
HAL Id: tel-00699260
https://theses.hal.science/tel-00699260v1

Submitted on 20 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions à la génération de tests à base de
contraintes
Arnaud Gotlieb

To cite this version:
Arnaud Gotlieb. Contributions à la génération de tests à base de contraintes. Génie logiciel [cs.SE].
Université Européenne de Bretagne, 2011. �tel-00699260�

https://theses.hal.science/tel-00699260v1
https://hal.archives-ouvertes.fr

ANNÉE 2011

Habilitation à diriger des recherches / UNIVERSITÉ DE RENNES 1

sous le sceau de l’Université Européenne de Bretagne

Mention : Informatique

Présentée par

Arnaud GOTLIEB

préparée à l’unité de recherche UMR 6074 IRISA

Institut de Recherche en Informatique et Systèmes Aléatoires
Composante Universitaire : ISTIC

Contributions à la
génération de tests
à base de contraintes

Habilitation soutenue à Rennes
le 12 Décembre 2011

devant le jury composé de :

Claude JARD
Professeur à ENS Rennes, France/Président
Yves LEDRU
Professeur à l’Université de Grenoble, France /
Rapporteur
Bruno LEGEARD
Professeur à l’Université de Besancon, France /
Rapporteur
Pascal VAN HENTENRYCK
Professor at Brown University, Providence, USA/
Rapporteur
Patrice GODEFROID
Principal Research Scientist at Microsoft Research,
Richmond, USA/Examinateur
Thomas GENET
Professeur à l’Université de Rennes/Examinateur
Thomas JENSEN
Directeur de Recherche à l’INRIA/Examinateur

Remerciements

3

Contents

Remerciements 3

Introduction 7
0.1 Contexte . 7
0.2 Chronologie des contributions . 10
0.3 Organisation du mémoire . 13

I Fondements 15

1 Les origines 17
Automatic test data generation using constraint solving techniques
A. Gotlieb, B. Botella, and M. Rueher. 18

2 Test logiciel à base de contraintes 25
A CLP framework for computing structural test data

A. Gotlieb, B. Botella, and M. Rueher 26

3 Contraintes et abstractions 37
EUCLIDE: A constraint-based testing platform for critical c programs

A. Gotlieb . 40
An abstract interpretation based combinator for modeling while loops in

constraint programming
T. Denmat, A. Gotlieb, and M. Ducasse 46
Constraint solving on modular integers

A. Gotlieb, M. Leconte, and B. Marre 55

II Développements 65

4 Oracles 67
Exploiting symmetries to test programs

A. Gotlieb . 68

5

5 Modélisation à contraintes des programmes avec pointeurs 75
Goal-oriented test data generation for pointer programs

A. Gotlieb, T. Denmat, and B. Botella 76
Modelling dynamic memory management in constraint-based testing

F. Charreteur, B. Botella, and A. Gotlieb 91

6 Modélisation à contraintes des constructions orientées-objet 105
Constraint-based test input generation for java bytecode

F. Charreteur and A. Gotlieb . 106

7 Modélisation à contraintes des calculs flottants 113
Symbolic execution of floating-point computations

B. Botella, A. Gotlieb, and C. Michel 115

III Applications 139

8 Génération de tests pour Java Card 141
Using chrs to generate test cases for the JCVM

S.D. Gouraud and A. Gotlieb . 142
A semi-empirical model of test quality in Symmetric Testing: Application

to testing Java Card APIs
A. Gotlieb and P. Bernard . 151

9 Système d’alerte et anti-collision (TCAS) 157
TCAS software verification using constraint programming

A. Gotlieb . 157

IV Bilan et Perspectives 169

10 Bilan 171

11 Perspectives 173

V Annexe : Curriculum Vitae 175

Bibliographie 205

Introduction

0.1 Contexte

En termes de fondements, de développements et d’applications, la Programma-
tion par Contraintes et le Test Logiciel sont deux domaines scientifiques qui ont
a priori peu de choses en commun. En bref, la Programmation par Contraintes est
un paradigme permettant la résolution de problèmes combinatoires difficiles is-
sus par exemple d’applications de planification ou d’ordonnancement de tâches,
tandis que le Test Logiciel est un ensemble de techniques, méthodes et processus
visant à évaluer la correction des programmes informatiques. Et pourtant, depuis
une vingtaine d’années maintenant, plusieurs ponts solides ont été édifiés en-
tre ces deux domaines. La terminologie “Test à Base de Contraintes” a ainsi été
forgée pour décrire ce nouveau champ de recherche et d’applications. Ce mémoire
tente de faire une première synthèse sur les avancées en Test à Base de Contraintes
(CBT), en mettant en exergue nos contributions dans ce domaine. Nous démarrons
notre cheminement au travers ce champ de recherche par une introduction des ap-
proches existantes pour la vérification des logiciels critiques, qui constituent la
motivation principale de notre travail.

Dans les systèmes critiques, les logiciels sont considérés comme le maillon
faible de la chaîne. En effet, ceux-ci sont souvent développés selon des méthodes
artisanales qui reposent plus sur le savoir-faire et l’expertise des ingénieurs, que
sur des méthodologies de développement garantissant la production de logiciels
sûrs. Malgré cela, les logiciels produits sont de grande qualité et généralement très
sûrs, mais aussi vulnérables car leur processus de développement n’est pas insen-
sible aux erreurs humaines. De plus, la complexité et la taille des logiciels critiques,
en particulier dans le domaine de l’embarqué, n’ont cessé de croître ces dernières
années, ce qui impose dorénavant la mise au point de techniques automatisées
pour leur vérification.

Plusieurs techniques, reposant sur des fondements théoriques solides, ont été
proposés pour la vérification des logiciels critiques. On distingue généralement
les techniques de preuve, qu’elles soient basées sur l’utilisation d’assistants inter-
actifs ou de démonstrateurs automatiques, les techniques de “model-checking” et
d’analyse statique, et les techniques de test logiciel. Ce qui distingue ces dernières
par rapport aux autres, est qu’elles réclament l’exécution du programme à véri-
fier, ce qui leurs confèrent plusieurs avantages indiscutables. Tout d’abord, le test

7

permet la vérification du code binaire réellement exécuté et non pas seulement du
code source. Ainsi, c’est bien le programme utilisé de manière opérationnelle qui
est vérifié et non pas une version originale écrite dans un langage de plus haut-
niveau, qui sera transformée par un compilateur plus ou moins optimisant. En-
suite, la vérification du logiciel par le test s’opère sans hypothèse sur la sémantique
du langage de programmation utilisé ou sur le modèle d’exécution du programme.
Ces hypothèses sont parfois hasardeuses dans le contexte des logiciels embarqués
pour lesquels les cibles d’exécution possèdent certaines spécificités1. Enfin, le test
permet la vérification (partielle) du logiciel dans son contexte d’utilisation et son
environnement d’exécution. Le logiciel est testé en utilisant les librairies réelle-
ment liées, dans un processus géré par le système d’exploitation de la machine
cible qui peut éventuellement ne disposer que de ressources limitées. Ces condi-
tions font du test le moyen actuellement privilégié pour vérifier les logiciels dans
le monde industriel. Au chapitre des désavantages, la limitation intrinsèque de
cette forme de vérification est son incomplétude. Ainsi, le grand Edsger W. Di-
jkstra écrivait: “Program testing can be used to show the presence of bugs, but
never to show their absence!”. En effet, à moins d’exécuter le programme sur tout
son domaine d’entrée et de vérifier toutes les sorties calculées, le test ne peut offrir
de garantie absolue sur la correction d’un programme sous test, ou sur l’absence
de certaines fautes puisque de nombreux comportements du programme risquent
de ne pas être évalués. Bien qu’elle soit souvent utilisée pour dénigrer le Test
Logiciel, cette limitation intrinsèque est relativement bien acceptée en pratique car
d’une part la qualité des tests est grande et d’autre part, les logiciels à vérifier ont
des modèles de fiabilité qui tolèrent les fautes, dès lors qu’elles ne sont pas trop
fréquentes2. En fait, les difficultés du test logiciel proviennent plus du coût de sa
mise en oeuvre que de cette limitation théorique. En effet, chaque test nécessite
une définition précise de son objectif, c’est à dire des raisons qui ont poussées à
sa sélection, l’écriture et la validation d’un script de test, ainsi que la prédiction
des résultats attendus du programme. Ce dernier point est particulièrement déli-
cat puisqu’il nécessite de la part des ingénieurs, une connaissance approfondie de
l’application sous test. Ces éléments sont coûteux à développer, à maintenir et à
documenter car ils rentrent également dans le processus de développement logi-
ciel, au même titre que les spécifications et le code source. C’est la raison pour
laquelle un enjeu particulièrement important dans le domaine du Test Logiciel,
concerne l’automatisation de la production des tests. Dans l’industrie du logiciel
embarqué, cet enjeu est de taille puisqu’on estime que la phase de validation du
logiciel représente au moins la moitié du coût de son développement.

Afin de répondre à cet enjeu, les chercheurs se sont intéressés aux deux grands
problèmes fondamentaux suivants :

1Par exemple, la correction d’un programme qui manipule des nombres à virgule flottante ne peut
être établie sans une connaissance approfondie de la cible d’exécution (format des registres du pro-
cesseur, mode d’arrondi des calculs intermédiaires, etc.)

2Par exemple, il est accepté que même un système ultra-critique tel que le système de commandes
de vol d’un avion de ligne puisse défaillir une fois (i.e., mener à un évènement catastrophique) pendant
109 heures d’utilisation [Littlewood 93]. Notons tout de même que pour une flotte de 1000 avions sur
une durée de vie de 30 ans, cela correspond à une probabilité de 0.1 d’observer une telle défaillance

• le problème de la sélection des données de test. Il s’agit ici d’identifier
dans une espace de Recherche de taille non bornée ou très grand, les don-
nées d’entrée à utiliser pour évaluer la correction du programme sous test.
Cette sélection vise à choisir les données les plus susceptibles de détecter des
fautes dans les programmes, bien que nous n’ayons aucune connaissance de
celles-ci. En pratique, cette sélection est faite soit à partir d’un modèle issu
des spécifications (test à base de modèles, test fonctionnel), soit à partir du
programme sous test lui-même (test à partir de code, test structurel), soit à
partir de modèles de fautes (test mutationnel), ou encore à partir d’un mod-
èle d’usage du logiciel (test statistique). Dans la plupart des cas, la sélection
de données d’entrée repose sur le choix de critères de test qui permettent de
rationaliser le processus de test. Ces critères de test permettent également de
limiter la taille des jeux de test. Le point d’achoppement de ces techniques
concerne l’établissement d’un niveau de confiance suffisant dans la couver-
ture des comportements du programme et résulte d’un compromis entre le
coût du test et le niveau de confiance attendu. Ce problème de la sélection
apparaît également lorsque des tests existants sont rejoués pour des versions
antérieures du programme (tests de non-régression) et la question de l’ordre
dans lequel sont exécutés les cas de test est alors crucial pour démasquer des
fautes le plus rapidement possible.

• le problème de l’oracle. L’exécution du programme avec les données de test
produit des sorties qui doivent être contrôlées avec une procédure manuelle
ou automatique, l’oracle de test. L’obtention d’un oracle correct et complet,
c’est à dire sans erreur et capable de répondre pour n’importe quelle donnée
de test est illusoire de par la complexité des logiciels modernes et des com-
promis acceptables doivent être trouvés. En pratique, c’est la connaissance
approfondie du logiciel sous test qui permet l’écriture d’oracles et l’enjeu des
méthodes de test modernes consistent à réussir à produire automatiquement
ces oracles à partir de modèles ou d’autres programmes exécutables.

De manière un peu inattendue, certaines instances de ces deux problèmes sont
parfois hautement combinatoires. D’une part, l’espace de recherche constitué par
les domaines d’entrée et de sortie des programmes peut-être immense, voire in-
fini, et d’autre part, les objectifs à atteindre que l’on dérive des critères de test
peuvent caractériser une portion très réduite de cet espace. Par exemple, sélec-
tionner une donnée de test qui atteint un point très imbriqué dans un programme
itératif de tri ou bien sélectionner un comportement de programme qui provoque
un débordement de capacité mémoire reviennent tous deux à rechercher des aigu-
illes dans une botte de foin. Par extension, générer automatiquement un jeu de
test qui couvre un critère de test ou bien sélectionner des comportements sur un
modèle afin d’atteindre une cible de test sont aussi des questions qui mettent en
évidence une explosion combinatoire, de par le nombre de chemins d’exécution
possibles, ou bien le nombre de comportements possibles du modèle. La notion
de “Test à Base de Contraintes” a ainsi été introduite pour couvrir différentes ap-
plications qui incluent la génération de données de test structurel [Gotlieb 00b,

Meudec 01, Sy 03, Denmat 07b, Boonstoppel 08, Gotlieb 09a, Charreteur 09, De-
grave 09, Charreteur 10a], la génération de cas de test fonctionnels pour micro-
processeurs [Lewin 95, Bin 02, Hari 08], la génération de test à partir de modèles
[Carver 96, Jackson 00,Legeard 01,Pretschner 01,Bouquet 05], ou bien la recherche
de contre-exemples face à des propriétés de programmes [Gotlieb 03b, Denmat 05,
Collavizza 07, Collavizza 08].

Les problèmes mentionnés précédemment ont suscité de nombreux travaux de
Recherche et ont été attaqués depuis longtemps avec des outils très différents. Un
regard exhaustif sur ces travaux déborderait largement la portée de ce document et
nous nous restreindrons volontairement à ceux s’appuyant sur la Programmation
par Contraintes [Mackworth 77, Hentenryck 92].

Un des points clef de la Programmation par Contraintes est le remplacement
de la notion impérative d’instruction par celle, déclarative, de relation. Une relation
contraint les variables du programme et définit implicitement une portion d’un
espace de recherche que des techniques puissantes de recherche peuvent alors ex-
plorer. Ainsi, un programme à contraintes ne calcule pas la valeur de sortie d’une
fonction issue de la sémantique dénotationnelle d’un programme mais il recherche
la ou les solutions d’un système de contraintes qui capture la sémantique relation-
nelle de ce programme.

Les relations d’un programme à contraintes sont soit natives du langage de
programmation sous-jacent, soit définies par l’utilisateur. Dans le premier cas, les
relations sont générales et utiles lorsque la modélisation du problème à résoudre
ne pose pas vraiment de difficultés. Dans le deuxième cas, les relations sont parti-
culières et peuvent être finement adaptées au problème à résoudre. Cette capacité
nous est apparue cruciale pour aborder les problèmes du Test Logiciel mentionnés
plus haut ; nous y reviendrons. Ainsi, tout un florilège de contraintes particulières3

existe pour modéliser divers problèmes combinatoires, ainsi que des outils perme-
ttant la définition de nouvelles relations. Un programme à contraintes peut être vu
comme un modèle de spécification déclaratif, et surtout exécutable. Les relations
spécifient le problème à résoudre tandis que sa résolution est laissée aux résolveurs
de contraintes, qui sont adaptés aux différents domaines du calcul (domaines finis,
domaines numériques continus, mots, listes, etc.). D’une part, la flexibilité offerte
par les contraintes quant à la modélisation de problèmes combinatoires, et d’autre
part la disponibilité de résolveurs optimisés et extensibles, constituent les éléments
déterminants qui ont conduit à expérimenter leur utilisation dans le contexte du
Test Logiciel.

0.2 Chronologie des contributions

Depuis une quinzaine d’années, notre approche vise à explorer l’apport de la Pro-
grammation par Contraintes à la génération automatique de test pour les pro-
grammes impératifs. Notre thèse est qu’il est possible d’attaquer les problèmes
combinatoires de la génération de données de test et de production de l’oracle à

3La communauté utilise le terme de contraintes globales pour désigner ces relations

l’aide de techniques issues de la Programmation par Contraintes. Pour en faire la
démonstration, un modèle à contraintes qui capture la sémantique opérationnelle
(sans erreur) du programme impératif original est construit et utilisé dans dif-
férentes techniques de génération automatique de tests. Ce modèle est bien en-
tendu réversible, c’est à dire qu’il peut être utilisé pour calculer des sorties du
programme impératif en fonction des entrées, mais aussi l’inverse, ou bien encore
pour générer des entrées en fonction de contraintes additionnelles précisant des
objectifs d’atteignabilité dans le code source. Par exemple, la spécification d’une
instruction à atteindre conduit à une requête sur ce modèle, qui lorsqu’elle est ré-
solue par un résolveur de contraintes approprié, permet de générer une donnée
de test qui atteint le point sélectionné. Ce modèle à contraintes a été développé et
enrichi au cours de ces quinze dernières années et constitue la partie principale de
nos contributions.

Notre approche de génération automatique a été développée au travers de la
réalisation et l’expérimentation de plusieurs prototypes logiciels. Le modèle à
contraintes du logiciel InKa, proposé à la fin des années 90, utilisait la propaga-
tion de contraintes sur les domaines finis, le filtrage par consistances partielles
et des stratégies de recherche génériques telles que “first-fail” ou “iterative domain-
splitting” [Gotlieb 98]. Même si ce modèle nous a permis d’obtenir des résultats ex-
périmentaux intéressants sur des programmes C issus du domaine de l’avionique
militaire [Gotlieb 00b], le sous-ensemble du langage C traité restait assez pauvre.
Au début des années 2000, nous nous sommes consacrés à plusieurs extensions de
ce modèle. Nous avons abordé le problème de la modélisation des pointeurs et de
la synonimie4, c’est à dire de la possibilité de décrire la même case mémoire à l’aide
de différentes expressions syntaxiques. Ces travaux ont donné lieu à un modèle
à contraintes capable de générer des tests en présence de pointeurs vers les zones
nommées de la mémoire [Gotlieb 05a,Gotlieb 07] et un modèle pour la gestion des
structures de données dynamiques [Charreteur 09]. Ces modèles ont été implan-
tés et expérimentés dans une nouvelle version du logiciel InKa [Gotlieb 06b], qui
est considéré comme un outil pionnier dans le domaine du Test à Base de Contrain-
tes [Bardin 09].

En parallèle, nous nous sommes intéressés au problème de l’oracle en test logi-
ciel dont nous avons parlé plus haut. En effet, aucune technique de génération au-
tomatique de cas de test ne peut être pleinement opérationnelle si elle ne s’accompagne
d’un procédé pour contrôler les sorties calculées. Nous avons proposé une défini-
tion générale de la symétrie dans les propriétés de programmes impératifs [Gotlieb 03a]
et suggéré son utilisation en tant qu’oracle de tests dans un cadre applicatif intéres-
sant [Gotlieb 06a]. Une approche complémentaire a également été explorée pour
l’oracle, au travers de l’utilisation des “Constraint Handling Rules” (CHRs) pour
la génération automatique de tests [Gouraud 06]. Les relations de symétries dans
les programmes impératifs sont une forme particulière de relations métamorphiques
et nous avons proposé d’utiliser les contraintes pour produire automatiquement,

4“Pointer aliasing” en Anglais

lorsqu’elles existent, des données de test qui invalident ces relations [Gotlieb 03b].

Avec la thèse de Matthieu Petit [Petit 08], nous nous sommes intéressés à une
version probabiliste de ce modèle à contraintes. Nous avons proposé d’une part,
des opérateurs à contraintes qui modélisent des choix probabilistes partiellement
connus [Petit 07a], et l’utilisation de ces opérateurs pour générer automatiquement
des tests statistiques structurels [Petit 07b]. Cette forme de test logiciel nécessite la
sélection uniforme de chemins faisables dans un graphe de flot de contrôle. Ces
travaux nous ont conduit d’une part, à une extension théorique des critères de test
pour la prise en compte de chemins non terminant [Gotlieb 09c] et d’autre part,
à proposer une nouvelle technique de génération de test aléatoire où chaque élé-
ment du sous-domaine d’entrée associé à un chemin a la même probabilité d’être
choisi (“Path-oriented Random Testing”) [Gotlieb 08, Gotlieb 10b].

Dans le contexte de l’interaction entre méthodes de test logiciel et d’analyse sta-
tique, la thèse de Tristan Denmat [Denmat 08], co-encadrée avec Mireille Ducassé,
a permis d’étudier les apports de techniques d’Interprétation Abstraite pour la ré-
solution de contraintes et au test logiciel. Nous avons ainsi défini une méthode
de résolution de contraintes non-linéaires (i.e., disjonctives, multiplicatives, etc.)
sur les domaines finis, qui combine finement le domaine abstrait des polyèdres et
le filtrage par consistance de bornes [Denmat 07b]. Puis, nous avons proposé un
opérateur à contraintes qui modélise un calcul de boucle, et implémente des règles
de déduction basées sur l’élargissement5 sur les intervalles et les polyèdres [Den-
mat 07a].

Pour l’exécution symbolique de calculs sur les nombres flottants, nous avons
proposé FPSE, un solveur de contraintes arithmétiques sur les flottants [Botella 06].
Ce solveur implémente une consistance de bornes correcte en présence des quatre
opérations arithmétiques de base. Tout récemment, nous avons étendu FPSE avec
une propriété sur la représentation des nombres flottants, ce qui nous a permis
d’obtenir des premiers résultats en matière de génération automatique de données
de test [Carlier 11b].

L’exploitation des polyèdres et des relaxations linéaires de contraintes nous a
permis de bâtir un nouveau modèle à contraintes qui est à la base de l’outil EU-
CLIDE [Gotlieb 09a]. Cet outil a été expérimenté dans le contexte de la modélisa-
tion de propriétés d’anticollision vol issus de l’avionique civile [Gotlieb 09b]. Dans
le cadre de cette expérience, nous avons également proposé des opérateurs de fil-
trage pour le traitement des contraintes sur les entiers modulaires [Gotlieb 10a].

La thèse de Florence Charreteur [Charreteur 10b] nous a permis d’étendre le
modèle à contraintes pour des programmes en Bytecode Java [Charreteur 10a]. Le
traitement d’un langage à objet avec des contraintes nous a conduit à étendre le
cadre classique des solveurs de contraintes ensemblistes vers des opérateurs sur

5“Widening techniques” en Anglais

les ensembles non bornés [Charreteur 08]. Notre modèle à contraintes ensemb-
listes, implanté dans l’outil JAUT, est suffisamment riche pour traiter des exten-
sions de la Programmation orientée objet telles que l’héritage et le polymorphisme
par invocation de méthodes virtuelles [Charreteur 10a].

0.3 Organisation du mémoire

Ce mémoire d’habilitation vise à mettre en exergue nos contributions dans le do-
maine du test à base de contraintes. Nous avons fait le choix de présenter ce mé-
moire sous forme d’une sélection de nos articles principaux, accompagnée d’un
commentaire sur le contexte et la portée de chacun d’entre eux. Notre souhait est
de guider le lecteur au travers ce champ de recherche en l’invitant à lire certains ar-
ticles, mais sans lui imposer. Nos contributions sont tournées vers deux domaines
scientifiques distincts : le test logiciel et la programmation par contraintes ; nous
avons essayé de respecter cette parité dans le mémoire.

Les choix qui ont présidés à la sélection des articles commentés de ce mémoire
ont été de nature diverse, guidés par les principes suivants. Premièrement, ces
articles contiennent à nos yeux la description technique la plus fidèle de nos con-
tributions. Souvent, plusieurs tentatives sont nécessaires pour aboutir à ce type
de description. Nous avons fait le choix, non pas de la publication la plus visible,
mais plutôt de celle qui présente le plus fidèlement une idée, un développement
théorique ou un prototype de recherche. Deuxièmement, de par leur variété et leur
pluralité, les articles choisis illustrent selon nous les différentes facettes de notre
domaine de recherche. En d’autres termes, nous avons visé ici la variété, plutôt
que l’exhaustivité. Enfin, nous n’avons choisi que des articles dans lesquels notre
participation a été importante en termes de contribution et de rédaction. Ainsi,
nous avons sélectionné treize articles, cinq ayant été publiés côté “contraintes” et
huit ayant été publiés côté “test”. Un Curriculum Vitae contenant l’ensemble de
nos publications est donné en Annexe.

Les articles abordent le test à base de contraintes, selon l’épine dorsale fondements-
développements-applications qui architecture ce mémoire. Nos travaux de recherche
se sont portés sur ces trois piliers et il nous a semblé judicieux d’illustrer chacun
d’entre eux. Pour chaque article, nous avons donné un commentaire plus ou moins
bref afin de replacer l’article dans son contexte et son état de l’Art, et d’en discuter
la portée lorsque cela était justifié.

Le mémoire est organisé en quatre parties distinctes. La première partie est
consacrée aux fondements du test à base de contraintes avec un chapitre 1 sur
les origines de cette approche, un chapitre 2 qui introduit le premier modèle à con-
traintes que nous avons proposé pour générer des données de test pour un langage
réaliste, et un chapitre 3 qui présente nos travaux sur l’utilisation de techniques de
calculs dans les domaines abstraits dans les solveurs de contraintes. Cette idée
s’est révélée féconde pour le test à base de contraintes, et plus généralement la
vérification de programmes, comme nous l’évoquerons plus loin.

La seconde partie se concentre sur les développements du test à base de con-

traintes. Le chapitre 4, le premier de cette partie, s’intéresse à la problématique de
l’oracle et présente les notions de test symétrique et de relations métamorphiques.
Le chapitre 5 introduit nos développements en matière de modélisation des poin-
teurs et de traitement de la synonimie. Le chapitre 6 présente nos développements
les plus récents en matière de modélisation de l’héritage et d’invocation de méth-
odes virtuelles, c’est à dire de constructions orientées-objet. Enfin, le chapitre 7
présente nos développements en matière de raisonnement pour les calculs en nom-
bres à virgule flottante. En particulier, ce chapitre détaille notre solveur à contrain-
tes sur les flottants qui est une contribution importante à nos yeux.

La troisième partie est consacrée aux applications du test à base de contraintes,
avec un chapitre 8 concernant la génération de test pour la plateforme Java Card
et un chapitre 9 concernant la vérification à base de contraintes du Traffic anti-
Collision Avoidance System (TCAS).

Enfin, la quatrième partie du mémoire contient un chapitre 10 qui présente un
premier bilan de nos travaux dans le domaine du test à base de contraintes et un
chapitre 11 qui dresse quelques perspectives.

Part I

Fondements

15

Chapter 1

Les origines

Contexte

L’idée d’utiliser des contraintes pour automatiser le test des logiciels prend ses
racines vers le milieu des années quatre-vingts avec les travaux pionniers de Nicole
Choquet et Luc Bougé [Choquet 86,Bougé 86] puis ceux de Bruno Marre [Marre 91],
et Dick et Faivre [Dick 93]. Ces auteurs se sont intéressés à la génération automa-
tique de cas de test fonctionnel à partir de spécifications algébriques, en utilisant la
Programmation Logique avec Contraintes. A partir d’une spécification formelle de
types de données abstraits, des méthodes et outils ont été proposés pour générer
automatiquement des jeux de test respectant certaines hypothèses d’uniformité et
de régularité. Cette même période a vu également l’aboutissement de nombreux
travaux visant à utiliser la Programmation Logique avec Contraintes comme outil
de spécification, pour la génération de tests. On peut citer par exemple les travaux
de Michael Gorlick et al. [Gorlick 90] et Pesch et al. [Pesch 85] qui soulignaient déjà
la pertinence de la réversibilité des contraintes pour la validation de tests existants
par les spécifications. On peut également citer ceux de Paul Strooper et Daniel
Hoffman [Hoffman 91, Strooper 91] qui contiennent des prémisses sur l’usage de
contraintes arithmétiques pour la validation de modules écrits dans un langage
de bas niveau tel que C. Au milieu des années quatre-vingt-dix, Bruno Legeard a
initié des travaux visant à utiliser un solveur de contraintes ensemblistes pour la
génération automatique de cas de test pour des modèles formels B [Legeard 01].
L’idée de base consistait à sélectionner des comportements d’un modèle logico-
ensembliste, et à trouver une instanciation des variables d’état de ce modèle per-
mettant d’activer ces comportements. Il est frappant de constater que la plupart
de ces travaux initiaux ont connu d’importants développements en Europe dans
les années 2000. Les travaux initiaux de Bruno Marre ont conduit au développe-
ment industriel de GATEL [Marre 00], un générateur de tests pour les programmes
Lustre, au CEA, tandis que les travaux de Bruno Legeard ont conduit à la commer-
cialisation d’un générateur de tests au travers la création de la société Smartesting.

Aux Etats-Unis à la fin des années quatre-vingts, Jeff Offutt a proposé une
méthode de génération automatique de données de test pour le test de mutation

17

de programmes Fortran [Offutt 88]. Cette méthode s’appuyait sur une procédure
de résolution de systèmes de contraintes relevant implicitement de la Program-
mation par Contraintes. En s’inspirant des idées de Bicevskis et al. [Bicevskis 79]
développées dix ans auparavant, une méthode de propagation pour les contrain-
tes d’inégalités, qui réduit les domaines de variation de chacune des variables
du programme, était proposée pour identifier des données de test capables de
“tuer” des “mutants” de programmes [DeMillo 91]. Cette approche était aussi
reliée à l’exécution symbolique [King 76, Clarke 76] qui trouvait ici une de ses ap-
plications les plus prometteuses. Les techniques de recherche locale ont égale-
ment été explorées pour la génération automatique de cas de test durant la dé-
cennie quatre-vingt-dix avec les travaux de Bogdan Korel [Korel 90], de Neelam
Gupta [Gupta 98] et de Nigel Tracey [Tracey 98].

C’est dans ce contexte qu’a été proposé, en 1998, une méthode et un outil pour
la génération automatique de données de test structurel pour les programmes C,
s’appuyant explicitement sur la Programmation par Contraintes.

A. Gotlieb, B. Botella, and M. Rueher. Automatic test
data generation using constraint solving techniques. In Pro-
ceedings of the International Symposium on Software
Testing and Analysis (ISSTA’98), pages 53-62, Clearwa-
ter Beach, FL, USA, 1998.

.

Automatic Test Data Generation using Constraint Solving Techniques

Arnaud Gotlieb

Dassault Electronique

�� quai Marcel Dassault

����� Saint Cloud� France

and also at

Universit�e de Nice 	 Sophia

Antipolis

Arnaud�Gotlieb�dassault�elec�fr

Bernard Botella

Dassault Electronique

�� quai Marcel Dassault

����� Saint Cloud� France

Bernard�Botella�dassault�elec�fr

Michel Rueher

Universit�e de Nice 	 Sophia

Antipolis

I
S	CNRS Route des colles�

BP ���

����
 Sophia Antipolis� France

rueher�unice�fr

Abstract

Automatic test data generation leads to identify input

values on which a selected point in a procedure is ex�

ecuted� This paper introduces a new method for this

problem based on constraint solving techniques� First�

we statically transform a procedure into a constraint

system by using well�known �Static Single Assignment�

form and control�dependencies� Second� we solve this

system to check whether at least one feasible control

�ow path going through the selected point exists and

to generate test data that correspond to one of these

paths�

The key point of our approach is to take advantage of

current advances in constraint techniques when solving

the generated constraint system� Global constraints are

used in a preliminary step to detect some of the non fea�

sible paths� Partial consistency techniques are employed

to reduce the domains of possible values of the test data�

A prototype implementation has been developped on a

restricted subset of the C language� Advantages of our

approach are illustrated on a non�trivial example�

Keywords

Automatic test data generation� structural testing� con�

straint solving techniques� global constraints

� INTRODUCTION

Structural testing techniques are widely used in unit or

module testing process of software� Among the struc�

tural criteria� both statement and branch coverages are

commonly accepted as minimum requirements� One of

the di�culties of the testing process is to generate test

data meeting these criteria�

From the procedure structure alone� it is only possible

to generate input data� The correctness of the output

of the execution has to be checked out by an �oracle��

Two di	erent approaches have been proposed for auto�

matic test data generation in this context� The initial

one� called path�oriented approach
�� �� �� ��� ��� in�

cludes two steps which are �

� to identify a set of control �ow paths that covers

all statements �resp� branches� in the procedure �

� to generate input test data which execute every se�

lected path�

Among all the selected paths� a non�negligeable amount

is generally non�feasible
���� i�e� there is no input data

for which such paths can be executed� The static identi�

�cation of non�feasible paths is an undecidable problem

in the general case
�� Thus� a second approach called

goal�oriented
�� has been proposed� Its two main steps

are �
� to identify a set of statements �resp� branches� the

covering of which implies covering the criterion �

� to generate input test data that execute every se�

lected statement �resp� branch��

Assuming that every statement �resp� branch� is reach�

able� there is at least one feasible control �ow path going

through the selected statement �resp� branch�� The goal

of the data generation process is then to identify input

data on which one such path is executed�

For these approaches� existing generation methods are

based either on symbolic execution
�� �� �� �� ��� or

on the so called �dynamic method�
��� �� � ���

Symbolic execution consists in replacing input param�

eters by symbolic values and in statically evaluating

the statements along a control �ow path� The goal of

symbolic execution is to identify the constraints �either

equalities or inequalities� called �path conditions� on

symbolic input values under which a selected path is

executed� This method leads to several problems � the

growth of intermediate algebraic expressions� the di��

culty to deal with arrays �although some solutions exist

�� ���� and the aliasing problem for pointer analysis�

Using symbolic execution corresponds to an exhaustive

exploration of all paths going through a selected point�

Of course� this may be unacceptable for programs con�

taining a large number of paths�

Korel proposes in
��� to base the test data generation

process on actual executions of programs� Its method

is called the �dynamic method�� If an undesirable path

is observed during the execution �ow monitoring� then

a function minimization technique is used to �correct�

the input variables�
�� presents an extension of the

dynamic method to the goal�oriented approach� This

method is designed to handle arrays� dynamic struc�

tures� and procedures calls
��� However� although the

dynamic method takes into account some of the prob�

lems encountered with symbolic execution� it may re�

quire a great number of executions of the program�

This paper introduces a new method to identify auto�

matically test data on which a selected point in the pro�

cedure is executed� The proposed method operates in

two steps �

� The procedure is statically transformed into a

constraint system by the use of �Static Single

Assignment� �SSA� form
��� �� �� and control�

dependencies
��� The result of this step is a set of

constraints � called Kset � which is formed of �

� the constraints generated for the whole proce�

dure �

� the constraints that are speci�c to the selected

point�

�� The constraint system Kset is solved to check

whether at least one feasible path which goes

through the selected point exists� Finally� test data

corresponding to one of these paths are generated�

The key point of this method is to take advantages of

current constraint techniques to solve the generated con�

straint system� In particular� global constraints are used

in a preliminary step to detect some of the non�feasible

parts of the control structures and partial consistency

techniques are employed to reduce the domains of pos�

sible values of the test data� Search methods based on

the combination of both enumeration and inference pro�

cesses are used in the �nal step to identify test data�

Furthermore� these techniques o	er a �exible way to

de�ne and to solve new constraints on values of possible

test data�

A prototype implementation of this method has been

developped on a restricted subset of the C language�

Outline of the paper � the second section presents the

generation of Kset while the third section is devoted

to the resolution techniques� The fourth section de�

scribes the prototype implementationwhile the �fth sec�

tion provides a detailed analysis of a non�trivial example

that has been successfully treated with our method�

� GENERATION OF THE CON�

STRAINT SYSTEM

Application of our method is limited to a structured

subset of a procedural language� Unstructured state�

ments such as �goto�statement� are not handled in our

framework because they introduce non�controled exits

of loops and backward control �ow�

Pointer aliasing� dynamic allocated structures� func�

tion�s pointer involve di�cult problems to solve in the

frame of a static analysis� In this paper� we assume that

programs avoid such constructions� The treatement of

basic types such as char and �oating point numbers is

not presented� A few words in the fourth section are

devoted to the extension of our method to these types�

The generation of the constraint system Kset is done in

three steps �

� Generation of the �Static Single Assignment�

form �

�� Generation of a set of constraints corresponding to

the procedure p� called pKset�p� �

�� Generation of a set of constraints corresponding

to the control�dependencies of a selected point n�

called cKset�n��

Kset is de�ned as �

Kset�p� n�
def
� pKset�p� � cKset�n�

Now� let us introduce some basics used in the rest of the

paper�

��� Basics

A procedure control �ow graph �V�E� e� s�
� is a con�

nected oriented graph composed by a set of vertices V �

a set of edges E and two particular nodes� e the unique

int f�int i�

int j �

�� j �� � �

	� while � i ��
 �

do

�a� j �� j � i �

�b� i �� i� � �

od �

�� if � j � 	 �

� then i �� 	 �

� �

�� return j �

Figure � Example

entry node� and s the unique exit node� Nodes repre�

sent the basic blocks which are sets of statements exe�

cuted without branching and edges represent the possi�

ble branching between basic blocks� For instance� con�

sider the procedure� given in �gure � which is designed

to compute the factorial function� and its control �ow

graph �CFG� shown in �gure ��

A point is either a node or an edge in the CFG� A path

is a sequence � vi� � � � � vj � of consecutive nodes �edge

connected� in �V�E� e� s�� A control �ow path is a path

� vi� � � � � vj � in the CFG� where vi � e and vj � s� A

path is feasible if there exists at least one test datum on

which the path is executed� otherwise it is non�feasible�

For instance� the control �ow path � � �� �� �� � � in

the CFG of example is non�feasible�

A node v� is post�dominated
�� by a node v� if every

path from v� to s in �V�E� e� s� �not including v�� con�

tains v��

A node v� is control�dependent
�� on v� i	 � there

exists a path P from v� to v� in �V�E� e� s� with any

v in P n fv�� v�g post�dominated by v� � �� v� is not

post�dominated by v�� For example� block � is control�

dependent on block � in the CFG of example �

��� SSA Form

Most procedural languages allow destructive updating

of variables � this leads to the impossibility to treat a

program variable as a logical variable� Initially proposed

for the optimisation of compilers
�� ���� the �Static

Single Assignment� form
�� is a semantically equiv�

alent version of a procedure on which every variable

has a unique de�nition and every use of a variable is

reached by this de�nition� The SSA form of a lin�

ear sequence of code is obtained by a simple renam�

ing �i �� i�� i �� i�� � � � � of the variables� For the

control structures� SSA form introduces special assign�

�For all the examples throughout the paper� a clear abstract syntax

is used to indicate that our method is not designed to a particular

language

3

5

6

4

2

1

Figure �� Control �ow graph of example

int f�int i��

int j� �

�a� j� �� � �

�� Heading ��

�b� j� �� ��j� � j�� �

�c� i� �� ��i�� i�� �

	� while �i� ��
 �

do

�a� j� �� j� � i� �

�b� i� �� i� � � �

od

�� if �j� � 	�

� then i� �� 	 �

�

�� i� �� ��i�� i�� �

return �j�� �

Figure �� SSA Form of example

ments� called ��functions� in the junction nodes of the

CFG� A ��function returns one of its arguments depend�

ing on the control �ow� Consider the if�statement of

the SSA form of example in �gure � � the ��function

of statement � returns i� if the �ow goes through the

then�part of the statement� i� otherwise� For some more

complex structures� the ��functions are introduced in a

special heading of the loop �as in the while�statement

in �gure ��� SSA Form is built by using the algorithm

given in
��� which is designed to treat structured pro�

grams in one parsing step�

For convenience� a list of ��assignments will be written

with a single statement �

x� �� ��x�� x��� � � � � z� �� ��z�� z���� �v� �� ���v�� �v��

��� Generation of pKset

pKset�p� is a set of both atomic and global constraints

associated with a procedure p�

Informally speaking� an atomic constraint is a relation

between logical variables� Global constraints are de�

signed to handle more e�ciently set of atomic con�

straints� For instance� global constraint element�� � �

element�k� L� v� constraints the kth argument of the

list L to be equal to v�

Let us now present how pKset is generated� The method

is driven by the syntax� Each subsection� which is de�

voted to a particular construction� presents the genera�

tion technique�

����� Declaration

The variables of a procedure are either input variables

or local variables� Parameters and global variables are

considered as input variables while the other variables

are considered as local� Each variable x which has a

basic type declaration� is translated in atomic constraint

of the form � x �
Min�Max� where Min �resp� Max�

is the minimum �resp� maximum� value depending on

the current implementation� An array declaration is

translated into a list of variables of the same type while

a record is translated into a list of variables of di	erent

types�

A speci�c variable� named �OUT�� is devoted to the

output value of the procedure�

����� Assignment and Decision

Elementary statements� such as assignments and ex�

pressions in the decisions are transformed into atomic

constraints� For instance� the assignment of statement

�where �� denotes the arity of the constraint

�a in example generates the constraint j� � j� � i��

The decision of statement � generates i� 	� �� A ba�

sic block is translated into a conjunction of such con�

straints� For example� statements �a and �b generate

j� � j� � i�
 i� � i� � �

����� Conditional Statement

The conditional statement if then else is translated

into global constraint ITE�� in the following way �

pKset�if d then s else s� � �v� �� ���v�� �v��� �

ite�pKset�d�� pKset�s�
 �v� � �v�� pKset�s��
 �v� � �v��

This constraint denotes a relation between the decision

and the constraints generated for the then� and the else�

parts of the conditional� Note that ��assignments are

translated in simple equality constraints� The opera�

tional semantic of the constraint ITE�� will be made

explicit in section ����

����� Loop Statement

The loop statement while is also translated in a global

constraint W��� Informally speaking� this constraint

states that as long as its �rst argument is true� the

constraints generated for the body ��fth argument� of

the while statement are true for the required data�

pKset��v� �� ���v�� �v�� while d do s od�

� w�pKset�d�� �v�� �v�� �v�� pKset�s��

The generated constraint requires three vectors of vari�

ables �v�� �v�� �v�� �v� is a vector of variables de�ned before

the while�statement� �v� is the vector of variables de�ned

inside the body of the loop and �v� is the vector of vari�

ables referenced inside and outside the while�statement�

Note here that the ��assignments are only used to iden�

tify the vectors of variables�

The operational semantics of the constraint w�� will

also be given in section ����

����� Array and Record

Both arrays and records are treated as list of variables�

therefore we only present the generation of pKset on

arrays�

Reference of an array is provided in the SSA Form by

a special expression
�� � access� The evaluation of ac�

cess�a�k� statement is the kth element of a noted v�

For the de�nition of an array� the special expression

update is used
��� update�a�j�w� evaluates to an array

a� which has the same size as a and which has the same

elements as a� except for j where value is w�

Both expressions access and update are treated with

the constraint element�� �

pKset� v�� access�a� k�� � felement�k� a� v�g

pKset�a� �� update�a� j� w��

�
S

i��jfelement�i� a� v�
 element�i� a�� v�g

� felement�j� a�� w�g

��� Generation of cKset

cKset�n� is a set of constraints associated with a point

n in the CFG� It represents the necessary conditions

under which a selected point is executed� These con�

ditions are precisely the control�dependencies on the

selected point� cKset�n� is then the set of constraints of

the statements and the branches on which n is control�

dependent� For example� node � is control�dependant

on node � then � cKset��� � fj� � �g

��� Example

For the procedure given in �gure and the statement

�� the following sets are obtained �

pKset�f� �

f j� � �

w�i� 	� �� �i�� j��� �i�� j��� �i�� j���

j� � j� � i�
 i� � i� � ��

ite�j� � �� i� � �
 i� � i�� i� � i���

OUT � j� g

cKset��� � fj� � �g

Kset�f� �� � pKset�f� � cKset���

� SOLVING THE CONSTRAINT SYS�

TEM AND GENERATION OF TEST

DATA

Constraint programming has emerged in the last decade

as a new tool to address various classes of combinato�

rial search problems� Constraint systems are inference

systems based on such operations as constraint propa�

gation� consistency and entailment� Inference is based

on algorithms which propagate the information given

by one constraint to others constraints� These algo�

rithms are usually called partial consistency algorithms

because they remove part of inconsistent values from

the domain of the variables� Altough these approxi�

mation algorithms sometimes decide inconsistency� it is

usually necessary to combine the resolution process with

a search method� Informally speaking� search methods

are intelligent enumeration process�

For a survey on Constraint Solving and Constraint Logic

Programming� see
�� and
���

Let us �rst introduce some basics notations on con�

straint programming required in the rest of the paper�

These notations are extracted from
���

A constraint system is consistent if it has at least one

solution� i�e� if there exists at least one variable assign�

ment which respects all the constraints� More formally�

a set of constraints � is called a store and the store is

consistent if �

j� ����

where ���� denotes the existential closure of the formula

��
Entailment test checks out the implication of a con�

straint by a store� For example�

x � � is entailed by fx � y�g

The entailment test of the constraint c by the store � is

noted �

j� ���� �� c�

where ��� denotes the universal closure of ��

Both consistency and entailment tests are NP�complete

problems in the general case� For this reason� implemen�

tations of these tests are based on two approximations �

domain�consistency and interval�consistency�

��� Local consistency

Associated with each input variable xi is both a domain

Di � ZZ and an interval D�
i �
min�Di��max�Di���

A constraint c�x�� � � � � xn� is a n�ary relation between

variables �x�� � � � � xn� which denotes a subset of ZZn�

Domain�consistency also called arc�consistency removes

values from the domains and Interval�consistency only

reduces the lower and upper bounds on the domains�

Both are applied in a subtle combination by the con�

straint solver� Intuitivelly� when the domains contain

a small number of values� domain�consistency is ap�

plied� Interval�consistency is applied on large domains�

Precise de�nitions of these local consistencies are now

given �

int g�int x�int y �

int z �

int t �

�a� z �� x � y �

�b� t �� 	 � x �

	� if �z � ��
then

�a� t �� t� y �

�b� if �t � �� x � � �

�� then ���

Figure �� Example �

De�nition �� �domain�consistency� �	
�

A constraint c is domain�consistent if for

each variable xi and value vi � Di there

exists values v�� � � � � vi��� vi	�� � � � � vn in

D�� � � � � Di��� Di	�� � � � � Dn such that c�v�� � � � � vn�

holds� A store � is domain�consistent if for every

constraint c in �� c is domain�consistent�

De�nition �� �interval�consistency� �	
�

A constraint c is interval�consistent if for each

variable xi and value vi � fmin�Di��max�Di�g

there exist values v�� � � � � vi��� vi	�� � � � � vn in

D�
� � � � � � D

�
i��� D

�
i	�� � � � � D

�
n such that c�v�� � � � � vn�

holds�

A local treatment is associated to each constraint�

The corresponding algorithm is able to check out both

domain� and interval� consistencies for this constraint�

The inference engine propagates the reductions pro�

vided by this algorithm on the other constraints� The

propagation iterates until a �xpoint is reached� Infor�

mally speaking� a �xpoint is a state of the domains

where no more prunnings can be performed�

Let us illustrate how interval�� domain� consistency and

the inference engine may reduce the domains of possible

values of test data on the example � given in �gure ��

Consider the problem of automatic test data generation

for statement ��

Parameters are of non�negative integer type� The

following set is provided �

Kset�g� �� � fx�� y� �
��Max�� z� � x� � y�� t� �

� � x�� z� � �� t� � t� � y�� t� � � x� � g

and the following resolution process is performed �

z� � x� � y� leads to z� �
��Max�

t� � � � x� leads to t� �
��Max�

z� � � leads to z� �
�� ��

t� � leads to t� � fg

x� � leads to x� �
��Max�

z� � x� � y� leads to x� �
�� �� and y� �
�� ��

t� � � � x� leads to t� �
�� ��

t� � t� � y� leads to y� � f�� �g and t� � f�� �g

t� � � � x� leads to x� � f�g and t� � f�g

t� � t� � y� leads to y� � f�g

Finally� �x� � �� y� � �� corresponds to the unique test

datum on which statement � in the program of �gure �

can be executed�

��� Global Constraints De�nitions

For atomic constraints and some global constraints� the

local treatment is directly implemented in the constraint

solver� However� for user�de�ned global constraint� it is

necessary to provide the algorithm� The key point of our

approach resides in the use of such global constraints to

treat the control structures of the program� The global

constraints are used to propagate information on incon�

sistency in a preliminary step of the resolution process�

����� Entailment Test Implementation

The entailment test is used to construct these global

constraints� The implementation of entailment test may

be done as a proof by refutation� A constraint is proved

to be entailed by a store if there is no variable assign�

ment respecting both the store and the negation of the

constraint�

The operational semantic of the user�de�ned global con�

straints is designed with properties which are �guarded�

by entailment tests� Such properties are expressed by

constraints added to the store� We have introduced in

the section ��� two global constraints � ite�� and w���

Let us give now their de�nitions�

����� ITE�

De�nition �� �ite���

ite�c� fc�
 � � �
 cpg� fc��
 � � �
 c�qg�

� if j� ���� �� c� then � �� � � fc�
 � � �
 cpg

� if j� ���� �� �c� then � �� � � fc��
 � � �
 c�qg

� if j� ���� �� ��c�
 � � �
 cp�� then

� �� � � f�c
 c��
 � � �
 c�qg

� if j� ���� �� ��c��
 � � �
 c�q�� then

� �� � � fc
 c�
 � � �
 cpg

The �rst two features of this de�nition express the op�

erational semantic of the control structure if then else�

The last ones are added to identify non�feasible parts

formed by one of the two branches of the control

structure� Consider for example �

ite�i� 	� �� i� � i� �
 i� � i�� i� � �

Suppose that the store contains i� � � � when

applying the fourth feature of the ite constraint we

have to consider the consistency of the following set �

fi� � �g � fi� � g It is inconsistant� meaning that the

else�part of the statement is non feasible� Then� the

constraints i� 	� �
 i� � i� �
 i� � i� are added to

the store�

����� W

The while�statement combines looping and destructive

assignments� Hence w�� behaves as a constraint gener�

ation program�

When evaluating w��� it is necessary to allow the gen�

eration of new constraints and new variables� A substi�

tution subs��v� � �v�� c� is a mechanism which generates

a new constraint having the same structure as c but

where variables vector �v� has been replaced by vector

�v�� The following example illustrates this mechanism �

if �v� � �x�� y�� and �v� � �x�� y�� then

subs��v� � �v�� x� � y� � �� is �x� � y� � ��

w�� is now formally de�ned �

De�nition �� �w���

w�c� �v�� �v�� �v�� c�
 � � �
 cp�

� if j� ���� �� subs��v� � �v�� c�� then

� �� � � fsubs��v� � �v�� c�
 � � �
 cp�

w�c� �v�� �v�� �v��

subs��v� � �v�� c�
 � � �
 cp��g

� if j� ���� �� subs��v� � �v���c�� then

� �� � � f�v� � �v�g

� if j� ���� �� subs��v� � �v����c�
 � � �
 cp���

then

� �� � � fsubs��v� � �v���c�
 �v� � �v�g

� if j� ���� �� �v� 	� �v�� then

� �� � � fsubs��v� � �v�� c�

subs��v� � �v�� c�
 � � �
 cp�

w�c� �v�� �v�� �v�� subs��v� � �v�� c�
 � � �
 cp��g

The �rst two features represent the operational seman�

tic of the while�statement� As for the ite�� constraint�

the other features identify non�feasible part of the struc�

ture� The third one is applied if it can be proved that

the constraints of the body of the loop are inconsistent

with the current store� This means the body cannot be

executed even once� the output vector of variables �v� is

then equated with the input vector �v�� In the opposite�

if �v� � �v� is inconsistent in the current store� the fourth

feature is applied meaning that the body of the loop is

executed at least once�

Let us illustrate the treatment of w�� on the while�

statement of example �

Suppose that the store contains fj� � � j� � �g � when

testing the consistency of

w�i� 	� �� �i�� j��� �i�� j��� �i�� j���

j� � j� � i�
 i� � i� � �

the fourth feature is applied twice and then gives

the following store �

fj� � � j� � �� j� � j� � i�� i� � i� � �

j� � j� � i�� i� � i� � � i� � �g

Finally� �i� � �� is obtained�

��� Complete Resolution of the Example

Consider again the example of �gure and the problem

of generating a test data on which a feasible path going

through statement � is executed� The Kset provided by

the �rst step of our method is �

Kset�f� �� � pKset�f� � cKset��� �

f j� � �

w�i� 	� �� �i�� j��� �i�� j��� �i�� j���

j� � j� � i�
 i� � i� � ��

ite�j� � �� i� � j�
 i� � i�� i� � i���

OUT � j�g � fj� � �g

The loop is executed twice� generating the follow�

ing store �

fj� � � i� 	� �� i� 	� �� i� � �� i� � i��� i� � i��� j� �

j� � i�� j� � j� � i�� j� � �� i� � j�� i� � i�� OUT � j�g

Interval consistency is applied to solve the sys�

tem� and yields to i� � �� This is the unique test data

on which statement � may be executed�

��� Search Process

Of course� local consistencies are incomplete constraint

solving techniques
���� The store of constraints can

be domain�consistent though there is no solution in the

domains �i�e� the store is inconsistent�� Let us give an

example of a classical pitfall of these techniques �

x� y� z � f�� g� � � fx 	� y� y 	� zg

Testing j� ���� �� �x � z�� fails because the store

fx 	� y� y 	� z� x 	� zg is domain�consistent�

In order to obtain a solution� it is necessary to enumer�

ate the possible values in the restricted domains
��� ���

This process is incremental� When a value v is chosen in

the domain Dx of the variable x� the constraint �x � v�

is added to the store and propagated� This may reduce

the domains of the other variables� This process is re�

peated until either the domain of all variables is reduced

to a single value or the domain of some variable becomes

empty� In the former case� we obtain a solution of the

test data generation problem� whereas in the latter we

must backtrack and try another value �x � w� until

Dx � ��

In general� there are many test data on which a se�

lected point is executed� As claimed in the Introduc�

tion� constraint solving techniques provide a �exible way

to choose test data� The search process can be user�

directed by adding new constraints on the input vari�

ables of the procedure� Our framework provides an ele�

gant way to handle such constraints� These constraints

are propagated by the inference engine as soon as they

induce a reduction on the domains� Furthermore� these

additional constraints may be used to insure that the

generated input data are �realistic�� They may have

one of the two following forms �

� constraints on domains �for example x� �

��� ��� �

� constraints between variables �for example y� � x�

meaning that a parameter y� of a procedure is

strictly greater than another one x���

It is also possible to guide the search process with some

well�known heuristics� For example �

� to select the variable with the smallest domain

��rst�fail principle� �

� to select the most constrained variable �

� to bissect the domains � x �
a� b� is transformed

into �Dx �
a� a� b	�� or Dx �
a� b	�� b�� ��

� IMPLEMENTATION

INKA� a prototype implementation has been developed

on a structured subset of language C� The extension to

control structures such as do�while and switch statement

is straightforward� Characters are handled in the same

way as integer variables� Floating point numbers do not

introduce new di�culties in the constraints generation

process� but they require another solver� Although the

domains remain �nite� it is of course not possible to

enumerate all the values of a �oating point variable�

Resolution of the constraint system is therefore more

problematic� References on these solvers can be found

in
��� The extension of our method to pointer variables

falls into two classical problems of static analysis � the

aliasing problem and the analysis of dynamic allocated

structures�

INKA includes � modules �

� A C Parser

� A generator of SSA form and control�dependencies

� A generator of Kset

� A constraints solver

� A search process module

The constraint solver is provided by the CLP�FD� li�

brary of Sicstus Prolog ���
���

� EXAMPLE

We present now the results of our method on a non�

trivial example adapted from
� � the SAMPLE pro�

gram given in �gure �� For the sake of simplicity� it is

written in the abstract syntax used in this paper� Size

of array have been reduced to � for improving the pre�

sentation�

Consider the problem of automatic test data generation

to reach node ��

INKA has generated the Kset�SAMPLE�	�� constraint

system� The following set of constraints on domains are

added �
a
�� a
��� a
��� b
�� b
��� b
��� target �
� ��

Table reports only the results of the constraint solver

and search process module� Experiments are made on

a Sun Sparc � workstation under Solaris ���

First experiments concern the search of solutions with�

out adding any kind of constraints on input data� The

line of the table indicates the time required to obtain

the �rst solution and all solutions of the problem� The

exact test data is provided in the former case while the

number of solutions is only provided in the later one�

Then� we have considered that the user wants the input

data to satisfy the additional constraint �

a
��� � a
��� a
���

int sample�int a���� int b���� int target�

int i� fa� fb� out �

�a� i �� � �

�b� fa ��
 �

�c� fb ��
 �

	� while �i � ��

do

�� if �a�i� � target�

�� then fa �� � �

� �

� i �� i� � �

od

�� if �fa � ��

then

�a� i �� � �

�b fb �� � �

�� while �i � ��

do

�� if �b�i� �� target�

�
� then fb ��
 �

� �

��� i �� i� � �

do �

� �

�	� if �fb � ��

��� then out �� � �

��� else out ��
 �

� �

�� return out �

Figure �� Program SAMPLE

Second line reports the results of generation when the

additional constraint is checked out after the search pro�

cess and the third line reports the results when the con�

straint is added to the current store and propagated�

A �rst fail enumeration heuristic has been used for

these experiments� Test data are given in vector form

�a
�� a
��� a
��� b
�� b
��� b
��� target� and CPU time is

the time elapsed in the constraint solving phase� Note

that a complete enumeration stage would involve to try

�
 � ������� values�

These experiments are intended to show what we have

called the �exible use of constraints� First� the CPU

time elapsed in the �rst and second experiments are ap�

proximatively the same to obtain all the solutions� In

both cases� the search process has enumerated all the

possible values in the reduced domains� The only dif�

ference is that� in the second case� the added constraint

has been checked out after the enumeration step� This

illustrate a generate and test approach� On the con�

trary� note that the results presented in the third line

of table show an important improvement factor due

to the use of the additional constraint in the resolution

process� In the third case� the additional constraint is

used to prune the domains and thus the time elapsed in

the search process module is dramatically reduced�

Of course� further experiments are needed to show

the e	ectiveness of our approach and to compare the

Table � Results

First solu�

tion

CPU time All solutions CPU time

�������� ��s ��� solu�

tions

���s

��������������� ��s ����������������

����������������

����������������

����������������

����������������

���������������

���s

��������������� ��s ����������������

����������������

����������������

����������������

����������������

���������������

���s

method with other approaches�

� CONCLUSION

In this paper� we have presented a new method for the

automatic test data generation problem� The key point

of this approach is the early detection of some of the

non�feasible paths by the global constraints and thus the

reduction of the number of trials required for the gen�

eration of test data� First experiments on a non�trivial

example made with a prototype implementation tend

to show the �exibility of our method� Future work will

be devoted to the extension of this method to pointer

variables and experimentations with �oating point num�

bers � an experimental validation on real applications is

also forseen�

ACKNOWLEDGEMENTS

Patrick Taillibert and Serge Varennes gave us invalu�

able help on preliminary ideas to design the global con�

straints introduced� Thanks to Xavier Moulin for its

helpful comments on earlier drafts of this paper�

This work is partially supported by A�N�R�T�

This research is part of the software testing project DE�

VISOR of Dassault Electronique�

References

� A� Aho� R� Sethi� and J� Ullman� Compilers Prin�

ciples� techniques and tools� Addison�Wesley Pub�

lishing Company� Inc� ����

�� B� Alpern� M� N� Wegman� and F� K� Zadeck�

Detecting Equality of Variables in Programs� In

Proc� of Symposium on Principles of Programming

Languages� pages � New York� January ����

ACM�

�� A� Bertolino and M� Marr!e� Automatic Generation

of Path Covers Based on the Control Flow Anal�

ysis of Computer Programs� IEEE Transactions

on Software Engineering� ��������� ���� Decem�

ber ����

�� R� Boyer� B� Elspas� and K� Levitt� SELECT �

A formal system for testing and debugging pro�

grams by symbolic execution� SIGPLAN Notices�

�������� ���� June ����

�� M� M� Brandis and H� M"ossenb"ock� Single�Pass

Generation of Static Single�Assignment Form for

Structured Languages� Transactions on Program�

ming Languages and Systems� �������� ����

November ����

�� M� Carlsson� SICStus Prolog User�s Manual� Pro�

gramming over Finite Domains� Swedish Institute

in Computer Science� ����

�� L� Clarke� A System to Generate Test Data and

Symbolically Execute Programs� IEEE Transac�

tions on Software Engineering� SE�������� ����

September ����

�� A� Coen�Porisini and F� de Paoli� Array Repre�

sentation in Symbolic Execution� Computer Lan�

guages� ������� ��� ����

�� R� Cytron� J� Ferrante� B� K� Rosen� M� N� Weg�

man� and F� K� Zadeck� E�cently Computing

Static Single Assignment Form and the Control De�

pendence Graph� Transactions on Programming

Languages and Systems� ������� ���� October

���

�� R� A� DeMillo and A� J� O	ut� Constraint�Based

Automatic Test Data Generation� IEEE Transac�

tions on Software Engineering� SE��������� ���

September ���

� R� Ferguson and B� Korel� The Chaining Approach

for Software Test Data Generation�� ACM Trans�

actions on Software Engineering and Methodology�

������ ��� January ����

�� J� Ferrante� K� J� Ottenstein� and J� D� Warren�

The Program Dependence Graph and its use in

optimization� Transactions on Programming Lan�

guages and Systems� ������ ���� July ����

�� D� Hamlet� B� Gi	ord� and B� Nikolik� Exploring

Data�ow Testing of Arrays� In Proc� of the Interna�

tional Conference on Software Engineering� pages

� ��� Baltimore� May ���� IEEE�

�� P� V� Hentenryck and V� Saraswat� Constraints

Programming � Strategic Directions� Constraints�

����� ��� ����

�� P� V� Hentenryck� V� Saraswat� and Y� Deville� De�

sign� implementation� and evaluation of the con�

straint language cc�fd�� In LNCS �	�� pages ���

��� Springer Verlag� ����

�� W� Howden� Symbolic Testing and the DISSECT

Symbolic Evaluation System� IEEE Transactions

on Software Engineering� SE��������� ���� July

����

�� J� Ja	ar and M� J� Maher� Constraint Logic Pro�

gramming � A Survey� Journal of Logic Program�

ming� ��������� ��� ����

�� J� C� King� Symbolic Execution and Program Test�

ing� Commun� ACM� �������� ���� July ����

�� B� Korel� A Dynamic Approach of Test Data Gen�

eration� In Conference on Software Maintenance�

pages � ��� San Diego� CA� November ����

IEEE�

��� B� Korel� Automated Software Test Data Genera�

tion� IEEE Transactions on Software Engineering�

�������� ���� august ����

�� B� Korel� Automated Test Data Generation for

Programs with Procedures� In Proc� of ISSTA����

volume ����� pages ��� ��� San Diego� CA� May

���� ACM� SIGPLAN Notices on Software Engi�

neering�

��� A� K� Mackworth� Consistency in Networks of Re�

lations� Arti�cial Intelligence� ������ �� ����

��� B� K� Rosen� M� N� Wegman� and F� K� Zadeck�

Global Value Numbers and Redundant Computa�

tions� In Proc� of Symposium on Principles of Pro�

gramming Languages� pages � ��� New York� Jan�

uary ���� ACM�

��� D� F� Yates and N� Malevris� Reducing The E	ects

Of Infeasible Paths In Branch Testing� In Proc�

of Symposium on Software Testing� Analysis� and

Veri�cation �TAV��� volume ���� of Software En�

gineering Notes� pages �� ��� Key West� Florida�

December ����

Portée de l’article

L’article précédent propose la construction d’un modèle à contraintes des pro-
grammes C qui permet la résolution de certaines requêtes de génération de donnée
de test avec les techniques standards de la Programmation par Contraintes sur les
domaines finis [Hentenryck 93, Hentenryck 98]. En particulier, la propagation de
contraintes, le filtrage par consistance locale (consistance de domaine et bornes)
et quelques stratégies de recherche telles que “first-fail” ou “iterative domaine-
splitting” sont utilisées. Dès sa publication et malgré sa naïveté, cet article a été
utilisé comme source de comparaison par de nombreux travaux qui ont démarré
à cette époque (cité plus de 200 fois – Source: Publish or Perish, version 3.2, Juillet
2011).

Dès la fin des années quatre-vingt-dix, Neelam Gupta de l’Université d’Arizona
s’est montrée intéressée par l’utilisation des contraintes, dans la mesure où elle
menait des travaux connexes sur l’utilisation de relaxation itérative pour la généra-
tion automatique de cas de test structurels [Gupta 00, Visvanathan 02]. De même,
Willem Visser, à l’origine du moteur de vérification Java PathFinder [Visser 04]
développé au centre Nasa Ames, s’est intéressé à nos travaux pour analyse et
comparaison [C. Pasareanu 03], ainsi que Christian Cadar, alors qu’il dévelop-
pait l’outil EXE à l’Université de Stanford. En Europe, Nguyen Tran Sy et Yves
Deville de l’Université Catholique de Louvain [Sy 01, Sy 03] ont cherché à adapter
des consistances partielles pour la génération automatique de cas de test struc-
turel en présence de calculs mixtes entiers-flottants. C’est également dans l’article
commenté de ce chapitre qu’a été introduit pour la première fois l’utilisation de la
forme statique à assignation unique (SSA) en génération automatique de tests. Cet
article a ainsi été remarqué dans la communauté analyse statique, en particulier
grâce à des gens comme Gregor Snelting [Snelting 06], ou Thomas Ball [Ball 05].
L’utilisation de la forme SSA pour la génération automatique de tests était réelle-
ment novatrice à cette époque et cette idée a fait florès depuis [Sy 01, Collav-
izza 08, Chung 09, Wotawa 10].

L’accueil de la communauté pour cet article nous a confortés, à l’époque, dans
notre volonté de développer un outil de génération automatique de données de
test pour un langage réaliste tel que C. Ce fut donc le début de la réalisation de
l’outil InKa, mise au point chez Dassault Electronique, avec des idées développées
en collaboration avec l’Université de Nice Sophia-Antipolis.

Chapter 2

Test logiciel à base de
contraintes

Contexte

La réalisation de l’outil InKa a été particulièrement importante pour démontrer
l’utilité des contraintes en génération automatique de données de test. En effet, les
logiciels de test unitaire et d’intégration utilisés alors permettaient essentiellement
d’automatiser l’exécution du test, mais en aucun cas de déterminer automatique-
ment les entrées permettant de sensibiliser certaines portions critiques du code
source. Par ailleurs, la génération de cas de test structurels et plus généralement la
vérification de logiciel n’était pas alors considérée alors une application standard
de la Programmation par Contraintes.

L’article de ce chapitre fut le premier à présenter le prototype InKa, ainsi que les
premières expériences relatives au modèle à contraintes sous-jacent. Nous y détail-
lons les consistances partielles utilisées, ainsi que la sémantique opérationnelle des
combinateurs de contraintes utilisés pour représenter le flot de contrôle (i.e., ite et
w). Un des points les plus intéressants concerne peut-être la description du traite-
ment des contrainte–gardées avec un test d’implication par l’absurde. C’est aussi
dans cet article que le traitement des tableaux avec la contrainte globale element
est proposé, une idée simple qui est passée complètement inaperçue à l’époque.

Dans les années 2000, avec le logiciel InKa, nous caressions le projet de traiter
exhaustivement un langage réaliste, utilisé dans le domaine de l’avionique em-
barqué (i.e., le langage C). Mais, il a bien fallut réviser ces prétentions devant la
difficulté de la tâche. En effet, dès cette époque, nous avions identifié la probléma-
tique de la synonimie due aux pointeurs, références et tableaux, comme étant une
difficulté majeure de l’analyse de code C. Le traitement efficace des appels de fonc-
tions ou méthodes, y compris récursifs, était à inventer, ainsi que celui du poly-
morphisme par invocation de méthodes virtuelles. La problématique de l’analyse
des calculs sur les nombres flottants était par contre bien connue dans d’autres
communautés, mais la résolution de contraintes pour les flottants était inconnue.

25

Ces éléments se révélèrent être des difficultés majeures pour toutes les approches
de génération automatique de données de test à base d’analyse de code source.
D’autres éléments apparurent également comme le traitement des calculs modu-
laires silencieux en C, la modélisation d’une sémantique avec erreurs et exceptions,
le traitement des structures dynamiques et des pointeurs en entrée des fonctions,
les pointeurs de fonctions et le traitement de l’ordre supérieur, la modélisation des
calculs bit-à-bits, ou encore le traitement des programmes au flot déstructuré.

A. Gotlieb, B. Botella, and M. Rueher. A CLP framework
for computing structural test data. In Proceedings of Com-
putational Logic (CL’2000), LNAI 1891, pages 399–413,
London, UK, Jul. 2000

10

5

15

Random method

Our method

>5h

user CPU time
(sec)

Trityp program

1 32 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
node number

Cet article fait écho au lancement du projet RNTL1 InKa (2000-2002), qui avait
pour ambition de faire passer notre prototype de recherche à l’état de logiciel com-
mercialisable. En parallèle du développement industriel de l’outil InKa, trois pistes
de recherche ont été explorées dans le cadre de ce projet: le traitement des poin-
teurs et de la synonimie, sujet que nous présentons dans le chapitre 5, le traitement
des calculs sur les nombres à virgule flottante qui connaît des développements im-
portants sur lesquels nous reviendrons dans le chapitre 7, et le traitement efficace
des appels de fonctions qui est évoqué implicitement dans l’article du chapitre 9.
Le projet InKa a également connu une suite, le pojet RNTL DANOCOPS (2004-
2006), qui a abordé la problématique plus générale de l’utilisation des contraintes
en vérification formelle de programmes.

Les projets InKa (2000-2002) et DANOCOPS (2004-2006), ayant regroupés des
équipes de recherche de Thales, du LIFC à Besançon, du CEA à Saclay, de l’I3S
à Nice Sophia Antipolis, du LIG à Grenoble, ont permis de structurer un groupe
de recherche actif en France autour de la thématique du test à base de contraintes.
Plusieurs initiatives ont vu le jour grâce à ce groupe de recherche ; en particulier,
les projets ACI V3F (2003-2006) et SESUR CAVERN (2007-2011) sur lesquels nous
reviendrons plus loin.

1Réseau National des Technologies Logicielles

Chapter 3

Contraintes et abstractions

Ces dernières années ont connu une véritable explosion de résultats quant à la
vérification automatique de programmes. Les approches se sont multipliées et
plusieurs outils dédiés aux langages utilisés dans les systèmes critiques, se sont
révélés capables de passer à l’échelle. Nous évoquons ici quelques pistes récentes
ayant connus des développements spectaculaires, de sorte à positionner les trois
articles que nous avons choisis pour illustrer ce chapitre.

Contexte: vérification formelle de programmes

La vérification de programme au niveau du code source est basée sur l’utilisation
d’assertions, d’invariants, de pré/post conditions qui aident les programmeurs à
spécifier des propriétés. JML (Java Markup Language) [Burdy 05] et Alloy [Jack-
son 00] sont deux languages qui ont été proposés pour écrire de telles spécifica-
tions pour Java, Spec# [Barnett 11] a été proposé pour C#, tandis que ACSL (Ansi-
C Specification Langage) [Baudin 09] est dédié aux programmes C. Les assertions
et post-conditions peuvent être contrôlées à l’exécution, mais dans certains cas,
cela s’avère bien trop tardif. Par exemple, une assertion dans un programme pi-
lotant les commandes de vol d’un avion doit impérativement être vérifiée avant
exécution. De plus, la vérification à l’exécution des assertions ou post-conditions
compromet le contrôle du temps d’exécution, ce qui est inadapté pour certains sys-
tèmes temps-réels. Heureusement, il existe des techniques permettant de vérifier
statiquement les assertions, c’est à dire avant exécution des programmes.

On peut d’abord évoquer les outils qui s’appuient sur l’utilisation d’assistants
de preuve ou de démonstrateurs automatiques. ESC/Java (Extended Static Checker
for Java) [Flanagan 02] est un vérificateur statique de propriétés JML, telles que
l’absence de division par zéro, ou bien le maintient des indices d’un tableau dans
ses bornes. Cet outil repose sur l’utilisation du démonstrateur Simplify [Detlefs 05].
CAVEAT [Antoine 94] et la plateforme Why [Filliâtre 04, Bobot 11] sont des out-
ils qui peuvent aider le programmeur à certifier des assertions ou post-conditions
pour les programmes C. Spec# [Barnett 11] est un langage et un outil de vérification

37

formelle qui s’appuie sur l’utilisation du résolveur Z3 [De Moura 08b]. Ces outils,
qui connaissent actuellement des développements importants [Barnett 11], souf-
frent néanmoins de certaines limitations. Souvent leur axiomatique de base est in-
suffisante pour obtenir une démonstration complètement automatisée, et l’intervention
de l’utilisateur est nécessaire pour obtenir la preuve de certains lemmes. En ce qui
concerne le traitement des boucles, ces outils réclament la donnée d’invariants de
boucles qui sont difficiles à spécifier. De plus, ces approches reposent sur des hy-
pothèses quant à la sémantique opérationnelle des langages de programmation, ce
qui limite la portée des preuves obtenues.

Une autre approche classique en vérification de programme est l’utilisation de
techniques d’abstractions pour inférer et contrôler des propriétés, en analysant sta-
tiquement le programme. L’Interprétation Abstraite [Cousot 77, Cousot 92] infère
des propriétés sur les domaines abstraits dans le but de prouver l’absence de cer-
taines erreurs du programme lors de son exécution (e.g., absence de débordement
de capacités, absence de déréférencement de pointeurs nuls). L’analyseur statique
ASTREE [Cousot 05], l’analyseur Polyspace C Verifier et l’analyseur de valeurs de
Frama-C [Canet 09] sont des outils phares de l’Interprétation Abstraite, permet-
tant de vérifier statiquement des propriétés sur des programmes C critiques. Une
des limitations de l’Interprétation Abstraite provient de la difficulté de choisir le
domaine abstrait adapté à la propriété à vérifier. Par contre, les approches à base
d’Interprétation Abstraite sont capables de traiter automatiquement les boucles
sans annotations supplémentaires, grâce à l’usage d’opérateurs particuliers (i.e.,
“widening/narrowing”).

Egalement basé sur des techniques d’abstractions, la vérification symbolique de
modèle avec abstractions1 explore les chemins d’un modèle du programme dans
le but de trouver des contre-exemples à une propriété à vérifier. Grâce à des des
méthodes de raffinement automatique de modèle, SLAM [Ball 01,Ball 11] et BLAST
[Henzinger 03] sont deux outils représentatifs de ce domaine de recherche qui ont
connus des succès très importants en matière de recherche de contre-exemples
pour les programmes C. Cependant, ces outils s’appuient des abstractions qui sur-
approximent l’ensemble des états atteignables et explorent des chemins de taille
bornée sur les modèles. Ainsi, ces outils peuvent produire de fausses alarmes et
certaines propriétés peuvent ne pas être vérifiées de par l’imprécision de la sur-
approximation.

1En Anglais, “symbolic model-checking with predicate abstraction” ou “counter-example guided
abstraction refinment”

Ces dernières années, beaucoup d’attention a également été portée à l’utilisation de
la résolution de contraintes pour automatiser tout ou partie de la vérification des
logiciels. En 2000, Andreas Podelski soulignait déjà que la vérification formelle
de programmes pouvait être vue comme une instanciation de la résolution de
contraintes [Podelski 00] et proposait avec Giorgio Delzanno des techniques de
“model-checking” basée sur les contraintes [Delzanno 01]. Cormac Flanagan a
également proposé des fondations théoriques à l’interprétation à contraintes des
programmes impératifs dans [Flanagan 04]. Dans ces approches, la vérification
de programme se réduit au problème consistant à montrer qu’un système de con-
traintes est satisfiable ou insatisfiable. Par exemple, montrer qu’une propriété est
vérifiée en un point particulier du code source conduit à résoudre un système de
contraintes qui caractérise l’état du programme sur un ou plusieurs chemins qui
atteignent ce point. Des travaux récents se focalisent sur l’utilisation de résolveurs
de contraintes dans le contexte du “software model checking”, c’est à dire du con-
trôle de propriétés sur des modèles bâtis par analyse du code source. Mais, c’est
principalement dans le domaine du test logiciel que les outils basé sur la résolution
de contraintes ont atteint un certain niveau de maturité [Godefroid 08a].

Comme évoqué dans les chapitres précédents, l’approche que nous avons pro-
posée dès 1998 a conduit au développement de plusieurs prototypes de recherche.
Les outils INKA [Gotlieb 00b, Gotlieb 06b], TAUPO [Denmat 07b], et EUCLIDE
[Gotlieb 09a] sont des générateurs automatiques de test basé sur les résolveurs de
contraintes SICSTUS clpfd [Carlsson 97] et clpq [Holzbaur 95], qui ont été expéri-
mentés de manière approfondie sur des programmes C critiques. Aux Etats-Unis,
l’utilisation de résolveurs SAT et de résolveurs de Programmation Linéaire pour
la génération automatique de cas de test a connu des développements spectacu-
laires. Les travaux de Patrice Godefroid et de Koushik Sen [Godefroid 05, Sen 05]
ont initié le développement de plusieurs générateurs de tests basés sur l’exécution
symbolique dynamique, tels que PEX [Tillmann 08] et SAGE [Godefroid 08b] chez
Microsoft, CREST [Burnim 08] à l’Université de Berkeley, ou EXE [Cadar 06] à
l’Université de Stanford. Tirant partie des progrès importants réalisés dans le do-
maine des résolveurs SMT (Satisfiability Modulo Theory), certains de ces outils ont
démontré des capacités impressionnantes de passage à l’échelle [Godefroid 09].
En France, Bruno Marre et Nicky Williams ont développé au CEA le générateur de
tests GATEL [Marre 00] pour les programmes Lustre, et PathCrawler [Williams 05]
pour les programmes C. Ces outils, qui s’appuient sur Colibri, un résolveur de con-
traintes basé sur la propagation de contraintes, sont utilisés pour générer des tests
dans des applications de taille industrielle. Hélène Collavizza, Michel Rueher et
Pascal Van Hentenryck ont proposé CPBPV pour la vérification de propriétés sur
les programmes Java [Collavizza 08]. CPBPV s’appuie sur l’utilisation de deux
résolveurs de contraintes, i.e., ILOG CPLEX et JSolveur [Leconte 06, Berstel 10],
et se montre compétitif avec certains “model-checkers” dédiés à l’analyse et à la
vérification de code source.

Les articles sélectionnés

Les trois articles présentés dans ce chapitre introduisent une approche originale
pour le test à base de contraintes : l’utilisation de techniques de calculs sur les do-
maines abstraits pour améliorer la résolution de contraintes. Afin d’obtenir une
résolution efficace des systèmes de contraintes issus des modèles, nous avons bâti
une procédure qui utilise les domaines abstraits tels qu’ils ont été proposés en In-
terprétation Abstraite [Cousot 77, Cousot 92]. A l’instar d’autres approches telles
que celle suivie dans le résolveur Abscon [Merchez 01] ou celle de [Truchet 10],
nous avons montré l’existence de liens étroits qui unissent les notions classiques
de filtrage par consistance locale et calculs sur les domaines abstraits [Gotlieb 09d].
Nous avons également montré comment utiliser certains opérateurs d’union ab-
straite dans le cadre de la génération automatique de tests [Denmat 07b]. Notre
travail dans ce domaine a porté sur la réalisation du logiciel Euclide, qui com-
bine le filtrage par consistance de bornes avec une consistance à base de calculs
polyédriques, pour vérifier automatiquement des propriétés pour les programmes
C critiques.

A. Gotlieb. EUCLIDE: A constraint-based testing platform
for critical c programs. In 2th IEEE International Confer-
ence on Software Testing, Validation and Verification
(ICST’09), Denver, CO, Apr. 2009.

Euclide: A Constraint-Based Testing framework for critical C programs∗

Arnaud Gotlieb
INRIA Rennes - Bretagne Atlantique

Campus Beaulieu, 35042 Rennes Cedex, France
Arnaud.Gotlieb@irisa.fr

Abstract

Euclide is a new Constraint-Based Testing tool for veri-
fying safety-critical C programs. By using a mixture of sym-
bolic and numerical analyses (namely static single assign-
ment form, constraint propagation, integer linear relaxation
and search-based test data generation), it addresses three
distinct applications in a single framework: structural test
data generation, counter-example generation and partial
program proving. This paper presents the main capabilities
of the tool and relates an experience we had when verify-
ing safety properties for a well-known critical C component
of the TCAS (Traffic Collision Avoidance System). Thanks
to Euclide, we found an unrevealed counter-example to a
given anti-collision property.

1 Introduction

Context. Safety-critical systems must be thoroughly
verified before being exploited in commercial applications.
In these systems, software is often considered as the weak-
est node of the chain and many efforts are deployed in order
to reach a satisfactory testing level. A challenge in this area
is the automation of the test data generation process for sat-
isfying functional and structural testing requirements. For
example, the standard document which currently governs
the development and verification process of software in air-
borne system (DO-178B) requires the coverage of all the
statements, all the decisions and MC/DC at the highest level
of criticality and it is well-known that DO-178B structural
coverage is a primary cost driver on avionics project.

In addition, the verification process of critical systems
often requires the verification of safety properties, as peo-
ple’s life may rely on these properties. For airborne sys-
tems, some safety properties can be extracted from specifi-

∗This work is partially supported by ANR through the RNTL CAT and
the CAVERN projects under the reference ANR-07-SESUR-003

cation documents that describe the so-called anti-collision
theory regulating the controlled airspace. Checking these
safety properties is mandatory and is usually preformed
by manual code reviews. Although they are widely used,
most of the existing testing tools on the market are cur-
rently restricted to test coverage monitoring and measure-
ments. Coverage monitoring answers to the question: what
are the statements or branches covered by the test suite ?
while coverage measurements answers to: how many state-
ments or branches have been covered ? But these tools
usually cannot find the test data that can execute a given
statement, branch or path in the source code. In most in-
dustrial projects, the generation of structural test data is still
performed manually and finding automatic methods for this
problem remains a holly grail for most testers. Neverthe-
less, several experimental tools exist for C programs in-
cluding INKA [20], PATHCRAWLER [32, 27], CUTE [30] or
PEX [31], but none of them can also check safety properties
or generate counter-examples that invalidate safety prop-
erties. Software model-checking tools such as SAVE [9],
MAGIC [6], BLAST [23] or CBMC [8] have been proposed
for checking properties over a piece of C code. But, these
tools usually cannot generate a test suite that covers selected
structural criteria. Finally, proof-based environments such
as WHY/CADUCEUS [18] can automatically prove proper-
ties for C programs. But these tools cannot generate test
cases or counter-examples.

Euclide. In this paper, we propose Euclide a constraint-
based testing tool that features three main applications:
structural test data generation, counter-example generation
and partial program proving for critical C programs. The
core algorithm of the tool takes as input a C program and
a point to reach somewhere in the code. As a result, it out-
comes either a test datum that reaches the selected point,
or an “unreachable” indication showing that the selected
point is unreachable. Optionally, the tool takes as input ad-
ditional safety properties that can be given under the form
of pre/post conditions or assertions directly written in the

1

code. In this case, Euclide can either prove that these prop-
erties or assertions are verified or find a counter-example
when there is one. As these problems are undecidable in
the general case, Euclide only provides a semi-correct pro-
cedure (when it terminates, it provides the right answer) for
them. Hopefully, by restricting the subset of C that the tool
can handle (no dynamic memory allocation, no recursion)
these non-termination problems remain infrequent in prac-
tice. In addition, Euclide implements several procedures
that combine atomic calls to the core algorithm. For exam-
ple, by selecting appropriate points to reach in the source
code, the tool can generate a complete test suite able to
cover the all statements or the all decisions criteria.

Providing a tool able to deal with these three applications
(structural test data generation, counter-example generation
and partial program proving) in a single framework offers
several advantages:

• For the developers having to maintain code they did
not wrote, using a tool able to generate a failure-
causing test datum that reaches a given point facilitates
the debugging process. In fact, the test datum can eas-
ily be submitted as input to a symbolic debugger that
will drive the computation towards the failure-causing
point in the code ;

• In the unit testing phase, achieving high coverage with
a test set that satisfies safety assertions improves the
quality of the test selection process. The issued test set
favorably enriches the set of tests to replay for future
versions of the software (Regression Testing) ;

• For certification purposes, it is convenient to work
only on a single certification product, namely the
source code along with its annotations (assertions and
pre/post conditions). Showing that the program satis-
fies all the required safety properties and that all parts
of the program are executable and have been tested
with respect to these properties is certainly a good way
to convince a certification authority that the developed
software is correct and reliable.

The underlying technology of Euclide is Constraint-Based
Testing (CBT). Constraint-Based Testing is a two-stage pro-
cess consisting first to generate a constraint system that cor-
responds to the testing objective we want to reach (for ex-
ample, a selected point in a source code) and then, second to
solve the constraint system by using well-recognized con-
straint programming techniques. CBT received consider-
able attention these latter years as constraint programming
emerged as a worthwhile programming paradigm and solv-
ing techniques have been much improved.

Contributions. The originality of Euclide comes from
its unique way of combining symbolic and numerical anal-
yses such as static single assignment form, constraint prop-

agation, integer linear relaxation and search-based test data
generation. Static single assignment form (SSA) relieves
the tool from using costly and path-oriented symbolic eval-
uation techniques for generating the constraint system. In-
deed, SSA allows considering several paths going through
the selected point to reach at the same time. Thanks to con-
straint propagation, Euclide nicely handles non-linear op-
erations such as multiplication between unknown variables,
division, conditional and loop statement within C programs.
Thanks to integer linear relaxation, the tool handles ef-
ficiently linear operations over integer variables. It also
detects some unsatisfiable (possibly non-linear) constraint
systems which were unbearable without this technique. Fi-
nally, thanks to its search-based test data generator that co-
operatively labels the variables according to distinct heuris-
tics, Euclide can generate test data or counter-examples in
very efficient way. In this paper, we do not claim that Eu-
clide is better than other more specialized test data gener-
ators or software model-checkers, but we show that this is
its combination of symbolic and numerical techniques that
offer the opportunity to get results outside of the scope of
other tools. We exemplify this statement by our recent ex-
perience on using Euclide to prove safety properties for a
well-known critical C component of the TCAS (Traffic Col-
lision Avoidance System). Thanks to Euclide, we found an
unrevealed counter-example to a given anti-collision prop-
erty.

Plan of the paper. The rest of the paper is organized
as follows: Section 2 reviews the main technologies used
in Euclide. Section 3 presents its architecture and imple-
mentation while Section 4 relates our experience in using
Euclide for generating test data and checking safety prop-
erties of a critical module of the TCAS. Section 5 presents
the related work and finally, Section 6 concludes and draws
some perspectives to this work.

2 Constraint generation and solving

2.1 Critical ISO/IEC compliant C pro-
grams

Our approach is dedicated to the testing of safety-critical
(and ISO/IEC compliant) C programs. These programs
share some characteristics such as being written in a re-
stricted subset of the C language that excludes recursion
and dynamic memory allocation among other things. The
C language, as defined by the ISO/IEC standard [33], has
also the considerable advantage to be well defined in terms
of syntax and semantics, even if several operations have still
an undefined behavior1 or a behavior defined by the imple-

1Exact behavior which arises is not specified by the standard, and ex-
actly what will happen does not have to be documented by the C imple-
mentation.

mentation (in particular for floating-point computations).
Euclide handles a subset of C that includes integer and

floating-point computations, pointers towards named loca-
tions, arrays of statically-allocated size, structures, function
calls, bit-to-bit operations such as masks, all control struc-
tures (including loops) and almost all operators (34 over
42). But, it also has some restrictions: it does not deal ac-
curately with unstructured statements such as gotos, uncon-
strained pointer arithmetic (such as using a physical address
of a memory segment or adding two unrelated addresses
as if they were integers), function pointers, functions with
a unknown number of parameters, volatiles, unions, mem-
ory type casting (such as reading an integer as it was an
address), library and external function calls (unavailable
source code).

2.2 Generating Euclide programs

Euclide is based on a constraint model of C programs.
This model, expressed in a dedicated language, is extracted
from the source code by several transformational passes:
parsing, normalization, pointer analysis, Static Single As-
signment form and constraint model generation. In this
section, we briefly review all these passes and discuss the
main technologies used in Euclide to generate and solve
constraint systems corresponding to testing objectives.

Parsing and normalization. This pass consists in
building a symbol table and an abstract syntax tree for
each compilation unit (preprocessed program). The sym-
bol table keeps track of the type, scope, memory allo-
cation class of each variable of the program while the
abstract syntax tree captures the syntax of all the (non-
declarative) statements of each function. Normalization
is a process that permits to break complex statement into
simpler ones. The rationale behind this pass is to sim-
plify other passes by considering a smaller set of state-
ments to analyze. Complex control structures are rewritten
into simpler ones, function calls and arguments are isolated
as well as side-effect expressions, multi-operators state-
ments are decomposed. For example, thanks to the intro-
duction of new temporary variables, a complex assignment
statement such as e=v1*v2*f()+v3; is decomposed
into t0=f(); t1=v1*v2; t2=t1*t0; e=t2+v3;
because the function call has a higher priority than * and +
and operands are evaluated from left to right. Note that such
decomposition correctly handles multi-occurrences in C ex-
pressions. In the presence of floating-point computations,
special attention must be paid to preserve the semantics. In
particular, the decomposition requires that intermediate re-
sults of an operation conform to the type of storage of its
operands2. In the previous example, if v1 and v2 are of

2This property is not a requirement of IEEE-754 which is the standard
that governs floating-point computations and consequently it is not always

single-format, then the temporary variable t1 must also be
single-format. For floating-point computations, this process
has been extensively presented in a dedicated paper [4].

