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Introduction

The Morava stabilizer groups

Let n be a positive integer and K a separably closed field of characteristic p > 0. If
F is a formal group law of height n defined over K, then the Dieudonné-Lubin theorem
D.3 says that the K-automorphism group AutK(F ) of F can be identified with the units
in the maximal order On of the central division algebra Dn = D(Qp, 1/n) of invariant 1/n
over Qp. In the case where F = Fn is the Honda formal group law of height n, as given
by theorem D.1, we have

AutK(Fn) ∼= AutFpn (Fn).
We define

Sn := AutFpn (Fn) ∼= O×n
to be the n-th (classical) Morava stabilizer group.

More generally, we are interested in the category FGLn whose objects are pairs (F, k)
for k a perfect field of characteristic p and F a formal group law of height n defined over
k, and whose morphisms are given by pairs

(f, ϕ) : (F1, k1) −→ (F2, k2),

where ϕ : k1 → k2 is a field homomorphism and f : ϕ∗F1 → F2 is an isomorphism
from the formal group law given by applying ϕ on the coefficients of F1. If (f, ϕ) is an
endomorphism of (F, k), then ϕ is an automorphism of k and ϕ ∈ Gal(k/Fp). We let

AutFGLn(F, k) = {(f, ϕ) : (F, k)→ (F, k) | ϕ ∈ Gal(k/Fp) and f : ϕ∗F ∼= F}

denote the group of automorphisms of (F, k) in FGLn. If F is already defined over Fp, the
Frobenius automorphism Xp ∈ EndK(F ) defines an element ξF ∈ On. Then proposition
D.7 says that EndK(F ) = EndFpn (F ) if and only if the minimal polynomial of ξF over Zp
is ξnF − up with u ∈ Z×p . For such an F , we define

Gn(u) := AutFGLn(F,Fpn)

to be the n-th extended Morava stabilizer group associated to u. We often noteGn = Gn(1).
Here ϕ∗F = F for any ϕ ∈ Gal(Fpn/Fp). The group Gn(u) contains Sn as the subgroup

of elements of the form (f, idFpn ), and there is an extension

1 −→ Sn −→ Gn(u) −→ Gal(Fpn/Fp) −→ 1

where an element f ∈ Sn is mapped to the pair (f, idFpn ) and where the image of a pair
(f, ϕ) ∈ Gn(u) in the Galois group is the automorphism ϕ of Fpn . Moreover, the Frobenius
automorphism σ ∈ Gal(Fpn/Fp) ∼= Z/n splits as the pair (idF , σ) in Gn(u), and we get

Gn(u) ∼= Sn oF Gal(Fpn/Fp),

where the action on Sn is induced by conjugation by ξF . In terms of division algebras (see
appendix D), this extension translates into a split exact sequence

1 −→ O×n −→ D×n /〈ξnF 〉 −→ Z/n −→ 1,

5



6 Introduction

so that
Gn(u) ∼= D×n /〈pu〉.

In the text we address the problem of classifying the finite subgroups of Gn(u) up to
conjugation. In particular, we give necessary and sufficient conditions on n, p and u for
the existence in Gn(u) of extensions of the form

1 −→ G −→ F −→ Z/n −→ 1

with G maximal finite in Sn, and if such extensions exist, we establish their classification
as finite subgroups of Gn(u) up to conjugation.

Motivation

Given a prime p and for K(n) the n-th Morava K-theory at p, the stable homotopy
category of p-local spectra can be analysed from the category of K(n)-local spectra in
the sense of [9] section 1.1. In particular, letting Ln = LK(0)∨...∨K(n) be the localization
functor with respect to K(0) ∨ . . . ∨K(n), there is a tower of localization functors

. . . −→ Ln −→ Ln−1 −→ . . . −→ L0

together with natural maps X → LnX, such that for every p-local finite spectrum X the
natural map X → holimLnX is a weak equivalence. Furthermore, the maps LnX →
Ln−1X fit into a natural commutative homotopy pullback square

LnX //

��

LK(n)X

��
Ln−1X // Ln−1LK(n)X.

In this way, the Morava K-theory localizations LK(n)X form the basic building blocks for
the homotopy type of a p-local finite spectrum X, and of course, the localization of the
sphere LK(n)S

0 plays a central role in this approach.
The spectrum LK(n)S

0 can be identified with the homotopy fixed point spectrum
EhGnn of the n-th Lubin-Tate spectrum En, and the Adams-Novikov spectral sequence for
LK(n)S

0 can be identified with the spectral sequence

Es,t2 = Hs(Gn, (En)t) =⇒ πt−sLK(n)S
0.

Here the ring (En)0 is isomorphic to the universal deformation ring E(F,Fpn) (in the sense
of Lubin and Tate) associated to a formal group law F of height n over Fpn , and (En)∗ is
a graded version of E(F,Fpn). The functor

E(_,_) : FGLn −→ Ringscl

to the category of complete local rings defines the action of Gn(u) on the universal ring
E(F,Fpn), which in turn induces an action on (En)∗.

There is good hope that LK(n)S
0 can be written as the inverse limit of a tower of

fibrations whose successive fibers are of the form EhFn for F a finite subgroup of Gn(u).
This is at least true in the case n = 2, p = 3 and u = 1, which is the object of [6]. In
[9] the case n = p − 1, p > 2 and u = 1 is investigated. Moreover, the importance of the



Introduction 7

subgroups of G2(−1) for p = 3 is exemplified in [2]. As shown in the present text, the
choice of u plays an important role in the determination of the finite subgroups of Gn(u).

For example, when n = 2 and p = 3 theorem 4.29 shows that the maximal finite
subgroups of Gn(u) are represented up to conjugation by SD16, the semidihedral group
of order 16, and by a semi-direct product of the cyclic group of order 3 with either the
quaternion group Q8 if u ≡ 1 mod 3 or the dihedral group D8 of order 8 if u ≡ −1 mod 3.

Another example is given by theorem 4.30 in the case n = 2 and p = 2: the maximal
finite conjugacy classes are given by two or four classes depending on u. When u ≡
1 mod 8, there are two of them given by a metacyclic group of order 12 and by{

O48 if u ≡ 1 mod 8,
T24 o C2 if u ≡ −1 mod 8,

for O48 the binary octahedral group of order 48, C2 the cyclic group of order 2 and T24
the binary tetrahedral group of order 24. On the other hand when u 6≡ 1 mod 8, there are
four of them given by T24, by two distinct metacyclic groups of order 12, and by{

D8 if u ≡ 3 mod 8,
Q8 if u ≡ −3 mod 8.

The group G2(−1) is the Morava stabilizer group associated to the formal group law
of a supersingular elliptic curve, while in general Gn = Gn(1) is the one associated to the
Honda formal group law of height n.

Overview

In the first chapter of the text, we establish a classification up to conjugation of the
maximal finite subgroups of Sn for a prime p and a positive integer n. When n is not a
multiple of p− 1 the situation remains simple as no non-trivial finite p-subgroup exist. In
this case, all finite subgroups are subgroups in the unique conjugacy class isomorphic to{

Cpn−1 if p > 2,
C2(pn−1) if p = 2,

where Cl denotes the cyclic group of order l. Otherwise, n = (p− 1)pk−1m with m prime
to p. For α ≤ k and Euler’s totient function ϕ, we let nα = n

ϕ(pα) and we obtain:

Theorem. If p > 2 and n = (p − 1)pk−1m with m prime to p, the group Sn has exactly
k + 1 conjugacy classes of maximal finite subgroups represented by

G0 = Cpn−1 and Gα = Cpα o C(pnα−1)(p−1) for 1 ≤ α ≤ k.

Theorem. Let p = 2 and n = 2k−1m with m odd. The group Sn, respectively D×n , has
exactly k maximal conjugacy classes of finite subgroups. If k 6= 2, they are represented by

Gα = C2α(2nα−1) for 1 ≤ α ≤ k.

If k = 2, they are represented by Gα for α 6= 2 and by the unique maximal nonabelian
conjugacy class

Q8 o C3(2m−1) ∼= T24 × C2m−1,

the latter containing G2 as a subclass.
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The classification of the isomorphism classes of the finite subgroups of Sn has already
been found by Hewett in [10]; it is based on a previous classification made by Amitsur in
[1]. Our approach is different: it has the advantage of being more direct, exploiting the
structure of D×n in terms of Witt vectors, and lays the foundations for our study of the
extended groups Gn(u). A further attempt by Hewett to extend his classification from
isomorphism classes to conjugacy classes can be found in [11], but the results turn out to
be false (see remarks 1.34 and 1.36). In example 1.33, we provide an explicit family of
counter examples in the case p > 2.

In chapter 2, we present a theoretical framework for the classification of the finite
subgroups of Gn(u) ∼= D×n /〈pu〉. Most of the work is done in D×n via a bijection (see
proposition 2.1) between the set of (conjugacy classes of) finite subgroups of Gn(u) and
the set of (conjugacy classes of) subgroups of D×n containing 〈pu〉 as a subgroup of finite
index. For a finite subgroup F of Gn(u) for which F ∩Sn has an abelian p-Sylow subgroup
(the remaining case of a quaternionic p-Sylow is quite specific and is treated in chapter
4), we consider its correspondent F̃ in D×n via the above bijection. This group fits into a
chain of successive extensions

F̃0 ⊆ F̃1 ⊆ F̃2 ⊆ F̃3 = F̃ ,

where F0 = 〈F∩Sn, Zp′(F∩Sn)〉 is cyclic for Sn the p-Sylow subgroup of Sn and Zp′(F∩Sn)
the p′-part of the center of F ∩ Sn, and where

F̃0 = F0 × 〈pu〉, F̃2 = F̃ ∩ CD×n (F0) = C
F̃

(F0),

F̃1 = F̃ ∩Qp(F0)×, F̃3 = F̃ ∩ND×n (F0) = N
F̃

(F0).

