N

N

Contributions a la génération de tests a base de
contraintes
Arnaud Gotlieb

» To cite this version:

Arnaud Gotlieb. Contributions a la génération de tests a base de contraintes. Génie logiciel [cs.SE].
Université Européenne de Bretagne, 2011. tel-00699260

HAL Id: tel-00699260
https://theses.hal.science/tel-00699260

Submitted on 20 May 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00699260
https://hal.archives-ouvertes.fr

ANNEE 2011

€
UNIVERSITE DE&
RE

NNES 1

N\
uch
—

Habilitation a diriger des recherches / UNIVERSITE DE RENNES 1

sous le sceau de I"Université Européenne de Bretagne

Mention : Informatique

Présentée par

Arnaud GOTLIEB

préparée a I'unité de recherche UMR 6074 IRISA

Institut de Recherche en Informatique et Systemes Aléatoires

Composante Universitaire : ISTIC

Contributions a la
génération de tests
a base de contraintes

Habilitation soutenue a Rennes
le 12 Décembre 2011

devant le jury composé de :

Claude JARD
Professeur a ENS Rennes, France / Président

Yves LEDRU

Professeur a 1'Université de Grenoble, France /
Rapporteur

Bruno LEGEARD

Professeur a 1'Université de Besancon, France /
Rapporteur

Pascal VAN HENTENRYCK

Professor at Brown University, Providence, USA /
Rapporteur

Patrice GODEFROID

Principal Research Scientist at Microsoft Research,
Richmond, USA / Examinateur

Thomas GENET
Professeur a I’'Université de Rennes / Examinateur

Thomas JENSEN
Directeur de Recherche a I'INRIA / Examinateur

Remerciements

Contents

Remerciements

Introduction
01 Contexte
0.2 Chronologie des contributions
0.3 Organisationdumémoire

I Fondements

1 Les origines
Automatic test data generation using constraint solving techniques
A. Gotlieb, B. Botella,and M. Rueher.

2 Testlogiciel a base de contraintes
A CLP framework for computing structural test data
A. Gotlieb, B. Botella,and M. Rueher

3 Contraintes et abstractions
EUCLIDE: A constraint-based testing platform for critical c programs
A.Gotlieb
An abstract interpretation based combinator for modeling while loops in
constraint programming
T. Denmat, A. Gotlieb, and M. Ducasse
Constraint solving on modular integers
A. Gotlieb, M. Leconte,and B.Marre

II Développements
4 Oracles
Exploiting symmetries to test programs
A.Gotlieb

10
13

15
17
18
25
26
37

40

46

55

65

67

5 Modélisation a contraintes des programmes avec pointeurs 75
Goal-oriented test data generation for pointer programs

A. Gotlieb, T. Denmat,and B.Botella 76

Modelling dynamic memory management in constraint-based testing

F. Charreteur, B. Botella, and A. Gotlieb 91
6 Modélisation a contraintes des constructions orientées-objet 105

Constraint-based test input generation for java bytecode

F. Charreteurand A. Gotlieb 106
7 Modélisation a contraintes des calculs flottants 113

Symbolic execution of floating-point computations

B. Botella, A. Gotlieb, and C. Michel 115
III Applications 139
8 Génération de tests pour Java Card 141

Using chrs to generate test cases for the JCVM

S.D. Gouraud and A. Gotlieb 0oL 142

A semi-empirical model of test quality in Symmetric Testing: Application
to testing Java Card APIs

A.Gotlieband P.Bernard oo 151
9 Systeme d’alerte et anti-collision (TCAS) 157

TCAS software verification using constraint programming

A.Gotlieb 157
IV Bilan et Perspectives 169
10 Bilan 171
11 Perspectives 173
V Annexe : Curriculum Vitae 175

Bibliographie 205

Introduction

0.1 Contexte

En termes de fondements, de développements et d’applications, la Programma-
tion par Contraintes et le Test Logiciel sont deux domaines scientifiques qui ont
a priori peu de choses en commun. En bref, la Programmation par Contraintes est
un paradigme permettant la résolution de problemes combinatoires difficiles is-
sus par exemple d’applications de planification ou d’ordonnancement de taches,
tandis que le Test Logiciel est un ensemble de techniques, méthodes et processus
visant a évaluer la correction des programmes informatiques. Et pourtant, depuis
une vingtaine d’années maintenant, plusieurs ponts solides ont été édifiés en-
tre ces deux domaines. La terminologie “Test a Base de Contraintes” a ainsi été
forgée pour décrire ce nouveau champ de recherche et d’applications. Ce mémoire
tente de faire une premiere synthese sur les avancées en Test a Base de Contraintes
(CBT), en mettant en exergue nos contributions dans ce domaine. Nous démarrons
notre cheminement au travers ce champ de recherche par une introduction des ap-
proches existantes pour la vérification des logiciels critiques, qui constituent la
motivation principale de notre travail.

Dans les systémes critiques, les logiciels sont considérés comme le maillon
faible de la chaine. En effet, ceux-ci sont souvent développés selon des méthodes
artisanales qui reposent plus sur le savoir-faire et I’expertise des ingénieurs, que
sur des méthodologies de développement garantissant la production de logiciels
stirs. Malgré cela, les logiciels produits sont de grande qualité et généralement tres
siirs, mais aussi vulnérables car leur processus de développement n’est pas insen-
sible aux erreurs humaines. De plus, la complexité et la taille des logiciels critiques,
en particulier dans le domaine de 'embarqué, n’ont cessé de croitre ces derniéres
années, ce qui impose dorénavant la mise au point de techniques automatisées
pour leur vérification.

Plusieurs techniques, reposant sur des fondements théoriques solides, ont été
proposés pour la vérification des logiciels critiques. On distingue généralement
les techniques de preuve, qu’elles soient basées sur 'utilisation d’assistants inter-
actifs ou de démonstrateurs automatiques, les techniques de “model-checking” et
d’analyse statique, et les techniques de test logiciel. Ce qui distingue ces derniéres
par rapport aux autres, est qu’elles réclament 1’exécution du programme a véri-
fier, ce qui leurs conferent plusieurs avantages indiscutables. Tout d’abord, le test

permet la vérification du code binaire réellement exécuté et non pas seulement du
code source. Ainsi, c’est bien le programme utilisé de maniere opérationnelle qui
est vérifié et non pas une version originale écrite dans un langage de plus haut-
niveau, qui sera transformée par un compilateur plus ou moins optimisant. En-
suite, la vérification du logiciel par le test s’opére sans hypothese sur la sémantique
du langage de programmation utilisé ou sur le modele d’exécution du programme.
Ces hypotheéses sont parfois hasardeuses dans le contexte des logiciels embarqués
pour lesquels les cibles d’exécution possédent certaines spécificités'. Enfin, le test
permet la vérification (partielle) du logiciel dans son contexte d’utilisation et son
environnement d’exécution. Le logiciel est testé en utilisant les librairies réelle-
ment liées, dans un processus géré par le systeme d’exploitation de la machine
cible qui peut éventuellement ne disposer que de ressources limitées. Ces condi-
tions font du test le moyen actuellement privilégié pour vérifier les logiciels dans
le monde industriel. Au chapitre des désavantages, la limitation intrinseque de
cette forme de vérification est son incomplétude. Ainsi, le grand Edsger W. Di-
jkstra écrivait: “Program testing can be used to show the presence of bugs, but
never to show their absence!”. En effet, a moins d’exécuter le programme sur tout
son domaine d’entrée et de vérifier toutes les sorties calculées, le test ne peut offrir
de garantie absolue sur la correction d’un programme sous test, ou sur 1’absence
de certaines fautes puisque de nombreux comportements du programme risquent
de ne pas étre évalués. Bien qu’elle soit souvent utilisée pour dénigrer le Test
Logiciel, cette limitation intrinseque est relativement bien acceptée en pratique car
d’une part la qualité des tests est grande et d’autre part, les logiciels & vérifier ont
des modeles de fiabilité qui tolerent les fautes, dés lors qu’elles ne sont pas trop
fréquentes®. En fait, les difficultés du test logiciel proviennent plus du cofit de sa
mise en oeuvre que de cette limitation théorique. En effet, chaque test nécessite
une définition précise de son objectif, c’est a dire des raisons qui ont poussées a
sa sélection, l'écriture et la validation d"un script de test, ainsi que la prédiction
des résultats attendus du programme. Ce dernier point est particulierement déli-
cat puisqu’il nécessite de la part des ingénieurs, une connaissance approfondie de
I'application sous test. Ces éléments sont cotiteux a développer, a maintenir et a
documenter car ils rentrent également dans le processus de développement logi-
ciel, au méme titre que les spécifications et le code source. C’est la raison pour
laquelle un enjeu particulierement important dans le domaine du Test Logiciel,
concerne l'automatisation de la production des tests. Dans I'industrie du logiciel
embarqué, cet enjeu est de taille puisqu’on estime que la phase de validation du
logiciel représente au moins la moitié du cotit de son développement.

Afin de répondre a cet enjeu, les chercheurs se sont intéressés aux deux grands
problémes fondamentaux suivants :

1Par exemple, la correction d’un programme qui manipule des nombres a virgule flottante ne peut
étre établie sans une connaissance approfondie de la cible d’exécution (format des registres du pro-
cesseur, mode d’arrondi des calculs intermédiaires, etc.)

ZPar exemple, il est accepté que méme un systéme ultra-critique tel que le systéme de commandes
de vol d'un avion de ligne puisse défaillir une fois (i.e., mener a un événement catastrophique) pendant
10 heures d’utilisation [Littlewood 93]. Notons tout de méme que pour une flotte de 1000 avions sur
une durée de vie de 30 ans, cela correspond a une probabilité de 0.1 d’observer une telle défaillance

o le probléme de la sélection des données de test. Il s’agit ici d’identifier
dans une espace de Recherche de taille non bornée ou tres grand, les don-
nées d’entrée a utiliser pour évaluer la correction du programme sous test.
Cette sélection vise a choisir les données les plus susceptibles de détecter des
fautes dans les programmes, bien que nous n’ayons aucune connaissance de
celles-ci. En pratique, cette sélection est faite soit a partir d"'un modéle issu
des spécifications (test a base de modeles, test fonctionnel), soit a partir du
programme sous test lui-méme (test & partir de code, test structurel), soit a
partir de modeles de fautes (test mutationnel), ou encore a partir d’'un mod-
ele d’usage du logiciel (test statistique). Dans la plupart des cas, la sélection
de données d’entrée repose sur le choix de criteres de test qui permettent de
rationaliser le processus de test. Ces criteres de test permettent également de
limiter la taille des jeux de test. Le point d’achoppement de ces techniques
concerne |'établissement d’un niveau de confiance suffisant dans la couver-
ture des comportements du programme et résulte d'un compromis entre le
cotit du test et le niveau de confiance attendu. Ce probleme de la sélection
apparait également lorsque des tests existants sont rejoués pour des versions
antérieures du programme (tests de non-régression) et la question de 1'ordre
dans lequel sont exécutés les cas de test est alors crucial pour démasquer des
fautes le plus rapidement possible.

o le probleme de 'oracle. L'exécution du programme avec les données de test
produit des sorties qui doivent étre controlées avec une procédure manuelle
ou automatique, l'oracle de test. L'obtention d'un oracle correct et complet,
c’est a dire sans erreur et capable de répondre pour n'importe quelle donnée
de test est illusoire de par la complexité des logiciels modernes et des com-
promis acceptables doivent étre trouvés. En pratique, c’est la connaissance
approfondie du logiciel sous test qui permet 'écriture d’oracles et ’enjeu des
méthodes de test modernes consistent a réussir a produire automatiquement
ces oracles a partir de modeles ou d’autres programmes exécutables.

De maniere un peu inattendue, certaines instances de ces deux problemes sont
parfois hautement combinatoires. D’une part, I’espace de recherche constitué par
les domaines d’entrée et de sortie des programmes peut-étre immense, voire in-
fini, et d’autre part, les objectifs a atteindre que l'on dérive des criteres de test
peuvent caractériser une portion tres réduite de cet espace. Par exemple, sélec-
tionner une donnée de test qui atteint un point treés imbriqué dans un programme
itératif de tri ou bien sélectionner un comportement de programme qui provoque
un débordement de capacité mémoire reviennent tous deux a rechercher des aigu-
illes dans une botte de foin. Par extension, générer automatiquement un jeu de
test qui couvre un critére de test ou bien sélectionner des comportements sur un
modeéle afin d’atteindre une cible de test sont aussi des questions qui mettent en
évidence une explosion combinatoire, de par le nombre de chemins d’exécution
possibles, ou bien le nombre de comportements possibles du modele. La notion
de “Test a Base de Contraintes” a ainsi été introduite pour couvrir différentes ap-
plications qui incluent la génération de données de test structurel [Gotlieb 00b,

Meudec 01, Sy 03, Denmat 07b, Boonstoppel 08, Gotlieb 09a, Charreteur 09, De-
grave 09, Charreteur 10a], la génération de cas de test fonctionnels pour micro-
processeurs [Lewin 95, Bin 02, Hari 08], la génération de test & partir de modeles
[Carver 96,]Jackson 00, Legeard 01, Pretschner 01, Bouquet 05], ou bien la recherche
de contre-exemples face a des propriétés de programmes [Gotlieb 03b, Denmat 05,
Collavizza 07,Collavizza 08].

Les problémes mentionnés précédemment ont suscité de nombreux travaux de
Recherche et ont été attaqués depuis longtemps avec des outils trés différents. Un
regard exhaustif sur ces travaux déborderait largement la portée de ce document et
nous nous restreindrons volontairement a ceux s’appuyant sur la Programmation
par Contraintes [Mackworth 77, Hentenryck 92].

Un des points clef de la Programmation par Contraintes est le remplacement
de la notion impérative d’instruction par celle, déclarative, de relation. Une relation
contraint les variables du programme et définit implicitement une portion d’un
espace de recherche que des techniques puissantes de recherche peuvent alors ex-
plorer. Ainsi, un programme a contraintes ne calcule pas la valeur de sortie d"une
fonction issue de la sémantique dénotationnelle d"un programme mais il recherche
la ou les solutions d’un systéme de contraintes qui capture la sémantique relation-
nelle de ce programme.

Les relations d'un programme a contraintes sont soit natives du langage de
programmation sous-jacent, soit définies par l'utilisateur. Dans le premier cas, les
relations sont générales et utiles lorsque la modélisation du probleme & résoudre
ne pose pas vraiment de difficultés. Dans le deuxiéme cas, les relations sont parti-
culiéres et peuvent étre finement adaptées au probléme a résoudre. Cette capacité
nous est apparue cruciale pour aborder les problemes du Test Logiciel mentionnés
plus haut ; nous y reviendrons. Ainsi, tout un florilege de contraintes particuliéres3
existe pour modéliser divers problemes combinatoires, ainsi que des outils perme-
ttant la définition de nouvelles relations. Un programme a contraintes peut étre vu
comme un modele de spécification déclaratif, et surtout exécutable. Les relations
spécifient le probleme a résoudre tandis que sa résolution est laissée aux résolveurs
de contraintes, qui sont adaptés aux différents domaines du calcul (domaines finis,
domaines numériques continus, mots, listes, etc.). D’une part, la flexibilité offerte
par les contraintes quant a la modélisation de problemes combinatoires, et d’autre
partla disponibilité de résolveurs optimisés et extensibles, constituent les éléments
déterminants qui ont conduit a expérimenter leur utilisation dans le contexte du
Test Logiciel.

0.2 Chronologie des contributions

Depuis une quinzaine d’années, notre approche vise a explorer 1’apport de la Pro-
grammation par Contraintes a la génération automatique de test pour les pro-
grammes impératifs. Notre theése est qu'il est possible d’attaquer les problemes
combinatoires de la génération de données de test et de production de l'oracle a

3La communauté utilise le terme de contraintes globales pour désigner ces relations

l'aide de techniques issues de la Programmation par Contraintes. Pour en faire la
démonstration, un modele a contraintes qui capture la sémantique opérationnelle
(sans erreur) du programme impératif original est construit et utilisé dans dif-
férentes techniques de génération automatique de tests. Ce modele est bien en-
tendu réversible, c’est a dire qu’il peut étre utilisé pour calculer des sorties du
programme impératif en fonction des entrées, mais aussi l'inverse, ou bien encore
pour générer des entrées en fonction de contraintes additionnelles précisant des
objectifs d’atteignabilité dans le code source. Par exemple, la spécification d'une
instruction a atteindre conduit a une requéte sur ce modeéle, qui lorsqu’elle est ré-
solue par un résolveur de contraintes approprié, permet de générer une donnée
de test qui atteint le point sélectionné. Ce modele a contraintes a été développé et
enrichi au cours de ces quinze derniéres années et constitue la partie principale de
nos contributions.

Notre approche de génération automatique a été développée au travers de la
réalisation et l'expérimentation de plusieurs prototypes logiciels. Le modele a
contraintes du logiciel InKa, proposé a la fin des années 90, utilisait la propaga-
tion de contraintes sur les domaines finis, le filtrage par consistances partielles
et des stratégies de recherche génériques telles que “first-fail” ou “iterative domain-
splitting” [Gotlieb 98]. Méme si ce modéle nous a permis d’obtenir des résultats ex-
périmentaux intéressants sur des programmes C issus du domaine de 1’avionique
militaire [Gotlieb 00b], le sous-ensemble du langage C traité restait assez pauvre.
Au début des années 2000, nous nous sommes consacrés a plusieurs extensions de
ce modele. Nous avons abordé le probleme de la modélisation des pointeurs et de
la synonimie?, c’est a dire de la possibilité de décrire la méme case mémoire a 'aide
de différentes expressions syntaxiques. Ces travaux ont donné lieu a un modele
a contraintes capable de générer des tests en présence de pointeurs vers les zones
nommeées de la mémoire [Gotlieb 05a, Gotlieb 07] et un modele pour la gestion des
structures de données dynamiques [Charreteur 09]. Ces modeéles ont été implan-
tés et expérimentés dans une nouvelle version du logiciel InKa [Gotlieb 06b], qui
est considéré comme un outil pionnier dans le domaine du Test @ Base de Contrain-
tes [Bardin 09].

En parallele, nous nous sommes intéressés au probleme de l'oracle en test logi-
ciel dont nous avons parlé plus haut. En effet, aucune technique de génération au-
tomatique de cas de test ne peut étre pleinement opérationnelle si elle ne s’accompagne
d’un procédé pour contrdler les sorties calculées. Nous avons proposé une défini-
tion générale de la symétrie dans les propriétés de programmes impératifs [Gotlieb 03a]
et suggéré son utilisation en tant qu’oracle de tests dans un cadre applicatif intéres-
sant [Gotlieb 06a]. Une approche complémentaire a également été explorée pour
'oracle, au travers de l'utilisation des “Constraint Handling Rules” (CHRs) pour
la génération automatique de tests [Gouraud 06]. Les relations de symétries dans
les programmes impératifs sont une forme particuliere de relations métamorphiques
et nous avons proposé d’utiliser les contraintes pour produire automatiquement,

4“Pointer aliasing” en Anglais

lorsqu’elles existent, des données de test qui invalident ces relations [Gotlieb 03b].

Avec la thése de Matthieu Petit [Petit 08], nous nous sommes intéressés a une
version probabiliste de ce modéle a contraintes. Nous avons proposé d’une part,
des opérateurs a contraintes qui modélisent des choix probabilistes partiellement
connus [Petit 07a], et 'utilisation de ces opérateurs pour générer automatiquement
des tests statistiques structurels [Petit 07b]. Cette forme de test logiciel nécessite la
sélection uniforme de chemins faisables dans un graphe de flot de controle. Ces
travaux nous ont conduit d'une part, a une extension théorique des critéres de test
pour la prise en compte de chemins non terminant [Gotlieb 09¢] et d’autre part,
a proposer une nouvelle technique de génération de test aléatoire oti chaque élé-
ment du sous-domaine d’entrée associé a un chemin a la méme probabilité d’étre
choisi (“Path-oriented Random Testing”) [Gotlieb 08, Gotlieb 10b].

Dans le contexte de l'interaction entre méthodes de test logiciel et d’analyse sta-
tique, la these de Tristan Denmat [Denmat 08], co-encadrée avec Mireille Ducassé,
a permis d’étudier les apports de techniques d'Interprétation Abstraite pour la ré-
solution de contraintes et au test logiciel. Nous avons ainsi défini une méthode
de résolution de contraintes non-linéaires (i.e., disjonctives, multiplicatives, etc.)
sur les domaines finis, qui combine finement le domaine abstrait des polyedres et
le filtrage par consistance de bornes [Denmat 07b]. Puis, nous avons proposé un
opérateur a contraintes qui modélise un calcul de boucle, et implémente des regles
de déduction basées sur I'élargissement’ sur les intervalles et les polyedres [Den-
mat 07a].

Pour 1’exécution symbolique de calculs sur les nombres flottants, nous avons
proposé FPSE, un solveur de contraintes arithmétiques sur les flottants [Botella 06].
Ce solveur implémente une consistance de bornes correcte en présence des quatre
opérations arithmétiques de base. Tout récemment, nous avons étendu FPSE avec
une propriété sur la représentation des nombres flottants, ce qui nous a permis
d’obtenir des premiers résultats en matiere de génération automatique de données
de test [Carlier 11b].

L'exploitation des polyedres et des relaxations linéaires de contraintes nous a
permis de batir un nouveau modele a contraintes qui est a la base de 1'outil EU-
CLIDE [Gotlieb 09a]. Cet outil a été expérimenté dans le contexte de la modélisa-
tion de propriétés d’anticollision vol issus de 1’avionique civile [Gotlieb 09b]. Dans
le cadre de cette expérience, nous avons également proposé des opérateurs de fil-
trage pour le traitement des contraintes sur les entiers modulaires [Gotlieb 10a].

La these de Florence Charreteur [Charreteur 10b] nous a permis d’étendre le
modeéle a contraintes pour des programmes en Bytecode Java [Charreteur 10a]. Le
traitement d’un langage a objet avec des contraintes nous a conduit a étendre le
cadre classique des solveurs de contraintes ensemblistes vers des opérateurs sur

5“Widening techniques” en Anglais

les ensembles non bornés [Charreteur 08]. Notre modeéle a contraintes ensemb-
listes, implanté dans 1'outil JAUT, est suffisamment riche pour traiter des exten-
sions de la Programmation orientée objet telles que 1’héritage et le polymorphisme
par invocation de méthodes virtuelles [Charreteur 10a].

0.3 Organisation du mémoire

Ce mémoire d’habilitation vise a mettre en exergue nos contributions dans le do-
maine du test 4 base de contraintes. Nous avons fait le choix de présenter ce mé-
moire sous forme d’une sélection de nos articles principaux, accompagnée d'un
commentaire sur le contexte et la portée de chacun d’entre eux. Notre souhait est
de guider le lecteur au travers ce champ de recherche en I'invitant a lire certains ar-
ticles, mais sans lui imposer. Nos contributions sont tournées vers deux domaines
scientifiques distincts : le test logiciel et la programmation par contraintes ; nous
avons essayé de respecter cette parité dans le mémoire.

Les choix qui ont présidés a la sélection des articles commentés de ce mémoire
ont été de nature diverse, guidés par les principes suivants. Premiérement, ces
articles contiennent a nos yeux la description technique la plus fidele de nos con-
tributions. Souvent, plusieurs tentatives sont nécessaires pour aboutir a ce type
de description. Nous avons fait le choix, non pas de la publication la plus visible,
mais plutot de celle qui présente le plus fidélement une idée, un développement
théorique ou un prototype de recherche. Deuxiemement, de par leur variété et leur
pluralité, les articles choisis illustrent selon nous les différentes facettes de notre
domaine de recherche. En d’autres termes, nous avons visé ici la variété, plutot
que 'exhaustivité. Enfin, nous n’avons choisi que des articles dans lesquels notre
participation a été importante en termes de contribution et de rédaction. Ainsi,

4 4

nous avons sélectionné treize articles, cinq ayant été publiés coté “contraintes” et
huit ayant été publiés coté “test”. Un Curriculum Vitae contenant I'ensemble de
nos publications est donné en Annexe.

Les articles abordent le test a base de contraintes, selon1’épine dorsale fondements-
développements-applications qui architecture ce mémoire. Nos travaux de recherche
se sont portés sur ces trois piliers et il nous a semblé judicieux d’illustrer chacun
d’entre eux. Pour chaque article, nous avons donné un commentaire plus ou moins
bref afin de replacer l’article dans son contexte et son état de 1’Art, et d’en discuter
la portée lorsque cela était justifié.

Le mémoire est organisé en quatre parties distinctes. La premiere partie est
consacrée aux fondements du test a base de contraintes avec un chapitre 1 sur
les origines de cette approche, un chapitre 2 qui introduit le premier modele a con-
traintes que nous avons proposé pour générer des données de test pour un langage
réaliste, et un chapitre 3 qui présente nos travaux sur l'utilisation de techniques de
calculs dans les domaines abstraits dans les solveurs de contraintes. Cette idée
s’est révélée féconde pour le test a base de contraintes, et plus généralement la
vérification de programmes, comme nous l’évoquerons plus loin.

La seconde partie se concentre sur les développements du test a base de con-

traintes. Le chapitre 4, le premier de cette partie, s’intéresse a la problématique de
I'oracle et présente les notions de test symétrique et de relations métamorphiques.
Le chapitre 5 introduit nos développements en matiére de modélisation des poin-
teurs et de traitement de la synonimie. Le chapitre 6 présente nos développements
les plus récents en matiere de modélisation de 'héritage et d’invocation de méth-
odes virtuelles, c’est a dire de constructions orientées-objet. Enfin, le chapitre 7
présente nos développements en matiere de raisonnement pour les calculs en nom-
bres a virgule flottante. En particulier, ce chapitre détaille notre solveur a contrain-
tes sur les flottants qui est une contribution importante a nos yeux.

La troisieme partie est consacrée aux applications du test a base de contraintes,
avec un chapitre 8 concernant la génération de test pour la plateforme Java Card
et un chapitre 9 concernant la vérification & base de contraintes du Traffic anti-
Collision Avoidance System (TCAS).

Enfin, la quatrieme partie du mémoire contient un chapitre 10 qui présente un
premier bilan de nos travaux dans le domaine du test a base de contraintes et un
chapitre 11 qui dresse quelques perspectives.

Part1

Fondements

15

Chapter 1

Les origines

Contexte

L’idée d’utiliser des contraintes pour automatiser le test des logiciels prend ses
racines vers le milieu des années quatre-vingts avec les travaux pionniers de Nicole
Choquet et Luc Bougé [Choquet 86,Bougé 86] puis ceux de Bruno Marre [Marre 91],
et Dick et Faivre [Dick 93]. Ces auteurs se sont intéressés a la génération automa-
tique de cas de test fonctionnel a partir de spécifications algébriques, en utilisant la
Programmation Logique avec Contraintes. A partir d"une spécification formelle de
types de données abstraits, des méthodes et outils ont été proposés pour générer
automatiquement des jeux de test respectant certaines hypothéses d'uniformité et
de régularité. Cette méme période a vu également I'aboutissement de nombreux
travaux visant a utiliser la Programmation Logique avec Contraintes comme outil
de spécification, pour la génération de tests. On peut citer par exemple les travaux
de Michael Gorlick et al. [Gorlick 90] et Pesch et al. [Pesch 85] qui soulignaient déja
la pertinence de la réversibilité des contraintes pour la validation de tests existants
par les spécifications. On peut également citer ceux de Paul Strooper et Daniel
Hoffman [Hoffman 91, Strooper 91] qui contiennent des prémisses sur 'usage de
contraintes arithmétiques pour la validation de modules écrits dans un langage
de bas niveau tel que C. Au milieu des années quatre-vingt-dix, Bruno Legeard a
initié des travaux visant & utiliser un solveur de contraintes ensemblistes pour la
génération automatique de cas de test pour des modéles formels B [Legeard 01].
L'idée de base consistait & sélectionner des comportements d’un modéle logico-
ensembliste, et a trouver une instanciation des variables d’état de ce modele per-
mettant d’activer ces comportements. Il est frappant de constater que la plupart
de ces travaux initiaux ont connu d’importants développements en Europe dans
les années 2000. Les travaux initiaux de Bruno Marre ont conduit au développe-
ment industriel de GATEL [Marre 00], un générateur de tests pour les programmes
Lustre, au CEA, tandis que les travaux de Bruno Legeard ont conduit a la commer-
cialisation d’un générateur de tests au travers la création de la société Smartesting.

Aux Etats-Unis a la fin des années quatre-vingts, Jeff Offutt a proposé une
méthode de génération automatique de données de test pour le test de mutation

17

de programmes Fortran [Offutt 88]. Cette méthode s’appuyait sur une procédure
de résolution de systemes de contraintes relevant implicitement de la Program-
mation par Contraintes. En s’inspirant des idées de Bicevskis et al. [Bicevskis 79]
développées dix ans auparavant, une méthode de propagation pour les contrain-
tes d’inégalités, qui réduit les domaines de variation de chacune des variables
du programme, était proposée pour identifier des données de test capables de
“tuer” des “mutants” de programmes [DeMillo 91]. Cette approche était aussi
reliée a I'exécution symbolique [King 76, Clarke 76] qui trouvait ici une de ses ap-
plications les plus prometteuses. Les techniques de recherche locale ont égale-
ment été explorées pour la génération automatique de cas de test durant la dé-
cennie quatre-vingt-dix avec les travaux de Bogdan Korel [Korel 90], de Neelam
Gupta [Gupta 98] et de Nigel Tracey [Tracey 98].

C’est dans ce contexte qu’a été proposé, en 1998, une méthode et un outil pour
la génération automatique de données de test structurel pour les programmes C,
s’appuyant explicitement sur la Programmation par Contraintes.

A. Gotlieb, B. Botella, and M. Rueher. Automatic test
data generation using constraint solving techniques. In Pro-
ceedings of the International Symposium on Software
Testing and Analysis (ISSTA’98), pages 53-62, Clearwa-
ter Beach, FL, USA, 1998.

Automatic Test Data Generation using Constraint Solving Techniques

Arnaud Gotlieb
Dassault Electronique
55 quai Marcel Dassault
92214 Saint Cloud, France
and also at
Université de Nice - Sophia
Antipolis
Arnaud.Gotlieb@dassault-elec.fr

Abstract

Automatic test data generation leads to identify input
values on which a selected point in a procedure is ex-
ecuted. This paper introduces a new method for this
problem based on constraint solving techniques. First,
we statically transform a procedure into a constraint
system by using well-known “Static Single Assignment”
form and control-dependencies. Second, we solve this
system to check whether at least one feasible control
flow path going through the selected point exists and
to generate test data that correspond to one of these
paths.