Points-to analysis. Euclide implements a points–to
analysis that statically collects a set of variables that may
be pointed by the pointers of the program and determines
the set of memory locations that can be accessed through
a dereference [21]. We selected a flow-sensitive points-to
analysis previously introduced by Emami et al. [16] where
each points-to relation is a triple: pto(p, a, definite) or
pto(p, a, possible) where a denotes a variable pointed by
p. In the former case, p points definitely to a on any control
flow path that reaches the statement where the pointing re-
lation has been computed. In the latter case, p may points to
a only on some control flow paths. In a flow-sensitive anal-
ysis, the order on which the statements are executed is taken
into account and the analysis is computed on each statement
of the program.

Single Static Assignment form (SSA). A key-feature
of Euclide concerns its use of the SSA form to avoid the
usual costly path exploration phase of other tools. The SSA
form is a semantics-preserving transformation of a pro-
gram where each variable has a unique definition and every
use of this variable is reached by the definition. Perform-
ing this transformation requires to rename uses and defi-
nitions of the variables. For example i=i+1; j=j*i is
transformed into i2=i1+1; j2=j1*i2. At the junction
nodes of the control structures, SSA introduces special as-
signments called φ-functions, to merge several definitions
of the same variable : v3 = φ(v1,v2) assigns the value
of v1 in v3 if the flow comes from the first branch of the
decision, the value of v2 otherwise. SSA provides spe-
cial expressions to handle arrays : access(a,k) which
evaluates to the kth element of a, and update(a0,j,v)
which evaluates to an array a1 which has the same size and
the same elements as a0, except for j where value is v. In
the presence of pointers, special care must be taken when
expliciting the possible hidden definitions of variables. We
therefore defined a special form called Pointer SSA that
captures hidden definitions through the usage of new spe-
cial assignments exploiting the results of the flow-sensitive
points-to analysis. The interested reader can consult [21]
to get more details on our implementation of the so-called
Pointer SSA form which accurately captures hidden defini-
tions due to dereferences.

Constraint generation. Finally, statements under SSA
form are converted into constraints in a dedicated interme-
diate language (not very inventively called Euclide). Rela-
tions, which are units of the language, can be either user-
defined or primitive. User-defined relations correspond to
functions defined in the C program while primitive relations

true. For example, on Intel’s architectures extended formats are used by
default to store intermediate results

are relations provided by the language itself. A relation can
call other relations, allowing so to capture the C function
calling mechanism. Examples of primitive relations include
the ITE relation that models a conditional statement or the
W relation modeling iterative statements. We will discuss
the ITE relation in details in Sec.2.3 while details on W
can be found in [13]. Evaluating an Euclide program yields
either to true (= 1), or false (= 0) or suspend (= 0..1), cor-
responding to the truth value of the last evaluated relation
of the program. Evaluation is incremental and relations can
be awoken by additional relations. Fig.1 contains a simple
Euclide program that implements a relational version of the
greatest common divisor algorithm. Note that this Euclide
program has been automatically generated from the imper-
ative version of the gcd program.

rel GCD (X, Y,Z) iff % true iff Z = gcd(X, Y)
{

[X,Y,Z] in integers(unsigned, 32),
X > 0, Y > 0, Z > 0,
W(X > 0, [X, Y], [X4, Y 2], [X5, Y 3],
{

ITE (X < Y, [X,Y], [X2, Y 1], [X3, Y 2],
{

locals [X1], % X1 is local to the current bloc
X1 = X + Y ,
Y 1 = X1− Y ,
X2 = X1− Y 1,

},
{ } % There is no Else part
),

X4 = X3− Y 2
})

}

Figure 1. The Euclide GCD program

On the request GCD(X,Y,Z), X in 1..10, Y
in 10..20, Z in 1..1000, the constraint solvers of
Euclide reduce the bounds of Z to 1..10. Furthermore, if
we add the relation X=2*Y, then Euclide automatically de-
duces that Zmust be equal to Y to satisfy the request, which
is a strong deduction usually outside the scope of other con-
straint solvers. In addition, the Euclide language includes a
reach directive that is used to specify testing objectives. By
inserting a reach directive in an Euclide program, the user
unambiguously selects a location to reach within the source
code and constrains the solutions of the program to satisfy
this objective. For example, in the program of Fig.1, adding
a reach directive in the Then-part of the conditional rela-
tion, permits to generate a test datum (values for X,Y) that
reaches this part through an executable path. This reach
directive is a key point of Euclide as it permits to specify
various problems of reacheability, including structural test
data generation and counter-example generation.

An error-free semantics. The Euclide program cap-
tures an error-free relational semantics of its correspond-

ing C program. In other words, executions that yield errors
such as dividing-by-zero or null pointer dereferencing are
not considered when solutions of the Euclide program are
seeked. In fact, Euclide aims at finding functional faults and
not runtime errors (i.e. errors that cause exceptions at run-
time). Typically, a functional fault occurs in a program P
when P returns the value 3 when 2 was expected. Detecting
functional faults is crucial in the context of safety-critical
program verification as people’s life may rely on it. Note
that functional faults cannot be detected by existing static
analyzers as there is no oracle in these tools. By focusing
on functional faults only, our constraint model is also sim-
pler to implement and more efficient, as it does not have to
maintain spurious erroneous states.

2.3 Constraint solving

The most innovative part of Euclide concerns its con-
straint solving engine. As said previously, Euclide imple-
ments constraint propagation, dynamic linear relaxation and
search-based test data generation in order to satisfy testing
objectives. A testing objective can be either 1) to generate a
test datum that passes through a reach directive, 2) to gener-
ate a counter-example (i.e. a complete path that invalidates
a property) or 3) to prove that a given property is satisfied
by all executions of the program. Both former cases cor-
respond to find a solution of a constraint system while the
latter corresponds to show that a certain constraint system
is unsatisfiable. In the latter case, the proof is only par-
tial because all the domains on which the proof holds are
bounded.

Constraint Propagation (CP). Roughly speaking, CP
considers each constraint in isolation as a filter for the vari-
ation domain of the constraint variables. Once a reduction
is performed on the domain of a variable, CP is awaking
the other constraints that hold on this variable in order to
propagate the reduction. Technically, CP is incrementally
introducing constraints into a propagation queue. Then,
an iterative algorithm is managing each constraint one by
one into this queue by filtering the domains of their in-
consistent values. When the variation domain of variables
is too large, filtering algorithms consider usually only the
bounds of the domains for efficiency reasons: a domain
D = {v1, v2, . . . , vn−1, vn} is approximated by the range
v1..vn. When the domain of a variable is pruned then the
algorithm reintroduces in the queue all the constraints that
hold on this variable. The algorithm iterates until the queue
becomes empty, which corresponds to a state where no
more pruning can be performed. When selected in the prop-
agation queue, each constraint is added into a constraint–
store which memorizes all the considered constraints. The
constraint–store is contradictory if the domain of at least
one variable becomes empty. In this case the corresponding

testing objective is shown as being unsatisfiable.
Efficiency and completeness of CP. In the worst case,

constraint propagation runs in O(mn) where m denotes the
number of constraints and n denotes the size of the largest
domain. But constraint propagation alone does not guar-
antee satisfiability, as it just prunes the variation domains
without looking at potential solutions. And it must be cou-
pled with other mechanisms in order to find solutions or to
show inconsistency3

Dynamic Linear Relaxations (DLRs). In [14], we in-
troduced DLRs to relax dynamically all the constraints of
an Euclide program, including the non-linear ones, within
a Linear Programming framework. Linear Programming
techniques such as the simplex procedure can solve huge in-
stances of linear constraint systems very efficiently. Linear
relaxation can be understood as a systematic way to over-
approximate Euclide’s relations by linear constraints. We
integrated linear relaxations within the constraint propaga-
tion process, yielding to an optimized cooperation scheme
of the constraint solving process. For control structures
(conditionals, loops) we proposed specific DLRs based on
case-based reasoning and abstract interpretation techniques
[13]. For example, the DLR of the ITE relation uses the
following principles: given an ITE relation modeling a dis-
junction between two subpaths (Then–part and Else–part),
first try to prove that one of the two disjuncts is unsatisfiable
with the rest of the constraints and, thus, replace the overall
disjunction by the other disjunct. Second, when this case-
based reasoning fails, compute the union of both domains
as in the following example: from the disjunctive constraint
X = Y ∨X = 5 with domainsDX = −1000..1000, DY =
0..1, one can deduce that DX = 0..5, DY = 0..1. In Eu-
clide, we extended the union principle with linear relations.
For example, considering X = Y + 10 ∨ X = Y − 10
with domains DX = DY = 0..20 we deduce that −10 ≤
X−Y ≤ 10 while the above reasoning over domains would
not have deduce anything new on the domains.

Test Data Generation. CP and DLRs cannot guaran-
tee satisfiability on their own as they both computes over-
approximations of the sets of solutions. Hence, it is nec-
essary to combine these processes with a labeling step in
order to exhibit a solution (a test data satisfying the test-
ing objective or a counter-example to a given property) or
to demonstrate unsatisfiability (a partial proof of the prop-
erty). Such a labelling step consists in exploring the input
search space. One remarkable feature of modern labelling
procedures is their ability to awake constraint propagation.
Once a value a is assigned to a variable v, a constraint v = a
is added to the constraint system and awakes other con-
straints holding on v. Thanks to CP, the input search space
is likely to be pruned before having to enumerate all the val-

3Proving a property over a piece of code in Constraint-Based Testing
requires showing that a constraint system is unsatisfiable.

ues of the variables domain. In Euclide, we implemented
and experimented several heuristics to choose the variable
and the value to enumerate first. Finally, we depicted a la-
belling procedure that enchains several heuristics: domain
constraints, domain splitting, exhaustive search, and ran-
dom choices. Domain constraints consists in exploring sub-
domains of the input search space by iteratively increasing
the size of the explored subdomains, while domain splitting
consists in dividing the subdomains by propagating division
constraints. For example, if x ∈ 0..232 − 1 then domain
splitting first adds the division constraint x ∈ 0..231 − 1
which will be propagated throughout the constraint system
and second it adds x ∈ 231..232 − 1. Exhaustive search is
the process that will enumerate all the values in the increas-
ing or decreasing order of a given single dimension subdo-
main while random choices will pick up values at random
within a domain. Thanks to these heuristics, search-based
test data generation allows to find solutions in most cases.
However, as the problem of finding solutions of a non-linear
constraint system over finite domain is NP hard [22], it may
happen that the search fails in a reasonable amount of time.
For these reasons, we implemented a parameterized time-
out process to the search.

3 Architecture and implementation

Euclide features three main applications: structural test
data generation, counter-example generation and partial
program proving. The tool architecture shown in Fig.2 and
its implementation were thought with these applications in
mind.

3.1 Architecture

The tool takes a set of C files as input, optionally anno-
tated by pre/post conditions and assertions (input column).
For each C function of the files, an intra-procedural control
flow graph is built and can be displayed through a graphi-
cal user interface (Control flow graph generator and CFGs
component of the output column). In addition, an Euclide
program is generated through the passes that have been
presented above (parsing, normalization, points-to analysis,
SSA form, constraint generation). Selecting either a node
or a branch to reach yields to add a reach directive within
the intermediate Euclide program (testing objectives of the
input column). From there, constraint solving is launched
according to some parameterization through an evaluator
component. When a test data is generated, the flow is mon-
itored either on the control flow graph or on a textual view
of the Euclide program. The value of each individual input
is shown and recorded when agreed by the user. Option-
ally, the linear relations that over-approximate each inter-
mediate state of the analysis are printed within an interme-

GUI (Tcl/Tk) /Core (PROLOG)

file.c +
compilation
command

C parser

Normalization
Points-to analysis

SSA form generator

Constraint
generation

Testing
objectives

(reach directives)

Output

Control flow
graphs generatorPre/post

conditions

Test data
Test sets

CFGs

Evaluator

Coverage
monitoring

Symbol
table

Input

Euclide
intermediate

program

Built-in
Relations

Counter-examples
Non-feasibility
informations

Partial Proofs

Utilitaries

Figure 2. Euclide’s architecture

diate file. When the testing objective is unsatisfiable (non-
feasible point or unsatisfiable property), then this is reported
to the user. In addition, several automatic structural test data
generation procedures are available such as generating a test
set that covers all the executable statements or decisions.
These procedures use several algorithms that add reach di-
rectives in appropriate locations.

3.2 Implementation

The Euclide’s implementation includes 9 internal com-
ponents (inside the box of Fig.2) and two additional inter-
face components. The tool is mainly developed in Prolog
(∼10 KLOC), C (∼0.3 KLOC) and Tcl/Tk (∼0.5 KLOC).
The internal components include a backtrackable C parser
written with the Definite Clause Grammar of Prolog, a
SSA form generator based on the single-pass generator of
Brandis and Mossenbock [5], an Euclide program generator
and parser, a built-in relations library that implements most
of the C operations (conditionals, loops, bit-to-bit opera-
tors, logical operators, function call operator, access/update,
memory operations,...) and an utilitary component. The ad-
ditional interface components implement the graphical user
interface in Tcl/Tk and the batch mode in Prolog. Floating-
point low-level representation and operations are imple-
mented in C.

The evaluator component implements several constraint
solvers that make use of the two following libraries: the
clpfd library of Sicstus Prolog which implements a finite
domains constraint solver ; and the clpq library that imple-

ments a linear programming solver based on simplex over
the rationals. We made the two solvers cooperate by im-
plementing our own constraint propagation queue and by
building a dedicated constraint propagation solver.

4 Case study

Euclide is a Constraint-Based Testing tool dedicated to
the validation of critical C programs and besides the tradi-
tional validation on academic examples, we wanted to eval-
uate the capabilities of Euclide on a real-world program. A
typical (but small) example is the well-documented TCAS
component of the Siemens suite. This suite was initially
provided by Thomas Ostrand and its colleagues at Siemens
Corporate Research Unit for an experimental study of the
fault detection capabilities of coverage criteria [24]. It was
then exploited by both Industry and Academia to evalu-
ate testing strategies. Each component of the suite comes
with a set of test cases and a set of mutants that exemplify
typical faults. Recently, the suite was made publicly and
freely available through the Software-artifact Infrastructure
Repository [15].

TCAS (Traffic Alert and Collision Avoidance System)
is an on-board aircraft conflict detection and resolution sys-
tem embedded on all commercial aircrafts. The system is
intended to alert the pilot to the presence of nearby aircraft
that pose a mid-air collision threat and to propose maneu-
vers so as to resolve these potential conflicts. In cases of
collision threats, the TCAS enters some levels of alertness.
As shown on Fig.3, when an intruder aircraft enters a pro-
tected zone, the system issues a Traffic Advisory (TA) to
inform the pilot of potential threat. In addition, TCAS es-
timates the time remaining until the two aircrafts reach the
closest point of approach (CPA). If the danger of collision
increases then a Resolution Advisory (RA) is issued, pro-
viding the pilot with a proposed maneuver that is likely to
solve the conflict. The RAs issued by TCAS are currently
restricted to the vertical plane only (either climb or descend)
and their computation depends on time-to-go to CPA, range
and altitude tracks of the intruder.

Implementation. The main component (tcas.c), ex-
tracted from the Repository is responsible of the Resolu-
tion Advisories issuance. It is made up of 173 lines of C
code and contains nested conditionals, logical operators,
type definitions, macros and function calls. Fig.4 shows
the call graph of the program while Fig.5 shows the code
of the highest-level function Alt sep test which com-
putes the RAs. This function takes 14 global variables
as input, including Own Tracked Alt the altitude of the
TCAS equipped airplane, Other Tracked Alt the al-
titude of the “threat”, Positive RA Alt Thresh an
adequate separation threshold, Up Separation the esti-
mated separation altitude resulting from an upward maneu-

Figure 3. TCAS alarms

ver and Down Separation the estimated separation alti-
tude resulting from a downward maneuver.

Interestingly, any TCAS implementation should be cer-
tified under level B of the DO-178B standard4. This has
several implications w.r.t. the testing level required for cer-
tifying the TCAS. In particular, all the statements and deci-
sions of the source code must be executed at least once dur-
ing the testing process and any statement and decision must
be shown as being executable, because non-executable ele-
ments do not trace to any software requirements and do not
perform any required functionality.

Safety properties. In addition to these requirements,
any TCAS implementation should verify safety properties
that come from the aircraft anti-collision theory [28]. For
the considered component, several properties referring to
the possibility of issuing either an upward or a downward
RA have been previously formalized [26, 9]. Tab.1 shows
the five double properties extracted from [9]. For example,
property P1b says that if an upward maneuver does not pro-
duce an adequate separation while an downward maneuver
does, such as in Fig.6, then an upward RA should not been
produced.

Results and analysis. We conducted several experi-
ments on this program to evaluate the capabilities of Eu-
clide to serve as an aid for certification purposes. Firstly,
we evaluated structural test data generation for the cover-
age of the all decisions criterion. On an Intel Core Duo
2.4GHz clocked PC with 2GB of RAM, Euclide generated
a test set covering all the executable decisions of the tcas
program in 16.9 seconds, including time spent garbage col-

4The standard classifies systems under 5 criticality levels: from the
highest critical level A to the least critical E

Alt_sep_test

Non_Crossing_Biased_Climb Non_Crossing_Biased_Descend

Own_Below_Threat
Own_Above_Threat

Inhibit_Biased_Climb

Initialize

ALIM

main

Figure 4. Call graph of tcas.c

int alt sep test()
{

1. bool enabled, tcas equipped, intent not known;
2. bool need upward RA, need downward RA;
3. int alt sep;

4. enabled = High Confidence && (Own Tracked Alt Rate <= OLEV) && (Cur Vertical Sep > MAXALTDIFF);
5. tcas equipped = Other Capability == TCAS TA;
6. intent not known = Two of Three Reports Valid && Other RAC == NO INTENT;

7. alt sep = UNRESOLVED;

8. if (enabled && ((tcas equipped && intent not known) —— !tcas equipped))
{

9. need upward RA = Non Crossing Biased Climb() && Own Below Threat();
10. need downward RA = Non Crossing Biased Descend() && Own Above Threat();
11. if (need upward RA && need downward RA)

/* unreachable: requires Own Below Threat and Own Above Threat
to both be true*

12. alt sep = UNRESOLVED;
13. else if (need upward RA)
14. alt sep = UPWARD RA;
15. else if (need downward RA)
16. alt sep = DOWNWARD RA;
17. else alt sep = UNRESOLVED;

}

18. return alt sep;
}

Figure 5. Function alt sep test from tcas.c

lecting, stack shifting, or in system calls. It also showed
that the decision of line 11-12 of Fig.5 was non executable
in less than 0.2 second. Secondly, we evaluate partial pro-
gram proving on the safety properties of Tab.1. Results are
shown in Tab.2. Finding counter-examples to safety proper-
ties on a TCAS implementation could appear as being dra-
matic. But, the reader should be warned that this TCAS
implementation probably corresponds to a preliminary ver-
sion and that it has probably never been used in operational
conditions.

Surprisingly, we found that properties P2B, P3A and
P5B were not proved w.r.t. the implementation and, thanks
to Euclide, we exhibited verified counter-examples. These
counter-examples satisfy the preconditions but invalidate
the postconditions of the properties when submitted to the

Table 1. Safety properties for tcas.c
Num. Property Explanation Specifications

P1a Safe advisory selection
An downward RA is never issued when an down-
ward maneuver does not produce an adequate sepa-
ration

assumes Up Separation >= Positive RA Alt Tresh && Down Separation < Positive RA Alt Tresh;
ensures result ! = need Downward RA;

P1b Safe advisory selection
An upward RA is never issued when an upward ma-
neuver does not produce an adequate separation

assumes Up Separation < Positive RA Alt Tresh && Down Separation >= Positive RA Alt Tresh;
ensures result ! = need Upward RA;

P2a Best advisory selection
A downward RA is never issued when neither climb
or descend maneuvers produce adequate separation
and a downward maneuver produces less separation

assumes Up Separation < Positive RA Alt Tresh && Down Separation < Positive RA Alt Tresh &&
Down Separation < Up Separation; ensures result ! = need Downward RA;

P2b Best advisory selection
An upward RA is never issued when neither climb
or descend maneuvers produce adequate separation
and an upward maneuver produces less separation

assumes Up Separation < Positive RA Alt Tresh && Down Separation < Positive RA Alt Tresh &&
Down Separation > Up Separation; ensures result ! = need Upward RA;

P3a Avoid unnecessary crossing
A crossing RA is never issued when both climb or
descend maneuvers produce adequate separation

assumes Up Separation ≥ Positive RA Alt Tresh && Down Separation ≥ Positive RA Alt Tresh &&
Own Tracked Alt > Other Tracked Alt; ensures result ! = need Downward RA;

P3b Avoid unnecessary crossing
A crossing RA is never issued when both climb or
descend maneuvers produce adequate separation

assumes Up Separation ≥ Positive RA Alt Tresh && Down Separation ≥ Positive RA Alt Tresh &&
Own Tracked Alt < Other Tracked Alt; ensures result ! = need Upward RA;

P4a No crossing advisory selection A crossing RA is never issued assumes Own Tracked Alt > Other Tracked Alt; ensures result ! = need Downward RA;
P4b No crossing advisory selection A crossing RA is never issued assumes Own Tracked Alt < Other Tracked Alt; ensures result ! = need Upward RA;

P5a Optimal advisory selection
The RA that produces less separation is never is-
sued

assumes Down Separation < Up Separation; ensures result ! = need Downward RA;

P5b Optimal advisory selection
The RA that produces less separation is never is-
sued

assumes Down Separation > Up Separation; ensures result ! = need Upward RA;

A : Up_Separation
B : Down_Separation

Figure 6. Resolution Advisories

implementation. All the material of these experiments, in-
cluding the test data corresponding to counter-examples, is
available online5. In addition, counter-examples to prop-
erties P5B were not reported in the literature [9, 8, 6].
Moreover, we got these counter-examples and proofs very
quickly (all the counter-examples and proofs are generated
in less than 20s on our standard machine) which is encour-
aging for a future comparison with other more dedicated
tools.

5 Related work

Euclide addresses three distinct applications for C pro-
grams, namely test data generation for structural testing,
counter-example generation and partial program proving.
We are not aware of any tool having the same capabilities
for C programs. However, many tools exist for one or two
of these tasks.
Partial program proving. These tools usually apply
Floyd-Hoare logic or Dijkstra’s weakest preconditions cal-
culus to the formal verification of the so-called verification
conditions (VCs) extracted from programs and annotations.

5www.irisa.fr/lande/gotlieb/resources.html

Table 2. Verification of safety properties

Num Results
Time
(sec.)

Mem.
(MB)

P1a Property proved 0.7 4.6
P1b Property proved 0.7 4.6
P2a Property proved 0.6 4.6
P2b Counter-example found 0.7 4.6
P3a Counter-example found 5.4 6.3
P3b Property proved 1.2 4.6
P4a Counter-example found 6.8 6.9
P4b Counter-example found 2.7 5.9
P5a Property proved 0.6 4.6
P5b Counter-example found 1.0 4.6

Caduceus [18], which was pioneering deductive verifica-
tion of C programs, concurrently launches several interac-
tive proof assistants or theorem provers to prove a given
assertion. Spec# [25] infers loops invariants by using ab-
stract interpretation and infers VCs, even in the presence of
dynamic allocated objects on the heap. More recently, Dash
[2] exploits lightweight symbolic execution techniques and
a single call to a theorem prover to show that a given prop-
erty is satisfied on several paths of the implementation. Eu-
clide implements its own automated constraint solving pro-
cedures while Caduceus, Spec# and Dash exploit existing
interactive proof assistants and automated theorem provers.
As a result, Euclide deals more accurately with floating-
point computations [4] and more efficiently with integer-
based computations as it supposes every integer variable
to belong to a finite domain and implements its own ded-
icated constraint techniques. But Euclide is also harder to
develop and is less general because its proofs are only valid
for bounded integer variables.
Automatic test data generators. The test data generator
Godzilla was proposed very early [12] for Fortran programs
in the context of mutation testing. In a subsequent paper,
the dynamic domain reduction procedure was developed to

enrich the constraint solving capabilities of this approach
[29]. This procedure mimics the constraint propagation step
described in Sec.2.3. Constraint propagation is an old idea
that lates back to the beginning of the seventies and its use
has been proposed very early for test data generation [3].
InKa [20] was a pioneer in the use of Constraint Logic
Programming for generating test data for C programs. It
was able to generate test case for programs containing dy-
namic allocated structures as its memory model was rich
enough [7]. Euclide can be seen as a successor of InKa
as it shares many technical features with it (both are based
on SSA and Constraint Propagation). However, several dis-
tinct choices have been made for efficiency reasons. Us-
ing some apriori restrictions (no dynamic memory alloca-
tion, no recursion), the Euclide’s memory model is simpler
and permits to deal more efficiently with integer compu-
tations. PathCrawler [32], Dart [19] and CUTE [30] are
three modern path-oriented structural test data generators.
These three tools rely on path selection, symbolic execu-
tion and concolic execution. On the contrary, Euclide rely
on statement or decision selection (goal-oriented approach
[17]), static single assignment form and a mixture of sym-
bolic and numeric constraint solving procedures. The treat-
ment of loops is very different: while these path-based tools
unfold the control flow structure of loops to select a path,
Euclide handles a loop structure as a whole. By abstracting
the behavior of the loop structure (as done with abstract in-
terpretation techniques), the tool can deduce properties out-
side the scope of any path-based test data generator. For
example, Euclide can (sometimes) determine that a given
point, positioned after a loop structure, is unreachable. This
is impossible with a path-based tool that will enumerate in-
definitely all the paths through the loop structure. Recently,
Bardin and Herrmann performed a remarkable work on the
OSMOSE tool which aims at covering all executable paths
of a binary program by using constraint solving techniques
[1]. By addressing low-level binary-code, they opened a
door that we could benefit from for improving the coverage
of our own tool. In fact, C code often presents low-level
features that we cannot currently deal with (unconstrained
pointer arithmetic, dynamic jumps, ...).
Counter-example generation. Software model-checkers
such as Save [9], Blast [23], Magic [6] or Cbmc [8] per-
mit to find counter-examples to temporal properties over
C programs. These tools explore the paths of a bounded
model of programs in order to find a counter-example path
to the property. Some of them exploit predicate abstrac-
tion and counter-example refinement to boost the explo-
ration. Euclide contrasts with SAT-based or SMT-based
model-checkers as it does not abstract the program and does
not generate spurious counter-example paths. In particu-
lar it builds a high-level constraint model of C program
by capturing an error-free semantics without considering a

boolean abstraction of the program structure. Our approach
has more similarities with the CPBPV tool of Collavizza,
Rueher and Van Hentenryck [10, 11] that call several con-
straint solvers in sequence. Recently, its authors showed
that CPBPV could outperform the best model-checkers on
several classical benchmarks. As Euclide, CPBPV tool
is based on deductive constraint programming techniques.
However, research and experimental work remains to con-
firm these results obtained on a small set of academic pro-
grams.

6 Conclusion

In this paper, we introduced Euclide, a Constraint-based
testing platform for C programs. The capabilities of the
tool include structural test data generation, counter-example
generation and partial program proving and it combines nu-
merical and symbolic techniques, namely SSA, constraint
propagation, dynamic linear relaxations and search-based
test data generation. Euclide handles a large subset of C,
even if some apriori restrictions have been done (no recur-
sion, no dynamic allocation). The tool was applied to the
verification of a critical component of the TCAS, which
yields an unrevealed counter-example to a safety property.
However, the tool could be improved in many ways. Func-
tion calls are currently handled by inlining which prevents
Euclide from using efficient modular constraint-based anal-
ysis. Summaries of function calls could be exploited in the
test data generation process. Search-based test data genera-
tion currently exploits only complete heuristics that explore
the whole search space in the worst case. We could also
exploit local search techniques that are sometimes very effi-
cient. Other similar improvments are possible and requires
additional research works in order to increase the efficiency
of the tool.

7 Acknowledgment

Much of the choices and decisions taken within the de-
velopment of Euclide were discussed with other people, and
I am indebted to all of them. I would like to thanks es-
pecially Tristan Denmat who investigated the role of Ab-
stract Interpretation in the linear relaxation techniques we
employed. Many thanks also to Bernard Botella, Benjamin
Cama, Florence Charreteur, Nadjib Lazaar, Bruno Marre,
Matthieu Petit and Pierre Rousseau.

References

[1] Sebastien Bardin and Philippe Herrmann. Structural testing
of executables. In 1th Int. Conf. on Software Testing, Verifi-
cation and Validation (ICST’08), pages 22–31, 2008.

[2] N. Beckman, A. Nori, S. Rajamani, and R. Simmons. Proofs
from tests. In Proc. of ISSTA’08, pages 3–14, 2008.

[3] J. Bicevskis, J. Borzovs, U. Straujums, A. Zarins, and
E. Miller. SMOTL - a system to construct samples for data
processing program debugging. IEEE Transactions on Soft-
ware Engineering, 5(1):60–66, January 1979.

[4] B. Botella, A. Gotlieb, and C. Michel. Symbolic execution
of floating-point computations. The Software Testing, Verifi-
cation and Reliability journal, 16(2):pp 97–121, June 2006.

[5] M.M. Brandis and H. Mőssenbőck. Single-Pass Generation
of Static Single-Assignment Form for Structured Languages.
ACM Transactions on Programming Language and Systems,
16(6):1684–1698, Nov. 1994.

[6] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and
Helmut Veith. Modular verification of software components
in C. IEEE Transactions on Software Engineering (TSE),
30(6):388–402, June 2004.

[7] F. Charreteur, B. Botella, and A. Gotlieb. Modelling dy-
namic memory management in constraint-based testing. In
TAIC-PART (Testing: Academic and Industrial Conference),
Windsor, UK, Sep. 2007.

[8] Edmund Clarke and Daniel Kroening. Hardware verification
using ANSI-C programs as a reference. In Proc. of ASP-
DAC’03, pages 308–311, Jan. 2003.

[9] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze. Us-
ing symbolic execution for verifying safety-critical systems.
In Proceedings of the European Software Engineering Con-
ference (ESEC/FSE’01), pages 142–150, Vienna, Austria,
September 2001. ACM.

[10] H. Collavizza and M. Rueher. Exploration of the capabilities
of constraint programming for software verification. In Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’06), pages 182–196, 2006.

[11] H. Collavizza, M. Rueher, and P. Van Hentenryck. Cpbpv:
A constraint-programming framework for bounded program
verification. In Proc. of CP2008, LNCS 5202, pages 327–
341, 2008.

[12] R.A. DeMillo and J.A. Offut. Constraint-based automatic
test data generation. IEEE Transactions on Software Engi-
neering, 17(9):900–910, September 1991.

[13] T. Denmat, A. Gotlieb, and M. Ducasse. An abstract inter-
pretation based combinator for modeling while loops in con-
straint programming. In Proceedings of Principles and Prac-
tices of Constraint Programming (CP’07), Springer Verlag,
LNCS 4741, pages 241–255, Providence, USA, Sep. 2007.

[14] T. Denmat, A. Gotlieb, and M. Ducasse. Improving
constraint-based testing with dynamic linear relaxations. In
18th IEEE International Symposium on Software Reliability
Engineering (ISSRE’ 2007), Trollhttan, Sweden, Nov. 2007.

[15] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel.
Supporting controlled experimentation with testing tech-
niques: An infrastructure and its potential impact. Empirical
Software Engineering: An International Journal, 10(4):405–
435, 2005.

[16] E. Emami, R. Ghiya, and L.J. Hendren. Context–sensitive
interprocedural points–to analysis in the presence of function
pointers. In Proc. of PLDI’94, Orlando, FL, Jun. 1994.

[17] R. Ferguson and B. Korel. The chaining approach for soft-
ware test data generation. ACM Transactions on Software
Engineering Methodology, 5(1):63–86, Jan. 1996.

[18] J.C. Filliâtre and C. Marché. Multi-prover verification of c
programs. In 6th Int. Conf. on Formal Engineering Methods
(ICFEM’04), pages 15–29, Nov. 2004.

[19] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed auto-
mated random testing. In Proc. of PLDI’05, pages 213–223,
2005.

[20] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data
generation using constraint solving techniques. In Proc. of
ISSTA’98, pages 53–62, 1998.

[21] A. Gotlieb, T. Denmat, and B. Botella. Goal-oriented test
data generation for pointer programs. Information and Soft-
ware Technology, 49(9-10):1030–1044, Sep. 2007.

[22] P.V. Hentenryck, V. Saraswat, and Y. Deville. Design, imple-
mentation, and evaluation of the constraint language cc(fd).
Journal of Logic Programming, 37:139–164, 1998.

[23] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
verification with blast. In Proc. of 10th Workshop on Model
Checking of Software (SPIN), pages 235–239, 2003.

[24] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas
Ostrand. Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc. of ICSE
’94, pages 191–200, 1994.

[25] Rustan Leino. Efficient weakest preconditions. Inf. Process.
Lett., 93(6):281–288, 2005.

[26] C. Livadas, J. Lygeros, and N.A. Lynch. High-level mod-
eling and analysis of TCAS. In IEEE Real-Time Systems
Symposium, pages 115–125, 1999.

[27] Patricia Mouy, Bruno Marre, Nicky Williams, and Pas-
cale Le Gall. Generation of all-paths unit test with function
calls. In First International Conference on Software Testing,
Verification, and Validation, (ICST’08), pages 32–41, 2008.

[28] U.S. Department of transportation Federal Aviation Admin-
istration. Introduction to TCAS II - version 7, Nov. 2000.

[29] J.A. Offut, Z. Jin, and Pan J. The dynamic domain reduction
procedure for test data generation. Software–Practice and
Experience, 29(2):167–193, 1999.

[30] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a con-
colic unit testing engine for c. In Proc. of ESEC/FSE-13,
pages 263–272. ACM Press, 2005.

[31] Nikolai Tillmann and Wolfram Schulte. Parameterized unit
tests. In Proc. of ESEC/FSE-13, pages 253–262. ACM Press,
2005.

[32] N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler:
Automatic generation of path tests by combining static and
dynamic analysis. In In Proc. Dependable Computing -
EDCC’05, pages 281–292, 2005.

[33] www.open-std.org/JTC1/SC22/WG14/www/standards.
ISO/IEC 9899 - Programming languages - C, 1999.

Cet article et cet outil font la synthèse de notre contribution au domaine du
Test à Base de Contraintes (CBT), même si les difficultés rencontrées et les proposi-
tions techniques sont décrites avec beaucoup plus de détails dans d’autres articles.
Notre traitement des boucles s’appuie sur un combinateur original nommé w, qui
modélise les calculs itératifs en Programmation par Contraintes. Durant la prop-
agation de contraintes, les boucles sont considérées au même titre que d’autres
instructions, et obéissent à une stratégie de dépliage dynamique. Lorsque le dé-
pliage ne peut être décidé, une approche par élargissement, définie dans le cadre
de l’Interprétation Abstraite, est utilisée pour propager de l’information d’un état
avant itération à un état après itération. Cette contribution est résumée dans l’article
suivant.

T. Denmat, A. Gotlieb, and M. Ducasse. An abstract in-
terpretation based combinator for modeling while loops in con-
straint programming. In Proceedings of Principles and
Practices of Constraint Programming (CP’07), Springer
Verlag, LNCS 4741, pages 241–255, Providence, USA,
Sep. 2007.

An Abstract Interpretation Based Combinator
for Modelling While Loops in Constraint

Programming

Tristan Denmat1, Arnaud Gotlieb2, and Mireille Ducassé1

1 IRISA/INSA
2 IRISA/INRIA

Campus universitaire de Beaulieu 35042 Rennes Cedex, France
{denmat,gotlieb,ducasse}@irisa.fr

Abstract. We present the w constraint combinator that models while
loops in Constraint Programming. Embedded in a finite domain con-
straint solver, it allows programmers to develop non-trivial arithmetical
relations using loops, exactly as in an imperative language style. The
deduction capabilities of this combinator come from abstract interpreta-
tion over the polyhedra abstract domain. This combinator has already
demonstrated its utility in constraint-based verification and we argue
that it also facilitates the rapid prototyping of arithmetic constraints
(e.g. power, gcd or sum).

1 Introduction

A strength of Constraint Programming is to allow users to implement their own
constraints. CP offers many tools to develop new constraints. Examples include
the global constraint programming interface of SICStus Prolog clp(fd) [5], the
ILOG concert technology, iterators of the GECODE system [17] or the Con-
straint Handling Rules [8]. In many cases, the programmer must provide prop-
agators or filtering algorithms for its new constraints, which is often a tedious
task. Recently, Beldiceanu et al. have proposed to base the design of filtering al-
gorithms on automaton [4] or graph description [3], which are convenient ways of
describing global constraints. It has been pointed out that the natural extension
of these works would be to get closer to imperative programming languages [4].

In this paper, we suggest to use the generic w constraint combinator to
model arithmetical relations between integer variables. This combinator pro-
vides a mechanism for prototyping new constraints without having to worry
about any filtering algorithm. Its originality is to model iterative computations:
it brings while loops into constraint programming following what was done for
logic programming [16]. Originally, the w combinator has been introduced in [9]
in the context of program testing but it was not deductive enough to be used
in a more general context. In this paper, we base the generic filtering algorithm
associated to this combinator on case-based reasoning and Abstract Interpreta-
tion over the polyhedra abstract domain. Thanks to these two mechanisms, w

performs non-trivial deductions during constraint propagation. In many cases,
this combinator can be useful for prototyping new constraints without much ef-
fort. Note that we do not expect the propagation algorithms generated for these
new constraints to always be competitive with hand-written propagators.

We illustrate the w combinator on a relation that models y = xn. Note that
writing a program that computes xn is trivial whereas building finite domain
propagators for y = xn is not an easy task for a non-expert user of CP. Figure 1
shows an imperative program (in C syntax) that implements the computation
of xn, along with the corresponding constraint model that exploits the w com-
binator (in CLP(FD) syntax). In these programs, we suppose that N is positive
although this is not a requirement of our approach.

power(X,N){ power(X,N, Y) : −
Y = 1; w([X, 1, N], [Xin, Y in,Nin], [Xin, Y out,Nout], [, Y,],
while(N ≥ 1){ Nin # >= 1,

Y = Y ∗X; [Y out # = Y in ∗Xin,
N = N − 1}; Nout # = Nin− 1]).

return Y ; }

Fig. 1. An imperative program for y = xn and a constraint model

It is worth noticing that the w combinator is implemented as a global con-
straint. As any other constraint, it will be awoken as soon as X,N or Y have
their domain pruned. Moreover, thanks to its filtering algorithm, it can prune
the domains of these variables. The following request shows an example where
w performs remarkably well on pruning the domains of X,Y and N .

| ?- X in 8..12, Y in 900..1100, N in 0..10, power(X,N,Y).

N = 3, X = 10, Y = 1000

The w combinator has been implemented with the clp(fd) and clpq libraries
of SICStus prolog. The above computation requires 20ms of CPU time on an
Intel Pentium M 2GHz with 1 Gb of RAM.

Contributions. In this paper, we detail the pruning capabilities of the w
combinator. We describe its filtering algorithm based on case-based reasoning
and fixpoint computations over polyhedra. The keypoint of our approach is to
re-interpret every constraint in the polyhedra abstract domain by using Linear
Relaxation techniques. We provide a general widening algorithm to guarantee
termination of the algorithm. The benefit of the w combinator is illustrated on
several examples that model non-trivial arithmetical relations.

Organization. Section 2 describes the syntax and semantics of the w opera-
tor. Examples using the w operator are presented. Section 3 details the filtering
algorithm associated to the combinator. It points out that approximation is
crucial to obtain interesting deductions. Section 4 gives some background on
abstract interpretation and linear relaxation. Section 5 shows how we integrate
abstract interpretation over polyhedra into the filtering algorithm. Section 6
discusses some related work. Section 7 concludes.

2 Presentation of the w constraint combinator

This section describes the syntax and the semantics of the w combinator. Some
examples enlight how the operator can be used to define simple arithmetical
constraints.

2.1 Syntax

Figure 2 gives the syntax of the finite domain constraint language where the w
operator is embedded.

W ::= w(Lvar, Lvar, Lvar, Lvar,Arith Constr, LConstr)
If ::= if(Lvar,Arith Constr, LConstr, LConstr)
Lvar ::= var | Lvar
LConstr ::= Constr | LConstr
Constr ::= var in int..int | Arith Constr | W | If
Arith Constr ::= var Op Expr
Op ::= < | ≤ | > | ≥ | 6= | =
Expr ::= Expr + Expr | Expr − Expr | Expr ∗ Expr | var | int

Fig. 2. syntax of the w operator

As shown on the figure, a w operator takes as parameters four lists of vari-
ables, an arithmetic constraint and a list of constraints. Let us call these param-
eters Init, In,Out,End,Cond and Do. The Init list contains logical variables
representing the initial value of the variables involved in the loop. In variables
are the values at iteration n. Out variables are the values at iteration n + 1.
End variables are the values when the loop is exited. Note that Init and End
variables are logical variables that can be constrained by other constraints. On
the contrary, In and Out are local to the w combinator and do not concretely
exist in the constraint store. Cond is the constraint corresponding to the loop
condition whereas Do is the list of constraints corresponding to the loop body.
These constraints are such that vars(Cond) ∈ In and vars(Do) ∈ In ∪ Out.

Line 2 of Figure 2 presents an if combinator. The parameter of type
Arith Constr is the condition of the conditional structure. The two parameters
of type LConstr are the “then” and “else” parts of the structure. Lvar is the
list of variables that appear in the condition or in one of the two branches. We
do not further describe this operator to focus on the w operator.

The rest of the language is a simple finite domain constraint programming
language with only integer variables and arithmetic constraints.

2.2 Semantics

The solutions of a w constraint is a pair of variable lists (Init, End) such that the
corresponding imperative loop with input values Init terminates in a state where
final values are equal to End. When the loop embedded in the w combinator
never terminates, the combinator has no solution and should fail. This point is
discussed in the next section.

2.3 First Example: sum

Constraint sum(S,I), presented on Figure 3, constrains S to be equal to the
sum of the integers between 1 and I: S =

∑n
i=1 i

sum(I){

S = 0;

while(I > 0){

S = S + I;

I = I - 1;

}

return S;

sum(S,I) :-

I > 0,

w([0,I],[In,Nin],[Out,Nout],[S,_],

Nin > 0,

[Out = In + Nin,

Nout = Nin - 1]).

Fig. 3. The sum constraint derived from the imperative code

The factorial constraint can be obtained by substituting the line
Out = In + Nin by Out = In * Nin and replacing the initial value 0 by 1.
Thanks to the w combinator, sum and factorial are easy to program as far as one
is familiar with imperative programming. Note that translating an imperative
function into a w operator can be done automatically.

2.4 Second Example: greatest common divisor (gcd)

The second example is more complicated as it uses a conditional statement in the
body of the loop. The constraint gcd(X,Y,Z) presented on Figure 4 is derived
form the Euclidian algorithm. gcd(X,Y,Z) is true iff Z is the greatest common
divisor of X and Y .

gcd(X,Y){

while(X > 0){

if(X < Y){

At = Y;

Bt = X;

}else{

At = X;

Bt = Y;

}

X = At - Bt;

Y = Bt;

}

return Y;

gcd(X,Y,Z) :-

w([X,Y],[Xin,Yin],[Xout,Yout],[_,Z],

Xin > 0,

[if([At,Bt,Xin,Yin],

Xin < Yin,

[At = Yin, Bt = Xin],

[At = Xin, Bt = Yin]),

Xout = At - Bt,

Yout = Bt]).

Fig. 4. The gcd constraint

3 The filtering algorithm

In this section we present the filtering algorithm associated to the w operator
introduced in the previous section. The first idea of this algorithm is derived from
the following remark. After n iterations in the loop, either the condition is false
and the loop is over, or the condition is true and the statements of the body are
executed. Consequently, the filtering algorithm detailed on Figure 5 is basically
a constructive disjunction algorithm. The second idea of the algorithm is to use
abstract interpretation over polyhedra to over-approximate the behaviour of the
loop. Function w∞ is in charge of the computation of the over-approximation.
It will be fully detailed in Section 5.3.

The filtering algorithm takes as input a constraint store ((X,C,B) where X
is a set of variables, C a set of constraints and B a set of variable domains), the
constraint to be inspected (w(Init, In,Out,End,Cond,Do)) and returns a new
constraint store where information has been deduced from the w constraint. X̃
is the set of variables X extended with the lists of variables In and Out. B̃ is
the set of variable domains B extended in the same way.

Input:
A constraint, w(Init, In,Out, End,Cond,Do)
A constraint store, (X,C,B)

Output:
An updated constraint store

w filtering

1 (Xexit, Cexit, Bexit) := propagate(X̃, C ∧ Init = In = Out = End ∧ ¬Cond, B̃)
2 if ∅ ∈ Bexit

3 return (X̃, C ∧ Init = In ∧ Cond ∧Do ∧
4 w(Out, FreshIn, FreshOut, End,Cond′, Do′), B̃)

5 (X1, C1, B1) := propagate(X̃, C ∧ Init = In ∧ Cond ∧Do, B̃)
6 (Xloop, Cloop, Bloop) := w∞(Out, FreshIn, FreshOut, End,Cond′, Do′, (X1, C1, B1))
7 if ∅ ∈ Bloop

8 return (X̃, C ∧ Init = In = Out = End ∧ ¬Cond, B̃)
9 (X ′, C′, B′) := join((Xexit, Cexit, Bexit), (Xloop, Cloop, Bloop))Init,End

10 return (X ′, C′ ∧ w(Init, In,Out, End,Cond,Do), B′)

Fig. 5. The filtering algorithm of w

Line 1 posts constraints corresponding to the immediate termination of the
loop and launches a propagation step on the new constraint store. As the loop
terminates, the variable lists Init, In,Out and End are all equal and the condi-
tion is false (¬Cond). If the propagation results in a store where one variable has
an empty domain (line 2), then the loop must be entered. Thus, the condition
of the loop must be true and the body of the loop is executed: constraints Cond
and Do are posted (line 3). A new w constraint is posted (line 4), where the
initial variables are the variables Out computed at this iteration, In and Out
are replaced by new fresh variables (FreshIn and FreshOut) and End variables
remain the same. Cond′ and Do′ are the constraints Cond and Do where vari-

able names In and Out have been substituted by FreshIn and FreshOut. The
initial w constraint is solved.

Line 5 posts constraints corresponding to the fact that the loop iterates one
more time (Cond and Do) and line 6 computes an over approximation of the
rest of the iterations via the w∞ function. If the resulting store is inconsistent
(line 7), then the loop must terminate immediately (line 8). Once again, the w
constraint is solved.

When none of the two propagation steps has led to empty domains, the stores
computed in each case are joined (line 9). The Init and End indices mean that
the join is only done for the variables from these two lists. After the join, the w
constraint is suspended and put into the constraint store (line 10).

We illustrate the filtering algorithm on the power example presented on Fig-
ure 1 and the following request:
X in 8..12, N in 0..10, Y in 10..14, power(X,N,Y).

At line 1, posted constraints are:
Xin = X, Nin = N, Yin = 1, Y = Yin, Nin < 1. This constraint store is in-
consistent with the domain of Y. Thus, we deduce that the loop must be entered
at least once. The condition constraint and loop body constraints are posted (we
omit the constraints Init = In):
N >= 1, Yout = 1*X, Xout = X, Nout = N-1 and another w combinator is
posted:

w([Xout,Yout,Nout],[Xin’,Yin’,Nin’],[Xout’,Yout’,Nout’],[_,Y,_],

Nin’>= 1,[Yout’ = Yin’*Xin’, Xout’ = Xin’, Nout’ = Nin’-1]).

Again, line 1 of the algorithm posts the constraints Y = Yout, Nout < 1. This
time, the store is not inconsistent. Line 5 posts the constraints
Nout >= 1, Yout’ = Yout*X, Xout’ = X, Nout’ = Nout - 1, which reduces
domains to Nout in 1..9, Yout’ in 64..144, Xout’ in 8..12. On line 6,
w∞([Xout’,Yout’,Nout’],FreshIn,FreshOut,[_,Y,_],Cond,Do,Store)

is used to infer Y >= 64. Store denotes the current constraint store. This is
a very important deduction as it makes the constraint store inconsistent with
Y in 10..14. So Nout < 1,Y = X is posted and the final domains are
N in 1..1, X in 10..12, Y in 10..12. This example points out that ap-
proximating the behaviour of the loop with function w∞ is crucial to deduce
information.

On the examples of sections 2.3 and 2.4 some interesting deductions are done.
For the sum example, when S is instantiated the value of I is computed. If no
value exist, the filtering algorithm fails. Deductions are done even with partial
information: sum(S,I), S in 50..60 leads to S = 55, I = 10.

On the request gcd(X,Y,Z), X in 1..10, Y in 10..20, Z in 1..1000,
the filtering algorithm reduces the bounds of Z to 1..10. Again, this deduction is
done thanks to the w∞ function, which infers the relations Z ≤ X and Z ≤ Y .
If we add other constraints, which would be the case in a problem that would
use the gcd constraint, we obtain more interesting deductions. For example, if
we add the constraint X = 2 ∗ Y , then the filtering algorithm deduces that Z

is equal to Y. On each of the above examples, the required computation time is
not greater than 30 ms.

Another important point is that approximating loops also allows the filtering
algorithm to fail instead of non terminating in some cases. Consider this very
simple example that infinitely loops if X is lower than 10.

loop(X,Xn) :-

w([X],[Xin],[Xout],[Xn],

X < 10,

[Xout = Xin])

Suppose that we post the following request, X < 0, loop(X,Xn), and apply the
case reasoning. As we can always prove that the loop must be unfolded, the
algorithm does not terminate. However, the filtering algorithm can be extended
to address this problem. The idea is to compute an approximation of the loop
after a given number of iterations instead of unfolding more and more the loop.
On the loop example, this extension performs well. Indeed the approximation
infers Xn < 0, which suffices to show that the condition will never be satisfied
and thus the filtering algorithm fails. If the approximation cannot be used to
prove non-termination, then the algorithm returns the approximation or con-
tinue iterating, depending on what is most valuable for the user: having a sound
approximation of the loop or iterating hoping that it will stop.

4 Background

This Section gives some background on abstract interpretation. It first presents
the general framework. Then, polyhedra abstract domain is presented. Finally,
the notion of linear relaxation is detailed.

4.1 Abstract Interpretation

Abstract Interpretation is a framework introduced in [6] for inferring program
properties. Intuitively, this technique consists in executing a program with ab-
stract values instead of concrete values. The abstractions used are such that
the abstract result is a sound approximation of the concrete result. Abstract
interpretation is based upon the following theory.

A lattice 〈L,v,u,t〉 is complete iff each subset of L has a greatest lower
bound and a least upper bound. Every complete lattice has a least element ⊥ and
a greatest element >. An ascending chain p1 v p2 v . . . is a potentially infinite
sequence of ordered elements of L. A chain eventually stabilizes iff there is an i
such that pj = pi for all j ≥ i. A lattice satisfies the ascending chain condition
if every infinite ascending chain eventually stabilizes. A function f : L → L is
monotone if p1 v p2 implies f(p1) v f(p2). A fixed point of f is an element p
such that f(p) = p. In a lattice satisfying ascending chain condition, the least
fixed point lfp(f) can be computed iteratively: lfp(f) =

⊔
i≥0 f i(⊥)

The idea of abstract interpretation is to consider program properties at each
program point as elements of a lattice. The relations between the program prop-
erties at different locations are expressed by functions on the lattice. Finally,
computing the program properties consists in finding the least fixed point of a
set of functions.

Generally, interesting program properties at a given program point would
be expressed as elements of the lattice 〈P(N),⊆,∩,∪〉 (if variables have their
values in N). However, computing on this lattice is not decidable in the general
case and the lattice does not satisfy the ascending chain condition. This problem
often appears as soon as program properties to be inferred are not trivial. This
means that the fixed points must be approximated. There are two ways for ap-
proximating fixed points. A static approach consists in constructing a so-called
abstract lattice 〈M,vM ,uM ,tM 〉 with a Galois connection 〈α, γ〉 from L to M .
α : L → M and γ : M → L are respectively an abstraction and concretiza-
tion function such that ∀l ∈ L, l v γ(α(l)) and ∀m ∈ M,m vM α(γ(m)). A
Galois connection ensures that fixed points in L can be soundly approximated
by computing in M . A dynamic approximation consists in designing a so-called
widening operator (noted ∇) to extrapolate the limits of chains that do not
stabilize.

4.2 Polyhedra abstract domain

One of the most used instanciation of abstract interpretation is the interpretation
over the polyhedra abstract domain, introduced in [7]. On this domain, the set of
possible values of some variables is abstracted by a set of linear constraints. The
solutions of the set of linear constraints define a polyhedron. Each element of the
concrete set of values is a point in the polyhedron. In this abstract domain, the
join operator of two polyhedra is the convex hull. Indeed, the smallest polyhedron
enclosing two polyhedra is the convex hull of these two polyhedra. However,
computing the convex hull of two polyhedra defined by a set of linear constraints
requires an exponential time in the general case.

Recent work suggest to use a join operator that over-approximates the convex
hull [15]. Figure 6 shows two polyhedra with their convex hull and weak join.

Fig. 6. Convex Hull vs Weak Join

Intuitively, the weak join of two polyhedra is computed in three steps. Enlarge
the first polyhedron without changing the slope of the lines until it encloses the
second polyhedron. Enlarge the second polyhedron in the same way. Do the
intersection of these two new polyhedra.

In many works using abstract interpretation on polyhedra, the standard
widening is used. The standard widening operator over polyhedra is computed
as follows: if P and Q are two polyhedra such that P v Q. Then, the widen-
ing P∇Q is obtained by removing from P all constraints that are not entailed
in Q. This widening is efficient but not very accurate. More accurate widening
operators are given in [1].

4.3 Linear Relaxation of constraints

Using polyhedra abstract interpretation requires us to interpret non linear con-
straints on the domain of polyhedra. Existing techniques aim at approximating
non linear constraints with linear constraints. In our context, the only sources
of non linearity are multiplications, strict inequalities and disequalities. These
constraints can be linearized as follows:

multiplications Let X and X be the lower and upper bounds of variable
X. A multiplication Z = X ∗ Y can be approximated by the conjunction of
inequalities [12]:

(X − X)(Y − Y) ≥ 0 ∧ (X − X)(Y − Y) ≥ 0

∧ (X − X)(Y − Y) ≥ 0 ∧ (X − X)(Y − Y) ≥ 0

This constraint is linear as the product X ∗Y can be replaced by Z. Fig.7 shows
a slice of the relaxation where Z = 1. The rectangle corresponds to the bounding
box of variables X,Y , the dashed curve represents exactly X ∗ Y = 1, while the
four solid lines correspond to the four parts of the inequality.

Fig. 7. Relaxation of the multiplication constraint

strict inequalities and disequalities Strict inequalities X < V ar (resp. X >
V ar) can be rewritten without approximation into X ≤ V ar − 1 (resp. X ≥
V ar + 1), as variables are integers. Disequalities are considered as disjunctions
of inequalities. For example, X 6= Y is rewritten into X =< Y −1∨X >= Y +1.
Adding the bounds constraints on X and Y and computing the convex hull of
the two disjuncts leads to an interesting set of constraints. For example, if X
and Y are both in 0..10, the relaxation of X 6= Y is X + Y ≥ 1 ∧ X + Y ≤ 19.

5 Using abstraction in the filtering algorithm of w

In this section, we detail how abstract interpretation is integrated in the w
filtering algorithm. Firstly, we show that solutions of w can be computed with a
fixed point computation. Secondly, we explain how abstract interpretation over
polyhedra allows us to compute an abstraction of these solutions. Finally, the
implementation of the w∞ function is presented.

5.1 Solutions of w as the result of a fixed point computation

Our problem is to compute the set of solutions of a w constraint:

Z = {((x1, . . . , xn), (xf
1 , . . . , xf

n)) |
w((x1, . . . , xn), In,Out, (xf

1 , . . . , xf
n), Cond,Do)}

Let us call Si the possible values of the loop variables after i iterations in a loop.
When i = 0 possible variables values are the values that satisfy the domain
constraint of Init variables. We call Sinit this set of values. Thus S0 = Sinit. Let
us call T the following set:

T = {((x1, . . . , xn), (x′
1, . . . , x

′
n)) | (x1, . . . , xn) ∈ Sinit ∧ ∃i(x′

1, . . . , x
′
n) ∈ Si}

T is a set of pairs of lists of values (l,m) such that initializing variables of the
loops with values l and iterating the loop a finite number of times produce the
values m. The following relation holds

Z = {(Init, End) | (Init, End) ∈ T ∧ End ∈ sol(¬Cond)}

where sol(C) denotes the set of solutions of a constraint C. The previous formula
expresses that the solutions of the w constraint are the pairs of lists of values
(l,m) such that initializing variables of the loops with values l and iterating
the loop a finite number of times leads to some values m that violate the loop
condition.

In fact, T is the least fixed point of the following equation:

T k+1 = T k ∪ {(Init, Y) | (Init,X) ∈ T k ∧ (X,Y) ∈ sol(Cond ∧ Do})} (1)

T 0 = {(Init, Init) | Init ∈ Sinit} (2)

Cond and Do are supposed to involve only In and Out variables. Thus,
composing T k and sol(Cond∧Do) is possible as they both are relations between
two lists of variables of length n.

Following the principles of abstract interpretation this fixed point can be
computed by iterating Equation 1 starting from the set T 0 of Equation 2.

For the simple constraint: w([X],[In],[Out],[Y],In < 2,[Out = In+1])

and with the initial domain X in 0..3, the fixed point computation proceeds
as follows.

T 0 = {(0, 0), (1, 1), (2, 2), (3, 3)}
T 1 = {(0, 1), (1, 2)} ∪ T 0

= {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (3, 3)}
T 2 = {(0, 1), (0, 2), (1, 2)} ∪ T 1

= {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2), (3, 3)}
T 3 = T 2

Consequently, the solutions of the w constraint are given by

Z = {(X,Y) | (X,Y) ∈ T 3 ∧ Y ∈ sol(In ≥ 2)}
= {(0, 2), (1, 2), (2, 2), (3, 3)}

Although easy to do on the example, iterating the fixed point equation is
undecidable because Do can contain others w constraints. Thus, Z is not com-
putable in the general case.

5.2 Abstracting the fixed point equations

We compute an approximation of T using the polyhedra abstract domain. Let
P be a polyhedron that over-approximates T , which means that all elements of
T are points of the polyhedron P . Each list of values in the pairs defining T has
a length n thus P involves 2n variables. We represent P by the conjunction of
linear equations that define the polyhedron.

The fixed point equations become:

P k+1(Init, Out) = P k t (P k(Init, In) ∧ Relax(Cond ∧ Do))Init,Out (3)

P 0(Init, Out) = α(Sinit) ∧ Init = Out (4)

Compared to equations 1 and 2, the computation of the set of solutions of
constraint C is replaced by the computation of a relaxation of the constraint
C. Relax is a function that computes linear relaxations of a set of constraints
using the relaxations presented in Section 4.3. PL1,L2

denotes the projection
of the linear constraints P over the set of variables in L1 and L2. Projecting
linear constraints on a set of variables S consists in eliminating all variables not
belonging to S. Lists equality L = M is a shortcut for ∀i ∈ [1, n]L[i] = M [i],
where n is the length of the lists and L[i] is the ith element of L. P1tP2 denotes
the weak join of polyhedron P1 and P2 presented in Section 4.2.

In Equation 4, Sinit is abstracted with the α function. This function com-
putes a relaxation of the whole constraint store and projects the result on Init
variables.

An approximation of the set of solutions of a constraint w is given by

Q(Init, In) = P (Init, In) ∧ Relax(¬Cond) (5)

We detail the abstract fixed point computation on the same example as in
the previous section. As the constraints Cond and Do are almost linear their
relaxation is trivial: Relax(Cond ∧ Do) = Xin ≤ 1, Xout = Xin + 1. Xin is only
constrained by its domain, thus α(Sinit) = Xin ≥ 0 ∧ Xin ≤ 3. The fixed point
is computed as follows

P 0(Xin, Xout) = Xin ≥ 0 ∧ Xin ≤ 3 ∧ Xin = Xout

P 1(Xin, Xout) = (P 0(Xin, X0) ∧ X0 ≤ 1 ∧ Xout = X0 + 1)Xin,Xout

t P 0(Xin, Xout)

= (Xin ≥ 0 ∧ Xin ≤ 1 ∧ Xout = Xin + 1) t P 0(Xin, Xout)

= Xin ≥ 0 ∧ Xin ≤ 3 ∧ Xout ≤ Xin + 1 ∧ Xout ≥ Xin

P 2(Xin, Xout) = (P 1(Xin, X1) ∧ X1 ≤ 1 ∧ Xout = X1 + 1)Xin,Xout

t P 1(Xin, Xout)

= (Xin ≥ 0 ∧ Xin ≤ 3 ∧ Xin ≤ Xout − 1) t P 1(Xin, Xout)

= Xin ≥ 0 ∧ Xin ≤ 3 ∧ Xout ≤ Xin + 2 ∧ Xout ≥ Xin ∧ Xout ≤ 4

P 3(Xin, Xout) = (P2(Xin, X2) ∧ X2 ≤ 1 ∧ Xout = X2 + 1)Xin,Xout

t P 2(Xin, Xout)

= (Xin ≥ 0 ∧ Xin ≤ 3 ∧ Xin ≤ Xout − 1) t P 2(Xin, Xout)

= P 2(Xin, Xout)

Figure 8 shows the difference between the exact fixed point computed with
the exact equations and the approximate fixed point. The points correspond to
elements of T 3 whereas the grey zone is the polyhedron defined by P 3.

Fig. 8. Exact vs approximated fixed point

An approximation of the solutions of the w constraint is

Q = P 3(Xinit, Xend) ∧ Xend ≥ 2

= Xend ≥ 2 ∧ Xend ≤ 4 ∧ Xin ≤ Xend ∧ Xin ≤ 3 ∧ Xin ≥ Xend − 2

On the previous example, the fixed point computation converges but it is not
always the case. Widening can address this problem. The fixed point equation
becomes:

P k+1(Init, Out) = P k(Init, Out)∇
(P k t (P k(Init, In) ∧ Relax(Cond,Do))Init,Out)

In this equation ∇ is the standard widening operator presented in Section 4.2.

5.3 w
∞: implementing the approximation

In Section 3, we have presented the filtering algorithm of the w operator. Here,
we detail more concretely the integration of the abstract interpretation over
polyhedra into the constraint combinator w via the w∞ function.

w∞ is an operator that performs the fixed point computation and commu-
nicates the result to the constraint store. Figure 9 describes the algorithm. All
the operations on linear constraints are done with the clpq library [10].

Input:
Init, In,Out, End vectors of variables
Cond and Do the constraints defining the loop
A constraint store (X,C,B)

Output:
An updated constraint store

w∞ :
1 P i+1 := project(relax(C,B), [Init]) ∧ Init = Out
2 repeat
3 P i := P i+1

4 P j := project(P i ∧ relax(Cond ∧Do,B), [Init, Out])

5 P k := weak join(P i, P j)

6 P i+1 := widening(P i, P k)
7 until includes(P i, P i+1)
8 Y := P i+1 ∧ relax(¬Cond,B)
9 (C ′, B′) := concretize(Y)
10 return (X,C ′ ∧ w(Init, In,Out, End,Cond,Do), B′)

Fig. 9. The algorithm of w∞ operator

This algorithm summerizes all the notions previously described. Line 1 com-
putes the initial value of P . It implements the α function introduced in Equa-
tion 4. The relax function computes the linear relaxation of a constraint C given
the current variables domains, B. When C contains another w combinator, the
corresponding w∞ function is called to compute an approximation of the sec-
ond w. The project(C,L) function is a call to the Fourier variable elimination
algorithm. It eliminates all the variables of C but variables from the list of lists
L. Lines 2 to 7 do the fixed point computation following Equation 3. Line 6
performs the standard widening after a given number of iterations in the repeat
loop. This number is a parameter of the algorithm. At Line 7, the inclusion
of P i+1 in P i is tested. includes(P i, P i+1) is true iff each constraint of P i is
entailed by the constraints P i+1.

At line 8, the approximation of the solution of w is computed following Equa-
tion 5. Line 9 concretizes the result in two ways. Firstly, the linear constraints
are turned into finite domain constraints. Secondly, domains of End variables
are reduced by computing the minimum and maximum values of each variable in
the linear constraints Y . These bounds are obtained with the simplex algorithm.

6 Discussion

The polyhedra abstract domain is generally used differently from what we pre-
sented. Usually, a polyhedron denotes the set of linear relations that hold between
variables at a given program point. As we want to approximate the solutions of a
w constraint, our polyhedra describe relations between input and output values
of variables and, thus, they involve twice as many variables. In abstract interpre-
tation, the analysis is done only once whereas we do it each time a w operator is
awoken. Consequently, we cannot afford to use standard libraries to handle poly-
hedra, such as [2], because they use the dual representation, which is a source of
exponential time computations. Our representation implies, nevertheless, doing
many variables elimination with the Fourier elimination algorithm. This remains
costly when the number of variables grows. However, the abstraction on polyhe-
dra is only one among others. For example, abstraction on intervals is efficient
but leads to less accurate deductions. The octagon abstract domain [13] could be
an interesting alternative to polyhedra as it is considered to be a good trade-off
between accuracy and efficiency.

Generalized Propagation [14] infers an over-approximation of all the answers
of a CLP program. This is done by explicitely computing each answer and joining
these answers on an abstract domain. Generalized Propagation may not termi-
nate because of recursion in CLP programs. Indeed, no widening techniques are
used. In the same idea, the 3r’s are three principles that can be applied to speed
up CLP programs execution [11]. One of these 3r’s stands for refinement, which
consists in generating redundant constraints that approximate the set of an-
swers. Refinement uses abstract interpretation, and more specifically widenings,
to compute on abstract domains that have infinite increasing chains. Hence, the
analysis is guaranteed to terminate. Our approach is an instantiation of this
theoretical scheme to the domain of polyhedra.

7 Conclusion

We have presented a constraint combinator, w, that allows users to make a
constraint from an imperative loop. We have shown examples where this com-
binator is used to implement non trivial arithmetic constraints. The filtering
algorithm associated to this combinator is based on case reasoning and fixed
point computation. Abstract interpretation on polyhedra provides a method for
approximating the result of this fixed point computation. The results of the ap-
proximation are crucial for pruning variable domains. On many examples, the
deductions made by the filtering algorithm are considerable, especially as this
algorithm comes for free in terms of development time.

Acknowledgements

We are indebted to Bernard Botella for his significant contributions to the
achievements presented in this paper.

References

1. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for
convex polyhedra. In Proc. of the Static Analysis Symp. (SAS’03) 337–354, 2003.

2. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex
polyhedra and the parma polyhedra library. In Proc. of the Static Analysis Symp.
(SAS’02), 213–229. Springer, 2002.

3. N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Graph properties based
filtering. In Proc. of the Int. Conf. on Principles and Practice of Constraint Progr.
(CP’06), 59–74. Springer, 2006.

4. N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering algorithms from con-
straint checkers. In Proc. of the Int. Conf. on Principles and Practice of Constraint
Progr. (CP’04), 107–122. Springer, 2004.

5. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In Proc. of the Int. Symp. on Progr. Lang.: Implementations, Logics, and
Programs (PLILP’97), 191–206. Springer, 1997.

6. P. Cousot and R. Cousot. Abstract interpretation : A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.
of Symp. on Principles of Progr. Lang. (POPL’77), 238–252. ACM, 1977.

7. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proc. of Symp. on Principles of Progr. Lang. (POPL’78),
84–96. ACM, 1978.

8. T. Fruhwirth. Theory and practice of constraint handling rules. Special Issue on
Constraint Logic Progr., Journal of Logic Progr., 37(1-3), 1998.

9. A. Gotlieb, B. Botella, and M. Rueher. A CLP framework for computing structural
test data. In First Int. Conf. on Computational Logic (CL’00), 399–413, 2000.

10. C. Holzbaur. OFAI clp(q,r) Manual. Austrian Research Institute for Artificial
Intelligence, Vienna, 1.3.3 edition.

11. K. Marriott and P. J. Stuckey. The 3 r’s of optimizing constraint logic programs:
Refinement, removal and reordering. In Proc. of Symp. on Principles of Progr.
Lang. (POPL’93), 334–344. ACM, 1993.

12. G. P. McCormick. Computability of global solutions to factorable nonconvex pro-
grams: Part 1 - convex underestimating problems. Math. Progr., 10:147–175, 1976.

13. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation
Journal, 19:31–100. Springer, 2006.

14. T. Le Provost and M. Wallace. Domain independent propagation. In Proc. of the
Int. Conf. on Fifth Generation Computer Systems. (FGCS’92), 1004–1011, 1992.

15. S. Sankaranarayanan, M. A. Colòn, H. Sipma, and Z. Manna. Efficient strongly
relational polyhedral analysis. In Proc. of the Verification, Model Checking, and
Abstract Interpretation Conf. (VMCAI’06), 115–125. Springer, 2006.

16. J. Schimpf. Logical loops. In Proc. of the Int. Conf. on Logic Progr. (ICLP’02),
224–238. Springer, 2002.

17. C. Schulte and G. Tack. Views and iterators for generic constraint implementa-
tions. In Recent Advances in Constraints (2005), volume 3978 of Lecture Notes in
Artificial Intelligence, 118–132. Springer-Verlag, 2006.

Enfin, nous avons proposé très récemment un résolveur de contraintes dédié
aux calculs modulaires sur les entiers machine. Notre travail dans ce domaine a
été motivé par la limitation récurrente des résolveurs existants à traiter de manière
appropriée les calculs modulaires silencieux de la plupart des langages de pro-
grammation utilisés dans les systèmes critiques. Nous proposons dans l’article
suivant une théorie du calcul d’intervalles, nommée “Clockwise intervals” adap-
tée aux calculs modulaires.

A. Gotlieb, M. Leconte, and B. Marre. Constraint solving
on modular integers. In Proc. of the 9th Int. Workshop on
Constraint Modeling and Reformulation (ModRef’10),
co-located with CP’2010, St Andrews, Scotland, Sept.
2010.

Constraint solving on modular integers

Arnaud Gotlieb1, Michel Leconte2, and Bruno Marre3

1 INRIA Rennes Bretagne Atlantique, Campus Beaulieu, 35042 Rennes, France
arnaud.gotlieb@inria.fr

2 ILOG Lab, IBM France, Gentilly, France
leconte@ibm.fr

3 CEA, LIST, Gif-sur-Yvette, F-91191, France
marre@cea.fr

Abstract. Constraint solving over finite-sized integers involves the def-
inition of propagators able to capture modular (a.k.a. wrap-around) in-
teger computations. In this paper, we propose efficient propagators for
a fragment of modular integer constraints including adders, multipliers
and comparators. Our approach is based on the original notion of Clock-
wise Interval for which we define a complete arithmetic. We also present
three distinct implementations of modular integer constraint solving in
the context of software verification4.

1 Introduction

Using constraint solving to automatically generate program inputs is an emerg-
ing trend in software verification. In the last decade, several tools based on Finite
Domains (FD) constraint solving were proposed that perform test inputs gener-
ation for C programs (e.g., InKa [7], PathCrawler [9]), test case generation for
reactive programs (e.g., GATEL [10]), or property-oriented software verification
(e.g., CPBPV [4], Euclide [6]). In these tools, automated verification of inten-

unsigned long len = 2147483648; % Equal to 231

void f(unsigned long buf) {
1. if (buf + len < buf) {
2. . . .

Fig. 1. Program taking care of integer overflow

sive integer computations involves solving constraints over finite-sized integers.
As an example, consider the problem of reaching5 statement 2 in the program
of Fig.1 that requires solving the decision buf+len < buf over unsigned 32-
bits integers. A naive translation of the decision of statement 1 as constraint

4 This work is supported by ANR-07-SESUR-003 CAVERN Project
5 Reachability is a fundamental problem in software program verification.

buf + len < buf where buf belongs to 0..232 − 1 and len = 231, yields an in-
correct result saying that statement 2 is unreacheable. In fact, it is trivial to see
that this constraint is unsatisfiable when it is interpreted over Finite Domains
(FD). However, statement 2 can be reached by selecting a test value such as
buf = 231, as 231 + 231 = 232 corresponds to value 0 in unsigned 32-bits integer
arithmetic. Note also that simplifying buf + len < buf in len < 0 is forbidden
in this arithmetic. The overall reason is that decision 2 should be rather inter-
preted as buf + len < buf mod(232). In fact, this problem is sometimes reported
to as the “wrapping effect” and it turned out that programmers who take care of
possible integer overflows routinely write programs that use this effect. In Fig.1,
statement 2 can only be reached by a wrapping behaviour. Unfortunately, all the
previously mentionned tools that exploits constraint techniques for automated
test data generation or property-oriented verification simply ignore this wrap-
ping effect. In fact, as soon as finite domains are specified for each input and
intermediate variable, these tools consider that programs with integer overflows
are necessarily incorrect and should be rejected. This is obviously abusive and
often conducts to report false negatives.

This paper adresses this problem by providing efficient constraint solving
over modular integer computations. We propose bound-consistency propagators
for a linear fragment of these constraints that includes adders, multipliers and
comparators. Our approach is based on the original notion of Clockwise Interval
that captures the wrapping effect by considering intervals with modular inte-
ger bounds. An example of such Clockwise Interval is the interval [7, 2]8 that
represents all the integers x such that x mod 8 = 7, x mod 8 = 0, x mod 8 =
1, x mod 8 = 2. For these Clockwise Intervals, we give a complete arithmetic
that has not been published elsewhere.

In the context of the ANR CAVERN project6 we independently built three
distinct implementations of modular integer constraint solving that are varia-
tions of clockwise interval arithmetics. These implementations of modular integer
constraint solving are used in three software verification tools. Our first imple-
mentation called MAXC is used in the context of automatic test input generation
for C programs. It implements bound-consistency filtering for a linear fragment
of modular integer constraints. For example, for constraint buf⊕231 < buf where
⊕ denotes modular addition over 32-bit integers, MAXC automatically prunes
the domain of buf to the Clockwise Interval [231, 232−1]232 , removing half of the
variation domain of buf . Our second implementation called JSOLVER [8] is in-
tented to perform automatic analysis of rule-based programs. JSOLVER is based
on classic intervals but it takes into account modular integer computations. A
comparison with the Clockwise Interval arithmetics shows that JSOLVER is effi-
cient but not optimal when computing local-consistencies over these constraints.
Finally, the third implementation is called COLIBRI and it enables automatic
test data generation for reactive programs [10]. COLIBRI implements modular
integer constraints on domains represented as union of classic intervals.

6 cavern.inria.fr

The rest of the paper is organized as follows: Sec.2 introduces the notations
and the formal definitions used in the rest of the paper. Sec.3 presents bound-
consistency filtering on modular integer constraints. Sec.4 describes our three
distinct implementations and discusses their relations with Clockwise Intervals.
Finally, Sec.5 concludes and draws several perspectives to this work.

2 Preliminaries

2.1 Notations

Let Z denote the set of integers and Zb denote the finite set of integers modulo
b. For any x ∈ Z and y ∈ Z∗, x mod y denotes the integer r such that ∃q ∈ Z
r = x−y∗q and 0 ≤ r < y, while x quo y denotes q the quotient. In the following,
we will fix b = 2n where n is any non-negative integer. Since Zb consists of residue
classes, several representations are possible. In this paper, we will consider two
representations that can be used to emulate integral computations in imperative
languages such C or Java: the unsigned representation {0, 1, . . . , b− 1} and the
signed representation {− b

2 , . . . ,−1, 0, 1, . . . , b
2 −1}. For the sake of simplicity, we

will use the unsigned representation (unless it is mentionned otherwise).
In the context of integer-based manipulations, a classic interval noted x..y

where x, y ∈ Z and x ≤ y denotes the finite ordered set {x, x + 1, . . . , y − 1, y}.

Definition 1 (Width). The width of an interval x..y is an integer, defined as
follows: wid(x..y) , y − x.

2.2 Clockwise Interval

Definition 2 (Clockwise Interval). Let x and y be two integers modulo b, a
Clockwise Interval (CI) is noted [x, y]b and denotes the set {x, x+1 mod b, . . . , y−
1 mod b, y}.

It differs from classic interval in that any of its element is a residue class of
integer modulo b. Furthermore, the bound y is not required to be greater than x
as the set {x, x+ 1modb, . . . , y− 1modb, y} is unordered. By convention, we con-
sider that [0, b− 1]b is the canonical representation of Zb itself. Note that other
representations exist: [1, 0]b, [2, 1]b,...,[b− 1, 0]b. Clockwise Intervals that have a
positive or null width are called proper CIs, while others are called improper CIs.
The width of a CI is defined by extending the definition of width over classic in-
tervals, by using the canonical representation: wid([x, y]b) = wid(x..y). Note that
width can then becomes negative in this case. The set of clockwise intervals over
Zb is finite. It is composed of {[]b, [0, 0]b, . . . , [b− 1, b− 1]b, [0, 1]b, [1, 0]b, . . . , [b−
2, b − 1]b, [b − 1, b − 2]b, . . . , [0, b − 1]b}, where []b denotes the empty clockwise
interval.

Definition 3 (Cardinality). Let [x, y]b be a CI, then its cardinality is an in-
teger modulo b defined as: card([x, y]b) , (y − x + 1) mod b.

By convention, card([0, b − 1]b) = b and 0 < card([x, y]b) ≤ b. For example,
card([7, 0]8) = 2 while wid([7, 0]8) = −7. The following property immediatly
holds:

Proposition 1. A CI [x, y]b contains exactly card([x, y]b) elements, if repre-
sented over [1, b]b.

Proof. If y ≥ x, then the set [x, y]b = {x, x + 1, . . . , y − 1, y} is ordered and
contains y − x + 1 elements. The special case where y − x + 1 = b corresponds
to the CI [0, b− 1]b and then card([0, b− 1]b) = b.
If y < x, then [x, y]b = {x, x + 1, . . . , b − 1} ∪ {0, 1, . . . , y} and so, it contains
(b − x) + (y + 1) elements. In this case, b − x + y + 1 ≡ y − x + 1 mod b that
gives the expected result.

2.3 Building clockwise intervals

A classic interval can be converted into a CI by using the following formula:

x..y mod b ,
{

[0, b− 1]b if wid(x..y) ≥ b

[x mod b, y mod b]b otherwise

We define the hull of a set of modular integers as being the smallest Clockwise
Interval w.r.t. cardinality, that contains all the elements of the set. By conven-
tion, proper clockwise intervals are considered smaller than improper ones when
they have same cardinality. Formally,

Definition 4 (Hull). Let S = {x1, . . . , xp} be a subset of Zb, the hull of S is a
CI noted �S, defined as:

�S , Infcard({[xi, xj]b|{x1, . . . , xp} ⊆ [xi, xj]b)

Building an algorithm from this definition yields an untractable procedure as it
would require considering p! possible combinations of the bounds. Fortunately,
we have the following proposition:

Proposition 2. Let S = {x0, . . . , xp−1} be an ordered subset of Zb, and let
x−1 denotes xp−1, then

�S = [xi, xi−1]b where i ∈ 0..p− 1 such that card([xi, xi−1]b) is minimized

Therefore, when S is ordered, �S can be computed in linear time w.r.t. size of
S.

Proof. The case where [xi, xi−1]b is proper, i.e., xi = x0 and xi−1 = xp, is
trivial. Let suppose that [xi, xi−1]b is an improper CI. Firstly, it is clear that
S ⊆ [xi, xi−1]b as S is ordered (∀i ∈ 1..p− 2, x0 ≤ xi−1 ≤ xi ≤ xp−1). Secondly,
as card([xi, xi−1]b) is minimized, it remains to show that there does not exist a
CI [k, l]b where j 6= i− 1 that contains S and that is tighter than [xi, xi−1]b). If
l > xi−1 then xi−1 6∈ [k, l]b and if k < xi then xi 6∈ [k, l]b, meanning that l ≤ xi−1
and k ≥ xi. By this, we get card([k, l]b) ≥ card([xi, xi−1]b) which contradicts
the hypothesis.

2.4 Clockwise Interval Arithmetic

Having defined Cl, we now turn on the definition of Clockwise Interval Arithmetic
that allows us to perform computations over intervals.

Definition 5 (Addition). Let [i, j]b and [k, l]b be two CI, then the addition
operation, noted ⊕, is defined as:

[i, j]b⊕[k, l]b ,

[0, b− 1]b if card([i, j]b) = b or card([k, l]b) = b

or card([i, j]b) + card([k, l]b ≥ b

[(i + k) mod b, (j + l) mod b]b otherwise

Correction property: ∀x ∈ [i, j]b,∀y ∈ [k, l]b, (x + y) mod b ∈ [i, j]b ⊕ [k, l]b.

For example, [2, 3]8 ⊕ [3, 2]8 = [0, 7]8 while [2, 2]8 ⊕ [3, 3]8 = [5, 5]8.

Definition 6 (Substraction). Let [i, j]b and [k, l]b be two CI, then the sub-
straction operation, noted 	, is defined as:

[i, j]b	[k, l]b ,

[0, b− 1]b if card([i, j]b) = b or card([k, l]b) = b

or card([i, j]b) + card([k, l]b ≥ b

[(i− l) mod b, (j − k) mod b]b otherwise

Correction property: ∀x ∈ [i, j]b,∀y ∈ [k, l]b, (x− y) mod b ∈ [i, j]b 	 [k, l]b.

For example, we have [0, 1]8	[0, 1]8 = [7, 1]8. Note that [0, b−1]b is absorbing for
⊕ and 	. For those two operations, similarily to the situation in classic Interval
Arithmetic, the computations can be performed on the bounds of Clockwise
Intervals. This is no longer the case for multiplication and division, as the tightest
CI that encloses all the solutions cannot be computed by using only bounds of its
operands in those cases. Let us first define precisely the considered operations:

Definition 7 (Multiplication by a constant k). Let k be a constant modulo
b and [i, j]b a CI, then the multiplication by k is defined as follows:

k ∗ [i, j]b , �({k ∗ i mod b, k ∗ (i + 1) mod b, ..., k ∗ j mod b})

Definition 8 (Multiplication). Let [i, j]b and [k, l]b be two CI, then the mul-
tiplication operation, noted ⊗, is defined as:

[i, j]b⊗[k, l]b , �({i∗k mod b, i∗(k+1) mod b, ..., (i+1)∗k mod b, ..., j∗l mod b})

Definition 9 (Division). Let [i, j]b and [k, l]b be two CI, then the division
operation, noted �, is defined as:

[i, j]b�[k, l]b , �({i/k mod b, i/(k+1) mod b, ..., (i+1)/k mod b, ..., j/l mod b})

As an example, consider the multiplication by a constant operation 4 ⊗ [2, 4]8.
With the formula, we get �({4∗2 mod 8, 4∗3 mod 8, 4∗4 mod 8}) = �({0, 4}) =
[0, 4]8. Unfortunately, the bounds of the resulting CI [0, 4]8 cannot be computed
by using only the bounds of CI operands as 4 ∗ 2 ≡ 4 ∗ 4 ≡ 0 mod 8. Computing
the resulting CI by enumerating all the elements of its operands seems unrea-
sonnable in the context of large-sized machine integers. The following subsection
describes a method that permits to compute the resulting optimal CI in the case
of multiplication by a constant k, without requiring a ful enumeration of the
domain of possible values.

2.5 An efficient method for computing optimal CI in the presence
of multiplication operators

The method is based on the following notes:

– the structure of Z2n is well known: the divisors of 0 are powers of 2 ;
– thanks to proposition 2, �({x1, ..., xp}) can be computed efficiently when

the set {x1, ..., xp} is ordered.

Let k be a constant modulo b = 2n, let [i, j]b be a CI, we describe a method
that allows to compute the minimum and the maximum values of k ∗ [i, j]b =
�({k ∗ i mod b, k ∗ (i + 1) mod b, ..., k ∗ j mod b}).

We start by eliminating some trivial cases: If k = 0, then k∗[i, j]b = �({0}) =
[0, 0]b. If k = 1, then k ∗ [i, j]b = [i, j]b. If i ≤ j and k ∗ j < b, then k ∗ [i, j]b =
[k ∗ i, k ∗ j]b. Let now suppose that k is a constant greater or equal to 2 and
k ∗ j ≥ b or i > j. We have the following proposition:

Proposition 3. Let k 6= 2w, q1 = k ∗ i quo b and q2 = k ∗ j quo b, then:
Max(k ∗ [i, j]b) = b− d where d = Minq1<q≤q2(q ∗ b mod k) and
Min(k ∗ [i, j]b) = d′ where d′ = Minq1<q≤q2(−q ∗ b mod k).

Proof. (sketch of, partial) Let p be the element of [i, j]b for which k ∗ p mod b is
maximized in Zb, and let q be the smallest value such that k ∗ p < q ∗ b, then we
consider d = q ∗ b−k ∗p. We claim that d = q ∗ b mod k as 0 < p < k. It remains
to find the value of q that minimizes q ∗ b mod k. As p ∈ [i, j]b, we know that
q1 < q ≤ q2 by definition of q. Therefore we can explore the possible values of q
from q1 + 1 to q2, up to k − 1 values.

For example, consider k ∗ [i, j]b where k = 5 and [i, j]b = [2, 7]8. Applying
Prop.3, we get q1 = 5 ∗ 2 div 8 = 1 and q2 = 5 ∗ 7 div 8 = 4. For q = 2, 3, 4,
computing rq = q ∗ b mod k and r−q = −q ∗ b mod k leads to:
r2 = 16 mod 5 = 1 and r−2 = −16 mod 5 = 4,
r3 = 24 mod 5 = 4 and r−3 = −24 mod 5 = 1,
r4 = 32 mod 5 = 2 and r−4 = −32 mod 5 = 3.
The minimum over the ri is obtained when q = 2 and then Max(5 ∗ [2, 7]8) =
8− r2 = 1. For the r−i, it is obtained when q = 3 leading to Min(5 ∗ [2, 7]8) =
r−3 = 1. Hence, 5 ∗ [2, 7]8 = [1, 7]8 has been computed by exploring only the

divisors of b in k ∗ i..k ∗ j, instead of looking at all the double products k ∗ l
within the same range.

Finding similar propositions for generalized multiplication and division may
be possible, but one can also use Prop.3 to compute over-approximations of
the resulting CIs. It suffices to use the bounds of each operand interval as a
constant, to apply Prop.3 on each of the four double products, and keep the
smallest intersection of results. But note that, optimality is usually lost with
this approach.

3 Constraint propagation over Clockwise Intervals

In this section, we define projection functions that allow to perform constraint
propagation over CI. As usual in Finite Domains constraint solving, each variable
X is associated a finite domain dom(X) of possible values. We consider here that
domain are (over-)approximated by CI: CI(X) , �(dom(X)).

3.1 Set-based operations over CI

Inclusion, union and intersection of Clockwise Intervals are defined by using their
set-theoretic definition counterpart. For example, inclusion over CI is defined as
follows:

[i, j]b ⊆ [k, l]b ⇐⇒ {i, i + 1, . . . , j} ⊆ {k, k + 1, . . . , l}
Note however that union and more surprisingly intersection are not closed over
CI. For example, [5, 2]8∩[1, 6]8 = {1, 2, 5, 6}. Hence, we define the meet operation
as taking the smallest CI that contains all the elements of the intersection:

[i, j]b
∧

[k, l]b , �({i, i + 1, . . . , j} ∩ {k, k + 1, . . . , l})

For example, we got: [5, 2]8
∧

[1, 6]8 = [1, 6]8 and [5, 1]8
∧

[0, 6]8 = [5, 1]8. The
main question is whether these operations can be computed efficiently. The fol-
lowing property helps answering this question:
Let x be an integer modulo b, then x ∈ [i, j]b is true iff x ≥ i ∧ x ≤ j when
[i, j]b is proper and x ≥ i ∨ x ≤ j when [i, j]b is improper. This property comes
directly from definition of CI.

The meet operator
∧

As the computations of meet is at the core of con-
straint propagation engine, finding an efficent algorithm is of great importance.
The definition given above requires to explore each element of both domains
at least once. This can be costly when large domains are involved during con-
straint propagation. The following proposition offers ways to compute the meet
operation more efficently:

Proposition 4. Let X = [i, j]b and Y = [k, l]b be two CI, then X
∧
Y is defined

as:

if wid(X) ∗ wid(Y) = 0 (suppose for example that X = [i, i]b)

X
∧

Y =

[i, i] if X = [i, i]b ∧ i ∈ Y

[k, k] if Y = [k, k]b ∧ k ∈ X

[]b otherwise

if wid(X) ∗ wid(Y) > 0 then

X
∧

Y =

{
[]b if wid(X) > 0 ∧ wid(Y) > 0 ∧max{i, k} > min{j, l}
[max{i, k},min{j, l}]b otherwise

if wid(X) ∗ wid(Y) < 0 then

X
∧

Y =

[]b if j < k ∧ l < i

[k, j]b if j ≥ k ∧ l < i

[i, l]b if j < k ∧ l ≥ i

Y if j ≥ k ∧ l ≥ i

∧ card(Y) ≤ card(X)

X if j ≥ k, l ≥ i

∧ card(X) < card(Y)

In these cases, proving that CI(X)
∧
CI(Y) = �({i, i + 1, . . . , j} ∩ {k, k +

1, . . . , l}) is not difficult.