Referring to the above classification of the finite subgroups of Sn, we note that F0 is
a subgroup of a cyclic group of order pα(pnα − 1) for an α ≤ k, and that the whole
(nonabelian) groups of type Gα when p > 2 can only be recovered in the last stage
of the chain of extensions. We then provide cohomological criteria (see theorem 2.16,
2.21, 2.27 and 2.28) for the existence and uniqueness up to conjugation of each of these
successive group extensions. We are mostly interested in the cases where each successive F̃i
is maximal, that is, F0 is a maximal abelian finite subgroup of Sn, and for 1 ≤ i ≤ 3, each
F̃i is a maximal subgroup of the respective group Qp(F0)×, CD×n (F0), ND×n (F0) containing
F̃0 as a subgroup of finite index.

In chapter 3, we treat the abelian cases which are covered up to the second extension
type F̃2. Given F0, we let F̃u(Qp(F0), F̃0, r1) denote the set of all F̃1’s which give rise to
a finite subgroup F1 of Gn(u) extending F0 by a cyclic group of order r1. Then:

Theorem. If F0 is a maximal abelian finite subgroup of Sn, then F̃u(Qp(F0), F̃0, r1) is
non-empty if and only if

r1 divides


1 if p > 2 with ζp 6∈ F0,

p− 1 if p > 2 with ζp ∈ F0,

1 if p = 2 with ζ3 6∈ F0 and u 6≡ ±1 mod 8, or with ζ4 6∈ F0,

2 if p = 2 with ζ4 ∈ F0 and either u ≡ ±1 mod 8 or ζ3 ∈ F0.

Furthermore, given F0 ⊆ F1, we let F̃u(CD×n (F0), F̃1, r2) denote the set of all F̃2’s which
give rise to a finite subgroup F2 of Gn(u) extending F1 by a group of order r2. Then:
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Theorem. If r1 is maximal such that F̃u(Qp(F0), F̃0, r1) 6= ∅ and if F̃1 belongs to this set,
then F̃u(CD×n (F0), F̃1, r2) is non-empty if and only if r2 divides n

[Qp(F0):Qp] .

In the particular case where F0 is a maximal abelian finite subgroup of Sn, we have
F̃1 = F̃2.

In chapter 4, we treat (nonabelian) finite extensions of F̃2 in the case where Qp(F̃2)
is a maximal subfield in Dn; any such field is of degree n over Qp. We provide necessary
and sufficient conditions on n, p and u for the existence of F̃ ’s such that |F̃ /F̃0| = n and
F̃1 = F̃2:

Theorem. Let p > 2, n = (p− 1)pk−1m with m prime to p, u ∈ Z×p , F0 = Cpα × Cpnα−1
be a maximal abelian finite subgroup in Sn, G = Gal(Qp(F0)/Qp), Gp′ be the p′-part of
G, and let F̃1 = 〈x1〉 × F0 ⊆ Qp(F0)× be maximal as a subgroup of Qp(F0)× having F̃0 as
subgroup of finite index.

1) For any 0 ≤ α ≤ k, there is an extension of F̃1 by Gp′; this extension is unique up
to conjugation.

2) If α ≤ 1, there is an extension of F̃1 by G; this maximal extension is unique up to
conjugation.

3) If α ≥ 2, there is an extension of F̃1 by G if and only if

α = k and u 6∈ µ(Z×p )× {x ∈ Z×p | x ≡ 1 mod (p2)},

in which case this maximal extension is unique up to conjugation.

Theorem. Let p = 2, n = 2k−1m with m odd, u ∈ Z×2 , F0 = C2α × C2nα−1 be a maximal
abelian finite subgroup of Sn, G = Gal(Q2(F0)/Q2), G2′ be the odd part of G, and let
F̃1 = 〈x1〉 × F0 ⊆ Q2(F0)× be maximal as a subgroup of Q2(F0)× having F̃0 as subgroup
of finite index.

1) For any 1 ≤ α ≤ k, there is an extension of F̃1 by G2′; this extension is unique up
to conjugation.

2) If α = 1, there is an extension of F̃1 by G; the number of such extensions up to
conjugation is {

1 if n is odd,
2 if n is even.

3) If α = 2, there is an extension of F̃1 by G if and only if k = 2; the number of such
extensions up to conjugation is{

1 if u ≡ ±1 mod 8,
2 if u 6≡ ±1 mod 8.

4) If α ≥ 3, there is no extension of F̃1 by G.

We then treat the specific remaining case where F ∩ Sn has a quaternionic p-Sylow sub-
group; this only occurs when p = 2 and n ≡ 2 mod 4.
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Theorem. Let p = 2, n = 2m with m odd, and u ∈ Z×2 . A subgroup G isomorphic to
T24 × C2m−1 in Sn extends to a maximal finite subgroup F of order n|G| = 48m(2m − 1)
in Gn(u) if and only if u ≡ ±1 mod 8; this extension is unique up to conjugation.

We end the chapter by explicitly analysing the case n = 2, where we obtain:

Theorem. Let n = 2, p = 3 and u ∈ Z×p . The conjugacy classes of maximal finite
subgroups of G2(u) are represented by

SD16 and
{
C3 oQ8 if u ≡ 1 mod 3,
C3 oD8 if u ≡ −1 mod 3.

Theorem. Let n = 2, p = 2 and u ∈ Z×2 . The conjugacy classes of maximal finite
subgroups of G2(u) are represented by

C6 o C2, O48 if u ≡ 1 mod 8,
C3 o C4, T24 o C2 if u ≡ −1 mod 8,
C3 o C4, C6 o C2, D8 and T24 if u ≡ 3 mod 8,
C3 o C4, C6 o C2, Q8 and T24 if u ≡ −3 mod 8.



Chapter 1:

Finite subgroups of Sn

From now on, we will always consider p a prime, n a strictly positive integer, and

Dn := D(Qp, 1/n)

the central division algebra of invariant 1/n over Qp. The reader may refer to appendix
A and C for the essential background on division algebras. We identify Sn as the group
of units O×n of the maximal order On of Dn.

1.1. The structure of Dn and its finite subgroups

The structure of Dn can be explicitly given by the following construction; see appendix
C or appendix 2 of [17] for more details. Let Wn = W(Fpn) be the ring of Witt vectors on
the finite field Fpn with pn elements. Here Wn can be identified with the ring Zp[ζpn−1] of
integers of the unramified extension of degree n over Qp. It is a complete local ring with
maximal ideal (p) and residue field Fpn whose elements are written uniquely as

w =
∑
i≥0

wip
i with wp

n

i = wi.

The Frobenius automorphism x 7→ xp ∈ Gal(Fpn/Fp) can be extended to an automorphism
σ : w 7→ wσ of Wn generating Gal(Wn/Zp) by setting

wσ =
∑
i≥0

wpi p
i for each w =

∑
i≥0

wip
i ∈ Wn.

We then add to Wn a non-commutative element S satisfying Sn = p and Sw = wσS for
all w ∈Wn; the non-commutative ring we obtain in this way can be identified with

On ∼= Wn〈S〉/(Sn = p, Sw = wσS),

and
Dn ∼= On ⊗Zp Qp.

The valuation map vQp : Q×p → Z satisfying v(p) = 1 extends uniquely to a valuation
v = vDn on Dn, with value group

v(D×n ) = 1
n
Z,

in such a way that

v(S) = 1
n

and On = {x ∈ Dn | v(x) ≥ 0}.

Because v(x−1) = −v(x), we have

O×n = {x ∈ Dn | v(x) = 0}.

11



12 Chapter 1: Finite subgroups of Sn

Proposition 1.1. A finite subgroup of D×n is a subgroup of O×n .

Proof. An element ζ ∈ D×n of finite order i ≥ 1 satisfies

0 = v(1) = iv(ζ),

and it follows that v(ζ) = 0. �

As we will now see, the structure of Dn given above greatly reduces the possibilities of
what form a finite subgroup of O×n can have.

The element S ∈ D×n generates a two-sided maximal ideal m of On with residue field
On/m ∼= Fpn . This maximal ideal satisfies

m = {x ∈ Dn | v(x) > 0}.

The kernel of the group epimorphismO×n → F×pn which results from this quotient is denoted
Sn . We thus have a group extension

1 −→ Sn −→ O×n −→ F×pn −→ 1.

The groups O×n and Sn have natural profinite structures induced by the filtration of
subgroups

Sn = U1 ⊇ U2 ⊇ U3 ⊇ . . .

given by

Ui := Ui(W×n ) = {x ∈ Sn | v(x− 1) ≥ i

n
}

= {x ∈ Sn | x ≡ 1 mod Si}, for i ≥ 1.

The intersection of these groups is trivial and Sn = limi Sn/Ui. We also have canonical
isomorphisms

Ui/Ui+1 ∼= Fpn given by 1 + aSi 7→ a

for a ∈ On and a the residue class of a in On/m = Fpn . In particular, all quotients
Sn/Ui are finite p-groups and Sn is a profinite p-subgroup of the profinite group O×n . By
uniqueness of the maximal ideal m, we know that Sn is the unique p-Sylow subgroup of
O×n . Consequently:

Proposition 1.2. All p-subgroups of O×n , and only those, are subgroups of Sn. �

Throughout the text we let ϕ denote Euler’s totient function, which for each positive
integer i associates the number ϕ(i) of integers 1 ≤ j ≤ i for which (i; j) = 1.

Proposition 1.3. The group Sn, respectively O×n , has elements of order pk for k ≥ 1 if
and only if ϕ(pk) = (p− 1)pk−1 divides n.

Proof. This is a straightforward consequence of the embedding theorem C.6, together with
proposition C.8 which states that

[Qp(ζpk) : Qp] = ϕ(pk) = (p− 1)pk−1,

for ζpk a primitive pk-th root of unity. �
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Proposition 1.4. Every abelian finite subgroup of D×n is cyclic.