The key point of our approach is to take advantage of
current advances in constraint techniques when solving
the generated constraint system. Global constraints are
used in a preliminary step to detect some of the non fea-
sible paths. Partial consistency techniques are employed
to reduce the domains of possible values of the test data.
A prototype implementation has been developped on a
restricted subset of the C language. Advantages of our
approach are illustrated on a non-trivial example.

Keywords

Automatic test data generation, structural testing, con-
straint solving techniques, global constraints

1 INTRODUCTION

Structural testing techniques are widely used in unit or
module testing process of software. Among the struc-
tural criteria, both statement and branch coverages are

Bernard Botella

Dassault Electronique Antipolis

55 quai Marcel Dassault
92214 Saint Cloud, France BP 145

Bernard.Botella@dassault-elec.fr 06903 Sophia Antipolis, France

Michel Rueher

Université de Nice - Sophia

13S-CNRS Route des colles,

rueher@unice.fr

commonly accepted as minimum requirements. One of
the difficulties of the testing process is to generate test
data meeting these criteria.

From the procedure structure alone, it is only possible
to generate input data. Lhe correctness of the output
of the execution has to be checked out by an “oracle”.

Two different approaches have been proposed for auto-
matic test data generation in this context. 'The initial
one, called path-oriented approach [4, 7, 16, 20, 3], in-
cludes two steps which are :

e to identify a set of control flow paths that covers
all statements (resp. branches) in the procedure ;

e {0 generate input test data which execute every se-
lected path.

Among all the selected paths, a non-negligeable amount
is generally non-feasible [24], i.e. there is no input data
for which such paths can be executed. The static identi-
fication of non-feasible paths is an undecidable problem
in the general case [1]. Thus, a second approach called
goal-oriented [19] has been proposed. Tts two main steps
are :

o to identity a set of statements (resp. branches) the
covering of which implies covering the criterion ;

e {0 generate input test data that execute every se-
lected statement (resp. branch).

Assuming that every statement (resp. branch) is reach-
able, there is at least one feasible control flow path going
through the selected statement (resp. branch). The goal
of the data generation process is then to identify input
data on which one such path is executed.

For these approaches, existing generation methods are
based either on symbolic execution [18, 4, 16, 7, 10], or
on the so called “dynamic method” [20, 19, 11, 21].

Symbolic execution consists in replacing input param-
eters by symbolic values and in statically evaluating
the statements along a control flow path. The goal of
symbolic execution is to identify the constraints (either
equalities or inequalities) called “path conditions” on
symbolic input values under which a selected path is
executed. This method leads to several problems : the
growth of intermediate algebraic expressions, the diffi-
culty to deal with arrays (although some solutions exist
[13, 8]), and the aliasing problem for pointer analysis.
Using symbolic execution corresponds to an exhaustive
exploration of all paths going through a selected point.
Of course, this may be unacceptable for programs con-
taining a large number of paths.

Korel proposes in [20] to base the test data generation
process on actual executions of programs. Tts method
is called the “dynamic method”. If an undesirable path
is observed during the execution flow monitoring, then
a function minimization technique is used to “correct”
the input variables. [19] presents an extension of the
dynamic method to the goal-oriented approach. This
method is designed to handle arrays, dynamic struc-
tures, and procedures calls [21]. However, although the
dynamic method takes into account some of the prob-
lems encountered with symbolic execution, it may re-
quire a great number of executions of the program.

This paper introduces a new method to identify auto-
matically test data on which a selected point in the pro-
cedure is executed. The proposed method operates in
two steps :

1. The procedure is statically transformed into a
constraint system by the use of “Static Single
Assignment” (SSA) form [23, 2, 9] and control-
dependencies [12]. The result of this step is a set of
constraints — called Kset — which is formed of :

o the constraints generated for the whole proce-
dure ;

e the constraints that are specific to the selected
point.

2. The constraint system Ksel is solved to check
whether at least one feasible path which goes
through the selected point exists. Finally, test data
corresponding to one of these paths are generated.

The key point of this method is to take advantages of
current coustraint techniques to solve the generated con-
straint system. Tn particular, global constraints are used
in a preliminary step to detect some of the non-feasible
parts of the control structures and partial consistency
techniques are employed to reduce the domains of pos-
sible values of the test data. Search methods based on
the combination of both enumeration and inference pro-
cesses are used in the final step to identify test data.

Furthermore, these techniques offer a flexible way to
define and to solve new constraints on values of possible
test data.

A prototype implementation of this method has been
developped on a restricted subset of the C language.

Qutline of the paper : the second section presents the
generation of Kset while the third section is devoted
to the resolution techniques. The fourth section de-
scribes the prototype implementation while the fifth sec-
tion provides a detailed analysis of a non-trivial example
that has been successfully treated with our method.

2 GENERATION OF THE CON-
STRAINT SYSTEM

Application of our method is limited to a structured
subset of a procedural language. Unstructured state-
ments such as “goto-statement” are not handled in our
framework because they introduce non-controled exits
of loops and backward control flow.

Pointer aliasing, dynamic allocated structures, func-
tion’s pointer involve difficult problems to solve in the
frame of a static analysis. In this paper, we assume that
programs avoid such constructions. The treatement of
basic types such as char and floating point numbers is
not presented. A few words in the fourth section are
devoted to the extension of our method to these types.

I'he generation of the constraint system Aset is done in
three steps :

1. Generation of the “Static Single Assignment”
form ;

2. Generation of a set of constraints corresponding to
the procedure p, called pKset(p) ;

3. Generation of a set of constraints corresponding

to the control-dependencies of a selected point n,
called cK set(n).

Kset is defined as :

Kset(p,n) o pK set(p) U cK set(n)

Now, let us introduce some basics used in the rest of the
paper.

2.1 Basics

A procedure control flow graph (V, E, e, s) [1] is a con-
nected otiented graph composed by a set of vertices V,
a set of efges I/ and two particular nodes, e the unique

int f(int 7)
int j ;
1. =1
2. hile (¢ #0)
do
3a.
3b.
od ;
4. it (j=2
5. then ¢ :=2;
fi;
6. return j ;

Figure 1: Example 1

entry node, and s the unique exit node. Nodes repre-
sent the basic blocks which are sets of statements exe-
cuted without branching and edges represent the possi-
ble branching between basic blocks. For instance, con-
sider the procedure® given in figure 1, which is designed
to compute the factorial function, and its control flow
graph (CFG) shown in figure 2.

A point is either a node or an edge in the CFG. A path
is a sequence < v;,...,v; > of consecutive nodes (edge
connected) in (V, E, e, s). A control flow path is a path
< vi,...,v; > in the CFG, where v; = ¢ and v; = 5. A
path is feasible if there exists at least one test datum on
which the path is executed, otherwise it is non-feasible.
For instance, the control flow path < 1,2,4/5,6 > in
the CFG of example 1 is non-feasible.

A node vy is post-dominated [12] by a node vy if every
path from vy to s in (V, E, ¢, s) (not including v;) con-
tains vy.

A node vy is control-dependent [12] on vy iff 1) there
exists a path P from vy to v in (V, K e, s) with any
v in P\ {v1,v2} post-dominated by vy ; 2) vy is not
post-dominated by vy. For example, block 5 is control-
dependent on block 4 in the CFG of example 1.

2.2 SSA Form

Most procedural languages allow destructive updating
of variables ; this leads to the impossibility to treat a
program variable as a logical variable. Initially proposed
for the optimisation of compilers [2, 23], the “Static
Single Assignment” form [9] is a semantically equiv-
alent version of a procedure on which every variable
has a unique definition and every use of a variable is
reached by this definition. The SSA form of a lin-
ear sequence of code is obtained by a simple renam-
ing (i — ig, ¢ —> d1,...) of the variables. For the
control structures, SSA form introduces special assign-

1For all the examples throughout the paper, a clear abstract syntax

is used to indicate that our method is not designed to a particular
language

Figure 2: Control flow graph of example 1

ot

1b.
Tc.

3a.
3b.

int f(int o)

int jo ;

Jor=13

/* Heading */

J (josd1) 5

i (i0,71) 3

while (i #0)

do
J1i= g2 iz
i i=ip — 1

od

it (j, = 2)

then is 1= 2 ;

iq = ¢(ia,12) ;
return (j2) ;

Figure 3: SSA Form of example 1

ments, called ¢-functions, in the junction nodes of the
CFG. A ¢-function returns one of its arguments depend-
ing on the control flow. Consider the if-statement of
the SSA form of example 1 in figure 3 ; the ¢-function
of statement 6 returns iz if the flow goes through the
then-part of the statement, i otherwise. For some more
complex structures, the ¢-functions are introduced in a
special heading of the loop (as in the while-statement
in figure 3). SSA Form is built by using the algorithm
given in [5], which is designed to treat structured pro-
grams in one parsing step.

For convenience, a list of ¢-assignments will be written
with a single statement :

w9 = (w1, an), ..., 22 1= d(z1, 20) < 3 = (07, 0p)

2.3 Generation of pKset

pKset(p) is a set of both atomic and global constraints
associated with a procedure p.

Informally speaking, an atomic constraint is a relation
between logical variables. Global constraints are de-
signed to handle more efliciently set of atomic con-
straints. For instance, global constraint ELEMENT/3 ? :
ELEMENT(k, L, v) constraints the k" argument of the
list L to be equal to v.

Let us now present how pKset is generated. The method
is driven by the syntax. Each subsection, which is de-
voted to a particular construction, presents the genera-
tion technique.

2.3.1 Declaration

T'he variables of a procedure are either input variables
or local variables. Parameters and global variables are
considered as input variables while the other variables
are considered as local. Each variable # which has a
basic type declaration, is translated in atomic constraint
of the form : » € [Min, Max] where Min (resp. Max)
is the minimum (resp. maximum) value depending on
the current implementation. An array declaration is
translated into a list of variables of the same type while
a record is translated into a list of variables of different
types.

A specific variable, named “OUT”, is devoted to the
output value of the procedure.

2.3.2 Assignment and Decision

Elementary statements, such as assignments and ex-
pressions in the decisions are transformed into atomic
constraints. For instance, the assignment of statement

Zwhere /3 denotes the arity of the constraint

3a in example 1 generates the constraint j; = ju * io.
The decision of statement 2 generates iy # 0. A bha-
sic block is translated into a conjunction of such con-
straints. For example, statements 3a and 3b generate
J1=Jakia Ady =iy — L.

2.3.3 Conditional Statement

The conditional statement if-then_else is translated
into global constraint I'TE/3 in the following way :

pKset(if d then sl else 2 fi v] := ¢(v3, v3)) =
1TR(pK set(d), pKset(s1)Avi = vs, pK set(s2) Av] = v3)

This constraint denotes a relation between the decision
and the constraints generated for the then- and the else-
parts of the conditional. Note that ¢-assignments are
translated in simple equality constraints. The opera-
tional semantic of the constraint ITE/3 will be made
explicit in section 3.2.

2.3.4 Loop Statement

The loop statement while is also translated in a global
constraint W /5. Informally speaking, this constraint
states that as long as its first argument is true, the
constraints generated for the body (fifth argument) of
the while statement are true for the required data.

pKset(vy := ¢(vp,v1) whiled do s od)
= W(pKsel(d), o5, vi, v3, pKsel(s))

I'he generated constraint requires three vectors of vari-
ables 4, 7,05, v is a vector of variables defined before
the while-statement. vy is the vector of variables defined
inside the body of the loop and v3 is the vector of vari-
ables referenced inside and outside the while-statement.
Note here that the ¢-assignments are only used to iden-
tity the vectors of variables.

The operational semantics of the constraint w/5 will
also be given in section 3.2.

2.3.5 Avrray and Record

Both arrays and records are treated as list of variables,
therefore we only present the generation of pKset on
arrays.

Reference of an array is provided in the SSA Form by
a special expression [9] : access. The evaluation of ac-
cess(a,k) statement is the k" element of a noted v.

For the definition of an array, the special expression
update is used [9]. wpdate(a,jw) evaluates to an array
a; which has the same size as a and which has the same
elements as a, except for j where value is w.

Both expressions access and update are treated with
the constraint ELEMENT /3 :

pKset(vi= access(a, k)) = {ELEMENT(k, a,v)}

pKset(ar = update(a, j,w))
= Ui#{ JEMENT(7, @, v) A BLEMENT (7, ar, v)}
" U {BLEMENT(j,a;,w)}

2.4 Generation of cKset

cKset(n) is a set of constraints associated with a point
n in the CFG. It represents the necessary conditions
under which a selected point is executed. These con-
ditions are precisely the control-dependencies on the
selected point. ¢Kset(n)is then the set of constraints of
the statements and the branches on which n is control-
dependent. For example, node 5 is control-dependant
on node 4 then : c¢Kset(h) = {j, = 2}

2.5 Example

For the procedure given in figure 1 and the statement
5, the following sets are obtained :
pKset(f) =
{ jo=1,
w(iz # 0, (io, jo), (i1, j1), (iz, j2),
J1=jarig Nip =iz — 1),
ITE(j2 = 2,43 = 2\ @4 = 13,14 = i2),
oUT =js)

cKset(5) = {jo = 2}

Ksel(f.5) = pKset(f) UcKset(h)

3 SOLVING THE CONSTRAINT SYS-
TEM AND GENERATION OF TEST
DATA

Constraint programming has emerged in the last decade
as a new tool to address various classes of combinato-
rial search problems. Constraint systems are inference
systems based on such operations as constraint propa-
gation, consistency and entailment. Inference is based
on algorithms which propagate the information given

by one constraint to others constraints. These algo-
rithms are usually called partial consistency algorithms
because they remove part of inconsistent values from
the domain of the variables. Altough these approxi-
mation algorithms sometimes decide inconsistency, it i
usually necessary to combine the resolution process with
a search method. Informally speaking, search methods
are intelligent enumeration process.

For a survey on Constraint Solving and Constraint Logic
Programining, see [14] and [17].

Let us first introduce some basics notations on con-
straint programming required in the rest of the paper.
These notations are extracted from [15].

A constraint system is consistent if it has at least one
solution, i.e. if there exists at least one variable assign-
ment which respects all the constraints. More formally,
a set of constraints ¢ is called a store and the store is
consistent if :

E @0

where ()¢ denotes the existential closure of the formula
b.

Entailment test checks out the implication of a con-
straint by a store. For example,

> 0 is entailed by {« = yz}

The entailment test of the constraint ¢ by the store o is
noted :

= (e = o

where (V)¢ denotes the universal closure of ¢.

Both consistency and entailment tests are NP-complete
problems in the general case. For this reason, implemen-
tations of these tests are based on two approximations :
domain-counsistency and interval-consistency.

3.1 Local consistency

Associated with each input variable x; is both a domain
D; € 7 and an interval Df = [min(D;), max(D;)].
A constraint ¢(z1,...,2,) is a n-ary relation between
variables (z1,...,,) which denotes a subset of ZZ".

Domain-consistency also called arc-consistency removes
values from the domains and Interval-consistency only
reduces the lower and upper bounds on the domains.
Both are applied in a subtle combination by the con-
straint solver. Tntuitivelly, when the domains contain
a small number of values, domain-consistency is ap-
plied. Interval-consistency is applied on large domains.
Precise definitions of these local consistencies are now
given :

int g(mt z, 1nt v)

la.
1b.

3a. :
3b. 1t(/—1/\:>1)
4. then ...

Figure 4: Example 2

Definition 1. (domain-consistency) [15]

A constraint ¢ is domain-consistent if for
each variable wx; and value v; € D; there
cxisls values UL,y eee U1, Uigl, - oy Un in
Di,.oooyDicy, Diga, oo Dy such that e(vy, ... vy)
holds. A store o is domain-consistent if for every
constraint ¢ in o, ¢ s domain-consistent.

Definition 2. (interval-consistency) [15]
A constraint ¢ is interval-consistent if for each
variable x; and value v; € {min(D;), max(D;)}

there exist wvalues vy, ..., 01, Vig1,...,vn I
Di.....D; |.Djyy,..., Dy such that c(va,... v)
holds.

A local treatment is associated to each constraint.
"The corresponding algorithm is able to check out both
domain- and interval- consistencies for this constraint.
The inference engine propagates the reductions pro-
vided by this algorithm on the other constraints. The
propagation iterates until a fixpoint is reached. Infor-
mally speaking, a fixpoint is a state of the domains
where no more prunnings can be performed.

Let us illustrate how interval-, domain- consistency and
the inference engine may reduce the domains of possible
values of test data on the example 2 given in figure 4.
Cousider the problem of automatic test data generation
for statement 4.

Parameters are of non-negative integer type. The
following set is provided :

Kset(g.4) = {zo,y0 € [0,Max],z0 = 2o % yo, to =
2 xy, 20 <8, t1 =to—yo, t1 =1, zg > 1}

and the following resolution process is performed :

Zo = @ * Yo leads to zg € [0, Maz]

to = 2% xg leads to tg € [0, Max]

zo < 8 leads to z; € [0, 8]

t1 =1 leads to t; € {1}

zo > 1 leads to zg € [2, Max]

z0 = xg * Yo leads to xp € [2,8] and yo € [0,4]
ly = 2% aq leads to {p € [4,16]

t1 =ty — yo leads to yo € {3,4} and ¢y € {4,5}
to = 2%z leads to xg € {2} and ¥y € {4}
t1 =tg — yo leads to yo € {3}

Finally, (zo = 2, y0 = 3) corresponds to the unique test
datum on which statement 4 in the program of figure 4
can be executed.

3.2 Global Constraints Definitions

For atomic constraints and some global constraints, the
local treatment is directly implemented in the constraint
solver. However, for user-defined global constraint, it is
necessary to provide the algorithm. The key point of our
approach resides in the use of such global constraints to
treat the control structures of the program. The global
constraints are used to propagate information on incon-
sistency in a preliminary step of the resolution process.

3.2.1 Entailment Test Implementation

The entailment test is used to construct these global
constraints. The implementation of entailment test may
be done as a proof by refutation. A constraint is proved
to be entailed by a store if there is no variable assign-
ment respecting both the store and the negation of the
constraint.

The operational semantic of the user-defined global con-
straints is designed with properties which are “guarded”
by entailment tests. Such properties are expressed by
constraints added to the store. We have introduced in
the section 2.3 two global constraints : 1TE/3 and W /5.
Let us give now their definitions.

322 ITE/3

Definition 3. (ITE/3)

wEfe, {er A A, { AL A
. i

i

if = (Y)(c = —(ci A...A¢y)) then
ci=oU{me A AL A}

o= ¢)theno:=cU{ciA.. . A¢y}

v)(
v)(

o = —c) then o =g U{cy A A ey}

o if 5 (V)0 = (A A A€))) then
oci=oU{eAca A A}

T'he first|two features of this definition express the op-
erational|semantic of the control structure if-then_else.
The last|ones are added to identify non-feasible parts
formed by one of the two branches of the control

structure. Consider for example :

TTR(g £ 0,1 = ip — 1 Ady =iy, is = 1)

Suppose that the store contains ia = 0 ; when
applying the fourth feature of the ITE constraint we
have to consider the consistency of the following set :
{i» = 0} U {4, = 1} Tt is inconsistant, meaning that the
else-part of the statement is non feasible. Then, the
constraints iy # 0 A4y = iy — 1L A iy = 7, are added to
the store.

323 W/

The while-stalement combines looping and destructive
assignments. Hence W/5 behaves as a constraint gener-
ation program.

When evaluating w /5, it is necessary to allow the gen-
eration of new constraints and new variables. A substi-
tution subs(d7 4 03, ¢) is a mechanism which generates
a new constraint having the same structure as ¢ but
where variables vector ¢ has been replaced by vector
v5. The following example illustrates this mechanism :
if] = (#1,91) and 03 = (22, y2) then

subs(vi v, 21 +y1 = 3)1s (2 +y2 = 3)

w/5 is now formally defined :

Definition 4. (w/5)
W (e, U0, 07,05, c1 A .. A¢p)

o if = (V)(oc = subs(v + vp,¢)) then
o =0 U{subs(vs < g, et AL A) A
wi(c, 01, U3, U3,
subs(v < vz, 1 AL Ae))}

if E (V) (o = subs(1 + v, —¢)) then
o =0 U{0s =}

ifE (V) (o = subs(vz « vi,~(c1 A ... Ac)))
then

o =0 U {subs(vs « vj, me) Ay = Up}

ifE (Y)(c = 03 #) then

o =0 U{subs(vi < v),c) A

(U3 = 00, cr AL AN ep) A

W(e, v1, 03, U, subs(vl v5.c1 AL Ac))}

SU:

The first two features represent the operational seman-
tic of the while-statement. As for the 1T1/3 constraint,
the other features identify non-feasible part of the struc-
ture. The third one is applied if it can be proved that
the constraints of the body of the loop are inconsistent
with the current store. This means the body cannot be
executed even once, the output vector of variables v3 is
then equated with the input vector vg. In the opposite,

if ¥3 = 1) is inconsistent in the current store, the fourth
feature is applied meaning that the body of the loop is
executed at least once.

Let us illustrate the treatment of W/5 on the while-
statement of example 1 :

Suppose that the store contains {jo = 1, j2 = 2} ; when
testing the consistency of

Wiz # 0, (i0. jo), (i1, J1), (i2, J2).
Ji=JakizANip =iy — 1)

the fourth feature is applied twice and then gives
the following store :

{Jo=1Ja=2,Ju=ji iy, in =iy — 1,
Ji = joxio, 1y = ig — 1,15 = 0}

Finally, (ip = 2) is obtained.

3.3 Complete Resolution of the Example

Consider again the example of figure 1 and the problem
of generating a test data on which a feasible path going
through statement 5 is executed. The Kset provided by
the first step of our method is :

Kset(f,5) = pKsel(f) U cKset(h) =
{ Jo=1,
Wiz # 0, (io, jo), (i1, j1), (72, j2),
1= Jexin Nip =iy — 1),
ITE(jo = 2,i3 = ja Ads = i3, 44 = i3),
OUT = j:}U{j: =2}

The loop is executed twice, generating the follow-
ing store :

{Jo=1.i0 # 0,01 £ 0,in = 0,is =iy — 1,4y = ip—1,jo =
Jikir, J1 = Jo*kio, Jo = 2,15 = Jo,ia = i3, OUT = ja}

Tnterval consistency is applied to solve the sys-
tem, and yields to iy = 2. This is the unique test data
on which statement 5 may be executed.

3.4 Search Process

Of course, local consistencies are incomplete constraint
solving techniques [22]. The store of constraints can
be domain-consistent though there is no solution in the
domains (i.e. the store is inconsistent). Let us give an
example of a classical pitfall of these techniques :
z,y,2€{0,1}, o={z#yy#z}

Testing |= (V)(c = (« = z)) fails because the store

{x #y,y# z, @ # 2} is domain-consistent.

In order to obtain a solution, it is necessary to enumer-
ate the possible values in the restricted domains [22, 15].
"T'his process is incremental. When a value v is chosen in
the domain D, of the variable z, the constraint (x = v)
is added to the store and propagated. This may reduce
the domains of the other variables. This process is re-
peated until either the domain of all variables is reduced
to a single value or the domain of some variable becomes
empty. In the former case, we obtain a solution of the
test data generation problem, whereas in the latter we
must backtrack and try another value (z = w) until
D, =

In general, there are many test data on which a se-
lected point is executed. As claimed in the Introduc-
tion, constraint solving techniques provide a flexible way
to choose test data. The search process can be user-
directed by adding new constraints on the input vari-
ables of the procedure. Our framework provides an ele-
gant way to handle such constraints. These constraints
are propagated by the inference engine as soon as they
induce a reduction on the domains. Furthermore, these
additional constraints may be used to insure that the
generated input data are “realistic”. 'They may have
one of the two following forms :

constraints on domains (for example z; €
[=3.17)) 5

.

constraints between variables (for example yg > g
meaning that a parameter yy of a procedure is
strictly greater than another one xy).

1t is also possible to guide the search process with some
well-known heuristics. For example :

e to select the variable with the smallest domain
(first-fail principle) ;

e to select the most constrained variable ;

o to bissect the domains (x € [a,b] is transformed
into (Dy = [a,a+b/2] or Dy = [a+b/2,0])).

4 IMPLEMENTATION

INKA, a prototype implementation has been developed
on a structured subset of language C. The extension to
control structures such as do-while and switch statement,
is straightforward. Characters are handled in the same
way as integer variables. Floating point numbers do not
introduce new difficulties in the constraints generation
process, but they require another solver. Although the
domains remain finite, it is of course not possible to

enumerate all the values of a floating point variable.
Resolution of the constraint system is therefore more
problematic. References on these solvers can be found
in [17]. The extension of our method to pointer variables
falls into two classical problems of static analysis : the
aliasing problem and the analysis of dynamic allocated
structures.

INKA includes 5 modules :

e A C Parser

e A generator of SSA form and control-dependencies
o A generator of Ksel

e A constraints solver

e A search process module

The constraint solver is provided by the CLP(FD) li-
brary of Sicstus Prolog 3.5 [6].

5 EXAMPLE

We present now the results of our method on a non-
trivial example adapted from [11] : the SAMPLLE pro-
gram given in figure 5. For the sake of simplicity, it is
written in the abstract syntax used in this paper. Size
of array have been reduced to 3 for improving the pre-
sentation.

Counsider the problem of automatic test data generation
to reach node 13.

TNKA has generated the Kset(SAMPLE, 13) constraint
system. The following set of constraints on domains are
added :

al1], a[2], a[3],b[1], b[2], b[3], target € [1,9]

Table 1 reports only the results of the constraint solver
and search process module. Experiments are made on
a Sun Sparc b workstation under Solaris 2.5

First experiments concern the search of solutions with-
out adding any kind of constraints on input data. The
Tine 1 of the table 1 indicates the time required to obtain
the first solution and all solutions of the problem. The
exact test data is provided in the former case while the
number of solutions is only provided in the later one.

Then, we have considered that the user wants the input
data to satisfy the additional constraint :

al3)? = a[1]? + a[2]*

int sample(int a[3], int b[3], int target)
int i, fa, fb,out ;
Ta. (=1

2. while (i <3)

do
3. if (ai] = target)
4. then fa:=1;
fi;
=1+ 1;

9. if (b[i] # target)
10. then fb:= 0 ;

11. Gl
fi 3
12. if (fo=1)

13. then ou
14. else out :

3
15. return out ;

Figure 5: Program SAMPLE

Second line reports the results of generation when the
additional constraint is checked out after the search pro-
cess and the third line reports the results when the con-
straint is added to the current store and propagated.

A first fail enumeration heuristic has been used for
these experiments. Test data are given in vector form
(a[1], a[2], a[3], O[1], 0[2], 03], target) and CPU time is
the time elapsed in the constraint solving phase. Note
that a complete enumeration stage would involve to try
97 = 4782969 values.

These experiments are intended to show what we have
called the flexible use of constraints. First, the CPU
time elapsed in the first and second experiments are ap-
proximatively the same to obtain all the solutions. In
both cases, the search process has enumerated all the
possible values in the reduced domains. The only dif-
ference is that, in the second case, the added constraint
has been checked out after the enumeration step. This
illustrate a generate and test approach. On the con-
trary, note that the results presented in the third line
of table 1 show an important improvement factor due
to the use of the additional constraint in the resolution
process. In the third case, the additional constraint is
used to prune the domains and thus the time elapsed in
the search process module is dramatically reduced.

Of course, further experiments are needed to show
the effectiveness of our approach and to compare the

Table 1: Results

First solu- CPU time | All solutions CPU time
tion

(1,1,1,1,1,1,1) 1.0s 1953 solu- 287s

tions

(345,3333) b3s 292s

(3.1.5,3.3.3.3) L3s 245

method with other approaches.

6 CONCLUSION

In this paper, we have presented a new method for the
automatic test data generation problem. The key point
of this approach is the early detection of some of the
non-feasible paths by the global constraints and thus the
reduction of the number of trials required for the gen-
eration of test data. First experiments on a non-trivial
example made with a prototype implementation tend
to show the flexibility of our method. Future work will
be devoted to the extension of this method to pointer
variables and experimentations with floating point num-
bers ; an experimental validation on real applications is
also forseen.

ACKNOWLEDGEMENTS

Patrick Taillibert and Serge Varennes gave us invalu-
able help on preliminary ideas to design the global con-
straints introduced. Thanks to Xavier Moulin for its
helpful comments on earlier drafts of this paper.

This work is partially supported by AN.R.T.

This research is part of the software testing project DE-
VISOR of Dassault Electronique.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers Prin-

ciples, lechniques and lools. Addison-Wesley Pub-

(2

(3]

(4]

[6

(8]

9]

[10]

(11]

(12]

lishing Company, Inc, 1986.

B. Alpern, M. N. Wegman, and F. K. Zadeck.
Detecting Equality of Variables in Programs. In
Proc. of Sympostum on Principles of Programiming
Languages, pages 1-11, New York, January 1988.
ACM.

A. Bertolino and M. Marré. Automatic Generation
of Path Covers Based on the Control Flow Anal-
ysis of Computer Programs. TEEE Transactions
on Software Engineering, 20(12):885 899, Decem-
ber 1994.

R. Boyer, B. Elspas, and K. Levitt. SELECT -
A formal system for testing and debugging pro-
grams by symbolic execution. SIGPLAN Notices,
10(6):234 245, June 1975.

M. M. Brandis and H. Mé&ssenbéck. Single-Pass
Generation of Static Single-Assignment Lorm for
Structured Languages. Transactions on Program-
ming Languages and Systems, 16(6):1684-1698,
November 1994.

M. Carlsson. SICStus Prolog User’s Manual, Pro-
gramming over Finite Domains. Swedish Institute
in Computer Science, 1997.

L. Clarke. A System to Generate Test Data and
Symbolically Execute Programs. [EEE Transac-
tions on Software Engineering, SE-2(3):215-222,
September 1976.

A. Coen-Porisini and F. de Paoli. Array Repre-
sentation in Symbolic Execution. Compuler Lan-
guages, 18(3):197-216, 1993.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Weg-
man, and F. K. Zadeck. Efficently Computing
Static Single Assignment Form and the Control De-
pendence Graph. Transaclions on Programiming
Languages and Systems, 13(4):451-490, October
1991.

R. A. DeMillo and A. J. Offut. Constraint-Based
Automatic Test Data Generation. [EEE [ransac-
tions on Software Engincering, SE-17(9):900-910,
September 1991.

R. Ferguson and B. Korel. The Chaining Approach
for Software Test Data Generation”. ACM Trans-
aclions on Software Engineering and Methodology,

5(1):63-86, January 1996.

J. Ferrante, K. J. Ottenstein, and J. D. Warren.
The Program Dependence Graph and its use in
optimization. Transactions on Programming Lan-
guages and Systems, 9-3:319-349, July 1987.