Note that the situation differs from classic Interval Arithmetic where the inter-
section of two intervals is always an interval enclosed within its two operands.
Here, [i, j]b

∧
[k, l]b is sometimes not included in both [i, j]b or [k, l]b. This could

be problematic w.r.t. the monotony of projection functions. Fortunately, the
meet operation requires to minimize the cardinality of the resulting clockwise
interval. Hence, each time a projection function is called on variable X, the car-
dinality of CI(X) decrases. This ensures the computations progress towards a
fixpoint.

∨
: the join operator The join operation is defined accordingly:

[i, j]b
∨

[k, l]b , �({i, i + 1, . . . , j} ∪ {k, k + 1, . . . , l})

Proposition 5. Let CI(X) = [i, j]b and CI(Y) = [k, l]b, then CI(X)
∨
CI(Y)

can be defined as follows:
if wid(CI(X)) ≥ 0 ∧ wid(CI(Y)) ≥ 0 then

CI(X)
∨

CI(Y) =

{
[i, l]b if card([i, l]b) ≤ card([k, j]b)

[k, j]b otherwise

Note that these two operations (
∧

,
∨

) give the CI set a structure of a finite
lattice.

3.2 Relations over CI

Let X,Y be two variables over Zb, the relation X = Y leads to prune CI(X)
and CI(Y) with the following rule: CI(X), CI(Y) ← CI(X)

∧
CI(Y). In CI

Arithmetic, the relation X ≤ Y leads to prune CI(X) = [i, j]b and CI(Y) =
[k, l]b with the rule CI(X) ← CI(X)

∧
[0,max(CI(Y))]. Other relations can

easily be derived from these ones.

3.3 Bound-consistency for modular integer constraints

From the formula given above, one can derive practical algorithms to perform
bound-consistency on modular integer constraints. The simplest approach is to
implement propagators on Clockwise Intervals within an AC-3 propagation algo-
rithm. Once a CI becomes empty, then the constraint system is shown as being
unsatisfiable. If none CI become void, then the resulting CIs encompass all the
solutions of modular integer constraints.

For the linear fragment of modular integer constraints (i.e., addition, sub-
straction, multiplication by a constant) this approach maintains optimal CIs at
the cost of bounds computations. However, as soon as variable multiplication
is encountered, optimality requires time-quadratic exploration of CIs. This is
prohibitive in the context of 32-bits or 64-bits integer arithmetic. This problem
is similar to the situation in bit-vector arithmetic [2] where variable multipli-
cation requires time-quadratic computations on the number of bits. For these
non-linear constraints, as said previously, one can gave up optimality by com-
puting Clockwise Intervals that over-approximate optimal clockwise intervals.
In the implementations described below, several propositions are made in this
direction.

4 Implementations

In the context of the ANR CAVERN project, three distinct implementations of
modular integer constraint solving were done. During this work, it appears that
Clockwise Interval may be a unifying notion capturing the essence of modular
integer interval computations.

4.1 MAXC

At INRIA Rennes, the Clockwise Interval Arithmetic shown above was directly
implemented in MAXC, a solver dedicated to modular constraint solving. In a
near future, this solver should be integrated within EUCLIDE [6], an automatic
test data generator for critical C programs. The constraint system that is derived
from EUCLIDE includes modular constraints based on arithmetic operators (+,-
,*,div,mod) and high-level operators such as reification and global constraints
dedicated to program verification. We do not detail these operators here as our
paper is focussed on modular constraint solving. Propagators in MAXC are

implemented in C for efficiency reasons while the general propagation queue
is implemented in Prolog. Each variable is associated to a CI and contracting
propagators aim at pruning CIs of their inconsistent values. The size of variables
that can be represented in MAXC ranges from 1 bit to 64 bits as these are the
sizes typically found in primitive types in C. The data structure for encoding
CIs maintains cardinality and width:

typedef struct {

USH empty ; /* is an empty domain ? */

USH sign ; /* is a signed domain ? */

USH size ; /* allowed size = 1,2,3,4,8,16,32 or 64 bits */

UL min ; /* min_value of domain */

UL max ; /* max_value of domain */

UL wid ; /* absolute value of width of domain */

SSH sign_wid ; /* sign of width: SINGLE is 0 (eg [3,3]),

PROPER +1 (eg [3,6]),IMPROPER -1 (eg [6,3]) */

UL card ; /* cardinality of domain. O is the whole domain*/

ULL basis ; /* basis of modular calculus. 0 denotes 2^64 */

} TYPE_LFD ;

In this data structure, USH stands for unsigned short integer which corresponds
to 16-bits integers while UL stands for unsigned long, i.e. 32-bits integers. Other
keywords can easily be understood as variations of these two. Note that encoding
64-bits integer Clockwise Interval arithmetics is still possible but greater formats
cannot be encoded. The solver applies bound-consistency propagators on this
data structure for ⊕,	,⊗, It maintains optimal CIs for the linear fragment of
these constraints. The input format of constraints is an intermediate one, where
complex constraints have already been decomposed in simpler ones. Typical
requests are of the form:

test1 :- % In 3-bits integer arith.,

solveur:init_env(E), % X = 5, Y in 2..7, Z in 5..0, Z = X*Y

lfd:news([X,Y,Z],int(8),[’X’,’Y’,’Z’],E), % should produce

lfd:equal(const(’5’),X), % Y in 3..6, Z in 6..7

lfd:equal(in(’2’,’7’),Y),

lfd:equal(in(’5’,’0’),Z),

lfd:equal(’*’,X,Y,Z),

solveur:solve(E),

lfd:affiche([X,Y,Z]).

Many operators still have to be implemented in order to capture modular in-
teger constraints coming from C programs, including bit-to-bit operators (e.g.,
&, |, ~) , logical operators (e.g., &&, ||), nonlinear operators coming from de-
strucive assignment (i.e., i *= i++ that correspond to constraint i2 = (i1+1)2),
and so on.

4.2 JSOLVER

JSolver is a IBM-ILOG Constraint-Based Programming library in (pure) Java.
It is derived from the C++ library IBM-ILOG Solver and has been tailored for

the static and dynamic analyses of rule-based programs [3, 8]. Currently, these
analyses are performed using an idealized integer arithmetic where modular com-
putations are ignored. Consequently overflows on integers are reported as errors
and the corresponding rule-based programs are rejected which is the expected
behaviour, as these programs are exploited by end-users and not by developers.

We recently investigated the use of CP to perform static analysis of rules
in order to optimize their compilation in a discrimination network [5]. Unlike
the above usage, this requires using the program execution semantics where
integer overflows are silently done (such as in Java). We report here on our first
implementation of bound consistency for integer modular constraints by using
classic intervals as defined in mathbooks: a classic interval a..b with integer
bounds a and b is the set of integers {x|a ≤ x ≤ b}. Let us consider two positive
32-bits integers and suppose we want to determine the range of the sum of these
(signed) integers ranging from 1 to 231 − 1. By using an idealized semantics
for integer computations, we get that the sum is ranging from 2 to 2(231 − 1).
Of course, this range could be exactly represented by using unbounded values
such as bigInteger in Java or approximated by 2.. + infinity. But, taking into
account modular integer arithmetic, we found that the sum is actually ranging on
−231..−2 union 2..231−1. The classic interval which covers all these values is the
set of all representable signed values on 32 bits MIN INT..MAX INT . Note
that such classic intervals usually over-approximate the results that could be
computed using Clockwise Intervals as, for example, the CI [2,−2]232 on signed
32-bits integers corresponds precisely to −231..− 2 union 2..231− 1 that is over-
approximated by the classic interval −231..231 − 1. To give a flavor of inferences
which could be made on classic interval for modular integer arithmetic, let us
continue our example by constraining the sum to be greater than −2. Let x,
y and z be three signed 32-bits integers such that z, the sum of x and y, is
greater than −2. x and y are ranging on 1..MAX INT and z is ranging on
−1..MAX INT . As the transformation x = z − y (resp. y = z − x) is correct
in modular integer arithmetic, we actually found that x (resp. y) is ranging on
1..MAX INT − 1. As z = x+ y, we deduce that z is ranging on 2..MAX INT ,
then discovering that z is positive.

To formally define what our computations are, let us assume that we are
dealing with modular integer with a machine representation ranging from a
smaller integer denoted by m and a larger integer here denoted by M . let x..y be
a classic interval. u, v represent x and y in a (m,M) computer integer arithmetics
if m ≤ u ≤M , m ≤ v ≤M and x = u+ ku(M −m+ 1), y = kv(M −m+ 1) for
two integers ku and kv. We may then introduce a castm,M function from classic
intervals to (m,M) intervals with the following definition:

castm,M (x..y) =

{
u..v if ku = kv

m..M if ku! = kv

This cast function provides concise definition for modular arithmetic. For exam-
ple the (best) forward operator for the sum z of x and y is z in castm,M (xmin +
ymin..xmax+ymax). As z = x+y is equivalent to x = y−z in modular arithmetic,

the (best) backward operator is defined by x in castm,M (zmin − ymax..zmax −
ymin) and y in castm,M (zmin − xmax..zmax − xmin).

The multiplication by a scalar is not so straightforward. On 32-bits signed
integer, the powers of 2 are divisors of 0 and the congruence domains [8] are not
preserved. For example, 2 ∗MIN INT = 0 and 3 ∗MIN INT which is equal
to MIN INT is not even divisible by 3. However, solving ax = b on 32-bits
signed integers is not so difficult. First we note that if a power of 2 divides a, it
should also divide b for the equation to have a solution. By simplifying by this
power of 2, say 2p, we obtain a′x = b′ mod 2(32−p). We find then the inverse u
of a′ mod 2(32−p). We infer that x = (ua′)x = u(a′x) = ub′ mod 2(32−p). Finally,
we obtained a range for x in 32-signed integers and a congruence domain to be
propagated. We can apply this method to the solving of ax in m..M on 32-bits
integers in a similar way. First, if 2p divides a, we keep only the multiples of 2p

from m..Max. Then we simplify m and M to solve ax in m′..M ′ mod 2(32−p) by
finding an inverse u of a′, leading to x in u∗m′..u∗M ′ mod 2(32−p). Here again, we
infer a range for x mod 232 and a linear congruence to be propagated. To end this
short report on our preliminary implementation, we should say that the general
multiplication of two variables is propagated by using the cast function. This
leads very often to the top approximation of the full integers, being not complete
but at least correct. For future implementations, we are thinking of making use
of the ku integer indicators in the cast function definition, as proposed in the
tool COLIBRI described below. We also think to switch our implementation
from classic intervals to clockwise intervals as the performance should be similar
whilst the precision is improved.

4.3 COLIBRI

COLIBRI is a constraint library developped at CEA LIST for its test genera-
tion tools: GATeL for the functional testing of LUSTRE/SCADE models [10],
PathCrawler for the structural testing of C code [11] and Osmose for the struc-
tural testing of binary code [1]. This library provides domains and constraints for
integer, real and floating point interval arithmetics. Furthermore, a congruence
domain is combined with the integer domain as described in [8].

The integer domain is implemented by union of intervals with finite bounds.
These bounds can be any integer since we use big integers provided by the Gnu
Multi-Precision library. This representation of integer domains allows to precisely
represent improper clockwize intervals. For example, using clockwise intervals we
have [2, 4]8 ⊕ [4, 7]8 = [6, 3]8. This interval corresponds to the following union of
classic intervals 0..3 ∪ 6..7 which is denoted by [0..3, 6..7] in COLIBRI.

In order to handle the signed and unsigned integer arithmetics used by com-
puter languages, COLIBRI provides signed and unsigned modular arithmetics
operations when the modulo is a positive power of two (i.e., when b = 2n with
n > 0). For each operation op in +,−,×, div, rem, power we provide the oper-
ations ops,n and opu,n which correspond to the modular signed and unsigned
versions of op. The implementation of these operations uses the following defi-
nition of modular operations.

∀(A,B,C) ∈ Z2n
3, A opsu,n B = C ≡ (∃K,AopB = C + K × 2n)

The range of K can be easily characterized for each opsu,n according to 2n.
For example, for the +u,n operation −1 ≤ K ≤ 1, while for the ×u,n operation
0 ≤ K ≤ 2n − 1.

Thus, according to the previous equivalence, the constraint propagators of
any modular operation can be implemented with those of non modular oper-
ations. This is exactly the way modular operations are implemented in COL-
IBRI. For example, the constraint A +u,n B = C where variables A, B and
C belong to [0, 2n − 1] is handled by the following conjunction of constraints:
A+B = X∧K×2n = Y ∧X+Y = C where the initial domain of K is [0, 2n−1],
Notice that the congruence domain knows that variable Y is a factor of 2n and
as soon as C (resp. Y) handles a congruence one can infer a congruence for Y
(resp. C).

For each modular operation, the variable K is a precise indication of un-
derfow/overflow: when K < 0 this means that there is an underflow, when
K > 0 this means that there is an overflow while when K = 0 there is no under-
fow/overflow. Such an indicator could be very helpfull for verification tools when
checking computation w.r.t. underfow/overflow. This is why COLIBRI modular
constraints handle a supplementary argument UO which abstracts the sign of
K: UO belongs to [−1, 1] and has the same sign as K. Any assignment of this
variable UO can be used to force underflow (UO = −1), overflow (UO = 1) of
normal computation (UO = 0). Moreover, one can force non normal behaviour
by stating that UO <> 0.

To conclude this short presentation of modular operations in COLIBRI, let
us remark that the accuracy of this implementation relies on the use of union of
intervals with big integer bounds. This could be considered very expensive for
constraints systems involving heavy computations. However, as shown by a re-
cent experiment [2] using SMT-LIB benchmarks our implementation of modular
arithmetics is competitive with powerfull SMT solvers.

5 Conclusions and perspectives

In this paper, we introduced Clockwise Intervals as a way to capture modular
interger interval computations. We described three distinct implementations of
modular integer constraint solving that have applications in program testing and
analysis. We have also seen that finding optimal bounds in bound-consistency
filtering of modular integer computations is not trivial and often requires ap-
proximations. For general multiplication and division, efficient ways to compute
optimal bounds still need to be found. On the foundations of the approach,
Clockwise Interval appears as a good tool to describe bound-consistency on
modular integer computations but its relations with other Interval Arithmetics
still need to be studied. On the applications of modular integer constraint solv-
ing, experimental evaluation is required in the diverse contexts presented earlier

in the paper, namely, automatic test inputs generation for C programs, test case
generation for reactive programs and rule-based program analysis. Another per-
spective of this work concerns the way other dedicated constraint solver could
be married with Clockwise Intervals. For example, the recent work of Bardin
et al. in [2] showed that dedicated bitvectors operators could be efficiently cou-
pled with classic intervals. It remains to find ways to integrate such arithmetics
within Clockwise Intervals.

Acknowledgments

We would like to thank the members of the ANR CAVERN project who par-
ticipated to our initial discussions on this topic, namely Bruno Berstel, Bernard
Botella, Claude Michel, Michel Rueher, and Nicky Williams.

References

1. S. Bardin and P. Herrmann. Structural testing of executables. In 1th Int. Conf.
on Soft. Testing, Verif. and Valid. (ICST’08), pages 22–31, 2008.

2. S. Bardin, P. Herrmann, and F. Perroud. An alternative to sat-based approaches
for bit-vectors. In Tools and Algorithms for the Construction and Analysis
(TACAS’10), pages 84–98, 2010.

3. B. Berstel and M. Leconte. Using constraints to verify properties of programs.
In 2nd Workshop on Constraints in Software Testing, Verification and Analysis,
CSTVA’10, 2010. Co-located with ICST’10 in Paris, April.

4. H. Collavizza, M. Rueher, and P. Van Hentenryck. Cpbpv: A constraint-
programming framework for bounded program verification. In Proc. of CP2008,
LNCS 5202, pages 327–341, 2008.

5. C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19:17–37, 1982.

6. A. Gotlieb. Euclide: A constraint-based testing platform for critical c programs.
In 2th IEEE International Conference on Software Testing, Validation and Verifi-
cation (ICST’09), Denver, CO, Apr. 2009.

7. A. Gotlieb, B. Botella, and M. Rueher. A clp framework for computing structural
test data. In Proceedings of Computational Logic (CL’2000), LNAI 1891, pages
399–413, London, UK, July 2000.

8. M. Leconte and B. Berstel. Extending a cp solver with congruences as domains
for software verification. In 1st Workshop on Constraints in Software Testing,
Verification and Analysis, CSTVA’06, 2006. Co-located with CP’06 in Nantes,
September.

9. B. Marre, P. Mouy, and N. Williams. On-the-fly generation of k-path tests for
c functions. In Proceedings of the 19th IEEE Int. Conf. on Automated Software
Engineering (ASE’04), Linz, Austria, September 2004.

10. Bruno Marre and Benjamin Blanc. Test selection strategies for lustre descriptions
in gatel. Electronic Notes in Theoretical Computer Science, 111:93 – 111, 2005.

11. N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler: Automatic generation
of path tests by combining static and dynamic analysis. In Proc. Dependable
Computing - EDCC’05, 2005.

Les travaux décrits dans ce chapitre ont été menés en grande partie dans le
cadre du projet SESUR CAVERN2 (Constraints and Abstractions for program VERi-
ficatioN, 2008-2011). Ce projet coordonné par l’INRIA Rennes, a rassemblé le lab-
oratoire I3S de l’Université de Nice Sophia-Antipolis, le CEA Saclay et la société
IBM-ILOG Labs, dans le but d’étudier l’intérêt de techniques de calculs sur les
domaines abstraits pour la vérification de programmes à base de contraintes.

Ce chapitre clos la partie fondements de notre manuscrit en ayant présenté, au
travers de quelques articles, les principaux éléments qui constitue les fondations
du test à base de contraintes. Bien sûr, ces éléments ont été présentés au travers du
prisme de nos contributions, forcément réducteur, mais ils constituent néanmoins
selon nous un bon point de départ pour explorer ce domaine de recherche.

2cavern.inria.fr

Part II

Développements

65

Chapter 4

Oracles

Contexte

Le test logiciel repose sur la disponibilité d’oracles, c’est à dire de procédures
manuelles ou automatisées, permettant de contrôler les sorties attendues d’un pro-
gramme sous test. Idéalement, chaque oracle devrait être correct et complet, sig-
nifiant qu’il devrait être capable de prédire, sans erreur, la sortie attendue quelque
soit l’entrée soumise au programme. Cependant, beaucoup de situations réelles
montrent que la disponibilité d’un tel oracle, correct et complet, est extrêmement
rare. Ainsi que l’a noté Elaine Weyuker dans un article fameux [Weyuker 82], cer-
tains programmes sont même considérés comme étant non–testables car il n’est
pas possible de leurs trouver un oracle, même incomplet. A titre d’exemple, on
peut citer les programmes écrits pour résoudre un problème dont la solution n’est
pas connue à l’avance (comme les programmes à contraintes par exemple), cer-
tains programmes numériques qui sont instables vis à vis des erreurs d’arrondis
dus aux calculs flottants, ou encore les programmes qui calculent le résultat de
fonctions mathématiques complexes, incalculable à la main. De plus, certains pro-
grammes doivent être testés de manière approfondie, bien que leur code source ou
qu’une spécification formelle de leur comportement attendu, ne soit disponible.
C’est le cas particulier des librairies et des composants logiciels externes qui sont
souvent délivrés sous forme d’exécutables et pour lesquels seule une documenta-
tion informelle existe.

Nous nous sommes intéressés à ce problème au travers de la définition d’oracles
partiels, c’est à dire de conditions nécessaires mais non toujours suffisantes pour
établir la correction du programme sous test. Cette notion d’oracles partiels a
connu de nombreux développements dans le cadre du test métamorphique [Chan 98,
Chen 01, Tse 07]. Les oracles partiels que nous avons considérés sont fondés sur
l’utilisation de propriétés de symétrie des programmes. Ces propriétés de symétrie
sont des relations de permutation d’entrée-sorties définies par l’utilisateur qui con-
duisent à partitionner l’espace d’entrée en classes d’équivalence. L’équivalence de
deux exécutions à l’intérieur d’une classe peut alors être utilisée comme un or-
acle partiel. Dans ce chapitre, nous introduisons un paradigme de test logiciel

67

nommé test symétrique qui est utilisé pour vérifier les programmes au travers de
ces propriétés de symétrie. Etant donné l’interface d’un programme et une relation
de symétrie que le programme est sensé satisfaire, le test symétrique associe une
génération automatique de de cas de test avec le contrôle d’oracles partiels pour
découvrir des fautes de symétrie dans les programmes. Cette vérification peut-être
complètement automatisée comme nous l’avons montrée dans [Gotlieb 03b]. Le
test symétrique s’appuie sur des résultats classiques de la théorie des groupes afin de
minimiser le nombre de sorties à contrôler pour vérifier une propriété de symétrie.
Cette théorie est une perle mathématique qui est l’outil indispensable pour parler
de symétrie. Le test symétrique a été appliqué au test de bibliothèque Java et de
programmes Java Card, comme détaillé au chapitre 8 de ce mémoire.

A. Gotlieb. Exploiting symmetries to test programs. In IEEE
International Symposium on Software Reliability and
Enginering (ISSRE’03), Denver, CO, USA, November
2003.

Exploiting Symmetries to Test Programs

Arnaud Gotlieb

INRIA�IRISA

Campus Beaulieu

����� Rennes Cedex� FRANCE

Arnaud	Gotlieb
irisa	fr

April �� ����

Abstract

Symmetries often appear as properties of many ar�

ti�cal settings� In Program Testing� they can be

viewed as properties of programs and can be used

to check the correctness of the computed outcomes�

In this paper� we consider symmetries to be permu�

tation relations between program executions and use

them to automate the testing process� We introduce

a software testing paradigm called Symmetric Test�

ing� where automatic test data generation is coupled

with symmetries checking to uncover faults inside the

programs� A practical procedure for checking that a

program satis�es a given symmetry relation is de�

scribed� The paradigm makes use of Group theoretic

results as a formal basis to minimize the number of

program executions required by the method� This

approach appears to be of particular interest for pro�

grams for which neither an oracle� nor any formal

speci�cation is available� We implemented Symmet�

ric Testing by using the primitive operations of the

Java unit testing tool Roast ���� The experimental re�

sults we got on faulty versions of classical programs

of the Software Testing community show the e	ec�

tiveness of the approach�

� Introduction

Testing imperative programs at the unit level requires

to select test data from the input domain� to execute

the program with the selected test data and �nally to

check the correctness of the computed outcomes� For

almost three decades� propositions have been made

to automate this process� Structural test data gen�

eration relies on program analysis to �nd automati�

cally a test set that guarantee the coverage of some

cirteria based on
ow graphs ��� �� � ��� Function�

al testing is based on the speci�cations analysis to

generate automatically test data ��� ��� These tech�

niques both require a formal description to be giv�

en as input � the source code of programs in the

case of structural testing � the formal speci�cation of

programs in the case of functional testing� Howev�

er there are programs to be tested for which no one

of these formal descriptions is available� For exam�

ple� commercial o	�the�shelf components are usually

delivered as �black�boxes�� i�e� executable object�

s whose licenses forbid de�compilation back to the

source code ���� and informal speci�cation is used

most of the time to describe their expected behaviour�

In these situations� techniques such as random testing

���� boundary�value analysis ���� or local exhaustive

testing ���� can be employed� Random testing aim�

s at selecting randomly the values inside the input

domain by using pseudo�random values generators�

whereas boundary�value analysis relies on selecting

the boundaries of each individual or dependent do�

mains ��� of the input space� Local exhaustive test�

ing requires to identify critical points around which

input values will be exhaustively selected� All these

methods have in common to focus on the generation

�

of input values and are based on an underlying as�

sumption which concerns the availability of a cor�

rect and complete oracle� i�e� a procedure able to

predict the right outcome for any input data� Un�

fortunately� there are situations where this assump�

tion seems to be unreasonable� As pointed out by

Weyuker ����� some programs are considered to be

non�testable� These are programs for which it is the�

oretically possible� but practically too di�cult to de�

termine the correct outcome� Consider programs in�

tented to compute a function which is not accurately

known or programs for which correct answers are too

di�cult to compute by hand� Third�party librairies

and commercial components fall usually into the for�

mer case ����� whereas complex numerical programs

fall into the latter ����

In this paper� we introduce a software testing

paradigm� called Symmetric Testing �ST�� which

aims at testing imperative programs for which nei�

ther an oracle� nor any formal description is required�

We consider symmetries to be permutation relations

between program executions and use them to auto�

mate the testing process� Given the interface of a

program and a symmetry relation� ST combines auto�

matic test data generation and symmetries checking

to uncover faults within the program� Group the�

oretic results are used as a formal basis� conform�

ing so the well�known adage �Numbers measure size�

Groups measure symmetry� ����� As a trivial exam�

ple� consider the program p intended to compute the

greatest common divisor �gcd� of two non�negative

integers u and v and suppose that p is tested with

the following test datum �u � ����� v � ����� auto�

matically generated by a random test data genera�

tor� Although� we all know how to compute the gcd

of two integers�� it is not so easy to predict the ex�

pected value of gcd������ ���� without the help of a

calculator� Fortunately� gcd satis�es a simple sym�

metry relation ��u�v� gcd�u� v� � gcd�v� u�� So� if

gcd������ ���� �� gcd����� ����� then the testing pro�

cess will succeed to uncover a fault without the help of

any oracle of gcd� We generalized this idea to obtain

a formal de�nition of symmetry relation on impera�

tive programs� Formally speaking� let p be a program

�with the Euclidian algorithm for example

which takes a vector of at least k values as input and

returns a vector of at least l values� and let x and y

be two vectors then a symmetry relation for p holds

if� �
�� � Sk� �� � Sl such as y � ��x �� p�y� � ��p�x�

where Sk �resp� Sl� is the symmetric group acting on

k elements of x �resp� l elements of y�� Symmetric

Testing consists in �nding test data that violate a

given symmetry relation� i�e� �nding � such as for all

� �

y � ��x � p�y� �� ��p�x�

Symmetries relations are generic properties and

checking the correctness of programs in regards with

these relations is a di�cult task� likely undecidable in

the general case�� However� there are circumstances

when testing procedures can be used to check the

correctness of properties against programs ��� �� ����

Hence� by using these procedures� it becomes possi�

ble to check that a given symmetry relation is sat�

is�ed by the program on a �nite subset of its input

space� Limitations of ST concern the weaknesses of

symmetry relations to di	erentiate incorrect imple�

mentations from correct ones� In fact� there are lots

of programs that satisfy a given symmetry relation

and any incorrect implementation will not be neces�

sary discovered by Symmetric Testing� Conversely�

the approach does not report any spurious faults� In

order to evaluate the fault revealing capacity of ST�

we implemented it by using the four unit operations

of the Java testing tool Roast ��� and we used it to

reveal faults on several academic programs and on

programs extracted from the third�party library ja�

va�util�Collections�� of the Java � plateform �std

edition ���� These �rst experimental results show

that ST is of particular interest when testing some of

the �non�testable� programs�

The rest of the paper is organized as follows � sec�

tion � presents the Group theoretic results as well as

the necessary notations required to fully understand

�p�x� denotes the vector of values computed by the execu�

tion of p with x as input

�Although we are not aware of any proof of this� it can

be hypothesized as a consequence of the undecidability of the

halting problem

�

the paper� Section � details the principle of Symmet�

ric Testing while section reports the experimental

results obtained with Roast� Related works are de�

scribed in section � and �nally section � indicates

several perspectives to this work�

� Group theory � notations and

selected results

All the basic material on Group theory presented

in this section is extracted from ���� and the JS

Milne�s lecture notes �available online www�jmilne�

org�math�CourseNotes��

De�nition � �Group�

A nonempty set G together with a composition law �

is a group i� G satis�es the following axioms 	

� �a��b��c � G� a��b�c� � �a�b��c �associativity�

� �e � G such as a�e � e�a � a �a � G �neutral�

� �a � G� �a�� � G such as a � a�� � a�� � a � e

�existence of an inverse�

The symmetric group notion is the corner�stone of

Symmetric Testing� Let E be a nonempty �nite set of

n distinct elements� the set SE of bijective mappings

from E to itself is called the symmetric group of

E �say SE acts on E�� This symmetric group has

exactly n� elements� which are named permutations�

It is clear that SE is a group because it is closed and

associative under �� identity is its neutral element

and each permutation posses an inverse because the

de�nition is restricted to bijective mappings only�

SE can be identi�ed with Sn � the symmetric group

acting on f�� ��� ng as there is a trivial bijective rela�

tion �isomorphism� between SE and Sn� A permuta�

tion in Sn is written � � �
�
� �� n

i��� �� i�n�
�

where

i���� ��� i�n� denote the images of �� ��� n by the per�

mutation �� When a permutation of Sn is applied to

a vector x of size n� we will write ��x to denote the

image of x by the permutation � �say � acts on x��

For the sake of clarity� we will extend our notations

to program compositions� If p is a program� p � �

will denote the application of p to the permutation �

of the elements of its input vector� Conversely� � � p

will denote the permutation � applied to the output

vector of p�

All the permutations can be expressed by using on�

ly a few ones� Consider for example the permutation

� �

�
� � � �

� � � �
�

of S�� the same permu�

tation can be captured by the following notation

� � �������� where each pair of brackets denotes

a speci�c permutation called an r cycle� A permuta�

tion �a�a���ar� of Sn is an r cycle i	 it maps a� to

a�� a� to a�� �� ar�� to ar and leave unchanged the

other elements� A � cycle �written �aiaj�� is usually

referred to as a transposition� A trivial property of

transpositions is that they are their own inverse�

A subset X of elements of a �nite group G is a set

of generators i	 every element of G can be written

as a �nite composition product of the element of X �

G is said to be generated by X � For example� it is

well�known that S� is generated by the two transposi�

tions �� � ���� and �� � ���� because each one of the

six elements of S� can be written with a �nite com�

position product of these two transpositions� More

generally� Sn is generated by all the transpositions�

but also by the following subset of transpositions �

f����� ����� ��� �n 	 �� n�g� In this paper we will use

the following proposition� given here without a proof

�that can be found in ������

Proposition � �generators of Sn�

The transposition � � ���� and the n cycle � �

�����n� together generate Sn

It can be shown that Sn cannot be generated by less

than two permutations� Hence f�� �g is a set of gen�

erators of minimum size�

A fundamental notion in Group theory is group

homomorphism �

De�nition � �group homomorphism�

A group homomorphism from a group G to a group

G� over the same composition law � is a map � �

G 	
 G� such that ��� � ��� � ���� � �����

Note that an isomorphism is simply a bijective ho�

momorphism� As a consequence of this de�nition�

the image of a group homomorphism from G to G�

is a subgroup of G�� It is noted Im���� Con�

versely� Ker��� denotes the kernel of a group ho�

momorphism� which is the set of permutations of

�

G which are mapped to idG� � G	Ker��� denotes

the group quotient of G by Ker���� i�e� the set

fg � hjg � G� h � Ker���g� Hom�G�G�� denotes

the set of group homomorphisms �in fact� it is also a

Group�� To end this review of the Group theoretic

results that we need here� we give the fundamental

theorem of group homomorphisms �

Proposition � �isomorphism theorem�

Let G and G� be two groups and � be an element of

Hom�G�G��� then � factors into the composite of a

surjection� an isomorphism �� and an injection 	

G

�

				
 G�

surj
��y x��inj

G	Ker���

��

				
 Im���

� Principle of Symmetric Test�

ing

��� Symmetry relations

The idea behind Symmetric Testing is to exploit user�

de�ned symmetries to automate the testing process of

imperative programs� Lots of de�nitions of symmetry

have been proposed in various contexts ����� Some of

them can be adapted for our purpose� We brie
y

discuss two possible choices that can be considered

for program testing�

� Symmetries over values� A symmetry over

values can be expressed as a relation between t�

wo program executions when there is a geometric

relation �for example� an isometry� beetwen the

two input points� As a trivial example� consider

a program p which takes two integers as argu�

ments and veri�es p�x� y� � p�	x�	y�� In this

case� the two input points are symmetrical w�r�t�

the origin of the input space �

� Symmetries over variables� A symmetry

over variables can be viewed as a relation be�

tween two program executions where there is a

permutation relation beetwen the input points�

p�x� y� � p�y� x� is the most simple example of

such a symmetry�

Symmetries over values can easely be recognized for

programs that compute a mathematical function giv�

en by a formula �based on arithmetic or trigonomet�

ric operations�� In some cases� local symmetries over

these operations may be aggregated to determine a

global symmetry over the formula� such as in the for�

mula p�x� y� � sin�xy�	cos�y� which satis�es a triv�

ial symmetry over values w�r�t� the origin� Neverthe�

less� in such a case the formula itself can be used

to check the correctness of the computed outcome�

Hence� these symmetries over values appear to be

useless for our purpose� Conversely� symmetries over

variables can be speci�ed with a very few knowledge

on the function being computed� Type informations

are sometimes su�cient to see that a program has

to satisfy a symmetry over variables� Further� they

are properties that can be easely extracted from an

informal speci�cation� These are the reasons why we

will focus on such symmetries in this paper� Formally

speaking� a symmetry is de�ned as follows �

De�nition � �symmetry�

Let p be a program over a domain D that takes n

references as input and returns m references�� and let

Sn �resp
 Sm� be the symmetric group over n �resp

m� elements� then a symmetry is a pair
 �� � �

such as 	 � � Sn� � � Sm�

y � ��x �� p�y� � ��p�x� �x� y � D

Note that every program p satis�es at least the trivial

symmetry
 idSn � idSm � because imperative pro�

grams are considered to be deterministics here �t�

wo executions with the same input give the same

result�� Some of the references of the input vector

may be leaved unchanged by the permutation � of a

symmetry
 �� � �� So� the vector of k exchanged

input references involved in the symmetry is called

the permutable input set� whereas the vector of l ex�

changed output references is called the permutable

output set� Such symmetries can be grouped togeth�

er by the mean of symmetry relations�

De�nition 	 �symmetry relation�

Let p be a program over a domain D that has k per�

�As usual in imperative programming� the value of an input

reference may be modi�ed within the program and considered

so as an output variable

�in Group theory� this is called the support of a permutation

mutable input data and l permutable outcomes� �k�l

is a symmetry relation for p i�

� �k�l � Hom�Sk� Sl� �group homomorphism� �

� �� � Sk�
 ���k�l��� � is a symmetry for p

The reason why symmetry relations are required to

be group homomorphisms is based on our will to

characterize the links between permutable outcomes�

This will be made clearer in the following� Note that

symmetry relations are very di�cult to check when

the number of permutable input data increases �be�

cause Sk contains k� elements�� It is important to see

that �k�l does not denote a unique symmetry rela�

tion� because there is no requirement over the map�

ping properties of the homomorphism� In fact� �k�l

is identi�ed with a class of symmetry relations that

are group homomorphisms in Hom�Sk� Sl�� Based

on their formal de�nition� identifying such symmetry

relations might appear to be di�cult� Conversely� we

argue that they can easily be speci�ed by looking at

the informal speci�cation of programs� because they

are often related to the type informations of program

variables� Consider a program p taking an unordered

set as argument� then we already know that p has

to satisfy a symmetry relation because computing p

with a permutation of the elements of the set does not

modi�y the computed result� Numerous programs

take unordered sets as arguments � consider sorting

programs or graph�based programs just to name a

few� Further� third�party libraries that contain lots

of generic programs �for reusing purpose� have often

to satisfy symmetry relations�

��� Examples

Consider the standard application pro�

gramming interface speci�cation of the

java�util�Collections�replaceAll method

given in Fig��� If we consider the n cycle � �permu�

tation �����n��� then the method replaceAll has to

satisfy a
 �� � � symmetry � let A �resp� B� be

a vector of n symbolic references and A� �resp� B��

be the resulting vector computed by invocation of

replaceAll with the references oldV al and newV al�

then B � ��A �� B� � ��A�� A and B are two

permutable input sets whereas A� and B� are the

public static boolean replaceAll�List A�

Object oldVal�

Object newVal�

Replaces all occurrences of one speci�ed value in a list with

another� More formally	 replaces with newVal each element e

in A such that
oldVal��null � e��null oldVal�equals
e���

This method has no e�ect on the size of the list��

Parameters�

A � the list in which replacement is to occur�

oldVal � the old value to be replaced�

newVal � the new value with which oldVal is to be

replaced�

Returns�

true if list contained one or more elements e such that

�oldVal��null � e��null � oldVal�equals�e���

Throws�

UnsupportedOperationException � if the speci�ed list or

list�iterator does not support the set method�

Figure �� API speci�cation of replaceAll

permutable output sets� Further� it is clear that

replaceAll has to satisfy the same symmetry for

all � � Sn� Hence� this Java method has to satisfy

a �jAj�jAj symmetry relation� where jAj denotes the

size of the abstract collection A� Finally� this group

homomorphism is the identity of Hom�SjAj� SjAj��

which is only one of the possible symmetry rela�

tions represented by �jAj�jAj� By looking at the

java�util�Collections class which contains ��

distinct methods� among ��� we found that ��

methods have to satisfy at least one non�trivial

symmetry relation� This class was selected because

it consists of methods that operate on collections�

which can be specialized on multiset or sequences

of objects� As a consequence� the results given here

should not be extrapolated for any other classes�

Table � summarizes the symmetry relations found

for these methods� Permutable input and output are

indicated in the two central columns� The symbol

Ret denotes the returned reference or value of the

Java method�

The max and min have to satisfy a �jAj�� symme�

try relation because they return one of the elements

of an unordered set� took as argument� Converse�

ly� fill� replaceAll� reverse� rotate� sort�

shuffle�swap have to satisfy a �jAj�jAj symmetry

relation because they modify ordered sequences or

�methods which have distinct speci�cations� and not only

distinct interfaces

�

Signature of Java methods Perm�

in

Perm�

out

Sym�

rel�

void copy�List B�List A� A B �jAj�jBj

Enumeration

enumeration�Collection A�

C Ret �jAj�jRetj

void fill�List A�Object obj� A A �jAj�jAj

Object max�Collection A� C Ret �jAj��

Object min�Collection A� C Ret �jAj��

List nCopies�int n� Object O� O Ret ���jRetj

boolean replaceAll�List A�

Object oldVal� Object newVal�

A A �jAj�jAj

void reverse�List A� A A �jAj�jAj

void rotate�List A� int

distance�

A A �jAj�jAj

void shuffle�List A� A A �jAj�jAj

void sort�List A� A A �jAj�jAj

void swap�List A� int i� int j� A A �jAj�jAj

Table �� Examples of symmetry relations

lists� In fact� these polymorphic functions have been

extensively studied in the Functional Programming

Community and the symmetry relations they have

to satisfy can be derived from the well�known prop�

erties of their type ����� enumeration has to satis�

fy a �jAj�jRetj symmetry relation but jRetj is equal

to jAj in this case� hence the program has to satis�

fy the same symmetry relation than the other pro�

grams� Note that shuffle uses a random permu�

tation of its permutable input data� Although the

computed list cannot be easily predicted� the sym�

metry relation that shuffle has to satisfy is speci�

�ed without any di�culties� nCopies has to satisfy

a ���jAj symmetry relation� which can be interpreted

as follows � whatever is the argument of nCopies� the

outcome should be a vector of equal references� To

complete this panorama� consider the copy method

which aims at copying the values contained into a

list �the source list� into another one �the destination

list�� The method requires the destination list to be

at least as long as the source list� If it is longer� the

remaining elements in the destination list are unaf�

fected and remain equal to their previous values� As a

consequence� the method has to satisfy a �jA�jBj sym�

metry relation where jAjmay not be equal to jBj� For

example� copying S � ��� �� �� into D � ��� �� �� �� ��

leads to D� � ��� �� �� �� ��� In the section � we give

several examples of non�trivial symmetry relations�

��� Symmetric Testing

These symmetry relations can be used to seek a sub�

class of faults within an implementation� Formally

speaking �

De�nition
 Symmetric Testing

Let p be a program and �k�l be a symmetry relation

for p� then Symmetric Testing aims at �nding a triple

�x� p�x�� p���x�� such as p���x� �� �k�l����p�x�

If found� such a triple
 x� p�x�� p���x� � represents

a counter�example for the symmetry relation� This

shows that at least one of the two test data x and ��x

reveals a fault in p� So� given a set of test data and

a symmetry relation� we get a naive procedure that

can check whether program outcomes are incorrects�

It is required to compute all the permutations of the

permutable input of a vector x� to execute p with all

these input data and to check whether the outcome

vectors are equals to a permutation of the vector re�

turned by p�x�� This principle can be illustrated by

the following commutative diagram�

x

�

				
 ��x

p
��y ��yp

p�x� 					

�k�l
��

�k�l����p�x�

It is only a necessary condition for the correctness

of p w�r�t� its speci�cation because incorrect imple�

mentations of p may also satisfy the same symmetry

relation� Note that this procedure is independant of

the test set being used� In fact� it leaves the tester

the possibility to use any automatic test data gener�

ators� because it is not required to produce an oracle

for the expected outcomes� However� it should be

recalled that the number of possible permutations in

Sk is k�� leading to an impractical number of pro�

gram calls whenever k increases� No hypothesis are

made on the type of the permutable input data �Ob�

ject references� integers� ���� but checking the equali�

ty between
oating point values might be hazardous

because programs that manipulate such variables de�

pend strongly on the evaluation order of expressions�

So� the equality relation between the computed re�

sults should be relaxed for these types�

�

��� Checking a given symmetry rela�

tion

We turn now on a more practical procedure that

checks whether a program satis�es a given symme�

try relation�

��	�� Reducing the number of permutations

In order to limit the number of program calls� we pro�

pose to check only two permutations when checking

a symmetry relation� In fact� by using the propo�

sition �� we known that only two permutations are

required to generate Sk� As a consequence� we get

the following proposition �

Proposition � Let p be a program and �k�l be a

symmetry relation for p� let � � ���� and � � �����k��

then we have�
p � � � �k�l��� � p

p � � � �k�l��� � p

�� p�� � �k�l����p �� � Sk

Proof� ��� � � Sk and � � Sk� hence taking � � �

and � � � yields the expected result�

��� Let � � Sk be a permutation �distinct from �

or ��� By using proposition �� � can be written as

a �nite composition of the two permutations � and

�� Let � � � � � � ��� be the beginning of such a

composition �taking any other chain does not change

the proof� then p � � � � � ��� � �k�l��� � p � � � ���

by applying one of the two hypothesis and recalling

that � is associative� Further� it is possible to iterate

on the composition chain � p � � � � � ��� � �k�l��� �

�k�l��� � p � ��� � �k�l��� � �k�l��� � ��� � p� This is

repeated until the complete �nite chain would have

been processed� Finally� �k�l�����k�l���� ��� is equal

to �k�l��� because �k�l is a group homomorphism�

As a corollary� it is possible to characterize the sub�

group of Sl� image of Sk by the homomorphism �k�l�

Proposition 	 �Generators of Im��k�l��

�k�l��� and �k�l��� together generate the subgroup

Im��k�l�

Proof� �k�l��� � �k�l��� ��k�l��� � ��� for all � � Sk

hence every permutation of Im��k�l� can be written

as a �nite composition of �k�l��� and �k�l����

Ker��k�l� denotes the set of permutations of Sk

which leave the outcome of p unchanged� Because

G	Ker��k�l� is isomorphic to Im��k�l� by the group

isomorphism induced by �k�l� it is possible to deter�

mine precisely the mapping properties of �k�l just

by looking at the link between the two generators

�k�l��� and �k�l���� but this is outside the scope of

this paper�

��	�� Checking only � and �

We will provide here a procedure to check whether a

program p satis�es the two symmetries
 ���k�l��� �

and
 ���k�l��� � over an input space D� In fact�

it is required to show that p���x� � �k�l����p�x� and

p���x� � �k�l����p�x� for all x � D� To achieve such

a goal by the mean of testing� we propose to use an

local exhaustive test data generator ����� However�

other approaches� that make use of a �semi��proving

technique can be followed ��� ��� and are discussed

in the section � of this paper� In general� input do�

mains are in�nites� as illustrated by the replaceAll

method �Fig���� which takes an unbounded list as

�rst argument� In this case� a local exhaustive test

data generator will enumerate all the possible lists

until a selected size will be reached� So� any proof

of symmetry relation satisfaction would be limited to

the input domain being exhaustively explored� For�

tunately� the limitation of the input space allows the

approach to remain practical�

The keypoint of our approach is that we just have

to know whether p���x� and p���x� are permutations

of p�x�� As previously said� a precise knowledge of

�k�l��� and �k�l��� is not required here because �k�l

represents an entire class of symmetries� The proce�

dure shown in Fig�� takes a program p and the input

space D as arguments and returns the �rst found

triple
 x� p�x�� p���x� � that violates the symmetry

relation� among the portion of the input space being

explored� If such a counter�example cannot be found�

this proves that p satis�es not only the two selected

symmetries but also all the permutations of Sk of the

input vector in the input space D� Note that some

test data are not required to be examined � test data

of the form x � �v� v� ��� v� can be eliminated from

D because any permutation will leave x unchanged�

�

while�D �� �� f

pick up x � D�

D �� D n fxg�

if� p���x� is not a permutation of p�x� �

return � x� r� p���x� �

if� p���x� is not a permutation of p�x��

return � x� r� p���x� �

g
return��Check complete���

Figure �� A procedure for Symmetric Testing

Note also that non�permutable input data may be

leaved constants because these input data do not play

any role in the symmetry relation� However� by do�

ing these� we restrict the proof when the procedure

explores the complete domain�

��� Discussion

As expected� terminaison of the previous procedure

cannot be guaranted� Although the input space of the

program p is required to be �nite� nothing prevents

p to iterate in�nitely when computing p�x�� p���x� or

p���x� and no general procedure can be used to decide

the termination of p�

Under the strong hypothesis that p halts on al�

l test data of its �nite input space� ST is guaranted

either to �nd a counter�example of the symmetry re�

lation if there exists one� or to show that p satis�es

the symmetry relation� However� the input space of

p may have to be fully explored in the worst case�

Let D� � D� � �� � Dn be the �nite input space of

p and let d be the number of elements of the great�

est domain Di� then the procedure given in Fig�� will

have to enumerate O�dn� points in the worst case�

From a practical point of view� it is crucial to main�

tain d and n as smallest as possible by limiting the

size of the domains of permutable input data� Note

also that the number of program calls is O�dn� by

using the procedure of Fig�� whereas it would have

been O�n� dn� in the worst case by using the naive

procedure that we �rst introduced�

Another limitation comes from the di�culty to es�

tablish that an extracted symmetry relation is ac�

tually a group homomorphism� for some program�

s� Consider the method Vector min nb�Vector A�

int nb� which computes a vector of nb minimum in�

teger values extracted from A� given in Fig��� We

can guess that this program has to satisfy a �jAj�jRetj

symmetry relation� However� the vector returned by

the program is not sorted and its elements order de�

pends strongly on the algorithm used� Further� it is

di�cult to verify at hand that �jAj�jRetj��� � ��� �

�jAj�jRetj���� � �jAj�jRetj���� for all ��� ��� An ap�

public static Vector min nb�Vector V � int nb� f

if� �V �� null� � return null�

int k � ��V�size�� � nb� 	 V�size��
 nb��

int j� i � � �

Vector R � new Vector���

Integer max R� cur V �

Collections c � null�

while� i � k � f

R�addElement�V�elementAt�i���

i���

g
while�i � V�size���f

j � ��

while�j � k�f k is the size of R

max R � �Integer�c�max�R� � max value of R

cur V � �Integer�V�elementAt�i�� current value of V

if�max R�intValue�� � cur V�intValue���f

R�setElementAt�cur V�R�indexOf�max R���

break�

g
j���

g
i���

g
return�R��

g

Figure �� The min nb program

proach for this problem would be to use symmetry

relations over compositions of programs� For exam�

ple here� composing min nb with a sorting program of

the resulting vector yields a �jAj�� symmetry relation

for the composition�

�

� Experimental results

��� Implementation

We implemented ST with the help of the primitive

operations of the Java unit testing tool Roast ���� The

tool includes four unit operations �generate� �lter� ex�

ecute� and check� designed �� to automate the gen�

eration of test tuples� �� to �lter some the generated

tuples� �� to execute the program under test with the

selected tuples and � to check the computed out�

comes� Roast provides several test data generators

such as a boundary�value generator and a Cartesian

product generator� We used only the latter to imple�

ment our local exhaustive test data generator� Roast

supports test templates �Perl macros� to compare ac�

tual outcomes to predicted ones� We used these tem�

plates in combination with our Java methods to check

whether a computed outcome was a permutation of

another one�

��� Experiments with ST

The goal was to study the capacity of ST to reveal

faults in programs and to �nd circumstances where

ST checks that a given symmetry relation is satis�ed�

The experiment was performed on classical academic

programs� where faults were injected by mutation�

Programs� Six programs were selected among

which three were implemented and three came from

the java�lang�Collections class � replaceAll�

sort and copy� We implemented the min nb method

�given in Fig���� the GetMid program �given in ����

intended to compute the median of three integers�

and the well known triangle classi�cation program

trityp ����� This program takes three integers as

arguments that represent the relative lengths of

the sides of a triangle and classi�es the triangle as

scalene �sca�� isocele �iso�� equilateral �equ� or illegal

�illeg�� To limit the size of the search space� we

considered every input integer to belong to a range

of ��� values �ranging from � to ��� for GetMid and

trityp� For min nb� replaceAll� copy� and sort

we considered lists to contains at most integers

ranging from � to ���

Mutants� Four mutants were created for min nb

and GetMid� GetMid � and min nb � are versions

of the original programs where two statements are

removed� The �rst mutant has been studied in ���

because it contains a �missing path error� fault�

which is considered as a di�cult fault to reveal� The

mutation of relational operators in GetMid � and

min nb � leads to the creation of infeasible paths

�at least for the �rst program�� Finally� thirty three

mutants were manually created for trityp� The

strategy used to create the mutants was to exchange

operators� values or variables in a systematic manner�

Equivalents mutants� have been removed from the

set of experiments� because they cannot be revealed

by the mean of testing ����� All the mutants are

available at the url www�irisa�fr�lande�gotlieb

Symmetry relations� The results of GetMid

and trityp must be invariant to every permuta�

tion of their three input values� leading to a ����

symmetry relation� As previously said� min nb has

to satisfy a �jAj�jRetj symmetry relation� Finally�

Table � contains the expected symmetry relations

for replaceAll� copy and sort�

��� Experimental results and Analysis

Mutants x p
x� p
��x� p
��x� rtime

sec�

min nb 	 vec��	�	��	 nb� ����� ��	�� ����� ���

min nb
 vec��	��	 nb� ��� ��� ��� �

min nb ������� test data ��

Table �� Results for min nb

Mutants x p
x� p
��x� p
��x� rtime

sec�

GetMid 	
�	�	�� � � � ���

GetMid

�	�	�� � � � ���

GetMid ������ test data �	�

Table �� Results for GetMid

�programs which compute the same outcome as the original

program although a mutation operator has been applied

�

Mutants x p
x� p
��x� p
��x� rtime

sec�

trityp 	
�	�	�� iso illeg illeg ���

trityp
 not found ���

trityp �
�	�	�� illeg iso iso ���

trityp �
�	�	�� equ sca iso ���

trityp
�	�	�� iso illeg illeg ���

trityp �
�	�	�� illeg illeg iso ���

trityp �
�	�	�� illeg illeg iso ���

trityp �
�	�	�� equ iso equ ���

trityp � not found ���

trityp 	�
�	�	�� equ illeg illeg ���

trityp 		 not found ���

trityp 	

�	�	�� illeg iso illeg ���

trityp 	� not found ���

trityp 	� not found ���

trityp 	 not found ���

trityp 	� not found ��

trityp 	�
�	�	�� sca illeg sca ���

trityp 	� not found ���

trityp 	�
�	�	�� sca iso sca ���

trityp
�
�	�	�� sca illeg illeg ���

trityp
	
�	�	�� illeg sca illeg ���

trityp

�	�	�� illeg illeg equ ���

trityp
�
�	�	�� illeg equ equ ���

trityp
�
�	�	�� illeg illeg equ ���

trityp

�	�	�� equ iso illeg ���

trityp
�
�	�	�� illeg iso illeg ���

trityp
�
�	�	�� equ illeg illeg ���

trityp
�
�	�	�� illeg iso illeg ���

trityp
�
�	�	�� equ iso iso ���

trityp �� not found ���

trityp �	
�	�	�� illeg iso illeg ���

trityp �

�	�	�� illeg iso iso ���

trityp �� not found ��

trityp ������ test data tried �	�

Table � Results for trityp

All the computations were performed on a ���Ghz

Pentium personal computer by using the version

��� of Roast�

	���� Revealling faults with ST

We �rst applied ST to reveal faults among the mu�

tants of each program� The results are given in tables

�� �� and � If found� a test datum x that violates

the symmetry relation is given� The values of p�x��

p���x� and p���x� are given in each of three interiors

columns of the tables� In the case where a test datum

is found � the mutant is said to be killed by the sym�

metry relation� Incorrect results of the program p are

noted with boldface to facilitate the results interpre�

tation� but this was determined manually� For each

relation� the CPU time spent to �nd the solution is

given �including time spent garbage collecting or in

system calls� in the last column�

Test data are found for killing the two mutants

of min nb and GetMid� This illustrates the capaci�

ty of ST to reveal two di�cult class of faults �miss�

ing path error and infeasible path� on thess pro�

grams� Among the �� mutants of trityp� �� were

not detected as faulty versions �programs trityp

�� �� ��� ��� �� ��� ��� ��� ��� ��� by ST� Studying

these programs leads to see that they are equivalen�

t to the correct version of trityp in the following

sense � both the mutant and the correct version sat�

is�es the same symmetry relation� For example� the

mutant trityp 	 cannot be detected by ST because

the fault has been introduced into a statement only

reached by a sequence of three equal integers� which

is invariant to permutation and in fact not even tried

by the local exhaustive generator� In some cases�

the p�x�� p���x� and p���x� are all incorrects �mu�

tants and ���� This illustrates a situation where

a fault injected in the program yields to modify every

computed outcome� Fortunately� this breaks also the

symmetry relation that the program has to satisfy�

	���� Checking that a program satis�es a giv�

en symmetry relation

Checking that the symmetry relations are satis�ed by

the correct versions of min nb� GetMid� and trityp

yields to the results shown in the last row of table

�� � and � As the size of the search space was arbi�

trarely limited� the proof is only valid on a small part

of the input space� Nevertheless� we prefered to com�

promize the size of the input space rather than the

time spent to search a counter�example� Although

these proofs are done in restricted cases� they form a

valuable step toward program correctness because the

checking procedure is completely automated for these

programs� Finally� we applied ST to check symmetry

relations for the copy� sort� replaceAll methods of

the class java�lang�Collections� The results are

given in table � and show that the three methods

satisfy their symmetry relation among the restricted

input space�

��

Mutants x p
x� p
��x� p
��x� rtime

sec�

copy ������ test data ����

sort ������ test data ���

replaceAll �������� test data �������

Table �� Results for sort copy� replaceAll

� Related work

The idea of checking the computed results of a pro�

gram by using several input data is not new� Am�

mann and Knight ���� described the data diversity

approach which aims at executing the same program�

on a related set of input points� To check the com�

puted outcomes� a voting procedure is used as an

acceptance test� As claimed by the authors� the re�

expression algorithms� used to generate the input da�

ta in relation within an expression� must be tailored

to the application at hand� Blum and Kannan ����

proposed the concept of program checker� which is a

program able to play the role of a probabilistic oracle�

under a set of restrictions� As an example� the au�

thors considered the graph isomorphism problem and

they provide a program checker which checks that a

graph G� resulting from a random permutation of a

graph G is isomorphic to a graph H only if G is iso�

morphic toH � Other program checkers that make use

of mathematical properties are designed for programs

that compute gcd�the matrix rank or programs that

sort data� Conversely to these works� our approach

focus on generic relations that can be easily extracted

from an informal speci�cation� The symmetry rela�

tions that are considered in this paper are general

and do apply to programs not restricted to compute

mathematical functions�

More recently� Chen et al� proposed in ���� to use

existing relations over the input data and the com�

puted outcomes to eliminate faulty programs� in a

framework called Metamorphic Testing� It is pro�

posed in ��� to use global symbolic evaluation tech�

niques to prove that an implementation satis�es a

given metamorphic relation for all input data� The

technique yields to enumerate the paths of the pro�

gram and to evaluate the statements along each path

by replacing variables by symbolic values� Iterations

are treated by a complex and manual loop analy�

sis� The procedure requires to compare several sets

of constraints extracted from the program� which are

manually simpli�ed on two example programs� One

of them is the GetMid program that we used in our

experiments� For this program� the same symmetry

relation we gave� is provided and only a few permu�

tations �transpositions only� are used to check the re�

lation� However� their approach is only manual and

seems di�cult to be automated� In a previous work

����� we attempted to automate the generation of in�

put data that violate a given metamorphic relation�

by using Constraint Logic Programming techniques�

During this work� symmetry relations appear to be of

a great interest because of their simlicity and generic�

ity� Furthermore� it appears that a formal basis were

required to generalize the ideas based on the use of

symmetry�

	 Perspectives

In this paper� we have introduced a new software test�

ing paradigm called Symmetric Testing which aims at

�nding test data that violate a given symmetry rela�

tion� Group theoretic results are used to give a formal

basis to this paradigm� In particular� a formal de�ni�

tion of symmetry relation is introduced and we have

given a practical procedure for applying Symmetric

Testing on imperative programs� However� the lim�

its of our automated approach of Symmetric Testing

have been identi�ed� We forsee to replace the lo�

cal exhaustive test data generator by a a constraint�

based test data generator which makes use of con�

straints extracted from the source code� In this ap�

proach� constraints are used as relational expressions

between input and output symbolic variables and al�

low us to prove properties about the program and its

test data� We believe that symmetry relations would

be easily expressed as program properties into such

a framework� Further� program composition appear

to be an interesting perspective to take into account

programs for which it is not easy to specify symme�

try relations� This would allow to specify symmetry

relations over �nite sequence of method invocations�

providing so a way to test programs at the integration

level�

��

Acknowledgment

References

��� N� Daley� D� Ho	man� and P� Strooper� A frame�

work for table driven testing of Java classes� Soft

Prac
 and Exper
� �������� ��� April �����

��� L� Clarke� A System to Generate Test Data and

Symbolically Execute Programs� IEEE Trans

on Soft
 Eng
� SE��������� ���� September �����

��� R� Boyer� B� Elspas� and K� Levitt� SELEC�

T � A formal system for testing and debugging

programs by symbolic execution� SIGPLAN No�

tices� �������� ��� June �����

�� Bogdan Korel� Automated Software Test Da�

ta Generation� IEEE Trans
 on Soft
 Eng
�

��������� ���� Jul� �����

��� A� Gotlieb� B� Botella� and M� Rueher� Auto�

matic Test Data Generation Using Constrain�

t Solving Techniques� In ACM Int
 Symp
 on

Soft
 Testing and Analysis �ISSTA�� Soft
 Eng

Notes������������� �����

��� G� Bernot� M� C� Gaudel� and B� Marre� Soft�

ware testing based on formal speci�cations� a

theory and a tool� Soft
 Eng
 Jour
� ��������

��� �����

��� E� Weyuker� T� Goradia� and A� Singh� Auto�

matically generating test data from a Boolean

speci�cation� IEEE Trans
 on Soft
 Eng
�

��������� ���� May ����

��� J� M� Voas� Certifying o	�the�shelf software

components� Computer� �������� ��� June �����

��� Joe Duran and Simeon Ntafos� An evaluation

of random testing� IEEE Trans
 on Soft
 Eng
�

������� � Jul� ����

���� Glenford J� Myers� The Art of Software Testing�

John Wiley� New York� �����

���� T� Wood� K� Miller� and R� E� Noonan� Local

exhaustive testing� a software reliability tool� In

Proc
 of the Southeast regional conf
� pages ��

�� ACM Press� �����

���� Elaine Weyuker� On testing non�testable pro�

grams� Computer Journal� ������� ��� �����

���� P� Devanbu and S� G� Stubblebine� Crypto�

graphic veri�cation of test coverage claims� In

M� Jazayeri and H� Schauer� editors� Proc
 of

the European Soft
 Eng
 Conf
 �ESEC�FSE��

pages ��� ��� LNCS ����� September �����

��� T�Y� Chen� T�H� Tse� and Zhiquan Zhou� Semi�

proving� an integrated method based on glob�

al symbolic evaluation and metamorphic testing�

In ACM Int
 Symp
 on Soft
 Testing and Analy�

sis �ISSTA�� pages ��� ���� �����

���� M� A� Armstrong� Groups and Symmetry �Un�

dergraduate Texts in Mathematics�� Springer

Verlag� second edition� �����

���� A� Gotlieb and B� Botella� Automated meta�

morphic testing� PI ����� IRISA Tech� Report �

Rennes� France� �����

���� P� Wadler� Theorems for free� In FPCA���

London� England� pages �� ���� ACM Press�

September �����

���� R� A� Demillo and A� J� O	ut� Constraint�Based

Automatic Test Data Generation� IEEE Trans

on Soft
 Eng
� ��������� ���� Sep� �����

���� P� E� Ammann and J� C� Knight� Data diversity�

An approach to software fault tolerance� IEEE

Trans
 on Computers� ������� ��� �����

���� M� Blum and S� Kannan� Designing programs

that check their work� Jour
 of the Assoc
 for

Computing Machinery� �������� ���� January

�����

���� T�Y� Chen� T�H� Tse� and Zhiquan Zhou� Fault�

based testing in the absence of an oracle� In

IEEE Int
 Comp
 Soft
 and App
 Conf
 �COMP�

SAC�� pages ��� ���� �����

��

Chapter 5

Modélisation à contraintes des
programmes avec pointeurs

Un développement important de nos travaux en génération automatique de tests
à base de contraintes a concerné le traitement des pointeurs en C. En effet, le lan-
gage C offre de multiples possibilités de traitement des données grâce aux poin-
teurs et aux variables de type pointeur. Cependant, l’analyse et la compréhen-
sion des programmes qui manipulent les pointeurs est délicate car l’accès aux
données pointées peut dépendre du flot d’exécution. Ce sujet est difficile pour
les outils de test à base de contraintes car il réclame la définition d’un modèle
mémoire qui impacte l’ensemble du traitement des contraintes. Nous présen-
tons dans ce chapitre deux modèles à contraintes distincts, proposés pour la mod-
élisation des calculs sur les pointeurs en test à base de contraintes. Le premier
modèle dérive de travaux que nous avions initiés en 2000 [Gotlieb 00a] et que
nous avons développés jusqu’à obtenir des résultats expérimentaux satisfaisants
[Gotlieb 05b, Gotlieb 05a, Gotlieb 07]. Ce modèle est efficace mais aussi limité
puisqu’il ne permet pas la prise en compte des structures de données dynamiques.
A l’inverse, le second modèle, développé en parallèle [Gotlieb 06b, Charreteur 07]
est plus général et permet de traiter un sous-ensemble du langage C beaucoup
plus étendu, incluant l’allocation dynamique de mémoire et la déallocation. Il
est cependant moins efficace que le premier, c’est pourquoi il est opportun de
présenter les deux modèles, tout en sachant que ce thème de recherche n’est pas
clos [Botella 09].

Ces deux modèles sont largement indépendants dans la mesure où l’un n’est
pas un raffinement de l’autre ; ils correspondent plutôt à deux manières distinctes
de traiter le problème de la synonimie dans les programmes à base de pointeurs.
Ce problème concerne la possibilité d’accéder à la même case mémoire, au travers
d’expressions syntaxiques différentes. Le premier modèle s’appuie sur un pré-
calcul statique des relations de pointage, tandis que le second découvre ces rela-
tions lors de la résolution du système de contraintes. Le premier modèle est très
efficace comme en témoigne nos résultats expérimentaux, mais restreint puisqu’il

75

ne permet pas de référencer des zones anonymes de la mémoire. En effet, le pre-
mier modèle ne peut contraindre que des zones mémoire auxquelles un nom du
programme est attaché, ce qui exclu l’allocation dynamique de mémoire. Comme
chaque pointeur (constante ou variable) est modélisé par une variable logique
et une sur-approximation des relations de pointage est estimée avant résolution
du système de contraintes, la génération de données de test est très efficace. A
l’inverse, le modèle à contraintes du second article est plus général puisque chaque
instruction qui modifie la mémoire est modélisée comme une relation entre deux
états-mémoire abstraits. Ainsi, l’allocation dynamique de mémoire est représentable.
Ce deuxième modèle représente les instructions comme des contraintes ensemb-
listes, où les ensembles seraient non nécessairement bornés [Charreteur 08]. Ce
modèle mémoire ouvre des perspectives en matière de modélisation à contrain-
tes des programmes impératifs qui manipulent les pointeurs, mais également des
programmes orientées-objet où la notion de référence et l’allocation dynamique
d’objet est omniprésente. Ce point fait l’objet du chapitre suivant.

A. Gotlieb, T. Denmat, and B. Botella. Goal-oriented test
data generation for pointer programs. Information and Soft-
ware Technology, 49(9-10):1030–1044, Sep. 2007.

���������	
��
��
 ��
� �	���
��	 ��� ���	
��

�������

������ ��	
�� ���� ����	�� �����	 �� ������� ��	�

� ��

������ � ����� ��	
�� ������� ����� ������ ������ ������

����� � � �!�"�� #$$�% ����&��' ������ ������

��������

��������� �	
� ���� �		����� �	��
 �� ��	 ��	�������� �� ���� ����	
 � �����

�
	�	��	� ���� �� �
	�	��	� ����� �
 	�	���	� ����� � ������� ���������	�	�

�
 ��������	�	� �	����
�� � ���� ��
	
�
	�	��� ��������	
 ��
	� � ��
�����

����� 	��
�� ��� � ��	 ��	
	�	 �� ����	� �������	
 ��� ��������	�	� �	����

���	 �		 �����
	�� ����	�
 ��	 �	
��
���	 ��� ��	 	��
�	�	 �� ��������� ����
��

�����	�
 ���� �
����� ����� 	 ��	 ������	 �� ��	 ��������	�	� �	
� ���� �		�����

����	

� � ���
 ���	�� �	 �����
	 � ��	���� ��
��������
	� �	���� ���� 	��

�����
 ��	 �	
���
 �� � ��������	����� ����
��� ����
�
 �� ������	
 ���
�	����

��
����� ���������
 ��� ������������� �		����� ��������	�	� �	
� ����� !��

�������� ����	���� ����	
 �������	�	�

��� ����	��	� ����	�
 ���� ��	 ����� �
	�

� " �������
� !�	 �	���� ��
 �		 ����� ����	�	�	� � ��	 �	
� ���� �		�����

���� �#$� �� ��
� 	��	��	�	
 � ������� �� �� � ����	�� �� 	��
��� �������
 ��	

��	
	�	��

(�) *&���+ %�������	�	� �	
� ���� �		������ "�
����� &���� �����������

'����� '���	 �

���	� ����� ����	� �������	

� �������	�
��

���������	
��
��
 ��
� �	���
��	 �����
� ���	
��� �	��
 ������ �	 ����� �

�����
�� ���	�� �	 � ������ �� �����
��� ��� �����	�� �� ���	
�� ���������

�	
�������
���	���� ��Æ���
��� ����	
�� ��
�	���	 �� �����	
 ��������	
��

��
 ��
� �	���
��	 ��
���� � ������	�	
����

� "���	
����� ������

 	��� �������+ ��������	
������������ ������ %����	���

�������� �	
������ � ��������� ��� ������� �������� ���� ���
�� ����

��
 ����
 �� ��
 �� ��
 �� �

(� ��
� � � ���

)� �	 �� �� ��

*� � � ���

+� � � � �

,� �� � ��

-� �	 �� �� ��

.� ���

/����	 (� � ��������� ����
�� �����	�

���
 �� ����
��
�� �������� �	 ������
��� �������� � ��������	��� ���	
��

�	� � �������� ��� �����
�
�� ���� �
���!�����" ������ ����
��	 �
 ����

������ ���	
 ������ �	 ������	 �������"� ���� ��	 �� ��� ��
���
� � �
�
�!

��	
 �	
�� ���� ����� � ���	
�� �������� �� ����	��
�� ������� �� �	�
���

�������� ��
� � ����
��	 ����
�� ���	
�� �	��
 ������ �� � ��	�
��	� �	
��

������ �����
�� ����	��	�� ��� �� ��	��
��	�� ��
�� ��	
��� #��$ � �����!

���	��� ���	
�� ��� �� ������� ��
� � �������� �	�� �� ���� ��	��
��	�
��

����	� �	
�� #�� ��� ��
��%��� �� ����
��� ��
��
��	 � ��	��
��	�� ������	

�������� &�� ������� �	
�� ' ���� �� &��(� �� ��� �� �������
� � �� � �

�
�
���	
)� '�	�����
�� ������� �� �	���
�	 �
��
 ��
��
��
 �������

���	�� *!+� ��
�� ����	��	
 �� �
�
���	
) �� ��	�������
� ���� 	� �,��

�	 �������� ��
��	
�� ���	�� *!+ ���� �� �������� �� �	��������� �� �	 ��
�!

��
��
��
 ��
� �	���
�� �� � - . �	� � �- . ��� ��	
�����
���� /�������
���

�� �	������
 ��
�� #�� ������
����� �
�
���	
 0 ��� �	
��� ����� � ���	
�

� � �	�
��	 � �� ����	��
� (�
 �
�
���	
)� ����� ��
��%��
�� �������	 ��

���	�� *!+� 1	
�� ��	
����� �� �
�
���	
) �� ��	�������
� �� ����
� ������

�	� ���	
�� �������� �	
�� �������
��	
��
��
 ��
� �	���
��	 �������

�����	�� �� �
 ��		�
 ������ ���
��� � �- . �� ��
��%�� �� 	�
� �	
��� ��������

�
 �� ���
� 	�
���	
��
 ������	 ���	�� *!+ ��2����� � - (
� �� ��
��%���

����� �� � 	�������� �	� ��Æ��	
" ��	��
��	
� �����
��� �������� 3�
�
��

���	 � ��
� �� �����
�� %��
�
�� ���	
�	 ����
��	� ��� ��� �	��	 �	� ����

��	��
��	�� ������	 �������� ���
�������� ��	����� ��
 ��
�� �����
�� ��
� ��

�	��������
��	
��� ���
 �� ����	�
��
�� ������ ���
���	
� �	�
��� ������

�	� ������	 �	
�� ��������

�����
���
��� �	
��� ������ �� �������
� ��
�	� �	 ����
�	 ��	�
���	
!

����� ���!����	
�� ��
��� 4(�56
�
��� �	
� �����	
 ��	��
��	�� ���	
�� �����!

�	 ��������� &���
��� �� �������
�� ��%	�
��	 �� � ������ �����	
������	��

��� 778"406 �	
�� �����	�� �� ���	
�� ���������� ���� 778 ���� �	
���
��

�� �����
� �� �	 �	
������������ #�����	��
��� ���	
�� �	������ �	 �����
�

������
�� �����	 ��%	�
��	� �����9�� �� ��������	��� ���	
���� �	
�� �������

�� &��(� ���� �	 �	������ ����
��
 � ���	
� ��
���
� � �� � �
 �
�
���	
)�

7���	���� �� ��������
�� ��%	�
��	 ��
�� �����%� ��	�
���	
 �����	�
���

��
 �����
�� ����
�	 ����
��	� ��
���	 ��������	��� ���	
��� �	� ����������

5

�	 �����
� ����� ���	�� *!+ �	
�� ��������
���� �����	�
��� ������
�� �	!

���
��
 � - (� �	
��� ������ �� �������� �����	

�� �����
��	�� ����	
���

��
���� �����	�
��� �	���
�� ���� �� ������ ��	�
���	
�� �	� �� ��
���

��� �������	
�
��	 ����� �������	 �������	��� ��������	
�� �����
�� 8� �

��	��2��	���
��� ����� �	
������� �	 ������� ���!����	
�� ��
��� ����
�

������
�� ���� ��
� �������
��
 ��	
��	 ��	��
��	�� ���	
�� ������	 ����!

���� �	� ���
�!�����" ���	
���
����� �
��� ������ ����
��	�� 3�
� �������

��
 ��� �������� ��,��� ����
�� �������	 ���
���
��	$ �
 ��		�
 ��	��� ����!

��
��� ��	���� ������
�� �
���
���� ���	 ��	���� ������
��	 �� ������ ��
��	

�� ���� �� �	 �	���	��� ����� ���� ���
���
��	 ������ �� ��	���9�� ��
��

���

��
 �	 ���
 ���
���� ���
��� ����
��� �	� ����� ����	��� ������� �	� ��!

���
��� �	���
����� �
��" ��	���� ������
��	 �� �������
�� 4:6�

����
�� �� ��� ������ �	 7��
��	 5�
�� �������	� �	 ��� ��	�
���	
!�����

���	�2�� �� ��������� 7��
��	 0 ���� �	 �������� ��
�� �������� �	 � ��
���
!

�	 �������� 7��
��	 : ��
����
�� ;��	
���778 ���� ����� ���
��) �����	
�

�� �����%� �����	�
��� ����
� ����� ���	
�� ��� �	� ��%	�
��	� 7��
��	

* �����
� �	
�� ��������	
�� �����
� �� ��
��	�� ��
� ��� �������	
�
��	

�	
��
��
 ��
� �	���
�� �3<8 �	� 7��
��	 + ��������� ����
�� ����� &�!

	����� 7��
��	 = �������
�� ��	
����
��	� ��
�� ����� �	� �	����
�� �������

�������
�����

� ��	�������

������
������� ��� ���� �������
��� 1���	���� �	
������� �� >�?����

�	� 1,�
 �	
�� ��	
��
 �� ��
�
��	
��
�	 4)6� '�	�
���	
!@���� ���
 ��
�

�	���
��	 '@�" ���� �
 ������
�	 ��	�
���	
 ��
�����
��	
���	�2���
� �	!

���
�
��
 ��
� ����
� ����� � �����
�� ���	�� �	 � ������ �	���
��
� ���

��
��� ������ � ��	�
���	
 ���
�� �������
��
� � ���	 ���	�� �	�
��	

����
� �����
�� ���
�� �� ���	 �����	 �����
��	
���	�2���� 7������
����

������
 '@�$
�� ���9���� ���
�� 4*�+6 ������
� � ��	���� �����	 �����!

��	
���	�2��
� ����� ��
�
��	 �����
��� �	 &��
��	 �������� �3<8 4(�56

���� 7
�
�� 7�	�� 8���	��	
 ���� �	� '�	�
���	
 A��� ;�������	 'A;"

���	�2��� ���� %	�
� �����	�
� �	���
�
��
 ��
� ���
�� �
���
���� �������

�� ' �������� �	� 8���	 4=6 ������
� �������� �����
��	 ��� �
���
���� ���!

���� �� 7���� 8>8 �������� B���	
��� �3<8 ��� ���	 ��������
� ��	���

#��
�	!���	
 �����
�
��	� 4C6� ��	�
��	 ����� �	� �
���
���� 4(.6� 8�
����

���� '@�D� �������	
�
��	� ���� ������
� �� ������
� ������� 	�	!
������

�������� �	� �	���
����
��
 ��
� �	���
��	 �������� �	�����	 ������ ��!

����� �
���
����� ��
���� �����
��	� �	� �� �	" �
 �� ���
� 	�
���	
��
 	�	�

��
��� ��� ����
� ���� ������
�� ��
� ���	
�� ������	 ���������

�	
�� '@� �������� �� 4(�56�
�� �����
��	 �� � ���	�� �	
�� ' ��	�
��	 �����

0

� ��
 �� � '�	�
���	
 A��� ;�������	 ��2���
 ����
 ��
�
�� ��	
���!

����	��	���� 4((6� '�	
���!����	��	���� ��� �������	�
��
 ���
 �� ������
��

� E
���F
� ����� � �����
�� ���	��� �	 ������
���
���� ������� ��
���

�
� �
�
���	
"�
��� ��	 ������ �� �����
�� 4(56� ���	 ��
��� ���
 ��

��
����	�� ��	�������� ���
�� ���� �
�
���	
�� �	
�� ������� �� &��(�

�� ��	
���!����	��	�� �������
��
� ���	�� *!+ �� G��
 � �- .� �	 ����
��	�

��� �������
��	� ���
��	���
�� �	
� �����	 ��	�
���	
�� &�� �������� ���	

� ��	�� 05!��
� �	
��� � �� �	 �	��
 �������� �����
� ��
 ��
�� �������	 ��!

���	 ��	�
���	
$ � � �5����5���(� ��� ���
 ����� ��
��
��
 ��
� �	���
��	

������� ��	���
� �	 �����	
�� �����
�	 'A; ��2���
 �� ���	
��
���	�2���

��������� �	 ���
��	 5�5� 8�
�� ����	
��� ��
�� ������ �� ������� ���
�!

������ � ����
��	 ��
�� 'A; ��2���
 �� ������
�� �	
�����
�� �� �
��
 ��
��

��
 �������
�� �����
�� ���	��� �	 ����� �����
�� �����	 ������� �����

��

���� �� 	� ����
��	�
��	
�� �����
�� ���	�� �� �������� �	����������

���� �������� ��� ���	 �������	
�� �	
�� �3<8
��� 4(06 �	� ������
�� �	

� ��
 �� �������� �	� �����	����!��9�� �	���
���� �������� 456� �	 4(:6� �� ����

��������
� ���
��� ���������
� �	���
�
��
 ��
�
��
 �����
� ���!�����

������
��� ������ ��
�������������
��	� 4()6�

1�� �������� �� ����� �	
�� ��� �� 7
�
�� 7�	�� 8���	��	
 ���� 406 �	� '�	!

�
���	
 A��� ;�������	 ���� %	�
� �����	� 4(*6� �
 �� ���
� 	�
���	
��

�	���
�	
��
 ��
� ��� ������	 � ���	 �������	 ��
��	 � ������ ��2�����

� �����
�� ������� �� ���
���
��� ����	��	
 �	 ������
��� ��������	�

���
� ��	���
 � - � H (�	
� � ����
��	 ��
�� ���� �� - �� H (����� ��� ��

��������	��
� ���
�	�
 ���������� �	 ��� ��������� �� ��������
� ��� 778

��� ���� �
��� ������� ����� �� 4(6�

��� ��
 ���

��� 778 ���� �� � ����	
������ �2������	
 ������	 �� � ������
��
 ������
�

�� �������	 ���	����� $ ���� �������� ��� � �	�2�� ��%	�
��	 �	� ����� ��� ��

��� �������� �� ������� ��
�� ��%	�
��	� I���� ������ ��	 ��
��	�������

�	
� 778 �� ��	���	
�� ���� �	� ��%	�
��	� ��
�� ���������� &�� �������

� - � H (J � - � � � ��
��	������� �	
� �� - �� H (J �� - �� � ��� 8

�� G�	�
��	

	���� ��
�� ��	
��� �
���
����� 778 �	
������� ������� ����	��	
� ������ 	!

��	�
��	��
� ���� ������� ��%	�
��	� ��
�� ���� �������� $
� - 	
��
�"

����	�
�� ����� ��
� �	
� ��
�� #�� ����� ����
�� %��
 ���	�� ��
��

�������	�
�� ����� ��
� �
�������� 778 ��� ���	 ���� �	 ������� �������
��	�

���� ���� �� ��
���9�	 ���������� ��
���
�� ���������9�
��	� �
�
�� �	������

�	� ��
���
��
��
 ��
� �	���
��	 4(�5�(+6� &�� ��	��	��	��
�������

��

������ �� ���� ���
� � ���
 �� ���������� 	!��	�
��	� ��
� � ��	�� �
�
���	
 ����

���
��� �� ��������� $ �� - 	 ��� ��"� ��� �� - 	 ��� ��" �� �
� - 	 �
�� �
�" �����

:

�
� ��	�
�� � ���
��
�

������
��

���
��

�
������� 778 �������� ������� ���������	�
� ��	��� ������ $

���	�� � �" ����� ������
��
�
�� ��� �����	
 �� � �	� �����	 �� ��
" �����

������
��
� �	 ����� � ����� ���
�� ���� ��9� �	�
�� ���� �����	
� �� ��

�����
 ��� � ����� ����� ��
�

��� ��	 ������� ���	���

&������	
�� ��%	�
��	� �� 4(*6� � ������� ������� �� � ��
 �� ������� ��
��

���� � $� � ����� � �� � ����!��%	�� ��	�
���	
 �	� @ �� � � ��2��	�� �� ��
���

�����
��� ��	�
���	
� �� �����	�
��� ����� � � 7��� � ��2��	�� �� ������ � !�	�"�

�������#	 ����������� ��� ����
 ��
� ���������� �����	�� ���
���
���� �����
���

�	 � H����� 	
 �	� ����
��	� � ����-� �-��� �
� �	 �	����� ��������� ��
��

'A; &>" ������ ������ �� #����$�	�"
���
���� ������ �	
� � 	�	!���
�

%	�
� ��
 �� �	
�����

���$������� ��� ��	��� ��	�
���
� ��������	 � ���!����� ����
��	 ��
���	

�
��� ��	�
���	
�� ���� ��	 �� ��
��� ����
!�	 �� ����!��%	�� ��	�
���	
 ��!

��	��	 �	
�� 'A; &>" �	
�����
��
��
 �� ����� &�� ��������
�� �����	�
��

������	 �� �� � " �� ����
!�	 �	
�� 'A; &>" ������� �� 7���
�� ;���� 4(=6 $ �

����� �� � ��
�� � �� �����	
 �	
�� ���
 � �� &> ����������

���	 ��	������� ��� �����	� � 'A; &>" 2���� �����
� ����� ��	�������� �

���������� �"��	�� ����� �� ���� �� ���������� �����	� �	� ��	�
���	
�� 3�
�

��
 ��	�
���	
 �����	 ���� %	�
� �����	� �� 3;!���� ��	�� ���� �������!

��
��	� ��� ������� ��������� ������ ��	 �	
� � ���
� ����� ��������� �	!

�������� ������	�
�� �����	 ������� �� � ��	�
���	
 ���
�� �� ����� �	 (" �

��	�
���	
 ������
��	 �����	��� ����� ����� ��� ��
�� ��	�
���	
�
� ���	�

�� ������ ������ 5" � ��	�
���	
 �	
�����	
 �����	��� �����
����
� �	���

	�� ��	�
���	
� ���� ����
�	 �	��� 0" � ������	 ������� ����� ��������
��

������
��� �� ����	 ������
��	� �	 �����
� %	� ����
��	�
�
�� ��	�
���	

���
���

������
�� ��������
��� >���	
��� �������� �����
��� ��	�
���	
� �	�

�����	�
��� ��� �	�����	
���� �	
������� �	
� � ������
��	 2����� 8	 �
!

���
��� �����
�� ��	������ ���� ��	�
���	
 �	� �� �	� �	
�
��� 2���� ��

%�
���	
�� �����	� �� &> ��������� ��
���� �	��	���
�	
 ������� &��
���	 ��!

���
��� ��	����� ������� �	��
�� ���	�� ��
�� �����	�� ���	
�� �����	

� !��������� ��	 ���	�� �	 ���� �
	 ��	 ������
���� ��� "&��/0� �������

)

�� � &> �������� �� ���	��
��	
�� �����
�� ���	
������� �	
�� 2���� ���

�� ��	�
���	
� �����
��� &> �������� ������� ������ ��	�
���	
�"
� �����!

�
�
��� �	�����
��	� ��� �����
�� �
���
�� �	
��
�� 2���� ������� ���
��

����� ��������	��
� � �
�
� ����� 	� ���� ���	�	 ��	 �� ��������� �

%����	
"� ���	 �����
�� �	
�� ������
��	 2����� ���� ��	�
���	
 �� �����

�	
� � ����������%����	 ����� ������9�� ���
�� ��	������� ��	�
���	
�� ���

��	�
���	
��
��� �� ��	
�����
��� ��
�� �����	 �� �
 ����
 �	� &> �������� ��!

����� ���
� ����	
�� ������
��	�

������
�� ����
������ 7��� ��	�
���	
� ��� ����	��
� �	����� ��	��!

��	�� �	�����
��	� ����� ��	�
���	
� ��� ��%	�� ��
�
�� ���� �� �����	�%

������������ 	�
�� �� � ��� >���	 ��	�
���	
 ������
��	� �� �� �� �	
�����

��	 �� �� �	
������� �	
�
�� ������
��	 2����� ������	 ��
� ��	���!

����� �	����
�� ��	�
���	
 ���
��� ���	
�� ��	�
���	
 �� �� ����	
�����
��	

�� ���������	�
���	
 �� � �� �� G��
 ������� ����
�� ��	�
���	
��
����

1
��������
�� ���������	�
���	
 �� �����	��� �	
�� ���	 ������ ��
��

��	�
���	
 ������
��	 �����	����

���
���� �����
��� 8� �
 �� �������
�� ���� ��
� %	�
� �����	 ��	�
���	

�������� ��	�
���	
 ������
��	 ���� 	�
 �	����
��

�� ��
 �� ��	�
���	
� ��

��
��%���� ���	 � %����	
 �� �������� 1	� ���
 �����

� �	�����
�
� �

���
������ ����
��	�� ���� ������	 ���������
����
� ��� � �����
� �����

&> �������� �	� �� �	� �	� ������
��
�������

�� ��	�
���	
 ���
���

���� �� ��	� ����������� �	
�� ���
�� &> ��������� ��� �	�
�	
��
��� �
 �� 	�
��

�
������ 4��� ��� ��6" ����� ��� ��� �� �� � ��
���� �� &> ���������
� �	�
�	!

��
�� ��
��� �����
��	 �����
� � ��	
�����
��	
��	
�� ��������� ����
�����

� �
��� �������� ������� ��� �����
��	 �� ��	� �������	
� ���� �
��
����

�� ������ �� &> ��������� �	� ������� 8 ������ �	� ��	���
� �	 �����
�	
��

��	���� ����� ��
�� �����	 ��
�� %��
 �	���	��� &> ��������� 1� ������

�
��� ���� ������
���
�� �
��
���� ��	 �� �����

��& ���$������� �� ������� ����"���

@���� �	
�� 'A; &>" ���������� ��� �������� ��	���
� �	
��	���
�	 �����

�
�
���	
 �	
� � ��	�
���	
 �� � �����%� �����	�
��� �	 4(6� �� �	
������� ����

�����	�
��� ���
�� ��	��
��	�� �	�
�� �
���
��� �
�
���	
�� A�
 �� ������ �	

��� ������
��	
�� ����	
��� ��
���� �����	�
����

����
�
���� ��������� ��� ��	��
��	�� �
�
���	
 ��
���
�� ��
�
��

 �������%	��" �����	�
�� �	�� � � 8����	
� �� �	�� ��� ���� ��
�� ����!

� ��	�	 1- �	��	
 ��	 ����� �� ��	 ���������

*

��	
	��� ���� ��	�������� ���� ������ ���
���

����� �� �� ��� �� ��

��� ������� ��� ��� ������� ��� ������ 	��

� !�

��� �"�"�"�� # ��� �"�"�"�� # � � ����

��� � �

�$ � � # �� � # 	� �"

�$ � � # �� � # � �"

�$ � �� # �� �� # �� ��"

%$ �� � � � & � �� � � � & � ����� � &�
�
	�
��

�
�

�
	�
��

�
�

�
	�
��

�
�

'$ � � # �� � # 	� �"

���� ����

&$ � �� # �� �� # �� ����
��
��

�
 ��

�
��
��

�
�

�
��
��

�
�#

($ � ��# �� ������
�
��

��
�

�
�
��
��

�
� ��)�����

�
��

��
�

�
�
	�
�

�
�"

*$ �� � � � #

�
��
��

�
 ������

�
��

��
�

� �� � ��
�
��
��

�
�# �� �� � �"�

	�
�

�
)�����

�
��

��
�

� ���
�
	�
�

�
�"

+$ �� � � � * � �� � �� � * � ����	� � *�

�"

��$ $$$ $$$

/����)� � 	�����	� ��
 �''� ���� �� ��	 �		���	� "&��/0� �������

�����
��
 ������ �	
�� 	!��	�
��	� �	�
�� ��	�
���	
� �	���
�� ����
��

��	� �	�
�� ����� ���
� ��
�� �
�
���	
� 1
��� �����	�
��� ��� �� 	��
��

�	
�� �����	
� �� �	��� 8	 778
� ��� �
�
���	
$
� 	'�" � ���� � ���

� ���� � �
� - 	 �
�� �
�"

�� ��	���
�� �	
� �	� �� �
�� �
�� �
�� ������ �����" ����� � �� � �����
������	�
���	

�	���
�� ��
�� �	������ �� 	'�� �	� ����� ����� �����" �� � ��
 �� ��	�
���	
�

�	���
�� ��
�� �	������ ��
��
��	����
 ����� ��������
"�

����
�
�� � �	��

���������	�
�������
 �	���� �
�� �
�� �
�� ������ �����" �� ���	 �(

 � � ����� � �
� - �
�" � �� � ����� � �
� - �
�"

�����������
�������
 �	���� �
�� �
�� �
�� ������ �����"

�	����	� �� ��	 �������� �����	�)�����������*

� � ����� � �
� - �
�

�� � ����� � �
� - �
�

� � � ����� � �
� - �
�" � �� � ����� � �
� - �
�

� �� � ����� � �
� - �
�" � � � ����� � �
� - �
�

 � � ����� � �
� - �
�" � �� � ����� � �
� - �
�"

+

��� ������
�� ���������	�
���	
� �����
 ����
�� �����
��	�� ����	
��� ��

��
� ��� �
�
���	
 �������
��
���� ��

�� ����� ���� �,��
��� �����
��	��

;��
���������
�� ���
 ��	�
���	
 ��	
��	�
�� ��	�
���
��� ���G�	�
��	 �����
��

�� ���� �����
�� G��	�
�� �����
� �����
�� �	 ��
� ���	���� ��
�� ��	��!

