the weak absorption of low 

energy photons 27 140 141, and these metals could significantly improve the absorption in very 

thin absorber CIGSe solar cells in this range.  
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Figure 11. Refractive index and extinction coefficient measured on the back side of a lifted-

off CIGSe layer by spectroscopic ellipsometry. Literature data from different sources are also 

represented 122 138 139. 
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Figure 12. Reflectivity of different metals at the CIGSe/metal interface calculated with 

Fresnel’s equation. The corresponding electron work functions are indicated on the top left of 

the figure 
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V.3.e) Electrical characterization by Transmission Line Measurements of 

the metal/CIGSe interface for different metals 

Up to now, none of these metals has been used as an effective back contact in standard CIGSe 

solar cells mostly because of their incompatibility with the high temperature deposition 

process of CIGSe layer. In this study, they can be deposited at room temperature on the back 

side of the solar cell thanks to the lift-off process, which will strongly reduce the probable 

intermixing. It is well known that to obtain high quality solar cells, it is important to achieve 

an ohmic contact formation on a p-doped semi-conductor such as p-CIGSe. According to the 

Anderson model 51, the Fermi level of the metal has to be close to the hole quasi Fermi level 

of the semi-conductor and therefore a metal with a high work function is desired. We studied 

in Chapter II the theoretical influence of the metal work function on the metal/CIGSe contact. 

A comparison between the work functions of different metals from reference 142 is shown on 

figure 12, and Kelvin probe measurements from literature indicate that the work function of 

CIGSe is about 5.3 eV 28; we see that Au has a much higher work function than Al (5.1 eV 

versus 4.1 eV at room temperature); this is more favorable to the Au/p-CIGSe contact, which 

leads to a better ohmic behavior than the Al/p-CIGSe contact. Pt (5.7 eV) and Ni (5 eV) 

contacts can also offer good ohmicity with p-CIGSe absorbers but their reflectivity remains 

much lower than Au. Ag and Cu also have a relatively low work function (4.7 eV), and it is 

well know that they both diffuse in the CIGSe absorber even at room temperature 119. 

Therefore, Au combines both electrical (ohmic behavior) and chemical (limited diffusion in 

CIGSe at room temperature) compatibility with the CIGSe material 53, along with the very 

high reflectivity that is required for very thin absorber CIGSe solar cells.  

However, the Anderson model which we based our assumptions on to discriminate which 

metal can or cannot form an ohmic contact with CIGSe is at fault when an interfacial layer is 

formed between the metal and the CIGSe; we see that the Mo has a low work function (4.6 

eV) but still forms an excellent ohmic contact on CIGSe 130 thanks to the presence of MoSe2 

at the interface. Although such an interfacial layer is most probably related to the high 

temperature of the CIGSe deposition process, it is also possible that other metals form such an 

interfacial layer even at room temperature, which may therefore change their contact 

properties on CIGSe. 

In order to investigate on the contact properties of the different metals on CIGSe, we 

performed Transmission Line Measurements (TLM) on the CIGSe back surface (after lift-off) 
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with the following metals: Pt, Au, Ni, Al, Mo, Cu and Ag. The TLM method consists in 

performing current-voltage measurement between two metal pads deposited on a 

semiconductor 143. The resistance measured is a linear combination of the contact resistance 

of the first pad, the contact resistance of the second pad, and the sheet resistance of the 

semiconductor in-between the pads sheetcontacttotal R
l

L
RR +×= 2  where L and l are the length 

and width of the area between the pads. By varying the distance between the metal pads, it is 

possible to plot the contact resistance versus the contact separation. The plot is linear, the 

slope being the sheet resistance sheetR  and the intercept of the plot with the y-axis is 

contactR×2 . Figure 13 shows a picture from an optical microscope of the TLM structure that 

we use in this study. The metallic pads are 50 µm x 200 µm.. 

 

Figure 13. Optical microscope image of the TLM structure used in this study. A 3-

dimensionnal representation of the stack is also shown on the left. 

 

The Figure 14 shows the current-voltage curves for the different metals between the pads a 

and b (distance = 25 µm, figure 13). Both Ag and Cu show an extremely low contact 

resistance and their plots could not be represented on this figure. This is due to the 

interdiffusion of the metal’s atoms through the CIGSe layer which gives a metallic behavior 

to the surface. These two metals can therefore not be considered as credible alternatives to Mo 

for direct application to CIGSe. Beside those two metal, we see that the lowest contact 

resistances are obtained for the highest work function, in good agreement with the Anderson 

model. As anticipated, Pt and Au both have an ohmic behavior and a relatively low contact 

resistance. Mo has a much lower contact resistance than expected from the Anderson model 

even though the metal deposition was performed at room temperature. This is an indication of 
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the formation of an interfacial layer between Mo and CIGSe, most likely MoSe2, which 

strongly reduces the contact resistance. Al has a very high contact resistance on CIGSe and 

we see (inset figure 14) that it also have a rectifying behavior; this is due to the low work 

function of Al (4.1 eV).  

When compared to the simulations from Chapter II, we see that both Mo and Au have a much 

different behavior than predicted, due to the probable formation of a very thin interfacial layer 

that was not taken in account. 

 

 

Figure 14. Current-Voltage characteristic measured in the dark between the contact pads a 

and b (distance = 25 µm) for the different metals 

By measuring the current-voltage between the different pads, we plot on figure 15 the contact 

resistance versus contact separation curves for Pt, Mo and Au. The surface of the metallic 

pads is 10-4 cm2. Pt and Mo give reproducible results and the contact resistance of these metal 

on CIGSe are 1.10-2-2.5.10-2 Ω.cm-2 and 2.10-2-3.5.10-2 Ω.cm-2 respectively. On the other 

hand, the Au plot is not linear and the contact resistance found is between 2.5.10-2-10.10-2 

Ω.cm-2 depending on the measurement set; this result is quantitatively unusable because of the 
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too important uncertainties in the measurement. These problems are due to the fact that the 

metal contact pads have been deposited on the CIGSe, but no engraving of the CIGSe around 

the pattern was done. Therefore, some non linear electric field lines exist at the extremity of 

the pads, which disrupts the current measurement. However, when the distance between the 

pads is increased, the influence of these curved field lines is reduced. Consequently, if the a-b 

measurement (distance = 25 µm on the figure) is removed from the figure, the Au plot seems 

more linear with a slope comparable to Pt and Mo, and the contact resistance is in this case 

about 6.5.10-2-10.10-2 Ω.cm-2. 

In conclusion, the contact resistance values from these TLM measurements should be taken 

with precaution, and a more accurate study is needed to obtain quantitative values. However, 

they give an interesting qualitative insight on the behavior of each metallic contact when the 

metal is deposited on the CIGSe at room temperature. Au, Pt and Mo seem to be the only 

compatible metals that could be considered as efficient back contact for CIGSe solar cells. 

 

Figure 15. Resistance versus Distance between the metallic pads plotted for Au, Mo and Pt. 

The slope of the lines is the sheet resistance of the CIGSe, the intercept with the y-axis is 2 

times the contact resistance of the metal/CIGSe interface. 
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From the previous experiments, we see that Au combines chemical compatibility with CIGSe 

(no or limited interdiffusion of species through the layer), electrical ohmic behavior on 

CIGSe, and a very high reflectivity especially in the visible and near infrared spectral region 

where it matches the Ag reflectivity. Au is therefore our metal of choice in the scope of 

realizing efficient solar cells with a very thin sub-micrometer absorber and a highly reflective 

back contact. In the following part, we will study the influence of a highly reflective Au back 

contact on CIGSe solar cells with different absorber thicknesses. A comparative study with 

standard Mo back contact will be done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Confidential 199

V.3.f) Electrical characterization of thin absorber solar cells with Au back 

contact and comparative study with standard Mo back contact 

In order to compare the influence of a reflective Au back contact on very thin absorber solar 

cells with a standard Mo back contact, we realize a complete set of samples of different 

absorber thicknesses with the two back contacts. Two types of solar cells are realized: (1) 

Front etched solar cells with Mo back contact (figure 15.a); (2) Front etched and back etched 

solar cells with Au back contact (figure 15.b).  

 

V.3.f.i) Experimental 

For type (1) solar cells, as-deposited CIGSe is etched from the front side 141 144 61 to different 

thicknesses (1.8 µm, 1.2 µm, 0.8 µm, 0.4 µm and ~0.3 µm, ± 100 nm)  as shown in figure 

16.a, then the solar cell is completed using a standard process with a chemical bath deposited 

cadmium sulfide (CdS) buffer layer and a sputtered ZnO:i/ZnO:Al front window. No anti-

reflection coating (ARC) or encapsulation is done on these samples. For type (2) solar cells, 

as-deposited CIGSe is etched for 3 minutes from the front side in order to obtain a flat 

interface 141. Then the solar cell is completed using the classic CdS/ZnO:i/ZnO:Al process and 

encapsulated using a transparent epoxy (Araldite 2020) and a 2 mm glass. The lift-off is then 

performed to separate the solar cell stack from its Mo substrate, using the technique 

previously reported in this thesis. After the lift-off, the back side of the absorber is etched for 

different durations, resulting in the following CIGSe thicknesses as illustrated in figure 16.b: 

1.8 µm, 1.2 µm, 0.8 µm, 0.4 µm and ~0.3 µm, ± 100 nm. The Au back contact is then 

evaporated with a thickness of ~ 0.3 µm. Etching the absorber both from front and back side 

for the type (2) samples results in a small bandgap shift of the absorber compared to type (1). 

Figure 16.c shows a SEM cross section view of a 400-500 nm thick absorber CIGSe solar cell 

with a 2-sides etching and an alternative Au back contact.  
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Figure 16. Scanning electron microscopy (SEM) cross-section view of CIGSe illustrating: (a) 

front side etching of different slabs as performed for samples type (1); (b) the front side 

etching and back side etching of different slabs as performed for samples type (2); (c) SEM 

cross-section view of a 2 side etched CIGSe solar cell with Au back contact 
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V.3.f.ii) Results 

J-V measurements under standard A.M. 1.5 illumination are performed on the two series of 

samples, and the extracted photovoltaic parameters are presented in figure 17. The open 

circuit voltage (Voc) and the Fill Factor (FF) are not significantly affected (~650 mV and 

~64% respectively) down to a 400 nm absorber thickness with the same values for both Au 

and Mo back contact (figure 17.a and 17.b), indicating that the CIGSe etching process does 

not affect the properties of the material. The FF however is degraded in both cases for a 

CIGSe thickness below 400 nm. On the contrary of what is observed for a CIGSe/Mo back 

contact, the short circuit current (Jsc) of Au back contact solar cells is almost not affected by 

the absorber thickness reduction, and remains in the 25-26 mA.cm-2 range. The comparison 

between the two types of solar cells (figure 17.c) shows that the Jsc interval between Au and 

Mo increases as the absorber thickness is reduced. The influence of the back contact 

reflectivity becomes prominent for a CIGSe thicknesses lower than 1200 nm, with a 

2.5.4 −≈ cmmA  difference between a Mo back contact and an Au back contact solar cell at a 

400 nm CIGSe estimated thickness. However, the Jsc shift for relatively thick absorber (> 

1200 nm) cannot be explained only by the replacement of the Mo back contact by the more 

reflective Au back contact.  

