
HAL Id: tel-00697756
https://theses.hal.science/tel-00697756

Submitted on 16 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

XML manipulation by non-expert users
Gilbert Tekli

To cite this version:
Gilbert Tekli. XML manipulation by non-expert users. Other [cs.OH]. Université Jean Monnet -
Saint-Etienne, 2011. English. �NNT : 2011STET4013�. �tel-00697756�

https://theses.hal.science/tel-00697756
https://hal.archives-ouvertes.fr

Manipulation des Données XML par des

Utilisateurs Non-Experts

XML Manipulation by Non-Expert Users

Gilbert M. Tekli

Thèse de Doctorat en Informatique
Ph.D. Dissertation in Computer Science and Software Engineering

Membres du Jury (Examination Committee)

Rapporteurs (Reviewers):

Ahmed LBATH – U. J. Fourier, LIG, France

Nhan LE THANH – U. Nice Sophia-Antipolis, Laboratoire I3S, UMR 6070 CNRS, France

Examinateurs (Examiners):

Frederique LAFOREST – UJM, Télécom Saint-Etienne, France

Florence SEDES, U. Paul Sabatier, IRIT - UMR 5505, France

Co-directeur de Thèse (Co-Supervisor): Jacques FAYOLLE – UJM / Télécom Saint-Etienne, France

Co-directeur de Thèse (Co-Supervisor): Richard CHBEIR – U. Bourgogne, LE2I, France

Laboratoire LT2C-SATIN, Université Jean Monnet, Telecom St-Etienne, France

A man's reach should exceed his grasp, or what's a heaven for? - Robert Browning

I dedicate this work first of all to our lord Jesus Christ in whom I found eternal salvation and

without whom this work would have never come to be. I would also like to dedicate this

dissertation to mom and dad, to my brothers Antoun, Joe and Jimmy, and to my family

(grandparents, aunts, uncles, cousins and future parents in-law) in Lebanon and Australia,

whose unconditional love and unwavering support were crucial in achieving this work. I

dedicate this thesis as well to my fiancée Hanadi, my bestest of friends Lizzy, and my mentor

Antoun Daou whom without their perseverance I would not have lasted. I bestow this work in

particular to my aunt Yvonne, cousins Layal, Toni and Carla, our guardians in heaven.

Where there is no guidance, a people falls, but in an abundance of counselors there is
safety. - Proverbs 11:14

I also dedicate this work to my larger family, both in France and Lebanon, Dr. Chbeir and his

family, to my dear friends Taline Boyajian, Toufiq abilameh, Linda Eid, Maroun Khoury,

Charbel Mousallem, Christian Nseir, Said Sfeir and Wajdi Dandach, as well as to all the

members of the Jesus Sacred Heart Organization (JSHO), Shouf, Lebanon, for their

encouragement and firm support.

Acknowledgements

This dissertation would not have come to fruition without the support of many individuals and

institutions, and it is with pleasure that I acknowledge their efforts and contributions.

First, I would like to express my gratitude to my professors and academic supervisors Dr.

Richard Chbeir of the LE2I Laboratory UMR-CNRS, University of Dijon, and Dr. Jacques

Fayolle of the LT2C laboratory, Telecom St Etienne whose successful teachings have made this

dissertation possible.

I would like to express my greatest gratitude to Dr. Richard Chbeir, for his close

supervision and constant presence during the past three years. I thank him for his patience,

support, and generous guidance during the completion of my Doctorate.

Equally, I would like to thank my senior supervisor Dr. Jacques Fayolle, Co-director of

Telecom St Etienne, for his guidance and valuable advice during the thesis.

I would also like to thank Dr. Nhan LE THANH, Professor in the I3S Laboratory, University

Nice Sophia-Antipolis, France, as member of my examination committee, and Dr. Ahmed

LBATH, Professor in the LIG, U. J. Fourier, as member of the examination committee.

My thesis was financially supported by the Satin team from Telecom St Etienne, through a

three year doctoral fellowship, to whom I am grateful.

I would like to acknowledge the support of my colleagues in the Satin team and LE2I

laboratory, mainly Christophe Gravier, Michael Ates, Jeremy Lardon, Abakar Mahamat Ahmat,

Bechara Al Bouna, Elie Raad and Fekade Getahun, as well as the support of my friends, mainly

Christiane, Ali and Wajih.

Lastly and most importantly, my deepest gratitude and love goes to our Lord Jesus Christ

who filled me with strength, patience and wisdom to finish this work.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 3

Table of Contents

Chapter 1: Introduction ... 11

1.1 Introduction .. 13

1.2 Motivating Scenarios .. 14

1.2.1 Scenario 1: Information Gathering (Data Filtering) 14

1.2.2 Scenario 2: News Gathering and Report Generation 14

1.2.3 Scenario 3: Sensitive Data Obfuscation ... 15

1.2.4 Scenario 4: Messenger Malicious Content Removal 15

1.2.5 Scenario 5: Collaborative Presentation Modification 16

1.3 Related Work .. 17

1.4 Proposal and Main Contributions ... 18

1.4.1 Language Platform ... 18

1.4.2 Compiler ... 19

1.4.3 Runtime Environment .. 19

1.4.4 Prototype and Evaluation ... 19

1.5 Thesis Organization .. 19

Chapter 2: Related Works ... 21

2.1.1 Preliminaries and Analysis Criteria .. 25

2.1.2 Manipulated Data ... 26

2.1.3 Manipulation Operations .. 26

2.1.4 Interaction/Visualization .. 26

2.1.5 Derivability ... 27

2.2 XML Query and Transformation Visual Languages 29

2.2.1 XML-GL ... 31

2.2.2 Xing (XML in graphics) ... 32

2.2.3 XQBE (XML Query by Example) ... 33

2.2.4 VXT: Visual XML Transformation Language ... 35

2.2.5 Discussion ... 37

2.3 XML-oriented Mashups ... 39

2.3.1 YahooPipes ... 40

2.3.2 IBM Damia ... 43

2.3.3 Discussion ... 45

2.4 XML Manipulation Techniques ... 46

2.4.1 XML Security ... 47

4 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

2.4.2 XML Adaptation .. 53

2.4.3 Discussion ... 56

2.5 Dataflows .. 58

2.5.1 DFL: a Dataflow language based on petri nets and nested relational

calculus ... 58

2.5.2 The V language (Visual Dataflow language) ... 62

2.5.3 Taverna Workflows .. 63

2.5.4 Discussion ... 65

2.6 Discussion and Conclusion ... 66

Chapter 3: Background and Preliminaries .. 71

3.1 Introduction .. 74

3.2 Dataflows .. 74

3.2.1 Dataflow Execution Model ... 75

3.2.2 Early Dataflow Architectures ... 76

3.2.3 Early Dataflow Programming Languages .. 77

3.2.4 Recent Dataflow Programming Languages .. 79

3.3 Dataflow in a Nutshell .. 80

Chapter 4: XA2C Approach .. 83

4.1 Introduction .. 87

4.2 XA2C Overview ... 89

4.2.1 XA2C Properties .. 90

4.2.2 XA2C Architecture ... 91

4.3 XCDL Platform .. 92

4.3.1 Overview on Petri Nets and Visual Languages .. 93

4.3.2 XCDL Overview .. 96

4.3.3 I/O XCD-trees .. 98

4.3.4 XCDL Syntax and Semantics ... 103

4.3.5 XCDL Algebra Properties .. 115

4.3.6 Illustration ... 124

4.4 XA2C Compiler .. 126

4.4.1 Front-End .. 127

4.4.2 Middle-End ... 136

4.4.3 Back-End .. 138

4.5 XA2C Runtime Environment ... 141

4.5.1 Process Sequence Generator ... 143

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 5

4.6 Conclusion .. 155

Chapter 5: Prototype and Experiments ... 157

5.1 Introduction .. 161

5.2 XCDL Platform .. 161

5.2.1 Library .. 162

5.2.2 I/O XCD-trees .. 164

5.2.3 Composition editor ... 164

5.3 XCDL Compiler ... 166

5.4 Runtime Environment .. 167

5.5 Evaluation and Experiments ... 168

5.5.1 Evaluating XCDL, an XML-Oriented Visual Language 168

5.5.2 XCDL Evaluation Framework ... 168

5.5.3 XCDL Evaluation Case Study .. 171

5.5.4 Evaluation Results .. 176

5.5.5 Evaluating the Execution Step Discovery Algorithm 186

5.6 Conclusion .. 188

Chapter 6: Conclusion ... 191

6.1 Introduction .. 193

6.2 Contributions .. 193

6.2.1 The XA2C approach ... 194

6.2.2 The XCDL language ... 194

6.2.3 Prototype and Evaluation ... 195

6.3 Future Works .. 196

6.3.1 XCDL Extensibility .. 196

6.3.2 XCDL Derivability ... 197

6.3.3 Automated Composition ... 198

6.3.4 Technical enhancements ... 198

6.3.5 Better Assessment .. 198

References .. i

Appendixes .. ii

6 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

List of Figures

Chapter 1: Introduction

Figure 1: Thesis Structure .. 20

Chapter 2: Related Works

Figure 1: XML query visual languages .. 31

Figure 2: XML-GL query example .. 33

Figure 3: Xing, XML in graphics ... 34

Figure 4: Querying in XQBE ... 35

Figure 5: XML view as a treelist .. 36

Figure 6: XML view as a treemap .. 37

Figure 7: Creating a reply email template .. 38

Figure 8: YahooPipes snapshot .. 42

Figure 9: IBM Damia snapshot .. 45

Figure 10: UCONABC control process .. 50

Figure 11: DRM architecture .. 51

Figure 12: User queries defined with XPath expressions for the required filter and the

corresponding NFA .. 55

Figure 13: Example of nested iterations ... 61

Figure 14: Iterative constructs in the V language ... 64

Figure 15: Taverna workflows diagram ... 66

Chapter 3: Background and Preliminaries

Figure 1: Dataflow graph of a simple mathematic problem ... 75

Figure 2: Dataflow granularity curve from Sterling et al. .. 79

Chapter 4: XA2C approach

Figure 1: XA2C approach .. 89

Figure 2: Architecture of the XA2C framework .. 92

Figure 3: Example of a CP-Net .. 94

Figure 4: Several sample functions defined in XCDL ... 96

Figure 5: Functional composition in XCDL ... 97

Figure 6: XCDL compositions ... 98

Figure 7: OL-tree representation of an XML document .. 99

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 7

Figure 8: XCD-tree representing the XML document/DTD/XSD books 100

Figure 9: XCD-tree representing an XML fragment .. 101

Figure 10: XCDL overview .. 103

Figure 11: XCDL-GR components .. 103

Figure 12: Graphical representations of the XCDL core components (SD-function and

Sequence) .. 108

Figure 13: Compositions in XCDL .. 110

Figure 14: Transformation functions .. 115

Figure 15: Illustration of scenario 1 in XCDL ... 125

Figure 16: XA2C compiler architecture ... 127

Figure 17: Front-End data types ... 128

Figure 18: SD-function data type ... 129

Figure 19: Filter SD-function ... 131

Figure 20: Composition diagram data type .. 132

Figure 21: Composition instance .. 133

Figure 22: Composition schema compliant with XCGN ... 137

Figure 23: Optimized composition ... 138

Figure 24: CPN1, an example of a petri net resulting from scenario 1 in XCDL 143

Figure 25: ES discovery algorithm ... 146

Figure 26: CPN1, an example of a petri net resulting from scenario 1 in XCDL 148

Chapter 5: Prototype and Experiments

Figure 1: Prototype architecture ... 161

Figure 2: Library configuration forms .. 163

Figure 3: Insert SD-function graphical representation ... 164

Figure 4: Edit XCD-tree controllers ... 164

Figure 5 Composition editor ... 165

Figure 6: Detailed relational schemas of the internal data models 167

Figure 7: Evaluating the quality of language ... 169

Figure 8: Evaluating the quality of visualization .. 169

Figure 9: Evaluating the quality of interaction ... 170

Figure 10: Evaluating the quality of use ... 170

Figure 11: VPL evaluation model .. 171

Figure 12: Use case scenario 1 ... 172

Figure 13: Use case scenario 2 ... 173

Figure 14: Use case scenario 3 ... 173

Figure 15: Use case scenario 4 ... 173

8 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

Figure 16: Visualization attributes evaluation .. 177

Figure 17: Quality of visualization ... 178

Figure 18: Interaction attributes evaluation .. 179

Figure 19: Quality of interaction .. 180

Figure 20: Overall language usage attributes evaluation ... 181

Figure 21: Quality of use .. 183

Figure 22: Quality of language ... 184

Figure 23: Different composition scenarios ... 186

Figure 24: Runtime execution of the algorithm ... 187

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 9

List of Tables

Chapter 2: Related Works

Table 1: Analysis criteria .. 28

Table 2: VXT transformation rules .. 37

Table 3: Analysis regarding XML query visual languages .. 39

Table 4: Operator modules which transform and filter data flowing through the pipes

 .. 43

Table 5: String modules for manipulating and combining textual values 44

Table 6: Damia presentation operators ... 45

Table 7: Damia building operators ... 46

Table 8: Mashup tools analysis .. 47

Table 9: Scope and data types of existing alteration/adaptation control techniques 57

Table 10: Analysis regarding XML adaptation and security techniques 58

Table 11: Visual formalism of the V language .. 63

Table 12: DFVPL analysis ... 67

Table 13: Analysis of XML manipulation approaches ... 69

 Chapter 4: XA2C Approach

Table 1: Incidence Matrix of CP-Net in Figure 3 ... 95

Table 2: Different types of XCD-tree-nodes .. 102

Table 3: XCDL algebra properties ... 115

Table 4: Functions used in scenario 1 .. 126

Table 5: Filter SD-function translation from XCGN to objects 131

Table 6: Composition translation from XCGN to objects .. 135

Table 7: PP matrix of CPN1 .. 144

Table 8: Incidence Matrix of CPN1 .. 149

Table 9: Incidence Matrix after the 1
st
 iteration ... 150

Table 10: PP matrix after the 1
st
 iteration ... 150

Table 11: Incidence Matrix after the 2
nd

 iteration .. 151

Table 12: PP matrix after the 2
nd

 iteration .. 151

Table 13: Incidence Matrix after the 3
rd

 iteration ... 152

Table 14: PP matrix after the 3
rd

 iteration ... 152

Table 15: Incidence Matrix after the 4
th

 iteration ... 153

Table 16: PP matrix after 4
th

 iteration ... 153

10 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

Table 17: Incidence Matrix after 5
th

 iteration ... 154

Table 18: PP matrix after the 5
th

 iteration ... 154

Chapter 5: Prototype and Experiments

Table 1: Demographic distribution of the participants ... 172

Table 2: Efficiency evaluation of XCDL ... 182

Table 3: Open questions evaluation ... 185

Table 4: Runtime equations of cases a, b, c and d .. 188

CHAPTER 1

INTRODUCTION

[1-112]

Table of Contents

1.1 Introduction .. 13

1.2 Motivating Scenarios .. 14

1.2.1 Scenario 1: Information Gathering (Data Filtering) 14

1.2.2 Scenario 2: News Gathering and Report Generation 14

1.2.3 Scenario 3: Sensitive Data Obfuscation ... 15

1.2.4 Scenario 4: Messenger Malicious Content Removal 15

1.2.5 Scenario 5: Collaborative Presentation Modification 16

1.3 Related Work .. 17

1.4 Proposal and Main Contributions ... 18

1.4.1 Language Platform ... 18

1.4.2 Compiler ... 19

1.4.3 Runtime Environment .. 19

1.4.4 Prototype and Evaluation ... 19

1.5 Thesis Organization .. 19

12 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 1 - I n t r o d u c t i o n

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 13

C h a p t e r 1 - I n t r o d u c t i o n

1.1 Introduction

Communication is the key element for human evolution in all its domains: social,

medical, chemical, commercial, financial, etc. In the 21
st
 century, computers are

everywhere. They have invaded our lives and have become the main source of

communication, whether they are used in:

 Instant messaging (e.g., people chatting using instant messaging tools such as

Gtalk, Msn, Yahoo messenger, Jabber, etc.)

 Social networks (e.g., friends sharing information over Facebook, Flicker,

Linkedin, etc.)

 Scientific data management (e.g., colleagues sharing sensitive data such as

medical, financial and scientific records, etc.)

 Data protection (e.g., companies exchanging sensitive encrypted data).

XML (Extensible Markup Language), representing textual structured data, is

nowadays the dominant data type of communications in the world of computer science

whether these communications are text-based, audio-based, image-based or video-

based.

What is XML?

XML, defined by the W3C (World Wide Web Consortium) stands for eXtensible Markup

Language. Informally speaking, it is a human readable way of describing structured data. XML is

a markup language for documents containing structured information. Structured information

contains both data (textual) and meta-data (pictures, audio, etc.) A markup language is a

mechanism to identify structures in a document. The XML specification defines a standard way to

add markup to documents. XML is made up of tags enclosing text where each tag can have zero or

multiple attributes and zero or multiple sub elements such as:

<XML version=”1.0”>

<lib>

 <book id=”1”>

 <author>Charles Dickens</author>

 <title>A Christmas Carol</title>

 <pub_date> 17-12-1843</pub_date>

 </book>

 <book id=”2”>

 <author>James Joyce</author>

 <title>Ulysses</title>

 <pub_date> 2-2-1922</pub_date>

 </book>

</lib>

XML has a similar structure to HTML, nonetheless it does not withhold any presentation

information and its tags are not predefined. They are either defined by the user or from a user

based-grammar. XML was standardized mainly for data configuration and transfer over the web as

well as any other platform.

14 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 1 - I n t r o d u c t i o n

XML can be either, the carrier of the communicated data, which is the case of textual-

based data, or its descriptor, which is the case of audio [85], image [42] and video-

based [16] data. Thus, XML has become one of the essential elements in the

communication process in and between all areas/fields. Its use goes beyond computer

science. Therefore and as a consequence, there is a daily increasing need for

manipulating (controlling, altering, filtering, modifying, adapting, obfuscating, etc.)

XML-based data (e.g., XML documents or fragments) transferred between different

types of users, applications and systems, from different areas (e.g., business,

education, computer science, etc.) in different environments (e.g., desktops, laptops,

portable devices, etc.). Nowadays, all users, experts and non-experts, need to

manipulate their XML data. As the writer Marylin vos Savant had said:

“Email, instant messaging, and cell phones give us fabulous communication ability,

but because we live and work in our own little worlds, that communication is totally

disorganized.”

To better motivate our research, consider the following 5 additional scenarios

illustrating different XML data manipulation in different application domains.

1.2 Motivating Scenarios

Consider a media company running different departments locally and internationally

(e.g., Reporting department, Publishing department, Communication department, etc.).

Different manipulation/control scenarios are required either in a single department or

between departments.

1.2.1 Scenario 1: Information Gathering (Data Filtering)

A reporter working in the IT (information and technology) department is writing an

article on the guide books which have been published in the year 2001. The reporter

wishes to acquire all the information available in the company’s library on guide

books published in 2001.

To achieve this, one technique would be required:

(a) XML Filtering: Filter XML data based on XML value predicates („guide‟ and

„2001‟ in this case).

1.2.2 Scenario 2: News Gathering and Report Generation

A journalist working in the Reporting department is writing an article covering an

event. The journalist wishes to acquire all information being transmitted by different

media sources (television channels, radio channels, journals, etc.) in the form of RSS

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 15

C h a p t e r 1 - I n t r o d u c t i o n

feeds, filter out their content based on the topic (s)he is interested in, and then compare

the resulted feeds. Based on the comparison results, a report covering relevant facts of

the event will be generated.

To achieve this, several techniques would be required:

(a) XML Filtering: Filter XML data provided by several sources having the same

structure (RSS Schema) based on a specific topic

(b) XML Content Similarity: Compare the filtered XML data for content

similarities and retrieve significant data

(c) Automated XML generation: Generate an XML file reporting the filtered out

XML data.

1.2.3 Scenario 3: Sensitive Data Obfuscation

The Communication department posts information and news concerning its activities

in form of RSS feeds over the internet. The company wants to keep sensitive parts of

the information exclusive to its employees and partners. However, the information

needs to be partially available worldwide over the internet. In other words, sensitive

data in the RSS feeds are to be encrypted by the information provider (the

communication department), decrypted by the corresponding readers (employees and

partners), and obfuscated for the rest. The feeds should remain RSS standardized.

To achieve this, several techniques would be required:

(a) XML Granular Content Encryption and Signature:
 Encrypt and sign part of the data content transmitted in an XML file

without altering the structure. (e.g., <description>38SUJujdgxxvES

decided to sign the contract on the Wx34zs5sdZD.</description>)

 Decrypt the encrypted data by the corresponding users.

1.2.4 Scenario 4: Messenger Malicious Content Removal

The company runs a messenger service (e.g., Jabber messenger) on its intranet as a

communication system between its employees. The messenger communicates via

XML structured data. One of the employers wishes to control the communication

between his employees by removing all swear words automatically, replacing them

with a notification message and removing any sexual content.

To achieve this, several techniques would be required:

(a) XML Content Search: Detect the existence of malicious data in an XML data

I/O

16 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 1 - I n t r o d u c t i o n

(b) XML Content Adaptation: Based on the data type found, the malicious data

must be either replaced with a customized text message or the entire data

content must be deleted.

1.2.5 Scenario 5: Collaborative Presentation Modification

The departments communicate using collaborative presentations based on XML [42].

The employer wishes to put together and analyze the structure and content of the

SMIL documents so that he can ensure the presence of each department’s logo and

inserts the company’s logo on all slides without overlapping. The SMIL documents

provided from each department may have different structures.

To achieve this, several techniques would be required:

(a) XML Structural and Content Search: Search for sensitive data in the

structure and data content of XML data collected from different sources

(b) XML Content Modification: Ensures that each department‟s logo exists and

inserts the company‟s logo.

These scenarios present the following issues:

What are the main issues to be solved?

1. Data types

Data to be manipulated is XML-based

2. Manipulation operations

Different and separate techniques are required to fulfill the manipulation operations

which can vary between (but is not limited to):

o XML data selection/projection, insertion/removal and modification (e.g., XML

element retrieval, insertion, etc.)

o XML value selection/projection, insertion/removal and modification (e.g., XML

textual value extraction, deletion, etc.)

o XML syntax and semantic filtering

o XML data restructuring

o XML data protection (i.e., XML data obfuscation/omission).

3. User profiles

Users are not necessarily expert programmers (e.g., a journalist) and thus require

intuitive interfaces

4. Platforms

Data is being communicated over different environments and platforms (e.g., internet,

user machines and intranet).

Consequently, providing non-expert users with means to create and execute

manipulation operations over XML data is becoming more and more crucial. In the

literature, there has not been a unified solution addressing these matters

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 17

C h a p t e r 1 - I n t r o d u c t i o n

simultaneously. Nevertheless, several approaches exist addressing the “XML

manipulation by non-expert users” subject from separate point of views.

1.3 Related Work

Four main categories are provided: (i) XML-oriented Visual languages, (ii) Mahsups,

(iii) XML manipulation via security and adaptation techniques, and (vi) Dataflow

visual languages.

1. XML-oriented Visual Languages:

These languages have been developed mainly for non-expert users, allowing them to

visually query XML data. Several languages exist, such as XML-GL [22], Xing [40],

XQBE[15] and VXT[88], providing users with means to visually create their

selection/projection queries over XML-based data. While these languages target non-

expert users, they require knowledge in data querying and are limited in their

manipulation to XML data extraction and structural transformation and do not provide

XML data modification (i.e., insertion/update etc.) and/or value manipulations.

2. Mashups

Mashup tools have been developed recently to manipulate web data by non-expert

users. In this category, 2 tools in particular have been developed allowing the

manipulation of XML data, YahooPipes [73] and IBM Damia [93]. These tools are

based on the functional composition paradigm, considered to be the closest to the

natural human thinking process, where the user creates his manipulation operation by

simply linking different functions (modules) together. This is simpler than the query

paradigm and does not require any level of expertise. Nevertheless, these tools are

limited in their manipulations mainly to XML data/value extraction and

transformation. In addition, they are dedicated for web applications. Thus, they have

limited expressiveness and do not allow the manipulation of offline data (available on

user machines).

3. XML manipulation techniques

These techniques are defined originally to provide different methods for adapting

XML data to different platforms and systems, and to secure sensitive XML data by

means of encryption, access control, etc. In this category, different techniques have

been defined under the adaptation approach such as XML filtering [75], adaptation

[71, 84] and information extraction [23, 27], and under the security approach such as

XML access control [29], usage control [83], encryption and signature [58], firewalls

[109], etc. These techniques defined the main manipulation operations (i.e., data

18 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 1 - I n t r o d u c t i o n

selection/projection, filtering, modification, etc.). Nevertheless, these techniques are

defined each separately and require each a high level of expertise to implement it.

4. DataFlow Visual Programming Languages (DFVPL)

DataFlow Visual Programming Languages or DFVPLs are essentially developed for

non-expert users, mainly scientists, allowing them to manipulate scientific data by

means of visual compositions. They follow the Dataflow paradigm, mainly based on

functional composition. Different DFVPLs have been defined such as DFL [53], V

[10] and Taverna [80]. They provide a well-defined visual syntax allowing non-expert

users to create their manipulation operations. Nonetheless and to the best of our

knowledge, DFVPLs have not yet been adopted in XML data manipulations.

Since none of the existing approaches/techniques solves the issues (cf. page 16)

addressed here, our research mainly aims at defining a derivable XML-oriented

framework allowing non-expert users to write/draw and enforce XML manipulation

operations based on functional composition. The functions can:

 express any type of manipulations satisfying personal user requirements or

security requirements

 be provided in forms of local libraries (e.g., DLL files) or online services (e.g.,

web-services).

1.4 Proposal and Main Contributions

The framework, called XA2C (XML-oriented mAnipulAtion compositions), is defined

as a modular architecture with 3 main modules: (i) the language platform, (ii) the

compiler, and (iii) the runtime environment. A prototype, called X-Man, is developed

and used to assess our approach. The XA2C approach was published in [97].

1.4.1 Language Platform

The language platform defines formally a DFVPL for manipulating XML-based data.

The language, called XCDL (XML-oriented Composition Definition Language), is

defined mainly as a visual functional composition language based on the Dataflow

paradigm since it is the closest to the natural human thinking process [11, 60]. Its

syntax and semantics are based, on one hand, on Colored Petri Nets (CP-Nets) [61, 79]

which allow expressing complex compositions with true concurrency (combined serial

and parallel executions), and, on the other hand, on OLT (Ordered Labeled Trees)

allowing the formal representation of I/O XML-based data. As for the manipulation

operation composition, it is denoted by mapping the output of a function to the input

of another. The functions are identified in the language library as SD-functions

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 19

C h a p t e r 1 - I n t r o d u c t i o n

(System-Defined functions) from either offline libraries (i.e., DLL files) or online

libraries (i.e., web services). The language platform was published in [95].

1.4.2 Compiler

The compiler is formally defined as a middleware between the language platform and

the runtime environment. The compiler validates the compositions’ syntax, optimizes

(e.g., remove passive transitions) and translates them from high-level petri nets

(similar to high level programming languages) as defined by the XCDL syntax into

XML-based petri nets (similar to machine code) executable in the Runtime

Environment.

1.4.3 Runtime Environment

The Runtime Environment defines formally the execution environment for the

resulting compositions translated from high-level petri nets into XML-based petri nets.

The Runtime Environment contains 2 execution modes: (i) serial execution, executing

one function at a time and (ii) concurrent execution, executing functions in parallel

when all dependencies are resolved. The execution modes are generated from a

execution step discovery algorithm defined based on the petri nets firing rule [79] and

incidence matrix [79]. The algorithm generates from the XML-based petri net a serial

and concurrent execution sequences which can be respectively executed on a single

processor machine and a multi-processor machine depending on the machine type.

The Runtime Environment was published in [96].

1.4.4 Prototype and Evaluation

To validate and evaluate our approach, we developed a prototype, called X-Man

(XML mAnipulAtions) developed in visual studio. X-Man was tested in different case

studies with a number of participants in order to evaluate XCDL and assess its

usability/performance with regard to existing approaches such as YahooPipes [73] and

IBM Damia [93]. In addition, we tested the execution step discovery algorithm of X-

Man in different scenarios (i.e., serial, parallel and concurrent compositions).

1.5 Thesis Organization

The rest of the thesis is organized as shown in Figure 1. Chapter 2 defines the initial

criterions related to XML manipulation by both experts and non-experts, and discusses

existing approaches and techniques (i.e., XML visual languages, Mashups, XML

manipulation techniques and DFVPLs). Since our approach is DFVPL-based, Chapter

3 provides some background regarding Dataflows. In Chapter 4, we detail the XA2C

(XML mAnipulAtion composition framework) approach. Here, the XCDL

20 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 1 - I n t r o d u c t i o n

specifications and syntax are also defined along with the compiler and the runtime

environment. In Chapter 5, we present our prototype (X-Man) as well as a VPL (visual

programming language) evaluation framework that we designed. We also present here

the set of case studies conducted to evaluate the XA2C approach. Finally, Chapter 6

concludes this study and provides some future research tracks.

Figure 1: Thesis Structure

CHAPTER 2

RELATED WORKS

[1-112]

XML manipulations in multiple domains have been the focus of many researchers

over the years. Whether adapting XML data to different platforms, filtering it for data

management, encrypting it for protection purposes, signing and watermarking it for

privacy reasons or modifying/transforming it for user requirement satisfaction, XML

manipulation has become a wide phenomena due to the increasing use of XML.

Nowadays, since XML has become one of the most essential data types used in

computer communications, its widespread has crossed over the boundaries of

computer science domains and reached other areas such as medical (e.g., medical

record storage), mechanical (e.g., graphical map design), social (e.g., instant

messaging), commercial (e.g., publicity communication), financial (e.g., online

payment) and others. This has brought a new criterion into the XML manipulation

research field, XML manipulation by non-experts. In this chapter, we study and

analyze existent techniques for manipulating XML from a non-expert point of view

while relating it to traditional manipulation techniques defined in the literature such as

filtering, adaptation, data extraction, transformation, access control, encryption, etc.

XML manipulation techniques by non-experts were categorized under 3 major titles:

(i) XML-oriented visual languages dealing with XML data extraction and

transformations, (ii) Mashups tackling mainly XML restructuring with value

manipulations, and (iii) Dataflow visual programming languages targeting non-experts

and providing them with means to visually manipulate scientific data. A full analysis

was conducted which allowed existent approaches/techniques to be compared and

resulted in an overview of the current requirements of this subject.

22 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 23

C h a p t e r 2 - R e l a t e d W o r k s

Table of Contents

2.1 Introduction .. 25

2.1.1 Preliminaries and Analysis criteria ... 26

2.1.2 Manipulated data .. 27

2.1.3 Manipulation operations ... 27

2.1.4 Interaction/visualization ... 27

2.1.5 Derivability ... 28

2.2 XML Query AND TRANSFORMATION Visual Languages 30

2.2.1 XML-GL ... 32

2.2.2 Xing (XML in graphics) ... 33

2.2.3 XQBE (XML Query by Example) ... 34

2.2.4 VXT: Visual XML Transformation Language ... 36

2.2.5 Discussion ... 38

2.3 XML-oriented Mashups ... 40

2.3.1 YahooPipes ... 41

2.3.2 IBM Damia ... 44

2.3.3 Discussion ... 46

2.4 XML manipulation techniques ... 47

2.4.1 XML Security ... 48

2.4.1.1 Access Control .. 49

2.4.1.2 Usage Control ... 49

2.4.1.3 DRM and E-DRM .. 51

2.4.1.4 XML Proxy Servers and Firewalls ... 52

2.4.1.5 XML Encryption and Signature ... 53

2.4.2 XML Adaptation .. 54

2.4.2.1 XML Filtering .. 54

2.4.2.2 XML Adaptation .. 56

2.4.2.3 Information Extraction (IE) .. 56

2.4.3 Discussion ... 57

2.5 Dataflows .. 59

2.5.1 DFL: a Dataflow language based on petri nets and nested relational

calculus ... 59

2.5.2 The V language (Visual Dataflow language) ... 63

2.5.3 Taverna workflows ... 64

2.5.4 Discussion ... 66

2.6 Discussion and Conclusion ... 67

24 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 25

C h a p t e r 2 - R e l a t e d W o r k s

2.1 Introduction

The widespread of XML today has invaded the world of computers and is present now

in most of its fields (i.e., internet, networks, information systems, software and

operating systems). Furthermore XML has reached beyond the computer domain and

is being used to communicate crucial data in different areas such as e-commerce, data

communication, identification, information storage, instant messaging and others.

Therefore, due to the extensive use of textual information transmitted in form of XML

structured data, it is becoming essential to allow all kind of users to manipulate

corresponding XML data based on specific user requirements. As an example,

consider a journalist who works in a news company covering global events. The

journalist wishes to acquire all information being transmitted by different media

sources (television channels, radio channels, journals …) in the form of RSS feeds,

filter out their content, based on the topic (s)he is interested in, and then compare the

resulted feeds. Based on the comparison results, a report covering relevant facts of the

event needs to be generated.

In this first simple scenario, several separate techniques are required to generate the

manipulation operation required by the user such as XML filtering, string similarity

comparison and automated XML generation. In a second scenario, consider a

cardiologist who shares medical records of his patients with some of his colleagues

and wishes to omit personal information concerning his patients (i.e., name, social

security number, address, etc.). In this case, data omission is the manipulation required

which can be done via data encryption, removal, substitution or others depending on

the operations provided by the system and the requirements of the user (cardiologist in

this case).

Based on these scenarios: (i) we need a framework for creating XML-oriented

manipulation operations. It should contain all of the XML-oriented manipulation

techniques. To the best of our knowledge, such a framework does not exist so far, and

(ii) we need the framework to target non-expert users (e.g., scientists, businessmen,

novice programmers, etc.).

As discussed in these scenarios, (i) manipulated data is XML-based (ii) separate and

several manipulation techniques are required varying between simple data

selection/projection, filtering, data restructuring and securing data (i.e., XML filtering,

string similarity comparison, XML transformation and data obfuscation/omission,

watermarking, etc.), (iii) targeted users are non-expert programmers (e.g., journalist,

cardiologist), and (iv) data is circulating between different environments and platforms

(e.g., internet, local machines and local networks).

26 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

Even though, these issues are progressing more and more, in the literature, there has

not been a unified solution addressing these matters simultaneously. Nevertheless,

several approaches exist addressing the “XML manipulation by non-expert users”

subject from different perspectives such as:

(a) XML Querying Visual Languages developed mainly for non-expert users

allowing them to visually query XML data

(b) Mashup tools developed recently for non-expert users to manipulate web data

(c) XML security and adaptation techniques defined originally to provide

different techniques for adapting XML data to different platforms and systems,

and to secure sensitive XML data by means of encryption, access control, etc.

(d) DFVPLs (Dataflow Visual Programming Languages) essentially developed

for non-expert users, mainly scientists, allowing them to manipulate scientific

data by means of visual compositions.

In this study, we discuss these techniques and approaches regarding “XML

manipulation by non-expert users”. These approaches are analyzed based on different

criterions regarding the subject at hand such as expressiveness, visualization,

formalization, expertise and others. This paper summarizes their advantages and

drawbacks with regard to the issues mentioned here.

The rest of this chapter is organized as follows. In Section 1, we give some

preliminaries and analysis criteria. The second section presents different XML

Querying Visual Languages. Section 3 discusses the Mashup approach with different

XML-oriented Mashup tools. We present different XML security and adaptation

techniques in Section 4. Section 5 discusses the Dataflow paradigm and describes

different formalisms of DFVPL. And finally, we conclude and discuss the effect of

these approaches on the “XML manipulation by non-expert and expert users”

paradigm.

2.1.1 Preliminaries and Analysis Criteria

Being that the “XML manipulation by non-expert and expert users” subject has not

been discussed in the literature previously, no analysis criterions have been identified

so far concerning this matter. Therefore, we propose some analysis criteria allowing

the evaluation of existing approaches, defined in Table 1, regarding the issues

identified in the previous scenario. The evaluation criteria are grouped in 4 main

analysis categories identified with regard to the 4 main perspectives underlined by

“XML manipulation by non-expert users”: (i) manipulated data, (ii) manipulation

operations, (iii) interaction/visualization and (iv) derivability. These criteria are

discussed in the following section are detailed in Table 1.

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 27

C h a p t e r 2 - R e l a t e d W o r k s

2.1.2 Manipulated Data

The techniques/approaches need to be XML oriented, target online and offline data

(since the data can be user-defined or web-based). Thus, the data manipulated should

be XML-based whether it is located online or offline and the manipulated data is

identified as an analysis category with the following criteria (cf. Table 1):

 XML-based

 Web-based

 User-based

 Target offline data (stand alone architecture)

 Target online data (client server architecture)

2.1.3 Manipulation Operations

The expressiveness of a technique/approach is essential in order to define the

manipulation operation that can be provided, whether it is used for security or

adaptation purposes, such as XML data selection, projection, insertion and

modification. Provided that XML is structured and text-based, it is imperative to check

whether a technique/approach can manipulate textual values (XML textual values) as

well as structural values (XML elements and attributes). Therefore, the manipulation

operations are considered an analysis category which contains the following criterions

but is not limited to: (cf. Table 1)

 selection/filtering

 projection/transformation

 insertion/removal

 modification/protection/obfuscation

2.1.4 Interaction/Visualization

On one hand, seeing that the manipulations need to be created by non-expert

programmers, it is essential to denote if a technique/approach is defined with the aid of

visual representations and thus can be used by non-expert users (e.g., a journalist and a

Cardiologist),. On the other hand, it is also important to note if a technique/approach

requires a user to be an expert and/or have some knowledge in programming.

Allowing users to integrate their created manipulation operations and being able to

reuse them is an essential criterion as well as determining if a technique/approach is

based on the functional composition paradigm, as in manipulation operations are built

by simply mapping different modules/functions together which is the closest paradigm

to the human natural thinking process.

28 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

Thus human/machine interaction and system/data visualizations are defined as an

analysis category and regroup the following criteria: (cf. Table 1)

 Composition-based operations

 Programming knowledge

 Expertise

 Reusability

 Formalized/intuitive visual syntax

 Expressiveness

2.1.5 Derivability

Since the data can be used on different platforms and environments, it is important to

specify whether a technique/approach has been formally defined and can be re-

implemented, and if it is defined as a language allowing the users to write their

manipulation operations. Also, it is important to note the extensibility of a

technique/approach, if it can be extended with new features/operations. As a result, the

solutions need to be derivable and their architectures should be flexible and adaptable.

Consequently, we identify derivability as an analysis category containing the

following criterions: (cf. Table 1)

 Formalized approach/technique

 Formalized Language

 Extensibility

The defined analysis criterions are detailed in Table 1.

Table 1: Analysis criteria

Category Sub- category Criteria Description

Manipulated

Data

Type

XML-specific Specifies whether a technique or an

approach is oriented towards XML and

deals with the particularities of XML

structured data.

Web-based Determines if the data is web-based (e.g.,

HTML, RSS, etc.)

User-based Determines if the data is defined by the user

(e.g., scientific data, graphs, etc.)

Location

Target offline

data (stand

alone)

Denotes that a technique/approach can

manipulate offline data, from user

computers.

Target online

data

(client/server)

Determines if a technique/approach can

manipulate data from the internet, not stored

on the user machine.

Manipulation Structural Selection/filter Indicates that the technique/approach can

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 29

C h a p t e r 2 - R e l a t e d W o r k s

Operations ing provide XML data selection/extraction

Projection/tran

sformation

Indicates that the technique/approach can

provide XML data

restructuring/transformation.

Insertion/remo

val

Denotes that a technique/approach allows

for data removal or new data insertion.

Modification

(obfuscation)

Denotes that a technique/approach allows

for existing XML data to be

updated/modified. The modification can be

viewed as protection such as in the case of

data obfuscation.

Content

(textual)

Selection Indicates if a technique/approach can

implement selection queries over textual

data

Insertion/remo

val

determines whether a technique/approach

can implement insertion/deletion queries

over textual data

Textual

manipulations

Specifies whether a technique/approach can

provide manipulations over XML textual

values (e.g., update, obfuscation, signature,

etc.).

Interaction/

Visualization

User

Programming

background

Designates that a technique/approach

requires the user to have some knowledge in

programming in order to be able to define

the manipulation operations.

Expertise

required

Designates that a technique/approach

requires the user to be an expert in it in

order to be able to define the manipulation

operations.

System

Composition-

based

Denotes that a technique/approach is based

on simple composition which is the closest

paradigm to the human thinking.

Query-based Designates that a technique/approach

follows the query paradigm

Reusable Denotes that created manipulation

operations can be reused by others.