[13] D. Hamlet, B. Gifford, and B. Nikolik. Exploring
Dataflow Testing of Arrays. In Proc. of the Interna-
tional Conference on Software Engineering, pages
118-129, Baltimore, May 1993. IEEE.

[14] P. V. Hentenryck and V. Saraswat. Constraints
Programiming : Strategic Directions. Constraints,
2(1):7-34, 1997.

[15] P. V. Hentenryck, V. Saraswat, and Y. Deville. De-
sign, implementation, and evaluation of the con-
straint language cc(fd). In LNCS 910, pages 293—
316. Springer Verlag, 1995.

[16] W. Howden. Symbolic Testing and the DISSECT
Symbolic Evalnation System. TEEE Transactions
on Software Engineering, SE-3(4):266 278, July
1977.

[17] J. Jaffar and M. J. Maher. Constraint Logic Pro-
gramming : A Survey. Journal of Logic Program-

ming, 20(19):503-581, 1994.

[18] J. C. King. Symbolic Execution and Program Test-
ing. Commun. ACM, 19(7):385-394, July 1976.

[19] B. Korel. A Dynamic Approach of Test Data Gen-
eration. In Conference on Software Maintenance,
pages 311-317, San Diego, CA, November 1990.
TEEE.

[20] B. Korel. Automated Software T'est Data Genera-
tion. IEFE Transactions on Software Engineering,

16(8):870-879, august 1990.

[21] B. Korel. Automated Test Data Generation for
Programs with Procedures. Tn Proc. of ISSTA 96,
volume 21(3), pages 209 215, San Diego, CA, May
1996. ACM, SIGPLAN Notices on Software Engi-
neering.

[22] A. K. Mackworth. Consistency in Networks of Re-
lations. Artificial Intelligence, 8(1):99-118, 1977.

[23] B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Global Value Numbers and Redundant Computa-
tions. In Proc. of Symposium on Principles of Pro-
grammaing Languages, pages 12 27, New York, Jan-
nary 1988. ACM.

[24] D. F. Yates and N. Malevris. Reducing The Effects
Of Infeasible Paths In Branch Testing. In Proc.
of Symposium on Software Testing, Analysis, and

‘erification (TAVZ), volume 14(8) of Software n-
ginepring Notes, pages 48-54, Key West, Florida,
Decgmber 1989.

Portée de l'article

L’article précédent propose la construction d'un modele a contraintes des pro-
grammes C qui permet la résolution de certaines requétes de génération de donnée
de test avec les techniques standards de la Programmation par Contraintes sur les
domaines finis [Hentenryck 93, Hentenryck 98]. En particulier, la propagation de
contraintes, le filtrage par consistance locale (consistance de domaine et bornes)
et quelques stratégies de recherche telles que “first-fail” ou “iterative domaine-
splitting” sont utilisées. Dés sa publication et malgré sa naiveté, cet article a été
utilisé comme source de comparaison par de nombreux travaux qui ont démarré
a cette époque (cité plus de 200 fois — Source: Publish or Perish, version 3.2, Juillet
2011).

Des la fin des années quatre-vingt-dix, Neelam Gupta de l'Université d”Arizona
s’est montrée intéressée par l'utilisation des contraintes, dans la mesure ot elle
menait des travaux connexes sur l"utilisation de relaxation itérative pour la généra-
tion automatique de cas de test structurels [Gupta 00, Visvanathan 02]. De méme,
Willem Visser, a l'origine du moteur de vérification Java PathFinder [Visser 04]
développé au centre Nasa Ames, s’est intéressé a nos travaux pour analyse et
comparaison [C. Pasareanu 03], ainsi que Christian Cadar, alors qu’il dévelop-
pait I'outil EXE a I'Université de Stanford. En Europe, Nguyen Tran Sy et Yves
Deville de I’'Université Catholique de Louvain [Sy 01,Sy 03] ont cherché & adapter
des consistances partielles pour la génération automatique de cas de test struc-
turel en présence de calculs mixtes entiers-flottants. C’est également dans l'article
commenté de ce chapitre qu’a été introduit pour la premiere fois 1'utilisation de la
forme statique a assignation unique (SSA) en génération automatique de tests. Cet
article a ainsi été remarqué dans la communauté analyse statique, en particulier
grace a des gens comme Gregor Snelting [Snelting 06], ou Thomas Ball [Ball 05].
L'utilisation de la forme SSA pour la génération automatique de tests était réelle-
ment novatrice a cette époque et cette idée a fait flores depuis [Sy 01, Collav-
izza 08, Chung 09, Wotawa 10].

L’accueil de la communauté pour cet article nous a confortés, a 1'époque, dans
notre volonté de développer un outil de génération automatique de données de
test pour un langage réaliste tel que C. Ce fut donc le début de la réalisation de
'outil InKa, mise au point chez Dassault Electronique, avec des idées développées
en collaboration avec I'Université de Nice Sophia-Antipolis.

Chapter 2

Test logiciel a base de
contraintes

Contexte

La réalisation de l'outil InKa a été particulierement importante pour démontrer
l'utilité des contraintes en génération automatique de données de test. En effet, les
logiciels de test unitaire et d’intégration utilisés alors permettaient essentiellement
d’automatiser I'exécution du test, mais en aucun cas de déterminer automatique-
ment les entrées permettant de sensibiliser certaines portions critiques du code
source. Par ailleurs, la génération de cas de test structurels et plus généralement la
vérification de logiciel n’était pas alors considérée alors une application standard
de la Programmation par Contraintes.

L’article de ce chapitre fut le premier a présenter le prototype InKa, ainsi que les
premieres expériences relatives au modele a contraintes sous-jacent. Nous y détail-
lons les consistances partielles utilisées, ainsi que la sémantique opérationnelle des
combinateurs de contraintes utilisés pour représenter le flot de controle (i.e., ite et
w). Un des points les plus intéressants concerne peut-étre la description du traite-
ment des contrainte-gardées avec un test d’implication par l'absurde. C’est aussi
dans cet article que le traitement des tableaux avec la contrainte globale element
est proposé, une idée simple qui est passée complétement inapergue a I'époque.

Dans les années 2000, avec le logiciel InKa, nous caressions le projet de traiter
exhaustivement un langage réaliste, utilisé dans le domaine de 1’avionique em-
barqué (i.e., le langage C). Mais, il a bien fallut réviser ces prétentions devant la
difficulté de la tache. En effet, des cette époque, nous avions identifié la probléma-
tique de la synonimie due aux pointeurs, références et tableaux, comme étant une
difficulté majeure de I'analyse de code C. Le traitement efficace des appels de fonc-
tions ou méthodes, y compris récursifs, était a inventer, ainsi que celui du poly-
morphisme par invocation de méthodes virtuelles. La problématique de ’analyse
des calculs sur les nombres flottants était par contre bien connue dans d’autres
communautés, mais la résolution de contraintes pour les flottants était inconnue.

25

Ces éléments se révélerent étre des difficultés majeures pour toutes les approches
de génération automatique de données de test a base d’analyse de code source.
D’autres éléments apparurent également comme le traitement des calculs modu-
laires silencieux en C, la modélisation d’"une sémantique avec erreurs et exceptions,
le traitement des structures dynamiques et des pointeurs en entrée des fonctions,
les pointeurs de fonctions et le traitement de 1'ordre supérieur, la modélisation des
calculs bit-a-bits, ou encore le traitement des programmes au flot déstructuré.

A. Gotlieb, B. Botella, and M. Rueher. A CLP framework
for computing structural test data. In Proceedings of Com-
putational Logic (CL'2000), LNAI 1891, pages 399-413,
London, UK, Jul. 2000

A CLP Framework for Computing Structural
Test Data

Arnaud Gotlieb!, Bernard Botella®, and Michel Rueher?

! Thomson-CSF Detexis, Centre Charles Nungesser 2, av. Gay-Lussac
78851 Elancourt Cedex, France
{Arnaud.Gotlieb,Bernard. Botella}@detexis .thomson-csf.com
2 Université de Nice-Sophia-Antipolis, I3S, ESST, 930, route des Colles - B.P. 145
06903 Sophia-Antipolis, France
rueher@essi.fr — http://www.essi.fr/“rueher

Abstract. Structural testing techniques are widely used in the unit test-
ing process of softwares. A major challenge of this process consists in
generating automatically test data, i.e., in finding input values for which
a selected point in a procedure is executed. We introduce here an origi-
nal framework where the later problem is transformed into a CLP(FD)
problem. Specific operators have been introduced to tackle this kind of
application. The resolution of the constraint system is based upon entail-
ment techniques. A prototype system — named INKA— which allows
to handle a non-trivial subset of programs written in C has been de-
veloped. First experimental results show that INKA is competitive with
traditional ad-hoc methods. Moreover, INKA has been used successfully
to generate test data for programs extracted from a real application.

1 Introduction

Structural testing techniques are widely used in the unit or module testing pro-
cess. Structural testing requires :

1. Identifying a set of statements in the procedure under test, the covering
of which implies the coverage of some criteria (e.g., statement or branch
coverage) ;

2. Computing test data so that each statement of the set is reached.

The second point —called ATDG! problem in the following— is the corner
stone of structural testing since it arises for a wide range of structural criteria.
The ATDG problem is undecidable in the general case since it can be reduced
to the halting problem. Classical ad-hoc methods fall into three categories :

— Random test data generation techniques which blindly try values [Nta98]
until the selected point is reached ;

— Symbolic-execution techniques [Kin76,D093] which replace input parame-
ters by symbolic values and which statically evaluate the statements along
the paths reaching the selected point ;

! Automatic Test Data Generation

— Dynamic methods [Kor90,FK96] which are based on actual execution of
procedure and which use heuristics to select values, e.g. numerical direct
search methods.

The limit of these techniques mainly comes from the fact that they “follow one
path” in the program and thus fail to reach numerous points in a procedure.
A statement in a program may be associated with the set of paths reaching it,
whereas a test datum on which the statement is executed follows a single path.
However, there are numerous non-feasible paths, i.e., there is no input data for
which such paths can be executed. Furthermore, if the procedure under test con-
tains loops, it may contain an infinite number of paths.

We introduce here an original framework where the ATDG problem is trans-
formed into a CLP problem over finite domains. Roughly speaking, this frame-
work can be defined by the following three steps :

1. Transformation of the initial program into a CLP(FD) program with some
specific operators which have been introduced to tackle this kind of applica-
tion ;

2. Transformation of the selected point into a goal to solve in the CLP(FD)
system ;

3. Solving the resulting constraint system to check whether at least one feasible
control flow path going through the selected point exists, and to generate
automatically test data that correspond to one of these paths.

The two first steps are based on the use of the “Static Single Assignment” form
[CFR*91] and control-dependencies [FOW87]. They have been carefully detailed
in [GBRY8].

In this paper, we mainly analyze the third step : the constraint solving pro-
cess. The key-point of our approach is the use of constraint entailment techniques
to drive this process efficiently. In the proposed CLP framework test data can
be generated without following one path in the program.

To validate this framework, a prototype system — named INKA— has been
developed over the CLP(FD) library of Sicstus Prolog. It allows to handle a non-
trivial subset of programs written in C. The first experimental results show that
INKA overcomes random generation techniques and is competitive with other
methods. Moreover, INKA has been used successfully to generate test data for
programs extracted from a real application.

Before going into the details, let us illustrate the advantage of our approach
on a very simple example.

1.1 Motivating Example
Let us consider the small toy—program given in Fig. 1. The goal is to generate

a test datum, i.e. a pair of values for (z,y), for which statement 10 is executed.
“Static Single Assignment” techniques and control-dependencies analysis yield

the following constraint system? :
o1 = (,Y, 2, t1,t2,u € (0.232 — 1)A

(z=zxy) AN(th =2*x2) A (z <8 A(u<z)A (B2 =t —y) A (t2 < 20)
Variables ¢; and t2 denote the different renaming of variable t.

int foo(int z, int y)
int z,t,u ;
{z=zxy;
t=2%x;
if (z < 4)
u=10;
else
u=2;
if (2 <8)
{ if(u<z)
{t=t—y;
if (t < 20)
0. {...

BN

S e ®Noo

Fig. 1. Program foo

Local consistency techniques like interval-consistency [HSD98] cannot achieve
any significant pruning : the domain of z will be reduced to 0..2'¢ — 1 while no
reduction can be achieved on the domain of y. So, the search space for (z,y)
contains (2'® — 1) x (232 — 1) possible test data. However, more information
could be deduced from the program. For instance, the following relations could
be derived from the first if_then_else statement (lines 3,4,5) :

(z >4 Au=2) holds if =(z < 4 A u = 10) holds

(z < 4 Au=10) holds if =(z > 4 Au = 2) holds
Entailment mechanisms allow to capture such information. Indeed, since —(z <
4 Au = 10) is entailed by u < z, we can add to the store the constraint
(zx > 4Au = 2). Filtering ¢ > 4 Au = 2A o1 by interval-consistency re-
duces the domain of z to 4..11 and the domain of y to 0..2.
This example shows that entailment tests may help to drastically reduce the
search space. Of course, the process becomes more tricky when several condi-
tional statements and loop statements are inter-wound.

Outline of the Paper The next section introduces the notation and some
basic definitions. Section 3 details how the constraint system over CLP(FD) is
generated. Section 4 details the constraint solving process. Section 5 reports
the first experimental results obtained with INKA, while section 6 discusses the
extensions of our framework.

2 In this context, an int variable has an unsigned long integer value, i.e. a value between
0 and 2%% — 1.

2 Notations and Basic Definitions

A domain in FD is a non-empty finite set of integers. A variable which is as-
sociated to a domain in FD is called a FD_variable and will be denoted by an
upper-case letter. Primitive constraints in CLP(FD) are built with variables, do-
mains, the € operator, arithmetical operators in {+,—, x div, mod } * and the
relations {>,>,=,#, <,<}. Note that the negation of a primitive constraint is
also a primitive constraint. In the following, ¢ possibly subscripted denotes exclu-
sively a primitive constraint. A constraint—store o is a conjunction of primitive
and non-primitive constraints.

Non-primitive constraints are composed of combinators and guarded—constraints.

Combinators are boolean combination of constraints. For example, the constraint
element(I, L, V) which express that V is the I*" element in the list L is a com-
binator.
Guarded—constraints are built by using the blocking ask operator [HSD98] and
are denoted C; — C5, where C; and C> stand for constraints. C; is called the
guard. The operational semantic of C; — C5 is given by the following rules:

e the constraint C; — Cs is removed and Cj is added to o when C is entailed

by o;

e the constraint C; — C3 is just removed when —C} is entailed by o;
e the constraint C; —» Cs is suspended when neither C; nor —C are entailed

by o;

Note that C; and C are not restricted to be primitive and that checking whether
—C) is entailed may require to compute the negation of a non-primitive con-
straint.

Entailment operations are based on partial consistencies. Two partial entail-
ment tests have been introduced in [HSD98|: domain-entailment and interval-
entailment. They are based upon domain-consistency and interval-consistency.
Let Xi,...,X, be FD_variables, let D;,...,D, be domains and let C' be a
constraint?.

Definition 1 (domain-consistency)

A constraint C' is domain-consistent if for each variable X; and value v; € D;
there exists values vy, ... ,Vi—1,Vit1,... ,Un tn D1,... ,D;_1,Dit1,... ,Dy such
that C(v1,... ,v,) holds. A store o is domain-consistent if for every constraint
C in o, C is domain-consistent.

Interval consistency is based on an approximation of finite domains by finite
sets of successive integers. More precisely, if D is a domain, D* is defined by the
set {min(D), ... ,max(D)} where min(D) and max(D) denote respectively the
minimum and maximum values in D.

Definition 2 (interval-consistency)
A constraint C' is interval-consistent if for each variable X; and value v; €

3 div and mod represent the Euclidean division and remainder
4 we assume that all the constraints are implicitly defined on Xi,..., X,

{min(D;), maz(D;)} there exist values vi,... ,Vi—1,Vif1,... ,Vpn in
Di,...,D; ,D}\y,--.,D; such that C(vy, ... ,v,) holds. A store o is interval-
consistent if for every constraint C' in o, C is interval-consistent.

The following relaxations of entailment are introduced in [HSD98]:

Definition 3 (domain-entailment)
A constraint C(Xy,... ,X,) is domain-entailed by D1, ... , Dy, iff, for all values
Vi, ... ,Up Dy, Dy, Clvr,. .. ,v,) holds.

Definition 4 (interval-entailment)
A constraint C(Xq,...,Xy) is interval-entailed by Dy, ... , Dy, iff, for all values
vi,...,0p i D},...,D} , C(vy,...,vy,) holds.

‘We introduce here another partial entailment test which is based on refutation :

Definition 5 (abs-entailment)
A constraint C is abs-entailed by a store o iff, filtering o A ~C' by domain-
consistency or interval-consistency yields an empty domain.

3 Generation of the Constraint System

Let P be a single procedure written in an imperative language, let n be a point
(either a statement or a branch) in P. Solving the ATDG problem requires to
compute a vector of input® values of P such that n is executed.

For the sake of simplicity, we first introduce the constraint system generation
technique for an array_if while language over integers. Procedure calls are
handled in our framework but we assume that there is only one mechanism
for passing arguments : the call-by—value mechanism. Programs must be well-
structured and must avoid floating-point variables. A procedure is assumed to
have a single return statement.

Next subsection recalls the general principles of the “Static Single Assign-
ment” form [CFRT91]. The following subsections detail the transformation pro-
cess of a program under SSA form into a CLP program.

3.1 Static Single Assignment Form

The SSA form is a version of a procedure on which every variable has a unique
definition and every use of a variable is reached by this definition. The SSA form
of a basic block is obtained by a simple renaming (i =i + 1 yields iy = iy + 1).
For the control structures, SSA form introduces special assignments, called ¢-
functions, to merge several definitions of the same variable. For example, the
SSA form of the if_then_else statement is illustrated in the top of Fig. 2.
The ¢-function of the statement uz = @(u1,u2) returns one of its argument : if
the flow comes from the then- part then the ¢-function returns u, otherwise it

® An input variable is either a formal parameter or a referenced global variable

if (z < 4) if (z < 4)
u=10; ur =10
else else
u=2; U = 25

uz = ¢(u1, u2);

i=1 =1
/* Heading - while */
Js = ¢(jr, j2);
while (j *u < 16) while (js * uz < 16)
j=j+1 Je=Js+1;

Fig. 2. SSA form of control statements

returns us.
For other structures such as loops, the ¢-functions are introduced in a special
heading which is executed at every iteration. The ¢-functions work as usual :
this explains the counter-intuitive renaming of variables (see Fig. 2).

For convenience, a list of ¢-functions will be written with a single statement :
o == ¢(T1,%0),.-. ;22 1= P(21,20) <= v2 := ¢(v1,v0) where v; stands for a
vector of variables.

3.2 Generation of the CLP Program

The basic idea is to translate each statement of the SSA form into a primitive
constraint or a combinator, in order to build a CLP program. A clause is gen-
erated for each procedure P of the program. The head of the clause has several
arguments :

— a list of FD_variables associated with the parameters of P ;

— a list of FD_variables associated with the referenced globals of P ;

— a list of FD_variables associated with the local variables used inside the
decisions of P ;

— a list of FD_variables associated with the globals defined inside P ;

— a single FD_variable associated with the expression returned by P.

Now, let us detail the transformation process.

Declaration. A type declaration of a variable z; is translated into a primitive
constraint of the form : X; € Ming..Mazy where Ming (resp. Mazr) is the
minimum (resp. maximum) value of the type T'. Such a constraint prevents
overflows of values, a condition which is required o generate a test datum on
which a selected point is reached.

Array. SSA form provides special expressions to handle arrays : access(ag, k)
which evaluates to the k** element of ag, and update(ag, j,w) which evaluates to
an array a; which has the same size and the same elements as ag, except for j
where value is w. access and update expressions are transformed into element/3
constraints:

o v =access(ap, k) is translated into element(K, Ag, V) ;

o a definition statement a; =update(ag, j, w) is translated into

element(J, A1, W) A;.,(element(l, Ao, V) A element(l, A1,V)).

Conditional. The if-then_else statement is treated by using a combinator,
called ite/3. For example, the if then_else statement of Fig. 2 is translated
into : ite(X < 4, U; = 10AU;s = Uy, Uy = 2AUs = U,). The conditional state-
ment express an exclusive disjunction between two paths. So, ite(c,CiA...ACh,
C{A...AC},) holds iff (¢ACyL A...ACy) or (¢ ACi A...ACL,) holds, where
¢ is a primitive constraint, and Ci,...,Cy,C1,...,C], are primitive or non-
primitive constraints. The operational semantic of combinator ite/3 is based
on the following rules:

Definition 6 ite/3 (operational semantic)
ite(c,C1 A...ACyp, C{ A...ACJ},) is reduced to the four following guarded-
constraints :

e c—CiAN...NCy

e ¢c—C{A...ANC],

e 2(cACLA...ANCy) — (¢ AC{A...AC})

o 7(-cACIA...ANCL) — (cACLA...ANCy)
The first two guarded—constraints result from the operational semantic of the
if_then_else statement in an imperative language. The last two are introduced to
allow a more effective pruning. ¢ and —¢ are included in the guards to facilitate
the detection of inconsistencies by abs-entailment (see section 4).

Loop. Unlike the conditional, the while statement under SSA form cannot be
translated directly. A while statement in SSA form is of the general form :
vy = P(vo,v1) while (¢) {Ci;...;C,} where vo is the vector of input vari-
ables of the while, v1 is the vector of variables defined inside the body of the
while, and vz is the vector of variables used inside and outside the while. This
statement is transformed into a w(c, Vo, V1, V2, C1 A - -- AC,,) combinator, which
is a constraint generation program. . .
w(e, Vo, V1, Va,C1 A...ACp) holds iff (m¢ AV =Vz)or ((ACIA...ACy A
w(e, Vi, Va,Va,Ci A ... A C;p)) holds, where ¢ is a primitive constraint, ¢ =
subs(Va « Vo, ¢) ; Vo, Vi and V3 are three vector of FD_variables, V3 is a newly
created vector of FD_variables, ¢ = subs(Va « Vp,Ch), ... ,Cp = subs(Va +
Vo, Cp), and Cy = subs(Va + Va,Ch),... ,ép = subs(Vy + V3,Cp); subs being
the substitution of variables over a term.

The operational semantic of w/5 is defined by the following rules :

Definition 7 w/5 (operational semantic)
w(c, Vo, Vi, Va,CiA...ACy) is reduced to the four following guarded—constraints :

o ¢ — (CiA...CyAw(c, Vi, Vs, Va,Ci A...ACy))

o ¢ — Vo=V,

¢ “@ACLA...Cp) — (~éA Vo = Va)

o (~eAVo=Va) — (¢ACLA...CpAw(c, Vi, Vs, Va,Ci A... ACp))

The first two guarded—constraints result from the behavior of the while state-
ment. Whenever the decision of the statement ¢ is verified, then the body is
executed and another w/5 is stated. When the decision is refuted, the body is
skipped and the input variables of the statement are equated to the vector of
used variables.

The third guarded—constraint is based on the following observation : if the con-
straints of the body are inconsistent w.r.t the current information in the store,
then the loop cannot be performed. The last guarded—constraint comes from the
following observation : if the value of a variable is different before and after the
while statement, then the body of the loop must be executed at least once. Note
that the guards of both combinators are either primitive constraints or negations
of conjunction of constraints, so the implementation of abs—entailment becomes
straightforward (see section 4).

Let us illustrate how w/5 works on the example of Fig. 2. The while_do state-
ment is translated into : w(J3 * Uz < 16, [J1], [J2], [J3], Jo = J5 + 1). If the store
contains J; = 1,J3 = Us, then the fourth guarded—constraint is activated be-
cause —(=(Jy * Us < 16) A J; = J3) is entailed by the store. So, the following
constraints are added to the store : J; x Uz < 16 A Jy = Jy + 1 Aw(J3 xUs <
16, [J2], [J#), [J5], J# = J3 + 1) where Jy is a newly created variable.

Procedure Call. A procedure call is translated into a goal to solve. For exam-
ple, a statement such as v = foo(z,29) is translated into

foo([X,29], [, Listeof locals,[],V), where foo is the name of the clause gen-
erated for the procedure foo and Liste_of locals is a the list of FD_variables
associated to local variables and referenced in the decisions of the procedure.
Such a mechanism allows the treatment of recursive procedure.

3.3 Generation of the CLP Goal

The decisions which must be verified to reach a given point in a procedure are
called the control-dependencies [FOW8T]. They are syntactically determined in
well-structured procedures. For loop statements, these decisions are computed
dynamically. Let C(foo,10) be the control-dependencies associated with point
10 in the procedure foo of Fig. 1. So, we have : C(fo0,10) = (Z < 8) A (Us <
X) A (T> < 20). The selected point determines a goal to solve with the clauses
of the generated CLP(FD) program :

— C(fo0,10), foo([X, Y], I, [X, Z1,Us, T2}, [|, RET)

The generated CLP program for program foo and the goal associated with
point 10 are given in the Fig. 3.

foo(IX, Y], [, [X, Z1,Us, To], [|, RET) <—
X,Y, Z, T, Tz,U1,Uz,Us, RET € 0..2%% — 1,

Z=XxY,
Th=2x%X,
ite(X <4,U1 =10AUs =U1,U2 =2 AUz = Ua),
ite(Z <8,
ite(Us < X, To =T — YA
ite(T: < 20,
RET = ...

— (Z <8)A(Us < X) A (T2 <20), foo([X,Y],[], X, Z1,Us, T»],], RET)

Fig. 3. CLP Program generated for the program foo

4 Solving the Goal

In our framework, the constraint solving process is based on :

1. a filtering process based on partial consistency techniques and entailment
techniques ;

2. a search procedure which combines an enumeration process and a constraint
propagation step.

In view of the operational semantics of combinators introduced in the previ-
ous section, there are several operations to be implemented. They include an
entailment test, an algorithm for processing the guarded—constraints, and the
implementation of the combinators themselves.

4.1 Entailment Test

Three levels of entailment relaxations may be used to achieve entailment tests :
domain—entailment, interval-entailment and abs—entailment, defined in section
2.

Consider the following example : ¢ = (X € 1..100) A (Y € 9.11) A (X #7Y)
and the question “is (X xY # 100) entailed by o ?”.
The constraint is neither interval-entailed, nor domain-entailed because (X =
10,Y = 10) does not verify the constraint. Thus, in our framework, we have im-
plemented abs entailment which is more effective at least on our problems

than domain-entailment and interval-entailment. Practically, we add the nega-
tion of the considered constraint C' to the store before starting a filtering step by
interval—-consistency. When the domain of one variable is reduced to an empty
set, constraint C is entailed ; when all the constraints are interval-consistent, no
deduction can be done and the previous store must be restored. For instance,
filtering the store o A =C' = (z € 1..100) A (y € 9..11) A (z # y) A (z * y = 100)
by interval-consistency leads to an empty domain for both variables, and then
proves that the constraint z x y # 100 is abs-entailed.

This relaxation of entailment can be seen as a proof by refutation. Techni-
cally, abs-entailment requires to compute the negation of the considered con-
straint C'. Since we only test the entailment of primitive constraints or the nega-
tion of conjunctions of constraints in our framework, this computation becomes
straightforward.

Note also that no suspension will remain in the constraint store at the end of
the resolution, since the last step of the solving process is an enumeration step.

4.2 Processing Guarded—Constraints

The guarded-constraints are evaluated iteratively in the store. The algorithm
for processing guarded constraints is given in Fig. 4.

/* Let C1, C2 be two constraints and o be the current store */
/* Process C1 — C in o */

if filtering o A =C by interval-consist
then /* Oy is abs—entailed by o */

cy yields an inconsi y

o+ (cU{C}H)\{C1 — C2};

if filtering o A C1 by interval-consistency yields an inconsistency
then /* -C) is abs-entailed by o */

o+ o\{Ci — C2}
if neither Cy nor =C; are abs—entailed by o

then continue
/* The guarded—constraint C; — C- is suspended in o */

Fig. 4. Algorithm for processing guarded—constraints

Note that the second rule can be ignored until the end of the computation
because it does not add any constraint to the stord. Two kind of problems may
occur with this algorithm :

— the store may contain other guarded constraints which are activated as soon
as a filtering is started ;

— the store may contain a non—terminating combinator. In fact, some w/5
combinator may introduce guarded-constraints which will recursively put
other w/5 combinators in the store. This pitfall can be seen as a consequence
of the halting problem.

A practical solution for both difficulties consists in ignoring any other guarded—
constraint or combinator of the store during the filtering of o A ~Cy. Other
awakening policies exist[Got00] but are not discussed in this paper.

4.3 Search Process

Filtering by partial consistencies does not always yield a solution, thus a search
step is necessary. Note that, up to this point, no choice point has been set up.
In fact, the disjunctions introduced by the combinators are “captured” by the
entailment tests. As usual, the search is interleaved with constraint propagation.
Since the class of programs is unbound, experiments are the best way to de-
termine a good heuristic for the ATDG problem. We have tested the first-fail,
first-fail constrained, domain-splitting heuristics among others. Iterative domain—
splitting yields the best results in average [Got00].

The search process stops in one of the following states:

— Success : a solution of the constraint system was found. In our
framework, such a solution is a test datum on which the selected point n is
reached in the procedure P, hence it is a solution to the ATDG problem.

— Success : the inconsistency of the constraint system has been de-
tected. If an inconsistency of the store is detected during the initial filtering
step or during the search process, we can state that n is unreachable in P, i.e.
there is no test datum on which n is executed® ; hence, the ATDG problem
has no solution. This is an important information for the tester.

— Failure : the search process did not reach a success state during the
allowed amount of CPU time. This can result from the non—termination
problem of w/5. Consider a reachable point n in a procedure containing a
loop which does not terminate for certain input values. If such an input is
tried during the search process, the w/5 combinator will not terminate.
Note that no information can be deduced when the process is stopped be-
fore the end. It is not possible to determine whether it is a consequence of
an infinite loop or just a very long search. In both cases, we say that our
technique fails to find a solution of the ATDG problem.

5 First Experimental Results

‘We compare our CLP framework with a random test data generation method and
the dynamic approach of [Kor90,FK96]. We implemented the random method by

6 sometimes called dead code

using the drand48 C function, which generates pseudo-random numbers with the
well-known linear congruential algorithm and 48-bit integer arithmetic. TEST-
GEN is an implementation of the dynamic method for Pascal programs. The
tool is not available, hence we base the comparison on the results published in
[FK96]. The symbolic execution method has been implemented in a tool called
GobpziLLA [DO93] but the tool is dedicated to mutation analysis of Fortran
programs making the experimental comparison very difficult.

