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Résumé

De quoi s’agit-il ?
— FERDINAND FOCH

Comme l'indique le titre, dans cette these, il sera beaucoup question des
distributions du logiciel libre (aussi connu sous 'abréviation F/OSS, free and
open source software).

Ces distributions sont extrémement hétérogeénes. Elles contiennent des lo-
giciels de différentes provenances ; écrits dans des langages différents, avec des
calendriers de publication différents et avec des procédures différentes.

Pour gérer cette hétérogénéité, et pour avoir une fagon simple et unique
d’installer des logiciels, les systemes de paquetage ont été développés. Ceux-ci
consistent en ’emballage d'un logiciel dans un paquet, qui contient des don-
nées supplémentaires utilisées par un logiciel approprié, un gestionnaire de pa-
quets. Le gestionnaire sert a installer les paquets et le logiciel qu’il contient de
facon presque automatique.

Les systemes de paquetage difféerent selon les distributions, mais les prin-
cipes sont communs : une distribution a plusieurs dépdts, dont chacun contient
plusieurs paquets, reliés entre eux par des relations spécifiques, notamment les
dépendances et les conflits. Une dépendance d’'un paquet a un autre indique que
le premier paquet ne peut pas étre installé sans que l'autre soit installé aussi;
un conflit entre deux paquets indique que ces deux paquets ne pourront jamais
étre installés en méme temps.

Les dépendances peuvent étre disjonctives, c’est a dire qu'un paquet peut
spécifier une dépendance sur plusieurs paquets, dont au moins un doit étre
installé pour satisfaire a la dépendance.

Tout ceci fait que le probleme de I'installabilité d’un paquet est d"une com-
plexité comparable au probleme SAT. Quand on y ajoute le fait que les distri-
butions d’aujourd’hui ont une taille importante (la version la plus récente de
Debian contient 22 000 paquets), il devient clair qu’il est trés important d’avoir
des algorithmes rapides et efficaces.

Les quatre sujets principaux abordés dans cette thése se résument comme
suit :

e D’abord, nous présentons un modéle formel qui réunit les propriétés
principales des systémes de paquetage les plus courantes, et nous iden-
tifions des relations sémantiques entre paquets qui peuvent étre utilisées
pour trouver des erreurs et assurer la qualité des distributions de logiciel
libre;

e Ensuite, nous présentons des algorithmes efficaces pour manipuler des
dépots de paquets et calculer les relations mentionnées ci-dessus; tous
ces algorithmes ont été implémentés dans la langage de programmation
OCaml, et incorporés dans une librairie de manipulation et analyse de
paquets qui s’appelle dose3;



e Nous avons encodé notre modele dans 'assistant de preuves Cogq, et uti-
lisé cet encodage pour vérifier quelques-uns des théoremes les plus im-
portants qui correspondent aux étapes les plus compliquées des algo-
rithmes déja présentés;

o Finalement, nous avons validé nos algorithmes sur des distributions de
logiciel libre existantes, et nous présentons une analyse extensive de la
structure générale de ces distributions, notamment les caractéristiques
dites «petit monde» de la structure du graphe sous-jacent.

La théorie des paquets

Dans cette partie de la thése, qui correspond aux chapitres 2 et 3, nous com-
mengons par expliquer les concepts communs entre les différents systemes de
paquetage.

Systémes de paquetage

. zulu |
) T‘A““V'v o
[charlie] [ delta }—A—i foxtrot] [ bravob] [ deita ] [charlie]
(a) Dépendances et conflits (b) Paquet virtuel

FIGURE 1 — Dépbts d’exemple

Considérons la figure 1a. Ici, le paquet alpha a une dépendance simple sur
le paquet bravo, ce qui exprime la nécessité d’installer bravo des lors qu’on
veut installer alpha. En revanche, 'autre dépendance d’alpha est disjonctive
sur charlie et delta. Alors pour installer alpha il faudrait aussi installer soit
charlie, soit delta, soit les deux.

La situation est semblable pour echo : pour installer echo, on a besoin de
delta ou foxtrot. Cependant, il n’est pas possible ici d’installer les deux en
méme temps, parce que delta et foxtrot sont en conflit (indiqué par le diese).

Dans la plupart des systémes de paquetage, il existe la notion de paquets
virtuels. Comme leur nom l'indique, ce sont des paquets qui n’existent pas
vraiment, mais qui peuvent étre fournis par des autres paquets. Considérons
la figure 1b : ici, le paquet zulu est un paquet virtuel, qui est fourni par bravo,
charlie et delta.

Dans ce cas, alpha a une dépendance sur zulu; une dépendance sur un
paquet virtuel peut étre satisfaite par n’importe quel fournisseur du paquet
virtuel, et la situation revient donc a une dépendance disjonctive d’alpha sur
bravo, charlie ou delta.
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Quant a echo, il y a un conflit entre ce paquet et zulu. Un conflit avec un
paquet virtuel se traduit par un conflit avec chaque fournisseur de ce paquet
virtuel : autrement dit, echo est en conflit avec a la fois bravo, charlie et delta.

Il y a des différences de détail entre les systemes de paquetage (dont les
plus utilisés sont le systeme de Debian et RPM), mais ils sont tous conformes
au schéma expliqué ci-dessus.

Relations sémantiques entre paquets

Les relations entre paquets qu'on a détaillées dans la section précédente ne
nous donnent pas toute I'histoire. Par exemple, le simple fait qu’il y a une dé-
pendance entre deux paquets ne signifie pas forcément que 1'un doit étre ins-
tallé pour installer 1’autre (la dépendance pourrait étre disjonctive). Il pourrait
aussi y avoir des paquets qui, sans étre en conflit direct, ne sont néanmoins pas
installable en méme temps!.

Pour pallier a ce probleme, nous installons des relations sémantiques qui
nous aident a voir plus clairement la structure d’un dépét.

Commencons par les dépendances. Nous définissons qu’il existe une dépen-
dance forte entre un paquet p et un autre paquet ¢ (tous les deux contenu dans
un dépot R) si et seulement si :

e pestinstallable? dans R;
e chaque installation de p dans R contient g.

Avec cette relation de dépendance forte, on résume 'essentiel de la dépen-
dance : un paquet a des dépendances fortes sur tous les paquets qui lui sont
absolument indispensables. Notons aussi que la relation de dépendance forte,
contrairement aux dépendances normales, est transitive.

II est également intéressant de considérer les dépendances fortes en sens
inverse : un paquet dont beaucoup d’autres paquets dépendent fortement est
nécessairement un paquet important dans la distribution : si ce paquet avait un
défaut, ceci pourrait avoir un impact sur beaucoup d’autres paquets.

Néanmoins, de par la transitivité des dépendances fortes, il est possible
qu’un paquet ait beaucoup de «prédécesseurs forts» sans pour autant étre tres
important lui-méme. Cette situation est illustré par la figure 3.3c sur la page 40.
On y peut voir que quebec a beaucoup de prédécesseurs forts. Le fait que
quebec dépend fortement de romeo, et la transitivité des dépendances fortes,
font que tous les prédécesseurs forts de quebec sont aussi des prédécesseurs
forts de romeo. Ainsi, romeo parait comme un paquet plus important que quebec,
méme si le nombre de ses prédécesseurs est en quelque sorte expliqué par la dé-
pendance forte entre quebec et romeo.

Pour éviter cette situation, on introduit les dominateurs, un concept qui est
connu dans le domaine des graphes de controle de flux : un paquet p domine
un autre paquet g si et seulement si tous les chemins de dépendances fortes qui
menent vers ¢ passent par P°.

1'Une exemple de cette situation est la figure 3.5 sur la page 46.

2Nous ajoutons ce point pour éviter les dépendances fortes triviales; sinon, un paquet non-
installable aurait des dépendances fortes sur chaque autre paquet dans la distribution.

3La définition donnée dans la these est différente, mais nécessite un peu plus d’explications. On
démontre toutefois dans la thése que la définition donné ici est équivalente a celle donné dans le
chapitre 3



En utilisant les dominateurs, on peut nettoyer la structure des dépendances
fortes de fagon que les paquets qui paraissent importants, mais ne le sont pas
vraiment, comme expliqué ci-dessus, soient enlevés.

Ce qu’on peut faire pour les dépendances, on peut faire pour les conflits :
deux paquets p et ¢ d'un dépdt R sont en conflit fort si et seulement si on peut
installer p et ¢ séparément dans R, mais non pas ensemble.

Ici encore, on résume 1’essentiel de la relation de conflit : deux paquets qui
ne peuvent pas étre installés en méme temps ; pour avoir cette situation, il n’est
point nécessaire qu’il y ait un conflit direct entre les deux paquets. Par contre,
nous avons démontré que pour qu'un conflit fort existe entre deux paquets,
il doit exister un chemin de dépendances (normales) entre chacun des deux
paquets et un conflit (théoréme 3.25).

Algorithmes et outils

Dans la section précédente, nous avons noté que le probleme de déterminer si
un paquet est installable dans un dépot est de complexité égale au probleme
SAT, c’est a dire NP-complet.

On a également vu que les relations sémantiques dépendent aussi de 1'ins-
tallabilité des paquets. Vu la taille des distributions, il n’est pas envisageable
de simplement calculer la totalité des relations en vérifiant 1'existence d'une
relation pour chaque paire de paquets.

Dans le chapitre 4, nous proposons donc des algorithmes plus efficaces,
dont le fonctionnement repose sur des théorémes présentés dans le chapitre 3.

Pour les dépendances fortes, 1’algorithme proposé utilise d’abord le fait que
pour qu'une dépendance forte existe entre deux paquets p et g, ¢ doit étre
présent dans n’'importe lequel installation de p; pour trouver toutes les dé-
pendances fortes de p, on peut donc se borner a controéler tous les membres
d’un ensemble d’installation de p quelconque. En plus, nous utilisons le fait
qu'une dépendance conjonctive est automatiquement une dépendance forte
(corollaires 3.7 et 3.2).

Le calcul efficace des conflits forts repose essentiellement sur le théoréme 3.25.
Puisque, pour avoir un conflit fort entre deux paquets p et g, il est nécessaire
qu’il existe un chemin de dépendances (normales) de p et g jusqu’a deux pa-
quets qui sont en conflit, on peut rassembler tous les conflits forts en commen-
cant par les conflits directs (dont il y a relativement peu), et en remontant les
dépendances en sens inverse. Ainsi, on obtient tous les paires de paquets qui
pourraient étre en conflit fort, ce qui réduit 1’espace de recherche de fagon im-
portante.

Pour les dominateurs, on utilise le théoreme 3.19 qui démontre que notre
notion des dominateurs est équivalent a celle utilisée dans le domaine des
graphes de controle de flux. On peut ensuite utiliser ’algorithme de Tarjan [ ]
pour calculer rapidement le graphe des dominateurs.

Dans le chapitre 5, nous présentons les outils qui ont été crées en faisant
usage de ces algorithmes. Notamment, il s’agit de dose, qui a été congu comme
une librairie de manipulation et analyse de distributions, et qui inclut tous les
algorithmes présentés ci-dessus.
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Formalisation

Comme on a vu dans la section précédente, les algorithmes présentés ont été
optimisés en utilisant des théoremes qui permettent de réduire ’espace de re-
cherche.

Pour étre stir qu’on ne réduit pas trop 1’espace de recherche, il faut s’as-
surer de la validité des théorémes utilisés. Pour ce faire, nous avons utilisé
l'assistant de preuves Coq pour formaliser une partie de la théorie des paquets,
et notamment pour vérifier les théorémes les plus importants utilisés dans nos
algorithmes.

Une explication des méthodes utilisées dans cette formalisation est le sujet
du chapitre 6.

Validation et analyse

Dans les chapitres 7 et 8, nous présentons des résultats d’expériences faites
avec les outils présentés précédemment.

D’abord, nous parlons des temps d’exécution des algorithmes. Théorique-
ment, ce sont toujours des algorithmes de complexité NP-complet ou assimilé,
mais en utilisant les optimisations mentionnées, on peut obtenir des réductions
assez importantes qui permettent de calculer les graphes de relations séman-
tiques dans un temps raisonnable ; ainsi, il devient possible de faire un calcul

quotidien.
Ensuite, nous nos intéressons a la structure de la distribution. Dans des
publications précédentes ([ Jet] ], il a déja été démontré que les

distributions de logiciel libre ont un graphe sous-jacent qui présente le phéno-
mene du petit monde ; nous affirmons que c’est le cas en bien précisant notre
méthodologie, ce qui n’a pas été le cas dans les publications citées.

Le phénomene du petit monde est surtout intéressant pour les conclusions
qu’on peut en tirer sur la structure de la distribution. Un graphe petit monde
est un graphe qui a des chemins relativement court entre ses noeuds; on peut
aussi diviser les noeuds d'un graphe petit monde dans deux catégories : les
noeuds a forte connectivité (il y en a peu), et les noeuds a faible connectivité (il
y en a beaucoup).

Les graphes de distribution de logiciel libre ont la particularité d’étre diri-
gée; on peut alors distinguer trois types de noeuds distincts :

e Desnoeuds avec beaucoup d’arétes sortantes, mais peu d’arétes rentrantes ;
ces noeuds présentent des paquets de haut niveau, appelés les meta-paquets,
qui sont utilisées pour installer facilement une famille de logiciels, comme
KDE ou GNOME;

e Des noeuds avec beaucoup d’arétes rentrantes, mais peu d’arétes sor-
tantes; ces noeuds présentent des paquets de bas niveau, des libraires
notamment, comme par exemple la librairie standard de C qui est néces-
saire pour une grande partie des autres paquets;

e Des noeuds avec peu d’arétes, rentrantes ou sortants.

Dans le chapitre 8, il y a plus d'informations qui confirment l'existence de
cette structure.



Contributions et perspectives

Dans cette these, nous avons présenté une modélisation formelle des distribu-
tions de logiciel libre, avec des méthodes pour améliorer la gestion de qualité
qui utilise cette modélisation. Ces méthodes ont été implémentées en utilisant
le langage OCaml, et partiellement vérifiées. Finalement, nous avons utilisé
les outils implémentés pour faire des analyses sur des distributions existantes,
notamment Debian et Mandriva.

Nous avons présenté des cas réels des erreurs qui ont pu étre détectées en
utilisant nos méthodes ; leur application quotidienne est rendue possible par
les optimisations que nous avons ajoutés. Ceci peut beaucoup aider les éditeurs
de distributions a éviter des erreurs, par exemple des paquets non installables.

En continuant ce travail, notamment en complétant la vérification des al-
gorithmes, et en les intégrant dans un langage spécifique, on peut aboutir sur
une suite compléte d’outils pour la manipulation et I’analyse des distributions.
Ceci pourrait aider a garder la qualité des distributions de logiciel libre, méme
si dans le futur ils continueront a grandir et devenir plus complexes.
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Introduction

Het zal waarachtig wel gaan!
— CORNELIS TROMP

It has long been a standard method in computing science to divide complex
systems into components [ 1.

The basic reason for this is that smaller programs are easier for a human
to comprehend, and therefore to design, write, verify, test and maintain. This
makes for a quicker design phase, less time spent in implementation, and fewer
bugs.

Components can also be reused, especially the more generic ones. This
again saves time, because components do not have to be implemented twice.
It also results in fewer errors, for the same reason. It is even possible to re-use
components developed elsewhere, for example by a third party (for example
by using COTS, commercial off-the-shelf products).

Unfortunately, component-based systems have their disadvantages as well,
notably in maintenance and evolution. The foremost problem here is the fact
that components, as their name already indicates, do not stand alone: they
interact with each other.

This interaction brings forth the relations between components: these can
either be positive (i.e. a component needs another component to function; this
is commonly called a dependency relation) or negative (i.e. a component can not
function together with another component; this is commonly called a conflict
relation).

A component-based system, by its nature, is not stable: components are
added, removed and upgraded as a matter of routine. These changes, however,
can easily break relationships between components, thus corrupting the state
of the entire system or even rendering it unusable.

One specific instance of component-based systems that has become more
and more widely adopted over the last two decades are the operating systems
based on Free and Open Source Software (F/OSS).

These systems are extremely heterogeneous: every part of the system is
developed by a different group; components therefore are implemented in dif-
ferent programming languages, use different release cycles, and have different
modalities for downloading and installing. It is easy to see that this can give
rise to many compatibility problems.

1.1 F/OSS Software Distributions

In order to at least partially solve these problems, F/OSS operating systems
are assembled into distributions. This is especially true for the operating sys-
tems based on the Linux kernel: there is a great number of distributions based
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1. Introduction

on this kernel, each with its own specificities. However, other F/OSS oper-
ating systems, such as the different varieties of BSD, or OpenSolaris, are also
provided in distribution form.

The idea of a distribution is that it creates a coherent system out of the large
amount of available software: it allows for a single method of downloading
and installing software, and there is one person (the maintainer) responsible for
integrating the software into the distribution and updating the distribution if a
new release is published.

1.1.1 Components as packages

In a distribution, every piece of software becomes a package. This package
contains the software itself, plus some extra data (known as metadata) that de-
scribes the package, its dependencies and all the specifics needed to install it on
a user’s machine. In this way, the user can simply install the package, without
having to worry about how exactly to do this: all the necessary information is
contained in the package.

The tool used to install a package (using the metadata) is called a package
manager. The package manager takes care of downloading the package, verify-
ing contents, installing eventual dependencies, making sure there are no con-
flicts and all actions that are needed to correctly install the software contained
in the package (creating specific user accounts, for example).

The packaging format and package manager used vary widely between dis-
tributions; in the Linux world, RPM (the RedHat Package Manager) is used
by many systems (Fedora, Mandriva, and SUSE, to name a few); another well-
known system is Debian’s package manager APT with its package format (used
by Debian and Ubuntu, amongst others).