Proof. If G is a finite multiplicative abelian subgroup of a division algebra of type Dn,
then it lies within the local commutative field F = Qp(G) in Dn and is a subgroup of F×.
Because G is finite, proposition C.7 implies that G is a subgroup of the cyclic group µ(F ).
�

In the text, we are lead to use group cohomology H∗(G,M) extensively for some group
G and G-module M . Most often, we will exploit the tools of low dimensional cohomology
to study group extensions. A good introduction to the subject is provided in [4] chapter IV.
In particular, we will invoke the following classic results; see [4] section IV.4 for proposition
1.5 (with exercise 4), and see [4] chapter IV corollary 3.13 and the following remark for
proposition 1.6.

Proposition 1.5. If G is a finite p-group whose abelian finite subgroups are cyclic, then
G is either cyclic or a generalized quaternion group

G ∼= Q2k = 〈x, y | x2k−1 = 1, yxy−1 = x−1, x2k−2 = y2〉,

this last possibility being valid only when p = 2.

Proposition 1.6 (Schur-Zassenhaus). If G is a finite group of order mn with m prime
to n containing a normal subgroup N of order m, then G has a subgroup of order n and
any two such subgroups are conjugate by an element in G.

It follows that every finite subgroup G of D×n is contained in Sn and determines a split
extension

1 −→ P −→ G −→ C −→ 1,
where P := G∩Sn is a finite normal p-subgroup which is the p-Sylow subgroup of G, and
C := G/P is a cyclic group of order prime to p which embeds into F×pn via the reduction
homomorphism. Moreover, P is either cyclic or a generalized quaternion group if p = 2.
If P is cyclic of order pα with α ≥ 1, we know that n is a multiple of ϕ(pα) = (p− 1)pα−1.

Proposition 1.7. If n is odd or is not divisible by (p− 1), then{
Cpn−1 ∼= F×pn if p > 2,
C2(pn−1) ∼= F×pn×{±1} if p = 2,

represents the only isomorphic class of maximal finite subgroups of O×n .

Proof. Under the given assumptions, proposition 1.3 implies that the p-Sylow subgroup
P of a maximal finite subgroup G of D×n is trivial if p is odd, and is {±1} if p = 2. The
result then follows from the Skolem-Noether theorem A.9. �

By proposition 1.7, only those cases where n is even and divisible by p− 1 remain to
be studied. From now on, we will adopt the following notations.

Notation 1.8. Fix a prime p and n a multiple of p − 1. Then we define integers k and
m to satisfy

n = (p− 1)pk−1m with (m; p) = 1,
and for 0 ≤ α ≤ k we set

nα := n

ϕ(pα) =
{
n if α = 0,
pk−αm if α > 0.
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Notation 1.9. For a finite subgroup G ⊆ D×n and a commutative ring R extending Zp in
Dn, respectively a commutative field extending Qp in Dn, we denote by

R(G) = {
∑
g∈G

xgg | xg ∈ R}

the R-subalgebra of Dn generated by G.
For example if R = Qp, G is a finite cyclic group and ζ is a generator of G, then

Qp(G) = Qp(ζ) is the cyclotomic field generated by ζ over Qp.
We note that R(G) is not in general isomorphic to the group ring R[G], although

there is a unique surjective homomorphism of R-algebras from R[G] to R(G) extending
the embedding of G (seen as abstract group) into D×n .

1.2. Finite subgroups of D×n with cyclic p-Sylow

Let n = (p− 1)pk−1m with m prime to p as in notation 1.8. If G is a finite subgroup
of D×n , it is then a subgroup of O×n which determines an extension

1 −→ P −→ G −→ C −→ 1,

and whose p-Sylow subgroup P = G ∩ Sn is either cyclic of order pα for 0 ≤ α ≤ k, or
a generalized quaternion group. The latter case only occurs when p = 2; it is studied in
section 1.3.

For now, we fix an integer 1 ≤ α ≤ k and assume that P is cyclic of order pα. We
know from proposition C.8 that Qp(P ) is a totally ramified extension of degree ϕ(pα) over
Qp. As P is abelian and normal in G, there are inclusions of subgroups

P ⊆ CG(P ) ⊆ NG(P ) = G,

and the group C = G/P injects into F×pn . The following result establishes a stronger
condition on C.

Proposition 1.10. The group CG(P )/P injects into F×pnα via the reduction homomor-
phism, and NG(P )/CG(P ) identifies canonically with a subgroup of the p′-part of Aut(P ).

Proof. First note that P generates a cyclotomic extension K = Qp(P ), and CG(P ) is
contained in CD×n (K). By the centralizer theorem A.6, CDn(K) is itself a central division
algebra over K. Since

n = ϕ(pα)nα = [Qp(P ) : Qp]nα,

it is of dimension n2
α over its center K and has residue field Fpnα . The reduction homo-

morphism in this division algebra induces a map CG(P ) → F×pnα whose kernel is P ; this
shows the first assertion.

The second assertion follows from the facts that

P ⊆ CG(P ) and G = NG(P ),

and hence that NG(P )/CG(P ) ⊆ C must be prime to p. �

Corollary 1.11. The group C is contained in the cyclic subgroup of order (pnα−1)(p−1)
in F×pn.
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Proof. This follows from proposition 1.10 and the fact that the p′-part of

Aut(P ) ∼=
{
Cp−1 × Cpα−1 if p > 2,
C2 × C2α−2 if p = 2,

is of order p− 1. �

We now proceed to the existence of such finite groups. Recall from proposition 1.3
that D×n has cyclic subgroups of order pα for any 1 ≤ α ≤ k.

Proposition 1.12. If Pα is a cyclic subgroup of order pα > 1 in D×n and v = vDn, then

v(CD×n (Pα)) = 1
n
Z and ND×n (Pα)/CD×n (Pα) ∼= NO×n (Pα)/CO×n (Pα).

Proof. From the Skolem-Noether theorem A.9, we know that

ND×n (Pα)/CD×n (Pα) ∼= Aut(Pα).

This means that for any f in Aut(Pα), there is an element a in D×n such that

f(x) = axa−1 for all x ∈ Kα = Qp(Pα).

As explained in appendix C, the fact that Kα is a totally ramified extension of Qp implies
that the value group of CD×n (Kα) is that of D×n ; in other words

v(CD×n (Pα)) = 1
n
Z.

Hence there is an element b in CD×n (Kα) such that

v(ab) = 0 and (ab)x(ab)−1 = axa−1 = f(x)

for all x ∈ Kα. In particular ab ∈ O×n and

NO×n (Pα)/CO×n (Pα) ∼= Aut(Pα),

as was to be shown. �

Lemma 1.13. If Pα is a cyclic subgroup of order pα > 1 in D×n , the image of NO×n (Pα)
in F×pn via the reduction homomorphism is cyclic of order (pnα − 1)(p− 1).

Proof. Since the residue field of the division algebra

CDn(Qp(Pα)) = CDn(Pα)

is Fpnα , the image of CO×n (Pα) = CD×n (Pα)∩O×n via the reduction homomorphism is cyclic
of order pnα − 1 in F×pn . Furthermore, there is a canonical surjection

NO×n (Pα) −→ Aut(Pα) −→ Cp−1.

Clearly, CO×n (Pα) is in the kernel of this projection, and since p − 1 is prime to p, the
p-Sylow subgroup of NO×n (Pα) must be contained in the kernel as well. It follows that
NO×n (Pα) contains a group which is sent surjectively onto Cp−1 and whose image in F×pn is
the cyclic subgroup of order (pnα − 1)(p− 1). �
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Theorem 1.14. For each 1 ≤ α ≤ k and each cyclic subgroup Pα of order pα in D×n ,
there exists a subgroup Gα of O×n such that

Gα ∩ Sn = Pα and Gα/Pα ∼= C(pnα−1)(p−1) ⊆ F×pn .

Proof. We want to show that the cyclic subgroup of order (pnα−1)(p−1) in F×pn obtained
from lemma 1.13 can be lifted to an element of finite order in NO×n (Pα).

Let x be an element of order (pnα −1)(p−1) in F×pn . By lemma 1.13, x has a preimage
x in NO×n (Pα) generating by conjugation an element of order p−1 in Aut(Pα). The closure
〈x〉 in O×n of the group generated by x fits into the exact sequence

1 −→ H −→ 〈x〉 −→ C −→ 1,

where
H = 〈x〉 ∩ Sn and C = 〈x〉/H.

The group H being a cyclic profinite p-group, it must be isomorphic to Zp or to a finite
cyclic p-group. As l := |C| is prime to p, any element in H is l-divisible, and because
xl ∈ H, there is a y ∈ H such that xl = yl. Since x, y ∈ 〈x〉 commute with each other,
(xy−1)l = 1 and xy−1 is the desired element of finite order in ND×n (Pα). �

Remark 1.15. One can show that the isomorphism class of such a Gα is uniquely deter-
mined by α. This however is a consequence of the uniqueness of Gα up to conjugation, a
fact established in theorem 1.31 and 1.35.

1.3. Finite subgroups of D×n with quaternionic 2-Sylow

Continuing our investigation of the finite subgroups G of D×n , we now consider the case
where the p-Sylow subgroup P of G is non-cyclic. We know from proposition 1.5 that in
this case p = 2 and P is a generalized quaternion group Q2α with α ≥ 3. Throughout this
section we assume p = 2.

We first look at the case n = 2. Consider the filtration of Z×2 ∼= Z/2× Z2 given by

Ui = Ui(Z×2 ) = 1 + 2iZ2 = {x ∈ Z×2 | x ≡ 1 mod 2i}, for i ≥ 1.