5.1 Our Prototype System

INKA operates on a restricted subset of the C language. Unstructured statements
such as goto statement are not handled in our framework. Pointer arithmetic,
dynamic allocated structures, pointer functions, type casting, involve difficult
problems to solve. Pointers are only partially supported by INKA (see section 6).
Although, floating point numbers are finite in essence, they introduce problems?
which cannot be solved within the framework introduced here. All the types of
integer variables (char,short, long,...) and almost all the C operators (34 out of
42) are handled (by capturing their behavior into user—defined constraints).

INKA includes a C parser, a SSA form generator and a Constraint system
producer over the clp(£fd) library of Sicstus Prolog.

5.2 Experiments

We only present our experiments on three classical academic programs of the
Software Testing Community and one real-world program but INKA has been
used successfully on several other programs [Got00]. The academic programs®
are 1) “bsearch” [DO93] which is a binary search in a sorted array ; 2) a program
published in [FK96] named “sample” which contains arrays, loops and a lot of
dependencies ; 3) the famous program “trityp” [DO93] which contains numerous
non-feasible paths.

Finally, we introduce the results for a real-world program extracted from an
avionic project, named “ardeta03”. This program mainly contains complex C
structures and bitwise operations but does not contain loops.

5.3 Test Procedure

For each program, a test datum for each basic block (sequence of statements
without branching) is generated. Of course, this approach is not optimal to
reach a complete block coverage since no coverage information is reused between
two generations.

7 The evaluation process of an arithmetical expression in a CLP system and the eval-
uation of the same expression in the operational software may yield different results
8 The source code of these programs are available at
http://www.essi.fr/ rueher /trityp.htm

For each selected block, we have compared INKA to the random method,
and to the published results of TESTGEN. We have performed our experiments
on a 300Mhz Sun UltraSparc 5. A time-out of 10 seconds per block was set.
In 10 seconds, the random method generated approximatively 10° test data,
while INKA generated only one test datum. To limit the factor of “bad luck”
which may occur with the random method, we repeated 10 times the generation
with different initial values for the linear congruential algorithm, and we only
considered the best results.

[FK96] introduces the results of TESTGEN on the three academic programs
among others. The TESTGEN technique starts with a random generation of value
which determines the success of the method. They performed their experiments
on a PC with 60Mhz Pentium processor. A time out was set to 5 minutes and
the same test procedure as ours was applied, except that they repeated 10 times
their search for each block. Their “coverage represents the percentage of nodes
for which at least one try was successful in finding input data” [FK96]. According
to this definition, they found 100% for each program.

5.4 Results

The results are shown in Fig. 5. The number of lines of code and the number of
statement blocks are reported in the first two columns ; whereas an estimate of
the search space is reported in the third column (number of possible test data).
The last three columns contain the results of block coverage obtained with the
three different approaches.

Programs||loc blocks test data||TESTGEN® Random™* INKA™*
bsearch || 21 10 > 10°° 100% 100% 100%
sample [[33 14 >10™ 100% 93% 100%

trityp || 40 22 > 10 100% 86% 100%

ardeta03 ||[157 38 > 10% - 74% 100%

(*) 50 minutes on PC Pentium (60Mhz) for each block
(**) 10 seconds on Sun Sparc 5 (300Mhz) under Solaris 2.5 for each block

Fig. 5. Comparison on block coverage

5.5 Analysis

TESTGEN did allow 50 minutes per block whereas INKA did not spent more than
10 seconds on each block. The tests with TESTGEN have been done on a PC with
60Mhz-Pentium processor while INKA was run on 300Mhz Sun UltraSparc 5. If
we assume that there is less than a factor 30 between these two computers, INKA
is still 10 time faster than TESTGEN?.

9 Note that INKA is written in Prolog while TESTGEN is written in C

user CPU time
(sec)

15 Trityp program

Random method - - -
Ourmethod ~ ——

1314 15 1617 18 19 20 2122
node number

Fig. 6. Time required to generate a solution for each block

Let us see in more details what appends on one of the programs. We report
in Fig. 6 the curve of times required to generate a solution for the program
“trityp” by the last two methods. First, note that the time required by the
random method is smaller on some blocks. In fact, INKA requires a nominal
time to generate the constraint system and to solve it, even if it is very easy to
solve. Second, note that the random method fails on some blocks. For instance,
the block 14 which requires for the random method to generate a sequence of
three equal integers. On the contrary, this block does not introduce a particular
difficulty for INKA, because such a constraint is easily propagated.

6 Perspective

First experiments are promising but, of course, more experiments have to be
performed on non-academic programs to validate the proposed approach. The
main extension of our CLP framework concerns the handling of pointer variables.
Unlike scalars, pointer variables cannot directly be transformed into logical vari-
ables because of the aliasing problem. In fact, an undirect reference and a variable
may refer to the same memory location at some program point. In [Got00], we
proposed to handle this problem for a restricted class of pointers : pointers to
stack allocated variables. Our approach, based on a pointer analysis, does not
handle dynamically allocated structures. For some classes of applications, this
restriction is not important. However, the treatment of all pointer variables is
essential to extend our CLP framework to a wide dpread of real-world applica-
tions.

Acknowledgements

Patrick Taillibert and Serge Varennes gave us invaluable help on the work pre-
sented in this paper. Thanks to Francois Delobel for its comments on an earlier
draft of this paper. This research is part of the Systems and Software Tools
Support department of THOMSON-CSF DETEXIS.

References

[CFR*91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and

[DOY3]

[FK96]

[FOW87]

[GBR9S]

[Got00]

[HSDYS]

[Kin76]
[Kor90]

[Nta98]

F. Kenneth Zadeck. Efficently Computing Static Single Assignment Form
and the Control Dependence Graph. Transactions on Programming Lan-
guages and Systems, 13(4):451-490, October 1991.

R. A. Demillo and A. J. Offut. Experimental Results from an Automatic
Test Case Generator. Transactions on Software Engineering Methodology,
2(2):109-175, 1993.

Roger Ferguson and Bogdan Korel. The Chaining Approach for Software
Test Data Generation”. ACM Transactions on Software Engineering and
Methodology, 5(1):63-86, January 1996.

Jeanne Ferrante, Karl J. Ottenstein, and J. David Warren. The Program De-
pendence Graph and its use in optimization. Transactions on Progr ing
Languages and Systems, 9-3:319-349, July 1987.

Arnaud Gotlieb, Bernard Botella, and Michel Rueher. Automatic Test
Data Generation Using Constraint Solving Techniques. In Proc. of the Sig-
soft International Symposium on Software Testing and Analysis, Clearwater
Beach, Florida, USA, March 2-5 1998. Software Engineering Notes,23(2):53-
62. available at http://www.essi.fr/ rueher/.

A. Gotlieb. Automatic Test Data Generation using Constraint Logic Pro-
gramming. PhD thesis, PHD Dissertation (in French), Université de Nice—
Sophia Antipolis, January 2000.

Pascal Van Hentenryck, Vijav Saraswat, and Yves Deville. Design, imple-
mentation, and evaluation of the constraint language cc(fd). Journal of Logic
Programming, 37:139-164, 1998. Also in CS-93-02 Brown—University 1993.
James C. King. Symbolic Execution and Program Testing. Communications
of the ACM, 19(7):385-394, July 1976.

Bogdan Korel. Automated Software Test Data Generation. IEEE Transac-
tions on Software Engineering, 16(8):870-879, august 1990.

S. Ntafos. On Random and Partition Testing. In Proceedings of Sigsoft Inter-
national Symposium on Software Testing and Analysis, volume 23(2), pages
42-48, Clearwater Beach, FL, March,2-5 1998. ACM, SIGPLAN Notices on
Software Engineering.

Cet article fait écho au lancement du projet RNTL! InKa (2000-2002), qui avait
pour ambition de faire passer notre prototype de recherche a 1’état de logiciel com-
mercialisable. En parallele du développement industriel de I’outil InKa, trois pistes
de recherche ont été explorées dans le cadre de ce projet: le traitement des poin-
teurs et de la synonimie, sujet que nous présentons dans le chapitre 5, le traitement
des calculs sur les nombres a virgule flottante qui connait des développements im-
portants sur lesquels nous reviendrons dans le chapitre 7, et le traitement efficace
des appels de fonctions qui est évoqué implicitement dans l'article du chapitre 9.
Le projet InKa a également connu une suite, le pojet RNTL DANOCOPS (2004-
2006), qui a abordé la problématique plus générale de 'utilisation des contraintes
en vérification formelle de programmes.

Les projets InKa (2000-2002) et DANOCOPS (2004-2006), ayant regroupés des
équipes de recherche de Thales, du LIFC & Besancon, du CEA a Saclay, de 1'I3S
a Nice Sophia Antipolis, du LIG & Grenoble, ont permis de structurer un groupe
de recherche actif en France autour de la thématique du test a base de contraintes.
Plusieurs initiatives ont vu le jour grace a ce groupe de recherche ; en particulier,
les projets ACI V3F (2003-2006) et SESUR CAVERN (2007-2011) sur lesquels nous
reviendrons plus loin.

1Réseau National des Technologies Logicielles

Chapter 3

Contraintes et abstractions

Ces derniéres années ont connu une véritable explosion de résultats quant a la
vérification automatique de programmes. Les approches se sont multipliées et
plusieurs outils dédiés aux langages utilisés dans les systemes critiques, se sont
révélés capables de passer a I'échelle. Nous évoquons ici quelques pistes récentes
ayant connus des développements spectaculaires, de sorte a positionner les trois
articles que nous avons choisis pour illustrer ce chapitre.

Contexte: vérification formelle de programmes

La vérification de programme au niveau du code source est basée sur 1'utilisation
d’assertions, d’invariants, de pré/post conditions qui aident les programmeurs a
spécifier des propriétés. JML (Java Markup Language) [Burdy 05] et Alloy [Jack-
son 00] sont deux languages qui ont été proposés pour écrire de telles spécifica-
tions pour Java, Spec# [Barnett 11] a été proposé pour C#, tandis que ACSL (Ansi-
C Specification Langage) [Baudin 09] est dédié aux programmes C. Les assertions
et post-conditions peuvent étre controlées a 1’exécution, mais dans certains cas,
cela s’avere bien trop tardif. Par exemple, une assertion dans un programme pi-
lotant les commandes de vol d’un avion doit impérativement étre vérifiée avant
exécution. De plus, la vérification a I'exécution des assertions ou post-conditions
compromet le contréle du temps d’exécution, ce qui est inadapté pour certains sys-
téemes temps-réels. Heureusement, il existe des techniques permettant de vérifier
statiquement les assertions, c’est a dire avant exécution des programmes.

On peut d’abord évoquer les outils qui s’appuient sur 'utilisation d’assistants
de preuve ou de démonstrateurs automatiques. ESC/Java (Extended Static Checker
for Java) [Flanagan 02] est un vérificateur statique de propriétés JML, telles que
I’absence de division par zéro, ou bien le maintient des indices d'un tableau dans
ses bornes. Cet outil repose sur lutilisation du démonstrateur Simplify [Detlefs 05].
CAVEAT [Antoine 94] et la plateforme Why [Filliatre 04, Bobot 11] sont des out-
ils qui peuvent aider le programmeur a certifier des assertions ou post-conditions
pour les programmes C. Spec# [Barnett 11] est un langage et un outil de vérification

37

formelle qui s’appuie sur l'utilisation du résolveur Z3 [De Moura 08b]. Ces outils,

qui connaissent actuellement des développements importants [Barnett 11], souf-
frent néanmoins de certaines limitations. Souvent leur axiomatique de base est in-
suffisante pour obtenir une démonstration complétement automatisée, et 'intervention
de l'utilisateur est nécessaire pour obtenir la preuve de certains lemmes. En ce qui
concerne le traitement des boucles, ces outils réclament la donnée d’invariants de
boucles qui sont difficiles a spécifier. De plus, ces approches reposent sur des hy-
potheses quant a la sémantique opérationnelle des langages de programmation, ce

qui limite la portée des preuves obtenues.

Une autre approche classique en vérification de programme est l'utilisation de
techniques d’abstractions pour inférer et controler des propriétés, en analysant sta-
tiquement le programme. L'Interprétation Abstraite [Cousot 77, Cousot 92] infere
des propriétés sur les domaines abstraits dans le but de prouver ’absence de cer-
taines erreurs du programme lors de son exécution (e.g., absence de débordement
de capacités, absence de déréférencement de pointeurs nuls). L’analyseur statique
ASTREE [Cousot 05], I’analyseur Polyspace C Verifier et 'analyseur de valeurs de
Frama-C [Canet 09] sont des outils phares de 1'Interprétation Abstraite, permet-
tant de vérifier statiquement des propriétés sur des programmes C critiques. Une
des limitations de I'Interprétation Abstraite provient de la difficulté de choisir le
domaine abstrait adapté a la propriété a vérifier. Par contre, les approches a base
d’Interprétation Abstraite sont capables de traiter automatiquement les boucles
sans annotations supplémentaires, grace a 'usage d’opérateurs particuliers (i.e.,
“widening/narrowing”).

Egalement basé sur des techniques d’abstractions, la vérification symbolique de
modele avec abstractions! explore les chemins d’un modéle du programme dans
le but de trouver des contre-exemples a une propriété a vérifier. Grace a des des
méthodes de raffinement automatique de modele, SLAM [Ball 01,Ball 11] et BLAST
[Henzinger 03] sont deux outils représentatifs de ce domaine de recherche qui ont
connus des succes trés importants en matiére de recherche de contre-exemples
pour les programmes C. Cependant, ces outils s’appuient des abstractions qui sur-
approximent I'ensemble des états atteignables et explorent des chemins de taille
bornée sur les modeles. Ainsi, ces outils peuvent produire de fausses alarmes et
certaines propriétés peuvent ne pas étre vérifiées de par I'imprécision de la sur-
approximation.

1En Anglais, “symbolic model-checking with predicate abstraction” ou “counter-example guided
abstraction refinment”

Ces derniéres années, beaucoup d’attention a également été portée a l'utilisation de
la résolution de contraintes pour automatiser tout ou partie de la vérification des
logiciels. En 2000, Andreas Podelski soulignait déja que la vérification formelle
de programmes pouvait étre vue comme une instanciation de la résolution de
contraintes [Podelski 00] et proposait avec Giorgio Delzanno des techniques de
“model-checking” basée sur les contraintes [Delzanno 01]. Cormac Flanagan a
également proposé des fondations théoriques a l'interprétation a contraintes des
programmes impératifs dans [Flanagan 04]. Dans ces approches, la vérification
de programme se réduit au probleme consistant 8 montrer qu'un systeme de con-
traintes est satisfiable ou insatisfiable. Par exemple, montrer qu'une propriété est
vérifiée en un point particulier du code source conduit a résoudre un systéme de
contraintes qui caractérise I'état du programme sur un ou plusieurs chemins qui
atteignent ce point. Des travaux récents se focalisent sur 1'utilisation de résolveurs
de contraintes dans le contexte du “software model checking”, c’est a dire du con-
trole de propriétés sur des modeles batis par analyse du code source. Mais, c’est
principalement dans le domaine du test logiciel que les outils basé sur la résolution
de contraintes ont atteint un certain niveau de maturité [Godefroid 08a].

Comme évoqué dans les chapitres précédents, I’approche que nous avons pro-
posée des 1998 a conduit au développement de plusieurs prototypes de recherche.
Les outils INKA [Gotlieb 00b, Gotlieb 06b], TAUPO [Denmat 07b], et EUCLIDE
[Gotlieb 09a] sont des générateurs automatiques de test basé sur les résolveurs de
contraintes SICSTUS clpfd [Carlsson 97] et clpq [Holzbaur 95], qui ont été expéri-
mentés de maniére approfondie sur des programmes C critiques. Aux Etats-Unis,
l'utilisation de résolveurs SAT et de résolveurs de Programmation Linéaire pour
la génération automatique de cas de test a connu des développements spectacu-
laires. Les travaux de Patrice Godefroid et de Koushik Sen [Godefroid 05,Sen 05]
ont initié le développement de plusieurs générateurs de tests basés sur 1'exécution
symbolique dynamique, tels que PEX [Tillmann 08] et SAGE [Godefroid 08b] chez
Microsoft, CREST [Burnim 08] a I'Université de Berkeley, ou EXE [Cadar 06] a
I"'Université de Stanford. Tirant partie des progres importants réalisés dans le do-
maine des résolveurs SMT (Satisfiability Modulo Theory), certains de ces outils ont
démontré des capacités impressionnantes de passage a ’échelle [Godefroid 09].
En France, Bruno Marre et Nicky Williams ont développé au CEA le générateur de
tests GATEL [Marre 00] pour les programmes Lustre, et PathCrawler [Williams 05]
pour les programmes C. Ces outils, qui s’appuient sur Colibri, un résolveur de con-
traintes basé sur la propagation de contraintes, sont utilisés pour générer des tests
dans des applications de taille industrielle. Hélene Collavizza, Michel Rueher et
Pascal Van Hentenryck ont proposé CPBPV pour la vérification de propriétés sur
les programmes Java [Collavizza 08]. CPBPV s’appuie sur l'utilisation de deux
résolveurs de contraintes, i.e., ILOG CPLEX et JSolveur [Leconte 06, Berstel 10],
et se montre compétitif avec certains “model-checkers” dédiés a l’analyse et a la
vérification de code source.

Les articles sélectionnés

Les trois articles présentés dans ce chapitre introduisent une approche originale
pour le test & base de contraintes : 1'utilisation de techniques de calculs sur les do-
maines abstraits pour améliorer la résolution de contraintes. Afin d’obtenir une
résolution efficace des systémes de contraintes issus des modeles, nous avons bati
une procédure qui utilise les domaines abstraits tels qu’ils ont été proposés en In-
terprétation Abstraite [Cousot 77, Cousot 92]. A l'instar d’autres approches telles
que celle suivie dans le résolveur Abscon [Merchez 01] ou celle de [Truchet 10],
nous avons montré l'existence de liens étroits qui unissent les notions classiques
de filtrage par consistance locale et calculs sur les domaines abstraits [Gotlieb 09d].
Nous avons également montré comment utiliser certains opérateurs d"union ab-
straite dans le cadre de la génération automatique de tests [Denmat 07b]. Notre
travail dans ce domaine a porté sur la réalisation du logiciel Euclide, qui com-
bine le filtrage par consistance de bornes avec une consistance a base de calculs
polyédriques, pour vérifier automatiquement des propriétés pour les programmes
C critiques.

A. Gotlieb. EUCLIDE: A constraint-based testing platform
for critical c programs. In 2th IEEE International Confer-
ence on Software Testing, Validation and Verification
(ICST’09), Denver, CO, Apr. 2009.

Euclide: A Constraint-Based Testing framework for critical C programs*

Arnaud Gotlieb
INRIA Rennes - Bretagne Atlantique
Campus Beaulieu, 35042 Rennes Cedex, France
Arnaud.Gotlieb@irisa.fr

Abstract

Euclide is a new Constraint-Based Testing tool for veri-
fying safety-critical C programs. By using a mixture of sym-
bolic and numerical analyses (namely static single assign-
ment form, constraint propagation, integer linear relaxation
and search-based test data generation), it addresses three
distinct applicationsin a single framework: structural test
data generation, counter-example generation and partial
program proving. This paper presents the main capabilities
of the tool and relates an experience we had when verify-
ing safety properties for a well-known critical C component
of the TCAS (Traffic Collision Avoidance System). Thanks
to Euclide, we found an unrevealed counter-example to a
given anti-collision property.

1 Introduction

Context. Safety-critical systems must be thoroughly
verified before being exploited in commercial applications.
In these systems, software is often considered as the weak-
est node of the chain and many efforts are deployed in order
to reach a satisfactory testing level. A challengein thisarea
is the automation of the test data generation process for sat-
isfying functional and structural testing requirements. For
example, the standard document which currently governs
the devel opment and verification process of softwarein air-
borne system (DO-178B) requires the coverage of al the
statements, all the decisionsand MC/DC at the highest level
of criticality and it is well-known that DO-178B structural
coverageis aprimary cost driver on avionics project.

In addition, the verification process of critical systems
often requires the verification of safety properties, as peo-
ple's life may rely on these properties. For airborne sys-
tems, some safety properties can be extracted from specifi-

*Thiswork is partialy supported by ANR through the RNTL CAT and
the CAVERN projects under the reference ANR-07-SESUR-003

cation documents that describe the so-called anti-collision
theory regulating the controlled airspace. Checking these
safety properties is mandatory and is usualy preformed
by manual code reviews. Although they are widely used,
most of the existing testing tools on the market are cur-
rently restricted to test coverage monitoring and measure-
ments. Coverage monitoring answers to the question: what
are the statements or branches covered by the test suite ?
while coverage measurements answers to: how many state-
ments or branches have been covered ? But these tools
usually cannot find the test data that can execute a given
statement, branch or path in the source code. In most in-
dustria projects, the generation of structural test datais till
performed manually and finding automatic methods for this
problem remains a holly grail for most testers. Neverthe-
less, several experimental tools exist for C programs in-
cluding INKA [20], PATHCRAWLER [32, 27], CUTE [30] or
PEX [31], but none of them can also check safety properties
or generate counter-examples that invalidate safety prop-
erties. Software model-checking tools such as SAVE [9],
MAGIC [6], BLAST [23] or cBMC [8] have been proposed
for checking properties over a piece of C code. But, these
toolsusually cannot generate atest suite that covers selected
structural criteria. Finally, proof-based environments such
as WHY/CADUCEUS [18] can automatically prove proper-
ties for C programs. But these tools cannot generate test
cases or counter-examples.

Euclide. In this paper, we propose Euclide a constraint-
based testing tool that features three main applications:
structural test data generation, counter-example generation
and partial program proving for critical C programs. The
core algorithm of the tool takes as input a C program and
apoint to reach somewhere in the code. As aresult, it out-
comes either a test datum that reaches the selected point,
or an “unreachable” indication showing that the selected
point is unreachable. Optionally, the tool takes as input ad-
ditional safety properties that can be given under the form
of pre/post conditions or assertions directly written in the

code. In this case, Euclide can either prove that these prop-
erties or assertions are verified or find a counter-example
when there is one. As these problems are undecidable in
the general case, Euclide only provides a semi-correct pro-
cedure (when it terminates, it providesthe right answer) for
them. Hopefully, by restricting the subset of C that the tool
can handle (no dynamic memory alocation, no recursion)
these non-termination problems remain infrequent in prac-
tice. In addition, Euclide implements several procedures
that combine atomic calls to the core algorithm. For exam-
ple, by selecting appropriate points to reach in the source
code, the tool can generate a complete test suite able to
cover the al_statements or the all _decisions criteria.

Providing atool ableto deal with these three applications
(structural test data generation, counter-example generation
and partial program proving) in a single framework offers
several advantages:

e For the developers having to maintain code they did
not wrote, using a tool able to generate a failure-
causing test datum that reaches a given point facilitates
the debugging process. In fact, the test datum can eas-
ily be submitted as input to a symbolic debugger that
will drive the computation towards the failure-causing
point in the code ;

In the unit testing phase, achieving high coverage with
atest set that satisfies safety assertions improves the
quality of the test selection process. Theissued test set
favorably enriches the set of tests to replay for future
versions of the software (Regression Testing) ;

For certification purposes, it is convenient to work
only on a single certification product, namely the
source code along with its annotations (assertions and
pre/post conditions). Showing that the program satis-
fies all the required safety properties and that al parts
of the program are executable and have been tested
with respect to these propertiesis certainly agood way
to convince a certification authority that the developed
softwareis correct and reliable.

The underlying technology of Euclide is Constraint-Based
Testing (CBT). Constraint-Based Testing is atwo-stage pro-
cess consisting first to generate a constraint system that cor-
responds to the testing objective we want to reach (for ex-
ample, aselected point in asource code) and then, second to
solve the constraint system by using well-recognized con-
straint programming techniques. CBT received consider-
able attention these latter years as constraint programming
emerged as a worthwhile programming paradigm and solv-
ing techniques have been much improved.

Contributions. The originality of Euclide comes from
its unique way of combining symbolic and numerical anal-
yses such as static single assignment form, constraint prop-

agation, integer linear relaxation and search-based test data
generation. Static single assignment form (SSA) relieves
the tool from using costly and path-oriented symbolic eval-
uation techniques for generating the constraint system. In-
deed, SSA allows considering several paths going through
the selected point to reach at the same time. Thanksto con-
straint propagation, Euclide nicely handles non-linear op-
erations such as multiplication between unknown variables,
division, conditional and loop statement within C programs.
Thanks to integer linear relaxation, the tool handles ef-
ficiently linear operations over integer variables. It aso
detects some unsatisfiable (possibly non-linear) constraint
systems which were unbearable without this technique. Fi-
nally, thanksto its search-based test data generator that co-
operatively labels the variables according to distinct heuris-
tics, Euclide can generate test data or counter-examplesin
very efficient way. In this paper, we do not claim that Eu-
clide is better than other more specialized test data gener-
ators or software model-checkers, but we show that this is
its combination of symbolic and numerical techniques that
offer the opportunity to get results outside of the scope of
other tools. We exemplify this statement by our recent ex-
perience on using Euclide to prove safety properties for a
well-known critical C component of the TCAS (Traffic Col-
lision Avoidance System). Thanksto Euclide, we found an
unrevealed counter-example to a given anti-collision prop-
erty.

Plan of the paper. The rest of the paper is organized
as follows: Section 2 reviews the main technologies used
in Euclide. Section 3 presents its architecture and imple-
mentation while Section 4 relates our experience in using
Euclide for generating test data and checking safety prop-
erties of a critical module of the TCAS. Section 5 presents
the related work and finally, Section 6 concludes and draws
some perspectives to this work.

2 Constraint generation and solving

2.1 Critical ISO/IEC compliant C pro-
grams

Our approach is dedicated to the testing of safety-critical
(and ISO/IEC compliant) C programs. These programs
share some characteristics such as being written in a re-
stricted subset of the C language that excludes recursion
and dynamic memory allocation among other things. The
C language, as defined by the 1SO/IEC standard [33], has
also the conisiderable advantage to be well defined in terms
of syntax and semantics, evenif several operationshavestill
an undefinegl behavior! or a behavior defined by the imple-

1Exact behgvior which arises is not specified by the standard, and ex-
actly what wil| happen does not have to be documented by the C imple-
mentation.

mentation (in particular for floating-point computations).

Euclide handles a subset of C that includes integer and
floating-point computations, pointers towards named loca-
tions, arrays of statically-allocated size, structures, function
calls, bit-to-bit operations such as masks, al control struc-
tures (including loops) and almost all operators (34 over
42). But, it also has some restrictions: it does not deal ac-
curately with unstructured statements such as gotos, uncon-
strained pointer arithmetic (such as using a physical address
of a memory segment or adding two unrelated addresses
as if they were integers), function pointers, functions with
a unknown number of parameters, volatiles, unions, mem-
ory type casting (such as reading an integer as it was an
address), library and external function calls (unavailable
source code).

2.2 Generating Euclide programs

Euclide is based on a constraint model of C programs.
This model, expressed in a dedicated language, is extracted
from the source code by several transformational passes:
parsing, normalization, pointer analysis, Static Single As-
signment form and constraint model generation. In this
section, we briefly review all these passes and discuss the
main technologies used in Euclide to generate and solve
constraint systems corresponding to testing objectives.

Parsing and normalization. This pass consists in
building a symbol table and an abstract syntax tree for
each compilation unit (preprocessed program). The sym-
bol table keeps track of the type, scope, memory alo-
cation class of each variable of the program while the
abstract syntax tree captures the syntax of al the (non-
declarative) statements of each function. Normalization
is a process that permits to break complex statement into
simpler ones. The rationale behind this pass is to sim-
plify other passes by considering a smaller set of state-
ments to analyze. Complex control structures are rewritten
into simpler ones, function calls and arguments are isol ated
as well as side-effect expressions, multi-operators state-
ments are decomposed. For example, thanks to the intro-
duction of new temporary variables, a complex assignment
statement such as e=v1«v2xf () +v3; is decomposed
into t0=£(); tl=vl«v2; t2=t1st0; e=t2+v3;
because the function call has a higher priority than and +
and operands are eval uated from left to right. Note that such
decomposition correctly handles multi-occurrencesin C ex-
pressions. In the presence of floating-point computations,
specia attention must be paid to preserve the semantics. In
particular, the decomposition requires that intermediate re-
sults of an operation conform to the type of storage of its
operands?. In the previous example, if v1 and v2 are of

2This property is not a requirement of |EEE-754 which is the standard
that governs floating-point computations and consequently it is not always

single-format, then the temporary variable t 1 must also be
single-format. For floating-point computations, this process
has been extensively presented in a dedicated paper [4].

Points-to analysis. Euclide implements a points—to
analysis that statically collects a set of variables that may
be pointed by the pointers of the program and determines
the set of memory locations that can be accessed through
a dereference [21]. We selected a flow-sensitive points-to
anaysis previously introduced by Emami et al. [16] where
each points-to relation is a triple: pto(p, a, de finite) or
pto(p, a, possible) where a denotes a variable pointed by
p. Intheformer case, p points definitely to a on any control
flow path that reaches the statement where the pointing re-
|ation has been computed. Inthelatter case, p may pointsto
a only on some control flow paths. In a flow-sensitive anal-
ysis, the order on which the statements are executed is taken
into account and the analysisis computed on each statement
of the program.

Single Static Assignment form (SSA). A key-feature
of Euclide concerns its use of the SSA form to avoid the
usual costly path exploration phase of other tools. The SSA
form is a semantics-preserving transformation of a pro-
gram where each variable has a unique definition and every
use of this variable is reached by the definition. Perform-
ing this transformation requires to rename uses and defi-
nitions of the variables. For example i=i+1; j=j«1iis
transformedinto i2=i1+1; j2=j1i2. Atthejunction
nodes of the control structures, SSA introduces specia as-
signments called ¢-functions, to merge several definitions
of thesamevariable: v3 = ¢ (v1,v2) assignsthevalue
of v1 inv3 if the flow comes from the first branch of the
decision, the value of v2 otherwise. SSA provides spe-
cial expressions to handle arrays : access (a, k) which
evaluatesto the k*" element of a, andupdate (a0, j,v)
which evaluatesto an array a1 which hasthe same size and
the same elements as a0, except for j wherevalueisv. In
the presence of pointers, special care must be taken when
expliciting the possible hidden definitions of variables. We
therefore defined a special form called Pointer SSA that
captures hidden definitions through the usage of new spe-
cial assignments exploiting the results of the flow-sensitive
points-to analysis. The interested reader can consult [21]
to get more details on our implementation of the so-called
Pointer SSA form which accurately captures hidden defini-
tions due to dereferences.