1.1.2 The challenge of scale

One of the most important problems that plagues F/OSS distributions today
is one of scale. The latest stable version of the Debian distribution (5.0.6, re-
leased in October 2010) contains 22 000 packages; the latest version of Man-
driva (2010.1) has over 7 500 packages.

Unfortunately, the tools used on both the user side and the distribution side
have not notably changed since the first appearance of distributions, now some
two decades ago: the SUSE distribution has recently integrated a SAT solver in
its package manager, for dependency checking, but most distributions do not
yet use even this basic technology.

On the distribution side, the situation is comparable: there are some tools
that aid distribution editors in their tasks (one example is Debian’s britney,
which takes care of integration of new version of packages), but these are slow
and not formally proven.

1.2 Contributions
The main contributions of this work can be summarised in four broad areas:

12



e We present a formal framework that captures the essential features of the
most common package models, and identify some new semantic relation-
ships among packages that are relevant for finding errors and maintain-
ing quality in F/OSS distributions;

e We present efficient algorithms for manipulating package repositories
and compute the relationships mentioned above; all of these algorithms
have been implemented in the OCaml programming language, and in-
corporated in a generic package manipulation and analysis library called
dose3;

e We encode our formal framework in the Coq proof assistant, and use it to
mechanically verify some of the key lemmas corresponding to the most
complicated steps in the aforementioned algorithms;

e We have validated our algorithms on real-world F/OSS distributions,
and have performed an extensive analysis of the general structure of
these distributions, notably the small world characteristics of the under-
lying graph structure.

1.2.1 Theory of packages

The details of how packages are represented and manipulated differ quite sig-
nificantly from one Free Software distribution to the other, but when choosing
the right level of abstraction, one can find a remarkably simple and elegant
common model that is able to accommodate all the metadata which is relev-
ant for maintaining the quality of a repository. This model has already been
presented in [ ] and is reproduced here with some extensions.

Subsequently, we extend this model with some new semantic relationships
between packages. These relationships, in highlighting specific properties of
packages, help distribution editors in quickly spotting potential errors and in
finding means to correct these errors.

The simplest example is the broken package, a package that cannot be in-
stalled under any circumstances. By not only providing a list of such packages,
but also an explanation of why they cannot be installed, we help distribution
engineers in correcting such packages.

In the same vein, packages that are installable but that, when installed,
render a large subset of the distribution non-installable, also are a potential
source of errors. Again, since we provide an explanation, distribution editors
can easily isolate the source of the problem, and correct it if necessary.

Another way to spot potential trouble is to identify packages that are in
some way important to the distribution—for example, because they are de-
pended on by many other packages. We offer a way to identify such packages,
so that distribution editors know which packages need extra care and testing
in case of changes to the distribution.

Some of the material presented in this part has already been published
in [ Al Jand [ ]; this thesis presents this previous ma-
terial in its general context, and contains some new additions besides.

13



1. Introduction

1.2.2 Algorithms and tools

The problem of determining whether a package is installable is NP-complete,
as already shown in [ ].

Since the computation of all of the semantic relationships mentioned in the
previous section depends ultimately on this installability problem, a naive im-
plementation that checks the existence of a relationship for every pair of pack-
ages will take a very long time.

In this thesis, we present algorithms that use the various properties of the
packages and their relationships to avoid any superfluous computations. In
this way, it becomes feasible to compute the relationships with every major
change in the distribution, so that errors can be found as early as possible.

Furthermore, we discuss the implementation of our algorithms as a part of
a general distribution manipulation and analysis framework.

1.2.3 Formalisation

For our algorithms, we use several lemmas that allow us to skip a lot of SAT
computations. Needless to say, it is very important that these computations
can indeed be skipped; in other words, that the lemmas are actually valid.

In order to assure ourselves of this, we have formalised the theory of pack-
ages as provided in the previous parts using the Coq proof assistant, and we
have formally proven several of the lemmas presented.

1.2.4 Validation and analysis

In this part, we present some practical results obtained by applying our al-
gorithms to some common F/OSS distributions.

To start with, we show that the run time of the algorithms remains reason-
able in practical cases: a daily run of the algorithms is in all cases possible.

Then, we present the insights we have obtained on the structure of the un-
derlying graphs. First we note that the underlying graph of a F/OSS distri-
bution can be generated in different ways, and that the method of generation
changes the characteristics.

We also talk about the small world properties of the underlying graphs,
and discuss the ramifications for the structure of the graph. It turns out that
the graph of a distribution has a distinct structure: there are few packages
with many dependencies, and many packages with just a few dependencies.
The packages with many dependencies again fall into two distinct categories:
high-level packages with many outgoing dependencies (but few or no incom-
ing dependencies), and low-level packages with many incoming dependencies
(but few or no outgoing dependencies). See also figure 8.3 on page 115.

1.3 Structure

The contents of the thesis are as follows: first, in chapter 2, we shall present
an overview of the basics of Linux distribution management: its most-used
package formats (Debian and RPM), and we shall recall the formalisation of
F/OSS distributions devised in the EDOS project [ , 1.
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In chapter 3, we shall extend this formalisation with the concepts of strong
dependencies and strong conflicts, as well as an application of dominators (a concept
already known from flow control graphs) which allow for more extensive qual-
ity control over distributions. We shall also specify and prove some theorems
that allow for more efficient computation of these concepts.

Then, in chapter 4, we present algorithms that use these theorems to effi-
ciently compute strong dependencies, strong conflicts and dominators over a
distribution. The actual implementation of these algorithms during the EDOS
and MANCOOSI projects will be discussed in chapter 5.

The formalisation in Coq of the definitions and theorems from chapters 2
and 3 is the subject of chapter 6.

In chapter 7, we present the results of several experiments that have been
executed using the tools from chapter 5. These results offer insights into the
structure of the distributions; in chapter 8, we continue on this subject by dis-
cussing distributions when seen as graphs—this view offers other insights into
the structure of distributions that can aid in managing them.

Finally, in chapter 9, I discuss the relevance of the subjects presented in this
thesis, as well as related work and possible directions for future research.
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1. Introduction
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Definitions

‘And why is it called the Carrock?” asked Bilbo as he went along at the wizard’s side.
"He called it the Carrock, because carrock is his word for it. He calls things like that carrocks,
and this one is the Carrock because it is the only one near his home and he knows it well.”

—J.R.R. TOLKIEN, The Hobbit

In this preliminary chapter, we shall first specify in detail the package formats
currently used for most Linux distributions: the Debian format and RPM. These
two formats are very different in syntax; the difference in semantics, however,
is much smaller, which is why it has been possible during the MANCOOSI
project to devise a common format, called CUDF [ ], to which both formats
can be translated.

After this, we shall discuss a package format from a different environment:
the metadata format used for Eclipse plugins. Even though the environment
in which this format is used is very different from RPM or the Debian format,
we shall see that the basic metadata contents and semantics remain the same.

Having thus presented the existing package formats, we shall recall the
definitions proposed in the EDOS project [ ]. These definitions are
intended to be usable as a way of reasoning about any F/OSS distribution:
they are sufficiently abstract to be used to represent packages from the Debian
format, from RPM and even from Eclipse.

The main object of the EDOS formalisation is to reason about package in-
stallability. The effect of this is that a large part of the package metadata can
be ignored, because it has no influence on installability. Examples of this are
data like the name of the package maintainer, the package description or the
package classification.

2.1 Existing package formats

2.1.1 Basicideas

As discussed in the introduction, in F/OSS distributions, there exist interrela-
tionships between packages. There are two main types: dependencies and con-
flicts. There are other types of relationships, but these are either equivalent
to dependencies or conflicts, or can be safely ignored as far as installability is
concerned.

For example, in Debian there is a pre-dependency relationship, which is like a
normal dependency, except that it enforces an order of installation on the pack-
ages (a pre-dependency must be installed before configuration of the packages
begins). Examples of relationships that can be ignored are the recommendation
or suggestion relationships found in both Debian and RPM: these specify op-
tional dependencies and thus do not influence installability.
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2. Definitions

A dependency relationship specifies that one package needs another to
function; if package A depends on package B, the package manager takes care
that when installing package A, package B also will be installed (but not the
other way around).

Sometimes, it is possible to have alternative (or disjunctive) dependencies: in
this case, a package can specify a list of other packages, of which at least one
must be installed (it is allowed to have more than one package from the list
installed as well; the disjunction is not exclusive).

A conflict specifies that one package cannot function when another package
is installed. If package A conflicts with package B, the package manager takes
care that package A is never installed at the same time as package B. Unlike
the dependency relationship, the conflict relationship is symmetric (at least for
Debian, RPM and Eclipse).

An example is shown in figure 2.1. The usual term for such a set of pack-
ages with dependency and conflict relations is a repository. Usually, there are
multiple repositories available for one distribution: for example, the Debian
distribution provides the stable, testing and unstable repositories. The dif-
ference between these three is that stable is, as the name suggests, very stable,
but not up-to-date, whereas unstable is very up-to-date, but not always stable;
testing is between the two.

alpha

charlie

echo

[ delta }—JL—{ foxtrot

Figure 2.1: Example repository

In this case, the package alpha depends conjunctively on bravo, and dis-
junctively on charlie and delta. In order to install alpha, therefore, bravo
must be installed, as well as either charlie or delta (or both). For the package
echo, either delta or foxtrot needs to be installed. It is not possible to install
both delta and foxtrot, because there is a conflict between them.

Many systems contain virtual packages. These are packages that do not
physically exist, but can be provided by other packages. A dependency on a
virtual package can be satisfied by any of the packages that provide it; a conflict
with a virtual package means a conflict with all of the packages that provide it.

An example of this would be a web server package in an operating system;
it would be a virtual package, provided by a number of specific web servers
(Apache, lighttpd, ...).

A simple example might make the idea more clear. In figure 2.2, the pack-
age zulu is a virtual package, which is provided by bravo, charlie or delta.
Now, in order to install alpha, which depends on zulu, at least one of bravo,
charlie or delta will be installed. On the other hand, in order to install echo,
which conflicts with zulu, none of bravo, charlie or delta can be installed.

Most package systems use two different pieces of software for package
management: the installer and the meta-installer.
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alpha

echo }

\\\- A

. zulu

\?__‘__‘,

{ bravo } [ delta charlie

Figure 2.2: Example repository

The installer is usually responsible for installing and removing packages
from the system, and keeping track of the installed packages and their files. It
does not as a rule resolve dependencies or download packages; this is the task
of the meta-installer, which also communicates with the user.

The general mode of operation of such a system is that the user requests an
operation (install a package, upgrade every package in the system, ...) from
the meta-installer, which either decides that the request cannot be honoured
(the user wants to install two conflicting packages, for example) or determines
which packages have to be installed or removed to satisfy the request. The
actual installation and/or removal of packages are subsequently executed by
the installer.

2.1.2 The Debian format

The Debian package format (also called .deb) is defined in chapters 3-7 of the
project’s Policy Guide [ ]. Its installer is called dpkg, and the standard
meta-installer is apt. Another meta-installer called aptitude is also frequently
used.

There is a distinction within Debian between source packages and binary pack-
ages. Binary packages are the ones installed on a user’s machine; they are gen-
erated from source packages. A source package usually is the base for multiple
binary packages; not only for the different architectures supported by Debian,
but also for different options or parts of the software being packaged. As an
example, the ocaml source package of the lenny distribution has 11 binary
packages, such as camlp4 (a preprocessor packaged with OCaml), ocaml-base
(the OCaml base compiler and libraries), and ocaml-base-nox (the same, but
without X11 libraries).

File contents

Debian binary packages follow the . deb format, defined in its manpage [ I
A .deb file is an ar archive that contains at least three files:

1. atext file named debian-binary that contains the version number of the
package; currently 2.0.

2. a gzipped tar file named control.tar.gz that contains a set of text files
with the package metadata. Of these, the file control is mandatory; it
contains the core metadata.
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2. Definitions

3. a gzipped tar file named data.tar.gz that contains the files that belong
to the package.

In order to easily allow access to the metadata of all packages in a distri-
bution, there is also a file format that consists of the concatenation of control
files from an entire distribution (as a text file). This type of file will from now
on be referred to as a Packages file.

Package metadata

The package control file contains one or more paragraphs of fields, separated
by blank lines. Each paragraph contains a list of fields: the field name, followed
by a colon, followed by the field value. A field value may span several lines,
in which case the second and following lines start with a space or tab. Other
whitespace is ignored. Figure 2.3 is an example of the package control file for
the ocaml package:

For a binary package, the Package, Version, Architecture, Maintainer,
and Description fields are mandatory; Section and Priority are recommen-
ded. A list of the different fields and their meanings (for binary packages)
follows:

Maintainer The name and e-mail address of the package maintainer.

Section This field is used for package classifications, as defined in the Policy
Manual, Section 2.4.

Priority Package priority, as defined in the Policy Manual, Section 2.5.
Package The name of the package.

Architecture The architecture the package is intended for. If the value all is
specified, the package is architecture-independent.

Essential If this field is set to yes, then the package is considered to be indis-
pensable for a functioning system, and it should be installed at all times.

Depends This field specifies the dependency relationship mentioned in the
previous section; its syntax will be explained in more detail below.

Pre-Depends This field specifies a special sort of dependency; it means that
the package depended on must be installed before the package specifying
the dependency.

Recommends This field specifies “a strong, but not absolute, dependency”.
The standard Debian package manager apt installs recommended pack-
ages by default.

Suggests This field specifies a weaker sort of dependency than a Recommends
dependency; suggested packages are not installed by default by apt.

Enhances This field specifies the same sort of dependency as the Suggests
field, but in the opposite direction.
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Conflicts This field specifies a conflict between two packages, as explained in
the previous section; the Debian package manager refuses to install two
packages together if there is a conflict between them.

Breaks This field specifies a special, slightly weaker, kind of conflict: packages
that break each other can be physically present on the system at the same
time, but must not both be active (“configured”).

Provides This field specifies that the package provides a virtual package, as
explained in the previous section.

Replaces This field has two distinct uses:

e Normally, two packages cannot share the same file. However, if
one package replaces the other, the Debian package manager will
replace the file from the old package by the file from the new pack-
age.

o If two packages conflict with each other, and one of the packages is
specified as replacing the other, instead of refusing to install them
both, the Debian package manager will remove the replaced pack-
age and install the replacing package.

Version The package version.
Description A description of the contents of the package.
Installed-Size The estimated size of the package when installed, in kilobytes.

Homepage The URL for the home page of the software packaged.

Package interrelationships

The syntax of the package interrelationship fields is as follows: for the Depends,
Pre-Depends, Suggests, and Recommends fields, they are a comma-separated
list of alternatives; an alternative is a list of package names separated by a
pipe symbol (|), optionally restricted to a version interval. Let us look at the
dependency line for ocaml:

]ocaml-base (= 3.10.2-3), ocaml-nox (= 3.10.2-3), 1ibx11—dev‘

We see that there are three alternatives of exactly one package each (which
means that all these three packages must be installed); for two packages, ocaml-base
and ocaml-nox, it is specified that they must be installed with the exact version
3.10.2-3.

Another, more complicated dependency line for the abcde package:

cd-discid, wget, cdparanoia | cdda2wav,
vorbis-tools (>= 1.0beta4-1) | lame | flac | bladeenc | speex

This package will install the packages cd-discid, wget, either cdparanoia
or cdda2wav, and one (or more) of vorbis-tools (with a version higher than
or equal to 1.0beta4-1), lame (any version), flac (any version), bladeenc (any
version) or speex (any version).
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2. Definitions

The syntax for the other interrelationship fields (Conflicts, Breaks) is sim-
ilar, except that alternatives are not allowed here, the values are just a comma-
separated list of package names, with eventual version restrictions.

Finally, the Provides field is just a comma-separated list of names, without
any version specification.

Version comparison algorithm

A Debian package version number consists of three parts: the epoch, the ver-
sion proper and, optionally, the revision. When comparing two versions,
these three are compared in order: the epochs first, then the versions proper
if there is no difference between the epochs, and finally the releases if there is
no difference between the versions.

The epoch is an unsigned integer. If not specified, it is assumed to be 0.

The version proper (separated from the epoch by a colon) is an alphanu-
meric string that can additionally contain the characters ., +, -1 : and ~. If ne-
cessary (i.e. if the epochs are equal), these strings are compared by algorithm 1.

Algorithm 1 Compare the version strings v; and vz, Debian style

while not empty(v;) and not empty(v2) do
(n1,v1) « non_digit_prefix(v )
(ng,va) « non_digit_prefix(vy)
r < compare_lex(ny, na)
if r = 0 then
(d1,v1) « digit_prefix(vq)
(da, va) « digit_prefix(vs)
if d; < d2 then {Numerical comparison, empty string equivalent to 0}
return —1
else if d; > ds then
return 1
end if
else
return r
end if
end while
return 0

Here, non_digit_prefix and digit_prefix return a pair p, 7 where p is the
prefix of the argument string that contains no digits (for non_digit_prefix) or
only digits (for digit_prefix), and r the remainder of the argument string.

The function compare_lex compares two strings lexicographically, so that
all letters sort before all letters, letters between them sort by ASCII value, and
the tilde sorts before anything (even the empty string). For this and all other
comparison algorithms discussed in this chapter, the convention is that the
algorithm returns 0 if the strings are equal, —1 if the first argument is smaller,
and 1 if the second argument is smaller.

The revision number (separated from the version by a hyphen) is an alpha-
numeric string that can additionally contain the characters +, . and ~. These

IThe hyphen may only be present in the version proper if there is a revision number present.
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strings are only compared if both the epochs and versions proper are equal; the
algorithm is the same as that used for the version proper.