Formal Visual

syntax

Signifies that a technique/approach is

defined as a formal visual language and its

visual representation is well defined (visual

representations are essential for non-expert

users).

Expressiveness Defines the expressiveness power of a

technique/approach to manipulate XML

data.

30 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

Derivability

Formalism Specifies whether a technique/approach has

been formally defined and can be

implemented on different platforms.

Formal

language

Indicates that a technique/approach is

defined as formal language (formal

languages can be implemented to provide

the user with means to write their

manipulation operations).

Extensibility Designates that the technique/approach can

be extended with new features/operations.

The following sections will discuss different approaches and techniques related to

“XML manipulation by non-expert programmers”. To the best of our knowledge, so

far there has not been any unified approach resolving the issues discussed in this

paper, therefore each technique/approach is presented from its own angle and point of

view on the subject such as XML visual languages from the data extraction and

restructuring by non-experts point of view, Mashups from the web data manipulation

by non-experts point of view, XML security and adaptation techniques from the XML

manipulation operations point of view and DFVPL from the data manipulation by

non-experts point of view.

2.2 XML Query and Transformation Visual Languages

Since the standardization of XML and its widespread beyond the computer domain,

researchers have been trying to provide XML-oriented visual languages allowing the

querying of XML data since the existing textual languages (such as XQuery [104],

XPath [103] and XSLT [66]) are complicated and require a high level of expertise.

These visual languages are mainly extensions of existing approaches such as XML

query languages and transformation languages. Their main contribution is to allow

non-expert programmers to extract sensitive data from XML document and restructure

the output document.

As detailed in the subsections, several languages have been developed over the years

such as XML-GL [22], Xing [40], XQBE [15] and VXT [88]. On one hand, Xing and

XML-GL were developed before XQuery was standardized and took the SQL

querying approach by following the 3 main components of a regular query: selecting,

filtering and restructuring the data. XQBE was developed after XQuery has been

standardized and, therefore, is based on it. Its expressiveness is greater than previous

approaches whereas it allows the creation of complex queries containing aggregation

functions, ordering results and negation expressions. Nonetheless, its expressiveness is

still limited to data extraction and query reconstruction in XQuery and does not

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 31

C h a p t e r 2 - R e l a t e d W o r k s

include textual data manipulation operations. VXT, on the other hand, was based on

XSLT [102] which is mainly used for XML data restructuring without any textual data

manipulation, nor data insertion nor modification.

From the visual aspect, all of these approaches followed the same pattern. They divide

the workspace to 2 main sections, left and right. The left section constitutes the source

file with the extraction rules and the right section constitutes the result file. The query

is defined by mapping the element to be extracted from the left section to the element

to be constructed in the right section as shown in Figure 1.

Figure 1: XML query visual languages

The existing visual languages successfully bridged the gap between the complexities

of XML data querying and non-expert programmers. However, they were limited only

to data extraction, filtering and restructuring. Mainly they provided non-expert

programmers with the ability to create XML structural transformations along with data

extraction and filtering. They did not address the textual data manipulation issue and

XML data insertion and modification (cf. Table 1). The main languages are discussed

here below. The following query and XML document is used in the illustrations of the

XML query visual languages.

Query 1:

Select all the books from books.xml that have been published in the year 1983

XML document books.xml:

<XML version=1.0>

<lib>

 <book>

 <author>Charles Dickens</author>

 <title>A Christmas Carol</title>

 <pub_year>1983</pub_date>

 </book>

 <book>

 <author>James Joyce</author>

 <title>Ulysses</title>

32 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

 <pub_year>1922</pub_date>

<description>An epic Greek myth.</description>

 </book>

</lib>

2.2.1 XML-GL

XML-GL [22] was defined by the World Wide Web consortium (W3C) as a graphical

language for querying and restructuring an XML document. XML-GL represents

XML documents as labeled graphs [21] and thus aims at being user friendly.

An XML-GL graph is defined formally as a connected, paired and directed graph

defined by 2 sets N and A.

 N is a set of nodes representing XML components (e.g., Elements and

Attributes). These nodes are divided into 2 disjoint sets E and P. E is the set of

XML Elements represented by labeled rectangles, with their tag names as

labels. P is a set of properties defined by the sets At and C. At defines the set of

attribute nodes represented by solid circles and C is the set of content nodes

represented by hollow circles.

 A is a set of labeled arcs represented by directed arrows from n to n’, where n

is the source node and n’ the destination node.

As shown in Figure 2, a query, in XML-GL, is represented by 2 XML-GL labeled

graphs separated by a vertical line. The graph on the left side is the source graph and

the one on the right is the destination graph. The 2 graphs are linked together by an

explicit binding (the line linking a source node with a destination node). The source

graph represents the selections to be made from the source XML file. As for the

destination graph, it represents the output structure of the executed query. The binding

maps the source elements being queried to the output structure being projected.

In Figure 2, we can see an example of query 1 over books.xml where the user wishes

to extract all books published in 1983.

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 33

C h a p t e r 2 - R e l a t e d W o r k s

Figure 2: XML-GL query example

The XML-GL query paradigm is based on the “SELECT <attributes> FROM <tables>

WHERE <conditions>” query from the SQL language, and thus is limited to data

selections and projections.

XML-GL was one of the first graphical querying languages designed for XML

documents. The main purpose was to provide users, mainly non-expert programmers,

with the ability to restructure and extract sensitive data from XML files. Nonetheless,

due to the limitations provided by the existing querying languages at the time, in this

case SQL and in particular SQL selection queries, XML-GL‟s queries were very

limited. Like most existing XML-oriented visual languages, XML-GL lacks the ability

to manipulate string data, data insertion and update, and is limited to the

expressiveness of the query language it is based on. And since it uses the querying

paradigm, therefore, the task is rendered more difficult for non-expert programmers

seeing that they are required to have some knowledge in querying data.

2.2.2 Xing (XML in graphics)

Xing was conceived as a visual querying and restructuring language for XML

documents. Similar to XML-GL, Xing aims at extracting and restructuring XML data

by using selections and projections. The main difference between Xing and XML-GL

is the representation of the XML data by boxed patterns instead of graphs. As for the

rest, it follows the same querying paradigm of XML-GL where a query is represented

by 2 patterns, as depicted in Figure 3, one on the left for data selection, called the

argument pattern, and one on the right for data reconstruction, called the result pattern.

The argument and result patterns are linked together via a binding represented by an

arrow directed from left to right.

34 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

(a) Example of a Xing expression

(b) Example of a query in Xing

Figure 3: Xing, XML in graphics

In Xing, an element is represented as a hybrid textual/graphic expression in a box with

the element tag written above it (cf. Figure 3.a). Sub-elements and attributes are

written within the borders of the parent element box. Sub-elements are differentiated

from attributes by having their tag names written in bold as shown in Figure 3.a.

Simple elements without any sub-elements are represented textually with their tag

names in bold followed by their values in regular font separated by semi-colons. As

for the order of elements, it is represented by their vertical positions.

A simple selection query is represented by a document pattern written/drawn with a

Xing expression. As an example, we can see in Figure 3.b the query 1 written in Xing

for extracting all books published in 1983.

Xing was defined formally as a visual representation for querying XML data by

following the selection projection paradigm. It is defined conceptually based on the

SQL selection querying paradigm. Even though it is called XML in graphics,

nonetheless it is not based only on visual representations but on textual as well in

tabular forms. Similar to XML-GL, its expressiveness is limited seeing that it is based

on an existing language. In terms of XML data manipulation, it is only concerned with

data extraction and restructuring, no textual manipulations, insertions nor

modifications (e.g., updates) exist. Since Xing is based on the SQL paradigm, some

knowledge in querying is required.

2.2.3 XQBE (XML Query by Example)

XQBE [15] is an XML-oriented graphical query language defining formally a visual

syntax for querying XML data. The main objective of XQBE is being easy to use by

non-expert programmers and directly mappable to XQuery. Due to the complexities of

XQuery and the need for XQBE to be easy to use, the language was limited to simple

querying.

As shown in Figure 4, XQBE is divided to 2 directed graphs, the source graph (on the

left) and the construction graph (on the right) separated by a vertical line in the

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 35

C h a p t e r 2 - R e l a t e d W o r k s

middle. The source graph represents a pattern matching for the source XML file to be

queried and transformed into the structure represented by the construction graph.

Similar to XML-GL, XML elements are represented by rectangles labeled with the

elements‟ tag name. The attributes are represented as black circles with their names

drawn on the arc linking the element with its attributes. If an element contains

PCDATA, the data is represented by an empty circle with the data value drawn

underneath it. To represent the hierarchy between elements, directed arcs are used.

Figure 4: Querying in XQBE

The visual paradigm of XQBE was adopted so that the transformation may have a

natural reading order from left to right. Correspondence between elements is

represented by an explicit binding, as shown in Figure 4, between the source element

and its corresponding node in the construction graph.

The core primitive transformations provided by the language are selection, iteration

and projection which are denoted by the source graph, the binding edges and the

construction graph respectively. The selection process is executed by evaluating the

structure constraints shown in the source graph. The iteration takes place on the nodes

of the source graph mapped to the construction graph. Projections are executed with

respect to the constraints provided by the construction graph, which may remove or

insert new nodes to the queried source node. Figure 4 illustrates query 1 in XQBE.

The source graph defines the structure for matching all the book elements with an

attribute year equal to 1983. The result is an XML fragment satisfying the structure of

the construction graph with a root element lib, a child element book with its sub-

elements author, title, pub_year and description.

XQBE is a formal visual querying language with a formally defined graphical user

interface. Since XQBE is based on the syntax of XQuery, it therefore inherits its

36 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

limitations and complexities. On one hand, the manipulation is limited to selections

and projections which is useful for data transformation and extraction and does not

allow any data adaptation in terms of insertion and update or textual manipulations.

On the other hand, it inherits the expressiveness of XQuery but limits its use due to

visual constraints and can only be used for simple querying. And since it follows the

query paradigm, therefore programming knowledge in querying is required for all

users, experts and non-experts.

2.2.4 VXT: Visual XML Transformation Language

VXT is a visual language designed mainly to simplify XML transformations. XML

transformations are normally done using the XSLT language which is the most

expressive language for transforming XML files. Nonetheless, XSLT is a very

complicated language and requires a certain level of expertise in order to use it.

Therefore, Pietriga in [88], defined VXT as a visual language based on the XSLT

language by providing some graphical elements formally defined and constituting a

visual syntax which is translated into an XSLT syntax for rendering.

Figure 5: XML view as a treelist

VXT‟s main contribution was the adoption of treemaps [88] (cf. Figure 6) for XML

data representation instead of tree lists (cf. Figure 5).

Pietriga [88] argued that tree lists require a large amount of space and become difficult

to read as the XML document structure grows and becomes more complex. Therefore,

VXT adopts treemap views which represent XML documents in a more compact space

than tree list as shown in Figure 6. Nonetheless, treemaps require additional

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 37

C h a p t e r 2 - R e l a t e d W o r k s

computing when it comes to complex structures. A zoom function is required to view

complex sub-elements.

Figure 6: XML view as a treemap

Similarly to Xing, VXT uses pattern matching based on treemaps to draw selections

and projections. Based on a similar approach, VXT draws 2 patterns, a source pattern

and a construction pattern (destination pattern similar to the source and destination

graphs). But since VXT is based on XSLT, therefore, instead of binding nodes by a

simple mapping, VXT introduces 3 transformation rules as show in

Table 2.

Table 2: VXT transformation rules

Operation Image Input Output

Copy of node

(xsl:copy)

Element

Attribute

Text

Element

Attribute

Text

Text extraction

(xsl:value-of)

Element

Attribute

Text

Text

Text

Text

Apply rules

(xsl:apply-template)

Element

Attribute

Text

Unknown

Unknown

Unknown

The transformation rules are representations of transformation rules defined in XSLT

and thus, are related to structure transformations such as copying a node, extracting

textual values or applying a template to a fragment of XML. Figure 7 illustrates an

example of creating a reply email template using the 3 rules provided by VXT. This

transformation template copies the sender‟s and recipient values of the received email

respectively to the recipient and sender elements of the reply email. The subject and

textbody are transformed in the reply email based on predefined templates.

38 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

Figure 7: Creating a reply email template

To summarize, VXT tries to express selection projection queries similar to other XML

visual languages but from a different perspective. VXT dropped the idea of building

its visual syntax on a querying language and went towards a transformation language

instead, so that it can be more expressive by introducing some transformation rules.

VXT tackled the XML graphical representation issue and adopted the treemap view

approach which optimizes the space required for viewing XML structures.

Nevertheless and in terms of XML data manipulation, VXT remains limited to data

extraction and transformation. No textual manipulations nor data insertion nor update

are possible.

2.2.5 Discussion

After presenting the main XML visual languages (XML-GL, Xing, XQBE and VXT),

an analysis based on the criteria defined in Table 1 is shown in Table 3.

Based on existing querying and transformation languages, several XML-oriented

visual languages emerged and were formally defined. Their main goals were XML

data extraction and structural transformations. However, these languages were very

limited in their expressiveness mainly due to the graphical constraints and to the

languages they are based on.

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 39

C h a p t e r 2 - R e l a t e d W o r k s

Table 3: Analysis regarding XML query visual languages

Category
Sub-

category

Criteria
XML-GL Xing XQBE VXT

Manipulated

Data

Type

XML-specific Yes Yes Yes Yes

Web-based - - - -

User-based - - - -

Location

Target offline

data
Yes Yes Yes Yes

Target online

data
Yes Yes Yes Yes

Manipulation

Operations

Structural

Selection/

filtering
Yes Yes Yes Yes

Projection/

transformation
Yes Yes Yes Yes

Insertion/

removal
- - - -

Modification

(obfuscation)
- - - -

Content

(textual)

Selection - - - -

Insertion/

removal
- - - -

Textual

manipulations
- - - -

Interaction/

Visualization

User

Programming

knowledge

required

Yes Yes Yes Yes

Expertise

required
Low Low Low Low

System

Composition-

based
- - - -

Query-based Yes Yes Yes Yes

Reusable - - - -

Formal Visual

syntax
Yes Yes Yes Yes

Expressiveness Low Low Low Low

Derivability

Formalism Yes Yes Yes Yes

Formal

language
Yes Yes Yes Yes

Extensibility - - Limited -

As shown in Table 3, the languages did not provide means for textual manipulation,

data insertion nor data modification. Last but not least, even though the languages

40 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

targeted non-expert users, they required some knowledge in data querying and XML

data querying in particular.

2.3 XML-oriented Mashups

Mashup is an emerging web application development approach providing users with

means to gather and aggregate multiple services, executing each a specific task, and

thus creating a new service having its own specific task to perform. Mashup tools are

built on the idea of reusing and combining existing services by novice programmers,

therefore a graphical interface is generally offered to the user to express most

operations. Mashup applications [39, 74, 93] can include but are not limited to:

 Mashups with maps where the objective is to plot various data on a map like

Google Map

 Mashups using multimedia content imported from YouTube, Flicker, etc.

 Mashups using e-commerce services such as Amazon.com or Ebay are also

flourishing

 The most popular example of Mashups is the feeds Mashups, which subscribe

to regular data feeds, typically in RSS or ATOM format, to access data such as

news, blogs content, catalog updates, etc.

So far and to the best of our knowledge, the Mashup approach hasn‟t been formally

defined, nevertheless, based on the existing Mashup tools, a preliminary common

architecture is elaborated [73]. The Mashup architecture was defined from 3 main

criterions:

 Integration between the different types of data (data flow)

 Communication with the components and interaction among them

 Displaying of the content to the end-user.

Therefore, 3 main components were defined:

(a) Data Mediation Level: consists of all possible data manipulations (conversion,

filtering, format transformation, etc.) needed to integrate different data sources

where each manipulation could be done by analyzing both syntax and

semantics requirements.

(b) Process Mediation Level: defines the choreography between the involved

applications. The integration is done at the application layer and the composed

process is developed by combining functions, generally exposed by the

services through APIs.

(c) Presentation Level: is used to extract user information as well as to display

intermittent and final process information to the user. Results to the user can be

drawn as a simple HTML page, or a more complex web page developed with

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 41

C h a p t e r 2 - R e l a t e d W o r k s

Ajax, Java Script, etc. The languages used to implement user interface

components and the front-ends visualization support both server side and

client-side approaches. But due to the cross-domain problem, using server-side

approach such as ASP or JSP is inevitable.

Several Mashup tools have emerged such as YahooPipes [73], Damia [93], Popfly

[74], Apatar [73] and MashMaker [39].

 Damia and YahooPipes are mainly designed to manipulate Data Feeds such as

RSS feeds

 Popfly is used to visualize data associated to social networks such as Flicker

and Facebook. Popfly is a framework for creating web pages containing

dynamic and rich visualizations of structured data retrieved from the web

through REST web services

 Apatar helps users join and aggregate desktop data such as MySQL, Oracle, PS

SQL and others with the web through REST web services

 MashMaker is used for editing, querying and manipulating data from web

pages. Its goal is to suggest to the user some enhancements, if available, for the

visited web pages.

In this study, our interest mainly falls on YahooPipes and Damia seeing that they

allow manipulations of XML-based data and they are based on functional

compositions instead of the querying paradigm used by the other tools. As for the

other tools, on one hand, they are not XML-oriented and from the other hand, they are

based on the query paradigm which has been argued in the XML query visual

languages‟ section, that the tools following the query paradigm have limited

operations and are considered more complex for non programmers due to the fact that

some knowledge is required for querying data. Thus they are excluded from this study.

2.3.1 YahooPipes

YahooPipes [73] is initially a Mashup tool built on upon an RSS-based data model. Its

main purpose is to manipulate and aggregate data feeds from different web sources

(e.g., web feeds, Web pages, RSS feeds, etc.). YahooPipes allows users to create

manipulation operations by providing modules which can be mapped to one another

and thus creating a composed manipulation operation (cf. Figure 8).

42 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

Figure 8: YahooPipes snapshot

Each module performs one task. It can have several inputs, one output and is therefore

considered a function. YahooPipes offers a one-typed final output (named Pipe Output

in Figure 8), which is RSS-based. That is due to its RSS-based data model which can

only interpret RSS structured data. Nonetheless, the output can be visualized in

different forms or integrated into web pages.

A snapshot of YahooPipes is shown in Figure 8 with an illustration of Query 1. The

user filters all the books published in 1983. It is important to note that in order to

create this filter, the input XML document books.xml had to be converted manually as

shown in Figure 8 into an RSS structure before it is filtered and the output of this filter

(the module named Filter in Figure 8) is structured as RSS feeds.

YahooPipes mainly contains 2 sets of manipulation modules or functions named

operator and string modules which respectively target RSS structures and textual

values. These modules are discussed in Table 4 and

Table 5.

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 43

C h a p t e r 2 - R e l a t e d W o r k s

Table 4: Operator modules which transform and filter data flowing through the

pipes

Operator Modules Description

Count Counts the numbers of items in the inputted feed and sends the number

as an output

Create RSS Transforms feeds that are not structured as RSS data into RSS feeds by

allowing the user to map their element and rename them to RSS

elements

Filter Filters all items in the inputted feed based on specific criterions applied

to any of their sub-elements

Location Extractor Searches the input feeds for geographic data such as “Lat”, “Long”,

“Latitude” and “Longitude” and then adds a y:element with sub-

elements including these data

Loop Allows the use of sub-modules operating on all of the loop module input

items

Regex Searches and replaces sub-element data based on specific patterns

specified by the user in a regular expression

Rename Renames elements in the input feed

Reverse Reverses the order of the feeds by flipping the order of the items in it in

case the inputted feeds were initially ordered

Sort Sorts all the items in the input feed in an ascending or descending order

based on a specific sub-element (e.g. title)

Split Duplicates an input feed into 2 output feeds

Sub-Element Extracts sub-elements from a feed

Tail Limits the output to the last N items of the input feed, where N is

specified by the user

Truncate Limits the output to the First N items of the input feed, where N is

specified by the user

Union Merges up to 5 different items from separate feeds into a single list of

items.

Unique Deletes items containing similar strings

Web Service Transmits YahooPipes data to a user defined web service for external

treatment. The web service needs to have a specific input type, JSON

format and must have an RSS typed output

44 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

Table 5: String modules for manipulating and combining textual values

String Modules Description

String Builder Concatenates sub-strings to one string

Sub String Retrieves a sub-string defined by a starting index and the number of

characters to be retrieved

Term Extractor Extracts the most significant words in a String

Translate Translates a text from one language to another

String Regex Similar to the Regex module, except it runs on a specific string

String Replace Replaces a specific sub-string with another

String Tokenizer Splits a string into sub-strings delimited by a specific character

Yahoo! Shortcuts Categories if possible different words in a string

Private String Hides a string from other YahooPipes users

Although, YahooPipes is a Mashup tool allowing users to manipulate RSS feeds from

different web sources by visual compositions, it, nevertheless, has some limitations

when dealing with XML data:

 It is does not target all XML-based data

 Its input must be structured as a feed similar to RSS, Atom or RDF

 It supports only one structure, the RSS-based structure, since the internal data

model is based itself on the RSS structure.

 The output of a Yahoo Pipe is limited to an RSS-based structure

 The manipulation modules offered are RSS oriented and can only operate on

RSS structured XML data and are mainly based on restructuring.

To the best of our knowledge, no published work on the YahooPipes development

process have been recorded and thus we were unable to find neither any formalism nor

a language definition used in its conception. YahooPipes has been introduced only as a

web application with a visual editor.

2.3.2 IBM Damia

Similar to YahooPipes, Damia is a Mashup tool for manipulating web data and mainly

XML data. Its main objective is restructuring and transforming XML data. Its internal

data model is XML based and is not specific to any particular structure. The input and

output of Damia are XML structured data. Damia is a query composition tool with

several integrated operators. The operators can be categorized into “presentation

operators” and “building operators” as shown in Table 6 and Table 7. Presentation

operators are used for data restructuring. As for the building operators, they create new

data from data sources. New operators can be added to Damia by calling web services.

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 45

C h a p t e r 2 - R e l a t e d W o r k s

Figure 9: IBM Damia snapshot

Query 1 is illustrated in Damia as shown in Figure 10. It is interesting to note that the

source file had to be reconstructed before the filter could be applied. Table 6 and

Table 7 discuss the main operators embedded in Damia.

Table 6: Damia presentation operators

Presentation Operators Description

Transform Restructures the schema of the input XML data by removing and

adding elements and attributes. The output result is a transformation

of the initial input structure.

Sort Sorts feeds in an ascending or descending manner based on a specific

element or several.

Group Evaluates text values and removes redundancies if the evaluation

result is true.

46 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

Table 7: Damia building operators

Building operators Description

Merge Evaluates an expression between 2 elements of different input feeds.

If the expression evaluates to true, then the 2 items are merged into

one feed.

Union Combines the entries of 2 feeds. The entries of the first feed are all

added then those of the second feed.

Filter Selects items from a feed satisfying a specific condition.

Augment Combines 2 feeds into a single feed by evaluating an expression

linking the first feed into a variable defined from the second feed.

Although Damia is a visual XML restructuring tool and allows users to restructure

XML data, it has some limitations such as:

 the XML visualization is difficult to read since there is no separate

visualization of the Mashup‟s main input and output

 The XML data is visualized as dom trees and no structural schemas are given,

even though Damia is used mainly to restructure XML data

 The operators provided by Damia are mainly based on XQuery functions.

Damia has been published as a web application with a graphical user interface. To the

best of our knowledge, no formal definitions have been given nor have any languages

been defined. As for the manipulation operations, they are limited to the XML

structure and do not operate on any textual values.

2.3.3 Discussion

As presented in Table 8, Mashup tools share some main advantages and disadvantages

with regard to XML manipulations. The advantages are:

 The majority of tools have internal data models based on XML which makes

them more flexible to use even if more programming is required to implement

operations on them, especially for programmers [73]

 Mashups offer operators for data elaboration such as filtering and sorting

 Mashup tools are all extensible even though special requirements (e.g. specific

programming knowledge such as PHP) are necessary

The disadvantages are:

 They are mainly designed to handle Web data which can be a disadvantage

since by doing this, user‟s data, generally available on desktops cannot be

accessed and used.

 The offered operators are not easy to use, at least from a naive user point of

view

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 47

C h a p t e r 2 - R e l a t e d W o r k s

 The tools don‟t offer powerful expressiveness since they allow expressing only

simple operations.

 All the tools are supposed to target non-expert users, but a programming

knowledge is usually required. And so far, there is no tool that requires low or

no programming effort which is necessary to claim that the tools target end-

users.

An analysis on both YahooPipes and IBM Damia are given in Table 8.

Table 8: Mashup tools analysis

Category
Sub-

category

Criteria
YahooPipes IBM Damia

Manipulated

Data

Type

XML-specific - Yes

Web-based Yes Yes

User-based - -

Location
Target offline data - -

Target online data Yes Yes

Manipulation

Operations

Structural

Selection/filtering Yes Yes

Projection/transformation Yes Yes

Insertion/removal Yes Yes

Modification(obfuscation) - -

Content

(textual)

Selection - -

Insertion/removal Yes Yes

Textual manipulations - -

Interaction/

Visualization

User

Programming knowledge

required
Yes Yes

Expertise required - -

System

Composition-based Yes Yes

Query-based - -

Reusable - -

Formal Visual syntax - -

Expressiveness Limited Limited

Derivability

Formalism - -

Formal language - -

Extensibility Limited Limited

2.4 XML Manipulation Techniques

So far, different visual tools and languages for manipulating XML data by non experts

have been discussed. Whether they are visual languages or Mashup tools, they share a

common key feature crucial for manipulating XML, their expressiveness. The level of

expressiveness defines their capabilities to allow non experts to create complex

48 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

manipulation operations. Therefore, it is essential to study existing XML manipulation

techniques.

In the literature, XML manipulations have emerged in different application domains

(i.e., access control, filtering, encryption etc.) mainly for security and

alteration/adaptation purposes satisfying user requirements. Over the years, different

approaches and techniques have emerged either for protecting or altering/adapting

sensitive data:

 Security-based

o Access Control: for controlling the access to sensitive data

o Usage Control: for controlling the on-going access to sensitive data

o DRM/E-DRM (Digital Rights Management/Enterprise-DRM): for

managing and enforcing digital rights over data

o Proxies and firewalls: for protecting information systems from external

threats

o Encryption and signatures: for encrypting and decrypting sensitive data.

 Adaptation-based

o Filtering: for filtering and selecting data satisfying some criteria

o Adaptation: for modifying and adapting data to different

environment/platforms

o Information Extraction: for extracting information from different web

sources.

These techniques have been defined targeting different types of data, not necessarily

XML-based (i.e., textual, audio, visual, etc.). After the standardization of XML, they

were adapted to deal with it. While they require separately high level of expertise and

cannot be implemented by non-expert users, it is important to study them individually

in order to assess their expressiveness even though they can be defined nowadays in

online libraries as web services or offline libraries as DLLs or Jar Files where they can

be called upon by non-experts.

In the following section, we will discuss different XML security and adaptation

techniques.

2.4.1 XML Security

Since 1984, several approaches have been discussed and developed for controlling and

securing resources such as information systems, applications and files. In particular,

these approaches were adapted to secure XML files and data. They are mainly divided

into 5 main categories

 Access Control

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 49

C h a p t e r 2 - R e l a t e d W o r k s

 Usage Control

 DRM/E-DRM

 Proxies and Firewalls

 Encryption and digital signatures.

These techniques can be used to protect XML-based data and some of them such as

Access Control and Encryption have been adapted specifically to XML. In the

following sections we‟ll discuss each of these techniques separately and discuss their

relatedness towards XML.

2.4.1.1 Access Control

Access control is mainly used to grant or deny access to data. They filter the data upon

access. Several access control models have been proposed in the literature such as I-

BAC [49], R-BAC [41], T-BAC [98] and Or-BAC [64]. These are conceptual models

referring at creating access rules. The appliance of all of these models results in an

access control matrix granting or denying rights to subjects over objects.

To identify these entities (subjects and objects) and the access control matrix, a

security model is required. This model should tolerate a wide structured SP (security

policy) allowing its decomposition and facilitating its definition. It should also be able

to express not only authorizations but interdictions (denials) and obligations while

accessing the data in an information system. Finally, it should express rules submitted

to the conditions of the information system environment.

In the XML field, access control has been adapted to XML from a fine grained

perspective [29, 43, 72, 75], granting access to XML values, elements or attributes.

XML-oriented access control models are applicable to XML fragments and XML

files. The end goal of using access control with XML remained the same, to grant or

deny permission over read or update (e.g. insert, delete, replace and rename)

operations. The control is on the permission level over the XML data and does not

interfere with the data itself. Nevertheless, access control can be viewed sometimes as

a filtering or selection approach (cf. section XML filtering) providing XML data

selection without any modifications. To increase the expressiveness of access control,

the usage control concept has emerged as a dynamic access control [83].

2.4.1.2 Usage Control

Usage Control (UC) is a new emerging concept in the field of access control, trust

management and digital rights management such as TUCON and UCONABC. The

TUCON [112], even though called Time Usage Control, is based on access control

models. It extends access control by defining usage periods of time and maximum

50 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

times a privilege can be exercised. Therefore it is still an access control model

granting or denying rights to a resource in full. It can be applied to XML data but in

the same scope as traditional access control models.

UCONABC [83] is a generalized dynamic access control model where the SP is being

evaluated before (pre), during (ongoing) and after (post) accessing the information. It

is a generalization of access control covering authorizations, obligations, conditions,

ongoing control and attributes mutability proposed by Sandhu and Park in [83].

Sandhu and Park have addressed usage control from an access control point of view.

Figure 10 represents the Control process of UCONABC

Figure 10: UCONABC Control Process

As depicted in Figure 10, when a subject tries to access information, it sends a request

query (Request) to the reference monitor which will grant or deny access due to the

query‟s legitimacy. This action in a traditional access control normally takes place

before (pre) any access has been permitted. With the UCONABC this action is evaluated

before (pre) any access by granting permission (Permit) or a rejection (Deny). It is also

evaluated during (ongoing) access by either continuing the access (Access) or

revoking it (Revoke) till an end query (End) is returned.

UCONABC is an attribute based model, the properties of its entities (subjects and

objects) are represented by attributes. The dynamic change in the SP is translated by a

modification in the value of the attributes instead of the entities themselves.

The attributes are called mutable attributes. They can be modified in all three stages,

pre, ongoing and post.

The SP of the UCONABC is represented by ternary relations between its entities. These

relations are divided into 3 categories:

 Authorizations (permissions): they describe the conditions under which the

subject can access the information represented by an object

 Obligations: they verify that all conditions have been met when a subject is

requesting access and during it

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 51

C h a p t e r 2 - R e l a t e d W o r k s

 Conditions: they rely on the system‟s environment. They are different from

obligations because they do not rely on the attribute of the subjects and objects.

To summarize, Usage Control is a generalization of access control to render it more

dynamic, therefore it resolves to similar but more developed objectives as access

controls, which means the control remains on the permission level but is rendered

more dynamic. With regard to XML, any existing XML-oriented access control model

can be rendered dynamic and thus, viewed as XML-oriented usage control providing

pre-access and post-access filtering of XML data. While it is clear that implementing a

usage control model requires some level of expertise, it would be interesting to

provide non-experts with usage control pre-defined functions via web services or

offline functions which can be used in any visual composition platform.

2.4.1.3 DRM and E-DRM

DRM concept originated from operating system‟s file protection mechanism. In the

DRM field, encryption and watermarking are manipulation operations widely used to

protect sensitive content (including XML-based data).

DRM [110] is essentially defined as a modular architecture for modeling access and

usage control in the application level. The DRM architecture, as shown in Figure 11, is

composed of 3 main components:

 Content Server: contains the content repository and a DRM Packager which

combines sensitive contents and their corresponding rights.

 License Server: contains rights, encryption keys, IDs and generates licenses for

the corresponding IDs.

 DRM Client: contains the DRM Controller which associates the content to the

license.

Figure 11: DRM Architecture

The DRM field is divided into two sub categories:

52 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

(a) Systems for distributing content to consumers in a controlled way against

piracy known as DRM

(b) Systems for managing access to sensitive document content within an

enterprise known as E-DRM (Enterprise Digital Rights Management) aiming

at reducing information theft, especially by insiders.

Both DRM and E-DRM systems should generally consider the following principles:

 Secure content by distributing encrypted files or files‟ metadata that links to

related files on a protected repository

 Control and audit access to protected content (edit, copy, paste…)

 Introduce minimum changes to enterprise business process and existing user

applications

 Enable external users like business partners to access rights-protected content

 Secure the license server or policy server against attack or system failure.

E-DRM remains an ambiguous concept, not following any specific formalism or

definition. E-DRM systems are used as distributed architectures for implementing

access and usage control. They do not provide a means to describe controls; they

define an architecture, not a control model. The scope of DRM is generally

multimedia files not XML files and as for E-DRM systems, although, they remain

ambiguous in their definition, they can be used for XML document protection against

theft and can apply some manipulations in terms of data obfuscation and signature.

Even though, XML is not the main target of DRM and E-DRM systems, but since

XML has reached the multimedia area and the communication (textual, audio or

visual) can be expressed in XML, thus DRM/E-DRM systems can be used for

managing rights to different XML files, mainly multimedia-typed files.

2.4.1.4 XML Proxy Servers and Firewalls

A proxy server is a computer system or an application that treats client‟s requests by

forwarding them to the proper servers.

(a) The client sends a request to use some service (e.g. to view a web page, to use

a web service etc...).

(b) The proxy server sends a request to the required server on behalf of the client.

The proxy server can manipulate the data by altering the client‟s request or the

server‟s response if needed. Several types of proxy servers exist such as Caching

proxy [87], Web proxy [87], Content Filtering Web Proxy [111], Anonymizing proxy

[108] and Reverse Proxy [52].

They are used to intercept outgoing and incoming data and can be designed for XML

data. XML proxies provide protection needed against malformed messages and

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 53

C h a p t e r 2 - R e l a t e d W o r k s

malicious content in XML documents. Depending on their degree of AI (artificial

intelligence), they can alter this data for different circumstances such as extract or

filter sensitive data. A proxy is a system or application; it does not specify a

conceptual model for describing data flow content control and specifically a model for

XML data manipulation. And writing Proxy rules can be complicated and normally

requires a high level of expertise.

XML firewalls are divided into two approaches, hardware-based and software-based.

Both approaches have the same goal, to protect and prevent attacks to a system from

malformed and malicious XML content. Basically an XML firewall comes as a part of

an overall XML proxy server. Several solutions have been developed each with

specific scopes and objectives such as Xwall [51] and DataPowerXS40 [59]. So far,

XML firewalls' aim has been Web services such as in [109]. They are based on SOAP

filtering, XML encryption, digital signatures, schema validation and access control.

There have been no standard descriptions on how XML firewalls work so far and they

are used to manipulate XML data for protection purposes mainly. Similar to all XML

security approaches, they require a high level of expertise.

To summarize, both XML firewalls and proxy servers are means to protect a system

from malicious content. They can use different techniques, such as filtering, data

extraction, removal and others, depending on their AI degree. Nevertheless, there

development process is complex and requires high level of expertise and cannot be

accomplished by non-experts.

2.4.1.5 XML Encryption and Signature

As the number of applications increased, the usage of XML increased to ensure

communications between different applications and platforms. To secure these

communications and make sure that the data integrity remains intact between end

users, XML encryption and digital signatures were introduced:

 Encryption is used to make sure that data can only be viewed by the

corresponding users (applications or humans) and prevent its theft.

 Digital signatures are used to authenticate the identity of the XML data

provider and ensure the integrity of the original content of the document.

XML encryption and signature were standardized by the W3C (World Wide Web

Consortium). Other formalizations were established allowing both encryption and

signature in the same language such as in[58].

Encryption and signature are applicable on 2 levels:

 Document: allows the encryption of the whole document as an entity

 Element-wise: allows 3 different levels of granulation:

54 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

◦ whole element

◦ attribute of an element

◦ whole content of an element

XML encryption and signature constitute a small part of XML control (manipulation)

as viewed in our research. It can be categorized in either the security field of control or

the modification/adaption field of control depending on its use. This approach still

lacks the ability to allow a granular encryption or signature of the element content data

(e.g., <description> President #a0sH2XsA had an urgent meeting with Mr

#sZ4edErZ.</description>).

While implementing encryption techniques over XML data is complex for non-

experts, providing some online or offline encryption/decryption functions can be very

usefull for non-experts since, as mentioned earlier, existing composition platforms

(i.e., mashup tools) can now call web services or offline functions.

2.4.2 XML Adaptation

The alteration/adaptation field of control resides in modifying and adapting the XML

data to satisfy the needs of a user(s). Researchers have been developing different

solutions with separate scopes such as filtering, adaptation and information extraction.

While these techniques may be complex to implement by non-experts, they define

some of the main manipulation operations required which can be used by non-experts

if implemented as online or offline functions.

2.4.2.1 XML Filtering

XML filtering has been one of the main fields that researchers have been developing

in order to apply some control and adaptation of XML data to user specifications. In

the literature, XML filtering was seen from 2 sides: (i) security [75] and (ii) data

querying [19]. From one side, it was considered as an approach to enforce access

control over XML data, from another side, it was considered an approach for XML

data selection or extraction. Technically speaking, XML filtering can be described as:

“Given a set of twig patterns, retrieve the data corresponding to these patterns in an

input XML document or data”. XML filtering results in a granular selection of XML

data. Its granularity degree depends on the filter applied. Several filtering techniques

have been developed based on either XPath expressions or a subset of XQuery. Some

of the main techniques developed are XFilter [3], YFilter [38], QFilter [75], PFilter

[18] and AFilter [19]. These techniques have been evolving using mainly DFA

(deterministic finite automata) and NFA (non-deterministic finite automata) for either

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 55

C h a p t e r 2 - R e l a t e d W o r k s

structural matching or value based-predicates. The supported range of value based

predicates has evolved from equality operators to non equality operators, Boolean

operators (AND/OR) and finally the special matching operator “%” processed

similarly as the LIKE operator in SQL. Basically, the XML filters are based on DFA

or NFA diagrams generated from XQueries or XPath expressions defining the twig

patterns specified by users in order to find specific XML data corresponding to users‟

criteria as shown in the example depicted in Figure 12.

In Figure 12, an XML data filter is defined based on XPath expressions. In this

example, we can see 8 rules defined in XPath and their translation to an NFA diagram

defining the possible patterns for the XML data selection.

The rules can be viewed as access control rules or as selection patterns and the NFA

diagram as the execution model for enforcing these rules or querying XML data based

on the selection patterns.

Figure 12: User queries defined with XPath expressions for the required filter

and the corresponding NFA

XML filtering is considered a selection tool and does not involve XML data

modification. Therefore, it can be considered as part of the XML alteration/adaptation

field responding to selection criterions with no XML data modification attached. Even

though, their appliance may require high level of expertise, providing some pre-

defined filtering functions can be very useful for non-expert users.

56 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

2.4.2.2 XML Adaptation

Several researches have been conducted concerning XML content adaptation [68, 99],

mostly on XML document such as XHTML [85], SMIL [16] and SVG [42] containing

multimedia content. The main goal of XML adaptation has been so far to adapt

multimedia content such as images, audio and video sequences to be viewed on

appropriate terminals (e.g., portable multimedia devices, mobile phones and HD

displays). The adaptations are made mostly in terms of resolutions, aspect ratios and

size [71, 84] in correspondence to the terminals displaying the data and their

specifications (e.g., viewing an XHTML-based web page on a PDA requires its

pictures and text size to be reduced and adapted to the PDA‟s resolution). The

adaptation mechanism in multimedia content adaptation is normally based on the

properties of the document containing the data which has a well know structure and is

well defined to contain multimedia data such as in SMIL or SVG [71, 84]. There were

some researches conducted on adapting XML documents and transforming them to

other XML documents to satisfy a certain objective based on the XSLT standard

[102]. Due to the complexity found in XSLT, this approach was categorized by users

as complicated and limited to the actions allowed by the XSLT language. While these

adaptations are complex to implement or develop, providing different adaptation

functions which can be called upon from XML-oriented composition tools such as

YahooPipes and IBM Damia would be interesting.

2.4.2.3 Information Extraction (IE)

Data extraction and modification are essential aspects in XML data manipulation.