The first reason for that is the encapsulation effect; as previously detailed, the Au back 

contact solar cells are encapsulated for the lift-off, which is not the case of the Mo back 

contact solar cells. The encapsulation is done with an epoxy glue that has a refractive index of 

about n~1.5, which results in an effective anti-reflection effect for type (2) solar cells. It has 

been observed on previous experiments that the encapsulation increases the Jsc by an absolute 

value between 0.8 and 1.2 mA.cm-2 depending on the smoothness of the absorber layer. The 

second reason is the small bandgap shift because of the different etched region between the 

two type of solar cells (front etch for type (1), front and back etch for type (2)). We previously 

showed in Chapter III that our material had a + 50 meV bandgap shift from its front side to its 

back side. This leads to an extreme ∆Jsc≤ 1mA.cm-2 in term of Jsc shift. These two statements 

lead to a maximum ∆Jsc≤ 2.2 mA.cm-2 when combining encapsulation and bandgap shift. 

It is however noticeable that the Au back contact makes it possible to maintain the Jsc at a 

high value, along with the voltage and the FF, which leads the efficiency (η) to remain above 

10 % for an absorber thickness down to 400 nm (η = 10.2%). However, for the same CIGSe 
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thickness solar cell with a Mo back contact, the efficiency drops down to η = 7.9 % (8.6% for 

maximum ∆Jsc correction taking in account the encapsulation and the bandgap shift)  (figure 

17.d). We notice that the reference solar cell with Mo back contact has a lower efficiency than 

what was reported in the Chapter III. This is due to the fact that a different CIGSe batch is 

used in this study. 

 

 

Figure 17. Photovoltaic parameters versus CIGSe thickness deduced from J-V measurements 

under A.M. 1.5 illumination for Mo back contact cells (filled circles and Au back contact cells 

(empty circles): (a) open-circuit voltage, (b) fill factor, (c) short-circuit current, and (d) 

efficiency. 
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To eliminate the encapsulation effect in the spectral response, we decide to plot the internal 

quantum efficiency IQE using the first order formula: 

R

EQE
IQE

−
=

1
 

R being the reflectivity of the complete solar cell device as measured in the Chapter III (see 

references 141 144), EQE being the measured External Quantum Efficiency. The Jsc 

improvement with the Au back contact compared to the Mo back contact is nicely illustrated 

by figure 18, showing the IQE measurements for a 400 nm thick CIGSe solar cell with Mo 

and Au back contacts, compared to a standard 2500 nm absorber solar cell. In this figure, we 

observe that when Mo is replaced by Au, the current increase occurs mainly for low energy 

photons (infrared region), where the absorption of CIGSe is weaker. Au back contact allows a 

major enhancement of the optical path in the ultrathin absorber especially for low energy 

photons; subsequently, this leads to a significant enhancement of the absorption probability, 

and so to an increased photocurrent in the device. However, the current of the reference non 

etched thick solar cell (29 mA.cm-2) is not fully recovered; being one-dimensional,  the Au 

back contact mirror cannot enhance absorption to a higher value than an absorber with twice 

the thickness would have. As a comparison, the IQE curve of a 800 nm cell with a standard 

Mo back contact is also shown in figure 18; we notice that the 400 nm CIGSe with Au back 

contact is very close to the 800 nm with Mo back contact, which nicely illustrates this 

“doubling” of the effective absorber thickness with a highly reflective back contact.  
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Figure 18. Internal Quantum Efficiency (IQE) curves for a reference 2.5 µm CIGSe solar cell 

with Mo back contact (solid black line), etched 400 nm CIGSe with Mo back contact (solid 

grey line), etched 800 nm CIGSe with Mo back contact (dashed grey line) and etched 400 nm 

CIGSe with Au back contact (orange solid line) 

The increase of the absorption of low energy photons with the Au back contact is in good 

agreement with the simulations from Chapter II. The expected theoretical Jsc∆ increase was 

3.3 mA.cm-2  when using Au back contact instead of Mo back contact. In our experiment, we 

obtain a 2.5.4 −≈∆ cmmAJsc  (figure 17), which however must be balanced by a maximum 

2.2.2 −cmmA  value coming from the encapsulation effect and the bandgap grading; this brings 

the minimum Jsc∆  only due to the Au back contact to 2.3.2 −≈∆ cmmAJsc  . This result is 

much higher to what was previously obtained in literature by using alternative reflective back 

contacts. By using a ZrN back reflector instead of Mo, Malmström et al. reported a maximum 

2.4.1 −=∆ cmmAJsc 125. This result is consistent with the higher reflectivity of Au compared to 

ZrN 125 (and TiN 145). The Au back contact does not seem to lead to a higher back 

recombination rate than the Mo back contact. This leads us to believe that a thin AuSex layer 
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may be formed at the interface between CIGSe and Au, similarly to what happens for the Mo 

with the formation of the MoSe2 interfacial layer. 

In order to investigate the electronic properties of the devices, we carried out dark J-V 

measurements on the Au back contact solar cells. The dark J-V curves of solar cells with 

different absorber thicknesses and Au back contact have been fitted using a classic two diodes 

model 146, where the ideality factors n1 and n2 are 1 and 2 respectively, and the reverse 

saturation current J1 and J2 are calculated, as well as the serie resistance (Rserie) and the parallel 

resistance (Rparallel). We can see on figure 19.a that Rserie is independent of the CIGSe 

thickness and remains remarkably stable at a low value in the range of 4-6 Ω.cm2 down to 300 

nm absorber thickness, which confirms the very good quality and ohmicity of the alternative 

Au back contact. On the opposite, Rparallel is degraded when thinning the CIGSe layer (figure 

19.b); this decrease becomes critical when the Rparallel decreases from 2.104 Ω.cm2 for the 400 

nm absorber down to 760 Ω.cm2 for the 300 nm thick absorber, and it explains the observed 

FF degradation (from 63 % to 55 %) in figure 17.b. This “shunt” effect probably comes from 

the chemical etching process which most likely reveals some pre-existing “pinholes” in the 

absorber when the etching goes below 300 nm. It is consistent with the AFM measurements 

previously done on etched CIGSe layers (Chapter III, reference 141) which indicated a peak-

to-valley of ~150 nm and a ~40 nm RMS after etching. The existence of these pinholes is also 

confirmed in SEM observations of the back side of the CIGSe absorbers.  
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Figure 19. (a) Serie and (b) Parallel resistance deduced from a two-diode fit versus estimated 

CIGSe thickness for solar cells with Au back contact. 
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V.3.g) Conclusion 

In conclusion, we developed a lift-off process that allows to separate the CIGSe absorber from 

its original Mo substrate with a high reproducibility and no significant damages in the film. 

This allowed us to study with high precision the chemical composition of the CIGSe back 

side, and the Mo substrate, and we characterized the presence of an interfacial MoSe2 layer on 

the substrate-side, while no interdiffusion of Mo atoms was observed in the CIGSe back 

surface. Spectroscopic ellipsometry analysis of the lift-off CIGSe allowed us to simulate the 

reflectivity of the back interface of the solar cell for different alternative metals back contact. 

By using Transmission Line Measurements, we also characterized the electric contact on 

CIGSe for each metal. Finally, from the optical and electrical characterization, we deduced 

that Au was the metal with the highest potential to increase the light absorption in a very thin 

CIGSe absorber without degrading the electrical properties of the cells.  

A serie of CIGSe solar cells with different thicknesses down to 300 nm has been realized with 

an alternative Au back contact. The cells are characterized by current-voltage measurements 

and Spectral Response, and are compared with CIGSe solar cells with the same absorber 

thicknesses and standard Mo back contact. For each absorber thickness, the Au back contact 

solar cells have a significantly higher Jsc than the Mo back contact solar cells while the other 

parameters (Voc, FF) are unchanged. When the thickness is reduced, the shift in Jsc between 

Au and Mo back contact increases; as a result the efficiency of Au back contact solar cells is 

much higher than the efficiency of Mo back contact solar cells. For a 400 nm absorber CIGSe 

solar cell, the Au back contact brings a remarkable +2.5 % absolute efficiency increase 

compared to standard Mo back contact with the same absorber thickness. This increase is 

much higher than what was ever reported in literature when using an alternative back contact 

for thin CIGSe solar cells and it is consistent with our theoretical results from simulations in 

Chapter II. 
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V.4) Transparent back contact based on ZnO:Al 

 

V.4.a) Introduction 

Beyond the fact that we realized an efficient proof of concept device with an alternative back 

contact, we demonstrated that the lift-off process allows to use materials that usually have 

compatibility issues with CIGSe as back contacts, and thus to significantly increase the 

efficiency of a very thin device compared to standard Mo back contact. In the scope of 

reducing the absorber thickness to an ultrathin level (100-200 nm), we have seen in Chapter II 

that a more advanced back contact engineering is required, and it would be convenient to use 

a transparent back contact applicable to CIGSe. With that, the use of advanced light trapping 

structures would be greatly facilitated. 

Transparent back contacts on CIGSe have been widely investigated by Nakada et al. in the 

past decade 127,128. They demonstrated that it was possible to achieve high efficiency CIGSe 

solar cells by using both Indium Tin Oxide (ITO) and Fluoride Tin Oxide (FTO) as substrates 

in a co-evaporation process. In our laboratory, the Transparent Conducting Oxide that we use 

is highly n-doped ZnO:Al ( 32010 −= cmNd ); Rostan et al. showed that although the 

ZnO:Al/CIGSe contact has a rectifying behavior, it is possible to turn it to an ohmic contact 

by adding a thin transparent interfacial MoSe2 layer 130. The bandgap of this MoSe2 is only 

1.2 eV 147, but the minor thickness of this layer allows to maintain the transparency of the 

ZnO:Al/MoSe2/CIGSe contact. However, we have shown by SCAPS simulations in Chapter 

II that when the CIGSe thickness becomes smaller than the Space Charge Region width (W), 

a wider bandgap semi-conductor is necessary at the back contact if one wants to increase the 

quasi-Fermi levels splitting and maintain the Voc at a high value. In this part, we propose to 

introduce a novel copper based back contact buffer layer which purpose is twofold:  

- To allow ohmic contact formation between the transparent ZnO:Al 

and CIGSe film 

- To increase the quasi Fermi level splitting in the absorber  

To achieve both conditions, a p+ doping (ohmicity on p-CIGSe) along with a relatively wide 

bandgap (quasi Fermi level splitting) are required. Figure 20 presents the band diagram of the 
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contact between a low doped p-type (p) semi-conductor such as CIGSe ( solid green line) with 

a highly n-doped (n+) semi-conductor such as ZnO:Al (solid green line). We see that in this 

case, we obtain a rectifying behavior, blocking the holes diffusion from the p semi-conductor 

toward the n+ semi-conductor. The valence band band-bending acts as a sink for the 

electrons. When the doping rate of the p semi conductor is increased, turning the material into 

a p+ semi conductor (solid black line), the depletion region is almost vanished as shown on 

the black lines figure 20. In that case, the carriers can diffuse from the p+ semi-conductor to 

the n+ semi-conductor by tunneling leading to an ohmic behavior of the contact. 

 

Figure 20. Schematic representation of the effect of increasing the doping rate at the back 

interface of a p-type semi-conductor, turning the rectifying junction with a n+ type semi-

conductor into a tunnel junction 

 

It is well known that a copper enrichment on CIGSe strongly increases the doping rate of the 

material. To achieve such a contact, we deposit a very thin copper layer on the back side of 

the CIGSe by electrodeposition (less than 100 nm). The goal is to increase the carrier density 

at the CIGSe surface in order to realize a tunnel junction between p+ CIGSe and n+ ZnO:Al. 

In a second section, we will present the first results on the influence of an interfacial 

electrodeposited thin Cu2O buffer layer at the ZnO:Al/CIGSe interface for ohmic back contact 

application. Cu2O is know for its high p+ doping rate, but also for its large bandgap that may 

help us to increase the quasi fermi level splitting issue in ultrathin devices. 
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V.4.b) Electrodeposited thin Cu layer at the CIGSe/ZnO:Al interface 

In this part, we investigate on the potential benefits of deposing an extremely thin (less than 

100 nm) metallic Cu layer on the CIGSe before the deposition of a ZnO:Al layer, in order to 

turn the rectifying ZnO:Al/CIGSe contact into an ohmic contact. 