The rationale behind this version numbering scheme (which, as we shall
see, is very similar to the one used for RPM) is that the version specified by
the original author of the software should become the version of the package;
this comparison algorithm works well with most versioning schemes used in
practice.

However, it is possible that the original author decides to change the ver-
sion numbering scheme (for example, to pass from a date-based scheme to a
more classic x.y.z scheme). In such a case, to make sure that the new version is
deemed larger than the old version, the epoch can be raised.

The release part is used by the distribution to be able to make changes to
the package, while keeping the same version of the original software.

Special semantics

In Debian, virtual packages do not have versions; hence, a dependency with a
version restriction can never be satisfied by a virtual package.

Furthermore, a package can never conflict with itself. Thus, a special case oc-
curs when a package both provides a virtual package and conflicts with it. Sup-
pose a package hasboth Provides: mail-transport-agent and Conflicts: mail-transport-agent
in its metadata. In this case, the package conflicts with any other package
providing the same virtual package, in effect specifying that it should be the
only package installed that provides mail-transport-agent.

If the package also has Replaces: mail-transport-agent in its metadata
(in addition to the Provides and Conflicts) mentioned above, any package
also providing mail-transport-agent will be removed by the Debian package
manager.

In Debian, two versions of the same package implicitly conflict with each
other, which means that it is not possible to have two packages that have the
same name installed at the same time.

Installer and meta-installer

As said before, the tools used to install Debian packages are dpkg, the installer,
and apt, the meta-installer.

In this section, we shall note some salient facts about apt and its most inter-
esting part (for our purposes, anyway), the dependency solver. More extensive
information on apt can be found in [ ].

Let us note first that the problem that apt tries to solve is indeed quite
complicated, even beyond simple installability. In fact, apt has to deal with
an existing system, one or more available distributions, and try to execute user
requests while trying to maintain the system in a consistent state.

As we shall show later on, the installation problem itself is NP-complete.
Since this means that dependency solving can take a very long time, apt does
not try to be complete: if at some point in the calculation multiple options
present itself (which is the case when a disjunctive dependency is encountered,
none of whose packages are already installed), it just takes the first package
from the list of alternatives and tries to install that. No backtracking is attemp-
ted.
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2. Definitions

In fact, this behaviour of apt has become something of a de facto stand-
ard, since it allows package managers to specify a preference in alternative
dependencies: the package specified first in the alternative will be installed,
unless another package from the alternative is already installed.

Furthermore, if multiple versions of the same package are available, only
the highest version is installed; the idea being that the highest version of any
package should always be the most advanced and bug-free one.

This can, of course, lead to false responses; imagine the following reposit-
ory:

Package: alpha
Version: 1.0
Depends: bravo | charlie

Package: bravo
Version: 1.0
Depends: delta

Package: charlie
Version: 1.0

The package alpha is perfectly installable when one uses charlie to satisfy
its dependency. However, since apt only tries bravo—which is not installable,
since its dependency delta is missing—it will return with an error.

The choice made by the developers of apt is to prefer a fast response over a
correct one. Since the contents of the distribution are controlled by Debian, this
does in general not result in too many errors, especially since most users use
only one repository (stable, testing or unstable), which means that in most
circumstances, only one version of every package is available, so that there are
few disjunctive dependencies.

2.1.3 The RPM format

There is no authoritative specification of the syntax and semantics that we are
aware of; most of the information in this section comes from experience, look-
ing at the source of rpm, discussion with RPM developers, and [ 1.

The installer for RPM is the rpm program?, and the meta-installer used var-
ies with the distributions; Mandriva uses urpmi.

File format

An RPM file is a binary file, divided into four parts:

1. The lead, unused in current implementations except to identify the file as
an RPM file.

2. The signature, used to verify the integrity of the RPM file.

3. The header, which contains a list of tags that contain the metadata for
the package.

2To distinguish between the package format and the installer, we shall use a normal font (RPM)
for the package format, and teletype (rpm) for the installer.
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4. The archive, which is a compressed cpio archive containing the package
files.

Another file format is the hdlist, which is a concatenation of the headers
of several packages (similar to the Debian Packages file).

Mandriva’s urpmi meta-installer uses a textual format, called synthesis hdlist,
which fulfils the same purpose as a ‘normal” hdlist. However, it does not con-
tain all tags from the RPM header and therefore it is far smaller (for Mandriva
2010.0, the hdlist is 149 Mb in size, whereas the synthesis hdlist is 3.8 Mb).

An example of the data in the synthesis hdlist for the ocaml package is in
Figure 2.4.

Package metadata

The RPM metadata consists of a list of tags, with associated data. These are
comparable to Debian’s fields and values. Important tags are:

RPMTAG_NAME The package name.

RPMTAG_VERSION

RPMTAG_RELEASE

RPMTAG_EPOCH The package version, release and epoch.

RPMTAG_REQUIREFLAGS Flags for dependencies

RPMTAG_REQUIRENAME List of dependencies

RPMTAG_REQUIREVERSION Version requirements for dependencies

RPMTAG_CONFLICTFLAGS Flags for conflicts

RPMTAG_CONFLICTNAME List of conflicts

RPMTAG_CONFLICTVERSION Version requirements for conflicts

RPMTAG_DIRINDEXES

RPMTAG_BASENAMES

RPMTAG_DIRNAMES These three tags together contain the list of files for
the package.

Version comparison algorithm

The version comparison algorithm used by rpm (which has been used in all the
MANCOOSI tools that deal with RPM packages) works along the same lines
as Debian’s, but there are some important differences.

Like Debian, RPM version numbers consist of an epoch, a version proper
and a release. These are compared in the same order as Debian’s, and like
for Debian, the first difference is decisive. However, there is one difference:
in RPM, when comparing two versions of which one has a revision number,
but the other does not, the revision numbers are ignored. This means that for
example 1.27-1 is smaller than 1.27-2, but both are equal to 1.27.
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The epoch is an integer, compared normally.

For comparison of the version proper and the release, the rpmvercmp func-
tion is used, with the behaviour specified in algorithm 2.

The segment function mentioned in algorithm 2 is used to split a version
string into segments. A segment of a string is the longest prefix that either con-
sists completely of numbers or consists completely of letters. It returns a pair
(s,7): the segment and the remainder of the string.

The compare_segment function compares two segments: numerical seg-
ments are compared by value, while alphabetic segments are compared lex-
icographically. If one segment is numerical and the other is alphabetic, the
numerical segment is considered to be smaller.

Algorithm 2 Compare the version strings v; and ve, RPM style

if v1 = v then {literal string comparison}
return 1
else
while not empty(v;) and not empty(vs) do
remove initial non-alphanumeric characters from v; and v,
(s1,v1) < segment(vy)
(82,v2) + segment(vsy)
if empty(s1) then
return —1 {s; cannot be empty (cf. the loop condition, so it must be
greater)}
else if empty(s2) then
return 1
else
r < compare_segments(sy, s2)
if r # 0 then
return r
end if
end if
end while
if empty(vy) then
if empty(v2) then
return 0
else
return —1
end if
else
return 1
end if
end if

Special semantics

One very important difference in semantics between Debian and RPM is that
there are no direct dependencies between packages in RPM. Any and all re-
lationships between packages are realised using virtual packages. A package
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always provides a virtual package with the same name and version as itself.

Another difference is that in RPM it is possible to attach a version specific-
ation to a virtual package; a package can thus specify that it provides only
specific versions of a virtual package. Resolution is done by overlapping inter-
vals: a package that provides virtual package A with version specification > 3
matches a package that requires virtual package A with version specification
< 4, since they have the interval < 3,4 > in common.

In an RPM package, it is possible to specify a dependency on a file. This is
handled differently by different pieces of software; rpm considers the depend-
ency satisfied if the file exists on the file system; urpmi on the other hand treats
file dependencies as normal dependencies (the relevant virtual packages are
added during RPM generation).

Like Debian packages, RPM packages in principle cannot share the same
file. However, there are flags in the RPM format that can modify this behaviour
(notably in the case of config files: in this case, depending on options given by
the user during installation, the file is either overwritten or backed up).

Installer and meta-installer

There are many different meta-installers for RPM, and they all have different
behaviours. In this section, we shall use Mandriva’s urpmi as an example.
Like with apt, the most interesting thing about urpmi is that it does not try
to be complete in dependency solving, for the same reasons as apt.
The openSUSE meta-installer, however, uses a SAT solver implementation,
libzypp, for dependency resolution [ I

2.1.4 The Eclipse format

Eclipse is a very extensive integration platform for software development tools
that, over the years, has accumulated a large amount of very diverse plu-
gins [ ].

As plugins became more complex and dependencies between plugins began
to appear, the standard ‘Update Manager’ was no longer sufficient and the p2
project [ ] was started to develop a more satisfactory plugin management
system. We shall discuss the properties of this system, which resembles Debian
and RPM, though there are many differences as well, in this section; much of
the data in this section comes from [ 1.

Let us first note that the p2 system operates in a different environment than
apt and rpm; instead of managing a complete OS and its software, p2 operates
within the context of the Eclipse system and its plugins. Nonetheless, the fa-
miliar concepts of packages, dependencies and conflicts are all present in p2 as
well.

Package metadata

To start with, the basic unit that is normally known as a package is called an IU
(installable unit) in the p2 universe. It is uniquely identified by a string (the
identifier), and a version (consisting of three integers a string, for example
something like 2.1.0.beta).
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Dependencies between IUs are created by requirements and capabilities: as
with RPM, an IU A depends on another IU B if A has a requirement that
matches a capability of B.

Furthermore, every IU has an enablement filter, with which it can specify
conditions it needs to be installed, for example a particular OS or architecture.

IUs also have the possibility to set a singleton flag to specify that the system
should not contain another IU with the same identifier (this is somewhat like
the combination of Provides and Conflicts fields in Debian).

And finally, an IU has an update specification, in which it identifies the IUs
that are considered predecessors to this IU.

Capabilities and requirements, as mentioned before, are used to create de-
pendencies between packages. A capability consists of a namespace, a name
(both strings), and a version; a requirement consists of a namespace, a name
and a version range. A requirement matches a capability if the namespace and
name match, and the version of the capability is included in the version range
of the requirement.

In addition to this, a requirement has a filter which can result in its being
disabled under certain conditions (see the enablement filter for IUs mentioned
above).

Finally, requirements have two additional properties: they can be optional
and greedy. An optional requirement, as the name indicates, is a requirement
that does not have to be satisfied for the IU to be installed; the ‘greed” property
indicates whether an IU satisfying the requirement must be actively sought
(greedy) or whether it must just be verified that the requirement has been met
(non-greedy).

In fact, a requirement that is optional and non-greedy need not be installed
at all; it is therefore akin to the Suggests field in the Debian format. If an TU
satisfying the requirement is found, it will be added to the dependencies of the
IU to be installed, but if no such IU is found, the requirement will simply be
considered satisfied and no further action will be taken.

Version comparison algorithm

The version comparison algorithm is like those used for Debian and RPM, but
much simpler. As mentioned above, an Eclipse version number consists of
three integers (major version, minor version and micro-version) and a string.

To compare two version numbers, first the two major versions are com-
pared numerically. If there is a difference, the version number with the highest
major version is the highest version number.

Otherwise, the minor versions are compared in the same way, followed by
the micro-versions.

Finally, the two strings are compared with the standard Java string com-
parison function; the result of this comparison becomes the result of the entire
version number comparison.

2.2 Definitions

In this section, we shall recall the formalisation of ‘package theory” devised in
the EDOS project [ , ]. The intent of this formalisation is
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to reflect the features of both standards presented above, especially those used
to determine package installability. We shall also present several lemmas that
follow easily from these definitions, and that will come in useful when defining
more complicated properties later on.

The atomic entity in this thesis is the package; we shall abstract away from
names and version numbers, since there are no theorems in this thesis that
make use of these properties.

Definition 2.1 (Repository)
A repository (R, D, C) is a triple consisting of a set of packages P, a conflict
relation C' (C' C R x R), and a dependency function D : R — p(p(R)).

Axiom 2.2
For any package p € R, there does not exist a d € D(p) such that p € d.

In other words, a package never depends directly upon itself. This is ex-
plicitly stated in the Debian specification, though not in the RPM specification.
But even so, such a dependency would be trivially fulfilled (in order to install
a package, the package itself is always installed); thus, it is safe to forbid such
dependencies.

Axiom 2.3
The conflict relation is symmetrical and irreflexive.

Thus, a package can never conflict with itself. The Debian method of spe-
cifying a conflict with a virtual package will be treated later on.

As for the dependency function, it associates a set of alternatives with a pack-
age. These alternatives (which are themselves sets of packages) represent dis-
junctive dependencies.

For example, the representation of the distribution from figure 2.1 would
be:

R = {alpha,bravo,charlie,delta,echo,foxtrot}
D(alpha) = {{bravo},{charlie,delta}}
D(bravo) = 0
D(charlie) = )
D(delta) = 0
D(echo) = {{delta,foxtrot}}
D(foxtrot) = 0
C = {(delta,foxtrot), (foxtrot,delta)}
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In this formalisation, we do not consider virtual packages. One can in fact
consider a dependency on a virtual package as a giant disjunction, and a con-
flict with a virtual package as a conflict with any package providing that pack-
age. For example, consider the following Debian repository:

Package: alpha
Version: 1.0
Provides: zulu

Package: bravo
Version: 1.0
Provides: zulu

Package: charlie
Version: 1.0
Depends: zulu

Package: delta
Version: 1.0
Conflicts: zulu

This can be represented as:

R = {alpha,bravo,charlie,delta}
D(alpha) = {
D(bravo) =
D(charlie) = {{alpha,bravo}}
D(delta) = 0
C = {(alpha,delta),(delta,alpha), (bravo,delta),(delta,bravo)}

In essence, the virtual package is replaced by the packages that provide it.
It is possible that a package simultaneously provides and conflicts with the
same virtual package; in Debian semantics, this means that the package wants
to be the only provider of the virtual package that is installed. This mechanism
can be simulated by replacing the provide/conflict specification with a conflict
with every other provider.

2.3 Installability

For a package p to be installable, with respect to a given repository (R, D, C),
it must be possible to find a set I of packages in the repository (the installation;
I C R) that contains the package and fulfil two conditions: all the dependen-
cies in I must be satisfied and no two packages in I are in conflict.

These conditions are called abundance and peace respectively. The combina-
tion of both is referred to as health.
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Definition 2.4 (Abundance)
A set of packages I is abundant (with respect to a repository (R, D, C)) if and
only if:

Vper[Vaepp I Nd # 0]

Note that abundance (and hence installability) is always defined with re-
spect to a given repository: a package may be installable in one repository, but
not in an other one.

Corollary 2.5

If two sets of packages I, and Iy are abundant with respect to a repository
(R,D,C) , their union I, U I is abundant with respect to the repository
(R,D,C).

Definition 2.6 (Peace)
A set of packages I is peaceful (with respect to a repository (R, D, C')) if and only

v(cl,CQ)GC[ﬁ(Cl el Ncy € I)]

Like abundance, peace is always defined with respect to a specific reposit-
ory.

Definition 2.7 (Health)
A set of packages is healthy with respect to a repository (R, D, C) if it is abundant
and peaceful with respect to (R, D, C).

In the following, to make the notation easier to read, we shall omit the re-
pository (R, D, C) when using the above properties, when it is clear from the
context which repository is intended.

With these definitions, it becomes possible to formalise the installability of a
package:

Definition 2.8 (Installability)
A package p is installable in a repository (R, D, C) if and only if there exists a
healthy set I C R such thatp € I.

The set I is also called an installation set of I; note that there are in gen-
eral several possible installation sets for a given package. For example, when
we look at the repository from figure 2.1, possible install sets for alpha are
{alpha, bravo, charlie} and {alpha,bravo,delta}. These are just the min-
imal sets, in fact: {alpha, bravo, charlie,delta,echo} also is a perfectly valid
install set (it is not necessary to install both charlie and delta, nor echo, but
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neither is it forbidden to install extra packages) However, since an install set
has to be peaceful, it is not possible to include both delta and foxtrot in an
install set, because of the conflict between them.

This definition is easy to extend to multiple packages; if several packages
are installable at the same time, they are co-installable:

Definition 2.9 (Co-installability)
A set of packages P is co-installable in a repository (R, D, C) if and only if there
exists a healthy set I C R such that P C 1.

24 Dependencies

A distribution can also be seen as a graph, where the packages are the vertices
and dependencies are the edges.

One can use special nodes to represent disjunctions, to help visualise the
structure of the dependencies, like in figure 2.1, but it is also useful to consider
the graph obtained when forgetting all differences between conjunctive and
disjunctive dependencies, and the graph obtained when using only conjunctive
dependencies. More about distributions when considered as graphs can be
found in chapter 8.

Definition 2.10 (Direct dependency)
A package p depends directly on another package q (p — q) if and only if there is
a d in D(p) such that q € d.

This can be made into a graph (V, E) where V = Rand E = {(p,q) | p — ¢}.
If necessary, a function f : E — {Conjunctive,Disjunctive} can be added
to mark edges as representing conjunctive or disjunctive dependencies.

The interest of such a graph is that it allows one to visualise which packages
can have a potential effect on one another, even though an edge between two
packages does not always indicate that installing one also means installing the
other.

Definition 2.11 (Dependency)
A package p depends on another package q (p — q) if and only if there is a list of
packages xq, T1,. .., Ty suchthatp — xo - x1 — ... = Ty, — q.

Corollary 2.12
The dependency relation is transitive.

In order to keep the difference between conjunctive and disjunctive de-
pendencies, if desired, one can add the following definitions:
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Definition 2.13 (Conjunctive direct dependency)
A package p has a conjunctive direct dependency on a package q (p < q) if and
only if there is a d in D(p) such that d = {q}.