��	��� &�� �������� �� �	� ��
	

��

�
	

��

�
	

��

� �� - (� �� - 0" �����
��	

�� ��	�
���
��� ���G�	�
��	 �����
�� �����
� ������
��
 �� � �(� 0
� 3�
�

��

�� �	�� �����	�
�� �� ������ ��
�� ������ ���	
�� �����	 �� �
 ����

�	� �� �
� �������� ��� ���	��� &�� �������� ����	�	
��
 �� � 5 ���	��
��

�����	 �� ��
� �0
� ������
�� �����	�
�� �	�
����� �
�
���� �������

��	�
���	
� ��
�� ��	�
���	
 �� �- �� �� �	
����� �� ��� ��"� ��� ��" - ��

/�	���
�� ��	�
���	
 �� �� �����
�
�� ��	�
���	
 �
��� �	�
�� �	� �����!

	�
�� �� ������� ���� �
�

������
�� ��������� ��� 778 �
�� �
�
���	

�
� - 	 �
�� �
�" �
�� 	'�" � ���� � ��
���
�� ��
�
�� ��������� ����!

��%	�� �����	�
�� � �� �
�� �
�� �
�� �����"� ���	 ������
�	 ��� �
 �� 	��������

� �����
�� �	���
��	 �� 	�� ��	�
���	
� �	� 	�� ��������� ��
�
�� ���� ��

� ����
�
�
��	 �����	���� �� �� ��%	�� �� � $

����
�
�� � ��

���������	�
�������
 � �� �
�� �
�� �
�� �����" �� ���	 �(

 � � ����� � � �� �
�� �
�� �
�� �����"" � �� � �
� - �
�"

�����������
�������
 � �� �
�� �
�� �
�� �����" �	����	� ��

� � ����� � � �� �
�� �
�� �
�� �����""

�� � �
� - �
�

� � � �����" � �� � �
� - �
�"

� �� � �
� - �
�" � � � ����� � � �� �
�� �
�� �
�� �����""

 � � ����� � � �� �
�� �
�� �
�� �����"" � �� � �
� - �
�"

3�
�
��

�� ���
�� �
� �� � ���
�� �� ����� ���������� ��� %��

�� �������

��	�
���	
� ���� ����
�� �����
��	�� ����	
��� �� � ����� �	 �	 ������
���

��	���� ��� ���

�� ���� ����
�� �������	 �������
��	�$ %��
� ��
�� ��	!

�
���	
� ��
���
�� ����
�� ���� ��� ������
� �� ��	
�����
��� ��
�
��

�����	
 ��	�
���	
 ���
��
��	
�� ���� ��		�
 �� �	
����J ����	�� �� �	�

�������� ��������� ���
�	�
 ������ ������ �	� ��
��
�� �����
��	 ��
�� �
��

�
�
���	
�
��	
�� ���� ���
 �� �	
���� �
 ����
 �	���

� /�� ��	
� 	 �� �������� ��	 ��
����� � �		���	� ������� ��	
��
������� �	���

��
� �
 �� ��
�����
�	� ���� � ��
	��
=

! "� �����
� �� ��� ������	�

'�	�����
��
��� �� �	���
�	 �
��
 ��
�� �	 ����� ���	�� C!(. �� �����
��

�	
�� ' ������ �� &��5� ��� ������� �� �������� ��
���� ���	 �
���� ���

%��
 �
�� ���� �
 �	���
�	
�� ;��	
�� 778 ���� ;778"� ����� �� ���	 �	

�� ����	� �����	 �� &��5� ��� ��%	�
��	 �� ;778 �� ���	�� ����� �	
��

�����$

 ("
� ������

�� �����
� �� � �����%� ���	
�� �	������� 	����� � ���	
�!
�

�	������� �	 �����
� ������� ���
�� �����	 ��%	�
��	�� 8 ���	
�!
� �	��!

���� �� � �
�
�� �	������
��
 ��
����	��
�� ��
 �� ������ ����
��	�
��

��	 �� ��������
����� ���	
�� ��������	���� &�� ����� �������� � ��

���	
��
���� � ���	
�!
� �	������ �����
�� � ��
 �� ���������
��
 ���

�� ���	
�� �� � ����	
�� �����
��	� &�� �������� �
 �
�
���	
 + ��

��	�
��	 ���� � ������)�� ����"��� ����
��
 � ��	 �	��" ���	
�
� � �� ��

3�
�
��

�� �	������ ������� ������
���
��
�� ��
 �� ���	
�	 ����
��	�

��
 ����� ����
 ����	 �����
��	�

 5"
� �	
������
�� 	�� ����� �� 	���	�
��	�
� �����
�� ��������	��	

�������� 8 	����	�
��	 ������
�� ��� �� � ��������	��� ���	
��$ �
 ��
��	�

�	� �� �
� �����	
� ����	��	 �	
�� ���	
�!
� ����
��	�� &�� ��������

�
 �
�
���	
 +�

	� ���
�

��K�
K�

�
�� �

�
����

��
�

��" ��
��	� �� �� � ���	
�
� � ����� �
 ��
��	� �� �� � ���	
�

� ��

	����	�
��	� ��� ����
� ������
�� �����	 ��%	�
��	� �����9��
�����

��������	��� ���	
���� 8
 �
�
���	
 =��
���%

��
�

�� - 	� ���
�

��K�
K�

�
�� � �� � ��

�
����

��
�

��"� ����	� �� � �
� �% �� � ���	
�
� � �	�

�� �
�������� �
 ����	� �� � �
� �� �� � ���	
�
� � �	� �� �
��������

��� ����	� �
�� �� ��� ��������
��	���
��
�� ;778 ���� �	
� � 'A; &>"

������ �� ����	 �	
��
���� �����	 �� &��5� ��� ������ ����
���� � �	� �%

�� �����	
�� � ������
�
�� &> �������� �	���
�� ���
�� �	��
 �������� ��

������� �% ������
�
�� ��������
��
 ��
����	�� ���
���
�� ���	�� C!(. ��

�����
�� �� 	�
� �	
���
��	���
��	� ���� �������� ������� �� �������
��
� �

�	�2�� �	
���� 	�
�� K� ��� � 778!�������� ��� K� - 5(� K� - 55 ����� 5(

�	� 55 ��������	�
� �	
��	�� ������
���� ���� % " �	� �����%� 'A; &>" ���!

��	�
��� ��
�	� 	� �	� 	� ��	�
��	�� ����� �����	�
��� ���	
��	 � �����
��

��� ��� ���
� ��������� 7�� ���
��� �	�����
��	 ���� ��
�� �����
��	

�����	 �� �	 �����	
� ��	 �� ������
��
� ����	�
�� �����	 ��
�� �
�����

% $	�
 ���� 2 ��)2 ��	 �	
	��	� ��
�	����
�����
� /�� 	�����	� 2 �	��	
	�
 ��	

#3&& ����	�

C

3�
�
��

�� 	� �����	�
�� �� ����
��
�
�� +�
���� ��	�
��	
��
 ��� ���!

����� �	
������� �� '�
��	 �	� ��������	 4(C6
� �����9� �����	 ��%	�
��	�

�	 778 ����� 1�� �������� ���
�	������ �� �������	 ����
��	� �	� 	�
 �	��

��	�
��	�
� �����
�� ��� �	� ��%	�
��	 �� ��������	��� ���	
����

&�	�����
�� ���
 �
�� ��	���
� �	 �	���
�	 � ��2���
 �� ����	 ��� ��
��

��	
���!����	��	���� ��
�� ������� B�����	 ���	�� C!(. �	
�� ' ���� ��

�� ������� ��2����� �% � = ��	��
�� ��2���
 ����	 �	 &��0 �� �	���
��� �	

45 �% � 6� ������ �%��

� 7 , 8 19 ��
�
������ �� ����	
 ��� ���� �� 91

� 19 � ���	�
������ 91

/����	 *� � �	
� ���� �		����� �	:�	
�

��� ��������
�� �����
 ��
�� ��2���
 ����
��

���� ����
� �	�� � ��	��
��

��
�� � -)" ��
�����	
�� ��2���
� �� �� �����	�
�� ������
��	 ��������

�� ���
��

��
���� ��	�
���	
� �� � �.� 5
 ������� ��
�� �
� �����
��"�

�% � = �	�
�

���%
��

�
�� - L� ���

�
��5(

55
�

�� � ���
�

����
��

�
��" �	
���� �� - 5(�	� �% - ��

�� ��� ��" � ��� �%" - �� 8� � ��	��2��	��� �� - �� �� ����
�� �	�
��

��	����
 ��
�� ��	��
��	�� ���
 �� �����
�� �����	
� � � *� &�	�����
��

��	�
���	
� �� - �� �	� �� - �� � � ������� � � : ����� �����
� � -) ��

�� �	�� ����
��	�

��� �	
����
�	 ���	
 ��
��

�� �����	�
�� L� ��������
�� ����	��	
 ��

�� ���	
�� �������� ��� �	
��� �������� 	������ �	�����
��	 ���� �	
���

��������� �� ����
� ��%	� ���	
�� ����
��	������

$�� %�
����&''" ���� (%''")

�	
��� ���
��	� �� �	
������
�� ;778 ���� �� �	 ��
�	���	 �� 778 �����

���	
�� ���� �	� ��%	�
��	� ���
���
�� ��
� ������� ��	�
��	�
��
 ��� ��%	��

��
�
�� ���� �� � ���	
�!
� �	������� 3�
�
��
 ��� �������
��	 ��,��� ����

�
��� ���� �����
�� ��� ��
� ������
 778 �	 �����
� �������
�� ��������

�� � ���	
�!
� �	������ 45.6� �� ��� ���� �� �	��
� ��������
�� ������
��� ��

778 �	
�� �����	�� �� ��	��
��	�� ������	 ���������

(.

,��
 �����	 �������	 �#	� �����	� #����$�	�

�	
��� ������ �� ���� ��	%	� ���������
� � ������ ��	��� ���� ���	
���$

� �
���
���� ��	��� ���� ���
�!����� ���	
���
����� �
�
������ 	���� ����!

����� �
���!�����
�� ���	
���"� �	 �������
��
 ���
��� ����� �� ���	
����
��

�	�� �����
��	�
��
 ��� ������� �	 ���	
��� ��� ���
����" ��������	��	 ���

� � �"� ��������	 K "� ���	
�� ����	��	
 � - "� �	� ���	
�� ���������	

 � -- � �M - "� &��
���� �� �������
��
 ������� ��� �
���
���� �	� ��

	�
 ��	
��	 �	��	�
���	�� ���	
�� ���
���
���
��� ���
�	
����� ���	
����

���	
���
� ��	�
��	� �� ���	
���
� ��	�������� ������
�� �
���
����� ���� ��!

��� �� ����
��
�
��
���
��	
 �� ���	
��� �	
�� ��	
��
 �� ��
���
��
��
�	

�� ' ������� �

�� �	�
 ������ ���	�	
��
 ��	�
��	 ����� ��� ��������
�

�� �
����� �� �	��	���

,�� -������.�����

3������9�	 � ��	�
��	 ��	���
� �	 ������	 ������� �
�
���	
� �	
� � ��
 ��

�����	
��� �
�
���	
� �� �	
������	
�������� ���������� �
 �� ����!�	��	

��
 ���
 ' ������� ��	 �� ��
���
������
��	���
�� �	 � ������ �����!

��	
�� ��
� �	�� � ��
 �� %�
��	 �����	
��� �
�
���	
� 45(�55�506� �	 ���
��!

����� � ���
�!����� ��������	��� ���	
�� ��	 ��
��	���
�� �	
� � ��
 �� ��	��

��������	��� ���	
�� �� �	
������	
�������� ��������� ��
���
 �������	

�� ������ ����	
���� &�� : ��	
��	� � ��� �������� �� 	������9�
��	
��

��	 ������ �� �	�����9��
� �
��� �
�
���	
�� 3�
� �������
��
 	������9�
��	

�� 	�
 ��2����� ���	 � �
�
���	
 ����� ���� 	�	!���	
��
���� ��� ��������

�� - � ���� 	�
 	���
� �� 	������9�� �� � �	� ��� �� ���	
���
�!�	
���

���"�

���� 	������9�
��	 ������� ������
� �����	 �	 � ����� 	����� �� �
�
���	
�

��
���
 �	� ���� �� �	�����
�� /�	���
��
���
��	
 �� �	�� ���� ����	��	

�
�
���	
� ��� �����	
��$ � - K � � - � � - � � �� - �

,�&
 ������%�� ����"���

8� ���������� ����� � ������%�� ����"��� �
�
������ ������
� � ��
 �� ���������

��
 ��� �� ���	
�� ��
�� ���	
��� ��
�� ������ �	� ��
����	��
�� ��
 ��

������ ����
��	�
��
 ��	 �� ��������
����� � ��������	��� ���	
��� �	 ���

����� �� ���� �����	 � ���	
�!
� �	������ ���������� �	
������� �� /����

	� ��� 45(6� �	
��� �	������� � ���	
�!
� ����
��	 �� �
�����$ �!� �� � �"#���!""

�� �!� �� � ��$$�%&"" ����� ��	�
�� � �������� ���	
�� �� �� �	
�� ������

����� � ���	
� ��%	�
���
� �	 �	� ��	
��� #�� ��
�
��
 �������
�� �
�
�!

((

;������ ���	 #������<	� ���	

� 7 � � �� 8 	
�� 7 �� 8

	
�� 7 �	
�� 8

� 7 �	
�� 8

� � � 7 � 8 	
�� 7 ��8

�	
�� 7 �8

�� 7 =� 8 	
�� 7 =�8

�� 7 	
��8

�� 7 �� 8 	
�� 7 ��8

�� 7 	
��8

/����	 +� >�����	
 �� ������<����

��	
 �����
�� ���	
�	 ����
��	 ��� ���	 �����
��� �	
�� ��

�� ����� � ���

���	
�
� �	�� �	 ���� ��	
��� #�� ��
��� /�������
�� �	������ ���� 	�

��� ���
���
���� ����
� � �������� ��	
��� #�� ��
�
��
 ��	
��	�
�� ���	
�	

����
��	� ;��	
�!
� ����
��	� ��	 �� ���
���� �� ������� �����
�� ���� ��'"�

������
�� ���	
�!
� ����� � ��	�
��
�� ��
 �� ���
����
��
 ��������	��
�

�� ��������� ��
�� ������� ����� ' ��	�
��
�� ��
 �� ������� ���� ����!

���
��
�
�� ���	
�!
� ����
��	�� ����� ����
� �	 ��� ��
���	 � �	�
��

��������� �, �!� �� � �"#���!"" �� �!� �� � ��$$�%&"" ��
���� A����� ��	 �� ��!

��� �������� ���� �� ��$$�%&" �� �"#���!"" �� ���������	�
��
 ��	�
�
��

��	��
��	� �	��� �����
�� ����
��	 ������ ���� ���� �� �����
�� �	 �����

�
�
���	
 ��
�� ������� I������� �� ���	
�!
� ����� ��� ���	 �	 7��
��	 *�

8�
���� �
 ��	 �� ���� �	�����
�� � ���	
�!
� �	������ �� ������ ��	�����
����

���	�	
��
 �� � ���	
�
� ����	 �	 �����
��	 ��
�� ������
��	
��

�����
� ��
�� ������%�� ����"��� ��	
��	� �
 ����
 �!� �� � ��$$�%&""�

������%�� ����"��� ��	 �� ��
��� #��!��	��
��� �	� #��!�	��	��
���� ����� ��

G��
 � ���
� ��	
���
�� ���
N��������
�����, ��
�� �	������� �	
�� ������

�����
�� ����� �	 �����
�� �
�
���	
� ��� �����
�� ��
���	 �	
� �����	

�	�
�� �	������ �� �����
�� �	 ���� �
�
���	
 ��
�� ������� �	
�� ����	�

�����
�� ����� �� G��
 �	���� �	�
�� �����
� ��
�� ���	
�!
� �	������ ���
��

���� ��� ���
�� �
�
���	
�� 8 #��!��	��
��� �	������ �� ������� ���� ������
�

��	 � #��!�	��	��
��� ��
 �
 �� ���� ���� ���
��
� �����
�� &��) �����
��

��,���	�� ��
���	
����
�� �	������ �	 � ���� ����� ����� �� ' �����

�	 ��� ��������� �� ��� � #��!��	��
��� �	������ ���
��
�� �������	 ���	

�����	�$

 (" ���	 � �
�
���	
 ��	
��	� � ��%	�
��	 �� � ��������	��� ���	
��� �����

(5

" "��	 /����
	
����	 /�����
	
����	

�
���	�	� *

(� � 7 =� 8 ����������

���	�

)� � 7 � 8 ����������

���	�

*� � 7 =� 8 ���������	���	� ����:�����

���	�

����:����	���	� ����:�����

���	�

/����	 ,� "&��'�,'& ����)���

���	
�	 ����
��	 ����� � �������� ��%	�
��	� ��	��
�� �������� ��
��

�	������ �����
�� ����� �	
�� 	����� �� �����	 ��%	�
��	�J

 5" �Æ���	
 �����
��� ����
 ��� �
���
���� ' ��	�
��	��

1�� ��
��� ����� ��� ��
�� ��	
��!����� �����
�� ���	 �	 45(6
� �����
�

� #��!��	��
��� ������%�� ����"���� �	
��� �����
��� ����� �
�
���	
 ��	 ���!

���
�� ���	
�	 ����
��	� �� ���	
��	�	
�� ��
 �� E������F ����
��	� ��&& $"!"

�	�
�� ��
 �� ����
��	� �	���
�� ��
�� �
�
���	
 ("� $"!"� ��� 	�
�
��	

��� ��
� ��
� ����� ��� �� ����
�	
����� 2��	
�%�� ���������� ��	�
�� �� E �F

�	
��� ������ &�� �������� ��!� �� �� �"&"��!� �� �� �"&" � ��
 ��	�
��
��

��
 �� ��� ���	
�	 ����
��	� �������
�� ��
� � �	
�� ��
 ��� &��* �����	
�
��

�����
�� ��� �����	
��� �
�
���	
�� &�� ��	
��� #�� �
���
�����
�� �����
� ��

�� �	������ �	 ����� ���	�� ��� ����� �	 � ��	�� ��
� �	
��� ���� ��������

� ��%	�
� ������%�� ����
��	 ��	 ��
��	������� �	
� � �������� �	�� &�� ����

�
�
���	
�� � %����	
 �� �����
�� �� �
���
�	 �	
�� ���� ��
�� ���� �	
��

	� ���� ����%��
��	 ��	 �� ���������� &��+ �����
�� �����
��
��
 ��	���

�� ����� ��	
��� #�� �
���
����� 8�
��
�
�� 	����� �� �������� ���	
�!
�

����
��	� �� ���	��� �	
�� ������
���� �� 	� ��	���� ������
��	" �	�
��

���� ������� ��	 �	�� �	������
�� ��
 �� ���	
�!
� ����
��	� ����
�	�� �	�

�	���
� ��
�� %����	
 ��	 ������ �� ����	�

,�, 	�% ��� 	�% �������� �� ���

�	 ;778� 	����	�
��	 ������
�� ��� �� � ��������	��� ���	
��� A�

�

������
�

��
�

�
������ �	�

�
������

�

��

�

�
������ ��	�
�
�� ���
��� �� � ������D� ���������� ��

�
������
K�

��
K�

�
������ ��	�
��
�� ���
��

�� ���
�	�
 ��������� ��
�� %��
 ���
�� �	� � �� � ���	
�� ���������
��	
��

(0

11 %��	
���	�	� ' �� � �
	� �� ������ �	�����

11 ����	

 ��
���'� �� �	���
 ��	
	� ��

11 ������ �	�����
 ���	� '

������� ����	

 ��
��� ��������� '�
������� ��

���� �	

' �
 �� ��	 ���� � 7 =� ����

���� ��	 ?7 ��	���� �� ������	���� �� ���� � �� 8

�� ��	 ?7 ��	���� �� �����	��� 8

' �
 �� ��	 ���� � 7 � ����

���� ��	 ?7 ��	���� �� ������	���� �� ���� � �� 8

�� ��	 ?7 ��	���� �� ������	���� �� ���� � �� 8

' �
 �� ��	 ���� � 7 �� ����

 ���
	� ?7 ��	���� �� ������	���� �� ���� � �� 8

�	
	� ?7 ��	���� �� ������	���� �� ��� ��

�	�� �� �� ��� � �� 8

�	 �� �� �� ��	 �����	� ����

��� 7 �����	� ���� ��� 7 ��������

' �
 �� ��	 ���� �� 7 � ����

 ���
	� ?7 ��	�� �� �� ������	���� �� �����	�� ��

�	�� �� �� ���� � ��8

�	
	� ?7 ��	�� �� �� ������	���� �� ��� ��

�	���� �� ��� � �� 8

�	 �� �� �� ��	 �����	� ����

��� 7 �����	� ���� ��� 7 ��������

������� ����	 � ���� ��	� � �� ��	 8

/����	 -� /���5
	
����	 ����
5�� ����
�
 �� ��
��
���	�	�

	����	�
��	 	� ��
�

������
K�

��
K�

�
������ �

�
������

�

��

�

�
������" ��
��	�
� �� � - K�� 3�
�
��
 ���� K� �� �

���
�	�
 ��	�
�	
� �	 ;778� 	����	�
��	 ������
�� ��%	�
��	 �� � ��������	���

���	
��� 8 	����	�
��	 	� ��
�

������
K�

��
K�

�
������ � "����

�
������

�

��

�

�
������"� ��
��	� � ���
�� �� ���������

(:

19 %��	
���	�	� ' �� � �
	� �� ������ �	�����
 91

19 ����	

�'� �� �	���
 ��	
	� �� �	�����
 ���	� '91

������� ����	

� ��������� '�
������� ��

�	 ' �
 ���� ���� ������� �

�	 ' �
 � ��
� �� ��
��
���	�	�
 ����

���� ?7 ������ 19 �	���
 ��	 �	�� �� ' 91

���� ?7 	������ 19 �	���
 ��	 ���� �� ' 91

��	 ?7 ����	

 ��
�������� �� 8

������� ����	

������ ��	� 8

�	 ' �
 �� ��	 ���� @���"� ��	 '(�
	 ')A

����
��	 	 � ?7 ����	

�'(��� 8

��	 ���� ?7 ����	

�')��� 8

������� �	��	���	 	 ����	 ����� 8

�	 ' �
 �� ��	 ���� @����	�"� �� 'A

����
��

!��	� ?7 � 8

��	 ?7 ����	

�'� �� 8

� ?7 �	��	�����	� 8

����� !��	� �7 �

������� �

/����	 .� /����
	
����	 ����
5�� ����
�
 �� ������
�������	
�
������
��

��
��

�
������ ����� �� - "��� �� � - K� �	� �� -
� ��� ��� � �- ��

,�0 1������� ��	 ���
 ���

8 ��� 	�
�
��	� ��� ��2�����
� ��������
�� �����
�� ����
� �����
�� ;778

����� ���	 �	���9�	 � �
�
���	
� � � ��	�
��
�� ���
 	������� �������� ��!

�����
��
� � ������� � � ��	�
��
�� 	�� ����� 	������� �������� ��� �� 7��

� ��%	�
��	 �� � �� 	�
�� � � �	� � ��� �� � �� 	�
�� � �� �� �)*� ��	�
��

�� ��
 �� ���	
�	 ����
��	� ��������� �
 �
�
���	
 +�
��	 #��� �� �)*�"

��
�� ��
 �� ��������� ���	
�� �� �� &������� ������	� #��� �� �)*�" -

� � �!� �� � " � �)*�
�

()

��� �����
��
��
 ������
�� ;778 ���� ����� �	 ���� �
�
���	
 �� �	!

���
�	 	� �� 	� ��	�
��	� ����
��� � ��������	��� ���	
�� �� �	���	
�����

&��= ��	
��	�
�� �����
�� ��� ����� �
�
���	
� ��
��	�� ��
�� 	������9�!

��	� �����	 �	 ��	�
��
 �
��� �
�
���	
� ��	 ������ �� ������� ����
��

���
��	
 ��
���� �	���

19 %��	
���	�	� '� "��� �
	� �� ������ �	�����
91

19 ����	�

��'� ���	� �	���
 �
���	�	�91

19 �� ��� �� ��	 �''� ���� 91

���������� ����	�

����������� '�
������� "����

���� �	

' �
 �� ��	 ���� � 7 �� ����

#� ?7 �	���� �� ����	

	
����
��� "����� 8

19 ����	

	
 �� ����
	� �������	
 �� ���� 91

#$?7 �	���� �� �	�	�	�	�	�����
��� "�����8

19 �	�	�	�	�	� ����
	� �������	
 �� ���� 91

�	 ?7 �� 	7 %���
� #�� #$
��8

' �
 �� ��	 ���� �� 7 � ����

#� ?7 �	���� �� ����	

	
����
��� "����� 8

19 ����	

	
 �� ����
	� �������	
 �� ���� 91

#$?7 �	���� �� �	�	�	�	�	�����
��� "�����8

19 �	�	�	�	�	� ����
	� �������	
 �� ���� 91

�	 ?7 �#$ 	7 %���
� #�� �
� #$
��

' �
 �� �� ���	� ���� ����

�	 ?7 ��&�'� 8 19 '������ ''� 91

������ �	 8

/����	 6� ��������� ��� ��
������� �''�

* ����
����� L� ��� L�
� �+%(,�)

8� � �����
 ��
�� ;778
��	���
��	�
�� �����
��� DKD �	� DOD ��
�� ' ��	!

��� ���� ���	 ������� ��
���
 �	� ���� �� ����	
���� �	 ;778�
�� 	��

��	�
��	� ���� ���	 �	
�������$ 	�� �	� 	�� ��	�
��	�� ����� ��	�
��	� ���

��	���
�� �	
�
�� 	�� ����
��	�� �����	�
��� �	
�� 'A; &>" ������� ���

��%	�
��	 ��
���� 'A; &>" �����	�
��� �� ����� �	 ���������	�
���	
� ��

��	� ��� ��
� �	�� �	� ��� ��� L� �����	�
�� ���	
��	� � ����
��	 ��
���	

� ���	
���
�� ��
 �� �������� ���	
�� ��������� �	� � ��������
� �� ����	���

(*

�
 ������
�
�� ���

��
� ����	 �	 �����
��	� � ���	
�� ��	 �	�� ���	

� �

��	�� ���������

��������� � B �'+

���������	�
�������
 ��' (�"�)�� ���)� -� �. /����-��� ��� ��' "�� ��� "� -�

 ���'���' ��	���� �&��'��'�� '0�� (7 B��"�
�

����
"�

��
"�

�
���� �

�
����

)�
��

)�
�

����� �� '��� �1 ���" 7

"� �(7)�2

�����������
�������
 (7 B��"�
�

����
"�

��
"�

�
���� �

�
����

)�
��

)�
�

�����

��*��'�� '&+

��
�(� ?7 ��
�(� ���� ���
�)����

�3 7 2 '0�� 	��� ���� 3&���� � �� (�� �&

�" 7 "�� �� (7)��

��(7)� � " 7 "�� �� " �7 "��

(7 B��"�
�

�������������
"�

��
"���

"�,�
��

"�
�

�������������
�

�
�������������

)�
��

)���

)�,�
��

)�
�

�������������
��

��� L� �����	�
�� ���	
��	� � ����
��	 ��
���	 � ���	
��� � �������� ����!

���
��
�
�� ��������	��� ���	
���
�� ��
 �� �������� ���	
�� ���������� �	�

�� ��
 �� �������� ����	�� ����������

��������� � B �'+

���������	�
�������
 ��' (�"�)�� ���)� -�

�. /����-��� ��� "�� ��� "� -� -� ���'���' ��	���� �&��'��'�� '0��
�

����
(�

��
(�

�
���� 7

(+

B��"�
�

����
"�

��
"�

�
���� �*"�

�
����

)�
��

)�
�

����� �� '��� �1 ���" 7 "� �(� 7 *" � �(� 7)���� � �2

�����������
�������

�

����
(�

��
(�

�
���� 7 B��"�

�
����

"�
��

"�
�

���� �*"�
�

����
)�

��
)�

�
����� ��*��'�� '&+

��
�*" � ?7 ��
�*" � ���� ���
�(����

�3 7 2 '0�� 	��� ���� 3&���� � �� (�� �&

��
�(�� ?7 ��
�(�� ���
�*" � � ��
�)���

��(� 7)� � " �7 "�� �� �" 7 "� �(� 7 *"

��(� 7)��� � ���

��(� 7 *" � " 7 "�� �� " �7 "� �(� 7)�

�
�

�������������
(�

��
(���

(�,�
��

(�
�

�������������
7 B��"�

�
�������������

"�
��

"���

"�,�
��

"�
�

�������������
�*"�

�
�������������

)�
��

)���

)�,�
��

)�
�

�������������
��

���	 � �� ����	��
� �	 �	����� ��������
��	 ��
� L� �	� L� �����	�
���

��
� ����	
�� �����	 �������� 8� � ������� �	 'A; ��������	��
�
�� �	��
��!

%�����
� ��
�� ��	�
���	
 �
����
��� ������
�� �	
����
��

�� �����	
 �����
�

�	��� �	���
��
��	 �� 	�	!���������

- %���
�
���. �����

2�� ��	 +�3� ����

�� �������	
�� ��� �������� ��
��	
��
��
 ��
� �	���
�� �3<8 45�(:6� ���

��� ��
���
������ �	���
��
��
 ��
� ���
�� ������� �� �
���
���� ���
����

���� �� ��� �
�
���	
� �	� ��� �������	�� �
 ��	���� � 	�	!
������ �����
 ��
�� '

�	� 'HH ��	���� 4(06� ���
��� ��� ������� �
��� ��	�
��	���
���� ���� ��
��

(=

������� ���������	
�� ��	
��� #�� ��	�
���	 �	�
��
 ����� ��	����	
�

�
 �� ���	�� ��������� �	 ;����� P��� �	� ' �	� ����� ��� ��
�� ��� ��"

������� �� 7���
�� ;���� 4(=6
� �����
��
��
 ��
� �	���
��	 ��2���
�� 1��

�����	
 �������	
�
��	 �	������ � ���	
�� �	���9��� � ;778 ���� �	���
��

�	�
�� ����	 �� ��
� �����	�
��� L� �	� L��

-�����	.�� ��� ���� ����

��� �/+*���� �� ��� �/+*���� ���

��� �� � � ����� ��# ��� �� � � �� ��� �� #

�$ � � # �� � #

�$ � �� # �� �� #

�$ � �� # �� �� #

%$ � �� # �� �� #

'$ ��� � � �� � ��� �� � �� �

&$ � ��, �� � ' # �� ��� , �� � '

($ � �� # �� �� #�
��
��

�
 ��

�
��
��

�
�

�
��
��

�
�#

*$ � �� # �� ������
�
��

��
�

�
�
��
��

�
�#

� � ������
�
��

��
�

�
�
��
��

�
�#

+$ � � � � , �� # �� � � �� , � �#

��$ 	�� � � ���� # 	�� �� � ���� #

��$ $$$ $$$

/����	 C� ����	�5''� ���� �� ��C6

2�� /'�	���	���� 	#��������

�� ������
�
�� ��������� �� �	���
��
��
 ��
� ��� ' ��	�
��	�
��
 ��	
��	

��	��
��	�� ���	
�� ������	 ��������� �	
��� ������ �� �����

�� ��������	!

�� �����
� �	 ������� ������� ��
���
�� ����
�� ��
���
���� ��� ��
���

��� ��
����� ��
��� �	
������ ���
������
���	���� ��Æ���
��� ��� ���!����	
��

��
 ��
� �	���
��	� ��� %��
 ������� ��
���
�� ���� 4556� �� ����	 �	 &��C

���	 ��
� �
� ;778 ����� �
 ��	
��	� �	 ������	 ������� ��
�
��!����� �	��!

���
��	 ���	
��� ���	 �	� ��	
�
� ����� ���	�� (.!((� ��� ���	
�!
� ����

�����
�� ��� ������ ��C= �
 �
�
���	
 C ��
�� #��!��	��
��� ���	
�!
� �	��!

���� �� ���	 ��
�� �������	 ������$

 ��!����� �� ,

�

�����"��

���������

�����"��

���
��

��
��

� !

�����"��

����������

�����"��

���
��

��
��

�

�

��!����� �� (

&��(. ��	
��	�
�� 'A; &>" ������ �	���
�� ��� ��	�
��	 ��C= �	�
�� ��!

2���
� ����	 ���
��
 ��
� ����
� ����� ���	�� (.!((� ��� �����
� ����
��

(C

�/+*�#��#��

�!0

#� � ����

��� � �"

$� �"

%� ��"

�� ��"

�� ��"

����#� � ���
�
$�

��
�

�
�
$�

��
�

�
�
$�

��
�

�$� �#� , �� � ' � �� �%�

��)�����
�
�%

��
�

�
�
%�

��
�

�"

�&�)�����
�
��

��
�

�
�
#�

$�
�

�

#� � �$� , �&� "

����#� � ���" $$$�$

10 #� � ���� �/+*�#��#��

�

#� � *

+

10 #� � ���� �/+*�#��#��

�"���������2#�3�

#� * #

#� + #

��

/����	 (2� "&��/0� ������� ��� ��C6

���� ��� �	��
�� ������ ��� -� ����
� ����� ���	�� (.!((� �	
��� ��������

�� ������
��	 �
�� �� �� �Æ���	

��
 ���
�� �	��	���
�	
 ������ ��� �������

����
�� �����	 �� -�� �� ����	 �� ��
� ��2���
�� ��� %��
 �	� ����
��

�����
� ��
�� ������
��	 �
��$ ��
���� ����
� � ����� ��� -�
��
 ��
��%��
��

��2���
�
��	 �
 ����	�
� =��C� ��� ����	� �	� ����� ������� �	� �����
��

��
� ������ = �	� C" ��� ��
��� ����
��	��

�	
�� ����	� ������ ���	 �	 &��((� ���	
�	 ����
��	����� ��� ����%��

��
��	 � ���� ����� ����� �
 ��Æ���

� �	���9�� 8
 ���� �
���
��	� � �� ����	��

�� ����� �� ��
��
 ��� ���	 �����
�� ��
�� �������� �
���
��	� 8�
��

���	
�!
� ����
��	� ��� ������ �	
��� ������� ���	
�!
� %� % ���	
�!
� � �	� �

���	
�!
� "�
�� ���� �
���
�� ����
�� �������� ���	
�!
� ����
��	�� ��� ���	
�!

� ���� �����
�� ��
�� #��!��	��
��� ���	
�!
� �	������ �
 �
�
���	
 = ��

�� �������$
�

� � �����

��

� � �����

��������������������

� � �����

�������������������������������������

 �� % �� ���

�	
��� �������
�� ���� ��� ������� ��
�� ��	��
��	�
��
 ���� ���� � �	

�����
� ��
���� � ���	 ���	
�!
� ����
��	� &�� �������� � ���	
�!
� � �, � -

5��� 0"� /�	��� �
�
���	
 C � -- K� �� ��
��%��" �� �����
�� ���
���� ����

5.

-�����	.�� ���� ���� ����

��� 4�5+(���� �� ��� 4�5+(���� ���

��� 6666�"666'"66""6(# ��� 6666�"666'"66""6(#

�$ � �' # �� �'#

�$ ' �" # '� �" #

�$ " �(# "� �(#

%$ (�' # (� �'#�
��
��

�
 ��

�
��
��

�
�

�
��
��

�
� #

'$ 	
���� � � � � 	
���� �� � � �

�� ��

&$ � �� � # �� �� � � #

($ � �� # �� ������
�

���'�"
�(

�
�� �

�
��'�"�

(�
�

��� #

*$ ���� �(� ����� �(�

+$ ����� � # ����� � #

���� ����

��$ ����� � # ����� � #

/����	 ((� �''� ���� �� ������ D�
C.

�
���
��	�� �
��
�	 ����
�� ����	� �	�� ����� ��	��
��	� ���� ��
����	��

��	����� �	 �����
� ����� ��� �������	
�
��	�

&��(5 ��	
��	�
�� 'A; &>" ������ �	���
�� ��� G��C+� ��� %��
 ��2���

���� ��� �
��
 ��
��
� �� �	���
��
� ����� ���	�� =!C� �
 ���� �	�� ��	!

�
���	
 ������
��	� ��� ����	� ��2���
 �	������ � ������	 ����� ��
�
�� %��

��2���
�
�� ������ ���	��
�� �����	 �� ��
� 5��5���(� ����� ��� �� �����
���

� ������
 ����!��
���
��	 ��
�� �����
��	 �����	 �� ��� 3�
� �������
��

	�
 ���
�� ������ ��
��� �����	 ��� ����
��	� ��
�� �������� ��� ��� ���	�

��
�� �	
����� �� 5� �����	
��

�� 	�	!�������� ��
�� ����� ��
���
������

��
��
�� ��
�� (!5!0!:!)!=!C �	� (!5!0!:!)!*!+!)!=!C" ��
�� ��	�
���	
 ����!

��
��	 �������� ��� ����	� ��2���
 ����
�� ������
 ����
��	�
�����
��

����
�����	 ������� �� ;����� ��� ������ ���	� ��
�� ������ ��������	�
�

�� ������
��
 ��
����
�� ��	�
���	
 � - 5��� 0"� �����
�� ��2���
� ����

��

�� ���	
�	 ����
��	� ���� ������
�� ������
�� ��
�� �����	 ��������

�	 ����
��	
� ��� �����
� ��� ��� &��5"� ��C= &��C" �	� G��C+ &��(("�
��

��
� ���� �	���
�� ��� ������� �
��� �������$ ��C(��
���
�� ���� 45:6�

��.0 ���� 45)6� ��C= ���� 45*6� � ������	 ��
�� ������
��
�� ������ 4)6

��
 ��	
��	� ��	��
��	�� ���	
�� ������	 �������� �	� � ������	 ��
�� G��C+

������ �	 �����
�� 	����� �� ���	
�!
� ����
��	 ������� �� � ������
��

�	�
���� ��	 �� ������ �	�������� &�� ���� ������� �� �	���
�� �
��
 ��

��
 ����	
���
�� ������
� ������� ��
�� ��� �	������� ���
����	 ��
� �	<��

���� ���
����	 ��2�����
��
 ����� �������	 �� ������� �
 ����
 �	�� ����	
��

��
�	 ������ �� �������� ��� �������� ��
� � ��	���
��
 ��
� �	���
��	

���	�2�� ����� ���	��� �	���
��
��
 ��
� �	
�� � ���	 ���
����	 �� ��������

5(

4�5+(���� ��� ��� !0

�� � ����

��� � �"

�� ��"

)� ��"

�� ��"

*� ��"

	
����

�� � ��
�
��
��

�
�

�
��
��

�
�

�
��
��

�
"

�� �� � ��

��)�����
�

������
��

�
�� �

�
��)���

*�
�

���

�"
������ ���

�
��

�
�

�
��

�
�

�
��

�
� �� �� �� ��

10 �� ��� 4�5+(���� ��� ��

�� � �

��� � �

� �

10 �� ��� 4�5+(���� ��� ��� ���������2��3�

�� � 76 8�5� 5��9�	�� 67

� � #

�� ' 76 5����� 5��9�	�� 67

� � #

�� * 76 �/	�� 5��9�	�� 67

� � #

�� �� 76 ��9��/ 5��9�	�� 67

� � #

$$$ 76 ��� �/� 5��9�	��5 67

/����	 ()� "&��/0� ������� ��� D�
C.

8� ��	���
��
�	 ��	 �� ��������� ���� ������� �� ����
��
 ����� 	��

��
���
��
��
 ��
� �	���
��	
���	�2�� ������ �� ����	
� ��
�������

��	���
��
�	� 3�
� �������
��
 ��	���
��
�	 �� �	����
� ����
��

�	���������
� �� � �������	� �	���� ��� ��������� &�� ��	���
��
�	� �	 �����

� ������� � ���� ���������	 ��
� � ��	����9��
���	�2��� �� ���� ������
��

�� ������ ��� �	������� ���
����	 ����� �	�� ��2����� ��� ��
 �	� �������	�

���	 ��������

��� �����
� ���	 �	 ����(���� �����
�� �	 � (�=��9 ;�	
��� : �����	��

�����
�� ��
�)(5?� �� B8?� �	
�� ���
 ���� ��
��
����� �� �����

�� 	��!

��� �� ��	
��� #�� ��
�� Q�"�
�� 	����� �� �	�������� ��
�� Q�" �������

�� � ��	��� �	������� �	�
�� ������� 	����� �� ���� �	
�� ���	
�!
�

����� ��
�� ������ Q�"� ����� ������
��� ��� �	 �	���
 �	
�
�� ��Æ!

���
� �� ��	��
��	�� ���	
�� ������	 �������� �	
��
��
�� �������� ����!

������ � ��
�!����	
�� ��
��� ����� �������� ���� �	 � ������
��
 ��	
��	�

55

� ��
 �� 	�	!�������� ��
��� �� ���� �����

�� �
�
��
��� ��
���
������ ���!

��
�� ��
��
���$
�� 	����� �� ��	�
���	
�
��
 ��� ��	�������� �����
�

�� ��	�
���	
 �
��� Q�" �	�
�� 	����� ��
���� � �����	 �� ������� Q��"�

����� ��
� ������
���9� ������
�����
�� ��9� ��
�� ��	�
���	�� ������� �	�

�� ���	�	 ������
� �� ��	�
���	
�� �� �����

�� �����
� �����
�� �� �	<�

�	� ��
�� ��	���
��
�	 ��������� �� ��	���9�
�� ���������	
 �,��
 �	�

� ������� � ���� ���������	� �� ����
�� ��	�
���	�� ������ ����� �
����

� �������	
 ��	���
��
�	� B�	��� 	������ ���� �	���
�� �	���� ���

��� �	�
��
�� ���	
�� ��	�
���	
 ���
�� �	���
�� ��� ���� ������ ��

�������	 � �	���
���	��
��
 ��������� �	
�� ��	��� ���������
�� ����!

�
��	 �����	� ���� ����	���
� !(... �� (... �	�
��
��� ������
��
�
��

������
��	 �� � ��	��
��
 ��
� ��� ���
���
��
� :��� �� ';R
���
� �����

��	!
��� �����
�
��	�� �	 ����(� Q
� ��������	��
�
�� 	����� ��
��
 ��
�

�	���
�� ���
�� ������
� ������� �� � ���
����	� �	� �
 ��������	��
�
��

';R
��� ��2�����
� �� ��� 3�
�
��
 ���
��
 ��
� �	���
��	 �
��
�� ��

	�
 ��
���� �	� �� ���� 	�
 ���� 	����������
�
�� ��	���� 	����� ��
��

��
� ��2����� ���
�� ���� ������� ��
�� ���
����	� &�� ��	���
��
�	� �� ��!

���
��
�	
����
�� �������	��
� �����
�� ���
�� �� ��� E����F �	
�������

��
�� �
��
�	 ���	
 ��2��	�� �� ��	��� 	������� ��� ������
��
 ��� ����	

�	
�� ��

�� �����	� �� ���� (��������	�
�
�� ���	 ������ ��
��
 ��
�

�	���
�� �	� ��	
��� �������� ���
�� ������� ��
�� ��� �	������� �	�
��

������ ��� �	������� ���
����� ���	
��
�	 ��G��
���� ���� 	�
 ���%���� ��
��	

(���� �� ����
���� �� �
�����
�� ��	��� �	���
��	 �	� �����
�� �������

 ����	 ��
� E!F"�

!���	 (

"���	��� ���	���	 � ��	 ��	
	�	 �� ��������� ����
�� ����	�

���
��� ����9��5 �9� �������/ :����� �������/

��� ���	5	��5 ��� ���	5	��5 ����5� ��� ���	5	��5

���
���5 ;� ;9 ;� ;� ;�� ;�� ���5��� ;�� ���5��� ;�� ���5���

�	� � � � �% �'+ � �$' 0 0 �%�(�$'

���� % � � ' �(� �$� ��(* �$�(���' �$+

�
�� % � & �& �(% � �$� ���� �$+� � �$�

���� % � (%(��%� � �$� ��++ %$%' ���(�$%

��� * & � ��� &*� � �$� 0 0 0 0

������ '(%� % ��(�% *�*�� * '$� 0 0 �*(� ��$�

����� � � & ��&(+& ��(*�� � �*$� ' �$�(� �$%

2�&
���"���

�	 ���
�� ������ ��� �������� ��������
�� ���� ������� ��
�� ��� �	��������

���	 ���	
�� ������� 	����� �� ���	
�!
� ����
��	� �� ��� ��C=" ��
��

	����� �� �	�������� ��
�� �� ���
��
��" �� �	%	�
� G��C+"� @� �����	 �

�� 	����� �� ���	�	�� �� ��	%�� ��� �	
��
��	
��

�� ��	�
���	
� ����

50

�	 ��
��� ���� �	
�� �	���
��	� A�
 �� ������
��

��� 	����� ��������	��

�
�� 	����� ��
���� � �����	 �� ���	�� �� � ��	�
���	
� ��� ������

G��C+ �� ��������
�� ���� ����	��	 �� ����	 ��
�� 	����� �� ��	�
���	
�

�	���
�� �	�
�� 	����� �� ���	�	� ��������� �	� ��2����� ��
�� ���
!

��
 ';R ��	
��� ����� (=���"� �	 ��� �
��� ������ ��� �������� ��
��������

��	���
��
�	 �	
���� �� ';R
��� ��2�����
� �

�� ������� �� � ���
�!

���	� ��� 	����� ��
��
 ��
� �	���
�� �� 	�
 ��	�%��
��� �� ��� ��������

�� ��
����	��
�� �����
�� ��	���
��
�	 �������� �� ����������
��� �	 ����

����� ��C(� ��� �	�
��
��"�
�� ��	���
��
�	 �������� �����
� �
 �
��

��

��
 ������
�� �����
�� ���
����	� ���� �� ���
�
�� ���

��
 ������� ��!

�����	� ���� � ���� ��� ���������
�
� �� ��
��%��� ���������� �	
�� �����	��

�� ��	��
��	�� ������	 ��������� �	 ��� ���������
�� ������ �� ����
��	� ��

E�����F ��
�� ��	�
���	
 �����	 �������� ���	 �	
�� �����	�� �� ���	
����

��
����
� ���	� ������� ������
��� �	 ��	���
��
�	 ���� ��
�� ��9� ��

�����	�� ��
�� ';R
��� ������
��
�
�� ������
��	 �� � ��	��
��
 ��
�"
�

�
 ��

�� �����
� � /�������
��� ���� 	�
 ���	�
�� 2����
� �� �����
� �� ��!

�����%�� ��
�� �������	 �����	��� �	
��
��
�� �������
���� �� � �������	

��
 ��������	��
�
�� ���	
 � - � - � ����� �� �� � �������	
�
�� ��	
��

�� �
���	��� �
 ��
������
� ���
��

�� ���	
 ����� ��	���
�
� �	���
� �

����� �� �2��� 	������ ��� � ���� ��� ���������
�
� �����	 ���
���� ��
��

����%�� ������
���� ��� ������ ����� ���
�	������ ��
�� ���

��
 ��� �
�

�������	� ��	 �� ������� ���� 2������ ��
�� ��	���
��
�	 ��������� 1	��

)
��
 ��
� �	 ������ ��� ��2�����
� �� �� �	�
�� ������� ��	 �� ��
��	��

�	 (�5+��� �	 ������� 1	
�� ��	
����� ��� �������� ��2����� (=���
� ��
 ��

�	� �����
�� ��	�
���	
 ���
�� �	���
�� ���
��� ������� ���� �� ���
�
��

���

��
 �����
���
�� ���� ��
�� ������ �� �	�������
�� �����	 �������

�����	�� ���
�� * �������� ���	
�!
� ����
��	��

/ 0������ ���

��
�� ���
 �� ��� �	������� ����� ���� �	 ��
���
�� ���!����	
��
��
 ��
�

�	���
��	 ��� 	�
 ������� �����%����� ���	
�� ������	 ��������� /�������

�������
��
 ��
� �	���
��	 ���������� ���� ��
� ���	
�� ���������� <���� 45+6

�������� ������
�	 ������� �����
��	� ��
�� ������
� %	� �
��
 ��
�� �	

����� � �����
�� ��
� �� �����
��� �
� �������� ���� 	�
 ��,�� ����
�� ���	
��

������	 ������� �� �
 �� ����� ������ �	 ������ �����
��	�� 8� � ���������

��� �������� ��		�
 ��
��
 �	��
��%�����
� �� �����
�� ��
��� ?��� ����	
���

S����	�
��	 �	� ���
� �	 45=6� ?���� �
 ��� �	 45C6 �	� 7��!	��	 �
 ��� 40.6

���������
�� ������� �� �	���
�	
��
 ��
� ��� ' ��	�
��	� ��
� ���	
���

�� �	��
 ������
��� �� ���	 �������� �����
��	 �	� ��	�
���	
 �����	
���!

	�2���� �	
���� ����������� ���	
�� ����
��	����� ��� ��	���� ��
� ��	�
���	
�

�	 �	��
 ������ �	� ������	 �������� ����� �	�� ��
��	 �	��
 ��
� �
���
�����

5:

;�
�'������ 45C6 �	� 'R�I 40(6 ���
�� �������
��
 ��
� �	���
���
��

��

� ����� ���
�� �������� ��
�� �� ' �������� @�
� ���
��� ���� �� �����	�	

��	���
� �	� �������� �����
��	� ���� ����� ��
� ��	��
��	� �	 �����
� %	�

�� 	��

��
 ��
�
��
 ���� ������ � ��
�
��
 �������
�� �����	
 �������

��
�� ������� 8��
���� ���������� ���� �	 �����	
�� 	��� ��� � ��
�

� �� �����
�� %��
 �	� �� ���� �	
�� ��
�!����	
�� ��
���� ��
����� R	����

��
�!����	
�� �	� ���	 �
��� ����	
���� ���!����	
�� ��
���� ������

��

����� ��
��
��	 �� 	�	!�������� ��
��
� ���	�
�� ������ ����� ���� �� �� ���

�� ��
��
��
 ����� � ���	 ���	�� 4056� /������� �	���� ��
�!����	
�� �	���

���!����	
�� ��
���� ��,�� ����
�� ��	��
��	�� ���	
�� ������	 ��������

'�	������	 ��� ��
��
��
 ����� � ���	 ���	�� �� ������� �	�����	���� ��
��

	����� �� ��	
��� #�� ��
�� ��	 �� ����	�	
��� �	
�� 	����� �� �������	�

��
�� ������ �� ���	 �	%	�
� ���	 ����� ��� �	���	���� 8� � ��	��2��	���

�� ����
��
 ���!����	
�� ��
���� ����� �� ���� ������
��	 ��
�!����	
��

��
���� ��� �������
��
 ��	
��	 �	�� ���	
�� ���������� ��� �����
����

��������
� �� ��� �������� �� �
��	�� ����
��
�
�� ������� 	����� ��

�������� ������� �����
�� �
 ���� ���	
 ��
�� ������ �	�
���� ��� �
�����

�����	
��� 	����� �����	 ����� �	 �	����� &�� ��������
�� ��������	
��

�����
� ���
��	 �� 45(6 �����
��� 	����� �� �����
 ������ ����
��	 %��� &�� ���

�� ���	 �������� �� ��� �������� ��	���	� �
� ����	���
� ���� ��
� ��	����

������
��	� �	����� ������	 ��	���� ������
��	 �	
� � �����!���� �����
�
��

����
��	 �� � ��
�	
����� �	���	��� 	����� �� �������� /�	���
�� ���	
�!
�

�	������ �� ���� �� 	� ���� ���
���� �	
��� ����� 3�
� �������
��
 �����	

��
� ��	���� ������
�� �
���
���� �	 � ���!����	
�� ��
��� �����	� �	 ���	

������� �	� 	�	� ��
�� ���� ���������� ��
�� ��������� �
�

1 ���	��
��

�	
��� ������ �� ���� �����	
�� � 	�� ���!����	
�� ��
��� ��� �	���
�	

��
���
������
��
 ��
� ��� ������� ��
� ���
�!����� ���	
�� ���������� ���

��
��� �� ����� (" �	
�� ;��	
�� 778 ����
��
 ��
�	��
����
��	�� 778

�� �	
���
�	
�� �����
� �� �	 �	
������������ #��!��	��
��� ���	
�� �	������

�	� 5" �	
�� ����	 ��
�� 'A; �����	�
���
��
 �����
�� ����
��	 ��
���	

���	
��� �	� ���	
�� ���������� ��� 	��
 �
��� ��
��� ���� ���� ��
� �
���

��
�	���	� �	 ������� �����
��	�� &���
� ��� �������� ����� �������
�� �������

�� ��	�
��	 ����� �� ������
�	
�� �����
� �� �	 �	
������������ ���	
�� �	��!

����� 8�
���� � ��
 �� ���� ��� ���	 ��	� �	
��� �����
���	���� ��������

�����	
� ��	��� �������� ��	�
��	 ���	
��� ����	�!����� ��������	" �	�

��������� ������ 7���	�� �� ����� ����
� ��
�	� ��� �������� ��� ���	
���
��

�������
�� ����� �� ����� ��� �
��� ���	
�� �	������ ���� �� � ����� �	������

�� ��	���� ���	
�!
� �	������
� ���� ��
� ��	���� ������
��	� �����
�� ��!

�	���	� ����� ���	
�� ����
�
�� ���������	
 �� � �������� ���!����	
��

5)

��
 ��
� �	���
��	 ��
��� ����
� ���� ��
� ����!��9�� ��������

"	��� ��������

���	��
� 3���� �������� ��� ��� ������� �����	
� �	 �	 ������� ����
 ��
���

������

0������	�

@(A �� %����	�� E� E��	���� F� G�	�	�� ��������� �	
� ���� �		����� �
��

��
�����
����� �	���:�	
� �? ����		���
 �� ��	 ��	������� '����
���

� '������	 !	
��� �� ����
�
 ��''!�HC6�� "�	�����	� E	���� /&� 3'��

(CC6� ��� ,*5-)�

@)A �� %����	�� E� E��	���� F� G�	�	�� � ��� ����	��� ��� ��������
���������

�	
� ����� �? ����		���
 �� "����������� &���� �"&H)222�� &#�� (6C(�

&���� 3$�)222� ��� *CC5+(*�

@*A G� "����� I� /	����	� E� G�
	� F� J	���� /� K��	� � >Æ�	��� ��������

�����
���	 �

���	� ���� �� ��	 ������ �	�	�	�	 ������ �"F

!��
�����
 � ���������� &�����	 �� '�
�	�
 (* �+� �(CC(� +,(5+C2�

@+A '� $��
�� � 0� 0���D���� L� ���	� >
���� ���	
��	�� ������� �����	

��	�
 ��� �	������	 ������
�
�	�
� �? ����� �� ��	 ��� "��� � "�����	�
�

������	����	 �� '���	
�
 ��� >��	��	� '�
�	�
 �"�'>'H2)�� %�	���	� /G�

)22)�

@,A G� 0	F����� I� ;M��� "�
��������
	� ��������� �	
� ���� �		������ �>>>

!��
�����
 � '������	 >��		��� (. �C� �(CC(� C225C(2�

@-A G� 0	F����� I� ;M��� >��	���	��� �	
���
 ���� � ��������� �	
� ��
	

�		������ �"F !��
�����
 � '������	 >��		��� F	���������) �)�

�(CC*� (2C5().�

@.A I� ;M��� K� I�� �� I�� !�	 ������ ����� �	������ ����	���	 ��� �	
� ����

�		������ '������	5�������	 �� >��	��	�)C �)� �(CCC� (-.5(C*�

@6A "� F	��	�� �!%	? ��������� �	
� ���� �		����� �
�� ��
����� �����

���������� ��
������� 	�	������ '������	 !	
���� L	�������� ��

G	��������� ((�)� �)22(� 6(5C-�

@CA E� E��	���� �� %����	�� "� F���	�� '������� 	�	����� �� N����������

����������
� !�	 '������	 !	
���� L	�������� �� G	��������� D����� (- �)�

�)22-� �� C.5()(�

@(2A �� %����	�� E� E��	���� F� J��	�� � �? !	 �	��
 ���	� ��	 ��
� ��	�
� �?

(C�� ��	������� "��	�	�	 � '������	� '�
�	�
 >��		��� �� ��	��

����������
 ��"''>�H2-�� ����
� /���	�)22-�

5*

@((A I� /	����	� $� ;��	
�	�� I� J���	� !�	 ������� �	�	�	�	 ����� �� ��

�
	 � ������<����� �"F !��
�����
 � ���������� &�����	 �� '�
�	�

C �(C6.� *(C5*+C�

@()A F� E����
� O� FP�

	�P�� � '���	���

 %		����� �� '����� '���	��

���	�

/��� ��� '�������	� &�����	
� �"F !��
�����
 � ���������� &�����	

�� '�
�	�
 (- �-� �(CC+� (-6+5(-C6�

@(*A ����� ��	�	��	 �� !���	
 ������	 '�
�	�
� �#$�5L(3
	�H
 F����

��	�	��	�)22)��

@(+A �� %����	�� E� E��	���� �������	� �	��������� �	
���� �?).�� �>>>

���� ��	������� "�����	� '������	 �� ����������
 "��	�	�	

�";F�'�"H2*�� 0����
� !Q� 3'��)22*�

@(,A !� "�	� !� !
	� K� K���� /�������
	� �	
��� � ��	 ��
	�	 �� � �����	� �?

�>>> ��� "���� '���� �� ���� "��� �";F�'�"��)22(� ��� (.)5(.6�

@(-A $� F�������� �� '��� 	�� ���������� ���� "�
�����
 ? � ����������� !�	

F�! ��	

� (CC6�

@(.A #� !� '�� R� 0	����	� "�
�
�	�� �	���:�	
 ��� ��	�����	����� �	
� ����

�		������ �? >'>"1/'>�((? ����� �� ��	 C�� >����	�
������	 	��		���

���	�	�	 �	�� D����� ���� ((�� �"F '�%';/! ��	�������
����
��� �

/�������
 ��
������	 	��		���� �"F ��	

�)22*� ��� (265((.�

@(6A F� "���

�� %� ;���

�� E� "���
�� � ��	5	�	� ���	 ����� ��
�����

���	�� �? ����� �� ���������� &�����	
? ����	�	�����
� &����
� ��

�������
� (CC.�

@(CA G� "����� G� %	�
��	�� >Æ��	� ������������ �� ���5����
 ���������

� ''� ����� �? ����		���
 �� ���������� &�����	
 0	
�� ��

����	�	������ �"F� ����:�	�:�	� #F� (CC*�

@)2A G� O�
��� '� O�����<� 3
��
�����
���	 �

���	� ���� �� ������	 N���

�
	
����	 ����	� ����
�
� �? �&0� HC6? ����� �� ���	�	�	 � ����������

������	 �	
�� �� ����	�	������ �"F ��	

� (CC6� ��� C.5(2,�

@)(A >� >����� G� %����� &� O	��	� "��	��5
	
����	 ��	�����	����� ����
5��

����
�
 � ��	 ��	
	�	 �� ������ ����	�
� �? ����		���
 �� ����������

&�����	
 0	
�� �� ����	�	������ �"F� ;������ /&� (CC+�

@))A "� &�� ��
 �� &� O	��	� >��	�	� ''� ���	���? ��������� ''�

����	���	
 �� ������	
 ���� �����5�	�	� ����	�
� �? .�� ����� �� ��	 "��	�	�	

� "�����	�
 "�
������� �""HC6�� &#"' (*6* $�� $�
����	
 �>��� &�
���

��������� (CC6� ��� ()65(+*�

@)*A G� %����� &� O	��	� ������ ����	� ����
�
 �� ��� � �? ����		���
 ��

'���� � �������	
 �� ���������� &�����	
� �"F� '� 0�	��� "�� (CC6�

@)+A !� ;
����� >� J	�� 	�� 0��� N�����
	� �	
� ��	:���� ����
�
 ��� ������	

���� ����	�
� �? � ����		���
 �� ��	 '����
��� � !	
���� ����
�
� ��

L	�������� �!�LHC(�� (CC(� ��� .+56-�

5+

@),A L� &��
���
� F� &��� !��� �� ����	�
 ���� ���� �� ���	��
	
������� ��� ���

�	�	���� � " �������
� �? �"F '�%';/! '����
��� � ��	 /�������

�� '������	 >��		��� �>'>"1/'>H2*��)22*� ��� *(.5*)-�

@)-A 0� E� �	�� I� &��	� ���������� �� ��	 ����	�
���	
������� ��
����� �������

������ I����� �� '�
�	�
 �� '������	 +2 �(� �(CC6� (.5).�

@).A E� $��	�� �������	�
������	 �	
� ���� �		������ �>>> !��
�����
 �

'������	 >��		��� (- �6� �(CC2� 6.256.C�

@)6A '� L�
������� #� %����� %		����� �	
� ���� ��� ������
 ���� ����	�

����
� �? ����		���
 �� ��	 (.�� �>>> ��� "��� � �������	� '������	

>��		��� ��'>H2)�� >�������� 3$�)22)�

@)CA E� F���	� �� F���� #� J������
� ;���	�N� �		����� �� ����� �	
�
 ��� �

������
� �? ����		���
 �� ��	 (C�� �>>> ��� "��� � �������	� '������	

>��		��� ��'>H2+�� &�<� ��
�����)22+�

@*2A '� '����	�� "� &��
���� �� '�����
������ � ����	

 ������ �������� ���

�	
� ���� �		����� �� ������ �� 	�
�������	
� ��������� �� '������	

!	������� +. �)22,� (CC5)(+�

@*(A $� '	� 0� F������ %� ����� "3!>? � ������� ��� �	
��� 	��	 ���

"� �? ,�� D��� �		��� �� ��	 >����	� '������	 >��		��� "��	�	�	

�� �"F '�%';/! '����
��� � ��	 /�������
 �� '������	 >��		���

�>'>"1/'>H2,�� �"F�)22,� ���)-*5).)�

@*)A G� /	���
�� E� $��	�� !�	 ������ �������� ���
������	 �	
� ���� �		������

�"F !��
�����
 � '������	 >��		��� F	��������� , �(� �(CC-� -*56-�

5=

F. Charreteur, B. Botella, and A. Gotlieb. Modelling dy-
namic memory management in constraint-based testing. The
Journal of Systems and Software, 82(11):1755–1766, Nov.
2009. Special Issue: TAIC-PART 2007 and MUTATION
2007.

Modelling Dynamic Memory Management in Constraint-Based Testing

 Florence Charreteur
1
 Bernard Botella Arnaud Gotlieb

 University of Rennes 1 CEA LIST INRIA

 Campus de Beaulieu Saclay Campus de Beaulieu

 35042 RENNES – France 91 191 Gif SurYvette – France 35042 RENNES – France

 Florence.Charreteur@irisa.fr Bernard.Botella@cea.fr Arnaud.Gotlieb@irisa.fr

Abstract

Constraint-Based Testing (CBT) is the process of generating test cases against a testing objective by using constraint solving

techniques. When programs contain dynamic memory allocation and loops, constraint reasoning becomes challenging as new

variables and new constraints should be created during the test data generation process. In this paper, we address this problem by

proposing a new constraint model of C programs based on operators that model dynamic memory management. These operators

apply powerful deduction rules on abstract states of the memory enhancing so the constraint reasoning process. This allows to

automatically generate test data respecting complex coverage objectives. We illustrate our approach on a well-known difficult

example program that contains dynamic memory allocation/deallocation, structures and loops. We describe our implementation

and provide preliminary experimental results on this example that show the highly deductive potential of the approach.

Keywords: Software Testing, Constraint-Based Testing, Automatic Test Data Generation, Dynamic structures

1. Introduction

By increasing our confidence in the quality of software, testing techniques play a prevalent role in the verification

process of software systems. However, software testing remains an expensive task in the development process and one of the

main challenges concerns its possible automation. Since the seminal work of Offut and De Millo in the context of mutation

testing [1], much attention has been devoted to the use of constraint solving techniques in the automation of software testing

(Constraint-Based Testing). In [2], Dick and Faivre proposed to exploit a VDM model to generate automatically test cases for

partition testing while Marre proposed in [3] to exploit Constraint Logic Programming to generate test cases from an algebraic

specification. In 1998, Gotlieb, Botella and Rueher proposed using constraint propagation techniques to generate test data for

the structural coverage of C programs [4]. This work resulted in the development of the INKA tool which was the first to

address C programs containing pointers (but without dynamic allocation) and floating-point variables [5,6,7]. Meudec followed

a similar path with ATGen, a software test data generator based on Constraint Logic Programming for ADA programs [8] and

more recently, Williams introduced a new test data generation method in a tool called PathCrawler, based on the on-the-fly

generation of paths in C programs [9]. This method was independently discovered by Godefroid and Sen in the DART and

CUTE approaches [10,11]. Note that Constraint-Based Testing methods cover several applications area including hardware

1
 Corresponding author – Florence Charreteur – Tel/Fax : +33 299 842 2 86/+33 299 847 171

verification [12,13], test data generation for structural testing [4-11], functional testing [1,2], counter-example generation

[14,15], and software verification [16].

Constraint-Based Testing (CBT) is a two-stage process consisting in generating test data against a user-selected testing

objective. The first stage is a constraint generation step aiming at extracting a constraint system from the source code of a

program under test and a selected testing objective, while the second stage is a constraint solving step consisting in trying to

solve the constraint system in order to get a test data that satisfies the testing objective. For example, by selecting a statement

within the program under test, we get a constraint system that characterizes a subdomain of the program input domain and

solving this constraint system leads to generate a test data in the subdomain, on which the statement is executed. Such an

approach has been called goal-oriented test data generation by Fergusson and Korel [17] as opposed to path-oriented test data

generation which consists to select first a path within the program before trying to generate a test data that activates the

corresponding path. When the constraint system has no solution, then the testing objective is unreacheable. For goal-oriented

test data generation, it means that the corresponding statement or decision is unreacheable. Such deductions are usually outside

of the scope of any path-oriented test data generators as soon as a loop is present in the program because the path selection

process is possibly endless in this case. Note however that showing the unsatisfiability of a constraint system is undecideable in

the general case
2
 and then usually some unreacheable elements may remain undetected even for goal-oriented approaches.

This paper addresses the problem of dynamic memory management in a goal-oriented test data generation approach.

Dynamic structures are heap-based data structures built during the execution of the program. CBT approaches cannot easily

handle these structures, as their exact shape cannot be completely known at compile time. One usually resort either to use an

approximation of the structure shape by static analyses or to use dynamic analysis. In the first case, one cannot make exact

deductions about the states of the memory manipulated by the program as the program semantics has been approximated, while

in the second case, deductions can only be performed on some program executions.

1.1 A motivating example

Let us illustrate this problem on a non-trivial example that belongs to the folklore of C pointer problems [18]. The Josephus

program, shown in Fig. 1, is a decimation problem and relates to a Historical situation where Jewish rebels were surrounded by

Romans and decided to commit to suicide: they lined up in a circle and systematically killed every other one, going around and

around, until only one rebel is left. The program contains two successive loops: the first one builds a circular simple-linked list

of n nodes, while the second eliminates nodes at position m until only a single node remains in the list. Thus, this program

contains dynamic memory allocation/deallocation within loops, which is the main technical difficulty concerning dynamic

structures in CBT approaches. Indeed, an interesting testing objective for the Josephus program is to find values for m and n

such that the second loop (while 2) is unrolled at least forty times, as this number corresponds to the Ancient problem
3
. Such

complex testing objectives are frequent in practice, as interesting states of a system often result from complex control flow. Note

also that such states are usually difficult to reach by hand even for experienced validation engineers [19], making automation a

real challenge. For CBT tools, finding values for m and n such that the second loop (while 2) is unrolled at least forty times
,

2
 As a consequence of the 1970’s Matiyasevitch result on the undecideability of the Tenth problem of Hilbert
3
 In the original ancient Josephus’s decimation problem, there were 40 people killed, letting the rebel alive at position 31.

involves either complex static analyses such as structure sharing analysis and pointer aliasing analysis or dynamic analysis

(based on program executions). A static analyzer would typically ignore the backward pointer toward the first element of the

list, while a dynamic analyzer would have very few chances to satisfy our testing objective as they are usually based on initial

random draws. On the contrary, thanks to our operators that model the dynamic memory management, our system automatically

deduces that n, the length of the initial list should be 41 while the remaining element at the end of the process is 31 when m=3.

This corresponds exactly to the expected solution of the original problem (the surviving rebel will be the one positioned at the

31th position in the circle).

1.2 Contributions

The main contribution of the paper is the design of several constraint operators that model memory allocation, deallocation,

accesses and updates. These operators are equipped with deduction rules useful to perform constraint reasoning on imperative

programs, as required by CBT tools. We present each operator under the form of finite state machine that interacts with the

constraint solver. Such a presentation is advantageous as it makes clearer the implementation of these operators. Another

contribution of the paper is the design of a complete goal-oriented test data generation method for C programs containing

dynamically allocated structure. Our approach can deal with circular lists as well as any memory shapes that may include

backward pointers. We are not aware of any other symbolic approaches able to deal with these data structures (see section 7).

We implemented our constraint operators within the test data generator INKA [7] and got preliminary experimental results that

show the potential of the constraint operators to reason about program with dynamic memory management.

1.3 Outline of the paper

typedef struct node *link;
struct node { int key ; link next;};

int f(int n,int m){
1. int i; link t,x ;
2. t=(link)malloc(sizeof(struct node));
3. t->key = 1;
4. x = t;
5. i = 2;
6. while(i <= n) { //while1
7. t->next=
 (link)malloc(sizeof(struct node));
8. t = t->next ;
9. t->key = i;
10. i++; }
11.t->next = x ;
12. while(t != t->next) { //while 2
13. i = 1;
14. while(i <= m-1) { //while 3
15. t = t->next ;
16. i++; }
17. x = t->next ;
18. t->next = (t->next)->next ;
19. free(x); }

Figure 1. Josephus program

Section 2 recalls the necessary background on constraint solving over finite domains and states some notations and restrictions.

Section 3 introduces our overall goal-oriented constraint-based test data generation technique. Section 4 details the abstract

memory model we use to deal with dynamically allocated structures. Section 5 presents the deduction rules exploited in the

constraint operators under the form of abstract state machines; Section 6 gives our preliminary experimental results while

section 7 discusses related works. Finally, Section 8 concludes and draws some perspectives to this work.

2. Background

2.1 Constraint solving over finite domains

Our approach is based on constraint solving over finite domains. In this framework, a finite domain is associated to each

variable and a solution to the constraint system is a valuation of the variables within their domains that satisfy each constraint.

Primitive constraints are built over variables, domains, arithmetical operators in {+,-,*,\,…} and relations {>,≥,=,≠,≤,<} while

non-primitive constraints include user-defined constraints and constraint operators that express high-level relation between other

constraints. In this paper, we define constraint operators that model dynamic memory allocation, deallocation, accesses and

updates. These constraints apply deduction rules as any other constraint of a finite domain constraint solver.

Two interleaved processes intervene in the solving process of a finite domain constraint system: constraint propagation and

variable labeling.

2.1.1 Constraint propagation

 Initially, the constraints are added to a main queue and fall into in an evaluation state. Each constraint of the queue is

considered one-by-one by the constraint propagation algorithm. The algorithm exploits each constraint to filter out the

inconsistent values from the domain of the variables. When the domains of all variables of the constraint have been pruned, the

constraint falls into the suspended state. When the domain of a variable is pruned, other constraints that involve this variable are

reintroduced into the queue. In this case, these suspended constraints are woken up and return in the evaluation state. If the

domain of at least one variable becomes empty, the constraint fails: the constraint system is unsatisfiable. If the constraint

succeeds meaning that each of the tuples from the current domains are compatible with the constraint, then it falls in the entailed

state. In this case, the constraint is removed and is not considered anymore in the process since it is no more useful. When no

more reduction is possible, the queue becomes empty and the constraint propagation ends.

2.1.2 Variable labeling

When the constraint propagation ends, enumeration on the possible values from the domains is usually required to get a solution.

The labeling procedure tries to give a value to every variable one by one. When a value is chosen from the domain of a variable,

the constraint propagation is re-run to prune the domains of other variables with the current hypothesis. If a contradiction

appears during the resolution process, the procedure backtracks to other possible values. The process stops when a value is

assigned to each variable.

2.2 Notations, syntax and restrictions

2.2.1 Notations

In the rest of paper, we will use capitals, possibly subscripted, to denote finite domains variables and variable of the constraint

model (such as memory for example). On the contrary, we will use lower-case letters to denote program variable and will use a

special operator, noted @, to denote addresses of the memory.

2.2.2 Syntax and restrictions

For the sake of clarity, we confine ourselves to a small C-like language (whose an excerpt of the grammar is given in Fig. 2) that

includes pointers assignment and dereferencing, structures management, memory allocation and deallocation. This language is

powerful enough to express any computable function and possesses all the necessary features to deal with dynamic allocated

structures. However, it also presents a lot of restrictions w.r.t. the C language. In particular, it does not allow unstructured code,

type casting, unconstrained pointer arithmetic, volatile variables, function calls, etc. In this paper, we focus on the problem of

dynamic memory management within our constraint-based test data generation method, hence we will only detail the constraint

model for the operators on memory and will left apart the rest. Similarly, we will only give an overview of the complete test data

generation method. The interested reader can consult ref [4] to see precisely how we deal with control structures (conditionals,

loops), ref [5] to understand the problems of pointer aliasing in constraint-based approaches, and ref [6] to understand how we

deal with floating-point computations.

3. Goal-oriented test data generation based on constraint solving

3.1 Constraint generation

Figure 2. Syntax of the pointer language

program ::= { statement* }

statement ::=
 assignment
 | malloc(type_size) %memory allocation
 | free(expr) %memory deallocation

 | if(expr) { statement* } else { statement* }
 | while(expr) { statement* }

assignment ::=
 var = expr | * var = expr | var->f = expr

expr ::=
 cte | var | &var | * var | var->f | expr + expr | …

As said previously, CBT involves two processes: constraint generation and constraint solving. In our framework, the constraint

generation step involves the translation of a program under test into a constraint model over finite domain variables and memory

variables. This constraint model can be seen as a relational formulae over the input memory state of the program and its output

memory state. Note that such memory states can contain unknown references such as input pointer formal parameters or

unknown integer variables. In fact, there is no strong hypothesis on the context of call and each C function is treated in isolation

in our model. Moreover, our goal-oriented approach prevents using path expression to remove ambiguities. As soon as a

conditional or a loop is encountered, our model can contain unknowns due to the non-determinism of the control flow.

Consequently, we need a constraint model able to deal with unknown parts of the memory. We get this model by a systematic

and inductive translation of statements into constraints. We will describe this model on a simple but illustrative example.

Consider the following sequence of statements:

 C code Constraint model

 a. i = i+1 ------------> load_eleme ntt(M1, @i, I1)
 I2 = I1 + 1
 store_element(M1, M2, @i, I2)

 b. if(i > 10) ----------- � load_element(M2, @i, I3)
 B1 = (I3 > 10)
 ite(B1,
 c. { p = &i;} store_ element(M2, M3, @p, @i)and M4 =
M3,
 M4 = M 2
)

 d. *p = *p + 5 ------------> load_elemen t(M4, @p, P)
 load_elemen t(M4, P, DP1)
 DP2 = DP1 + 5
 store_eleme nt(M4, M5, P, DP2)

e. if(i < 16) … ------------ � load_element(M5, @i, I4)
 B2 = (I4 < 1 6)
 ite(B2, …

The C code presents an aliasing problem at statement d as we ignore whether p points to i or not at this point (suppose for

example that i and p are input formal parameters of the program under test). Statement a is translated into three independent

constraints. The first one states a relation between the (abstract) memory M1 and the variable value I1 that is associated to

program variable i through its reference @i. This relation holds anytime an access to program variable i is made, but depends

on the current state of the memory at a given point of the program. The second constraint states a relation between two finite

domain variables (I1 and I2) where I2 is a new fresh variable. Our constraint model does not require variables to be declared.

Finally, the third constraint links memories M1 and M2 (two states of the same abstract memory), and variable I2 : the new state

of M2 should be the update of the state M1 with I2 at reference @i. This decomposition shares similarities with a classic 3-

address code that can be found in many compilers. Statement b is a conditional and we use an auxiliary boolean variable B1 to

associate with the truth value of the decision i > 10 . The conditional itself is translated to a special constraint operator in our

constraint model noted ite(B1, Then, Else) . Loops are equally treated with a special constraint operator called w, see

[4,7] for more details. Note that, when no deduction is possible on the path that should be followed, the conditional operator

makes the union of the two possible memory states. In our example, M2 and M3 joint in the memory state M4. M3 is the

memory state obtained after interpretation of the constraints of the Then-part of the conditional while M2 is just the memory

available if the Else-part is taken (no statement in this example). This way of interpreting conditional has much to do with the

Static Single Assignment form of imperative program [4]. Statement c is translated into a single store_element constraint

that links memory M2 and M3. Statement d is translated into four constraints. The two first permit to access to the value stored in

memory M4 at reference *p , while the two latter permit to store the result of expression to memory M5. The need for

load_element to be a constraint relation (as opposed to a function) is clearly stated at statement e. As the value of p is

determined by the control flow, we have to get it at the memory state M5 which is unknown or only partially known before

having selected a path through the conditional. One can see here how pointer aliasing is handled through the use of special

constraint operators. This also appeals for powerful deduction rules in case some information is available on memory states. As

a result, this constraint model allows us to implement goal-oriented test data generation in a constraint-based approach.

3.2 Constraint solving

The constraint solving step aims at finding an input memory state that satisfies a given testing objective. Consider the objective

of generating a test data that reaches the Then-part of statement e. By using the control dependencies within the program, this

testing objective is directly translated into the constraint B2 = 1 , forcing I4 to be strictly less than 16 and so constraining the

memory variable M5. By applying the deduction rules of each constraint operator of the model in a constraint propagation

algorithm, our system makes the non trivial deduction that the Then-part of statement b cannot be executed. In fact, if the

program variable i at statement b is strictly greater than 10 then *p and i would be aliased at statement d, and the value of i

would be greater than 16 at statement e, which is contradictory with the testing objective. As a consequence, our system

deduces that the value of i at the beginning of the program has to be less than 9. Thanks to the relational view of each

statement, constraint reasoning is possible and deduces interesting facts about the input state of the program in order to satisfy

the selected testing objective. Test data generation is obtained just by launching a labelling search that chooses i to be zeroed in

the input state of the memory.

It is worth noticing that our constraint reasoning did not exclude the possibility that p points to i in the input state of the

memory. Such input aliasing relationship depends on the context of call.

4. Description of an abstract memory

In our system, we express C operations over the memory with relations over two (abstract) memory states. The first memory

state represents the memory before statement execution while the second memory state represents the memory after statement

execution. An abstract memory in our constraint system is an abstract model of the physical memory at a given program point

and contains information known at a given step of the resolution process of the overall constraint system. Figure 3 describes the

content of an abstract memory. m : it contains four elements: struct(m), tabi(m), tabp(m), and closed(m) that are described in the

following subsections.

In order to facilitate the understanding, we provide an example of abstract memory. Figure 4 shows the abstract memory state

m obtained before statement 11 of the Josephus program after two iterations of the first loop.

Figure 3. Abstract memory

4.1. Structures dynamic allocations: struct(m)

For an abstract memory m at a given step of the solving process, information about known (statical or dynamical) allocation

of structures is stored in struct(m). In a memory, a variable is associated to each structure type definition. In figure 4, the variable

Snode is associated to the type node. A function called s_@ gives the set of anonymous program locations associated to this

variable. On the model, we represent each abstract memory location with the term ident. An abstract memory location can be

anonymous in the case of dynamic allocation. In figure 4 where there are three dynamically allocated structures, {n(2), n(7.1),

n(7.2)} is the set of the anonymous program locations. For example, n(7.2) denotes the anonymous program location obtained by

the execution of the statement 7 in the second iteration of the loop. The set given by s_@ can only be enlarged during the

resolution process ot the constraint system. Function access_f associates to location loc of a structure and field name f, the

complete name of the field location loc.f. For example, access_f(n(1),next) is n(1).next.

4.2. Basic types: tabi(m), tabp(m)

Information about basic variables is memorized by pair ident-Var; where ident is an abstract memory location, and Var is a

variable of type integer or pointer. On the model, the sets of integer and pointer variables are noted respectively VARi and VARp.

These pairs are stored in two data structures, called tableaux: tabi(m), tabp(m). The number of pairs contained in the tableaux

represent the known integer or pointer locations and therefore can only increase or remain the same during the resolution

process of the constraint system..

tabp(m)

tabi(m)
Ident Vari domi

m Vi1 Inf..sup
n Vi2 2
i Vi3 3

n(2).key Vi4 1
n(7.1).key Vi5 2
n(7.2).key Vi6 3

Ident Varp domp non_domp typep
t Vp1 {n(7.2)} empty node
x Vp2 {n(2)} empty node

n(2).next Vp3 {n(7.1)} empty node
n(7.1).next Vp4 {n(7.2)} empty node
n(7.2).next Vp5 all empty node

 closed(m)=true

Var s_@
Snode { n(2), n(7.1).n(7.2)}

struct(m)=<node, Snode >

Figure 4. Abstract memory after the
statement 11 of the Josephus program,
at the end of the constraint propagation
when the first loop is enrolled twice

4.2.1. Integer variables. For abstract variables that represent integers, the function domi gives the set of possible values at a

given step of the resolution. For example, the abstract memory location i in tabi(m), has value 3 in abstract memory of figure 4.

4.2.2. Pointer variables. For abstract variables that represent pointers, our model provides two functions domp and ndomp.

domp returns the set of possible abstract memory locations (symbolic names or anonymous program locations) for the pointer

while ndomp returns the set of memory locations that cannot be pointed by the pointer. For example, on a condition such as

(p==&a||p==&b), we get domp(P)={@a,@b} where @a (resp. @b) denotes the address of a (resp. b) in the abstract memory

model. ndomp is usefull in the case when domp=all. domp=all means that p can point to any location in the memory except the

locations contained in ndomp. On a condition such as (p!=&a) there are two possible changes in domp and ndomp. If domp=all,

then @a is added to ndomp. Otherwise, @a is removed from domp. These deductions on pointer domains are expressed by the

notation P ≠ @a in the description of the operators in section 5. If domp(P) contains a single value v, the element pointed by P is

definitely known. It is noted P=v.

For example, Vp2 in figure 4 is simplified to n(2) as x points to the first dynamically allocated structure in statement 2.

The function typep returns the type of the pointed element. In figure 4, all the pointers point to a node structure. The number of

elements in Domp can only decrease or remain the same during the resolution process of constraint system.

4.3. Closure of the memory: closed(m)

 The last component of an abstract memory m is the predicate closed(m). It indicates whether all the elements of the tableaux

and structures are defined or not in the current abstract memory. If closed(m) is false for an abstract memory at a step of the

resolution process of the constraint system, it can become true later. If closed(m) is true at a step of the resolution process, then

it remains true during all the process. The labeling process uses this predicate to force the input domain to contain only the data

structures previously labeled. Without this predicate, labeling could invent new structures and values leading to a non-

terminating process. Such status is of particular interest when one looks for the possible shapes of a dynamic structure during the

labeling process as it strongly constrains the set of identifiers that can be pointed to by a pointer.

5. Constraint operators on abstract memories

To find a test datum to reach a given testing objective, the program under test is translated into a constraint system on abstract

memories. This section details the deduction rules applied within the constraint operators that tackle with dynamic structures.

Figure 5 shows the translation of some basic statements of our language into these constraint operators. Min and Mout are the

memories respectively before and after a given statement. All the elements of the memory Min and Mout but the input parameters

of the constraint operators are identical. Asterisks in figure 5 denote the operators that are detailed in the following. For other

operators, we will only give an overview.

Statement new(t,id) generates two operators. The first one links the set of locations of type t between Min and Mout,. It needs the

identifier id of the location to add. The second constraint operator reserves place for the fields of the new structure. The

statement x=y->f generates four operators. The first one loads the value of y. The second one gets a pointer Vp that points to the

possible locations of y->f. Thanks to Vp, the third operator collects in Val the possible values for y->f. t in the notation Tabt (Min)

means that the tableau from which the value is loaded depends on the type of y->f (integer or pointer). The fourth operator sets

the domain of Val as domain of possible values for x. Similarly, statement y->f=x generates four operators. The first one loads

the value of y. The second one gets a pointer Vp that points to the possible locations in memory that can store y->f. The third one

loads the value of x. The fourth one affects the value of x to y->f. Statement x=y is expressed by two operators. The first one

loads y. The second operator stores y in the location of x in the abstract memory. Statement free(x,t) generates three operators:

the first one loads the value of the pointer x. The second one deletes the structure pointed by x in the memory while the third one

deletes its fields.

 We now turn on the description of these constraint operators: new_s for allocation, delete_s for deallocation, access_s for

structure field access, store_element to store integer/pointer values in memory, and load_element to load values. The constraint

operators for dynamic memory management have three roles: the propagation of the knowledge of the allocated locations in the

memories, the filtering of the domains for pointers and integers values and the propagation of information about the closure of

the memory.

5.1. Representation of a constraint operator

Figure 5. translation into operators

new(t,id)
(*) new_s(Struct(Min)(t), Struct(Mout)(t),id)
 new_fields(Min,Mout,t,id)

x=y->f
(*) load_element(Tabp(Min),y,Y)
(*) access_s(Struct(Min)(typeY),Y,f,Vp)
(*) load_element(Tabt (Min),Vp,Val)
(*) store_element(Tabi(Min), Tabi(Mout),x,Val)

y->f=x
(*) load_element(Tabp(Min)),y,Y)
(*) access_s(Struct(Min)(typeY),Y,f,Vp)
(*) load_element(Tabt (Min),x,X)
(*) store_element(Tabi(Min), Tabi(Mout),Vp,X)

x=y
(*) load_element(Tabt(Min),y,Y)
(*) store_element(Tabt(Min), Tabt(Mout),x,Y)

free(x,t)
(*) load_element(Tabp(Min),x,X),
(*) delete_s(Struct(Min)(t), Struct(Mout)(t),X)
 delete_fields(Min,Mout,type,X,)

 We propose to explain our constraint operators by using a simple model based on finite state machines. Figure 6 shows a

generic state machine for constraint.

Our representation gives the possible states of a constraint: once posted, it can be in evaluation, suspended, entailed or in a

failure state. Labels on the arrows describe the events that permit to switch from one state to another. For each operator, we

describe five possible transitions: 1) post event: the operator is posted in the propagation queue ; 2) waking-up event: the

operator is woken up by some additional information on the domain of its variables or on its status ; 3) suspend event: no more

deduction rules can be exploited to prune the variation domains ; 4) exit event: the operator becomes entailed ; 5) fail event:

some inconsistency has been detected which indicates failure of the current constraint system.

Figure 7 shows a C program that illustrate the interest of the deduction rules that we are going to present. In the following, we

will refer to this program implicitly by showing only the abstract state of the memories M0,..,M6.

5.2. The new_s operator

 a= new(t,new(1)) ;
M0
 b= new(t,new(2)) ;
M1
 c= new(t,new(3)) ;
 a-> f =1;
 b-> f =2;
 c->f =3;
 if(cond1){
 p=a;
 }else{
 if(cond2){
 p=b;
 }else{p=c}}
 if(cond3){
M3
 free(p);
M4
 }else{
M5
 p->t=i;
M6
 j=p->t;}
 if(p!=a && b->t=6 && j>2){

Figure 7. program foo

Figure 6. representation of a constraint
operator

The operator new_s(S0,S1,id) is added whenever a structure of type t is dynamically allocated. Figure 8 shows the

model of this operator that establishes a relation between S0, S1 and id. In the model, we suppose that

S0=struct(Min)(t), S1=struct(Mout)(t), where struct(M)(t) denotes the variable associated with t in struct(M), and id is the

identifier of the anonymous dynamic location. The operator is awoken when a location is added to the set of

locations of S0 or S1.

If the operator is awoken, some new deductions can be performed. S0 and S1 should contain the same identifiers,

except for id that is only in S1. Firstly, S1 should contain all the locations that are present in S0 (proposition 1) as

well as the location id (proposition 3). Secondly, all the locations that are in S1, except id, should be in S0

(proposition 2). Moreover, if one abstract memory is closed, the second one should also be closed (proposition 4).

Indeed, as new_s adds only one new location, the closure of Min (resp. Mout) implies the closure of Mout (resp. Min).

Moreover, the operator succeeds as soon as Min is closed (cf exit arrow), while it suspends otherwise.

5.3. The delete_s operator

The operator delete_s(S0,S1,X) is added whenever a structure of type t, pointed by X, is removed from the abstract

memory. Figure 9 illustrates the delete_s operator, which maintains a relation between three parameters:

S0=struct(Min)(t), S1=struct(Mout)(t), and X.