Several solutions exist for data extraction [2, 23, 27] or IE (information extraction)

based on the usage of wrappers. These solutions are mainly aiming at IE from web

pages and are not directly related to XML files. The extracted data is mainly stored in

XML files (e.g., extracting the results of a search query on Google and storing the

resulting page name, description and link in a structured XML file). Some of them are

IEPAD [23], Nodose [2] and ROADRUNNER [27]. These approaches mainly rely on

visual info which is either defined by the browser or the user (i.e., data location on the

screen). No standardized approach exists yet. IE solutions are viewed as applications

or tools which mainly learn from examples given by the user in order to generate IE

rules. Most of these approaches view web pages as trees rendering the data extraction

process faster. Nevertheless, these approaches are inadequate or insufficient for XML

manipulation due to their lack of formalism and being that they are not used on XML

files but web pages instead and are limited to the tools used for data transformation

which are user based and do not follow any existing models or standards.

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 57

C h a p t e r 2 - R e l a t e d W o r k s

2.4.3 Discussion

The following table regroups the different scopes and data types targeted by existing

XML security and adaptation techniques. Table 9 shows different XML manipulation

techniques used for protection or adaptation purposes. It is noticeable that some of

these techniques do not target all types of XML data, nevertheless they constitute the

main manipulation operations currently existent.

Table 9: Scope and data types of existing alteration/adaptation control techniques

 Scope XML data type

AC (Access Control) Granting or denying access to

XML content

All XML data types

UC (Usage Control) Granting or denying access to

sensitive content continuously

No XML appliance yet

DRM/

E-DRM

Applying AC or UC over a

document based on user policies

XML documents

Proxies/

Firewall

Manipulating XML data based

on pre-defined rules

All XML data types

Encryption Obfuscating XML data All XML data types

Filtering Filtering based granular

selection of XML data

All XML data types

Adaptation Modifying XML data content to

render it conform to an alien

system

Mainly multimedia XML data

IE (Information extraction) Extracting Data based on user-

defined rules and storage in a

DB, XML files or others

Mainly Web Pages

58 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

Table 10 shows an analysis of the adaptation and security techniques with regard to

the criteria identified in this study.

Table 10: Analysis regarding XML adaptation and security techniques

Category
Sub-

category
Criteria AC UC DRM Firewall Encryption Filtering Adaptation IE

Manipulated

Data

Type

XML-specific Yes Yes Yes Yes Yes Yes Depends -

Web-based - - - - - - - Yes

User-based - - - - - - - -

Location

Target offline

data
Yes Yes Yes Yes Yes Yes Yes -

Target online

data
Yes Yes Yes Yes Yes Yes Yes Yes

Manipulation

Operations

Structural

Selection/

filtering
Yes Yes - - - Yes - Yes

Projection/

transformation
- - - - - Yes - Yes

Insertion/

removal
- - Yes Yes - - - -

Modification

(obfuscation)
- - - - Yes - Yes -

Content

(textual)

Selection - - - - - - - -

Insertion/

removal
- - - - - - - -

Textual

manipulations
- - - - - - - -

Interaction/

Visualization

User

Programming

knowledge

required

Yes Yes Yes Yes Yes Yes Yes Yes

Expertise

required
High High High High High High High High

System

Composition-

based
- - - - - - - -

Query-based - - - - - - - -

Reusable Yes Yes Yes Yes Yes Yes Yes Yes

Formal Visual

syntax
- - - - - - - -

Expressiveness High High High High High High High High

Derivability

Formalism Yes Yes Yes Yes Yes Yes Yes -

Formal

language
- - - - - - - -

Extensibility Yes Yes Yes Yes Yes Yes Yes Yes

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 59

C h a p t e r 2 - R e l a t e d W o r k s

While several techniques have been developed and formally defined over the years,

nevertheless all these techniques are separate from each other, target each a specific

manipulation operation concerning XML and require high level of expertise for their

implementations. Now that online and offline libraries are widely spreading over the

computer domain, providing online and offline manipulation functions would render

the XML manipulation task by non-experts simpler and more agile.

2.5 Dataflows

Since the early developments of computers in the 1940s and up till now, researchers

and developers have been trying to simplify the programming paradigm in order to

allow non-expert-programmers to develop their own applications each in his own area.

Programming languages have evolved over the years from low-level languages (i.e.,

assembly languages) to high-level languages (i.e., Fortran, Java, C++, etc.), domain-

specific textual languages (i.e., VHDL for electronic/logic programming) and domain-

specific visual programming languages, also known as VPL. As the technology

progressed and VPLs surfaced, the gap between non-expert and expert-programmers

began to shrink. VPLs are divided into 2 main categories, visual querying languages

and Dataflow visual programming languages also known as visual functional

composition languages. Each of these languages followed respectively the query

paradigm (cf. section 2.2) and the Dataflow paradigm (i.e., functional compositions).

While on one hand, the Query paradigm required users to have some knowledge in

query languages, the Dataflow paradigm, on the other hand, is closer to the natural

human thinking process. It is mainly based on simple mapping (linking) of different

modules together. Although and to the best of our knowledge, there has been no

XML-oriented DFVPL developed, DFVPLs have been designed and formally defined

specifically for data manipulations by non-expert users for e-science data, such as in

DFL (Dataflow Language), V (Visual Dataflow language) and Taverna discussed here

below.

2.5.1 DFL: a Dataflow language based on petri nets and nested

relational calculus

Hidders et al. [53, 54] argued in their papers that since Dataflow languages have not

been formally defined and published yet, it is essential that formal descriptions and

definitions should be given and published. This will ease and allow for precise

analysis and understanding of Dataflows [101] which is essential in the Dataflow

research area for:

 Debugging by the authors

60 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

 Effective and objective assessment of their merit by researchers

 Clear understanding by the readers

Most importantly, from the research perspective, giving formal definitions and

semantics provide the ability to perform formal analysis and automated optimization

and verification of the behavior of the program. Therefore, DFL [53] was mainly

designed as a well defined formalism for representing Dataflows.

In DFL, static data is represented by tokens, and operations on the tokens‟ content are

performed by transitions. Conditions can be defined in edges which will allow only

tokens with values satisfying theses conditions to pass. DFL also provides additional

annotations to Dataflows, the unnest/nest annotations which allow to ungroup and

group tokens and thus providing “for loops”.

DFL is defined based on petri nets as presented in Figure 13 with the addition of labels

to transitions giving the computation done by them and the association of NRC (nested

relational calculus) [17] values with the tokens to represent the manipulated data. DFL

inherits the set of basic operators and the type system from NRC.

 NRC (Nested Relational Calculus): it is considered a query language mainly

used for describing functional programs using collection types (e.g. lists and

sets etc.). The main feature of NRC is its ability to work with collections. NRC

defines a set of basic types which can be combined to form collections (e.g.,

sets). Based on its semantics, NRC can be seen as a Dataflow description

language [54] describing the computations that need to be performed but does

not specify their order. Therefore, NRC is inconvenient for Dataflows where

the order of execution is essential such as in Dataflows calling external

functions (e.g., online and offline libraries) and in expressing control flow.

The main interest for using NRC in DFL is to allow iteration over sets which are

translated by the definition of unnest/nest edges as shown in Figure 13.

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 61

C h a p t e r 2 - R e l a t e d W o r k s

Figure 13: Example of nested iterations

Figure 13 depicts an example of the execution of nested iterations showing the

unnesting of a single token “{{x, y}, y} into 3 tokens “x, y and x” and their nesting

into one token “{{f(x), f(y)}, f(x)}”. In the initial state of the petri net (shown in the

1
st
 line of Figure 13), one token defined of 2 complex elements {x,y} and {x} is

provided as the initial marking. This token is than separated into 3 tokens x,y and x

which are modified by the function f() as shown in line 4 of Figure 13 and then

regrouped into one token defined by {{f(x),f(y)},{f(x)}}.

Unnest edges are outgoing edges allowing a transition to consume one token set and to

produce a set of tokens. Nest edges are incoming edges allowing a transition to

consume a set of tokens and produce a single token.

In the DFL language, a Dataflow is defined formally as a 5-tuple <DFN, EN, TN, EA,

PT> where:

 DFN is a Dataflow net defined as a 5-tuple, DFN= <P, T, E, source, sink>

where:

o <P, T, E> is an acyclic workflow net, a classical petri net having places

P, transitions T and arcs E.

o Source ∈ P is the source place. It defines the initial state in a petri net

o Sink ∈ P is the Sink place. It defines the final state in a petri net.

 EN: oT EL is an edge naming function that labels edges leading from places

to transitions so that a distinction can be made between input edges when a

transition has several input edges such as with unnested edges

 TN: T TL is a transition naming function that labels transitions allowing the

specification of desired operations and functions for each transition

62 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

 EA: (oT {“=true”, “=false”, “=Ø”, “≠Ø”, “*”, ε}) ∪ (oP {“*”, ε}) is

an edge annotation function annotating each edge with a condition. Tokens

only satisfying the condition can be transported over the edge. “*” denotes

unnest/nest edges.

 P: P CT is a place type function providing a specific type for each place and

thus restricting the values accepted by each place. The types mainly used are

the basic types defined by NRC (e.g., Boolean, Integer, etc.).

The semantics of DFL is defined as a transition system shown in Figure 13, similar to

classical petri nets, where each place can contain 0 or more tokens representing data

values. The distributions of tokens over the Dataflow places define the current state of

the Dataflow and are called markings. Transitions are considered to be the active

components in a Dataflow, since they are defined based on the petri net firing rule and

thus, allowing them to transit the Dataflow from one state to another by consuming

input tokens and producing output tokens. In DFL, a transition represents a

computation step determined by the function associated with the transition label.

Consumed tokens by a fired transition represent the input values of these functions and

the produced tokens are their output.

Although DFL stands for “DataFlow Language”, nevertheless its main purpose is to

formalize Dataflows and particularly visual Dataflows. While DFL provides a formal

syntax and semantics of a generic Dataflow language based on the petri net algebraic

grammar, it does not define the language as a proper VPL, it does not formally define

a visual syntax for Dataflows which are considered to be a particular type of VPLs and

require to have their unique visual syntax.

Since DFL was conceived to formalize Dataflows, it was defined as a generic

language for Dataflows and does not target specific data types, in other words it is not

defined to be specific to XML nor any other data. Instead, its concern was more on the

computation aspect of Dataflows.

To the best of our knowledge, DFL is defined as formalism for Dataflows and has not

yet been implemented. No case studies were conducted which is natural due to its

generic and formal aspects which render the task difficult.

DFL mainly relies on the Dataflow paradigm and does not aim at providing a simpler

VPL for novice programmers.

Last but not least, in DFL [53], Hidders et al. combine 2 approaches to define their

language, petri nets and NRC, and apply some additions to them which renders the

task of understanding the syntax not very easy for researchers.

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 63

C h a p t e r 2 - R e l a t e d W o r k s

2.5.2 The V language (Visual Dataflow language)

The V language was developed as an experiment by Auguston and Delago [9, 10] for

representing Dataflows and more particularly dependencies between data and

processes such as in Labview [62] and prograph [62]. The V language was designed

mainly as a visual formalism for Dataflows. Table 11 presents the graphical

components formalized in the V language.

Table 11: Visual formalism of the V language

Graphical Representation Name Description

Value box Denotes a value, either a scalar

or an aggregate

Operation box Denotes a function to be

executed when all inputs are

available

Single Iteration pattern Defines a pattern that matches

a single value

Iteration pattern Defines a pattern that matches

a group of values

Fork Duplicates the input

Merge Lets through whatever input

becomes available first

Regular computations Applies aggregation operations

such as Sum, Max, Min, Count

etc. over a group of data

Conditional switch Evaluates a Boolean

expression and transmits the

input to the output based on

the result of the expression

In Figure 14, 2 examples are given showing how we can represent different operations

using the V language. In Figure 14.a, the factorial of N is defined using the regular

computation component. Figure 14.b shows a diagram represented in the V language

that generates Fibonacci sequences.

64 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

(a) Factorial in V Language

(b) Fibonacci stream in V language

Figure 14: Iterative constructs in the V language

The V language provided a series of visual constructs formally defined for

representing Dataflow diagrams. Nonetheless, the V language is merely a formal

visual representation and not a VPL, whereas it does not provide any formal syntax

based on a grammar or algebra.

Since its purpose was to provide a visual formalism, therefore it is not specific to any

data type. Nevertheless, to prove its simplicity, the V language was implemented as a

simple graphic editor supporting only integer data types. To the best of our

knowledge, no use case scenarios were published.

2.5.3 Taverna Workflows

Taverna [80, 86] is a practical workbench for defining and executing scientific

workflows. Turi et al. [101] presented a formal syntax and semantics for Taverna

workflows. The main motivation behind their research (defining a formal syntax for

Taverna) was to apply process analysis techniques and enable unambiguous mapping

between different models [81].

Turi et al. [101] defined formally Taverna as a functional composition language based

on the Lambda Calculus algebra. They defined Tavern workflows as a composition of

several processors having several typed inputs and outputs as presented here:

 Types are formally defined as:

𝜏 ∶≔ 𝑠 𝐿 𝜏 𝜏 × 𝜏|1 where:

o S is a base type

o 𝐿(𝜏) is a complex type based on a basic type s

o 𝜏 × 𝜏 is a multi-input/output type

o 1 is a 0-ary product type for workflows without any output.

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 65

C h a p t e r 2 - R e l a t e d W o r k s

 Typed inputs were formally defined as Contexts. A context is a list of typed

inputs such as:

Γ ≡ 𝑥1:𝜎1,… , 𝑥𝑛 :𝜎𝑛 where:

o x1 ,…, xn are input variables of type σ1 ,…, σn

o σ1 ,…, σn are of types 𝜏.

 A processor is defined as an axiom of the form:

Γ ⊢ p: τ where:

o Γ defines the input variables

o 𝜏 defines the output type

o p defines the processor.

 A workflow is defined as a collection of processors with mapped inputs and

outputs as:

Γ ⊢ P: τ where:

o Γ defines the inputs of the workflow

o 𝜏 defines the output type

o P defines the workflow.

In order to create a workflow, 3 main compositions were defined:

 Simple: it is the mapping of one workflow‟s output to another workflow‟s

input with the same type

 Iterative : it maps one output „a‟ to a list of inputs [b1 ,…, bn] resulting in a list

of pairs [<a,b1>,…,<a,bn>]

 Wrapped: it maps one output „a‟ to a one element list [a].

Since these compositions represent different types of mapping but do not provide any

control over how the execution should be done, therefore a control link was added.

The control link denotes that a processor cannot be executed before another processor

has terminated (the controller).

66 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

Figure 15: Taverna workflows diagram

Figure 15 shows an example of a Taverna workflow diagram for representing animal

shapes. The formal syntax of the language defined the language as a functional

composition language where error free workflows are produced. Nonetheless, on one

hand, due to the lack of visualization provided by the Lambda Calculus, the

compositions remained mathematical and no formal visual representations were given.

On the other hand, due to the lack of synchronization in the Lambda Calculus, the

authors had to define a controller processor which needs to be implemented between

compositions in order to synchronize their execution and thus noticeably increases the

execution time and memory.

Last but not least, Taverna was developed for e-science workflows and does not

manipulate XML data nor is it defined formally as a DFVPL.

2.5.4 Discussion

Table 12 shows a summary of the DFL, V and Taverna Dataflow languages with

regard to a XML-oriented formal DFVPL. Although DFVPLs are the closest to the

human thinking process and therefore considered the easiest to learn, nevertheless and

from one point of view, we can mainly identify so far and to the best of our knowledge

that no DFVPL has been yet defined specifically for manipulating XML data. From

another point of view, the formal definition of a DFVPL syntax and its runtime

environment remains blur. It is unclear where one ends and the other begins. As for

the implementation and practical use of formally defined DFVPL, lots of difficulties

are confronted when applying the theoretical approach into a machine language with

visual representations such as memory usage, multy-threading and graphical

representations.

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 67

C h a p t e r 2 - R e l a t e d W o r k s

Table 12: DFVPL analysis

Category
Sub-

category
Criteria DFL V Taverna

Manipulated

Data

Type XML-specific - - -

Web-based - - -

User-based Yes Yes Yes

Location Target offline data Yes Yes Yes

Target online data - - -

Manipulation

Operations

Structural Selection/filtering - - -

Projection/transformation - - -

Insertion/removal - - -

Modification(obfuscation) Yes Yes Yes

Content

(textual)

Selection - - -

Insertion/removal - - -

Textual manipulations - - -

Interaction/

Visualization

User Programming knowledge

required
- - -

Expertise required - - -

System Composition-based Yes Yes Yes

Query-based - -

Reusable Yes Yes Yes

Formal Visual syntax Yes Yes Yes

Expressiveness High - High

Derivability

 Formalism Yes Yes Yes

Formal language Yes Yes Yes

Extensibility Yes Yes Yes

2.6 Discussion and Conclusion

Since the widespread of XML to all areas and to most communication medias

worldwide both online and offline, XML manipulation by non-expert users has

become crucial and imperative. Users from different areas have increasing needs for

manipulating and controlling their communications (i.e., cardiologists who wish to

communicate their records with other colleagues in partial, journalists who wish to

gather, filter and construct their personalized report on different events, etc.).

So far, in the literature, we have not found a unified approach resolving this matter.

Nevertheless, we identified several approaches/techniques related to the topic from

different angles where each of them handles a specific aspect concerning XML

manipulations by non-experts. These approaches were organized into 4 main

categories: XML Querying Visual Languages, Mashup tools, XML Security and

Adaptation, and DFVPLs. While each of these approaches has been separately

discussed and analyzed, we elaborated a global analysis and diagnostic of all

68 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

approaches put together in correspondence to our topic while based on the criteria

defined earlier. The results are shown in Table 13. This analysis allows us to compare

existing approaches and shows their limitations regarding the required criterions. In

general, manipulating XML data by non-expert users requires the

approaches/techniques to be:

 XML Specific

 Web-based and User-based

 Located offline and online

The manipulation operations should allow:

 Structural selection, projection, insertion, removal and modification

 Value selection, insertion, removal and manipulation

From the interaction and visualization perspectives:

 No programming background or expertise should be required

 The approach should be based on functional compositions

 Composed operations should be reusable

 A formal syntax is required for analysis and error handling purposes

 Expressiveness should be high allowing complex operations to be created

Finally, the approaches need to be derivable. They should be formally defined as

visual programming languages and extensible so that they can be adapted to any

environment and futuristic requirements.

 X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 69

C h a p t e r 2 - R e l a t e d W o r k s

Table 13: Analysis of XML manipulation approaches

Category
Sub-

category
Criteria XML-VL Mashup DFVPL

Security/

Adaptation
Required

Manipulated

Data

Type

XML-specific

Yes Possible -

Dependent

on the

technique

Yes

Web-based - Yes - - Yes

User-based - - Yes - Yes

Location

Target offline

data
Yes - Yes Yes Yes

Target online

data
Yes Yes Yes Yes Yes

Manipulation

Operations

Structural

Selection/

filtering Yes Yes -

Dependent

on the

technique

Yes

Projection/

transformation Yes Yes -

Dependent

on the

technique

Yes

Insertion/

removal - Yes -

Dependent

on the

technique

Yes

Modification

(obfuscation) - - Yes

Dependent

on the

technique

Yes

Content

(textual)

Selection Yes - - - Yes

Insertion/

removal
- - - - Yes

Textual

manipulations
- - - - Yes

Interaction/

Visualization

User

Programming

knowledge

required

Yes - - Yes -

Expertise

required
Low - - High -

System

Composition-

based
- Yes Yes - Yes

Reusable - - Yes Yes Yes

Formal Visual

syntax
Yes - Yes - Yes

Expressiveness Low Limited High High High

Derivability

Formalism Yes - Yes Yes Yes

Formal

language
Yes - Yes - Yes

Extensibility Low Limited Yes Yes Yes

70 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 2 - R e l a t e d W o r k s

As for the existing approaches, in a nutshell, each of them has its advantages and

disadvantages. While XML visual languages are oriented towards XML and formally

define their graphical and language syntax, they lack high expressiveness, data

modification and still require users to have some knowledge in programming,

querying and XML. As for Mashup tools, they are closer to human thinking by

providing functional compositions and can be used to manipulate data, but they are not

formalized yet, not necessarily oriented towards XML, and their compositions cannot

always be reused. XML security and adaptation techniques are highly expressive and

may provide a variety of manipulation operations. Nevertheless, they are defined

separately and are specific each to an operation. They are not defined as languages and

require high level of expertise for their implementation. From the point of view of

non-expert users, these manipulation operations can be found very useful if embedded

in offline or online libraries, specifically now that we have visual systems/tools rich

enough to call upon functions from such libraries (i.e. YahooPipes and IBM Damia).

Finally, DFVPLs show to be the most promising by successfully bridging the gap

between non-expert programmers and providing high expressiveness. While they have

been formalized as visual languages and do not require any programming knowledge,

they cannot manipulate XML data due to the lack of DFVPLs oriented towards XML.

Therefore, although they can provide a major contribution in the future, nevertheless

they remain currently inadequate and ineffective for XML manipulations by non-

expert users.

CHAPTER 3

BACKGROUND AND PRELIMINARIES

[1-112]

In this chapter, we present the main approaches/techniques used while defining our

approach, called XA2C (XML mAnipulAtion Composition), starting with an overview

on the Dataflow paradim, followed by the Dataflow languages and DFVPLs

(DataFlow Visual Programming Languages).

72 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 3 - B a c k g r o u n d a n d P r e l i m i n a r i e s

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 73

Table of Contents

3.1 Introduction .. 75

3.2 Dataflows .. 75

3.2.1 The Dataflow Execution Model ... 76

3.2.2 Early Dataflow Architectures ... 77

3.2.3 Early Dataflow Programming Languages .. 78

3.2.3.1 What are the bases of a Dataflow programming language? 78

3.2.3.2 Dataflow languages .. 79

3.2.4 Recent Dataflow Programming Languages .. 80

3.2.4.1 Early DFVPLs .. 80

3.2.4.2 Recent DFvPLs ... 81

3.3 Dataflow in a nutshell ... 81

74 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 3 - B a c k g r o u n d a n d P r e l i m i n a r i e s

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 75

3.1 Introduction

Before we discuss our approach in detail, we define here its background and pillars.

Our research entitled, “XA2C, a framework for XML-oriented mAnipulAtion

composition by non-expert users” is mainly defined as a visual studio for XCDL

(XML-oriented Composition Definition Language) a visual programming language

following the Dataflow paradigm. Our aim is to define a solid framework for non-

expert users to manipulate their XML data flows. As discussed in the related works

chapter, there hasn’t been yet any approach in the literature providing a solution for

this subject. Nonetheless, the Dataflow paradigm in particular is the most relevant of

all since it:

 targets non-expert users,

 is most suited for data manipulation,

 is the closest to the natural human thinking process.

Nonetheless, they are not XML-oriented. Thus, we adopted the Dataflow paradigm in

our approach, more precisely DFVPLs, while rendering it XML-oriented.

Since we are opting for a DFVPL, which falls in the category of VPLs, this chapter

and the next subsections are dedicated for providing some background on the

Dataflow paradigm and DFVPLs.

3.2 Dataflows

The Dataflow approach was motivated by the exploitation of massive parallelism [30,

107, 113]. The Dataflow architecture was based on using only local memory and by

executing instructions as soon as their operands become available. A program written

based on the Dataflow paradigm is a directed graph, as shown in Figure 1, where data

flows between instructions along its arcs [5, 33, 113].

Figure 1: Dataflow graph of a simple mathematic problem

76 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 3 - B a c k g r o u n d a n d P r e l i m i n a r i e s

3.2.1 Dataflow Execution Model

In a Dataflow execution model, a program is represented by a directed graph.

Conceptually, data flows as tokens along the arcs which behave like unbounded first-

in, first-out (FIFO) queues [65].

When a programs starts, special activation nodes place data onto certain key input

arcs, and thus triggering the rest of the program. Whenever a specific set of input arcs

of a node (called a firing set) has data on it, the node is said to be fireable. A fireable

node is executed at some undefined time after it becomes fireable. The result is that it

removes a data token from each node in the firing set, performs its operation, and

places a new data token on some or all of its output arcs. Instructions are scheduled for

execution as soon as their operands become available in contrast to the von Neuman

execution model (the serial execution model) [37, 107] in which an instruction is only

executed when the program counter reaches it, regardless of whether or not it can be

executed earlier than this. It is clear that Dataflow provides the potential to provide a

substantial speed improvement by utilizing data dependencies to locate parallelism.

Theoretically, in Dataflow programs, data controls the execution. Two approaches

were defined in the literature:

(a) Data driven approach (or data availability driven approach) [34, 100]: where

the execution is dependent on the availability of data in the input nodes. An

overall management device notifies and fires the nodes when their data become

available:

i. A node is activated when all its inputs are available

ii. A node absorbs its inputs’ tokens, and places tokens on its output arcs.

(b) Demand driven approach [33, 63]: where a node is activated only when it

receives a request for data from its output arcs as follows:

i. A node’s environment requests data

ii. The node is activated and requests data from its environment

iii. The environment responds with data

iv. The node places tokens on its output arcs.

It is arguable that the demand driven approach prevents the creation of certain types of

programs such as modern and real-time softwares which are mostly event-driven. In

these cases, it is not enough for the output environment to simply request input, a data

driven approach is required instead.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 77

3.2.2 Early Dataflow Architectures

When implementing Dataflow programs, the main concerns are token-storage

techniques and number of parallel instructions that can execute in reality, since they

assume theoretically an unlimited number of parallel executions. Thus, three

approaches have emerged:

(a) Static approach: was proposed by Dennis and Misunas [37] and discussed by

other authors [35, 36, 92]. Under this approach, the FIFO design of arcs is

replaced by a simpler design where each arc can hold, at most, one data token.

Therefore, the firing rule for a node is that a token must be present on each

input arc, and no tokens present on any of the output arcs. The implementation

of such architecture requires the implicit addition of acknowledgement arcs to

the Dataflow graph in the opposite direction to each existing arc which will

carry acknowledgment tokens. Its main strength is its simplicity and quickness

to detect whether a node is fireable or not. In addition, it allows for the

memory to be allocated for each arc at the compile-time since each arc can

hold no more than 1 data token. However, the static model suffers though from

a serious problem, data traffic. The data traffic is increased by a factor of 1.5 to

2.0 due to the additional acknowledgement arcs. Also, the execution of loops is

severely limited.

(b) Dynamic or tagged token approach: was proposed by Watson and Grud [7,

106]. The conceptual view of the tagged token model is that it exposes

additional parallelism by allowing multiple invocations of a sub-graph that is

often an iterative loop. But in reality, only one copy of the graph is kept in

memory. Tags are used to distinguish between tokens that belong to each

invocation. A tag holds a unique ID used to invoke a sub-graph, as well as an

iteration ID in case the sub-graph is a loop. These IDs put together are

commonly known as the color of the token. As opposed to the single-token-

per-arc rule of the static model, the dynamic model allows each arc to contain

any number of tokens, each with a different tag [92]. In this case, a given node

is said to be fireable whenever the same tag is found in a data token on each

input arc. The main advantage of this architecture is that it can execute in

parallel separate loop iterations. However, its main disadvantage is the extra

overhead required to match tags on tokens. Therefore, more memory is

required and an associative memory is impractical. Thus, memory access is

limited and not as fast as it could be [92].

78 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 3 - B a c k g r o u n d a n d P r e l i m i n a r i e s

(c) Synchronous Dataflow approach: was a later development in the Dataflow

paradigm and became widely used [70]. It is a subset of the pure Dataflow

model where the produced and consumed number of tokens is known at

compile-time. As a consequence, loops can only be defined when the numbers

of iterations is known at compile-time. The main advantages of this approach

are two: (i) it can be statically scheduled, and (ii) the execution can be

converted into a sequential program where no dynamic scheduling is required.

3.2.3 Early Dataflow Programming Languages

Dataflow languages were derived from a specific type of functional languages [57]. In

early Dataflow languages, Dataflow graphs were merely an illustration of the

Dataflow programs. They were used as simple presentations of the compiled code

[37]. The graphs were drawn by hand or through a third-party application. Therefore,

these early graphs are not to be mistaken for Dataflow languages. A Dataflow

programming language required some basic features.

3.2.3.1 What are the bases of a Dataflow programming language?

Traditional Dataflow languages were not graphical even though they could be

expressed graphically. They were mainly text-based. The boundaries of what

constitutes Dataflow languages are somewhat blurred due to the existing overlap with

other classes of languages (e.g., functional languages). Some core features can be

defined though which are essential for any Dataflow language:

1. Freedom from side effects: Dataflow programs do not allow the definition of

global variables and prohibit its functions from modifying its parameters and

thus guarantying freedom from side effects

2. Locality of effect: Dataflow programs disallow the definition of global

variables, which renders the effects of its execution local

3. Data dependencies equivalent to scheduling: Scheduling is determined based

on data dependencies, being that a node in a Dataflow program does not

execute unless all of its firing sets are available, in other words, all of its

operands become obtainable

4. Single assignment of variables: Since scheduling is determined based on data

dependencies, it is crucial that variables values do not change between their

definition and their use. Therefore, reassignment of variables to new values is

prohibited

5. Lack of history sensitivity in procedures: In general, since scheduling is based

on data dependencies and to prevent traffic overflow, Dataflow programs

disregard execution history.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 79

3.2.3.2 Dataflow languages

Several text-based Dataflow languages were designed over the years. Some of them

are: TDFL [107], LAU [44], Lucid [8], Id [6], LAPSE [45], VAL [1], Cajole [48],

DL1 [89], SISAL [77] and Valid [4]. These languages shared some main similarities

such as functional semantics, single assignment of variables, and limited constructs to

support concurrency.

One of the main advantages of the Dataflow paradigm was that it allowed concurrent

and parallel executions that were considered a blockage for the Von Neuman

architectures, in the 80s, which were based on sequential executions. In the early 90s,

Lee and Hurson [69] raised the issue of granularity which became one of the key

points to be addressed in Dataflows, after it was realized that the Von Neuman

architecture did not oppose to the Dataflow architecture but instead could be

complementary to the latter and could create possibilities for new and more efficient

architectures [82, 92]. Thus, fine-grained Dataflow could be considered as a

multithreaded architecture where each low-level instruction is executed separately on

its own thread and the Von Neuman architecture was seen as a particular case of a

multithreaded architecture where there was only one thread running in the execution.

Based on these updates, a major change in the Dataflow approach took place. Hybrid

Dataflows became the dominant area of research in the Dataflow community by the

mid 90s. In 1995, Sterling et al. [94] explored the performance of different levels of

granularity in Dataflow systems.

Figure 2: Dataflow granularity curve from Sterling et al.

Figure 2 summarizes the results and conclusions reached which indicates that neither

fine-grained (pure multithreaded Dataflow) nor coarse-grained
1
 (sequential execution)

approaches were optimal. Instead, a common approach should be used, the medium-

grained approach. Due to these changes in the Dataflow area, a key aspect became and

remains an open question for researchers:

1 The coarse-grained Dataflows are used for serial executions and do not allow any parallel executions.

80 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 3 - B a c k g r o u n d a n d P r e l i m i n a r i e s

 “What is the best degree of granularity?”

3.2.4 Recent Dataflow Programming Languages

From the late 70’s and till late 80’s, Dataflow languages were all text-based.

Nonetheless, the machine languages designed to be run on Dataflow hardware were

based on the Dataflow graph so as the reasoning behind the definition of Dataflow

programs. In the early 80’s, it was realized that Dataflow graphs could have major

advantages on the programmer [33]. On one hand, and as discussed in [11, 78, 91],

graphs allow easy and simpler communication to novice programmers and thus

increases the productivity between providers and consumers. On the other hand,

VPLs’ (Visual Programming Language) researchers [47, 56, 90] have indicated that

providing visual syntaxes has significant advantages and particularly when based on

the Dataflow paradigm, seeing that several Dataflow environments have been the basis

of successful commercial products as mentioned by Baroth and Hartsough [11]. These

researches [11, 60] have shown that mostly users and developers naturally think

similarly to the Dataflow paradigm, in particular its graph conception. Thus, DataFlow

Visual Programming languages (DFVPL) have emerged removing the complexities

forced on the developer when coding in textual based programming languages. Some

of the first DFVPLs are discussed below.

3.2.4.1 Early DFVPLs

(a) DDNs (Data Driven Nets): DDNs was created as a graphical programming

concept and was argued to be the first DFVPL where graphs were no longer

used for representation purposes only [30-32]. A DNNs program is

represented as a cyclic Dataflow graph where arcs are defined as FIFO

queues which contain typed data. The program is displayed as a graph but

stored in a textual file as a parenthesized character string. The program was

considered a very low level operating language and Davis commented that

it was not intended for developers to program directly in it. In DDNs, Davis

illustrated some key concepts in DFVPLs such as providing procedure calls

and conditional executions without the use of a textual language.

(b) GPL (Graphical Programming Language): GPL was developed in the

early 80s by Davis and Lowder [34]. It was defined as a higher-level

DFVPL and in particular a higher-level version of DDNs. Davis argued that

textual programming lacked intuitive clarity. Therefore, it was contended

that graphs needed to be used more than just for design purposes. GPL

provided structured programming with top-down development where each

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 81

node in the graph can be either an atomic node or can be expanded to reveal

a sub-graph.

(c) FGL (Function graph language): Keller and Yen [67] developed FGL in

the early 80s from the same concept where Dataflow programs need to be

defined from Dataflow graphs directly. Similarly to GPL, FGL supported

the top-down stepwise refinement. Nonetheless, unlike GPL, FGL is not

based on the token based model but the structure model instead where data

is grouped into a single structure on each arc, rather than floating around the

system.

3.2.4.2 Recent DFVPLs

(a) Labview: is one of the most known DFVPL developed in the late 80s [11].

It was conceptualized and developed to allow users to visually construct

virtual instruments for electronic data analysis in laboratories. As such, it

was intended for novice programmers. The Jet Propulsion Laboratory

reported empirical evidence in [11], showing that Labview provided a very

favorable experience when used for large projects compared to developing

the same system in C. The main advantage shown was the significantly fast

development time with regard to the C language due to the facilitated

communication provided by the visual syntax.

(b) ProGraph: was more of a general purpose DFVPL that combined the

principles of Dataflow with object oriented programming [25, 26]. The

main advantage of Prograph was the definition of objects and their methods

as Dataflow diagrams.

(c) NL: was developed in the mid 90s by Harvey and Morris [50] along with a

supporting programming environment which was based on the Dataflow

execution model. The main advantage of NL was its programming

environment which featured a visual debugger allowing execution step by

step and the use of breakpoints.

3.3 Dataflow in a Nutshell

As a conclusion, based on the researches mentioned previously (e.g., [11, 62, 78, 91]),

8 major aspects were identified in DFVPLs:

(a) The area of DFVPLS does not provide a clear distinction between the

language and the execution environment,

(b) The distinction between the coding and testing of DFVPL-based software

is blurred,

82 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 3 - B a c k g r o u n d a n d P r e l i m i n a r i e s

(c) The blurring of the testing, environment and language definition makes

DFVPLs easier for rapid prototyping,

(d) When developing a software, the design phase benefits the most when

using DFVPLs,

(e) The semantics of DFVPLs are generally considered intuitive and easy to

understand for none and novice programmers,

(f) Dataflow programs generally have a deterministic nature because the

Dataflow concept allows for mathematical analysis and proofs,

(g) Research in the DFVPL field shows that there is a lack of control-flow

which remains an open issue up to now,

(h) Iterations remain an open issue in DFVPLs and no unified solutions have

yet been defined. So far, each DFVPL, if required, defines its own method

for creating iterations based on its own needs.

CHAPTER 4

XA2C APPROACH

(XML mAnipulAtion Compositions)

[1-112]

In this chapter, we present our XA2C framework intended for non-expert users,

providing them with means to write/draw their XML data manipulation operations.

The framework is defined based on the dataflow paradigm (visual compositions). It

takes advantage of both Mashups and XML-oriented visual languages by defining a

well-founded modular architecture and an XML-oriented visual functional

composition language. The language is based on colored petri nets allowing functional

compositions. The framework uses existing XML manipulation techniques by defining

them as XML-oriented manipulation functions. It defines a language platform for

creating/composing XML manipulation operations, a compiler for translating the

composed operations into executable machine code, and a Runtime Environment for

executing these operations.

84 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 85

C h a p t e r 4 - O u r A p p r o a c h

Table of Contents

4.1 Introduction .. 87

4.2 XA2C Overview ... 89

4.2.1 XA2C Properties .. 90

4.2.2 XA2C Architecture ... 91

4.3 XCDL Platform .. 92

4.3.1 Overview on Petri Nets and Visual Languages .. 93

4.3.2 XCDL Overview .. 96

4.3.3 I/O XCD-trees .. 98

4.3.4 XCDL Syntax and Semantics ... 103

4.3.4.1 XCDL-Graphical Representation Model (XCDL-GR) 103

4.3.4.2 Syntax and Semantics Definition of the XCDL Core 105

4.3.4.3 XCDL-Transformation Syntax (XCDL-TS) 112

4.3.5 XCDL Algebra Properties .. 115

4.3.6 Illustration ... 124

4.4 XA2C Compiler .. 126

4.4.1 Front-End .. 127

4.4.1.1 Component Validation Mode ... 128

4.4.1.2 Composition Validation Mode ... 131

4.4.2 Middle-End ... 136

4.4.3 Back-End .. 138

4.5 XA2C Runtime Environment ... 141

4.5.1 Process Sequence Generator ... 143

4.5.1.1 Hypothesis .. 143

4.5.1.2 Algorithm skeleton ... 144

4.5.1.3 ES Discovery Algorithm proof ... 146

4.5.1.4 Illustration ... 148

4.6 Conclusion .. 155

86 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 87

C h a p t e r 4 - O u r A p p r o a c h

4.1 Introduction

The purpose of our research is to provide non-expert users with means to create XML

oriented manipulation operations, thus altering and adapting XML-based data to their

needs. The approach needs to be both generic to all XML data (text-centric and data-

centric) and needs to be well-founded, in order to allow it to be portable and reusable

in different domains and platforms (i.e., Mashups, XML manipulation platforms,

XML transformation and extraction, textual data manipulations, online and offline

systems, different operating systems, etc.).

As stated in previous sections, there have been no existing approaches answering such

matters. Nonetheless, several approaches have emerged undertaking different aspects

of our research such as, (i) Mashups, which are neither formalized nor XML specific,

are being oriented towards functional compositions and scope non expert

programmers, (ii) XML visual languages, while they are formalized and XML

specific, they provide only XML data extraction and structural transformations but no

XML data manipulations, mainly text-centric based, and (iii) XML manipulation

techniques. They are dispersed from one another resolving each a different objective

(e.g., filtering, data extraction, etc.) and require expertise in their appliances. As for

DFVPLs, while they haven’t been oriented towards XML manipulations, nonetheless

they are designed for scientific data manipulations by non-expert programmers, and

have proven to be closest to the natural human thinking process.

Consequently, in order to well define our framework, we clearly identify the main

objectives and properties of our approach, cross-reference them with related works

and elaborate the solutions answering these objectives.

The following objectives have been identified:

(a) Modularity: We need a well-defined framework allowing the creation,

evaluation/validation and deployment/execution of manipulation

operations clearly and separately.

In order to define a fully functional framework from the creation phase to the

deployment phase of a program, it needs to:

a. be based on a modular architecture so that each phase can be identified

and developed separately

b. define a programming language allowing users to create their

manipulation operations

c. identify an internal data model used for program evaluation and

validation.

88 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

d. provide a runtime environment allowing the execution of the validated

programs separately from the language platform

(b) Simplicity and expressiveness: It should target non-expert users.

i. Since the approach is intended for non-expert users, thus it should

follow a natural programming paradigm closest to the human natural

thinking process

ii. Users may require complex operations, thus the approach needs to be

highly expressive.

Since the approach is intended for non-expert users, thus it should be as user

friendly as possible, require a low level of programming knowledge and retain

high expressiveness. As discussed in the related work section, DFVPLs fulfill

these requirements. DFVPLs are VPLs in nature, thus, they provide a graphical

representation for non-expert programmers. They are based on the dataflow

paradigm which gives them the advantage of using the natural programming

paradigm which is closest to the human thinking process. And finally, they are

specifically designed for data manipulation and provide high expressiveness.

(c) Flexibility and extensibility: The framework should be portable, reusable and

extensible to satisfy varying requirements from different environments/areas.

In order to render the framework portable, reusable and extensible on different

platforms and in different environments, it should be well designed with a

formally defined DFVPL. Providing formal syntax and semantics of the

language will allow it to be redeployed and developed on different platforms

and can be extended and adapted to new needs. Also, being formally defined

will allow the definition of analysis and evaluation techniques for improving

the language.

(d) Adaptability: The framework needs to be XML-oriented. To render the

approach XML-oriented, the DFVPL must be designed for XML data

manipulation by combining ordered labeled trees to their syntax which can

represent any XML-based data and can be projected to graphical tree views to

be integrated in a VPL as defined in XML-oriented querying visual languages.