Definition 2.14 (Conjunctive dependency) .
A package p has a conjunctive dependency on a package q (p —
q) if and only if there is a list of packages xo,x1,...,2, such that

C C C C C
pP—>Typ =Ty —> ... > Ty (.

It now becomes possible to define the dependency cone of a package.

Definition 2.15 (Dependency cone)
The dependency cone A g(p) of a package p with respect to a repository (R, D, C)
is the set of packages {q € R |p — ¢}.

Similarly, the dependency cone Agr(P) of a set of packages P is the union
U Ag(p) (or, equivalently, {qg € R | 3pep[p — q]}).
peEP

When it is clear from the context which repository is meant, we shall simply
write A(p) or A(P).

Constructing the dependency cone is equivalent to taking the transitive
closure of the direct dependency relation.

Similar to the dependency cone, there is also the reverse dependency cone of a
package:

Definition 2.16 (Reverse dependency cone)
The reverse dependency cone Ag(p) of a package p with respect to a repository
(R, D, C) is the set of packages {q € R | ¢ — p}.

The importance of the dependency cone comes from the following prop-

erty:

Proposition 2.17
A package p is installable with respect to a repository (R, D, C) if and only if it is
installable with respect to the repository (Agr(p), D, C).

Proof In two directions:

e Suppose that p is installable w.r.t (R, D, C). Then, there is a healthy set
I C Rwith p € I. Now I N Ag(p) also is healthy; it is abundant because
D(p) = D(p)|Ar(p), and it is peaceful, because I N Ar(p) C I, and there
are no conflicting packages in I.
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e Suppose that p is installable w.r.t. (Ag(p), D, C). Since R O Ag(p), one
can re-use the same installation set for (R, D, C).

This means that, when determining the installability of a package (or set
of packages) in a repository, one only has to consider packages that are in its
dependency cone. This is not surprising, as the installability of a package can-
not depend on packages that it has no dependency relation with, but it is of
great importance when building efficient algorithms: many tools which are
being used today to check installability are based on solvers that work on a
propositional logic representation of a repository. The property proven in pro-
position 2.17 shows that the dependency solver only needs the packages in
the dependency cone of the package it is investigating, which saves time and
space.

Another important property is stated in the following proposition: if a
package p has a conjunctive dependency on another, any installation set of p
will contain this package.

Proposition 2.18 .
For two packages p, q such that p — q, any installation set of p includes q.

Proof Since p S5 g, thereisalist zg, z1, ...z, suchthatp = zg = 21 — ... = T, = q.
Follows a proof by induction on k that given an installation set I of p, for
all .,z € I:

e x5 € I: p5 xg,s0 that {zy} € D(p). Since I is abundant, {z¢} N T # 0,
hence x¢ € 1.

oz, €I — Tpy1 € It Ty = Ty, 50 that {z,, 11} € D(x,,). Since I is
abundant, {z,,41} NI # 0, hence z,,1 € I.

Thus, z,, € I. Given that z,, — g, {¢q} € D(z,) and thus q € I.

Again, this property seems trivial, but we shall see in later chapters that it
can be used to optimise several algorithms.
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Package: ocaml

Priority: optional

Section: devel

Installed-Size: 8368

Maintainer: Debian OCaml Maintainers <debian-ocaml-maint@lists.debian.org>
Architecture: i386

Version: 3.10.2-3

Replaces: ocaml-nox (« 3.10.0-12)

Provides: ocaml-3.10.2

Depends: ocaml-base (= 3.10.2-3), ocaml-nox (= 3.10.2-3), libxll-dev
Suggests: tcl8.4-dev, tk8.4-dev

Filename: pool/main/o/ocaml/ocaml_3.10.2-3_1386.deb

Size: 2066194

MD5sum: cd876d71c86a2ed80£052£2994745dd7

SHA1: Oa65cab6fa0fc56c24ad44aalb73b06e0d000bd1

SHA256: 7dcc3186984741313c663b638c68cf9£33028e71154ace3e4f35c4c46£4148bb
Description: ML language implementation with a class-based object system
Objective Caml (OCaml) is an implementation of the ML language, based on
the Caml Light dialect extended with a complete class-based object system
and a powerful module system in the style of Standard ML.

0Caml comprises two compilers. One generates bytecode

which is then interpreted by a C program. This compiler runs quickly,
generates compact code with moderate memory requirements, and is
portable to essentially any 32 or 64 bit Unix platform. Performance of
generated programs is quite good for a bytecoded implementation:
almost twice as fast as Caml Light 0.7. This compiler can be used
either as a standalone, batch-oriented compiler that produces
standalone programs, or as an interactive, toplevel-based system.

The other compiler generates high-performance native code for a number
of processors. Compilation takes longer and generates bigger code, but
the generated programs deliver excellent performance, while retaining
the moderate memory requirements of the bytecode compiler. It is not
available on all arches though.

This package contains everything needed to develop 0Caml applicationmns,
including the graphics libraries.

Homepage: http://caml.inria.fr/

Tag: devel::{compiler,interpreter,lang:ocaml}, implemented-in::ocaml,
role: :meta

Figure 2.3: Metadata for the Debian ocaml package
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provides@ocaml-emacs@dllbigarray.so@dllgraphics.so@dllmldbm.so@dllnums.so@
dllstr.so@dllthreads.so@dllunix.so@dllvmthreads.so@libcamlrun_shared.so@
ocaml [== 3.11.0-2mdv2009.1]Qocaml (x86-32) [== 3.11.0-2mdv2009.1]
Qobsoletes@ocaml-emacs
@requires@bash@libX11l.s0.6@libc.so.6@1libc.so.6(GLIBC-2.0)@
libc.so.6(GLIBC-2.1)@libc.so.6(GLIBC_2.1.2)@libc.so0.6(GLIBC-2.1.3)@
libc.so.6(GLIBC_2.2)@libc.so.6(GLIBC_2.3)@libc.so.6(GLIBC_2.3.2)@
1libdb-4.7.s0@libdl.so0.2@1libdl.so0.2(GLIBC_2.0)@libdl.so0.2(GLIBC_2.1)@
libm.so.6@libm.so.6(GLIBC_2.0)@libncurses.so.50@libpthread.so.0Q
libpthread.so.0(GLIBC_2.0)@libpthread.so.0(GLIBC_2.2)@rt1d (GNU_HASH)
@summary@The Objective Caml compiler and programming environment
0filesize@5868328
Q@info@ocaml-3.11.0-2mdv2009.1.1586@0027475067@Development/Other

Figure 2.4: Synthesis data for ocaml in Mandriva 2010.0
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Strong dependencies and
conflicts

dppovin apovne ovep NG xpelttwy
— HERACLITUS OF EPHESUS

In F/OSS distributions, as well as many other component-based systems |

], the language used to express inter-package relationships is expressive
enough to cover propositional logic. As a consequence, considering only ‘nor-
mal’ dependencies, as expressed in the existing metadata, the existence of a de-
pendency path between two packages does not guarantee that when installing
the first package, the second will always be installed. For example, if p is to be
installed and there exists a dependency path from p to g, it is not true that ¢ is
always needed for p, and in some cases ¢ may even be incompatible with p.

In other terms, the syntactic connectivity notion—this being the existence
of a dependency path as specified in the package metadata—does not tell us
much about the real structure of dependencies and conflicts: it is necessary
to go further and analyse the semantic connectivity—the essence of the de-
pendency relationship: installing one package always implies installing an-
other package as well—among software components induced by the explicit
dependencies in the graph.

In this chapter, we shall explain these notions of semantic connectivity and
propose their basic properties, as well as theorems that can be used to effi-
ciently compute them. The consequences of this notion when considering the
distribution graph will be treated in more detail in chapter 8.

3.1 Strong dependencies

When considering the dependencies of a package, it is interesting to restrict
ourselves to those dependencies that are always installed when the package
itself is installed; this gives us an under-representation of the actual packages
that are going to be installed (there might still be other packages that are part of
a disjunctive dependency, for example), but it does give us the most important
dependencies: those that are absolutely essential.

In the MANCOOSI project, we have called this concept a strong dependency:
in short, a package p depends strongly ¢ if and only if it is impossible to install
p without also installing ¢. The formal definition is as follows:

Definition 3.1 (Strong dependency)

Given a repository o = (R, D, C), a package p strongly depends on a package q
(denoted p =, q) if and only if p is installable in o, and all installation sets of p
in o contain q (If it is clear from the context which repository is meant, we shall
simply note p = q to indicate a strong dependency).
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3. Strong dependencies and conflicts

The set of strong dependencies of a package p, {q | p = ¢}, is denoted as
Scons(p) (the strong consequences of p).

Note that for a package to have strong dependencies, it has to be installable;
without this condition, every non-installable package would have trivial strong
dependencies on every other package.

In figure 3.1, we see that conjunctive dependencies (such as alpha — bravo
and alpha — charlie) translate to identical strong dependencies (with the
proviso that the package must be installable), but that disjunctive dependen-
cies (such as delta — echo or delta — foxtrot) do not.

[ bravo ] foxtrot

echo ]

charlie]

(strong dependencies bold, normal dependencies dotted)

Figure 3.1: Simple example

The more complicated example in figure 3.2, shows that disjunctive de-
pendencies can translate to strong dependencies (in this case, because of the
conflict between alpha and charlie, bravo becomes a strong dependency, as it
is the only way to satisfy the disjunctive dependency and will therefore always
be installed if alpha is installed).

bravo [ charlie

(strong dependencies bold, normal dependencies dotted)

Figure 3.2: More complicated example

This gives us our first corollary: conjunctive dependencies are strong de-
pendencies.

Corollary 3.2
If p — q and p, q are packages in o, and p installable w.r.t. o, then p =, q (a
conjunctive dependency implies a strong dependency).

Another corollary:
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Corollary 3.3
The strong dependency relation is reflexive and transitive.

In chapter 4, we shall discuss an efficient way to compute the strong de-
pendencies within a repository.
The notions of strong and direct dependencies can be used to create graphs:

Definition 3.4 (Dependency graphs)
The strong dependency graph SG(p) of a repository ¢ = (R, D,C) is the
directed graph with the elements of R as its vertices, and as edges all pairs p, q
such that p =, q. (Note that since the strong dependency relation is transitive,
SG(p) is closed under transitivity).

Similarly, the direct dependency graph DG(p) of a repository ¢ =
(R, D, C) is the directed graph with the elements of R as its vertices, and as edges
all pairs p, q such that p — q.

These graphs and their properties will be discussed further in chapter 8.

Definition 3.5 (Impact set)
Given a repository o = (R, D, C), the impact set Is(p, o) of a package p is the
set{qg € R|q=,p}

It now becomes easy to define the “sensitivity” of a package—a measure of
how many other packages can be affected by a change in it.

Definition 3.6 (Sensitivity)

The sensitivity of a package p in g is defined as: |1s(p, 0)| — 1, in other words, the
cardinality of its impact set minus 1. Because the impact set of a package always
contains itself, 1 is subtracted; in this way, a package on which no other package
strongly depends has a sensitivity of 0.

Note that any installation set of a package p must necessarily include all
strong dependencies of p. In other words:

Corollary 3.7
For any installation set I of p, it holds that Scons(p)e C I.

We shall use this observation in chapter 4 to specify an efficient algorithm
for the computation of the strong dependencies present in a distribution.

3.2 Dominators

When analysing a large component base, like Debian’s, which contains about
22 000 components, it is important to be able to identify some measure that
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3. Strong dependencies and conflicts

can be used to easily pinpoint ‘interesting” packages. Sensitivity can be (and
actually is, in our tools) used to order packages, bringing the most sensitive
to the forefront. But sensitivity alone is not enough: one does not want to
spend time going through hundreds of packages with similar sensitivity to
find the one which is really important, so some of the structure of the strong
dependency graph should be conserved.

A first step is to group together only those packages that are related by
strong dependencies, but analysis of the Debian distribution has shown that it
is necessary to go further and distinguish the cases of related components in
the strong dependency graph from the cases of unrelated ones: in the picture
in figure 3.3 !, configuration 3.3c shows quebec that clearly dominates romeo,
as the impact set of romeo is actually the impact set of quebec, plus romeo itself.
In the same vein, in configuration 3.3d, romeo and quebec are equivalent (their
impact sets are equal, and they strongly depend on each other). Conversely, in
configuration 3.3a, romeo and quebec are not immediately related to each other
(other than that their impact sets overlap, but this only means that the same
packages depend on them, and does not indicate any relation between the two
packages), and in configuration 3.3b, quebec strongly depends on romeo, but a
part of the impact of romeo has nothing to do with quebec.

oooooooooo

(a) Coincidence (b) General case (c) Order (d) Equivalence

Figure 3.3: Significant configurations in the strong dependency graph

Yet, the packages romeo and quebec all have essentially the same sensit-
ivity values. To distinguish between these different configurations in strong
dependency graphs, we shall introduce one last notion: dominance.

This notion is known from the domain of flow control graphs; there, a node
p dominates another node ¢ if and only if every path from the start node to ¢
passes through p. Our definition looks different, but we shall show later on
that it is equivalent to the notion of dominance from flow control graphs.

Another way of imagining dominance, which is more pertinent to distribu-
tions, is that p dominates ¢ if and only if the impact set of p explains the impact
set of ¢: the impact set of ¢ consists of the impact set of p, plus some extra
packages explained by the fact that ¢ is a strong dependency of ¢. The formal
definition follows:

Definition 3.8 (Dominance)
Given two packages p and q in a repository o, p strongly dominates q (p =15 @) if
and only if:

1. Is(p,0) 2 (Is(g, 0) \ Scons(p));
2. p=>gq

1Edges implied by transitivity are omitted for the sake of clarity
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Using the transitivity of strong dependencies, it is possible to prove that the
strong domination relation is a partial pre-order:

Lemma 3.9
The dominance relation is a partial pre-order.

Proof o Reflexivity: trivial to check.

o Transitivity: suppose that there are p, ¢, such that p =1; gand q =15 7.
Then, Is(p, 0) 2 (Is(q,0) \ Scons(p)) and Is(q, o) 2 (Is(r,0) \ Scons(q)).
By transitivity of strong dependencies, since p = ¢ = r, it is also the
case that Scons(p) 2 Scons(q) 2 Scons(r). Then, (Is(r, o) \ Scons(q)) \
Scons(p) = Is(r, p) \ Scons(p), and because Is(p, 2)Is(r, o) \ Scons(q), it
is the case that p =, 7.

By transitivity of the strong dependency relation, it is also the case that
p=r.

This pre-order is now able to distinguish among the cases of figure 3.3. In
configuration 3.3¢, it is the case that quebec =1, romeo, but not the converse;
in configuration 3.3d both quebec =;; romeo and romeo =75 quebec (in other
words, romeo and quebec are equivalent with respect to dominance); in config-
urations 3.3a and 3.3b, no dominance relationship can be established between
romeo and quebec.

It is possible, and actually quite useful, to generalise the dominance relation
to also cover the case from configuration 3.3b, where a part of the impact set of
the package romeo is not covered by the impact set of quebec.

If the “uncovered” part is small in respect to the “covered” part, after all,
there is still a strong correlation between the impact sets of both packages. This
concept of relative dominance is defined as follows:

Definition 3.10 (Relative dominance)
Given two packages p and q in a repository o, p strongly dominates q up to z
(p =%, q) if and only if:

[(Is(g,0)\Scons(p))\Is(p,0)| .
. Ts(p.0) *100 = 2

o p strongly depends on q.

It is easy to see that p =1, ¢ is equivalent to p %?s ¢, and one can compute
in a single pass on the repository the values z for each pair of packages such
that p = ¢, leaving for later the choice of a threshold value for .

3.3 Dominators in strong dependency graphs and
control flow graphs

Dominance in a strong dependency graph can be formally put in correspond-
ence with the traditional notion of dominators in control flow graphs [ I
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This does require some manipulation of the graphs, though, because unlike
regular control flow graphs, strong dependency graphs are transitives and do
not have a start node.

The key idea is to build a control flow graph out of a strong dependency
graph, by first performing transitive reduction, and then adding a start node
that connects to every node that does not have any predecessors.

Before starting with the main proof, we introduce some auxiliary lemmas.
To start with, since the strong dependency graph may contain cycles, the trans-
itive reduction is not unique[ ]. However, since the graph is closed under
transitivity, all cycles are actually cliques, and all the vertices of such a cycle
are equivalent to each other in the dominance relation:

Lemma 3.11 (Equivalence)
Ifp= qand q = p, then p =1, qand q =1 p

Proof If p = g and g = p, then Scons(p) = Scons(q), and Is(p, o) = Is(q, o).
Hence, Is(p,0) \ Scons(q) = Is(q,0) \ Scons(p), and therefore p =55 ¢ and
q F1s D-

Lemma 3.12
Ifthereisacyclevy — vy — ... — vy, in SG(p), then {vy,va, ..., v, } isaclique

in SG(o).

Proof To be proven is that for any v; and v; (1 < 4,5 < n), there is an edge
between v; and v;. Since v; and v; are part of a cycle, there is a path from v; to
v;, and because SG(p) is closed under transitivity, there must also be an edge
from v; to v;.

Since all vertices in such cliques are equivalent, one can replace the entire
clique by one vertex that represents its equivalence class in the strong domin-
ance relation; the resulting graph does not contain any cycles. This is slightly
more simple than the traditional approach to the transitive reduction of cyclic
graphs, where one has to choose between the possible ways of expanding back
this representative node into a cycle.

Definition 3.13 (Collapse)
Given a graph G, its collapse G | is defined as the graph obtained by the following
procedure:

e For all maximal cliqgues C = {v1,va,...,v,}, do

— Add a vertex vo to G.
— Replace all edges v — v; with v — ve, and v; — v with ve — .

— Remove all edges ve — vc.
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— Remove all vertices in C from G.

o Perform transitive reduction on the resulting graph.