The operator delete_s is woken up either when a location is added to the set of locations S0 or S1, or when the

variation domain of pointer X is modified (for example, learning that X points to only one location). Such a

modification is noted change(X) in our model. The relation maintains the fact that X should be non-null (proposition 1).

As an illustration of the deduction rules, suppose the information on abstract memories linked by a delete_s operator

shown below is available (memories before deduction).

Figure 8. new_s operator

Here, P points definitely to n(1) which is the deleted location. So, it should not appear in M3 (proposition 2.1) and

other locations are not touched (proposition 2.2) and must appear in M3. Moreover, as M2 is closed and the location

to delete is known, M3 is also closed (proposition 5) and the operator succeeds (exit arrow). We obtain the

memories after deduction shown above. If the input memory is closed, then X can only point to a location contained

in the set of addresses of S0 (proposition 4).

If there is no precise information on the pointed location or the available memory, then the operator is suspended.

5.4. The access_s operator

s_@ = {n(1),n(2),n(3) }
closed = true
dom(P)={n(1)}

M2
before

deduction
s_@ = { }
closed = false

M3

s_@ = {n(1),n(2),n(3) }
closed = true
dom(P)={n(1)}

M2
after

deduction
s_@ = {n(2),n(3) }
closed = true

M3

Figure 9. delete_s operator

The operator access_s(S,X,f,Vp) is added when we access to a field of a structure of type t. Figure 10 illustrates this

operator that maintains a relation between four parameters: S=struct(M)(t), X the pointer to the possible locations of

the structure, f the field name and Vp the pointer to the possible locations of the field.

The operator access_s is awoken when we get more information about the values pointed by X or by Vp. X should

not be null (proposition 1). Statement p->t=i; in figure 7 leads to add two constraint operators including

access_s(struct(M4)(t),P,t,Vp). The following draw illustrates the deductions made by this operator. For each location of

the domain of P, the relation maintains that Vp can point to the location associated with the field (proposition 2).

In the following example, Vp can only point to n(2)->t or n(3)->t so P can only point to n(2) or n(3), n(1) is removed

from its domain. (proposition 5).

dom(P) ={n(2),n(3)}
dom(Vp)=...

M4
before

deduction

dom(P) = {n(2),n(3)}
dom(Vp)={n(2)->t,n(3)->t}

M4
after

deduction

Figure 10. access_s operator

Proposition 6 gives complementary information: if the memory M is closed, all the possible locations pointed by X

belong to the set of addresses of S. Indeed all the possible locations for a structure of type t are known and X points

to such a structure.

During the resolution process, if the domain of a variable becomes empty, the constraint resolution process fails.

Indeed, it means that there is no assignment for all the variables of the system such that all the constraints are

satisfied. For the operator access_s, the only domains that can become empty are the domain of X and the domain of

Vp (in this case X or Vp cannot point to any location anymore).

5.5. The store_element operator

The operator store_element(Tab(Min),Tab(Mout),X,V) is added when the statement stores a value in memory at a given

address. Figure 11 illustrates this operator that maintains a relation between X, Tab(Min), Tab(Mout) and V. X is a pointer

to a location that stores an integer or a pointer value, V is the value to store.

 The store_element operator is awoken when 1) a pair <ident,Var> is added in one of the tableaux Tab(Min) and

Tab(Mout) (conditions 1 and 2) ; 2) when the domain of a variable in Tab(Min) or Tab(Mout) changes (condition 3); 3)

when the information about the pointer X changes; 4) when the domain of the value V to store changes.

dom(P) = {n(1),n(2),n(3)}
dom(Vp)= {n(2)->t,n(3)->t}

M4
before

deduction

dom(P) = {n(2),n(3)}
dom(Vp)={n(2)->t,n(3)->t}

M4
after

deduction

X should be non-null (proposition 1). Consider again statement p->t=i; in figure 7 and let Vp be a variable that

points to the possible locations of p->t. The storage of the value of I in the location pointed by Vp is performed within

the relation maintained by the store_element operator.

In the figure below, in the memories before deduction, as domains of n(2)->t before and after the storing

statement are distinct the value of n(2)-> t is changed by the storing statement. It means that the value of I is stored in

n(2)->t. As a consequence, Vp points to n(2)->t (proposition 4.3). dom(n(2)-> t) in M5 and dom(I) should be intersected in

order to find the values of I and n(2)->t in M5 (proposition 4.1). The domain of n(3) -> t remains the same in both

memories (proposition 4.2). We obtain the following memories:

Other deductions associated with the operator include the following rules:

i - I Є inf..sup
n(2)->t - 2
n(3)->t - 3
dom(Vp) =
 {n(2)->t,n(3)->t}

M4

before

deduction

i - I Є inf..sup
n(2)->t - 6
n(3)->t - …
dom(Vp) =
 {n(2)->t,n(3)->t}

M5

Tabi Tabi

 i - 6
n(2)->t - 2
n(3)->t - 3
dom(Vp) =
 {n(2)->t}

M4

after

deduction

i - 6
n(2)->t - 6
n(3)->t - 3
dom(Vp) =
 {n(2)->t}

M5

Tabi Tabi

Figure 11. store_element operator

- Any couple <loc,Var> existing in one of the two memories should also appear in the other memory (propositions 2

and 3);

- For all the pairs (<loc,V0>,<loc,V1>) in Tab(Min) x Tab(Mout):

� If dom(V)∩dom(V1)≠Ø, the variable V cannot be stored at the location loc, so X ≠ loc (proposition 4.4)

� In other cases, we can deduce that dom(V1) is included in dom(V0) U dom(V) (proposition 4.5)

The solving process fails if the domain of X, or the domain of an abstract variable stored in Min or Mout, or the domain

of V becomes empty.

After constraint propagation, store_element succeeds if Min is closed and the value pointed by X is known. Indeed,

in this case all the information that permits to deduce the contents of Tab(Min) and Tab(Mout) is available.

5.6. The load_element operator

The operator load_element(Tab(M),X,V) is added when the program loads an integer or pointer value from the

memory at a given address. Loading a value does not modify the memory so it constraints only a single memory.

Figure 12 illustrates the operator that maintains a relation between X, V and M, where pointer X points to a variable V

in the corresponding tableau of M.

Proposition 2 expresses that for all the pairs <loc,Var> in Tab(M):

• If X points to loc, the variable V is loaded from the location loc and V=Var. The domain of V and Var is then

dom(V)∩dom(Var).

Figure 12. load_element operator

• If dom(V)∩dom(Var)≠Ø, the variable V cannot be loaded from the loc location and then X≠ loc.

The solving process fails if the domain of X or V becomes empty, while it succeeds if there is a pair <loc,Var> in

Tab(M) such that X=loc and V=Var.

6. Experimental results on the Josephus program

We implemented the operators that are described above. Our system is able to take a program written in a

restricted syntax of the C language and generates automatically test data w.r.t. some testing objectives. The system is

developed in C and Prolog and follows the principles of the previous implementation INKA.

As an illustration of the efficiency of our operators, we generated test data for the Josephus program in figure 1.

We considered several testing objectives. Among them, we generated a test suite that covers all the branches of the

program in less than 1 msec of CPU time. The results were computed on an Intel Pentium, 2.16 GHz machine

running Windows XP with 2.0 GB of RAM. To cover this objective, INKA first tries to find a test case to reach the

deepest instructions of the control flow graph. In the case of the Josephus, it means that it tries to enroll the loop

while3 at least once. The test suite generated contains {(3,2)} as values for m and n. The output memory shape

obtained with our model is in accordance with the one obtained by executing the program, which shows that the

operators faithfully model dynamic memory management.

We also dealt with more complex requests as the one or reaching four iterations of while3 in the first iteration of

while2. It is worth noticing that reaching this testing objective is hard, as witnessed by the fact that a random test

data generator will probably never achieve to reach it. In fact, the likelyhood of drawing a test data (values for n and

m) such that this objective would be covered is not far from zero, as there is only a single value for m able to satisfy

it. Thanks to our constraint reasonning on operators, we obtained the test case m=5, n=2 in 109 msec. If we take into

account the wide domain for m and n as input values, the probability to reach this objective with random test case

generation is low.

Regarding the objective of unrolling k times the loop while2, which is the objective described in introduction of

this paper, we obtained the results shown in the curve on figure 13. The test cases obtained are of the form m=0,

n=k+1. When k is less than 15, the generation of a test case to reach the objective takes less than 5 sec. We claim

that these results are promising because they confirm the high deductive potential of our approach. Nevertheless, as

shown in the curve, runtime increases exponentially with the value of k. Indeed, the number of operators to handle

dynamic memory management in the constraint system increases with k. So the number of constraint waking up,

costly in time, increases with the number of operators.

0

5

10

15

20

25

1 5 9 13 17 21

k

ti
m

e
(i

n
 s

ec
)

7. Related Works

 Dynamic test data generation exploits program executions to find test data that satisfy a testing objective [20]. In

this process, program executions guide the search towards the next test data by optimizing a cost function called the

branch function. As the search is only based on concrete executions, this process handles dynamic data structures.

Visvanathan and Gupta studied in [21] the problem of generating test data for functions with pointer inputs. They

proposed to enumerate the possible data structures shapes by exploiting an address table symbolically computed

during the execution of a program path. Sai-ngern et al. [22] followed a similar path by managing the table with a

dynamic linear array. Unlike these approaches, our method is symbolic and it does not depend on execution trials.

Symbolic test data generation is usually considered as more powerful to deduct information and our operators that

model dynamic memory management are equipped with deduction rules in order to prune early the search space of

possible about data structures shapes.

Williams et al. [9] and Sen et al. [11] address the problem of generating test data for C functions with dynamic

structures by using symbolic execution and constraint solving techniques. In their approaches, constraints on input

values permit to handle pointer relationships and aliasing problems occur only within input data structures. In our

approach, we have proposed dynamic memory management operators able also to deal with pointer aliasing

problems that are located in the source code. PathCrawler [9] and CUTE [11] are two test data generators trying to

cover all the feasible paths of C programs. Both systems try to solve path conditions in order to find the next test

data that will follow a path that improve the current coverage of the program. These tools are path-oriented, meaning

that they require a path to be selected first. Unlike path-oriented and among other advantages, goal-oriented methods

Figure 13. runtime for the generation of a test case reaching k iterations of
while2 in the Josephus program

such as the one presented in this paper, exploit the early detection of non-feasible paths to prune the search space

made up of all the paths that reach a given branch. Considering all paths that reach a given branch is usually

unreasonable as the number of control flow paths can be exponential on the number of decisions of the program or

even infinite when loops are unbounded. Moreover, thanks to the constraint reasoning on operators, our

implementation permits to express more complex testing objectives such as reaching a selected point at certain

iterations of a while loop. This is particularly interesting for programs that build dynamic data structures as such

requests help verifying their shapes during testing. However, one disadvantage of our approach is that it requires the

constraint solver to be adapted and modified which prevents the usage of some commercial solvers that are

sometimes more efficient.

 8. Conclusion and perspectives

In this paper, we presented a new constraint-based model that handles dynamically allocated data structures in

goal-oriented test data generation. Our model is built over specific constraint operators that are equipped with

powerful deduction rules. These operators handle dynamic memory allocation, deallocation, loading and update of

pointed structures. We implemented these operators within INKA a test data generator for programs written in a

restricted subset of C. This implementation was challenging because it required building a new constraint solver

over pointer and memory variables. However, our implementation still suffers from some restrictions. It is based on

a memory model that does not include physical information about variables. For example, size of data types and bit

vectors are not considered in the model and then, data structures such as unions or bit fields and physical type

casting cannot be handled. Function pointers have also been left apart for the moment. Our goal-oriented approach is

based on testing objectives that specify statements or branches in structured programs only and then goto statements

are not currently handled. For all these reasons, we consider that the subset of the C language currently handled by

our tool is too tight to be practically useful on real-world programs. But before evaluating our model on larger

programs, we wanted to be sure that the approach was suitable and efficient on small but complex programs. Thanks

to our constraint model, we successfully generated test data that cover complex testing objectives for the C program

Josephus, which involves the creation and destruction of circular linked lists.

Our future work will be dedicated to extend this approach to inter-procedural test data generation and to a larger

subset of the C language. Dealing with function calls and dynamic memory allocation requires paying attention on

how constraint systems are built as the number of constraints can grow exponentially with the number of function

calls. Hence, just inlining function calls will not be an acceptable solution and we would probably need some kind of

abstractions. Dealing with unstructured code will also be a real challeng as our approach builds over constraint

operators that model control structures (conditionals, loops) and goto statement usually break the flow. In fact,

modelling exactly the semantics of such constructions is difficult and our line of work will be focussed on the

possible combination of constraints and abstractions to approximate the behaviours of these statements in constraint-

based automatic test data generation.

9. References

[1] DeMillo, R. A. and Offutt, A. J. 1991. “Constraint-Based Automatic Test Data Generation”. IEEE Trans. Softw. Eng. 17, 9

(Sep. 1991), 900-910.

[2] Jeremy Dick and Alain Faivre “Automating the Generation and Sequencing of Test Cases from Model-Based Specifications”

Proc. Of Formal Methods Europe (FME 1993), pages 268-284

[3] Bruno Marre, “Toward Automatic Test Data Set Selection Using Algebraic Specifications and Logic Programming” in Proc.

of the Int. Conf. on Logic Programming (ICLP 1991), pages 202-219

[4] Gotlieb, A. , Botella, B. and Rueher, M., “Automatic Test Data Generation Using Constraint Solving Techniques”, in Proc.

Of the Int. Symposium on Software Testing and Analysis (ISSTA 1998), Clearwater Beach, FL, USA, 1998

[5] Gotlieb, A. and Denmat, T. and Botella, B., “Goal-oriented test data generation for programs with pointer variables”, in

Proc. of the 29th IEEE Annual International Computer Software and Applications Conference (COMPSAC 2005), Edinburh,

Scotland, 2005, pp. 449-454

[6] Botella, B. and Gotlieb, A. and Michel, C., “Symbolic execution of floating-point computations”, The Software Testing,

Verification and Reliability journal 16 (2), John Wiley, 2006, pp 97-121

[7] Gotlieb, A. and Botella, B. and Watel, M., “Inka: Ten years after the first ideas”, in Proc. of the 19th International

Conference on Software and Systems Engineering and their Applications (ICSSEA 2006), Paris, France, 2006

[8] Meudec, C., “ATGen: automatic test data generation using constraint logic programming and symbolic execution”, The

Software Testing, Verification and Reliability journal 11 (2), John Wiley, 2001

[9] Williams, N., Marre, B., Mouy P. and Roger, M. “PathCrawler: Automatic Generation of Path Tests by Combining Static

and Dynamic Analysis” In Proc. of the 5th European Dependable Computing Conference (EDCC 2005), Budapest, Hungary,

LNCS Vol. 3463/2005, Springer-Verlag, 2005, pp 281-292

[10] Godefroid, P., Klarlund, N., and Sen, K. 2005. “DART: directed automated random testing”. In Proceedings of the 2005

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2005), Chicago, IL. pp 213-223

[11] Koushik Sen and Darko Marinov and Gul Agha, “CUTE: a concolic unit testing engine for C”, In Proc. of the 10th

European software engineering conference held jointly with 13th ACM SIGSOFT international symposium on Foundations of

software engineering (ESEC/FSE-13), ACM Press, Lisbon, Portugal, 2005,pp.263-272

[12] D. Lewin and L. Fournier and M. Levinger and E. Roytman and G. Shurek, “Constraint Satisfaction for Test Program

Generation”, in Proc. Of the IEEE International Phoenix Conference on Communication and Computers, (IPCCC 1995)

Phoenix, 1995

[13] Bin, E. and Emek, R. and Shurek, G. and Ziv, A., “Using a constraint satisfaction formulation and solution techniques for

random test program generation”, IBM Systems Journal 41 (3), 2002

[14] Daniel Jackson and Mandana Vaziri, “Finding bugs with a constraint solver”, In Proc. of the ACM SIGSOFT Iinternational

Symposium on Software Testing and Analysis (ISSTA 2000), pp. 14-25, Portland, Oregon, United States, 2000

[15] C. Pasareanu, M. Dwyer and W. Visser, “Finding Feasible Abstract Counter-Examples”, STTT Journal, 5, (1),2003

[16] Collavizza, H. and Rueher, M., “Exploration of the Capabilities of Constraint Programming for Software Verification”, In

Proc. of the Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'06), Vienna, Austria, 2006

[17] Ferguson, R. and Korel, B. 1996. The chaining approach for software test data generation. ACM Transactions On Software

Eng. And Methodology. 5, 1 (Jan. 1996), 63-86

[18] Sedgewick, R. “Algorithms in C”, Addison-Westley publishing company, 1988

[19] Utting, M. and Legeard, B. “Practical Model-Based Testing: A Tools Approach” Morgan Kaufmann, 2007

[20] Korel, B. "Automated Software Test Data Generation," IEEE Transactions on Software Engineering ,vol. 16, no. 8, pp. 870-

879, August, 1990.

[21] Visvanathan, S., Gupta, N. "Generating Test Data for Functions with Pointer Inputs," in Proc. Of the 17
th
 IEEE

Automated Software Engineering Conference (ASE’2002), pp. 149-160, 2002.

[22] Sai-ngern, S. and Lursinap, C. and Sophatsathit, P., “An address mapping approach for test data generation of dynamic

linked structures”, Information and Software Technology (47), 2005,pp. 199-214

Chapter 6

Modélisation à contraintes des
constructions orientées-objet

L’article de ce chapitre présente une méthode et un outil de génération automa-
tique de données de test pour les programmes en Bytecode Java, qui s’appuie sur
le modèle–mémoire donné dans [Charreteur 09] au chapitre précédent. Bien que
bénéficiant de l’expertise de nos collègues de l’équipe-projet INRIA Lande puis
Celtique, plusieurs difficultés techniques sont apparues lorsque nous avons voulu
étendre notre approche à base de contraintes au cas des constructions orientées-
objet pour le Byecode Java. Tout d’abord le traitement du flot déstructuré, c’est
à dire l’absence de construction syntaxique de haut-niveau pour représenter les
boucles, a nécessité le développement d’heuristiques de parcours de l’arbre d’exécution
du programme. Ensuite, la modélisation de l’héritage dans un modèle à contrain-
tes dérivé de l’analyse du Bytecode, a nécessité d’adapter les structures de don-
nées que nous avions développées pour le langage C. Il est à noter toutefois que
ce point est moins dur à résoudre dans le cas du Bytecode Java que dans le cas
de code binaire exécutable pour lequel les types sont absents et qui contient des
instructions de saut dynamique1 [Bardin 08]. Enfin, le polymorphisme par invoca-
tion de méthodes virtuelles est un problème ardu car il nécessite la mise au point
d’un mécanisme capable de résoudre dynamiquement l’invocation de méthode,
c’est à dire lors de la résolution du système de contraintes. Nous avons développé
un tel mécanisme en nous appuyant sur des variables de type et des contraintes
spécifiques sur les types.

1“Dynamic jumps”

105

F. Charreteur and A. Gotlieb. Constraint-based test input
generation for java bytecode. In Proc. of the 21st IEEE Int.
Symp. on Softw. Reliability Engineering (ISSRE’10),
San Jose, CA, USA, Nov. 2010.

Constraint-based test input generation for java bytecode

Florence Charreteur
Universit de Rennes 1

Rennes, France
Florence.Charreteur@irisa.fr

Arnaud Gotlieb
INRIA Rennes Bretagne Atlantique

Rennes, France
Arnaud.Gotlieb@irisa.fr

Abstract—In this paper, we introduce a constraint-based reasoning
approach to automatically generate test input for Java bytecode
programs. Our goal-oriented method aims at building an input state
of the Java Virtual Machine (JVM) that can drive program execution
towards a given location within the bytecode. An innovative aspect of
the method is the definition of a constraint model for each bytecode that
allows backward exploration of the bytecode program, and permits to
solve complex constraints over the memory shape (e.g., p == p.next
enforces the creation of a cyclic data structure referenced by p).
We implemented this constraint-based approach in a prototype tool
called JAUT, that can generate input states for programs written in
a subset of JVM including integers and references, dynamic-allocated
structures, objects inheritance and polymorphism by virtual method
call, conditional and backward jumps. Experimental results show
that JAUT generate test input for executing locations not reached by
other state-of-the-art code-based test input generators such as jCUTE,
JTEST and Pex.

I. INTRODUCTION

As integrated within current development environments, auto-
matic test input generation is a promising approach for reducing
the cost of software unit testing. In particular, having an approach
able to generate and check 100% code coverage of a unit under
test is highly desirable for increasing our confidence in the program
correctness. However, current realistic solutions for this problem do
not achieve complete coverage of usual structural criteria such as
all statements or all branches. In fact, modern automatic test input
generators adequately sacrifice completeness for efficiency. They
are able to generate test inputs for programs containing hundreds
of thousands lines of code in a couple of minutes but they fail
to generate complete statement coverage on simple Java methods
that contain cyclic data structures, multi-level dereference aliasing
problems, inter-dependent loop statements or non-linear decisions.

Although the underlying reachability problem is undecidable in
the general case, it seems that there is room for code-based test
input generators applying more costly methods and having the
goal of completeness. Constraint-based testing, as introduced by
Offutt in 1991 [1], combined symbolic execution and dynamic
constraint solving [2] to generate test inputs able to execute specific
paths in the code. It was then adapted for C programs and refined
with standard constraint programming techniques to target specific
locations in the code regardless of the particular path executed
[3], [4]. Constraint-based testing was extended to the exhaustive
generation of structured inputs for Java programs [5], [6] and
the constraint solving of structurally complex constraints [7]. An
important work in the area is also the symbolic execution approach
of Java PathFinder [8] where “lazy initialization” was proposed [9].

Recent code-based test input generators such as DART [10],
PathCrawler [11], CUTE and jCUTE [12], [13] or Pex [14] are

based on dynamic symbolic execution. They dynamically select a
feasible path by picking up a test input and by observing which
instructions are executed ; then, they report path conditions by
symbolically evaluating the instructions along the path. Finally, by
negating the last decision of path conditions and submitting the
corresponding system to a constraint or an SMT1 solver, they try
to infer another test input covering a distinct path. When such a
test input is found, path coverage of the program is necessarily
increased. Whenever path conditions are unsatisfiable, the process
backtracks and selects another path to execute. Dynamic symbolic
execution performs forward exploration as it visits the paths from
the entry to the exit and this works fine for quickly exploring a few
paths. However, when the goal is to complement an existing test
set in order to increase code or branch coverage, this approach
is less adapted as forward exploration can be trapped in large
subspaces of the path search space. In this paper, we introduce a
new constraint-based approach to generate automatically test inputs
for Java bytecode programs. Our approach generates a test input
under the form of a concrete state of a JVM memory, that can drive
the program execution towards a selected bytecode instruction. In
the context of unit testing, our approach is made to improve the
statements coverage of each method under test thanks to a context-
free test case generation. This paper contains two contributions:

1) unlike other approaches [10], [12], [11], [15], [14], our
framework explores program paths from the target location
towards the program entry point. Backward exploration at the
bytecode level is not trivial as it requires the development of
a kind of inverse reasoning on each bytecode instruction, that
is neither available in the SUN’s JVM specifications nor in
the literature. For that, we developed constraint reasoning on
partial abstract memory states. For backward exploration, we
also developed a depth-first strategy which takes advantage
of early detection of infeasible parts of paths to prune the
search space of feasible paths ;

2) a new constraint-based model of the JVM is defined with the
notion of constrained memory variable. This notion captures
abstract memory states and permits to implement deductive
rules for a meaningful subset of Java bytecode, including
those dealing with objects, inheritance, polymorphism and
dynamic memory management. In this model, each byte-
code expresses a relation between two constrained memory
variables, which contain unknown or only partially known
variables associated to registers, operands stack or heap.
Using constraint propagation and an existing finite domain
constraint solver, this model allows decisions that involve

1Satisfiability Modulo Theories.

cyclic data structures and reference aliasing problems such
as if(p == p.next) to be effectively solved.

We implemented our approach in a tool called JAUT (Java
Automatic Unit Testing) that can generate input memory states
for reaching specific locations within Java bytecode programs. Ex-
perimental results on small-sized benchmark programs, including
the TreeMap Java library of red-black trees, show that JAUT2

can complement an existing test set with test inputs for locations
not covered by other code-based test input generators such as
jCUTE[12], [13], JTEST[16] and Pex[14].

The rest of the paper is organized as follows: section 2 introduces
our method on a simple example, section 3 presents the memory
model we defined to generate test inputs for the JVM, section 4
explains constraint generation and constraint solving for a few
bytecodes, section 5 presents the test input generation process
which performs backward search across Java bytecode programs,
section 6 is dedicated to our experimental validation and discussion
of related work, while section 7 concludes and draws perspectives
to this work.

II. DETAILED EXAMPLE

class Coord {
int x,y;
Coord(int cx, int cy){ x = cx; y = cy; }

public Coord moveY(Chrono chrono,int speed) {
if(chrono.time <= 0 || speed <= 0)

return this;
int ytemp = y + chrono.time * speed;
chrono.time = 0;
if(ytemp > 65536)
{return new Coord(x,65536);} //instruction i

else return new Coord(x,ytemp); }

class Chrono {
int time;
...}

Figure 1. Example in Java source code

Consider the Java program of Fig.1 that implements the class
Coord standing for the Cartesian coordinates in a 2D-space. We
selected this simple example just to illustrate the memory model
of our constraint-based test input generation approach. Let our
test objective be the generation of an input JVM state for method
moveY that reaches the bytecode corresponding to the instruction
i in the source code. Note that we do not pay attention to how the
methods of class Coord can build such an input state that may be
“invalid” if it cannot be reached from other method calls. Object-
oriented languages offer ways to directly manipulate the object
receiver state without using constructors and accessors (e.g., using
Java reflection with setAccessible or bytecode translation)
and nothing can guarantee, without additional information, that
a given method will not be called from an ”invalid input state”.
Hence testing a program with states that may be invalid is equally
important.

The bytecode program shown in Fig.2 corresponds to method
moveY where bytecode 51 corresponds to the selected test objec-
tive.

2JAUT and all our experiments are freely accessible at
http://www.irisa.fr/lande/gotlieb/resources/jaut.html .

public Coord moveY(Chrono, int);
Code: Stack=4, Locals=4, Args size=3
0: aload_1 //push the ref. from the register 1 on the stack
1: getfield #4//update the top of the stack Chrono.time
4: ifle 11 //if the top of stack ≤ 0, jump to 11
7: iload_2 //push the integer in the register 2 on the stack
8: ifgt 13 //if the top of the stack ¿ 0, jump to 13
11: aload_0
12: areturn //return the top of stack
13: aload_0
14: getfield #3//update the top of the stack with the field y
17: aload_1
18: getfield #4//update the top of the stack with Chrono.time
21: iload_2
22: imul //update the top of the stack with the product

of the two elements on the top of the stack
23: iadd
24: istore_3 //store the top of the stack in the register 3
25: aload_1
26: iconst_0 //push the constant 0 on the stack
27: putfield #4//update the field Chrono.time
30: aload_3
31: ldc #5 //push the integer constant 65536 on the stack
33: if_icmple 52//if the second element of the stack is less or

equal to the top, jump to 52
36: ldc #5
38: istore_3
39: new #6 //allocate dynamic. mem. for a Coord object
42: dup //duplicate the top of stack
43: iload_3
44: aload_0
45: getfield #2//update the top of the stack with the attr. x
48: invokespecial #7 //invoke the constructor Coord(int,int)
51: areturn //return the top of stack
...

Figure 2. Example in Bytecodes

Our memory model is based on the notion of constrained
memory variables (CMV) which capture JVM states. It contains
abstract information on the registers, the operand stack and the
heap of the JVM, which can be used to fill in a test script for the
method under test.

Our prototype tool JAUT manipulates CMVs and can output, at
any moment of the constraint solving process, an excerpt of the
CMV associated to moveY input JVM state:

lin: this -<[Coord], dom=[0] ndom=[]>,
chrono-<[Chrono], dom=all ndom=[]>,
speed -< intFD, [-268435456..268435455]>,

hin:
0::([Coord],[x-<intFD,[-268435456..268435455]>,

y-<intFD,[-268435456..268435455]>])

Before launching the constraint solving process, the CMV con-
taining the input parameters lin and the heap hin is automatically
generated. lin contains two references (this and chrono)
and an integer (speed). The object referenced by this has
already been created on the heap (noted 0::), as invoking method
moveY requires a Coord object being created. this refers to
this object as its domain contains a single address (dom=[0]).
On the contrary, chrono does not reference any object for the
moment as it can still be null or points to any object of the
heap (dom=all). ndom denotes a set of impossible adresses for
a heap reference. Note that references (0, 1 and so on) do not
reflect any physical counterpart, as our model is abstract and
not designed for bytecode execution. Integer variables such as
speed, this.x and this.y, that are 32-bits integers in the

Java bytecode program, currently have type intFD, with domain3

[−268435456..268435455].
The constraint generation and solving process of our test input

generation method aims at refining this input CMV for method
moveY by finding values for each variable. We illustrate this
process below by showing how this input CMV is successively
refined to satisfy the test objective.

Our constraint solving examines each bytecode one by one in
a backward fashion. On this program, there is no choice point
on the backward exploration as there is only a single path going
towards the program entry point. Constraint solving operates with
two interleaved processes: constraint propagation which uses each
constraint to prune the domain of CMV of their inconstistent values
and labeling, which enumerates the possible values of CMV and
launches constraint propagation until no more deduction is possible.
Those processes are not new and form the basis of finite domain
constraint solving [17]. Let us just recall that all the constraints are
added to a constraint propagation queue that iteratively manages
each constraint one by one, and each constraint is used to prune the
variation domain of its variables. At a given step of the constraint
solving process, the following input CMV is produced:

lin: this -<[Coord], dom=[0] ndom=[]>,
chrono-<[Chrono], dom=all ndom=[null,0]>,
speed -< intFD, [1..268435455]>,

hin:
0::([Coord],[x-<intFD,[-268435456..268435455]>,

y-<intFD,[-268435456..268435455]>])

The ndom set of reference chrono has increased to [null,
0], meaning that chrono can neither be null nor points to the
object pointed by this. These deductions come from the fact that
1) reaching location 51 in the bytecode program requires a non-
null value for chrono as it is dereferenced several times and 2)
chrono has to point to a Chrono object and not a Coord object.
The domain of speed has been pruned during initial constraint
propagation as constraint speed > 0 was considered.

Next steps include the creation of object Chrono and the start
of the labeling process for producing a completely instantiated
CMV, suitable for test script generation. Suppose that the labeling
process has instantiated speed to 363 and this.y to 5206 using
a random labeling heuristic, then we get the following refined input
CMV:

lin: this -<[Coord], dom=[0] ndom=[]>,
chrono-<[Chrono], dom=[1] ndom=[]>,
speed -< intFD, [363]>,

hin:
0::([Coord],[x-<intFD,[-268435456..268435455]>,

y-<intFD,[5206]>]),
1::([Chrono],[time-<intFD,[167..739477]>])

An object of class Chrono has been created and is referenced
by chrono which has now value 1. Accordingly, the domain of
chrono.time has been pruned to [167..739477] as the arithmetic
constraints ytemp = this.y + chrono.time ∗ speed, ytemp >
65536 were considered by the underlying finite domain constraint
solver.

However, the input CMV has still uninstantiated variables such
as this.x and chrono.time. Therefore, the labeling process

3There is a current 28-bits limitation for integers in our implementation,
due to the use of the SICStus prolog clpfd library, but this is not a
restriction of the model.

enumerates values for these variables.
So, we get:

lin: this -<[Coord], dom=[0] ndom=[]>,
chrono-<[Chrono], dom=[1] ndom=[]>,
speed -< intFD, [363]> ,

hin:
0::([Coord], [x-<intFD,[254]>,y-<intFD,[5206]>]),
1::([Chrono],[time-<intFD,[167]>])

This CMV characterizes an input JVM state that satisfies the test
objective of reaching bytecode numbered 51 in method moveY.
Submitting a test script derived from this state shows that the fault
on the converted parameters of new Coord(ytemp, x) can be
detected.

III. MEMORY MODEL

Java virtual machine states represent runtime data storage lo-
cations such as registers4, operand stacks and heap data. This
section details the representation of data types and data storage
locations in our memory model. Note that our framework han-
dles a meaningful subset of Java bytecodes, including integers
and references, dynamic allocation and heap-allocated structures,
objects inheritance and polymorphism, static and dynamic method
invocations, conditional jumps and backward jumps. Arrays ac-
cesses and updates are only partially supported and floating-point
computations, exceptions, native methods and multithreading are
currently left apart.

A. Constraint memory variable

In our memory model, constrained memory variables (CMV)
are used to represent JVM states. A CMV contains data storage
locations where data can be represented by variables along with a
domain. Formally, a CMV M is a tuple (F, S,H) where F denotes
the set of registers, S denotes the operand stack and H denotes the
heap. Note that several distinct CMV M can be created at the same
instruction number when loops are present in the bytecode. Each
Java bytecode will then be seen as a relation among two CMVs: the
CMV Mj before activation of bytecode and the CMV Mk after its
activation and before the activation of the following bytecode in the
considered sequance of instructions. The tuple (F, S,H) contains
variables and domains that are described in the rest of the section.

B. Integer and reference variables

Finite domain variables model integer and reference variables
of the program. Their default variation domain depends on the
size of their precise type. For instance, the domain −231..231 − 1
is associated to an int variable. Other integer types are treated
accordingly. The default domain of a reference is the all symbolic
value. This means that the reference can point to every object of the
heap. When the solving process prunes the domain of the reference
variable, then the domain is composed of a set of integer values,
which represent all the heap addresses the reference can point to.
Note that the null value can also be part of the domain.

4a.k.a. local variables in the SUN JVM specifications.

C. Objects

Each object of the heap is modeled by a pair of elements. The
first one, called type variable, represents the class of the object, the
domain of which is a set of possible classes. This allows to properly
handle inheritance and polymorphism. The second element is a
mapping associating an integer or a reference variable to each
attribute, which corresponds to the value of the attribute. Note that
when the domain of the type variable contains more than one class,
all the possible attributes have to be in the mapping.

For example, if a program defines two classes A and B where B
inherits from A, and A defines attribute t1 and B defines attribute
t2, then

([A,B],[t1-<intFD,[2..5]>,t2-<intFD,[15..17]>])

represents an object of class either A or B, with attribute t1
necessarily in 2..5. If the object happens to be of class B during
the solving process, then its t2 attribute will belong to 15..17.

D. Registers and operand stack

In a JVM state, registers are used to store the parameters and
the local variables of a method. When the method is dynamic
(as opposed to static methods), the first register contains the
reference to the object (this) that calls the method. The operand
stack is used to perform the calculations of the method. In a
CMV, we use two sequences of variables to represent registers and
operand stack. As registers are numbered, the first sequence is a
convenient way of implementing an indexed array. On the contrary,
the sequence used for representing operand stack is accessed with
stack operations. Its first element is considered as its top.

E. Heap

In a CMV, the JVM’s heap corresponds to a mapping from a set
of addresses to a set of objects, possibly stored at these addresses.
We associated a unique integer to each address without taking into
consideration the actual physical addresses in the JVM. The domain
of a variable H that models the heap is composed of a set of
pairs, representing the mapping, and a status. 1) The set of pairs
(address,object), denoted by CH , contains the objects necessarily
present in the heap. During the solving process, new pairs can
be added to CH when a dynamic memory allocation bytecode is
encountered (i.e., new). As our model does not model garbage
collection, CH can only be enriched, reducing the possible states
of the heap. 2) The status is either closed or unclosed. A closed
status of the heap denotes a set of addresses entirely known, even if
some objects can still be unknown or only partially known through
their domain. On the contrary, an unclosed status denotes states
where memory allocation can still enrich the CMV. During the
constraint solving process, status can only move from unclosed to
closed. This notion is introduced to tackle cases where the input
memory shape is unknown and we will have to explore the input
space during labelling to find it.

IV. CONSTRAINT GENERATION AND SOLVING

In our framework, constraint generation and solving are per-
formed altogether. This has similarities with the on-the-fly gener-
ation of paths of [11] and [14] where path conditions are incre-
mentally tested for satisfiability. We first detail the specification
of test objective (Sec. IV-A), and then we present the constraint

generation and solving process (Sec. IV-B). We illustrate the
constraint generation on an example (Sec. IV-C) and we explain the
deduction capabilities of the constraints we have defined to model
dynamic memory management (Sec. IV-D).

A. Test objective

Test input generation aims at finding an input CMV that satisfies
a given test objective in a Java bytecode method. In our framework,
test objectives are specified with the bytecode instruction number
that corresponds to a bytecode program location. In general, for
a given test objective, there are many feasible or infeasible paths
that can reach the target locations. Our goal is just to find one
input CMV that will drive the computation towards the selected
location, whatever is the feasible path executed. Note that such
a test objective potentially specifies an infinite set of dynamic
locations when the bytecode instruction number is located within
loops.

B. Constraint generation from the bytecode

Initially, the input CMV of the method is an unconstrained
variable and the constraint generation process will accumulate and
solve the constraints, for the current selected path, from the test
objective to the program entry point. These constraints capture the
pah condition that must be satisfied to follow the current selected
path and are used to prune the possible values of the input CMV.
Each bytecode can potentially constrain the input CMV variable
or intermediate CMV variables, throughout its behavior on the
registers, operand stack or heap variables. Based on the semantics
of each bytecode as defined in the SUN’s specification, we build
constraints that implement deductive rules on the CMVs.

Arithmetic bytecodes such as iadd, ladd, isub,
imul, idiv, irem, ineg,... and comparison bytecodes
if_icmp, if_acmp, lcmp, ..., act directly on logical
variables associated with integers or references, and the elements
of the operand stack. They generate arithmetical constraints on
the finite domain constraint solver, depending on the type of
the operands and the operator. For example, iadd generates a
relation V temp = V a+V b over two CMVs M1 and M2, where
V temp is a fresh finite domain variable associated to the top of
the operand stack of M2, while V a and V b are the two finite
domain variable associated with the integers on the top of the stack
of M1. Other arithmetic bytecodes generate similar constraints
according to the considered integer type (int or long) and
operator. Comparison bytecodes are handled in a similar way by
considering the arithmetic constraint extracted from the condition
or from the negation of the condition. This will be made clearer
in section V.

Bytecodes for simple constant pool accesses (ldc, bipush,
...) or register accesses iload, aload, iload_<n>,
aload_<n>, ... or register updates istore, astore,
istore_<n>, astore_<n>, ..., generate equality con-
straints between the top of the operand stack and registers, de-
pending on the type of the register variable. Equality on reference
variables (when aload or astore is considered) generates a
finite domain equality, as well.

To deal with bytecodes for dynamic memory management
new, newarray, ... and accesses and updates of object
fields getfield, putfield, ..., special constraints

have to be built. Indeed, these operations maintain complex
relations between the CMVs. They can constrain the shapes of
heap-allocated data structures and the contents of registers and
operand stack. We detail the relations we built for only three
of them, as the other can easily be deduced from these ones:
new(class,H0,H1, A) maintains the relation between H0 the
heap of the CMV before execution and H1 the CMV after
execution, and A a fresh address for the newly created object of
type class. The relation says that H1 is the updated heap H0
where reference A points to a newly allocated object.
getfield(A, Id,H,V al) maintains the relation between the
heap H , from which an access to an attribute Id of the object
designated by reference A is performed and V al a finite domain
variable. When reference A has for domain a set of possible
references, special deductions can be performed on the possible
values for V al. Conversely, using the possible values of V al,
special deductions on reference A can be performed. In addition,
information on the domains of variables in H allows for deductions
on the domains of A and V al. This permits the implementation
of powerful forward and backward constraint reasoning.
putfield(A, Id, V al,H0,H1) is more complex as it maintains a
relation between H0 and H1 the heaps of both CMVs, reference
A and V al. H1 is similar to H0 except for object referenced by
A where the field Id has been modified to value V al. Possible
deductions with this relation are illustrated below.
Bytecodes for arrays manipulation baload, iaload,
iastore, ... and method invocations invokespecial,
invokevirtual, invokestatic are taken into account but
they are not described here as we considered they were outside
the scope of the paper.

C. Example

From the moveY method of Fig.2 and the test objective which
consists to reach bytecode numbered 51, we get the following
constraint system (omitting some details about the calls to con-
structors). For this example, Mi denotes the memory state before
the bytecode instruction number i.

{ F1 = This.Chrono.Speed.Y temp, This �= null
M51 = (F1, S1, H1),
M48 = (F1, X.Y.A1.S1,H2),

invokespecial(Coord, init, [A1, Y,X], H2, H1),
M45 = (F1, A2.Y.A1.S1,H2), A2 �= null, getfield(A2, x,H2, X)
M44 = (F1, Y.A1.S1,H2), A2 = this,
M43 = (F1, A1.S1, H2), Y = Y temp,
M42 = (F1, A1.S2, H2), S1 = A1.S2,
M39 = (F1, S2, H3), A �= null, new(Coord,H3, H2, A1),
M38 = (F2, Y temp.S2, H3), F2 = This.Chrono.Speed.Y temp2,
M36 = (F2, S2, H3), Y temp = 65536,
M33 = (F2, V al1.V al2.S2, H3), V al2 > V al1,
M31 = (F2, V al2.S2, H3), V al1 = 65636,
M30 = (F2, S2, H3), V al2 = Y temp2,
M27 = (F2, V al3.A3.S2, H4), A3 �= null,

putfield(A3, time, V al3, H4, H3),
M26 = (F2, A3.S2, H4), V al3 = 0,
M25 = (F2, S2, H4), A3 = Chrono,
M24 = (F3, Y temp2.S2, H4), F3 = This.Chrono.Speed.Y temp3,
M23 = (F3, V al4.V al5.S2, H4), Y temp2 = V al4 + V al5,
M22 = (F3, V al6.V al7.V al5.S2, H4), V al4 = V al6 ∗ V al7,
M21 = (F3, V al7.V al5.S2, H4), V al6 = Speed,
M18 = (F3, A4.V al5.S2, H4), A4 �= null, getfield(A4, time,H4, V al7),
M17 = (F3, V al5.S2, H4), A4 = Chrono,
M14 = (F3, A5.S2, H4), A5 �= null, getfield(A5, y,H4, V al5),
M13 = (F3, S2, H4), A5 = This,
M8 = (F3, V al8.S2, H4), V al8 > 0,
M7 = (F3, S2, H4), V al8 = Speed,

M4 = (F3, V al9.S2, H4), V al9 > 0,
M1 = (F3, A6.S2, H4), A6 �= null, getfield(A6, time,H4, V al9),
M0 = (F3, S2, H4), A6 = Chrono, S2 = ε}

ε is the empty sequence, while v.s denotes the stack s where
v is pushed. The elements of the sequence F2 represent the
parameters and the local variables at the bytecode instruction 51.
Instruction 48 calls a constructor and links both CMVs M48 and
M51. The elements on the top of the stack before instruction
are the parameters Y and X as well as the reference A1 to
the object that calls the method. The heaps H2 and H1 are
linked by the constructor call effect, represented here by a relation
invokespecial.
The top of the stack before the instruction getfield 45 is a refer-
ence A2, while the top of stack X after the instruction is the value
of the attribute x of the object referenced by A3 in the heap H1.
The relation is maintained by a constraint getfield(A3, x,H2,X).
The instruction 39 allocates memory to store a new object of
type Coord. The relation new(Coord,H3,H2, A1) states that the
heap H2 contains one added object of type Coord. A1 is pushed
on top of the stack after the instruction. As the only instruction
that permits to reach 51 after the conditional instruction 33 is 36,
then the top of the stack A.B before the instruction 33 constrains
B to be greater than A.
The top of the stack before the instruction 27 contains the value
V al3 and the reference A4. The instruction putfield updates
the value of the attribute time with the value V al3, for the
object referenced by A3. H4 is the heap before the instruc-
tion while H3 is the heap after instruction and the constraint
putfield(A3, time, V al3, H4,H3) maintains this relation. Fi-
nally, the values of the registers F3, and the heap H4, of the
memory M0, describe a possible test input to reach our test
objective 51.

D. Possible deductions with operator putfield

In order to illustrate the behavior of a complex constraint,
we show the possible deductions by putfield on a simple ex-
ample. Consider the heap H0 = {(1, (a, [t1 �→ V 1, t2 �→
V 2])), (2, (a, [t1 �→ V 3, t2 �→ V 4])), (3, (b, [t3 �→ V 5]))} and
the heap H1 = {(1, (a, [t1 �→ V 6, t2 �→ V 7])),
(2, (a, [t1 �→ V 8, t2 �→ V 9]), (3, (b, [t3 �→ V 10]), which both
contain two objects of class a and one object of class b, and the
relation putfield(A, t1, V al,H0,H1) where t1 is the first of the
two attributes of the class a. Class b, which does not inherit from
a, has only a single attribute. Suppose that dom(V 1) = [0..10],
dom(V 3) = [1..3], dom(V 8) = 15..231 − 1 while other domains
are unconstrained, let dom(A) = {all} and dom(V al) = [10..40],
and suppose that status of H0 is unclosed and status of H1 is
closed. Using the relation putfield(A, t1, V al,H0,H1), several
deductions can be performed. 1) As the relation operates on
attribute t1, one deduces that dom(A) = all − {3} as object
3 has only attribute t3 and its class b does not inherit from
a. Consequently, the following equalities can be added V 2 =
V 7, V 4 = V 9 and V 5 = V 10 as the relation does not modify
variables associated with the attributes t2 and t3 . 2)Considering
variables V 3 and V 8, we see that dom(V 3) ∩ dom(V 8) = ∅
then one deduces that A refers necessarily to object 2 in the heaps
H0 and H1: A = 2. Consequently, V 1 = V 6 is added as the
object at the address 1 is not modified and V 8 = V al leading to

block a

block b

block c

block g

block d

block f

block e

target
instruction

Figure 3. Constraint blocks

dom(V 8) = dom(V al) = [15..40]. 3) Finally, the closed status
of H1 is propagated to H0 as putfield does not add any new
object on the heap. So, all the addresses of both heaps are known.

V. TEST INPUT GENERATION

A. Backward search

Backward search relies on constraint block accumulation and
solving. A constraint block in a bytecode program is a set of
instructions that is submitted to constraint propagation. The test
objective specifies a bytecode to reach, which corresponds to a
specific constraint block. So, starting from this block, backward
search incrementally accumulates other constraint blocks by trying
to find a path towards the program entry point. It is worth noticing
that constraint consistency is tested on the fly, each time a new
constraint block is added to the constraint system. This permits to
quickly detect infeasible parts of program paths. These subpaths
should not be confounded with path prefix as they do not begin by
the method entry point. When a constraint block has several parent
blocks in the control-flow graph, then a choice point is created.
Each choice is then explored in a depth-first search until one of
them gets to the program entry point. If a choice is shown as
being incoherent with the rest of the constraint system, then the
process backtracks to the first ancestor choice point and takes an
alternative. The strategy gives priorities to shortest intraprocedural
subpaths towards the program entry points (i.e., in presence of
loops, targeting exit loop constraint blocks). Note however that a
parameter has to be set to prevent the process from iterating without
terminating in presence of loops.

Let us illustrate why backward search can be interesting w.r.t.
forward exploration on the simple example of Fig. 3, where the test
objective is to reach constraint block g. Suppose also that block
e and block g contain contradictory conditions. For example, e
contains assignment i = 1 while condition to go from block e to
block g is i > 2. Starting from block g, backward search will first
explore subpath g− e by positioning a choice point. As constraint
consistency is tested on the fly, the process fails and backtracks

to the choice point without exploring the other backward paths
starting by g − e. Subpath g − f − a − ... is then considered
without failing. Constraint inconsistency detection is possible as
our framework can reason both in a forward and backward manner,
thanks to the use of contraint programming to express relations
between CMV. Moreover, our framework implements a precise
memory model able to deal with partially known memory states. On
this example, forward exploration such as implemented in several
dynamic symbolic execution tools would have first considered
a− b− c− e− g and failed. Then, backtracking at point b, depth-
first forward exploration would have considered a− b− d− e− g
and failed again before finding a− f − g. To be fair, similar poor
behavior can be found for backward exploration as well just by
considering incoherent subpaths near the program entry point. We
are not saying that backward exploration is better than forward, we
just say that both approaches complement each other. Our backward
search approach is useful to complement an existing test set by
looking at not-covered locations.

B. Test input labeling

When a set of consistent constraint blocks has been found to flow
backward from the test objective to the program entry point, every
variable of the input CMV has not necessarily been instantiated.
A labeling step on the input CMV has then to be launched in
order to complement the CMV. The process is recursive and tries
to select the best option at each step. It starts by labeling the input
formal parameters of the method under test. For references, it first
tries null, then it tries the addresses of objects in the heap that
have compatible type and finally, upon failure, it creates a new
object that has a compatible type. Each time a value is assigned
to a variable from its domain, the constraints that operate on this
variable are awaked and constraint propagation is relaunched. This
process can efficiently prune the domain of other variables. When
all the input parameter values are fixed, the values of the object
attributes have to be labeled in order to build a complete CMV. The
process labels first the object attributes that are reachable from the
parameters with a single dereferencing level. If the corresponding
input state satisfies the test objective, then we get a solution of the
problem. On the contrary, upon failure, the process backtracks and
the dereferencing level is increased until a given bound, defined
by the user. The status is also labeled to the “closed” value in
order to indicate that no more object can be added to the input
memory state. When the labeling process is finished, then either
a complete input CMV is found that reaches the test objective or
a failure is reported. Failure may be provoked by several causes,
including unreachable test objective, bounds on backward search or
dereferencing level, or timeout. Hence, the method is incomplete
but note that it can find input cyclic data structures when necessary.

VI. EXPERIMENTAL VALIDATION

A. Implementation

Our prototype tool JAUT (Java Automatic Unit Tesing) takes as
inputs a bytecode program given under textual form, obtained with
SUN’s command javap which decompiles the binary bytecode,
and a test objective composed of the method name and bytecode
instruction number. It reports as output an input CMV, excerpts of
which have been presented in Sec. 2 of the paper. JAUT includes 1)
a bytecode analysis module that generates a prolog-based internal

structure that can be efficiently explored with backtracks and
unification ; 2) a backward search module which is parameterized
by: a bound on the number of times certain branches are executed,
a bound on the length of paths to be explored, a bound on
the dereferencing level and a timeout ; 3) a constraint solver
which implements constraint generation and deduction rules for
the constraints associated with bytecodes. The constraint solver
implements its own constraint propagation queue and its own
memory labeling strategy, but it calls the SICStus Prolog clpfd
library for solving arithmetical constraints.

JAUT handles a meaningful subset of bytecodes, as discussed
earlier, but as a research prototype tool, it handles only about
a third of the one hundred or so bytecodes of the SUN’s JVM
specification. Bytecodes that were left apart include bytecodes for
integer conversions and low-level shifting, bytecodes for floating-
point computations. Note that, for each bytecode, a specific con-
straint model was developed and deduction rules that captures the
operational semantics of the JVM were implemented.

B. Experiments

All the results were computed on a standard single-core machine:
an Intel Pentium, 2.16GHZ machine running Windows XP with
2.0GB of RAM. Our experiments aimed at evaluating the capabili-
ties of JAUT to complement an existing test set, obtained by another
forward path-exploration test data generator. We selected three such
white-box test data generation tools: jCUTE, JTEST version 8.0
and Pex version 0.15.40714.1. Pex is dedicated to .NET but the
programs considered in our experiments can easily be compiled to
.NET bytecodes5 Other available test data generators are discussed
in the related work section. The goal of the experimental settings
was to evaluate the capabilities of JAUT to cover instructions not
covered by the three test input generators jCUTE, JTEST and Pex.

Simple programs are used in our experiments: versions of
the classical trityp and josephus programs in bytecodes,
methods of the DoublyLinkedList and TreeMap Java
classes. Trityp has many infeasible paths while josephus
[18] manages a cyclic dynamic data structure. We also considered
a modified version of this program, called josephus/m,
where the hard-to-reach decision ndeEnd.key==41 &&
nde.key==31 is inserted at the end of the program. The
DoublyLinkedList class also implements dynamic data
structures management and contains input object references
and method calls in its code. The TreeMap class implements
red-black trees which are cyclic structures. The source code
of these programs, the source code of JAUT, as well as all
the test drivers used for Pex and jCUTE can be found online at
www.irisa.fr/lande/gotlieb/resources/jaut.html.
In all the programs, private fields have been turned into public
ones in order, for the three tools, to equally generate valid and
invalid input states. For the depth-first backward exploration of
JAUT, a bound of 150 bytecodes on the length of path and a
bound of 10 for the maximum dereferecing level have been set.

In addition, we considered the following program (in bytecodes)
that illustrates a problem related to forward exploration:

static int a=1;

5In our results, difference of the .NET runtime cost vs. JVM runtime
have been considered neglectible.

public static int foo(int i){
int j = 10 ;
while (i > 1){ j++; i--; }
if (j > 50*a)

return 1; // test objective I
return 0; }

Reaching the test objective I implicitely constrains the number
of iterations within the loop. On this example, forward exploration
will unroll the loop without taking into account the test objective.
The parameter a can be increased to study the scaling effect of the
underlying problem.

C. Results and analysis

On the foo program, both JTEST and Pex fail to reach the test
objective I. Unlike these tools, jCUTE covers every instructions
of the foo method, including instruction I, but it takes 10.9sec
of CPU time. JAUT also generated an input CMV (corresponding
to i = 42) that reaches I in 0.15sec of CPU time. Its backward
exploration strategy is useful on this example.

We studied the behavior of both jCUTE and JAUT on the foo
example by increasing the value of a. Fig. 4 shows the results of
this experiment. The time required by jCUTE increases dramati-
cally on this example as the tool requires an increasing number
of trials to satisfy this hard-to-reach test objective. As jCUTE
compiles and executes programs to perform dynamic symbolic
execution, the CPU time increases accordingly. The JAUT approach
is better on this example as constraints are directly handled in
the constraint solver and backtracking is hard-coded in Prolog.
For other experiments, results are shown in Fig.5 where #Bc is

Figure 4. CPU Time to generate input for I in function of a, for method
foo

the number of bytecode instructions, #To is the number of test
objectives. We report the results of jCUTE, Pex, and JAUT to
get complete bytecode instructions coverage and the results of
JAUT to complement the test sets produced by Pex. The fourth
tool JTEST reveals itself too poor on this task. In fact, its test
input generation strategy is based on the analysis of constants
in the program, which prevents many symbolic decisions to be
covered. jCUTE and Pex have the primary goal of covering all
the feasible paths of the program while JAUT is designed to reach
a single instruction in the program. Hence, none of these three
tools is optimized to efficiently get complete bytecode instruction
coverage. However, in all the cases, there are claims on their ability

to reach instruction coverage. For JAUT, instruction coverage can
be automatically reached by launching incrementally requests on
not-covered instructions in a script. For the three tools, we report
coverage percentage, which we have computed ourselves on a
common basis. Indeed, Pex reports dynamic bytecode coverage
which does not necessarily correspond to bytecode instruction
coverage. So, we computed the coverage by looking at the covered
portions of code, rather than taking into account the numbers
provided by the tools. We selected two search modes for jCUTE:
the former corresponds to depth-first search on the execution
tree (both columns noted jCUTE) while the second corresponds
to random path exploration (both columns noted jCUTEr). We
measured the CPU time required by JAUT to complement the
test set generated by Pex (column compl. JAUT) when it was
incomplete. When this measure was unnecessary, n/a was reported.

For the trityp method, experiments show that, unlike jCUTE
in both versions, Pex and JAUT succeed to get complete coverage.
However, the CPU time required to get this result for JAUT is
very long (almost one hour). Indeed, SICStus Prolog needs a long
time to demonstrate the insatisfiability of some path condition, as
i + j > k, j + k > i, i + j > k, j �= k, i �= k, i �= j, k �= 0,
j �= 0, i �= 0 where i, j, k denote three 32-bit integers, because it
requires long-term labeling. Note that another approach would be
to use dedicated SMT solver such as Z3 [19] in JAUT to avoid
these problems.

Program josephus in both versions is hard to cover. The
program computes first a dynamic cyclic chain in function of input
parameters and then it eliminates one by one the elements by
cycling around the chain. Satisfying all the test objectives require
unrolling each of the loops 40 times which is not easy to deduce
from code analysis only. On this example, Pex obtains very good
results by generating 19 test cases while other tools, including
JAUT, fail to get complete coverage. Our analysis of the JAUT
failure indicates that our depth-first backward search is trapped by
the second loop and that it should be refined. This leaves room for
improvments.

For the DoublyLinkedList class, the three tools succeed to
generate complete test sets but JAUT obtains the best CPU time
results. Upon analysis of the results for the add method, we saw
that backward exploration is useful on this example, as forward
search requires many paths to be explored. To be fair, it is worth
noticing that Pex also tries to cover paths of the called methods
while JAUT only considers test objectives within the method under
test. In addition jCUTE and Pex also generate test scripts during test
input generation, while JAUT do not perform similar generation.
On short periods of time, this can have an non-neglectible impact
on the results. We did not implement this feature in JAUT as our
primary goal was only to demonstrate the interest of fine-grain
memory model and backward exploration in constraint-based test
input generation.

For the TreeMap class, both coverage and CPU time results
with JAUT outperform the results of other tools, including Pex.
On the rotateLeft method, both versions of jCUTE obtained
only 20% of bytecode coverage while Pex obtained 88.9%. In
fact, covering all the instructions of the method requires explicit
solving of the decision if(p == p.left.parent) in a certain
context, which corresponds to a complex pointer aliasing relation.
Note that the time required by JAUT to complement the test set

of Pex when covering this decision is very low: 0.05sec. This
shows that such decision does not require heavy constraint solving
effort. The results obtained for method fixAfterInsertion are the
most interesting. Both modes of jCUTE cover only about 20% of
the method while Pex covers about 45%. The CPU times required
to get these results is rather long for jCUTEr and Pex (resp.
28.30 and 120.00sec). On the contrary, JAUT covers 100% of the
method in 22.18sec. When used to complement the Pex test set, it
takes 15.49sec, showing that not-covered bytecode instructions are
indeed hard to reach. So, JAUT performs well on the methods of
the TreeMap class as it contains many hard test input generation
problems. We interpret this result as a confirmation that using a
precise memory model, which in particular deals with reference
aliasing, is advantageous for completing an existing test set.

D. Related work

Test input generation at the Bytecode level. JAUT performs
constraint-based test input generation from Java bytecode. There-
fore, it is mainly related to JPF [8], jCUTE [12], [13], and
Pex [14]. Unlike these three tools, JAUT implements backward
exploration, meaning that it starts from a target bytecode location
and incrementally discovers a feasible path towards the entry.
Indeed, JPF, jCUTE and Pex are based on forward symbolic
execution which consists to evaluate symbolically the instructions
along a path in the same order as execution. Improvements on
the search strategy of Pex have been proposed [20] to leverage
some of the problems of forward exploration. Note that backward
symbolic execution exists for a long time [21], but our approach
extends and generalizes this idea to programs containing references
on the stack and the heap, as well possibly cyclic dynamic data
structures. Reasonning backward at the bytecode level requires
a precise memory model to be defined. Our memory model has
similarities with those of JPF [8], [9] in that it also implements
a form of “lazy initialization”. In our approach, decisions such
if(p.next == p) constrains two variables to be equal and
non null without instantiating them. Unlike lazy initialization which
makes choices during constraint solving, JAUT reports the choice to
the labeling phase. Our memory model also has similarities with the
constraint-based models of CUTE [12] and Pex [14] that can deal
with symbolic pointer equalities and inequalities, dynamic memory
allocation and input data structures. We argued below that JAUT
can complement an existing test set produced by one of these tools
by applying more costly analysis for specific unreached locations
within the bytecode. In fact, the constraint-based reasoning step
of JAUT defines precise relations between two CMVs (constraint
memory variables) for each bytecode. Of course, the scope of JAUT
is currently too restricted (a meaningful subset of JVM bytecodes)
to compete with the industrial development of Pex, but we believe
that both approaches could complement each other in the long term.
Test input generation for binary programs. OSMOSE [22] and
SAGE [23] both implement forward dynamic symbolic execution
for binary programs. They handle dynamic jumps and use an
untyped memory model able to deal with pointer arithmetic, type
casting and multiple dereferencing levels. SAGE builds path condi-
tions that are submitted to the SMT solver Z3 [19]. Unlike SAGE
[23], JAUT is based on a constraint propagation and labeling solver.
Such solvers are used with success in the context of combinatorial
optimization problems as they can solve linear as well as non-linear

Methods #Bc #To jCUTE
(cov)

jCUTE
(sec)

jCUTEr
(cov)

jCUTEr
(sec)

Pex (cov) Pex
(sec)

JAUT
(cov)

JAUT
(sec)

Compl.JAUT (sec)

trityp 89 24 83.3% 2.20 87.5% 30.88 100% 4.17 100% 3132.00 n/a
foo 15 3 100% 10.90 75% 18.80 66% 4.51 100% 0.17 0.15
josephus 51 3 100% 1.06 100% 1.06 100% 8.07 100% 0.36 n/a
josephus/m 60 5 70% 192.00 70% ** 100% 8.41 60% ** n/a
Node class
insertBefore 36 4 100% 3.02 100% 35.80 100% 4.03 100% 0.20 n/a
DoublyLinkedList
pop 13 2 100% 2.16 100% 23.00 100% 0.59 100% 0.13 n/a
add 42 4 100% 9.19 88% 45.00 100% 6.09 100% 0.14 n/a
remove 31 4 100% 2.94 100% 1.89 100% 0.69 100% 0.16 n/a
RedBlackTree
rotateLeft 48 5 20% 26.56 20% 25.10 88.9% 0.65 100% 0.23 0.05
deleteEntry 124 14 50% 2.12 91.6% 5.64 78.6% 56.00 100% 1.44 0.25
fixAfterDeletion 175 11 36.3% 1.11 54.5% ** 81.9% 92.00 100% 7.78 0.88
fixAfterInsertion 127 9 19% 1.30 18.7% 28.30 44.4% 120.00 100% 22.18 15.49

Figure 5. Time and coverage with jCUTE, Pex and JAUT (**: timeout of 3600sec)

problems over the reals or the integers. Variable multiplication
or divisions are typical examples of non-linear constraints that
are efficiently handled by these solvers. Another advantage of
constraint propagation relies on its flexibility to add new user-
defined constraints. For JAUT, we built several constraint operators
that apply deduction rules to reason over the memory shapes. These
operators captures both forward and backward exploration at the
same time and propagates domain reductions without instantiating
any variable or equality. However, using a SMT-solver such as
Z3 [19] to solve arithmetical constraints over fixed-length integer
variables would be very interesting to replace clpfd in JAUT.
Note also that test input generation for binary programs is harder
than at the bytecode level as the control flow cannot easily
be recovered and variable types are unknown which makes the
building of constrained input memory states more complex.
Test input generation from C and Java source code. There are
many approaches of automatic test input generation from source
code. In our previous works [4], [18], we built memory models for
constraint-based test data generator of C programs. Our previous
model handled pointers toward named locations of the memory
and dynamically allocated structures but they were limited in their
scope. Unlike JAUT, the model of [4] did not contain represen-
tation of the heap and then it was unable to deal with dynamic
memory allocation. The model of [18] was very complex and the
generation took too much time. Furthermore, in these preliminary
memory models, backward exploration has not been implemented.
PathCrawler [11], DART [10], CUTE [12] implement dynamic
symbolic execution for C source code. On the contrary, JAUT
implements static backward exploration These two approaches
complement each other as dynamic symbolic execution rapidely
covers many feasible paths while static backward exploration
focusses on hard-to-reach instructions. One advantage of dynamic
symbolic execution is that it can deal with third-party libraries or
calls to native methods while static backward exploration cannot as
there is no available constraint model. Another difference concerns
the capabilities of dynamic symbolic exploration to use concrete
value instead of symbolic ones for simplifying constraint solving.
Note that the constraint reasonning model of JAUT handles com-
plex constraints and just reports value choices to the labeling phase.
EXE [15] implements global symbolic evaluation by launching
an eager path exploration of the C program under test. Although
this approach is appealing if implemented on a grid platform, it

can reveal disastrous for programs that contain a huge number
of paths. As soon as a program contains a loop, its number of
paths is unbounded and even when it contains only conditionals, its
number of path grows exponentially with the number of decisions
in the worst case. Unlike JAUT, EXE does not use incremental
constraint solving, so inconsistencies due to infeasible paths may
be lately discovered and this could penalize the test input generation
if implemented on a single machine. Note that EXE uses the STP
SMT-solver which won several competitions and that it implements
nice optimizations such as constraint caching and symbolic mem-
ory accesses tracking. However, as pointed out by the authors,
its memory model does not handle double pointer dereferencing
levels. The memory model of JAUT handles multiple dereferencing
levels, up to a user-defined bound. Exhaustive bounded testing of
Java programs as implemented in TestEra [5] and KORAT [6]
is a test input generation method that exhaustively explores the
input search space. The approach can generate a large number of
dynamically allocated structures but, unlike JAUT, it does not target
specific locations or paths in the code. In fact, these constraint-
based approaches have developed complex strategies to efficiently
generate test inputs [7] but they cannot solve path constraints
extracted from programs.
Counter-example generation. Software model-checkers such as
Save [24], Blast [25], Magic [26] or Cbmc [27] explore the
paths of a bounded model of C programs in order to find a
counter-example path to a temporal property. Some of them also
address statement reacheability by generating test inputs to reach
specific locations within the source code [8]. Some of them exploit
predicate abstraction to boost the exploration in the context of
CEGAR that stands for (Counter-Example Generation through Ab-
straction Refinement). JAUT contrasts with these model-checkers
and CEGAR as it does not abstract the program and does not
generate spurious counter-example paths. In particular JAUT builds
a constraint model of bytecode program by capturing an error-free
concrete semantics without considering a boolean abstraction of the
program structure. On the one hand, this allows for precise input
memory state to be built but, on the other hand, requires costly
analysis to be implemented.

VII. CONCLUSIONS AND FURTHER WORK

In this paper, we proposed a new constraint-based test input
generation approach for testing Java programs at the bytecode

level. We developed a logical memory model for a meaningful
subset of bytecodes and proposed deductive rules to solve complex
constraints such as p == p.next. Unlike other approaches, our
prototype tool JAUT implements depth-first backward search and
our experimental results indicate that this strategy complements
forward search test data generation. Several short term improve-
ments include the use of more dedicated constraint solvers to solve
arithmetical constraints of the path conditions (e.g., Z3). Backward
search could also be refined with an iterative bounded depth-first
strategy to improve our handling of nested and sequential loop
computations. Finally, our memory model could be improved by
considering more fine-tuned awakening conditions. In the long
term, our memory model could be completed to deal with ex-
ceptions as they just represent new control flow structures. Multi-
threading also appears as an essential topic in Java programming
and implementing a backward search strategy for test input gen-
eration of multi-threaded bytecode programs would certainly be
beneficial to the community.

REFERENCES

[1] R. DeMillo and J. Offut, “Constraint-based automatic test data
generation,” IEEE Transactions on Software Engineering, vol. 17,
no. 9, pp. 900–910, September 1991.

[2] J. Offut, Z. Jin, and P. J., “The dynamic domain reduction proce-
dure for test data generation,” Software–Practice and Experience,
vol. 29, no. 2, pp. 167–193, 1999.

[3] A. Gotlieb, B. Botella, and M. Rueher, “Automatic test data
generation using constraint solving techniques,” in Proc. of Int.
Symp. on Soft. Testing and Analysis (ISSTA’98), 1998, pp. 53–62.

[4] A. Gotlieb, T. Denmat, and B. Botella, “Goal-oriented test data
generation for pointer programs,” Information and Soft. Technol.,
vol. 49, no. 9-10, pp. 1030–1044, Sep. 2007.

[5] D. Marinov and S. Khurshid, “Testera: A novel framework for
automated testing of java programs,” in Proc. of the 16th IEEE
int. conf. on Automated soft. eng. (ASE’01), 2001, p. 22.

[6] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: automated
testing based on java predicates,” in Proc. of the int. symp. on
Soft. testing and analysis (ISSTA’02), 2002, pp. 123–133.

[7] B. Elkarablieh, D. Marinov, and S. Khurshid, “Efficient solving
of structural constraints,” in Proc. of the int. symp. on Software
testing and analysis (ISSTA’08), 2008, pp. 39–50.

[8] W. Visser, C. S. Pasareanu, and S. Khurshid, “Test input genera-
tion in java pathfinder,” in Proc. of ISSTA’04, 2004.

[9] C. Pasareanu and W. Visser, “A survey of new trends in symbolic
execution for software testing and analysis,” Int. J. Softw. Tools
Technol. Transfer, vol. 11, pp. 339–353, 2009.

[10] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated
random testing,” in Proc. of PLDI’05, 2005, pp. 213–223.

[11] N. Williams, B. Marre, P. Mouy, and M. Roger, “Pathcrawler:
Automatic generation of path tests by combining static and
dynamic analysis,” in Proc. Dependable Computing - EDCC’05,
2005.

[12] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing
engine for c,” in Proc. of ESEC/FSE-13. ACM Press, 2005, pp.
263–272.

[13] K. Sen and G. Agha, “Cute and jcute: Concolic unit testing
and explicit path model-checking tools,” in 18th Int. Conf. on
Computer Aided Verification, (CAV’06), ser. LNCS 4144, 2006,
pp. 419–423.

[14] N. Tillmann and J. de Halleux, “Pex: White box test generation
for .net,” in Proc. of the 2nd Int. Conf. on Tests and Proofs, ser.
LNCS 4966, 2008, pp. 134–153.

[15] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler, “Exe:
automatically generating inputs of death,” in Proc. of Comp. and
Communications Security (CCS’06), 2006, pp. 322–335.

[16] R. Grehan, “Jtest continues its trek toward code-testing
supremacy,” in InfoWorld, Oct. 2006.

[17] K. Marriott and P. Stuckey, Programming with Constraints : An
Introduction. The MIT Press, 1998.

[18] F. Charreteur, B. Botella, and A. Gotlieb, “Modelling dynamic
memory management in constraint-based testing,” in TAIC-PART
(Testing: Academic and Industrial Conference), Windsor, UK,
Sep. 2007.

[19] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in
Proc. of TACAS’08, an ETAPS conference, Apr. 2008, pp. 337–
340.

[20] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte, “Fitness-
guided path exploration in dynamic symbolic execution,” in
Proc. the 39th Int. Conf. on Dependable Systems and Networks
(DSN’09), Jun. 2009.

[21] S. Muchnick and N. Jones, Program Flow Analysis: Theory and
Applications – Chapter 9 : L. Clarke, D. Richardson. Prentice-
Hall, 1981.

[22] S. Bardin and P. Herrmann, “Structural testing of executables,” in
1th Int. Conf. on Soft. Testing, Verif. and Valid. (ICST’08), 2008,
pp. 22–31.

[23] B. Elkarablieh, P. Godefroid, and M. Levin, “Precise pointer
reasoning for dynamic test generation,” in Proc. of ISSTA, 2009.

[24] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze, “Us-
ing symbolic execution for verifying safety-critical systems,” in
Proceedings of the European Software Engineering Conference
(ESEC/FSE’01). Vienna, Austria: ACM, September 2001, pp.
142–150.

[25] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software
verification with blast,” in Proc. of 10th Workshop on Model
Checking of Software (SPIN), 2003, pp. 235–239.

[26] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith, “Modular
verification of software components in C,” IEEE Trans. on Soft.
Eng. (TSE), vol. 30, no. 6, pp. 388–402, June 2004.

[27] E. Clarke and D. Kroening, “Hardware verification using ANSI-
C programs as a reference,” in Proc. of ASP-DAC’03, Jan. 2003,
pp. 308–311.

En résumé, l’article de ce chapitre contient deux contributions au domaine du
test à base de contraintes:

• un modèle mémoire pour le Bytecode Java permettant de modéliser l’héritage
et le polymorphisme par invocation de méthodes virtuelles. Ce dernier point
est traité avec l’introduction de contraintes sur les types pour la modélisation
des opérations lié au raffinement des types. A notre connaissance, ce point
n’avait jamais été traité de cette manière dans un modèle pour la génération
automatique de données de test ;

• il propose l’exploration en arrière des programmes Java, qui en fait un outil
idéal pour compléter une couverture de test obtenue par d’autres moyens
de génération de données de tests. Les approches existantes de génération
automatique de données de test qui s’appuient sur l’évaluation symbolique
[Visser 04,Williams 05,Godefroid 05,Anand 07] proposent un parcours dans
le sens avant des programmes, et peuvent donc se retrouver “piégées” en cer-
tain points du programme. A l’inverse la méthode que nous avons dévelop-
pée bénéficie de la réversibilité des contraintes et permet ainsi de parcourir
l’arbre d’exécution du programme dans le sens inverse de l’exécution.

Chapter 7

Modélisation à contraintes des
calculs flottants

Contexte

Depuis plusieurs années, la génération automatique de données d’entrée est dev-
enue une composante essentielle de la boîte à outils du développeur d’applications.
La construction de tests unitaires a été facilitée avec l’aide d’outils générant au-
tomatiquement des données d’entrée qui maximisent la couverture de code. Ces
outils explorent symboliquement les chemins du programme sous test, en util-
isant l’évaluation symbolique dynamique qui est une technique standard utilisée en
test logiciel. Cette technique sélectionne un chemin en choisissant une donnée
de test et en observant les instructions réellement exécutées. Le chemin ainsi car-
actérisé est nécessairement exécutable. Puis elle calcule la condition de chemin en
évaluant symboliquement les instructions le long du chemin exécuté. En réfutant
une décision sur la condition de chemin et en soumettant le système de contraintes
ainsi obtenu à un résolveur de contraintes, cette technique peut soit produire une
autre donnée de test qui couvre un chemin distinct, soit démontrer que le chemin
correspondant au système de contraintes est non-exécutable. Lorsqu’une donnée
de test est produite, la couverture des chemins du programme est nécessairement
accrue.

Malheureusement, lorsque la condition de chemin contient des calculs sur les
nombres flottants, la génération automatique de données d’entrée par évaluation
symbolique dynamique devient problématique car la résolution de contraintes sur
les réels ou les rationnels ne permet pas de donner des résultats corrects vis à
vis des flottants. En effet, les erreurs d’arrondis perturbent les résolveurs de con-
traintes. Il est bien connu que l’évaluation d’une expression arithmétique sur les
flottants peut donner des résultats très différents de son évaluation sur les réels
ou les rationnels. Par exemple, la contrainte (x > 0.0) ∧ (x + 1.0e12 == 1.0e12)
où x est une variable flottante 32 bits, est satisfaite par tous les flottants 32 bits de
l’intervalle 1.4012984643248171e − 45 . . . 32768.0 tandis qu’il n’y a évidemment

113

aucune solution sur les nombres rationnels, ce que démontrent sans problème
les résolveurs de contraintes existants. On pourrait argumenter que les erreurs
d’arrondis des calculs flottants ne sont pas si fréquents, que les variables flottantes
sont rarement utilisées pour piloter le flot de contrôle, et donc qu’elles peuvent
être ignorées la plupart du temps. Cependant, les erreurs d’arrondi sont une
source majeure de fautes graves dans les systèmes critiques, en particulier ceux
du domaine militaire (e.g., l’accumulation des erreurs d’arrondi des missiles Pa-
triot [Miné 04] ou bien les applications de suivi de terrain basse altitude des drones
et avions militaires). Les techniques de test à base de contraintes n’échappent pas
à ces problèmes.

Les travaux que nous avons initiés en 2000 dans le cadre du projet RNTL INKA
ont conduit à la proposition de plusieurs approches qui visent à résoudre explicite-
ment des contraintes sur les flottants. En 2001, Claude Michel, Michel Rueher
et Yahia Lebbah ont proposé de bâtir un tel résolveur en utilisant la propaga-
tion d’intervalles [Davis 87]. L’idée de base consistait à trouver des bornes co-
hérentes pour les contraintes sur les flottants en pratiquant une exploration di-
chotomique de chaque intervalle [Michel 01]. En 2002, Claude Michel a proposé
dans [Michel 02] des bornes théoriques pour atteindre une FP_2B_consistance,
c’est à dire un niveau de filtrage pour les contraintes flottantes qui garantit que
chaque borne d’intervalle a un support pour les autres variables. En 2003, le projet
ACI V3F1 (2003-2006) a été lancé afin d’étudier en profondeur la résolution de con-
traintes sur les flottants et ses différentes applications en génération automatique
de données de test. De ce projet naquit non seulement le logiciel FPSE [Botella 05]
présenté in extenso dans l’article [Botella 06] de ce chapitre, mais aussi le résolveur
de contraintes sur les flottants de l’outil GATEL [Marre 05] développé par Bruno
Marre au CEA.

Le but des travaux présenté dans l’article de ce chapitre est de modéliser fidèle-
ment les erreurs d’arrondi dans un résolveur de contraintes sur les flottants. Le
résultat est donc un résolveur qui prend en entrée une condition de chemin sur les
flottants et évalue la satisfiabilité du système de contraintes sous-jacent. Si celui-ci
est satisfiable, alors le résolveur propose une solution, qui peut être utilisée pour
définir une donnée de test. Si celui-ci est insatisfiable, alors le chemin correspon-
dant à la condition est démontré comme étant non-exécutable. Comme l’ensemble
des valeurs flottantes pour une variable 32 ou 64 bits est fini (le standard actuel
IEEE-754 propose seulement 4 types de flottants bornés [IEEE-754 85]), il est tou-
jours possible dans le pire cas, d’énumérer toutes les combinaisons possibles de
valeurs. Cependant, le véritable défi consiste à trouver des moyens efficaces pour
couper l’espace de recherche car cette énumération est souvent hautement combi-
natoire. Bâtir une procédure de décision correcte et efficace sur les flottants est dif-
ficile puisque, d’une part, les propriétés algébriques des nombres flottants sont ex-
trêmement pauvres (i.e., pas d’associativité, pas de distributivité) et, d’autre part,
les résultats des calculs dépendent du compilateur et de ses options, ainsi que du
matériel sous-jacent (processeur, jeu d’instructions, registres, etc.). La technologie
utilisée dans le résolveur de contraintes sur les flottants FPSE est la propagation

1http://lifc.univ-fcomte.fr/v3f/description.php

d’intervalles et implémente une FP_2B_consistance. Les techniques d’énumération
sont par contre similaires à celles que l’on trouve dans les résolveurs de contraintes
sur les domaines finis.