 

V.4.b.i) Experimental 

The Cu layer is electrodeposited on a CIGSe surface at room temperature and a potential 

VE 6.0−=  versus the saturated calomel electrode (SCE) in a three electrodes electrochemical 

setup. The solution is a 0.1 M Cu2+ from CuSO4 and 0.034 M HCl (pH = 1.46) at room 

temperature. A Pt wire is used as counter electrode, and a standard CIGSe sample on Mo is 

the working electrode. The contact is taken on the Mo (the CIGSe is removed on a small 

portion of the sample with a doctor blade) and the sample is illuminated during the 

electrodeposition with a tungsten lamp. The solution is stirred during the deposition using a 

magnetic bar. After electrodeposition on the thin Cu layer, a 200 nm thick ZnO:Al layer is 

deposited by sputtering in the same conditions as the front ZnO:Al in a CIGSe solar cell. The 

final stack is Glass/Mo/CIGSe/Cu/ZnO:Al, and the visual aspect of the sample is almost 

unchanged compared to a CIGSe/ZnO:Al sample. The device is characterized by J-V 

measurement in the dark. 

 

V.4.b.ii) Electrochemical study 

The nature of the thin Cu layer on CIGSe is still unclear; being very thin, it is very likely that 

it is partly or even fully oxidized. However, its aspect needs to be investigated. The 

observation of the electrodeposition deposition chronoamperograms (current during the 

deposition versus time) gives us an insight on the deposition mechanism and the shape of the 

layer. Figure 21 is a chronoamperogram of a relatively thick Cu layer on CIGSe. This sample 

had a metallic copper aspect after deposition (orange). We clearly see that two different 

regimes co-exist during the electrodeposition. During the first regime, from 0 to about 10 

seconds, the deposition current strongly increases in absolute value. This is characteristic of a 

coalescent regime; during this early stage, it is very probable that small pads grow in 2D or 
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3D from the nucleation sites on the CIGSe. When they merge into a flat single metallic Cu 

film, the current reaches an asymptotic value of about 12.5 mA.cm-2. This relatively constant 

trend of the current is characteristic of a 2 dimensional growth. Consequently, it is possible 

that the metallic or oxidized Cu pads establish the ohmic contact pathways between CIGSe 

and ZnO:Al. 

 

Figure 21. Chronoamperogram of an electrodeposited Cu layer on a CIGSe surface (green). 

Total charge exchanged during the deposition (red). 

 

The equivalent copper thickness d electrodeposited on the CIGSe after t seconds of deposition 

is calculated by considering a 100% faradic efficiency. The reaction is as follow: 

CueCu →++ 22  

After t seconds, the charge exchanged per surface units (red curve Figure 21) is Q(t), in 

Coulomb per cm-2. The number of copper atoms deposited per surface units on the CIGSe is 

therefore: 



Confidential 212
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The molar volume of Cu is 136 .1011.7 −−× molm . The equivalent electrodeposited Cu 

thickness d is: 

mol
A

Cu V
N

N
d ×=  

The numerical application leads to the following thicknesses (table 3). 

 

Time 

(sec) 

Charge exchanged per surface 

units (C.cm-2) 

Equivalent Cu thickness 

(nm) 

0.5 9.1E-5 0.33 

1 1.78E-4 0.65 

5 1.28E-3 4.6 

10 2.9E-3 10.6 

Table 3. Calculated equivalent Cu thickness for different deposition times 

However, these thicknesses are most probably not representative of the real interface. Indeed, 

the film did not appear metallic after deposition on CIGSe (no orange characteristic color); it 

had a dark blue aspect, characteristic of the 2nd oxidation degree of Cu. This was confirmed 

by XPS analysis of the surface which did not reveal any metallic copper on the surface for 

each sample. However, the analysis of the valence band (Figure 22) reveals a “metallic” 

behavior of the surface, indicating a degenerated region at the surface. As we can see, the 

onset of the valence band of the reference CIGSe (without deposited Cu) is at about +0.5 eV. 

For the two samples with electrodeposited Cu, the Fermi level is after the valence band onset, 

which is an indication of a degenerated material. It is therefore probable that the film is 

completely oxidized, or diffuses through the CIGSe to forms a degenerated region at the 

interface. 
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Figure 22. Valence band from XPS for three different samples: reference CIGSe (black), 0.5 

sec Cu (light blue) and 1 sec Cu (dark blue) 
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V.4.b.iii) Characterization of the ZnO:Al/CIGSe interface with a thin Cu interfacial 

layer 

Figure 23 shows the a schematic view of the J-V characterization of the device. We assume 

that the Mo/CIGSe contact has a contact resistance of RMo = 0.045 Ω.cm2 based on reference 
130. The device is mechanically scribed in squares of 0.1 cm x 0.1 cm and the measurement is 

performed in the dark in several points of the samples. 

 

 

Figure 23. Schematic representation of the J-V characterization of test-device for the 

CIGSe/ZnO:Al contact 

 

Different Cu deposition times are studied, from 0.5 seconds to 10 seconds. After that duration, 

the sample turns to an orange color characteristic of metallic copper which we reported as 

unsuited for back contact application. The thickness of the layer is very difficult to estimate, 

because it is very unlikely that such thin copper layer stays in its metallic form; however 

calculations based on the faradic efficiency during the deposition showed that a 10 seconds 

deposition roughly corresponds to a 12 nm Cu film. Figure 24 shows the current voltage 

curves of Mo/CIGSe/Cu/ZnO:Al stack with 4 different deposition durations: 0.5, 1, 5 and 10 

seconds. A direct rectifying CIGSe/ZnO:Al interface is shown in comparison. We observe 

that for each deposition duration, the presence of a thin interfacial Cu film turns the 

CIGSe/ZnO:Al contact into an ohmic contact with a relatively low contact resistance. The 

contact resistance decreases from 1.8 Ω.cm2 for 0.5 seconds of electrodeposition down to 0.9 

Ω.cm2 for 5 seconds of electrodeposition. It is however slightly increased up to 1.3 Ω.cm2 for 
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10 seconds of deposition, for reasons that are still unclear. Although still superior to the 

contact resistance of the Mo/CIGSe contact (RMo ~ 0.03 Ω.cm2), Rostan et.al demonstrated 

that it was possible to achieve very efficient solar cells with a contact resistance of the same 

magnitude and a MoSe2/ZnO:Al back contact 130. Consequently, extremely thin Cu buffer 

layer could be considered for transparent ZnO:Al back contact solar cell application.  

 

Figure 24. Voltage versus Current density curves for different electrodeposition duration of 

interfacial Cu layer and transparent CIGSe/ZnO:Al contact 

 

We have demonstrated that it was possible to turn a rectifying ZnO:Al/CIGSe junction into an 

ohmic contact by electrodeposing even an extremely thin Cu interfacial layer. Low contact 

resistance, in the magnitude of 1 Ω.cm2 has been achieved, which is comparable to results that 

are obtained with the addition  of a MoSe2 interfacial layer. Although this study is still 

preliminary, we tried to realize a 500 nm CIGSe solar cell with a transparent ZnO:Al back 

contact and an interfacial Cu thin layer (5 seconds deposition). The efficiency is still very low, 

but the comparison with a structure without Cu interfacial layer shows that the double diode 

effect is vanished when using the Cu interfacial layer (figure 25). The Voc and the FF are 

slightly improved from 260 mV to 310 mV and 31% to 44% respectively, while the short 

circuit current is unchanged at 20 mA.cm-2. The efficiency increases from 1.6% without Cu 

interfacial layer to 2.7% with the Cu interfacial layer. 
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Figure 25. Lifted-off 500 nm CIGSe solar cells with Cu/ZnO:Al back contact (orange curve) 

and ZnO:Al only back contact (green curve) 

 

The application of extremely thin Cu layer at the ZnO/CIGSe interface to solar cells is not 

conclusive at the moment, and the nature of the Cu interfacial layer is still unclear to us. As a 

result, the lack of control in the parameters of this layer (thickness, band alignment…) makes 

it difficult to apply it to solar cells. However, the introduction of a thin Cu layer at 

ZnO:Al/CIGSe interface showed an interesting potential for transparent ohmic back contact 

formation. 

 

V.4.c) Electrodeposited Cu2O interfacial buffer layer 

In this section, we propose to deposit on the back surface of the CIGSe a copper based p-type 

TCO, Cu2O, which electronic and optical properties may fulfill the condition required to 

increase the ohmicity of the ZnO:Al/CIGSe contact. The study is still at an early stage and 

very preliminary results will be presented. 
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Cu2O is a p-type semiconductor with a 2.5 eV indirect bandgap and 2.9 eV direct transition; 

these values decrease to 2.0 eV and 2.4 eV for thicker films (more than ~500 nm) as reported 

by Alkire et al. 148. It is well known for its important doping rate 149 and extensive researches 

have been carried out in the past decades for its very promising properties as a semi-

transparent conducting oxide. In this section, we electrodeposited Cu2O layers using a 

methodology that is reported elsewhere 150. The applied potential versus the SCE is E = -1.4 

V, and the source materials are copper sulfate (25 g) and lactic acid (125 mL) dissolved in 

500 mL of deionized water. Concentrated sodium hydroxide solution is then slowly added to 

adjust the pH value to ~13 while stirring. When it is thick enough (more than 300 nm), the 

color of the films turns to a light orange/red color, characteristic from a direct ~2.6 eV 

transition. Firstly, the films have been deposited on FTO for optical characterizations by 

another group from our institute 151, and the transmission curve of a 300 nm film is presented 

on figure 26. We observe important interference fringes, with a minimum centered at 950 nm; 

however, this sample is much thicker than what we will use for solar cells applications, which 

will suppress the interference effects and so will not affect the transmission. The bandgap of 

the film is calculated (inset figure 26) at 2.6 eV, which is consistent with literature data 148. 

The fact that the photons of energies lower than 500 nm are absorbed is not harmful in the 

scope of back contact application of Cu2O, because these photons are for the vast majority 

absorbed in the first pass through the absorber. 

 

Figure 26. Total Transmission curve of a 300 nm thick Cu2O layer deposited on a FTO 

coated glass (Asahi standard); (inset) bandgap calculation. 
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In a second step, the Cu2O films have been electrodeposited on standard CIGSe surfaces 

under illumination for different durations, in order to vary the thickness of the films. A 200 

nm ZnO:Al film is then deposited, leading to a stack identical to Figure 23 with a Cu2O layer 

instead of the Cu layer, and the obtained device are mechanically scribed to 0.33 cm x 0.33 

cm squares (1 cm2). The Cu2O thickness is determined from the Total Charge Exchanged 

during the electrodeposition assuming a 100% faradic efficiency. The deposition times are: 30 

seconds (2-4 nm), 1 minute (8-10 nm), 4 minutes (30-40 nm) and 10 minutes (~80 nm). The 

device are electrically characterized using dark J-V measurements (figure 27), in the same 

configuration as reported in the previous section. Similarly to what was obtained in the 

previous section, we see that the rectifying behavior of the ZnO:Al/CIGSe contact is turned to 

ohmic when with the addition of a Cu2O interfacial buffer layer. The contact resistance 

decreases from 2.6 Ω.cm2 to 0.9 Ω.cm2 when increasing the Cu2O deposition time (thickness) 

up to 4 minutes (30-40 nm) and then increases for the 10 minutes deposition sample to 14 

Ω.cm2. This increase for thicker layer may be related to the low carrier mobility of the Cu2O 

layer; however the study is still very preliminary and more experiments are needed. 