The function pg : V(G) — V(G ) is defined to map a node in G to its
replacement in G |, (we shall just write  if it is clear from the context with G is
intended). Note that this function is a surjection.

Lemma 3.14
If G is a transitive graph, then G | is acyclic.

Proof Since G is transitive, by lemma 3.12, any cycle in G is a clique.

Now, it becomes possible to prove that all cliques are collapsed in G |.

By definition 3.13 all maximal cliques are replaced by a single node in G |.

Every clique is either a maximal clique itself, or a complete subclique of a
maximal clique, or shares at least one vertex with another maximal clique.

It is obvious that by replacing all maximal cliques, all cliques that corres-
pond to the first two cases are removed.

To conclude the proof, it remains to show that in a transitive graph cliques
that correspond to the third case do not exist.

Suppose there is a maximal clique M, and a clique C that is not maximal, is
not a complete subclique of M, but shares at least one vertex v with M. Since v
is connected to all vertices in both C' and M, by transitivity of G, every vertex
in C must be connected to every vertex in M and vice versa. Hence, M U C'is
a clique as well, which contradicts our assumption that M is a maximal clique.

All this allows to build the flow graph of strong dependencies:

Definition 3.15 (Flow graph)

Given a graph of strong dependencies SG(p), the corresponding flow graph of
strong dependencies F'G(p) is obtained from SG(p) | by adding an extra start
vertex which is connected to every vertex in SG(g) | that does not have any
predecessor.

Lemma 3.16
For every vertex v € FG(p), there exists a path start — v.

Proof Any vertex z € SG(p) | (with ¢(z) = v) must either have no prede-
cessors (and thus, by construction, there must be an edge between start and
v in FG(p)), or have at least one predecessor. Since, by lemma 3.14, SG(p) |
is acyclic, and g is finite, this predecessor cannot be part of an infinite path; at
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some point in the transitive closure of the predecessors of x, a node w must be
encountered that has no predecessors. There is a path start — ¢(w), and a path
¢(w) — v, and thus there is a path start — v.

Lemma 3.17
A vertex p(w) is reachable from a vertex ¢(v) in FG(p) if and only if v =, w.

Proof

(<) Let us assume that v =, w; then it must be proven that there is a path

from ¢(v) to p(w) in FG(p).

Given that v =, w, there is an edge v — w in the graph SG(p). If neither v
nor w are part of a clique in SG(p), there is a path v — w in the transitive
reduction of SG(o) and therefore there is a path from ¢(v) to p(w) in
SG(p) |. This is also true if v and w are part of different cliques; by
construction, the path from v to w is maintained between ¢(v) and p(w)
FG(o).

If v and w are part of the same clique, both v and w are replaced in
SG(p) | by the same node (and thus in FG(p), ¢(v) = ¢(w)). A node
is trivially reachable from itself, so ¢(w) is reachable from ¢(v).

(=) Let us assume that there is a path from v to w in F'G(p); then it must be

proven that there exist v and w’ such that ¢(v') = v, p(w') = w and
v =, w

Since every node in F'G(p) represents a clique in SG(p), this means that
there is a list of cliques C,Cs ... Cy, such that thereisa y; € C1,22,y2 €
Co, ...,z € Cr such thaty; — zo,y2 = T3,...,Yk_1 — Tk-

Since every z,, and y,, are part of a clique, for every n, it is either the case
that x,, = y, or z,, = y,. In both cases it is easy to construct a path that
connects v" and w’ from the edges mentioned in the previous paragraph.

The correspondence between dominators in the strong dependency graph

and dominators in the flow graphs can now be established.

Definition 3.18 (Dominators in a control flow graph [ D
In a directed graph G with a distinguished node start, a node p dominates a node
q if and only if every path from start to q passes through p.

Theorem 3.19
Given a repository o, v =1, w if and only if p(v) dominates p(w) in FG(p).
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Proof

(<) Let us assume that every path from start to ¢(w) in FG(p) passes through
().

1. Since every node is reachable from start, there must be at least one
path from start to ¢(w), which by the hypothesis passes through
©(v). This means that there is a path from ¢(v) to ¢(w), and, by
lemma 3.17, v = w.

2. Let z be a package in I's(w, g) \ Scons(v). Then, by definition, there
is a path z — w, but no path v — z in SG(p), and the same holds
(mutatis mutandis) in FG(p). By lemma 3.16, there must exist a path
start — o(z) in FG(p).

Given that start — ¢(z) — ¢(w) is a pathin FG(p), and v dominates
w by hypothesis, this path must contain (v). Since there is no path
p(v) = ¢(z), ¢(v) must be on the path ¢(z) - ¢(w). Hence, there
is a path from ¢(z) to ¢(v), and this means that z € Is(v, o).

From these two points, it follows that v =15 w.

(=) Let us assume that v = w and Is(v, o) 2 (Is(w, ) \ Scons(v)).

Take any path « from start to ¢(w) in FG(p). Observe first that, since
v = w, the set of vertices {¢(z) € a | x € Scons(v)} is not empty (it
contains at least p(w)).

If the images of all vertices in « are in Scons(v), then « is necessarily of
the form start — p(v) - ¢(w) in FG(p) (all other nodes in o necessarily
are strong dependencies of v, so start can point only to ¢(v)), and the
proof is complete.

Otherwise, consider the vertex ¢(z) € « which is the last one (counting
from start) so that x is not in Scons(v): since it is on a path leading to w,
x € Is(w, p), and since x ¢ Scons(v), by hypothesis we have x € Is(v, p),
so there is a path ¢(z) — ¢(v).

Consider now the vertex ¢(z’) which immediately follows ¢(z) in « (see
figure 3.4): by the definition of x, ' € Scons(v), so either &’ = v or there
isa path p(v) — ¢(2'). Now, if 2’ # v, we would have the vertices x, 2, v
with o(z) = ¢(2'), (x) - (v) and p(v) = p(z') in FG(p); this is not
possible because FG(p) is detransitivised. So, by necessity, ' = v; ¢(v)
belongs to o and the proof is also complete.

We note here that the presence of cycles in SG(p), which are removed in
F'G(p), entails a difference in the resulting order structure.

Observation 3.20

The (flow graph) dominance relation establishes a partial order on the vertices of
FG(p), which is an acyclic graph, while (dependency) dominance only gives a
partial pre-order on SG o), which may contain cycles.
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3. Strong dependencies and conflicts

Figure 3.4: Path from start to w in dominator graph

3.4 Strong conflicts

The same reasoning that led to the introduction of strong dependencies to
obtain from a repository all relevant information that is not easily available
when looking only at the syntactic dependency relation can be reused, mutatis
mutandis, for conflicts.

It is very well possible for two packages that do not have a syntactic conflict
to be non co-installable; for example, if they depend on two packages that have
a syntactic conflict.

A very simple example can be seen in figure 3.5. Obviously, the packages
bravo and charlie are not co-installable, because there is a syntactic conflict
between them.

This conflict also prevents alpha and delta from being installed together:
since alpha depends on bravo and delta on charlie, installing alpha and
delta will also invoke the conflict between bravo and charlie.

#
[ bravo ]—[ charlieJ

Figure 3.5: Simple strong conflict example

A slightly more complex example follows in figure 3.6. Here, none of echo,
alpha and bravo are co-installable with neither delta nor charlie. However,
since golf does not necessarily install delta (it can use foxtrot instead), there
is no strong conflict involving golf.

This leads us to the following definition:

Definition 3.21 (Strong conflict)
Given a repository o, two packages p and q strongly conflict if p and q are both
separately installable in o, but not co-installable.
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alpha } [ delta [foxtrot}
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#
[ bravo }——{ charlie

Figure 3.6: More complex strong conflict example

Similar to strong dependencies, for two packages to strongly conflict, they
must be installable separately—otherwise, any non-installable package would
trivially have a strong conflict with any other package.

One application of the strong conflict relationship is to find packages that
have many strong conflicts: obviously, a good software distribution should try
to avoid packages whose installation prevents the installation of a large set of
other packages.

The set of packages whose installation is prevented by a package p is called
exclusion set of p:

Definition 3.22 (Exclusion set)
The exclusion set of a package p (from a repository (R, D, C)) is the set of pack-
ages {q € R | q strongly conflicts with p}.

We now present some lemmas on strong conflicts that will help us define an
efficient algorithm for the computation of the strong conflicts of a distribution
(see chapter 4).

Lemma 3.23
Given a repository (R, D, C) and two peaceful sets I,I' C R, if the union I U I’
is not peaceful, there exists a conflict (c1, co) such that ¢y € I and cy € I'.

Proof I U I’ is not peaceful, so there is a conflict (¢1,c2) with ¢1,¢0 € TU I,
Since [ is peaceful, it cannot be the case that both ¢; and c; are in I; similarly,
because I’ is peaceful, it cannot be the case that both ¢; and ¢; are in I. The
only possibilities are that ¢; € I and ¢; € I, or that ¢; € I’ and ¢3 € I. In fact,
because the conflict relation is symmetrical, both these cases are equivalent.

Lemma 3.24
Given a repository o, if p € A(p), then there is a path from p to p’ in the depend-
ency graph of .
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3. Strong dependencies and conflicts

Proof A(p) is closed under the repeated application of the direct dependency
function, so there must be a list py,ps,...,pn, such that p — p1, p1 — p2, ...,
pn, — p'. Therefore, p — p1 — p2 — ... = p, — p' is a path in the dependency
graph of o.

These two lemmas can be used to prove a theorem about the origin of strong
conflicts:

Theorem 3.25
If two packages p and q strongly conflict, there must be an explicit conflict (c1, c2)
such that p — ¢y and q — ca.

Proof Since p and g are separately installable in (R, D, C), by proposition 2.17,
they also are installable in Ar(p) and Ar(q) respectively. Thus, there must be
healthy sets I, C Ag(p) and I; € Agr(q), such thatp € I, and q € I,.

However, p and ¢ are not co-installable, so I, U I; cannot be healthy. Hence,
1, U I, must either be not abundant or not peaceful. Since per corollary 2.5, the
union of two abundant sets is abundant, I, U I, is necessarily not peaceful.

Then, per lemma 3.23, there exists a conflict (c1, ¢2) such that ¢; € I, and
¢y € I,. Since I, € Ag(p), by lemma 3.24, there is a dependency path from p to
¢1,; similarly, since I, C Ag(q), there is a dependency path from g to cs.

We shall use this theorem in chapter 4 to propose an efficient algorithm to
compute all strong conflicts in a distribution.

Aside from making an efficient algorithm possible, there is another advant-
age to be drawn from this theorem: the conflict (¢q,c2) can be seen as an ex-
planation for the strong conflict between p and ¢—in at least one instance, the
conflict (¢1, ¢2) causes p and ¢ not to be installable together.

This can be exploited by grouping the strong conflicts in a distribution by
‘root cause’. An example should make things clearer:

2362 ppmtofb-0.32-0.1:

2362 (python-2.5.2-3 <-> ppmtofb-0.32-0.1)

* atomix-2.14.0-1 (conjunctive)

- conflict: python-2.5.2-3 - ppmtofb-0.32-0.1

- dependency: gconf2-2.22.0-1 -> python-2.5.2-3

- dependency: libgnome2-common-2.20.1.1-1 -> gconf2-2.22.0-1

- dependency: libgnome2-0-2.20.1.1-1 -> libgnome2-common-2.20.1.1-1
- dependency: atomix-2.14.0-1 -> libgnome2-0-2.20.1.1-1

¢...)

This is the actual output of the tool we have written that generates the
list of strong conflicts of a distribution. The first line tells us that the pack-
age ppmtofb-0.32-0.1 has an exclusion set of 2362 packages; in other words,
that it is not co-installable with about 10 percent of the distribution.

The second line tells us that all these 2362 strong conflicts have the syntactic
conflict between python-2.5.2-3 and ppmtofb-0.32.0.1 as their root cause.
After this second line we can see the first of the 2362 packages that have a
strong conflict with ppmtofb, to wit atomix-2.14.0-1.
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The dependency path between atomix and ppmtofb is shown after that;
the addition (conjunctive) tells us that this dependency path contains only
conjunctive dependencies.

This information can help us locate the problem fairly quickly. Apparently,
there is a conflict between python and ppmtofb which causes this large exclu-
sion set. This conflict must be in the metadata of either python or ppmtofb.

When we look at the actual metadata, we find that ppmtofb conflicts with
every version of python that is superior to 2.4. Since the versions of python
currently included in Debian are all superior or equal to 2.5, this means that
ppmtofb cannot be co-installed with python (or any package that needs python).
This explains the large exclusion set.

3.4.1 Triangle conflicts

Considering figure 3.7, we notice that the conflict between bravo and charlie

is a particular one.

Figure 3.7: Example of a triangle conflict

If bravo and charlie have no other predecessors than alpha, this conflict
that cannot engender any strong conflicts. Informally, the idea behind this the-
orem is as follows: suppose that there are two packages, delta and echo, of
which one depends on bravo and the other on charlie. However, since both
bravo and charlie have no other predecessors than alpha, both delta and
echo must depend on alpha, and hence on both bravo and charlie. This
means that delta and echo are co-installable, because it is not necessary to
install both bravo and charlie to satisfy all dependencies.

This notion, which will be proven in detail in the remainder of this section,
allows us to optimise the algorithm to compute the strong dependencies in a
distribution, because all triangle conflicts can be discounted. Practical experi-
mentation shows that there are not very many triangle conflicts, but they show
up often. As an example, in Debian, the debconf package, which is depended
on by a large proportion of the distribution, is the ‘apex’ of a triangle conflict
with debconf-english and debconf-1i18n. Discounting this conflict consider-
ably reduces the search space (for more information, see chapter 4).

Definition 3.26 (Triangle conflict)
A conflict (¢1, ¢2) is a triangle conflict if and only if there exists a package p such
that:

e thereisad € D(p) such that {c1,ca} C d;

49



3. Strong dependencies and conflicts

Figure 3.8: Example of a degenerate triangle conflict

e there is no other p’ such that p’ — c; or p’ — ca.

This definition allows for a “degenerate” triangle conflict, as shown in fig-
ure 3.8. In this figure, the conjunctive dependency from alpha to charlie ob-
soletes the disjunctive dependency from alpha to bravo and charlie; since
charlie is always going to be installed, the disjunctive dependency is always
satisfied and hence superfluous (at least with respect to installability).

Such degenerate triangle conflicts can hinder in the proof, since the assump-
tion is that in a triangle conflict, one can choose either side of the conflict to
satisfy the dependency—something that is obviously not true in case of a de-
generate triangle conflict.

Definition 3.27 (Removal of superfluous dependencies)
Given a repository (R, D, C), for all p € R, remove all dependencies d € D(p)
that satisfy the following condition:

EldleD(p) [d C dl}

Observe that doing this does not hinder installability: no new conflicts are
introduced, so a peaceful distribution remains peaceful; furthermore, any al-
ternative d that is removed has a strict subset d’ that is not removed— and any
package that satisfies d’ also satisfies d.

Now the proof of our main theorem can begin, which notes that packages
that contain only triangle conflicts in their dependency cones are always co-
installable:

Theorem 3.28
Given:

o A repository o = (R, D,C), from which superfluous dependencies have
been removed as per definition 3.27;

o A set of packages a1, aq,...,a, € R, such that there does there does not
exist any cand i (1 < i < n) such that (c,a;) € C;
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o Forevery isuchthat 1 < i <mn,aset A; C R such that A; is healthy and
a; € A; (in other words, a; is installable in R, using A; as the installation
set);

e For all packages c1,co € U, A(a;) with (c1,¢2) € C, (c1,¢2) is a tri-
angle conflict.

Then ay, aq, . .., a, are co-installable with respect to o.

Proof Let us define a function K (A, B), where A and B are sets of packages,
as a list of packages from A that are involved in a conflict spanning A and B;
K(A,B) = {p € A|3,el(p.q) € C])
Furthermore, let us define a function oy, such that:

o a; =4
(] ak(l <k< TL) = (ak,1 UAk) \K(ak,hAk)

It is easy to see that since a; € A;, {a1,az,...,a,} C .
Now, a, is abundant. Proof by induction:

e A, is abundant, so a; is abundant.

e Supposing that a;_; is abundant, then by corollary 2.5, ak — 1 U Ay is
abundant. Therefore, for any package p € a,_1 U A, and any d € D(p),
there mustbe an « € dN(ax—1UAL). Now, either z € K (a1, Ax), or not.
In the first case, there is a conflict (z,y), with both z and y in a1 U Ayg.
Now, since x € K(ay—_1, Ai), it is not in ay, but d can still be satisfied by
using y (since p,  and y form a triangle conflict). Hence, «, is abundant.
In the second case, trivially, z € ay.

o, is also peaceful. Proof by induction:
o A, is peaceful, so oy is peaceful.

e Supposing that a;,_; is peaceful, then by lemma 3.23, a;,_1 U Ay, is peace-
ful if there are no conflicts (¢, c2) with ¢; € ag—1 and ¢ € A. When we
look at the construction of «;, we see that for any such conflict, one of its
packages from a1 U Ay, is removed, so that oy, is indeed peaceful.
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Algorithms

Much better to sit quietly in a room and read the sheets, with nothing between yourself and the
mind of the composer but a scribble of ink. Having it played by sweaty fat men and people with
hair in their ears and spit dribbling out of the end of their oboe. . . well, the idea made him
shudder.

— TERRY PRATCHETT, Soul Music

In the previous chapters, we have presented a model of F/OSS distributions
and their properties. Such a model is useful as a basis for reasoning about the
properties of distributions (as we have already done in chapter 3), but it can
also be used as a starting point for distribution analysis.