The rest of this chapter is organized as follows. Section 2 presents an overview of our

approach. Section 3 discusses in detail the language’s syntax and semantics. The

compiler is defined in Section 4 as a middleware between the language platform and

its Runtime Environment. Section 5 defines the Runtime Environment. Finally, an

illustration and a conclusion are given in Section 6.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 89

C h a p t e r 4 - O u r A p p r o a c h

4.2 XA2C Overview

Figure 1 shows where the approaches/techniques discussed in the related work stand

from our approach called XA2C (XML mAnipulAtion Compositions).

Figure 1: XA2C approach

As we can see here, the XA2C approach can not be entirely based on any existing

DFVPLs, it needs to be further extended. Thus, it inherits some of the features of

Mashups and XML-oriented visual languages as well. On one hand, it

1. has a similar architecture to Mashups that renders the framework flexible

thanks to its modular aspect

2. is based on functional compositions which are considered simpler to use than

query by example techniques.

On the other hand, it

1. defines formally a visual composition language (a DFVPL)

2. separates the inputs and outputs to source and destination structures,

thus making the framework XML-oriented and portable. Similar to the XML-oriented

visual languages, the approach targets non-expert users. The visual composition

language defined in XA2C can be adapted to any composition-based Mashup tool or

visual functional composition tool. Nevertheless, our language is defined XML-

90 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

oriented and generic to all types of XML data (standardized, grammar-based and user-

based).

4.2.1 XA2C Properties

Our framework is mainly based on 6 properties defined in its objectives: simplicity,

expressiveness, flexibility, extensibility, adaptability and modularity.

In order to satisfy simplicity, we defined the language as a FDVPL, having a visual

representation and following the dataflow paradigm. It is based on simple drag and

drop actions of graphical components in order to compose manipulation operations.

To provide expressiveness, flexibility and extensibility, we based the framework and

the syntax/semantics of the XCDL (XML-oriented Composition Definition Language)

on CP-Nets instead of other algebras or grammars (e.g., Lambda Calculus).

Why CP-Nets?

 CP-Nets have a very well defined semantics and can describe any type of workflow

system, behavioral and syntax wise simultaneously

 They allow us to define our language as visual in a more simplified manner than other

algebras and grammars (e.g., lambda calculus).

 CP-Nets allow the expressiveness of both state and behavioral changes simultaneously.

 Both, the execution and compilation of our language are based on CP-Nets.

 Dealing with concurrency is straight forward with CP-Nets, and does not require any

adaptations. This allows us to define the DFVPL based on the medium-grained approach

(cf. Chapter 3).

 CP-Nets are easily adapted to define Object-Oriented languages due to their ability to

deal with different types of data (colors) and the use of global variables
1
.

 CP-Nets can be extended to cope with different contexts, such as temporal and QoS

constraints(e.g., for online services)

 CP-nets have several behavioral and dynamic properties [79] such as, boundedness,

home state, coverability, persistence, synchronic distance, liveness, fairness and analysis

methods such as incidence matrix, reachability graph, and coverability tree which

facilitate and enrich the execution and compilation of the language.

In terms of adaptability, we separated the composition, from the input and output

flows, which allowed us to orient the language towards different data types. In our

study, we defined an ordered labeled tree structure representing XML-based data to

render the language XML-oriented.

1 They are variables which can be used anywhere in the CP-Net while preserving their values.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 91

C h a p t e r 4 - O u r A p p r o a c h

To ensure modularity, the XA2C framework is defined as a modular architecture as

shown in Figure 2.

4.2.2 XA2C Architecture

Our framework is composed of 3 main modules:

1. The XCDL Platform is the most essential module and the major contribution

in our work. It defines the XCDL language, the essential component of our

research, providing non-experts with the means to create their manipulation

operations. The language mainly allows users to define their functions from

offline or online libraries and create manipulation operations through

compositions achieved by mapping functions together. The XCDL is based on

the graphical representations and algebraic grammar of CP-nets, thus,

rendering the language extensible and generic (adaptable to different data

types), and allowing the expression of true concurrency along with serial

compositions (Dataflow medium-grained approach). As a user defines a new

function or modifies a composition (adding, removing, replacing a function),

the syntax is transmitted to the compiler module to be continuously evaluated

and validated.

2. The Compiler is a middleware between the language platform and the runtime

environment. It can be viewed as a compiler transforming the language syntax

into a machine code executable in the runtime environment. It plays the role of

a syntax analyzer/optimizer and code generator through the internal data model

of the XA2C which are based on the same grammar used to define the syntax

of the XCDL language (naturally based on CP-Nets). We define an internal

data model for validating the components of the language (functions defined in

our system and compositions). The validation process is event-based, any

modification to the language components or composition, such as additions,

removals or editions, triggers the validation process.

3. The Runtime Environment defines the execution environment of the resulting

compositions defined in the XCDL platform. This module contains 3 main

components: (i) the “Process Sequence Generator” used to validate the

behavioral aspect of the composition (e.g., makes sure there are no open loops,

no loose ends, etc.) and generates 2 processing sequences, a concurrent and a

serial one to be transmitted respectively to the Concurrent and Serial

Processing components for execution. (ii) “Serial Processing” (or fine-grained

processing with one thread) allowing a sequential execution of the “Serial

92 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Sequence” provided by the process sequence generator. It is more suitable for

machines equipped with a single processor as it will not take advantage of a

multi-processor unit. (iii) “Concurrent Processing” (medium-grained

processing with multi-threading) allowing the execution in a concurrent

manner of the “Concurrent Sequence” generated from the process sequence

generator. It is imperative to note that this type of processing is most suitable

for machines allowing multi-processing tasks (e.g., dual processor machines

developed for parallel executions).

Figure 2: Architecture of the XA2C framework

In the following sections we discuss each of these modules in detail.

4.3 XCDL Platform

The XCDL is a visual functional composition language based on system-defined

functions and oriented towards XML. The language is a VPL following the dataflow

paradigm and is defined using petri nets, in particular CP-Nets. It is a simple drag and

drop function-based composition.

In the following subsection, we give a brief description regarding visual languages and

petri nets/CP-Nets.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 93

C h a p t e r 4 - O u r A p p r o a c h

4.3.1 Overview on Petri Nets and Visual Languages

In [46], the term Visual Language is used to describe several types of languages:

languages manipulating visual information, languages for supporting visual

interactions, and languages for programming with visual expressions. The latter

generally refers to visual programming languages, which is the case of the XCDL

provided here. Visual programming languages define programs from pictures as

defined in [46]. A visual language is a set of pictures. A picture is a collection of

picture elements. A picture element is a primitive graphical object such as a line,

generic shapes or a text string. The syntax of a visual language is specified by

distinguishing the set of pictures forming the language. A visual language is mainly

divided into 3 levels:

(a) The graphical representation model which defines the graphical elements

that will be used in the languages (e.g., basic shapes: lines, circles, etc.).

(b) The language syntax which is normally defined based on an existing

grammar (in our case Colored Petri Nets).

(c) The transformation syntax which is used to map the language syntax to the

graphical model.

As stated in [61] and [79], a Petri Net is foremostly a mathematical description, but it

is also a visual or graphical representation of a system. Petri nets are state and action

oriented simultaneously, in contrast to most specification languages. They provide an

explicit description of both the states and the actions. Petri nets were mainly designed

as a graphical and mathematical tool for describing and studying information

processing systems, with concurrent, asynchronous, distributed, parallel, non

deterministic and stochastic behaviors. They consist of a number of places and

transitions with tokens distributed over places. Arcs are used to connect transitions and

places. When every input place of a transition contains a token, the transition is

enabled and may fire. When a transition fires a token from every input place is

consumed and a token is placed into every output place.

CP-nets have been developed, from being a promising theoretical model, to being a

full-fledged language for the design, specification, simulation, validation and

implementation of large software systems.

In a CP-Net:

 The states are represented by means of places (which are drawn as ellipses).

 The actions are represented by means of transitions (which are drawn as

rectangles).

94 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

 An incoming arc indicates that the transition may remove tokens from the

corresponding place while an outgoing arc indicates that the transition may add

tokens.

 The exact number of tokens and their data values are determined by arc

expressions (which are positioned next to the arcs).

 Data types a referred to as color sets.

 It is possible to attach an expression guard (with variables) to each transition.

A CP-Net is formally defined as follows:

Definition 4.1-Colored Petri Nets, A CP-net is a 8-tuple such as:

CP-Net = (, P, T, A, C, G, E, I) where:

 is a finite set of non-empty types, called color sets

 P is a finite set of places

 T is a finite set of transitions

 A is a finite set of arcs such that:

o P T = P A = T A = Ø

 C is a color function. It is defined from P into

 G is a guard function. It is defined from T into expressions such that:

o t T: [Type(G(t))]

 E is an arc expression function. It is defined from A into expressions such that:

o a A: [Type(E(a)) = C(p) Type(Var(E(a)))]
where p is the place of N(a)

 I is an initialization function. It is defined from P into expressions such that:

o p P: [Type(I(p)) = C(p)]

The types of a variable v and an expression expr are denoted Type(v) and Type(expr)

respectively. Also, we denote by |X| the number of elements in a set X. An example of

a CP-Net is depicted in Figure 3. This CP-Net has 3 places: two of them have a type

Int×String, and one has a type Int. The transition takes one token of the pair type

and one of the integer type, and produces one token of the pair type.

Figure 3: Example of a CP-Net

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 95

C h a p t e r 4 - O u r A p p r o a c h

Both, the language syntax and graphical model of the XCDL are based on CP-Nets

with some adjustments and restrictions.

In our approach, we are particularly interested in 2 main properties of CP-Nets, the

Incidence Matrix and the Transition Firing Rule.

Definition 4.2-Incidence matrix A, it is defined for a CP-Net N with m transitions and

n places as:

𝑨 = 𝒂𝒊𝒋 ,𝒂𝒏 𝒏 × 𝒎 𝒎𝒂𝒕𝒓𝒊𝒙 𝒐𝒇 𝒊𝒏𝒕𝒆𝒈𝒆𝒓𝒔 where:

 𝑎𝑖𝑗 = 𝑎𝑖𝑗
+ − 𝑎𝑖𝑗

− where

o 𝑎𝑖𝑗
+ = 𝑤(𝑖, 𝑗) is the weight of the arc from transition i to its output place

j
o 𝑎𝑖𝑗

− = 𝑤(𝑖, 𝑗) is the weight of the arc to transition i from its input place j

𝑎𝑖𝑗
+ , 𝑎𝑖𝑗

− 𝑎𝑛𝑑 𝑎𝑖𝑗 represent the number of tokens removed, added, and changed in place

j when transition i fires once.

Table 1 shows the Incidence Matrix of the CP-Net in Figure 3. It indicates that the

transition t has 2 input places p1 and p2 and one output place p3. As for the arcs, they

have a weight of one (allowing one token to pass).

Table 1: Incidence Matrix of CP-Net in Figure 3

A=

 t

p1 -1

p2 -1

p3 1

Definition 4.3-Transition Firing Rule, it is the conditions for a transition to fire and

is defined as:

𝒕 𝒊𝒔 𝒆𝒏𝒂𝒃𝒍𝒆𝒅 𝒊𝒇 𝑴 𝒑 ≥ 𝑾(𝒑, 𝒕) 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒊𝒏𝒑𝒖𝒕 𝒑 𝒕𝒐 𝒕 where:

 A transition “t” is enabled if each input place “p” of “t” is marked with at
least “w(p,t)”, where “w(p,t)” is the weight of the arc from “p” to “t”

 An enabled transition t may or may not fire (depending on whether event takes
place or not)

 A firing of an enabled transition t removes w(p,t) token from each input place
p to t and adds w(t,p) tokens to each output place p of t

The XCDL language is presented in the following section.

96 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

4.3.2 XCDL Overview

XCDL allows users to compose XML-oriented manipulation operations using system-

defined functions. We denote by system-defined functions (SD-functions), functions

which will be defined in the language environment. These SD-functions can be

provided by local/offline DLL/JAR files or online services (e.g., Web service).

XCDL is divided into 2 main parts:

 The Inputs/Outputs (I/O).

 The SD-functions and the composition which constitute the XCDL Core.

The I/O are defined as XML Content Description trees (XCD-trees). They are ordered

labeled trees summarizing the structure of XML documents or fragments, or

representing a DTD or an XML schema, illustrated as tree views (cf. Figure 8).

SD-functions are defined as CP-Nets. Their inputs and outputs are defined as places

and represented graphically as circles filled with a single color each defining their

types. It is important to note that in this study, a function can have one or multiple

inputs but only one output. The operation of the function itself is represented in a

transition which operates on the inputs and sends the result to the output. Graphically,

it is represented as a rectangle with an image embedded inside it describing the

operation. Input and output places are linked to the transition via arcs represented by

direct lines. Four sample functions are shown in Figure 4.

It tests an input string if it starts with a string provided by the

user.

It inserts a string into another one starting from a specific index.

It transforms a string into a hash code.

Figure 4: Several sample functions defined in XCDL

The composition is also based on CP-Nets. It is defined by a sequential mapping

between the output and an input of SD-functions. It is represented by a combination of

graphical functions which are dragged and dropped, and then linked together with a

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 97

C h a p t e r 4 - O u r A p p r o a c h

sequence operator which is depicted by a direct dashed line between the output of a

function and an input of another one having the same color/type as shown in Figure 5.

Figure 5: Functional composition in XCDL

As a result, a composition might be:

 Serial: it means that all the functions are linked sequentially. To each function

one and only one function can be mapped as illustrated in Figure 6.a. In this

case, the sequential operator is enough.

 Parallel: it is a composition between several functions with no mapping

between them whatsoever as described in Figure 6.b. In this case we introduce

an abstract operator, the parallel operator indicating that the functions are

parallel to each other and independent from each other.

 Concurrent: it contains concurrency, as in several functions can be mapped to

a single one as depicted in Figure 6.c. In this case we introduce another

abstract operator, the concurrency operator, which is a combination of multiple

parallel operators followed by a sequence operator, indicating that the

functions are concurrently mapped (parallel with dependencies).

The geometric properties of the functions are shown in Figure 14, such as, input places

are drawn in a symmetric manner in correspondence with the X-axis considered to be

situated in the middle of the transition.

98 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

(a) Serial Composition: SDF1 SDF2 SDF3

(b) Parallel Composition:

(SDF1 // SDF2 // SDF3)

(c) Concurrent Composition:
(SDF1 // SDF2 // SDF3) SDF4

Figure 6: XCDL compositions

The distance between the circles is automatically calculated as described in Section

4.3.4.3. In the following subsections, we provide a formal definition of the I/O

followed by the language syntax and its properties.

4.3.3 I/O XCD-trees

Since XCDL is XML-oriented, it aims at manipulating XML data, whether they are

user-based (XML documents or fragments), or grammar-based (Document Type

Definition, DTD or XML Schema Definition, XSD).

In order to describe XML data structure, we introduce a representation called XCD-

tree (XML structural content description tree) depicted in Figure 8. It is based on the

tree model defined in the standardized W3C DOM [105] model. It views an XML

document as a root node with a set of ordered sub-trees. In our research, we design the

XCD-tree as an ordered labeled tree allowing us to represent the structure defining the

content of XML data. XML data content is defined by XML elements, attributes, and

element/attribute values, which we assume to be textual
2
. An ordered labeled tree is

defined as follows.

2 Similarly to most approaches targeting XML data management (e.g., search, indexing, etc.) we disregard the

various types of values that could occur in XML documents (e.g., Decimal, Integer, Date, etc.) for the sake of

simplicity.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 99

C h a p t e r 4 - O u r A p p r o a c h

Definition 4.4-An OL-tree (Ordered labeled tree) is a root node “R” with a set of

ordered Sub-trees, OL-tree= (N, L, A, f) where:

 N is the set of nodes

 L is a set of labels associated to each node

 f : N L is the function associating a label to each node

 A N x N is the set of arcs associating 2 nodes together

Figure 7: OL-tree representation of an XML document

The XCD-tree allows us to represent any type of XML, data-centric and text-centric.

For XML files and fragments, we adapt tree structural summarization techniques with

repetition reduction [28] in order to extract the structure of the XCD-tree. In this

study, we defined an algorithm generating an XCD-tree. The algorithm reads

throughout an XML document and builds the ordered labeled tree recursively as new

elements/attributes appear while neglecting any redundancies.

100 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Figure 8: XCD-tree representing the XML document/DTD/XSD books

Exemple-XML document books.xml:
<XML version 1.0>

<lib>

 <book>

 <author>Charles Dickens</author>

 <title>A Christmas Carol</title>

 <pub_date> 17-12-1843</pub_date>

 </book>

 <book>

 <author>James Joyce</author>

 <title>Ulysses</title>

 <pub_date> 2-2-1922</pub_date>

<description>An epic Greek myth.</description>

 </book>

</lib>

Exemple-DTD books:
<!DOCTYPE lib [

<!ELEMENT lib (book+)>

 <!ELEMENT book (author, title, pub_date, description?)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT pub_date (#PCDATA)>

<!ELEMENT description (#PCDATA)>

]>

Exemple-XSD books.xsd:
<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://xa2cspace.com/XMLSchema">

<xs:element name="lib">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="author" type="xs:string"/>

 <xs:element name="title" type="xs:string"/>

 <xs:element name="pub_date" type="xs:string"/>

<xs:element name="description" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 101

C h a p t e r 4 - O u r A p p r o a c h

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

The XCD-tree representation of DTDs and XSDs is straightforward since they already

give a structural view of XML documents. To simplify, XPointers and grammar

constraints, such as max occurrence and min occurrence are out of the scope of our

work. An XCD-tree is formally defined as follows:

Definition 4.5-XCD-tree: it is a root node with a set of ordered sub-trees:

XCD-tree= (NX, TX, LX, fX, AX) where:

 NX is the set of nodes in the XCD-tree (i.e., XCD-nodes)

 TX{ELEMENT, ATTRIBUTE, TEXT} is the set of node types associated to
each XCD-tree-node

 LX is a set of labels associated to each node

 fX : NX LX,TX is the function associating a label and a type to each node

 AX NX × NX is the set of arcs associating 2 nodes together

Definition 4.6-XCD-tree-node Nx is represented by a doublet:

XCD-tree-node = <type, label> where:

 type TX

 label LX
A node can have one and only one parent except for the root node, denoted by RXCD-

tree, which has no parents. If the XML data is a fragment of XML and contains no

unique root element, then a virtual root node is inserted, called v_root (cf. Figure 9).

Each node has a list of child nodes. Attributes are child nodes of their elements. A

node with an empty list of child nodes is a leaf node and TEXT nodes are the only leaf

nodes.

Figure 9: XCD-tree representing an XML fragment

102 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Exemple-XML document fragment from books.xml:

<book>

 <author>Charles Dickens</author>

 <title>A Christmas Carol</title>

 <pub_date> 17-12-1843</pub_date>

</book>

<book>

 <author>James Joyce</author>

 <title>Ulysses</title>

 <pub_date> 2-2-1922</pub_date>

</book>

Table 2: Different types of XCD-tree-nodes

ELEMENT nodes:

XCD-node=

<ELEMENT,Name>

Ex1: <db:exe

xmlns:db="http://www.ex.com/">Hel

lo</db:exe>

 XCD-node = <ELEMENT,db:exe>

Ex2: <number>14</number>

 XCD-node = <ELEMENT, number>

ATTRIBUTE nodes:

XCD-node=

<ATTRIBUTE,Name>

Ex3: <product effDate="10-1-08">

 XCD-node = <ATTRIBUTE,

effDate>

TEXT nodes are leaf

nodes:

XCD-node= <TEXT,>

Ex4: <number>14223</number>

 XCD-node = <TEXT,>

Ex5: <product effDate="10-1-08">

 XCD-node = <TEXT,>

An XCD-tree-node can have 3 types as shown in Table 2. The ELEMENT and

ATTRIBUTE typed nodes represent structural data. Their labels denote corresponding

element/attribute tag names. As for a TEXT typed node, it represents data content, and

is thus assigned a TEXT label in our tree representation model (since we are only

interested in the content structure).

After defining the I/O of XCDL, we present next the syntax of XCDL.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 103

C h a p t e r 4 - O u r A p p r o a c h

4.3.4 XCDL Syntax and Semantics3

As discussed in the previous sections, the XCDL is a visual language defined on 3

levels as shown in Figure 10. The following subsections explain each one of them.

Figure 10: XCDL overview

4.3.4.1 XCDL-Graphical Representation Model (XCDL-GR)

The XCDL-GR model defines the graphical components used to represent visually the

language syntax. It contains the following components: Point, AD (Abstract

Drawing), Color, Circle, Line and Rectangle as shown in Figure 11.

Figure 11: XCDL-GR components

The graphical components are formally defined as follows:

Definition 4.7-Point is a spatial point defined by 2 coordinates as:

Point = <x, y>:

Where x and y are Integers defining the Cartesian coordinates respectively over the X-
Axis and the Y-Axis

We denote by P.x the value of coordinate x and P.y the value of coordinate y.

We define AD as an abstract drawing type which has no representation and is used as

a super type for the subsequent drawing types.

3 In this study, the language semantics are defined simultaneously with its syntax as a transitional system

(denoting how the language operates/executes) since it is defined on petri nets.

104 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Definition 4.8-AD is an abstract drawing type defined as a doublet:

AD = <P1, P2>:

Where P1 and P2 are 2 Points defining reference points for the sub-types of AD

We denote by AD.P1 and AD.P2 respectively the instances of P1 and P2.

Definition 4.9-Color is an abstract drawing type defining an RGB color as:

Color = <c>:

Where c is an Integer defining an RGB color

Definition 4.10-Circle is a drawing type, sub-type of AD, represented by an ellipse

shape and is defined as:

Circle = <AD1, radius, color> where:

 AD1 is an AD where AD1.P1=AD1.P2 define the center of Circle

 radius is an Integer defining the radius of Circle

 color is a Color used to fill Circle

Definition 4.11-Line is a drawing type, sub-type of AD, represented by a segmented

line shape and is defined as:

Line = <AD1, style> where:

 AD1 is an AD where AD1.P1 and AD1.P2 define respectively the starting and
ending points of the segment Line

 Style {dashed, normal} defines the style of the line

Definition 4.12-Rectangle is a drawing type, subtype of AD, represented by a

rectangular shape enveloping an image as:

Rectangle = <AD1, w, h, img> where:

 AD1 is an AD where AD1.P1=AD.P2 defines the point of the upper left corner
of Rectangle

 w and h are Integers defining respectively the width and height of Rectangle

 img is an Image defining a thumbnail image resized proportionally to w and h
and drawn in the middle of Rectangle

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 105

C h a p t e r 4 - O u r A p p r o a c h

If we consider D an instance of a drawing type and x one of its tuples, we denote by

D.x the required tuple (e.g., Consider r as a Rectangle, r.img retrieves img of

Rectangle r).

The following section presents the syntax of the XCDL core which is based on CP-

Nets.

4.3.4.2 Syntax and Semantics Definition of the XCDL Core

The syntax and semantics of the XCDL core are based on the grammar XCGN (XML

oriented Composition Grammar Net) defined using CP-Nets’ algebra (and therefore

retains their operational semantics and properties such as, petri net firing rule and

incidence matrix). Since the language is based on CP-Nets, therefore the semantics

(operational semantics) are defined simultaneously with the syntax as a transitional

system. The computations or operational semantics of the language (detailed in the

Runtime Environment section) are simply inherited from petri nets, particularly from

their firing rule (cf. Definition 4.3) while respecting the constraints posed by XCGN.

Definition 4.13-XCGN stands for XML oriented Composition Grammar Net. It

represents the grammar of the XCDL which is compliant to CP-Nets. It is defined as:

XCGN = (, P, T, A, S, C, G, E, I) where:

 is a set of data types available in the XCDL

o The XCDL defines 7 main data types, Char, String, Integer,

Double, Boolean, Date, XCD-Node} where Char, String, Integer,

Double, Boolean and Date are standard types and XCD-Node defines a

super-type designating an XML component (cf. Definition 4.14)

 P = PIn POut is a finite set of places defining the input and output states of the
functions used in XCDL, respectively PIn and POut

o p P, [w(p) =1]4

 T is a finite set of transitions representing the behavior of the XCDL functions
and operators

 A (P x T) (T x P) is a set of directed arcs associating input places to
transitions and vice versa

o a A: a.p and a.t denote the place and transition linked by a

 S is the set of operations/functions available in the platform’s libraries (e.g.,
concat(string,string))

5

 C:Pis the function associating a type from to each place

o p P, [|C(p)|=1]

4 w(p) denotes the number of tokens in place p

5 S is a set added to the initial CP-Net definition. It has no effect on the CP-Net’s functionality. Therefore it is

omitted in the rest of the definitions based on CP-Nets.

106 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

 G:TS is the function associating an operation to a transition

 E:AExpr is the function associating an expression E(a) Expr to an arc such
that:

o a A: [Type(E(a))=C(a.p)w(a)=1]

 I:PD is the function associating initial values from a domain D
6
 to the I/O

places such that:

o p P, v D : [Type(I(p))=C(p) Type(v)]

Definition 4.14-XCD-Node is a super type designating an XML Component. It has 3

main sub-types as defined in the XCD-tree:

XCD-Node {XCD-Node:Element, XCD-Node:Attribute and XCD-Node:Text}

where:

 XCD-Node:Element defines the XML Element type

 XCD-Node:Attribute defines the XML Attribute type

 XCD-Node:Text defines the XML Element/Attribute Value type

Before defining the syntax of our language, we define an empty CP-Net “” which

will be used in the rest of this work.

Definition 4.15- is an empty CP-Net defined as:

 = (, P, T, A, C, G, E, I) where:

 = Ø

 P = Ø

 T = Ø

 A = Ø

 Since the CP-net is empty, therefore the functions do not perform any
operations.

We define now the syntax of the XCDL core. As mentioned previously, the core of the

language is defined using SD-functions, a sequential operator, a parallel operator, a

concurrency operator and the composition which is realized between different

instances of SD-functions and operators. Therefore we introduce next the 4 main

components of XCDL: (i) SD-function, (ii) sequence operator “”, (iii) parallel

operator “//”, and (vi) Concurrency operator “//”. The parallel and concurrency

operators are abstract operators denoting respectively that related functions are

parallel/independent, and concurrent (parallel/dependent) to one SD-function.

Subsequently, we introduce the composition which is defined mainly by 3 types:

6 D denotes the set of values pre-defined by the user as initial values in a CP-Net

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 107

C h a p t e r 4 - O u r A p p r o a c h

1. Serial: It is a sequential composition between multiple instances of SD-

functions and sequence operators as shown in Figure 13.a.

2. Parallel: Depicted in Figure 13.b, it is a composition between several instances

of SD-functions that are independent from each other. The abstract parallel

operator is used in this case to indicate that SD-functions are parallel to each

other.

3. Concurrent: It is a composition between multiple instances of SD-functions

and sequence operators to a single instance of a SD-function as shown in

Figure 13.c.

An SD-function is formally defined here below. It represents a function defined in the

system’s library, through a DLL file or web-services, having one or multiple inputs

and a single output.

Definition 4.16-SD-function is a system defined function based on CP-Nets,

describing an operation based on an identified function in the system’s library and is

defined as:

SD-function = (, P, T, A, C, G, E, I) where:

 is the set of colors defining the types of data available in the SD-function

o XCGN.

 P is a finite set of places defining the input and output states of the SD-function

o P = PInPOut and PIn POut = Ø where PIn = {pIn0, pIn1, …, pInn} and
POut = {pOut}. PIn represents the set of input places and POut represents
the set of output places (containing one output place in this case).

 T is a finite set of transitions representing the behavior of the SD-function
o T = {t} where t contains the operation to be executed.

 A (PIn x {t})({t} x POut) is a set of directed arcs associating input places to
transitions and vice versa where PIn x {t} indicates the set of arcs linking the
input places to t and {t} x POut linking t to the output places (to pOut in this
case).

 C:Pis the function associating a type to each place.

 G:{t} S is the function associating an operation to t where Type(G(t)) =
C(pOut). The operation can be retrieved with a URI to the DLL file or a web-
service.

 E:AExpr is the function associating an expression E(a) Expr to a :
o Expr is a set of expressions where:

∀𝐸(𝑎) ∈ 𝐸𝑥𝑝𝑟: 𝐸(𝑎)

=
𝑀 𝑎. 𝑝 𝑖𝑓 𝑎.𝑝 ≠ 𝑝Out (cf.𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟒.𝟐𝟗)

𝐺 𝑎. 𝑡 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 I:PInD is the function associating initial values to input places.

108 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

In Figure 12, we give a graphical representation example of an SD-function. This

function is defined in the XCDL syntax as follows:

StartsWith = (, P, T, A, C, G, E, I) where:

 = {String, Boolean}

 P = PIn POut = {In_Str1, In_Str2} {Out_Bool}
 T = {t }

 A = ({In_Str1, In_Str2} x {t })({t} x {Out_Bool})

 C:Pwhere C(In_Str1) = C(In_Str2) = C(Out_Bool) = Boolean

 G:{t} S where G(t)= String_functions.StartsWith and Type(G(t)) =
C(Out_Str) = Boolean where String_functions is the DLL containing String
manipulation functions and String_functions.StartsWith is a function that
checks incoming strings if they start with In_Str2.

 E:AExpr:

o Expr={M(In_Str), G(t)} is a set of expressions where:

 ∀𝐸(𝑎) ∈ 𝐸𝑥𝑝𝑟: 𝐸(𝑎) =
𝑀 𝑎.𝑝 𝑖𝑓 𝑎.𝑝 ≠ 𝑝Out

𝐺 𝑎. 𝑡 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 I:PInValue where I(In_Str1) = “” and I(In_Str2) = “keyword”

Figure 12: Graphical representations of the XCDL core components (SD-

function and Sequence)

We define now a Sequence operator “” used to map an output place of an SD-

function to an input place of another.

Definition 4.17-Sequence is an operator denoted by the symbol “” which maps 2
places together and is defined as:

Sequence = (, P, T, A, C, G, E, I) where:

 is the set of colors where || = 1

 P is set of 2 places defining the input and output states of the Sequence operator

o P = PInPOut and PIn POut = Ø where PIn = {pIn} and POut = {pOut}
where pIn represents the input place and pOut represents the output place

 T = {t} where t contains the sequence operator

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 109

C h a p t e r 4 - O u r A p p r o a c h

 A = ({pIn} x {t})({t} x {pOut}) = {aIn, aOut} where aIn and aOut are directed
arcs associating respectively the input place pIn to transition t and t to the
output place pOut

 C:Pis the function associating a type to each place where C(pIn)=C(pOut)

 G: is a function over T Where:

Type(G(t)) = C(pIn) G(t)=M(pIn)

 E:AExpr s the function associating an expression E(a) Expr to a :
o Expr is a set of expressions where:

∀𝐸(𝑎) ∈ 𝐸𝑥𝑝𝑟:

𝐸(𝑎) =
𝑀 𝑎.𝑝 𝑖𝑓 𝑎.𝑝 = 𝑝In

𝐺 𝑎. 𝑡 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 I:POutD is the function associating initial values to the output place

The parallel and concurrency operators, defined here, are abstract operators. Therefore,
they do not have any formal definitions.

Definition 4.18-Parallel operator is an abstract operator denoted by the symbol “//”
which indicates that multiple instances of SD-functions are parallel to each other and
independent.

Definition 4.19-Concurrency operator is an abstract operator denoted by the parallel
symbol followed by a sequence one “//” which indicates that multiple instances of
SD-functions are concurrent (parallel with dependencies).

110 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

(a) Serial Composition: SDF1 SDF2 SDF3

(b) Parallel Composition:

(SDF1 // SDF2 // SDF3)

(c) Concurrent Composition:
(SDF1 // SDF2 // SDF3) SDF4

 Figure 13: Compositions in XCDL

Figure 12 shows a graphical representation of a Sequence operator (on the right). The

parallel and concurrency operators are abstract operators and have no graphical

representations.

In the XCDL core, we define the composition as a serial composition mapping

sequentially several instances of SD-functions (i.e., functions can only be executed one

after the other in a specific order), a parallel composition describing several instances

of SD-functions independent from each other and a concurrent composition, mapping

several instances of SD-functions sequentially to a single instance of SD-function.

Figure 13.a, b and c illustrate respectively a serial, parallel and concurrent

composition.

Definition 4.20-SC is a Serial Composition, 𝑆𝐶 = 𝑆𝐷𝐹ii

𝑛
𝑖=0 , linking sequentially

n instances of SD-functions using n-1 instances of Sequence operators and is a CP-
Net. It is defined as:

𝑺𝑪 = 𝑺𝑫𝑭ii = (, P, T, A, C, G, E, I)

𝒏

𝒊=𝟎

where:

 SDFi is a SD-function where:

o i,j [0,n] and i≠j, SDFi ≠ SDFj
o i.SDFIn=SDFi and i.SDFOut=SDFi+1

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 111

C h a p t e r 4 - O u r A p p r o a c h

 i is a Sequence operator where:

o i. SDFi.
o i.PIn = SDFi.POut and i.POut SDFi+1.PIn
o n = (Ø, Ø, Ø, Ø, C, G, E, I) in an empty CP-Net

 𝛴 = 𝑆𝐷𝐹i.𝛴𝑛
𝑖=0

 𝑃 = 𝑃𝐼𝑛 ∪ 𝑃𝑂𝑢𝑡 𝑤𝑒𝑟𝑒 𝑃𝐼𝑛 = 𝑆𝐷𝐹𝑖 .𝑃𝐼𝑛
𝑛
𝑖=0 𝑎𝑛𝑑 𝑃𝑂𝑢𝑡 = 𝑆𝐷𝐹𝑖 .𝑃𝑂𝑢𝑡

𝑛
𝑖=0

 𝑇 = (𝑆𝐷𝐹𝑖 .𝑇 ∪ 𝑖 .𝑇 𝑛
𝑖=0)

 𝐴 = (𝑆𝐷𝐹𝑖 .𝐴 ∪ 𝑖 .𝐴 𝑛
𝑖=0)

 C:Pis the function associating a color to each place where C = SD-
function.C

 G: is a function over T where

∀𝑡 ∈ 𝑇, 𝐺 𝑡 =
𝑆𝐷𝐹𝑖 .𝐺 𝑡 , 𝑡 ∈ 𝑆𝐷𝐹𝑖 .𝑇 𝑛

𝑖=0

𝑖 .𝐺 𝑡 , 𝑡 ∈ 𝑖 .𝑇 𝑛
𝑖=0

 E:AExpr is the function associating an expression to an arc where E = SD-
function.E

 I:PInValue is the function associating initial values to input places, I = SD-
function.I

Definition 4.21-PC is a Parallel Composition, 𝑃𝐶 = 𝑆𝐷𝐹i

𝑛
𝑖=0 // , compliant to a

CP-Net denoting n instances of SD-functions totally independent and unmapped
together. It is defined as:

𝑷𝑪 = 𝑺𝑫𝑭i//= (, P, T, A, C, G, E, I)

𝒏

𝒊=𝟎

Where:

 SDFi is a SD-function where:

o i,j [0,n] and i≠j, SDFi ≠ SDFj

 𝛴 = 𝑆𝐷𝐹i.𝛴𝑛
𝑖=0

 𝑃 = 𝑃𝐼𝑛 ∪ 𝑃𝑂𝑢𝑡 𝑤𝑒𝑟𝑒 𝑃𝐼𝑛 = 𝑆𝐷𝐹𝑖 .𝑃𝐼𝑛
𝑛
𝑖=0 𝑎𝑛𝑑 𝑃𝑂𝑢𝑡 = 𝑆𝐷𝐹𝑖 .𝑃𝑂𝑢𝑡

𝑛
𝑖=0

 𝑇 = (𝑆𝐷𝐹𝑖 .𝑇
𝑛
𝑖=0)

 𝐴 = (𝑆𝐷𝐹𝑖 .𝐴
𝑛
𝑖=0)

 C:Pis the function associating a color to each place where C = SD-
function.C

 G: is a function over T where
∀𝑡 ∈ 𝑇, (𝐺 𝑡 = 𝑆𝐷𝐹𝑖 .𝐺 𝑡 , 𝑡 ∈ 𝑆𝐷𝐹𝑖 .𝑇 𝑛

𝑖=0)

 E:AExpr is the function associating an expression to an arc where E = SD-
function.E

 I:PInD is the function associating initial values to the Input places, I = SD-
function.I

112 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Definition 4.22-CC is a Concurrent Composition, 𝐶𝐶 = (𝑆𝐷𝐹ii𝑆𝐷𝐹n+1)𝑛

𝑖=0 //
linking n instances of SD-functions using n instances of Sequence operators
concurrently to an instance of SD-function and is compliant to a CP-Net. It is defined
as:

𝑪𝑪 = (𝑺𝑫𝑭ii 𝑺𝑫𝑭n+1)//= (, P, T, A, C, G, E, I)

𝒏

𝒊=𝟎

where:

 SDFi and SDFn+1 is a SD-function where:

o i,j [0,n+1] and i≠j, SDFi ≠ SDFj
o i.SDFIn=SDFi and i.SDFOut=SDFn+1

 i is a Sequence operator where:

o i. SDFi.
o i.PIn = SDFi.POut and i.POut SDFn+1.PIn

 𝛴 = 𝑆𝐷𝐹i.𝛴𝑛+1
𝑖=0

 𝑃 = 𝑃𝐼𝑛 ∪ 𝑃𝑂𝑢𝑡 𝑤𝑒𝑟𝑒 𝑃𝐼𝑛 = 𝑆𝐷𝐹𝑖 .𝑃𝐼𝑛
𝑛+1
𝑖=0 𝑎𝑛𝑑 𝑃𝑂𝑢𝑡 = 𝑆𝐷𝐹𝑖 .𝑃𝑂𝑢𝑡

𝑛+1
𝑖=0

 𝑇 = (𝑆𝐷𝐹𝑖 .𝑇 ∪ 𝑖 .𝑇 𝑛
𝑖=0) 𝑆𝐷𝐹n+1.𝑇

 𝐴 = (𝑆𝐷𝐹𝑖 .𝐴 ∪ 𝑖 .𝐴 𝑛
𝑖=0) 𝑆𝐷𝐹n+1.𝐴

 C:Pis the function associating a color to each place where C = SD-
function.C

 G: is a function over T where

∀𝑡 ∈ 𝑇,𝐺 𝑡 =
𝑆𝐷𝐹𝑖 .𝐺(𝑡), 𝑡 ∈ 𝑆𝐷𝐹𝑖 .𝑇 𝑛+1

𝑖=0

𝑖 .𝐺 𝑡 , 𝑡 ∈ 𝑖 .𝑇 𝑛
𝑖=0

 E:AExpr is the function associating an expression to an arc where E = SD-
function.E

 I:PInValue is the function associating initial values to the Input places, I =
SD-function.I

As mentioned previously, XCDL is a visual language. So far, we have defined the

language syntax and its graphical representations. Nonetheless, we have not associated

the XCDL-GR model to its syntax yet. To do so, we define the XCDL-TS (XCDL

Transformation Syntax) allowing us to transform the XCDL syntax into graphical

representations based on the components defined in the XCDL-GR model.

4.3.4.3 XCDL-Transformation Syntax (XCDL-TS)

The XCDL-TS is defined in 2 layers:

1. An abstract syntax “AS” which will associate graphical components from the

XCDL-GR to CP-Net components.

2. A transformation syntax “T ” transforming the XCDL syntax into a visual

syntax using “AS”.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 113

C h a p t e r 4 - O u r A p p r o a c h

Since the XCDL is based on CP-Nets, it contains the following main components:

Color, Place, Transition and Arc. We formally define here the abstract and

transformation syntax which allows us to transform the XCDL syntax into the XCDL-

GR model.

Definition 4.23-AS is the abstract syntax of XCDL and is defined as:

AS = < F, FP, FT, FA > where:

 F: C is a function associating an abstract drawing type Color to a type
XCFN.