As −7 ≡ 1 mod 23, we have
−7 ∈ U3 = (Z×2 )2.

So let ρ be an element of Z×2 such that ρ2 = −7.

Remark 1.16. By remark C.5, we know that

D2 ∼= Q2(ω)〈S〉/(S2 = 2, Sx = xσS)
∼= Q2(ω)〈T 〉/(T 2 = −2, Tx = xσT ),

for ω a primitive third root of unity which satisfies

1 + ω + ω2 = 0,

and for S, T two elements generating the Frobenius σ. Letting T = x + yS ∈ D×2 for
x, y ∈ Q2(ω), we have

−2 = T 2 = (x2 + 2yyσ) + (xy + yxσ)S ⇔
{
x2 + 2yyσ = −2
xy + yxσ = 0.
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Taking for solution

x = 0 and y = 3 + 2ω
ρ

, so that T = 3 + 2ω
ρ

S,

we obtain an isomorphism between these two representations of D2.
Via these representations, we may further exhibit an explicit embedding of Q8 = 〈i, j〉

into D×2 in the following way. We first look for an element i = a + bT with a, b ∈ W(F4)
satisfying

−1 = i2 = (a2 − 2bbσ) + (a+ aσ)bT.

Hence either b = 0 or a + aσ = 0. The first case being impossible as a2 = −1 has no
solution in W(F4), we must have a+ aσ = 0. A possible solution is

a = −1
1 + 2ω = 1

3(1 + 2ω) and b = 1
1 + 2ω = −1

3(1 + 2ω),

meaning that

i = 1
3(1 + 2ω)− 1

3(1 + 2ω)T

= 1
3(1 + 2ω) + 1

3ρ(1− 4ω)S.

We then look for an element j = a′ + b′T with a′, b′ ∈ W(F4) satisfying j2 = −1 and
ij = −ji, in other words

(a′2 − 2b′b′σ) + (a′ + a′σ)b′T = −1

and (aa′ − 2bb′σ) + (ab′ + ba′σ)T = −(a′a− 2b′bσ)− (a′b+ b′aσ)T.

As a+ aσ = 0 and a = −b = bσ, these relations are equivalent to{
a′ + a′σ = 0
2aa′ = 2(bb′σ + b′bσ) = 2b(b′σ − b′)

⇔
{
a′ + a′σ = 0
a′ = b′ − b′σ.

A possible solution is

a′ = a = 1
3(1 + 2ω) and b′ = (1 + ω)a′ = 1

3(−1 + ω),

meaning that

j = 1
3(1 + 2ω) + 1

3(−1 + ω)T

= 1
3(1 + 2ω)− 1

3ρ(5 + ω)S.

Proposition 1.17. The quaternion group Q8 embeds in D×n if and only if n ≡ 2 mod 4.

Proof. The Q2-algebra Q2(i, j) generated by 〈i, j〉 ∼= Q8 is non-commutative and is at
least of dimension 4 over Q2. By remark 1.16 we know that Q2(i, j) ⊆ D2, and it follows
that Q2(i, j) = D2. Thus in particular, Q8 embeds in D×n if and only if D×2 does, and by
corollary C.12 this happens if and only if n ≡ 2 mod 4. �
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Remark 1.18. Using the elements i and j obtained in remark 1.16, and defining

k := ij = −1
3(1 + 2ω)− 1

3ρ(4 + 5ω)S,

we note that
ω2iω−2 = ωjω−1 = −k.

This implies that the group

T24 := Q8 o C3 ∼= 〈i, j, ω〉

embeds as a maximal finite subgroup of D×2 . This group of order 24 is the binary tetrahe-
dral group; it is explicitly given by

T24 = {±1,±i,±j,±k, 1
2(±1± i± j ± k)}.

From proposition 1.17, we have obtained

D×2 ∼= Q2(Q8) ∼= Q2(T24).

Proposition 1.19. A generalized quaternion subgroup of D×n is isomorphic to Q8.

Proof. Assume that Q2α+1 embeds as a subgroup of D×n for α ≥ 2. Then Q8 embeds and

n ≡ 2 mod 4

by proposition 1.17. On the other hand, the cyclic group C2α embeds as well and generates
a cyclotomic extension of degree ϕ(2α) = 2α−1 over Qp. Hence

n ≡ 0 mod 2α−1

by the embedding theorem. Therefore α = 2. �

Proposition 1.20. If Q8 is a quaternion subgroup of D×n and v = vDn, then

v(CD×n (Q8)) = 2
n
Z, v(ND×n (Q8)) = 1

n
Z,

and NO×n (Q8)/CO×n (Q8) injects into ND×n (Q8)/CD×n (Q8) as a subgroup of index 2.

Proof. Using the centralizer theorem A.6, together with remark 1.18, we know that

Dn ∼= Q2(Q8)⊗Q2 CDn(Q8),

where CDn(Q8) is a central division algebra of dimension n2/4 over Q2 whose ramification
index is e(CDn(Q8)/Q2) = n/2 by proposition C.1. In particular,

v(CD×n (Q8)) = 2
n
Z. (∗)

Now the existence of Q8 in D×n implies by proposition 1.17 that n ≡ 2 mod 4, so that
n = 2(2r + 1) for an integer r ≥ 0. As 2 and 2r + 1 are prime to each other, there are
integers a, b ≥ 1 satisfying

(2r + 1)a+ 2b = 1 ⇔ a

2 + b

2r + 1 = 1
n
.
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By (∗) we can choose an element x ∈ CD×n (Q8) having valuation 2/n = 1/(2r+ 1). On the
other hand since

(1 + i)j(1 + i)−1 = k ∈ Q8 and (1 + i)2 = 2i,

we know that 1 + i is an element of ND×n (Q8) having valuation 1/2. We thus have found
an element (1 + i)axb in ND×n (Q8) of valuation

v((1 + i)axb) = av(1 + i) + bv(x) = a

2 + b

2r + 1 = 1
n
,

so that
v(ND×n (Q8)) = 1

n
Z.

This result, together with (∗), implies the last assertion of the proposition. �

Proposition 1.21. |Aut(Q8)| = |Aut(T24)| = 24.

Proof. Let Q8 = 〈i, j〉 and T24 = 〈Q8, ω〉 with i, j, k, ω as defined in remark 1.16 and 1.18.
Counting on which of the 6 elements {±i,±j,±k} of order 4 the generators i and j may be
sent via an automorphism, we know that |Aut(Q8)| divides 24. The inner automorphism
group of Q8 has order |Q8/{±1}| = 4; it is generated by conjugation by i and j. Let

cQ8 : T24 −→ Aut(Q8)

be the conjugation action of Q8 by elements of T24. As noted in remark 1.18, the conju-
gation by ω has order 3, and hence the cardinality of the image of cQ8 is 12. Since the
element (1 + i) ∈ D×n acts by conjugation on Q8 by i 7→ i and j 7→ k, it follows that the
automorphism of Q8 induced by (1+i) is not in the image of cQ8 . Because |Aut(Q8)| ≤ 24,
we obtain |Aut(Q8)| = 24.

Now using that Q8 is the (normal) 2-Sylow subgroup of T24, consider the canonical
map ϕ : Aut(T24)→ Aut(Q8); it is surjective since (1 + i) also induces an automorphism
of T24. Let σ ∈ Aut(T24) be such that σ|Q8 = idQ8 . Then for any t ∈ T24 and q ∈ Q8 we
have

cQ8(σ(t))(q) = σ(t)qσ(t)−1 = σ(tqt−1) = tqt−1 = cQ8(t)(q).

Hence σ(t)t−1 ∈ Ker(cQ8) = {±1} and σ(t) = ±t for any t ∈ T24. In fact, t = sq with
q ∈ Q8 and s an element of order 3 in T24, and we have

σ(t)t−1 = σ(s)σ(q)q−1s−1 = σ(s)s−1.

Because s is of order 3 and −s is of order 6, the case σ(t) = −t is impossible and we must
have σ(t) = t for all t ∈ T24. Therefore the map ϕ is bijective, and as |Aut(Q8)| = 24, it
follows that |Aut(T24)| = 24. �

Now assume n = 2m with m odd and consider a finite subgroup G of D×n whose 2-
Sylow subgroup P is isomorphic to Q8. Such a group determines a subgroup C = G/P of
F×2n .

Proposition 1.22. If G is a finite subgroup of D×n with a quaternionic 2-Sylow subgroup
P ∼= Q8, then G/P embeds into the cyclic subgroup of order 3(2m − 1) in F×2n.
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Proof. Recall that Q2(P ) ∼= D×2 and note that CG(P ) is contained in

CD×n (P ) = CD×n (Q2(P )) ∼= CD×n (D2)

which consists of the non-zero elements of a central division algebra of dimension m2 over
Q2. Its residue field is F2m , and CG(P )/P∩CG(P ) ∼= P ·CG(P )/P injects via the reduction
homomorphism into F×2m .

Furthermore, we have an injection

NG(P )/CG(P ) −→ NO×n (P )/CO×n (P ) ⊆ ND×n (P )/CD×n (P ) ∼= Aut(Q8),

where the last isomorphism is due to the Skolem-Noether theorem. Since |Aut(Q8)| = 24,
proposition 1.20 implies that |NG(P )/CG(P )| divides 12. As P ∩ CG(P ) = {±1} is of
index 4 in P , we know that CG(P ) is of index 4 in P · CG(P ), and consequently that
P · CG(P ) is of index a divisor of 3 in NG(P ).

We have thus obtained a chain of subgroups

P ⊆ P · CG(P ) ⊆ NG(P ) = G,

where the first group is of index a divisor of 2m − 1 in the second group, and the latter is
of index a divisor of 3 in the third group. �

Theorem 1.23. If p = 2 and n = 2m with m odd, the group

T24 × C2m−1 = Q8 o C3(2m−1)

embeds as a maximal finite subgroup of D×n .