Constraint generation. Finally, statements under SSA
form are converted into constraints in a dedicated interme-
diate language (not very inventively called Euclide). Rela-
tions, which are units of the language, can be either user-
defined or primitive. User-defined relations correspond to
functionsdefined in the C program while primitive relations

true. For example, on Intel’s architectures extended formats are used by
default to store intermediate results

arerelations provided by the languageitself. A relation can
call other relations, allowing so to capture the C function
calling mechanism. Examplesof primitive relationsinclude
the ITE relation that models a conditional statement or the
W relation modeling iterative statements. We will discuss
the ITE relation in details in Sec.2.3 while details on W
can be found in [13]. Evaluating an Euclide program yields
either to true (= 1), or false (= 0) or suspend (= 0..1), cor-
responding to the truth value of the last evaluated relation
of the program. Evaluation isincremental and relations can
be awoken by additional relations. Fig.1 contains a simple
Euclide program that implements arelational version of the
greatest common divisor algorithm. Note that this Euclide
program has been automatically generated from the imper-
ative version of the gcd program.

rel GCD (X, Y, Z) iff
{
[X,Y, Z] inintegers(unsigned, 32),
X>0,Y>0,Z>0,
W(X > 0,[X,Y],[X4,Y2],[X5,Y3],

% trueiff Z=ged(X,Y)

ITE (X <Y, [X,Y],[X2,Y1],[X3,Y2],

locals [X1], % X1 islocal to the current bloc

X1=X+Y,
Y1=X1-Y,
X2=X1-Y1
h
{} % There is no Else_part
)
X4=X3-Y2

})

Figure 1. The Euclide GCD program

On the request GCD(X,Y,2), X in 1..10, Y
in 10..20, Z in 1..1000,theconstraint solversof
Euclide reduce the bounds of zZ to 1. . 10. Furthermore, if
we add the relation X=2 « Y, then Euclide automatically de-
ducesthat zZ must be equal to Y to satisfy the request, which
isastrong deduction usually outside the scope of other con-
straint solvers. In addition, the Euclide language includes a
reach directive that is used to specify testing objectives. By
inserting a reach directive in an Euclide program, the user
unambiguously selects alocation to reach within the source
code and constrains the solutions of the program to satisfy
this objective. For example, in the program of Fig.1, adding
a reach directive in the Then-part of the conditional rela-
tion, permits to generate a test datum (values for X, Y) that
reaches this part through an executable path. This reach
directive is a key point of Euclide as it permits to specify
various problems of reacheability, including structural test
data generation and counter-example generation.

An error-free semantics. The Euclide program cap-
tures an error-free relational semantics of its correspond-

ing C program. In other words, executionsthat yield errors
such as dividing-by-zero or null pointer dereferencing are
not considered when solutions of the Euclide program are
seeked. In fact, Euclideaimsat finding functional faultsand
not runtime errors (i.e. errors that cause exceptions at run-
time). Typicaly, a functional fault occurs in a program P
when P returnsthe value 3 when 2 was expected. Detecting
functional faults is crucial in the context of safety-critical
program verification as peopl€e’s life may rely on it. Note
that functional faults cannot be detected by existing static
analyzers as there is no oracle in these tools. By focusing
on functional faults only, our constraint model is also sim-
pler to implement and more efficient, as it does not have to
maintain spurious erroneous states.

2.3 Constraint solving

The most innovative part of Euclide concerns its con-
straint solving engine. As said previously, Euclide imple-
ments constraint propagation, dynamiclinear relaxation and
search-based test data generation in order to satisfy testing
objectives. A testing objective can be either 1) to generatea
test datum that passes through areach directive, 2) to gener-
ate a counter-example (i.e. acomplete path that invalidates
a property) or 3) to prove that a given property is satisfied
by all executions of the program. Both former cases cor-
respond to find a solution of a constraint system while the
latter corresponds to show that a certain constraint system
is unsatisfiable. In the latter case, the proof is only par-
tial because al the domains on which the proof holds are
bounded.

Constraint Propagation (CP). Roughly speaking, CP
considers each constraint in isolation as afilter for the vari-
ation domain of the constraint variables. Once a reduction
is performed on the domain of a variable, CP is awaking
the other constraints that hold on this variable in order to
propagate the reduction. Technically, CP is incrementally
introducing constraints into a propagation queue. Then,
an iterative algorithm is managing each constraint one by
one into this queue by filtering the domains of their in-
consistent values. When the variation domain of variables
is too large, filtering algorithms consider usually only the
bounds of the domains for efficiency reasons. a domain
D = {v1,vs,...,v-1,v,} is approximated by the range
v1..v,. When the domain of a variable is pruned then the
algorithm reintroduces in the queue all the constraints that
hold on this variable. The algorithm iterates until the queue
becomes empty, which corresponds to a state where no
more pruning can be performed. When selected in the prop-
agation queue, each constraint is added into a constraint—
store which memorizes all the considered constraints. The
constraint-store is contradictory if the domain of at least
one variable becomes empty. In this case the corresponding

testing objective is shown as being unsatisfiable.

Efficiency and completeness of CP. In the worst case,
constraint propagation runsin O(mn) where m denotesthe
number of constraints and n denotes the size of the largest
domain. But constraint propagation alone does not guar-
antee satisfiability, as it just prunes the variation domains
without looking at potential solutions. And it must be cou-
pled with other mechanisms in order to find solutions or to
show inconsistency®

Dynamic Linear Relaxations (DLRs). In[14], wein-
troduced DLRs to relax dynamically al the constraints of
an Euclide program, including the non-linear ones, within
a Linear Programming framework. Linear Programming
techniques such asthe simplex procedure can solve hugein-
stances of linear constraint systems very efficiently. Linear
relaxation can be understood as a systematic way to over-
approximate Euclide’s relations by linear constraints. We
integrated linear relaxations within the constraint propaga-
tion process, yielding to an optimized cooperation scheme
of the constraint solving process. For control structures
(conditionals, loops) we proposed specific DLRs based on
case-based reasoning and abstract interpretation techniques
[13]. For example, the DLR of the ITE relation uses the
following principles: given an ITE relation modeling a dis-
junction between two subpaths (Then—part and Else—part),
first try to provethat one of the two disjunctsis unsatisfiable
with the rest of the constraints and, thus, replace the overall
digunction by the other disjunct. Second, when this case-
based reasoning fails, compute the union of both domains
asin the following example: from the disjunctive constraint
X =Y VX =5withdomains Dx = —1000..1000, Dy =
0..1, one can deduce that Dx = 0..5, Dy = 0..1. In Eu-
clide, we extended the union principle with linear relations.
For example, considering X = Y + 10V X =Y — 10
with domains Dx = Dy = 0..20 we deduce that —10 <
X —Y < 10 whilethe above reasoning over domainswould
not have deduce anything new on the domains.

Test Data Generation. CP and DLRs cannot guaran-
tee satisfiability on their own as they both computes over-
approximations of the sets of solutions. Hence, it is nec-
essary to combine these processes with a labeling step in
order to exhibit a solution (a test data satisfying the test-
ing objective or a counter-example to a given property) or
to demonstrate unsatisfiability (a partia proof of the prop-
erty). Such alabelling step consists in exploring the input
search space. One remarkable feature of modern labelling
proceduresis their ability to awake constraint propagation.
Onceavauea isassignedtoavariablev, aconstraintv = a
is added to the constraint system and awakes other con-
straints holding on v. Thanksto CP, the input search space
islikely to be pruned before having to enumerate all the val-

3Proving a property over a piece of code in Constraint-Based Testing
requires showing that a constraint system is unsatisfiable.

ues of the variables domain. In Euclide, we implemented
and experimented several heuristics to choose the variable
and the value to enumerate first. Finally, we depicted ala
belling procedure that enchains several heuristics: domain
constraints, domain splitting, exhaustive search, and ran-
dom choices. Domain constraints consists in exploring sub-
domains of the input search space by iteratively increasing
the size of the explored subdomains, while domain splitting
consistsin dividing the subdomains by propagating division
constraints. For example, if = € 0..232 — 1 then domain
splitting first adds the division constraint z € 0..231 — 1
which will be propagated throughout the constraint system
and second it adds = € 231..232 — 1. Exhaustive search is
the processthat will enumerate al the valuesin theincreas-
ing or decreasing order of a given single dimension subdo-
main while random choices will pick up values at random
within a domain. Thanks to these heuristics, search-based
test data generation allows to find solutions in most cases.
However, asthe problem of finding solutions of anon-linear
constraint system over finite domainis NP_hard [22], it may
happen that the search failsin a reasonable amount of time.
For these reasons, we implemented a parameterized time-
out process to the search.

3 Architecture and implementation

Euclide features three main applications: structural test
data generation, counter-example generation and partia
program proving. The tool architecture shownin Fig.2 and
its implementation were thought with these applicationsin
mind.

3.1 Architecture

The tool takes a set of C files as input, optionally anno-
tated by pre/post conditions and assertions (input column).
For each C function of thefiles, an intra-procedural control
flow graph is built and can be displayed through a graphi-
cal user interface (Control flow graph generator and CFGs
component of the output column). In addition, an Euclide
program is generated through the passes that have been
presented above (parsing, normalization, points-to analysis,
SSA form, constraint generation). Selecting either a node
or a branch to reach yields to add a reach directive within
the intermediate Euclide program (testing objectives of the
input column). From there, constraint solving is launched
according to some parameterization through an evaluator
component. When atest datais generated, the flow is mon-
itored either on the control flow graph or on atextual view
of the Euclide program. The value of each individual input
is shown and recorded when agreed by the user. Option-
ally, the linear relations that over-approximate each inter-
mediate state of the analysis are printed within an interme-

Input Output
GUI (TclITk) /Core (PROLOG)

file.c + I
compilation |7 C parser
command
Control flow || CFGs
Pre/post graphs generator
conditions

Normalization
Points-to analysis

SSA form generator

Testing
objectives
(reach directives)

Coverage
monitoring

Symbol T
table Test data
Test sets
Constraint
Non-feasibility

informations

Euclide
intermediate
program

Partial Proofs

NN

Built-in Utilitaries
Relations

Figure 2. Euclide’s architecture

diate file. When the testing objective is unsatisfiable (non-
feasible point or unsatisfiable property), then thisis reported
totheuser. Inaddition, several automatic structural test data
generation proceduresare avail able such as generating atest
set that covers all the executable statements or decisions.
These procedures use several algorithms that add reach di-
rectivesin appropriate locations.

3.2 Implementation

The Euclide's implementation includes 9 internal com-
ponents (inside the box of Fig.2) and two additional inter-
face components. The tool is mainly developed in Prolog
(~10 KLOC), C (~0.3 KLOC) and Tcl/Tk (~0.5 KLOC).
The internal components include a backtrackable C parser
written with the Definite Clause Grammar of Prolog, a
SSA form generator based on the single-pass generator of
Brandis and Mossenbock [5], an Euclide program generator
and parser, abuilt-in relations library that implements most
of the C operations (conditionals, loops, bit-to-bit opera-
tors, logical operators, function call operator, access/update,
memory operations,...) and an utilitary component. The ad-
ditional interface componentsimplement the graphical user
interfacein Tcl/Tk and the batch mode in Prolog. Floating-
point low-level representation and operations are imple-
mented in C.

The evaluator component implements several constraint
solvers that make use of the two following libraries: the
clpfd library of Sicstus Prolog which implements a finite
domains constraint solver ; and the clpq library that imple-

ments a linear programming solver based on simplex over
the rationals. We made the two solvers cooperate by im-
plementing our own constraint propagation queue and by
building a dedicated constraint propagation solver.

4 Casestudy

Euclide is a Constraint-Based Testing tool dedicated to
the validation of critical C programs and besides the tradi-
tional validation on academic examples, we wanted to eval-
uate the capabilities of Euclide on areal-world program. A
typical (but small) example is the well-documented TCAS
component of the Siemens suite. This suite was initialy
provided by Thomas Ostrand and its colleagues at Siemens
Corporate Research Unit for an experimenta study of the
fault detection capabilities of coverage criteria[24]. It was
then exploited by both Industry and Academia to evalu-
ate testing strategies. Each component of the suite comes
with a set of test cases and a set of mutants that exemplify
typical faults. Recently, the suite was made publicly and
freely available through the Software-artifact Infrastructure
Repository [15].

TCAS (Traffic Alert and Collision Avoidance System)
isan on-board aircraft conflict detection and resol ution sys-
tem embedded on all commercial aircrafts. The system is
intended to alert the pilot to the presence of nearby aircraft
that pose a mid-air collision threat and to propose maneu-
vers so as to resolve these potentia conflicts. In cases of
collision threats, the TCAS enters some levels of aertness.
As shown on Fig.3, when an intruder aircraft enters a pro-
tected zone, the system issues a Traffic Advisory (TA) to
inform the pilot of potential threat. In addition, TCAS es-
timates the time remaining until the two aircrafts reach the
closest point of approach (CPA). If the danger of collision
increases then a Resolution Advisory (RA) is issued, pro-
viding the pilot with a proposed maneuver that is likely to
solve the conflict. The RAs issued by TCAS are currently
restricted to the vertical planeonly (either climb or descend)
and their computation depends on time-to-go to CPA, range
and altitude tracks of the intruder.

Implementation. The main component (tcas . c), ex-
tracted from the Repository is responsible of the Resolu-
tion Advisories issuance. It is made up of 173 lines of C
code and contains nested conditionals, logical operators,
type definitions, macros and function calls. Fig.4 shows
the call graph of the program while Fig.5 shows the code
of the highest-level function A1t _sep_test which com-
putes the RAs. This function takes 14 global variables
as input, ingluding Own_Tracked Alt the altitude of the
TCAS equipped arplane, Other_TrackedAlt the a-
titude of the “threat”, Positive RA_Alt Thresh an
adequate separation threshold, Up Separation the esti-
mated separgtion altitude resulting from an upward maneu-

/)

Figure 3. TCAS alarms

ver and Down_Separation the estimated separation alti-
tude resulting from a downward maneuver.

Interestingly, any TCAS implementation should be cer-
tified under level B of the DO-178B standard®. This has
several implications w.r.t. the testing level required for cer-
tifying the TCAS. In particular, all the statements and deci-
sions of the source code must be executed at |east once dur-
ing the testing process and any statement and decision must
be shown as being executable, because non-executable ele-
ments do not trace to any software requirements and do not
perform any required functionality.

Safety properties. In addition to these requirements,
any TCAS implementation should verify safety properties
that come from the aircraft anti-collision theory [28]. For
the considered component, several properties referring to
the possibility of issuing either an upward or a downward
RA have been previously formalized [26, 9]. Tab.1 shows
the five double properties extracted from [9]. For example,
property P1b saysthat if an upward maneuver does not pro-
duce an adequate separation while an downward maneuver
does, such asin Fig.6, then an upward RA should not been
produced.

Results and analysis. We conducted several experi-
ments on this program to evaluate the capabilities of Eu-
clide to serve as an aid for certification purposes. Firstly,
we evaluated structural test data generation for the cover-
age of the all_decisions criterion. On an Intel Core Duo
2.4GHz clocked PC with 2GB of RAM, Euclide generated
atest set covering al the executable decisions of the tcas
program in 16.9 seconds, including time spent garbage col-

4The standard classifies systems under 5 criticality levels: from the
highest critical level A to the least critical E

main

.

Initalize

Alt_sep_test

\

Non_Crossing_Biased_Climb Non_Crossing_Biased_Descend

Own_Below_Threat
= Own_Above_Threat
Inhibit_Biased_Climb
AUM

Figure 4. Call graph of tcas.c

int it sep_test()
bool enabled, tcas equipped, intent not known;

bool need_upward_RA, need dowrward RA;
intalt.sep;
tcas.equipped = OtherCapability == TCAS.TA;
intent.not known = Two.of Three.Reports.Valid && Other RAC == NOJNTENT;
alt.sep = UNRESOLVED;
if (enabled && ((tcas equipped && intent not known) —— Itcas equipped))
{
9. need.upward.RA = Non.Crossing.Biased.Climb() && Own.Below Threat();
10, need downward RA = Non.Crossing Biased Descend() && Own_Above Threat();
11 if (need_upward RA && need downward RA)
J* unreachable: requires Own.Below_Threat and Own_Above Threat
toboth be true*
12, altsep=UNRESOLVED;
13 dseif (neecupward.RA)
14, altsep= UPWARD.RA;
15 dseif (need downward RA)

16 altsep= DOWNWARDRA;
17. esealt.sep= UNRESOLVED:;
}

18 reumatsp;
}

Figure 5. Function alt_sep_test from tcas.c

lecting, stack shifting, or in system calls. It also showed
that the decision of line 11-12 of Fig.5 was non executable
in less than 0.2 second. Secondly, we evaluate partial pro-
gram proving on the safety properties of Tab.1. Results are
shown in Tab.2. Finding counter-examplesto safety proper-
ties on a TCAS implementation could appear as being dra-
matic. But, the reader should be warned that this TCAS
implementation probably correspondsto a preliminary ver-
sion and that it has probably never been used in operational
conditions.

Surprisingly, we found that properties P2B, P3A and
P5B were not proved w.r.t. theimplementation and, thanks
to Euclide, we exhibited verified counter-examples. These
counter-examples satisfy the preconditions but invalidate
the postconditions of the properties when submitted to the

Table 1. Safety properties for tcas.c

Nuf_Property

Explanation

Plaf Safe advisory selection

‘An downward RA is never issued when an down-
ward maneuver does not produce an adequate sepa-
ration

Pibf Sefeadvisory selection

assumes Up Separation >= Positive RAAlt Tresh && Down Separation < Positive RAAlt Tresh;
ensures result | = need DownwardRA;

iSnever

assumes UpS: tion < Positive Tt Tresh && DownS €

neuver

lt.Tresh;
ensures result | = needUpwardRA;

A downward RA isnever fssued when neither climb

assumes U tion < Positive 1t Tresh && Down Separation < PositiveRAAIt.Tresh &&
P2a) Best advisory seection or desoend meneuvers produce adequate separaion | 1o, ceparation < Up.Separation; ensures result ! = needDownward.RA;
AN Upward RA 15 never Tssuied when naither climb oumes oeitim oon oeitim rroor
P2 Bes mhisry sdecion or e s s seesgmaion || 35000 e T T oy e
and an upward manewver -Separ -Ser i ens; 1 need.t RA;
el Avoidum crossing A Grossing RA is never ssued when both climb or assumes Up > Positive Tt Tresh & Dom S T veTARIET =
il fescend man adequate separation Own.TrackedAlt > Other.Tracked.Alt; ensures result ! = need.Downward.R
oo Avodum crossing A Grossing RA 15 never fssued when both climb or assumes Up tion > Positiv: Tt.Tresh && Dow tion > PositiveRAALL.Tresh &&
necessary descend Own_TrackedAlt < Oth cked Alt; ensures result | = need.UpwardRA;

] o crossing advisory seleciion | A crosing RA is never issued assunes OunrackedAlt > OtherTrackedAlt; ensures result | — needDownwardRA;
ab] o crossing advisory sdedlion | A crossing RA isnever isued assunes GunJracked ALt < OtherTrackedAlt; ensures result | — need UpwardRh;
Psa| Optimal advisory selection The RA that produces [ess separation is never is- assumes Down Separation < Up.Separation; ensures result | = needDownwardRA;

The RA [fion is never i
Pst| Optimal acvisory selection he RA thet produoes less separdion is never i [nes Down_Separation > Up.Separation; ensures result | = need Upward-RA;

1
2
3
4. enabled = High Confidence & & (Own.Tracked Alt Rate < = OLEV) && (Cur Vertical_Sep > MAXALTDIFF);
5.
6.
7.
8.

A Up_Separation
B': Down_Separation

Figure 6. Resolution Advisories

implementation. All the material of these experiments, in-
cluding the test data corresponding to counter-examples, is
available online®. In addition, counter-examples to prop-
erties P5B were not reported in the literature [9, 8, 6].
Moreover, we got these counter-examples and proofs very
quickly (all the counter-examples and proofs are generated
in less than 20s on our standard machine) which is encour-
aging for a future comparison with other more dedicated
tools.

5 Related work

Euclide addresses three distinct applications for C pro-
grams, namely test data generation for structural testing,
counter-example generation and partial program proving.
We are not aware of any tool having the same capabilities
for C programs. However, many tools exist for one or two
of these tasks.

Partial program proving. These tools usualy apply
Floyd-Hoare logic or Dijkstra's weakest preconditions cal-
culus to the formal verification of the so-called verification
conditions (VCs) extracted from programs and annotations.

Swww.irisa.fr/lande/gotlieb/resources.html

Table 2. Verification of safety properties

Time Mem.
Num Results (sec) (MB)
Pla | Property proved 0.7 4.6
P1b | Property proved 0.7 4.6
P2a | Property proved 0.6 4.6
P2b | Counter-examplefound | 0.7 4.6
P3a | Counter-examplefound | 5.4 6.3
P3b | Property proved 12 4.6
Pda | Counter-examplefound | 6.8 6.9
P4b | Counter-examplefound | 2.7 5.9
P5a | Property proved 0.6 4.6
P5b | Counter-examplefound | 1.0 4.6

Caduceus [18], which was pioneering deductive verifica-
tion of C programs, concurrently launches severa interac-
tive proof assistants or theorem provers to prove a given
assertion. Spect# [25] infers loops invariants by using ab-
stract interpretation and infers V Cs, even in the presence of
dynamic allocated objects on the heap. More recently, Dash
[2] explaits lightweight symbolic execution techniques and
asingle cal to atheorem prover to show that a given prop-
erty is satisfied on severa paths of the implementation. Eu-
clide implements its own automated constraint solving pro-
cedures while Caduceus, Spec# and Dash exploit existing
interactive proof assistants and automated theorem provers.
As a result, Euclide deals more accurately with floating-
point computations [4] and more efficiently with integer-
based computations as it supposes every integer variable
to belong to a finite domain and implements its own ded-
icated constraint techniques. But Euclide is also harder to
develop and is less general becauseits proofsare only valid
for bounded integer variables.

Automatic test data generators. The test data generator
Godzillawas proposed very early [12] for Fortran programs
in the context of mutation testing. In a subsequent paper,
the dynamic domain reduction procedure was developed to

enrich the constraint solving capabilities of this approach
[29]. This procedure mimicsthe constraint propagation step
described in Sec.2.3. Constraint propagation is an old idea
that lates back to the beginning of the seventies and its use
has been proposed very early for test data generation [3].
InKa [20] was a pioneer in the use of Constraint Logic
Programming for generating test data for C programs. It
was able to generate test case for programs containing dy-
namic allocated structures as its memory model was rich
enough [7]. Euclide can be seen as a successor of InKa
as it shares many technical features with it (both are based
on SSA and Constraint Propagation). However, several dis-
tinct choices have been made for efficiency reasons. Us-
ing some apriori restrictions (no dynamic memory aloca
tion, no recursion), the Euclide’s memory model is simpler
and permits to deal more efficiently with integer compu-
tations. PathCrawler [32], Dart [19] and CUTE [30] are
three modern path-oriented structural test data generators.
These three tools rely on path selection, symbolic execu-
tion and concolic execution. On the contrary, Euclide rely
on statement or decision selection (goal-oriented approach
[17]), static single assignment form and a mixture of sym-
bolic and numeric constraint solving procedures. The treat-
ment of loopsisvery different: while these path-based tools
unfold the control flow structure of loops to select a path,
Euclide handles aloop structure as awhole. By abstracting
the behavior of the loop structure (as done with abstract in-
terpretation techniques), the tool can deduce properties out-
side the scope of any path-based test data generator. For
example, Euclide can (sometimes) determine that a given
point, positioned after aloop structure, is unreachable. This
isimpossible with a path-based tool that will enumeratein-
definitely al the paths through the loop structure. Recently,
Bardin and Herrmann performed a remarkable work on the
OSMOSE tool which aims at covering all executable paths
of abinary program by using constraint solving techniques
[1]. By addressing low-level binary-code, they opened a
door that we could benefit from for improving the coverage
of our own tool. In fact, C code often presents low-level
features that we cannot currently deal with (unconstrained
pointer arithmetic, dynamic jumps, ...).

Counter-example generation. Software model-checkers
such as Save [9], Blast [23], Magic [6] or Cbmc [8] per-
mit to find counter-examples to temporal properties over
C programs. These tools explore the paths of a bounded
model of programsin order to find a counter-example path
to the property. Some of them exploit predicate abstrac-
tion and counter-example refinement to boost the explo-
ration. Euclide contrasts with SAT-based or SMT-based
model-checkersasit does not abstract the program and does
not generate spurious counter-example paths. In particu-
lar it builds a high-level constraint model of C program
by capturing an error-free semantics without considering a

boolean abstraction of the program structure. Our approach
has more similarities with the CPBPV tool of Collavizza,
Rueher and Van Hentenryck [10, 11] that call severa con-
straint solvers in sequence. Recently, its authors showed
that CPBPV could outperform the best model-checkers on
several classical benchmarks. As Euclide, CPBPV tool
is based on deductive constraint programming techniques.
However, research and experimental work remains to con-
firm these results obtained on a small set of academic pro-
grams.

6 Conclusion

In this paper, we introduced Euclide, a Constraint-based
testing platform for C programs. The capabilities of the
tool includestructural test datageneration, counter-example
generation and partial program proving and it combines nu-
merical and symbolic techniques, namely SSA, constraint
propagation, dynamic linear relaxations and search-based
test data generation. Euclide handles a large subset of C,
even if some apriori restrictions have been done (no recur-
sion, no dynamic allocation). The tool was applied to the
verification of a critical component of the TCAS, which
yields an unrevealed counter-example to a safety property.
However, the tool could be improved in many ways. Func-
tion calls are currently handled by inlining which prevents
Euclide from using efficient modular constraint-based anal-
ysis. Summaries of function calls could be exploited in the
test data generation process. Search-based test data genera-
tion currently exploits only complete heuristics that explore
the whole search space in the worst case. We could also
exploit local search techniquesthat are sometimes very effi-
cient. Other similar improvments are possible and requires
additional research worksin order to increase the efficiency
of thetool.

7 Acknowledgment

Much of the choices and decisions taken within the de-
velopment of Euclide were discussed with other people, and
| am indebted to all of them. | would like to thanks es-
pecially Tristan Denmat who investigated the role of Ab-
stract Interpretation in the linear relaxation techniques we
employed. Many thanks also to Bernard Botella, Benjamin
Cama, Florence Charreteur, Nadjib Lazaar, Bruno Marre,
Matthieu Petit and Pierre Rousseau.

References

[1] Sebastien Bardin and Philippe Herrmann. Structural testing
of executables. In 1th Int. Conf. on Software Testing, \erifi-
cation and Validation (ICST’ 08), pages 22—31, 2008.

[2] N.Beckman, A. Nori, S. Rgjamani, and R. Simmons. Proofs
from tests. In Proc. of | SSTA' 08, pages 3-14, 2008.

[3] J. Bicevskis, J. Borzovs, U. Straujums, A. Zarins, and
E. Miller. SMOTL - a system to construct samples for data
processing program debugging. |EEE Transactions on Soft-
ware Engineering, 5(1):60-66, January 1979.

B. Botella, A. Gotlieb, and C. Michel. Symbolic execution

of floating-point computations. The Software Testing, \Verifi-
cation and Reliability journal, 16(2):pp 97-121, June 2006.

M.M. Brandis and H. M&ssenb6ck. Single-Pass Generation
of Static Single-Assignment Form for Structured Languages.
ACM Transactions on Programming Language and Systems,
16(6):1684-1698, Nov. 1994.

[6] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and
Helmut Veith. Modular verification of software components
in C. |EEE Transactions on Software Engineering (TSE),
30(6):388-402, June 2004.

[7] E Charreteur, B. Botella, and A. Gotlieb. Modelling dy-
namic memory management in constraint-based testing. In
TAIC-PART (Testing: Academic and Industrial Conference),
Windsor, UK, Sep. 2007.

Edmund Clarke and Daniel Kroening. Hardware verification
using ANSI-C programs as a reference. In Proc. of ASP-
DAC’ 03, pages 308-311, Jan. 2003.

[9] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze. Us-
ing symbolic execution for verifying safety-critical systems.
In Proceedings of the European Software Engineering Con-
ference (ESEC/FSE'01), pages 142-150, Vienna, Austria,
September 2001. ACM.

[10] H. Collavizzaand M. Rueher. Exploration of the capabilities
of constraint programming for software verification. In Tools
and Algorithmsfor the Construction and Analysis of Systems
(TACAS 06), pages 182196, 2006.

[11] H. Collavizza, M. Rueher, and P. Van Hentenryck. Cpbpv:
A constraint-programming framework for bounded program
verification. In Proc. of CP2008, LNCS 5202, pages 327—
341, 2008.

[12] R.A. DeMillo and JA. Offut. Constraint-based automatic
test data generation. |EEE Transactions on Software Engi-
neering, 17(9):900-910, September 1991.

[13] T. Denmat, A. Gotlieb, and M. Ducasse. An abstract inter-
pretation based combinator for modeling while loopsin con-
straint programming. In Proceedings of Principles and Prac-
tices of Constraint Programming (CP’07), Springer Verlag,
LNCS 4741, pages 241-255, Providence, USA, Sep. 2007.

[14] T. Denmat, A. Gotlieb, and M. Ducasse. Improving
constraint-based testing with dynamic linear relaxations. In
18th IEEE International Symposium on Software Reliability
Engineering (ISSRE’ 2007), Trollhttan, Sweden, Nov. 2007.

[15] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel.
Supporting controlled experimentation with testing tech-
niques: An infrastructure and its potential impact. Empirical
Software Engineering: An International Journal, 10(4):405—
435, 2005.

[4]

[5

8

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32

[33]

E. Emami, R. Ghiya, and L.J. Hendren. Context—sensitive
interprocedural points-to analysisin the presence of function
pointers. In Proc. of PLDI’94, Orlando, FL, Jun. 1994.

R. Ferguson and B. Korel. The chaining approach for soft-
ware test data generation. ACM Transactions on Software
Engineering Methodology, 5(1):63-86, Jan. 1996.

J.C. Filliagtre and C. Marché. Multi-prover verification of ¢
programs. In 6th Int. Conf. on Formal Engineering Methods
(ICFEM’ 04), pages 15-29, Nov. 2004.

P. Godefroid, N. Klarlund, and K. Sen. Dart: directed auto-
mated random testing. In Proc. of PLDI’ 05, pages 213-223,
2005.