Given the scale of distributions, such analyses must necessarily be highly
automated. Furthermore, their implementation must be efficient, since the ana-
lyses will be run on large distributions, preferably on a daily basis in order to
follow the evolution of distributions over time.

Therefore, in this chapter, we shall explain the algorithms used to imple-
ment the notions presented in chapters 2 and 3. Frequent reference will be
made to these chapters, as the theorems proposed there are used for optimisa-
tion of the algorithms.

We shall also discuss the theoretical complexity of the algorithms.

In chapter 7, we shall discuss the practical applicability of these algorithms
(for example in terms of running time), and talk in more detail about some
more interesting results found in their output.

4.1 Installability

As seen in definition 2.8, for a package to be installable, all its dependencies
(and their dependencies, and the dependencies of those dependencies, etc.)
must be satisfied (i.e. the install set must be abundant, cf. definition 2.4), and
there must not be any conflicts between the packages used to satisfy the de-
pendencies (i.e. the install set must be peaceful, cf. definition 2.6).

An efficient way to check these conditions is by making use of a SAT solver;
the installability problem translates easily into a SAT specification, as we shall
show now.

In order to translate a dependency D(p) = {{z},2%,... 20}, {=},.. .},. ..}
into SAT, the following clauses can be used:

—pVaivaiv... vzl
—pVaivaiv... vz}

A contflict (p, q) is specified as follows:
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4. Algorithms

Note that it is perfectly possible to satisfy all these clauses by simply assum-
ing —p. This is quite natural: installing no packages at all means that there are
no conflicts. Only when one actually specifies a package that must necessarily
be installed can a problem occur.

Let us look at an example: the repository from figure 2.1. Its SAT encoding
would look like this:

—alpha V bravo

—alpha V charlie V delta
—echo V delta V foxtrot
—delta V —foxtrot

In order to solve the installability problem for the package alpha, for ex-
ample, it suffices to add the single clause alpha to the SAT encoding (to force
the variable alpha to be set to true), and then run a SAT solver.

Conversely, any SAT problem can also be translated into into a package

installation problem. Given a SAT problem of n clauses Cy,Cs, ..., C,, such
that C; = ¢} V ¢y V... V¢, , where any ¢ is either a variable v or the negation
of a variable 7, where {v1, v, ..., vs} is the set of possible variables.

Then, let us define the following repository (R, D, C'):

R={P,Pc,,Pc,,...,Pc,, Py, Poys---, Po,, Por, Pz, - .., P}

D(P) = {{PC1}ﬂ{PC2}7"'7{PC'n}7{PUUPW}W{vaPE}v"'7{ka7PvT-,}}
D(Po,) ={{Puy, Py, Py, }}

b: {(Pvppﬁ)’(PWaPm)a"'}

Now, our SAT problem is solvable if and only if the package P is installable.
This brings us to the following proposition:

Proposition 4.1
The package installability problem is NP-hard.

Proof As seen above, a package installability problem can be translated (in
polynomial time) into a SAT problem and vice versa. Thus, the package in-
stallability problem is equivalent in complexity to the SAT problem, which is
NP-hard.

In practice, luckily, the installability problems remain tractable, since the
number of conflicts and alternatives are limited with respect to the main distri-
bution (see chapter 7 for more information).

In the MANCOOSI project, much work has been done to optimise SAT solv-
ers for package installation problems.

4.2 Strong dependencies

The algorithm to check whether there is a strong dependency between two
packages p and ¢ (that is, P = () is a slight variation on the SAT encoding
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described in the previous section. It consists in checking the satisfiability of the
following formula:

pA—gASAT(R)

In this formula, SAT(R) denotes the formula obtained by the translation
into SAT clauses of the dependencies and conflicts of the repository R.

The SAT problem shown above is solvable if and only if it is possible to
install p in R without also installing ¢. If this is not the case, by necessity p
strongly depends on q.

Note that this problem is the complement of an NP-complete problem (the
crux is to find out whether a SAT formula is not solvable). This means that the
problem, theoretically, is exponential in complexity (it is part of the co-NP-hard
class).

In practice, like the installability problem, the problems remain tractable;
at least if one just wants to check whether a package strongly depends on an-
other. However, if one wants to draw the strong dependency graph of an entire
distribution, using this algorithm for every pair of packages in a distribution R
would entail doing O(|R|?) SAT checks. With distributions numbering in the
tens of thousands of packages, this is not feasible in any practical time.

However, using corollary 3.7, it becomes possible to dramatically reduce
the number of SAT checks: because any installation set is a superset of the set
of strong dependencies of a package, it suffices to find an install set of that
package, and then we only need to check the members of this install set. This
idea is implemented in algorithm 3.

Algorithm 3 Computation of strong dependencies, version 1

forp € Rdo
S(p) + 0
I <+ install(p)
fori € I do
if strongdep(p, i) then
S(p) « Sp) Vi
end if
end for
end for
return S

This is especially efficient if we use an algorithm that finds minimal install
sets, because then the number of invocations of the SAT solver remains as small
as possible.

The algorithm can be optimised further by using corollary 3.2. One can
compute the conjunctive dependencies of p very quickly (by traversing the syn-
tactic dependency graph); since by corollary 3.2, these are strong dependencies
as well, they do not need to be checked by the SAT solver. The only depend-
encies that remain to be checked are the members of the install set that are not
conjunctive dependencies.

The complete algorithm that uses this corollary is algorithm 4.

Let us present some examples of how this works. Consider the example
distribution from figure 4.1:

Dotting the arrows that are not strong dependencies produces the graph as
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Algorithm 4 Computation of strong dependencies, version 2

forp € Rdo
S(p) < 0
I + install(p)
fori e Ido
if conjunctive_dep(p, i) then
S(p) < S(p) Ui
else if strongdep(p, i) then
S(p) < S(p) Ui
end if
end for
end for
return S

alpha

Figure 4.1: Example distribution
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Figure 4.2: Example distribution with strong dependencies

1 y "
‘ bravo ] [ echo ] [foxtrot]
\ t -
/ I
1 LRY |
/I \\ \\ ! # . : .
y A4 : S A
[charlie delta ]:[ golf ] hotel }
|
|
|
I
1

Figure 4.3: Example distribution with transitive strong dependencies

shown in figure 4.2. Note that delta is not a strong dependency of echo, even
though they are conjunctive dependencies: because echo depends on hotel,
but also conflicts with it, echo is not installable, and therefore it does not have
any strong dependencies.

And then finally, after adding the transitive strong dependencies (as dashed
lines), we get figure 4.3.

In order to generate the transitive graph, the transitive edges can be added
on the fly during the computation, using the algorithm suggested in [ ]
(this algorithm actually computes both the transitive reduction and the trans-
itive closure, but we have removed the transitive reduction part). This is al-
gorithm 5.

The add_edge algorithm adds an edge (v, v’) to the graph, plus any transit-
ive edges that might be needed. This works as shown in algorithm 6.

Using these optimisations, the algorithm runs quite quickly, even on large
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Algorithm 5 Computation of transitive strong dependency graph

Require:
e S = (Vs, Eg) is the syntactic dependency graph
e fs: F; — {Conjunctive,Disjunctive} is its annotation function.

V Vg
E«0
forv € Vg do
for v’ € succg(v) do
if fs(v,v') = Conjunctive then
add_edge(v,v’)
else if strongdep(v, v’) then
add_edge(v,v’)
end if
end for
end for
return (V, FE)

Algorithm 6 Adding an edge to a transitive graph

Require:
e V, E is a transitive graph that does not contain any edges (p, p)
e (i,7)is an edge to be added to this graph

E— EU(i,j)
mark j red
for k € i Upred(i) do
if (k,j) € E then
mark j red
while there are red nodes do
let [ be a red node
unmark [
if k& = [ then
E — FU (k)
for m € succ(l) do
if (k,m) ¢ E then
mark m red
end if
end for
end if
end while
end if
end for
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distribution. More information about this can be found in chapter 7.

4.3 Dominators

The classic dominator algorithm exactly follows the definition of strong dom-
inators (definition 3.8); it looks at the successors of all vertexes and checks if
there is a dominance relationship. If this is the case, it adds the appropriate
edge to the graph. This classic algorithm is presented as algorithm 7.

Algorithm 7 Classic algorithm for dominance

Require: R is a repository
Require: (V, E) is the (transitive) strong dependency graph for R
Vp +V
ED < (Z)
forpc Vdo
for ¢ € succ(p) do
if Is(p, R) D Is(q, R) \ Scons(p) then
Ep +— Ep U (p, q)
end if
end for
end for

This algorithm can be adjusted for relative dominators; it suffices to slightly
adjust the central test, as shown in algorithm 8:

Algorithm 8 Classic algorithm for relative dominance

Require: R is a repository
Require: (V, E) is the (transitive) strong dependency graph for R
Require: f is the fraction of relative dominance allowed

Vp <V

Ep + 0

forp € V do

for g € succ(p) do
fu  [UIs(@R\Scons(p)\Is(p,B)|

[Is(p,R)|
if fv < f then
Ep + Ep U (p,q)
end if
end for
end for

We have shown in theorem 3.19 that the notion of dominance in flow graphs
is equivalent to the notion of dominance proposed in this thesis. There is an al-
gorithm of complexity O(|V |+ |E|+|E|log |V]) ([ ]) for finding dominators
in flow graphs.

This algorithm only works on a non-transitive graph, however, and the the-
oretical complexity of computing the transitive reduction of a graph is O(|V|?).
We will see in chapter 7 that due to the specific characteristics of the strong
dependency graph, the transitive reduction in actual cases can be done very
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quickly. In consequence, the Tarjan algorithm is much faster than the ‘stand-
ard” algorithm presented above.

Another disadvantage of the Tarjan algorithm is that it cannot be used to
compute relative dominance graphs.

The Tarjan algorithm is algorithm 9.

Algorithm 9 Fast Tarjan algorithm for dominance

Require: R is a repository
Require: (V, E) is the strong dependency graph for R
(V, E) + transitive_reduction((V, E))
(V, E) « cycle_reduction((V, E))
V < VU {start}
forv e Vdo
if pred(v) = () then
E + EU{(start,v)}
end if
end for
lengauer_tarjan(V, E)

4.4 Strong conflicts

Similarly to strong dependencies, checking whether two packages p and ¢
strongly conflict can easily be done with a SAT check:

pAgASAT(R)

If there is no solution for this formula, p and ¢ strongly conflict (and other-
wise they do not).

Like for the strong dependency problem, this problem is the complement
of a SAT problem; therefore it is in the co-NP-complete class and potentially
exponential in complexity. Again, however, if one were to use this to compute
every strong conflict for an entire distribution, this would result in our doing
O(|R|?) SAT checks.

To avoid this, we propose an algorithm that uses theorem 3.25. This the-
orem indicates that if packages p and ¢ strongly conflict, there must be a con-
flict (c1, c2) such that there is a dependency path from p to ¢; and from ¢ to
Co.

This means that the search space can be reduced drastically, because all
pairs of packages for which the aforementioned condition does not hold can
be safely ignored.

The proposed implementation turns this around by starting from the ex-
plicit conflicts (c1, ¢2) in a distribution and then looking at all the elements of
A(er) x A(cz)t. By theorem 3.25, every such element could be a pair of pack-
ages that strongly conflict with each other.

Even though the number of explicit conflicts is normally limited (in the
latest Debian stable distribution, for example, which contains some 22 000

1See definition 2.16.
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packages, there are only about 1 000 explicit conflicts), their reverse depend-
ency cones can be quite large; therefore, even though the search space is re-
duced by about two thirds, the number of candidates remains significant.
Consider a candidate (p, ¢). Here, p and ¢ are packages, and there exists a
conflict (c1, ¢2) such that p — ¢; and ¢ — co. This in itself does not guarantee

that p and ¢ strongly conflict; but if p S c1and ¢ S ¢z, then any installation of
p and ¢ would necessarily include both ¢; and ¢, and hence not be peaceful.

This means that every candidate that is connected to its root conflict solely
by conjunctive dependencies is automatically a strong conflict and thus does
not require a SAT check. When we look at the results for Debian stable, as an
example, 80 percent of the strong conflicts found satisfy this condition.

The search space can be reduced even further by using theorem 3.28. This
theorem shows that packages that have only triangle conflicts in their depend-
ency cones are co-installable. It follows that triangle conflicts can be discoun-
ted for the generation of strong conflict candidates: for two packages to be in
strong conflict, there must be at least one non-triangle conflict in one of their
dependency cones. Discounting triangle conflicts will therefore not change our
result.

We will see in chapter 7 that these measures speed up the algorithm consid-
erably: even though there are very few triangle conflicts, some of the triangle
conflicts that are there have very large reverse dependency cones.

The complete algorithm is shown as algorithm 10.

The algorithm to find conjunctive dependencies is in fact slightly more op-
timised than shown in the figure above: instead of computing the reverse de-
pendency cone and then checking if there is a conjunctive path, these two op-
erations are combined: while constructing the reverse dependency cone, the
algorithm keeps track of which elements of the cone have a conjunctive de-
pendency path and which do not; elements which have a conjunctive depend-
ency path are immediately added to the list of strong dependencies, whereas
other elements are added to the list of pairs that require a SAT check.

Here is the algorithm that constructs the reverse dependency cone in this
way. There are two arguments: P the set of packages of which the cone has to
be computed, and V' the set of packages that have already been visited (initially
empty). The algorithm, algorithm 11, returns a pair of sets: first the conjunctive
predecessors, then the disjunctive predecessors.

The idea here is that the algorithm continually takes any conjunctive pre-
decessor of a package that it has not yet visited. This will result in a set C of all
predecessors that have conjunctive dependency paths; after this, the algorithm
takes the reverse dependency cone of C to get all disjunctive predecessors as
well. Since the dependency graph may contain cycles, we must subtract C
from the set of disjunctive predecessors to avoid duplicates.

Let us note in passing that this algorithm terminates; packages are never
visited twice, so since the repository is finite, at some point there are either no
more predecessors to be found, or every package in the repository has been
visited.
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Algorithm 10 Computation of strong conflicts

Require: (R, D,(C) is a distribution
remove superfluous dependencies {see definition 3.27 in chapter 3}
S < 0 {set of strong conflicts}
P « 0 {set of possible strong conflicts}
for (c1,c2) € C do
if not triangle(c;, cz) then
for p1E ZR(Cl) do

for p; € Ag(c2) do
if p1 S c1 and po 5 co then
S+ SU(p1,p2)
else
if not (p2, p1) € C then {strong dependencies are symmetric}
P« PU(p1,p2)
end if
end if
end for
end for
end if
end for
for (p1,p2) € P do
if co-installable(py, p2) then
S+ SuU (pl,pg)
end if
end for
return S

Algorithm 11 Computation of the dependency cone

C + 0 {conjunctive predecessors}
while P # () do
take a p from P
if p &€ V then
C + CU{z cpred(p) | = 5 p}
V< Vu{p}
P+~ PUC
end if
end while
return (C,Ar(C)\ C)
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Tools

For a list of all the ways technology has failed to improve the quality of life, please press three.
— ALICE KAHN

In this chapter, we shall give an overview of the different tools that have
been developed over the course of the EDOS and MANCOOSI projects.

5.1 distcheck

This tool, developed by Jerome Vouillon at the very start of the EDOS project,
is used to check for non-installable packages in a distribution. The SAT solver
at its heart (a re-implementation of Mini-SAT) is used for determining package
(co-)installability in every tool mentioned hereafter.

Simply checking for non-installable packages is worthwhile in itself, but
distcheck does more: it also provides an explanation as to why a package is not
installable. As we have seen in definition 2.8 from chapter 2, for a package to
be installable there has to be an abundant and peaceful subset of the repository
that contains it. The possible reasons for a package not being installable are
thus exactly two: there not being an abundant set (i.e. there is a dependency
that cannot be satisfied), or there not being a peaceful set (i.e. a package de-
pends on two conflicting packages, and this conflict cannot be avoided). For
example:

python-gnuradio (= 3.0.4-2): FAILED
The following constraints cannot be satisfied:
python-gnuradio (= 3.0.4-2) depends on python (« 2.5) {NOT AVAILABLE}

python-wxgtk2.4 (= 2.4.5.1.1+b1): FAILED

The following constraints cannot be satisfied:

python-wxgtk2.4 (= 2.4.5.1.1+b1) depends on python-wxversion
{python-wxversion (= 2.6.3.2.2-2)}

python-wxgtk2.4 (= 2.4.5.1.1+b1) conflicts with python-wxversion (=
2.6.3.2.2-2)

The first package, python-gnuradio, is an example of a package that cannot
be installed because of a non-satisfiable dependency; the second, python-wxgtk2.4
cannot be installed because it simultaneously depends on and conflicts with the
same package.

5.2 dose

The dose library (Distribution Object Storage Engine) is the library used by all
EDOS tools. It provides an API for storage, manipulation and reporting of all
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types of package distribution algorithms.

There have been two main versions of dose: version 2, written originally by
Berke Durak and extended fairly heavily by myself, and version 3, written by
Pietro Abate, in cooperation with myself.

The basic make-up of both versions is the same: a package store, with an
API to manipulate packages and distributions, and to execute some of the al-
gorithms. The implementation, however, is quite different.

5.2.1 dose2

The main goal in designing dose, version 2, was to have a library for storing
multiple snapshots of a distribution, from different dates, in such a way that
they would take a minimum of space, and be quickly accessible. The reason
for these requirements was that dose was intended as a back-end for the anla
web interface (described below).

The obvious way of doing this is using an SQL database. This solution
was not used, however, mainly because of performance issues (the state of
the OCaml libraries for SQL databases was, at that time, not up to the task of
handling databases with years” worth of distributions).

Instead, a “dosebase’ consists of an index in dbm format; this index contains
a record of every package, the distribution it is part of, and its lifetime, i.e. the
dates on which it was present in the distribution. Furthermore, it contains
pointers to separate files that contain the actual package metadata.