 FP: P O is a function associating a drawing type Circle to a place p

XCGNP

 FT: T R is a function associating a drawing type Rectangle to a transition t

XCGNT

 FA: A L is a function associating a drawing type Line to an arc a
XCGN.A

Definition 4.24-T is the transformation syntax and is defined as:

T = <TFS, TFF> where:

 TFS is a transformation function used to translate sequence operators into
graphical data as:

TFS = < x1, y1, x2, y2, FS> where:
o x1, y1, x2, y2 are integers representing the values of 2 spatial points

provided by the user’s mouse click

o FS: S D is the function applying the transformation from a drawing
type to a sequence where aIn=A.ain and aOut=A.aOut as:

FA(aIn). AD1. P1. x = x1

FA(aIn). AD1. P1. y = y1

FA aIn . AD1. P2. x =
x1 + x2

2

FA aIn . AD1. P2. y =
y1 + y2

2

FA aOut . AD1. P1. x =
x1 + x2

2

FA aOut . AD1. P1. y =
y1 + y2

2
FA(aOut). AD1. P2. x = x2

FA aOut . AD1. P2. y = y2

𝐹A 𝑎 . 𝑠𝑡𝑦𝑙𝑒 = 𝑑𝑎𝑠𝑒𝑑, ∀𝑎 ∈ 𝐴

114 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

 TFF is a transformation function used to translate a SD-function into graphical
data as:

TFF = < x1, y1, x2, y2, h, w, ht, wt, img, FF> where:
o x1, y1, x2, y2 are integers representing the values of 2 points provided by

the user’s mouse click
o h is an integer representing the maximum height between the first and

last input places
o w is an integer representing the distance between the transition and a

place on the x-axis
o ht and wt are integers representing respectively the height and width of

a rectangle representing a transition
o img is an image representing an SD-function

o FF: F D is the function applying the transformation from a drawing
type to a SD-function, SDf, as:

 F() where SDf.
 FP(pi)

𝑓𝑜𝑟 𝑛 = |𝑃𝐼𝑛 |, 𝑖 ∈ [0,𝑛[, 𝑝i ∈ 𝑆𝐷𝑓.𝑃𝐼𝑛 𝑎𝑛𝑑 𝑑𝑦 =

𝑛
 𝑡𝑒𝑛

 𝐹 𝑝i .𝐴𝐷1.𝑃1.𝑦 = 𝑦1 −

2
+ (𝑖 × 𝑑𝑦), 𝑖 <

𝑛

2

𝐹 𝑝n-1-i .𝐴𝐷1.𝑃1.𝑦 = 𝑦1 +

2
− (𝑖 × 𝑑𝑦), 𝑖 <

𝑛

2

𝐹 𝑝n/2 .𝐴𝐷1.𝑃1.𝑦 = 𝑦1, 𝑛 𝑚𝑜𝑑 2 = 1

𝐹 𝑝i .𝐴𝐷1.𝑃1. 𝑥 = 𝑥1 −
𝑤 t

2
− 𝑤

𝑓𝑜𝑟 𝑝0 ∈ 𝑆𝐷𝑓.𝑃𝑂𝑢𝑡 𝑡𝑒𝑛
𝐹 𝑝0 .𝐴𝐷1.𝑃1.𝑦 = 𝑦1

𝐹 𝑝0 .𝐴𝐷1.𝑃1. 𝑥 = 𝑥1 +
𝑤 t

2
+ 𝑤

𝑓𝑜𝑟 𝑛 = |𝑃𝐼𝑛 | + |𝑃𝑂𝑢𝑡 |, 𝑖 ∈ [0,𝑛 + 𝑚[,𝑝i ∈ 𝑆𝐷𝑓.𝑃In ∪ 𝑆𝐷𝑓.𝑃Out , 𝐹 𝑝i . 𝑐𝑜𝑙𝑜𝑟 =

𝐹Σ(𝐶 𝑝i)

 FT(t), tSDf.T then

 𝐹T 𝑡 .𝐴𝐷1.𝑃1. 𝑥 = 𝑥1 −

𝑤t

2

𝐹T 𝑡 .𝐴𝐷1.𝑃1.𝑦 = 𝑦1 −
t

2
𝐹T 𝑡 . 𝑖𝑚𝑔 = 𝑖𝑚𝑔

 FA(ai), aiSDf.A then

𝑓𝑜𝑟 𝑛 = |𝑃𝐼𝑛 | + |𝑃𝑂𝑢𝑡 |, 𝑖 ∈ [0,𝑛 + 𝑚[,𝑝i ∈ 𝑃In ∪ 𝑃Out

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 115

C h a p t e r 4 - O u r A p p r o a c h

𝐹A 𝑎i .𝐴𝐷1.𝑃1. 𝑥 = 𝐹P 𝑝i .𝐴𝐷1.𝑃1. 𝑥

𝐹A 𝑎i .𝐴𝐷1.𝑃1.𝑦 = 𝐹P 𝑝i .𝐴𝐷1.𝑃1.𝑦

𝐹A 𝑎i .𝐴𝐷1.𝑃2. 𝑥 =
𝐹T 𝑡 .𝐴𝐷1.𝑃1. 𝑥 −

𝑤

2
,𝑝i ∈ 𝑃In

𝐹T 𝑡 .𝐴𝐷1.𝑃1. 𝑥 +
𝑤

2

𝐹A 𝑎i .𝐴𝐷1.𝑃2. 𝑦 = 𝐹T 𝑡 .𝐴𝐷1.𝑃1.𝑦

𝐹A 𝑎i . 𝑠𝑡𝑦𝑙𝑒 = 𝑛𝑜𝑟𝑚𝑎𝑙

Figure 14: Transformation functions

The transformations of a sequence operator and an SD-function based respectively on

TFS and TFF are depicted in Figure 14.a and b respectively.

Since XCDL is a composition-based visual language allowing different types of

compositions ranging from serial, parallel to concurrent and combinations between

them, we explore in the following subsection their properties.

4.3.5 XCDL Algebra Properties

Since XCDL is a visual language and the composition is done via drag and drop, the

order used by the user to add his functions and map them together is arbitrary.

Nonetheless, this does not affect the resulting composition. We prove that by proving

that the composition is associative along with other properties stated below.

Consider a, b, c and d instances of SD-functions. We identify the following properties

presented in Table 3.

Table 3: XCDL algebra properties

1. Associative property of Sequence (a a b) b c= a a (b b c)

2. Distributive property of concurrency (a//b) c=((a a c) // (b b c))

3. Associative property of parallelism (a//b)//c = a//(b//c)

4. Commutative property of parallelism (a//b) = (b//a)

5. Associative property of concurrency ((a//b)//c) d=(a//(b//c)) d

6. Commutative property of concurrency (a//b) c=(b//a) c

7. Sequence Identity property (1) aa =a

8. Sequence Identity property (2) a =

9. Concurrency Identity property (1) a// =a

10. Concurrency Identity property (2) //a =a

116 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

The proofs of the algebra properties are given here below regarding the operators

defined previously (sequence “”, parallel “//” and concurrency “//”). It is

important to note that the concurrency operator is composed of 2 operators as defined

earlier, parallel and sequence, but has its own properties.

4.3.5.1 Associative Property of Sequence: (a a b) c c = a a (b b c)

Consider the following compositions SC1, SC2, SC and SC’ where:

 SC1 = (sdf1 1 sdf2)

 SC2 = (sdf2 2 sdf3)

 SC = (sdf1 1 sdf2) 2 sdf3

 SC’ = sdf1 1 (sdf2 2 sdf3)

In order to prove the associative property of sequence (SC = SC’), we need to prove

that XCGN(SC) = XCGN(SC’).

Proof:

SC = (, P, T, A, C, G, E, I)

 sdf1, sdf2 and sdf3 are SD-functions

 {1, 2} are Sequence operators where:
o 1. sdf1.SC'. 1.
o 1.pIn sdf1.POut and 1.pOut sdf2.PIn = SC'. 1.P
o 2. sdf2.SC'. 2.
o 2.pIn SC1.pOut sdf2.POut and 2.pOut sdf3.PIn = SC'. 2.P

 SC1.∪sdf3.sdf1. ∪ sdf2. ∪ sdf3.sdf1.∪ SC2.SC’.

 P = PIn ∪ POut where:
o PIn = SC1.PIn ∪ sdf3.PIn = sdf1.PIn ∪ sdf2.PIn ∪ sdf3.PIn = sdf1.PIn ∪ SC2.PIn

=SC’.PIn
o POut = SC1.POut ∪ sdf3.POut = sdf1.POut ∪ sdf2.POut ∪ sdf3.POut = sdf1.POut ∪

SC2.POut =SC’.POut

 T = SC1.T ∪ 2.T ∪ sdf3.T = sdf1.T ∪ 1.T ∪ sdf2.T ∪ 2.T ∪ sdf3.T = sdf1.T ∪

1.T ∪ SC2.T =SC’.T

 A = SC1.A ∪ 2.A ∪ sdf3.A = sdf1.A ∪ 1.A ∪ sdf2.A ∪ 2.A ∪ sdf3.A = sdf1.A ∪

1.A ∪ SC2.A =SC’.A

 C:Pis the function associating a color to each place where C = SD-function.C

 G: is a function over T where:

∀𝑡 ∈ 𝑇,𝐺 𝑡 =
SD-function.𝐺 𝑡 , 𝑡 ∈ 𝑠𝑑𝑓1.𝑇 ∪ 𝑠𝑑𝑓2.𝑇 ∪ 𝑠𝑑𝑓3.𝑇

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒.𝐺 𝑡 , 𝑡 ∈1.𝑇 ∪2.𝑇

 E:AExpr is the function associating an expression E(a) to an arc a where E = SD-
function.E

 I:PInValue is the function associating initial values to the input places, I = SD-
function.I

And thus,

XCGN(SC) = (SC’., SC’.P, SC’.T, SC’.A, C, G, E, I) = XCGN(SC’)

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 117

C h a p t e r 4 - O u r A p p r o a c h

□

4.3.5.2 Distributive Property of Concurrency: (a // b) c = ((a a c) // (b b c))

Consider the following compositions CC, CC’ where:

 CC = (sdf1 // sdf2) sdf3

 CC’ = (sdf1 1 sdf3) // (sdf2 2 sdf3)

In order to prove the distributive property of concurrency (CC = CC’), we need to

prove that XCGN(CC) = XCGN(CC’).

Proof:

CC = (, P, T, A, C, G, E, I)

 sdf1, sdf2 and sdf3 are SD-functions

 is a set of Sequence operators, = {1, 2} where:
o . = {1. 1. sdf1. {2. 2. sdf2.
o .P =.PIn .POut

 .PIn = {(1.pIn / 1.pIn sdf1.POut) , (2.pIn / 2.pIn sdf2.POut)}
 .POut = {(1.pIn / 1.pOut sdf3.PIn) , (2.pIn / 2.pOut sdf3.PIn)}

 sdf1. ∪ sdf2. ∪ sdf3. CC’.

 P = PIn ∪ POut where:
o PIn = sdf1.PIn ∪ sdf2.PIn ∪ sdf3. .PIn = CC’.PIn
o POut = sdf1.POut ∪ sdf2.POut ∪ sdf3.POut = CC’.POut

 T = sdf1.T ∪ 1.T ∪ sdf2.T ∪ 2.T ∪ sdf3.T =CC’.T

 A = sdf1.A ∪ 1.A ∪ sdf2.A ∪ 2.A ∪ sdf3.A =CC’.A

 C:Pis the function associating a color to each place where C = SD-function.C

 G: is a function over T where:

∀𝑡 ∈ 𝑇,𝐺 𝑡 =
SD-function.𝐺 𝑡 , 𝑡 ∈ 𝑠𝑑𝑓1.𝑇 ∪ 𝑠𝑑𝑓2.𝑇 ∪ 𝑠𝑑𝑓3.𝑇

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒.𝐺 𝑡 , 𝑡 ∈1.𝑇 ∪2.𝑇

 E:AExpr is the function associating an expression E(a) to an arc a where E = SD-
function.E

 I:PInValue is the function associating initial values to the input places, I = SD-
function.I

And thus,

XCGN(CC) = (CC’., CC’.P, CC’.T, CC’.A, C, G, E, I) = XCGN(CC’)

□

4.3.5.3 Associative Property of Parallelism: (a // b) // c = a // (b // c)

Consider the following compositions PC1, PC2, PC, PC’ where:

 PC1 = (sdf1 // sdf2)

 PC2 = (sdf2 // sdf3)

 PC = ((sdf1 // sdf2) // sdf3)

118 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

 PC’ = (sdf1 // (sdf2 // sdf3))

In order to prove the associative property of parallelism (PC = PC’), we need to prove

that XCGN(PC) = XCGN(PC’).

Proof:

PC = (, P, T, A, C, G, E, I)

 sdf1, sdf2, sdf3 and sdf4 are SD-functions

 PC1.∪sdf3. sdf1. ∪ sdf2. ∪ sdf3.sdf1∪ PC2.PC’.

 P = PIn ∪ POut where:
o PIn = PC1.PIn ∪ sdf3.PIn = sdf1.PIn ∪ sdf2.PIn ∪ sdf3.Pin = sdf1.PIn ∪ PC2.PIn

PC’.PIn
o POut = PC1.POut ∪ sdf3.POut = sdf1.POut ∪ sdf2.POut ∪ sdf3.POut = sdf1.POut ∪

PC2.POut PC’.POut

 T = PC1.T ∪ sdf3.T = sdf1.T ∪ sdf2.T ∪ sdf3.T = sdf1.T ∪ PC2.T =PC’.T

 A = PC1.A ∪ sdf3.A = sdf1.A ∪ sdf2.A ∪ sdf3.A = sdf1.A ∪ PC2.A=PC’.A

 C:Pis the function associating a color to each place where C = SD-function.C

 G: is a function over T where
∀𝑡 ∈ 𝑇, (𝐺 𝑡 = SD-function.𝐺 𝑡 , 𝑡 ∈ 𝑠𝑑𝑓1.𝑇 ∪ 𝑠𝑑𝑓2 .𝑇 ∪ 𝑠𝑑𝑓3 .𝑇)

 E:AExpr is the function associating an expression E(a) to an arc a where E = SD-
function.E

 I:PInValue is the function associating initial values to the Input places, I = SD-
function.I

And thus,

XCGN(PC) = (PC’., PC’.P, PC’.T, PC’.A, C, G, E, I) = XCGN(PC’)

□

4.3.5.4 Commutative Property of Parallelism: (a // b) = (b // a)

Consider the following compositions PC, PC’ where:

 PC = (sdf1 // sdf2)

 PC’ = (sdf2 // sdf1)

In order to prove the commutative property of parallelism (PC = PC’), we need to

prove that XCGN(PC) = XCGN(PC’).

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 119

C h a p t e r 4 - O u r A p p r o a c h

Proof:

PC = (, P, T, A, C, G, E, I)

 sdf1, sdf2 are SD-functions

 sdf1. ∪ sdf2. sdf2. ∪ sdf1. PC’.

 P = PIn ∪ POut where:
o PIn = sdf1.PIn ∪ sdf2.PIn = sdf2.PIn ∪ sdf1.PIn = PC’.PIn
o POut = sdf1.POut ∪ sdf2.POut = sdf2.POut ∪ sdf1.POut = PC’.POut

 T = sdf1.T ∪ sdf2.T = sdf2.T ∪ sdf1.T =PC’.T

 A = sdf1.A ∪ sdf2.A = sdf2.A ∪ sdf1.A =PC’.A

 C:Pis the function associating a color to each place where C = SD-function.C

 G: is a function over T where:
∀𝑡 ∈ 𝑇, 𝐺 𝑡 = SD-function.𝐺 𝑡 , 𝑡 ∈ 𝑠𝑑𝑓1.𝑇 ∪ 𝑠𝑑𝑓2.𝑇

 E:AExpr is the function associating an expression E(a) to an arc a where E = SD-
function.E

 I:PInValue is the function associating initial values to the Input places, I = SD-
function.I

And thus,

XCGN(PC) = (PC’., PC’.P, PC’.T, PC’.A, C, G, E, I) = XCGN(PC’)

□

4.3.5.5 Associative Property of Concurrency: ((a // b) // c) d = (a // (b // c)) d

Consider the following compositions CC1, CC2, CC, CC’ where:

 CC1 = (sdf1 // sdf2) sdf4 = (sdf1 1 sdf4) // (sdf2 2 sdf4)

 CC2 = (sdf2 // sdf3) sdf4 = (sdf2 2 sdf4) // (sdf3 3 sdf4)

 CC = ((sdf1 // sdf2) // sdf3) sdf4

 CC’= (sdf1 // (sdf2 // sdf3)) sdf4

In order to prove the associative property of concurrency (CC = CC’), we need to

prove that XCGN(CC) = XCGN(CC’)

120 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Proof:

CC = (, P, T, A, C, G, E, I)

 sdf1, sdf2, sdf3 and sdf4 are SD-functions

 is a set of Sequence operators, = {12, 3} = {1, 2, 3} where:
o . = {1. 1. sdf1. {2. 2. sdf2. {3.
3. sdf3.

o .P =.PIn .POut
 .PIn = {(1.pIn / 1.pIn sdf1.POut), (2.pIn / 2.pIn sdf2.POut),

(3.pIn / 3.pIn sdf3.POut)}
 .POut = {(1.pIn / 1.pOut sdf4.PIn), (2.pIn / 2.pOut

SDF3.PIn), (3.pIn / 3.pOut sdf4.PIn)}

 CC1.∪sdf3. ∪sdf4.sdf1. ∪ sdf2. ∪ sdf3. ∪sdf4.sdf1∪

CC2.∪sdf4.CC’.

 P = PIn ∪ POut where:
o PIn = CC1.PIn ∪ sdf3.PIn ∪ sdf4.PIn = sdf1.PIn ∪ sdf2.PIn ∪ sdf3.Pin ∪ sdf4.PIn =

sdf1.PIn ∪ CC2.PIn ∪ sdf4.PInCC’.PIn
o POut = CC1.POut ∪ sdf3.POut ∪ sdf4.POut = sdf1.POut ∪ sdf2.POut ∪ sdf3.POut ∪

sdf4.POut = sdf1.POut ∪ CC2.POut ∪ sdf4.POutCC’.POut

 T = CC1.T ∪ 12.T ∪ sdf3.T∪ 3.T ∪ sdf4.T = sdf1.T ∪ 1.T ∪ sdf2.T ∪ 2.T ∪

sdf3.T ∪ 3.T ∪ sdf4.T = sdf1.T ∪ 1.T ∪ CC2.T ∪ 23.T ∪ sdf4.T =CC’.T

 A = CC1.A ∪ 12.A ∪ sdf3.A∪ 3.A ∪ sdf4.A = sdf1.A ∪ 1.A ∪ sdf2.A ∪ 2.A ∪

sdf3.A ∪ 3.A ∪ sdf4.A = sdf1.A ∪ 1.A ∪ CC2.A ∪ 23.A ∪ sdf4.A =CC’.A

 C:Pis the function associating a color to each place where C = SD-function.C

 G: is a function over T where

 ∀𝑡 ∈ 𝑇,𝐺 𝑡 =
SD-function.𝐺 𝑡 , 𝑡 ∈ 𝑠𝑑𝑓1 .𝑇 ∪ 𝑠𝑑𝑓2 .𝑇 ∪ 𝑠𝑑𝑓3 .𝑇 ∪ 𝑠𝑑𝑓4 .𝑇

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒.𝐺 𝑡 , 𝑡 ∈1.𝑇 ∪2.𝑇 ∪3.𝑇

 E:AExpr is the function associating an expression E(a) to an arc a where E = SD-
function.E

 I:PInValue is the function associating initial values to the input places, I = SD-
function.I

And thus,

XCGN(CC) = (CC’., CC’.P, CC’.T, CC’.A, C, G, E, I) = XCGN(CC’)

□

4.3.5.6 Commutative Property of Concurrency: (a // b) c = (b // a) c

Consider the following compositions CC, CC’ where:

 CC = (sdf1 // sdf2) sdf3

 CC’ = (sdf2 // sdf1) sdf3

In order to prove the commutative property of concurrency (CC = CC’), we need to

prove that XCGN(CC) = XCGN(CC’)

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 121

C h a p t e r 4 - O u r A p p r o a c h

Proof:

CC = (, P, T, A, C, G, E, I)

 sdf1, sdf2 and sdf3 are SD-functions

 is a set of Sequence operators, = {1, 2} where:
o . = {1. 1. sdf1. {2. 2. sdf2.{ 2.
2. sdf2.{ 1. 1. sdf1.CC’. .

o .P =.PIn .POut
 .PIn = {(1.pIn / 1.pIn sdf1.POut), (2.pIn / 2.pIn sdf2.POut)}

={(2.pIn / 2.pIn sdf2.POut), (1.pIn / 1.pIn sdf1.POut) } = CC’.

.PIn
 .POut = {(1.pIn / 1.pOut sdf3.PIn), (2.pIn / 2.pOut sdf3.PIn)}

= {(2.pIn / 2.pOut sdf3.PIn) , (1.pIn / 1.pOut sdf3.PIn)} = CC’.
.POut

 sdf1. ∪ sdf2. ∪ sdf3. sdf2. ∪ sdf1. ∪ sdf3. CC’.

 P = PIn ∪ POut where:
o PIn = sdf1.PIn ∪ sdf2.PIn ∪ sdf3. .PIn = sdf2.PIn ∪ sdf1.PIn ∪ sdf3. .PIn = CC’.PIn
o POut = sdf1.POut ∪ sdf2.POut ∪ sdf3.POut = sdf2.POut ∪ sdf1.POut ∪ sdf3.POut =

CC’.POut
 T = sdf1.T ∪ 1.T ∪ sdf2.T ∪ 2.T ∪ sdf3.T = sdf2.T ∪ 2.T ∪ sdf1.T ∪ 1.T ∪

sdf3.T =CC’.T

 A = sdf1.A ∪ 1.A ∪ sdf2.A ∪ 2.A ∪ sdf3.A = sdf2.A ∪ 2.A ∪ sdf1.A ∪ 1.A ∪

sdf3.A =CC’.A

 C:Pis the function associating a color to each place where C = SD-function.C

 G: is a function over T where:

∀𝑡 ∈ 𝑇,𝐺 𝑡 =
SD-function.𝐺 𝑡 , 𝑡 ∈ 𝑠𝑑𝑓1.𝑇 ∪ 𝑠𝑑𝑓2.𝑇 ∪ 𝑠𝑑𝑓3.𝑇

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒.𝐺 𝑡 , 𝑡 ∈1.𝑇 ∪2.𝑇

 E:AExpr is the function associating an expression E(a) to an arc a where E = SD-
function.E

 I:PInValue is the function associating initial values to the input places, I = SD-
function.I

And thus,

XCGN(CC) = (CC’., CC’.P, CC’.T, CC’.A, C, G, E, I) = XCGN(CC’)

□

4.3.5.7 1
st
 identity Property of Sequence: aa =a

Consider the following composition:

 SC = sdf

In order to prove the identity property of sequence (SC = sdf), we need to prove that

XCGN(SC) = XCGN(sdf)

122 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Proof:

SC = (, P, T, A, C, G, E, I)

 Sdf is an SD-function and is an empty net.

 is a Sequence operators where based on the Serial Composition 𝑆𝐶 =
 𝑆𝐷𝐹ii

0
𝑖=0 :
o 0 = (Ø, Ø, Ø, Ø, C, G, E, I) in an empty CP-Net

 sdf1. ∪. sdf1.

 P = PIn ∪ POut where:
o PIn = sdf1.PIn ∪ .PIn = sdf1.PIn
o POut = sdf1.POut ∪ .POut = sdf1.POut

 T = SC1.T ∪ .T ∪ .T = sdf1.T

 A = sdf1.A ∪ .A ∪ .A = sdf1.A

 C:Pis the function associating a color to each place where C = SD-function.C

 G: is a function over T where:
∀𝑡 ∈ 𝑇,𝐺 𝑡 = SD-function.𝐺 𝑡 , 𝑡 ∈ 𝑠𝑑𝑓.𝑇

 E:AExpr is the function associating an expression E(a) to an arc a where E = SD-
function.E

 I:PInValue is the function associating initial values to the input places, I = SD-
function.I

And thus,

XCGN(SC) = (sdf., sdf.P, sdf.T, sdf.A, C, G, E, I) = XCGN(sdf)

□

4.3.5.8 2
nd

 Identity Property of Sequence: a =

Consider the following composition:

 SC = sdf

In order to prove the identity property of sequence (SC =), we need to prove that

XCGN(SC) = XCGN()

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 123

C h a p t e r 4 - O u r A p p r o a c h

Proof:

SC = (, P, T, A, C, G, E, I)

 Sdf is a SD-function and is an empty net.

 is a Sequence operators where:
o . Ø / . .and . = Ø
o .P =.PIn .POut

 .PIn = Ø / . .PInand .PIn = Ø
 .POut = Ø / .POut = .G(.t) = .PIn = Ø (cf. Definition 4.17)

o = (Ø, Ø, Ø, Ø, C, G, E, I) in an empty CP-Net and thus based on the

Sequence Definition, sdf will always have an empty input place (sdf.PIn= Ø)
and can never fire and the output will result in an empty place (sdf.POut=Ø).
Thus:

 Ø

 P = Ø

 T = Ø

 A = Ø

 C:Pis the function associating a color to each place where C = SD-function.C

 G: is a function over T where:
∀𝑡 ∈ 𝑇,𝐺 𝑡 = SD-function.𝐺 𝑡 , 𝑡 ∈ 𝑠𝑑𝑓.𝑇

 E:AExpr is the function associating an expression E(a) to an arc a where E = SD-
function.E

 I:PInValue is the function associating initial values to the Input places, I = SD-
function.I

And thus,

XCGN(SC) = (Ø, Ø, Ø, Ø, C, G, E, I) = XCGN()

□

4.3.5.9 1
st
 and 2

nd
 Identity Property of Parallelism: a // = // a = a

Based on the commutative property of parallelism, a // = // a.

In order to prove “a // = a”, consider the following composition:

 PC = sdf //

In order to prove the identity property of sequence (PC = sdf), we need to prove that

XCGN(PC) = XCGN(sdf)

124 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Proof:

PC = (, P, T, A, C, G, E, I)

 Sdf is a SD-function and is an empty net.

 sdf. ∪. sdf.

 P = PIn ∪ POut where:
o PIn = sdf.PIn ∪ .PIn = sdf.PIn
o POut = sdf.POut ∪ .POut = sdf.POut

 T = SC.T ∪ .T ∪ .T = sdf.T

 A = sdf.A ∪ .A ∪ .A = sdf.A

 C:Pis the function associating a color to each place where C = SD-function.C

 G: is a function over T where:
∀𝑡 ∈ 𝑇,𝐺 𝑡 = SD-function.𝐺 𝑡 , 𝑡 ∈ 𝑠𝑑𝑓.𝑇

 E:AExpr is the function associating an expression E(a) to an arc a where E = SD-
function.E

 I:PInValue is the function associating initial values to the Input places, I = SD-
function.I

And thus,

XCGN(PC) = (sdf., sdf.P, sdf.T, sdf.A, C, G, E, I) = XCGN(sdf)

□

After defining the language and its syntax, we give now an illustration of scenario

1(cf. Chapter 1 Section 1.2.1) in XCDL.

4.3.6 Illustration

In scenario 1, the user wants to create a manipulation operation that filters his library

(books.xml, cf. Figure 8) and retrieve all the books published in the year 2001 and

which are guide books related to XML. These goals can be achieved in XCDL as

shown in Figure 15. Note that the following composition is one way of solving the

issue, there can be others depending on the user’s perspectives.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 125

C h a p t e r 4 - O u r A p p r o a c h

Figure 15: Illustration of scenario 1 in XCDL

In order to create his filter, the user composes 2 parallel filters. The first one selects all

books published in 2001. It is defined as a serial composition:

Filter1 = ExtractDataFilterExtractDataTo

The second filter groups both the title and description of the books and retrieves only

those which are guides and XML related. It is defined as a combination of concurrent

and serial compositions:

Filter2 =

(((ExtractData//ExtractData)ConcatFilter_All)//ExtractData)ReplaceExtra

ctDataTo

The main filter is defined as a parallel composition between Filter1 and Filter2:

PC_Filter = Filter1 // Filter2 =

(ExtractDataFilterExtractDataTo)

 //

((((ExtractData//ExtractData)ConcatFilter_All)//ExtractData)ReplaceExtr

actDataTo)

The functions used in this composition are described briefly in Table 4.

126 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Table 4: Functions used in scenario 1

Function Name Description

ExtractData Extracts textual nodes from an XCD-tree

using Xpath Expressions

Filter Filters data containing based on a single

key word

Concat Concatenates 2 strings together

Filter_All Filters a paragraph based on several

keywords

Replace Replaces the occurrence of a String with

another

ExtractDataTo Transforms strings into textual nodes to be

reinserted in an XCD tree using XPath

Expressions

In this Section, we defined XCDL, a generic composition language which allows users

to visually create functional compositions oriented towards XML data. The language

syntax was defined in CP-Nets. The components and composition results are all CP-

Nets, thus, allowing the composition to express true concurrency and parallelism. To

execute these compositions, they should be translated into a machine code. Therefore,

we define next our compiler which is responsible of translating the XCDL syntax into

a machine code executable by the Runtime Environment.

4.4 XA2C Compiler

In the conception of most DFVPLs, one of the major issues always being raised was:

 “When does the Language end, and the Runtime Environment begins?”

In our case, we answer that question by taking advantage of the Mashup approach and

defining a middleware, the compiler module, between the language and the runtime

environment as depicted in Figure 2. This module plays the role of a compiler that

translates the XCDL syntax into a machine language readable and executable in the

XA2C runtime environment.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 127

C h a p t e r 4 - O u r A p p r o a c h

Figure 16: XA2C compiler architecture

As depicted in Figure 16, the compiler’s structure contains 3 modules: (i) the Front-

End, (ii) the Middle-End and (iii) the Back-End. The Syntax Analyzer in the Front-

End receives a high-level petri net, Source CP-Net, from the XCDL platform, and

checks it with the internal data model (cf. Figure 22) defined based on XCGN. Once

the Source CP-Net is validated, it is sent to the Intermediate CP-Net Generator. The

latter transforms it into a CP-Net object and transmits it as an intermediate CP-Net to

the Middle-End module. The Intermediate CP-Net is then translated into a dataset

based on the internal data model and compliant to a CP-Net defined in XCGN. The

CP-Net Optimizer will optimize it by removing any redundancies and passive sub-

nets. The optimized CP-Net is transferred to the XML CP-Net Generator which uses

an XML-based interchange format for CP-Nets, inspired and adapted from the PNML

(Petri Net Markup Language) [55], to transform the optimized CP-Net into an XML-

CPNet. The XML-CPNet is sent to the Runtime Environment where it can be executed

later in the future.

4.4.1 Front-End

In general terms, the Front-End checks whether a program is correctly written in terms

of the programming language syntax and semantics. In our case, since the language is

128 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

visual, the Front-End checks whether a program is correctly drawn in terms of CP-

Nets based on XCGN.

Figure 17: Front-End data types

The Front-End works in 2 modes: (i) Component Validation mode for SD-functions’

validation and (ii) Composition Validation mode. This is based on the XCDL, which

is divided into SD-functions and Compositions between different instances of SD-

functions (cf. Section 4.3.2).

4.4.1.1 Component Validation Mode

The Front-End enters the Component Validation Mode when a new SD-function is

being added to the system. Before, any SD-function can be inserted to the XCDL

library, the Syntax Analyzer needs to validate it with the SD-function data type (cf.

Figure 18) defined in correspondence with the SD-function’s syntax (cf. Definition

4.16). Each SD-function is translated into as a separate object of type SD-function as

shown in Figure 18. Since an SD-function is defined as a CP-Net (cf. Definition 4.16),

its data type is composed of Places, Arcs and a Transition that are associated to

different XCDL-GRs respectively, Circle, Line and Rectangle. The translation to an

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 129

C h a p t e r 4 - O u r A p p r o a c h

SD-function object is ensured via an SDf-t translation syntax transforming the CP-Net

elements into objects with the corresponding attributes and dependencies as defined in

XCGN.

Figure 18: SD-function data type

Definition 4.25-SDf-t is a translation syntax for SD-functions from an XCGN based
syntax into an object of SD-function data type

7 and is defined as:

SDf-t = < DTsdf, DT, DTP, DTT, DTA > where:

 DTsdf: SD-function SD-f is a function associating an object sdf of type SD-f
(cf. Figure 18) to an SD-function SDF:

o 𝐷𝑇𝑠𝑑𝑓 𝑆𝐷𝐹 = 𝑠𝑑𝑓
𝑠𝑑𝑓. 𝑖𝑑 = 𝑐𝑝𝑛_𝑙 𝑆𝐷𝐹 . 𝑖𝑑

𝑠𝑑𝑓.𝑛𝑎𝑚𝑒 = 𝑐𝑝𝑛_𝑙 𝑆𝐷𝐹 .𝑛𝑎𝑚𝑒

 DT: Type is a function associating an object type Type to an XCGN

type

o 𝐷𝑇 𝜀 = 𝑡𝑦𝑝𝑒
𝑡𝑦𝑝𝑒. 𝑖𝑑 = 𝑙 𝜀 . 𝑖𝑑

𝑡𝑦𝑝𝑒. 𝑛𝑎𝑚𝑒 = 𝑙 𝜀 .𝑛𝑎𝑚𝑒

 DTP: P Place is a function associating an object pl Place to a place p

P:

7 Each component in XCDL is considered to have an identifier “id” and a name.

130 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

o 𝐷𝑇𝑃 𝑝 = 𝑝𝑙

 𝑝𝑙. 𝑖𝑑 = 𝑙 𝑝 . 𝑖𝑑

𝑝𝑙.𝑛𝑎𝑚𝑒 = 𝑙 𝑝 .𝑛𝑎𝑚𝑒

𝑝𝑙. 𝑡𝑦𝑝𝑒𝑖𝑑 = 𝑙 𝐶 𝑝 . 𝑖𝑑

𝑝𝑙. 𝑖𝑛𝑖𝑡 = 𝐼(𝑝)

 DTT: T Transition is a function associating an object tr Transition to a

transition t T:

o 𝐷𝑇𝑇 𝑡 = 𝑡𝑟
𝑡𝑟. 𝑖𝑑 = 𝑙 𝑡 . 𝑖𝑑

𝑡𝑟.𝑛𝑎𝑚𝑒 = 𝑙 𝑡 .𝑛𝑎𝑚𝑒
𝑡𝑟. 𝑣𝑎𝑙𝑢𝑒 = 𝐺(𝑡)

 DTA: A Arc is a function associating an object ar Arc to an arc a A:

o 𝐷𝑇𝐴 𝑎 = 𝐴𝑟
𝑎𝑟. 𝑖𝑑 = 𝑙 𝑎.𝑝 . 𝑖𝑑 + 𝑙 𝑎. 𝑡 . 𝑖𝑑

𝑎𝑟. 𝑣𝑎𝑙𝑢𝑒 = 𝐸(𝑎)

As an example, consider the SD-function “Filter” shown in Figure 19. This function is

defined in the XCDL syntax as follows:

Filter = (, P, T, A, C, G, E, I) where:

 = {String}

 P = PIn POut = {In_Str1, In_Str2} {Out_Str}
 T = {t }

 A = ({In_Str1, In_Str2} x {t })({t} x {Out_Str})

 C:Pwhere C(In_Str1) = C(In_Str2) = C(Out_Str) = String

 G:{t} S where G(t)= String_functions.Filter and Type(G(t)) = C(Out_Str) =
String where String_functions is the DLL containing String manipulation
functions and String_functions.Filter is a function that filters incoming
strings if they contain In_Str2.

 E:AExpr:

o Expr={M(In_Str), G(t)} is a set of expressions where:

 ∀𝐸(𝑎) ∈ 𝐸𝑥𝑝𝑟: 𝐸(𝑎) =
𝑀 𝑎.𝑝 𝑖𝑓 𝑎.𝑝 ≠ 𝑝Out

𝐺 𝑎. 𝑡 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 I:PInValue where I(In_Str1) = “” and I(In_Str2) = “keyword”
8

8 Keyword in this case is the initial value given by the user which will be used as a filtering criteria

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 131

C h a p t e r 4 - O u r A p p r o a c h

Figure 19: Filter SD-function

The Filter function syntax will be translated into the following objects as presented in

Table 5.

Table 5: Filter SD-function translation from XCGN to objects

XCGN components Object data type

Filter SD-f

String Type

In_Str1, In_Str1 and Out_Str Place

T Transition

In_Str1 x t, In_Str2 x t and t x Out_Str Arc

If the SD-function is well translated into an SD-f object with all its attributes fitting

correctly in the SD-f data type, the SD-f object is then forwarded to Middle-End

module as an Intermediate CP-Net where it is translated into a dataset which is

validated by the SD-function data model presented in Figure 22.

4.4.1.2 Composition Validation Mode

When the user is in the process of composing his manipulation operation, the Front-

End is in the Composition Validation Mode. Similar to the Component Validation

mode, the Syntax Analyzer checks and validates the composition on every event

(Insert, Delete or update of an SD-function instance).

The first process when validating the current composition is its translation into a

Composition Diagram Object based on the Composition Diagram data type shown in

Figure 20. The Composition data type itself is defined as a projection of a CP-Net-

based composition between several instances of XCGN-based CP-Nets generated from

SD-function instances mapped concretely with instances of the sequence operator as

defined in Section 4.3.4.2 (i.e., Serial, Parallel and Concurrent Compositions).

A composition in XCDL, is first of all a CP-Net compliant to XCGN. This CP-Net is

not built in the same way as traditional CP-Nets straight from places and transitions.

Instead it is based on instances of existing CP-Nets defined either as SD-functions or

132 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

sequences. Therefore, as shown in Figure 17, a Composition diagram object is an

association of multiple XCGN based CP-Nets which can be typed either to an SD-f

data type (cf. Figure 18) or a Sequence data type. The Sequence data type, it is defined

of 2 Places and an Arc. No Transitions are required since in the sequence operator

syntax, the transition simply maps the input to the output place. Therefore, the

transition in this case can be omitted. A Composition-t, translation syntax, has been

defined, facilitating the translation from the XCGN-based syntax to the Composition

Diagram data type.

Figure 20: Composition diagram data type

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 133

C h a p t e r 4 - O u r A p p r o a c h

Definition 4.26-Composition-t is a translation syntax for compositions from an XCGN
based syntax into an object of Composition data type and is defined as:

Composition-t = < DTcomp, DTSDf-t, DTseq > where:

 DTcomp: XCGN_Compotision Composition_Diagrame is a function
associating an object cd of type Composition_Diagram (cf. Figure 20) to a
serial, parallel or concurrent composition c:

o 𝐷𝑇 𝑐 = 𝑐𝑑
𝑐𝑑. 𝑖𝑑 = 𝑐𝑝𝑛_𝑙 𝑐 . 𝑖𝑑

𝑐𝑑.𝑛𝑎𝑚𝑒 = 𝑐𝑝𝑛_𝑙 𝑐 .𝑛𝑎𝑚𝑒

 DTSDf-t = < DTsdf, DT, DTP, DTT, DTA > is a translation syntax for an instance
of an SD-function SDFi from an XCGN based syntax into an object of SD-
function data type where i is the ith inserted XCGN based CP-Net (SD-function
or Sequence) instance. DTSDf-t is similar to the SDf-t syntax with the
modification of:

o 𝐷𝑇𝑠𝑑𝑓 𝑆𝐷𝐹𝑖 = 𝑠𝑑𝑓

𝑠𝑑𝑓. 𝑖𝑑 = 𝑐𝑝𝑛_𝑙 𝑆𝐷𝐹 . 𝑖𝑑 + 𝑖
𝑠𝑑𝑓. 𝑛𝑎𝑚𝑒 = 𝑐𝑝𝑛_𝑙(𝑆𝐷𝐹).𝑛𝑎𝑚𝑒

𝑠𝑑𝑓. 𝑖𝑛𝑑𝑒𝑥 = 𝑖

o 𝐷𝑇𝑃 𝑝 = 𝑝𝑙

 𝑝𝑙. 𝑖𝑑 = 𝑙 𝑝 . 𝑖𝑑 + 𝑠𝑑𝑓. 𝑖𝑑

𝑝𝑙.𝑛𝑎𝑚𝑒 = 𝑙 𝑝 .𝑛𝑎𝑚𝑒

𝑝𝑙. 𝑡𝑦𝑝𝑒𝑖𝑑 = 𝑙 𝐶 𝑝 . 𝑖𝑑

𝑝𝑙. 𝑖𝑛𝑖𝑡 = 𝐼(𝑝)

 DTseq: Sequence Seq is a function associating an object s of type Seq (cf.
Figure 20) to a Sequence i where i is the ith inserted XCGN based CP-Net
(SD-function or Sequence) instance:

o 𝐷𝑇𝑠𝑒𝑞 𝑖 = 𝑠

𝑠. 𝑖𝑑 = 𝑖
𝑠.𝑛𝑎𝑚𝑒 = 𝑐𝑝𝑛_𝑙().𝑛𝑎𝑚𝑒

𝑠. 𝑖𝑛_𝑠𝑑𝑓 = 𝑐𝑝𝑛_𝑙 𝑖 . 𝑆𝐷𝐹𝐼𝑛 . 𝑖𝑑

𝑠. 𝑜𝑢𝑡_𝑠𝑑𝑓 = 𝑐𝑝𝑛_𝑙 𝑖 . 𝑆𝐷𝐹𝑂𝑢𝑡 . 𝑖𝑑

As an example, consider the Serial Composition Filter1 defined in scenario 1 (cf.