A. Gotlieb, B. Botella, and M. Rueher. Automatic test data
generation using constraint solving techniques. In Proc. of
ISSTA' 98, pages 53-62, 1998.

A. Gotlieb, T. Denmat, and B. Botella Goal-oriented test
data generation for pointer programs. Information and Soft-
ware Technology, 49(9-10):1030-1044, Sep. 2007.

PV. Hentenryck, V. Saraswat, and Y. Deville. Design, imple-
mentation, and evaluation of the constraint language cc(fd).
Journal of Logic Programming, 37:139-164, 1998.

T. Henzinger, R. Jhala, R. Mgjumdar, and G. Sutre. Software
verification with blast. In Proc. of 10th Workshop on Model
Checking of Software (SPIN), pages 235239, 2003.
Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas
Ostrand. Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria In Proc. of ICSE
' 94, pages 191-200, 1994.

Rustan Leino. Efficient weakest preconditions. Inf. Process.
Lett., 93(6):281-288, 2005.

C. Livadas, J. Lygeros, and N.A. Lynch. High-level mod-
eling and analysis of TCAS. In IEEE Real-Time Systems
Symposium, pages 115-125, 1999.

Patricia Mouy, Bruno Marre, Nicky Williams, and Pas-
cale Le Gall. Generation of all-paths unit test with function
cals. InFirst International Conference on Software Testing,
Verification, and Validation, (ICST’ 08), pages 32—41, 2008.
U.S. Department of transportation Federal Aviation Admin-
istration. Introduction to TCASII - version 7, Nov. 2000.
J.A. Offut, Z. Jin, and Pan J. The dynamic domain reduction
procedure for test data generation. Software—Practice and
Experience, 29(2):167-193, 1999.

Koushik Sen, Darko Marinov, and Gul Agha. Cute: a con-
colic unit testing engine for c. In Proc. of ESEC/FSE-13,
pages 263-272. ACM Press, 2005.

Nikolai Tillmann and Wolfram Schulte. Parameterized unit
tests. In Proc. of ESEC/FSE-13, pages 253-262. ACM Press,
2005.

N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler:
Automatic generation of path tests by combining static and
dynami¢ analysis. In In Proc. Dependable Computing -
EDCC' 05, pages 281292, 2005.
www.open-std.org/JTC1/SC22/WG14/www/standards.
I1SO/IEC 9899 - Programming languages - C, 1999.

Cet article et cet outil font la synthése de notre contribution au domaine du
Test a Base de Contraintes (CBT), méme si les difficultés rencontrées et les proposi-
tions techniques sont décrites avec beaucoup plus de détails dans d’autres articles.
Notre traitement des boucles s’appuie sur un combinateur original nommé w, qui
modélise les calculs itératifs en Programmation par Contraintes. Durant la prop-
agation de contraintes, les boucles sont considérées au méme titre que d’autres
instructions, et obéissent a une stratégie de dépliage dynamique. Lorsque le dé-
pliage ne peut étre décidé, une approche par élargissement, définie dans le cadre
de I'Interprétation Abstraite, est utilisée pour propager de l'information d’un état
avant itération a un état apres itération. Cette contribution est résumée dans ’article
suivant.

T. Denmat, A. Gotlieb, and M. Ducasse. An abstract in-
terpretation based combinator for modeling while loops in con-
straint programming. In Proceedings of Principles and
Practices of Constraint Programming (CP’07), Springer
Verlag, LNCS 4741, pages 241-255, Providence, USA,
Sep. 2007.

An Abstract Interpretation Based Combinator
for Modelling While Loops in Constraint
Programming

Tristan Denmat®, Arnaud Gotlieb?, and Mireille Ducassé!

! IRISA/INSA
2 TRISA/INRIA
Campus universitaire de Beaulieu 35042 Rennes Cedex, France
{denmat,gotlieb,ducasse}@irisa.fr

Abstract. We present the w constraint combinator that models while
loops in Constraint Programming. Embedded in a finite domain con-
straint solver, it allows programmers to develop non-trivial arithmetical
relations using loops, exactly as in an imperative language style. The
deduction capabilities of this combinator come from abstract interpreta-
tion over the polyhedra abstract domain. This combinator has already
demonstrated its utility in constraint-based verification and we argue
that it also facilitates the rapid prototyping of arithmetic constraints
(e.g. power, gcd or sum).

1 Introduction

A strength of Constraint Programming is to allow users to implement their own
constraints. CP offers many tools to develop new constraints. Examples include
the global constraint programming interface of SICStus Prolog clp(fd) [5], the
ILOG concert technology, iterators of the GECODE system [17] or the Con-
straint Handling Rules [8]. In many cases, the programmer must provide prop-
agators or filtering algorithms for its new constraints, which is often a tedious
task. Recently, Beldiceanu et al. have proposed to base the design of filtering al-
gorithms on automaton [4] or graph description [3], which are convenient ways of
describing global constraints. It has been pointed out that the natural extension
of these works would be to get closer to imperative programming languages [4].

In this paper, we suggest to use the generic w constraint combinator to
model arithmetical relations between integer variables. This combinator pro-
vides a mechanism for prototyping new constraints without having to worry
about any filtering algorithm. Its originality is to model iterative computations:
it brings while loops into constraint programming following what was done for
logic programming [16]. Originally, the w combinator has been introduced in [9]
in the context of program testing but it was not deductive enough to be used
in a more general context. In this paper, we base the generic filtering algorithm
associated to this combinator on case-based reasoning and Abstract Interpreta-
tion over the polyhedra abstract domain. Thanks to these two mechanisms, w

performs non-trivial deductions during constraint propagation. In many cases,
this combinator can be useful for prototyping new constraints without much ef-
fort. Note that we do not expect the propagation algorithms generated for these
new constraints to always be competitive with hand-written propagators.

We illustrate the w combinator on a relation that models y = z™. Note that
writing a program that computes z" is trivial whereas building finite domain
propagators for y = x™ is not an easy task for a non-expert user of CP. Figure 1
shows an imperative program (in C syntax) that implements the computation
of 2™, along with the corresponding constraint model that exploits the w com-
binator (in CLP(FD) syntax). In these programs, we suppose that N is positive
although this is not a requirement of our approach.

power(X, N){ power(X,N,Y) : —
Y =1 w([X, 1, N],[Xin,Yin, Nin], [Xin, Yout, Nout], [, Y,],
while(N > 1){ Nin # >= 1,
Y=YxX; [Yout # = Yinx* Xin,
N=N-1} Nout # = Nin —1]).
return Y}

Fig. 1. An imperative program for y = 2™ and a constraint model

It is worth noticing that the w combinator is implemented as a global con-
straint. As any other constraint, it will be awoken as soon as X, N or Y have
their domain pruned. Moreover, thanks to its filtering algorithm, it can prune
the domains of these variables. The following request shows an example where
w performs remarkably well on pruning the domains of X,Y and N.

| ?- X in 8..12, Y in 900..1100, N in 0..10, power(X,N,Y).

N =23, X=10, Y = 1000

The w combinator has been implemented with the clp(fd) and clpg libraries
of SICStus prolog. The above computation requires 20ms of CPU time on an
Intel Pentium M 2GHz with 1 Gb of RAM.

Contributions. In this paper, we detail the pruning capabilities of the w
combinator. We describe its filtering algorithm based on case-based reasoning
and fixpoint computations over polyhedra. The keypoint of our approach is to
re-interpret every constraint in the polyhedra abstract domain by using Linear
Relaxation techniques. We provide a general widening algorithm to guarantee
termination of the algorithm. The benefit of the w combinator is illustrated on
several examples that model non-trivial arithmetical relations.

Organization. Section 2 describes the syntax and semantics of the w opera-
tor. Examples using the w operator are presented. Section 3 details the filtering
algorithm associated to the combinator. It points out that approximation is
crucial to obtain interesting deductions. Section 4 gives some background on
abstract interpretation and linear relaxation. Section 5 shows how we integrate
abstract interpretation over polyhedra into the filtering algorithm. Section 6
discusses some related work. Section 7 concludes.

2 Presentation of the w constraint combinator

This section describes the syntax and the semantics of the w combinator. Some
examples enlight how the operator can be used to define simple arithmetical
constraints.

2.1 Syntax

Figure 2 gives the syntax of the finite domain constraint language where the w
operator is embedded.

w 2= w(Lvar, Lvar, Lvar, Lvar, Arith_Constr, LConstr)

If = if (Lvar, Arith_Constr, LConstr, LConstr)

Lvar var | Lvar

LConstr 2= Constr | LConstr

Constr var in int..int | Arith_-Constr | W | If

Arith_Constr var Op Expr

Op <[>121#1=

Expr ::= Expr + Expr | Expr — Expr | Expr « Expr | var | int

Fig. 2. syntax of the w operator

As shown on the figure, a w operator takes as parameters four lists of vari-
ables, an arithmetic constraint and a list of constraints. Let us call these param-
eters Init, In,Out, End, Cond and Do. The Init list contains logical variables
representing the initial value of the variables involved in the loop. In variables
are the values at iteration n. Out variables are the values at iteration n + 1.
FEnd variables are the values when the loop is exited. Note that Init and End
variables are logical variables that can be constrained by other constraints. On
the contrary, In and Out are local to the w combinator and do not concretely
exist in the constraint store. Cond is the constraint corresponding to the loop
condition whereas Do is the list of constraints corresponding to the loop body.
These constraints are such that vars(Cond) € In and vars(Do) € In U Out.

Line 2 of Figure 2 presents an if combinator. The parameter of type
Arith_Constr is the condition of the conditional structure. The two parameters
of type LConstr are the “then” and “else” parts of the structure. Lvar is the
list of variables that appear in the condition or in one of the two branches. We
do not further describe this operator to focus on the w operator.

The rest of the language is a simple finite domain constraint programming
language with only integer variables and arithmetic constraints.

2.2 Semantics

The solutions of a w constraint is a pair of variable lists (Init, End) such that the
corresponding imperative loop with input values Init terminates in a state where
final values are equal to End. When the loop embedded in the w combinator
never terminates, the combinator has no solution and should fail. This point is
discussed in the next section.

2.3 First Example: sum

Constraint sum(S,I), presented on Figure 3, constrains S to be equal to the
sum of the integers between 1 and I: § =37 | i

sum(I){

S - o sum(S,I) :-
while(I > 0){ I>0,
S=§+I: w([0,1], [In,Nin], [Out,Nout], [S,_],
T-1-1. Nin > 0,
3 ’ [Out = In + Nin,
Nout = Nin - 1]).
return S;

Fig. 3. The sum constraint derived from the imperative code

The factorial constraint can be obtained by substituting the line
Out = In + Nin by Out = In * Nin and replacing the initial value 0 by 1.
Thanks to the w combinator, sum and factorial are easy to program as far as one
is familiar with imperative programming. Note that translating an imperative
function into a w operator can be done automatically.

2.4 Second Example: greatest common divisor (gcd)

The second example is more complicated as it uses a conditional statement in the
body of the loop. The constraint gcd(X,Y,Z) presented on Figure 4 is derived
form the Euclidian algorithm. ged(X,Y,Z) is true iff Z is the greatest common
divisor of X and Y.

ged(X,MA{
while(X > 0){
if (X < A gcd(X,Y,2) :-
At = Y; w([X,Y], [Xin,Yin], [Xout,Youtl, [_,Z],
Bt = X; Xin > 0,
Yelsed{ [if ([At,Bt,Xin,Yin],
At = X; Xin < Yin,
Bt = Y; [At = Yin, Bt = Xin],
} [At = Xin, Bt = Yinl),
X = At - Bt; Xout = At - Bt,
Y = Bt; Yout = Bt]).
}
return Y;

Fig. 4. The gcd constraint

3 The filtering algorithm

In this section we present the filtering algorithm associated to the w operator
introduced in the previous section. The first idea of this algorithm is derived from
the following remark. After n iterations in the loop, either the condition is false
and the loop is over, or the condition is true and the statements of the body are
executed. Consequently, the filtering algorithm detailed on Figure 5 is basically
a constructive disjunction algorithm. The second idea of the algorithm is to use
abstract interpretation over polyhedra to over-approximate the behaviour of the
loop. Function w™ is in charge of the computation of the over-approximation.
It will be fully detailed in Section 5.3.

The filtering algorithm takes as input a constraint store ((X,C, B) where X
is a set of variables, C' a set of constraints and B a set of variable domains), the
constraint to be inspected (w(Init, In, Out, End, Cond, Do)) and returns a new
constraint store where information has been deduced from the w constraint. X
is the set of variables X extended with the lists of variables In and Out. B is
the set of variable domains B extended in the same way.

Input:
A constraint, w(Init, In, Out, End, Cond, Do)
A constraint store, (X, C, B)

Output:
An updated constraint store

w_filtering

1 (Xewit, Cenit, Bewit) = propagate()_(, C A Init = In = Out = End A -Cond, E’)
2 if O € Beait

3 return (X, C A Init = In A Cond A Do A

4 w(Out, FreshIn, FreshOut, End, Cond', Do'), B)

5 (X1,C1, B1) := propagate(X,C A Init = In A Cond A Do, B)

6 (Xioops Cloops Bloop) := w™(Out, FreshIn, FreshOut, End, Cond', Do', (X1, C1, B1))
7 if 0 € Bioop

8 return (X, C A Init = In = Out = End A ~Cond, B)

9 (X',C",B") := join((Xewit, Cexity Bexit), (Xioop, Cloops Bioop)) Init, End

10 return (X', C’" A w(Init, In, Out, End, Cond, Do), B')

Fig. 5. The filtering algorithm of w

Line 1 posts constraints corresponding to the immediate termination of the
loop and launches a propagation step on the new constraint store. As the loop
terminates, the variable lists Init, In, Out and End are all equal and the condi-
tion is false (=Cond). If the propagation results in a store where one variable has
an empty domain (line 2), then the loop must be entered. Thus, the condition
of the loop must be true and the body of the loop is executed: constraints Cond
and Do are posted (line 3). A new w constraint is posted (line 4), where the
initial variables are the variables Out computed at this iteration, In and Out
are replaced by new fresh variables (FreshIn and FreshOut) and End variables
remain the same. Cond’ and Do’ are the constraints Cond and Do where vari-

able names I'n and Out have been substituted by FreshIn and FreshOut. The
initial w constraint is solved.

Line 5 posts constraints corresponding to the fact that the loop iterates one
more time (Cond and Do) and line 6 computes an over approximation of the
rest of the iterations via the w* function. If the resulting store is inconsistent
(line 7), then the loop must terminate immediately (line 8). Once again, the w
constraint is solved.

When none of the two propagation steps has led to empty domains, the stores
computed in each case are joined (line 9). The Init and End indices mean that
the join is only done for the variables from these two lists. After the join, the w
constraint is suspended and put into the constraint store (line 10).

We illustrate the filtering algorithm on the power example presented on Fig-
ure 1 and the following request:

X in 8..12, N in 0..10, Y in 10..14, power(X,N,Y).

At line 1, posted constraints are:

Xin = X, Nin = N, Yin = 1, Y = Yin, Nin < 1. This constraint store is in-
consistent with the domain of Y. Thus, we deduce that the loop must be entered
at least once. The condition constraint and loop body constraints are posted (we
omit the constraints Init = In):

N >= 1, Yout = 1*X, Xout = X, Nout = N-1 and another w combinator is
posted:

w([Xout,Yout,Nout], [Xin’,Yin’,Nin’], [Xout’,Yout’,Nout’],[_,Y,_],
Nin’>= 1, [Yout’ = Yin’#Xin’, Xout’ = Xin’, Nout’ = Nin’-1]).

Again, line 1 of the algorithm posts the constraints Y = Yout, Nout < 1. This
time, the store is not inconsistent. Line 5 posts the constraints

Nout >= 1, Yout’ = Yout*X, Xout’ = X, Nout’ = Nout - 1, which reduces
domains to Nout in 1..9, Yout’ in 64..144, Xout’ in 8..12. On line 6,
w™> ([Xout’,Yout’,Nout’] ,FreshIn,FreshOut,[_,Y,_],Cond,Do,Store)

is used to infer Y >= 64. Store denotes the current constraint store. This is
a very important deduction as it makes the constraint store inconsistent with
Y in 10..14. So Nout < 1,Y = X is posted and the final domains are

N in 1..1, X in 10..12, Y in 10..12. This example points out that ap-
proximating the behaviour of the loop with function w® is crucial to deduce
information.

On the examples of sections 2.3 and 2.4 some interesting deductions are done.
For the sum example, when S is instantiated the value of I is computed. If no
value exist, the filtering algorithm fails. Deductions are done even with partial
information: sum(S,I), S in 50..60 leads to S = 55,1 = 10.

On the request gcd(X,Y,Z), X in 1..10, Y in 10..20, Z in 1..1000,
the filtering algorithm reduces the bounds of Z to 1..10. Again, this deduction is
done thanks to the w™ function, which infers the relations Z < X and Z <Y.
If we add other constraints, which would be the case in a problem that would
use the ged constraint, we obtain more interesting| deductions. For example, if
we add the constraint X = 2 %Y, then the filtering algorithm deduces that Z

is equal to Y. On each of the above examples, the required computation time is
not greater than 30 ms.

Another important point is that approximating loops also allows the filtering
algorithm to fail instead of non terminating in some cases. Consider this very
simple example that infinitely loops if X is lower than 10.

loop(X,Xn) :-
w([X], [Xin], [Xout], [Xn],
X < 10,
[Xout = Xin])

Suppose that we post the following request, X < 0, loop(X,Xn), and apply the
case reasoning. As we can always prove that the loop must be unfolded, the
algorithm does not terminate. However, the filtering algorithm can be extended
to address this problem. The idea is to compute an approximation of the loop
after a given number of iterations instead of unfolding more and more the loop.
On the loop example, this extension performs well. Indeed the approximation
infers Xn < 0, which suffices to show that the condition will never be satisfied
and thus the filtering algorithm fails. If the approximation cannot be used to
prove non-termination, then the algorithm returns the approximation or con-
tinue iterating, depending on what is most valuable for the user: having a sound
approximation of the loop or iterating hoping that it will stop.

4 Background

This Section gives some background on abstract interpretation. It first presents
the general framework. Then, polyhedra abstract domain is presented. Finally,
the notion of linear relaxation is detailed.

4.1 Abstract Interpretation

Abstract Interpretation is a framework introduced in [6] for inferring program
properties. Intuitively, this technique consists in executing a program with ab-
stract values instead of concrete values. The abstractions used are such that
the abstract result is a sound approximation of the concrete result. Abstract
interpretation is based upon the following theory.

A lattice (L,C,M,U) is complete iff each subset of L has a greatest lower
bound and a least upper bound. Every complete lattice has a least element L and
a greatest element T. An ascending chain p; C py C ... is a potentially infinite
sequence of ordered elements of L. A chain eventually stabilizes iff there is an 4
such that p; = p; for all j > i. A lattice satisfies the ascending chain condition
if every infinite ascending chain eventually stabilizes. A function f : L — L is
monotone if p; C py implies f(p1) T f(p2). A fixed point of f is an element p
such that f(p) = p. In a lattice satisfying ascending chain condition, the least
fixed point {fp(f) can be computed iteratively: [fp(f) = |, f* (L)

The idea of abstract interpretation is to consider program properties at each
program point as elements of a lattice. The relations between the program prop-
erties at different locations are expressed by functions on the lattice. Finally,
computing the program properties consists in finding the least fixed point of a
set of functions.

Generally, interesting program properties at a given program point would
be expressed as elements of the lattice (P(N), C,N,U) (if variables have their
values in N). However, computing on this lattice is not decidable in the general
case and the lattice does not satisfy the ascending chain condition. This problem
often appears as soon as program properties to be inferred are not trivial. This
means that the fixed points must be approximated. There are two ways for ap-
proximating fixed points. A static approach consists in constructing a so-called
abstract lattice (M, Ty, My, Ups) with a Galois connection (v,) from L to M.
a: L —- M and v : M — L are respectively an abstraction and concretiza-
tion function such that Vi € L,I T v(a(l)) and Vm € M,m Ty a(y(m)). A
Galois connection ensures that fixed points in L can be soundly approximated
by computing in M. A dynamic approximation consists in designing a so-called
widening operator (noted V) to extrapolate the limits of chains that do not
stabilize.

4.2 Polyhedra abstract domain

One of the most used instanciation of abstract interpretation is the interpretation
over the polyhedra abstract domain, introduced in [7]. On this domain, the set of
possible values of some variables is abstracted by a set of linear constraints. The
solutions of the set of linear constraints define a polyhedron. Each element of the
concrete set of values is a point in the polyhedron. In this abstract domain, the
join operator of two polyhedra is the convex hull. Indeed, the smallest polyhedron
enclosing two polyhedra is the convex hull of these two polyhedra. However,
computing the convex hull of two polyhedra defined by a set of linear constraints
requires an exponential time in the general case.

Recent work suggest to use a join operator that over-approximates the convex
hull [15]. Figure 6 shows two polyhedra with their convex hull and weak join.

Weak join

Comvexhull - -
e :: ,
l:‘,—" D,,/

Fig. 6. Convex Hull vs Weak Join

Intuitively, the weak join of two polyhedra is computed in three steps. Enlarge
the first polyhedron without changing the slope of the lines until it encloses the
second polyhedron. Enlarge the second polyhedron in the same way. Do the
intersection of these two new polyhedra.

In many works using abstract interpretation on polyhedra, the standard
widening is used. The standard widening operator over polyhedra is computed
as follows: if P and @ are two polyhedra such that P T Q. Then, the widen-
ing PV(Q) is obtained by removing from P all constraints that are not entailed
in Q. This widening is efficient but not very accurate. More accurate widening
operators are given in [1].

4.3 Linear Relaxation of constraints

Using polyhedra abstract interpretation requires us to interpret non linear con-
straints on the domain of polyhedra. Existing techniques aim at approximating
non linear constraints with linear constraints. In our context, the only sources
of non linearity are multiplications, strict inequalities and disequalities. These
constraints can be linearized as follows:

multiplications Let X and X be the lower and upper bounds of variable
X. A multiplication Z = X %Y can be approximated by the conjunction of
inequalities [12]:

X-X)Y-V)>0A(X-X)Y-Y)>0
ANX-X)Y-Y)>0AnX-X)Y-Y)>0

This constraint is linear as the product X *Y can be replaced by Z. Fig.7 shows
a slice of the relaxation where Z = 1. The rectangle corresponds to the bounding
box of variables X, Y, the dashed curve represents exactly X Y = 1, while the
four solid lines correspond to the four parts of the inequality.

Xy =1

bounding box

Linear Relaxation

Fig. 7. Relaxation of the multiplication constraint

strict inequalities and disequalities Strict inequalities X < Var (resp. X >
Var) can be rewritten without approximation into X < Var — 1 (resp. X >
Var + 1), as variables are integers. Disequalities are considered as disjunctions
of inequalities. For example, X # Y is rewritten into X =< Y —-1VX >=Y +1.
Adding the bounds constraints on X and Y and computing the convex hull of
the two disjuncts leads to an interesting set of constraints. For example, if X
and Y are both in 0..10, the relaxation of X #Y is X +Y > 1A X +Y < 19.

5 Using abstraction in the filtering algorithm of w

In this section, we detail how abstract interpretation is integrated in the w
filtering algorithm. Firstly, we show that solutions of w can be computed with a
fixed point computation. Secondly, we explain how abstract interpretation over
polyhedra allows us to compute an abstraction of these solutions. Finally, the
implementation of the w*® function is presented.

5.1 Solutions of w as the result of a fixed point computation

Our problem is to compute the set of solutions of a w constraint:

Z={((@1,....an), (2],...,2f)) |
w((z1,...,2n), In,Out, (z{, ...,zl),Cond, Do)}

Let us call S; the possible values of the loop variables after i iterations in a loop.
When ¢ = 0 possible variables values are the values that satisfy the domain
constraint of Init variables. We call S;,;; this set of values. Thus Sy = S;nit. Let
us call T the following set:

T={((x1,- s 20), Ty 20)) | (T14-. o, 3y) € Sinat AJi(ah, ..., 2h) € S}

T is a set of pairs of lists of values (I,m) such that initializing variables of the
loops with values [and iterating the loop a finite number of times produce the
values m. The following relation holds

Z = {(Init, End) | (Init, End) € T A End € sol(~Cond)}

where sol(C) denotes the set of solutions of a constraint C. The previous formula
expresses that the solutions of the w constraint are the pairs of lists of values
(I,m) such that initializing variables of the loops with values | and iterating
the loop a finite number of times leads to some values m that violate the loop
condition.

In fact, T is the least fixed point of the following equation:

TEY = TR U {(Init,Y) | (Init, X) € T* A (X,Y) € sol(Cond A Do})} (1)
T° = {(Init, Init) | Init € Sinit} 2)

Cond and Do are supposed to involve only In and Out variables. Thus,
composing T* and sol(Cond A Do) is possible as they both are relations between
two lists of variables of length n.

Following the principles of abstract interpretation this fixed point can be
computed by iterating Equation 1 starting from the set T° of Equation 2.

For the simple constraint: w([X], [In], [Out], [Y],In < 2, [Out = In+1])
and with the initial domain X in 0. .3, the fixed |point computation proceeds
as follows.

T° = {(0,0), (1,1),(2,2),(3,3)}
T = {(0,1),(1,2)}uT®
= {(0,0),(0,1),(1,1),(1,2),(2,2),(3,3)}
T2 = {(0,1),(0,2), (1,2} uT"
= {(0,0),(0,1),(0,2),(1,1),(1,2),(2,2),(3,3)}
T3 — 72

Consequently, the solutions of the w constraint are given by

Z={(X,Y)| (X,Y) €T3 AY € sol(In > 2)}
=1{(0,2),(1,2),(2,2),(3,3)}

Although easy to do on the example, iterating the fixed point equation is
undecidable because Do can contain others w constraints. Thus, Z is not com-
putable in the general case.

5.2 Abstracting the fixed point equations

We compute an approximation of 7' using the polyhedra abstract domain. Let
P be a polyhedron that over-approximates 7', which means that all elements of
T are points of the polyhedron P. Each list of values in the pairs defining 7" has
a length n thus P involves 2n variables. We represent P by the conjunction of
linear equations that define the polyhedron.

The fixed point equations become:

P**1(Init, Out) = P* U (P*(Init, In) A Relaz(Cond A Do) rniv.our (3)
PO(Init, Out) = a(Sinit) A Init = Out (4)

Compared to equations 1 and 2, the computation of the set of solutions of
constraint C' is replaced by the computation of a relaxation of the constraint
C. Relaz is a function that computes linear relaxations of a set of constraints
using the relaxations presented in Section 4.3. Pr, 1, denotes the projection
of the linear constraints P over the set of variables in L; and L. Projecting
linear constraints on a set of variables S’ consists in eliminating all variables not
belonging to S. Lists equality L = M is a shortcut for Vi € [1,n]L[i] = M]i],
where n is the length of the lists and L[i] is the ith element of L. P; U P, denotes
the weak join of polyhedron P; and P, presented in Section 4.2.

In Equation 4, S, is abstracted with the « function. This function com-
putes a relaxation of the whole constraint store and projects the result on Init
variables.

An approximation of the set of solutions of a constraint w is given by

Q(Init, In) = P(Init,In) A Relaz(—Cond) (5)

We detail the abstract fixed point computation on the same example as in
the previous section. As the constraints Cond and Do are almost linear their
relaxation is trivial: Relax(Cond A Do) = X, < 1, Xou = Xin + 1. X5y, is only
constrained by its domain, thus a(S;nit) = Xin > 0 A X;;, < 3. The fixed point
is computed as follows
PY(Xin, Xout) = Xin > 0A Xin <3 A Xin = Xout
P (Xin, Xout) = (P°(Xin, Xo) A Xo < 1A Xout = Xo+1)x,, Xous

U PY(Xin, Xout)
= (Xin > 0A Xin € 1A Xous = Xin + 1) U PO (Xin, Xour)
=Xin 20N X, <3AXow < X + 1A Xowr > Xin
P (Xin, Xout) = (P (Xin, X1) A X1 S 1A Xowr = X1+ 1)x,, X000
U P (Xin, Xout)
= (Xin > 0A Xin <3N Xin < Xour — 1) U P! (X, Xour)
= Xin 2 0A Xin <3N Xout < Xin + 2 A Xout = Xin A Xour < 4
PP (Xins Xout) = (Po(Xin, X2) A Xo < 1A Xour = Xo + 1) x,, X0
u Pz(Xz'mquL)
= (Xin > 0N Xjn <3A Xin < Xowr — 1) UP*(Xin, Xow)
= P?*(Xin, Xout)
Figure 8 shows the difference between the exact fixed point computed with

the exact equations and the approximate fixed point. The points correspond to
elements of T whereas the grey zone is the polyhedron defined by P3.

Out

In
Fig. 8. Exact vs approximated fixed point
An approximation of the solutions of the w constraint is
Q = P*(Xinit, Xend) N Xena > 2
= Xend 2 2N Xend < 4N Xin < Xena A Xin <3N Xip 2> Xena — 2

On the previous example, the fixed point computation converges but it is not
always the case. Widening can address this problem. The fixed point equation
becomes:

PR (Init, Out) = P*(Init, Out)V
(P*u (Pk(lnit7 In) A Relaxz(Cond, Do)) rnit,0ut)

In this equation V is the standard widening operator presented in Section 4.2.

5.3 w*®: implementing the approximation

In Section 3, we have presented the filtering algorithm of the w operator. Here,
we detail more concretely the integration of the abstract interpretation over
polyhedra into the constraint combinator w via the w® function.

w® is an operator that performs the fixed point computation and commu-
nicates the result to the constraint store. Figure 9 describes the algorithm. All
the operations on linear constraints are done with the clpq library [10].

Input:
Init, In, Out, End vectors of variables
Cond and Do the constraints defining the loop
A constraint store (X, C, B)
Output:
An updated constraint store

oo

w™
1 P = project(relax(C, B), [Init]) A Init = Out

2 repeat

3 P = pitt

4 P? = project(P* A relaz(Cond A Do, B), [Init, Out])
5 P* := weak_join(P', P?)
6 P = widening(P', P¥)
7

8

9

1

until includes(P’, P'*1)
Y := P Arelax(~Cond, B)
(C", B") := concretize(Y)
0 return (X, C’ A w(Init, In,Out, End, Cond, Do), B')

Fig. 9. The algorithm of w™ operator

This algorithm summerizes all the notions previously described. Line 1 com-
putes the initial value of P. It implements the « function introduced in Equa-
tion 4. The relax function computes the linear relaxation of a constraint C' given
the current variables domains, B. When C' contains another w combinator, the
corresponding w® function is called to compute an approximation of the sec-
ond w. The project(C, L) function is a call to the Fourier variable elimination
algorithm. It eliminates all the variables of C' but variables from the list of lists
L. Lines 2 to 7 do the fixed point computation following Equation 3. Line 6
performs the standard widening after a given number of iterations in the repeat
loop. This number is a parameter of the algorithm. At Line 7, the inclusion
of P71 in P is tested. includes(P?, P**') is true iff each constraint of P’ is
entailed by the constraints Pi*1.