In order to be able to quickly respond to queries, this ‘dosebase” is only used
as a persistent storage; all package metadata is loaded into memory upon start-
ing a dose2 application. This provides for great speed (once the initial loading
is done, responses to even the most complicated queries are instantaneous),
but obviously takes up a large amount of memory.

In practice, though, it is possible to work with dose archives containing
several years” worth of distributions; memory usage in this case will be in the
order of 1 Gb.

In memory, the package metadata is stored in a simple table (the same struc-
ture is used for all distribution formats; all packages in one instance of dose2
must be of the same format), without translation, except for the version num-
bers. In order to avoid having to call the complicated version comparison al-
gorithm, every version number is translated into a pair of integers (one integer
for the epoch and version proper, and one integer for the release). In this way,
instead of having to parse the entire version number, two integer comparisons
suffice.

It is not possible to use a single integer, since, as seen in chapter 2, the RPM
version order is not a complete order (for example, a version 1.27 is equal to
1.27-1and 1.27-2, but 1.27-1 is inferior to 1.27-2).

Dose2 supports the Debian, RPM and NetBSD pkgsrc package formats.

On top of this index is a layer that deals with retrieving packages by name,
date or distribution.

Furthermore, there are functions to deal with dependencies, dependency
cones, installability (the SAT solver from distcheck is integrated into dose2),
strong dependencies and conflicts.

Figure 5.1 gives an overview of the structure of the dose2 library.
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Taking the modules from top to bottom, the rapids module is the module
that takes care of storage in memory, with indexes for rapid referral. The stor-
age is filled using the waterway module, which uses napkin as a generic pack-
age data structure, and ocamlrpm and ocamldeb as package-specific parsers.
The algorithms are mostly in the packetology module; lifetime deals with
dates and times. And finally, the satsolver module is used by packetology
to solve installability problems.

5.2.2 dose3

Dose3 is a complete rewrite of dose2. It has the same functionality, but there are
several differences in implementation. When using dose2, it turned out that
the functions for archiving distributions over time were used less frequently
than the functions for considering just one universe of packages and running
algorithms on those.

Furthermore, the CUDF format [ ] had been developed as a distribution-
agnostic way of storing package metadata.

With this experience in mind, it was decided to reimplement dose2, using
CUDF as a universal data structure. This means that when merging a distribu-
tion, it is first translated into CUDF, after which the different algorithms can be
executed.

The dose2 data structures also have this property of universality with re-
gard to the distribution format, but they are much more complicated.

For some algorithms, mostly the time-intensive ones such as the generation
of the strong dependency or strong conflict graph, there is an extra transla-
tion involved: every package is given an ID and dependencies and conflicts
are translated into lists of (or lists of lists of) these IDs. This allows to reduce
memory usage and increase speed for these algorithms.

5.3 Ceve

Ceve (the name is supposed to have meant something, but exactly what has
been lost in the mists of time) was written by me, as a generalised package
format parser and translator.

Its first function was to translate package repositories into SAT specifica-
tions, in order to be able to compare different, external solvers, and to create a
dependency graph out of a repository using the EGraph format, a derivative
of the GraphML XML format.

Later on, the possibility to create databases out of repositories has been ad-
ded: both SQL databases and the Dose2 format have been supported. Graphs
can now also be output in the Dot format.

It is also possible to manipulate the data between parsing and output, for
example to output only the dependency cone of a certain package, or to elimin-
ate virtual packages (by replacing them in dependencies with the list of pack-
ages that provide them).

Ceve has now been rewritten using Dose3.
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5.4 Pkglab

Pkglab is a front-end to the DQL (Distribution Query Language). This lan-
guage is a domain-specific query language for distributions; the pkglab tool,
therefore, can execute and report all sorts of queries on distributions and pack-
ages.

In order to explain the workings of the pkglab tool, we shall start with an
example session. First, at the start of the program, one ‘merges’ a package
repository, which means that the contents of that repository are loaded into
our dose2 backend in memory.

pkglab $Revision: 5129 $ by the MANCOOSI Project

> #merge "deb:/home/users/boender/data/debian/history/20100129-debian-5.0.4-Packages"
Merging "deb:/home/users/boender/data/debian/history/20100129-debian-5.0.4-Packages" ...
Completing conflicts... * 100.0%

>

The pkglab tool knows a number of directives, preceded by a hash sign.
These directives are not part of the DQL, and have to do with its general oper-
ations, such as input (merging), output, and exiting.

Now that a repository has been merged, one can use a DQL function to
show the list of packages known to pkglab:

> packages
{ zzuf’0.12-1, libzorp2-dev’3.0.8-0.5, zoph’0.7.1-1lenny1@all, zope3’3.3.1-7,
zope3-sandbox’3.3.1-7@all, ... }

A package name consists of a unit (zzuf, for example), an apostrophe, a
version number (0.12-1), and optionally, an at sign and an architecture all.
It is possible to have a default architecture; if the architecture of a package is
equal to the default architecture, it will not be mentioned (as is the case for the
zzuf’0.12-1 package above).

Obviously, the number of packages is fairly large. We can use a DQL func-
tion to compute how large exactly:

> count (packages)
22299

A simple operation is to find out whether there are any broken packages in
the repository. For this, there is DQL’s check function:

> check(packages, packages)

Conflicts and dependencies... * 100.0%
Solving * 100.0%

<diagnosis:closure size 22299, 4 failures>

The check function takes two arguments: the first is the set of packages
to check, the second is the set of available packages. We see from the result
that there are 4 packages for which the installation has failed. If one wants to
obtain more information, the result of the check function must be assigned to
a variable and the show directive used:
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> $d <- check(packages, packages)

Conflicts and dependencies... * 100.0%

Solving * 100.0%

> #show $d

Diagnosis:

Conflicts: 2014

Disjunctions: 96357

Dependencies: 101920

Failures (total 4):

Package libpils-dev’2.1.3-6lenny4@all cannot be installed:
libpils-dev’2.1.3-6lenny4@all depends on one of:

- heartbeat-dev’2.1.3-61lenny4@i386
libpils-dev’2.1.3-6lenny4@all and heartbeat-dev’2.1.3-6lenny4@i386 conflict

The tool outputs a diagnosis for every one of the failed packages, but only
one has been displayed here. The diagnosis is the same as that of distcheck,
but displayed slightly differently.

Other functions in the same vein are check_together, which checks for
the co-installability of packages (the check function checks all elements of its
first argument separately, whereas the check_together function checks them
together); and install, which returns an installation set instead of a diagnosis.

Note also the use of variables: the name of a variable is always prefixed
with a dollar sign; and the <- operator is used for assignment.

There are also functions to show information about specific packages:

> depends(a7xpg’0.11.dfsgl-4)
[ [[. a7xpg-data (= ’0.11.dfsgl-4) .]11; [[. libc6 (>= °2.7-1) .11; [[. libgccl (>=

tion:

’1:4.1.1-21) .11; [[. libgli-mesa-glx .];[. libgll .]11; [[. libsdl-mixer1.2 (>= ’1.2.6) .11;
[[. libsdll.2debian (>= °1.2.10-1) .11; [[. zliblg .11 1]

> conflict-list(1liba52-0.7.4-dev’0.7.4-11)

[[. a52dec .];[. ab2dec-dev .];[. liba52-dev .]]

The first command shows us the dependency specification of the a7xpg
package. There is a dependency on a7xpg-data, with a specific version, a de-
pendency on 1ibc6, a dependency on libgccl; then, an alternative depend-
ency on either 1ibgli-mesa-glx or libgll, and so forth. The same goes for
the conflict list.

The objects enclosed by [. and .] are version specifications. We can find
out which packages conform to these specifications by using the select func-

> select([. ab2dec .])

{ 1iba52-0.7.4-dev’0.7.4-11 }

> select([. mail-transport-agent .])

xmail’1.25-4, ssmtp’2.62-3, sendmail-bin’8.14.3-5, postfix’2.5.5-1.1,

nullmailer’1:1.4-1.1, msmtp-mta’1.4.15-1@all, masqmail’0.2.21-4, exim4-daemon-light’4.69-9,

exim4-daemon-heavy’4.69-9, esmtp-run’0.6.0-1@all, courier-mta’0.60.0-2, citadel-mta’7.37-8

The select command returns all known packages that satisfy the given
version specification; if multiple repositories are loaded, and one only wants
packages from a specific repository, the intersection operator can be used.

If a dose2 dosebase has been loaded, it is possible that there are multiple
archives available. This can be checked using the archives function:
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> archives

{ /debian/testing/main/i386, Jdebian/testing/contrib/i386, J%debian/unstable/main/i386,
jdebian/unstable/non-free/i386, Y%debian/stable/main/i386, J%debian/stable/contrib/i386,
Jdebian/unstable/contrib/i386, Jdebian/testing/non-free/i386, %debian/stable/non-free/i386 }
> count (contents(%debian/testing/main/i386,2008-01-01))

20747

> count (contents (%debian/testing/main/i386,2008-09-15))

22638

Here, we can see the difference between a plain select and a select with
an intersection:

> count(select([. mail-transport-agent .]))

91

> count(select([. mail-transport-agent .]) & contents(/debian/testing/main/i386,2008-01-01))
12

It is possible to use higher-order functions such as map and filter; cf. this
example, which shows us the number of packages that have no direct depend-
encies:

> count (filter(packages,$a -> depends($a) = [1))
9679

It is also possible to use regular expressions to select packages textually,
such as all packages that contain the text ocaml:

> packages /ocaml/
{ libcore-ocaml-dev’0.5.0-5, libnumerix-ocaml’0.22-4+b2, libsqlite-ocaml-dev’0.3.5.arch.4-8,
libocamlnet-ocaml’2.2.9-2+bl, libequeue-gtk2-ocaml-dev’2.2.9-3@all, ... }

This is but a short overview of the possibilities of the pkglab tool: using
these and other functions, it is possible to express complicated queries. As an
example, pkglab has been used to determine the correctness of an automatic
dependency generation algorithm, where it was used to check if there was no
difference in installable packages between a repository generated with the new
algorithm and a normal repository [ 1.
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Formalisation

When one day an expedition was sent. . . they discovered only. . . a solitary old man who claimed
repeatedly that nothing was true, though he was later discovered to be lying.

— DoucGLAS ADAMS, The Hitchhiker’s Guide to the Galaxy

In this chapter, we shall introduce a formalisation of the theorems presented
in the previous chapters, together with their proofs. For this, we have used the
Coq proof assistant.

Obviously, such a formalisation allows us to control the correctness of our
proofs, and even results in additions to the theory; as an example, the notion
of a degenerate triangle conflict as shown in figure 3.6 in chapter 3 was coined
when formalising the proof of theorem 3.28.

The ultimate goal of this formalisation is to be able to verify the correctness
of the algorithms proposed in chapter 4. This is discussed in more detail in the
‘Future work’ paragraph in the conclusion.

6.1 Repository

As seen in chapter 2, a repository is a tuple that contains a set of packages, a set
of conflicts and a dependency function. For the purposes of the formalisation,
we have separated these three parts, as not every definition needs all three
parts of the tuple.

Since repositories are always finite, we have used Coq’s FSet library, which
is a library for the representation of finite sets. There are other possibilities for
sets, such as a representation of linked lists (ListSet), and a representation
using characteristic functions (Ensemble).

The advantages of the FSet library over these other implementations is that
it has a larger library of basic theorems, which saves quite a lot of time. Fur-
thermore, the Ensemble library can also deal with infinite sets; this only com-
plicates matters for our purposes, since repositories are always finite.

Let us start with defining a package type:
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Module Type PACKAGE.
Parameter t: Set.

Parameter eq: t — t — Prop.
Parameter [t: t — t — Prop.

Axiom eq_refl: V x: t, eq x x.
Axiomeq_sym:Vxy:t,eqxy — eqyx.
Axiomeq_trans:Vxyz: t,eqxy —+eqyz— eqxz.
Axiom [t_trans:Vxyz: t, Itxy— ltyz— ltxz.
Axiom [t_not_eq:Vxy: t, It xy — —eqxy.
Parameter compare: V x y: t, Compare It eq x y.
Parameter eq_dec: Vxy,{eqxy}+{—-eqxy}.

End PACKAGE.

Declare Module PAckAGE: PACKAGE.

Declare Module PACKAGESET : FSETINTERFACE.S with Module E := PACKAGE.
Export PackageSet.

Note that in the definition of the PACKAGE type, equivalence and compar-
ison relations with their attendant axioms must be specified. What exactly is a
package is not of interest here; just the fact that there exists an equality relation
on it, as well as a comparison.

After the definition of PACKAGE, the definition of a conflict follows:

Module CONFLICT := PAIRORDEREDT'YPE PACKAGE PACKAGE.
Declare Module CONFLICTSET : FSETINTERFACE.S with Module E := CONFLICT.

Axiom conflicts_sym: ¥ (C: ConflictSet.t) (p q: Package.t), ConflictSet.In (p, q) C — Con-
flictSet.In (g, p) C.

Axiom conflicts_irrefl: ¥/ (C: ConflictSet.t) (p: Package.t), = ConflictSet.In (p, p) C.

In other words, a conflict is a pair of packages (implemented in FSet by the
PairOrderedType module), with the two axioms that correspond to axiom 2.3
from chapter 2.

6.2 Dependencies

With packages and conflicts defined, the next step is a module which deals
with the basic definitions. This module will contain all necessary definitions
and lemmas needed for the definition of the package cone (definition 2.15).
The reason we have put this in a separate module is to parametrise the method
of obtaining the cone, so that theorems about different types of cones can be
specified: the ‘usual’ cone, a cone of conjunctive dependencies only, and even
the reverse cone (the set of packages on which a given package depends). How
this is done in practice will be shown in section 6.5.

First we shall define a variable R, the repository, and D (here called Dependencies)
for the dependency function:
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Section dep_cone_stuff.

Variable Dependencies: Package.t — list PackageSet.t.

q.
Axiom no_self_dep: ¥ p: Package.t, ~3d, Inp d A List.In d (Dependencies p).

Variable dep_filter: PackageSet.t — bool.

Add Morphism dep_filter: dep_filter _m.

Axiom Dep_compat_eq: ¥V p q: Package.t, Package.eq p q — Dependencies p = Dependencies

Axiom dep_filter_eq: ¥ p q: PackageSet.t, PackageSet.eq p g — dep_filter p = dep_filter q.

Apart from the dependency function, we are adding a second function:
dep_filter. This will be used later on in order to prove propositions about
conjunctive dependencies; the filter is used to exclude specific dependencies,
such as dependencies that have more than one alternative. How exactly this
works will become clear later on.

The axioms specify that equal packages have equal dependencies, that the
dependency filter function has the same result for equal packages, and that a
package cannot depend directly on itself (which conforms to axiom 2.2).

The dep_filter function is specified as a a morphism: this does not add
any new information, but enables it to be used more easily. More specific-
ally, Coq now can automatically rewrite something like dep_filter(a) into
dep_filter(b), if it has already been established that a = b.

Here follows the definition of dependency_function. This function maps a
package to all of its direct dependencies within the repository R (note that the
alternatives in the co-domain of the Dependencies function are not specified as
being within the repository; this is intentional, as it is very well possible for a
package to have dependencies on packages outside the repository).

Definition dependency_function (p: Package.t): PackageSet.t :=
(List.fold _left (fun alt acc =
union alt acc
) (List.filter dep_filter (Dependencies p)) empty).

And then the definition of a direct dependency (see also definition 2.10).

Definition direct_dependency (p: Package.t) (q: Package.t) :=
3d: PackageSet.t, In qd N\
List.In d (List filter dep_filter (List.map (inter R) (Dependencies p))).

Add Morphism direct_dependency with signature Package.eq = Package.eq ==> iff
as direct_dependency _m.

Here we can see the usage of the dependency filter: ¢ is a dependency of
p if and only if there is a d in the dependencies of p that contains ¢, and if the
filter function returns true for d U R.

Additionally, we have added another morphism, for direct_dependency.
Since Coq’s standard equality is not used here, it is necessary to specify a signa-
ture: stated here is that for any p,p’, g and ¢/, if p = p’ and ¢ = ¢’ (according to
the equality defined in the Package module above), then if p — ¢, then p’ — ¢'.

Now, let us introduce lemmas for the important properties of these func-
tions. This way, it is easier to use them in proofs without having to unroll their
definitions every time.
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Lemma direct_dependency_depfunc: V (p: Package.t) (q: Package.t),
direct_dependency p g — In q (dependency_function p).

Lemma depfunc_direct_dependency: V (p: Package.t) (§: Package.t),
In g (dependency_function p) — direct_dependency p g.

With this, it is possible to formalise the notion of a “dependency path”; a
list of packages connected by dependencies.

Function dependency_path (p q: Package.t) (I: list Package.t)
{ structl}: Prop :=
match /with
| nil = direct_dependency p q
| h::t = direct_dependency p I A dependency_path 11 g ¢
end.

In fact, the definition above is not the only way to formalise the notion of a
dependency path: it can also be defined ‘in reverse”:

Function rev_dependency_path (p q: Package.t)
(I: list (Package.t)) { struct I }: Prop :=
match [ with
| nil = direct_dependency p q
| h::it = rev_dependency_path p h t A direct_dependency 1 g
end.

Having the two notions can be useful; sometimes a proof is easier to com-
plete using the ‘normal’ notion, and sometimes the reverse notion is simpler in
use. It remains, obviously, necessary to prove that they are equivalent.

For this, we shall first introduce the definition of ‘dependency’: if there is a
dependency path between two packages p and ¢, according to definition 2.11,
p depends on ¢g. Formalised, this becomes:

Definition dependency (p q: Package.t): Prop :=
3 I: list (Package.t), dependency_path p g I.