Section 4.3.6) and presented in Figure 21.

Figure 21: Composition instance

This simple composition captures the books from the XML flow provided in the

document “books.xml” that have been published in 2001, and then forwards them

134 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

back to the flow. Three simple SD-functions (ExtractData, Filter and ExtractDataTo)

are used mapped sequentially together with 2 Sequence operators (S1 and S2).

The SD-functions ExtractData and ExtractDataTo, and the Sequence Operators S1 and

S2 are defined in the XCDL syntax here below.

ExtractData = (, P, T, A, C, G, E, I) where:

 = { XCD-Node:Text, String}

 P = PIn POut = {In_XCD} {Out_Str}
 T = {t }

 A = ({In_XCD} x {t })({t} x {Out_Str})

 C:Pwhere C(In_XCD) =XCD-Node:Text and C(Out_Str) = String

 G:{t} S where G(t)= XCDtree_functions.Extracttext and Type(G(t)) =
C(Out_Str) = String where XCDtree_functions is the DLL containing XCDtree
related functions and XCDtree_functions.Extracttext is a function that
retrieves a string value from an XML Element.

 E:AExpr:

o Expr={M(In_XCD)), G(t)} is a set of expressions where:

∀𝑒𝑥𝑝𝑟 ∈ 𝐸𝑥𝑝𝑟: 𝑒𝑥𝑝𝑟 =
𝑀 𝑎.𝑝 𝑖𝑓 𝑎.𝑝 ≠ 𝑝Out

𝐺 𝑎. 𝑡 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 I:PInValue where I(In_XCD) = Null

ExtractDataTo = (, P, T, A, C, G, E, I) where:

 = { XCD-Node:Text, String}

 P = PIn POut = {In_Str} {Out_XCD}
 T = {t }

 A = ({In_Str} x {t })({t} x {Out_XCD})

 C:Pwhere C(In_STR) =String and C(Out_XCD) = XCD-Node:Text

 G:{t} S where G(t)= XCDtree_functions.Extracttextto and Type(G(t)) =
C(Out_XCD) = XCD-Node:Text XCDtree_functions.Extracttext is a function
that replaces the existing string value an XML Element.

 E:AExpr:

o Expr={M(In_Str)), G(t)} is a set of expressions where:

∀𝑒𝑥𝑝𝑟 ∈ 𝐸𝑥𝑝𝑟: 𝑒𝑥𝑝𝑟 =
𝑀 𝑎.𝑝 𝑖𝑓 𝑎.𝑝 ≠ 𝑝Out

𝐺 𝑎. 𝑡 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 I:PInValue where I(In_Str) = “”

Both sequence operator S1 and S2 have similar syntax as shown in the following.

S1= S2 = (, P, T, A, C, G, E, I) where:

 = String

 P = {pIn} POut = {pOut}

 T = {t} where t contains the sequence operator

 A = ({pIn} x {t})({t} x {pOut})

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 135

C h a p t e r 4 - O u r A p p r o a c h

 C:P where C(pIn)=C(pOut)=String

 G(t)=M(pIn) Type(G(t)) = C(pIn)

 E:AExpr:
o Expr is a set of expressions where:

∀𝑒𝑥𝑝𝑟 ∈ 𝐸𝑥𝑝𝑟:

𝑒𝑥𝑝𝑟 =
𝑀 𝑎.𝑝 𝑖𝑓 𝑎.𝑝 ≠ 𝑝Out

𝐺 𝑎. 𝑡 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 I:POutValue I(pIn)= “”

The Composition syntax will be translated into the following objects:

Table 6: Composition translation from XCGN to objects

XCGN components Object data type Graphical Representation

Composition
Composition

Diagram

ExtractData SD-f

ExtractData.XCD-Node:Text,

ExtractData.String
Type

ExtractData.In_XCD and

ExtractData.Out_Str
Place

ExtractData.t Transition

ExtractData.(In_XCD x t) and ExtractData.(t

x Out_Str)
Arc

Filter SD-f

Filter.String Type

Filter.In_Str and ToUpper.Out_Str Place

Filter.t Transition

Filter.(In_Str x t) and ToUpper .(t x Out_Str) Arc

ExtractDataTo SD-f

ExtractDataTo.XCD-Node:Text,

ExtractDataTo.String
Type

ExtractDataTo.In_Str and

ExtractDataTo.Out_XCD
Place

ExtractDataTo.t Transition

ExtractDataTo.(In_Str x t) and

ExtractDataTo.(t x Out_XCD)
Arc

S1 Sequence

S1.String Type

S1.PIn and S1.POut Place

S1.(a) Arc

S2 Sequence

S2.String Type

S2.PIn and S1.POut Place

S2.(a) Arc

136 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Similar to the Component Validation mode, if the Composition is well translated into

a Composition Diagram object with all its sub data types well defined, the

Composition object is then transmitted as an Intermediate CP-Net to the Middle-End

module to be transformed into a dataset which is validated by the Composition

relational schema presented in Figure 22.

4.4.2 Middle-End

The Middle-End component is module for transforming the Intermediate CP-Net

defined as a data object into a dataset and applying any possible optimizations in order

to facilitate the transformation to a machine code.

In the Middle-End module, a simple transformation of XCDL-based CP-Nets from

data objects to datasets is executed. An SD-f and a composition diagram are

respectively transformed into datasets based on an SD-function schema and a

composition schema as shown in Figure 22. The SD-function schema is a projection of

the structure of an SD-f data type. And the composition schema is a unified projection

of any composition (serial, parallel and concurrent) in terms of CP-Nets.

Both schemas are a transformation/representation of the data objects into conceptual

schemas where the data types defined in Figure 18 and Figure 20 such as Places,

Transitions and Types are represented as entities with relations between them retaining

the association/aggregation/composition relations defined in the data types.

In the composition schema, the sequence data objects map SD-function output places

directly to SD-function input places.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 137

C h a p t e r 4 - O u r A p p r o a c h

Figure 22: Composition schema compliant with XCGN

So far in our research, we applied one optimization technique, the removal of any

passive and redundant CP-Nets which are found in the Intermediate CP-Net. This

optimization was elaborated from a natural human interpretation. If we consider the

composition in Figure 21, we can obviously notice that the sequence operator mapping

the SD-functions is passive, and is semantically just a linking chain between an SD-

function’s output and an input. From a mere semantic point of view, this composition

can be seen as equivalent to the composition in Figure 23 which shows the SD-

functions directly linked together without any operators.

138 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Figure 23: Optimized composition

From a syntactic point of view, a sequence operator technically duplicates the output

and input places respectively of 2 separate instances of SD-functions and transmits the

marking of the output place to the input place as defined in Definition 4.17. Thus, the

CP-Net Optimizer, in the Middle-End module, runs through the dataset searching for

any redundancies. Once a redundancy occurs, the CP-Net Optimizer maps the input

and output directly and deletes their duplicates along with their related arcs and

transitions. The resulting CP-Net is then forwarded to the Back-End as an Optimized

CP-Net in form of a dataset to be translated to an XML-based CP-Net (XML CP-Net)

that can be processed and executed in the XA2C runtime environment.

4.4.3 Back-End

The Back-End is the lowest level of our compiler. Its main purpose is to transform the

Optimized CP-Net into an XML CP-Net through an XML-based interchange format

for CP-Nets [12]. Our choice for transforming the syntax into XML-based CP-Nets

was motivated by the following:

(a) XML is the major standard used nowadays for communicating data

(b) XML-based data allows the framework to be flexible and portable, since XML

does not require any prerequisites and can be used on any platform

(c) The XML-based interchange format approach for petri nets was adopted as a

standard [55] for petri net portability between different tools and platforms

(d) XML-based machine code allows us to retain conformity in our framework.

The framework is intended for use with XML-based data and is itself XML-

based.

As of February 2011, PNML [12] (Petri Net Markup Language), an XML-based

interchange format for petri nets, was published in the ISO catalogue as Part 2 of the

ISO/IEC 15909 standard. Thus, XML-based petri nets are made the standard for petri

nets communication and portability between different systems and tools, in particular

the petri nets following the model defined in PNML. In our case, we defined our data

types (both SD-f data type and Composition data type) conform to the data model

define in PNML and adapted to our XCGN syntax as discussed earlier. In terms of

PNML, SD-f typed objects are equivalent to PNML modules which are petri nets that

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 139

C h a p t e r 4 - O u r A p p r o a c h

can be instantiated in other petri nets. As for composition diagram typed objects, they

are equivalent to PNML petri net files which represent full perti nets with instantiated

modules.

Based on XCGN (cf. Definition 4.13) and the relational schemas from the Middle-End

component, we elaborated 2 XML grammars, an SD-f and a Composition diagram

grammar. Summarized grammars are given here below, for the detailed grammars,

refer to Annex A and B.

SD-function XML Grammar:

<xs:schema id="sd_function">

 <xs:element name="sd_function">

 <xs:complexType>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="SD_f">

 <xs:element name="SD_f_type">

 <xs:element name="SD_f_color">

 <xs:element name="SD_f_transition">

 <xs:element name="SD_f_place">

 </xs:choice>

 </xs:complexType>

 <xs:unique name="SD_f" >

 <xs:unique name="SD_f_type">

 <xs:unique name="Color" >

 <xs:unique name="transition" >

 <xs:unique name="place">

 <xs:keyref name="SD_f_place" refer="SD_f">

 <xs:keyref name="type_place" refer="Color" >

 <xs:keyref name="SD_f_transition" refer="SD_f" >

 <xs:keyref name="XCType_SD_f" refer="SD_f_type" >

 </xs:element>

</xs:schema>

Composition XML Grammar:

<xs:schema id="Composition" >

 <xs:element name="Composition">

 <xs:complexType>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="SD_f">

 <xs:element name="SD_f_type">

140 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

 <xs:element name="SD_f_color">

 <xs:element name="SD_f_transition">

 <xs:element name="SD_f_place">

 <xs:element name="Composition">

 <xs:element name="Composition_type">

 <xs:element name="Composition_SD_f">

 <xs:element name="Composition_SD_f_places">

 </xs:choice>

 </xs:complexType>

 <xs:unique name="SD_f">

 <xs:unique name="SD_f_type">

 <xs:unique name="SD_f_color">

 <xs:unique name="SD_f_transition">

 <xs:unique name="SD_f_place">

 <xs:unique name="Composition_id">

 <xs:unique name="Composition_type_id">

 <xs:unique name="Composition_SD_f">

 <xs:keyref

name="FK_SD_f_place_Composition_SD_f_places"

refer="SD_f_place">

 <xs:keyref

name="FK_Composition_SD_f_Composition_SD_f_pl

aces" refer="Composition_SD_f">

 <xs:keyref name="FK_SD_f_Composition_SD_f"

refer="SD_f">

 <xs:keyref name="FK_Composition_Composition_SD_f"

refer="Composition_id">

 <xs:keyref name="FK_Composition_type_Composition"

refer="Composition_type_id">

 <xs:keyref name="FK_SD_f_SD_f_place" refer="SD_f">

 <xs:keyref name="FK_type_place" refer="SD_f_color">

 <xs:keyref name="FK_SD_f_SD_f_transition"

refer="SD_f">

 <xs:keyref name="CompositionType_SD_fct"

refer="SD_f_type">

 </xs:element>

</xs:schema>

Whether a new function is being defined or a manipulation operation is being

composed, the resulting dataset representing an optimized CP-Net will be translated

by the XML-CPNet generator into an XML document that is validated by its

corresponding grammar. Once the XML-CPNet is generated and validated, it can be

transmitted to the XA2C Runtime Environment to be executed.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 141

C h a p t e r 4 - O u r A p p r o a c h

4.5 XA2C Runtime Environment

The XA2C Runtime Environment allows users to execute their compositions

separately from the XCDL platform. It receives an XCGN-based CP-Net (represented

in an XML interchange format, an XML CPNet). The Runtime Environment executes

a composition based on the petri net firing rules.

An execution of a petri net is normaly done by firing a sequence of transitions. Each

transition needs to be enabled and ready to fire before it can actually fire. Therefore,

an enabling configuration, Enabled, is defined over a transition t defining when a

transition is enabled and ready to fire. When a transition fires, it is identified through a

flag Isfired and one token is removed from each input place while another one is

added to each output place. The value of a token is retrievable through a marking M

defined over a place. In the case of XCGN-based CP-Nets, some constraints are

specified as shown in Definition 4.13. A place in XCGN can withhold data of a single

type. Thus its token capacity is limited to one and an arc always has a weight of one.

Whenever all enabled transitions fire and the markings change, an execution step ES

has terminated. Since XCDL is defined as a dataflow language, then executions are

done in cycles, where each cycle starts when data is available on the source nodes and

terminates when data (XML-based in our case) is retrieved by the sink nodes

(destination nodes). We define a full cycle execution as a Run specifying a sequence

of execution steps allowing the final marking to be reached starting from the initial

one. Formaly we define, Enabled, Isfired, M, ES and Run as follows.

Definition 4.27-Enabled (t), is the firing rules for a transition t to fire and is defined

as:

∀𝒂 ∈ 𝑷 × 𝑻 , 𝑬𝒏𝒂𝒃𝒍𝒆𝒅 𝒕 = 𝒕𝒓𝒖𝒆 𝒊𝒇 ∀𝒑 ∈ 𝒂.𝑷, 𝒘 𝒑 ≥ 𝒘(𝒂) ≥ 𝟏

 A transition “t” is enabled if each input place “p” of “t” is marked with at
least “w(a)”, where “w(a)=w(p,t)=1” is the weight of the arc from “p” to “t”.

 An enabled transition t may or may not fire (depending on the level of
granularity defined in the medium-grained approach)

 A firing of an enabled transition t removes 1 token from each input place p of t
and adds a single token to each output place p of t

Definition 4.28-Isfired (t), is a flag set over t where t T and defined as:

Isfired(t) = true

142 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

 t has fired if a firing configuration is satisfied over t

o a P × {t}, a single token is removed from each p P

o a {t} × P, a single token is added to each p P

Definition 4.29-M(p) is a marking over p where p P and M(p) is the value of the

token in p where:

 M0 denotes the set of initial markings of P and I(p) the initial marking of p
where M0(p) = I(p)

 Mn+1 denotes the set of final markings of P where:

o ∀𝑡 ∈ 𝑇, 𝐼𝑠𝑓𝑖𝑟𝑒𝑑 𝑡 = 𝑡𝑟𝑢𝑒

 We denote by Mi the markings of P after i iterations ES have completed

Definition 4.30-ES is an execution step transforming a marking Mi to Mi+1. It is

defined as:

𝐸𝑆:𝑀𝑖

𝐸𝑆𝑖
 𝑀𝑖+1

 An execution step ES occurs when all enabled transitions have fired:

o ∀𝑡 ∈ 𝑇, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐸𝑛𝑎𝑏𝑙𝑒𝑑 𝑡 , 𝐼𝑠𝑓𝑖𝑟𝑒𝑑 𝑡 = 𝑡𝑟𝑢𝑒

 Mi denotes the set markings of P after i execution steps

 Mi+1 denotes the set of markings reached after ESi executions

 ESi is the execution step occurring after i execution steps

Definition 4.31-Run is a full execution cycle over a composition starting from an

initial marking M0 and reaching a final marking Mn+1. It is defined as:

𝑅𝑢𝑛:𝑀0

𝑅𝑢𝑛
 𝑀𝑛+1 = 𝑀𝑖

𝐸𝑆0
 𝑀1 …𝑀𝑖

𝐸𝑆𝑖
 𝑀𝑖+1 …𝑀𝑛

𝐸𝑆𝑛
 𝑀𝑛+1

 M0 denotes the set of initial markings of P

 Mi denotes the set markings of P after i execution steps

 Mi+1 denotes the set of markings reached after ESi executes

 ESi is the execution step occurring after i execution steps

 Mn+1 denotes the set of final markings of P

 A Run instance is terminated if:

o i [0,n], ESi is executed and Mn+1 is reached

The execution of an XCDL program is accomplished via a Run instance which will

execute sequentially all available steps from 0 to n. As stated in the previous section,

an XCGN-based CP-Net can result in either a sequential or concurrent (and parallel)

compositions. In the case of a sequence composition, each ES will have one and only

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 143

C h a p t e r 4 - O u r A p p r o a c h

one transition to fire. As for the concurrent or parallel compositions, each ES can have

1 or more transitions which need to fire simultaneously (cf. Figure 24).The Process

Sequence Generator is used to generate 2 execution sequences, serial and concurrent

sequences, which specify the order in which the composed functions can be executed

by discovering all the ES ranging from 0 to n along with their corresponding enabled

transitions.

4.5.1 Process Sequence Generator

The Concurrent Sequence specifies different execution steps (ES) which must be

executed in the correct order from ES0 to ESn where n is the last ES. Each ES contains

1 or several functions which can be executed in a concurrent manner (parallel or

serial).

The Serial Sequence defines the execution of the functions in a serial manner where

each of the functions in the composition has a unique order in which it can be

executed ranging from 0 to m-1, m being the number of functions used in the

composition.

In order to generate both sequences, we provide an algorithm based on the Incidence

Matrix [79] of CP-Nets (cf. Definition 4.2).

Figure 24: CPN1, an example of a petri net resulting from scenario 1 in XCDL

Before we give the algorithm, we present the hypothesis defining the background on

which the algorithm is based upon.

4.5.1.1 Hypothesis

Based on the XCDL syntax, defined in the XA2C platform, the resulting composition

is defined as a CP-Net based on the XGCN and respects the following main

properties:

144 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

 Each place can contain one and only one token

 A token can be added either through an initial marking provided by the user or an

XCD-tree node, or through a fired transition

 All arcs are weighted with the value 1

 A transition is enabled once each of its input places contains at least one token

 A fired transition clears its input places of all tokens and generates one and only

one token in each of its output places

Based on these properties, we define our algorithm for simultaneously discovering and

generating a serial and concurrent function processing sequence. The processing

sequence is stored in a 2 dimensional matrix (called PP for Parallel Processing) where

each line represents an ES and each column represents a transition (an instance of SD-

function). Consider the composition CPN1 in Figure 24, Table 7 represents its PP

matrix. The PP matrix shows that we have 5 ESs that must be executed sequentially

and in order from ES0 to ES4 (e.g., T1 and T4 are enabled once T0, T3, T8 and T9

have fired). All transitions in an ES can be executed simultaneously in parallel. As

shown in Table 7, each transition corresponding to an ES is assigned a number. This

number represents the sequence order in which a transition should fire in serial

processing mode (e.g., in Table 7, T0, T3, T8, T9, T1, T4, T2, T5, T6 and T7 will be

executed sequentially in Serial Processing mode).

Table 7: PP matrix of CPN1

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

ES0 0 1 2 3

ES1 4 5

ES2 6 7

ES3 8

ES4 9

We present next the skeleton of the algorithm followed by the algorithm generating

the PP matrix.

4.5.1.2 Algorithm skeleton

The pseudo-code of our algorithm is given in Figure 25. it contains 2 loop steps:

 Step 1 (line 1-18):

o For each place in A, check if the initial value is of type “XCD node” or

“user” (in other terms, check if the place is a source place)

o If so, then for each transition in A, check if the corresponding place is an

input to the transition

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 145

C h a p t e r 4 - O u r A p p r o a c h

 If the place is found to be an input, then clear its value from A.

 Check if the transition is enabled

 If it is enabled and PP does not contain a value in the

corresponding transition column, then add the value of m in

PP(j,n) where j is the index of the enabled transition and

increment m by 1

 If the transition is enabled and PP already contains a value

in the corresponding transition column, then report an error

in the composition and exit the algorithm.

 Step2 (line 19-42):
o While |PP| < T.num, for each transition in PP on ESn-1, clear all its output

places and if these places are inputs to other transitions, clear them as well

from A

o Check if their corresponding transitions are enabled

 If so, check if they were not already added to PP and add them in

the corresponding transition line on ESn

 Otherwise, report an error in the composition and exit the

algorithm.

The formal algorithm is presented here below.

Inputs:

Integer A[,] // A is the Incidence matrix

String T[],P[] // T is the Transitions matrix

// P is the Places matrix

Outputs:

Integer PP[,] // PP is the Parallel Processing matrix

Variables:

Var PP[,] as Integer(T.num,1)

Var m, n as Integer = 0

// m is the sequence number of the next transition

// n is the current level number of the parallel processing

Begin:

// step 1

1. for i = 0 to (P.num – 1)
2. if (P_type(i) = “in xcd”) | (P_type(i) = “user”) then

3. for j = 0 to (T.num - 1)

4. if A(i,j) = -1 then

146 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

5. A(i,j) = 0

6. if T_enabled(i,j) then

7. if not (PP.contains(get_t(out_p))) then

8. PP(j,n) = m

9. m = m+1

10. else

11. Error(“Composition Error”)

12. Exit

13. end if

14. end if

15. end if

16. end for

17. end if

18. end for

// step 2

19. while (m < T.num)

20. for i = 0 to (T.num - 1)

21. if PP(i,n) not Null then

22. t=T(i)

23. for each out_p in A.outputs(t)()

24. out_p = 0

25. for each in_p in A.inputs(get_t(out_p))()

26. if in_p = out_p then

27. in_p = 0

28. end for

29. if get_t(out_p).enabled then

30. if not (PP.contains(get_t(out_p))) then

31. PP(get_t(out_p),n) = m

32. else

33. Error(“Composition Error”)

34. Exit

35. end if

36. end if

37. end for

38. end if

39. end for

40. n = n + 1

41. end while

End

Figure 25: ES discovery algorithm

4.5.1.3 ES Discovery Algorithm proof

In case of a valid composition, the Process Sequence Generator must ensure that

1. All transitions are present in PP and each transition is present once and only

once

2. After attending the i
th

 level, if all transitions in level i fire then all transitions in

level i+1 are enabled

3. All transitions in level i can be executed in parallel.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 147

C h a p t e r 4 - O u r A p p r o a c h

Therefore, to prove the correctness of our algorithm, we must prove the following 3

lemmas.

Lemma 1. If ∃ PP then (ti ≠ tj , ∀i, j ∈ ℕ and 𝑖 ≠ 𝑗, i, j < 𝑇.𝑛𝑢𝑚)

Proof. Before populating the PP matrix, whether in loop step 1 or 2, the algorithm

checks each time at line 7 and 30 respectively if the added transition already exists. If

so, the execution is interrupted and PP is not generated i.e,:

If ∀i, j ∈ N, i, j < 𝑇. 𝑛𝑢𝑚 𝑎𝑛𝑑 𝑖 ≠ 𝑗 , ∃(ti = tj) then (∄PP)

Therefore, based on the proof by contradiction we prove Lemma 1, PP can exist if a

transition exists once and only once in PP. □

Lemma 2. If ∃PP Then (∀t ∈ T, t ∈ PP)

Proof. Based on Lemma 1, if a transition exists in PP, then it can only exist once. And

based on the loop step 2 in our algorithm, the algorithm will generate PP and terminate

once T.num transitions are added to PP as shown in line 19. Otherwise the execution

terminates with an error report without a generation of PP and consequently:

If ∃PP Then ti ≠ tj , ∀i, j ∈ N,

i, j < 𝑇.𝑛𝑢𝑚 𝑎𝑛𝑑 𝑖 ≠ 𝑗 And PP = T. num

Therefore, by direct proof, we prove Lemma 2, PP can exist if all transitions in T exist

in PP. □

Lemma 3. ∀𝑖 ∈ 𝑁 𝑎𝑛𝑑 𝑖 ≤ 𝑛, ∀𝑡𝑖 ∈ 𝑇𝑖 , 𝑡𝑖 𝑖𝑠𝑒𝑛𝑎𝑏𝑙𝑒𝑑/∀𝑡𝑖−1 ∈ 𝑇𝑖−1, 𝑡𝑖−1 𝑓𝑖𝑟𝑒𝑑

Proof. We prove this Lemma by mathematical induction.

Basis step: for i=0, loop step 1 clears A from all input places with initial markings and

adds all transitions to PP having inputs with only initial markings (from XCD nodes

or users). Since all of the transitions in ES0 have only input places with initial

markings, therefore:

∀𝑡0 ∈ 𝑇0, 𝑡0 𝑖𝑠𝑒𝑛𝑎𝑏𝑙𝑒𝑑

148 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Inductive step: consider k<n, we assume that ∀𝑡𝑘 ∈ 𝑇𝑘 , 𝑡𝑘 𝑖𝑠𝑒𝑛𝑎𝑏𝑙𝑒𝑑/∀𝑡𝑘−1 ∈

𝑇𝑘−1, 𝑡𝑘−1 𝑓𝑖𝑟𝑒𝑑.

Since ∀𝑡𝑘 ∈ 𝑇𝑘 , 𝑡𝑘 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 therefore all tk in Tk are ready to fire. Based on loop step

2, once all tk fires, all of their output places are cleared from A (line 24). Based on the

hypothesis, a place can either have one token from an initial marking or from a fired

transition. In addition, since all transitions with initial markings have already fired in

the basis step and their places were cleared from A, the places left in A can obtain a

token only from fired transitions. Once all tk fire, the input places of tk+1, which are the

output places of tk, are cleared (line 27) and thus all tk+1 are enabled having no input

places left in A. Thus, we conclude by induction that:

 ∀𝑡𝑘+1 ∈ 𝑇𝑘+1, 𝑡𝑘+1 𝑒𝑛𝑎𝑏𝑙𝑒𝑑/∀𝑡𝑘 ∈ 𝑇𝑘 , 𝑡𝑘 𝑓𝑖𝑟𝑒𝑑□

Now, that we have presented our algorithm for discovering and generating ESs

corresponding to the resulting composition, we give a detailed illustration of the

algorithm over CPN1, the petri net generated from scenario 1.

4.5.1.4 Illustration

Consider the CP-Net shown in Figure 26. Table 8 represents its Incidence Matrix.

Figure 26: CPN1, an example of a petri net resulting from scenario 1 in XCDL

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 149

C h a p t e r 4 - O u r A p p r o a c h

Table 8: Incidence Matrix of CPN1

 P/T T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

* P0 -1

 P1 1 -1

* P2 -1

 P3 1 -1

* P4 1

* P5 -1

 P6 1 -1

 P7 -1 1

 P8 1 -1

* P9 -1

 P10 1 -1

 P11 -1 1

* P12 -1

 P13 1 -1

* P14 1

* P15 -1

* P16 -1

The first iteration terminates after executing the first loop step, where the transitions

attached to source places “*” (XCD-nodes or user defined tokens) which must be

fired first, are generated and inserted in ES0 as shown in Table 10.

150 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Table 9: Incidence Matrix after the 1
st
 iteration

 P/T T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

* P0

 P1 1 -1

* P2

 P3 1 -1

* P4 1

* P5

 P6 1 -1

 P7 -1 1

 P8 1 -1

* P9

 P10 1 -1

 P11 -1 1

* P12

 P13 1 -1

* P14 1

* P15

* P16

Table 10: PP matrix after the 1
st
 iteration

ES/T
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

ES0 0 1 2 3

The second iteration is executed in the second loop step for an ESi=ES1. The execution

terminates after i gets incremented by 1.

Table 12 shows the added transitions to be executed in ES1.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 151

C h a p t e r 4 - O u r A p p r o a c h

Table 11: Incidence Matrix after the 2
nd

 iteration

 P/T T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

* P0

 P1

* P2

 P3 1 -1

* P4 1

* P5

 P6

 P7

 P8 1 -1

* P9

 P10 1 -1

 P11

* P12

 P13 1 -1

* P14 1

* P15

* P16

Table 12: PP matrix after the 2
nd

 iteration

ES/T
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

ES0 0 1 2 3

ES1 4 5

152 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

The third iteration is executed to obtain ES2. The results are shown in Table 13 and

Table 14.

Table 13: Incidence Matrix after the 3
rd

 iteration

 P/T T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

* P0

 P1

* P2

 P3

* P4 1

* P5

 P6

 P7

 P8

* P9

 P10 1 -1

 P11

* P12

 P13 1 -1

* P14 1

* P15

* P16

Table 14: PP matrix after the 3
rd

 iteration

ES/T T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

ES0 0 1 2 3

ES1 4 5

ES2 6 7

Table 15 and Table 16 show the results after the 4
th

 iteration.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 153

C h a p t e r 4 - O u r A p p r o a c h

Table 15: Incidence Matrix after the 4
th

 iteration

 P/T T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

* P0

 P1

* P2

 P3

* P4

* P5

 P6

 P7

 P8

* P9

 P10

 P11

* P12

 P13 1 -1

* P14 1

* P15

* P16

Table 16: PP matrix after 4
th

 iteration

ES/T T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

ES0 0 1 2 3

ES1 4 5

ES2 6 7

ES3 8

The results of the final iteration are shown in Table 17 and Table 18.

154 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

Table 17: Incidence Matrix after 5
th

 iteration

 P/T T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

* P0

 P1

* P2

 P3

* P4

* P5

 P6

 P7

 P8

* P9

 P10

 P11

* P12

 P13

* P14 1

* P15

* P16

Table 18: PP matrix after the 5
th

 iteration

ES/T T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

ES0 0 1 2 3

ES1 4 5

ES2 6 7

ES3 8

ES4 9

Finally, the algorithm checks that all the transitions are available once and only once

in the PP matrix and ends the execution. Therefore we conclude that in this case, 5

iterations were required for generating the PP matrix. As it is shown in Table 18, the

PP matrix contains 5 ESs which must be executed from ES0 to ES4 sequentially. All

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 155

C h a p t e r 4 - O u r A p p r o a c h

transitions available in the same ES can be executed in parallel. As for a serial

execution, we can see in the resulting PP matrix that a unique number is associated to

each transition which specifies its serial execution order.

4.6 Conclusion

In this chapter, we propose a solution for XML manipulations by non-expert users,

called XA2C (XML mAnipulAtion composition), since it was argued that existing

approaches/techniques only provide chunks of the solution but not a full-fledged one.

XA2C has been defined as a framework for non-experts to create/execute xml-oriented

manipulations while taking advantage of related works (i.e., XML-oriented visual

languages, mashups, XML manipulation techniques and DFVPLs) as shown in Figure

1.

XA2C is developed as a visual studio for an XML-oriented DFVPL, called XCDL

(XML composition definition language). The framework is divided into 3 modules: (i)

XCDL platform, (ii) XA2C compiler, and (iii) XA2C Runtime Environment. Each

module is formally defined separately based on a CP-Net grammar, called XCGN

(XML-oriented composition grammar net). The XCDL platform provides the

specifications and syntax of the language which allows mainly users to visually

compose XML-oriented manipulation operations. XCDL is designed for non-experts,

using functional compositions following the natural human thinking process. The

compositions are defined as serial, parallel and concurrent through simple mapping of

function outputs to inputs, thus rendering the compositions more intuitive. The result

of any composition is an object CP-Net satisfying XCGN. The compiler validated,

optimized and translated these CP-Net objects into XML-defined CP-Nets (XML-

CPNet), allowing them to be executed in the Runtime Environment. Defining the

compiler as a separate module clearly separates the language from its Runtime

Environment which lacks in current DFVPL. Before executing/running any XML-

CPNet, they have to be analyzed by the Runtime Environment where execution

sequences would be generated provided 2 execution modes, concurrent/parallel and

serial. Consequently, the approach can take advantage of multi-processor machines

and apply parallel executions.

156 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 4 - O u r A p p r o a c h

CHAPTER 5

PROTOTYPE AND EXPERIMENTS

[1-112]

The XA2C was defined as a formal framework for creating/composing and executing

XML oriented manipulations. The framework defined a visual functional composition

language, called XCDL, with a Runtime Environment allowing the execution of

composed operation. In this chapter, the X-MAN, a prototype developed for

evaluating and validating the XA2X approach, is detailed and evaluated. On one hand,

the architecture of the prototype is discussed here with regard to the language

platform, compiler and Runtime Environment defined in XA2C. On the other hand, a

visual language evaluation framework is defined and used for assessing the XCDL

language along related visual tools such as IBM Diama and YahooPipes. User case

studies have been conducted and used for evaluating the language which showed the

XCDL language to be well more suited for XML manipulations by non-experts

compared to other tools.

158 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 159

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

Table of Contents

5.1 Introduction .. 161

5.2 XCDL Platform .. 161

5.2.1 Library .. 162

5.2.2 I/O XCD-trees .. 164

5.2.3 Composition editor ... 164

5.3 XCDL Compiler ... 166

5.4 Runtime Environment .. 167

5.5 Evaluation and Experiments ... 168

5.5.1 Evaluating XCDL, an XML-Oriented Visual Language 168

5.5.2 XCDL Evaluation Framework ... 168

5.5.3 XCDL Evaluation Case Study .. 171

5.5.3.1 Materials and Participants .. 171

5.5.3.2 Evaluation Categories ... 175

5.5.4 Evaluation Results .. 176

5.5.4.1 Quality of Visualization ... 176

5.5.4.2 Quality of Interaction ... 179

5.5.4.3 Quality of Use ... 181

5.5.4.4 Quality of language .. 183

5.5.4.5 Open question analysis ... 185

5.5.5 Evaluating the Execution Step Discovery Algorithm 186

5.6 Conclusion .. 188

160 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 161

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

5.1 Introduction

To validate the XA2C approach, we implemented and evaluated a prototype called

Visual X-Man, based on the XCDL grammar, allowing us to draw and execute XML-

oriented manipulation operations identified as functions defined in the system

libraries. The functions defined in the prototype were mainly functions stored in DLL

files. The prototype was developed in VB.Net.

Figure 1: Prototype architecture

The architecture of the prototype, shown in Figure 1, is based on the framework’s

main architecture. The prototype is composed of 3 main modules: (i) the XCDL

platform, (ii) the compiler, and (iii) the Runtime Environment. The X-Man was

evaluated through user case studies which were analyzed in a VPL evaluation

framework.

In Section 2, we discuss the language platform. Section 3 presents the compiler

module. The Runtime Environment is described in Section 4. In Section 5, the

language is evaluated along with process sequence generator. An Section 6 concludes.

5.2 XCDL Platform

The XCDL platform is the visual language editor where the user can define/create his

compositions, functions and I/O XCD-trees. As defined in our approach, the language

is divided into I/O XCD-trees and compositions. Therefore, on one hand we defined

the I/O XCD-tree module responsible for transforming XML documents, fragments,

DTDs and schemas into XCD-trees and vice versa
1
. On the other hand, and since the

composition is based on instances of SD-functions mapped together, we defined the

1 XML documents generated from output XCD-trees may not be similar to the input XML document in cases of

output XCD-tree edit or creation.

162 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

library module which defines and stores all SD-functions that can be instantiated later

on in the composition. Finally, we defined a composition editor as a visual editor

which instantiates SD-functions visually and maps them together along with I/O XCD-

trees. As a result, the XCDL platform is divided into 3 sub-modules: (i) Library, (ii)

I/O XCD-tree, and (iii) Composition editor, discussed here below.

5.2.1 Library

The library sub-module is a set of graphical forms which allow users to customize the

language and define the SD-functions to embed in the library. The customizations are

done by choosing the data types to include in the language, colors to give to each type,

dimensions to give to a transition (ht and wt), maximum height for the places in a

function (h), images used to describe the functions, etc. The functions are identified

via a set of forms allowing users to initiate a function definition, define its transition

containing the operation to be executed, and define its I/O places. Figure 2 presents

some of these forms.

An SD-function in our prototype is defined in compliance to the SD-function

definition. First, an id and a name are defined, as shown in Figure 2.a, along with other

attributes (i.e., icon, function category and type). Second, the SD-function components

are defined such as colors, places and transitions. Arcs are implicitly defined once the

transition and places are defined. The places types/colors are defined using the form in

Figure 2.b. Colors are mainly identified by an id, type and an RGB color. The form in

Figure 2.c is used to identify the I/O places of a function. A place has an id, name and

type. The type is chosen from the colors defined in Figure 2.c. Each place is associated

with an I/O flag and an initial value. The I/O flag designates whether the place is an

output or an input. The initial value is given to input places defining the initial

markings of a SD-function.

An SD-function has one transition defining the operation it accomplishes. In our

prototype, the transition is defined through the form in Figure 2.d. A transition has an

id, name, type and value. The type identifies the data type of the operation’s output. As

for the value, it denotes the function operation to be executed, which is retrievable

either from a DLL or a web service.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 163

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

(a) SD-functions definition form

(b) XCGN colors configuration form

(c) SD-function I/O places configuration form

(d) SD-function transitions configuration form

Figure 2: Library configuration forms

164 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

Once an SD-function is defined with all its components, an automated graphical

representation is generated (as shown for the Insert function in Figure 3).

Figure 3: Insert SD-function graphical representation

The graphical representation is drawn with respect to the XCDL transformation

syntax. Before a function is finally stored, it goes through the data model module

(compiler) where it is validated, translated into an XML-CPNET, and then saved in

the XCDL platform library.

5.2.2 I/O XCD-trees

The I/O XCD-tree module is responsible for defining the XML I/O to be manipulated.

On one hand, we developed an algorithm which generates a summarized structure of

an XML document with repetition reduction. It takes an XML file as an input and

generates a tree list as an output representing the summarized structure of the

document. The tree list is then drawn as a tree view as shown in Figure 4.

Figure 4: Edit XCD-tree controllers

On the other hand, we developed some controllers, presented in Figure 4, allowing

users to visually create their own XCD-trees as well as to edit existing XCD-trees.

These XCD-trees are automatically translated into XML structured data. These

functionalities are only applicable on the output XCD-trees and can be used for

restructuring or creating new output structures.

5.2.3 Composition editor

The composition editor, shown in Figure 5, provides the user with a graphical/visual

language editor allowing him to compose his operations from the functions defined by

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 165

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

the Library module. This platform is divided to 4 main sections: the XCD-tree:In

shows the input XML structure (on the right), the XCD-tree:Out shows the output

structure (on the left), the SD-functions list the functions defined by the Library (on

top), and the Composition Workspace (in the middle) where the composition is drawn

by dragging and dropping SD-functions and sequentially mapping them by

consecutively selecting an output and then an input.

Figure 5 Composition editor

To give an illustration of the use of XCDL, we go back to scenario 1 (cf. chapter 1,

Section 1.2.1). A journalist wants to filter out all the books from the company’s

library based on specific topics (e.g., xml related, guide books) and publication year.

Figure 5 shows the composed operation defined in XCDL.

To define the composition operation of this filter, first we define the input and output

content description structures as I/O XCD-trees. The input and output XCD-trees

generated, represent both the structure of the companies’ library (books.xml).

Different SD-functions are shown in the Composition Function’s section. Those

functions have already been defined in the XCDL Library sub-module.

In this scenario, to create his composition, the user first checks available SD-functions.

He starts by selecting the textual content values of the Elements, pub_date, title and

description as shown above by using the Extract Data function which extracts the

166 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

values from the selected XCD-nodes. Then, he maps them to the required

manipulation functions and redirects them to the output structure.

In this scenario, the user needs to create 2 filters: one for filtering the books based on

their publishing date, and the other for filtering them based on the topics required.

As shown in the composition workspace, 2 parallel filters have been created. The first

one was defined by extracting the publishing date from the input XCD-tree then

applying a simple filter that was given the argument “2001”, the year to be selected,

and the results are redirected to the output XCD-tree. The second filter was composed

parallel to the first one. In this filter, both the book’s title and description are searched

for any relatedness to the topics at hand (guide books and XML). To do so, the user

extracts the title and description, merges them together using the SD-function Concat,

and consecutively sends them to a filter based on multiple keywords, Filter_All. The

results of this filter are all the books related to the topics at hand with their title and

description merged together. Therefore, the user uses the SD-function Replace to

remove the title from the results then transmits the description alone to the description

field in the output XCD-tree, thus preserving the same structure of the input XML

data. Both filters will be executed simultaneously, therefore, only the data

corresponding to the criteria of both filters will be transmitted.

5.3 XCDL Compiler

This module plays the role of a compiler, translating a high-level language to a

machine readable language. It was developed based on the compiler module defined

earlier in our approach (cf. Chapter 2, Section 2.3). Each defined SD-function and

composition in the XCDL platform is translated from a data object matching

respectively the SD-function data object and composition diagram data object (cf.

Chapter 3 Section 4.2) to a dataset which is than translated to an XML-based petri net,

XML-CPNET (cf. Figure 1).