Proof. By the centralizer theorem

Dn ∼= D2 ⊗Q2 CDn(D2) ∼= Q2(Q8)⊗Q2 CDn(Q8).

By remark 1.18, T24 = Q8oC3 embeds as a subgroup of D×2 ; more precisely Q2(T24) = D2.
Moreover, since CDn(D2) is a central division algebra of dimensionm2 over Q2, its maximal
unramified extension of degreem over Q2 contains a cyclic subgroup C2m−1 of order 2m−1
which centralizes T24. Since m is odd, 2m − 1 is not a multiple of 3 and D×n contains a
subgroup isomorphic to

T24 × C2m−1 ∼= Q8 o C3(2m−1);

its maximality as a finite subgroup then follows from proposition 1.22. �

Corollary 1.24. The center of T24 × C2m−1 is

Z(T24 × C2m−1) = {±1} × C2m−1 ∼= C2(2m−1).

Proof. This follows from the proof of theorem 1.23 and the obvious fact that the center
of Q8 is {±1}. �
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1.4. Conjugacy classes in Sn

In this section, we establish a classification of the finite subgroups of Sn up to conju-
gation. We say that two subgroups G1, G2 ⊆ D×n are conjugate in D×n , respectively in O×n ,
if there is an element a in D×n , respectively in O×n , satisfying

aG1a
−1 = G2.

We will see that two finite subgroups G1 and G2 whose respective p-Sylow subgroups
P1 and P2 are isomorphic, and for which the quotient groups G1/P1 and G2/P2 are also
isomorphic, are not only isomorphic but even conjugate in O×n . This will imply that the
maximal subgroups of O×n are classified up to conjugation by the type of their p-Sylow
subgroups. To do this, we will exploit the tools of nonabelian cohomology of profinite
groups as introduced in [23] chapter I paragraph 5.

For any subgroup G of a group H, we set

SH(G) := {G′ ≤ H | G′ ∼= G} and CH(G) := SH(G)/ ∼H

where ∼H designates the relation of conjugation by an element in H.

Lemma 1.25. If P is a finite p-subgroup of O×n , then |CO×n (P )| = 1.

Proof. Let Q be a finite p-subgroup of O×n isomorphic to P . We have seen that these
two groups are either cyclic or quaternionic. In either case, the Skolem-Noether theorem
implies the existence of an element a in D×n such that

Qp(Q) = aQp(P )a−1.

In the cyclic case, this clearly implies Q = aPa−1. In the quaternionic case, this yields
two quaternion groups Q and aPa−1 within Q2(Q) ∼= D×2 in which we can use Skolem-
Noether once more to obtain an element a′ ∈ Q2(Q) such that Q = a′aP (a′a)−1. Now by
proposition 1.12 and 1.20, we know that

v(ND×n (P )) = 1
n
Z = v(D×n ).

Thus there is an element b in D×n such that

v(ab) = 0 and P = bPb−1,

and ab is an element of O×n conjugating P into Q. �

Lemma 1.26. Let P be a profinite p-group of the form P = limn Pn where each Pn is
a finite p-group and the homomorphisms in the inverse system are surjective, and let R
be a finite group of order prime to p which acts by group homomorphisms on all Pn in
such a way that the homomorphisms in the inverse system are R-equivariant. Then the
(nonabelian) cohomology group H1(R,P ) is trivial.

Proof. Denote by jn : Pn → Pn−1 the homomorphisms of the inverse system, and consider
the map δ :

∏
n Pn →

∏
n Pn defined by

δ(fn) = (−1)nfn + (−1)n+1jn+1(fn+1),
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for f = (fn) ∈
∏
n Pn. Then note that δ is surjective and that Ker(δ) is the set of all

f = (fn) ∈
∏
n Pn such that jn(fn) = fn−1 for all n. Hence there is a short exact sequence

1 −→ P −→
∏
n

Pn
δ−→
∏
n

Pn −→ 1

which induces a long exact sequence

1→ PR →
∏
n

PRn →
∏
n

PRn → H1(R,P )→ H1(R,
∏
n

Pn)→ H1(R,
∏
n

Pn),

where PR, respectively PRn , denotes the R-invariants. Using the canonical isomorphism

H1(R,
∏
n

Pn) ∼=
∏
n

H1(R,Pn),

and noting that each group H1(R,Pn) is trivial by the Schur-Zassenhaus theorem 1.6, it
is enough to show that the homomorphism∏

n

PRn −→
∏
n

PRn

in the above exact sequence is surjective, and hence that each homomorphism jRn+1 :
PRn+1 → PRn is surjective by the definition of δ.

For each n, let Kn+1 be the kernel of the map jn+1 : Pn+1 → Pn. For each short exact
sequence of finite p-groups with action of R

1 −→ Kn+1 −→ Pn+1 −→ Pn −→ 1,

there is an associated exact cohomology sequence

1 −→ KR
n+1 −→ PRn+1

jRn+1−→ PRn −→ H1(R,Kn+1).

Applying the Schur-Zassenhaus theorem once more, we obtain that H1(R,Kn+1) is trivial
and that the homomorphism jRn+1 is surjective. �

We recall the following fact from [23] chapter I §5.1:

Lemma 1.27. If P is an R-group with trivial (nonabelian) H1(R,P ), and if

1 −→ P −→ N −→ R −→ 1

is a split extension, then two splittings of R in N are conjugate by an element in P .

Theorem 1.28. Two finite subgroups G1 and G2 of O×n with respective isomorphic p-
Sylow subgroups P1 ∼= P2 and isomorphic quotient groups G1/P1 ∼= G2/P2 are conjugate
in O×n .

Proof. The groups G1 and G2 fit into exact sequences

1 −→ P1 −→ G1 −→ C −→ 1

1 −→ P2 −→ G2 −→ C −→ 1,
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where C is the subgroup of F×pn isomorphic to G1/P1 ∼= G2/P2. We know from lemma 1.25
that P1 and P2 are conjugate in O×n . By conjugating G2, we can therefore assume that

P1 = P2 =: P and G1, G2 ⊆ NO×n (P ).

Moreover, the latter groups fit into a split exact sequence

1 −→ NO×n (P ) ∩ Sn −→ NO×n (P ) −→ R −→ 1,

where R ⊆ F×pn is a finite cyclic group of order prime to p containing C. It follows from
lemma 1.26 that H1(R,NO×n (P )∩Sn) is trivial, and hence by lemma 1.27 that G1 and G2
are conjugate in NO×n (P ) ⊆ O×n . �

Remark 1.29. Alternatively, we may directly apply [19] theorem 2.3.15, which shows
that if K is the p-Sylow subgroup of a profinite group G, then there is up to conjugation
in G a unique closed subgroup H of G such that G = KH and K ∩H = 1. Indeed, since
in our case both extensions

1 −→ P −→ G1 −→ C −→ 1

1 −→ P −→ G2 −→ C −→ 1

are split by the Schur-Zassenhaus theorem, we obtain that both of the corresponding
sections are conjugate in NO×n (P ), and hence that G1 and G2 are conjugate in NO×n (P ).

Corollary 1.30. Two finite subgroups of O×n are conjugate if and only if they are iso-
morphic. �

Theorem 1.31. If p is an odd prime and n = (p−1)pk−1m with m prime to p, the group
Sn, respectively D×n , has exactly k + 1 conjugacy classes of maximal finite subgroups; they
are represented by

G0 = Cpn−1 and Gα = Cpα o C(pnα−1)(p−1) for 1 ≤ α ≤ k.

Moreover, when p− 1 does not divide n, the only class of maximal finite subgroups is that
of G0.

Proof. First note that proposition 1.7 and theorem 1.28 imply that there is a unique
maximal conjugacy classG0 of finite subgroups of order prime to p inO×n ∼= Sn, respectively
in D×n by proposition 1.1, and that this class is the only one among finite subgroups if n
is not a multiple of p− 1.

Now assume that 1 ≤ α ≤ k. By theorem 1.14, there is a finite subgroup Gα in D×n
realized as an extension

1 −→ Cpα −→ Gα −→ C(pnα−1)(p−1) −→ 1,

where
Cpα = Gα ∩ Sn and Gα/Cpα ∼= C(pnα−1)(p−1) ⊆ F×pn .

The Schur-Zassenhaus theorem implies that this extension splits, in other words that

Gα = Cpα o C(pnα−1)(p−1).

Corollary 1.11 and theorem 1.28 ensure that Gα represents the unique maximal conjugacy
class of finite subgroups of O×n ∼= Sn which have a p-Sylow subgroup of order pα. �
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Corollary 1.32. If p > 2 and 1 ≤ α ≤ k, then

Z(Gα) ∼= C(pnα−1).

Proof. This follows from theorem 1.31 and proposition 1.10, where the latter shows that
C(pnα−1) embeds into Z(Gα) and that C(pnα−1)(p−1)/C(pnα−1) ∼= Cp−1 acts faithfully on
Cpα . �

The following case can be explicitly analyzed. As noted in remark 1.34, this provides
a counter example to the main results of [11].

Example 1.33. Assume that p is odd and n = (p−1)pk−1m with (p;m) = 1. Let ω ∈ D×n
be a primitive (pn−1)-th root of unity in O×n . Define

X := ω
p−1

2 S ∈ O×n and Z := X l with l = n

p− 1 .

A simple calculation shows
Zp−1 = Xn = −p.

We can show (see [9] lemma 19) that Qp(Z) contains a primitive p-th root of unity ζp.
Because the fields Qp(Z) and Qp(ζp) are of the same degree p− 1 over Qp, they must be
identical. We set

K := Qp(Z) = Qp(ζp).

We note that pn − 1 is divisible by (pl − 1)(p− 1) and let

τ := ω
pn−1

(pl−1)(p−1) ∈ F×q .