 

 

Figure 27. Current Voltage curves for ZnO/Cu2O/CIGSe/Mo stack for different Cu2O 

deposition time. The stack without Cu2O is shown in comparison (black curve) 
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In conclusion, our results showed an alternative route to achieve ohmicity of the 

ZnO:Al/CIGSe contact while keeping maintaining the transparency of the contact, by using an 

extremely thin electrodeposited Cu layer at the interface. Low contact resistance (less than 1 

Ω.cm-2) comparable to state of the art devices have been achieved, and the first application to 

solar cells showed a suppression of the double diode effect that is observed for direct 

CIGSe/ZnO:Al back contact when using interfacial Cu. 

 Moreover, we demonstrated in a very preliminary study that ohmicity could also be achieved 

with p-type wide gap semiconductor, Cu2O. In the scope of a back contact application for 

ultrathin CIGSe solar cells, such a wide gap layer may solve the quasi Fermi level splitting 

issue that occurs when the absorber thickness is lower than the space charge region width. 

If a transparent back contact is designed on ultrathin CIGSe solar cell without electrical 

degradation of the device, new materials could be used as back reflectors to increase the light 

pathway through the absorber. In the following part, we will experimentally demonstrate the 

feasibility of an ultrathin CIGSe solar cell having the same light absorption than a standard 

CIGSe solar cell by using lambertian light scattering on a proof of concept device. 
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V.5) Ultrathin CIGSe solar cell with lambertian light 

scattering back reflector 

 

As highlighted in Chapter II, the CIGSe absorption in an ultrathin absorber device 

configuration (less than 400 nm) is too low to achieve full spectrum absorption by only using 

2 dimensional flat layers. In order to increase the light absorption in such a solar cell, new 

designs have to be developed not only to reflect the light at the back interface, but also to 

dramatically increase the optical path of reflected light in the absorber. Lambertian light 

scattering reflection is known to be the ideal light scattering back reflector; it means that the 

radiance of the reflected light is assumed equal for all possible directions in the scattering 

hemisphere. A schematic representation of the effect of a lambertian back reflector in an 

ultrathin 200 nm CIGSe solar cell is presented in figure 28. In Chapter II, by using data from 

the theoretical investigation from Malmström et al. 28, we demonstrated  that it could be 

possible to enhance the light absorption in a 100 nm ultrathin device by using lambertian back 

reflection; in this case, the photocurrent of the 100 nm ultrathin absorber solar cell matched 

the photocurrent of  the reference thick absorber solar cell. 

In the following part, we investigate on the potential of a lambertian back reflector for 

ultrathin CIGSe cell. The absorption of a 100 nm CIGSe slab with and without reflective 

lambertian back scattering is first theoretically analyzed, and a comparison of the calculated 

absorption in CIGSe with calculated absorption in a thicker layer is done. These simulations 

have been performed by Nir Dahan and Jean Jacques Greffet at “Institut d’Optique”. Based on 

this theoretical study, we realize an experimental proof of concept device for optical 

characterizations only, consisting in a lifted-off 200 nm thick CIGSe absorber completed with 

the full solar cell stack (i.e. CdS/ZnO:i/ZnO:Al…); this optical demonstrator solar cell is 

optically characterized by spectroscopic reflection/transmission/absorption, and the results are 

compared with optical simulations of the same material stack in order to identify the role of 

each layer in the optical properties of the device. 



Confidential 221

 

Figure 28. Schematic representation of a normal incident light ray entering the solar cell 

structure with a lambertian back reflector. On the right side of the figure, the ray light is 

scattered and trapped in the absorber. On the left side, the ZnO:Al spacer reduces the 

scattering angle and the ray light can escape from the structure. 

 

V.5.a) Optical simulation of a 100 nm CIGSe slab with lambertian back 

reflection 

To evaluate the potential of a lambertian back reflector in a 100 nm CIGSe slab, our 

colleagues from the “Institut d’Optique” first simulated the absorption of a single CIGSe slab 

with various back reflectors. In these simulations, the CIGSe thickness and the nature of the 

back interface are the only parameters that are varied. The absorption of the slab with a 

thickness of 100 nm is modeled considering a specular front interface and a perfect lambertian 

back reflector. The calculations are performed with the following assumptions:  

- The system is azimuthally symmetric. 

- The incident light associated with the solar spectrum AM 1.5 is unpolarized. 

- The diffuse light reflected or transmitted from the back surface is unpolarized and is 

not correlated with the impinging light. Therefore, no interferences effects are 

considered. 

To follow the ray in the slab, the notation of radiative transfer equation (RTE) 152 is adopted. 

Although RTE assumes geometrical optics, it is still valid in slab thickness which is 

comparable to the wavelength 153 and so applicable to our 100 nm CIGSe slab. More details 
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on the calculations are given in Appendix IV of this thesis. The absorption of a 100 nm and a 

1 µm CIGSe slabs with standard Mo back contact, Ag back contact and perfect lambertian 

back reflector is shown in figure 29. The absorption of the 100 nm slab is very poor, below 20 

% after λ = 750 nm. The Ag back contact, although very reflective, does not increase the 

absorption in the CIGSe sufficiently to consider an application to solar cells since only the 

450 – 600 nm range is noticeably enhanced. When using a lambertian back reflector, the 

absorption in the CIGSe is significantly larger than with a flat interface on the back contact 

and even higher than the absorption of the 1 µm CIGSe slab with standard Mo back contact. 

This enhancement results from the dramatic increase of the optical path in the absorber by the 

lambertian diffusion effect. The 1 µm CIGSe slab also takes great advantage of using of the 

lambertian back reflector, with an almost constant 80% absorption from λ = 400 nm to λ = 

1000 nm.  

 

Figure 29. Simulated absorption in a single CIGSe slab for different thicknesses and back 

reflectors. Flat Mo and Ag back contact are shown in comparison (black) to a perfect 

lambertian back reflector (red). Two different CIGSe thicknesses (100 nm and 1000 nm) are 

presented 
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The lambertian back reflector has a very high potential to increase light absorption in ultrathin 

CIGSe layer. In the following section, we realize an experimental demonstrator device with a 

complete ultrathin solar cell stack (200 nm CIGSe), in order to experimentally investigate the 

behavior of an ultrathin device in real conditions with a lambertian back reflector. As a 

comparison, we will present the results from simulations of an equivalent material stack. 

 

V.5.b) Light absorption in an ultrathin 200 nm CIGSe solar cell structure 

Real lambertian back reflectors are often Fluoropolymers, known as Spectralon, which are 

known to be the materials with the highest diffuse reflectance in the U.V., visible and I.R. 

ranges 154. In this section, we realize an experimental proof of concept solar cell structure for 

optical measurements to demonstrate the very high light absorption that can be achieved in an 

ultrathin 200 nm CIGSe layer in the real solar cell conditions. 

The structure is realized with the following process: a standard CIGSe film on Mo substrate is 

etched down to 1000 nm from the front side in the bromine solution, as described in Chapter 

III. The standard solar cell stack (CdS/ZnO:i/ZnO:Al) is then deposited on the absorber, and 

the encapsulation is performed as previously described in this Chapter (part V.3.b). After the 

lift-off of the structure, a back side etching of the CIGSe is performed down to a final 

thickness of 200 nm, ± 50 nm. At this stage, the structure is semi-transparent due to the 

extreme thinning of the absorber (see Figure 30). 

 

Figure 30. Picture of a 200 nm-CIGSe/50 nm-CdS/70 nm-ZnO:i/400 nm-ZnO:Al/2 mm Glass 

stack, showing the transparency of the device 
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In a realistic configuration, a transparent back contact is needed because the lambertian back 

reflector is an electrical insulator. Therefore, we have deposited a 200 nm ZnO:Al spacer 

layer at the back side of the CIGSe by sputtering; the ohmicity of the contact is not considered 

in this work, and only the optical properties of the stack are studied. The structure is then 

characterized by transmission/reflection spectroscopy using an integrating sphere set-up (see 

part III.4.b.i). After this first characterization, a Spectralon is mechanically bonded at the back 

side of the device, leading to the following structure: Spectralon/ZnO:Al-200 nm/CIGSe-200 

nm/CdS/ZnO:i/ZnO:Al/Glass-2 mm. We then perform the same spectroscopic 

characterizations, and compare with simulation results of an equivalent material stack. The 

total reflectivity of the Spectralon is about 90% on the whole spectral region. 

Figure 31 summarizes the transmission/reflection/absorption measured on the ultrathin solar 

cell structure (200 nm CIGSe) with and without the lambertian back reflector. The absorption 

is calculated by TRA −−=100 . With no reflector on the back side, we see that the 

transmission of the structure starts to increase at a wavelength of about 600 nm to reach 40% 

at 980 nm. These photons are lost and cannot contribute to the photocurrent. The reflectivity 

is stable at about 20%. The absorption of the structure is 80% in the wavelength range of 400-

600 nm, but it is very likely that absorption from the CdS buffer layer accounts for this value. 

After 600 nm wavelength, the absorption of lower energy photons starts to decrease in 

correspondence with the increasing transmission of the structure and at 920 nm, the 

absorption is only 53%. 

When the Spectralon is added at the back side of the structure, we see that the absorption 

curve becomes remarkably stable, only decreasing from 80% to 76% for λ = 600 nm to λ = 

900 nm respectively. By scattering light at the back interface, the optical path is greatly 

enhanced in the absorber, increasing its effective optical thickness and thus the absorption. 

The gain in absorption for the Spectralon back reflector is symbolized by hatching on the 

graph figure 29. After 900 nm, the reflectivity of the structure with Spectralon starts to 

increase significantly; this corresponds to photons that are not absorbed in the second pass 

through the absorber and escape from the structure. This effect may be partly related to the 

ZnO:Al spacer layer that reduces the effective scattering angle of light entering the absorber 

after reflection by the Spectralon, following the Snell-Descartes law (left side of figure 28). 

After the bandgap of the CIGSe, the absorption of the structure is still at an unintuitive high 

level: 45% and 18% at λ = 1070 nm with and without Spectralon respectively. However, we 
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identified this absorption as the absorption coming from the free carrier electrons in both 

highly doped layers 400 nm front side ZnO:Al and 200 nm back side ZnO:Al. The fact that 

the absorption of the structure is increasing when increasing the wavelength from 1070 nm to 

1400 nm also supports this assumption. Moreover, a ~10% absorption is attributed to the 

Spectralon. 

 

 

Figure 31. Transmission/Reflection/Absorption for the 200 nm absorber solar cell structure 

without back reflector (grey curves) and with a Spectralon lambertian back reflector (green 

curves) 
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To investigate the region of the solar cell structure where the light absorption occurs, the 

spectroscopic transmission/reflection/absorption properties of an equivalent material stack are 

simulated, using the Radiative Transfer Equation (RTE) methodology previously described. 

The figure 32 compares the simulated absorption of the complete stack with a lambertian back 

reflector with the experimentally measured absorption from figure 31. Simulation of specific 

absorption in the 200 nm CIGSe layer is also performed to identify the photons that will 

contribute to the photocurrent. The lambertian reflector (Spectralon) is taken with a total 

reflectivity of 91% and full lambertian light scattering. 