Figure 6 presents respectively the dataset’ schemas for defining SD-functions and

compositions built in our prototype.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 167

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

Figure 6: Detailed relational schemas of the internal data models

These schemas yield respectively 2 XML schemas. Once an SD-function or a

Composition is ready to be stored or transmitted to the Runtime Environment, the

corresponding datasets are transformed into XML-CPNETs validated by the

corresponding SD-function or Composition XML schemas.

5.4 Runtime Environment

The Runtime Environment, implemented as a console application with no graphical

interface, executes/runs a composed operation defined as a CP-Net received from the

compiler in form of an XML-CPNET. In order to run such petri nets, we implemented

the Process Sequence Generator component which analyzes the input petri nets and

generates 2 execution sequences, serial and parallel as discussed previously in Chapter

3, Section 5. The execution sequences are generated automatically through the ES

(Execution Step) discovery algorithm implemented here (cf. Chapter 3, Section 5.1).

Once the execution sequences are generated, they can be executed either by calling the

SD-functions sequentially or concurrently through multi-threading respectively for

serial and parallel sequences.

168 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

5.5 Evaluation and Experiments

To evaluate our approach, 2 studies have been accomplished: (i) evaluating the ES

discovery algorithm, and (ii) evaluating the XCDL language. The first study was done

in order to evaluate the performance of the ES discovery algorithm. As for the second

study, it was done to assess the overall quality of the XCDL language. Both studies are

discussed here below.

5.5.1 Evaluating XCDL, an XML-Oriented Visual Language

In the literature, as discussed by Marghescu et al. [76], evaluating a language, editor,

or tool consists of 3 steps: (i) defining a model of evaluation, (ii) specifying the proper

attributes for measurement, and (iii) identifying the limitations and problems of the

language. In our case, we are dealing with a visual language instead of a traditional

language. Thus, the evaluation is totally dependent of the visualization techniques

adopted by the corresponding VPL (XCDL in this case).

In the visualization literature, very few evaluation frameworks were defined since

many researchers [20, 24] emphasize the necessity for systematic empirical evaluation

of visualization techniques. Nonetheless, Marghescu et al., in their paper [76], defined

a model of evaluation for visual data mining tools based on empirical studies and

theories identified in the literature. In their model, they defined 3 levels of analysis:

visualization, interaction and information. In our research, in order to evaluate our

language, we adapted a similar approach by defining the same analysis levels with

attributes specific to XML-oriented visual languages. Our main concern falls on

evaluating the quality of use of XML-oriented VPLs in order to review the user

satisfaction. Therefore, we take into consideration all the important aspects of XCDL:

visualization, interaction with the system and overall language information.

5.5.2 XCDL Evaluation Framework

In XCDL, the success of a visual composition is identified by the user satisfaction that

depends on how good the visualizations, easy and simple the interactions, and accurate

the language, are:

 A good visualization is properly able to represent the data of interest, the initial

settings should be practical and adequate and the visualization system should

provide a variety of exploration tasks (i.e., overview and details of data)

facilitating the access to the desired information by the user.

 An easy and simple interaction between the user and the system is guaranteed

when the language is efficient, accurate and easy to use and learn.

 The language must be accurate and reliable.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 169

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

Based on these characteristics, we define the 4 criteria quality of language, quality of

visualization, quality of interaction and quality of use. These criteria were adapted

from the evaluation model defined by Marghescu et al. and rendered specific to VPL

assessment.

Definition 5.1-Quality of Language is defined as the assessment of the totality of

characteristics and features of the language related to user satisfaction. These

features are defined in terms of visualizations, interaction and overall use of the

language.

Figure 7: Evaluating the quality of language

Definition 5.2-Quality of Visualization is used to evaluate the language in terms of

graphical representations and user interface. It is evaluated based on 2 main

criterions:

 Initial settings referring to the I/O initial requirements and parameters for

visualization.

 Data display assessing the possibility to visualize data structure, description

and organization.

Figure 8: Evaluating the quality of visualization

170 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

Definition 5.3-Quality of Interaction is used to assess if the language is easy to learn,

intuitive and reliable. It is evaluated based on 3 main features:

 Learnability specifies how easy and simple the language is to learn.

 Intuitiveness denotes the degree in which the user feels the language is

helpful.

 Reliability reflects the viability of the language to define a task.

Figure 9: Evaluating the quality of interaction

Definition 5.4-Quality of Use is used to elaborate an overall assessment of the

language, whether it satisfies its purpose or goals. It is evaluated based on 3 main

features:

 Ease of Use denotes the level of simplicity or complexity required by the

language to be used.

 Accuracy of Use designates whether the user finds the language specific and

oriented towards the data types it presumes to deal with (XML in the case of

XCDL).

 Knowledge of Prerequisites assesses the need for users to have knowledge in

certain fields.

 Efficiency designates how efficient and quick the language usage is.

Figure 10: Evaluating the quality of use

The overall model of evaluation and the relations between the different attributes and

evaluation features are shown in Figure 11. In a case study, when the user is creating

his composition, he needs the interaction with the system to be efficient and smooth

which is tightly related to the simplicity provided for visualizing and initiating the

data. As an overall, the language needs to be easy to use and accurate to the task.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 171

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

In the evaluation model, the language is evaluated as the user completes a use case

scenario and provides input on the attributes corresponding to the overall of the

language, interaction and visualization. The inputs are clustered correspondingly to

each group and the quality of visualization, interaction and use are elaborated. All of

these 3 measurements are then assessed together to provide an overall evaluation, the

quality of language.

Using this model, allows users to evaluate the language as a whole and to elaborate

granular assessments providing information (pros and cons) on different levels, from

the language functionality to its graphical representation and to its achievements (e.g.,

it is XML-oriented, user friendly, easy to learn, etc.).

Figure 11: VPL evaluation model

We assessed the XCDL language using the VPL evaluation model.

5.5.3 XCDL Evaluation Case Study

In order to evaluate our language, we provided several use case scenarios that were

executed by a number of participants. A questionnaire survey technique was used to

collect data. The data collected was then analyzed based on the evaluation model

defined in Figure 11.

5.5.3.1 Materials and Participants

Our study was separated to 2 cases. The first one was intended for evaluating the

XCDL language from users’ perspectives and the second was proposed for comparing

XCDL with existing approaches. In our research, YahooPipes and IBM Damia are the

closest to our work and therefore were evaluated alongside our prototype X-Man.

172 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

The evaluation studies underwent the following phases:

(a) The students took 10 min to get acquainted with each platform (XCDL, IBM

Damia and YahooPipes).

(b) The students were given 4 assignments to be solved in X-Man, IBM Damia

and YahooPipes.

(c) Once the students have finished the assignments, they were asked to answer a

questionnaire containing a set of evaluation attributes.

(a) Participants:

Our study involved 76 participants who were students in an engineering school. The

experiments were conducted the participants personal computers. In Table 1, we

present the demographic details of the participants.

Table 1: Demographic distribution of the participants

Category Values Percentage

Major Telecommunications 20

Networking and system 28

Graphic design 34

Software engineering 16

University year 4
th
 year 73

5
th
 year 27

Programming

experience

Beginners 54

Intermediate 46

The participants were given the following 4 cases to accomplish on all of X-Man,

YahooPipes and IBM Damia.

(b) Use case scenarios:

1. Case 1:

Figure 12: Use case scenario 1

Consider the XML data flow transmitted from “Books.xml”. Create a filter allowing

only guide books to be forwarded. (The filter needs to be applied on the books’ title).

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 173

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

2. Case 2:

Figure 13: Use case scenario 2

Consider the XML data flow transmitted from “books.xml”. Generate for each book a

new description with the following template:

“The entitled “Title” was written by Author and published in Pub_Year.” where title,

author and Pub_year are sub-elements defined for each book.

3. Case 3:

Figure 14: Use case scenario 3

Consider the RSS feed generated from URL1. Bloc all items which are not related to

“Rice” neither in their title nor description. (It is enough that either the title or the

description is related to “Rice” for the feed to pass).

4. Case 4:

Figure 15: Use case scenario 4

Consider the RSS feed generated from URL1. Bloc all items which are not related to

“Rice” neither in their title nor description. In addition, if the word “Rice” is found in

either the feed’s title or description, it needs to be obfuscated.

Once the students finished all 4 cases, they were asked to answer the following

questionnaire.

(c) Questionnaire of Evaluation:

The questionnaire was divided into 2 parts: (i) common attributes for evaluation in

XCDL, IBM Damia and YahooPipes, and (ii) open questions.

i. Common questionnaire:

For each of the following phrases, mark positive if “you totally agree”, negative if

“you disagree totally” or 0 if “you are neutral”.

174 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

(-)---(0)---(+)

XCDL Yahoo Damia

1. It is easy to specify/define input data..................................

2. It is easy to specify/define output data................................

3. Input data is adequate for XML...

4. Output data is adequate for XML..

5. It is easy to understand the required parameters.................

6. It is easy to specify/define the required parameters............

7. Functions are clearly visualized..

8. It is easy to understand the functionality of a Function.......

9. The I/O of a function are clearly defined/visualized...........

10. Data types of functions' I/O are clearly defined/visualized.

11. It is easy to differentiate between different data types........

12. It is easy to visualize/understand XML I/O structures........

13. It is easy to differentiate between the types of different

XML nodes (Element/Attribute/Text).................................

14. It is easy to create compositions..

15. The language is easy and simple to learn............................

16. The language is easy to use...

17. The Composition does not require lot of steps....................

18. The composition is accurate..

19. Conversion between different data types is simple.............

20. Many data types can be used (String/Integer/Boolean...)....

21. I/O XML mapping with a composition is simple/easy........

22. It is easy to modify the output XML structure....................

23. It is easy to create a new output XML structure from

scratch……………………………………………………..

24. Programming knowledge is required..................................

25. XML knowledge is required..

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

Task accomplishment:

26. Were you able to finish the task?

27. How much time did you take to finish a task?

ii. Open Questions:

1. What are the negative aspects of the XCDL language?

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 175

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

2. What can be done to improve the XCDL language?

The attributes defined in the questionnaire are categorized based on the model defined

in section 5.5.2.

5.5.3.2 Evaluation Categories

In order to cope with the VPL evaluation model the attributes were clustered as

follows:

(a) Visualization

i. Initial Settings

 Simplicity in defining input data

 Simplicity in defining output data

 Input data adequacy with regard to XML

 Output data adequacy with regard to XML

 Ease of understanding the required parameters

 Simplicity in defining the required parameters

ii. Data Display

 Clarity in visualizing functions

 Ease of understanding a function’s operation

 Clarity in visualizing the I/O of a function

 Clarity in visualizing a function’s I/O data types

 Ease of differentiating between data types

 Ease of visualizing/understanding XML I/O structures

 Ease of differentiating between the types of different XML nodes

(Element/Attribute/Text)

(b) Interaction

i. Learnability

 Composition requiring few steps

 Simplicity between data type conversions

 Simplicity in mapping I/O XML to a composition

i. Intuitiveness

 Ease while modifying the output XML structure

 Ease while creating a new output XML structure

i. Reliability

 Ease while composing a manipulation operation

 Ability to use multiple data types (String/Integer/Boolean...)

176 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

(c) Language usage

i. Ease of use

 Simplicity in getting acquainted with (using) the language

 Ease of working with the language

ii. Accuracy

 Accuracy of the composition

iii. Knowledge of Prerequisites

 Low requirement of programming knowledge

 Low requirement of XML knowledge

iv. Efficiency

 Ability to accomplish a task

 Time required to accomplish a task

5.5.4 Evaluation Results

The evaluation process was conducted by collecting information from the participants’

answer sheets and clustering them under the evaluation attributes’ categories

(Visualization, Interaction and Language usage). These categories allow the

measurement respectively of the quality of visualization, interaction and use which

grouped together, result in the assessment of the quality of language.

5.5.4.1 Quality of Visualization

Figure 16.a and b respectively depict users’ perspectives concerning the visualization

aspects of XCDL, IBM Damia and YahooPipes. As shown in Figure 16.a, no major

issues are revealed in terms of visualization. The results clearly show that the overall

visualization aspects of XCDL are better than those of IBM Damia and YahooPipes. It

is interesting to note that over 90% of the users found that in XCDL, both the inputs

and outputs are easily defined and adequate to describe XML data. Also, less than

71% of the users found that differentiating between XML node types is easy and

differentiating between SD-functions’ I/O data types is clear.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 177

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

(a) XCDL evaluation of visualization (b) IBM Damia evaluation of visualization

(c) YahooPipes evaluation of visualization

A. Simplicity of defining input data

B. Simplicity of defining output data

C. Adequacy of input data with XML

D. Adequacy of output data with XML

E. Ease of understanding the required

parameters

F. Simplicity in defining the required parameters

G. Clarity in visualizing functions

H. Ease of understanding a function’s operation

I. Clarity in visualizing the I/O of a function

J. Clarity in visualizing a function’s I/O Data

types

K. Ease of differentiating between data types

L. Ease of visualizing/understanding XML I/O

structures

M. Ease of differentiating between the types of

different XML nodes

(Element/Attribute/Text)

Figure 16: Visualization attributes evaluation

0% 20% 40% 60% 80% 100%

A

B

C

D

E

F

G

H

I

J

K

L

M
YahooPipes

Pos

neutral

0% 20% 40% 60% 80% 100%

A

B

C

D

E

F

G

H

I

J

K

L

M

XCDL

0% 20% 40% 60% 80% 100%

IBM Damia

Pos

neutral

neg

178 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

Figure 17 shows the quality of visualization elaborated from evaluating the

visualization attributes and confirming that the quality of visualization of XCDL is

superior to that of IBM Damia and YahooPipes by a margin over 5%. However, while

over 88% of the users gave favorable responses in terms of initial settings for XCDL,

less than 85% of the users gave favorable feedback on data display. It is interesting to

note that both IBM Damia and YahooPipes received less than 80% of favorable

responses to both their initial settings and data display.

(a) Quality of visualization of XCDL

(b) Quality of visualization of IBM Damia

(c) Quality of visualization of YahooPipes

A. Initial settings

B. Data display

Figure 17: Quality of visualization

0% 20% 40% 60% 80% 100%

A

B

XCDL

0% 20% 40% 60% 80% 100%

IBM Damia

pos

neutral

neg

0% 20% 40% 60% 80% 100%

A

B

YahooPipes

pos

neutral

neg

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 179

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

5.5.4.2 Quality of Interaction

(a) XCDL evaluation of interaction (b) IBM Damia evaluation of

interaction

(c) YahooPipes evaluation of interaction

A. Composition requiring few steps

B. Simplicity between data type conversions

C. Simplicity in mapping I/O XML to a composition

D. Ease in modifying the output XML structure

E. Ease in creating a new output XML structure

F. Ease in composing a manipulation operation

G. Ability to use multiple data types (String/Integer/Boolean, etc.)

Figure 18: Interaction attributes evaluation

Figure 18.a and b respectively depict users’ perspectives concerning the interaction

aspects of XCDL, IBM Damia and YahooPipes.

Figure 18.a shows no major issues regarding the aspects related to the

user/language interaction. While all the interaction attributes regarding

0% 20% 40% 60% 80% 100%

A

B

C

D

E

F

G

XCDL

0% 20% 40% 60% 80% 100%

A

B

C

D

E

F

G

YahooPipes

pos

neutral

neg

0% 20% 40% 60% 80% 100%

IBM Damia

pos

neutral

neg

180 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

XCDL received a higher positive percentage than those of YahooPipes, the

XCDL “ease in modifying the output XML structure” attribute showed to be

less favorable than the rest of the attributes. It is interesting to note, on one

hand, that over 80% of the users found it easy to convert data types. On the

other hand, less than 72% of the users agreed that modifying an XML output

structure is simple which is logical due to the fact that the majority of the

participants are in the field of computer science. Therefore, they have little or

no knowledge of XML.

(a) Quality of interaction of XCDL (b) Quality of interaction of IBM Damia

(c) Quality of interaction of YahooPipes

A. Learnabililty

B. Intuitiveness

C. Reliability

Figure 19: Quality of interaction

Based on the data collected from evaluating the interaction attributes, as presented in

Figure 19, the quality of interaction concerning XCDL is superior then that of IBM

Damia and YahooPipes by a margin over 4%. However, while 80% of the users gave

favorable responses in terms of learnability regarding XCDL, less than 76% of the

0% 20% 40% 60% 80% 100%

A

B

C

YahooPipes

pos

neutral

neg

0% 20% 40% 60% 80% 100%

A

B

C

XCDL

0% 20% 40% 60% 80% 100%

IBM Damia

pos

neutral

neg

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 181

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

users gave favorable feedback on the user/language interaction being intuitive. That is

due to the primitive visual interactive state of the X-Man since it is still in the

prototyping phase.

5.5.4.3 Quality of Use

(a) XCDL overall language usage

evaluation

(b) IBM Damia overall language usage

evaluation

(c) YahooPipes overall language usage evaluation

A. Simplicity in using the language

B. Ease in using the language

C. Accuracy of the composition

D. Low requirement of programming knowledge

E. Low requirement of XML knowledge

Figure 20: Overall language usage attributes evaluation

Figure 20.a and b respectively depict users’ feedback regarding the overall use of

XCDL, IBM Damia and YahooPipes.

Figure 20.a shows no major issues regarding the overall aspects of the XCDL

language. The positive responses of the users towards the overall attributes of the

0% 20% 40% 60% 80% 100%

A

B

C

D

E

YahooPipes

pos

neutral

neg

0% 20% 40% 60% 80% 100%

A

B

C

D

E

XCDL

0% 20% 40% 60% 80% 100%

IBM Damia

pos

neutral

neg

182 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

XCDL language were higher than those of IBM Damia and YahooPipes. It is

interesting to note that 86% of the users found XCDL to be easy to learn. Less than

63% of the users agreed that low programming knowledge are required which is

almost similar compared to IBM Damia and YahooPipes.

Table 2: Efficiency evaluation of XCDL

Users who accomplished all 4 tasks 66.7%

Time of 1
st
 case 11.9 minutes

Time of 2
nd

 case 8.8 minutes

Time of 3
rd

 case 11.3 minutes

Time of 4
th

 case 10.5 minutes

In terms of efficiency, most participants were unable to finish all 4 tasks on both

YahooPipes and IBM Damia due to the fact that:

 YahooPipes requires the input sources to be translated into RSS structures and

 IBM Damia requires the final output to be reconstructed again,

which rendered the tasks difficult to accomplish for non experts. This outcome was

anticipated since neither YahooPipes nor IBM Damia are XML-oriented DFVPL but

XML-oriented Mashup tools. In the case of XCDL, as shown in Table 2, 66.7% of the

users were able to finish all the tasks. It is interesting to note that the time spent to

accomplish each case was reduced as the user advanced to the next case, although the

cases were becoming more complex.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 183

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

(a) Quality of use of XCDL (b) Quality of use of IBM Damia

(c) Quality of use of YahooPipes

A. Ease of use

B. Accuracy

C. Knowledge of Prerequisites

Figure 21: Quality of use

Based on the data collected from evaluating the overall language usage attributes, the

quality of use regarding XCDL is proven superior than that of both IBM Damia and

YahooPipes as shown in Figure 21. However, while 83% of the users considered

XCDL to be easy to use and accurate, less than 66% of the users gave favorable

feedback regarding the language requiring little knowledge of prerequisites due to the

fact that most users are not computer scientists.

5.5.4.4 Quality of language

After evaluating the quality of visualization, interaction and use, we elaborate the

quality of language concerning XCDL shown in Figure 22.a.

0% 20% 40% 60% 80% 100%

A

B

C

YahooPipes

pos

neutral

neg

0% 20% 40% 60% 80% 100%

A

B

C

XCDL

0% 20% 40% 60% 80% 100%

IBM Damia

pos

neutral

neg

184 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

(a) Quality of language of XCDL (b) Quality of language of IBM Damia

(c) Quality of language of YahooPipes

A. Quality of visualization

B. Quality of interaction

C. Quality of use

Figure 22: Quality of language

As shown in Figure 22, the XCDL quality of use was evaluated to be better than that

of IBM Damia and YahooPipes in terms of XML-oriented visual manipulations.

While XCDL received over 78% of positive feedbacks regarding all of the quality of

visualization, interaction and use, both IBM Damia and YahooPipes received less than

78% of favorable feedbacks regarding all the quality factors. Nevertheless, in XCDL

the quality of interaction has the least positive feedback of all which is anticipated due

to the lack of error handling and existing bugs in the Visual X-Man prototype

developed. It is interesting to note that the Quality of Visualization was assessed

positive by over 87% of the participants which is remarkable since both IBM Damia

and YahooPipes were less than 79% positive. This has proven for us that visualizing

the functions as Petri Nets was more adequate than other means.

0% 20% 40% 60% 80% 100%

A

B

C

YahooPipes

pos

neutral

neg

0% 20% 40% 60% 80% 100%

A

B

C

XCDL

0% 20% 40% 60% 80% 100%

IBM Damia

pos

neutral

neg

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 185

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

After evaluating the quality of language, the feedbacks from the open questions were

analyzed as shown in the following section.

5.5.4.5 Open question analysis

Some key features for improving the approach were identified by the participants’

answers to the open questions. Some of these features are lacking in the current

approach and others need to be improved. They can be summarized in Table 3:

Table 3: Open questions evaluation

Nb of

participants
Features to improve Assessment

28%

The compilation should include error

handling allowing users to identify

the syntax errors of their

compositions

This is due to the fact that X-Man was

developed first as an evaluation

prototype for XCDL

19%

The language should define control

functions such as decisions and loops

The prototype included first some

primitive manipulation functions for

testing purposes. The second phase is

defining control functions

34%
The overall visual interface should

be more dynamic

As the language is still is the testing

phase, the visual interface is primitive

37%

The Human/Machine interaction

should be rendered more dynamic by

including drag and drop, and zoom

functionalities

So far the drag/drop functionality has

not been implemented, since it was

not a priority in the theoretical

approach

9%

Some functions should be dynamic

(e.g., the user should be able to

choose the number of inputs to

concatenate when using a Concat

SD-function)

The first step in defining the language

was to formally define static

functions. The second step is to

render these functions dynamic

26%

The language should be enriched

with more visual information

regarding the SD-functions

That is due to the fact that the

functions’ information were

misplaced in the prototype

43%

The language should include some

information regarding the main XML

elements and structure (i.e., XML

Elements, Attributes and Values).

In the prototype no information

regarding XML had been provided

since the purpose was to evaluate its

use by non-experts

186 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

Since the Visual X-Man prototype is a beta version released for testing purposes, it did

not contain much error handling. It was meant to validate the language’s main

objective before we could tackle other matters such as error handling. During the

testing phase with the participants, some bugs were discovered which affect mostly the

quality of interaction. Nevertheless, the evaluation of XCDL in all of its aspect was

positive and superior to other tools.

5.5.5 Evaluating the Execution Step Discovery Algorithm

The algorithm was tested with several compositions on an Intel Xeon 2.66GHz with

1Gbyte of Ram memory. We discuss here 4 different cases: serial (cf. Figure 23.a),

concurrent (cf. Figure 23.b), parallel (cf. Figure 23.c) and a combined case of serial

and concurrent compositions (cf. Figure 23.d).

(a) Serial Composition
(b) Concurrent

Composition

(c) Parallel

Composition (d) Combined

Composition

Figure 23: Different composition scenarios

Each of them was defined as shown in the following 4 cases:

(a) Case a represents a serial composition where n compositions were tested and

each composition had an additional function added to it in a serial composition.

(b) Case b denotes a set of concurrent compositions defined n times, where each

time an additional function was inserted concurrently to the composition.

(c) Case c specifies a set of parallel compositions between m serial compositions

of 5 functions each defined n times. At each definition, a serial composition is

inserted parallel to the previous composition.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 187

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

(d) Case d represents a parallel composition between a serial and a concurrent one

where the concurrent composition is composed of 32 functions concurrently

mapped and the serial composition is defined n times with an additional

function sequentially mapped to it each time.

The variable n was defined to specify the number of added functions used in each

case, ranging from 0 to 15, 32, 7 and 11 respectively in cases a, b, c and d. In all 4

cases the functions were dragged and dropped arbitrarily. Each test was executed 8

times and the results were elaborated from the average of all 8 executions.

(a) Graph of Case a
(b) Graph of Case b

(c) Graph of Case c
(d) Graph of Case d

Figure 24: Runtime execution of the algorithm

The runtime execution monitored by the tests regarding cases a, b, c and d are shown

respectively in the graphs a, b, c and d in Figure 24. As we can see in all 4 graphs, the

runtime execution growth remains constant to a certain point then starts growing in

0

200

400

600

800

1000

1200

1400

1600

1 3 5 7 9 11 13 15

Serial Execution Time

n: number of added functions

t: Time (ms)

0

500

1000

1500

1 4 8 12 16 20 24 28 32

Concurrent Excecution
Time

n: number of added functions

t: Time (ms)

0

200

400

600

800

1000

1200

0*5 1*5 2*5 3*5 4*5 5*5 6*5 7*5

Parallel Excecution Time

n: number of added functions

t: Time (ms)

0

500

1000

1500

2000

2500

3000

3500

4000

3
2

*0

3
2

*1

3
2

*2

3
2

*3

3
2

*4

3
2

*5

3
2

*6

3
2

*7

3
2

*8

3
2

*9

3
2

*1
0

3
2

*1
1

Combined Excecution Time

n: number of added functions

t: Time (ms)

188 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

almost a linear form. Therefore, we elaborate the following 4 equations shown in

Table 4.

Table 4: Runtime equations of cases a, b, c and d

Cases Runtime Growth Equation

Case a t = 200n – 7*(200)

Case b t = 50n – (200)

Case c t = 320n – (200)

Case d t = 300n – 6*(200)

Based on all 4 equations we elaborated that the algorithm has a constant execution

period, in the case of the Xeon processor it was equal to 200ms. The execution

runtime of concurrent cases is half the execution runtime of serial cases. In combined

compositions, we notice that the execution runtime of the algorithm is dependent of

the runtime of the maximum independent concurrent composition which sets the

minimum runtime of the overall execution. In cases tested here, we could see that

1400ms was the execution runtime for a concurrent composition of 32 functions and

almost 0ms was the runtime execution for serial compositions containing less than 7

functions. This was validated in the combined composition, case d, where the

minimum runtime execution was 1400ms till the serial composition increased beyond

7 functions. Nonetheless, if we compare the serial execution runtime with the

combined execution runtime, we can notice that the algorithm is not yet optimal and

optimizations need to be considered in future works. Theoretically, since the runtime

of the algorithm in a concurrent composition (case d) after 32 functions are inserted

equals 1400ms and the runtime in a serial composition (case a) containing 11

functions equals 600ms, thus, combining both cases, the concurrent with the serial,

should result in a execution runtime equal to 2000ms (1400ms+600ms). Where as in

our tests, case d showed that for 32 concurrent functions parallel to 11 serial ones, the

execution runtime is equal to 3500ms. That difference is due to the fact that the

algorithm does not recognize hybrid compositions where several concurrent or serial

compositions can co-exist parallel to each other without any dependencies. It always

considers them dependent at some level.

5.6 Conclusion

X-man was developed as a prototype for evaluating and validating the XA2C

approach, in particular the XCDL language. Its architecture clearly separated the

language platform from the Runtime Environment which allowed separate testing of

both. 2 use cases studies were achieved:

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 189

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

1. XCDL evaluation

2. ES discovery algorithm validation and evaluation

On one hand, a VPL evaluation framework was defined and used for evaluating

XCDL alongside IBM Diama and YahooPipes. The results showed clearly that XCDL

was more suitable for XML manipulations by non experts than existing tools and

particularly for XML-based dataflows. In terms of quality of language and all of its

criteria, visualization, interaction and usage, the assessments were all positive. The

tests showed that using:

 simple function visualizations with clear distinction between I/O

 simple mapping in order to compose an operation

 treeviews for XML data representation

 multiple data types

 visual data type conversions,

were essential for an optimized and most efficient use of XML visual languages.

XCDL excelled above other tools in it overall quality of language and mainly in its

visual and usage aspects.

The evaluation process has shown that an XML-oriented DFVPL is required since the

existing tools are not DFVPLs and it had proven that CP-Nets are very useful in terms

of visualization as well as execution in such languages.

On the other hand, an evaluation was conducted on the ES discovery algorithm to test

its performance. The evaluation showed that the algorithm works properly in all

composition cases (serial, parallel, concurrent and combined) and generates correct

execution sequences. The algorithm was optimized in the first 3 cases. As for the

combined case, optimizations are required since the algorithm does not consider

composition independencies.

190 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 5 - P r o t o t y p e a n d E x p e r i m e n t s

CHAPTER 6

CONCLUSION

[1-112]

Table of Contents

6.1 Introduction ... 193

6.2 Contributions... 193

6.2.1 The XA2C approach ... 194

6.2.2 The XCDL language ... 194

6.2.3 Prototype and Evaluation .. 195

6.3 Future Works .. 196

6.3.1 XCDL Extensibility .. 196

6.3.2 XCDL Derivability ... 197

6.3.3 Automated Composition ... 198

6.3.4 Technical enhancements ... 198

6.3.5 Better Assessment ... 198

192 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 6 - C o n c l u s i o n

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 193

C h a p t e r 6 - C o n c l u s i o n

6.1 Introduction

Since the late 90s and up to now XML has invaded the communication networks

in the computer domain, whether it is over the internet (e.g., social networks),

intranets (e.g., web services), or offline (e.g., integration between different

applications), and whether it is from user to user (e.g., instant messaging), user to

machine (e.g., data insertion/removal), or machine to machine (e.g.,

communication between applications). Thus, the use of XML is not limited

anymore to computer scientists, but has become in the grasp of users from other

areas such as commercial, medical, social and others. As a consequence, it has

become more and more imperative to allow non-expert users to control or

manipulate their XML communication/data on different platforms/environments

(online and offline), even though they may not necessarily have any experience in

computer science, programming or XML.

In this research, we analyzed and explored these issues from different

perspectives with regard to the literature. Unfortunately, most existing

approaches/techniques address “XML manipulations by non-experts” from

different angles but provide only partial related solutions. They are grouped in 4

main categories:

(a) XML-oriented querying and transformation visual languages

(b) XML-oriented Mashup tools

(c) XML manipulation techniques

(d) DFVPL (Dataflow Visual Programming Languages)

None of these approaches provided a full-fledged solution for non-expert users

allowing them to create and enforce XML-oriented manipulation operations over

different platforms and in different environments.

This study was dedicated to defining a new approach/framework for creating and

enforcing XML manipulation operations by non-expert users, called XA2C (XML

mAnipulAtion Composition). The main contributions of our work are described

below.

6.2 Contributions

The XA2C framework is a visual studio for an XML-oriented DFVPL called

XCDL (XML-oriented Composition Definition Language) allowing non-expert

users to manipulate XML-based data. The major contributions can be elaborated

from the XA2C approach, the XCDL language, and the X-Man prototype as

discussed in the following subsections.

194 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 6 - C o n c l u s i o n

6.2.1 The XA2C approach

Six contributions are related to the XA2C approach:

 Originality: Our approach, to the best of our knowledge, is the first XML-

oriented VPL based on the dataflow paradigm

 Intuitiveness: Since Dataflows are considered to be the closest to the

natural human thinking process, thus XA2C inherits their features and

particularly their simplicity and clarity.

 Expressiveness: The usage of the Dataflow paradigm makes the approach

more expressive than existent XML-oriented visual languages, since it is

specifically designed for data manipulations and allowing various kinds of

operations

 Portability: The XA2C framework defines its data models using XML.

Consequently, the framework is rendered platform and environment free,

has no constraints, and can be deployed anywhere online or offline

 Derivability and Extensibility: The framework is formally defined, along

with the language and based mainly on CP-nets (colored petri nets). Thus,

the approach is rendered derivable. As well, its formal aspects allows it to

be further studied and developed by computer scientists, and gives it the

ability to embed new features such as flow control, error handling

mechanisms currently lacking in existing approaches, etc. While most

researchers agree that such formalities render the reading and

understanding of the material difficult, having such definitions provides a

strong foundation for future works, and allows a better analysis and

debugging of the language.

 Modularity: The XA2C framework is defined as a modular architecture

and contains 3 modules which respectively define the XCDL syntax as a

DFVPL, the XCDL compiler translating the compositions into machine

code, and the XCDL runtime environment for executing the translated

compositions. Separating the framework into a language platform, a

compiler and a Runtime Environment provides a well-defined and

structured approach which clearly separates the compositions from the

executions. Therefore, this removes any confusions regarding when one

ends and the other begins, and allows a better evaluation and assessment

of the language separately from the other modules.

6.2.2 The XCDL language

X contributions are related to the XCDL language:

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 195

C h a p t e r 6 - C o n c l u s i o n

 Ease of Use: In the XCDL platform, the main module of our framework,

we defined the syntax and semantics of our DFVPL (XCDL) based on our

CP-net algebraic grammar, called XCGN (XML Composition Grammar

Net), and OLT, called XCD-tree. By defining the language as a DFVPL,

XCDL was rendered suitable for non-expert users, since it bases its

compositions on the natural human thinking process. This rendered the

language most appropriate for non-expert users.

 Adaptability and Genericity: To render the language oriented towards

XML manipulations, we separated the syntax of the language’s inputs and

outputs from the main composition syntax. I/Os are defined as XCD-trees

(OLT) which represent the structure of any XML-based data (e.g., XML

documents, fragments, XML DTDs, and XML schemas) as tree views.

Separating the Dataflow’s I/O and using OLT for representing XML data,

orient XCDL towards XML and define it as an XML-oriented DFVPL

which lacks so far in the literature. In addition, XCDL gains the advantage

of being generic to any structured data, not only XML.

 Poly-syntaxity: XCDL is defined as a visual language and provides a

separate syntax for the graphical representations from the language syntax.

Thus, the language has been rendered flexible and allows the definition of

different visual syntaxes which can be adapted to different environments.

From a mere user’s point of view, each visual syntax is a unique language

(similar to C# and visual basic). Such languages have separate syntaxes,

although, they share a common core (the dotnet framework).

 Operability: XCDL is a DFVPL allowing users to create their

manipulation operations through visual compositions by simply linking

the outputs and inputs of SD-functions. Since these functions can be

identified from offline libraries (e.g., DLL and Jar files) or online libraries

(e.g., web services), this renders the language extensible with new

operations.

6.2.3 Prototype and Evaluation

In addition to the theoretical contribution, we developed X-Man, a prototype for

evaluating and testing the X2AC framework. The prototype was used to test our

algorithms and evaluate the language and framework in real case scenarios. Since

we were not able to find any frameworks in the literature for evaluating VPLs, we

formally defined an evaluation framework assessing the overall quality of a VPL.

196 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 6 - C o n c l u s i o n

It was used in several case studies with a number of participants to evaluate and

compare XCDL, YahooPipes and IBM Damia. Two main contributions were

discovered. First, the XCDL evaluation returned positive results and validated the

usability of our approach. Second, XCDL was assessed to be superior to both

YahooPipes and IBM Damia. In particular, the visualization aspects of XCDL

were the most favorable, validating our choice for using CP-Nets as the basis of

our graphical representations.

6.3 Future Works

After defining our XA2C framework and the XCDL core for manipulating XML

data by non-experts, five main future directions became possible: (i) language

extensibility, (ii) language derivability, (iii) automated composition, (vi) technical

enhancements, and (v) better assessment.

6.3.1 XCDL Extensibility

In our research, since we defined the basis of an XML-oriented visual studio and

the XCDL language core, we can take it to the next level and start extending the

language to render it more expressive. XCDL should be extended with some new

features and operators categorized as follows:

 Language extensions:

o N-ary SD-functions: they are functions that can have n inputs and

outputs which can be defined by the user (e.g., consider a concat

function, it can be defined as an n-ary function where the user

chooses the number of inputs to be concatenated instead of having

only 2)

o Composed SD-functions: they are functions created via

compositions. Such functions can allow users to reuse and derive

new operations, and simplify the composition task by rendering it

less complex

o Condition operators: they are operators similar to “switch cases”

and “if else” statements in textual languages. Such operators are

essential since they can provide flow control

o Recursive operators: they are operators similar to “for, while and

do-while” loops which can be particularly useful in XML

manipulation, since XML is mostly based on repeated patterns

o Error handling operators: they are operators similar to “try catch”

statements which can provide the user with error handling. These

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 197

C h a p t e r 6 - C o n c l u s i o n

operators, which normally lack in VPLs can be defined using the

XCGN grammar since it is based on petri nets and thus can take

advantage of the petri nets’ analysis functions

o Common operators: they are generic and commonly used operator

such as the fork and union operators used respectively to duplicate

and merge any type of data

o Multiple I/O XCD-trees: they allow users to manipulate XML data

from several separate sources
1

o Function execution time: this allows each function to have a

specific execution interval time.

 Interface/interaction extensions:

o Zoom feature: this feature will allow users to zoom in and out on

their compositions which can be very helpful as the compositions

get more complex and the visualization gets messy

o Drag & drop: allows users to compose their operations by simply

dragging and dropping their functions.

6.3.2 XCDL Derivability

While designing the XCDL language, the initial purpose was to define a language

generic to all XML-based data. Nevertheless, different communication standards

have emerged from the XML standard such as RSS (Really Simple Syndication),

Atom, RDF (Resource Description Framework), SMIL (Synchronized

Multimedia Integration Language), etc. Each of these languages has its own

semantics and goals and is widely used. It would be interesting to derive specific

languages from XCDL such as:

 RSS-XCDL: RSS-oriented XML composition definition language

 RDF-XCDL: RDF-oriented XML composition definition language

 SMIL-XCDL: SMIL-oriented XML composition definition language

Such languages would have their own specific and detailed I/O XCD-tree

templates and SD-functions which are oriented semantically towards manipulating

these specific data types. This can be done by defining new data types which are

subtypes of the initial XCD-nodes (XCD-node:Element, Attribute and Text).

1 In the current approach we use only one input structure and one output structure.

198 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 6 - C o n c l u s i o n

6.3.3 Automated Composition

Since XA2C has been developed mainly for non-expert users, it is essential to

render the creation task as simple and easy as possible. So far, the user has to

compose all his operations manually. The XCDL language is based on CP-Nets

and thus it can be extended to hold information related to semantic data and meta-

data, function cost (in terms of bandwidth, size, etc.), function quality of service,

etc. Such information can be used in the future to provide automated

compositions. These compositions can be created dynamically based on the

semantics of the user’s description of the required manipulation operation.

As an example consider the following description: “I want to extract all the books

which have been published in 1983 and related to XML”.

Based on this description and through keywords extraction, and the measurement

of semantic relatedness, a composition can be automatically created and

suggested to the user. This composition may be complete or partial depending on

the SD-functions available in the language.

6.3.4 Technical enhancements

In order to improve the usability of XCDL, three features can be added such as:

 Online function repository: it creates an online repository allowing the

storage of SD-functions that can be downloaded by X-Man users when

required

 Function discovery: it defines a universal registry allowing functions to be

discovered and located by XA2C users

 Open Source prototype: it provides an online open source version of the

X-Man that can be updated and extended with new features by

programmers around the world

6.3.5 Better Assessment

To better evaluate our approach, three features can be added:

 Enhanced evaluations: it designates the evaluation of the approach using

different user profiles from different disciplines (i.e., students from

different universities and faculties)

 Online prototype: it adds an online version of the X-Man allowing an

online evaluation of the approach from different platforms/environments

 Application domain evaluation: it defines and runs different assessment

tests oriented towards specific application domains such as security,

adaptability, scalability, and others.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 199

C h a p t e r 6 - C o n c l u s i o n

Providing such features will allow the quality of the framework to increase. In

particular, it will render the practical aspect of the XA2C more mature and

accelerate its evolution.

200 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 6 - C o n c l u s i o n

References

[1] W. Ackerman, "Data flow languages," IEEE Comput. 15, 2, pp. 15-25,

1982.

[2] B. Adelberg, "NoDoSE-a tool for semi-automatically extracting structured

and semistructured data from text documents," SIGMOD Rec., vol. 27, pp.

283-294, 1998.

[3] M. Altinel and M. J. Franklin, "Efficient Filtering of XML Documents for

Selective Dissemination of Information," in Proceedings of the 26th

International Conference on Very Large Data Bases, 2000, pp. 53-64.

[4] M. Amamiya, et al., "Valid, a high-level functional programming

language for data flow machines " in Rev. Electric. Comm. Lab. 32, 5,

1984, pp. 793-802.

[5] Arvind and D. E. Culler, "Dataflow architectures," in Annual review of

computer science vol. 1, 1986, ed: Annual Reviews Inc., 1986, pp. 225-

253.

[6] Arvind, et al., "An asynchronous programming language and computing

machine," in Tech. Rep. TR 114a, ed Irvine, CA: University of California,

1978, p. 8.