We have
τZτ−1 = ω

pn−1
p−1 Z = ζp−1Z,

for ζp−1 a primitive (p−1)-th root of unity in O×n . Hence τ induces an automorphism
of K of order p − 1 which sends ζp to another root of unity of the same order, and τ
normalizes the group generated by ζp. The group G generated by ζp and τ is clearly of
order p(pl − 1)(p− 1); it is therefore maximal. Since X commutes with all elements of K,
it necessarily commutes with ζp. Moreover the fact that

XτX−1 = τp

shows that X belongs to the normalizer ND×n (G). The valuation of X is 1
n by definition,

and we have
v(ND×n (G)) = 1

n
Z.

As in lemma 1.25, we can then apply the Skolem-Noether theorem to obtain that there is
only one conjugacy class of subgroups of O×n that are isomorphic to G.

In particular, if p = 3 and n = 4, then k = 1, m = 2, the order of ω is 80, and a
maximal finite 3-Sylow subgroup in O×n is isomorphic to C3. Here

X = ωS, Z = ω4S2 and Z2 = −3.

In order to find an element ζ3 in Q3(X2), we may solve the equation

(x+ yZ)3 = 1 with x, y ∈ Q3.
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We find x = ±y with x = −1
2 , from which we obtain the primitive third roots of unity

ζ3 = −1
2(1 + ω4S2) and ζ2

3 = −1
2(1− ω4S2)

in the field Q3(Z). Here τ = ω5 is of order 16 and we easily verify the relations

τζ3τ
−1 = ζ2

3 , Xζ3X
−1 = ζ3, XτX−1 = τ3,

showing as expected that

v(ND×n (C3 o C2(32−1))) = 1
4Z and |CO×n (C3 o C2(32−1))| = 1.

Remark 1.34. Theorem 1.31 and example 1.33 (in particular the case where n = 4 and
p = 3) bring a contradiction to the main results of [11]. In the latter, a central result
concerning the nonabelian finite groups when p > 2 is proposition 3.9: it states that for
α ≥ 1 the normalizer of Gα in D×n has valuation group

v(ND×n (Gα)) =
f(Qp(ζpα(pnα−1)/Qp))

n
Z = nα

n
Z,

where f denotes the residue degree of the given cyclotomic extension. As a consequence
of this incorrect result propositions 3.10 to 3.12 in [11] are incorrect as well.

Theorem 1.35. Let p = 2 and n = 2k−1m with m odd. The group Sn, respectively D×n ,
has exactly k maximal conjugacy classes of finite subgroups. If k 6= 2, they are represented
by

Gα = C2α(2nα−1) for 1 ≤ α ≤ k.

If k = 2, they are represented by Gα for α 6= 2 and by the unique maximal nonabelian
conjugacy class

Q8 o C3(2m−1) ∼= T24 × C2m−1,

the latter containing G2 as a subclass.

Proof. The argument for the cyclic classes Gα is identical to that of theorem 1.31 except
that in this case G0 = C2n−1 is contained in G1.

Furthermore, proposition 1.19 ensures that a nonabelian finite subgroup may only
exist in O×n ∼= Sn, respectively in D×n , when its 2-Sylow subgroup is isomorphic to Q8, and
proposition 1.17 shows that such a group occurs if and only if k = 2. In fact, assuming
k = 2, the group Q8 o C3(2m−1) embeds in O×n as a maximal finite subgroup by theorem
1.23, and its conjugacy class is unique among maximal nonabelian finite subgroups by
theorem 1.28. �

Remark 1.36. Theorem 1.35 contradicts theorem 5.3 in [11]. According to the latter,
we should have two distinct conjugacy classes in O×n for the finite groups containing
T24 = Q8oC3. Letting Inn(T24) and Out(T24) denote the inner and outer automorphisms
of T24, the error occurs before theorem 5.1 where it is said that Out(T24) is trivial. This
is absurd given that

|Aut(T24)| = 24 and Inn(T24) ∼= T24/{±1}.

All results given in section 5 of [11] are then wrong in this case.
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Corollary 1.37. The abelian finite subgroups of D×n are classified up to conjugation in
O×n , respectively in D×n , by the pairs of integers (α, d) satisfying

0 ≤ α ≤ k and 1 ≤ d | pnα − 1;

each such pair represents the cyclic class Cpαd.

Proof. By corollary 1.30, the finite cyclic subgroups are classified up to conjugation by
their isomorphism classes. The result then follows from the maximal finite classes provided
by theorem 1.31 and 1.35. �

Remark 1.38. We restricted ourselves in considering the finite subgroups of D×n as split
extensions of subgroups of F×pn by finite p-subgroups in Sn. It is also possible to express
these finite groups as subextensions of short exact sequences of the form

1 −→ CD×n (Cpα) −→ ND×n (Cpα) −→ Aut(Cpα) −→ 1,

as induced by the Skolem-Noether theorem. A finite group of type Gα ⊆ D×n can be seen
as a metacyclic extension

1 −→ 〈A〉 −→ Gα −→ 〈B〉 −→ 1,

with
〈A〉 = G′α × Z(Gα) and 〈B〉 ∼= Cp−1,

where G′α denotes the commutator subgroup of Gα. The classification given in [10] follows
this approach, but has the disadvantages of being less direct and relying on a classification
previously established in [1].



Chapter 2:
A classification scheme for finite subgroups

We fix a prime p, a positive integer n which is a multiple of (p−1), and a unit u ∈ Z×p .
Given these, we adopt notation 1.8. In this chapter, we provide necessary and sufficient
conditions for the existence of finite subgroups of

Gn(u) = D×n /〈pu〉

whose intersection with Sn have a cyclic p-Sylow subgroup. The remaining case of a
quaternionic 2-Sylow will be treated in chapter 4.

2.1. A canonical bijection

Let
π : D×n −→ Gn(u)

denote the canonical homomorphism. In order to study a finite subgroup F of Gn(u), it
is often more convenient to analyse its preimage

F̃ := π−1(F ) ∈ D×n .

For any group G we define F(G) to be the set of all finite subgroups of G; and if G is a
subgroup of D×n we define F̃u(G) to be the set, eventually empty, of all subgroups of G
which contain 〈pu〉 as a subgroup of finite index.

Proposition 2.1. The map π induces a canonical bijection

F̃u(D×n ) −→ F(Gn(u)).

This bijection passes to conjugacy classes.

Proof. For any F ∈ F(Gn(u)), it is clear that 〈pu〉 is a subgroup of finite index in π−1(F ).
Moreover, the fact that π is surjective implies that ππ−1(F ) = F . On the other hand, for
G ∈ F̃u(D×n ), as Ker(π) = 〈pu〉 is always a subgroup of G, we have π−1π(G) = G.

In order to show the second assertion, let F1, F2 be two subgroups of Gn(u) with
F̃i = π−1(Fi) for i ∈ {1, 2}. If there is an element a ∈ D×n such that F̃2 = aF̃1a

−1, then
since π is a group homomorphism we have

F2 = π(aF̃1a
−1)

= π(a)π(F̃1)π(a)−1

= π(a)F1π(a)−1.

Conversely, if F2 = bF1b
−1 for some b ∈ Gn(u), and if b̃ ∈ D×n satisfies π(b̃) = b, then from

the above identity we have
π(b̃F̃1b̃

−1) = F2,

as was to be shown. �

27
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Remark 2.2. In a similar way, the map π induces a bijection between the set of all
subgroups of Gn(u) and the set of all subgroups of D×n containing 〈pu〉.

Notation 2.3. For a subgroup G of Gn(u), we denote by

G̃ = π−1(G)

its preimage under the canonical map π : D×n → Gn(u). From now on, when introducing
a tilded group, its non-tilded correspondent will be implicitly defined.

Remark 2.4. The valuation v = vDn : p 7→ 1 on D×n induces a commutative diagram with
exact rows and columns

〈pu〉

��

v // Z

��
1 // Sn

��

// D×n
π

��

v // 1
nZ

��

// 1

1 // Sn // Gn(u) v // 1
nZ/Z // 1.

Subgroups of Sn can therefore be considered as subgroups of both Gn(u) and D×n .

Proposition 2.5. If F ⊆ Sn, then F̃ = F × 〈pu〉.

Proof. This follows from the exact commutative diagram of remark 2.4 and the fact that
〈pu〉 is central in D×n . �

2.2. Chains of extensions

For F a finite subgroup of Gn(u) such that F ∩ Sn is cyclic, we set

G := F ∩ Sn and F0 := 〈F ∩ Sn, Zp′(G)〉,

for Sn the p-Sylow subgroup of Sn and Zp′(G) the p′-part of the center Z(G) of G. As
previously seen, F0 is the maximal abelian subgroup of G equal to P × Zp′(G) for P the
cyclic p-Sylow subgroup of G.

Remark 2.6. From proposition 2.5, we know that

F̃0 = F0 × 〈pu〉.

Remark 2.7. By definition, G consists of the elements of F which are of valuation zero
in D×n . Hence G is normal in F and there is a short exact sequence

1 −→ G −→ F −→ F/G −→ 1,

where the quotient embeds via the valuation into 1
nZ/Z.

Proposition 2.8. We have

C̃F (F0) = C
F̃

(F̃0) ⊇ F̃0 and CF (F0)/F0 ∼= C
F̃

(F̃0)/F̃0.
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Proof. It is obvious that
C̃F (F0) ⊇ C

F̃
(F̃0) ⊇ F̃0,

and the second assertion is a direct consequence of the first one.
It remains to check that C̃F (F0) ⊆ C

F̃
(F̃0). If x̃ ∈ C̃F (F0) and f̃ ∈ F̃0, then there is a

unique element z = z(x̃, f̃) ∈ 〈pu〉 such that

zf̃ = x̃f̃ x̃−1.