B. Botella, A. Gotlieb, and C. Michel. Symbolic execution
of floating-point computations. The Software Testing, Ver-
ification and Reliability journal, 16(2):pp 97-121, June
2006

Symbolic execution of �oating�point

computations �

Bernard Botella a� Arnaud Gotlieb b��� Claude Michel c

aTHALES Airborne Systems � av� Gay�Lussac ����� Elancourt Cedex	 FRANCE

bIRISA
 INRIA Campus Beaulieu ���� Rennes cedex	 FRANCE

cI�S�CNRS ���	 route des Colles	 BP ��	 ����� Sophia Antipolis cedex	

FRANCE

Abstract

Symbolic execution is a classical program testing technique which evaluates a se�

lected control �ow path with symbolic input data� A constraint solver can be used

to enforce the satis�ability of the extracted path conditions as well as to derive test

data� Whenever path conditions contain �oating�point computations� a common

strategy consists of using a constraint solver over the rationals or the reals� Unfor�

tunately� even in a fully IEEE���	 compliant environment� this leads not only to

approximations but also can compromise correctness
 a path can be labelled as in�

feasible although there exists �oating�point input data that satisfy it� In this paper�

we address the peculiarities of the symbolic execution of program with �oating�

point numbers� Issues in the symbolic execution of this kind of programs are care�

fully examined and a constraint solver is described that supports constraints over

�oating�point numbers� Preliminary experimental results demonstrate the value of

our approach�

Key words� Symbolic execution� Floating�point computations� Automatic test

Preprint submitted to STVR ��th June ����

data generation� Constraint solving

� Introduction

Structural testing is usually required to �nd a test set that activates con�

trol �ow paths that cover a selected testing criterion �e�g� all statements�

all branches� ����� Introduced by King in the context of Software Testing 	
��

symbolic execution consists in statically evaluating statements of a program

to �nd a test datum that activates a given control �ow path� Input variables

are replaced by symbolic input data and each statement of the path is eval�

uated by replacing internal references with an expression over the symbolic

input data� Symbolic execution computes so�called path conditions that are

constraints on the symbolic input data that characterize the selected path�

Solving the path conditions permits input data to be obtained that activate

the path� As only input values are generated� such an approach relies on the

availability of an oracle� An oracle is just a procedure that checks the com�

puted outcomes and produces a testing verdict� Symbolic execution can be

used to address the path feasibility problem 	���� When the constraint set

equivalent to the path conditions is unsatis�able� then the selected path is

shown to be infeasible� Note� however� that �nding all the infeasible paths of

a program is a classical undecidable problem 	��� Symbolic execution has been

used in numerous applications� such as automatic structural test data gen�

eration 	����������
��

�� mutation�based testing 	
��� program specialization

� This work is partially supported by the FNS granted project V�F

� Corresponding author�

Email address� Arnaud�Gotlieb�irisa�fr �Arnaud Gotlieb�

�

	
�� parallelizing compilers 	
��� program and property proving 	
��
��� just

to name a few�

Issues in �oating�point computations� It is well known that reasoning

over the reals or the rationals leads to some inconsistencies when the results

are directly mapped over to the �oating�point numbers 	
��� In such a case�

even in an environment which complies to the IEEE���� standard for binary

�oating�point arithmetic 	
��� the symbolic execution of a program path which

involves �oating�point variables can produce not only inexact results but also

incorrect ones� For example� consider the C program given in Fig�
 and the

symbolic execution of path
������ The associated path conditions can

be written as fx � ���� x �
��e
� �
��e
�g� It is trivial to verify that these

constraints do not have any solution over the reals or the rationals and a

solver over the reals like the IC library of the Eclipse Prolog system 	
�� will

immediately detect this� However� any IEEE���� single�format �oating�point

numbers of the closed interval 	
���
���������
�e � ��� ������������ is

a solution of these path conditions� Hence� a symbolic execution tool work�

ing over the reals or the rationals will declare this path as being infeasible

although this is clearly incorrect� Conversely� consider the path conditions

fx �
������� x �
��e
� �
��e
�g which could easily be extracted by the

symbolic execution of path
����� of program foo� of Fig��� All the re�

als of the open interval ���
����� are solutions of these path conditions�

However� there is no single �oating�point value able to activate the path

������ Indeed� for any single �oating�point number xf in ���
������

we have xf �
��e
� �
��e
� � � Hence the path
����� is actually infea�

sible although a symbolic execution tool over the reals or the rationals would

� This behaviour is called the addition absorption�

�oat foo���oat x f

�oat y � ���e��� z �

�� if �x � ���

�� z � x� y �

�� if �z �� y

	� � � �

Figure �� Program foo�

�oat foo���oat x f

�oat y � ���e��� z �

�� if �x � �������

�� z � x� y �

�� if �z � y

	� � � �

Figure �� Program foo�

have declared it as feasible�

This kind of behaviour can be obtained with any of the available solvers over

the reals or the rationals� These solvers use a Linear Programming algorithm

as in the clpr or in the clpq framework� or interval propagation with �oating�

point numbers to bound the reals such as in Ilog Solver� Eclipse IC 	
���

RealPaver 	��� or Interlog 	�
����� The key issue here is that these solvers

obey to mathematical rules which do not hold for �oating�point arithmetic�

As a matter of fact� �oating�point arithmetic is quite poor� For example� with

�oating�point numbers� x � �y � z� is not in general equal to �x � y� � z�

Moreover� interval propagation based solvers assume that if z � x � y then

x � z � y� Unfortunately� due to rounding operations� this does not hold for

�oating�point arithmetic�

Such problems might be seen as unavoidable� By contrast� this paper intro�

duces the techniques required to correctly handle these kinds of issues� Our

approach is based on the following two steps�

� In a �rst step� complex expressions over the �oating�point numbers are

translated into equivalent relations which capture all the semantics of the

�oating�point operations� these relations are binary or ternary constraints

�

over the �oating�point numbers�

� In a second step� a solver dedicated to �oating�point numbers is used to solve

the resulting constraints� this solver handles these constraints according to

the semantics of �oating�point arithmetic�

For example� consider again the path conditions extracted from Fig�
 and

assume that the initial domain of variable x is 	�INF��INF �� The �rst con�

straint x � ��� reduces the interval of x to 	
���
���������
�e� ����INF ��

the lower bound of which is the smallest non�zero positive number that can be

represented in IEEE single�format �oating�point arithmetic� Then� the second

constraint x�
��e
� �
��e
� reduces � the domain of x to 	
���
���������
�e�

��� ������������� In this example� all the values of the resulting interval are

solutions of the path conditions� Hence� it su�ces to take any of the sin�

gle �oating�point of this interval to �nd a test datum that activates path

����� of the foo
 program� However� this is not generally the case and

one must resort to enumeration to �nd a solution�

Contributions of the paper� This paper introduces new techniques to sym�

bolically execute programs which involve �oating�point computations� The pa�

per extends the theoretical work of Michel 	�� on the design of exact projec�

tion functions of constraints over the �oating�point numbers� Practical details

on how to build correct and e�cient projection functions over �oating�point

intervals are given� The paper covers not only arithmetic operators but also

comparison and format�conversion operators� FPSE� a symbolic execution tool

for ANSI C �oating�point computations� has been developed to validate the

proposed approach� This paper describes its design and implementation and

� In IEEE���	 single�format� the constant ���e�� is interpreted as �����������	�

�

reports some initial experimental results� Note� however� that the paper does

not address the general problem of testing �oating�point computations� In

particular� it does not study the di�cult problem of obtaining a correct �but

not necessarily exact� oracle in the presence of �oating�point computations�

Contents� Section � brie�y recalls the main principles of symbolic execu�

tion and reviews how several symbolic execution tools handle the problem of

�oating�point computations� Section explains the essence of the IEEE����

standard for binary �oating�point arithmetic and indicates the limitations of

the proposed approach� Section � presents the design of e�cient projection

functions over �oating�point variables� Section � explains how to deal with

symbolic values such as in�nities� Section � describes FPSE and reports some

experimental results� Finally� the last section describes directions for further

work�

� Related work

Only a few studies deal with �oating�point computations in the Software Test�

ing community� According to our knowledge� the only directly related work is

that of Miller and Spooner 	���� Thirty years ago� they studied how to gener�

ate automatically �oating�point test data for imperative programs� Their work

opened the door for execution�based test data generation methods which does

not su�er of the above mentioned problems� However� their approach makes

only use of program executions and do not rely on symbolic reasoning� Thus�

it cannot be used to study path feasibility�

At a time when no standard for �oating�point arithmetic was available� sym�

�

bolic execution was pioneered by King 	
�� Clarke 	��� Howden 	�� and others

	������ in several systems� SELECT 	�� and DAVE 	�� exploited Linear Pro�

gramming algorithms to solve linear path conditions over the reals� CASEGEN

	�� utilized ad�hoc procedures based on try�by�value methods to solve non�

linear equations and used inequalities over the reals and to �nd test data that

activated a selected path in the control �ow graph� Although these systems

were using �oating�point operations in their computations� they solved path

conditions over the reals� Thus� they did not conform to the �oating�point

computations of the program under test�

SMOTL 	�� and more recently GODZILLA 	
�� took advantage of domain re�

duction techniques to prune the search space of integers inequalities� Gotlieb

et al� 	��� applied Constraint Logic Programming over �nite domains to solve

constraints extracted from imperative programs in the tool INKA 	���� The

proposed framework dealt only with constraints over integers �possibly non�

linear� to automatically generate test data� SMOTL� GODZILLA and INKA

did not address the problem of �oating�point computations in symbolic exe�

cution but they did use domain and interval propagation techniques to solve

constraint systems� The method used in the current paper to solve path cond�

itions over �oating�point variables is closely related to these techniques�

More recently� Meudec followed a similar path in 	

� and proposed solving

path conditions over �oating�point variables by means of a constraint solver

over the rationals in the ATGen symbolic execution tool� The clpq library

	��� of the Constraint Logic Programming system ECLIPSE was used to solve

linear constraints over rationals computed with an arbitrary precision using an

extended version of the simplex algorithm� Although this approach appears to

be of particular interest in practice� it fails to handle correctly �oating�point

�

computations�

Hence� the problem of �oating�point computations in symbolic execution have

not been seriously addressed in the past� Although several works deal with

�oating�point computations� none of them provide a correct handling of �oating�

point computations� Indeed� �oating�point computation can be correctly han�

dled neither with constraint solvers over the reals nor with constraint solvers

over the rationals� Dealing with �oating�point computations requires the de�

velopment of a new constraint solver dedicated to �oating�point numbers�

� Preliminaries

This section introduces the arithmetical model speci�ed by the IEEE���� stan�

dard for binary �oating�point arithmetic 	
�� and explains the limitations and

notations of the proposed approach�

��� IEEE����

IEEE���� speci�es two basic binary �oating�point formats �single and double�

and two extended formats� Each �oating�point number is a triple �s� e� f� of

bit patterns where s is the sign bit� e the biased exponent� and f the signi��

cand� The single format occupies � bits �
 bit for the sign� � for the exponent

and � for the signi�cant� while the double occupies �� bits �
 bit for the

sign�

 for the exponent and �� for the signi�cant�� The standard does not

give a strict speci�cation of the extended formats� but it does prescribe some

minimal requirements over their sizes� For example� a double extended must

occupy at least �� bits� Each format de�nes several classes of numbers� nor�

�

malized numbers� denormalized numbers� signed zeros� in�nities and NaNs

�which stands for Not�a�Number�� For the single format� normalized numbers

corresponds to an exponent value � � e � ��� and a value given by the

formula� ��
�s
�f �e����� Denormalized numbers correspond to an exponent

e � � and a value given by ��
�s ��f ����� where f �� �� Note that the sig�

ni�cand possesses a hidden bit which is
 for normalized numbers and � for

denormalized� Note also that the bias is equal to
�� for the single format �

and the exponent is �
�� for denormalized numbers� There are two in�nities

�noted �INF � �INF with e � ���� f � �� and two signed zeros �noted �����

���� with e � �� f � �� that allow certain algebraic properties to be main�

tained 	
��� NaNs �e � ���� f �� �� are used to represent the results of invalid

computations such as a division or a subtraction of two in�nities� They al�

low the program execution to continue without being halted by an exception�

IEEE���� indicates four types of rounding directions� toward the nearest rep�

resentable value� with �even� values preferred whenever there are two nearest

representable values �to�the�nearest�� toward negative in�nity �down�� toward

positive in�nity �up� and toward zero �chop�� The most important requirement

of IEEE���� arithmetic is the accuracy of �oating�point computations� each of

the following operations� add� subtract� multiply� divide� square root� remain�

der� conversions and comparisons� must deliver to its destination the exact

result if possible or the �oating�point number that requires the least modi��

cation of the exact result w�r�t� the prescribed rounding mode and the result

� The actual value of the exponent is E � bias� where E is the exponent value in

the �oating�point number representation� Thus� with single format �oating�point

numbers� the maximum value of the exponent is ��� and the minimum value is

�����

�

format destination� It is said that these operations are correctly rounded � � For

example� the single�format result of ������������ �
���� is � ������������

which is the single�format �oating�point number nearest to the exact result

over the reals� This example shows that the accuracy requirement of IEEE�

��� does not prevent surprising results from arising �the second operand is

absorbed by the addition operator��

��� Limitations and notations

In the sequel� we assume an IEEE���� compliant �oating�point unit� The types

of �oating�point numbers manipulated by the program are limited to the sin�

gle and the double�format� The proposed framework currently handles only

the to�the�nearest rounding direction� which is the default rounding mode in

most programming languages� A decimal constant �such as
��e
�� denotes a

�oating�point value� and thus� has to be understood as the nearest �oating�

point number according to the default rounding mode �i�e� as ������������

with a to�the�nearest rounding mode�� Zeros and in�nities are handled but

NaNs are not� Thus any �oating�point unknown is assumed to take only a nu�

merical or in�nity value� Henceforth x	 �resp� x�� denotes the smallest �resp�

greatest� �oating�point number greater �resp� smaller� than x� with respect

to its format� Moreover� mid�a� b� denotes the �oating�point number at the

middle � of a and b� Finally� let ������� denote �oating�point operations

� IEEE���	 says equivalently �exactly rounded��

� These two decimals can be exactly represented by single binary �oating�point

numbers�

� which is a �oating�point number of a wider format than the one of its two

operands�

�

�i�e� the format dependent result of a to�the�nearest rounding of the exact re�

sult� whereas ���� 	� � denote the same operations over the reals� This paper

addresses only the problem of dealing with �oating�point variables in symbolic

execution� other issues such as dealing with loops� arrays and pointers in sym�

bolic execution are out of the scope of this paper� These problems are more

detailed in 	������
��

���� Finally� the combination of integers and �oating�

point expressions into a symbolic execution framework are not detailed here�

Hence� programs are limited to �oating�point data types�

� Symbolic execution

Symbolic execution has been formally described by Clarke and Richardson in

	���� This technique is based on the selection of a single path of the control

�ow graph and the computation of symbolic states� When one has to deal

with �oating�point computations� special attention must be paid to the way

expressions are evaluated� as described in this section�

��� Control 	ow graph and paths

The control �ow graph of a program P is a connected oriented graph composed

of a set of vertices� a set of edges and two distinguished nodes� e the unique

entry node� and s the unique exit node� Each node represents a basic block and

each edge represents a possible branching between two basic blocks� A path of

P is a �nite sequence of edge�connected nodes of the control �ow graph which

starts on e� V ar�P � denotes the set of variables of P �

��� Symbolic states and expressions

Symbolic execution works by computing symbolic states for a given path� A

symbolic state for path e�n�� � � ��nk in P is a triple

�e�n�� � � ��nk� f�v� �v�gv�V ar
P �� c�
� � �
cn� where �v is a symbolic expres�

sion associated to the variable v and c�
 � � �
 cn is a conjunction of symbolic

expressions� called path conditions� A symbolic expression is either a symbo�

lic value �possibly undef� or a well parenthesized expression composed over

symbolic values� In fact� when computing a new symbolic expression� each

internal variable reference is replaced by its previous symbolic expression� For

example� the symbolic state of path
����� in the program of Fig�
 can

be obtained by the following sequence of symbolic states �

�
��� f�x�X�� �y�
��e
��� �z�undef�g� X � ����

�
���� f�x�X�� �y�
��e
��� �z�X �
��e
��g� X � ����

�
������f�x�X�� �y�
��e
��� �z�X�
��e
��g� X � ���
X�
��e
���
��e
��

where X is the symbolic value of the input variable x�

Usually� symbolic expressions and path conditions hold only over symbolic

input values� However� when �oating�point computations are involved in the

path� other symbolic values can appear in the symbolic expressions� as de�

scribed below�

��� Forward
backward analysis

Symbolic states are computed by induction on their path by a forward or a

backward analysis 	���� Each statement of each node of the path is symbol�

ically evaluated using an evaluation function which computes the symbolic

�

states� Forward analysis follows the statements of the selected path in the

same direction as that of actual program execution� whereas backward analy�

sis uses the reverse direction� Backward analysis is usually preferred when one

only wants to compute the path conditions�

��� Normalization

In the presence of �oating�point computations� special attention must be paid

to conform to the actual execution of program� It is necessary to take into

account the evaluation order and the precedence of expression operators as

speci�ed by the language � � The idea is to exploit the expression�s shape of

the abstract syntax tree built by the compiler of the program without any

rearrangement nor any simpli�cation due to optimizations � � When symbolic

expressions are directly extracted from the abstract syntax tree then� not only

the operator precedence is respected but also is the order in which operands

are evaluated� This is not always the case when symbolic expressions are ex�

tracted from source code by an analyzer� Preserving the order of evaluation

in the analyzer is essential with �oating�point computations as simple alge�

braic properties such as associativity or distributivity are lost� An approach

called normalization is proposed here� It decomposes expressions and takes

into account the above requirements� Normalization makes symbolic expres�

sions over the �oating�point numbers independent from the compiling envi�

� Some languages are quite permissive and give to the compiler some freedom in

the interpretation of �oating�point expressions� In such a case� we have to observe

the actual behaviour of the compiler�

� Compiler optimisation �ags are not allowed here particularly when they rearrange

instructions�

ronment�

Any of the symbolic expressions is decomposed in a sequence of assignments

where fresh temporary variables are introduced bearing in mind that the

order of evaluation must be preserved� For example� let E � v� � v� � v� � v�

then the resulting decomposition is E � t� � v�
 t� � t� � v�
 t� � v� � v�

because � has a higher priority than � and operands are evaluated from left

to right� This decomposition requires that intermediate results of an operation

conform to the type of storage of its operands �� � In the previous example� if v�

and v� are of single�format� then the temporary variable t� must also be single�

format� As a result� path conditions are only composed of binary or ternary

symbolic expressions that have a single operator over a known �oating�point

format� This form is called the normalized form of a symbolic expression�

� Solving path conditions over the �oating�point numbers

In this section� the �oating�point variables are supposed to take a numerical

value� We assume here that the computations do not over�ow or raise excep�

tions� These behaviours are handled by means of in�nites and NaNs and will

be considered in the next section�

Path conditions are composed of normalized symbolic expressions over �oating�

 The introduction of temporary variables does not change the semantic of �oating�

point computations as long as it maps the behaviour of the compiler and of the

�oating�point unit�

�� This property is not a requirement of IEEE���	 and consequently it is not always

true� For example� on Intel�s architectures extended formats are used by default to

store intermediate results

�

point input and temporaries variables� Each of these variables takes its nu�

merical values within a �nite interval of possible �oating�point values w�r�t� its

format� Intervals are represented by a couple of bounds that can possibly be

provided by the user� By default� any numerical single�format �oating�point

values belongs to 	���������e�� ��������e�� and any double�format

values belongs to 	�
������
����
��e���
������
����
��e����

��� Interval propagation

The solving process is based on interval propagation 	
���� which is a classical

technique used to compute the set of solutions of non�linear constraints over

the reals� The technique takes advantage of interval arithmetic 	� and rela�

tional arithmetic 	�� to reduce the domains of the variables� If Ix � 	a� b� and

Iy � 	c� d� then interval arithmetic says that Ix	y � 	a�c� b�d� contains all pos�

sible values for the expression x� y when x � Ix and y � Iy� In the same way�

Ix�y � 	a�d� b�c�� Ix�y � 	min�a	c� a	d� b	c� b	d�� max�a	c� a	d� b	c� b	d���

Iexp
x� � 	exp�a�� exp�b��� etc� Relational arithmetic allows decomposing the

constraints in projection functions over intervals� For example� the constraint

z � x � y is decomposed into three projection functions�

Iz � Ix	y Iz� Ix � Iz�y Ix� Iy � Iz�x Iy

A constraint propagation algorithm uses these projection functions to com�

pute a conservative approximation of the solutions of the constraint system�

The following example of a constraint system over the reals illustrates this

technique�

Example � Let x � ������� y � ������ be two real unknowns in the con�

straint system y � log�x� x � y � �� After a decomposition of the constraints into

�

projection functions	 the following successive approximations of x and y are obtained

by interval propagation �

x �
���	�� x � ���	�� x � ��� �� x � ������ �� x � ������ ����� ���

y �
���	�� y �
��� �� y � ���� �� y � ���������� y � ������������� ���

Interval propagation has been applied in several systems 	���� and two au�

thors of the present paper contributed to the development of one of them�

namely Interlog 	�
����� The work presented here mainly consists in adapting

a real�based interval propagation system to �oating�point numbers� It essen�

tially requires modifying projection functions to handle conservatively the

domains of �oating�point variables� In the next subsections� interval propa�

gation of �oating�point intervals and projection functions for �oating�point

constraints are described�

��� Propagation over 	oating�point intervals

During interval propagation� projection functions are incrementally introduced

into a propagation queue� An iterative algorithm manages each function one

by one into this queue by �ltering the domains of �oating�point variables of

their inconsistent values� Filtering algorithms consider only the bounds of the

domains to eliminate inconsistent values� When the domain of a variable has

been narrowed then the algorithm reintroduces in the queue all the projection

functions in which this variable appears in order to propagate this information�

The algorithm iterates until the queue becomes empty� which corresponds to

a state where no more pruning can be performed �a �xpoint��

When selected in the propagation queue� each function is added into a constraint�

store� The constraint�store is contradictory when the domain of at least one

�

variable becomes empty during the propagation� In this case� the set of cons�

traints �path conditions� is known to be unsatis�able and the corresponding

path is shown to be infeasible� The interval propagation process reaches a

�xpoint because only a �nite number of �oating�point values can be removed

from the domains� This �xpoint is a conservative overestimation �Cartesian

product of intervals� of the possible �oating�point values for the input vari�

ables�

As is usually the case with interval propagation solvers� propagation over

�oating�point intervals does not ensure that the set of constraints is satis��

able when a �xpoint is reached� Hence� one must resort to enumeration to

locate particular solutions� This is done by a labelling procedure which tries

to systematically assign a �oating�point to a variable and initiate propagation

through the constraint�store� This process is repeated until all the uninstan�

tiated variables become bound� If this valuation leads to a contradiction then

the process backtracks to other possible values or variables�

��� Floating�point variable projections

In the proposed approach� each normalized symbolic expression is decom�

posed into ternary and binary symbolic expressions� These expressions could

be directly translated into elementary constraints� Each of these constraints is

a ternary or binary constraint and is itself decomposed into projection func�

tions� A ternary symbolic expression r � a�b where � denotes one of the four

arithmetical operations �������� is decomposed into projections� the di�

rect projection proj�r� r � a�b�� the �rst inverse projection proj�a� r � a�b�

and the second inverse projection proj�b� r � a� b�� Inverse means that pro�

�

jection is performed on a right operand of an assignment� The variable a in

proj�a� r � a� b� is called the projected variable� Note that single assignment

r � a can be treated as the ternary symbolic expression r � a����� because

a����� � a even when a � ����� A binary symbolic expression a � �type�b

where type is either float or double is decomposed into a direct projection

proj�a� a � �type�b� and an inverse one proj�b� a � �type�b�� A binary sym�

bolic expression a rel b where rel denotes any of the six relational operators

��� ���������� � � is decomposed into two projections � proj�a� a rel b�

and proj�b� a rel b��

����� Computing direct projections for ternary symbolic expressions

Let 	rl� rh�� 	al� ah�� 	bl� bh� be the current �oating�point domains of r� a� b� then

the direct projection proj�r� r � a � b� computes new bounds r�l� r
�
h for the

domain of r by using the formula of Fig��

�r�
l
� r�
h
�� �al � bl� ah � bh� � �rl� rh� when 	 � �

�r�
l
� r�
h
�� �al
 bh� ah
 bl� � �rl� rh� when 	 �

�r�
l
� r�
h
�� �min
al � bl� al � bh� ah � bl� ah � bh��max
al � bl� al � bh� ah � bl� ah � bh�� � �rl� rh�

when 	 � �

�r�
l
� r�
h
�� �min
al � bh� al � bl� ah � bh� ah � bl��max
al � bh� al � bl� ah � bh� ah � bl�� � �rl� rh�

when 	 � � and 	�������� do not belong to �bl� bh�

Figure �� Formulae for direct projections proj�r� r � a� b

Although this remains implicit� it is important to bear in mind that these

formulae are based on the to�the�nearest rounding mode� Note also that they

was inspired by interval arithmetic 	��� but di�er from it �� � Thanks the

�� For example� the expected result over the reals of the sum of two numbers x and y

can be captured by the interval �z� z� where z �resp� z denotes the rounded toward

negative �resp� positive in�nity result of x� y �����

�

monotonicity of the to�the�nearest rounding direction� these formula can di�

rectly be deduced from the interval arithmetic� The special case where ����

or ���� belongs to the right operand of the � operator can easily be han�

dled by using in�nities� this will be explained in the next section� Note also

that the intersection of two intervals can be computed by using the formula

	a� b� 	c� d� � 	max�a� c�� min�b� d�� as the set of numerical �oating�point

values is totally ordered �even for both ���� and ������ Fig� � shows an ex�

ample of application of the formula for the operator �� The intervals of a� b� r

are shown with vertical lines and each horizontal arrow represents the actual

computation of the new bounds of r� before rounding� In this example� the

new inferior bound of r is rounded up although the result over the reals al� bl

is strictly less than the to�the�nearest rounded result of al � bl� This is due

to the fact that al � bl is strictly greater than mid��al � bl�
�� al � bl�� This

shows that the formula does not usually retain the solutions over the reals but

handles all the solutions over the �oating�point numbers�

r’l = max(al bl,rl)

r’h = min(ah bh, rh)

bl

bh

al

ah

rh

rl

Figure 	� Computation of direct projection proj�r� r � a� b

Note that these formula for direct projections lead to an optimal pruning of the

interval of r� because IEEE���� guarantees that the four arithmetic operations

are correctly rounded�

�

����� Computing inverse projections

Inverse projections are a little bit more complicated to compute� The 	rst

inverse projection proj�a� r � a� b� computes new bounds a�l� a
�
h for the do�

main of a whereas the second inverse projection proj�b� r � a� b� computes

new bounds b�l� b
�
h for the domain of b� The formulae to compute these inverse

projections are given in Fig� �� Note that the �rst and the second projections

for � and � are the same� Thus� only one of them is given here�

�a�
l
� a�
h
�� �mid
rl� r
�
l
�
 bh�mid
rh� r
�
h
�
 bl� � �al� ah� when 	 � �

�a�
l
� a�
h
�� �mid
rl� r
�
l
�� bl�mid
rh� r
�
h
�� bh� � �al� ah� when 	 �

�rst inverse�

�b�
l
� b�
h
�� �al
mid
rh� r
�
h
�� ah
mid
rl� r
�
l
�� � �bl� bh� when 	 �

second inverse�

�a�
l
� a�
h
�� �min
mid
rl� r

�
l
� � bl�mid
rl� r
�
l
�� bh�mid
rh� r
�
h
�� bl�mid
rh� r
�
h
�� bh��

max
mid
rl � r
�
l
�� bl�mid
rl� r
�
l
�� bh�mid
rh � r
�
h
�� bl�mid
rh� r
�
h
�� bh��

� �al� ah�

when 	 � � and 	�������� do not belong to �bl� bh�

�a�
l
� a�
h
�� �min
mid
rl� r

�
l
� � bl�mid
rl� r
�
l
�� bh�mid
rh� r
�
h
�� bl�mid
rh� r
�
h
�� bh��

max
mid
rl � r
�
l
�� bl�mid
rl� r
�
l
�� bh�mid
rh� r
�
h
�� bl�mid
rh� r
�
h
�� bh��

� �al� ah�

when 	 � �
�rst inverse�

�b�
l
� b�
h
�� �min
al �mid
rl� r

�
l
�� ah �mid
rl� r
�
l
�� al �mid
rh� r
�
h
�� ah �mid
rh� r
�
h
���

max
al �mid
rl� r
�
l
�� ah �mid
rl� r
�
l
�� al �mid
rh� r
�
h
�� ah �mid
rh� r
�
h
���

� �bl� bh�

when 	 � �
second inverse� and 	�������� do not belong to �bl� bh�

Figure �� Formula for inverse proj� proj�a� r � a� b and proj�b� r � a� b

First� all inverse projections computes the middle of �rl� r
�
l � and the middle of

�rh� r
	
h �� The reason for that is that r is the result of a to�the�nearest rounding�

More precisely� as the implemented operations are correctly rounded� they

might be seen as the rounding to to�the�nearest of the result rR over the reals

of the same operation over the reals� Thus� if the �oating point number rl

is the result of a to�the�nearest rounding� rR has to belong to the interval ��

�� �mid�rl� r
�
l �mid�rl� r

	
l � is a conservative overestimation� A more precise interval

could be computed if we take into account the value of the least signi�cant bit of rl

�or rh�

��

	mid�rl� r
�
l �� mid�rl� r

	
l ��� The same reasoning applies to rh� The computation

of the middle of two single�format or double format �oating�point variables can

easily be computed as a wider format is almost always available �� � the middle

of two singles is captured by a double and the middle of two doubles is captured

by an extended double� Note that the operations themselves are performed

over a wider format� such as in the inverse projection of � � mid�rl� r
�
l � � bh

as shown in Fig� �� Here� both operands of � are �rst converted into a greater

format� although this remains implicit in the formula�

rl-

rh+

rl

rh

bl

bh

a’h = min(mid(rh, rh
+) bl, ah)

a’l = max(mid(rl, rl
-) bh, al)

al

ah

Figure �� Computing �rst inverse projection proj�a� r � a� b

Second� special attention must be paid to the computation of the bounds of

the projected variable� Operators ������� are correctly rounded� Thus� they

can be used to compute their inverse� The complete proof of this statement

can be found in 	�� and only an outline of it is given here� Consider the

computation of a�h for the addition in Fig� �� As explained above� rh is the

�� Note however that an overestimation of the solution can still be computed using

the same format as the operands� but this usually leads to a greater imprecision�

For example� �a�l� a
�
h� � �r�l � bh� r

	
h � bl� 	 �al� ah� is a conservative overestimation

for the �rst inverse projection of the addition�

�

result of a to�the�nearest rounding of the addition of a� and b over the reals�

Thus� over the reals� the following inequality holds � a�h�b � mid�rh� r
	
h � where

the �oating�point number b � 	bl� bh�� Over the reals� this inequality leads to

a�h � mid�rh� r
	
h � � bl� In order to obtain a�h� that is to say� in order to �nd

the greatest �oating�point number less or equal to mid�rh� r
	
h � � bl �which is

nothing but the de�nition of a rounding to ���� we would have to compute

mid�rh� r
	
h �� bl with a rounding to ��� However� a to�the�nearest rounding

computes a conservative value for a�h� i�e� a value that is equal or greater than

the optimal value� and avoid the cost of a modi�cation of the rounding mode�

As a consequence� the formula given here for computing the inverse projec�

tions are not always optimal but o�er a conservative overestimation of the set

of �oating�point values that satisfy a given normalized symbolic expression�

Considering the least signi�cant bit of rl and rh can lead to slightly more

shrinking 	�� but requires changing the rounding mode several times during

the computation of each projection function� Note also that interesting results

from the literature can be used to improve the computation of inverse projec�

tions� For example� a classical result 	�� says that if x � y under�ows to a

denormalized number then x� y is exactly equal to x� y� In such a case� the

computation of the middle mid�rh� rh	� might be avoided�

��� Handling comparisons and conversions

Comparisons� Relational operators such as ��� ����� ����� � � are han�

dled by ordered set properties because the �nite set of numerical �oating�point

variables is totally ordered� The formula is similar for the �rst and the second

projections� hence only the �rst are given in Fig� �� The �oating�point domain

��

of a �resp� b� is 	al� ah� �resp� 	bl� bh�� and the domain of the result a� is 	a�l� a
�
h��

�a�
l
� a�
h
�� �max
al� bl��min
ah� bh�� for proj
a� a �� b�

�a�
l
� a�
h
�� �max
al� bl�� ah� for proj
a� a b�

�a�
l
� a�
h
�� �max
al� bl�
�� ah� for proj
a� a � b�

�a�
l
� a�
h
�� �al�min
ah� bh�� for proj
a� a � b�

�a�
l
� a�
h
�� �al�min
ah� bh�
�� for proj
a� a � b�

�a�
l
� a�
h
�� �if
al � bl � bh� then a�
l

else al�

if
ah � bl � bh� then a�
h

else ah� for proj
a� a��b�

Figure �� Formulae for projections coming from comparison operators

These formulae are mainly inspired by interval arithmetic 	� but slightly

di�er from it for the computation of modi�ed bounds� Here� the computation

bene�ts from the fact that it operates over a �nite set of �oating�point val�

ues� Conversions� The simple language described in Sec��� allows only two

conversions r � �float�a where a is a double and r � �double�a where a is a

single� Formulae that compute the bounds of projected variables with direct

and inverse projections of conversion operators are given in Fig� �� Note that

any single�format value can be exactly converted into a double�format value�

Thus� some conversions do not require any computation and remain implicit

in the formulae�

�r�
l
� r�
h
�� �max f

float�al � rl��min f

float�ah � rh�� for proj
rf � rf �
float�ad�

�a�
l
� a�
h
�� �max d
al�mid
rl� r
�
l
���min d
ah�mid
rh� r
�
h
�� for proj
ad� rf �
float�ad�

�r�
l
� r�
h
�� �max d
al� rl��min d
ah� rh�� for proj
rd� rd �
double�af �

�a�
l
� a�
h
�� �max f
al� rl��min f
ah� rh�� for proj
af � rd �
double�af �

where rf � af denote single�format variables� and rd� ad denote double�format variables�

max f�min f operate over the singles and max d�min d operate over the doubles

Figure �� Formulae for projections coming from conversion operators

�

 Handling symbolic values

IEEE���� distinguishes two kinds of symbolic values� in�nities and NaNs� The

cases where in�nities and NaNs can be produced as the result of a computation

are detailed in 	
��� However� implementing projection functions over symbo�

lic values requires to further analysis of how to combine in�nities� numerical

values� zeros and NaNs and how to deal with exceptions 	���

In the proposed approach� the numerical domain is merely extended with both

in�nities and remains totally ordered� Roughly speaking� the main idea for

computing projections consists in isolating the in�nities from the numerical

values of the domains� computing the projected variable�s domain in the nu�

merical case� combining the symbolic values between themselves� and merging

the results of both the symbolic and the numerical cases�

To compute the projections of � �direct and inverse�� tables
 and � are

required� Note that Nv stands for any non�zero numerical value and �INF

denotes any of the two in�nities�

Table �

Value of r in direct proj�r� r � a� b

an
b �INF ���� ���� Nv �INF

�INF �INF �INF �INF �INF �

���� �INF ���� ���� Nv �INF

���� �INF ���� ���� Nv �INF

Nv �INF Nv Nv Nv � f�INF�����g �INF

�INF � �INF �INF �INF �INF

Some combinations of symbolic values are impossible� For example� when r �

���� and b � �INF � the �rst inverse projection proj�a� r � a� b� computes

an empty domain for variable a� Thus� there exists no �oating�point value of

��

a able to satisfy the equation ���� � a��INF � These cases are indicated by

the presence of the symbol �� When the operands of a projection are known

and � is encountered in the tables then the projection is refuted and the

constraint store is shown to be contradictory� Note that when the sum of two

opposite operands is exactly zero and the rounding mode is the to�the�nearest

mode� then the result is ���� �and not ������ The cases where in�nity is

produced as the result of an operation over two numerical values �such as in

Nv �Nv� usually correspond to an over�ow�

More frequently� operands are just known by their interval of possible values�

Hence� when a combination of bounds is �� such as in proj�a� r � a � b�

where r � 	�INF��INF � and b � 	�INF��INF �� � is just ignored and the

interval of a is leaved unchanged �although ���� belong to the interval of r��

The new bounds of r are computed using the formula of the numerical case

�	r�l� r
�
h�� 	al � bl� ah � bh� 	rl� rh��� Signed zeros� in�nities and over�ows are

just special cases of this computation� If signed zeros belongs to the intervals of

a or b then the numerical case �Nv�Nv� of the table is applied� If an over�ow

occurs then the bounds are updated with the corresponding in�nities�

Table �

Value of a in �rst inverse proj�a� r � a� b

bn
r �INF ���� ���� Nv �INF

�INF Nv � f�INF�����g � � � �

���� �INF ���� ���� Nv �INF

���� �INF � ���� Nv �INF

Nv Nv � f�INFg � Nv � f����g Nv � f����g Nv � f�INFg

�INF � � � � Nv � f�INF�����g

The same procedure can be used for the computation of the projections of

����� using the tables given at the end of the paper� Note that the nega�

��

tive and positive numerical cases have not been distinguished in these tables�

Although this is useful to implement better pruning of domains� these cases

are not di�cult to determine as simple sign rules remain valid in the con�

text of non�zeros numerical �oating�point values� Note that the only cases

where NaN is produced when operands are non�NaNs are��� for ��� and

� 	�� ������� for � and ��

� A labelling procedure

As previously said� projection functions only reduce the domains of the vari�

ables� Thus� constraint propagation ensures neither the path conditions are

satis�able nor a test datum to be found in the general case� Note however

that this process is e�cient as it only requires O�md� operations in the worst

case where m denotes the number of constraints and d denotes the size of

the largest domain 	���� To �nd a solution� a labelling procedure has to be

implemented� Some heuristics are used to choose the variables and the values

to be �rst enumerated� Several heuristics have been discussed in 	�� and can

easily be implemented� Note that in a symbolic execution framework� only the

input variables need to be instantiated as all the other internal variables are

computed in terms of these� As soon as a value is given to an uninstantiated

variable� the interval propagator wakes up all the projection functions where

this variable appears� thereby propagating the choice through the constraint

system� In the applications of symbolic execution over �oating�point variables�

two di�cult situations may sometimes occur at the end of the initial propaga�

tion step� either the path conditions have no solutions �i�e� the corresponding

path is non�feasible� but this has not been detected� or the path conditions

��

have solutions but the resulting intervals are too approximate for it to be

found� In these two related situations the labelling process is time�consuming

and cannot be completed in all the cases� However� note there are always

less than ��� �resp� ���� possible values in the domain of a single�format �resp�

double�format� �oating�point value� So the process is no more time�consuming

than the one used in constraint�based automatic test data generation environ�

ments over integers 	�����

��

� Implementation and experimental results

We implemented a symbolic execution tool for ANSI C �oating�point comput�

ations� called FPSE �Floating Point Symbolic Execution�� The tool extracts

path conditions and symbolic expressions by a forward analysis and tries to

solve them using the principles described in this paper� The constraint prop�

agation engine of FPSE is written in Prolog whereas the projection functions

are written in C�

FPSE handles �oating�point computations that strictly conform to IEEE����

and are intended to run on Sparc architectures� ANSI C accommodates the

IEEE ��� �oating point standard by not adopting any constraints on �oating

point which are contrary to this standard� In particular� it allows operations

on float to be performed in single precision calculations� Note� however� that

ANSI C gives the compiler a large degree of freedom in how to interpret and

evaluate a �oating�point expression to a precision wider than that normally

associated with its type� While compiling the tested programs� it is necessary

to avoid the use of compiler options that activate code optimizations as well as

options that allow the storage of �oating�point values into extended formats�

��

In practice� it is very di�cult to guarantee that the symbolic execution

will strictly conform to the actual execution because of several reasons� the

lack of documentation of the compiler options and design� the existence of

unexpected hardware optimizations such as the fused multiply�add a�b c�

the unexpected change of rounding modes by user actions� the defaults in the

compiler implementation and so on� These limitations have to be taken into

account when interpreting the results of FPSE�

��� Experimental results

To evaluate the approach� we compared the results provided by FPSE with

expected �oating�point results computed by hand and results obtained with

three available solvers over the reals and the rationals� Distributed as part as

the ECLIPSE Prolog system� are the following three distinct solvers�

�
� the IC library 	
�� which is an hybrid integer!real interval arithmetic

constraint solver based on interval propagation� As in any other inter�

val propagation solver over the reals �e�g� Ilog solver� RealPaver 	����

Interlog 	�
������ each real number is represented by a pair of �oating

point bounds and any arithmetic operation is performed by using these

bounds� The resulting interval is then widened to take into account any

possible error in the operation� thus ensuring the resulting interval con�

tains the true answer over the reals� This contrasts with our approach

where �oating�point numbers and operations are correctly approximated

by relations over �nite sets of �oating�point numbers �also represented

by pair of �oating point bounds��

��� the clpr library 	��� that solves linear constraints over the reals� clpr

��

makes use of �oating�point numbers to approximate computations over

the reals�

�� the clpq library 	��� that solves linear constraints over rationals com�

puted with an arbitrary precision� In clpq� each rational is treated as a

pair of integers and any arithmetic computation remains exact�

Both solvers clpr and clpq exploit the simplex method and a Fourier�Motzkin

algorithm to solve linear constraints� In addition� they provide several isolation

axioms to take into account some restricted shapes of non�linear constraints�

w > 0.0

z= z * x
w= w-1.0

y<0.0

z=1.0 / z

a

d

e

f

g

h

power(float x,float y)
float w= y, float z= 1.0

return(z)

c

b y < 0.0

w = -y

Figure �� Control �ow graph of program power�c

Programs� Several �oating�point programs of small size were extracted from

the literature to be carefully examined� We considered two distinct uses of

symbolic execution� output symbolic expression computation and path feasi�

bility�

Firstly� symbolic expressions were extracted from 	
�� and implemented in

programs g��c� g��c� g��c contains the C expression X � �����e � � �

��e���
��e���
��e� � whereas g��c contains � �� B�� �AC� For this

��

latter� two symbolic expressions were computed� the �rst one corresponds to

the direct evaluation of the expression by taking A �
���� B � ��� C �

���� whereas the second one corresponds to the inverse evaluation where C

is unknown and " �� ����� Symbolic expressions were extracted from paths

of the program power�c that computes xy� given in Fig��� The two selected

paths contain a number of iterations ��� and ��� that lead to over�ows� All

these symbolic expressions are given in the top of Tab��

Secondly� path feasibility was experimented with FPSE on path conditions

extracted from programs foo��c and foo��c given in the introductory part

of the paper �Fig�
���� from the program howden�c that is a small�size numeric

computation extracted from 	��� and from the program power�c �Fig���� For

these programs� path conditions are given in the bottom of Tab�� Second col�

umn provides the expressions as they appear in the literature� In particular�

note that the path conditions of examples ����
��

 results from a simpli�ca�

tion process which has eliminated several redundant constraints� This process�

as proposed for several symbolic execution tools 	
��� is unsound over �oating�

point variables as algebraic properties �such as associativity and distributivity�

are not preserved� Third column of Tab� contains the normalized symbolic ex�

pressions as they are computed by the FPSE tool in the normalization process

�sec���� Finally� the last column contains the number of constraints present in

the normalized path conditions�

All programs were compiled with gcc �� on an ultra Sparc FPU under Solaris

����

�� gcc������ �g �Wall �DFPSE SPARC �lm �std�gnu�� �ffloat�store

�mhard�float �msoft�quad�float �munaligned�doubles
some default options�

�

Table �

Programs and FPSE expressions

Program Symbolic expr� over R Normalized FPSE expression �

� g��c X � �������� �����	�����������

T� � ���e � �� � ���e��� T� � T� � ���e���

X � T� � ���e � ��

�

� g��c

 � B� � � � A � C with

A � ����� B � ����� C � ����

T� � B � B� T� � A � C� T� � ��� � T��

 � T� � T�

�

� g��c

 � B� � � � A � C with

A � ����� B � �����
 � �

T� � B � B� T� � A � C� T� � ��� � T��

 � T� � T��
 �� ���

�

power�c

�X����Y����	

a�b�c�fd�eg���d�f�g�h

RES � XY with X � ��� Y � ���

W� � ��� � Y� Z� � ����

fZi�� � Zi �X�Wi�� � Wi � ���gi�������

Z�� � ��� � Z��� RES � Z��

��

power�c

�X����Y����	

a�b�c�fd�eg���d�f�g�h

RES � XY with X � ��� Y � ���

W� � ��� � Y� Z� � ����

fZi�� � Zi �X�Wi�� � Wi � ���gi������ �

Z�� � ��� � Z��� RES � Z��

���

Program Path condition over R Normalized FPSE path conditions �

� foo��c X � �� X � ���� � ���� X � ���� T� � X � ���e��� T� � ���e�� �

� foo��c X � ���� X � ���� � ���� X � �������� T� � X � ���e��� T� � ���e�� �

� howden�c A � B � � � ���� �� � A � B � �

T� � A � B�X� � T� � ���� X� � ������

X� � ����� � X�� X� � X� � ���� X� � ���

�

�

power�c

�X�Y unknown	

a�b�c�d�f�g�h

Y � �� Y � � Y � ���� W � �Y�W � ��� �

��

power�c

�X�Y unknown	

a�b�c�fd�eg���d�f�g�h

Y � �� Y � ���� Y � ���

Y � ���� W� � ��� � Y�

fWi � ���� Wi�� � Wi � ���gi�������W�� � ���

��

��

power�c

�X�Y unknown	

a�b�c�fd�eg���d�f�g�h

Y � �� Y � ����� Y � ���

Y � ���� W� � ��� � Y�

fWi � ���� Wi�� � Wi � ���gi�������W�� � ���

���

Results� In all the cases� the CPU time required to get the results with any

of the four solvers �FPSE� IC� clpr� clpq� is less than a few seconds� so it is

not shown� The �rst column contains the expected results computed either

by executions of the C program or by manual analysis� In both cases� we

provide the results over the singles and the doubles� Binary �oating�point

numbers are represented by decimal constants� noted with
� decimals� The

second column contains the results computed by the solvers over the reals

and the rationals �IC� clpr and clpq�� These solvers do not use single�format

�oating�point numbers� hence only the results over the double�format or the

rationals is given� The last column contains the results computed by FPSE

over both formats� Note that for any of the solvers �including FPSE�� the

labelling process has not been triggered and the results that are shown are

obtained just after the constraint propagation step� Note that� as Eclipse IC is

based on interval propagation� interval bounds are only changed if the absolute

and relative changes of the bound exceed a given propagation threshold� which

is set to
��e���

Table 	

First experimental results

Expected with Eclipse with FPSE

� single�X �

�������������������e���

double�X �

�������������������e���

IC� X 	 �����e���� ��������������

clpr� X � ���

clpq� X �

��������������������������������

single�X � �������������������e���

double�X � �������������������e���

� single�
 �

�������������������

double�
 �

�������������������

IC�
 	 ����������������������

��������������������

clpr�
 � �������������������

clpq�
 � ������ � ������

single�
 �

�������������������

double�
 �

�������������������

� single�C �

����������������

double�C �

���������������

IC� C 	

����������������� ����������������

clpr� C � ��������������

clpq� C � �����������

single�C 	

������������������ �����������������

double�C 	

����������������� ����������������

� single�RES � ����

double�RES �

�������������������e���

IC� RES 	 �������������������e����

������������������e����

clpr� RES � ���e���

clpq� RES � �����

single� RES � ����

double�RES � �������������������e���

 single�RES � ����

double� RES � ����

IC� RES 	 ����� ��������������e�����

clpr� RES � ���e���

clpq� RES � �����

single� RES � ����

double� RES � ����

Expected with Eclipse with FPSE

� single�X 	

�������������������e���

�����������������e����

double�X 	

����������������e�����

���������������e���

IC� infeasible path

clpr� infeasible path

clpq� infeasible path

single�X 	

�������������������e���

������������������e����

double�X 	

����������������e�����

���������������e���

� single�infeasible path

double�X 	

����������������e���

������������������e����

IC� X 	 ����� ��������

clpr� ���� � X � �������

clpq� � � X � �����

single�infeasible path

double�X 	

����������������e���

������������������e����

� single�double�infeasible path IC� infeasible path

clpr� ����� � B�A � ���� ���� � B�A � ���

clpq� ��� � B�A � �� �� � B�A � �

single�double�infeasible path

� single�double�infeasible path ic�clpr�clpq� infeasible path single�double�infeasible path

�� single�Y 	 �����e���

���������������������

double�Y 	 �����e���

����������������������

IC� Y 	 �������������

clpr� ����� � Y � �����

clpq� ��� � Y � ���

single�Y 	 �����e��� ������

double�Y 	 �����e��� ������

�� single�Y 	 �������

������������������

double�Y 	 �������

����������������������

IC� Y 	 ��������������

clpr� ����� � Y � ������

clpq� ��� � Y � ����

single�Y 	 ������� �������

double�Y 	 ������� �������

Analysis� First examples illustrate that the four evaluators may produce

distinct results� In example
� the results computed by both clpr and clpq are

incorrect not only w�r�t� the expected result over the �oats ��rst column� but

also over the expected solutions over the reals �i�e� �
��e���� The library IC

provides a correct but useless result over the reals as the superior bound of the

�

computed interval is greater than
���� As expected� FPSE provides the result

strictly conforming to the evaluation of the program over the �oating�point

numbers �single and double�� without any overestimation� Examples � and

show that even when expressions are not targeted to exemplify �oating�point

computation problems �g��c computes the roots of the second order equation��

the results given by the three solvers over the reals and the rationals �IC clpr

clpr� do not conform to the ones computed by program executions� In example

� FPSE returns an interval of � �oating point values �in both cases� but only

one of them satisfy the symbolic expression� Examples � and � show situations

where �oating�point numbers are �ushed to zero by the computations� leading

to a divergence with the computations over the reals �the program returns ����

instead of a strict positive quantity�� FPSE provides the expected result as

����INF results in ����� Example � and � have already been discussed in

the introduction of the paper� Examples � and � demonstrate path infeasibility�

In example �� both clpr and clpq return an unsolved non�linear constraint

system� Solvers based on interval propagation �IC�FPSE� are not restricted

to deal with linear constraints hence path infeasibility is shown� In example

�� all the four solvers provide the expected result� Finally� examples
� and

 illustrate the capacity of the solvers to deal with a realistic number of

constraints� even when inverse projections are involved� In examples ����
��

�

IC and FPSE return the same �possibly overestimated� correct results at the

end of the constraint propagation step� but only FPSE is trustworthy over the

�oating�point numbers�

To conclude� these experiments demonstrate that the proposed approach is

suitable to deal e�ciently with small�sized C �oating�point computations� Of

course� the set of experiments is too restricted to easily extrapolate the results

to larger computations but this work is a �rst attempt to address the problem

of �oating�point computations in symbolic execution�

 Further work

In this paper� a new symbolic execution framework able to handle correctly

IEEE���� compliant �oating�point computations has been introduced� The

de�nitions of correct and e�cient projection functions for solving normalized

symbolic expressions have been given� Handling other rounding modes than

the to�the�nearest number appears as being a tedious but not di�cult exten�

sion of the proposed framework� In the same spirit� handling the square root

function is straightforward� this function is included in the IEEE���� standard

and is correctly rounded� Dealing with extended formats appears to be an in�

teresting extension as computations require more and more precision� This

extension probably requires using multiple�precision �oating�point numbers�

as exploited in some computer algebra systems� The most di�cult extension

concerns the transcendental functions as there is nothing to guarantee that

the computation is correctly rounded in these cases� This problem known as

the table maker dilemma problem is likely to be the more prospective part of

future work on this topic�

Acknowledgements

We are very grateful to Andy King for its careful reading of the paper and we

wish to thank Michel Rueher for fruitful discussions on this work�

�

References

��� King� J�C�� �Symbolic execution and program testing�� Communications of the

ACM� vol� ��� no� �� pp� ������	� July �����

��� Goldberg� A� and Wang� T� and Zimmerman� D�� �Applications of feasible path

analysis to program testing�� in Proceedings of the International Symposium

on Software Testing and Analysis �ISSTA���� Seattle� WN� August ���	� pp�

������

��� Jasper� R� and Brennan� M� and Williamson� K� and Zimmerman� D�� �Test

data generation and feasible path analysis�� in Proceedings of the International

Symposium on Software Testing and Analysis �ISSTA���� Seattle� WN� August

���	� pp� �������

�	� Weyuker� E�� �Translatability and decidability questions for restricted classes

of program schemas�� SIAM Journal of Computing� vol� �� no� 	� pp� ��������

November �����

��� Clarke� L�� �A system to generate test data and symbolically execute programs��

IEEE Transactions on Software Engineering� vol� �� no� �� pp� ��������

September �����

��� Howden� W�� �Reliability of the path analysis testing strategy�� IEEE

Transactions on Software Engineering� vol� �� no� �� pp� ������	� September

�����

��� Boyer� R� and Elspas� B� and Levitt� K�� �SELECT � a formal system for testing

and debugging programs by symbolic execution�� SIGPLAN Notices� vol� ���

no� �� pp� ��	��	�� June �����

��� Ramamoorthy� C� and Ho� S� and Chen� W�� �On the automated generation of

program test data�� IEEE Transactions on Software Engineering� vol� �� no� 	�

�

pp� �������� December �����

��� Bicevskis� J� and Borzovs� J� and Straujums� U� and Zarins� A� and Miller�

E�� �SMOTL � a system to construct samples for data processing program

debugging�� IEEE Transactions on Software Engineering� vol� �� no� �� pp�

������ January �����

���� Coward� D� and Ince� D�� The Symbolic Execution of Software � The SYM�BOL

System� Chapman � Hall� London� UK� �����

���� Meudec� C�� �ATGen
 automatic test data generation using constraint logic

programming and symbolic execution�� Software Testing	 Veri�cation and

Reliability� vol� ��� no� �� pp� ������ June �����

���� DeMillo� R�A� and O�ut� J�A�� �Experimental results from an automatic test

case generator�� ACM Transactions on Software Engineering Methodology� vol�

�� no� �� pp� �������� April �����

���� Coen�Porisini� A� and de Paoli� F� and Ghezzi� C� and Mandrioli� D�� �Software

specialization via symbolic execution�� IEEE Transactions on Software

Engineering� vol� ��� no� �� pp� ��	����� September �����

��	� Fahringer� T� and Scholz� B�� �A uni�ed symbolic evaluation framework

for parallelizing compilers�� IEEE Transactions on Parallel and Distributed

Systems� vol� ��� no� ��� pp� ���������� November �����

���� Coen�Porisini� A� and Denaro� G� and Ghezzi� C� and Pezze� M�� �Using

symbolic execution for verifying safety�critical systems�� in Proceedings of the

European Software Engineering Conference �ESEC
FSE����� Vienna� Austria�

September ����� ACM� pp� �	������

���� Chen� T�Y� and Tse� T�H� and Zhou� Z�� �Semi�proving
 an integrated method

based on global symbolic evaluation and metamorphic testing�� in Proceedings

�

of the International Symposium on Software Testing and Analysis �ISSTA�����

Roma� Italy� July ����� pp� ��������

���� Goldberg� D�� �What every computer scientist should know about �oating�point

arithmetic�� ACM Computing Surveys� vol� ��� no� �� pp� ��	�� March �����

���� IEEE���	� �Standard for binary �oating�point arithmetic�� ACM SIGPLAN

Notices� vol� ��� no� �� pp� ����� February �����

���� Brisset� P� and Sakkout� H� and Fruhwirth� T� and Gervet� C� and Harvey� et

al�� ECLiPSe Constraint Library Manual� International Computers Limited

and Imperial College London� UK� ����� Release ����

���� Granvilliers� L�� RealPaver User�s Manual � Solving Nonlinear Constraints by

Interval Computations� University of Nantes� FR� ����� Release ����

���� Botella� B� and Taillibert� P�� �Interlog
 Constraint logic programming on

numeric intervals�� in Third International Workshop on Software Engineering	

Arti�cial Intelligence and Expert Systems� Oberammergau� October �����

���� Lhomme� O� and Gotlieb� A� and Rueher� M� and Taillibert� P�� �Boosting

the interval narrowing algorithm�� in Proceeedings of the Joint International

Conference and Symposium on Logic Programming �JICSLP����� Bonn�

September ����� MIT Press� pp� ��������

���� Michel� C�� �Exact projection functions for �oating point number constraints��

in Proceedings of seventh AIMA Symposium� Fort Lauderdale� FL� USA� �����

��	� Miller� W� and Spooner� D�� �Automatic generation of �oating�point test

data�� IEEE Transactions on Software Engineering� vol� �� no� �� pp� ��������

September �����

���� Gotlieb� A� and Botella� B� and Rueher� M�� �Automatic test data generation

using constraint solving techniques�� in Proceedings of the International

�

Symposium on Software Testing and Analysis �ISSTA����� Clearwater Beach�

FL� USA� March ����� pp� ������

���� Gotlieb� A� and Botella� B� and Rueher� M�� �A clp framework for computing

structural test data�� in Proceedings of Computational Logic �CL�������

London� UK� July ����� LNAI ����� pp� ����	���

���� Holzbaur� C�� OEFAI clp�q	r� Manual Rev� ������ Austrian Research Institute

for Arti�cial Intelligence� Vienna� AU� ����� TR�������

���� Muchnick� S� and Jones� N�� Program Flow Analysis� Theory and Applications

� Chapter � � L� Clarke	 D� Richardson� Prentice�Hall� Englewood Cli�s� New

Jersey� �����

���� Coen�Porisini� A� and de Paoli� F�� �Array representation in symbolic

execution�� Computer Languages� vol� ��� no� �� pp� �������� �����

���� Dillon� E� and Meudec� C�� �Automatic test data generation from embedded c

code�� in Proceedings of SAFECOMP��� Potsdam� Germany� September ���	�

Springer Verlag� LNCS ����� pp� ������	�

���� Benhamou� F� and McAllester� D� and van Hentenryck� P�� �CLP�Intervals

revisited�� in Proceedings of the ��� International Symposium on Logic

Programming �ILPS���� Ithaca� New York� November ���	� pp� ��	����� MIT

Press�

���� Benhamou� F� and Older� W�� �Applying interval arithmetic to real� integer

and boolean constraints�� Journal of Logic Programming� vol� ��� no� �� pp�

���	� July �����

���� Moore� R�A�� Interval Analysis� Prentice Hall� New Jersey� �����

��	� Cleary� J�G�� �Logical arithmetic�� Future Computing Systems� vol� �� no� ��

pp� �����	�� �����

�

���� Older� W� and Vellino� A�� �Extending prolog with constraints arithmetic on

reals intervals�� in Proceedings of IEEE Canadian Conference on Electrical and

Computer Engineering� ����� IEEE Computer Society Press�

���� Hickey� T�J� and Ju� Q� and van Emden� M�H�� �Interval arithmetic
 From

principles to implementation�� Journal of ACM� vol� 	�� no� �� pp� ����������

September �����

���� Hauser� J�R�� �Handling �oating�point exceptions in numeric programs�� ACM

Transactions on Programming Language and Systems� vol� ��� no� �� pp� ����

��	� March �����

���� Michel� C� and Rueher� M� and Lebbah� Y�� �Solving constraints over �oating�

point numbers�� in Proceedings of Principles and Practices of Constraint

Programming �CP����� Paphos� Cyprus� November ����� Springer Verlag�

LNCS ����� pp� ��	�����

���� DeMillo� R�A� and O�ut� J�A�� �Constraint�based automatic test data

generation�� IEEE Transactions on Software Engineering� vol� ��� no� �� pp�

�������� September �����

�	�� Howden� W�� �Validation of scienti�c programs�� ACM Computing Surveys�

vol� �	� no� �� pp� �������� June �����
�

Appendix

This appendix contains the tables used in direct and inverse projections when

in�nities are involved in the computations�

Table �

Value of r in direct proj�r� r � a� b

an
b �INF ���� ���� Nv �INF

�INF � �INF �INF �INF �INF

���� �INF ���� ���� Nv �INF

���� �INF ���� ���� Nv �INF

Nv �INF Nv Nv Nv � f�INF�����g �INF

�INF �INF �INF �INF �INF �

Table �

Value of r in direct proj�r� r � a
 b

an
b �INF ���� ���� Nv �INF

�INF �INF � � �INF �INF

���� � ���� ���� f����g �

���� � ���� ���� f����g �

Nv f�INFg f����g f����g Nv � f������INFg f�INFg

�INF �INF � � �INF �INF

Table �

Value of r in direct proj�r� r � a� b

an
b �INF ���� ���� Nv �INF

�INF � �INF �INF f�INF��INFg �

���� ���� � � f����g ����

���� ���� � � f����g ����

Nv f����g f�INFg f�INFg Nv � f������INFg f����g

�INF � �INF �INF f�INF��INFg �

��

Table �

Value of a in �rst inverse proj�a� r � a� b

bn
r �INF ���� ���� Nv �INF

�INF � � � � Nv � f�INF�����g

���� �INF � f����g Nv �INF

���� �INF ���� ���� Nv �INF

Nv Nv � f�INFg � Nv Nv � f����g Nv � f�INFg

�INF Nv � f�INF�����g � � � �

Table �

Value of a in �rst inverse proj�a� r � a
 b

bn
r �INF ���� ���� Nv �INF

�INF Nv � f�INFg � � � Nv � f�INFg

���� � Nv � f����g Nv � f����g � �

���� � Nv � f����g Nv � f����g � �

Nv Nv � f�INFg f����g f����g Nv Nv � f�INFg

�INF Nv � f�INFg � � � Nv � f�INFg

Table ��

Value of a in �rst inverse proj�a� r � a� b

bn
r �INF ���� ���� Nv �INF

�INF � Nv � f����g Nv � f����g � �

���� Nv � f�INFg � � � Nv � f�INFg

���� Nv � f�INFg � � � Nv � f�INFg

�INF � Nv � f����g Nv � f����g � �

Nv f�INFg f����g f����g Nv f�INFg

�

Travaux connexes et portée de l’article

En parallèle des travaux entrepris dans les projets INKA et V3F, des recherches
ont été menées pour la prise en compte des calculs flottants en Interprétation Ab-
straite [Goubault 01] avec le domaine abstrait des intervalles et celui des polyè-
dres convexes [Miné 04]. Ces travaux ont donné lieu à deux outils essentiels pour
l’analyse statique de programmes C contenant des calculs flottants: Fluctuat [Del-
mas 09] et Astrée [Cousot 05]. L’objectif consistant à étudier la stabilité numérique
des calculs flottants a également été poursuivi plus récemment par les travaux de
Tang et al. [Tang 10]. Néanmoins, la prise en compte des flottants dans les calculs
d’intervalles utilisés en Interprétation Abstraite ne partage pas la problématique
de la résolution de contraintes sur les flottants. En effet, ils sont basés sur une in-
terprétation en avant des programmes C, ce qui ne nécessite pas la modélisation
des projections indirectes sur les domaines abstraits utilisés pour les flottants. En
s’appuyant sur une formalisation de la norme IEEE-754, il a néanmoins été proposé
dans [Boldo 09] de certifier les calculs abstraits flottants en utilisant le système de
preuve Coq.

En génération automatique de test où la modélisation des projections indirectes
est nécessaire, deux approches principales ont été proposées. La première est basée
sur l’essai de valeurs et la réfutation [Miller 76, Lakhotia 10] et peut-être com-
prise comme une variation de techniques de Recherche Locale [Arcuri 09]. La sec-
onde est la modélisation des erreurs d’arrondis directement au coeur de la procé-
dure de décision utilisée. Bien qu’il ait été noté que les calculs flottants ne sont
pas systématiquement impliqués dans le flot de contrôle et peuvent donc être ig-
norés dans certains cas pour la génération automatique de données de test [Gode-
froid 10], plusieurs approches récentes visent à traiter correctement les calculs flot-
tants au sein des résolveurs SMT (Satisfiability Modulo Theory). L’approche qui
prend en compte les flottants en exécution symbolique, a longtemps consisté à
les traiter comme des rationnels ou des réels, en ignorant les erreurs d’arrondi.
Les solveurs SMT tels que Yices ou Z3 [de Moura 08a] utilisent des procédures
de décision basées sur la Programmation Linéaire (i.e., simplexe, élimination de
Fourier-Motzkin, logique de différence) pour les contraintes linéaires. Sachant que
ces procédures sont elles-mêmes implantées avec les flottants, leur résultat ne doit
être interprété qu’avec beaucoup de circonspection. Néanmoins, un effort récent
supporté par Microsoft2 a été lancé pour proposer une théorie normative des cal-
culs sur les flottants utilisable dans les solveurs SMT. Une autre approche a visé à
combiner des sur-approximations et sous-approximations de calculs flottants dans
un calcul itératif, pour approcher les résultats de la résolution d’expressions sur les
flottants [Brillout 09]. Dans le cadre des travaux sur la résolution de contraintes sur
les flottants [Michel 01, Michel 02, Botella 06], une approche pour améliorer les ca-
pacités de filtrage des contraintes consiste à tirer parti des propriétés numériques
des calculs flottants. Pour les contraintes linéaires, cela conduit à une technique
de relaxation linéaire sur les réels [Mohammed Said Belaid 10], tandis que pour
les approches à base de propagation d’intervalles, Marre et Michel ont proposé

2http://www.cprover.org/SMT-LIB-Float/

dans [Marre 10] d’exploiter la représentation des flottants dans les algorithmes de
filtrage de l’addition et la soustraction flottante. Tout récemment, nous avons pro-
posé de généraliser ce travail en le reformulant, et en proposant des algorithmes
de filtrage pour la multiplication et la division flottante [Carlier 11b].

Ce chapitre clos la seconde partie du mémoire sur quelques développements
auxquels nous avons contribués dans le domaine du test à base de contraintes.
Ces développements ont eu des applications dans le domaine du test logiciel que
nous évoquons dans la patrie suivante.

Part III

Applications

139

Chapter 8

Génération de tests pour Java
Card

La promesse du déploiement massif de terminaux mobiles intégrant des capac-
ités d’exécutions d’applications embarquées est désormais une réalité (e.g., smart-
phones, mobiles Java, carte à puce Java). Ces terminaux, munis d’une carte à puce
ouverte, s’appuient le plus souvent sur des versions spécialisées de la plateforme
Java telles que J2ME ou Java Card. Les applications logicielles exécutables sur
ces terminaux mobiles doivent être validées et certifiées par les opérateurs afin
d’offrir des garanties de sécurité et de sûreté de fonctionnement. Ces phases de
validation et de certification sont aujourd’hui reconnues comme essentielles mais
très coûteuses. En effet, elles reposent sur des techniques de test et d’analyse sta-
tique qui sont encore très artisanales. En particulier, les scenarii de test qui visent à
détecter des comportements dangereux du terminal ou des défaillances, sont créés
manuellement. Un des enjeux économiques de ce domaine consiste à mettre au
point des techniques de tests permettant la validation et la certification des cartes
la plus automatisée possible.

Ce chapitre présente deux applications du test à base de contraintes, à la vali-
dation de la plateforme Java Card, qui est le dialecte Java dédié à la carte à puce.
Nous nous sommes intéressés à Java Card dans le cadre du projet RNTL CASTLES
(2003-2006) qui visait à bâtir des outils pour la certification de la machine virtuelle
Java Card (“Java Card Virtual Machine”, JCVM). Le premier des deux articles de
ce chapitre propose l’utilisation des “Constraint Handling Rules” pour générer des
tests pour chaque instruction de la JCVM. Partant d’une formalisation Jakarta (un
dialecte de Coq) de la JCVM, un modèle à contraintes sous forme de règles CHR est
automatiquement généré pour chaque instruction et ensuite résolu pour instancier
un état abstrait de la machine virtuelle. Cette application des CHR a été reconnue
comme étant pertinente [Sneyers 10] et plusieurs travaux concernant la génération
automatique de tests avec des CHRs ont tiré parti des résultats de ce papier. En
particulier, on peut mentionner les travaux de Degrave et al. [Degrave 09] et Ger-
lich [Gerlich 10] qui utilisent les CHRs pour générer automatique des cas de test

141

pour les programmes impératifs.

S.D. Gouraud and A. Gotlieb. Using chrs to generate test
cases for the JCVM. In Eighth International Symposium
on Practical Aspects of Declarative Languages (PADL’06),
Charleston, South Carolina, January 2006. LNCS 3819.

Using CHRs to generate functional test cases

for the Java Card Virtual Machine?

Sandrine-Dominique Gouraud and Arnaud Gotlieb

IRISA/CNRS UMR 6074,
Campus Universitaire de Beaulieu,
35042 Rennes Cedex, FRANCE

Phone: +33 (0)2 99 84 75 76 – Fax: +33 (0) 2 99 84 71 71
gouraud@lri.fr, gotlieb@irisa.fr

Abstract. Automated functional testing consists in deriving test cases
from the specification model of a program to detect faults within an
implementation. In our work, we investigate using Constraint Handling
Rules (CHRs) to automate the test cases generation process of functional
testing. Our case study is a formal model of the Java Card Virtual Ma-
chine (JCVM) written in a sub-language of the Coq proof assistant. In
this paper we define an automated translation from this formal model
into CHRs and propose to generate test cases for each bytecode defini-
tion of the JCVM. The originality of our approach resides in the use of
CHRs to faithfully model the formally specified operational semantics of
the JCVM. The approach has been implemented in Eclipse Prolog and
a full set of test cases have been generated for testing the JCVM.

Keywords: CHR, Software testing, Java Card Virtual Machine.

1 Introduction

The increasing complexity of computer programs ensures that automated
software testing will continue to play a prevalent role in software valida-
tion. In this context, automated functional testing consists in 1) generat-
ing test cases from a specification model, 2) executing an implementation
using the generated test cases and then 3) checking the computed results
with the help of an oracle. In automated functional testing, oracles are
generated from the model to provide the expected results. Several mod-
els have been used to generate test cases: algebraic specifications [1], B
machineries [2] or finite state machines [3], just to name a few.
In our work, we investigate using Constraint Handling Rules (CHRs)
to automate the test cases and oracles generation process of functional
testing. Our specification model is written in a sub-language of Coq:

? This work is supported by the Réseau National des Technologies Logicielles as part
of the CASTLES project (www-sop.inria.fr/everest/projects/castles/). This
project aims at defining a certification environment for the JavaCard platform. The
project involves two academic partners: the Everest and Lande teams of INRIA and
two industrial partners: Oberthur Card Systems and Alliance Qualit Logicielle.

the Jakarta Specification Language (JSL) [4]. Coq is the INRIA’s proof
assistant [5] based on the calculus of inductive constructions that al-
lows to mechanically prove high-order theorems. Recently, Coq and JSL
were used to derive certified Byte Code Verifiers by abstraction from
the specification of a Java Card Virtual Machine [4, 6]. The Java Card
Virtual Machine (JCVM) carries out all the instructions (or bytecodes)
supported by Java Card (new, push, pop, invokestatic, invokevirtual,
etc.). In this paper, we present how to generate test cases and oracles for
each JSL byte code specification. Our idea is to benefit from the high
declarativity of CHRs to express the test purpose as well as the JSL
specification rules into a single framework. Then, by using traditional
CHR propagation and labelling, we generate test cases and oracles as
solutions of the underlying constraint system. The approach has been
implemented with the CHR library of Eclipse Prolog [7] and a full set of
test cases have been generated for testing the JCVM.
This paper is organised as follows: Section 2 introduces JSL and its
execution model; Section 3 recalls some background on CHRs; Section
4 introduces the translation rules used to convert a formal specification
written in JSL into CHRs; Section 5 presents our algorithm to generate
functional test cases and oracles for testing an implementation of the
JCVM; Section 6 describes some related works, and finally Section 7
concludes the paper with some research perspectives.

2 The Jakarta Specification Language

The Jakarta Specification Language (JSL), as introduced in [8], is a first
order language with a polymorphic type system. JSL functions are for-
mally defined with conditional rewriting rules.

2.1 Syntax

JSL expressions are first order terms with equality (==), built from
term variables and from constant symbols. A constant symbol is either
a constructor symbol introduced by data types definitions or a function
symbol introduced by function definitions.
Let C be a set of constructor symbols, F be a set of function symbols
and V be a set of term variables. The JSL expressions set is the term set
E defined by: E::= V|E == E|CE∗|FE∗. Let var be the function defined
on E → V∗ which returns the set of variables of a JSL expression.
Each function symbol is defined by a set of conditional rewriting rules.
This unusual format for rewriting is close to functional language with
pattern-matching and proof assistant. These (oriented) conditional rewrit-
ing rules are of the form l1 → r1, . . . , ln → rn ⇒ g → d where:
– g = fv1 . . . vm where ∀i, vi ∈ V and ∀i, j, vi 6= vj
– li is either a variable or a function which does not introduce new

variables: for 1 ≤ i ≤ n, var(li) ⊆ var(g)∪ var(r1) ∪ . . . ∪ var(ri−1)
– ri should be a value called pattern (built from variables and con-

structors), should contain only fresh variables and should be linear1:

1 All the variables are required to be distinct

for 1 ≤ i, j ≤ n and i 6= j, var(ri) ∩ var(g) = ∅ and
var(ri) ∩ var(rj) = ∅

– d is an expression and var(d) ⊆ var(g) ∪ var(r1) . . . ∪ var(rn)
The rule means if for all i, li can be rewritten into ri then g is rewrit-
ten into d. Thereafter, these rules are called JSL rules. JSL allows the
definition of partial or non-deterministic functions.

Example 1 (JSL def. of plus extracted from the JCVM formal model).
data nat = 0 | S nat.
function plus :=
〈plus r1〉 n → 0 ⇒ (plus n m) → m;
〈plus r2〉 n → (S p)⇒ (plus n m) → (S (plus p m)).

2.2 Execution model of JSL

Let e|p denote the subterm of e at position p then expression e[p ← d]
denotes the term e where e|p is replaced by term d.
Let R be a set of rewriting rules, then an expression e is rewritten into
e′ if there exists a rule l1 → r1, . . . , ln → rn ⇒ g → d in R, a position p
and a substitution θ such as:
– e|p = θg and e′ = e[p← θd]
– {θli →∗ θri}∀1≤i≤n where →∗ is the transitive cloture of →

Note that nothing prevents JSL specifications to be non-terminating or
non-confluent. However, the formal model of the JCVM we are using as
a case study has been proved terminating and confluent within the Coq
proof assistant [4, 6].

Example 2 (Rewriting of (plus 0 (plus(S 0) 0))).
(plus 0 (plus (S 0) 0))→r1 (plus (S 0) 0)→r2 (S (plus 0 0))→r1 (S 0)

3 Background on Constraint Handling Rules

This section is inspired of Thom Frühwirth’s survey and book [9, 10].
The Constraint Handling Rules (CHRs) language is a committed-choice
language, which consists of multi-headed guarded rules that rewrite con-
straints into simpler ones until they are solved. This language extends
a host language with constraint solving capabilities. Implementations of
CHRs are available in Eclipse Prolog [7], Sicstus Prolog, HAL [11], etc.

3.1 Syntax

The CHR language is based on simplification where constraints are re-
placed by simpler ones while logical equivalence is preserved and prop-
agation where new constraints which are logically redundant are added
to cause further simplification. A constraint is either a built-in (prede-
fined) first-order predicate or a CHR (user-defined) constraint defined by
a finite set of CHR rules. Simplification rules are of the form H <=> G |

B and propagation rules are of the form H ==> G | B where H denotes a
possibly multi-head CHR constraint, the guard G is a conjunction of con-
straints and the body B is a conjunction of built-in and CHR constraints.

Each time a CHR constraint is woken, its guard must either succeed or
fail. If the guard succeeds, one commits to it and then the body is ex-
ecuted. Constraints in the guards are usually restricted to be built-in
constraints. When other constraints are used in the guards (called deep
guards), special attention must be paid to the way guards are evaluated.
Section 4.2 discusses the use of deep guards in our framework.

Example 3 (CHRs that can be used to define the plus constraint).
R1 @ plus(A,B,R) <=> A=0 | R=B.

R2 @ plus(A,B,R) <=> A=s(C) | plus(C,B,D), R=s(D).

C @ plus(A,B,R) ==> plus(B,A,R).

The construction . . .@ gives names to CHRs.

3.2 Semantics

Given a constraint theory (CT) (with true, false and an equality constraint
=) which determines the meaning of built-in constraints, the declarative
interpretation of a CHR program is given by a conjunction of universally
quantified logical formula. There is a formula for each rule.

If x̄ denotes the variables occurring in the head H and ȳ (resp. z̄) the
variables occurring in the guard (resp. body) of the rule, then

– a simplification CHR is interpreted as ∀x̄(∃ȳG→ (H ↔ ∃z̄B))

– a propagation CHR is interpreted as ∀x̄(∃ȳG→ (H → ∃z̄B))

The operational semantics of CHR programs is given by a transition
system where a state < G, C > consists of two components: the goal
store G and the constraint store C. An initial state is of the form <
G, true >. A final state < G, C > is successful when no transition is
applicable whereas it is failed when C = false (the constraint store is
contradictory).

Solve If C is a built-in constraint and CT |= (C ∧D)↔ D′

Then < C ∧G, D >7→< G, D′ >

Simplify If F <=> D|H and CT |= ∀(C → ∃x̄(F = E ∧D)
Then < E ∧G, C >7→< H ∧G, (F = E) ∧D ∧ C >

Propagate If F => D|H and CT |= ∀(C → ∃x̄(F = E ∧D)
Then < E ∧G, C >7→< E ∧H ∧G, (F = E) ∧D ∧ C >

Rules are applied fairly (every rule that is applicable is applied eventu-
ally). Propagation rule is applied at most once on the same constraints
in order to avoid trivial non-termination. However, CHR programs can
be non-confluent and non-terminating.

Example 4 (Several examples of the CHR solving process).
plus(s(0),s(0),R)

7→Simplify R2 plus(0,s(0),R1), R=s(R1)

7→Simplify R1 R1=s(0), R=s(R1)

7→Solve R=s(s(0))

The following example exploits the propagation rule of plus. Without
this rule, the term plus(M,s(0),s(s(0))) would be delayed.

plus(M,s(0),s(s(0)))

7→Propagate C plus(M,s(0),s(s(0))), plus(s(0),M,s(s(0)))

7→Simplify R2 plus(M,s(0),s(s(0))), plus(0,M,s(0))

7→Simplify R1 plus(M,s(0),s(s(0))), M=s(0)

7→Solve plus(s(0),s(0),s(s(0))), M=s(0)

7→Simplify R2 plus(0,s(0),s(0)), M=s(0)

7→Simplify R1 s(0)=s(0), M=s(0)

7→Solve M=s(0)

The following example shows the deduction of a relation (M = N):
plus(M,0,N)

7→Propagate C plus(M,0,N), plus(0,M,N)

7→Simplify R1 plus(M,0,N), M=N

7→Solve plus(M,0,M), M=N

4 JSL to CHR translation method

Our approach is based on the syntactical translation of JSL specifica-
tions into CHRs. The translation method is described under the form of
judgements.

4.1 Translation method

There are three kinds of judgements: judgements for JSL expressions,
judgements for JSL rewriting rules (main operator →) and judgements
for JSL functions (main operator ⇒).
The judgement e t / {C} states that JSL expression e is translated
into term t under the conjunction of constraints C.

variable(v)

v v / {true}
constant(c)

c c / {true}

e1 t1 / {c1} . . . en tn / {cn}
c e1 . . . en c(t1, . . . , tn) / {c1, . . . , cn}

e1 t1 / {c1} . . . en tn / {cn}
f e1 . . . en r / {c1, . . . , cn, f(t1, . . . , tn, r)}

The judgement (e→ p) {C} states that the JSL rewriting rule e→ p
is translated into the conjunction of constraints {C}.

(v → p) {v = p}

e1 t1 / {c1} . . . en tn / {cn} p p / {true}
(f e1 . . . en → p) {c1, . . . , cn, f(t1, . . . , tn, p)}

The judgement (l1 → r1, . . . , ln → rn ⇒ g → d) g′ ⇔ guard|body
states that the JSL function rule l1 → r1, . . . , ln → rn ⇒ g → d is
translated into the CHR g′ ⇔ guard|body where g′ is a CHR constraint
associated to the expression g, guard is the conjunction of constraints

corresponding to the translation of the rules li → ri, and body is a con-
junction of constraints corresponding to the translation of the expression
d.

l1 → r1 g1 . . . ln → rn gn e t / {B}
(l1 → r1, . . . , ln → rn ⇒ f v1 . . . vk → e)

 f(v1, . . . , vk, r)⇔ g1, . . . , gn|B, r = t.

Note that non-determinism, confluence and termination are preserved
by the translation as the operational semantics of CHRs extends the
execution model of JSL functions.

4.2 Deep guards

In the translation method, we considered that CHR guards could be
built over prolog goals and CHR calls. This approach, which is referred
to as deep guards, has received much attention by the past. See [9, 12]
for a detailed presentation of deep guards. Smolka recalls in [13] that
”deep guards constitute the central mechanism to combine processes
and (encapsulated) search for problem-solving”. Deep guards are used in
several systems such as AKL, Eclipse Prolog [7, 9], Oz [12] or HAL [11].
Deep guards rely on how guard entailment is tested in conditional con-
straints and CHRs. Technically, a guard entailment test is called an ”ask
constraint” whereas a constraint added to the constraint store is called a
”tell constraint” and both operations are clearly distinct. For example, if
the constraint store contains X = p(Z), Y = p(a) then a tell constraint
X = Y where = denotes Prolog unification, will result in the store
X = p(a), Y = p(a), Z = a whereas the corresponding ask constraint will
leave the store unchanged and will suspend until the constraint Z = a
would be entailed or disentailed.
The current approach to deal with deep guards that contain Prolog goals
(but not CHR calls) consists in considering guards as tell constraints
and checking at runtime that no guard variable is modified. This ap-
proach is based on the fact that the only way of constraining terms in
the Herbrand Universe is unification (=) and that the corresponding ask
constraint of unification is well-known: this is the “equality of terms”
test (==). For example, if X = Y is a tell constraint then X == Y
corresponds to its ask constraint. However, when Prolog goals are in-
volved into the guards, the guard entailment test is no more decidable
as non-terminating computations can arise. Note that CHR programs
are not guaranteed to terminate (consider for example p <=> true|p).
Even when non-terminating computations are avoided this approach can
be very inefficient as possible long term computations in guards are ex-
ecuted every time a CHR constraint is woken. An approach for this
problem consists in pre–computing the guard by executing the Prolog
goal only once, and then testing entailment on the guard variables.
When CHRs are involved into the guards, the problem is more difficult
as guards can set up constraints. In that case, considering guards as tell
constraints is no longer correct as wrong deductions can be made. Our
approach for this problem consists in suspending the guard entailment

test until it could be decided. More precisely, the guard entailment test is
delayed until all the guard variables become instantiated2. At worst, this
instantiation arises during the labelling process. Of course, this approach
leads to fewer deductions at propagation time but it remains manageable
when we have to deal with deep guards containing CHR calls.

4.3 Implementation of the translation method

We implemented the translation method into a library called JSL2CHR.pl.
Given a file containing JSL definitions, the library builds an abstract
syntax tree by using a Definite Clause Grammar of JSL, and then auto-
matically produces equivalent CHR rules. The library was used on the
JSL specifications of the JCVM, which is composed of 310 functions. As
a result, 1537 CHRs were generated.

5 Tests generation for the JCVM

This section is devoted to the presentation of both the JCVM speci-
fication model and the test cases and oracle generation method. The
experimental results we obtained by generating test cases for the JCVM
are presented in Section 5.3.

5.1 The Java Card Virtual Machine

Unlike other smart cards, a Java Card includes a Java Virtual Machine
implemented in its read-only memory part. The structure of a Java Card
platform is given in Fig.1. It consists of several components, such as a
runtime environment, an implementation of the Java Virtual Machine,
the open and global platform applications, a set of packages implement-
ing the standard SUN’s Java Card API and a set of proprietary APIs.
A Java Card program is called an applet and communicates with a card
reader through APDU3 buffers.
All the components of a Java Card platform must be thoroughly tested
before the Card would be released. But, in this paper, we concentrate
only on the JCVM functional testing process. In the formal model given
in [14], the JCVM is a state machine described by a small-step semantics:
each bytecode is formalised as a state transformer.

States modelling Each state contains all the elements manipulated
by a program during its execution: values, objects and an execution envi-
ronment for each called method. States are formalised as a record consist-
ing of a heap (he) which contains the objects created during execution,
a static heap (sh) which contains static fields of classes and a stack of
frames (fr) which contain the execution environments of methods. States
are tagged “Abnormal” if an exception (or an error) is raised, “Normal”
otherwise.

2 This solution is close to the traditional techniques of coroutining in Prolog as im-
plemented by freeze or delay built-in predicates.

3 Application Protocol Data Unit is an ISO-normalised communication format be-
tween the card and the off-card applications.

Bytecodes modelling The JCVM contains 185 distinct bytecodes
which can be classified into the following classes[15]: arithmetic opera-
tions (sadd, idiv, sshr, ...), type verifications on objects (instanceof,
...), (conditional) branching (ifcmp, goto, ...), method calls (invokestatic,
invokevirtual, ...), operations on local variables (iload, sstore, ...),
operations on objects (getfield, newarray, ...), operations on operands
stack (ipush, pop, ...) and flow modifiers (sreturn, throw, ...).

Most of the bytecodes have a similar execution scheme: to decompose
the current state, to get components of the state, to perform tests in
order to detect execution errors then to build the next state. In the
JSL formal model of the JCVM, several bytecodes are specified with the
similar JSL functions. They only distinguish by their type which is em-
bodied in the JSL function definition as a parameter. As a result, the
model contains only 45 distinct JSL functions associated to the byte-
codes. Remaining functions are auxiliary functions that perform various
computations. Some JSL functions calls other functions in their rewriting
rules; this process is modelled by using deep guards in CHR, preserving
so the operational semantics of the JCVM.

Example of a JSL bytecode specification As an example, con-
sider the JSL specification of bytecode push: given a primary type t, a
value x and a JCVM state st, push updates the operand stack of the first
execution method environment in st by adding the value x of type t:
function push :=
〈push r1〉 (stack f st)→ Nil
⇒ (push t x st)→ (abortCode State error st);

〈push r2〉 (stack f st)→ (Cons h lf)
⇒ (push t x st)→ (update frame(result push t x h) st).

push uses the auxiliary function stack f that returns the stack of frames
(environments for executing methods) of a given state.
function stack f :=
〈stack f r1〉 st→ (Jcvm state sh he fr)⇒ (stack f st)→ fr.

Example of CHR generated for a bytecode The following
CHRs were produced by the library JSL2CHR.pl:

stack f r1 @ stack f(St,R) <=> St=jcvm state(Sh,He,Fr)

| R=Fr.

push r1 @ push(T,X,St,R) <=> stack f(St,nil)

| abortCode(state error(St),Ra), R=Ra.

push r2 @ push(T,X,St,R) <=> stack f(St,cons(H,Lf))

| result push(T,X,H,Res), update frame(Res,St,Ru), R=Ru.

In this example, the JSL function stack f was translated into a CHR
although it is only an accessor. As a consequence we get a deep guard
in the definition of CHR push. This could be easily optimised by identi-
fying the accessors into the JSL specification with the help of the user.
However, we would like the approach to remain fully automated hence
we did not realized this improvement and maintained the deep guards.

Hardware : CPU, cryptography cell
Hardware : CPU, cryptography cell

Applet Applet Applet...

Standard JavaCard API

java.lang

javacard.framework

javacard.security

javacardx.crypto

Oberthur Card Systems API

com.oberthurcs.javacard

com.oberthurcs.javacard.domain

com.oberthurcs.javacard.file

visa.openplateform

JavaCard Runtime Environment (JCRE)

JavaCard Virtual Machine

Open Plateform

Fig. 1. A Java Card platform

5.2 Test cases and oracles generation method

Our approach is inspired of classical functional testing where test cases
are generated according to some coverage criteria. We proposed to gen-
erate test cases that ensure each CHR would be covered at least once
during the selection. We call this criterion All rules. Note that this ap-
proach is based on two usual assumptions, namely the correctness of the
formal specification and the uniformity hypothesis[1]. The uniformity hy-
pothesis says that if a rule provides a correct answer for a single test case
then it will provide correct answers for all the test cases that activate
the rule. Of course, this assumption is strong and nothing can prevent
it to be violated but recall that testing can only detect faults within an
implementation and cannot prove the correctness of the implementation
(as stated by Prof. E. Dijkstra).

Abstract test cases In the JSL formal model of the JCVM, a test
case consists of a fully instantiated state of the VM and the valuation of
several input parameters. However, it happens that several values of the
state or several parameter values remain useless when testing a selected
bytecode. To deal with these situations, the notion of abstract test case
is used. In our case, an abstract test case represents a class of test cases
that activate a given JSL function or equivalently a given CHR. The pro-
cess which consists to instantiate an abstract test case to actually test
an implementation is called concretization [2] and can be delayed until
the test-execution time. For each CHR automatically generated, the goal
is to find a minimal substitution of the variables (an abstract test case)
that activate it. Covering a CHR consists in finding input values such
as its guard would be satisfied. Hence, a constrained search process over
the guards and the possible substitutions is performed. Before going to
more details into this process, consider the CHRs of bytecode push. To
activate push r1, the states stack St must be empty whereas to activate
push r2, St must be rewritten into cons H Lf (i.e. to posses at least one

frame). Note that H,Lf, T and X are not constrained and do not require
to be instantiated in the abstract test case. However, a randomised la-
belling can be used and to generate the two following concrete test cases,
written under the form of JSL expressions4:
(Bool, POS(XI(XO(XH))), Jcvm state(Nil,Nil, Nil)) and
(Byte,NEG(XH), Jcvm state(Nil,Nil, Cons(Frame(Nil, Nil, S(S(0)),
Package(0, S(0), Nil), T rue, S(0)), Nil))).

A constrained search process over the guards As usual in
constraint programming, we would like to see the constraints playing an
active role by exploiting the relations before labelling (test-and-generate
approach). Note that this contrasts with classical functional testing tech-
niques that usually instantiate first the variables and then check if they
satisfy the requirements (generate-and-test approach).
Consider a CHR r : H ⇔ G|B where G = p1, . . . , pn. Satisfying the guard
G requires to satisfy at least one guard of the CHRs that define each
predicate pi of G, i.e. finding a valuation such as pi is simplified either
in true or in a consistent conjunction of equalities. When pi himself is
a CHR call (deep guards), then its guard and body are also required to
be consistent with the rest of the constraints. According to the All rules
testing criterion, the constraint store takes the following form:

^

i

_

j

(guard(pi, j) ∧ body(pi, j))

!

where guard(pi, j) (resp. body(pi, j)) denotes the guard (resp. body) of
the jth rule defining pi. Any solution of this constraint store can be
interpreted as a test case that activates the CHR under test. Finding a
solution to this constraint store leads to explore a possibly infinite search
tree, as recursive or mutually recursive CHR are allowed. However, a
simple occur-check test permits to avoid such problems. In this work,
we followed a heuristic which consists to select first the guard with the
easier guard to satisfy. A guard was considered easier to satisfy than
another when it contains a smaller number of deep guards. The idea
behind this heuristic is to avoid the complex case during the generation.
This approach is debatable as these complex cases may contain the more
subtle faults. See section 5.3 for a discussion on possible improvements.
Note that the constraint store consistency is checked before going into
a next branch, hence constraints allows pruning the search tree before
making a choice. Note also that the test case generation process requires
only to find a single solution and not all solutions, hence a breath-first
search could be performed to avoid infinite derivations.

Oracles generation As the CHR specification of the JCVM is ex-
ecutable and the formal model is supposed to be correct, oracles can
be generated just by interpreting the CHR program with generated test
cases. For example, the following request gives us the oracle for the test

4 Jcvm state, Frame, Package, XI, X0, XH, POS, Byte, NEG, Bool and True
are JSL constructor symbols given in the JCVM formal model.

case generated for push r1:
?- push(bool,pOS(xI(xO(xH))),jcvm state(nil,nil,nil)),R).

R=abnormal(jCVMError(eCode(state error)),jcvm state(nil,nil,nil))

Providentially, oracles can also be derived for abstract test cases. For
example, oracle for abstract test case of push r1 is computed by the fol-
lowing request: ?- push(T,X,jcvm state(Sh,He,nil)),R).

R=abnormal(jCVMError(eCode(state error)),jcvm state(Sh,He,nil))

When delayed goals are present, a labelling process must be launched to
avoid suspension. For example, the following request obtained by using
the generated abstract test cases for push r2:
?- push(T,X,jcvm state(Sh,He,cons(H,Lf))),R).

T=T, X=X, Sh=Sh, He=He, H=H, Lf=Lf, R=R

Delayed goals: push(T,X,jcvm state(Sh,He,cons(H,Lf)),R)

requires R to be unified to cons(X, S) to wake up the suspended goal.
The labelling process can be based on deterministic or randomised[16]
labelling strategies. In software testing approaches, random selection is
usually preferred as it improves the flaws detection capacity. The sim-
plest approach consists in generating terms based on a uniform distri-
bution. Lot of works have been carried out to address the problem of
uniform generation of terms and are related to the random generation
of combinatorial structures [17]. In a previous work [18], we proposed a
uniform random test cases generation technique based on combinatorial
structures designs.

5.3 Experimental results

As previously said, the library JSL2CHR.pl generated 1537 CHRs that
specify 45 JCVM bytecodes. The library generates a CHR program that
is compiled by using the ech library of Eclipse Prolog [7]. We present
the experimental results we obtained by generating abstract test cases
for covering all the 443 CHRs associated to the bytecodes of the JCVM.
These results were obtained on an Intel Pentium M at 2GHz with 1GB
of RAM under Linux Redhat 2.6 The full process of generation of the
abstract test cases for the 45 bytecodes (443 test cases) took 3.4s of CPU
time and 47 Mbytes as the global stack size, 0.3 Mbytes as the local stack
size and 2.6 Mbytes as the trail stack size. The detailed results for each
bytecode are given in Tab.1, ordered by increasing number of abstract
test cases (second column). Tab.1 contains the stack sizes as well as the
CPU time (excluding time spent in garbage collection and system calls)
required for the generation.

Analysis and discussion The approach ensures the coverage of each
rule of the JSL bytecodes in a very short period of CPU time. The global
and trail stacks remain stable whereas the local stack size increases with
the number of test cases. A possible explanation is that some CHRs
exit non-deterministically and allocation of variables cannot be undone
in this case. We implemented a heuristic which consists to favour the
CHRs that contain the smallest number of deep guards. This heuristic
behaves well as shown by the short CPU time required for the bytecodes

Name #tc global stack
(bytes)

local stack
(bytes)

trail stack
(bytes)

runtime (ms)

aload 1 33976048 148 1307064 0
arraylength 1 33849512 148 1299504 0
astore 1 33945864 148 1306660 0
invokestatic 1 33849512 148 1299504 0
nop 1 33945864 148 1306660 0
aconstnull 2 33854760 424 1300336 0
goto 2 33951112 424 1307492 0
jsr 2 33951112 424 1307492 0
push 2 33951112 424 1307492 0
conv 3 34055304 1076 1315924 10
dup 3 33972696 992 1310252 0
getfield 3 33876344 992 1303096 10
getfield this 3 33876344 992 1303096 0
neg 3 34055304 1076 1315924 11
new 3 33971904 1020 1309932 11
pop 3 33972152 992 1310156 0
pop2 3 34074480 1076 1317828 0
putfield 3 33885840 1076 1303944 0
putfield this 3 33876344 992 1303096 0
dup2 4 34122280 1884 1322772 10
swap 4 34029448 1884 1315948 11
ifnull 5 34023088 2216 1315392 10
ifnonnull 5 33926736 2216 1308236 10
icmp 6 34409440 3480 1343428 50
if acmp cond 6 34012528 3624 1316892 20
const 7 33968512 1512 1309716 0
invokespecial 7 34027448 4020 1317168 20
if cond 8 34047496 3772 1319316 10
ret 8 34059064 3940 1320780 11
invokevirtual 9 34432272 7632 1349576 60
arith 11 33948080 836 1306660 0
athrow 11 34596760 7648 1364512 90
invokeinterface 11 35007240 12104 1394104 120
newarray 13 34073536 7604 1325612 20
return 13 34889544 11448 1386532 91
if scmp cond 14 34349752 11004 1351220 49
inc 18 34305392 9568 1344628 29
lookupswitch 18 34117768 9548 1332008 29
tableswitch 18 34117768 9548 1332008 31
load 19 34263232 11672 1343060 30
store 25 34752536 20108 1390876 81
checkcast 30 35053520 21384 1419380 280
getstatic 33 34408808 20652 1360596 60
putstatic 34 34944800 28660 1416196 120
instanceof 62 36468800 46964 1555588 580

Table 1. Memory and CPU runtime measures for each bytecode

that are specified with a lot of CHRs (instanceof is specified with 62
CHRs and only 0.6s of CPU time is required to generate the 62 abstract
test cases). However, most of the time, this heuristic leads to generate
test cases that put the JCVM into an abnormal state. In fact, in the
JSL specification of the JCVM the abnormal states can often be reached
by corrupting an input parameter. As a consequence, they are easy to
reach. Although this heuristic is suitable to reach our test purpose (cov-
ering All rules) and corresponds to some specific testing criterion such
as Test all corrupting input , it is debatable because it does not repre-
sent the general behaviour. Other approaches, which could lead to better
test cases, need to be studied and evaluated. For example, selecting first
the guard that contains the greatest number of deep guards could lead
to build test cases that activate interesting parts of the specification. Fi-
nally, in these experiments, we only generated abstract test cases and did
not evaluate the time required in the concretization step. Although, this
step does not introduce research problems, considering it would allow to
get a more accurate picture of test case and oracle generation with CHR.
Thus, we could evaluate the efficiency of our approach and compare it
to existing techniques.

6 Related Work

Bernot and al. [1] pioneered the use of Logic Programming to construct a
test set from a formal specification. Starting from an algebraic specifica-
tion, the test cases were selected using Horn clauses Logic. More recently,
Gotlieb and al. [19] proposed to generate test sets for structural testing of
C programs by using Constraint Logic Programming over finite domains.
Given the source code of a program, a semantically-equivalent constraint
logic program was built and questioned to find test data that cover a se-
lected testing criterion. Legeard and al.[2] proposed a method for func-
tional boundary testing from B and Z formal specifications based on set
constraint solving techniques (CLP(S)). They applied the approach to
the transaction mechanism of Java Card that was formally specified in B.
Test cases were only derived to activate the boundary states of the spec-
ification of the transaction mechanism. Only Lötzbeyer and Pretschner
[20, 21] proposed a software testing technique that uses CHR constraint
solving. In this work, models are finite state automata describing the be-
haviour of the system under test and test cases are composed of sequence
of input/output events. CHR is used to define new constraint solvers and
permits to generate complex data types. Our work distinguishes by the
systematic translation of formal specifications into CHRs. Our approach
does not restrict the form of guards in CHR and appears so as more
declarative to generate test cases.

7 Conclusion

In this paper, we have proposed to use the CHRs to generate functional
test cases for a JCVM implementation. A JSL formal specification of the
JCVM has been automatically translated into a CHR program and a test
cases and oracles generation process has been proposed. The method
permits to generate 443 test cases to test the 45 bytecodes formally
specified. This result shows that the proposed approach scales up to a
real-world example.
However, as discussed previously, other approaches need to be explored
and evaluated. In particular, the coverage criterion All rules initially se-
lected appears as being too restrictive and other testing criteria could
be advantageously used. Moreover, the test concretization step need to
be studied in order to compare the efficiency of our approach against
existing methods.
Finally, the key point of the approach resides in the use of deep guards,
although their treatment needs to be evaluated both from the analytic
and the experimental points of view.