At line 8, the approximation of the solution of w is computed following Equa-
tion 5. Line 9 concretizes the result in two ways. Firstly, the linear constraints
are turned into finite domain constraints. Secondly, domains of End variables
are reduced by computing the minimum and maximum values of each variable in
the linear constraints Y. These bounds are obtained with the simplex algorithm.

6 Discussion

The polyhedra abstract domain is generally used differently from what we pre-
sented. Usually, a polyhedron denotes the set of linear relations that hold between
variables at a given program point. As we want to approximate the solutions of a
w constraint, our polyhedra describe relations between input and output values
of variables and, thus, they involve twice as many variables. In abstract interpre-
tation, the analysis is done only once whereas we do it each time a w operator is
awoken. Consequently, we cannot afford to use standard libraries to handle poly-
hedra, such as [2], because they use the dual representation, which is a source of
exponential time computations. Our representation implies, nevertheless, doing
many variables elimination with the Fourier elimination algorithm. This remains
costly when the number of variables grows. However, the abstraction on polyhe-
dra is only one among others. For example, abstraction on intervals is efficient
but leads to less accurate deductions. The octagon abstract domain [13] could be
an interesting alternative to polyhedra as it is considered to be a good trade-off
between accuracy and efficiency.

Generalized Propagation [14] infers an over-approximation of all the answers
of a CLP program. This is done by explicitely computing each answer and joining
these answers on an abstract domain. Generalized Propagation may not termi-
nate because of recursion in CLP programs. Indeed, no widening techniques are
used. In the same idea, the 3r’s are three principles that can be applied to speed
up CLP programs execution [11]. One of these 3r’s stands for refinement, which
consists in generating redundant constraints that approximate the set of an-
swers. Refinement uses abstract interpretation, and more specifically widenings,
to compute on abstract domains that have infinite increasing chains. Hence, the
analysis is guaranteed to terminate. Our approach is an instantiation of this
theoretical scheme to the domain of polyhedra.

7 Conclusion

We have presented a constraint combinator, w, that allows users to make a
constraint from an imperative loop. We have shown examples where this com-
binator is used to implement non trivial arithmetic constraints. The filtering
algorithm associated to this combinator is based on case reasoning and fixed
point computation. Abstract interpretation on polyhedra provides a method for
approximating the result of this fixed point computation. The results of the ap-
proximation are crucial for pruning variable domains. On many examples, the
deductions made by the filtering algorithm are considerable, especially as this
algorithm comes for free in terms of development time.

Acknowledgements

We are indebted to Bernard Botella for his significant contributions to the
achievements presented in this paper.

References

1.

2.

ot

10.

11.

12.

13.

14.

15.

16.

17.

R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for
convex polyhedra. In Proc. of the Static Analysis Symp. (SAS’03) 337-354, 2003.
R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex
polyhedra and the parma polyhedra library. In Proc. of the Static Analysis Symp.
(SAS°02), 213-229. Springer, 2002.

. N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Graph properties based

filtering. In Proc. of the Int. Conf. on Principles and Practice of Constraint Progr.
(CP’06), 59-74. Springer, 2006.

. N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering algorithms from con-

straint checkers. In Proc. of the Int. Conf. on Principles and Practice of Constraint
Progr. (CP’04), 107-122. Springer, 2004.

. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint

solver. In Proc. of the Int. Symp. on Progr. Lang.: Implementations, Logics, and
Programs (PLILP’97), 191-206. Springer, 1997.

. P. Cousot and R. Cousot. Abstract interpretation : A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proc.
of Symp. on Principles of Progr. Lang. (POPL’77), 238-252. ACM, 1977.

. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among

variables of a program. In Proc. of Symp. on Principles of Progr. Lang. (POPL’78),
84-96. ACM, 1978.

. T. Fruhwirth. Theory and practice of constraint handling rules. Special Issue on

Constraint Logic Progr., Journal of Logic Progr., 37(1-3), 1998.

. A. Gotlieb, B. Botella, and M. Rueher. A CLP framework for computing structural

test data. In First Int. Conf. on Computational Logic (CL’00), 399-413, 2000.

C. Holzbaur. OFAI clp(q,r) Manual. Austrian Research Institute for Artificial
Intelligence, Vienna, 1.3.3 edition.

K. Marriott and P. J. Stuckey. The 3 r’s of optimizing constraint logic programs:
Refinement, removal and reordering. In Proc. of Symp. on Principles of Progr.
Lang. (POPL’93), 334-344. ACM, 1993.

G. P. McCormick. Computability of global solutions to factorable nonconvex pro-
grams: Part 1 - convex underestimating problems. Math. Progr., 10:147-175, 1976.
A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation
Journal, 19:31-100. Springer, 2006.

T. Le Provost and M. Wallace. Domain independent propagation. In Proc. of the
Int. Conf. on Fifth Generation Computer Systems. (FGCS’92), 1004-1011, 1992.
S. Sankaranarayanan, M. A. Colon, H. Sipma, and Z. Manna. Efficient strongly
relational polyhedral analysis. In Proc. of the Verification, Model Checking, and
Abstract Interpretation Conf. (VMCAI’06), 115-125. Springer, 2006.

J. Schimpf. Logical loops. In Proc. of the Int. Conf. on Logic Progr. (ICLP’02),
224-238. Springer, 2002.

C. Schulte and G. Tack. Views and iterators for generic constraint implementa-
tions. In Recent Advances in Constraints (2005), volume 3978 of Lecture Notes in
Artificial Intelligence, 118-132. Springer-Verlag, 2006.

Enfin, nous avons proposé trés récemment un résolveur de contraintes dédié
aux calculs modulaires sur les entiers machine. Notre travail dans ce domaine a
été motivé par la limitation récurrente des résolveurs existants a traiter de maniere
appropriée les calculs modulaires silencieux de la plupart des langages de pro-
grammation utilisés dans les systemes critiques. Nous proposons dans l'article
suivant une théorie du calcul d’intervalles, nommée “Clockwise intervals” adap-
tée aux calculs modulaires.

A. Gotlieb, M. Leconte, and B. Marre. Constraint solving
on modular integers. In Proc. of the 9th Int. Workshop on
Constraint Modeling and Reformulation (ModRef"10),
co-located with CP’2010, St Andrews, Scotland, Sept.
2010.

Constraint solving on modular integers

Arnaud Gotlieb!, Michel Leconte?, and Bruno Marre®

1 INRIA Rennes Bretagne Atlantique, Campus Beaulieu, 35042 Rennes, France
arnaud.gotlieb@inria.fr
2 ILOG Lab, IBM France, Gentilly, France
leconte@ibm.fr
3 CEA, LIST, Gif-sur-Yvette, F-91191, France
marre@cea.fr

Abstract. Constraint solving over finite-sized integers involves the def-
inition of propagators able to capture modular (a.k.a. wrap-around) in-
teger computations. In this paper, we propose efficient propagators for
a fragment of modular integer constraints including adders, multipliers
and comparators. Our approach is based on the original notion of Clock-
wise Interval for which we define a complete arithmetic. We also present
three distinct implementations of modular integer constraint solving in
the context of software verification®.

1 Introduction

Using constraint solving to automatically generate program inputs is an emerg-
ing trend in software verification. In the last decade, several tools based on Finite
Domains (FD) constraint solving were proposed that perform test inputs gener-
ation for C programs (e.g., InKa [7], PathCrawler [9]), test case generation for
reactive programs (e.g., GATEL [10]), or property-oriented software verification
(e.g., CPBPV [4], Euclide [6]). In these tools, automated verification of inten-

unsigned long len = 2147483648; % Equal to 2°!
void f(unsigned long buf) {

1. if (buf + len < buf) {

2.

Fig. 1. Program taking care of integer overflow

sive integer computations involves solving constraints over finite-sized integers.
As an example, consider the problem of reaching® statement 2 in the program
of Fig.1 that requires solving the decision buf+len < buf over unsigned 32-
bits integers. A naive translation of the decision of statement 1 as constraint

4 This work is supported by ANR-07-SESUR-003 CAVERN Project
5 Reachability is a fundamental problem in software program verification.

buf + len < buf where buf belongs to 0..2°2 — 1 and len = 23!, yields an in-
correct result saying that statement 2 is unreacheable. In fact, it is trivial to see
that this constraint is unsatisfiable when it is interpreted over Finite Domains
(FD). However, statement 2 can be reached by selecting a test value such as
buf = 231, as 231 4 231 = 232 corresponds to value 0 in unsigned 32-bits integer
arithmetic. Note also that simplifying buf + len < buf in len < 0 is forbidden
in this arithmetic. The overall reason is that decision 2 should be rather inter-
preted as buf +len < buf mod(232). In fact, this problem is sometimes reported
to as the “wrapping effect” and it turned out that programmers who take care of
possible integer overflows routinely write programs that use this effect. In Fig.1,
statement 2 can only be reached by a wrapping behaviour. Unfortunately, all the
previously mentionned tools that exploits constraint techniques for automated
test data generation or property-oriented verification simply ignore this wrap-
ping effect. In fact, as soon as finite domains are specified for each input and
intermediate variable, these tools consider that programs with integer overflows
are necessarily incorrect and should be rejected. This is obviously abusive and
often conducts to report false negatives.

This paper adresses this problem by providing efficient constraint solving
over modular integer computations. We propose bound-consistency propagators
for a linear fragment of these constraints that includes adders, multipliers and
comparators. Our approach is based on the original notion of Clockwise Interval
that captures the wrapping effect by considering intervals with modular inte-
ger bounds. An example of such Clockwise Interval is the interval [7,2]s that
represents all the integers x such that x mod 8 = 7,2 mod 8 = 0,2 mod 8 =
1,2 mod 8 = 2. For these Clockwise Intervals, we give a complete arithmetic
that has not been published elsewhere.

In the context of the ANR CAVERN project® we independently built three
distinct implementations of modular integer constraint solving that are varia-
tions of clockwise interval arithmetics. These implementations of modular integer
constraint solving are used in three software verification tools. Our first imple-
mentation called MAXC is used in the context of automatic test input generation
for C programs. It implements bound-consistency filtering for a linear fragment
of modular integer constraints. For example, for constraint buf®23! < buf where
@ denotes modular addition over 32-bit integers, MAXC automatically prunes
the domain of buf to the Clockwise Interval [23!, 232 —1],s2, removing half of the
variation domain of buf. Our second implementation called JSOLVER |[8] is in-
tented to perform automatic analysis of rule-based programs. JSOLVER is based
on classic intervals but it takes into account modular integer computations. A
comparison with the Clockwise Interval arithmetics shows that JSOLVER is effi-
cient but not optimal when computing local-consistencies over these constraints.
Finally, the third implementation is called COLIBRI and it enables automatic
test data generation for reactive programs [10]. COLIBRI implements modular
integer constraints on domains represented as union of classic intervals.

6 cavern.inria.fr

The rest of the paper is organized as follows: Sec.2 introduces the notations
and the formal definitions used in the rest of the paper. Sec.3 presents bound-
consistency filtering on modular integer constraints. Sec.4 describes our three
distinct implementations and discusses their relations with Clockwise Intervals.
Finally, Sec.5 concludes and draws several perspectives to this work.

2 Preliminaries

2.1 Notations

Let Z denote the set of integers and Z;, denote the finite set of integers modulo
b. For any z € Z and y € Z*, x mod y denotes the integer r such that 3¢ € Z
r=x—y*qand 0 < r <y, while z quo y denotes ¢ the quotient. In the following,
we will fix b = 2" where n is any non-negative integer. Since Z; consists of residue
classes, several representations are possible. In this paper, we will consider two
representations that can be used to emulate integral computations in imperative
languages such C or Java: the unsigned representation {0,1,...,b— 1} and the
signed representation {7%, ..., —1,0,1,..., g —1}. For the sake of simplicity, we
will use the unsigned representation (unless it is mentionned otherwise).

In the context of integer-based manipulations, a classic interval noted ..y
where z,y € Z and z < y denotes the finite ordered set {z,z +1,...,y — 1,y}.

Definition 1 (Width). The width of an interval ..y is an integer, defined as
follows: wid(z..y) &y — .

2.2 Clockwise Interval

Definition 2 (Clockwise Interval). Let x and y be two integers modulo b, a
Clockwise Interval (CI) is noted [x,y, and denotes the set {x,z+1 mod b, ..., y—
1 mod b,y}.

It differs from classic interval in that any of its element is a residue class of
integer modulo b. Furthermore, the bound y is not required to be greater than x
as the set {x, z+ 1lmodb, ...,y — lmodb, y} is unordered. By convention, we con-
sider that [0,b — 1], is the canonical representation of Z; itself. Note that other
representations exist: [1,0]p, [2, 1]p,....,[b — 1,0]p. Clockwise Intervals that have a
positive or null width are called proper Cls, while others are called improper Cls.
The width of a CI is defined by extending the definition of width over classic in-
tervals, by using the canonical representation: wid([z, y],) = wid(z..y). Note that
width can then becomes negative in this case. The set of clockwise intervals over
Zy is finite. It is composed of {[]s, [0,0]p,...,[b—1,b—1]s, [0, 1], [1,0]p,...,[b—
2,b—1]p,[b—1,b—2],...,[0,b — 1]}, where [], denotes the empty clockwise
interval.

Definition 3 (Cardinality). Let [z,y], be a CI, then its cardinality is an in-
teger modulo b defined as: card([z,yly) = (y — x + 1) mod b.

By convention, card([0,b — 1]) = b and 0 < card([z,y]y) < b. For example,
card([7,0]s) = 2 while wid([7,0]s) = —7. The following property immediatly
holds:

Proposition 1. A CI [z,y], contains ezactly card([z,yl,) elements, if repre-
sented over [1,b],.

Proof. If y > =z, then the set [z,y], = {z,2 +1,...,y — 1,y} is ordered and
contains y — x + 1 elements. The special case where y —z + 1 = b corresponds
to the CI [0,b — 1], and then card([0,b — 1],) = b.

If y < z, then [z,y], = {@, 2 +1,...,b— 1} U{0,1,...,y} and so, it contains
(b—x) + (y + 1) elements. In this case, b—x+y+ 1=y —x+ 1 mod b that
gives the expected result.

2.3 Building clockwise intervals

A classic interval can be converted into a CI by using the following formula:

[0,b—1], if wid(z..y) > b

2.y mod b £ .
[z mod b,y mod b], otherwise

We define the hull of a set of modular integers as being the smallest Clockwise
Interval w.r.t. cardinality, that contains all the elements of the set. By conven-
tion, proper clockwise intervals are considered smaller than improper ones when
they have same cardinality. Formally,

Definition 4 (Hull). Let S = {x1,...,2,} be a subset of Zy, the hull of S is a
CI noted OS, defined as:

08 £ Infeara({{zi, zl[{z1, .- 2} C (23, 25]0)

Building an algorithm from this definition yields an untractable procedure as it
would require considering p! possible combinations of the bounds. Fortunately,
we have the following proposition:

Proposition 2. Let S = {z¢,...,2p-1} be an ordered subset of Zy, and let
z_1 denotes x,_1, then

0S = [x;,xi—1]p where i € 0..p — 1 such that card([z;, z;—1]p) is minimized

Therefore, when S is ordered, 1S can be computed in linear time w.r.t. size of
S.

Proof. The case where [z;,z;_1]y is proper, ie., x; = zo and x;_1 = p, is
trivial. Let suppose that [2;,2;_1], is an improper CI. Firstly, it is clear that
S C [z, 2-1]p as S is ordered (Vi € 1.p — 2,29 < zj—1 < &; < xp—1). Secondly,
as card([z;, ;—1]p) is minimized, it remains to show that there does not exist a
CI [k, 1], where j # i — 1 that contains S and that is tighter than [z;, z;_1]p). If
I >x;_q thenz;_1 & [k,]y and if k < x; then a; ¢ [k,], meanning that | < z;_;
and k > x;. By this, we get card([k,l]y) > card([xi, xi—1]p) which contradicts
the hypothesis.

2.4 Clockwise Interval Arithmetic

Having defined Cl, we now turn on the definition of Clockwise Interval Arithmetic
that allows us to perform computations over intervals.

Definition 5 (Addition). Let [i,j], and [k,l], be two CI, then the addition
operation, noted @, is defined as:

[0,b—1], if card([i, j]p) = b or card([k,l]y) = b

i, 1ok, Uy = or card([i, jls) + card([k, 1]y > b
[(i + k) mod b, (j + 1) mod bl otherwise

Correction property: Va € [i,jly, Yy € [k, b, (x +y) mod b € [i, j]p B [k, p.
For example, [2,3]s & [3,2]s = [0, 7]s while [2,2]s & [3, 3]s = [5, 5]s-

Definition 6 (Substraction). Let [i,j], and [k,l], be two CI, then the sub-
straction operation, noted ©, is defined as:

0,6 —1], if card([i, j]p) = b or card([k,l]y) = b

i, jlsSlk, [y £ or card([i, j]p) + card([k, 1], > b
[(i —1) mod b, (j — k) mod b], otherwise

Correction property: Va € [i,j]y, Yy € [k, 1]p, (x —y) mod b € [1, j]p S [k, s

For example, we have [0, 1]s& 0, 1]s = [7, 1]s. Note that [0, b—1], is absorbing for
@ and ©. For those two operations, similarily to the situation in classic Interval
Arithmetic, the computations can be performed on the bounds of Clockwise
Intervals. This is no longer the case for multiplication and division, as the tightest
CI that encloses all the solutions cannot be computed by using only bounds of its
operands in those cases. Let us first define precisely the considered operations:

Definition 7 (Multiplication by a constant k). Let k be a constant modulo
b and [i, j]p a CI, then the multiplication by k is defined as follows:

k*[i,5]p 2 O({k *i mod b,k * (i + 1) mod b, ...,k * j mod b})

Definition 8 (Multiplication). Let [i,j], and [k, 1], be two CI, then the mul-
tiplication operation, noted ®, is defined as:

i, jls® [k, 1]y 2 O({ixk mod b, i*(k+1) mod b, ..., (i+1)xk mod b, ..., j*I mod b})

Definition 9 (Division). Let [i,j], and [k,l], be two CI, then the division
operation, noted @, is defined as:

i, 5ls @[k, 1]y £ O({i/k mod b,i/(k+1) mod b, ..., (i+1)/k mod b, ..., j/l mod b})

As an example, consider the multiplication by a constant operation 4 ® [2,4]s.
With the formula, we get 0({4%2 mod 8, 4%3 mod 8,4%4 mod 8}) = 0({0,4}) =
[0,4]s. Unfortunately, the bounds of the resulting CI [0,4]s cannot be computed
by using only the bounds of CI operands as 42 =4 %4 = 0 mod 8. Computing
the resulting CI by enumerating all the elements of its operands seems unrea-
sonnable in the context of large-sized machine integers. The following subsection
describes a method that permits to compute the resulting optimal CI in the case
of multiplication by a constant k, without requiring a ful enumeration of the
domain of possible values.

2.5 An efficient method for computing optimal CI in the presence
of multiplication operators

The method is based on the following notes:

— the structure of Zy» is well known: the divisors of 0 are powers of 2 ;
— thanks to proposition 2, ({1, ...,2;,}) can be computed efficiently when
the set {z1,...,2p} is ordered.

Let k be a constant modulo b = 2", let [i,j], be a CI, we describe a method
that allows to compute the minimum and the maximum values of k * [i, j], =
O({k *¢ mod b,k * (i + 1) mod b, ..., k * j mod b}).

We start by eliminating some trivial cases: If k = 0, then kx[¢, j], = O({0})
[0,0]p. If & = 1, then k « [i, jlp = [¢,7]p. If i < j and k *j < b, then k « [i, j], =
[k # 4,k * j]p. Let now suppose that k is a constant greater or equal to 2 and
k*j>bori>j. We have the following proposition:

Proposition 3. Let k # 2%, ¢y = ki quo b and g = k * j quo b, then:
Max(k * [i,j]) = b — d where d = Ming, <q<q,(q * b mod k) and
Min(k x [i, j]p) = d’ where d' = Ming, <q<q,(—q * b mod k).

Proof. (sketch of, partial) Let p be the element of [4, j], for which & *p mod b is
maximized in Zp, and let g be the smallest value such that k*p < ¢*b, then we
consider d = g+ b— k*p. We claim that d = ¢*b mod k as 0 < p < k. It remains
to find the value of ¢ that minimizes ¢ * b mod k. As p € [i, j]5, we know that
q1 < q < g2 by definition of ¢q. Therefore we can explore the possible values of ¢
from g1 + 1 to g2, up to k — 1 values.

For example, consider k x [i, j], where k = 5 and [i,j], = [2,7]s. Applying
Prop.3, we get g1 = 5%2div8 =1 and ¢2 = 5% 7 div8 = 4. For ¢ = 2,3,4,
computing 7, = ¢ * b mod k and r_;, = —¢ * b mod k leads to:
ro =16 mod 5=1and r_o = —16 mod 5 = 4,
rg=24mod5=4and r_3=—-24 mod 5 =1,
ry =32mod 5=2and r_4, = —32 mod 5 = 3.

The minimum over the r; is obtained when ¢ = 2 and then Maxz (5 % [2,7]s) =
8 —ry = 1. For the 7_;, it is obtained when ¢ = 3 leading to Min(5 * [2,7]s) =
r_s = 1. Hence, 5 % [2,7]s = [1,7]s has been computed by exploring only the

divisors of b in k * i..k x j, instead of looking at all the double products k * [
within the same range.

Finding similar propositions for generalized multiplication and division may
be possible, but one can also use Prop.3 to compute over-approximations of
the resulting Cls. It suffices to use the bounds of each operand interval as a
constant, to apply Prop.3 on each of the four double products, and keep the
smallest intersection of results. But note that, optimality is usually lost with
this approach.

3 Constraint propagation over Clockwise Intervals

In this section, we define projection functions that allow to perform constraint
propagation over CI. As usual in Finite Domains constraint solving, each variable
X is associated a finite domain dom(X) of possible values. We consider here that
domain are (over-)approximated by CI: CI(X) £ O(dom(X)).

3.1 Set-based operations over CI

Inclusion, union and intersection of Clockwise Intervals are defined by using their
set-theoretic definition counterpart. For example, inclusion over CI is defined as
follows:

170 € (elly = (it Lo} C (kL)

Note however that union and more surprisingly intersection are not closed over
CI. For example, [5,2]sN[1,6]s = {1,2,5,6}. Hence, we define the meet operation
as taking the smallest CI that contains all the elements of the intersection:

4l Al 0l 2 0({i i+ 1,5y N {k b +1,..,0})

For example, we got: [5,2]s A[1,6]s = [1,6]s and [5,1]s A[0,6]s = [5,1]s. The
main question is whether these operations can be computed efficiently. The fol-
lowing property helps answering this question:

Let z be an integer modulo b, then = € [i,], is true iff # > i Az < j when
[i, 4]y is proper and x > i V & < j when [i, j], is improper. This property comes
directly from definition of CI.

The meet operator A As the computations of meet is at the core of con-
straint propagation engine, finding an efficent algorithm is of great importance.
The definition given above requires to explore each element of both domains
at least once. This can be costly when large domains are involved during con-
straint propagation. The following proposition offers ways to compute the meet
operation more efficently:

Proposition 4. Let X = [i,j]y and Y = [k,l], be two CI, then X \Y is defined
as:

if wid(X) * wid(Y') =0 (suppose for example that X = [i,]y)

liyi] if X =[,iyNi€Y
XAY =S [kkl ifY=[kksAkeX

I3 otherwise

if wid(X) * wid(Y') > 0 then

X/\Y _ {Hb if wid(X) > 0 Awid(Y) > 0 Amaz{i, k} > min{j,1}
[

max{i, k},min{j,1}]y otherwise
if wid(X) * wid(Y') < 0 then

[l ifj <kAl<i
kgl ifj>kAl<i
6,0 ifj<kAl>i
XAY=(Y ifj>kNL>0
A card(Y) < card(X)
X ifj>kil>i
A card(X) < card(Y)

In these cases, proving that CI(X)A\NCI(Y) = O{i,i + 1,...,5} N {k,k +
1,...,1}) is not difficult.

Note that the situation differs from classic Interval Arithmetic where the inter-
section of two intervals is always an interval enclosed within its two operands.
Here, [i, j]» Ak, U]y is sometimes not included in both [¢, j], or [k, I]p. This could
be problematic w.r.t. the monotony of projection functions. Fortunately, the
meet operation requires to minimize the cardinality of the resulting clockwise
interval. Hence, each time a projection function is called on variable X, the car-
dinality of CI(X) decrases. This ensures the computations progress towards a
fixpoint.

\/: the join operator The join operation is defined accordingly:
.30 I 0l 2 O({ii + 1, 5} U {k b +1,..,0})

Proposition 5. Let CI(X) = [i,j]y and CI(Y) = [k, 1]y, then CI(X)\/ CI(Y)
can be defined as follows:
if wid(CI(X)) > 0 A wid(CI(Y)) >0 then

6,00 if card([f,1]p) < card([k, j]b)
[k, jly otherwise

crx)\/cry) = {

Note that these two operations (A,V) give the| CI set a structure of a finite
lattice.

3.2 Relations over CI

Let X,Y be two variables over Z, the relation X =Y leads to prune CI(X)
and CI(Y) with the following rule: CI(X),CI(Y) « CI(X)A\CI(Y). In CI
Arithmetic, the relation X <Y leads to prune CI(X) = [i,j], and CI(Y) =
[k, 1]y with the rule CI(X) < CI(X) A[0,maz(CI(Y))]. Other relations can
easily be derived from these ones.

3.3 Bound-consistency for modular integer constraints

From the formula given above, one can derive practical algorithms to perform
bound-consistency on modular integer constraints. The simplest approach is to
implement propagators on Clockwise Intervals within an AC-3 propagation algo-
rithm. Once a CI becomes empty, then the constraint system is shown as being
unsatisfiable. If none CI become void, then the resulting CIs encompass all the
solutions of modular integer constraints.

For the linear fragment of modular integer constraints (i.e., addition, sub-
straction, multiplication by a constant) this approach maintains optimal CIs at
the cost of bounds computations. However, as soon as variable multiplication
is encountered, optimality requires time-quadratic exploration of Cls. This is
prohibitive in the context of 32-bits or 64-bits integer arithmetic. This problem
is similar to the situation in bit-vector arithmetic [2] where variable multipli-
cation requires time-quadratic computations on the number of bits. For these
non-linear constraints, as said previously, one can gave up optimality by com-
puting Clockwise Intervals that over-approximate optimal clockwise intervals.
In the implementations described below, several propositions are made in this
direction.

4 Implementations

In the context of the ANR CAVERN project, three distinct implementations of
modular integer constraint solving were done. During this work, it appears that
Clockwise Interval may be a unifying notion capturing the essence of modular
integer interval computations.

4.1 MAXC

At INRIA Rennes, the Clockwise Interval Arithmetic shown above was directly
implemented in MAXC, a solver dedicated to modular constraint solving. In a
near future, this solver should be integrated within EUCLIDE [6], an automatic
test data generator for critical C programs. The constraint system that is derived
from EUCLIDE includes modular constraints based on arithmetic operators (+4,-
¥,div,mod) and high-level operators such as reification and global constraints
dedicated to program verification. We do not detail these operators here as our
paper is focussed on modular constraint solving. Propagators in MAXC are

implemented in C for efficiency reasons while the general propagation queue
is implemented in Prolog. Each variable is associated to a CI and contracting
propagators aim at pruning Cls of their inconsistent values. The size of variables
that can be represented in MAXC ranges from 1 bit to 64 bits as these are the
sizes typically found in primitive types in C. The data structure for encoding
CIs maintains cardinality and width:

typedef struct {

USH empty ; /x is an empty domain ? */
USH sign ; /% is a signed domain ? */
USH size ; /* allowed size = 1,2,3,4,8,16,32 or 64 bits */
UL min ; /* min_value of domain */
UL max ; /% max_value of domain */
UL wid ; /% absolute value of width of domain */
SSH sign_wid ; /* sign of width: SINGLE is 0 (eg [3,31),

PROPER +1 (eg [3,6]),IMPROPER -1 (eg [6,3]) */
UL card ; /% cardinality of domain. 0 is the whole domain*/
ULL basis ; /* basis of modular calculus. O denotes 2764 */

} TYPE_LFD ;

In this data structure, USH stands for unsigned short integer which corresponds
to 16-bits integers while UL stands for unsigned long, i.e. 32-bits integers. Other
keywords can easily be understood as variations of these two. Note that encoding
64-bits integer Clockwise Interval arithmetics is still possible but greater formats
cannot be encoded. The solver applies bound-consistency propagators on this
data structure for @, ©, ®, It maintains optimal CIs for the linear fragment of
these constraints. The input format of constraints is an intermediate one, where
complex constraints have already been decomposed in simpler ones. Typical
requests are of the form:

testl :-— % In 3-bits integer arith.,
solveur:init_env(E), % X =5,Yin 2..7, Z in 5..0, Z = XY
1fd:news([X,Y,2],int(8),[’X’,’Y’,’Z’],E), % should produce
1fd:equal(const(’5°),X), % Y in 3..6, Z in 6..7

1fd:equal(in(’2’,°7°),Y),
1fd:equal(in(’5°,°0°),2),
1fd:equal (’*’,X,Y,Z),
solveur:solve(E),
1fd:affiche([X,Y,Z]).

Many operators still have to be implemented in order to capture modular in-
teger constraints coming from C programs, including bit-to-bit operators (e.g.,
&, |, ~),logical operators (e.g., &&, |1), nonlinear operators coming from de-
strucive assignment (i.e., i *= i++ that correspond to constraint is = (i; +1)?),
and so on.

4.2 JSOLVER

JSolver is a IBM-ILOG Constraint-Based Programming library in (pure) Java.
It is derived from the C++ library IBM-ILOG Solver and has been tailored for

the static and dynamic analyses of rule-based programs [3,8]. Currently, these
analyses are performed using an idealized integer arithmetic where modular com-
putations are ignored. Consequently overflows on integers are reported as errors
and the corresponding rule-based programs are rejected which is the expected
behaviour, as these programs are exploited by end-users and not by developers.