In the following, the data corresponding to simulations are represented in red, and the data 

from experiments are in green (figure 32). We see that the simulated absorption of the 

complete stack RAstack −=1  curve (red solid line) has a similar aspect as our experimental 

absorption curve (green solid line), with a stable trend up to λ = 950 nm, and an important 

absorption after the bandgap. The simulated specific absorption in the CIGSe ACIGSe (red 

dotted line) shows that the CIGSe layer contribute to the extremely largest part in the 

absorption of the complete stack. We define the CIGSe absorption factor Af by the ratio of the 

specific absorption of the CIGSe ACIGSe with the total absorption of the stack 1-R: 

R

A
A CIGSe

f −
=

1
. By multiplying the experimental absorption of the complete stack from figure 

31 with this Af factor, we obtain the experimental estimation of the absorption in the CIGSe in 

our experimental proof of concept structure (green dotted line). For our experimental 200 nm 

CIGSe solar cell structure, we observe an absorption in CIGSe higher than 70% up to λ = 800 

nm, and higher than 60% up to λ = 900 nm. This curve can be considered as the first order 

estimation of the External Quantum Efficiency of the solar cell assuming that all generated 

carriers in the CIGSe are extracted. In comparison, we also plot the simulated specific 

absorption in the CIGSe layer without any reflector at the back side of the structure (thin red 

line). After determining the Af factor that corresponds to the stack without back reflector, it is 

also possible to calculate the experimental specific absorption in the CIGSe that corresponds 

to the structure without back reflector (thin green line). We clearly see, in the experimental 

data (green), that the lambertian back reflector remarkably increases the specific absorption in 

the CIGSe layer especially in the red and infrared spectral range. In each case (with and 

without lambertian reflector), the corresponding photocurrent is determined by integrating 

these data with the A.M. 1.5 solar spectrum. Without any reflector, the calculated 

photocurrent of the experimental 200 nm CIGSe solar cell structure is 2.47.15 −= cmmAJsc . 
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When the Lambertian back reflector is added, the photocurrent increases up to 

2.72.25 −= cmmAJsc , which corresponds to a +66 % relative increase. This photocurrent value 

with lambertian back reflector roughly matches the value that we previously obtained for an 

etched 2000 nm CIGSe solar cell (part III.5) with a standard Mo back contact. If we assume a 

650 mV Voc and a 70% Fill Factor (average values for standard CIGSe solar cells), it 

corresponds to a conversion efficiency of %7.11=η  (7% in the structure without back 

reflector). In comparison, the reference non etched 2500 nm thick solar cell from the sample 

batch that we used in this study had a %4.12=η standard average efficiency.  

 

Figure 32. Optical properties of the complete 200 nm CIGSe solar cell structure with a 

lambertian back reflector: Simulated absorption of the stack (red solid line), simulated 

specific absorption in the CIGSe (red dotted line), experimentally measured absorption in the 

complete stack (green solid line), experimentally calculated specific absorption in the CIGSe 

layer (green dotted line). The simulated specific absorption in the CIGSe without back 

reflector (thin red line) and experimentally calculated specific absorption in the CIGSe layer 

without back reflector (thin green line) are also shown in comparison. 
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For a 200 nm CIGSe absorber, Malmström 28 evaluated from numerical simulations that an 

increase of the Jsc of 10 mA.cm-2 was possible with a lambertian back reflector. This is in 

good agreement with our optical measurements on the experimental solar cell stack (figure 

32). However, the absolute value of the Jsc calculated in reference 28 was 32.mA.cm-2, whereas 

in our experiments, we found a much lower value of 25.7 mA.cm-2. This is attributed to the 

fact that our data are experimental and not simulated, although we relied on simulation results 

to estimate the photocurrent. Additional parameters such as the absorption coming from the 

glass, the ZnO:Al spacer and the non ideal lambertian reflector (absorption of about 10%) are 

taken into account in our Jsc value. The fraction of reflected light escaping the structure is also 

more important when using a ZnO spacer between the CIGSe and the lambertian back 

reflector as shown figure 28. 

 

V.5.c) Conclusion 

Numerical calculations in a single 100 nm CIGSe slab showed that a lambertian back reflector 

allowed to remarkably enhance the absorption in the layer up to the level of a 1000 nm CIGSe 

slab, while a 1D Ag mirror was proven insufficient for light trapping in such an ultrathin 

layer. On the basis of these results, we realized an ultrathin 200 nm CIGSe proof of concept 

solar cell structure for optical characterizations, and we studied the influence of a lambertian 

back reflector by performing spectroscopic transmission/reflection/absorption measurements 

on the device. The lambertian reflector allows to significantly increase the absorption of the 

structure in the red and infrared spectral regions, leading to an almost constant trend of the 

absorption curve of the device to the bandgap. The simulation of an equivalent material stack 

allows calculating the fraction of the absorbed light in the complete structure that is actually 

absorbed by the CIGSe layer only. Based on these results, we calculated the specific 

absorption in CIGSe in our experimental 200 nm CIGSe solar cell structure with and without 

lambertian back reflector. A major increase with the lambertian back reflector is observed 

especially in the red and infrared spectral region, leading to an increase of the estimated 

photocurrent of +66 %, from 15.47 mA.cm-2 without back reflector to 25.72 mA.cm-2 with a 

lambertian back reflector. From these results, we estimate that the efficiency of the 200 nm 

solar cell increases from 7% to 11.7% if no electrical losses are considered, which is very 

close to the reference efficiency of the non-etched thick solar cell (12.4%).  
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V.6) Chapter Conclusion 

 

In this final Chapter, we investigated the use of alternative back reflectors for very thin 

absorber and ultrathin absorber CIGSe solar cells. For that matter, we introduced a novel 

approach by combining chemical etching of the absorber to reduce its thickness, and a lift-off 

technique that allows to process the back contact of the solar cell at low temperature. With the 

lift-off of the absorber, it was possible to precisely characterize the chemistry of the 

Mo/CIGSe interface by X-ray Photoelectron Spectroscopy, and the interface is characterized 

optically by ellipsometry. We highlighted the formation of an interfacial MoSe2 layer in the 

substrate, while the analysis of the absorber back revealed no interdiffusion of Mo atoms in 

the CIGSe. 

A set of alternative metals have been characterized on CIGSe back surface both optically and 

electrically, and Au has been found to be the metal with the highest potential as back contact 

for very thin absorber CIGSe solar cell; spectroscopic ellipsometry measurements showed that 

the Au/CIGSe interface has an excellent reflectivity in the absorption spectral region of the 

CIGSe, and transmission line measurements (TLM) demonstrated that Au forms a low 

resistive ohmic contact on CIGSe. The effect of a gold (Au) back reflector on the solar cell 

parameters as a function of the CIGSe thickness has been studied. We observed that the 

alternative Au back contact allows to significantly enhance the short circuit current of the 

solar cells when reducing the absorber thickness. This effect is particularly remarkable for 

sub-micrometer absorbers, and a net increase of 2.5.4 −=∆ cmmAJsc  is observed for a 400 nm 

CIGSe absorber without degradation of the other parameters of the cell, leading to an absolute 

efficiency increase of  2.3% (η = 10.2% for Au back contact versus η = 7.9% with standard 

Mo back contact). This enhancement of the efficiency nicely demonstrates the potential of 

highly reflective metals in the scope of realizing very thin absorber CIGSe solar cells. 

To realize thinner absorber devices, down to 100 nm – 200 nm CIGSe thickness, a more 

advanced light trapping structure is needed at the back side of the solar cell. We proposed the 

introduction of a transparent ZnO:Al back contact. Our preliminary results show that it is 

possible to turn the rectifying ZnO:Al/CIGSe junction with the addition of an interfacial very 

thin Cu-based buffer layer. Using a transparent back contact allows to consider electrical 

insulator materials as back reflector in ultrathin absorber CIGSe solar cells. 
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Optical comparative simulations on a single 100 nm CIGSe slab showed that the addition of a 

perfect lambertian back reflector at the back side of a CIGSe significantly increases the light 

absorption in the absorber, up to the level of a 1000 nm CIGSe film, while a flat Ag mirror is 

proven insufficient at this extreme level of CIGSe thinning. We realized a 200 nm CIGSe 

solar cell structure with a 200 nm ZnO:Al layer at the back side (spacer), and studied the 

optical properties of the complete material stack. When a lambertian back reflector 

(Spectralon) is added on the back side, the analysis of the optical properties of the structure 

reveals that the absorption is significantly increased in the red and infra-red spectral region 

with the lambertian reflector. Modeling of an equivalent material stack are performed, and 

demonstrate that most of the gained absorption comes from an enhanced absorption by the 

CIGSe. A factor between the light absorbed in the complete stack and the light specifically 

absorbed in the CIGSe layer is determined from these simulations, which gives the possibility 

to calculate the spectral response of our solar cell structure based on experimental data; we 

found that the short circuit current could increase from 2.5.15 −= cmmAJsc  without back 

reflector up to 2.7.25 −= cmmAJsc  when adding the Spectralon at the back interface, leading 

to a calculated efficiency increase from %7=η  to %7.11=η  respectively. This efficiency, 

obtained for a 200 nm CIGSe solar cell experimental structure, is very close to that of the 

reference non etched 2500 nm CIGSe solar cell ( %4.12=η ). Lambertian back reflectors are 

proven to be the most effective solution to improve the light absorption in an ultrathin 

absorber CIGSe solar cell. 
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General Conclusion and Perspectives 

 

Main results 

 

In these three years of research, we investigated the possibility to reduce the indium 

consumption in the CIGSe technology by significantly reducing the thickness of the CIGSe 

absorber down to an “ultrathin” layer thickness. This work was done in the frame of the 

Ultracis project supported by the French Research Agency (ANR). The literature from the 

past decade shows that an increasing attention has been brought in reducing the absorber 

thickness both in the CIGSe and CdTe technology to limit the consumption of rare and 

expensive elements. Most of the studies have been performed by adapting the material 

deposition process to shorter deposition times, and so thinner layer. This technique presents 

the advantage of direct applicability to industrial process, however the induced changes in the 

CIGSe absorber and standard deposition process are limiting the possibilities of upstream 

researches on ultrathin absorber solar cells. In this study, we decided to introduce a novel 

approach to study well controlled very thin and ultrathin CIGSe films. 

In a preliminary study (Chapter II), we modeled by numerical tools the influence of reducing 

the absorber thickness in a well controlled CIGSe solar cell, from the reference 2500 nm 

absorber thickness down to 100 nm absorber thickness. For that matters, we defined the 

parameters of a “state of the art” reference  solar cell from experimental and literature data. 

The behavior of this solar cell is found to be very close to experimental results obtained on a 

standard CIGSe solar cell prepared at Würth Solar and ZSW in Germany; therefore, the 

parameters that we used in the model are taken as “baseline” parameters for further 

simulations. When simulating the reduction of the absorber thickness, we clearly identify two 

regimes:  

- the first one is the reduction of the thickness from 2500 nm (reference) down to 500 

nm; the short circuit current (Jsc) is the only parameter that is affected by the thickness 

reduction, from 28 mA.cm-2 (2500 nm absorber reference) to 20 mA.cm-2 (500 nm 

absorber), and the Open Circuit Voltage (Voc)and Fill Factor (FF) remain stable at 
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about 650 mV and 72% respectively. Consequently, the efficiency (Eff) undergoes a 

moderate decrease, from 14% to about 11%. The reduction of the Jsc is attributed to a 

combination of increased back contact recombination, as observed by the increase of 

back contact recombination current, and to a light absorption limitation due to the 

thickness reduction of the active layer (CIGSe). 

- In a second regime, from 500 nm CIGSe down to 100 nm, the absorber is fully 

depleted which blocks the back contact recombination; in this case, the  Jsc is almost 

only dependent on the absorption of the CIGSe. The material is however transparent to 

the majority of red and infrared photons due to its extreme thinning, and the Jsc is 

reduced down to 12 mA.cm-2 for a 100 nm absorber. The Voc is also limited when the 

CIGSe thickness becomes smaller than the space charge region width (W), which 

limits the quasi Fermi level splitting. Consequently, the efficiency drops down to less 

than 4% for a 100 nm absorber. 