8 Acknowledgements

We wish to acknowledge E. Coquery for fruitful discussions on CHR,
and G. Dufay and G. Barthe who gave us the JSL formal model of the
JCVM.

References

1. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on
formal specifications : a theory and a tool. Software Engineering
Journal 6 (1991) 387–405

2. Bernard, E., Legeard, B., Luck, X., Peureux, F.: Generation of
test sequences from formal specifications: GSM 11-11 standard case
study. International Journal of Software Practice and Experience 34
(2004) 915–948

3. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating
finite state machines from abstract state machines. In: ISSTA ’02:
Proceedings of the 2002 ACM SIGSOFT international symposium
on Software testing and analysis, New York, NY, USA, ACM Press
(2002) 112–122

4. Barthe, G., Dufay, G., Huisman, M., Sousa, S.: Jakarta: a toolset
for reasoning about JavaCard. In: Proceedings of E-smart 2001.
Volume 2140 of LNCS., In I. Attali and T. Jensen Eds, Springer-
Verlag (2001) 2–18

5. INRIA: The Coq proof assistant (1999) http://coq.inria.fr/.
6. Barthe, G., Dufay, G., Jakubiec, L., Serpette, B., de Sousa, S.M.:

A Formal Executable Semantics of the JavaCard Platform. In:
Proceedings of ESOP’01. Volume 2028 of LNCS., D. Sands Eds,
Springer-Verlag (2001) 302–319

7. Brisset, P., Sakkout, H., Fruhwirth, T., Gervet, C., Harvey, e.a.:
ECLiPSe Constraint Library Manual. International Computers Lim-
ited and Imperial College London, UK. (2005) Release 5.8.

8. de Sousa, S.M.: Outils et techniques pour la vérification formelle de
la plate-forme JavaCard. PhD thesis, Université de Nice (2003)

9. Frühwirth, T.: Theory and Practice of Constraint Handling Rules.
Logic Programming 37 (1998) Special Issue on Constraint Logic Pro-
gramming, In P. Stuckey and K. Marriott Eds.

10. Frühwirth, T., Abdennadher, S.: Essentials of Constraint Program-
ming. Cognitive Technologies. Springer Verlag (2003) ISBN 3-540-
67623-6.

11. Duck, G., Stuckey, P., de la Banda, M.G., Holzbaur, C.: Extending
arbitrary solvers with constraint handling rules. In: Proceedings of
the 5th ACM SIGPLAN International Conference on Principles and
Practice of Declaritive Programming (PPDP03). (79-90) 2003

12. Schulte, C.: Programming deep concurrent constraint combinators.
In Pontelli, E., Costa, V.S., eds.: Second International Workshop on
Practical Aspects of Declarative Languages. Volume 1753 of LNCS.,
Springer-Verlag (2000) 215–229

13. Podelski, A., Smolka, G.: Situated Simplification. In Montanari, U.,
ed.: Proceedings of the 1st Conference on Principles and Practice
of Constraint Programming. Volume 976 of LNCS., Springer-Verlag
(1995) 328–344

14. Barthe, G., Dufay, G., Jakubiec, L., Serpette, B., de Sousa, S.M., Yu,
S.W.: Formalization of the JavaCard Virtual Machine in Coq. In:
Proceedings of FTfJP’00 (ECOOP Workshop on Formal Techniques
for Java Programs), S. Drossopoulou and al, Eds (2000) 50–56

15. Dufay, G.: Vérification formelle de la plate-forme Java Card. PhD
thesis, Université de Nice-Sophia Antipolis (2003)

16. Gouraud, S.D., Denise, A., Gaudel, M.C., Marre, B.: A New Way
of Automating Statistical Testing Methods. In: Sixteenth IEEE In-
ternational Conference on Automated Software Engineering (ASE).
(2001) 5–12

17. Flajolet, P., Zimmermann, P., Van Cutsem, B.: A calculus for the
random generation of labelled combinatorial structures. Theoretical
Computer Science 132 (1994) 1–35

18. Denise, A., Gaudel, M.C., Gouraud, S.D.: A Generic Method for
Statistical Testing. In: Fifteenth IEEE International Symposium on
Software Reliability Engineering. (2004) 25–34

19. Gotlieb, A., Botella, B., Rueher, M.: A CLP Framework for Com-
puting Structural Test Data. In: Constraints Stream, First Interna-
tional Conference on Computational Logic. Number 1891 in LNAI,
Springer-Verlag (2000) 399–413

20. Pretschner, A., Lötzbeyer, H.: Model Based Testing with Constraint
Logic Programming: First Results and Challenges. In: Proceedings
2nd ICSE Intl. Workshop on Automated Program Analysis, Testing
and Verification. (2001)

21. Lötzbeyer, H., Pretschner, A.: AutoFocus on Constraint Logic Pro-
gramming. In: Proceedings of (Constraint) Logic Programming and
Software Engineering (LPSE’2000). (2000)

Le second article présenté ici se rattache au test symétrique, présenté dans
le chapitre 4 de ce mémoire. Il est le fruit d’un travail collaboratif, mené dans
le cadre du projet RNTL CASTLES, sur l’établissement d’une procédure de test
croisé d’APIs pour Java Card. En effet, une des spécificités du travail relaté ici est
l’exécution sur la Java Card des tests d’interface générés. Ceci a demandé la mise
en oeuvre d’un kit–carte et l’écriture de générateurs de test directement exécutable
sur la carte, ce qui est délicat à cause des limitations mémoire de la Java Card.

A. Gotlieb and P. Bernard. A semi-empirical model of test
quality in Symmetric Testing: Application to testing Java Card
APIs. In Sixth International Conference on Quality Soft-
ware (QSIC’06), Beijing, China, Oct. 2006.

A Semi-empirical Model of Test Quality in Symmetric
Testing: Application to Testing Java Card APIs �

Arnaud Gotlieb
IRISA-INRIA

Campus Beaulieu
35042 Rennes Cedex, FRANCE

Arnaud.Gotlieb@irisa.fr

Patrick Bernard
OBERTHUR CARD SYSTEMS

rue Auguste Blanche
92800 PUTEAUX, FRANCE

p.bernard@oberthurcs.com

ABSTRACT
In the smart card quality assurance field, Software Testing is the
privileged way of increasing the confidence level in the implemen-
tation correctness. When testing Java Card application program-
ming interfaces (APIs), the tester has to deal with the classical
oracle problem, i.e. to find a way to evaluate the correctness of
the computed output. In this paper, we report on an experience
in testing methods of the Oberthur Card Systems Cosmo 32 RSA
Java Card APIs by using the Symmetric Testing paradigm. This
paradigm exploits user-defined symmetry properties of Java meth-
ods as test oracles. We propose an experimental environment that
combines random testing and symmetry checking for (on-card) cross
testing of several Java Card API methods. We develop a semi-
empirical model (a model fed by experimental data) to help decid-
ing when to stop testing and to assess test quality.

1. INTRODUCTION
Although formal verification and software testing were viewed

as opposites for a long time, with formal verification concentrat-
ing on proving program correctness while testing concentrating on
finding faults in program implementation, they can now be consid-
ered as complementary techniques [1]. In the smart card field, soft-
ware testing is required by the Common Criteria evaluation scheme
[2] to increase the confidence level of the certifying authority in the
implementation correctness of security functions. In this context,
techniques and tools that permit to automate (even partially) the
testing process are welcome. Research works in that field include
the BZ-testing approach designed by Legeard et al. [3, 4] to gener-
ate automatically test cases from a formal B or Z specification. The
corresponding tools suite has been employed to validate the Java
Card transaction mechanism by generating test cases on the bound-
ary states of the formal specification [5]. In [6], Pretschner et al.
followed a similar approach by using the AUTOFOCUS tool for
specifying the command/response mechanism of an inhouse smart

�Supported by the Réseau National des Technologies
Logicielles as part of the CASTLES project (www-
sop.inria.fr/everest/projects/castles/)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

card and generating test cases for validating the authentification
protocol of the card. At the same time, Clarke et al. [7] developed
symbolic test generation algorithms and applied them to generate
on-the-fly test cases for a feature of the CEPS1 e-purse application
and Martin and Du Bousquet [8] proposed to use UML-based tools
to generate test suites for testing Java Card applets.

All these approaches have in common to require first a formal
model (Z or B specification, automata, input/output transition sys-
tem or statecharts) to be constructed in order to generate test cases.
When the time-to-market of a new product is critical, this effort ap-
pears as being too costly and cheaper (but still rigorous) approaches
are needed. Techniques such as statistical testing [9–11], boundary
testing [12], or local exhaustive testing [13] do not require a formal
model to be developed. Statistical testing aims at selecting ran-
domly the values inside the input domain of the application under
test by using pseudo-random numbers generators, boundary test-
ing relies on selecting the boundaries of an input space partition,
whereas local exhaustive testing systematically explores a bounded
part of the input domain. In these approaches, testing just depends
on the availability of oracles, that is, some procedures for predicting
the expected results of the applications under test. Unfortunately,
as earlier pointed out by Weyuker [14], there are programs to be
tested for which the design of oracles is a non-trivial task. Exam-
ples of such programs in the smart card field include standard and
proprietary Java Card APIs as they are just usually described by
their interfaces and a few lines of natural text2. For these APIs,
current industrial practices rely on coding the oracle as the result
of another program that will be confronted with the result of the
API under test. This approach suffers from several drawbacks such
as the high cost of the development of oracles and the existence of
faults into the oracles.

Recently, we have proposed [15] to address this oracle problem
for Java programs by using user-defined symmetries of programs
to check the correctness of the computed output. Here, symmetries
are input-output permutation relations over program executions that
lead to partitioning the input space into equivalence classes and the
equivalence between two executions serves as an oracle. We in-
troduce a testing paradigm called Symmetric Testing, where auto-
matic test data generation was coupled with symmetries checking
and local exhaustive testing to uncover faults inside the programs.

In this paper, we report on an experience in applying Symmet-
ric Testing to test methods of the Oberthur Card Systems Cosmo
32 RSA V3.4 Java Card API [33] by using random testing. Unlike
our previous work [15], we develop here an original semi-empirical

1The Common Electronic Purse Specification is a standard for cre-
ating inter-operable multi-currency smart card e-purse systems.
2Although formalizations do exist [31].

model to help decide when to stop testing and to assess test quality
in Symmetric Testing. This model is fed with an empirical parame-
ter (based on symmetry checking) in a theoretical model of random
testing, in order to obtain the minimum number of test data required
to reach a given level of quality. From the Oberthur Card Systems
Cosmo 32 RSA V3.4 Java Card API [33], we have selected the
methods to test by studying their symmetry properties, as Sym-
metric Testing is only suitable for testing programs that possesses
input-output symmetry relation. By using several tools, we have
designed an experimental environment to build our semi-empirical
model and to apply Symmetric Testing in situations as close as pos-
sible to the real situations. In contrast with other research works in
testing Java card programs [6, 7], test execution and symmetries
checking have been conducted by cross-testing on a smart card and
not by using simulations.

The rest of the paper is organized as follows: section 2 presents
the Symmetric Testing paradigm and gives examples of symmetry
relations. Section 3 reports the symmetry analysis of a few methods
of the Oberthur Card Systems Cosmo 32 RSA V3.4 Java Card API
while section 4 details our semi-empirical model of random testing
based on symmetries checking. Section 5 reports the first experi-
mental results and discusses extension of the framework to handle
non-symmetric methods of the Java Card APIs. Finally section 6
pinpoints several perspectives to this work.

2. SYMMETRIC TESTING
Exploiting symmetry in verification is not a new idea. Emerson

and Sistla [17] and Ip and Dill [18] proposed early to exploit struc-
tural symmetries to address the problem of state explosion in model
checking. This approach has been experienced and proved interest-
ing in practice in several tools, such as VeriSoft [19] or SPIN [20];
its principle is based on basic results from group theory [17–19]
and partial order techniques [21].

Based on similar ideas, we recently introduced Symmetric Test-
ing [15] in the context of Software Testing. The flavour of our
approach is explained here on a very basic example. Consider a
program � intended to compute the greatest common divisor (���)
of two non-negative integers � and � and suppose that � is tested
with the following test datum �� � ����� � � ���� automati-
cally generated by a random test data generator. Although we all
know how to compute the gcd of two integers3, it is not so easy
to predict the expected value of ��������� ���� without the help
of a calculator. Fortunately, ��� satisfies a simple symmetry re-
lation: ����� ������ �� � ������ ��. So, if � ������ ���� ��

� ����� ����� then the testing process will succeed to uncover a
fault in � without the help of a complete oracle of ���. Note that
such a symmetry relation is a necessary but not sufficient condition,
for the correctness of � . Such user-specified relations between sev-
eral program executions have been called metamorphic relations
and thoroughly investigated by Chen et al. [22–24].

Identifying such symmetry relations for larger programs might
appear to be difficult or useless to detect non-trivial fault. On the
contrary, we argue that numerous programs have to satisfy sym-
metry relations and these relations are useful for detecting subtle
faults. In fact, every program � that takes an unordered set as ar-
gument has to satisfy a symmetry relation: the expected outcome
of � is invariant under any permutation of the elements of the set.
Numerous programs take unordered sets as arguments: consider
sorting or selection programs that are used in search engines, pro-
grams that operate over data buffers, or graph-based programs just
to name a few. Note that experimental evidence are also available

3With the Euclidian algorithm for example.

to support this argument in [23, 24] and [15].

2.1 Symmetry relations
We generalized the above idea to obtain a formal and generic

definition of symmetry relation. This definition is based on basic
results from Group theory that are briefly recalled here. A detailed
but still accessible presentation can be found in [25].

The notion of symmetric group is the corner-stone of Symmet-
ric Testing. The symmetric group �� is the set of bijective map-
pings from ��� 		�
� to itself. It has exactly
	 elements, called per-

mutations. A permutation in�� is written: � �
�
� 		

���� 		 ��
�
�

where ����� 		� ��
� denote the images of �� 		�
 by the permutation

�. A group action of �� on a set is a mapping ��� �� �� � �� such
as: ���� � � � � and ��� Æ ��� � � � �� � ��� � �� for all � � and

�� ��� �� � �� (we say that �� acts on and � acts on �). Note
that is closed under the action of ��.

It is well-known that any permutation can be expressed as the
composition of certain simple permutations, called cycles. Con-
sider for example the permutation

� �

�
�
 � � �

� � � �

�

of ��, the same permutation can be

written as � � �� ���
 � �� where each pair of brackets denotes
a cycle ��� �� 		 ���, that maps �� to ��, .. ���� to ��, �� to ��

and leave unchanged the other elements. A cycle written ��� ��� is
usually referred to as a transposition.

A subset � of elements of a symmetric group �� is a set of
generators iff every element of �� can be written as a finite com-
position of the elements of � . For example, �� is generated by
the two transpositions �� � ��
� and �� � �
 ��. More gener-
ally, �� is generated by the transposition � � ��
� and the cycle

� � ��
 		
� and cannot be generated by less than two permu-
tations [25]. Note that other two-generator sets can be found for

��.
Symmetries of the function computed by a program � become

interesting with regards to testing when they express general ab-
stract properties. This leads to the notion of symmetry relations for
a program.

DEFINITION 1 (symmetry relation). Let� be a program that
computes a function � over an input domain ������ toward a
range domain ��
���, and let �� act on ������ with a group
action � and �� act on ��
��� with a group action 	. A symmetry
relation ��� holds for � iff

1. �� � ���
� � �� such that �� � �������

��� � �� � � 	 ����

2. ��� � � ��� � is a homomorphism from �� to ��

The first item requires � to satisfy an invariant property for all

� in �� and for all � in the input domain of � . Note that �, the
image of � by the symmetry relation ���, is independent of the
choice of �. Most of the time the two group actions will be the
same (� �), however we will see below an example of distinct
group actions in a symmetry relation. The second item requires the
symmetry relation to be a homomorphism. A homomorphism is a
map � from �� to �� such that ��� Æ ��� � ���� Æ ����� for all

�� �� � ��. Informally speaking, this requirement guarantees the
symmetric structure of ������ to be preserved by application of

� , allowing so nice composition properties of symmetric relations.
In our framework, we make an extensive use of this property to
optimize the symmetry testing process, as explained below.

2.2 Examples
As an example, consider the Java Card program

void max3(byte[] A, byte[] B) which selects the three
maximum values of the array � and sorts them into the array �. If

 denotes the size of � (
 �) and � denotes the function com-
puted by max3 from �

� to �� , where � is the finite set of all possi-
ble bytes whose values are 8-bit signed two’s complement integers,
then the program max3 has to satisfy a ��� symmetry relation be-
cause the array B is invariant under any permutation of A. Here, the
considered group action (in both cases) is defined by: �� � �

� �

�
� , ��� � � ���� 		� ���� �� � �� � ��������� 		� ��������

As B is required to be sorted, all permutations � will map to the
identity of ��.

As a more complicated example, consider the program short
getIndex0(short[] A) that takes an array A of (non-negative)
distinct values as argument and returns the index of the occur-
rence of � in the array or throws an exception if � is not present
in A. The program getIndex0 computes a function � from �

�

to ��� �� 		�
 � �� � ����� where � denotes the finite set of 32-
bit signed short integers,
 denotes the size of A and ��� denotes
an erroneous symbolic value. When � belongs to the array A,
getIndex0 has to satisfy a ��� symmetry relation because, 1)
for any � � ��, ��� ��� � � 	 ���� for all � � �

� that contains
an occurrence of �, and 2) the identical map � ��� � is a group
homomorphism. For instance, if

� � ���� ����� �
��� ����
���� ���� �
���� �� �����
����� and

� � ��
 		 ��� then ���� returns � and ��� � �� returns � which
is the image of � by � when it acts over ��� �� 		� ��. Note that
this example shows two distinct group actions: �� acts over ���

when it is applied to the input sequence � of � whereas it acts over

��� �� 		� �� when applied to the outcome of � with the following
group action:

������ �� 		�
� �� � ��� �� 		�
� ��, ��� �� �� �	 � � ����.

2.3 Symmetric Testing
Symmetry relations can be used to seek for a subclass of faults

within an implementation. Informally speaking, the Symmetric
Testing principle aims at finding counter-examples (called sym-
metry violations) of the symmetry relation that a program has to
satisfy.

DEFINITION 2. (Symmetry violation) let � be a program over
an input domain � and 	�
 be a symmetry relation that � has to
satisfy, then a symmetry violation for � w.r.t. 	�
 is a couple ��� ��

such as � � �� � � �� and � �� � �� �� 	�
���	 � ���.

The interesting point here is that symmetry violation can be checked
by program executions whereas trying to prove formally that the
function computed by a program satisfies a symmetry relation would
be very difficult. Note that there is no way to distinguish among the
two test data � and � � � the one that leads to an incorrect outcome
for � . In the worst case, they can even be both faulty. So, given a
set of test data and a symmetry relation, we get a naive procedure
that can uncover a subclass of faults in � : it requires to compute

� with all the permutations of the permutable inputs of each vec-
tor � in the test set and then to check whether the outcome vectors
are equal to a permutation of the vector returned by � . The latter
operation is called an outcome comparison in the rest of the paper.

However, the somehow naive procedure given above requires an
outcome comparison for each possible permutation in the Symmet-
ric Group �� and, as �� contains
	 permutations, the approach
becomes impractical when
 increases. The following result is ex-
ploited to reduce the number of outcome comparisons:

THEOREM 1. Let � be a program that computes a function �

and 	�
 be a symmetry relation for � , let � � ��
� and � �

��
 		 ��, then we have�
� Æ � � 	�
��� Æ �

� Æ � � 	�
��� Æ �

�� � Æ � � 	�
��� Æ � �� � �	

A proof of this theorem can be found in [15]; it is based on the
fact that 	�
 is required to be a group homomorphism. Hence, by
showing that ��� ��� � 	�
���	���� and ��� ��� � 	�
���	

����, we get ��� � �� � 	�
���	 ���� for all � � �	, meaning
that only two permutations are required to be checked. Moreover,
by noticing that if ��� �� is a symmetry violation then �� � �� ����

is automatically another symmetry violation, the input domain to
be explored can even be shrinked. These properties are exploited
to design an efficient procedure for Symmetric Testing, that is fully
described in [15].

The rest of the paper reports on our experience in applying Sym-
metric Testing combined with Random Testing to the testing of
some Java Card API methods.

3. SYMMETRY IN JAVA CARD API
Unlike other smart cards, a Java Card includes a Java Virtual Ma-

chine and a set of API classes implemented in its read-only memory
part. The Java Card Virtual Machine provides the interpretation of
Java Card language constructs and the APIs are a set of classes and
interfaces providing additional functionality that can be accessed
by Java Card applets. A complete view of the development process
of Java Card applets can be found in [29]. The OCS4 Cosmo 32
RSA V3.4 (called Cosmo in the following) contains an implemen-
tation of the Java Card APIs.

3.1 The Cosmo Java Card APIs
The structure of the Cosmo Java Card platform is given in Fig.1.

It consists of several components, such as an implementation of the
Java Virtual Machine, the open platform applications, a set of pack-
ages implementing the standard SUN’s Java Card API [16] and a set
of proprietary packages. The four OCS proprietary packages con-
sists of standard security services such as the VISA Open Platform
Provider Security Domain, a set of base classes for implementing
a Provider Security Domain, a complete range of classes for creat-
ing, maintaining and inspecting the card file-system and methods
that are useful for JCRE related operations. Note that the Cosmo
Java Card platform includes garbage collection facilities.

3.2 Symmetry analysis of a selected Cosmo
Java Card API class

Among several possibilities, we selected com.oberthurcs.
javacard.file.Utilfs as a case study because it consists
of several generic utility methods that present symmetries. All the
methods operate on byte or object arrays and are useful for dealing
with APDU5 buffers. The Utilfs class is composed of 10 meth-
ods, shown in Tab.1 together with their symmetry relations. The
first and second column are extracted from the Cosmo API informal
specification [33]. The third column summarizes the results of our
symmetry analysis. The set of all possible bytes is noted � and the
set of available objects is noted �. Note first that some methods that
deal with multiple array elements are tagged as NonAtomic. Atom-
icity defines how the card handles the contents of persistent storage

4Stands for Oberthur Card Systems
5Application Protocol Data Unit is an ISO-normalized communi-
cation format between the card and the off-card applications.

Hardware : CPU, cryptography cell
Hardware : CPU, cryptography cell

Applet Applet Applet...

Standard JavaCard API

java.lang

javacard.framework

javacard.security

javacardx.crypto

Oberthur Card Systems API

com.oberthurcs.javacard

com.oberthurcs.javacard.domain

com.oberthurcs.javacard.file

visa.openplateform

JavaCard Runtime Environment (JCRE)

JavaCard Virtual Machine

Open Plateform

Figure 1: The OCS Cosmo 32 RSA V3.4 platform

after a failure or fatal exception during an update of a class field
or an array component [16]. An applet might not require atomicity
for array updates. The Utilfs.arrayAndNonAtomicmethod
is an example: it shall not use the transaction commit buffer even
when called with a transaction in progress.

Among the ten methods of this class, we found that seven have to
satisfy a simple symmetry relation. We discuss a few of them; the
other ones can easily be deduced from these. The method short
arrayAndNonAtomic(byte[] dest, short destOff,
byte[] src, short srcOff, short len) can be abstracted
by a function � from �

�� � �

�� to �
�� as it modifies the input-

output parameter dest by combining src and dest and by con-
sidering all other parameters as non-variable. arrayAndNonAtomic
has to satisfy a
���
�� symmetry relation because of the follow-
ing invariant property:

�� � �
��� ��� � �� !� � � ��� � � 	 ���� !� ���

This is due to the fact that �� ! and �� represent two unordered
sets of values for this method. Note that the two group actions
are distinct as the first one holds over the set �
�� � �

�� (i.e.

� � ��� �� � �� � �� � � �� where � and � are vectors of �
��)
whereas the second one 	 holds just over �
�� . The methods
short arrayCompare(byte[] src, short srcOff,
byte patByte, short length) and short arrayFind-
Byte(byte[] src, short srcOff, short len, byte
pattern) have each to satisfy a
���
�� symmetry relation as
the following invariant property holds: �� � �
��� ��� � ��� �

� 	 �� ��� where � denotes a map from �

�� to ��� 		� "�
�. In

fact, these two programs are selection programs that are invari-
ant to permutations of a subset of their input parameters. In the
Utilfs class, some methods do not have to satisfy simple sym-
metry relations. For example, the method arrayFindShort has
incompatible input types, that is to say the method looks for a short
integer variable into an array of bytes. Although we have not real-
ized a full study of the Cosmo Java Card APIs, we took a look at
other classes to find symmetry relations. For example, the classes
visa.openplatform.OPSystem,javacard.security.
MessageDigest or javacard.framework.Util contain
methods that have to satisfy symmetry relations. Note that the com-
positional definition of symmetry relations allows to combine sev-
eral method calls. However, we also found numerous classes where
the symmetry analysis does not reveal any symmetry relations. Ex-
amples of such classes include com.oberthurcs.javacard.

file.* or javacard.framework.JCSystem. So, the Sym-
metric Testing approach remains limited in application to a restricted
part of the Cosmo Java Card APIs. For these classes and methods,
other input-output properties should be taken as partial oracles as
discussed in section 5.3.

4. A SEMI-EMPIRICAL MODEL
In this paper, the Symmetric Testing principle combines random

test data generation and automatic symmetry checking. Random
testing has traditionally been viewed as a blind approach of pro-
gram testing. However, results of actual random testing experi-
ments confirmed its potential to reveal faults and as a validation
tool [9]. Nevertheless, when the tester wants to exploit a random
test data generator, he faces two main difficulties. The first is the
classical oracle problem already discussed in the introduction of
this paper: an automatic way of checking the output correctness
is required. The second problem is to determine the test quality
level reached by such a testing approach. In general, it is difficult
to quantify how reliable is a program that has only been tested by
randomly generated test data. Several works deal with this prob-
lem by using a purely theoretical framework based on probabilistic
analysis [10, 30]. In this paper, we exploit a semi-empirical model
(a model fed by experimental data) to help decide when to stop
testing. This section is devoted to the presentation of this semi-
empirical model.

4.1 Random testing
Let #� be the probability that a randomly generated input test

datum � exhibit a fault in the program � . A fault in � can be un-
derstood as a syntactical change in the source code that leads, for
some input data, to a difference between � ��� and the expected
output of the function computed by � with �. By a simple prob-
abilistic reasoning, a model of random testing based on #� can be
developed. It is a law between the number $ of randomly gener-
ated test data and a probabilistic parameter that characterizes the
fault-detecting effectiveness of the random testing strategy [9, 32].
The probability of detecting at least one failure is called the test
quality6 and it is noted % [10]. Its value is given by the following
definition:

DEFINITION 3. % � �� ��� #��

As an immediate consequence, we get an estimation of the min-
imum number of test data required to reach a certain value of % :

THEOREM 2. $ �
������ �

������ �
�

where ��� denotes the ceiling function applied to a real number �.

4.2 The empirical parameter #�

The above model of random testing suffers from a major draw-
back: it is based on #� which is almost impossible to evaluate with-
out a precise knowledge of all the existing faults in the program � .
We address this problem by using an empirical parameter in place
of #� to build our model. This parameter #� is related to symmetry
checking: #� is the probability of detecting a symmetry violation

��� �� when � is randomly generated over a subset of size of
the input domain. This parameter characterizes the probability for
Symmetric Testing to reveal a fault in � when it makes use of a
random test data generator to generate a single test datum.

In this paper, we propose to empirically evaluate #� on a cor-
rect specimen program by making use of fault-injection techniques.

6This measure is also called the P-measure

Table 1: Symmetry in the OCS Utilfs methods
Java Card methods Informal specifications Symmetry relations
short arrayAndNonAtomic(byte[] dest,
short destOff, byte[] src, short srcOff,
short len)

Copies the result of a bitwise AND
on the first operand dest and the sec-
ond operand src into dest

The program computes the following function:

� � ���� � �
��� �� �
���

������ ���� ��� �����

where ����� stands for the value ���� computed
after application of the arrayAndNonAtomic program.
It has to satisfy a �������� symmetry relation.

short arrayCompare(byte[] src, short
srcOff, byte patByte, short len)

Returns the index of the first byte
in the specified part of src that does
not match patByte, or 0xFFFF if
every byte matches

We ask src to contain 1 occurrence of patByte and ���	�� � �

� � ���� �� ���

� ����

��� ��� ���

arrayCompare has to satisfy a �������� symmetry relation.
short arrayFindByte(byte[] src, short
srcOff, short len, byte pattern)

Returns the index of the first byte
in the part of src that matches the
specified pattern.

We ask src to contain 1 occurrence of pattern

� � ���� �� ���

� ����

��� ��� ���

arrayFindByte has to satisfy a �������� symmetry relation.
short arrayFindPattern(byte[] src,
short srcOff, short srcLen, byte[] pat-
Src, short patOff, short patLen)

Returns the index of the first byte
in the part of src that matches the
specified pattern.

no simple symmetry

short arrayFindShort(byte[] src, short
srcOff, short len, short pattern)

Returns the index of the first byte
in the part of src that matches the
specified pattern (a short is 2 bytes).

no simple symmetry

short arrayOrNonAtomic(byte[] dest,
short destOff, byte[] src, short srcOff,
short len)

Copies the result of a bitwise OR on
the first and second operands into
dest.

� � ���� � �
��� �� �
���

������ ���� ��� �����

arrayOrNonAtomic has to satisfy a �������� symmetry relation.

short arrayXorNonAtomic(byte[] dest,
short destOff, byte[] src, short srcOff,
short len)

Copies the result of a bitwise XOR
on the first and second operands
into dest.

� � ���� � �
��� �� �
���

������ ���� ��� �����

arrayXorNonAtomic has to satisfy a �������� symmetry relation.

short getObjectIndex(java.lang.Object[]
src, short srcOff, short n,
java.lang.Object pattern)

Returns the index of the nth occur-
rence in the part of src that matches
pattern.

��� denotes the length of src and � � �,
we ask src to contain 1 occurrence of pattern

� � ���� �� ���

� ����

��� ��� ���

getObjectIndex has to satisfy a �������� symmetry relation.
short getShortIndex(short[] src, short
srcOff, short n, short pattern)

Returns the index of the nth occur-
rence in the part of src that matches
pattern.

��� denotes the length of src and � � �,
we ask src to contain 1 occurrence of pattern

� � ���� �� ���

� ����

��� ��� ���

getShortIndex has to satisfy a �������� symmetry relation.
short getTaggedShort(byte[] src, short
srcOff, short srcLen, short tag)

Returns the index of the first TLV
tag in the part of src that matches
the specified tag.

no simple symmetry

Using a specimen program is advantageous as we can easily inject
faults by modifying its source code. The key point of our approach
resides in the knowledge of symmetry violations occurring when
checking the output correctness of this program. Note that this ap-
proach is based on an uniform hypothesis: the inferred value for
the specimen program applies to other programs as well. This hy-
pothesis is debatable and relates to the difficulty of finding a rep-
resentative sample in statistics. In our framework, we preferred to
select a single representative program rather than a large set of non-
representative programs. Of course, any other more representative
program can be employed. For example, when testing an airborne
flight-guidance software, one can employ a well-established correct
program of the airborne software domain.

4.3 Our protocol to evaluate #�

Our protocol to evaluate #� is based on a set of faulty versions
of the specimen program � that are automatically created by a mu-
tation analysis scheme [34]. A mutant % is a version of � where
a single syntactical change has been introduced. Classically, a mu-
tant is said to be killed by a test datum � when %��� �� � ���. In
our framework, we will consider a mutant to be killed if there exists

� � �� such as ��� �� is a symmetry violation for % w.r.t. ���.
The value of #� depends on , the size of the subdomain of this
input space that is considered for the random test data generation.
Given a size , the empirical protocol is as follows:

1. built �%�������� a set of & mutants of a specimen program

� that has to satisfy a symmetry relation ���;

2. for each %�, compute the booleans '��� �

�%���	�� �� ������	%���� or %���	�� �� ������	%�����

for each test datum � of the input domain of � ;

3. returns #� � �
��

	
�
'��� which is just the median value of

the probability for the & mutants.

Note that the programs %� are executed on a large part of their
input domain, hence it is important to select a specimen program
having an input space of reasonable size. Note also that only two
permutations are required to be checked in this protocol (� � ��
�

and � � ��
 		
�). This is a direct consequence of Theorem 1.
We selected the well–known triangle classification program tri-

typ [27], that belongs to the Software Testing folklore. It takes
three non-negative bytes as arguments that represent the relative
lengths of the sides of a triangle and classifies the triangle as sca-
lene, isocele, equilateral or illegal. The results of trityp must
be invariant to every permutation of its three input values, leading
to a ��� symmetry relation. This program appears to be an in-
teresting specimen candidate as it contains a lot of decisions and
the probability of a symmetry violation to occur is highly related to
the flow of control. Hence, this probability highly depends on the
input subdomain that is being explored. This property has recently
been investigated from an experimental point of view in [24]. Of
course, any more representative program can be employed but we

Ps
AOR
ROR
LCR

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

of
 s

ym
m

et
ric

 fa
ul

t o
cc

ur
re

nc
e

20 40 60 80 100 120

s : size of domain

Figure 2: Empirical evaluation of #�
would like just to study the feasibility of the approach rather than
designing a fully acceptance testing methodology.

In our empirical protocol, application of the tool MuJava [34]
led to build automatically 36 mutants where an arithmetic operator
was replaced (AOR), 85 mutants where a relational operator was
replaced (ROR), and 14 mutants where a Logical connector was
replaced (LCR). In the current MuJava framework, equivalents mu-
tants7 are not removed from the set of mutants, although they can-
not be revealed by the means of testing [27]. So, ��� mutants of the
trityp programs were built by the tool and the input domain was
restricted to contain at most � �
�� �
������ input values.
Among the ��� mutants,
� were not killed by Symmetric Testing
but we kept them in the experiments to avoid introducting a bias in
the study.

For each mutant, we compute the number of symmetry viola-
tions found when exploring exhaustively a subdomain of the input
domain. The average number of symmetry violations that were de-
tected when exploring a subdomain of size allows for calculating
the probability of a symmetry violation to occur by using a uni-
form random test data generator (#�). Fig.2 contains the results we
got for several increasing values of (��� ��� ���� 			� �
��) by dis-
tinguishing the class of considered mutants (AOR,ROR,LCR). We
compute #� as the center of mass of the 3 bottom values obtained
for the greatest size (� �
��). Hence, #� � ��� � �	��� ��� �

�	��� � �� � �	��
�(��� � �	���.

4.4 Test quality based on symmetry violations
Based on definition 3, we get that) � �����#��

 for random
testing based on symmetry checking. The test quality) differs
from % as) is only based on symmetry checking. In fact,)

measures the probability of $ randomly generated test data in a
subdomain of size to reveal at least one symmetry violation in � .
When the property is enforced (� has been tested with a test quality

)), we get that the symmetry relation is satisfied by the program �

with a probability) . So, by using this model it becomes possible

7programs which compute the same outcome as the original pro-
gram although a mutation operator is applied

javac converter verifier

Open

Plateform

loader

.java .class .cap

Card

Commands

processor

.cmd

USB port

Java CardCard reader

Personal Computer

APDUs

Figure 3: Experimental environment

to assess the symmetry-based test quality for � .
The test quality was required to be equal to �	���� as is usually

the case in experimental frameworks [10]. By using the empirical
value of #� � �	��� and the theorem $ �
������ �

�������
�, we get that

$ � ��, meanning that at least �� test cases must be generated.
Note that we have just argued that this (arbitrary) value is suitable
for feeding our semi-empirical model.

5. EXPERIMENTAL ENVIRONMENT
The goal of the experiments was to study the applicability of

Symmetric Testing to reveal faults within Java Card APIs. The val-
idation process of Java Card APIs is usually made of three distinct
phases: firstly, Java card test applets are developed on a host ma-
chine by using simulation libraries; secondly, the tests are applied
to an emulation code that runs on a card emulator; and finally, the
test execution is conducted by cross-testing on the Java card. Our
experiments were performed in situations as close as possible to the
real usage. Hence, test execution and symmetries checking have
been conducted by cross-testing on the Java card with the help of a
card reader. In this respect, we differ from other smart cards testing
research approaches that focus only on test cases generation [6, 7].
In fact, we would like to check whether Symmetric Testing can
be combined with Random Testing in a cross-testing environment,
which was a challenging question as lots of limitations to memory
resources arise in such situations. Moreover, this approach required
to develop carrefully our prototype implementation to masterize the
memory and time consumption. Fig.3 contains a view of our exper-
imental environment. It is composed of five components: the java
compiler (SUN SDK 1.4), the OCS converter that produces stan-
dard Java Card byte code (converted applet file), the OCS verifier
which statically determines whether a cap file complies with the
Java Card specifications, the Open Platform loader which down-
loads and manages the applets onto the card and a Card Command
Processor that sends commands to the smart card via a card-reader
interface. Note that the bytecode verification process is done off-
card by the OCS verifier. The Card Command Processor is a com-
mand interpreter that accepts several language constructs such as
conditional and loop.

5.1 Tests generation and execution
In our experimental environment, a special attention has been

paid to minimize the communications between the reader and the
card. Recalling that our goal was to realize the test execution and
the symmetry checking processes on-card, passing large sets of ran-
dom numbers through the APDU mechanism would have been too

time-consuming. Hence, we have designed a Java Card applet (to
be loaded on-card) that generates test data and that checks the sym-
metry relations. This applet serves as a test harness and its size
is around 1.2 kbytes. It defines a single command TEST API that
launches three executions of the API method under test (� ���� � �� �

��� � �� � ��) and checks the computed output with regards to a
given symmetry relation. The applet makes use of a uniform ran-
dom test data generator provided by the Cosmo API implementa-
tion of the javacard.security.RandomData class to gen-
erate a single test datum �. In case of symmetry violation, a boolean
is returned through the APDU mechanism to inform the tester. Af-
ter having compiled, converted and verified the applet, it is loaded
on-card by the OP loader. Then, the command TEST API is launched

$ � �� times with the help of a command script, interpreted by
the Card Command processor.

5.2 Experimental results
For our experiments, we selected the seven methods from the

Cosmo Java Card API Utilfs that have a symmetry relation to
satisfy. In the industrial validation process of the Cosmo kit, these
methods are systematically tested by using a few values. For in-
stance, the arrayAndNonAtomicmethod is tested with two ran-
domly generated byte arrays by varying the values of destOff, sr-
cOff and len. By using the approach presented in the paper, we
tested each method of the API Utilfs (that has to satisfy a sym-
metry relation) with �� randomly generated test data8. Tab. 2 con-
tains the time elapsed to pass all the �� tests for each method. This
time value corresponds to the absolute user time (including garbage
collections, operating system calls, etc.) elapsed on the 8-bit CPU
Cosmo processor. It is just given here to illustrate the interest of
using symmetry relations as automatic (partial) test oracles. This
time should be compared to the time required by the tester to predict
the expected results of the methods with each of the �� randomly
generated test data.

The test quality achieved by these tests is equals to �	����, that
is to say each of these methods satisfies its symmetry relation with
a test quality of �	����. We did not find any symmetry violations
during this testing process but this does not prove the absence of
symmetry violations as our approach is only probabilistic.

5.3 Discussion and further work
The main limitation of the Symmetric Testing paradigm arises

when one tries to apply it to non-symmetric methods [15]. To ad-
dress this problem, we plan to explore other properties to check the
output correctness of Java Card APIs. Recently, Chen et al. pro-
posed in [22] to use existing relations over the input data and the
computed outcomes to eliminate faulty programs. Formally speak-
ing, let �*�� 		� *����� be
 distinct test data for a program in-
tended to compute a function � and suppose that given a relation �

over �*�� 		� *��, the results ��*��� 		� ��*�� must satisfy a property

�� , then we have: ��*�� 		� *�� �� �����*��� 		� ��*���. These
relations, called metamorphic relations, are more general than sym-
metry relations. In a previous work we did [28], we proposed to
automate the generation of input data that violate a given metamor-
phic relation, by using Constraint Logic Programming techniques.
Specifying such metamorphic relations over the Java Card APIs
would be interesting as they could serve as (partial) test oracles for
non-symmetric methods. A similar approach would be to consider
formally specified postconditions as a way to check the output cor-
rectness. For example, the formal specification of Java Card APIs
written in JML (Java Modeling Language) by Poll et al. [31] could

8All the randomly generated arrays are of size 0x7F which is the
greatest byte value

ensures (\forall int i; (i<=0 & i<dest.length)
==> (destOff <=i & i<destOff+length) ?

dest[i] == src[srcOff + (i-destOff)] :
dest[i] == \old(dest[i]));

ensures \result == destOff+length ;

Figure 4: JML postconditions for arrayCopy

be an interesting way of getting formulas that can serve as (par-
tial) test oracle. However, combining these formal postconditions
with a random test data generator remain a non-trivial task as they
make use of specific constructs that limit the possibility to asses
test quality. For example, the formal JML postcondition of the ar-
rayCopy Java Card API method extracted from [26] and shown
in Fig.4 makes use of array accesses and a loop construct for which
a fault occurrence probability seems to be difficult to establish.

6. CONCLUSION
In this paper, we have introduced a software testing framework

for on-card testing of symmetric Java Card API methods. The
framework contains a semi-empirical model to help deciding when
to stop testing and how to assess test quality. We have reported on
a first experience on testing a few methods of the OCS Cosmo 32
RSA V3.4 Java Card API by using the Symmetric Testing paradigm.
Further work will be dedicated to the exploitation of non-symmetric
properties to check the output correctness of Java Card methods,
such as metamorphic relations or postconditions extracted from a
formal specification. Another perspective will consist in explor-
ing how Symmetric Testing can be tuned to deal with the resources
consumption problem. Due to its limited memory and execution
features, Java cards and Java Card APIs must be thoroughly tested
w.r.t. memory and time consumption. Symmetry relations com-
bined with random testing could be an interesting candidate to find
counter-examples of statically estimated consumption bounds but
this remains to be shown.

7. REFERENCES
[1] J. P. Bowen, K. Bogdanov, J. Clark, M. Harman, R. Hierons,

and P. Krause. FORTEST: Formal methods and testing. In
COMPSAC 02: 26th IEEE Annual Int. Computer Software
and Applications Conf., Oxford, UK, pages 91–101.
Computer Society Press, Aug. 2002.

[2] ISO International Standard 15408. Common Criteria for
Information Technology Security Evaluation, Aug. 1999.
CCIMB-99-033, Part 3: Security assur. req.

[3] B. Legeard and F. Peureux. Generation of functional test
sequences from b formal specification : presentation and
industrial case study. In In Proc. of ASE’01, IEEE Computer
Society Press, pages 377–381, San Diego, USA, Nov. 2001.

[4] F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard,
F. Peureux, M. Utting, and N. Vacelet. Bz-testing-tools: A
tool-set for test generation from z and b using constraint
logic programming. In In Proc. of FATES’02, Formal App. to
Testing of Software, Workshop of CONCUR’02, pages
105–120, Brn, Czech Republic, Aug. 2002.

[5] B. Legeard, F. Peureux, and M. Utting. Automated boundary
testing from z and b. In In Proc. of FME’02, Formal Methods
Europe, Springer Verlag LNCS 2391, pages 21–40,
Copenhaguen, Denmark, Jul. 2002.

[6] A. Pretschner, O. Slotosch, H. Ltzbeyer, E. Aiglstorfer, and
S. Kriebel. Model based testing for real: The inhouse card
case study. In In Proc. 6th Intl. Workshop on Formal

Table 2: Symmetry in the OCS Utilfs methods
Java Card methods User time elapsed
short arrayAndNonAtomic(byte[] dest, short destOff, byte[] src, short srcOff, short len) 13 min 59 sec
short arrayCompare(byte[] src, short srcOff, byte patByte, short length) 6 min 15 sec
short arrayFindByte(byte[] src, short srcOff, short len, byte pattern) 4 min 24 sec
short arrayOrNonAtomic(byte[] dest, short destOff, byte[] src, short srcOff, short length) 13 min 57 sec
short arrayXorNonAtomic(byte[] dest, short destOff, byte[] src, short srcOff, short length) 13 min 55 sec
short getObjectIndex(java.lang.Object[] src, short srcOff, short n, java.lang.Object pattern) 2 min 01 sec
short getShortIndex(short[] src, short srcOff, short n, short pattern) 2 min 05 sec

Methods for Industrial Critical Systems (FMICS’01), pages
79–94, Paris, Jul. 2001.

[7] D. Clarke, T. Jeron, V. Rusu, and E. Zinovieva. Automated
test and oracle generation for smart-card applications. In In
Int. Conf. on Research in Smart Cards (e-Smart’01),
Springer Verlag, LNCS 2140, pages 58–70, 2001.

[8] H. Martin and L.d. Bousquet. Automatic test generation for
java-card applets. In Isabelle Attali and Thomas P. Jensen,
editors, Java on Smart Cards: Programming and Security,
First International Workshop, JavaCard 2000, Cannes,
France, September 14, 2000, Revised Papers, volume 2041
of Lecture Notes in Computer Science, pages 121–136.
Springer, 2001.

[9] J.W. Duran and S. Ntafos. An Evaluation of Random Testing.
IEEE Trans. on Soft. Eng., 10(4):438–444, Jul. 1984.

[10] P. Thévenod-Fosse and H. Waeselynck. An investigation of
statistical software testing. Journal of Sotware Testing,
Verification and Reliability, 1(2):5–25, July 1991.

[11] T. Y. Chen, T. H. Tse, and Y. T. Yu. Proportional sampling
strategy: a compendium and some insights. The Journal of
Systems and Software, 58 (2001), pages 65–81. Elsevier
2001.

[12] R. A. DeMillo, W. M. McCracken, R. J. Martin, and J. F.
Passafiume. Software Testing and Evaluation. The
Benjamin/Cummings Publishing Company, INC., Menlo
Park, CA, 1987.

[13] T. Wood, K. Miller, and R. E. Noonan. Local exhaustive
testing: a software reliability tool. In Proc. of the Southeast
regional conf., pages 77–84. ACM Press, 1992.

[14] E. Weyuker. On testing non-testable programs. The
Computer Journal, 25(4), 1982.

[15] A. Gotlieb. Exploiting symmetries to test programs. In IEEE
International Symposium on Software Reliability and
Enginering (ISSRE), pages 365–374, Denver, CO, USA,
Nov. 2003.

[16] SUN Microsystems. Java Card 2.1.1 Application
Programming Interface, May 2000.

[17] F. Allen Emerson and A. Prasad Sistla. Symmetry and model
checking. Formal Methods in System Design: An
International Journal, 9(1/2):105–131, August 1996.

[18] C. Norris Ip and David L. Dill. Better verification through
symmetry. Formal Methods in System Design: An
International Journal, 9(1/2):41–75, August 1996.

[19] P. Godefroid. Exploiting symmetry when model-checking
software. FORTE’99, pp 257-275.

[20] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric spin.
In SPIN, pp 1–19, 2000.

[21] Edmund M. Clarke, Orna Grumberg, Marius Minea, and
Doron Peled. State space reduction using partial order
techniques. Soft. Tools for Tech. Transfer, 2, 1998.

[22] T.Y. Chen, T.H. Tse, and Zhiquan Zhou. Fault-based testing

in the absence of an oracle. In IEEE Int. Comp. Soft. and
App. Conf. (COMPSAC), pages 172–178, 2001.

[23] T.Y. Chen, T.H. Tse, and Zhiquan Zhou. Semi-proving: an
integrated method based on global symbolic evaluation and
metamorphic testing. In ACM Int. Symp. on Soft. Testing and
Analysis (ISSTA), pages 191–195, 2002.

[24] T.Y. Chen, D.H. Huang, T.H. Tse, and Z.Q. Zhou. Case
studies on the selection of useful relations in metamorphic
testing. In 4th Ibero-American Symp. on Software
Engineering and Knowledge Engineering (JIISIC 04), pages
569–583, 2004.

[25] M. A. Armstrong. Groups and Symmetry, UTM. Springer
Verlag, 2nd ed., 1988.

[26] C.-B. Breunesse, N. Catao, M. Huisman, and B.P.F. Jacobs.
Formal methods for smart cards: an experience report.
Science of Computer Programming, 55(1-3):53–80, 2005.

[27] R.A. DeMillo and J.A. Offut. Constraint-based automatic
test data generation. IEEE Trans. on Soft. Eng.,
17(9):900–910, Sep. 1991.

[28] A. Gotlieb and B. Botella. Automated metamorphic testing.
In 27th IEEE COMPSAC’03, Dallas, TX, USA, November
2003.

[29] U. Hansmann, M.S. Nicklous, T. Schack, and F. Seliger.
Smart Card Application Development using Java. Springer
Verlag, 2000.

[30] Y. Malaiya, M.N. Li, J.M. Bieman, and R. Karcich. Software
reliability growth with test coverage. Trans. on Reliability,
51(4):420–426, Dec. 2002.

[31] H. Meijer and E. Poll. Towards a full formal specification of
the java card api. In Isabelle Attali and Thomas P. Jensen,
editors, Smart Card Programming and Security,
International Conference on Research in Smart Cards,
E-smart 2001, Cannes, France, September 19-21, 2001,
LNCS 2140, pp 165–178. Springer Verlag, 2001.

[32] S. Ntafos. On Random and Partition Testing. Soft. Eng.
Notes, 23(2):42–48, 1998.

[33] Oberthur Card Systems. Cosmo 32 RSA V3.4 API Reference
Guide, 2003.

[34] J. Offutt, Y. Ma, and Y. Kwon. An experimental mutation
system for java. Softw. Eng. Notes, 29(5):1–4, 2004.

Ce travail, écrit en collaboration avec le responsable de la validation fonction-
nelle des cartes produites chez Oberthur, a démontré la faisabilité du test symétrique
sur la Java Card et son potentiel pour évaluer la correction de certaines APIs. Au
delà du test symétrique, c’est le test exhaustif borné1 qui est utilisé ici et il est in-
téressant de constater que cette forme de test a reçu un grand intérêt par la suite
dans le domaine du test logiciel [Coppit 05].

1"exhaustive bounded testing"

Chapter 9

Système d’alerte et
anti-collision (TCAS)

Les logiciels critiques de l’avionique civile ou militaire auxquels le chercheur peut
avoir accès, sont très peu nombreux. En effet, le code source fait partie du secret in-
dustriel des grandes entreprises qui sont chargés du développement et de la main-
tenance de ces logiciels, et il n’est donc généralement pas accessible. Dans le cadre
du projet RNTL CAT (C Analysis Toolbox, 2005-2009) qui avait pour objet la réali-
sation d’outils pour l’analyse et la vérification de programmes C, nous avons pu
avoir accès à de tels logiciels. Dans ce contexte, une campagne d’expérimentations
a été menée visant certains logiciels embarqués de l’avionique civile, certains étant
fournis par nos partenaires industriels et d’autres provenant de source publique
comme le SIR1 [Do 05]. L’intérêt de ces derniers étant que les résultats obtenus
soient publiables. Le fruit d’une de ces expériences, menées dans le cadre du pro-
jet CAT, est décrit dans l’article de ce chapitre.

A. Gotlieb. TCAS software verification using constraint pro-
gramming. The Knowledge Engineering Review, 2009.
Accepted for publication.

1Software Infrastructure Repository

157

The Knowledge Engineering Review, Vol. 00:0, 1–15. c© 2009, Cambridge University Press
DOI: 10.1017/S000000000000000 Printed in the United Kingdom

TCAS software verification using Constraint Pro-
gramming

Arnaud Gotlieb
INRIA - Rennes - Bretagne Atlantique
35042 Rennes Cedex, France
E-mail: Arnaud.Gotlieb@irisa.fr

Abstract

Safety-critical software must be thoroughly verified before being exploited in commercial applications.
In particular, any TCAS (Traffic Alert and Collision Avoidance System) implementation must be verified
against safety properties extracted from the anti-collision theory that regulates the controlled airspace.
This verification step is currently realized with manual code reviews and testing. In our work, we explore
the capabilities of Constraint Programming for automated software verification and testing. We built a
dedicated constraint solving procedure that combines constraint propagation with linear programming to
solve conditional disjunctive constraint systems over bounded integers extracted from computer programs
and safety properties. An experience we made on verifying a publicly available TCAS component
implementation against a set of safety-critical properties showed that this approach is viable and efficient.

1 Introduction

In critical systems, software is often considered as the weakest link of the chain and there are many
stories of software bugs that yield catastrophic consequences. For instance, on 2004, September 14, L.
Geppert reports1 that the contact voice lost of Los Angeles air traffic controllers was due to a software
bug that resulted to an unexpected shutdown of the Voice Switching and Control System. It turned out
that shutdown was due to a 32-bit integer value running out of digits. Hopefully, in a situation that could
have proved deadly, tragedy was avoided not only by both pilots and controllers professionalism, but also
by another software-based critical system: the Traffic Alert and Collision Avoidance System (TCAS),
which is embedded on aircraft to prevent from midair collisions. Thus, small software bugs can result to
catastrophic situations and therefore, they must be tracked and eliminated from critical systems.

In the Avionics domain, software verification currently includes manual code review and analysis,
unit testing, software and hardware integration testing and validation testing. These various tasks address
distinct not-redundant verification levels and offer reasonable confidence in terms of correction, reliability
and performance. Code reviews consist in reading and discussing code written by other developers and
help checking assertions derived from safety-critical properties. Unit testing consists in executing pieces
of code (units) in isolation of the rest of the system with the intent of finding bugs. Test cases are selected
from the input domain and used to exercise the software unit ; then, a test verdict (either pass or fail) is
produced by an oracle procedure to check the computed results. For testing software units in isolation,
stubs have to be created to replace actual function calls. Software integration testing aims at testing the
interaction between units and it is performed just by removing the stubs. Hardware integration testing
consists in executing the code in its operational and physical environment. For avionics software, it
means executing cross-compiled code on hardware emulators or embedded targets. Finally, validation
testing aims at verifying high-level requirements through simulations and operational scenarios. As a

1IEEE Spectrum (www.spectrum.ieee.org/nov04/4015)

2 A. GOTLIEB

consequence of the increasing complexity of avionics software, it is usually acknowledged that these
techniques can hardly scale-up (Randimbivololona 2001). Code reviews are human-based approaches that
highly depend on the confidence of reviewers. Testing is faced with combinatorial explosion and manual
test data generation rapidly becomes too hard. In addition, test data selection and oracle production are
error-prone processes that require competent and experienced engineers.

In our work, we explore the capabilities of Constraint Programming for automating parts of the
software verification process. For several years, we have concentrated our efforts on automating the
test case generation process by using dedicated constraint solving procedures. Initially, we proposed
using classical constraint propagation with bound-consistency filtering and labeling for handling integer
computations (Gotlieb et al. 2000) and floating-point computations (Botella et al. 2006). Then, we refined
the solving procedure with linear relaxations (Denmat et al. ISSRE 2007) and dedicated global constraint
approaches (Denmat et al. CP 2007). We also addressed the extension of our approach to pointer variables
(Gotlieb et al. 2007) and dynamic allocated structures. Recently, we have started to explore software
verification with this approach and this paper mainly reports on our first experience in this matter.

In this paper, we present a general constraint solving procedure that combines bound-consistency
filtering with linear programming over the rationals for solving disjunctive constraint systems over
bounded integers. These constraint systems are extracted from imperative programs and correspond
to various test data generation and verification tasks. The procedure dynamically combines constraint
propagation and simplex solver calls in an iterating process that is coordinated by synchronization
conditions. These conditions are based on simple integer cutting planes and domain pruning. The
originality of this procedure over existing approaches comes from its ability to deal with non-linear
constructs such as disjunctions (including conditional constraints and reification), variables multiplication,
Euclidian division and modulo. This paper also presents the results of an experiment on the application
of this procedure to the verification of a software component of the Traffic Alert and Collision Avoidance
System (TCAS). For this experiment, we used a publicly available implementation of the main component
of TCAS that is responsible for alerts and resolution advisories issuance. Our results show that using CP
for automated verification of software units is viable and efficient.

The rest of the paper is organized as follows. The following section presents the TCAS. Section 3
describes the constraint solving procedure based on linear relaxation and cooperation between a finite
domain solver and a linear programming solver. Section 4 presents our implementation while section 5
discusses of experimental results and related works. Finally, section 6 concludes the paper and draws some
perspectives.

2 TCAS software verification

The TCAS is an on-board aircraft conflict detection and resolution embedded system. The system is
intended to alert the pilot to the presence of nearby aircraft that pose a mid-air collision threat and to
propose maneuvers so as to resolve these potential conflicts. In cases of collision threats, TCAS estimates
the time remaining until the two aircrafts reach the closest point of approach (CPA) and presents two
main levels of alert. As shown on Fig.1, when an intruder aircraft enters a protected zone, the TCAS
issues a Traffic Advisory (TA) to inform the pilot of potential threat. If the danger of collision increases
then a Resolution Advisory (RA) is issued, providing the pilot with a proposed maneuver that is likely
to solve the conflict. The RAs issued by TCAS are currently restricted to the vertical plane only (either
climb or descend) and their computation depends on time-to-go to CPA, range and altitude tracks of
the intruder2. Any TCAS implementation must be certified under level B of the DO-178B standard 3

(DO-178B 1992). According to the standard, certifying TCAS requires to show that all the executable
statements and decisions of the source code has been executed at least once during the testing phase. In
addition, any non-executable statement must be removed from the source code because these statements
do not trace back to any software requirements and do not perform any required functionality.

2Future generations of TCAS may propose three-dimensional escape maneuvers
3The standard classifies systems with 5 criticality levels: from the highest critical level A to the least critical E

TCAS software verification using Constraint Programming 3

Intruder
TCAS

Resolution Advisory
region Traffic Advisory

region

40sec
25sec

If altitude in 5000-10000 feet

Figure 1 TCAS alarms

There are many implementations of TCAS, but obtaining the source code of these proprietary imple-
mentations is not easy. From the Software-artifact Infrastructure Repository (Do et al. 2005), it is possible
to download a C component, called tcas.c, of a preliminary version of TCAS. This freely and publicly
available component is responsible for the Resolution Advisories issuance. The component is (modestly)
made up of 173 lines of C code. The code contains nested conditionals, logical operators, type definitions,
macros and function calls, but no floating-point variables, pointers or dynamically allocated structures.
Fig.2 shows the call graph of the program while Fig.3 shows the code of the highest-level function
Alt sep test which computes the RAs. This function takes 14 global variables as input, including

Alt_sep_test

Non_Crossing_Biased_Climb Non_Crossing_Biased_Descend

Own_Below_Threat
Own_Above_Threat

Inhibit_Biased_Climb

Initialize

ALIM

main

Figure 2 Call graph of tcas.c

Own Tracked Alt the altitude of the TCAS equipped airplane, Other Tracked Alt the altitude
of the “threat”, Positive RA Alt Thresh an adequate separation threshold, Up Separation the
estimated separation altitude resulting from an upward maneuver and Down Separation the estimated
separation altitude resulting from a downward maneuver. The documentation associated to this code
indicates that lines 11-12 of Fig.3 is non-executable 4, showing that this implementation is indeed not
compliant with DO-178B. Any TCAS implementation must verify safety properties that come from the
aircraft anti-collision theory, as presented in the TCAS II version 7 manual (TCAS II). For the considered

4The implementation under test considers only a single threat, hence condition of line 11-12 cannot be satisfied

4 A. GOTLIEB

int alt sep test()
{

1. bool enabled, tcas equipped, intent not known;
2. bool need upward RA, need downward RA;
3. int alt sep;

4. enabled = High Confidence && (Own Tracked Alt Rate <= OLEV)
&& (Cur Vertical Sep > MAXALTDIFF);

5. tcas equipped = (Other Capability == TCAS TA);
6. intent not known = (Two of Three Reports Valid && Other RAC == NO INTENT);

7. alt sep = UNRESOLVED;

8. if (enabled && ((tcas equipped && intent not known) ||!tcas equipped))
{

9. need upward RA = Non Crossing Biased Climb() && Own Below Threat();
10. need downward RA = Non Crossing Biased Descend() && Own Above Threat();
11. if (need upward RA && need downward RA)

// unreachable: Own Below Threat and Own Above Threat can’t be both true
12. alt sep = UNRESOLVED;
13. else if (need upward RA)
14. alt sep = UPWARD RA;
15. else if (need downward RA)
16. alt sep = DOWNWARD RA;

else
17. alt sep = UNRESOLVED;

}

18. return alt sep;
}

Figure 3 Function alt sep test from tcas.c

component, several properties referring to the possibility of issuing either an upward or a downward RA
have been previously formalized in (Livadas et al. 1999) and (Coen-Porisini et al. 2001). Tab.1 shows the
five double properties formalized in (Coen-Porisini et al. 2001). For example, property P1b says that if

Table 1 Safety properties for tcas.c

Num. Property Explanation ACSL specification

P1a Safe advisory selec-
tion

An downward RA is never issued
when an downward maneuver does
not produce an adequate separation

assumes Up Separation >= Positive RA Alt Tresh
&& Down Separation < Positive RA Alt Tresh;
ensures result ! = need Downward RA;

P1b Safe advisory selec-
tion

An upward RA is never issued
when an upward maneuver does not
produce an adequate separation

assumes Up Separation < Positive RA Alt Tresh
&& Down Separation >= Positive RA Alt Tresh;
ensures result ! = need Upward RA;

P2a Best advisory selec-
tion

A downward RA is never issued
when neither climb or descend ma-
neuvers produce adequate separa-
tion and a downward maneuver pro-
duces less separation

assumes Up Separation < Positive RA Alt Tresh
&& Down Separation < Positive RA Alt Tresh &&
Down Separation < Up Separation; ensures result
! = need Downward RA;

P2b Best advisory selec-
tion

An upward RA is never issued
when neither climb or descend ma-
neuvers produce adequate separa-
tion and an upward maneuver pro-
duces less separation

assumes Up Separation < Positive RA Alt Tresh
&& Down Separation < Positive RA Alt Tresh &&
Down Separation > Up Separation; ensures result
! = need Upward RA;

P3a Avoid unnecessary
crossing

A crossing RA is never issued when
both climb or descend maneuvers
produce adequate separation

assumes Up Separation ≥ Positive RA Alt Tresh
&& Down Separation ≥ Positive RA Alt Tresh &&
Own Tracked Alt > Other Tracked Alt; ensures
result ! = need Downward RA;

P3b Avoid unnecessary
crossing

A crossing RA is never issued when
both climb or descend maneuvers
produce adequate separation

assumes Up Separation ≥ Positive RA Alt Tresh
&& Down Separation ≥ Positive RA Alt Tresh &&
Own Tracked Alt < Other Tracked Alt; ensures
result ! = need Upward RA;

P4a No crossing advi-
sory selection A crossing RA is never issued assumes Own Tracked Alt > Other Tracked Alt;

ensures result ! = need Downward RA;

P4b No crossing advi-
sory selection A crossing RA is never issued assumes Own Tracked Alt < Other Tracked Alt;

ensures result ! = need Upward RA;

P5a Optimal advisory
selection

The RA that produces less separa-
tion is never issued

assumes Down Separation < Up Separation;
ensures result ! = need Downward RA;

P5b Optimal advisory
selection

The RA that produces less separa-
tion is never issued

assumes Down Separation > Up Separation;
ensures result ! = need Upward RA;

an upward maneuver does not produce an adequate separation while an downward maneuver does, such
as in Fig.4, then an upward RA should not been produced. These properties, among others, are currently

TCAS software verification using Constraint Programming 5

TCAS

Threat
upward

downward

CPA

Down_Separation

Up_Separation

Figure 4 Resolution Advisories

verified through manual code reviews. A challenge in this area is to provide automated dependable tools
that generate test data, check the conformance of a given implementation with safety properties, and show
that any statement of the source code is executable. Several experimental tools based on software model-
checking or static analysis exist for these tasks, but according to our knowledge, none of them is used in
operational context on a regular basis. Most of them are still inefficient to deal with non-linear constraints
resulting from constraint disjunction, variable multiplication, division, large array accesses and updates,
pointer aliasing and so on. Moreover, proving that a given statement is indeed executable cannot be easily
achieved by standard static analysis, as these analyses compute over-approximations of the program states.
On the contrary, automatic test case generation tools can produce test inputs able to activate some selected
statements of a program, proving so that they are indeed executable.

3 Constraint generation and solving

Our approach is based on a two-stage process. The former stage, called constraint generation, aims at
extracting a constraint program from a given test objective and the program under test. The second stage,
called constraint solving, aims at solving the resulting constraint system in order either to generate test
data or to verify the test objective. Constraint generation is now well-documented and our approach has
already been discussed in other papers: (Gotlieb et al. 2000) presents a constraint generation approach
for imperative programs with integer computations, (Botella et al. 2006) discusses how to deal with
floating-point computations while (Gotlieb et al. 2007) explains how pointer aliasing can be tackled. On
the contrary, the constraint solving stage that relies on constraint propagation, linear programming and
linear relaxations, and labeling has been hardly documented. As this paper focusses mainly on constraint
solving (Sec. 3.3), we just briefly recall constraint generation (Sec. 3.2) after having presented the scope
and the notations of our approach (Sec. 3.1).

3.1 Scope and notations

In this paper, we restrict our presentation to the fragment of the C language required to implement critical
sections of programs. The TCAS implementation of our case study is made of arithmetical and logical
operations over bounded integers, conditionals and function calls, but there are no loops 5, arrays or
pointers. Hence, in this paper we confine our presentation to a small subset of the C language, although
the approach can deal with unbounded loops (Denmat et al. CP 2007) and other constructions (Gotlieb
2009).

5TCAS is a realtime system that executes its loop-free software at each cycle

6 A. GOTLIEB

int foo(int x, int y)
int z, u ;

1. if (x ∗ y < 4) u= 5 ; else u= 100 ;
2. if (u≤ 8) y = x+ u ; else y = x− u;
3. z = x ∗ y ;
4. assert (z >−2500)

Figure 5 Program foo

In the rest of the paper, variables of the program under test are noted with lower-case letter while
logicial variable are noted with upper-case letters. Any logical variable X is a finite domain variable (FD
variable) with X denotating the lower bound of its domain while X denotating its upper bound. Arithmeti-
cal constraints include constraints built over logical variables and operators such as +,−, ∗, /, mod, etc.

while high-level constraints include conditional constraints (noted c 1 −→ c2), constraints that handle
disjunctions and function calls. Note that c1 −→ c2 denotes only half of a logical implication (e.g.
¬c2 −→¬c1 is not a logical deduction of this constraint).

3.2 Constraint generation

3.2.1 Principle
The idea is based on the generation of a constraint program that represents the whole program under
test and the test objective. While other approaches explore one by one each source-code path (Clarke
et al. 2003, Chaki et al. 2004, Godefroid et al. 2005, Sen et al. 2005, Williams et al. 2005), we choose
to explore dynamically all the possible alternatives of the program under test during constraint solving.
For example, for each conditional of the program, there are two possible subpaths depending on whether
the decision of the conditional is true or not. In standard constraint generation approaches, a choice is
made and one of the two subpaths is explored. If this yields a contradiction, the process backtracks until
a satisfactory path is found. Contradictions come from path infeasibility: a path is infeasible if and only
if the decisions that govern its execution are unsatisfiable. It is worth noticing that programs that contain
n conditionals have O(2n) source-code paths in the worst case, among which some may be infeasible,
and then standard depth-first search approaches face a combinatorial explosion problem. To leverage this
problem, our constraint generation approach implements constraint-based exploration, meaning that each
conditional is considered as a constraint that may suspend when there is no subpath alternative to privilege.
Instead of using choice points to represent conditionals, our approach keeps implicit disjunctions under
the form of specific conditional constraint operators that apply deduction rules to determine whether each
disjunct is compatible with the rest of the constraints or not. The constraint model we build represents
the whole program under test and when it is considered for constraint solving, it generates a disjunctive
constraint system.

3.2.2 Example
To illustrate this generation, we show the constraint generation stage on the simple example program
shown in Fig.5. The program takes two 32-bit signed integer variables as inputs and defines two local
variables z and u. At line 4, an assertion checks the value of z. Suppose we want to automatically verify
the test objective which consists in verifying this assertion, i.e. to check that any state that reaches this
assertion admit a value of z strictly greater than −2500. In this example, the assertion may be invalidated
as there exists a test input (values for x and y) that can produce a state where z =−2500 (see Sec.3.3.7).
The constraint generation step of our method produces the following conditional constraint system,
where ite stands for if–then–else: X, Y ∈ −231..231 − 1, Z = 0, U = 0, ite(X ∗ Y < 4, U1 = 5, U1 =

100), ite(U1 ≤ 8, Y1 =X + U1, Y1 =X − U1), Z1 =X ∗ Y1, Z1 ≤−2500. This generation uses a re-
naming scheme, called Static Single Assignment (SSA), to tackle the problem of destructive assignment
(Brandis et al. 1994). When the same variable x is assigned twice in the tested program, two logical

TCAS software verification using Constraint Programming 7

instances of the variable X1 and X2 are created to properly handle this situation in the constraint program
(see (Gotlieb et al. 07) for details).

3.2.3 Test objectives
As said before, test objectives represent target assertions to verify in the code. Formaly speaking, if SC
is the constraint system representing the whole program under test and C is an assertion to check, then
searching solutions of SC ∧ ¬C answers this verification problem. If one gets that sol(SC ∧ ¬C) = ∅
then assertion C is verified as it holds for any executions of the program. On the contrary, if one gets a
solution s then s can be converted into a test input that violate the assertion C. The easiest way to introduce
test objectives in the constraint system is therefore, 1) to constrain the execution flow in the program for
reaching the assertion, 2) to falsify the assertion in order to find counter-example or to prove it. These
goals are handled through a bi-directional process called reification, which constrains the truth value of
a given constraint. For example, R⇔X > Y associates the reification variable R to the truth value of
constraint X > Y . By constraining R, one can specify whether the constraint has to be truth or false. On
the contrary, if all the values of domains for X and Y satisfy X > Y (resp. X ≤ Y) then R= 1 (resp. R=

0). Thanks to this process, the control flow of the program is represented with a boolean constraint network
over reification variables. When conditionals are nested, implication between the reification variables of
the associated decisions represents the control flow (Gotlieb 09). Accordingly, assertions are reified and
violating an assertion is easily specified by setting its reification variable to 0.

3.3 Constraint solving

Our constraint solving procedure is based on the cooperation of several techniques, namely constraint
propagation with bound consistency, linear programming and linear relaxation, and labeling. Each of
these techniques has been abundantly described in the literature (Handbook of Constraint Programming
2006) and then we focus on the combination of these techniques to validate the TCAS implementation.
The constraint solver cooperation is documented in section 3.3.1, while sections 3.3.2 to 3.3.6 present
linear relaxations of several standard operators. Finally, sec. 3.3.7 presents our approach to explore the
search space.

3.3.1 The cooperation process
Our constraint solving procedure uses a main propagation queue that manages each constraint in turn.
There are two priority levels that can be associated to a constraint. The highest priority level is given
to the arithmetical constraints that can prune very early and efficiently the search space. High-level
constraints such as conditionals or function calls are tackled with the lowest priority level as they
implement costly entailment checks. Our implementation uses a synchronous communication process
between two dedicated solvers: a finite domains constraint propagation solver (FD solver) and a simplex
over the rationals (LP solver). Each time an arithmetical constraint is encountered in the propagation
queue, two constraints are posted: the arithmetical constraint itself is posted in the FD solver and a
linear relaxation over rationals of the arithmetical constraint is posted in the LP solver. This relaxation
is computed by using current bounds of domains and then it is called a dynamic linear relaxation (DLR)
to underline its iterative computation during the constraint solving process. We explain below with more
details how these relaxations can be computed. Each variable of the original problem comes in two flavors:
a FD variable for the FD solver and a rational variable for the Linear Programming solver. For example, an
integer type declaration such as int x yields a domain constraint in the FD solver XFD ∈ −231..231 − 1

and a linear constraint in the LP solver −231 ≤XQ ≤ 231 − 1 where XFD denotes an integer variable and
XQ denotes a rational variable.

We selected an LP implementation over the rationals in order to preserve correctness. Using a more
efficient implementation based on floating-point computations would have been desirable, but our goal is
to preserve the semantics of integer computations, and floating-point computations in LP are sometimes
unsafe to preserve all the real solutions. In the conclusion section of the paper, we discuss the possible use

8 A. GOTLIEB

Constraint Dynamic Linear Relaxation
X ∈ a..b a≤X ≤ b

Z = Flin(X, Y, ...) Z = Flin(X, Y, ...)

Z =X ∗ Y

⎧
⎪⎪⎨
⎪⎪⎩

Z −X.Y −X.Y +XY ≥ 0

X.Y − Z −X.Y +X.Y ≥ 0

X.Y −X.Y − Z +X.Y ≥ 0

XY −X.Y −X.Y + Z ≥ 0

R⇔ F (X, Y, ...)≤ 0

{
F (X, Y, ...)≤ F .(1−R)),

(1 − F (X, Y, ...)≤ (1− F).R)

ite(c, F1, F2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c−→ F1

¬c−→ F2

¬(c ∧ F1)−→ (¬c ∧ F2)

¬(¬c ∧ F2)−→ (c ∧ F1)

joindom(F1, F2)

joinlin(F1, F2)

Figure 6 Dynamic Linear relaxations (DLRs)

Figure 7 The grey box contains all the integer points inside the polyhedron

of safe Linear Programming implementations, such as (Neumaier et al. 2004), to preserve the semantics.
So, having relaxed the constraint system over integer variables into a linear problem over rationals permits
to check for satisfiability with more efficiency. Indeed, the LP solver considers the constraint system as a
whole while the FD solver checks for satisfiability by combining only local tests of each constraint.

Note also that some nonlinear constraints over integers can be handled with relaxations. We provide
in Fig.6 the formulas we used for relaxing constraints having variable multiplication, reification,
conditionals, etc. Several strategies can be followed to make both solvers cooperate. We tried several
heuristics and kept the one that gave the best results in average. The idea is to call each solver in turn
(without interleaving) to benefit from their combined efficiency. Starting with the FD solver, a constraint
propagation step with bound-filtering consistency is launched. Upon fixpoint, the DLRs are then computed
using the current bounds of variable and the LP solver is called by optimizing the bounds of each variable.
When the relaxed linear problem does not contain any solutions, it means that the original (possibly
nonlinear) problem is unsatisfiable. This property comes from the fact that correctness was preserve by
the use of relaxations over rationals. On the contrary, when the relaxed linear problem contains solutions,
one can still benefit from the simplex to prune the variation domains of variables. The idea is to project
the current polyhedron over each variable and comparing the resulting domain with the current domain
of variable. This algorithm performs two calls to the simplex algorithm per variable appearing in the
linear relaxation, one call for each bound. Then, it prunes the current domain of variable by updating
its (rational) bounds. Finally, integer rounding shaves the domain to fit with integer solutions only. For
example, if a call to the simplex returns 7

2 as an upper bound for X , then variable X has to be lower or
equal to 3. As a result, the constraint solving process computes an integer bounding box that includes all
the integer solutions of the linear relaxed problem. Note however that the box may also include integer
points that are no part of the polyhedron, as shown in Fig.7. Pruning the domain of variables awakes FD

TCAS software verification using Constraint Programming 9

Figure 8 Relaxation of multiplication

constraints still suspended and constraint propgation can be re-launched to get better over-approximation.
This iterating process is repeated until a fixpoint is reached for both solvers. At this point, a labeling
procedure is launched that can possibly awake constraint propagation and DLRs computations.

A drawback of this approach is the possible slow convergence of the iterating process. However any
approach that make at least two solvers cooperate faces a similar problem. In practice, we did not observe
any slow convergence phenomenon in our experiments until now.

3.3.2 DLR of multiplication
The formula of Fig.6 for multiplication directly follows from the four following trivial inequalities
(McCormick 1976):

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(X −X)(Y − Y)≥ 0

(X −X)(Y − Y)≥ 0

(X −X)(Y − Y)≥ 0

(X −X)(Y − Y)≥ 0

Z =X ∗ Y

⇒

⎧
⎪⎪⎨
⎪⎪⎩

Z −X.Y −X.Y +XY ≥ 0

X.Y − Z −X.Y +X.Y ≥ 0

X.Y −X.Y − Z +X.Y ≥ 0

XY −X.Y −X.Y + Z ≥ 0

Fig.8 shows a slice of the relaxation where Z = 1. Here, the rectangle corresponds to the bounding box of
variables X and Y , the dashed curve represents exactly X ∗ Y = 1, while the four solid lines correspond
to the inequalities of the relaxation.

3.3.3 DLR of division, modulo and logical operators
Expressions built on division and modulo can be treated with similar linear relaxation reformulation. The
constraint Q=A div B where div denotes the Euclidian division rewrites to

(B ∗Q≤A) ∧ (A<B ∗ (Q+ 1)) ∧ (B �= 0)

Similarly, R=A mod B where mod denotes the Euclidian remainder rewrites to

(R=A−B ∗Q) ∧ (0≤R<B)

We applied the same principle for logical operators by studying the semantics of operators of the C
programming language. The constraint Z =X && Y where && denotes the “logical and” operator
rewrites to

Z =X ∗ Y mod 2

The constraint Z =X || Y where || denotes “logical or” rewrites to

(Z = (X + Y −X ∗ Y)mod 2) ∧
(Z ≥X mod 2) ∧ (Z ≥ Y mod 2)

10 A. GOTLIEB

while Y = ˜X where ˜denotes “logical not” rewrites6 to

(X0 ∈ 0..1) ∧ (X ∗X0 =X) ∧ (Y = 1−X0)

3.3.4 Handling reification
Reified constraints appear in the constraint system as the result of control flow specification (reaching a
specific location) or assertion violation. Consider the reified constraint R⇔ C where R is the reification
variable. Without any loss of generality, let suppose that C if of the form F (X)≤ 0 and the function F is
bounded, i.e. there exist F and F such that ∀X ∈DX F ≤ F (X)≤ F . Then R⇔ F (X)≤ 0 rewrites to
the conjunction

(F (X)≤ F .(1−R)) ∧ (1− F (X)≤ (1− F).R)

For example, consider the constraint R⇔X ≤ Y , then F (X, Y) =X − Y , F =X − Y , F =X −
Y , and the reified constraint rewrites to

(X − Y − (X − Y) ∗ (1 −R)≤ 0) ∧
(Y −X + 1− (Y −X + 1) ∗R≤ 0)

Note that these inequations are interpreted over the rationals. Hence, the boolean variable R is interpreted
as a rational over the continuous set [0, 1] and then the set of solutions of these constraints (over-)
approximates only the solutions over integers.

3.3.5 Handling conditionals
We use a special operator called ite for handling conditionals. This operator is implemented as a global
constraint, meanning that it can be awoken when the variation domain of at least one of its variables
changes. Once awoken, the algorithm of this constraint tries to prove that one of the two disjuncts is
unsatisfiable with the rest of the constraints and, thus, replace the overall disjunction by the other disjunct.
When this reasoning fails, the union of domains is computed.

Constraint ite is modeled using four guarded constraints. The former two directly come from the
operational semantics of a conditional in a C program: c−→ F1, ¬c−→ F2. They are used to propagate
forward control flow throughout the constraint system. On the contrary, the latter two implement backward
reasoning: ¬(c ∧ F1)−→ (¬c ∧ F2) and ¬(¬c ∧ F2)−→ (c ∧ F1). Roughly speaking, ite represents
exclusive disjunction between two disjuncts and these four guarded constraints come from this declarative
view. It is worth noticing that the key behind guarded constraint implementation is constraint entailment. A
constraint entailment test permits to evaluate the guard and it can be implemented by adding the negation
of the guard to the rest of the constraint store and check whether the resulting system is unsatisfiable. When
the system is still satisfiable (or at least partially consistent), the negated constraint must be removed from
the store and other constraint entailment tests can be performed. Note also that other ite or function call
operators can be nested in a given guarded constraint. To alleviate the potential combinatorial explosion
of constraint entailment checks, we set up a bound on the depth of search within the guards. For example,
if the bound is set to 1, then no other ite or function calls operators of F2 will be unfolded when the guard
¬c ∧ F2 is explored. In practice, we set up the bound to 2, meaning that every couple of conditionals
of the program were explored for finding inconsistencies and then to prune the search space. When both
cases within an ite are explored without success, then two join operators are posted: a join operator on
finite domains to merge the results for each FD variable, and a join on polyhedra.

In the example of Fig.5, suppose for the sake of clarity that the domains of each variable are initailly
restricted to −1000..1000. From the first conditional constraint ite(X ∗ Y < 4, U1 = 5, U1 = 100), we
get that the domain of U1 is trivially pruned to 5..100. From the second conditional constraint ite(U 1 ≤
8, Y1 =X + U1, Y1 =X − U1), the domain of X in the then-part is pruned to −1000..995 and the
domain of Y1 to −995..1000 as U1 = 5 in this case. In the else-part, the domain of X is pruned to
−900..1000 and the domain of Y1 to −1000..900 as U1 = 100. Perfoming the domain join on both

6In C, any non-null integer value is understood as true

TCAS software verification using Constraint Programming 11

Figure 9 Weak Join vs Convex Hull

domains leaves the domains of X and Y1 unchanged. On the contrary, the polyhedral join offers more
precise results. From the second conditional, we get that −100≤ Y1 −X ≤ 5. The smallest and then
more desirable linear relaxation of the union of of two subsets of linear inequations is the the convex
hull of the two corresponding polyhedra. Unfortunately, computing the convex hull of two polyhedra
(when they are given under the form of inequations) is exponential in the number of dimensions. By
noticing that any over-approximation of the convex hull is suitable in our context, we proposed in
(Denmat et al. ISSRE 07) to use the weak-join operator, originally proposed in the Abstract Interpretation
community (Sankarananyan et al. 2006). Roughly speaking, the weak-join of two sets of inequations
consists in 1) enlarging the first polyhedron without changing the slope of the lines until it encloses the
second polyhedron ; 2) enlarging the second polyhedron in the same way ; 3) returning the intersection of
these two new sets of inequations. Fig.9 shows the difference between the convex hull and the weak join
of two polyhedra E and F . Formally, let S = E ∪ F be the set of inequations that appear in E or in F .
Let suppose that each inequation in S is of the form A i.X ≤ bi where Ai is a vector of n coefficients, X
is a vector of n variables and bi is a rational number. For each inequation in S do

e = maximize(Ai.X, E)

f = maximize(Ai.X, F)

c = max(e, f)

maximize(Ai.X, E) denotes a call to the simplex algorithm that computes the maximum value of
expression Ai.X under the linear constraints E. Then, join lin(E, F) = {Ai.X ≤ c}i∈1..|S|. Based on
the simplex, this algorithm performs well in practice.

3.3.6 Handling function calls
In the TCAS implementation, dealing efficiently with functions is important as there are many function
calls, some of them being irrelevant to prove a given safety-critical property. In our framework, function
calls are handled with a special operator called rel call, that can be awoken on domain prunings,
as any other constraint. The idea is to use lazy evaluation of function calls by unfolding calls only
when necessary. Initially, function calls are simply ignored, and the consistency of the constraint store
is evaluated without the constraints of the function calls. If the store is still partially consistent, the
constraints issued from one callee are introduced into the propagarion queue and again, the consistency
is evaluated. This process is iterated until no more function calls can be considered. This strategy is
motivated by our will to minimize the number of constraints used to prove a given assertion. There are
many other heuristics to introduce constraints of the callee function, but we did not yet pushed further this
analysis. We implemented this strategy by a simple breadth first strategy over the call tree of the function
under test.

12 A. GOTLIEB

3.3.7 Labeling
As our TCAS problem includes non-linear constraints over bounded integers, the final step of the resolu-
tion process may include a labeling phase to exhibit a solution or prove there is no solution. However as the
number of variables and the variation domain of each variable are both large (TCAS takes 14 global 32-bits
variables as input), resorting to enumeration to show unsatisfiability is usually prohibitive. Hence, most of
the hard work has to be performed during constraint propagation. Linear relaxation of non-linear constraint
was introduced in our framework to answer this problem, but as it computes over-approximations, there
remain cases for wich one resorts to labelling. For selecting variable and value to enumerate first, we
explored several available heuristics such as first-fail, domain splitting or most-constrained first. We
also implemented two other simple labeling heuristics: iterative domain splitting and random labeling.
Iterative domain splitting selects a variable X from a (static) input list and a value v in the domain of
this variable, makes a non-deterministic choice between X = v, X > v and X < v and iterates over these
processes until no more variable remains unassigned. Random labeling does the same except that the
value v is chosen at random, using a uniform probability distribution over the domain. Randomization
is interesting in the context of test data generation as it introduces uncertainty in the way test data are
selected. In average, we found that these two heuristics performed well on the various distinct requests
for TCAS. Coming back to the example of Fig.5, using this labeling step, we found that there are counter-
examples to the assertion of line 4. For example (X = 50, Y = 1) is a solution to the (nonlinear) constraint
system: X, Y ∈ −231..231 − 1, U1 ∈ 5..100, ite(X ∗ Y < 4, U1 = 5, U1 = 100), ite(U1 ≤ 8, Y1 =X +

U1, Y1 =X − U1),−100≤ Y1 −X ≤ 5, Z1 =X ∗ Y1, Z1 ≤−2500 and then using these values as a test
data for program foo yields assertion violation on line 4. It is worth noticing this counter-example has been
found without making any choice in the conditionals during initial propagation. Replacing the assertion
of line 4 by assert (z >−3000) in the source code of program foo yields “fail” when one tries to find
counter-examples, which indicates that the assertion is satisfied by any state.

4 Implementation

The procedure described in this paper has been implemented following the architecture shown in Fig.10.
The procedure takes a C file as input, optionally annotated with pre/post conditions, assertions or reach

OutputInput

file.c +
compilation
command

C parser

Constraint
generation

reach directives

Pre/post
conditions Test data

Test sets

Constraint
management

+
labelling

Intermediate
form

High-level
constraints

(ite, w, sp_call)

Counter-examples
Non-feasibility
informations

Partial Proofs

clpqclpfd

Figure 10 Implementation

directives. A directive “reach” specifies a location to reach within the code. Parsing the C file builds an
abstract syntax tree and a symbol table. Then, using a normalization and points-to analysis, the syntax tree

TCAS software verification using Constraint Programming 13

is transformed into SSA form and then, a constraint intermediate form is produced. From there, constraint
solving is launched according to some parameterization through an evaluator component. The solving
procedure is based on the combination of two existing solvers through a high-level propagation queue:
the clpfd library of SICStus Prolog which implements finite domains constraint solving (Carlsson
et al. 1997) ; and the clpq library that implements a linear programming solver based on Fourier’s
elimination and simplex over the rationals (clp(q,r) Manual). When a solution is found, it is reported
to the user as a test data that satisfies the test objective (reach a given location, violate an assertion or
find a counter-example to a post-condition). When the solver outputs “fail”, meaning that the constraint
system is inconsistent, then this indication is also reported to the user. It indicates that the test objective is
unsatisfiable or the assertion is verified.

The constraint solving procedure is mainly developed in Prolog (∼10 KLOC) and C (∼0.3 KLOC).
The internal components include a backtrackable C parser written with the Definite Clause Grammar of
Prolog, a SSA form generator based on the single-pass generation algorithm of (Brandis et al. 1994), a
constraint intermediate form generator and parser, a library of high-level constraints that implements most
of the C operations (conditionals, loops, logical operators, function call operator, memory operations,...).
To make both constraint solvers cooperates, we exploited the SICStus global constraint interface to define
constraints that awakes constraint propagation over FD. One weakness of this approach is that it delegates
constraint management to the system and does not allow the order in which the constraints are considered
in the queue to be modified easily. Note also that SICStus clpfd combines indistinctly two levels of
filtering: domain–consistency and interval–consistency. Moreover, we encountered some limit problems
with clpfd as the value of an FD variable is represented on less than 32-bits. Another problem concerns
the semantics of integer computations within the constraint solver that does not mimic the semantics of
integer computations in a C program, which implements the so-called wrapping effect. In fact, arithmetic
operators in C programs implement arithmetic modulo 8, 16, 32 or 64 bits and some programs may use
this effect either conscientiously or not. For example, a statement such as z = x+y where x,y,z are
32-bits integers should be interpreted as z = (x+ y) mod(232). However using this formulation would
have been catastrophic in our context as 32-bit integers cannot be represented in the SICStus FD constraint
solver7 and bound-consistency on modulo operator is weak in general. As a consequence, our approach
implicitly rejects any state of the program that exploits the wrapping effect.

5 Results and analysis

We conducted several experiments on a small software component of the TCAS to evaluate the capabilities
of our constraint procedure to serve as an aid for testing and verification. Firstly, we evaluated structural
test data generation for the coverage of the all decisions criterion. Covering this criterion is mandatory
in the context of a DO-178B B level certification. On an Intel Core Duo 2.4GHz clocked PC with 2GB
of RAM, Euclide generated a test set covering all the executable decisions of the tcas program in 16.9
seconds, including time spent garbage collecting, stack shifting, or in system calls. It also showed that
the decision of line 11-12 of Fig.3 was non executable in less than 0.2 second. Secondly, we evaluate
automatic program verification on the safety properties of Tab.1. Results are shown in Tab.2.

Finding counter-examples to safety properties is usually dramatic. Hopefully the software component
we used probably corresponds to a preliminary version and it has never been used in operational
conditions.