Because 〈pu〉 is central, we have

z(x̃, f̃ g̃) = z(x̃, f̃)z(x̃, g̃),

for every f̃ , g̃ ∈ F̃0. This yields an exact sequence

1 −→ C
F̃

(F̃0) −→ C̃F (F0) −→ Hom(F̃0, 〈pu〉),

where the image of x̃ is the homomorphism f̃ 7→ z(x̃, f̃). As stated in remark 2.6 we know
that F̃0 = F0 × 〈pu〉. Because 〈pu〉 is central, the image of C̃F (F0) in Hom(F̃0, 〈pu〉) is
contained in the subgroup of those homomorphisms which are trivial on 〈pu〉 ⊆ F̃0 and
hence factors through F0. Because F0 is finite and 〈pu〉 is torsion free, it follows that this
image is trivial and C

F̃
(F̃0) = C̃F (F0). �

Proposition 2.9. We have

F = NF (F0) and F̃ = N
F̃

(F̃0).

Proof. Because P is the unique p-Sylow subgroup of G = F ∩ Sn, it is a characteristic
subgroup of G. Moreover as F0 = P ×Zp′(G) and Zp′(G) is also a characteristic subgroup
of G, it follows that F0 is a characteristic subgroup of G; in other words

NGn(u)(G) ⊆ NGn(u)(F0) and ND×n (G) ⊆ ND×n (F0).

Since G is by definition normal in F , its subgroup F0 is normal in F . Proposition 2.1
finally implies that F̃0 is normal in F̃ . �

Corollary 2.10. There are short exact sequences

1 −→ F0 −→ F −→ F/F0 −→ 1,

1 −→ F̃0 −→ F̃ −→ F/F0 −→ 1.

Proof. This follows from that facts that F0 is normal in F , F̃0 is normal in F̃ , and that
F̃ /F̃0 ∼= F/F0. �

Note that in D×n we have Qp(F0) = Qp(F̃0), and there are inclusions

F̃0 ⊆ Qp(F0)× ⊆ CD×n (F0) ⊆ ND×n (F0).

Given F and F0, the second extension of corollary 2.10 can then be broken into three
pieces via the chain of subgroups

F̃0 ⊆ F̃1 ⊆ F̃2 ⊆ F̃3 = F̃

defined by:
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• F̃1 := F̃ ∩Qp(F0)×;

• F̃2 := F̃ ∩ CD×n (F0) = C
F̃

(F0);

• F̃3 := F̃ ∩ND×n (F0) = N
F̃

(F0) = F̃ .

Clearly the groups F̃0, F̃1 are abelian, and since F̃2/F̃0 ∼= F2/F0 ⊆ 1
nZ/Z is cyclic by

proposition 2.8 and remark 2.7, the group F̃2 is also abelian. Moreover we note that for
0 ≤ i ≤ 2, each F̃i is normal in F̃i+1. In particular, any finite subgroup F ⊆ Gn(u)
determines successive group extensions with abelian kernel

1 −→ F̃i −→ F̃i+1 −→ F̃i+1/F̃i −→ 1 for 0 ≤ i ≤ 2.

In the following sections, we analyse these extensions recursively.

Remark 2.11. For F0 the situation is completely understood from chapter 1 (see corollary
1.37), where we have shown that the conjugacy classes of

F0 ∼= Cpα × Cd

are classified by the pairs of integers (α, d) satisfying

0 ≤ α ≤ k and 1 ≤ d | pnα − 1.

2.3. Existence and uniqueness in cohomological terms

The following general approach will be applied to the Fi’s that can be understood
through extensions with abelian kernel.

Let ρ : G → Q be a group homomorphism whose kernel Ker(ρ) is not necessarily
supposed to be abelian. Let A be an abelian normal subgroup of G which is contained in
the center of ker(ρ), and let B be a subgroup of Im(ρ).

Gρ(G,A,B) := {H ≤ G | H ∩Ker(ρ) = A and H/A ∼= B via ρ}.

When Ker(ρ) is abelian, we let eρ ∈ H2(Im(ρ),Ker(ρ)) denote the cohomology class of
the extension

1 −→ Ker(ρ) −→ G −→ Im(ρ) −→ 1,

and we define eρ(B) ∈ H2(B,Ker(ρ)) to be the image of eρ under the map

j∗ = H2(j,Ker(ρ))

induced by the inclusion j of B into Im(ρ).

Theorem 2.12. If Ker(ρ) is abelian, then the set Gρ(G,A,B) is non-empty if and only
if eρ(B) becomes trivial in H2(B,Ker(ρ)/A).

Proof. Let H be an element of Gρ(G,A,B), and let eH ∈ H2(B,A) be the extension class
of

1 −→ A −→ H −→ B −→ 1.

Define H ′ to be the pushout of the diagram

Ker(ρ) A
ioo // H
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given by the canonical inclusions of A into Ker(ρ) and H respectively. Then H ′ fits into
the commutative diagram

1 // A //

i
��

H

��

// B // 1

1 // Ker(ρ) // H ′ // B // 1,

where the horizontal sequences are exact; the top extension class being eH , and the bottom
extension class being i∗B(eH), the image of eH via the map i∗B = H2(B, i). Furthermore,
define G′ to be the pullback of the diagram

G // Im(ρ) B
joo

given by the canonical inclusions ofG and B into Im(ρ). ThenG′ fits into the commutative
diagram

1 // Ker(ρ) // G′

��

// B //

j
��

1

1 // Ker(ρ) // G // Im(ρ) // 1,

where the horizontal sequences are exact; the top extension class being eρ(B), and the
bottom extension class being eρ. From the universal properties of the pushout and the
pullback, the above maps

H −→ B and Ker(ρ) −→ G

determine a homomorphism from H ′ to G′ merging the above diagrams into

1 // A //

i
��

H

��

// B // 1

1 // Ker(ρ) // H ′ //

∼=
��

B // 1

1 // Ker(ρ) // G′

��

// B //

j
��

1

1 // Ker(ρ) // G // Im(ρ) // 1,

so that i∗B(eH) = eρ(B). Now we have a short exact sequence

1 −→ A
i−→ Ker(ρ) −→ Ker(ρ)/A −→ 1,

which induces an exact sequence in cohomology

H2(B,A)
i∗B−→ H2(B,Ker(ρ)) −→ H2(B,Ker(ρ)/A).

Since
eρ(B) ∈ H2(B,Ker(ρ))

is in the image of i∗B, it must become trivial in H2(B,Ker(ρ)/A).
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Conversely, if eρ(B) becomes trivial in H2(B,Ker(ρ)/A), then there is an element eH
in H2(B,A) satisfying i∗B(eH) = eρ(B). This means that there is an extension

1 −→ A −→ H −→ B −→ 1,

and a connecting map from the pushout H ′ to the pullback G′ which induces the commu-
tative diagram

1 // A //

i
��

H

��

// B //

j
��

1

1 // Ker(ρ) // G // Im(ρ) // 1,

with H ∈ Gρ(G,A,B). �

Remark 2.13. We may interpret theorem 2.12 by saying that Gρ(G,A,B) is non-empty
if and only if the associated extension

1 −→ Ker(ρ)/A −→ G/A −→ Im(ρ) −→ 1

splits when pulled back to B ⊆ Im(ρ).

Denote by Gρ(G,A,B)/ ∼Ker(ρ) the set of orbits with respect to the conjugation action
ofKer(ρ) on Gρ(G,A,B). Given a distinguished elementH0 in Gρ(G,A,B), we have an ac-
tion of B on Ker(ρ)/A induced by the conjugation action of G on Ker(ρ). Indeed, since A
is normal in G, this conjugation action determines a homomorphism G→ Aut(Ker(ρ)/A),
which in turn descends to a homomorphism G/A→ Aut(Ker(ρ)/A) as A is in the center
of Ker(ρ). We thus obtain a canonical homomorphism

B ∼= H0/A ⊆ G/A −→ Aut(Ker(ρ)/A),

which allows us to consider H1(B,Ker(ρ)/A). The latter can be identified with the set of
Ker(ρ)/A-conjugacy classes of sections of the split extension of remark 2.13, as explained
in [4] chapter IV proposition 2.3 for the abelian case and [23] chapter I section 5.1 (see
exercise 1) for the nonabelian case.

Theorem 2.14. If Gρ(G,A,B) is non-empty and H0 is an element of Gρ(G,A,B), then
there exists a bijection

ψH0 : H1(B,Ker(ρ)/A) −→ Gρ(G,A,B)/ ∼Ker(ρ),

which depends on the choice of H0.

Proof. Let S(B, π) denote the set of all sections s : B → G/A of the canonical projection
π : G/A→ G/Ker(ρ), that is

S(B, π) := {group homomorphism s : B → G/A | (π ◦ s)(b) = b for all b ∈ B}.

For any s ∈ S(B, π), we denote by s̃ : B → G the choice of a set theoretical lift of s. This
defines maps

Gρ(G,A,B) −→ S(B, π)
H 7−→ s : B ∼= H/A→ G/A,

S(B, π) −→ Gρ(G,A,B)
s 7−→ 〈A, s̃(B)〉,
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which can easily be checked to be mutually inverse to each other and compatible with the
obvious actions of Ker(ρ) by conjugation. The desired result then follows from the usual
interpretation of H1(B,Ker(ρ)/A) as conjugacy classes of sections. �

2.4. The first extension type

In this section we consider the first extension in the chain of section 2.2. Recall that
for a given subgroup F̃ ∈ F̃u(D×n ), we let F̃0 be such that F0 = 〈F̃ ∩ Sn, Zp′(F̃ ∩ Sn)〉.