To overcome these issues we proposed to engineer both the front and the back interfaces of 

the CIGSe solar cell. Optical simulation on a 500 nm absorber device shows that the use of a 

wide gap buffer layer like ZnS in replacement of CdS allows to significantly increase the 

absorption in CIGSe in the 350-550 nm spectral range (+6 % absolute absorption increase). 

More importantly, the replacement of the low reflective Mo back contact by a highly 

reflective Au back contact leads theoretically to an absolute absorption increase in the CIGSe 

of +7%, especially in the red and infrared spectral ranges. Combined with an anti reflection 

coating (ARC), we showed that it is theoretically possible to increase the Jsc of the solar cell 

up to 33.80 mA.cm-2 in a 500 nm CIGSe solar cell. The problem of back contact 

recombination is also addressed, by tuning the energy band diagram. We show that in the 

Anderson model, a high work function metal such as Pt is required to form an ohmic contact 

on CIGSe, and that the introduction of an interfacial electron blocking layer helps to suppress 

the back surface recombination.  

For 100 nm ultrathin CIGSe solar cells, conventional metal reflectors have been found 

insufficient; we proposed to use a lambertian back reflector to increase to the maximum the 

optical path of the light through the absorber, along with a wide gap p-doped semi conductor 

contact that would allow complete splitting of the quasi Fermi levels and thus solve the Voc 

issue. We demonstrate that in these ideal conditions, it is theoretically possible to increase the 

efficiency of a 100 nm CIGSe solar cell up to the level of a standard 2500 nm solar cell. 
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In Chapter III, we used a novel approach to experimentally reduce the absorber thickness by 

using a chemical HBr/Br2 etching of the CIGSe. This technique allows to precisely monitor 

the remaining material thickness. Etching experiments and X ray Photoelectron Spectroscopy 

(XPS) have been carried out at Institut Lavoisier and we demonstrated that the surface 

chemical composition is almost not affected by etching. Similarly, X-ray diffraction and 

Raman spectroscopy showed that etching had minor influence on the CIGSe crystalline 

structure and bulk composition. Observation of the CIGSe etched surfaces by Scanning 

Electron Microscopy (SEM) revealed that etching had a dramatic smoothing effect; this was 

confirmed by Atomic Force Microscopy (AFM) which showed a decrease of the Root Mean 

Square (RMS) of the surface from about RMS = 200-250 nm for non etched absorbers down 

to about RMS = 40-50 nm for etched absorbers. Optical characterization of the absorbers 

showed an increased specular reflectivity of the surface after etching, and photoluminescence 

characterization highlighted a bandgap shift through the absorber, which is attributed to the 

Ga-grading in the CIGSe. 

Solar cells with different absorber thicknesses from the reference 2500 nm down to 200 nm 

CIGSe have been realized in standard conditions. Current-Voltage characterization showed 

very similar trends to what was previously simulated, with two distinct regimes from 2500 nm 

to 500 nm absorber thickness, and from 500 nm to 200 nm absorber thickness. A solar cell of 

500 nm absorber thickness with an efficiency of 10.3% has been achieved, starting from a 

13.7 % reference thick absorber solar cell. Since the etching of the CIGSe has a strong 

smoothing effect, we also investigated on the influence of the surface roughness on the Jsc 

decrease that is observed when the absorber thickness is not varied. We proposed an 

interpretation based on the influence that the roughness may have on the effective width of the 

space charge region. 

In Chapter IV, we focused on possible engineering of the front interface of very thin absorber 

CIGSe solar cells to increase light absorption in CIGSe. We first implemented in 

experimental devices the solutions that were proposed in Chapter II. The CdS buffer layer has 

been successfully replaced by a ZnS buffer, which led to substantial increase of the Jsc by an 

increased light absorption in the 350-550 nm spectral range. The gain is however partly offset 

for sub-micrometer absorbers (< 800 nm in our experiments) by the decrease of the Voc and 

FF, and optimizations of the contact are still needed. Similarly to what has been done in the 

amorphous silicon solar cells field, we developed a high haze ZnO:Al by HCl etching for light 

scattering at the front interface of the solar cell. Moreover, we also increased the light 
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scattering by electrodeposing ZnO nanorods on top of the ZnO:Al window layer, which led to 

a significant increase of the light diffusion properties of the films. In both cases however, the 

optical index difference between ZnO and CIGSe led to a  strong decrease of the light 

scattering angle, and the only effect that is observed in antireflection at the air/ZnO interface. 

Compared to standard MgF2 ARC, the effect on the light absorption of textured ZnO:Al is 

even slightly higher. By texturing the front ZnO:Al layer, we observed a relative increase of 

+14% in the Jsc compared to flat standard ZnO:Al, and an increase of the efficiency from 

8.3% to 9.6%. For a 500 nm CIGSe solar cell, the ZnO nanorods on ZnO:Al had a similar 

ARC effect. Their very high haze factor could however be useful for other applications. 

In the last Chapter, we investigated the replacement of the Mo back contact by an alternative 

material to improve the efficiency of very thin absorber CIGSe solar cells (down to about 400 

nm), but also for ultrathin absorbers (200 nm). For that, we developed a new technique that is 

based on the combination of lift-off of the CIGSe from its original Mo substrate, and chemical 

etching of both the front and the back side of the absorber. The lift-off process allowed us to 

consider alternative materials as back contact, that were incompatible with the CIGSe high 

temperature deposition. Thanks to this approach, it was also possible to precisely characterize 

the chemical composition of the back interface of the solar cell; XPS observations indicated 

the formation of the well known MoSe2 interfacial layer, but no diffusion of the Mo atoms in 

the CIGSe has been observed. We performed an ellipsometric analysis of both the CIGSe 

back surface and the substrate after lift-off to determine the complex refractive indexes of 

both samples, and we noticed that the reflectivity at the real CIGSe/Mo interface (therefore 

including the MoSe2 layer) is very poor. We then calculated the reflectivity that can be 

achieved with alternative metals: Au, Ag, Cu, Ni, Pt and Al. Au, Ag, Al and Cu significantly 

improve the reflectivity of the back interface in a CIGSe solar cell, but the nature of the 

CIGSe/metal being of high importance for an efficient solar cell device, these metals were 

characterized on CIGSe using Transmission Line Measurements (TLM). From the TLM data, 

we concluded that Au and Pt form a low resistive ohmic contact on CIGSe, which is 

consistent in the Anderson model with their relatively high work function. Since Au combines 

both a good electrical compatibility with CIGSe, and a very high reflectivity, we realized a 

serie of CIGSe solar cells with different absorber thicknesses, down to 300 nm, and compared 

the photovoltaic parameters between a standard Mo back contact and an Au alternative back 

contact.  We found that the Au back contact allows to significantly increase the light 

absorption of low energy photons in the CIGSe, and thus the Jsc of solar cells especially when 
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the thickness of the absorber is reduced to the sub-micrometer scale, without affecting neither 

the Voc nor the FF. For a very thin 400 nm CIGSe solar cell, we achieved an absolute 

efficiency increase of + 2.3%, from %9.7=η to %2.10=η . 

We also investigated the feasibility of alternative transparent back contact using ZnO:Al, by 

introducing a Cu based buffer layer at the ZnO:Al/CIGSe interface. We demonstrated that it 

was possible to turn the rectifying junction into an ohmic contact, and the application on a 

solar cell shows a suppression of the double diode effect in the J-V curve. These results are 

however very preliminary and the efficiency of the solar cells remains at a low level. 

In the final part of our work, we studied the feasibility of an ultrathin CIGSe solar cell device, 

by focusing on the optical absorption in the CIGSe layer. Simulations performed by our 

colleagues of the Institut d’Optique on a 100 nm CIGSe single layer showed that the addition 

of a lambertian back reflector at the back side allows to reflect and diffuse light very 

efficiently in the layer, which increases the absorption of this 100 nm slab up to the level of a 

1000 nm CIGSe film. We realized a proof of concept 200 nm CIGSe solar cell structure that 

we characterized by transmission/reflection/absorption spectroscopy, and studied the 

influence of a lambertian back reflector (Spectralon) at the back side of the structure. We 

observed a major enhancement of the absorption of the structure for low energy photons, and 

compared our experimental data with simulated data from an equivalent material stack. It was 

possible to estimate for our experimental structure the ratio of light that is specifically 

absorbed in the CIGSe film, and so the calculated spectral response. We estimated from these 

data that  the addition of a lambertian back reflector on the structure increases the Jsc from 

2.47.15 cmmAJsc =  to 2.72.25 cmmAJsc = , leading to a spectacular increase of the efficiency 

from 7% to 11.7% if no other losses are considered, which is comparable to the reference 

efficiency of the standard 2500 nm CIGSe solar cell (12.4% in this study). Based on these 

simulations and experiments, lambertian back reflectors are found to be one of the most 

effective way to achieve a near to perfect light trapping in an ultrathin absorber layer, where 

conventional metals are insufficient. 
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Perspectives 

 

For very thin absorber solar cells, down to 400 nm absorber thickness, we demonstrated with 

several techniques that it was possible to significantly increase the efficiency of the solar cell. 

The next step would be to combine all these techniques (ZnS, ARC/Textured ZnO:Al, and 

reflective back contact) in order to match the efficiency of a reference thick solar cell. 

Experiments in this direction are currently being carried out in our laboratory. Moreover, 

using a less expensive metal than Au as a back contact, such as Cu, is required to meet the 

low cost expectations of the industry.  It will be therefore of great interest to find a compatible 

barrier layer between the CIGSe and the metal that would prevent the diffusion of metal 

atoms in the absorber. 

We also believe that the results from this study pave the way  for further investigations in the 

field of ultrathin CIGSe solar cells. For future development, we think that the main challenge 

is to realize a working device with an ultrathin absorber thickness, less than 200 nm, with an 

efficiency comparable to thick absorber solar cells. To achieve this, it is very important to 

improve the control of the chemical etching process, both in terms of surface roughness and 

film thickness. Our partners from Laboratoire de Photonique and Nanostructures recently 

achieved an impressive 6 nm surface RMS by etching CIGSe by a mechano-chemical process, 

which will be applied for very precise etching of CIGSe films down to 100 nm. More 

researches are also needed to improve the electrical properties of the back contact, and 

achieve wide gap transparent hole-ohmic contact at this interface. This would not only 

increase the voltage of ultrathin CIGSe solar cells, but also allow to use a lambertian back 

reflector which has been demonstrated in this study as extremely effective for light trapping in 

ultrathin absorbers. Another light trapping technique based on plasmonic resonators, which is 

not mentioned in this thesis, is also being developed by our partners from “Laboratoire de 

Photonique and Nanostructures”. Simulations showed that a very important light absorption in 

CIGSe can be achieved with such a structure, and its application to ultrathin solar cells is 

currently being carried out in the frame of two PhD Thesis. 

Finally, another objective is to make very thin and ultrathin CIGSe solar cells compatible with 

an industrial process. Directly growing ultrathin CIGSe absorber on alternative substrates 

without degradation of the absorber or electric contact quality is highly desired. 
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Appendix 
 

 

I) Modeling parameters of the reference solar cell 

The parameters used for simulations of a standard CIGSe solar cell are summarized in the 

following table. 