We recently investigated the use of CP to perform static analysis of rules
in order to optimize their compilation in a discrimination network [5]. Unlike
the above usage, this requires using the program execution semantics where
integer overflows are silently done (such as in Java). We report here on our first
implementation of bound consistency for integer modular constraints by using
classic intervals as defined in mathbooks: a classic interval a..b with integer
bounds @ and b is the set of integers {z|a < z < b}. Let us consider two positive
32-bits integers and suppose we want to determine the range of the sum of these
(signed) integers ranging from 1 to 23! — 1. By using an idealized semantics
for integer computations, we get that the sum is ranging from 2 to 2(23! — 1).
Of course, this range could be exactly represented by using unbounded values
such as biglnteger in Java or approximated by 2.. + in finity. But, taking into
account modular integer arithmetic, we found that the sum is actually ranging on
—231..—2 union 2..23! —1. The classic interval which covers all these values is the
set of all representable signed values on 32 bits MIN_INT.MAX_INT. Note
that such classic intervals usually over-approximate the results that could be
computed using Clockwise Intervals as, for example, the CI [2, —2]9s2 on signed
32-bits integers corresponds precisely to —23!.. —2 union 2..23! — 1 that is over-
approximated by the classic interval —231..231 — 1. To give a flavor of inferences
which could be made on classic interval for modular integer arithmetic, let us
continue our example by constraining the sum to be greater than —2. Let x,
y and z be three signed 32-bits integers such that z, the sum of z and y, is
greater than —2. z and y are ranging on 1.MAX _INT and z is ranging on
—1.MAX_INT. As the transformation z = z — y (resp. y = z — x) is correct
in modular integer arithmetic, we actually found that = (resp. y) is ranging on
1.MAX_INT —1. As z = z +y, we deduce that z is ranging on 2. M AX_INT,
then discovering that z is positive.

To formally define what our computations are, let us assume that we are
dealing with modular integer with a machine representation ranging from a
smaller integer denoted by m and a larger integer here denoted by M. let x..y be
a classic interval. u, v represent and y in a (m, M) computer integer arithmetics
ifm<u<M m<v<Mandz=u+k,(M—-m+1),y=k,(M—-m+1) for
two integers k, and k,. We may then introduce a cast,, p function from classic
intervals to (m, M) intervals with the following definition:

. (@.9) U..v if k, =k,

cas z.y) =

MY ZN M i ! = Ky

This cast function provides concise definition for modular arithmetic. For exam-
ple the (best) forward operator for the sum z of and y is 2z in cast,, y (Tmin +
Ymin--Tmaz +Ymaz)- As 2 = x+y is equivalent to z = y—z in modular arithmetic,

the (best) backward operator is defined by x in casty, ar(Zmin — Ymaz--Zmaz —
ymin) and y in C(LStm.M(Zmzn — Tmaz--Fmaz — Tmm)

The multiplication by a scalar is not so straightforward. On 32-bits signed
integer, the powers of 2 are divisors of 0 and the congruence domains [8] are not
preserved. For example, 2« MIN_INT = 0 and 3 « MIN_INT which is equal
to MIN_INT is not even divisible by 3. However, solving ax = b on 32-bits
signed integers is not so difficult. First we note that if a power of 2 divides a, it
should also divide b for the equation to have a solution. By simplifying by this
power of 2, say 2P, we obtain o’z = b’ mod 232~P), We find then the inverse u
of a’ mod 2(32-P), We infer that = = (ua’)z = u(a’z) = ub’ mod 232~P). Finally,
we obtained a range for x in 32-signed integers and a congruence domain to be
propagated. We can apply this method to the solving of az in m..M on 32-bits
integers in a similar way. First, if 27 divides a, we keep only the multiples of 27
from m..Maz. Then we simplify m and M to solve az in m’..M’ mod 2(32=P) by
finding an inverse u of @/, leading to 2 in usm’..ux M’ mod 2(32?) Here again, we
infer a range for z mod 232 and a linear congruence to be propagated. To end this
short report on our preliminary implementation, we should say that the general
multiplication of two variables is propagated by using the cast function. This
leads very often to the top approximation of the full integers, being not complete
but at least correct. For future implementations, we are thinking of making use
of the k, integer indicators in the cast function definition, as proposed in the
tool COLIBRI described below. We also think to switch our implementation
from classic intervals to clockwise intervals as the performance should be similar
whilst the precision is improved.

4.3 COLIBRI

COLIBRI is a constraint library developped at CEA LIST for its test genera-
tion tools: GATeL for the functional testing of LUSTRE/SCADE models [10],
PathCrawler for the structural testing of C code [11] and Osmose for the struc-
tural testing of binary code [1]. This library provides domains and constraints for
integer, real and floating point interval arithmetics. Furthermore, a congruence
domain is combined with the integer domain as described in [8].

The integer domain is implemented by union of intervals with finite bounds.
These bounds can be any integer since we use big integers provided by the Gnu
Multi-Precision library. This representation of integer domains allows to precisely
represent improper clockwize intervals. For example, using clockwise intervals we
have [2,4]s @ [4,7]s = [6, 3]s. This interval corresponds to the following union of
classic intervals 0..3 U 6..7 which is denoted by [0..3,6..7] in COLIBRI.

In order to handle the signed and unsigned integer arithmetics used by com-
puter languages, COLIBRI provides signed and unsigned modular arithmetics
operations when the modulo is a positive power of two (i.e., when b = 2™ with
n > 0). For each operation op in +, —, x, div, repn, power we provide the oper-
ations ops, and op,,, which correspond to the|modular signed and unsigned
versions of op. The implementation of these opefations uses the following defi-
nition of modular operations.

Y(A, B,C) € Zon®, A 0pgyn B=C = (3K, AopB = C + K x 2")

The range of K can be easily characterized for each ops, , according to 2™.
For example, for the 4, , operation —1 < K < 1, while for the x,,, operation
0<K<2m—1.

Thus, according to the previous equivalence, the constraint propagators of
any modular operation can be implemented with those of non modular oper-
ations. This is exactly the way modular operations are implemented in COL-
IBRI. For example, the constraint A +,, B = C where variables A, B and
C belong to [0,2" — 1] is handled by the following conjunction of constraints:
A+B=XAKx2"=YAX+Y = C where the initial domain of K is [0,2" —1],
Notice that the congruence domain knows that variable Y is a factor of 2" and
as soon as C (resp. Y) handles a congruence one can infer a congruence for Y’
(resp. C).

For each modular operation, the variable K is a precise indication of un-
derfow/overflow: when K < 0 this means that there is an underflow, when
K > 0 this means that there is an overflow while when K = 0 there is no under-
fow/overflow. Such an indicator could be very helpfull for verification tools when
checking computation w.r.t. underfow/overflow. This is why COLIBRI modular
constraints handle a supplementary argument UO which abstracts the sign of
K: UO belongs to [—1,1] and has the same sign as K. Any assignment of this
variable UO can be used to force underflow (UO = —1), overflow (UO = 1) of
normal computation (UO = 0). Moreover, one can force non normal behaviour
by stating that UO <> 0.

To conclude this short presentation of modular operations in COLIBRI, let
us remark that the accuracy of this implementation relies on the use of union of
intervals with big integer bounds. This could be considered very expensive for
constraints systems involving heavy computations. However, as shown by a re-
cent experiment [2] using SMT-LIB benchmarks our implementation of modular
arithmetics is competitive with powerfull SMT solvers.

5 Conclusions and perspectives

In this paper, we introduced Clockwise Intervals as a way to capture modular
interger interval computations. We described three distinct implementations of
modular integer constraint solving that have applications in program testing and
analysis. We have also seen that finding optimal bounds in bound-consistency
filtering of modular integer computations is not trivial and often requires ap-
proximations. For general multiplication and division, efficient ways to compute
optimal bounds still need to be found. On the foundations of the approach,
Clockwise Interval appears as a good tool to describe bound-consistency on
modular integer computations but its relations with other Interval Arithmetics
still need to be studied. On the applications of modular integer constraint solv-
ing, experimental evaluation is required in the diverse contexts presented earlier

in the paper, namely, automatic test inputs generation for C programs, test case
generation for reactive programs and rule-based program analysis. Another per-
spective of this work concerns the way other dedicated constraint solver could
be married with Clockwise Intervals. For example, the recent work of Bardin
et al. in [2] showed that dedicated bitvectors operators could be efficiently cou-
pled with classic intervals. It remains to find ways to integrate such arithmetics
within Clockwise Intervals.

Acknowledgments

We would like to thank the members of the ANR CAVERN project who par-
ticipated to our initial discussions on this topic, namely Bruno Berstel, Bernard
Botella, Claude Michel, Michel Rueher, and Nicky Williams.

References

1. S. Bardin and P. Herrmann. Structural testing of executables. In 1th Int. Conf.
on Soft. Testing, Verif. and Valid. (ICST’08), pages 22-31, 2008.

2. S. Bardin, P. Herrmann, and F. Perroud. An alternative to sat-based approaches
for bit-vectors. In Tools and Algorithms for the Construction and Analysis
(TACAS’10), pages 84-98, 2010.

3. B. Berstel and M. Leconte. Using constraints to verify properties of programs.
In 2nd Workshop on Constraints in Software Testing, Verification and Analysis,
CSTVA’10, 2010. Co-located with ICST’10 in Paris, April.

4. H. Collavizza, M. Rueher, and P. Van Hentenryck. —Cpbpv: A constraint-
programming framework for bounded program verification. In Proc. of CP2008,
LNCS 5202, pages 327-341, 2008.

5. C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19:17-37, 1982.

6. A. Gotlieb. Euclide: A constraint-based testing platform for critical ¢ programs.
In 2th IEEE International Conference on Software Testing, Validation and Verifi-
cation (ICST’09), Denver, CO, Apr. 2009.

7. A. Gotlieb, B. Botella, and M. Rueher. A clp framework for computing structural
test data. In Proceedings of Computational Logic (CL’2000), LNAI 1891, pages
399-413, London, UK, July 2000.

8. M. Leconte and B. Berstel. Extending a cp solver with congruences as domains
for software verification. In Ist Workshop on Constraints in Software Testing,
Verification and Analysis, CSTVA’06, 2006. Co-located with CP’06 in Nantes,
September.

9. B. Marre, P. Mouy, and N. Williams. On-the-fly generation of k-path tests for
¢ functions. In Proceedings of the 19th IEEE Int. Conf. on Automated Software
Engineering (ASE’04), Linz, Austria, September 2004.

10. Bruno Marre and Benjamin Blanc. Test selection strategies for lustre descriptions
in gatel. Electronic Notes in Theoretical Computer Science, 111:93 — 111, 2005.

11. N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler: Automatic generation
of path tests by combining static and dynamic analysis. In Proc. Dependable
Computing - EDCC’05, 2005.

Les travaux décrits dans ce chapitre ont été menés en grande partie dans le
cadre du projet SESUR CAVERN? (Constraints and Abstractions for program VERi-
ficatioN, 2008-2011). Ce projet coordonné par I'INRIA Rennes, a rassemblé le lab-
oratoire 13S de I'Université de Nice Sophia-Antipolis, le CEA Saclay et la société
IBM-ILOG Labs, dans le but d’étudier I'intérét de techniques de calculs sur les
domaines abstraits pour la vérification de programmes a base de contraintes.

Ce chapitre clos la partie fondements de notre manuscrit en ayant présenté, au
travers de quelques articles, les principaux éléments qui constitue les fondations
du test a base de contraintes. Bien str, ces éléments ont été présentés au travers du
prisme de nos contributions, forcément réducteur, mais ils constituent néanmoins
selon nous un bon point de départ pour explorer ce domaine de recherche.

2cavern.inria. fr

Part 11

Développements

65

Chapter 4

Oracles

Contexte

Le test logiciel repose sur la disponibilité d’oracles, c’est a dire de procédures
manuelles ou automatisées, permettant de controler les sorties attendues d"un pro-
gramme sous test. Idéalement, chaque oracle devrait étre correct et complet, sig-
nifiant qu’il devrait étre capable de prédire, sans erreur, la sortie attendue quelque
soit I'entrée soumise au programme. Cependant, beaucoup de situations réelles
montrent que la disponibilité d'un tel oracle, correct et complet, est extrémement
rare. Ainsi que 1’a noté Elaine Weyuker dans un article fameux [Weyuker 82], cer-
tains programmes sont méme considérés comme étant non—testables car il n’est
pas possible de leurs trouver un oracle, méme incomplet. A titre d’exemple, on
peut citer les programmes écrits pour résoudre un probleme dont la solution n’est
pas connue a l'avance (comme les programmes a contraintes par exemple), cer-
tains programmes numériques qui sont instables vis a vis des erreurs d’arrondis
dus aux calculs flottants, ou encore les programmes qui calculent le résultat de
fonctions mathématiques complexes, incalculable a la main. De plus, certains pro-
grammes doivent étre testés de maniere approfondie, bien que leur code source ou
qu’une spécification formelle de leur comportement attendu, ne soit disponible.
C’est le cas particulier des librairies et des composants logiciels externes qui sont
souvent délivrés sous forme d’exécutables et pour lesquels seule une documenta-
tion informelle existe.

Nous nous sommes intéressés a ce probleme au travers de la définition d’oracles
partiels, c’est a dire de conditions nécessaires mais non toujours suffisantes pour
établir la correction du programme sous test. Cette notion d’oracles partiels a
connu de nombreux développements dans le cadre du test métamorphique [Chan 98,
Chen 01, Tse 07]. Les oracles partiels que nous avons considérés sont fondés sur
l"utilisation de propriétés de symétrie des programmes. Ces propriétés de symétrie
sont des relations de permutation d’entrée-sorties définies par 1'utilisateur qui con-
duisent a partitionner I'espace d’entrée en classes d’équivalence. L’équivalence de
deux exécutions a l'intérieur d'une classe peut alors étre utilisée comme un or-
acle partiel. Dans ce chapitre, nous introduisons un paradigme de test logiciel

67

nommé test symétrique qui est utilisé pour vérifier les programmes au travers de
ces propriétés de symétrie. Etant donné I'interface d’un programme et une relation
de symétrie que le programme est sensé satisfaire, le test symétrique associe une
génération automatique de de cas de test avec le contrdle d’oracles partiels pour
découvrir des fautes de symétrie dans les programmes. Cette vérification peut-étre
complétement automatisée comme nous l'avons montrée dans [Gotlieb 03b]. Le
test symétrique s’appuie sur des résultats classiques de la théorie des groupes afin de
minimiser le nombre de sorties & controler pour vérifier une propriété de symétrie.
Cette théorie est une perle mathématique qui est 1’outil indispensable pour parler
de symétrie. Le test symétrique a été appliqué au test de bibliotheque Java et de
programmes Java Card, comme détaillé au chapitre 8 de ce mémoire.

A. Gotlieb. Exploiting symmetries to test programs. In IEEE
International Symposium on Software Reliability and
Enginering (ISSRE’03), Denver, CO, USA, November
2003.

Exploiting Symmetries to Test Programs

Arnaud Gotlieb
INRIA/IRISA
Campus Beaulieu
35042 Rennes Cedex, FRANCE
Arnaud.Gotlieb@irisa.fr

April 4, 2003

Abstract

Symmetries often appear as properties of many ar-
tifical settings. In Program Testing, they can be
viewed as properties of programs and can be used
to check the correctness of the computed outcomes.
In this paper, we consider symmetries to be permu-
tation relations between program executions and use
them to automate the testing process. We introduce
a software testing paradigm called Symmetric Test-
ing, where automatic test data generation is coupled
with symmetries checking to uncover faults inside the
programs. A practical procedure for checking that a
program satisfies a given symmetry relation is de-
scribed. The paradigm makes use of Group theoretic
results as a formal basis to minimize the number of
program executions required by the method. This
approach appears to be of particular interest for pro-
grams for which neither an oracle, nor any formal
specification is available. We implemented Symmet-
ric Testing by using the primitive operations of the
Java unit testing tool Roast [1]. The experimental re-
sults we got on faulty versions of classical programs
of the Software Testing community show the effec-
tiveness of the approach.

1 Introduction

Testing imperative programs at the unit level requires
to select test data from the input domain, to execute

the program with the selected test data and finally to
check the correctness of the computed outcomes. For
almost three decades, propositions have been made
to automate this process. Structural test data gen-
eration relies on program analysis to find automati-
cally a test set that guarantee the coverage of some
cirteria based on flow graphs [2, 3, 4, 5]. Function-
al testing is based on the specifications analysis to
generate automatically test data [6, 7]. These tech-
niques both require a formal description to be giv-
en as input : the source code of programs in the
case of structural testing ; the formal specification of
programs in the case of functional testing. Howev-
er there are programs to be tested for which no one
of these formal descriptions is available. For exam-
ple, commercial off-the-shelf components are usually
delivered as “black-boxes”, i.e. executable object-
s whose licenses forbid de-compilation back to the
source code [8], and informal specification is used
most of the time to describe their expected behaviour.
In these situations, techniques such as random testing
[9], boundary-value analysis [10] or local exhaustive
testing [11] can be employed. Random testing aim-
s at selecting randomly the values inside the input
domain by using pseudo-random values generators,
whereas boundary-value analysis relies on selecting
the boundaries of each individual or dependent do-
mains [1] of the input space. Local exhaustive test-
ing requires to identify critical points around which
input values will be exhaustively selected. All these
methods have in common to focus on the generation

of input values and are based on an underlying as-
sumption which concerns the availability of a cor-
rect and complete oracle, i.e. a procedure able to
predict the right outcome for any input data. Un-
fortunately, there are situations where this assump-
tion seems to be unreasonable. As pointed out by
Weyuker [12], some programs are considered to be
non-testable. These are programs for which it is the-
oretically possible, but practically too difficult to de-
termine the correct outcome. Consider programs in-
tented to compute a function which is not accurately
known or programs for which correct answers are too
difficult to compute by hand. Third-party librairies
and commercial components fall usually into the for-
mer case [13], whereas complex numerical programs
fall into the latter [14].

In this paper, we introduce a software testing
paradigm, called Symmetric Testing (ST), which
aims at testing imperative programs for which nei-
ther an oracle, nor any formal description is required.
‘We consider symmetries to be permutation relations
between program executions and use them to auto-
mate the testing process. Given the interface of a
program and a symmetry relation, ST combines auto-
matic test data generation and symmetries checking
to uncover faults within the program. Group the-
oretic results are used as a formal basis, conform-
ing so the well-known adage “Numbers measure size,
Groups measure symmetry” [15]. As a trivial exam-
ple, consider the program p intended to compute the
greatest common divisor (ged) of two non-negative
integers v and v and suppose that p is tested with
the following test datum (u = 1309,v = 693), auto-
matically generated by a random test data genera-
tor. Although, we all know how to compute the ged
of two integers', it is not so easy to predict the ex-
pected value of ged(1309,693) without the help of a
calculator. Fortunately, gcd satisfies a simple sym-
metry relation :VuVv, ged(u,v) = ged(v,u). So, if
9¢d(1309, 693) # ged(693, 1309) then the testing pro-
cess will succeed to uncover a fault without the help of
any oracle of ged. We generalized this idea to obtain
a formal definition of symmetry relation on impera-
tive programs. Formally speaking, let p be a program

Lwith the Euclidian algorithm for example

which takes a vector of at least k values as input and
returns a vector of at least | values, and let z and y
be two vectors then a symmetry relation for p holds

if?
VO € Sp,3In € Sy such as y = 0.z = p(y) = n.p(z)

where Sy, (resp. S;) is the symmetric group acting on
k elements of (resp. [elements of y). Symmetric
Testing consists in finding test data that violate a
given symmetry relation, i.e. finding 6 such as for all
n:

y = 0.z Ap(y) # n.p(z)

Symmetries relations are generic properties and
checking the correctness of programs in regards with
these relations is a difficult task, likely undecidable in
the general case®. However, there are circumstances
when testing procedures can be used to check the
correctness of properties against programs [3, 14, 16].
Hence, by using these procedures, it becomes possi-
ble to check that a given symmetry relation is sat-
isfied by the program on a finite subset of its input
space. Limitations of ST concern the weaknesses of
symmetry relations to differentiate incorrect imple-
mentations from correct ones. In fact, there are lots
of programs that satisfy a given symmetry relation
and any incorrect implementation will not be neces-
sary discovered by Symmetric Testing. Conversely,
the approach does not report any spurious faults. In
order to evaluate the fault revealing capacity of ST,
we implemented it by using the four unit operations
of the Java testing tool Roast [1] and we used it to
reveal faults on several academic programs and on
programs extracted from the third-party library ja-
va.util.Collections.* of the Java 2 plateform (std
edition 1.4). These first experimental results show
that ST is of particular interest when testing some of
the “non-testable” programs.

The rest of the paper is organized as follows : sec-
tion 2 presents the Group theoretic results as well as

the necessary notations required to fully understand
2p(x) denotes the vector of values computed by the execu-
tion of p with z as input
3Although we are not aware of any proof of this, it can
be hypothesjzed as a consequence of the undecidability of the
halting problem

the paper. Section 3 details the principle of Symmet-
ric Testing while section 4 reports the experimental
results obtained with Roast. Related works are de-

scribed in section 5 and finally section 6 indicates
several perspectives to this work.

2 Group theory : notations and
selected results

All the basic material on Group theory presented
in this section is extracted from [15] and the JS
Milne’s lecture notes (available online www. jmilne.
org/math/CourseNotes).
Definition 1 (Group)
A nonempty set G together with a composition law o
is a group iff G satisfies the following azioms :

® Va,Vb,Vc € G,ao(boc) = (aob)oc (associativity)

e Je € G such as ace = eoa = a Ya € G (neutral)

e VaeG,3a ' €G suchasaoca ' =a'oa=ce

(ezistence of an inverse)

The symmetric group notion is the corner-stone of
Symmetric Testing. Let E be a nonempty finite set of
n distinct elements, the set Sg of bijective mappings
from E to itself is called the symmetric group of
E (say Sg acts on E). This symmetric group has
exactly n! elements, which are named permutations.
It is clear that Sg is a group because it is closed and
associative under o, identity is its neutral element
and each permutation posses an inverse because the
definition is restricted to bijective mappings only.

Sk can be identified with S, : the symmetric group
acting on {1,..,n} as there is a trivial bijective rela-
tion (isomorphism) between Sg and S,,. A permuta-

1 . n !
i(1) .. i(n) where
i(1),..,4(n) denote the images of 1,..,n by the per-
mutation . When a permutation of S, is applied to
a vector x of size n, we will write 6.z to denote the
image of z by the permutation 6 (say 6 acts on).
For the sake of clarity, we will extend our notations
to program compositions. If p is a program, p o 6
will denote the application of p to the permutation
of the elements of its input vector. Conversely, n o p

tion in S, is written : § =

will denote the permutation 7 applied to the output
vector of p.

All the permutations can be expressed by using on-
ly a few ones. Consider for example the permutation
g (12345

- (3415 2
tation can be captured by the following notation
6 = (13)(245) where each pair of brackets denotes
a specific permutation called an r_cycle. A permuta-
tion (ajas..ar) of S, is an r_cycle iff it maps a; to
az, az to as, .. a,—1 to a, and leave unchanged the
other elements. A 2_cycle (written (a;a;)) is usually
referred to as a transposition. A trivial property of
transpositions is that they are their own inverse.

A subset X of elements of a finite group G is a set
of generators iff every element of G' can be written
as a finite composition product of the element of X.
G is said to be generated by X. For example, it is
well-known that S3 is generated by the two transposi-
tions 71 = (12) and 7> = (23) because each one of the
six elements of S3 can be written with a finite com-
position product of these two transpositions. More
generally, S, is generated by all the transpositions,
but also by the following subset of transpositions :
{(12),(23),..,(n — 1,n)}. In this paper we will use
the following proposition, given here without a proof
(that can be found in [15]).

Proposition 1 (generators of Sy)

The transposition T = (12) and the n_cycle o =
(12..n) together generate S,.

of S5, the same permu-

It can be shown that S,, cannot be generated by less
than two permutations. Hence {7,0} is a set of gen-
erators of minimum size.

A fundamental notion in Group theory is group
homomorphism :

Definition 2 (group homomorphism)

A group homomorphism from a group G to a group
G’ over the same composition law o is a map ¢ :
G — G' such that p(6 0 8') = p(#) o p(8').

Note that an isomorphism is simply a bijective ho-
momorphism. As a consequence of this definition,
the image of a group homomorphism from G to G’
is a subgroup of G'. It is noted Im(yp). Con-
versely, Ker(p) denotes the kernel of a group ho-
momorphism, which is the set of permutations of

G which are mapped to idg. G/Ker(p) denotes
the group quotient of G by Ker(yp), i.e. the set
{gohlg € G,h € Ker(p)}. Hom(G,G') denotes
the set of group homomorphisms (in fact, it is also a
Group). To end this review of the Group theoretic
results that we need here, we give the fundamental
theorem of group homomorphisms :

Proposition 2 (isomorphism theorem)

Let G and G' be two groups and ¢ be an element of
Hom(G,G'), then ¢ factors into the composite of a
surjection, an isomorphism @ and an injection :

¢ —25

a'urjl ij

G/Ker(p) —=— Im(y)

3 Principle of Symmetric Test-
ing
3.1 Symmetry relations

The idea behind Symmetric Testing is to exploit user-
defined symmetries to automate the testing process of
imperative programs. Lots of definitions of symmetry
have been proposed in various contexts [15]. Some of
them can be adapted for our purpose. We briefly
discuss two possible choices that can be considered
for program testing.

e Symmetries over values. A symmetry over
values can be expressed as a relation between t-
wo program executions when there is a geometric
relation (for example, an isometry) beetwen the
two input points. As a trivial example, consider
a program p which takes two integers as argu-
ments and verifies p(z,y) = p(—z, —y). In this
case, the two input points are symmetrical w.r.t.
the origin of the input space ;

¢ Symmetries over variables. A symmetry
over variables can be viewed as a relation be-
tween two program executions where there is a
permutation relation beetwen the input points.
p(z,y) = p(y, =) is the most simple example of
such a symmetry.

Symmetries over values can easely be recognized for
programs that compute a mathematical function giv-
en by a formula (based on arithmetic or trigonomet-
ric operations). In some cases, local symmetries over
these operations may be aggregated to determine a
global symmetry over the formula, such as in the for-
mula p(z,y) = sin(zy) — cos(y) which satisfies a triv-
ial symmetry over values w.r.t. the origin. Neverthe-
less, in such a case the formula itself can be used
to check the correctness of the computed outcome.
Hence, these symmetries over values appear to be
useless for our purpose. Conversely, symmetries over
variables can be specified with a very few knowledge
on the function being computed. Type informations
are sometimes sufficient to see that a program has
to satisfy a symmetry over variables. Further, they
are properties that can be easely extracted from an
informal specification. These are the reasons why we
will focus on such symmetries in this paper. Formally
speaking, a symmetry is defined as follows :

Definition 3 (symmetry)
Let p be a program over a domain D that takes n
references as input and returns m references®, and let
Sy (resp. Sy) be the symmetric group over n (resp.
m) elements, then a symmetry is a pair < 6,1 >
such as : 0 € Sp,,n € Spy,

y =02 = p(y) =np(x) Vz,yeD

Note that every program p satisfies at least the trivial
symmetry < idg, ,ids, > because imperative pro-
grams are considered to be deterministics here (t-
wo executions with the same input give the same
result). Some of the references of the input vector
may be leaved unchanged by the permutation 6 of a
symmetry < 6,7 >. So, the vector of k exchanged
input references involved in the symmetry is called
the permutable input set®> whereas the vector of [ex-
changed output references is called the permutable
output set. Such symmetries can be grouped togeth-
er by the mean of symmetry relations.
Definition 4 (symmetry relation)
Let p be a program over a domain D that has k per-

4As usual in imperative programming, the value of an input
reference may be modified within the program and considered

s0 as an output variable
5in Group theory, this is called the support of a permutation

mutable input data and | permutable outcomes, Uy,
is a symmetry relation for p iff
o Wy, € Hom(Sk,S;) (group homomorphism) ,

o VO e Sy, <6,V,(0) > is a symmetry for p.

The reason why symmetry relations are required to
be group homomorphisms is based on our will to
characterize the links between permutable outcomes.
This will be made clearer in the following. Note that
symmetry relations are very difficult to check when
the number of permutable input data increases (be-
cause Sy, contains k! elements). It is important to see
that ¥y, does not denote a unique symmetry rela-
tion, because there is no requirement over the map-
ping properties of the homomorphism. In fact, ¥y,
is identified with a class of symmetry relations that
are group homomorphisms in Hom(Sk,S;). Based
on their formal definition, identifying such symmetry
relations might appear to be difficult. Conversely, we
argue that they can easily be specified by looking at
the informal specification of programs, because they
are often related to the type informations of program
variables. Consider a program p taking an unordered
set as argument, then we already know that p has
to satisfy a symmetry relation because computing p
with a permutation of the elements of the set does not
modifiy the computed result. Numerous programs
take unordered sets as arguments : consider sorting
programs or graph-based programs just to name a
few. Further, third-party libraries that contain lots
of generic programs (for reusing purpose) have often
to satisfy symmetry relations.

3.2 Examples

Consider ~ the standard application pro-
gramming interface specification of the
java.util.Collections.replaceAll method
given in Fig.1. If we consider the n_cycle o (permu-
tation (12..n)), then the method replaceAll has to
satisfy a < o,0 > symmetry : let A (resp. B) be
a vector of n symbolic references and A’ (resp. B’)
be the resulting vector computed by invocation of
replaceAll with the references oldVal and newVal,
then B = 0.A = B’ = 0.A". A and B are two
permutable input sets whereas A’ and B’ are the

S

public static boolean replaceAll(List A,
Object oldVal,
Object newVal,

Replaces all occurrences of one specified value in a list with
another. More formally, replaces with newVal each element e
in A such that (oldVal==null ? e==null : oldVal.equals(e)).
(This method has no effect on the size of the list.)
Parameters:
A - the list in which replacement is to occur.
oldVal - the old value to be replaced.
newVal - the new value with which oldVal is to be
replaced.
Returns:
true if list contained one or more elements e such that
(oldVal==null 7 e==null : oldVal.equals(e)).
Throws:
UnsupportedOperationException - if the specified list or
list-iterator does not support the set method.

Figure 1: API specification of replaceAll

permutable output sets. Further, it is clear that
replaceAll has to satisfy the same symmetry for
all § € S,,. Hence, this Java method has to satisfy
a U4 4] symmetry relation, where |A| denotes the
size of the abstract collection A. Finally, this group
homomorphism is the identity of Hom(S|4,S|a)),
which is only one of the possible symmetry rela-
tions represented by W 4 4. By looking at the
java.util.Collections class which contains 19
distinct methods® among 37, we found that 12
methods have to satisfy at least one non-trivial
symmetry relation. This class was selected because
it consists of