Definition rev_dependency (p g: Package.t): Prop :=
3 I: list (Package.t), rev_dependency_path p q I.

The notion of equivalence then becomes:

Lemma dep_rev_dep: V p g,
rev_dependency p g <> dependency p g.

In order to prove this equivalence, two lemmas about combining two de-
pendency paths into one are needed:

Lemma dp_split: Vpgrll,
dependency_path p g I — dependency_path g I” — dependency_path p r (I++(q::l)).
Lemma rev_dp_split: Vpgrll,

(I'++(q:1)).

rev_dependency_path p g I — rev_dependency_path q r I” — rev_dependency_path p r

Using this, it becomes easy to prove that the dependency relation intro-
duced above is transitive:
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Lemma dependency_trans:
V (p q r: Package.t), dependency p ¢ — dependency q ¥ — dependency p r.

For the dependency cone, later on, a definition of a dependency path that
consists only of packages from a specific repository will be needed:

Function dependency_path_in (R: PackageSet.t) (p q: Package.t)
(I: list (Package.t)) { struct I }: Prop :=
match [ with
| nil = Inp R A Ing R A direct_dependency p g
| hz:t = Inp R A direct_dependency p I A dependency_path_in Rh gt
end.

Definition dependency_in (R: PackageSet.t) (p q: Package.t): Prop :=
3 I: list (Package.t), dependency_path_inRp g .

with some attendant lemmas:

Lemma dp_R:VRp g/,
dependency_path_inRpgl— IngR.

Lemma dp_in_dp: V R p q I, dependency_path_in Rp g1 — dependency_pathp g I.

Another function that is useful is the equivalent of dependency_function
for a set, i.e. given a set P, the union of P and all dependency_function(p)
for p € P. (this is the function that, if iterated repeatedly until obtention of a
fixpoint, results in the dependency cone of a set of packages). The function is
easy to define using FSet’s fold function:

Definition dependencies (P: PackageSet.t): PackageSet.t :=
fold (fun p acc =
union (dependency_function p) acc
)P P.

Like the earlier dependency function, its properties follow immediately
after its definition; in this case, the fact that for any element ¢ € dependencies(P),
there is a package p € P such that p — ¢ and vice versa.

Lemma dependencies_dependency:
V (q: Package.t) (P: PackageSet.t),
In g (dependencies P) — In g P V Exists (fun p = direct_dependency p q) P.

Lemma dependency_dependencies:
V (q: Package.t) (P: PackageSet.t),
Exists (fun p = direct_dependency p q) P — In q (dependencies P).

This function is monotone with respect to the subset relation:

Lemma dependencies_monotone: V (P: PackageSet.t),
P [<] dependencies P.

And furthermore, it preserves the subset relation.

encies Q.

Lemma dependencies_subset: V (P Q: PackageSet.t), P [<] Q — dependencies P [<] depend-
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6.3 The dependency cone

The definition of the dependency cone merits its own section, mostly because
it is the part that presented the most difficulties.

As seen in chapter 2, the definition in itself is easy enough (see defini-
tion 2.15); the transitive closure of the dependency relationship.

In terms of the Coq definitions seen so far, the cone can be defined as a re-
petitive application of the dependencies function until obtention of a fixpoint.
This is guaranteed to terminate, since the dependencies function always is a
subset of the repository, which is finite.

In a Coq recursive function specification, the measure keyword can be used
to indicate a natural number that strictly decreases with every iteration of the
function. In this case, that is the difference between the number of packages in
the repository and the number of packages in the cone.

It is for this reason that it is not possible to just take the cone of any set, but
only of a subset of a repository: in order to guarantee termination, an upper
limit for the size of the cone is needed, which is the size of the repository.

Function cone (P: {x : PackageSet.t | x [<] R})
{ measure (fun x = cardinal R - cardinal (projl_sig P)) P }: PackageSet.t :=
if equal (inter R (dependencies (projl_sig P))) (projl_sig P)
then (projl_sig P)
else
cone (exist (fun v = v [<] R) (inter R (dependencies (projl_sig P)))
(fun a = inter_subset_1 (s:=R) (s:=dependencies (proj1_sig P)) (a:=a))).

This definition looks rather complicated, but upon closer inspection, it’s
actually fairly straightforward, once one gets past the syntax.

First the argument specification. The function cone takes an argument P,
which has as its type something that is a PackageSet, with an extra specifica-
tion that this package set is a subset of R. Any element of this type thus has to
contain both a package set, and a proof that this package set is a subset of R, as
we will see later on.

The function itself is a fixpoint declaration; one specifies a function and
proves that after a finite number of applications, it provides a result. The
measure keyword discussed before can be used for this.

The measure used here is | R| — |dependencies(P)|. This, by the way, is the
reason why the type of P is not simply Set; if there is no upper limit to the
size of P, there is no way to give a descending measure. Coq automatically
generates the resulting proof obligations.

Now the function itself can be defined (the function that is going to be ap-
plied repeatedly until a fixpoint is reached; Coq automatically renames this to
cone_F). Two cases are distinguished: if R U dependencies(P) = P, P is re-
turned (the fixpoint is reached); otherwise, the cone of R Udependencies(P) is
returned.

The reason for specifying this using exist is again the specification type:
the parameter of cone is not a simple package set, but a package set that is a
subset of R. The exist function creates this specification type: first a pattern (in
this case “v is a subset of R”), then the package set, and then a proof term for the
fact that the package set complies with the pattern (using the inter_subset_1
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lemma, which specifies that Vss4ja € sNs’ — a € s]). Owing to the syn-
tactic specificities of Cogq, it is necessary to specify the parameters s, s’ and a
explicitly.

The resulting function cone_F is rather complicated, so in order to simplify
consequent proofs, let us immediately define its properties: if a package ¢ is an
element of the dependency cone of p, there must be a dependency path from p
to ¢ and vice versa.

Lemma dep_cone: V (P: PackageSet.t | P [<] R) g,

Exists (fun p = dependency_in R p q) (projl_sig P) — In g (cone P).
Lemma cone_dep: V (P: PackageSet.t | P [<] R) g,

In q (cone P) —

In g (projl_sig P) V Exists (fun p = dependency_in R p q) (projl_sig P).

For these two proofs, a few lemmas are needed. These lemmas use the iter
and cone_F functions; the cone_F function is the body of the cone function
(the if statement from its definition), and the iter function is used to apply
this function a certain number of times.

The definitions are fairly straightforward, even though there are some ex-
tra arguments that should not hinder comprehension (they are necessary for
dealing with the specification type of P):

Lemma iter_cone_monotone: V P n,
iter ({x: t | x [<] R} — t) n cone_F (fun v = projl_sig v) P [<]
iter ({x: t | x [<] R} — t) (S n) cone_F (fun v = projl_sig v) P.

Lemma iter_cone_expanding:
VPknk<n-—
iter ({x | x [<] R} — t) k cone_F (fun v = projl_sig v) P [<]
iter ({x | x [<] R} — t) n cone_F (fun v = projl_sig v) P.
Lemma dep_path_iter: VPpgn,

Inp (projl_sig P) — dependency_path_inRpgn —
In g (iter ({x | x [<] R} — t) (S (length 1)) cone_F (fun v = projl_sig v) P).

Now, after the definitions of the characteristic functions of cone, some some
simple properties can be established; the cone is always a subset of the repos-
itory, the cone of a set P of packages always is a superset of P, and if P C Q,
then cone(P) C cone(Q).

Lemma cone_subset: V (P: PackageSet.t | P [<] R),
(projl_sig P) [<] cone P.

Lemma cone_subset_R: V (P: PackageSet.t | P [<] R),
cone P [<] R.

Lemma cone_of _subset_is_subset: V (P1: PackageSet.t | P1 [<] R)
(P2: PackageSet.t | P2 [<] R),
(projl_sig P1) [<] (projl_sig P2) — cone P1 [<] cone P2.

This concludes the module PkgCone.
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6.4 Repository properties

Now that the preliminaries are out of the way, we can start formalising some
proofs from chapters 2 and 3.
To start with, let us introduce the notion of a conjunctive dependency:

Definition is_conjunctive (a: PackageSet.t) :=
3 p: Package.t, a [=] (singleton p).

Lemma conjunctive_dec: V a: PackageSet.t,
{is_conjunctive a } + { = is_conjunctive a }.

Definition is_conjunctive_bool (a: PackageSet.t): bool :=
if conjunctive_dec a then true else false.

Then, the notions of abundance and peace are specified, as per definitions 2.4
and 2.6 from chapter 2. First, a package p is satisfied (with respect to a set ) if
all its dependencies are satisfied in S:

Definition satisfied_pkg (S: PackageSet.t) (p: Package.t): Prop :=
V d: PackageSet.t, List.In d (Dependencies p) —
3 p’: Package.t, Inp’ (inter S d).
Definition satisfied_pkg_bool (S: PackageSet.t) (p: Package.t): bool :=
forallb (fun d = exists_ (fun p” = true) (inter S d))
(Dependencies p).

Lemma spb_ok: V (S: PackageSet.t) (p: Package.t),
satisfied_pkg S p <> Is_true (satisfied_pkg_bool S p).

Note that there is also boolean version of the definition; this can come in
useful in order to use this formalisation when proving properties of actual pro-
grams; this is discussed in more detail in the “Future work” section of the con-
clusion. There is also a proof that shows that both versions are equivalent.

The fact that the satisfied_pkg predicate is decidable follows easily from
the fact that its boolean version must necessarily be true or false:

Lemma satisfied_dec: V (S: PackageSet.t) (p: Package.t),
decidable (satisfied_pkg S p).

A few useful lemmas about satisfaction:

Lemma satisfied_unionl:
V (S S”: PackageSet.t) (p: Package.t),
satisfied_pkg S p — satisfied_pkg (union S S”) p.
Lemma satisfied_union2:
V (S S”: PackageSet.t) (p: Package.t),
satisfied_pkg S” p — satisfied_pkg (union S S’) p.
Lemma satisfied_subset:
V (S S": PackageSet.t) (p: Package.t),
S [<] S’ — satisfied_pkg S p — satisfied_pkg S’ p.

Now, a set is abundant if all of its elements are satisfied. Additionally, there
is a proof of the fact that abundance is a morphism (abundance is preserved
under set equality), and that it is decidable.
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Definition abundant (S: PackageSet.t): Prop :=
PackageSet.For_all (satisfied_pkg S) S.

Add Morphism abundant with signature eq = iff as abundant_m.

Lemma abundant_dec: V S: PackageSet.t,
decidable (abundant S).

The formalisation of corollary 2.5:

Lemma abundant_union:
V (S S’: PackageSet.t),
abundant S — abundant S” — abundant (PackageSet.union S S’).

For the formalisation of peace, the concept of being concerned is introduced;
a conflict (¢, c2) is concerned with a set S if and only if both ¢; and ¢, are
in S. Concernedness, too, is preserved under equality (both package and set
equality), and it has a boolean version as well.

Definition concerned (S: PackageSet.t) (c: Package.t X Package.t): Prop :=
match ¢ with
| (p,q) = (InpS)A(Inq )

end.

cerned_m.

Definition concerned_bool (S: PackageSet.t) (c: Package.t x Package.t): bool :=
match c with
| (v, ) = PackageSet.mem p S && PackageSet.mem g S
end.

Lemma concerned_dec:
V (S: PackageSet.t) (c: Package.t x Package.t),
decidable (concerned S ¢).

Lemma concerned_ok: V (S: PackageSet.t) (c: Package.t x Package.t),
concerned S ¢ < Is_true (concerned_bool S ¢).

Add Morphism concerned with signature PackageSet.eq = Conflict.eq ==> iff as con-

Now it becomes easy to define peace as the absence of concerned conflicts:

Definition peaceful (S: PackageSet.t) (C: ConflictSet.t): Prop :=
ConflictSet.For_all (fun c = — (concerned S c)) C.

Add Morphism peaceful with signature eq = ConflictSet.eq ==> iff as peaceful _m.

Lemma peaceful_dec:
V (S: PackageSet.t) (C: ConflictSet.t),
decidable (peaceful S C).

Any subset of a peaceful set is also peaceful:

Lemma peaceful_subset: V (51 S2: PackageSet.t) (C: ConflictSet.t),
51 [<£] S2 — peaceful S2 C — peaceful S1 C.

As we can see, things start to converge towards the formalisation and proof
of theorem 3.25. One more lemma: if a set is not peaceful, there is a specific
conflict to be ‘blamed’ for that:
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Lemma blame_conflict: V (I: PackageSet.t) (C: ConflictSet.t),
- peaceful I C —
ConflictSet.Exists (fun ¢ = concerned I ¢) C.

With this, lemma 3.23 can be proved, which is one of the substantive in-
gredients for the proof of theorem 3.25.

Lemma not_peaceful _conflict:
V (S S": PackageSet.t) (C: ConflictSet.t),
(peaceful S C) — (peaceful S’ C) — — (peaceful (union S S”) C) —
Exists (fun p = Exists (fun g = ConflictSet.In (p, q) C) S') S.

After this, healthiness can be defined as a combination of abundance and
peace. Obviously, healthiness is preserved under equality and decidable.

Definition healthy (S: PackageSet.t) (C: ConflictSet.t): Prop =
abundant S A peaceful S C.

Add Morphism healthy with signature eq = ConflictSet.eq ==> iff as healthy_m.

Lemma healthy_dec: V (S: PackageSet.t) (C: ConflictSet.t),
decidable (healthy S C).

An empty set is healthy.

Lemma empty_healthy: V (S: PackageSet.t) (C: ConflictSet.t),
Empty S — healthy S C.

6.5 Installability

This section is about the definition of installability and co-installability; see also
definitions 2.8 and 2.9 from chapter 2.

Definition installable (R: PackageSet.t) (C: ConflictSet.t) (p: Package.t) :=
3 I: PackageSet.t, [[<]R A InpI A healthy I C.

Definition is_install_set (p: Package.t) (R: PackageSet.t) (C: ConflictSet.t) (I: Package-
Set.t) :=
Inp I ANI[<]R A healthy I C.

Definition co-installable (R: PackageSet.t) (C: ConflictSet.t) (S: PackageSet.t) :=
3 I: PackageSet.t, [ [] R A S [<]I A healthy I C.

Fairly trivial: if the package p is installable, then the set {p} is co-installable.

Lemma inst_coinst: V (R: PackageSet.t) (C: ConflictSet.t) (p: Package.t),
installable R C p <+ co_installable R C (singleton p).

Let us start by defining the difference between normal dependencies (i.e. all
specified dependencies) and conjunctive dependencies (single dependencies).
This is done by using the dependency filter mentioned previously: for normal
dependencies, the filter that always returns true (thus selecting all depend-
encies) is used, and for conjunctive dependencies, the is_conjunctive_bool
function defined before is used.
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Definition direct_normal_dependency (p: Package.t) (g: Package.t) :=
direct_dependency Dependencies (fun x = true) p q.

Definition direct_conjunctive_dependency (p: Package.t) (q: Package.t) :=
direct_dependency Dependencies is_conjunctive_bool p g.

If there is a conjunctive direct dependency, there is a normal direct depend-
ency as well:

Lemma conj_dep_is_dep:
V p g, direct_conjunctive_dependency p § — direct_normal_dependency p 4.

The same applies for dependency paths:

Definition normal_dependency_path (p q: Package.t)
(I: list (Package.t)): Prop :=
dependency_path Dependencies (fun a = true) p g L.
Definition conjunctive_dependency_path (p g: Package.t)
(I: list (Package.t)): Prop :=
dependency_path Dependencies is_conjunctive_bool p g .
Lemma conj_dp_is_dp: Vp g1,
conjunctive_dependency_path p g | — normal_dependency_path p g I.

And finally, the definitions of the normal and conjunctive dependency rela-
tionship, as well as the ‘normal” dependency cone.

Definition normal_dependency (p g: Package.t): Prop :=
dependency Dependencies (fun a = true) p q.

Definition conjunctive_dependency (R: PackageSet.t) (p q: Package.t): Prop :=
dependency Dependencies is_conjunctive_bool p g.

Definition normal_cone (R: PackageSet.t) (S: PackageSet.t | S [<] R):=
cone Dependencies (fun a = true) R S.

All this can be combined into the following theorem: if a package p is in-
stallable with respect to a repository R, it is also installable with respect to
ARr(p): this is proposition 2.17.

Lemma installable_in_cone:

V (R: PackageSet.t) (C: ConflictSet.t) (P: PackageSet.t | P [<] R),

co-installable R C (projl_sig P) —

co-installable (normal_cone R (exist (fun v = v [<] R) (projl_sig P) (proj2_sig P))) C
(projl_sig P).

Next in line is proposition 2.18; any conjunctive dependency of p is always
part of the install set of p:

Lemma conjunctive_always_installed:
VRCpql,
conjunctive_dependency Rp g —
is_install_setp RC I —
Ingl

In the same vein, a package that conjunctively depends on a non-installable
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package is not-installable itself:

Lemma not_installable_conjunctive: V (R: PackageSet.t) (C: ConflictSet.t)
(p q: Package.t),
- installable R C g — conjunctive_dependency R p 4 — — installable R C p.

6.6 Strong dependencies and conflicts

Now, strong dependencies are formalised as per definition 3.1.

Definition strong_dep (R: PackageSet.t) (C: ConflictSet.t) (p: Package.t) (q: Package.t)

(3 N: PackageSet.t, is_install_set p R C N) A
V I: PackageSet.t,I [<] R — healthy ICA Inpl — Inql.

The strong dependency relationship is transitive:

Lemma strong_dep_trans:
V (R: PackageSet.t) (C: ConflictSet.t) (p q r: Package.t),
strong_dep R C p g A strong_dep R C qr — strong