 

Front 

contact 

flatband : 1 (1: flatband contact imposed; 0: fixed Phi_m 

value)   

 Recombination velocity Sn [cm/s] 1.00E+07 

 Recombination velocity Sp [cm/s] 1.00E+07 

 Metal work function (eV) 4.45E+00 

 Majority carrier barrier height relative to Ef (eV) -2.00E-01 

 Majority carrier barrier height relative to Ev or Ec (eV) -5.95E-02 

 optical filter                              from file 
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ZnO:Al Thickness d (µm) 0.4

 Bandgap Eg (eV) 3.5

 Electronic affinity χ (eV) 4.65

 Dielectric permittivity εr 9

 Conduction band effective density of state Nc  (1/cm3) 2.2E+17

 Valence band effective density of state Nv  (1/cm3) 1.8E+19

 Electron thermal Velocity thNν  10000000

 Hole thermal Velocity thPν  10000000

 Electron mobility µn (cm²/Vs) 100

 Hole mobility µp (cm²/Vs) 25

 Acceptor density Na (1/cm3) 1

 Donor density Nd (1/cm3) 1E+20

 Absorption Numos ZnO

B to B defect Radiative (cm3/s) 0

 Auger hole capture coefficient (cm6/s) 0

Defect Type (neutral/acceptor/donor) neutral

 Nt (1/cm3) 1.77E+16

 cross section e (cm²) 1E-12

 cross section h (cm²) 1E-12

 energetic distribution (single gauss…) gauss

 level above Ev (eV) 1.65

 Characteristic Energy Wg (eV) 0.1
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ZnO:i Thickness d (µm) 0.07

 Bandgap Eg (eV) 3.3

 Electronic affinity χ (eV) 4.45

 Dielectric permittivity εr 9

 Conduction band effective density of state Nc  (1/cm3) 2.20E+17

 Valence band effective density of state Nv  (1/cm3) 1.80E+19

 Electron thermal Velocity thNν  1.00E+07

 Hole thermal Velocity thPν  1.00E+07

 Electron mobility µn (cm²/Vs) 1.00E+02

 Hole mobility µp (cm²/Vs) 2.50E+01

 Acceptor density Na (1/cm3) 1

 Donor density Nd (1/cm3) 1.00E+17

 Absorption Numos ZnO

B to B defect Radiative (cm3/s) 0

 Auger hole capture coefficient (cm6/s) 0

Defect Type (neutral/acceptor/donor) neutral

 Nt (1/cm3) 1.77E+16

 cross section e (cm²) 1.00E-12

 cross section h (cm²) 1.00E-12

 energetic distribution (single gauss…) gauss

 level above Ev (eV) 1.65

 Characteristic Energy Wg (eV) 0.1
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CdS Thickness d (µm) 0.05 

 Bandgap Eg (eV) 2.4 

 Electronic affinity χ (eV) 4.2 

 Dielectric permittivity εr 10 

 Conduction band effective density of state Nc  (1/cm3) 2.20E+18 

 Valence band effective density of state Nv  (1/cm3) 1.80E+19 

 Electron thermal Velocity thNν  1.00E+07 

 Hole thermal Velocity thPν  1.00E+07 

 Electron mobility µn (cm²/Vs) 1.00E+02 

 Hole mobility µp (cm²/Vs) 2.50E+01 

 Acceptor density Na (1/cm3) 1 

 Donor density Nd (1/cm3) 1.00E+17 

 Absorption Numos CdS 

B to B defect Radiative (cm3/s) 0 

 Auger hole capture coefficient (cm6/s) 0 

Defect Type (neutral/acceptor/donor) neutral 

 Nt (1/cm3) 1.77E+17 

 cross section e (cm²) 1.00E-13 

 cross section h (cm²) 1.00E-13 

 energetic distribution (single gauss…) gauss 

 level above Ev (eV) 1.2 

 Characteristic Energy Wg (eV) 0.1 
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CIGSe Thickness d (µm) 2.5

 Bandgap Eg (eV) 1.15

 Electronic affinity χ (eV) 4.5

 Dielectric permittivity εr 13.6

 Conduction band effective density of state Nc  (1/cm3) 2.20E+18

 Valence band effective density of state Nv  (1/cm3) 1.80E+19

 Electron thermal Velocity thNν  1.00E+07

 Hole thermal Velocity thPν  1.00E+07

 Electron mobility µn (cm²/Vs) 1.00E+02

 Hole mobility µp (cm²/Vs) 2.50E+01

 Acceptor density Na (1/cm3) 2.00E+16

 Donor density Nd (1/cm3) 1

 Absorption Numos CIGS

B to B defect Radiative (cm3/s) 0

 Auger hole capture coefficient (cm6/s) 0

Defect Type (neutral/acceptor/donor) neutral

 Nt (1/cm3) 1.77E+13

 cross section e (cm²) 5.00E-13

 cross section h (cm²) 1.00E-15

 energetic distribution (single gauss…) gauss

 level above Ev (eV) 0.6

 Characteristic Energy Wg (eV) 0.1
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Back surface 

field Thickness d (µm) 0.01 

 Bandgap Eg (eV) 1.4 

 Electronic affinity χ (eV) 4.3 

 Dielectric permittivity εr 13.6 

 Conduction band effective density of state Nc  (1/cm3) 2.20E+18 

 Valence band effective density of state Nv  (1/cm3) 1.80E+19 

 Electron thermal Velocity thNν  1.00E+07 

 Hole thermal Velocity thPν  1.00E+07 

 Electron mobility µn (cm²/Vs) 1.00E+02 

 Hole mobility µp (cm²/Vs) 2.50E+01 

 Acceptor density Na (1/cm3) 2.00E+19 

 Donor density Nd (1/cm3) 1 

 Absorption 1.00E+05 

B to B defect Radiative (cm3/s) 0 

 Auger hole capture coefficient (cm6/s) 0 

Defect Type (neutral/acceptor/donor) neutral 

 Nt (1/cm3) 1.772E+15 

 cross section e (cm²) 5.00E-13 

 cross section h (cm²) 1.00E-13 

 energetic distribution (single gauss…) gauss 

 level above Ev (eV) 0.6 
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 Characteristic Energy Wg (eV) 0.1 

Back contact 

flatband : 1 (1: flatband contact imposed; 0: fixed 

Phi_m value)   

 Metal work function (eV) 5.4 

 Majority carrier barrier height relative to Ef (eV) 0.15 

 Majority carrier barrier height relative to Ev or Ec (eV) 0.0335 

 Sn [m/s] 1.00E+07 

 Sp [m/s] 1.00E+07 

 optical filter reflection from file (MoSe2) 
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II) Characterization tools 

 

 

Scanning Electron Microscopy (SEM) 

This type of electron microscope, mainly developed in the 60’s by Charles Oatley’s group 

based on the work of Max Knoll and Manfred von Ardenne in the 30’s, consists in an electron 

beam scanning the surface to analyze. The interaction with the material leads to re-emission 

of particles that are detected, allowing a three-dimensional image reconstruction of the 

surface. The most commonly detected particles are secondary electrons as they allow a 

precise topography of the surface with very high precision (close to 4 nm) , and back-

scattered electron for the analysis of the chemical composition and homogeneity of the 

surface with a much lower precision (in the order of 1µm). Characteristic X-rays, 

cathodoluminescence, and transmitted electrons can also be measured, but it is rare that a 

single machine would have detector for all possible signals. 

In this work, the SEM setup used was based on a Leo Supra 35 field emission gun (FEG). 

 

 

Atomic Force Microscopy (AFM) 

This type of microscopy is based on the attraction (Van der Waals)/repulsion (electron cloud) 

occurring between atoms at a certain distance. The surface to analyze is scanned by a very 

sharp tip (down to ~10-20 nm) mounted on a micro-lever;  the atomic force between the tip 

and the lever lead to a deflection of the micro-lever according to Hooke’s law kxF −=  where 

x is the displacement of the spring end from its equilibrium position, F is the restoring force 

exerted by the spring on that end and k is a constant called spring constant, which depends on 

the material used for the micro-lever (typically silicon or silicon nitride). By measuring the 

deflection of the micro-lever (usually by laser reflection on the micro-lever), it is possible to 

quantify the interaction between the tip and the surface of the sample to analyze, and thus the 

topography of the surface. Generally, the lateral resolution of an AFM is in the magnitude of a 
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few 10th of nanometers, however, the vertical resolution is on the magnitude of the Å, which 

allows detection of an atomic march on a clean and smooth surface. 

In this study, the AFM images are obtained on 50 x 50 mm2 zones with a D3100 microscope 

and nanoscope IIIa controller, using contact mode with DNP-20 tips (20 nm nominal tip 

radius). 

 

 

X-Ray Photoelectron Spectroscopy 

X-Ray Photoelectron Spectrometry (XPS) is a widely use surface characterization technique 

developed in the 60’s at the Uppsala University (Sweden) by Kai Siegbahn and his group 155. 

This spectroscopic method is based on the photoelectric effect: the sample is irradiated by 

monochromatic X-ray photons leading to atoms ionization at the surface of the sample. The 

kinetic energy of the photo-generated electrons is measured;  it depends on the binding energy 

of the electrons following the equation 

)( ϕν +−= kinetichbind EEE  

where Ebind is the binding energy of the electron, Ehν is the energy of the X-ray photons being 

used, Ekinetic is the kinetic energy of the electron (measured in the experimental setup) and ϕ is 

the work function of the spectrometer (known). It is possible to plot the number of electrons at 

each kinetic energy value, i.e. at each binding energy; since each element produces a 

characteristic set of XPS peaks at characteristic binding energy values, we can identify 

precisely each elements on the surface of the material. The peak’s shape gives informations 

about the chemical bonding between different elements. The typical analyzed depth is from 8 

nm to 12 nm, and all the deeper photo-generated electrons are either recapture by the material 

or trapped in excited states. The analysis is performed under ultra-high vacuum (P<10-9 mbar) 

since the electron-counting device is almost 1 meter spaced from the analyzed sample. 

 This quantitative spectroscopic non-destructive technique allows a sharp measurements of the 

empirical formula of chemical compounds, elemental composition, chemical state and 

electronic state of the elements within a material. 
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Electrical Characterization 

The J(V) measurements is the most important characterization technique for solar cells. It 

consists in measuring the current, or the current density, versus an applied voltage, under a 

specific illumination. When the illumination is the standard A.M. 1.5 illumination, the 

experimental setup is called a “solar simulator”. A normalized light source illuminates the 

sample to analyze; the voltage is applied with two needles connected to the front and the back 

contact respectively, in a range from –0.4 V to +0.8 V for CIGSe typically. Two different 

needles (in order to avoid parasitic serie resistance) measure the resulting current delivered by 

the solar cell. Figure 1 is schematic view of an experimental solar simulator device. From this 

J(V) curve, it is possible to extract the open circuit voltage (Voc), the Fill Factor (FF), the 

short circuit current (Jsc) and so the efficiency (Eff). Series resistance (Rs) and shunt resistance 

(Rsh), along with ideality factor (n) of the diode and dark current (J0), are also parameters that 

are accessible with this characterization; however, numerical fitting of the J(V) is needed and 

measurements in the dark are preferred, as it will be discussed later. 

 

Figure 1. Experimental setup of the IV measurement tool under AM 1.5 illumination 

Spectral Response measurements allow to quantify the photon-material interaction depending 

on the photon energy. In a solar cell, this interaction results in the generation of an electron-

hole pair; therefore, by counting the number of generated photons per incident photons at 

different wavelength (i.e. energies), we measure the Internal Quantum Efficiency of the cell, 

IQE(λ). Since the solar cell as a specific reflectivity, and the front layer a specific absorption, 

some photons are lost and does not contribute to the photo-current. As a result, the 

experimental device measure the External Quantum Efficiency of the cell, EQE(λ). The 

Spectral Response device we used for this study in a home-made setup; it consists in a source 



Confidential 263

of polychromatic light, which passes through a monochromator and a chopper, and is focus 

through an optical fiber directed on the sample to analyze. Two metal needles connected to 

the front and back contact of the cell measure the extracted current, which is then analyzed 

with a lock-in technique. 
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III) State of the art insights for ZnS/(Zn,MgO) deposition 

 

In 2009, two joint publications 48 47 investigated on the combination of both a CBD deposited 

ZnS layer and a sputtered Zn1-xMgxO layer, in replacement to the standard CdS/ZnO:i bilayer, 

leading to significant improvements of the efficiency and the stability compared to previous 

alternative buffer layer solar cells. Reference 48 focuses on the study of the chemical process 

involved in the deposition of the ZnS layer, along with its compositional and morphology 

analysis. The deposition process is as follow: co-evaporated CIGSe films 2 are chemically 

treated in a KCN solution 35. The ZnS layer is then grown by CBD  from aqueous solutions of 

zinc sulfate (0.1 M), thiourea (0.4 M), and ammonia (1.5 M). The deposition temperature is 

tested between 60°C and 90°C. The samples are washed in a solution of NH4OH 1M to avoid 

an incontrollable precipitation of Zn(OH)2. The solar cells are then completed by sputtered 

(Zn,Mg)O/ZnO:Al window layer. The Zn1-xMgxO layer is deposited by radio-frequency 

magnetron sputtering. Six different Zn1-xMgxO targets are used with different Mg contents of 

x = 0 (pure ZnO:i), 0.15, 0.22, 0.26, 0.33 and 0.4. 