Surprisingly, we found that properties P2B, P3A and P5B were not proved w.r.t. the implementation and
counter-examples were exhibited. These counter-examples satisfy the preconditions but they invalidate the
postconditions when they are submitted to the implementation. So, they are realistic counter-examples. All
the material of these experiments, including the test data corresponding to counter-examples, is available
online8. We executed the implementation with test data and dynamically checked that properties P2B,
P3A and P5B were indeed violated. The counter-examples to properties P5B were not reported in other
papers (Coen-Porisini et al. 2001,Clarke et al. 2003, Chaki et al. 2004). Moreover, these counter-examples

7SICStus Prolog version 3.12.8
8www.irisa.fr/lande/gotlieb/resources.html

14 A. GOTLIEB

Table 2 Verification of safety properties

Num Results
Time
(sec.)

Mem.
(MB)

P1a Property proved 0.7 4.6
P1b Property proved 0.7 4.6
P2a Property proved 0.6 4.6
P2b Counter-example found 0.7 4.6
P3a Counter-example found 5.4 6.3
P3b Property proved 1.2 4.6
P4a Counter-example found 6.8 6.9
P4b Counter-example found 2.7 5.9
P5a Property proved 0.6 4.6
P5b Counter-example found 1.0 4.6

and proofs were obtained quickly (all the counter-examples and proofs are generated in less than 20s on
our standard machine) which is encouraging for a future comparison with other dedicated tools.

6 Related work

Automatic program verification is a fundamental topic that was recently revamped, due to the considerable
improvments in SAT– and SMT– solving9. Software model-checkers such as Save (Coen-Porisini et al.
2001), Blast (Henzinger et al. 2003), Magic (Chaki et al. 2003) or Cbmc (Clarke et al. 2003) routinely
find counter-examples to temporal properties over C programs. These tools explore the paths of a bounded
model by decomposing path constraints into SAT-formula. These formula, extracted from C expressions,
are checked for satisfiability or unsatisfiability (Brummayer et al. 2007). Some of them also exploit
predicate abstraction and counter-example refinement to boost the exploration. Our constraint solving
contrasts with SAT-based or SMT-based model-checkers as it does not abstract the program and does
not generate spurious counter-example paths. In particular it builds a high-level constraint model of C
program by capturing error-free semantics without considering a boolean abstraction of the program
structure. In addition, our approach exploit linear programming relaxations to solve nonlinear constraint
systems, something which is currently outside the scope of SMT-solvers. Building a constraint solving
procedure that makes an FD solver and an LP solver cooperate is not new. In 1995, Beringer and De
Backer proposed a global constraint that captures the linear constraints of the problem. This approach was
generalized in (Milano et al. 2002) and (Hooker et al. 2000). Linear relaxations of nonlinear constraints
is also an old idea that dates back to the seventies (Balas 1985, McCormick 1976) and has been extended
to CP by Refalo with the idea of “tight cooperation” (Refalo 1999). Recently, (Lebbah et al. 2005)
proposed to use similar principles to deal with quadratic constraints over continuous domains. Although
there are some similarities, our constraint solving approach distinguishes because it addresses specifically
disjunctive non-linear constraint systems over bounded integers and preserves the correctness of results
even when relaxing non-linear constraint. Our approach has also similarities with the Collavizza and
Rueher (Collavizza et al. 2006) approach that calls several constraint solvers in sequence. Recently, they
showed that their CPBPV implementation could outperform usual software model-checkers on classical
benchmarks (Collavizza et al. 2008). CPBPV is based on deductive constraint programming techniques
that staticaly combines SAT solving, linear programming and constraint propagation. However, more
experimental work still need to be performed to confirm these results, obtained on a restricted subset of
academic programs. According to our knowledge, our application of rational linear relaxations to software
verification is original.

Automatic test data generation based on constraint propagation has been early explored in (Bicevskis
et al. 1979) and (DeMillo et al. 1991) and (Offut et al. 1999). In this latter work, the dynamic domain

9SMT: Satisfiability Modulo Theories

TCAS software verification using Constraint Programming 15

reduction procedure which implements constraint propagation with bound-consistency was proposed.
PathCrawler (Williams et al. 2005) is a recent path-oriented structural test data generators based on FD
constraint solving. It exploits the constraint library Colibri developed by Bruno Marre within the CEA
that implements several powerful prunings techniques such as difference logics and congruence relations
in addition to bound-filtering. Dart (Godefroid et al. 2005) and CUTE (Sen 2005) are two other popular
path-oriented test data generators based on Linear Programming over floating-point variables (lpsolve)
and concrete execution. Unlike these approaches, our constraint solving procedure preserves correctness
by using LP over rationals. It may be less efficient, but preserving correctness is essential in a context
where properties over programs must be verified and not only tested.

7 Conclusion

In this paper, we presented a constraint solving procedure dedicated to the verification of safety-critical
properties of C programs. As a first validation step, our solver was used on a freely available software
component extracted from a real application (TCAS), for which safety-critical properties have been
defined. It found that a complete test set covering all the executable decisions of the program could
be obtained in less than 20 sec of CPU time. Our approach could also prove that some of the safety-
critical properties were satisfied while other were invalidated, in a few seconds. Hence, these preliminary
results show that using Constraint Programming techniques for property verification is viable and efficient.
However, both foundational and applied research works still need to be undertaken in order to address
more realistic implementations that contain hundreds of thousand lines of code. Methods to integrate new
verification tools in the development chain should also be proposed. In our framework, we exploited an
existing FD solver that manages its own propagation queue and implements its own filtering algorithms.
We forecast the development of a dedicated finite domain solver based on bound-consistency filtering
that could be used to check real-sized integer computations. Modelling accurately the wrapping effect
would permit to find bugs related to integer representation which is outside the scope of current test data
generators. Another line of research concerns the integration of a safe LP implementation over floating-
point computations (Neumaier et al. 2004) instead of using less efficient implementation over rationals.
As preserving correctness is essential when one wants to prove safety properties, this requires safe over-
approximations of the solution set to be computed.

Acknowledgements

I am very grateful to Tristan Denmat who investigated the role of Abstract Interpretation in the ideas
presented here. In particular, he provided us with the weak join idea that comes from this community.
Many thanks to David Delmas from Airbus Industries and the anonymous referees for their careful reading
of preliminary versions of the paper.

References

(Balas 1985) E. Balas. Disjunctive Programming and a hierarchy of relaxations for discrete optimization problems.
SIAL Journal of Alg. Disc. Meth. Vol. 6, No. 3, July 1985

(Bicevskis et al. 1979)
J. Bicevskis, J. Borzovs, U. Straujums, A. Zarins, and E. Miller. SMOTL - a system to construct samples for data
processing program debugging. IEEE Transactions on Software Engineering, 5(1):60–66, January 1979.

(Botella et al. 2006)
B. Botella, A. Gotlieb, and C. Michel. Symbolic execution of floating-point computations. The Software Testing,
Verification and Reliability journal, 16(2):pp 97–121, June 2006.

(Brandis et al. 1994)
M.M. Brandis and H. Mőssenbőck. Single-Pass Generation of Static Single-Assignment Form for Structured
Languages. ACM TOPLAS, 16(6):pp 1684-1698, Nov. 1994.

(Brummayer et al. 2007)
R. Brummayer, A. Biere. C32SAT: Checking C Expressions. In Proc. 19th Intl. Conf. on Computer Aided
Verification (CAV’07), LNCS vol. 4590.

(Carlsson et al. 1997)
M. Carlsson, G. Ottosson, and B. Carlson. An open–ended finite domain constraint solver. In Proc. of
Programming Languages: Implementations, Logics, and Programs, 1997.

16 A. GOTLIEB

(Chaki et al. 2004)
S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software components in C. IEEE
Transactions on Software Engineering (TSE), 30(6):388–402, June 2004.

(Clarke et al. 2003)
E. Clarke and D. Kroening. Hardware verification using ANSI-C programs as a reference. In Proc. of ASP-
DAC’03, pages 308–311, Jan. 2003.

(clp(q,r) Manual)
C. Holzbaur. OFAI clp(q,r) Manual. Austrian Research Institute for Artificial Intelligence, Vienna, 1.3.3 edition.

(Coen-Porisini et al. 2001)
A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze. Using symbolic execution for verifying safety-critical
systems. In Proceedings of the European Software Engineering Conference (ESEC/FSE’01), pages 142–150,
Vienna, Austria, September 2001. ACM.

(Collavizza et al. 2006)
H. Collavizza and M. Rueher. Exploration of the capabilities of constraint programming for software verification.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS’06), pages 182–196, 2006.

(Collavizza et al. 2008)
H. Collavizza, M. Rueher, and P. Van Hentenryck. Cpbpv: A constraint-programming framework for bounded
program verification. In Proc. of CP2008, LNCS 5202, pages 327–341, 2008.

(DeMillo et al. 1991)
R.A. DeMillo and J.A. Offut. Constraint-based automatic test data generation. IEEE Transactions on Software
Engineering, 17(9):900–910, September 1991.

(Denmat et al. CP 2007)
T. Denmat, A. Gotlieb, and M. Ducasse. An abstract interpretation based combinator for modeling while loops
in constraint programming. In Proceedings of Principles and Practices of Constraint Programming (CP’07),
Springer Verlag, LNCS 4741, pages 241–255, Providence, USA, Sep. 2007.

(Denmat et al. ISSRE 2007)
T. Denmat, A. Gotlieb, and M. Ducasse. Improving Constraint-Based Testing with Dynamic Linear Relaxations.
In 18th IEEE International Symposium on Software Reliability Engineering (ISSRE’ 2007), Trollhttan, Sweden,
Nov. 2007.

(Do et al. 2005)
H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing techniques: An
infrastructure and its potential impact. Empirical Software Engineering: An International Journal, 10(4):405–
435, 2005.

(DO-178B 1992)
DO-178B / ED-12B Software Considerations in Airborn Systems and Equipment Certification, RTCA and
EUROCAE 1992

(Godefroid et al. 2005)
P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random testing. In Proc. of PLDI’05, pages
213–223, 2005.

(Gotlieb et al. 2000)
A. Gotlieb, B. Botella, and M. Rueher. A clp framework for computing structural test data. In Proceedings of
Computational Logic (CL’2000), LNAI 1891, pages 399–413, London, UK, July 2000.

(Gotlieb et al. 2007)
A. Gotlieb, T. Denmat, and B. Botella. Goal-oriented test data generation for pointer programs. Information and
Software Technology, 49(9-10):1030–1044, Sep. 2007.

(Gotlieb 2009)
A. Gotlieb. Euclide: A constraint-based testing platform for critical c programs. In 2th International Conference
on Software Testing, Validation and Verification (ICST’09) Denver, CO, Apr. 2009..

(Handbook of Constraint Programming 2006)
Handbook of Constraint Programming Edited by Francesca Rossi, Peter van Beek, Toby Walsh Elsevier, 2006

(Henzinger et al. 2003)
T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with blast. In Proc. of 10th Workshop
on Model Checking of Software (SPIN), pages 235–239, 2003.

(Hooker et al. 2000)
J. Hooker, G. O. Erlender, S. Thorsteinsson, and H.-J. Kim A scheme for unifying optimization and constraint
satisfaction methods The Knowledge Engineering Review Volume 15 , Issue 1 (March 2000) pp 11 - 30

(Lebbah et al. 2005
Y. Lebbah, C. Michel, and M. Rueher A rigorous global filtering algorithm for quadratic constraints CON-
STRAINTS Journal, 10(1),pp.47-65 ,January 2005.

(Livadas et al. 1999)
C. Livadas, J. Lygeros, and N.A. Lynch. High-level modeling and analysis of TCAS. In IEEE Real-Time Systems
Symposium, pages 115–125, 1999.

(McCormick 1976)

TCAS software verification using Constraint Programming 17

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part 1 - convex
underestimating problems. Mathematical Programming, 10:147–175, 1976.

(Milano et al. 2002)
M. Milano, G. Ottosson, P. Refalo, E. S. Thorsteinsson The Role of Integer Programming Techniques in Constraint
Programming’s Global Constraints INFORMS JOURNAL ON COMPUTING, Vol. 14, No. 4, Fall 2002, pp. 387-
402

(Neumaier et al. 2004)
A. Neumaier, O. Shcherbina Safe bounds in linear and mixed-integer linear programming Mathematical
Programming: Series A and B archive, Vol. 99, Issue 2 (March 2004)

(Offut 1999)
J.A. Offut, Z. Jin, and Pan J. The dynamic domain reduction procedure for test data generation. Software–Practice
and Experience, 29(2):167–193, 1999.

(Randimbivololona 2001)
F. Randimbivololona Orientations in Verification Engineering of Avionics Software Informatics, 2001, pp 131-
137, LNCS

(Refalo 1999)
P. Refalo. Tight cooperation and its application in piecewise linear optimization. In Proc. of CP’99, Alexandria,
Virginia, Oct. 1999.

(Sankaranarayanan et al. 2006)
S. Sankaranarayanan, M. A. Colòn, H. Sipma, and Z. Manna. Efficient strongly relational polyhedral analysis. In
Proc. of VMCAI’06, pages 115–125, 2006.

(Sen et al. 2005)
K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing engine for c. In Proc. of ESEC/FSE-13, pages
263–272. ACM Press, 2005.

(TCAS II)
U.S. Department of transportation Federal Aviation Administration. Introduction to TCAS II - version 7, Nov.
2000.

(Williams et al. 2005)
N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler: Automatic generation of path tests by combining
static and dynamic analysis. In In Proc. Dependable Computing - EDCC’05, pages 281–292, 2005.

Le travail relaté dans cet article a été présenté lors du workshop CT4ATC/ATM2

(Constraint Technology for Air Traffic Control/Air Traffic Management) organisé par
Pierre Flener, Justin Pearson et Marc Bourgois, durant la conférence INO (7th Eu-
roControl Innovative Research Workshop & Exhibition).

Ce chapitre clos la troisième partie de notre manuscrit concernant les applica-
tions du test à base de contraintes auxquelles nous avons contribuées.

2http://www.it.uu.se/research/group/astra/ATM-CT/

Part IV

Bilan et Perspectives

169

Chapter 10

Bilan

Depuis une quinzaine d’années maintenant, nos recherches ont porté sur le test
à base de contraintes. L’idée poursuivie et expérimentée sous différents angles
a consisté à dresser un pont entre d’un côté, la Programmation par Contraintes, et
de l’autre côté le Test Logiciel. Ce pont repose sur des fondations solides telles
que des transformations systématiques de programmes en modèles à contraintes,
l’exploitation de techniques d’abstraction pour la résolution exacte de systèmes
de contraintes, l’utilisation similaire de méthodes approchées dans les deux do-
maines, la coïncidence de notions essentielles telles que insatisfiabilité d’un sys-
tème de contraintes et infaisabilité d’un chemin d’exécution ou d’un comporte-
ment. Au travers différentes collaborations, nos contributions ont porté à la fois
sur ces aspects fondamentaux, mais également sur leurs applications. La trans-
formation systématique des constructions de programmes impératifs en systèmes
de contraintes nous a permis de démontrer l’importance de la résolution de con-
traintes pour la génération automatique de données de test. Nous nous sommes
intéressés au traitement de constructions considérées comme étant difficiles à gérer
pour n’importe quelle approche de vérification de programmes. Le traitement des
boucles sous forme d’un combinateur spécial, fondé sur l’Interprétation Abstraite
a constitué pour nous une contribution essentielle [Gotlieb 00b, Denmat 07a]. La
résolution de contraintes sur les nombres à virgule flottante [Botella 06,Carlier 11b]
et sur les entiers modulaires [Gotlieb 10a] sont également des sujets de première
importance pour lesquels les approches à base de contraintes que nous avons
développées ont un rôle certain à jouer. Les deux modèles à contraintes, dévelop-
pés pour traiter le problème de la synonimie due aux pointeurs, ont permis de
lever un verrou quant à la génération de données de test orientées-but [Gotlieb 07,
Charreteur 09]. Nous avons exploré le lien entre Contraintes et Abstractions en
proposant d’utiliser certains calculs sur les domaines abstraits tels que définis en
Interprétation Abstraite, pour enrichir la résolution de contraintes [Denmat 07b,
Gotlieb 09d]. La réalisation du logiciel Euclide, avec son résolveur de contraintes
qui marie propagation de contraintes sur les intervalles et les polyèdres [Gotlieb 09a],
ainsi que son usage pour vérifier des propriétés pour un système critique réel (i.e.,

171

Traffic anti-Collision Alert System) [Gotlieb 09b] sont des résultats importants de la
thématique Test à Base de Contraintes. Enfin, l’utilisation de propriétés de symétrie
des programmes impératifs pour servir d’oracles partiels [Gotlieb 03a] est un sujet
qui a fait florès grâce à la popularisation du test métamorphique [Gotlieb 03b].

Les travaux que nous avons menés sur la construction de modèles à contraintes
pour la vérification de programmes, et le travail acharné d’une poignée d’étudiants
de grande valeur, ont conduit à la réalisation de plusieurs prototypes de recherche :

1. InKa [Gotlieb 98, Gotlieb 00b, Gotlieb 06b, Gotlieb 07, Charreteur 09] pour la
génération automatique de données de test pour programmes C, prototype
de recherche puis outil pré-commercial développé lors de notre formation
initiale chez Dassault Electronique ;

2. FPSE [Botella 06, Carlier 11b] pour l’exécution symbolique de calculs flot-
tants conformes à l’IEEE-754, prototype de recherche coréalisé avec Bernard
Botella du CEA ;

3. Taupo [Denmat 07b,Denmat 08] pour la vérification de propriétés en utilisant
des techniques d’interprétation abstraite, prototype de recherche réalisé lors
de la thèse de doctorat de Tristan Denmat ;

4. Genetta-CC(FD)-PRT [Petit 07a,Petit 07b,Petit 08,Gotlieb 10b] pour la généra-
tion probabiliste de données de test, prototype de recherche réalisé lors de la
thèse de doctorat de de Matthieu Petit ;

5. EUCLIDE [Gotlieb 09a, Gotlieb 09b] pour la vérification de programmes C
critiques, prototype de recherche réalisé alors que nous étions à l’INRIA
Rennes ;

6. JAUT [Charreteur 10a] pour la génération automatique de cas de test pour
le Bytecode Java, prototype de recherche réalisé lors de la thèse de Florence
Charreteur.

La plupart de ces prototypes sont déposés sous licence libre et sont disponible en
ligne.
Ces travaux autour du test à base de contraintes ont été pour nous une occa-
sion unique de rencontrer des étudiants formidables et des collègues précieux, au
travers de différentes collaborations. Mais, il reste beaucoup à faire afin que le test
à base de contraintes soit reconnu comme une technique importante de génération
de tests et de vérification de programmes.

Chapter 11

Perspectives

Nous évoquons ici quatre perspectives de notre travail qui s’inscrivent dans le
cadre du Test à Base de Contraintes mais en débordent, pour certaines, le champ
d’application traditionnel.

Avec la thèse de Mickaël Delahaye, qui sera soutenue en octobre 2011, co-
encadrée avec Bernard Botella, nous nous sommes intéressés à la généralisation de
chemins infaisables en exécution symbolique dynamique. Les outils de génération
automatique de données de test fondés sur l’exécution symbolique dynamique,
tels que DART [Godefroid 05], PathCrawler [Williams 05] et CUTE [Sen 05], per-
dent souvent beaucoup de temps à démontrer que certains systèmes de contrain-
tes sont insatisfiables. En effet, ces systèmes correspondent à des chemins in-
faisables, qui sont nombreux dans les programmes impératifs [Yates 89]. Nous
avons proposé une approche qui tire parti de la donnée d’un chemin infaisable,
pour bâtir automatiquement par généralisation, une famille de chemin infaisables
[Delahaye 10]. Notre technique se fonde d’abord sur la recherche d’un noyau
minimal insatisfiable du système de contraintes, en utilisant un algorithme non-
intrusif tel que “quickexplain” [Junker 04], et ensuite sur la recherche de chemins
du programme ayant la même source d’insatisfiabilité. Cette connaissance, une
fois acquise par généralisation d’un chemin infaisable initial, est capitalisée sous
forme d’un automate de chemins infaisables qui représente une famille poten-
tiellement infinie de chemins. Nous avons exploré plusieurs variantes de cette
approche en utilisant des résolveurs de contraintes tels que Colibri, Eclipse IC
et Z3 [De Moura 08b], et des algorithmes de calculs de noyaux insatisfiables in-
trusifs. Nous nous sommes également penchés sur l’utilisation efficace de cet au-
tomate en génération automatique de données de tests par exécution symbolique
dynamique. Nos résultats sont en cours de publication [Delahaye 11].

En collaboration avec Catherine Dubois et Matthieu Carlier, nous avons pro-
posé un premier modèle à contraintes pour les programmes fonctionnels. Ce mod-
èle s’appuie sur des combinateurs qui modélisent le choix conditionnel, le “pattern
matching”, l’appel de fonction, y compris récursif. Il est utilisé pour générer des
cas de tests à partir de propriétés de programmes prenant la forme pré-condition/post-

173

condition [Carlier 10], en offrant une couverture structurelle de la pré-condition.
Nous avons récemment étendu ce modèle afin qu’il traite également les appels de
fonctions d’ordre supérieur et lancé une campagne d’expérimentations afin de dé-
montrer l’intérêt de cette approche [Carlier 11a]. Ce travail vise ainsi à explorer
le potentiel d’un modèle issu de la Programmation par Contraintes pour valider au-
tomatiquement des programmes écrits dans un langage fonctionnel.

Les programmes à contraintes eux-mêmes sont de plus en plus utilisés dans
les systèmes critiques. Par exemple, les programmes à contraintes sont utilisés
dans le commerce électronique [Holland 05], le contrôle et la gestion du trafic
aérien [Flener 07, Junker 08], ou encore dans le développement et la validation
de logiciels critiques [Collavizza 08, Gotlieb 09b]. Ainsi, il devient important de
s’intéresser à la validation systématique de ces programmes au travers de méth-
odes de test logiciel. Avec la thèse de Nadjib Lazaar, qui sera soutenue à la fin de
l’année 2011, et en collaboration avec Yahia Lebbah, nous avons proposé une méth-
ode de test pour les programmes à contraintes qui consiste à utiliser un premier
modèle déclaratif du problème comme oracle de test pour un modèle optimisé,
construit par raffinements successifs [Lazaar 10b]. Cette méthode de test repose
sur la donnée de relations de conformité valables aussi bien pour les problèmes de
satisfaction que les problèmes d’optimisation. Nous nous sommes également in-
téressés à la localisation de fautes dans les programmes à contraintes [Lazaar 10a]
et leur correction automatique [Lazaar 11]. Ces travaux sont très prometteurs et
constituent selon nous une première percée dans le domaine de la validation au-
tomatique des programmes à contraintes.

Enfin, avec la thèse de Aymeric Hervieu, démarrée en 2010 et co-encadrée avec
Benoit Baudry, nous nous intéressons à l’utilisation des contraintes pour la généra-
tion de configurations de test à partir d’un modèle de variabilité. Un tel modèle
peut être utilisé pour représenter des lignes de produits logiciels ou des systèmes
à base de composants logiciels. En effet, la variabilité dans les systèmes peut être
capturée par un “feature model” qui couvre implicitement un ensemble, poten-
tiellement immense, de configurations valides d’un système. Le problème de la
sélection des configurations à tester devient alors essentiel car il n’est pas ques-
tion de construire toutes les configurations valides d’un système. Une approche
bien établie maintenant consiste à choisir un ensemble de configurations garan-
tissant que chaque paire de valeurs des “feature” seront présentes dans au moins
une des configurations à tester. Cette forme de test s’appelle le test combinatoire.
Nous avons proposé un premier modèle à contraintes qui représente le “feature
model” en utilisant des contraintes globales dédiées. Ce modèle à contraintes
est utilisé dans une approche de génération de tests combinatoires pour sélec-
tionner les configurations valides du système à tester. Cette approche présente
le double intérêt de minimiser le nombre de configurations pour couvrir un critère
de test sélectionné et d’être implantée comme un algorithme “anytime”, c’est à
dire permettant d’être interrompue à tout instant afin d’obtenir une solution ap-
prochée [Hervieu 11].

Part V

Annexe : Curriculum Vitae

175

Arnaud Gotlieb INRIA Rennes Bretagne Atlantique

 Campus Beaulieu 35042 Rennes Cedex

Born Jul. 23th, 1971 in Metz, France Tel: +33 (0)2 99 84 75 76

16 rue du Linon Fax: +33 (0)2 99 84 71 71

35720 Pleugueneuc Arnaud.Gotlieb@inria.fr

Pacs, 2 children
 http://www.irisa.fr/lande/gotlieb/

Current professional situation

Research scientist in the INRIA Celtique project-team. My research interests are centered around
software testing automation and how constraint programming and constraint solving techniques can help
the software testing process. My work focuses on automatic test data generation for C and Java
embedded programs, constraint-based testing, software testing theories, variability testing, statistical
testing and constraint reasoning in structural testing. I participated to the design and development of
several constraint solving engines targeted to the testing of critical embedded programs.

Industrial and research experience

2002-now / Research scientist -- INRIA Rennes B retagne Atlantique

- Main architect of several constraint solvers dedicated to automatic test data generation for C and Java
 (Euclide, FPSE, PRT,… details on www.irisa.fr/lande/gotlieb)

- Co-Author of more than thirty international publications in Research conferences and journals
(Papers:41, Cites/paper: 13.5, h-index: 11, Citations: 556 – Source: Harzing’s Publish&Perish, Jan. 2011)

- Scientific coordinator the CAVERN project (2008-2 011), funded by the ANR SESUR 2007
programme, exploring the use of Constraints and Abstractions in Program Verification.
Partners: INRIA Celtique, IBM Ilog Lab, CEA List, University of Nice-Sophia Antipolis

- Member of the RNTL CAT (2005-2008) and ANR U3CAT (2008-2012) proj ects , developing constraint
solving tools to address the verification problem of critical embedded C code.
Partners: CEA List, INRIA Proval, Dassault Aviation, Airbus Industries, …

- Leader of the GENETTA project (2004-2007), funded by the Brittany region. Aims at using probabilistic
constraint reasoning to perform automatic statistical structural testing.

- In 2006, expert consultant for the AUTOTEST project , funded by European Space Agency (ESA), under
contract with LEIRIOS (now SmarTesting) -- Statistical Testing for Space software

- Co-leader of the CHANNEL project (2004-2006) , funded by Egide under the PAI ALLIANCE, exploring
automatic test data generation for security problems. In collaboration with Andy King from University of
Kent (UK).

- Member of the ACI V3F project (2004-2007), developing constraint solving tools for floating-point
computations in critical software.
Partners: LIFC, INRIA Coprin, Vertecs and Lande teams, CEA List laboratory

- Member of RNTL CASTLES project (2003-2006) , developing an automated certification environment for
the Java Card platform. Partners: INRIA Everest and Lande teams, OBERTHUR CARD SYSTEMS, AQL

1999-2002 / Software Engineer -- Thales Airborne Systems – 78851 Elancourt – FRANCE
 (Ex DASSAULT ELECTRONIQUE)
- Leader of the INKA Project, developing an automated software test data generation tool for C/C++,
based on Constraint Programming techniques. Validation realized on a part of the embedded software
systems BCE of the ABE of RAFALE military aircraft.

- Development and deployment of the “software quality tools” offer in Thales A.S. (coding rules
verification, code complexity measurement tools)

- Operational specifications of the ADA to C++ translator of test model DEVISOR (unit testing tool used to
test embedded software systems of M-2000 and RAFALE military aircrafts)

1998 – 1999 Military service – Commission Armées – Jeunesse, in the French Air Army

1995 – 1998 CIFRE Fellow -- DASSAULT ELECT RONIQUE
 quai Marcel Dassault, Saint Cloud
- Research work on automatic test data generation with Constraint Logic Programming techniques.

- Cycle detection and optimization in INTERLOG: a constraint solver over continuous domains.

Education

PhD, Computer Science with high honors (féllicitations jury),
University of Nice – Sophia Antipolis, France, Jan. 2000

Thesis entitled : “Automatic test data generation with Constraint Logic Programming”

M.Sc Mathematics with honors (mention Bien),
University of Nice – Sophia Antipolis, France, 1995

B.Sc Mathematics with honors ,
University of Nice – Sophia Antipolis, France, 1993

Scientific animation and administrative tasks

- Co-president of the MTVV group of the CNRS GDR-GPL (Resp. Yves Ledru) since its creation in 2008

- Member of the « Comité de Sélection » UFR Nantes , Université de Nantes 2009 et 2011

- Member of the « Comité de Sélection » INSA de Rennes , 2010 et 2011

- Member of the « Comité de Sélection » IUT Orsay 2010

- Examiner in the PhD thesis jury of Severine Colin (2005),Patricia Mouy (2007),Matthieu Carlier (2009),
 Nicolas Berger (2010), and external reviewer for two International PhD thesis (Australian Swinburne
University and University of Sevilla in Spain)

- Member of the INRIA’s Commission des Développements Technologiques (CDT, 2011)

- Member of the INRIA’s GROLO Working Group on Software Tools evaluation (2009)

- Member of the Thomson-CSF International Committee (CETs) for the recommendation of unit testing
 and source code analysis tools (2000)

- PC member of the conferences IEEE ISSRE’04, QSIC 06-11, TAP 08-11, IEEE ICST 08-10, workshops
STEV’07-08, ACM RT’07, CSTVA 06-11, VAST’10, national conferences JFPC 04-10

- Main organizer of the three editions of the CSTVA w orkshop (2006, 2010, 2011) – Constraints in
 Software Testing, Verification and Analysis. Co-located with IEEE ICST.
- Publicity chair of ICLP’04 and ISSRE’04, Session chair in IEEE ICST 2008-2010

- Reviewer for journals IEEE TSE (2010), ACM TOPLAS (2009), STVR (2005-2007), SPE, KBS,
SQJ,TSI,KER and international conferences ISSRE, SAS, TACAS, ICST, TESTCOM, WLPE, Bytecode, …

- IEEE member

- Various expertise for ANR, “Conseil Régional de Franche-Comté”, EITICA Technology transfer in the
 Acquitaine region, Ile de France (DimLSC)

Supervision of 5 PhD students, 3 Post-docs and others

- PhD Thesis of Mickael Delahaye (2007-now) on static analysis techniques for automatic test data
generation in C programs. Co-advising with B. Botella from CEA and Thomas Jensen (Habilitated). I am
involved in the supervision of the thesis at 50%. In this work, we proposed to utilize infeasible path
detection to improve the automatic test inputs generation [Delahaye, Botella, Gotlieb ICST’10].

- PhD Thesis of Nadjib Lazaar (2008-now) on testing constraint programs. Co-advising with Thomas
Jensen (Habilitated). I am involved in the supervision of the thesis at 100%. In this work, we proposed a
first approach for testing constraint programs [Lazaar, Gotlieb, Lebbah CP’10], localizing faults in
constraint programs [Lazaar Gotlieb Lebbah ICTAI’10] and automatic correction of constraint programs
[Lazaar Gotlieb Lebbah ICST’11].

- PhD Thesis of Florence Charreteur (Defense on 9 March 2010). “Modélisation par contraintes de
programmes en bytecode java pour la génération automatique de tests”, University of Rennes, Co-
advising with Thomas Jensen (Habilitated). I was involved in the supervision of the thesis at 100%. In this
work, we proposed a constraint model for constraint-based reasoning on Bytecode programs [Charreteur
Gotlieb ISSRE’10]. This model handles dynamic data structures and it is based on a memory model that
was published in [Charreteur Botella Gotlieb JSS 2009].

Since late 2009, Florence works for DGA in Bruz, as a Research engineer.

- PhD Thesis of Matthieu Petit (Defense on 4 Jul. 2008). “Using probabilistic choice constraint for
statistical structural testing”, University of Rennes, Co-advising with Thomas Jensen (Habilitated). I was
involved in the supervision of the thesis at 100%. In this work, we proposed to use probabilistic choice
operators [Petit Gotlieb CP’07] to reason on imperative programs [Gotlieb Petit JSS’10].

Since 2008, Matthieu is postdoc at the Danish University of Roskilde.

- PhD Thesis of Tristan Denmat (Defense on 5 June 2008). “Contraintes et abstractions pour la generation
automatique de données de test”, University of Rennes, Co-advising with Mireille Ducassé (Habilitated). I
was involved in the supervision of the thesis at 50%. In this work, we proposed to use abstract domain
computations in constraint combinators [Denmat Gotlieb Ducassé CP’07] to perform test input generation
[Denmat Gotlieb Ducassé ISSRE’07]. We also explore pointer analyses for handling pointer aliasing in
test input generation and program verification [Gotlieb Botella Denmat IST’07].

Since 2008, Tristan works as a software engineer for various software companies (currently ATOS origin).

- Post-doc. of Sandrine Gouraud (2005-2006, on RNTL CASTLES). We proposed a technique based on
Constraint Handling Rules to generate test cases for the Java Card Virtual Machine [Gouraud Gotlieb
PADL’06].

- Post-doc of Pierre Rousseau (2006-2007, on RNTL CAT). We worked on the early design of Euclide. In
particular, we implemented the handling of the ACSL language in the tool.

- Post-doc of Matthieu Carlier (2009-2011, on ANR U3CAT). We proposed to use constraint reasoning in
the testing of functional programs [Carlier Dubois Gotlieb ICSOFT’10].

- Benjamin Cama (engineer, 12months, 2008-2009, on CAVERN project). Development of a web interface
for Euclide

- Nada Benduro (engineer, 7months, 2009-2010, on CAVERN project). Testing procedures for Euclide.

Students advising : more than 15 trainees over the last ten years

Teaching

2002-2011: “Validation, Verification and Test”, Course, Master level,5INFO, INSA de Rennes (30HeqTD).

2002-2010: “Constraint-based testing”, Course, Master (M2R), Université de Rennes (6HeqTD)

2006-2011: “Sofware Testing”, Course, Master level, Ecole des Mines de Nantes (18HeqTD)

2010-2011: “Compilation”, Course, Master level, 4INFO, INSA de Rennes (24HeqTD)

2010-2011: “Constraint-based testing”, ALMA Seminar, University of Nantes (3H)

2007 : TAROT Summer School “Constraint based testing” (6H)

2004 : OBERTHUR formation on “Software Testing” (6H)

Member of master student jury (M2R University of Rennes) from 2004 to 2009

Visit of Research groups and invited presentations

Nov. 2003 : Visit of the Software Assurance Laboratory (J. Bieman’s Research group)
 at Colorado State University in Fort Collins – Denver
 Invited presentation: Automatic Test Data Generation with Constraint Logic Programming

Mar. 2004 : CASSIS workshop, Marseille, France, Invited talk: Testing programs with symmetry

Nov.2005 : LIFC Seminar, Besançon, France, Invited talk :
 Probabilistic Constraint Programming for Statistical Structural Testing

May 2006 : CEA Seminar - Saclay, Invited talk : INKA: Ten years after the first idea

Jun. 2010 : Visit of the ASTRA Research group (P. Flener, J. Pearson) at University of Uppsala, Sweden
 Invited presentation: An overview of Constraint-Based Testing

Distinctions

- Nominated for Best paper award IEEE ISSRE 2003 “Exploiting symmetries to test programs” A. Gotlieb

- Won the prize for best poster at GDR-GPL 2010

- Gift from Microsoft Research for sponsoring the CSTVA workshop series, under the Verified Software
Initiative led by Prof. T. Hoare.

Publications in International Referred Journals

M. Delahaye, B. Botella, A. Gotlieb. Infeasible Path Generalization in Dynamic Symbolic Execution.
Submitted for publication.to IEEE Transactions on Software Engineering

M. Carlier, C. Dubois, A. Gotlieb. A constraint-based approach for testing functional programs.
Submitted for publication.to the J. Wileys’ Journal of Software Testing, Verification and Analysis

A. Gotlieb and M. Petit. A uniform random test data generator for path testi ng . The Journal of
Systems and Software, 83(12):2618-2626, Dec. 2010. (IF: 1.340 Source: Elsevier, ERA2010 rank: A)

F. Charreteur, B. Botella, and A. Gotlieb. Modelling dynamic memory management in constraint-
based testing . The Journal of Systems and Software, 82(11):1755–1766, Nov. 2009. Special Issue:
TAIC-PART 2007 and MUTATION 2007. (IF: 1.340 Source: Elsevier, ERA2010 rank: A)

A. Gotlieb. Tcas software verification using constraint program ming . The Knowledge Engineering
Review, 2009. Accepted for publication. (IF: 1.143 Source: Cambridge, ERA2010 rank: B)

A. Gotlieb, T. Denmat, and B. Botella. Goal-oriented test data generation for pointer prog rams .
Information and Soft. Technol., 49(9-10):1030–1044, Sep. 2007. (IF: 1.821 Source: Elsevier, ERA2010
rank: B)

B. Botella, A. Gotlieb, and C. Michel. Symbolic execution of floating-point computations . The Software
Testing, Verification and Reliability journal, 16(2):pp 97–121, June 2006. (IF: 1.632 Source: Wiley,
ERA2010 rank: B)

O. Lhomme, A. Gotlieb, and M. Rueher. Dynamic optimization of interval narrowing algorith ms .
Journal of Logic Programming, 37:164–182, 1998. (New journal name: Theory and Practice of Logic
Programming, IF: 1.467 Source: Cambridge, ERA2010 rank: A)

Publications in International Referred Conferences

N. Lazaar, A. Gotlieb, and Y. Lebbah. A framework for the automatic correction of constra int
programs . In 4th IEEE International Conference on Software Testing, Validation and Verification
(ICST'11), Berlin, Germany, Mar. 2011.

F. Charreteur and A. Gotlieb. Constraint-based test input generation for java byt ecode . In Proc. of the
21st IEEE Int. Symp. on Softw. Reliability Engineering (ISSRE'10), San Jose, CA, USA, Nov. 2010.
(Research papers selection: 43/130, acceptance rate: 33%, Source: IEEE proceedings, ERA2010 rank: A)

M. Carlier, C. Dubois, and A. Gotlieb. Constraint reasonning in focaltest . In 5rd International
Conference on Software and Data Technologies (ICSOFT'10), Athens, Greece, Jul. 2010.

(Full paper selection: 24/266, acceptance rate: 9%, Source: ICSOFT, ERA2010 rank: B)

M. Delahaye, B. Botella, and A. Gotlieb. Explanation-based generalization of infeasible path . In 3rd
IEEE International Conference on Software Testing, Validation and Verification (ICST'10), Paris, France,
Apr. 2010. (Paper selection: 50/189, acceptance rate: 27%, Source: IEEE Proc., ERA2010 rank: C)

N. Lazaar, A. Gotlieb, and Y. Lebbah. Fault localization in constraint programs . In 22th IEEE Int. Conf.
on Tools with Artificial Intelligence (ICTAI'2010), Arras, France, Oct. 2010.

(Regular paper selection: 67/243, acceptance rate: 27.5%, Source: IEEE proceedings, ERA2010 rank: B)

N. Lazaar, A. Gotlieb, and Y. Lebbah. On testing constraint programs . In 16th Int. Conf. on Principles
and Practices of Constraint Programming (CP'2010), St Andrews, Scotland, Sept. 2010.

(Research paper selection: 36/101, acceptance rate: 36%, Source: LNCS 6308, ERA2010 rank: A)

A. Gotlieb. Euclide: A constraint-based testing platform for cr itical c programs . In 2th IEEE
International Conference on Software Testing, Validation and Verification (ICST), Denver, CO, Apr. 2009.

(Paper selection: 47/140, acceptance rate: 33%, Source: IEEE Proc., ERA2010 rank: C)

A. Gotlieb and M. Petit. Towards a theory for testing non-terminating progra ms . In 33nd Annual IEEE
International Computer Software and Applications Conference (COMPSAC'09), Seattle, USA, Jul. 2009. 6
pages. (Paper selection: (46+29 short)/231, acceptance rate: 32.4%, Source: IEEE Proc., ERA2010 rank:
B)

A. Gotlieb and M. Petit. Constraint reasonning in path-oriented random testi ng . In 32nd Annual IEEE
International Computer Software and Applications Conference (COMPSAC'08), Turku, Finland, Jul. 2008.
Short paper, 4 pages. (Research paper selection: (46+36 short)/236, acceptance rate: 34.7%, Source:
IEEE Proc., ERA2010 rank: B)

F. Charreteur, B. Botella, and A. Gotlieb. Modelling dynamic memory management in constraint-
based testing . In TAIC-PART (Testing: Academic and Industrial Conference), Windsor, UK, Sep. 2007.

T. Denmat, A. Gotlieb, and M. Ducasse. An abstract interpretation based combinator for mod eling
while loops in constraint programming . In Proceedings of Principles and Practices of Constraint
Programming (CP'07), Springer Verlag, LNCS 4741, pages 241–255, Providence, USA, Sep. 2007.

(Research paper selection: 43/143, acceptance rate: 30%, Source: LNCS 4741, ERA2010 rank: A)

T. Denmat, A. Gotlieb, and M. Ducasse. Improving constraint-based testing with dynamic lin ear
relaxations . In 18th IEEE International Symposium on Software Reliability Engineering (ISSRE' 2007),
Trollhättan, Sweden, Nov. 2007. (Paper selection : 26/78, acceptance rate: 33%, Source: IEEE proceed.,
ERA2010 rank: A)

M. Petit and A. Gotlieb. Boosting probabilistic choice operators . In Proceedings of Principles and
Practices of Constraint Programming, Springer Verlag, LNCS 4741, pages 559–573, Providence, USA,
September 2007. (Research paper selection: 43/143, acceptance rate: 30%, Source: LNCS 4741,
ERA2010 rank: A)

M. Petit and A. Gotlieb. Uniform selection of feasible paths as a stochastic constraint problem . In
Proceedings of International Conference on Quality Software (QSIC'07), IEEE, Portland, USA, October
2007. (ERA2010 rank: B)

A. Gotlieb and P. Bernard. A semi-empirical model of test quality in symmetric testing: Application
to testing java card APIs . In Sixth International Conference on Quality Software (QSIC'06), Beijing,
China, Oct. 2006. (Paper selection : 50/181, acceptance rate: 28%, Source: Proceedings, ERA2010 rank:
B)

A. Gotlieb, B. Botella, and M. Watel. Inka: Ten years after the first ideas . In 19th Int. Conf. on Soft. and
Systems Eng. and their Applications (ICSSEA'06), Paris, France, Dec. 2006.

S.D. Gouraud and A. Gotlieb. Using chrs to generate test cases for the jcvm . In Eighth International
Symposium on Practical Aspects of Declarative Languages, PADL 06, Charleston, South Carolina,
January 2006. LNCS 3819 (ERA2010 rank: B)

A. Gotlieb, T. Denmat, and B. Botella. Constraint-based test data generation in the presen ce of stack-
directed pointers . In 20th IEEE/ACM International Conference on Automated Software Engineering
(ASE'05), Long Beach, CA, USA, Nov. 2005. 4 pages. (Paper selection : (28+35 short)/291, acceptance
rate: 21.6%, Source: IEEE/ACM proceedings, ERA2010 rank: A)

A. Gotlieb, T. Denmat, and B. Botella. Goal-oriented test data generation for programs wit h pointer
variables . In 29th IEEE Annual International Computer Software and Applications Conference
(COMPSAC'05), pages 449–454, Edinburh, Scotland, July 2005. 6 pages. (Paper selection : 71/278,
acceptance rate: 25.5%, Source: IEEE proceedings, ERA2010 rank: B)

A. Gotlieb. Exploiting symmetries to test programs . In IEEE International Symposium on Software
Reliability and Enginering (ISSRE), Denver, CO, USA, November 2003. (Paper selection : 41/200,
acceptance rate: 21%, Source: IEEE proceedings, ERA2010 rank: A)

A. Gotlieb and B. Botella. Automated metamorphic testing . In 27th IEEE Annual International Computer
Software and Applications Conference (COMPSAC'03), Dallas, TX, USA, November 2003. (ERA2010
rank: B)

A. Gotlieb. Inka: An automatic software test data generator. In Proceedings of DAta Systems In
Aerospace (DASIA 2001), Eurospace, The Association of European Space Industry, Nice, France, May
2001.

A. Gotlieb, B. Botella, and M. Rueher. A clp framework for computing structural test data . In
Proceedings of Computational Logic (CL'2000), LNAI 1891, pages 399–413, London, UK, July 2000.

(Paper selection: 86/176, acceptance rate: 49%, Source: LNAI 1861.)

A. Gotlieb, B. Botella, and M. Rueher. Automatic test data generation using constraint solving techniques.
In Proc. of Int. Symp. on Soft. Testing and Analysis (ISSTA'98), pages 53–62, 1998. Also in Software
Engineering Notes 23:2, Mar. 1998 (Paper selection: 16/47, acceptance rate: 34%, Source: SEN Proc.,
ERA2010 rank: A)

O. Lhomme, A. Gotlieb, M. Rueher, and P. Taillibert. Boosting the interval narrowing algorithm . In
Proc. of the Joint Int. Conf. and Symp. on Logic Programming (JICSLP'96), pages 378–392, Bonn,
Germany, Sep. 1996. MIT Press. (Paper selection: 35/122, acceptance rate: 28.6%, Source: Proc.,
ERA2010 rank: A)

Publications in International Referred Workshops

A. Gotlieb, M. Leconte, and B. Marre. Constraint solving on modular integers . In Proc. of the 9th Int.
Workshop on Constraint Modelling and Reformulation (ModRef'10), co-located with CP'2010, St Andrews,
Scotland, Sept. 2010.

M. Petit and A. Gotlieb. Distinguish dynamic basic blocks by structural statistical test ing. In Proc. of
the 12th European Workshop on Dependable Computing, Toulouse, France, May 2009.

B. Blanc, F. Bouquet, A. Gotlieb, B. Jeannet, T. Jéron, B. Legeard, B. Marre, C. Michel, and M. Rueher.
The v3f project . In Proc. of the 1st Workshop on Constraints in Software Testing, Verification and
Analysis (CSTVA'06), Nantes, France, Sep. 2006.

A. Gotlieb and M. Petit. Path-oriented random testing . In 1st ACM Int. Workshop on Random Testing
(RT'06), Portland, Maine, July 2006.

T. Denmat, A. Gotlieb, and M. Ducassé. Proving or disproving likely invariants with constr aint
reasoning. In Proc.of the 15th Workshop on Logic-Based Methods in Programming Environments
(WLPE'05), Sitges, SPAIN, Oct. 2005. satelite event of International Conference on Logic Programming
(ICLP'2005).

M. Petit and A. Gotlieb. An ongoing work on statistical structural testing v ia probabilistic concurrent
constraint programming . In SIVOES-MODEVA workshop – satelite event of Int. Symp. on Software
Reliability Engineering (ISSRE'04), Saint-Malo, France, November 2004.

Publications in National Journals

B. Botella, A. Gotlieb, C. Michel, M. Rueher, and P. Taillibert. Utilisation des contraintes pour la
génération automatique de cas de test structurels . In Technique et sciences informatiques, volume
21–9 of TSI, pages 1163–1187. Hermes – Lavoisier, 2002.

A. Gotlieb, F. Calvet, and M. Rueher. Génération automatique de cas de test : une approch e
programmation logique par contraintes . In Actes des journées Génie Logiciels GL'96 publiés dans
Génie Logiciel, pages 135–140, Paris, France, Nov. 1996. EC2.

Publications in National Conferences

S. Bardin, B. Botella, F. Dadeau, F. Charreteur, A. Gotlieb, B. Marre, C. Michel, M. Rueher, and N.
Williams. Constraint-based software testing . In 1eres journées nationales du GDR-GPL, groupe de
travail MTVV, Toulouse, France, Jan. 2009.

N. Lazaar, A. Gotlieb, and Y. Lebbah. Vers une théorie du test des programmes à contraint es . In
Cinquièmes Journées Francophones de Programmation par Contraintes (JFPC'09), Amiens, France, Juin
2009.

F. Charreteur and A. Gotlieb. Raisonnement à contraintes pour le test de bytecode java . In
Quatrièmes Journées Francophones de Programmation par Contraintes (JFPC'08), pages 11–20, Nantes,
France, Juin 2008.

M. Petit and A. Gotlieb. Raisonner et filtrer avec un choix probabiliste partiellement connu . In
Secondes Journées Francophones de Programmation par Contraintes (JFPC'06), Nimes, France, Juin
2006.

S.D. Gouraud and Gotlieb A. Utilisation des chrs pour générer des cas de test f onctionnel pour la
machine virtuelle java card . In Premières Journées Francophones de Programmation par Contraintes
(JFPC'05), Lens, France, juin 2005.

Book chapter

B. Blanc, A. Gotlieb, and C. Michel. Constraints in software testing, verification and a nalysis . In
Frédéric Benhamou, Narendra Jussien, and Barry O'Sullivan, editors, Trends in Constraint Programming,
part 7, pages 333–368. ISTE, London, UK, May 2007.

Posters and other publications

A Gotlieb. Euclide . In 2èmes Journées Nationales du GDR-GPL, Pau, France, Jan. 2010.
won the best poster prize.

N. Lazaar, A. Gotlieb, and Y. Lebbah. Towards constraint-based local search for automatic test data
generation . In Poster in the 1th International Workshop on Search-based Test Data Generation, co-
located with ICST 2008, Lillehammer, Norway, Apr. 2008.

M. Petit and A. Gotlieb. Probabilistic choice operators as global constraint s : application to
statistical software testing . In Poster presentation in ICLP'04, number 3132 in Springer LNCS, pages
471–472, 2004.

B. Botella and A. Gotlieb. FPSE: Floating-Point Symbolic Execution . INRIA-IRISA, Rennes, 2005.
Documentation of a floating-point interval constraint solver.

A. Gotlieb. Utilisation de la Programmation Logique par Contr aintes pour la génération automatique
de données de test . Thèse de doctorat, Université de Nice Sophia-Antipolis, Jan 2000.

Résumé

185

Résumé

Ces dernières années, les recherches en matière de Test Logiciel ont conduit au
développement de techniques de résolution de contraintes dédiées, dans ce qui
est appelé “le test à base de contraintes”. Notre approche dans ce domaine vise
à explorer l’apport de la Programmation par Contraintes à la génération automa-
tique de test pour les programmes impératifs. Nous nous sommes intéressés à la
résolution de problèmes combinatoires difficiles issus de la génération de données
de test, en développant des techniques de propagation de contraintes et de fil-
trage, adaptées au traitement des constructions des langages de programmation.
Notre habilitation tente de faire une première synthèse de ce sujet au travers de
cinq contributions : l’hybridation de techniques de résolution de contraintes pour
la génération automatique de cas de test, la génération probabiliste de cas de test
à l’aide d’opérateurs à contrainte probabiliste, les contraintes sur un modèle mé-
moire pour les programmes manipulant les pointeurs, la résolution de contraintes
sur les expressions portant sur les nombres à virgule flottante, et le test de pro-
grammes à contraintes. Nous illustrons également ces contributions par leur ap-
plication à la vérification de logiciels critiques, et dressons quelques perspectives
à ces travaux.

Abstract

These last years have seen the development of several constraint solving tech-
niques dedicated to the testing of software systems, in an area called “Constraint-
Based Testing”. Our approach in this research domain consists to explore how
Constraint Programming techniques can help the automatic generation of tests for
imperative programs. We have addressed hard combinatorial problems resulting
from automatic test cases generation by developing constraint propagation and
filtering techniques well-tuned for handling control and data structures of imper-
ative programs. Our habilitation tries to establish a first synthesis of the domain
through five contributions, namely hybrid constraint solving for automatic test
case generation, probabilistic test generation through probabilistic constraint com-
binator, constraints over abstract memory models, constraint solving over floating-
point expressions and testing of constraint programs. We also illustrate these con-
tributions through their application to critical software verification, and draw sev-
eral research perspectives to our work.

Bibliography

[Anand 07] Saswat Anand, Corina S. Pasareanu & Willem
Visser. JPF–SE: A Symbolic Execution Extension to Java
PathFinder. In Int. Conf. on Tools and Algo. for the
Construction and Analysis of Systems (TACAS’07),
April 2007.

[Antoine 94] C. Antoine, P. Baudin, J.M. Collart, J. Raguideau &
A. Trotin. Using formal methods to validate C programs.
In 5th International Symposium on Software Reli-
ability Engineering (ISSRE’94), pages 252–258, nov
1994.

[Arcuri 09] Andrea Arcuri. Theoretical analysis of local search in
software testing. In Proceedings of the 5th interna-
tional conference on Stochastic algorithms: foun-
dations and applications, SAGA’09, pages 156–168,
2009.

[Ball 01] Thomas Ball, Rupak Majumdar, Todd Millstein &
Sriram K. Rajamani. Automatic predicate abstraction of
C programs. In Proceedings of the ACM SIGPLAN
2001 conference on Programming language design
and implementation, PLDI ’01, pages 203–213, 2001.

[Ball 05] Thomas Ball. A Theory of Predicate-Complete Test Cov-
erage and Generation. In Formal Methods for Com-
ponents and Objects, volume 3657 of Lecture Notes in
Computer Science, pages 1–22. Springer Berlin / Hei-
delberg, 2005.

[Ball 11] Thomas Ball, Vladimir Levin & Sriram K. Rajamani.
A decade of software model checking with SLAM. Com-
mun. ACM, vol. 54, pages 68–76, July 2011.

[Bardin 08] S. Bardin & P. Herrmann. Structural Testing of Exe-
cutables. In 1th Int. Conf. on Soft. Testing, Verif. and
Valid. (ICST’08), pages 22–31, 2008.

189

[Bardin 09] S. Bardin, B. Botella, F. Dadeau, F. Charreteur,
A. Gotlieb, B. Marre, C. Michel, M. Rueher &
N. Williams. Constraint-Based Software Testing. In
1eres journées nationales du GDR-GPL, groupe de
travail MTVV, Toulouse, France, Jan. 2009.

[Barnett 11] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller,
W. Schulte & H. Venter. Specification and Verification:
The Spec# Experience. Communications of the ACM,
vol. 54, no. 6, pages 81–91, June 2011.

[Baudin 09] Patrick Baudin, Jean-Christophe Filliâtre, Claude
Marché, Benjamin Monate, Yannick Moy & Vir-
gile Prevosto. ACSL: ANSI/ISO C Specification Lan-
guage, version 1.4, 2009. http://frama-c.cea.
fr/acsl.html.

[Berstel 10] B. Berstel & M. Leconte. Using Constraints to Verify
Properties of Programs. In 2nd Workshop on Con-
straints in Software Testing, Verification and Anal-
ysis, CSTVA’10, 2010. Co-located with ICST’10 in
Paris, April.

[Bicevskis 79] J. Bicevskis, J. Borzovs, U. Straujums, A. Zarins &
E. Miller. SMOTL - A System to Construct Samples
for Data Processing Program Debugging. IEEE Trans-
actions on Software Engineering, vol. 5, no. 1, pages
60–66, January 1979.

[Bin 02] E. Bin, R. Emek, G. Shurek & A. Ziv. Using a con-
straint satisfaction formulation and solution techniques
for random test program generation. IBM Systems Jour-
nal, vol. 41, no. 3, 2002.

[Bobot 11] François Bobot, Jean-Christophe Filliâtre, Claude
Marché & Andrei Paskevich. Why3: Shepherd Your
Herd of Provers. In Boogie 2011: First International
Workshop on Intermediate Verification Languages,
Wrocław, Poland, Aug. 2011.

[Boldo 09] Sylvie Boldo, Jean-Christophe Filliâtre & Guillaume
Melquiond. Combining Coq and Gappa for Certify-
ing Floating-Point Programs. In Proceedings of the
16th Symposium, 8th International Conference. Held
as Part of CICM ’09 on Intelligent Computer Math-
ematics, Calculemus ’09/MKM ’09, pages 59–74,
2009.

[Boonstoppel 08] Peter Boonstoppel, Cristian Cadar & Dawson Engler.
RWset: Attacking path explosion in constraint-based test
generation. In Int. Conference on Tools and Algo-
rithms for the Constructions and Analysis of Sys-
tems (TACAS’08), pages 351–366, 2008.

[Botella 05] B. Botella & A. Gotlieb. FPSE: Floating-Point Symbolic
Execution. INRIA-IRISA, Rennes, 2005. Documenta-
tion of a floating-point interval constraint solver.

[Botella 06] B. Botella, A. Gotlieb & C. Michel. Symbolic execu-
tion of floating-point computations. The Software Test-
ing, Verification and Reliability journal, vol. 16, no. 2,
pages pp 97–121, June 2006.

[Botella 09] B. Botella, F. Charreteur & A. Gotlieb. CAVERN -
Delivrable 2.1 - Modèle mémoire. Rapport technique
ver. 1, 2009.

[Bougé 86] L. Bougé, N. Choquet, L. Fribourg & M.C. Gaudel.
Test Sets Generation from Algebraic Specifications Using
Logic Programming. The Journal of Systems and Soft-
ware, vol. 6, pages 343–360, 1986.

[Bouquet 05] Fabrice Bouquet, Frédéric Dadeau, Bruno Legeard
& Mark Utting. JML-Testing-Tools: A Symbolic An-
imator for JML Specifications Using CLP. In Tools
and Algorithms for the Construction and Analysis of
Systems, 11th International Conference (TACAS’05),
pages 551–556, Apr 2005.

[Brillout 09] A. Brillout, D. Kroening & T. Wahl. Mixed abstractions
for floating-point arithmetic. In Formal Methods in
Computer-Aided Design, 2009. FMCAD 2009, pages
69 –76, nov. 2009.

[Burdy 05] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R.
Kiniry, G. T. Leavens, K. R. Leino & E. Poll. An
Overview of JML Tools and Applications. International
Journal on Software Tools for Technology Transfer,
vol. 7, no. 3, pages 212–232, 2005.

[Burnim 08] Jacob Burnim & Koushik Sen. Heuristics for Scalable
Dynamic Test Generation. In ASE’08: 23rd IEEE/ACM
International Conference on Automated Software
Engineering, pages 443–446, Washington, DC, USA,
2008. IEEE Computer Society.

[C. Pasareanu 03] M. Dwyer C. Pasareanu & W. Visser. Finding Feasible
Abstract Counter-Examples. International Journal on
Software Tools for Technology Transfer, vol. 5, no. 1,
2003.

[Cadar 06] C. Cadar, V. Ganesh, P.M. Pawlowski, D.L. Dill &
D.R. Engler. EXE: automatically generating inputs of
death. In Proc. of Comp. and Communications Secu-
rity (CCS’06), pages 322–335, 2006.

[Canet 09] Géraud Canet, Pascal Cuoq & Benjamin Monate. A
Value Analysis for C Programs. In Proceedings of the
2009 Ninth IEEE International Working Conference
on Source Code Analysis and Manipulation, SCAM
’09, pages 123–124, 2009.

[Carlier 10] M. Carlier, C. Dubois & A. Gotlieb. Constraint Reason-
ning in FOCALTEST. In 5rd International Conference
on Software and Data Technologies (ICSOFT’10),
Athens, Greece, Jul. 2010.

[Carlier 11a] M. Carlier, C. Dubois & A. Gotlieb. A constraint-based
approach for testing functional programs. 2011. under
revision.

[Carlier 11b] M. Carlier & A. Gotlieb. Filtering by ULP Maximum.
In Proc. of the IEEE Int. Conf. on Tools for Artifi-
cial Intelligence (ICTAI’11), Nov. 2011. Short paper,
4 pages.

[Carlsson 97] M. Carlsson, G. Ottosson & B. Carlson. An Open–
Ended Finite Domain Constraint Solver. In Proc. of
Programming Languages: Implementations, Logics,
and Programs, 1997.

[Carver 96] Richard H. Carver. Testing abstract distributed pro-
grams and their implementations: A constraint-based ap-
proach. Journal of Systems and Software, vol. 33,
no. 3, pages 223–237, 1996.

[Chan 98] F.T. Chan, T.Y. Chen, S. C. Cheung, M.F. Lau & S.M.
Yiu. Application of metamorphic testing in numerical
analysis. In IASTED Conf. in Soft. Eng., pages 191–
197, 1998.

[Charreteur 07] F. Charreteur, B. Botella & A. Gotlieb. Modelling dy-
namic memory management in Constraint-Based Test-
ing. In TAIC-PART (Testing: Academic and Indus-
trial Conference), Windsor, UK, Sep. 2007.

[Charreteur 08] F. Charreteur & A. Gotlieb. Raisonnement à con-
traintes pour le test de bytecode Java. In Quatrièmes
Journées Francophones de Programmation par Con-
traintes (JFPC’08), pages 11–20, Nantes, France, Juin
2008.

[Charreteur 09] F. Charreteur, B. Botella & A. Gotlieb. Modelling dy-
namic memory management in Constraint-Based Testing.
The Journal of Systems and Software, vol. 82, no. 11,
pages 1755–1766, Nov. 2009. Special Issue: TAIC-
PART 2007 and MUTATION 2007.

[Charreteur 10a] F. Charreteur & A. Gotlieb. Constraint-Based Test In-
put Generation for Java Bytecode. In Proc. of the 21st
IEEE Int. Symp. on Softw. Reliability Engineering
(ISSRE’10), San Jose, CA, USA, Nov. 2010.

[Charreteur 10b] Florence Charreteur. Modélisation par Contraintes de
programmes en bytecode Java pour la génération au-
tomatique de tests. Thèse de doctorat, Université de
Rennes 1, Mars 2010.

[Chen 01] T.Y. Chen, T.H. Tse & Zhiquan Zhou. Fault-Based Test-
ing in the Absence of an Oracle. In IEEE Int. Comp. Soft.
and App. Conf. (COMPSAC), pages 172–178, 2001.

[Choquet 86] N. Choquet. Test Data Generation using a Prolog with
Constraints. In Proc. of the Workshop on Software
Testing, pages 132–141, Banff, Canada, Jul. 1986.

[Chung 09] Insang Chung & James M. Bieman. Generating input
data structures for automated program testing. Softw.
Test. Verif. Reliab., vol. 19, pages 3–36, March 2009.

[Clarke 76] L. Clarke. A System to Generate Test Data and Sym-
bolically Execute Programs. IEEE Transactions on
Software Engineering, vol. 2, no. 3, pages 215–222,
September 1976.

[Collavizza 07] H. Collavizza & M. Rueher. Exploring different
constraint-based modelings for program verification. In
Proc. of CP2007, LNCS 4741, pages 49–63, 2007.

[Collavizza 08] H. Collavizza, M. Rueher & P. Van Hentenryck.
CPBPV: A Constraint-Programming Framework for
Bounded Program Verification. In Proc. of CP2008,
LNCS 5202, pages 327–341, 2008.

[Coppit 05] David Coppit, Jinlin Yang, Sarfraz Khurshid, Wei Le
& Kevin Sullivan. Software Assurance by Bounded Ex-
haustive Testing. IEEE Transactions on Software En-
gineering, vol. 31, pages 328–339, 2005.

[Cousot 77] P. Cousot & R. Cousot. Abstract Interpretation : A uni-
fied lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Proceedings
of Symp. on Principles of Programming Languages,
pages 238–252. ACM, 1977.

[Cousot 92] Patrick Cousot & Radhia Cousot. Abstract Interpreta-
tion Frameworks. J. Log. Comput., vol. 2, no. 4, pages
511–547, 1992.

[Cousot 05] Patrick Cousot, Radhia Cousot, Jérôme Feret, Lau-
rent Mauborgne, Antoine Miné, David Monniaux &
Xavier Rival. The ASTREÉ Analyzer. In 14th Euro-
pean Symposium on Programming (ESOP’05), Held
as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2005, pages 21–30,
Apr. 2005.

[Davis 87] E. Davis. Constraint Propagation With Interval Labels.
Artificial Intelligence, vol. 32, pages 281–331, 1987.

[de Moura 08a] Leonardo de Moura & Nikolaj Bjørner. Model-based
Theory Combination. Electron. Notes Theor. Comput.
Sci., vol. 198, no. 2, pages 37–49, 2008.

[De Moura 08b] Leonardo De Moura & Nikolaj Bjørner. Z3: an effi-
cient SMT solver. In TACAS’08/ETAPS’08: Proceed-
ings of the Theory and practice of software, 14th in-
ternational conference on Tools and algorithms for
the construction and analysis of systems, pages 337–
340. Springer-Verlag, 2008.

[Degrave 09] François Degrave, Tom Schrijvers & Wim Van-
hoof. Towards a Framework for Constraint-Based Test
Case Generation. In Logic-Based Program Synthesis
and Transformation, 19th International Symposium,
LOPSTR 2009, Coimbra, Portugal, September 2009,
Revised Selected Papers, pages 128–142, 2009.

[Delahaye 10] M. Delahaye, B. Botella & A. Gotlieb. Explanation-
based generalization of infeasible path. In 3rd IEEE Inter-
national Conference on Software Testing, Validation
and Verification (ICST’10), Paris, France, Apr. 2010.

[Delahaye 11] M. Delahaye, B. Botella & A. Gotlieb. Infeasible Path
Generalization in Dynamic Symbolic Execution. 2011.
under revision.

[Delmas 09] David Delmas, Eric Goubault, Sylvie Putot, Jean
Souyris, Karim Tekkal & Franck Védrine. Towards an
Industrial Use of FLUCTUAT on Safety-Critical Avion-
ics Software. In Proceedings of the 14th International
Workshop on Formal Methods for Industrial Critical
Systems, FMICS ’09, pages 53–69, 2009.

[Delzanno 01] Giorgio Delzanno & Andreas Podelski. Constraint-
based deductive model checking. International Journal
on Software Tools for Technology Transfer (STTT),
vol. 3, no. 3, pages 250–270, 2001.

[DeMillo 91] R.A. DeMillo & J.A. Offut. Constraint-Based Auto-
matic Test Data Generation. IEEE Transactions on
Software Engineering, vol. 17, no. 9, pages 900–910,
September 1991.

[Denmat 05] T. Denmat, A. Gotlieb & M. Ducassé́. Proving or
Disproving likely invariants with constraint reasoning.
In Proc.of the 15th Workshop on Logic-Based Meth-
ods in Programming Environments (WLPE’05), Sit-
ges, SPAIN, Oct. 2005. satelite event of International
Conference on Logic Programming (ICLP’2005).

[Denmat 07a] T. Denmat, A. Gotlieb & M. Ducasse. An Abstract
Interpretation Based Combinator for Modeling While
Loops in Constraint Programming. In Proceedings of
Principles and Practices of Constraint Programming
(CP’07), Springer Verlag, LNCS 4741, pages 241–255,
Providence, USA, Sep. 2007.

[Denmat 07b] T. Denmat, A. Gotlieb & M. Ducasse. Improving
Constraint-Based Testing with Dynamic Linear Relax-
ations. In 18th IEEE International Symposium on
Software Reliability Engineering (ISSRE’ 2007), Troll-
hättan, Sweden, Nov. 2007.

[Denmat 08] Tristan Denmat. Contraintes et abstractions pour la
génération automatique de données de test. Thèse de
doctorat, Institut National des Sciences Appliquées
de Rennes, Juin 2008.

[Detlefs 05] David Detlefs, Greg Nelson & James B. Saxe. Sim-
plify: a theorem prover for program checking. J. ACM,
vol. 52, pages 365–473, May 2005.

[Dick 93] J. Dick & A. Faivre. Automating the Generation and Se-
quencing of Test Cases from Model-based Specifications.
In Proc. of the FME’03: Industrial Strength Formal
Methods, LNCS 670, 1993.

[Do 05] Hyunsook Do, Sebastian G. Elbaum & Gregg Rother-
mel. Supporting Controlled Experimentation with Test-
ing Techniques: An Infrastructure and its Potential Im-
pact. Empirical Software Engineering: An Interna-
tional Journal, vol. 10, no. 4, pages 405–435, 2005.

[Filliâtre 04] J.C. Filliâtre & C. Marché. Multi-prover Verification of
C Programs. In 6th Int. Conf. on Formal Engineering
Methods (ICFEM’04), pages 15–29, Nov. 2004.

[Flanagan 02] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nel-
son, J. B. Saxe & R. Stata. Extended static checking
for Java. In Conf. on Programming Language Design
and Implementation, pages 234–245. ACM, 2002.

[Flanagan 04] Cormac Flanagan. Automatic software model checking
via constraint logic. Sci. Comput. Program., vol. 50,
no. 1-3, pages 253–270, 2004.

[Flener 07] P. Flener, J. Pearson, M. Agren, Garcia-Avello C.,
M. Celiktin & S. Dissing. Air-traffic complexity resolu-
tion in multi-sector planning. Journal of Air Transport
Management, vol. 13, no. 6, pages 323 – 328, 2007.

[Gerlich 10] Ralf Gerlich. Generic and Extensible Automatic Test
Data Generation for Safety Critical Software with CHR.
In Proc. of 7th Workshop on Constraint Handling
Rules (CHR’10), Jul. 2010.

[Godefroid 05] P. Godefroid, N. Klarlund & K. Sen. DART: directed
automated random testing. In Proc. of PLDI’05, pages
213–223, 2005.

[Godefroid 08a] P. Godefroid, P.de Halleux, A. Nori, S.K. Rajamani,
W. Schulte, N. Tillmann & M.Y. Levin. Automating
Software Testing Using Program Analysis. IEEE Soft-
ware, vol. 25, no. 5, pages 30–37, 2008.

[Godefroid 08b] Patrice Godefroid, Michael Y. Levin & David A. Mol-
nar. Automated Whitebox Fuzz Testing. In NDSS’08:
Network and Distributed System Security Sympo-
sium. The Internet Society, 2008.

[Godefroid 09] Patrice Godefroid. Software Model Checking Improving
Security of a Billion Computers. In Corina Pasareanu,
editeur, Model Checking Software, volume 5578 of
Lecture Notes in Computer Science, pages 1–1. Springer
Berlin / Heidelberg, 2009.

[Godefroid 10] Patrice Godefroid & Johannes Kinder. Proving mem-
ory safety of floating-point computations by combining
static and dynamic program analysis. In Proc. of the
International Symposium on Software Testing and
Analysis (ISSTA’10), pages 1–12, Jul. 2010.

[Gorlick 90] M. Gorlick, C. Kesselman, D. Marotta & S. Parker.
Mockingbird: A Logical Methodology for Testing. vol-
ume 8, pages 95–119, 1990.

[Gotlieb 98] A. Gotlieb, B. Botella & M. Rueher. Automatic Test
Data Generation Using Constraint Solving Techniques.
In Proc. of Int. Symp. on Soft. Testing and Analysis
(ISSTA’98), pages 53–62, 1998.

[Gotlieb 00a] A. Gotlieb. Génération automatique de cas de test struc-
turel avec la Programmation Logique par Contraintes.
Thèse de doctorat, Université de Nice Sophia An-
tipolis, January 2000.

[Gotlieb 00b] A. Gotlieb, B. Botella & M. Rueher. A CLP Frame-
work for Computing Structural Test Data. In Proceed-
ings of Computational Logic (CL’2000), LNAI 1891,
pages 399–413, London, UK, July 2000.

[Gotlieb 03a] A. Gotlieb. Exploiting Symmetries to Test Programs.
In IEEE International Symposium on Software Re-
liability and Enginering (ISSRE), Denver, CO, USA,
November 2003.

[Gotlieb 03b] A. Gotlieb & B. Botella. Automated Metamor-
phic Testing. In 27th IEEE Annual International
Computer Software and Applications Conference
(COMPSAC’03), Dallas, TX, USA, November 2003.

[Gotlieb 05a] A. Gotlieb, T. Denmat & B. Botella. Constraint-
based test data generation in the presence of stack-directed
pointers. In 20th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE’05),
Long Beach, CA, USA, Nov. 2005. 4 pages.

[Gotlieb 05b] A. Gotlieb, T. Denmat & B. Botella. Goal-oriented test
data generation for programs with pointer variables. In

29th IEEE Annual International Computer Software
and Applications Conference (COMPSAC’05), pages
449–454, Edinburh, Scotland, July 2005. 6 pages.

[Gotlieb 06a] A. Gotlieb & P. Bernard. A Semi-empirical Model of
Test Quality in Symmetric Testing: Application to Test-
ing Java Card APIs. In Sixth International Conference
on Quality Software (QSIC’06), Beijing, China, Oct.
2006.

[Gotlieb 06b] A. Gotlieb, B. Botella & M. Watel. Inka: Ten years af-
ter the first ideas. In 19th Int. Conf. on Soft. and Sys-
tems Eng. and their Applications (ICSSEA’06), Paris,
France, Dec. 2006.

[Gotlieb 07] A. Gotlieb, T. Denmat & B. Botella. Goal-oriented test
data generation for pointer programs. Information and
Soft. Technol., vol. 49, no. 9-10, pages 1030–1044, Sep.
2007.

[Gotlieb 08] A. Gotlieb & M. Petit. Constraint reasonning in Path-
oriented Random Testing. In 32nd Annual IEEE Inter-
national Computer Software and Applications Con-
ference (COMPSAC’08), Turku, Finland, Jul. 2008.
Short paper, 4 pages.

[Gotlieb 09a] A. Gotlieb. EUCLIDE: A Constraint-Based Testing plat-
form for critical C programs. In 2th IEEE International
Conference on Software Testing, Validation and Ver-
ification (ICST’09), Denver, CO, Apr. 2009.

[Gotlieb 09b] A. Gotlieb. TCAS software verification using Constraint
Programming. The Knowledge Engineering Review,
2009. Accepted for publication.

[Gotlieb 09c] A. Gotlieb & M. Petit. Towards a Theory for Test-
ing Non-terminating Programs. In 33nd Annual IEEE
International Computer Software and Applications
Conference (COMPSAC’09), Seattle, USA, Jul. 2009.
6 pages.

[Gotlieb 09d] Arnaud Gotlieb. CAVERN - Delivrable 3.1 - Polyhe-
dral abstractions in Constraint-Based Testing. Rapport
technique ver. 1, 2009.

[Gotlieb 10a] A. Gotlieb, M. Leconte & B. Marre. Constraint Solving
on Modular Integers. In Proc. of the 9th Int. Workshop

on Constraint Modelling and Reformulation (Mod-
Ref’10), co-located with CP’2010, St Andrews, Scot-
land, Sept. 2010.

[Gotlieb 10b] A. Gotlieb & M. Petit. A Uniform Random Test Data
Generator for Path Testing. The Journal of Systems and
Software, vol. 83, no. 12, pages 2618–2626, Dec. 2010.

[Goubault 01] E. Goubault. Static Analyses of the Precision of Floating-
Point Operations. In Static Analysis Symposium
(SAS’01) and also in LNCS 2126, pages 234–245,
Paris, FR, July 2001.

[Gouraud 06] S.D. Gouraud & A. Gotlieb. Using CHRs to gener-
ate test cases for the JCVM. In Eighth International
Symposium on Practical Aspects of Declarative Lan-
guages, PADL 06, Charleston, South Carolina, Jan-
uary 2006. LNCS 3819.

[Gupta 98] N. Gupta, A.P. Mathur & M.L. Soffa. Automated Test
Data Generation Using An Iterative Relaxation Method.
In Foundations on Software Engineering, Orlando,
FL, Nov. 1998. ACM.

[Gupta 00] Neelam Gupta, Aditya P. Mathur & Mary Lou Soffa.
Generating Test Data for Branch Coverage. In Proc.
of the Automated Software Engineering Conference,
pages 219–228, 2000.

[Hari 08] Siva Kumar Sastry Hari, Vishnu Vardhan Reddy
Konda, V. Kamakoti, Vivekananda M. Vedula &
Kailasnath S. Maneperambil. Automatic constraint
based test generation for behavioral HDL models. IEEE
Trans. Very Large Scale Integr. Syst., vol. 16, pages
408–421, April 2008.

[Hentenryck 92] P.V. Hentenryck, H. Simonis & M. Dincbas. Con-
straint satisfaction using constraint logic programming.
Artificial Intelligence, vol. 58, no. 1-3, pages 113–159,
1992.

[Hentenryck 93] P. Van Hentenryck, V. Saraswat & Y. Deville. De-
sign, Implementation, and Evaluation of the Constraint
Language cc(FD). Technical Report CS-93-02, Brown
University, 1993.

[Hentenryck 98] P.V. Hentenryck, V. Saraswat & Y. Deville. Design,
Implementation, and Evaluation of the Constraint Lan-
guage cc(FD). Journal of Logic Programming, vol. 37,
pages 139–164, 1998.

[Henzinger 03] T. Henzinger, R. Jhala, R. Majumdar & G. Sutre. Soft-
ware verification with Blast. In Proc. of 10th Workshop
on Model Checking of Software (SPIN), pages 235–
239, 2003.

[Hervieu 11] A. Hervieu, B. Baudry & A. Gotlieb. PACOGEN : Au-
tomatic Generation of Pairwise Test Configurations from
Feature Models. In Proc. of Int. Symp. on Soft. Relia-
bility Engineering (ISSRE’11), Nov. 2011.

[Hoffman 91] D. Hoffman & P. Strooper. Automated Module Testing
in Prolog. IEEE Transactions on Software Engineer-
ing, vol. 17, no. 9, Sep. 1991.

[Holland 05] Alan Holland & Barry O’Sullivan. Robust solutions for
combinatorial auctions. In ACM Conference on Elec-
tronic Commerce (EC-2005), pages 183–192, 2005.

[Holzbaur 95] C. Holzbaur. OEFAI clp(q,r) Manual Rev. 1.3.2. Aus-
trian Research Institute for Artificial Intelligence, Vi-
enna, AU, 1995. TR-95-09.

[IEEE-754 85] IEEE-754. Standard for Binary Floating-Point Arith-
metic. ACM SIGPLAN Notices, vol. 22, no. 2, pages
9–25, February 1985.

[Jackson 00] Daniel Jackson & Mandana Vaziri. Finding bugs with
a constraint solver. In Proc. of ISSTA’00, pages 14–25,
2000.

[Junker 04] Ulrich Junker. QUICKXPLAIN: Preferred Explana-
tions and Relaxations for Over-Constrained Problems. In
Proc. of the Nineteenth Nat. Conf. on Artificial Intel-
ligence, Sixteenth Conf. on Innovative Applications
of Artificial Intelligence (AAAI’04), July 25-29, 2004,
San Jose, California, USA, pages 167–172, 2004.

[Junker 08] U. Junker & D. Vidal. Air Traffic Flow Management
with ILOG CP Optimizer. In International Workshop
on Constraint Programming for Air Traffic Control
and Management, 2008. 7th EuroControl Innovative
Research Workshop and Exhibition (INO’08).

[King 76] J.C. King. Symbolic Execution and Program Testing.
Communications of the ACM, vol. 19, no. 7, pages
385–394, July 1976.

[Korel 90] B. Korel. Automated Software Test Data Generation.
IEEE Transactions on Software Engineering, vol. 16,
no. 8, pages 870–879, Aug. 1990.

[Lakhotia 10] Kiran Lakhotia, Nikolai Tillmann, Mark Harman &
Jonathan De Halleux. FloPSy: search-based floating
point constraint solving for symbolic execution. In Proc.
of the 22nd IFIP WG 6.1 international conference on
Testing software and systems, ICTSS’10, pages 142–
157, 2010.

[Lazaar 10a] N. Lazaar, A. Gotlieb & Y. Lebbah. Fault Localiza-
tion in Constraint Programs. In 22th Int. Conf. on
Tools with Artificial Intelligence (ICTAI’2010), Arras,
France, Oct. 2010.

[Lazaar 10b] N. Lazaar, A. Gotlieb & Y. Lebbah. On Testing Con-
straint Programs. In 16th Int. Conf. on Principles and
Practices of Constraint Programming (CP’2010), St
Andrews, Scotland, Sept. 2010.

[Lazaar 11] N. Lazaar, A. Gotlieb & Y. Lebbah. A framework for
the automatic correction of Constraint Programs. In 4th
IEEE International Conference on Software Testing,
Validation and Verification (ICST’11), Berlin, Ger-
many, Mar. 2011.

[Leconte 06] M. Leconte & B. Berstel. Extending a CP Solver With
Congruences as Domains for Software Verification. In 1st
Workshop on Constraints in Software Testing, Veri-
fication and Analysis, CSTVA’06, 2006. Co-located
with CP’06 in Nantes, September.

[Legeard 01] B. Legeard & F. Peureux. Generation of functional
test sequences from B formal specifications - Presentation
and industrial case-study. In Proc. of the 16th IEEE
Int. Conf. on Automated Software Engineering (ASE
2001), pages 377–381, San Diego, USA, November
2001. IEEE Computer Society Press.

[Lewin 95] D. Lewin, L. Fournier, M. Levinger, E. Roytman &
G. Shurek. Constraint Satisfaction for Test Program
Generation. In IEEE International Phoenix Confer-
ence on Communication and Computers, 1995, 1995.

[Littlewood 93] Bev Littlewood & Lorenzo Strigini. Validation of ultra-
high dependability for software-based systems. Commun.
ACM, vol. 36, pages 69–80, November 1993.

[Mackworth 77] Alan K. Mackworth. Consistency in Networks of Rela-
tions. Artificial Intelligence, vol. 8, no. 1, pages 99–
118, 1977.

[Marre 91] B. Marre. Toward Automatic Test Data Set Selection
using Algebraic Specifications and Logic Programming.
In Koichi Furukawa, editeur, Proc. of the Eight Int.
Conf. on Logic Prog. (ICLP’91), pages 202–219, Paris,
Jun. 1991. MIT Press.

[Marre 00] B. Marre & A. Arnould. Test Sequences Generation from
LUSTRE Descriptions: GATEL. In Proc. of the 15th
IEEE Conference on Automated Software Engineer-
ing (ASE’00). IEEE CS Press, Septembre 2000.

[Marre 05] Bruno Marre & Benjamin Blanc. Test Selection Strate-
gies for Lustre Descriptions in GATeL. Electronic Notes
in Theoretical Computer Science, vol. 111, pages 93
– 111, 2005.

[Marre 10] Bruno Marre & Claude Michel. Improving the Float-
ing Point Addition and Subtraction Constraints. In
Principles and Practice of Constraint Programming -
CP’2010, volume 6308 of LNCS, pages 360–367. 2010.

[Merchez 01] S. Merchez, C. Lecoutre & F. Boussemart. AbsCon:
a prototype to solve CSPs with abstraction. In Proc. Of
Constraint Programming (CP’01), LNCS 2239, pages
730–744. Springer-Verlag, 2001.

[Meudec 01] C. Meudec. ATGen: automatic test data generation us-
ing constraint logic programming and symbolic execu-
tion. Software Testing, Verification and Reliability,
vol. 11, no. 2, pages 81–96, June 2001.

[Michel 01] C. Michel, M. Rueher & Y. Lebbah. Solving Con-
straints over Floating-Point Numbers. In Proceedings
of Principles and Practices of Constraint Program-
ming (CP’01), Springer Verlag, LNCS 2239, pages
524–538, Paphos, Cyprus, November 2001.

[Michel 02] C. Michel. Exact projection functions for floating point
number constraints. In Seventh Int. Symp. on Artifi-
cial Intelligence and MAthematics (7th AIMA), Fort
Lauderdale, FL, USA, Jan. 2002.

[Miller 76] W. Miller & D. Spooner. Automatic Generation of
Floating-Point Test Data. IEEE Transactions on Soft-
ware Engineering, vol. 2, no. 3, pages 223–226,
September 1976.

[Miné 04] A. Miné. Relational Abstract Domains for the Detection
of Floating-Point Run-Time Errors. In Proc. of the Euro-
pean Symp. on Programming, volume 2986 of LNCS,
pages 3–17. Springer, 2004.

[Mohammed Said Belaid 10] Michel Rueher Mohammed Said Be-
laid Claude Michel. Approximating floating-point
operations to verify numerical programs. In 14th
GAMM-IMACS International Symposium on Sci-
entific Computing, Computer Arithmetic and
Validated Numerics (SCAN’10), ENS Lyon, France,
Sep. 2010.

[Offutt 88] Jeff Offutt. Automatic Test Data Generation. Phd dis-
sertation, Georgia Institute of Technology, Atlanta
GA, 1988.

[Pesch 85] H. Pesch, H. Schaller, P. Schnupp & A.P. Spirk. Test
Case Generation Using Prolog. In Proc. of the 8th Int.
Conf. on Soft. Eng. (ICSE’85), pages 252–258, Lon-
don, U.K., 1985.

[Petit 07a] M. Petit & A. Gotlieb. Boosting Probabilistic Choice
Operators. In Proceedings of Principles and Practices
of Constraint Programming, Springer Verlag, LNCS
4741, pages 559–573, Providence, USA, September
2007.

[Petit 07b] M. Petit & A. Gotlieb. Uniform Selection of Feasible
Paths as a Stochastic Constraint Problem. In Proceed-
ings of International Conference on Quality Software
(QSIC’07), IEEE, Portland, USA, October 2007.

[Petit 08] Matthieu Petit. Test statistique structurel par résolution
de contraintes de choix probabiliste. Thèse de doctorat,
Université de Rennes 1, Juillet 2008.

[Podelski 00] Andreas Podelski. Model Checking as Constraint
Solving. In Proceedings of Static Analysis Sympo-
sium (SAS’00), volume 1824 of LNCS, pages 22–37.
Springer-Verlag, 2000.

[Pretschner 01] Alexander Pretschner & Heiko Lötzbeyer. Model
Based Testing with Constraint Logic Programming: First
Results and Challenges. In IN 2ND ICSE INT. WORK-
SHOP ON AUTOMATED PROGRAM ANALYSIS,
TESTING, AND VERI (WAPATV’01), 2001.

[Sen 05] K. Sen, D. Marinov & G. Agha. CUTE: a concolic unit
testing engine for C. In Proc. of ESEC/FSE-13, pages
263–272. ACM Press, 2005.

[Snelting 06] Gregor Snelting, Torsten Robschink & Jens Krinke.
Efficient path conditions in dependence graphs for soft-
ware safety analysis. ACM Trans. Softw. Eng.
Methodol., vol. 15, pages 410–457, October 2006.

[Sneyers 10] Jon Sneyers, Peter Van Weert, Tom Schrijvers &
Leslie De Koninck. As time goes by: Constraint Han-
dling Rules. Theory and Practice of Logic Program-
ming (TPLP), vol. 10, no. 1, pages 1–47, 2010.

[Strooper 91] P. Strooper & D. Hoffman. Prolog Testing of C Modules.
1991.

[Sy 01] Nguyen Tran Sy & Yves Deville. Automatic Test Data
Generation for Programs with Integer and Float Vari-
ables. In In 16th IEEE Int. Conference on Automated
Software Engineering (ASE’01), pages 3–21, 2001.

[Sy 03] Nguyen Tran Sy & Yves Deville. Consistency tech-
niques for interprocedural test data generation. In Pro-
ceedings of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT in-
ternational symposium on Foundations of software
engineering, ESEC/FSE-11, pages 108–117, 2003.

[Tang 10] Enyi Tang, Earl Barr, Xuandong Li & Zhendong Su.
Perturbing numerical calculations for statistical analysis
of floating-point program (in)stability. In Proc. of the
19th Int. Symp. on Software Testing and Analysis, IS-
STA ’10, pages 131–142, 2010.

[Tillmann 08] N. Tillmann & J. de Halleux. Pex: White Box Test Gen-
eration for .NET. In Proc. of the 2nd Int. Conf. on Tests
and Proofs, LNCS 4966, pages 134–153, 2008.

[Tracey 98] N. Tracey, J. Clark & K. Mander. Automated Program
Flaw Finding using Simulated Annealing. vol. 23, no. 2,
pages 73–81, 1998.

[Truchet 10] Charlotte Truchet, Marie Pelleau & Frédéric Ben-
hamou. Abstract Domains for Constraint Program-
ming, with the Example of Octagons. In 12th Int.
Symp. on Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC’10), Timisoara, Roma-
nia, pages 72–79, 2010.

[Tse 07] T. H. Tse, Francis C. M. Lau, W. K. Chan, Peter C. K.
Liu & Colin K. F. Luk. Testing object-oriented industrial
software without precise oracles or results. Commun.
ACM, vol. 50, pages 78–85, August 2007.

[Visser 04] W. Visser, Corina S. Pasareanu & S. Khurshid. Test in-
put generation in Java Pathfinder. In Proc. of ISSTA’04,
2004.

[Visvanathan 02] S. Visvanathan & N. Gupta. Generating Test Data for
Functions with Pointer Inputs. In Proceedings of the
17th IEEE Int. Conf. on Automated Software Engi-
neering (ASE’02), Edinburgh, UK, September 2002.

[Weyuker 82] E. Weyuker. On Testing Non-testable Programs. The
Computer Journal, vol. 25, no. 4, 1982.

[Williams 05] N. Williams, B. Marre, P. Mouy & M. Roger.
PathCrawler: Automatic Generation of Path Tests by
Combining Static and Dynamic Analysis. In Proc. De-
pendable Computing - EDCC’05, 2005.

[Wotawa 10] F. Wotawa, M. Nica & B.K. Aichernig. Generating Dis-
tinguishing Tests Using the Minion Constraint Solver. In
Software Testing, Verification, and Validation Work-
shops (ICSTW), 2010 Third International Conference
on, pages 325–330, april 2010.

[Yates 89] D. Yates & N. Malevris. Reducing The Effects Of In-
feasible Paths In Branch Testing. In Proc. of Sympo-
sium on Software Testing, Analysis, and Verification
(TAV3), volume 14(8) of Software Engineering Notes,
pages 48–54, Key West, FL, Dec. 1989.