[7] K. Arvind and R. S. Nikhil, "Executing a Program on the MIT Tagged-

Token Dataflow Architecture," IEEE Trans. Comput., vol. 39, pp. 300-

318, 1990.

[8] E. A. Ashcroft and W. W. Wadge, "Lucid, a nonprocedural language with

iteration," Commun. ACM, vol. 20, pp. 519-526, 1977.

[9] M. Auguston and A. Delgado, "Iterative Constructs in the Visual Data

Flow Language," in Proceedings of the 1997 IEEE Symposium on Visual

Languages, 1997, pp. 152 - 159.

[10] M. Auguston and A. Delgado, "The V experimental visual programming

language," in Technical report NMSU-CSTR-9611, ed: New Mexico State

University, 1996, p. 6.

[11] E. Baroth and C. Hartsough, "Visual programming in the real world," in

Visual object-oriented programming, ed: Manning Publications Co., 1995,

pp. 21-42.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 201

C h a p t e r 6 - C o n c l u s i o n

[12] J. Billington, et al., "The Petri net markup language: concepts, technology,

and tools," in Proceedings of the 24th international conference on

Applications and theory of Petri nets, Eindhoven, The Netherlands, 2003,

pp. 483-505.

[13] D. Box, et al. (2003), Simple Object Access Protocol (SOAP) 1.1.

Available: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[14] Boyer. (2000), Voice eXtensible Markup Language 1.0. Available:

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/

[15] D. Braga, et al., "XQBE (XQuery By Example): a visual interface to the

standard XML query language," ACM Trans. Database Syst., vol. 30, pp.

398-443, 2005.

[16] D. Bulterman. (2005), Synchronized Multimedia Integration Language

(SMIL 2.1) Specification. Available: http://www.w3.org/TR/2005/REC-

SMIL2-20051213/

[17] P. Buneman, et al., "Principles of programming with complex objects and

collection types," in Selected papers of the fourth international conference

on Database theory, Berlin, Germany, 1995, pp. 3-48.

[18] C. Byun, et al., "A Keyword-Based Filtering Technique of Document-

Centric XML using NFA Representation," International Journal of

Applied Mathematics Computer Science, pp. 136–143, 2007.

[19] K. S. Candan, et al., "AFilter: adaptable XML filtering with prefix-

caching suffix-clustering," in Proceedings of the 32nd international

conference on Very large data bases, Seoul, Korea, 2006, pp. 559-570.

[20] S. K. Card, et al., "Readings in information visualization: using vision to

think," ed San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

1999, p. 686.

[21] S. Ceri, et al., "Complex queries in XML-GL," in Proceedings of the 2000

ACM symposium on Applied computing - Volume 2, Como, Italy, 2000,

pp. 888-893.

[22] S. Ceri, et al., "XML-GL: A Graphical Language for Querying and

Restructuring XML Documents," in SEBD, ed, 1999, pp. 151-165.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-voicexml-20000505/
http://www.w3.org/TR/2005/REC-SMIL2-20051213/
http://www.w3.org/TR/2005/REC-SMIL2-20051213/

202 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 6 - C o n c l u s i o n

[23] C.-H. Chang and S.-C. Lui, "IEPAD: information extraction based on

pattern discovery," in Proceedings of the 10th international conference on

World Wide Web, Hong Kong, Hong Kong, 2001, pp. 681-688.

[24] C. Chen and M. P. Czerwinski, "Empirical evaluation of information

visualizations: an introduction," Int. J. Hum.-Comput. Stud., vol. 53, pp.

631-635, 2000.

[25] P. Cox, et al., "Prograph: A step towards liberating programming from

textual conditioning " in Procedings of the IEEE Workshop on Visual

Languages, 1989, pp. 150-156.

[26] P. T. Cox, et al., "Prograph," in Visual Object-Oriented Programming,

Concepts and Environments, A. G. M. Burnett, T. Lewis, Ed., ed

Manning, 1995, pp. 45-66.

[27] V. Crescenzi, et al., "Automatic Web Information Extraction in the

ROADRUNNER System," in Revised Papers from the HUMACS,

DASWIS, ECOMO, and DAMA on ER 2001 Workshops, 2002, pp. 264-

277.

[28] T. Dalamagas, et al., "A methodology for clustering XML documents by

structure," Inf. Syst., vol. 31, pp. 187-228, 2006.

[29] E. Damiani, et al., "A fine-grained access control system for XML

documents," ACM Trans. Inf. Syst. Secur., vol. 5, pp. 169-202, 2002.

[30] A. L. Davis, "The architecture and system method of DDM1: A

recursively structured Data Driven Machine," in Proceedings of the 5th

annual symposium on Computer architecture, 1978, pp. 210-215.

[31] A. L. Davis, "Data driven nets---A class of maximally parallel, output-

functional program schemata " in Tech. Rep. IRC Report ed. San Diego,

CA.: Burroughs, 1974.

[32] A. L. Davis, "DDN's---a low level program schema for fully distributed

systems " in Proceedings of the 1st European Conference on Parallel and

Distributed Systems, Toulouse, France, 1979, pp. 1-7.

[33] A. L. Davis and R. M. Keller, "Data Flow Program Graphs," Computer,

vol. 15, pp. 26-41, 1982.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 203

C h a p t e r 6 - C o n c l u s i o n

[34] A. L. Davis and S. A. Lowder, "A Sample management application

program in a graphical data-driven programming language," in Digest of

Papers Compcon Spring, 1981, pp. 162–165.

[35] J. B. Dennis, "First version of a data flow procedure language," in

Programming Symposium, Proceedings Colloque sur la Programmation,

1974, pp. 362-376.

[36] J. B. Dennis, "Data Flow Supercomputers," Computer, vol. 13, pp. 48-56,

1980.

[37] J. B. Dennis and D. P. Misunas, "A preliminary architecture for a basic

data-flow processor," SIGARCH Comput. Archit. News, vol. 3, pp. 126-

132, 1975.

[38] Y. Diao, et al., "Path sharing and predicate evaluation for high-

performance XML filtering," ACM Trans. Database Syst., vol. 28, pp.

467-516, 2003.

[39] R. J. Ennals and M. N. Garofalakis, "MashMaker: mashups for the

masses," in Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, Beijing, China, 2007, pp. 1116-1118.

[40] M. Erwig, "A Visual Language for XML," Visual Languages, IEEE

Symposium on, vol. 0, pp. 47-54, 2000.

[41] D. F. Ferraiolo, et al., "Proposed NIST standard for role-based access

control," ACM Trans. Inf. Syst. Secur., vol. 4, pp. 224-274, 2001.

[42] J. Ferraiolo. (2003), Scalable Vector Graphics (SVG) 1.1 Specification.

Available: http://www.w3.org/TR/2003/REC-SVG11-20030114/

[43] I. Fundulaki and S. Maneth, "Formalizing XML access control for update

operations," in Proceedings of the 12th ACM symposium on Access

control models and technologies, Sophia Antipolis, France, 2007, pp. 169-

174.

[44] O. Gelly, "LAU software system: A high-level data-driven language for

parallel processing," in In Proceedings of the International Conference on

Parallel Processing, USA, 1976.

[45] J. R. W. Glauert, "A single assignment language for data flow computing,"

Master's thesis, University of Manchester, Manchester, U.K., 1978.

http://www.w3.org/TR/2003/REC-SVG11-20030114/

204 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 6 - C o n c l u s i o n

[46] E. J. Golin and S. P. Reiss, "The specification of visual language syntax,"

J. Vis. Lang. Comput., vol. 1, pp. 141-157, 1990.

[47] T. R. G. Green and M. Petre, "Usability analysis of visual programming

environments: A "Cognitive Dimensions" Framework," J. Vis. Lang.

Comput, vol. 7, pp. 131-174, 1996.

[48] C. L. Hankin and H. W. Glaser, "The data flow programming language

CAJOLE - an informal introduction," SIGPLAN Not., vol. 16, pp. 35-44,

1981.

[49] M. A. Harrison, et al., "Protection in operating systems," Commun. ACM,

vol. 19, pp. 461-471, 1976.

[50] N. Harvey and J. Morris, "NL: A general purpose visual dataflow

language " in Tech. Rep. , ed. Tasmania, Australia: University of

Tasmania, 1993, p. 33.

[51] J. Heasley, "Securing XML data," in Proceedings of the 1st annual

conference on Information security curriculum development, Kennesaw,

Georgia, 2004, pp. 112-114.

[52] K. Heyman, "A New Virtual Private Network for Today's Mobile World,"

Computer, vol. 40, pp. 17-19, 2007.

[53] J. Hidders, et al., "DFL: A dataflow language based on Petri nets and

nested relational calculus," Inf. Syst., vol. 33, pp. 261-284, 2008.

[54] J. Hidders, et al., "Petri Net + Nested Relational Calculus = Dataflow.," in

OTM Conferences (1), ed, 2005, pp. 220-237.

[55] L. M. Hillah, et al., "A primer on the Petri Net Markup Language and

ISO/IEC 15909-2" in 10th International workshop on Practical Use of

Colored Petri Nets and the CPN Tools -- CPN'09, 2009, pp. 9-28.

[56] D. D. Hils, "Visual languages and computing survey: Data flow visual

programming languages," J. Vis. Lang. Comput., vol. 3, pp. 69-101, 1992

[57] P. Hudak, "Conception, evolution, and application of functional

programming languages," ACM Comput. Surv., vol. 21, pp. 359-411,

1989.

[58] G.-H. Hwang and T.-K. Chang, "An operational model and language

support for securing XML documents," Computers & Security, vol. 23, pp.

498 - 529, 2004.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 205

C h a p t e r 6 - C o n c l u s i o n

[59] C. S. IBM-Group, "IBM WebSphere DataPower XML Security Gateway

XS40 " in IBM Corporation 2008, ed, 2008 pp. 2-4.

[60] M. Iwata and H. Terada, "Multilateral diagrammatical specification

environment based on data-driven paradigm," in Advanced Topics in

Dataflow Computing and Multithreading, Los Alamitos, CA, 1995, pp.

103-112.

[61] K. Jensen, "An Introduction to the Theoretical Aspects of Coloured Petri

Nets," in A Decade of Concurrency, Reflections and Perspectives, REX

School/Symposium, 1994, pp. 230-272.

[62] W. M. Johnston, et al., "Advances in dataflow programming languages,"

ACM Comput. Surv., vol. 36, pp. 1-34, 2004.

[63] G. Kahn, "The Semantics of a Simple Language for Parallel

Programming," in Information Processing '74: Proceedings of the IFIP

Congress, 1974, pp. 471-475.

[64] A. A. E. Kalam, et al., "Organization based access control," in

Proceedings of the 4th IEEE International Workshop on Policies for

Distributed Systems and Networks, 2003, pp. 120 - 131.

[65] R. M. Karp and R. E. Miller, "Properties of a Model for Parallel

Computations: Determinacy, Termination, Queueing," SIAM J. Appl.

Math., pp. 1390-1411, 1966.

[66] M. Kay. (2007), XSL Transformations (XSLT) Version 2.0 Available:

http://www.w3.org/TR/2007/REC-xslt20-20070123/

[67] R. M. Keller and W. C. J. Yen, "A graphical approach to software

development using function graphs," Digest of Papers Compcon Spring,

pp. 156-161, 1981.

[68] I. Kofler, et al., "Towards MPEG-21-Based Cross-Layer Multimedia

Content Adaptation," in Proceedings of the Second International

Workshop on Semantic Media Adaptation and Personalization, 2007, pp.

3-8.

[69] B. Lee and A. R. Hurson, "Dataflow Architectures and Multithreading,"

Computer, vol. 27, pp. 27-39, 1994.

http://www.w3.org/TR/2007/REC-xslt20-20070123/

206 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 6 - C o n c l u s i o n

[70] E. A. Lee and D. G. Messerschmitt, "Static scheduling of synchronous

data flow programs for digital signal processing," IEEE Trans. Comput.,

vol. 36, pp. 24-35, 1987.

[71] T. Lemlouma and N. Layaïda, "SMIL Content Adaptation for Embedded

Devices," in IN SMIL EUROPE 2003 CONFERENCE, 2003, pp. 12-14.

[72] C.-H. Lim, et al., "Access control of XML documents considering update

operations," in Proceedings of the 2003 ACM workshop on XML security,

Fairfax, Virginia, 2003, pp. 49-59.

[73] G. D. Lorenzo, et al., "Data integration in mashups," SIGMOD Rec., vol.

38, pp. 59-66, 2009.

[74] T. Loton, "Introduction to Microsoft Popfly, No Programming Required,"

in Bibliometrics, ed: Lotontech Limited, 2008, p. 128.

[75] B. Luo, et al., "QFilter: fine-grained run-time XML access control via

NFA-based query rewriting," in Proceedings of the thirteenth ACM

international conference on Information and knowledge management,

Washington, D.C., USA, 2004, pp. 543-552.

[76] D. Marghescu, et al., "Evaluating the quality of use of visual data-mining

tools," in 11th European Conference on IT Evaluation, Netherland, 2004,

pp. 239-250.

[77] J. McGraw and S. Skedzielewski, "Streams and Iteration in a Single

Assignment Language Reference Manual (Version 1.0)," ed. Livermore,

CA.: Livermore National Laboratory, 1983.

[78] J. P. Morrison, "Flow-Based Programming: A New Approach to

Application Development," ed. New York, NY: van Nostrand Reinhold,

1994, p. 240.

[79] T. Murata, "Petri Nets: Properties, Analysis and Applications.," in

Proceedings of the IEEE, ed, 1989, pp. 541-580.

[80] T. Oinn, et al., "Taverna: lessons in creating a workflow environment for

the life sciences: Research Articles," Concurr. Comput. : Pract. Exper.,

vol. 18, pp. 1067-1100, 2006.

[81] C. Ouyang, et al., "Formal semantics and analysis of control flow in WS-

BPEL," Sci. Comput. Program., vol. 67, pp. 162-198, 2007.

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 207

C h a p t e r 6 - C o n c l u s i o n

[82] G. M. Papadopoulos and K. R. Traub, "Multithreading: A revisionist view

of dataflow architectures," in Proceedings of the 18th annual international

symposium on Computer architecture Toronto, Ontario, Canada 1991, pp.

342--351.

[83] J. Park and R. Sandhu, "The UCONabc usage control model," ACM Trans.

Inf. Syst. Secur., vol. 7, pp. 128-174, 2004.

[84] B. Pellan and C. Concolato, "Adaptation of scalable multimedia

documents," in Proceeding of the eighth ACM symposium on Document

engineering, Sao Paulo, Brazil, 2008, pp. 32-41.

[85] S. Pemberton. (2002), The Extensible HyperText Markup Language: A

Reformulation of HTML 4.0 in XML 1.0. Available:

http://www.w3.org/TR/2002/REC-xhtml1-20020801/

[86] S. Pettifer, et al., "myGrid and UTOPIA: an integrated approach to

enacting and visualising in silico experiments in the life sciences," in

Proceedings of the 4th international conference on Data integration in the

life sciences, Philadelphia, PA, USA, 2007, pp. 59-70.

[87] M. Piatek, "Distributed web proxy caching in a local network

environment," The Student Research Competition, p. 8, 2004.

[88] E. Pietriga, et al., "VXT: a visual approach to XML transformations," in

Proceedings of the 2001 ACM Symposium on Document engineering,

Atlanta, Georgia, USA, 2001, pp. 1-10.

[89] C. Richardson, "Manipulator control using a data-flow machine," Doctoral

dissertation, University of Manchester, Manchester, U.K., 1981. .

[90] B. Shizuki, et al., "Smart browsing among multiple aspects of data-flow

visual program execution, using visual patterns and multi-focus fisheye

views," J. Vis. Lang. Comput. , vol. 11, pp. 529-548, 2000.

[91] A. Shurr, "BDL - A Nondeterministic Data Flow Programming Language

with Backtracking," in Proceedings of the 1997 IEEE Symposium on

Visual Languages (VL '97), 1997, pp. 394 - 401.

[92] J. Silc, et al., "Asynchrony in parallel computing: from dataflow to

multithreading," in Progress in computer research, ed: Nova Science

Publishers, Inc., 2001, pp. 1-33.

http://www.w3.org/TR/2002/REC-xhtml1-20020801/

208 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 6 - C o n c l u s i o n

[93] D. E. Simmen, et al., "Damia: data mashups for intranet applications," in

Proceedings of the 2008 ACM SIGMOD international conference on

Management of data, Vancouver, Canada, 2008, pp. 1171-1182.

[94] Sterling, et al., "Studies on Optimal Task Granularity and Random

Mapping," in Advanced Topics in Dataflow Computing and

Multithreading IEEE Computer Society Press, 1995, pp. 349-365.

[95] G. Tekli, et al., "XCDL: an XML-Oriented Visual Composition Definition

Language," in The 12th International Conference on Information

Integration and Web-based Applications & Services, 2010, pp. 134-143.

[96] G. Tekli, et al., "XA2C Framework for XML Alteration/Adaptation," in

Reliable and Autonomous Computational Science, S. Y. Shin, et al., Eds.,

ed: Springer Basel, 2010, pp. 327-346.

[97] G. Tekli, et al., "Towards an XML Adaptation/Alteration Control

Framework," in Proceedings of the 2010 Fifth International Conference

on Internet and Web Applications and Services, 2010, pp. 248-255.

[98] R. K. Thomas and R. S. Sandhu, "Task-Based Authorization Controls

(TBAC): A Family of Models for Active and Enterprise-Oriented

Autorization Management," in Proceedings of the IFIP TC11 WG11.3

Eleventh International Conference on Database Securty XI: Status and

Prospects, 1998, pp. 166-181.

[99] C. Timmerer and H. Hellwagner, "Interoperable Adaptive Multimedia

Communication," IEEE MultiMedia, vol. 12, pp. 74-79, 2005.

[100] P. C. Treleaven, et al., "Data-Driven and Demand-Driven Computer

Architecture," ACM Comput. Surv., vol. 14, pp. 93-143, 1982.

[101] D. Turi, et al., "Taverna Workflows: Syntax and Semantics," in

Proceedings of the Third IEEE International Conference on e-Science and

Grid Computing, 2007, pp. 441-448.

[102] W3C. (1999), Extensible Stylesheet Language Transformations -XSLT 1.0.

Available: http://www.w3.org/TR/xslt

[103] W3C. (1999), XML Path Language (XPath) Version 1.0. Available:

http://www.w3.org/TR/xpath/

[104] W3C. (2010), XQuery 1.0: An XML Query Language (Second Edition).

Available: http://www.w3.org/TR/xquery/

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xquery/

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 209

C h a p t e r 6 - C o n c l u s i o n

[105] W3C. (2000), What is the Document Object Model. Available:

http://www.w3.org/TR/DOM-Level-2-Core/introduction.html

[106] I. Watson and J. Gurd, "A prototype data flow computer with token

labelling," in Proceedings of the National Computer Conference, Los

Alamitos, CA, USA, 1979, p. 623.

[107] K. S. Weng, "Stream oriented computation in recursive data-flow

schemas," in Tech. Rep. 68. Laboratory for computer science, ed. MA:

MIT, Cambridge, 1975, pp. 303-325.

[108] T. Wright, "Security, privacy, and anonymity," Crossroads Magazine, vol.

11, pp. 5-5, 2004.

[109] H. Xu, et al., "Formal modelling and analysis of XML firewall for service-

oriented systems," International Journal of Security and Networks, vol. 3,

pp. 147-160, 2008.

[110] Y. Yu and T.-c. Chiueh, "Enterprise Digital Rights Management:

Solutions against Information Theft by Insiders," in Research Proficiency

Examination ed, 2004, pp. 2-24.

[111] B. A. Zenel, "A proxy-based filtering mechanism for the mobile

environment," Doctoral Dissertation, Columbia University, 1998.

[112] B. Zhao, et al., "Towards a times-based usage control model," in

Proceedings of the 21st annual IFIP WG 11.3 working conference on

Data and applications security, Redondo Beach, CA, USA, 2007, pp. 227-

242.

http://www.w3.org/TR/DOM-Level-2-Core/introduction.html

210 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

C h a p t e r 6 - C o n c l u s i o n

List of Publications

International Conferences

G. Tekli, et al., "XCDL: an XML-Oriented Visual Composition Definition

Language," in The 12th International Conference on Information Integration and

Web-based Applications & Services (iiWAS2010), 2010, pp. 134-143.

G. Tekli, et al., "XA2C Framework for XML Alteration/Adaptation," in Reliable

and Autonomous Computational Science, S. Y. Shin, et al., Eds., ed: Springer

Basel, 2010, pp. 327-346.

G. Tekli, et al., "Towards an XML Adaptation/Alteration Control Framework," in

Proceedings of the 2010 Fifth International Conference on Internet and Web

Applications and Services, 2010, pp. 248-255.

International Journals

G. Tekli, et al., "XA2C, a framework for manipulating XML data", International

Journal of Web Information Systems, 2011

G. Tekli, et al, “A Visual Programming Language for XML manipulation”,

Journal of Visual Languages and Computing, 2011 (submitted)

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 211

A p p e n d i x - A

Appendix A-XML schema of an SD-function

<?xml version="1.0" standalone="yes"?>

<xs:schema id="sd_function"

targetNamespace="http://tempuri.org/sd_function.xsd"

xmlns="http://tempuri.org/sd_function.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

attributeFormDefault="qualified" elementFormDefault="qualified">

 <xs:element name="sd_function">

 <xs:complexType>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="SD_function">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="SD_function_id" type="xs:string" />

 <xs:element name="SD_function_name" type="xs:string" />

 <xs:element name="SD_function_desc" type="xs:string" minOccurs="0" />

 <xs:element name="SD_function_Type_id" type="xs:string"

minOccurs="0" />

 <xs:element name="category" type="xs:string" default="Others"

minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="SD_function_type">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="SD_function_type_id" type="xs:string" />

 <xs:element name="SD_function_type" type="xs:string" minOccurs="0" />

 <xs:element name="SD_function_type_desc" type="xs:string"

minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="SD_function_color">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="color_id" type="xs:string" />

 <xs:element name="color_name" type="xs:string" minOccurs="0" />

 <xs:element name="color_value" type="xs:string" minOccurs="0" />

 <xs:element name="color_desc" type="xs:string" minOccurs="0" />

 <xs:element name="color_color" type="xs:string" default="-1"

minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

212 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

A p p e n d i x - A

 <xs:element name="SD_function_transition">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="transition_id" type="xs:string" />

 <xs:element name="transition_name" type="xs:string" minOccurs="0" />

 <xs:element name="transition_type" type="xs:string" minOccurs="0" />

 <xs:element name="transition_value" type="xs:string" minOccurs="0" />

 <xs:element name="transition_desc" type="xs:string" minOccurs="0" />

 <xs:element name="SD_function_id" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="SD_function_place">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="place_id" type="xs:string" />

 <xs:element name="place_name" type="xs:string" minOccurs="0" />

 <xs:element name="color_id" type="xs:string" minOccurs="0" />

 <xs:element name="place_desc" type="xs:string" minOccurs="0" />

 <xs:element name="place_init" type="xs:string" minOccurs="0" />

 <xs:element name="SD_function_id" type="xs:string" minOccurs="0" />

 <xs:element name="place_in_out" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 <xs:unique name="SD_function" >

 <xs:selector xpath=".//SD_function" />

 <xs:field xpath="SD_function_id" />

 </xs:unique>

 <xs:unique name="SD_function_type">

 <xs:selector xpath=".//SD_function_type" />

 <xs:field xpath="SD_function_type_id" />

 </xs:unique>

 <xs:unique name="Color" >

 <xs:selector xpath=".//SD_function_color" />

 <xs:field xpath="color_id" />

 </xs:unique>

 <xs:unique name="transition" >

 <xs:selector xpath=".//SD_function_transition" />

 <xs:field xpath="transition_id" />

 </xs:unique>

 <xs:unique name="place">

 <xs:selector xpath=".//SD_function_place" />

 <xs:field xpath="place_id" />

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 213

A p p e n d i x - A

 </xs:unique>

 <xs:keyref name="SD_function_place" refer="SD_function">

 <xs:selector xpath=".//SD_function_place" />

 <xs:field xpath="SD_function_id" />

 </xs:keyref>

 <xs:keyref name="type_place" refer="Color" >

 <xs:selector xpath=".//SD_function_place" />

 <xs:field xpath="color_id" />

 </xs:keyref>

 <xs:keyref name="SD_function_transition" refer="SD_function" >

 <xs:selector xpath=".//SD_function_transition" />

 <xs:field xpath="SD_function_id" />

 </xs:keyref>

 <xs:keyref name="XCType_SD_function" refer="SD_function_type" >

 <xs:selector xpath=".//SD_function" />

 <xs:field xpath="SD_function_Type_id" />

 </xs:keyref>

 </xs:element>

</xs:schema>

214 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

A p p e n d i x - B

Appendix B-XML schema of a composition

<?xml version="1.0" standalone="yes"?>

<xs:schema id="ds_Composition"

targetNamespace="http://tempuri.org/ds_Composition.xsd"

xmlns="http://tempuri.org/ds_Composition.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

attributeFormDefault="qualified" elementFormDefault="qualified">

 <xs:element name="ds_Composition">

 <xs:complexType>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="SD_function">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="SD_function_id" type="xs:string" />

 <xs:element name="SD_function_name" type="xs:string" />

 <xs:element name="SD_function_desc" type="xs:string" minOccurs="0" />

 <xs:element name="SD_function_type_id" type="xs:string"

minOccurs="0" />

 <xs:element name="category" type="xs:string" default="Others"

minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="SD_function_type">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="SD_function_type_id" type="xs:string" />

 <xs:element name="SD_function_type" type="xs:string" minOccurs="0" />

 <xs:element name="SD_function_type_desc" type="xs:string"

minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="SD_function_color">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="color_id" type="xs:string" />

 <xs:element name="color_name" type="xs:string" minOccurs="0" />

 <xs:element name="color_value" type="xs:string" minOccurs="0" />

 <xs:element name="color_desc" type="xs:string" minOccurs="0" />

 <xs:element name="color_color" type="xs:string" default="-1"

minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 215

A p p e n d i x - B

 </xs:element>

 <xs:element name="SD_function_transition">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="transition_id" type="xs:string" />

 <xs:element name="transition_name" type="xs:string" minOccurs="0" />

 <xs:element name="transition_type" type="xs:string" minOccurs="0" />

 <xs:element name="transition_value" type="xs:string" minOccurs="0" />

 <xs:element name="transition_desc" type="xs:string" minOccurs="0" />

 <xs:element name="SD_function_id" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="SD_function_place">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="place_id" type="xs:string" />

 <xs:element name="place_name" type="xs:string" minOccurs="0" />

 <xs:element name="color_id" type="xs:string" minOccurs="0" />

 <xs:element name="place_desc" type="xs:string" minOccurs="0" />

 <xs:element name="place_init" type="xs:string" minOccurs="0" />

 <xs:element name="SD_function_id" type="xs:string" minOccurs="0" />

 <xs:element name="place_in_out" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Composition">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Composition_id" type="xs:string" />

 <xs:element name="Composition_name" type="xs:string"

minOccurs="0" />

 <xs:element name="Composition_desc" type="xs:string" minOccurs="0" />

 <xs:element name="Composition_type_id" type="xs:string"

minOccurs="0" />

 <xs:element name="in_xml_path" type="xs:string" minOccurs="0" />

 <xs:element name="out_xml_path" type="xs:string" minOccurs="0" />

 <xs:element name="cpn_path" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Composition_type">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Composition_type_id" type="xs:string" />

216 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

A p p e n d i x - B

 <xs:element name="Composition_type" type="xs:string" minOccurs="0" />

 <xs:element name="Composition_type_desc" type="xs:string"

minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Composition_SD_function">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Composition_id" type="xs:string" />

 <xs:element name="SD_function_id" type="xs:string" />

 <xs:element name="Composition_op" type="xs:string" minOccurs="0" />

 <xs:element name="SD_function_index" type="xs:int" default="0"

minOccurs="0" />

 <xs:element name="iteration" type="xs:int" default="1" />

 <xs:element name="Composition_SD_function_id" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Composition_SD_function_places">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Composition_SD_function_id" type="xs:string" />

 <xs:element name="place_id" type="xs:string" />

 <xs:element name="place_mapping" type="xs:string" default="" />

 <xs:element name="place_init" type="xs:string" minOccurs="0" />

 <xs:element name="place_mapping_type" type="xs:string"

minOccurs="0" />

 <xs:element name="place_value" type="xs:string" minOccurs="0" />

 <xs:element name="cycle" type="xs:string" default="0" minOccurs="0" />

 <xs:element name="place_in_out" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 <xs:unique name="SD_function">

 <xs:selector xpath=".//SD_function" />

 <xs:field xpath="SD_function_id" />

 </xs:unique>

 <xs:unique name="SD_function_type">

 <xs:selector xpath=".//SD_function_type" />

 <xs:field xpath="SD_function_type_id" />

 </xs:unique>

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 217

A p p e n d i x - B

 <xs:unique name="SD_function_color">

 <xs:selector xpath=".//SD_function_color" />

 <xs:field xpath="color_id" />

 </xs:unique>

 <xs:unique name="SD_function_transition">

 <xs:selector xpath=".//SD_function_transition" />

 <xs:field xpath="transition_id" />

 </xs:unique>

 <xs:unique name="SD_function_place">

 <xs:selector xpath=".//SD_function_place" />

 <xs:field xpath="place_id" />

 </xs:unique>

 <xs:unique name="Composition_id">

 <xs:selector xpath=".//Composition" />

 <xs:field xpath="Composition_id" />

 </xs:unique>

 <xs:unique name="Composition_type_id">

 <xs:selector xpath=".//Composition_type" />

 <xs:field xpath="Composition_type_id" />

 </xs:unique>

 <xs:unique name="Composition_SD_function">

 <xs:selector xpath=".//Composition_SD_function" />

 <xs:field xpath="Composition_SD_function_id" />

 </xs:unique>

 <xs:keyref name="FK_SD_function_place_Composition_SD_function_places"

refer="SD_function_place">

 <xs:selector xpath=".//Composition_SD_function_places" />

 <xs:field xpath="place_id" />

 </xs:keyref>

 <xs:keyref

name="FK_Composition_SD_function_Composition_SD_function_places"

refer="Composition_SD_function">

 <xs:selector xpath=".//Composition_SD_function_places" />

 <xs:field xpath="Composition_SD_function_id" />

 </xs:keyref>

 <xs:keyref name="FK_SD_function_Composition_SD_function"

refer="SD_function">

 <xs:selector xpath=".//Composition_SD_function" />

 <xs:field xpath="SD_function_id" />

 </xs:keyref>

 <xs:keyref name="FK_Composition_Composition_SD_function"

refer="Composition_id">

 <xs:selector xpath=".//Composition_SD_function" />

 <xs:field xpath="Composition_id" />

 </xs:keyref>

218 | P a g e X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s

A p p e n d i x - B

 <xs:keyref name="FK_Composition_type_Composition"

refer="Composition_type_id">

 <xs:selector xpath=".//Composition" />

 <xs:field xpath="Composition_type_id" />

 </xs:keyref>

 <xs:keyref name="FK_SD_function_SD_function_place"

refer="SD_function">

 <xs:selector xpath=".//SD_function_place" />

 <xs:field xpath="SD_function_id" />

 </xs:keyref>

 <xs:keyref name="FK_type_place" refer="SD_function_color">

 <xs:selector xpath=".//SD_function_place" />

 <xs:field xpath="color_id" />

 </xs:keyref>

 <xs:keyref name="FK_SD_function_SD_function_transition"

refer="SD_function">

 <xs:selector xpath=".//SD_function_transition" />

 <xs:field xpath="SD_function_id" />

 </xs:keyref>

 <xs:keyref name="CompositionType_SD_functionct"

refer="SD_function_type">

 <xs:selector xpath=".//SD_function" />

 <xs:field xpath="SD_function_type_id" />

 </xs:keyref>

 </xs:element>

</xs:schema>

X M L M a n i p u l a t i o n b y N o n - E x p e r t U s e r s P a g e | 219

A p p e n d i x - C

Appendix C-Questionnaire results

Number of participants: 76

Tools evaluated: X-Man, YahooPipes and IBM Damia

Table 1: Questionnaire feedback results

 X-Man

YahooPipes

IBM Damia

Questions + 0 - + 0 - + 0 -

1. It is easy to specify/define input data 69 6 1 57 4 15 62 9 5

2. It is easy to specify/define output data 70 4 2 54 6 16 66 8 2

3. Input data is adequate for XML 70 5 1 59 12 5 65 8 3

4. Output data is adequate for XML 70 4 2 59 13 4 62 9 5

5. It is easy to understand the required

parameters
62 10 4 54 15 7 57 8 11

6. It is easy to specify/define the required

parameters
64 10 2 49 15 12 54 13 9

7. Functions are clearly visualized 70 4 2 56 11 9 66 9 1

8. It is easy to understand the functionality of a

Function
66 7 3 63 6 7 55 15 6

9. The I/O of a function are clearly

defined/visualized
64 5 7 62 7 7 57 15 4

10. Data types of functions' I/O are clearly

defined/visualized
60 11 5 55 18 3 53 18 5

11. It is easy to differentiate between different

data types
54 12 10 61 12 3 53 14 9

12. It is easy to visualize/understand XML I/O

structures
66 8 2 60 9 7 59 9 8

13. It is easy to differentiate between the types of

different XML nodes (Element/Attribute/Text)
68 5 3 63 8 5 59 13 4

14. It is easy to create compositions 61 12 3 49 16 11 51 19 6

15. The language is easy and simple to learn 62 10 4 50 14 12 57 13 6

16. The language is easy to use 62 7 7 48 10 18 60 12 4

17. The Composition does not require lot of steps 54 4 18 52 9 15 51 18 7

18. The composition is accurate 61 10 5 56 16 4 59 15 2

19. Conversion between different data types is

simple
57 15 4 50 21 5 54 18 4

20. Many data types can be used

(String/Integer/Boolean...)
61 12 3 59 13 4 57 15 4

21. I/O XML mapping with a composition is

simple/easy
66 9 1 48 17 11 64 7 5

22. It is easy to modify the output XML structure 62 10 4 49 14 13 55 11 10

23. It is easy to create a new output XML

structure from scratch
64 9 3 52 20 4 50 18 8

24. Little Programming knowledge is required. 47 11 18 49 18 9 48 12 16

25. Little XML knowledge is required 52 9 15 44 19 13 42 18 16

Abstract. Computers and the Internet are everywhere nowadays, in every home, domain and field. Communications between

users, applications and heterogeneous information systems are mainly done via XML structured data. XML, based on

simple textual data and not requiring any specific platform or environment, has invaded and governed the communication

Medias. In the 21
st
century, these communications are now inter-domain and have stepped outside the scope of computer

science into other areas (i.e., medical, commerce, social, etc.). As a consequence, and due to the increasing amount of XML

data floating between non-expert users (programmers, scientists, etc.), whether on instant messaging, social networks,

data storage and others, it is becoming crucial and imperative to allow non-experts to be able to manipulate and control their

data (e.g.,parents who want to apply parental control over instant messaging tools in their house, a journalist who wants to

gather information from different RSS feeds and filter them out, etc.). The main objective of this work is the study of XML

manipulations by non-expert users. Four main related categories have been identified in the literature: XML-oriented visual

languages, Mashups, XML manipulation by security and adaptation techniques, and Dataflow visual programming languages.

However, none of them provides a full-fledged solution for appropriate XML data manipulation. In our research, we formally

defined an XML manipulation framework, entitled XA2C (XML Alteration/Adaptation Composition Framework). XA2C

represents a visual studio for an XML-oriented DFVPL (Dataflow Visual Programming Language), called XCDL (XML-

oriented Composition Definition Language) which constitutes the major contribution of this study. XCDL is based on

Colored Petri Nets allowing non-expert users to compose manipulation operations. The XML manipulations range from

simple data selection/projection to data modification (insertion, removal, obfuscation, etc.). The language is oriented to deal

with XML data (XML documents and fragments), providing users with means to compose XML oriented

operations. Complementary to the language syntax and semantics, XA2C formally defines also the compiler and runtime

environment of XCDL. In addition to the theoretical contribution, we developed a prototype, called X-Man, and formally

defined an evaluation framework for XML-oriented visual languages and tools that was used in a set of case studies and

experiments to evaluate the quality of use of our language and compare it to existing approaches. The obtained assessments

and results were positive and show that our approach outperforms existing ones. Several future tracks are being studied such

as integration of more complex operations (control operators, loops, etc.), automated compositions, and language derivation

to define specific languages oriented towards different XML-based standards (e.g., RSS, RDF, SMIL, etc.)

Keywords: XML, XML manipulation, XML control, Visual languages, Dataflow, Mashups, Petri Nets, Visual syntax,

Language semantics and syntax, Functional Composition, Concurrency and Parallelism.

Résume. Aujourd’hui, les ordinateurs et l’Internet sont partout dans le monde : dans chaque maison, domaine et plateforme.

Dans ce contexte, le standard XML s’est établi comme un moyen insigne pour la représentation et l’échange efficaces des

données. Les communications et les échanges d’informations entre utilisateurs, applications et systèmes d’information

hétérogènes sont désormais réalisés moyennant XML afin de garantir l’interopérabilité des données. Le codage simple et

robuste de XML, à base de données textuelles semi-structurées, a fait que ce standard a rapidement envahi les communications

medias. Ces communications sont devenues inter-domaines, partant de l’informatique et s’intégrant dans les domaines médical,

commercial, et social, etc. Par conséquent, et au vu du niveau croissant des données XML flottantes entre des utilisateurs non-

experts (employés, scientifiques, etc.), que ce soit sur les messageries instantanées, réseaux sociaux, stockage de données ou

autres, il devient incontournable de permettre aux utilisateurs non-experts de manipuler et contrôler leurs données (e.g., des

parents qui souhaitent appliquer du contrôle parental sur les messageries instantanées de leur maison, un journaliste qui désire

regrouper et filtrer des informations provenant de différents flux RSS, etc.). L'objectif principal de cette thèse est l'étude des

manipulations des données XML par des utilisateurs non-experts. Quatre principales catégories ont été identifiées dans la

littérature : i) les langages visuels orientés XML, ii) les Mashups, iii) les techniques de manipulation des données XML, et iv)

les DFVPL (langages de programmation visuel à base de Dataflow), couvrant différentes pistes. Cependant, aucune d’entre

elles ne fournit une solution complète. Dans ce travail de recherche, nous avons formellement défini un Framework de

manipulation XML, intitulé XA2C (XML-oriented mAnipulAtion Compositions). XA2C représente un environnement de

programmation visuel (e.g., Visual-Studio) pour un DFVPL orienté XML, intitulé XCDL (XML-oriented Composition

Definition Language) qui constitue la contribution majeure de cette thèse. XCDL, basé sur les réseaux de Pétri colorés, permet

aux non-experts de définir, d’arranger et de composer des opérations de manipulation orientées XML. Ces opérations peuvent

être des simples sélections/projections de données, ainsi que des opérations plus complexes de modifications de données

(insertion, suppression, tatouage, etc.). Le langage proposé traite les données XML à base de documents ou de fragments. En

plus de la définition formelle (syntaxique et sémantique) du langage XCDL, XA2C introduit une architecture complète à base

d’un compilateur et un environnement d'exécution dédiés. Afin de tester et d’évaluer notre approche théorique, nous avons

développé un prototype, intitulé X-Man, avec un Framework d’évaluation pour les langages et outils visuels de programmation

orientés XML. Une série d'études de cas et d’expérimentations a été réalisée afin d'évaluer la qualité d'usage de notre langage,

et de le comparer aux solutions existantes. Les résultats obtenus soulignent la supériorité de note approche, notamment en

termes de qualité d’interaction, de visualisation, et d’utilisation. Plusieurs pistes sont en cours d’exploration, telles que

l'intégration des opérations plus complexes (opérateurs de contrôle, boucles, etc.), les compositions automatiques, et

l’extension du langage pour gérer la spécificité des formats dérivés du standard XML (flux RSS, RDF, SMIL, etc.).

Mots Clés: XML, Manipulation de données XML, Contrôle de données XML, Langages visuelles, Dataflow, Mashups,

Réseaux de Pétri, Syntaxe visuelle, Langage sémantique and syntaxique, Composition, Concurrence et Parallélisme.

	p1 cover page.pdf
	p1.5 Acknowledgements.pdf
	p2 Table of Contents.pdf
	p3 introduction.pdf
	p4 related works v1.pdf
	p5 Background and Preliminaries.pdf
	p6 xa2c approach.pdf
	p7 prototype and experiment.pdf
	p8 conclusion.pdf
	p9 appendixes.pdf
	p10 Abstract + Resume.pdf