The deposition behavior of the ZnS is studied by calculating the solubility diagrams as a 

function of the pH, in presence of ammonia and as a function of the temperature (25, 60, 70, 

80 and 90 °C). These results are presented in Figure 2. One can notice that regardless of the 

pH and the temperature, the solubility curves of ZnO and Zn(OH)2 are very close to each 

other. This means that it may not be easy to deposit either pure ZnO or pure Zn(OH)2 since 

both species can precipitate together. Moreover, figure 2.a and 2.b show that when increasing 

the temperature, there is a clear displacement of the solubility region of the three solid phases 

(ZnS, ZnO and Zn(OH)2) towards lower pH, which means that in the standard deposition 

conditions (9<pH<11) and T≥ 70°C), the ZnS deposition implies a significant amount of 

oxides and hydroxides (see figure 2.b). The influence of the stirring rate on the growth of the 

ZnS shows a similar behavior to standard CdS. The growth rate is roughly independent from 

the stirring rate, which indicates that the growth rate of the ZnS is controlled not by a 

diffusional mechanism but by chemical reactions at the surface of the CIGSe. This is 

particularly favorable for a large area industrial application. 
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Figure 2. Effect of temperature (T=25°C, T=60°C, T=80°C, and T=90°C) on solubility 

curves of Zn(II) species in aqueous medium and in presence of thiourea and ammonia as 

function of pH ([ZnSO4]=10-1 M, [S2-]=4.10-1 M, and [NH3]=1.5M) considering ZnS (solid 

line), ZnO (cross line) and Zn(OH)2 (dashed line). (a) Full diagram. (b) Enlarged view of the 

CBD-Zn(S,O,OH) deposition region for T=25 and 80°C (the arrow shows the effect of 

increasing temperature) 48 

 

The structure of the Zn1-xMgxO layers is investigated by XRD measurements. When the Mg 

concentration is between x = 0 and x = 0.4, the layers exhibit a hexagonal wurzite structure 

(single phase region); a cubic phase segregation (two phase region) takes place at x between 

0.4 and 0.48. which is in good agreement with the reported two phase region observed 

between x = 0.43-0.55 reported in the literature 156. With transmission measurements, it is 

possible to estimate the bandgap of the Zn1-xMgxO films extracted from the [ ]2)( EEα  versus 

E dependency, where α is the absorption coefficient and E is the photons energy. The 

bandgap varies linearly with the Mg concentration from eVEg 3.3=  for pure ZnO to a 

maximum bandgap of eVEg 1.4=  for x = 0.4, which is in good agreement with previous 

literature 156. 
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After completing the solar cells with the standard ZnO:Al window layer, the following 

procedure is applied in order to stabilize the transient effects: the completed cells are post-

annealed in air at 200°C for 30 minutes and subsequently light soaked at one sun for 1 

minutes at room temperature. The solar cells are then characterized by J-V analysis under 

A.M. 1.5 illumination, and the photovoltaics parameters are extracted. Figure 3 presents the 

photovoltaic parameters dependence on the Mg content in the Zn1-xMgxO target. We clearly 

see that the optimum Mg concentration in the Zn1-xMgxO buffer is between x = 0.15 and 0.26 

with a solar cell efficiency higher than 14%. The cells without Mg (ZnS/ZnO:i buffer) show 

poor performances mainly because of a limited FF and Voc around 40-50 % and 510 mV-580 

mV respectively. For Mg concentration higher than 0.26 (x = 0.33 and 0.4), an increased 

spread of the results and a strong decrease in average of the parameters is observed. 

 

Figure 3. Influence of the Mg concentration on the performances of CIGSe/ZnS/ Zn1-

xMgxO/ZnO:Al solar cells 47 
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IV) Optical simulation of a solar cell stack using the 

radiative transfer equation  

 

*(from Dr. Nir Dahan, Institut d’Optique) 

 

In this section, we show the calculation for a CIGSe slab of thickness  d  with a specular front 

interface and diffuse surface on the back reflector. Let us introduce the parameters as in the 

figure below 

 

Figure 2. CIGSe slab deposited on white paint (lambertian reflector) 

I(θ)  denotes the specific intensity given in units of Watt /(m2 ⋅ µm⋅ sr) , RF (TF) the Fresnel’s 

reflection (transmission), and θ  is the angle between the direction of the ray and the surface 

normal. The reflection of the back reflector can be described, in general, by the bidirectional 

reflectance distribution function ρ(s,s') . It relates the reflected intensity I r (s)  in direction s to 

the incident intensity I inc(s') in direction s' by 

I r (s) = ρ(s,s')I inc(s')cosθ'dΩ'∫  
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where dΩ is the solid angle and the integration is over a hemisphere. Herein, we assume that 

the reflected intensity is isotropic, such that it does not depend on the angle of incident or 

observation, 

ρ(s,s') = ρL  

where ρL  is the Lambertian reflectivity. The same arguments hold for the transmission τ L . 

In our calculation we make the following assumptions: 

- The system is azimuthally symmetric. 

- The incident light associated with the solar spectrum AM1.5 is unpolarized. 

- The diffuse light reflected or transmitted from the back surface is unpolarized and is not 

correlated with the impinging light. Therefore, we do not consider interference effects. 

According to energy conservation, the absorption in the slab is 

A =1− Rtotal −Ttotal  

where Rtotal  (Ttotal ) is the total energy reflected (transmitted) from the slab normalized by the 

incident energy. Therefore, our aim is to calculate the reflectivity and transmission from the 

slab.  

To follow the rays in the slab, we adopt the notation of radiative transfer equation (RTE) [1,2] 

using µ = cosθ and 
��
I p,l

±  the intensity in upward direction (+) or downward direction (–) at 

point p ( p = 0, 1, 2, …) in layer ��l  (��l =1, 2, 3). It is interesting to note that although the 

RTE assumes geometrical optics, it is valid in slab thickness which is comparable to the 

wavelength scale [3]. 

The relationship between the intensity and the spectral flux  F  [units of Watt /(m2µm)] is 

defined by 

F ± = I ±(s)cosθdΩ∫ . 

In our axial symmetry case, we can express the spectral flux as 
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F ± = I ±(s)cosθsinθ∫∫ dθdφ = 2π I ±(µ)∫ µdµ 

where φ is the azimuthal angle. The solar intensity is approximately collimated thus it can be 

written as 

Is(s) = Fsδ(s−ss)  

where Fs is the solar flux and δ(s−ss)  is the Dirac δ-function. The spectral flux of the 

incident intensity is thus 

F1
− = Is(s')µ'dω∫ = Fsµs. 

The reflected intensity on the front surface (from layer 塩 to layer 於), at point (0) is 

I0,1
+ (s) = RF12(s)Is(s) 

with a spectral flux 

F0,1
+ = I0,1

+ (s')µ'dΩ'∫ = RF12(ss)Fsµs. 

The intensity transmitted into the slab and reaching point (1) is 

I1,2
− (s) = TF12(s,ss)Is(ss)e

−α / µδ(s−s2) 

where TF12(s2,s1)  is the transmission coefficient on the front interface from layer 塩 in 

direction s1 to layer 於 in direction s2. The relation between s1 and s2 is given by Snell’s law. 

The attenuation of the beam intensity is addressed in the exponential term, α = 2
2π
λ

Im(n2)d , 

with a factor of 1/µ for the actual optical path length of the ray, Im(n2) is the imaginary part 

of the refractive index of layer 於, andλ  is the wavelength in vacuum. The reflected light at 

this point is 

I1,2
+ = ρL I1,2

− (s')µ'dΩ'∫ = ρLTF12(s2,ss)Fsµ2e
−α / µ2 . 

The intensity reaching point (2) is azimuthally symmetric given by 

I2,2
+ (µ) = I1,2

+ e−α / µ . 
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The spectral flux emerging from point (2) is therefore 

F2,1
+ = 2π TF 21(µ,µ')

0

1

∫ I2,2
+ (µ' )µ'dµ'= 2πI1,2

+ TF 21(µ,µ')
0

1

∫ e−α / µ 'µ'dµ'

F2,1
+ = 2πI1,2

+ ET

 

where the integral noted by ET  can be computed numerically. Similarly, the intensity at point 

(3) is 

I3,2
− (µ) = I1,2

+ RF 21(µ)e−2α / µ  

I3,2
+ = 2π ρL I3,2

− (µ')µ'dµ'
0

1

∫ = 2πI1,2
+ ρL RF 21(µ')

0

1

∫ e−2α / µ 'µ'dµ'

I3,2
+ = 2πI1,2

+ ρL ER

 

Here, the integral is noted by ER . Following the ray to point (4) the intensity is 

I4,2
+ (µ) = I3,2

+ e−α / µ  

and the associated spectral flux is 

F4,1
+ = 2π TF 21(µ,µ')

0

1

∫ I4,2
+ (µ')µ'dµ'

F4,1
+ = 2πI3,2

+ TF 21(µ,µ')
0

1

∫ e−α / µ 'µ'dµ'= 2πI3,2
+ ET

F4,1
+ = 2π 2πI1,2

+ ρL ER( )ET .

 

The reflected energy (spectral flux) from the slab is the sum of all the fluxes up-welling from 

the front interface, 

F1
+ = F0,1

+ + F2,1
+ + F4,1

+ + ...

F1
+ = F0,1

+ + F2,1
+ (1+ q+ q2 + ...)

F1
+ = F0,1

+ + F2,1
+

1−q

 

where  q = F4,1
+

F2,1
+ = 2πρL ER  . 

The total reflection from the slab is thus, 



Confidential 271

Rtotal = F1
+

F1
− = RF12(ss) + 2πρLTF12(s2,ss)e

−α / µ2 ET

1−2πρL ER

 

where the Fresnel reflections or transmissions are computed as an average for both 

polarizations. Similarly, we calculate the transmission from the slab as 

Ttotal = F3
−

F1
− =

πτLTF12(s2,ss)
µ2

µs

e−α / µ2

1−2πρL ER

 . 

In general, the absorption in the slab is A =1− Rtotal −Ttotal . However, we assume a perfect 

Lambertian reflection on the back reflector, i.e., all the incident light is reflected:  

2π ρLµdµ =1  
0

1

∫

ρL =1/π    (τ L = 0).

 

Thus, Ttotal = 0 and the absorption at each wavelength reduces to  

Aλ =1− Rtotal πρL =1
=1− RF12(ss) − 2TF12(s2,ss)e

−α / µ2 ET

1−2ER

, 

and the integrated absorption shown in the table is calculated by  

A =
Aλ Is(λ)dλ

400

1200

∫

Is(λ)dλ
400

1200

∫
. 
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