Lemma 2.15. Let H0 be an abelian finite subgroup of Sn, H̃0 = H0 × 〈pu〉, and let
F̃u(Qp(H0)×, H̃0) be the set of all F̃ ∈ F̃u(Qp(H0)×) such that

• H̃0 ⊆ F̃ , and

• the valuation v : F̃ → 1
nZ induces a monomorphism F̃ /H̃0 → 1

nZ/Z.

If F̃ ∈ F̃u(Qp(H0)×, H̃0), then F̃0 = H̃0.

Proof. By assumption on F̃ , we have in Gn(u)

H0 = Ker(v : F → Z/n) = F ∩ Sn = F0,

and therefore H̃0 = F̃0. �

We now fix F0 and analyse the set F̃u(Qp(F0)×, F̃0) of all F̃1 ⊆ F̃u(Qp(F0)×) such that

• F̃1 contains F̃0 as a subgroups of finite index, and

• F̃1/F̃0 injects via v into 1
nZ/Z.

Lemma 2.15 ensures that the elements of F̃u(Qp(F0)×, F̃0) are extensions of the form

1 −→ F̃0 −→ F̃1 −→ F̃1/F̃0 −→ 1

with 〈F̃1∩Sn, Zp′(F̃1∩Sn)〉 = F0. By definition, such an extension fits into a commutative
diagram

1 // F̃0
//

i
��

F̃1

��

// F̃1/F̃0
//

j
��

1

1 // Zp(F0)× × 〈pu〉 // Qp(F0)× // 1
e(Qp(F0))Z/Z // 1,

where e(Qp(F0)) denotes the ramification index of Qp(F0) over Qp, where the horizontal
maps form exact sequences and where the vertical maps are the canonical inclusions. As

1
e(Qp(F0))Z/Z

∼= Z/e(Qp(F0)),

the quotient group F̃1/F̃0 must be cyclic of order a divisor of e(Qp(F0)). Let

eu(F0) ∈ H2(Z/e(Qp(F0)), Zp(F0)× × 〈pu〉)
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denote the class of this last extension. Furthermore, for r1 a divisor of e(Qp(F0)), we let

F̃u(Qp(F0)×, F̃0, r1) := {F̃1 ∈ F̃u(Qp(F0)×, F̃0) | |F̃1/F̃0| = r1},

and we define the cohomology class

eu(F0, r1) ∈ H2(Z/r1, Zp(F0)× × 〈pu〉)

to be the image of eu(F0) under the induced homomorphism

j∗ = H2(j, Zp(F0)× × 〈pu〉),

for j the canonical inclusion of F̃1/F̃0 into 1
e(Qp(F0))Z/Z.

Theorem 2.16. Let r1 be a divisor of e(Qp(F0)).

1) The set F̃u(Qp(F0)×, F̃0, r1) is non-empty if and only if eu(F0, r1) becomes trivial in
H2(Z/r1,Zp(F0)×/F0).

2) If F̃u(Qp(F0)×, F̃0, r1) is non-empty and if F̃1 = 〈F̃0, x1〉 belongs to this set with
v(x1) = 1

r1
, then there is a bijection

ψ1 : H1(Z/r1,Zp(F0)×/F0) −→ F̃u(Qp(F0)×, F̃0, r1)
y 7−→ 〈F̃0, yx1〉.

Proof. Statements 1) and 2) are the respective specializations of theorem 2.12 and 2.14 in
the case where

ρ : G = Qp(F0)× −→ 1
n
Z/Z = Q

is induced by the valuation, G (and hence Ker(ρ)) acts trivially on F̃u(Qp(F0)×, F̃0, r1),
and

A = F̃0 = F0 × 〈pu〉, B = 1
r1
Z/Z;

in particular,

Ker(ρ) = Zp(F0)× × 〈pu〉, Im(ρ) = 1
e(Qp(F0))Z/Z,

and
eρ = eu(F0), eρ(B) = eu(F0, r1).

�

Remark 2.17. Note that F̃1 ∈ F̃u(Qp(F0)×) belongs to F̃u(Qp(F0)×, F̃0, r1) if and only
if there exists an element x1 ∈ Qp(F0)× with F̃1 = 〈F̃0, x1〉 satisfying

v(x1) = 1
r1

and xr1
1 ∈ F̃0.

Clearly, F̃1 uniquely determines x1 modulo F0.

Corollary 2.18. If F0 = µ(Qp(F0)) is the group of roots of unity in Qp(F0), then

|F̃u(Qp(F0)×, F̃0, r1)| ≤ 1.
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Proof. By proposition C.7 we have Zp(F0)× ∼= µ(Qp(F0)) × Z[Qp(F0):Qp]
p . Since the action

of Z/r1 is trivial on Zp(F0)×, we obtain

H1(Z/r1, Zp(F0)×/F0) ∼= H1(Z/r1, Z[Qp(F0):Qp]
p × µ(Qp(F0))/F0)

∼= H1(Z/r1, µ(Qp(F0))/F0)
∼= {1}.

The result then follows from theorem 2.16.2. �

Remark 2.19. The condition F0 = µ(Qp(F0)) is equivalent to the maximality of F0 as a
finite subgroup of Qp(F0)×. In section 3.3 we will see that if p is odd and F0 = µ(Qp(F0)),
then the set F̃u(Qp(F0), F̃0, r1) is non-empty if and only if p does not divide r1. As for
the case p = 2, we will see in section 3.4 that this depends on u and F0.

2.5. The second extension type

In this section we consider the second extension in the chain of section 2.2. Recall that
for a given subgroup F̃ ∈ F̃u(D×n ), we let F̃1 = F̃ ∩Qp(F0)×.

Lemma 2.20. Let H0 be an abelian finite subgroup of Sn, H̃0 = H0 × 〈pu〉, H̃1 ∈
F̃u(Qp(H0)×, H̃0), and let F̃u(CD×n (H0), H̃1) be the set of all F̃ ∈ F̃u(CD×n (H0)) such that

• H̃1 = F̃ ∩Qp(H0)×, and

• the valuation v : F̃ → 1
nZ induces a monomorphism F̃ /H̃1 → 1

nZ/v(H̃1).

If F̃ ∈ F̃u(CD×n (H0), H̃1), then F̃1 = H̃1.

Proof. Clearly F̃ /H̃1 injects via v into 1
nZ/v(H̃1) if and only if we have in Gn(u) a

monomorphism F/H0 → Z/n, and this is true if and only if H0 = F ∩ Sn. Therefore
F0 = H0 and consequently

F̃1 = F̃ ∩Qp(F0)× = F̃ ∩Qp(H0)× = H̃1.

�

We now fix F0 and r1 such that F̃u(Qp(F0), F̃0, r1) is non-empty, and fix a group
F̃1 ∈ F̃u(Qp(F0), F̃0, r1). We consider the set F̃u(CD×n (F0), F̃1) of all F̃2 ⊆ F̃u(CD×n (F0))
such that

• F̃2 ∩Qp(F0)× = F̃1, and

• F̃2/F̃1 injects via v into 1
nZ/v(F̃1).

Lemma 2.20 ensures that the elements of F̃u(CD×n (F0), F̃1) are extensions of the form

1 −→ F̃1 −→ F̃2 −→ F̃2/F̃1 −→ 1

with F̃2 ∩ Qp(F0)× = F̃1 and 〈F̃2 ∩ Sn, Zp′(F̃2 ∩ Sn)〉 = F0. For r2 a divisor of n/r1, we
define

F̃u(CD×n (F0), F̃1, r2) := {F̃2 ∈ F̃u(CD×n (F0), F̃1) | |F̃2/F̃1| = r2}.
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Note that any F̃2 ∈ F̃u(CD×n (F0), F̃1, r2) determines a commutative field extension L =
Qp(F̃2) of degree r2 over Qp(F0) which is obtained by adjoining to Qp(F0) an element
x2 ∈ CD×n (F0) which satisfies

v(x2) = 1
r1r2

and xr2
2 ∈ F̃1.

We can thus partition our sets

F̃u(CD×n (F0), F̃1, r2) =
∐

L⊇Qp(F0)
[L:Qp(F0)]=r2

F̃u(CD×n (F0), F̃1, L),

according to all L ⊇ Qp(F0) obtained from Qp(F0) via irreducible equations of the form
Xr2 − x1 for x1 an element of valuation 1

r1
in F̃1, where

F̃u(CD×n (F0), F̃1, L) := {F̃2 ∈ F̃u(CD×n (F0), F̃1) | Qp(F̃2) = L}.

Clearly, L determines r2 and we have

F̃u(CD×n (F0), F̃1) =
∐
r2| nr1

F̃u(CD×n (F0), F̃1, r2)

=
∐

[L:Qp(F0)]| n
r1

F̃u(CD×n (F0), F̃1, L).

Theorem 2.21. Let x1 be an element of F̃1 ∈ F̃u(Qp(F0), F̃0, r1) with v(x1) = 1
r1
, let L

be an extension of Qp(F0) of degree r2, and let L×r1 denote the group of all x ∈ L× such
that v(x) ∈ 1

r1
Z.

1) The set F̃u(CD×n (F0), F̃1, L) is non-empty if and only if r2[Qp(F0) : Qp] divides n,
there exists a δ ∈ F0 such that the equation Xr2 − δx1 is irreducible over Qp(F0) and
L = Qp(x2) for x2 a root of this equation.

2) If F̃u(CD×n (F0), F̃1, L) is non-empty and if F̃2 = 〈F̃1, x2〉 belongs to this set with
v(x2) = 1

r1r2
, then there is a bijection

ψ2 : H1(Z/r2, L
×
r1/F̃1) −→ F̃u(CD×n (F0), F̃1, L)

y 7−→ 〈F̃1, yx2〉.

Proof. 1) This is a direct consequence of the embedding theorem.
2) This is a specialization of theorem 2.14 in the case where

ρ : G = L× −→ 1
n
Z/

1
r1
Z = Q

is induced by the valuation, G (and hence Ker(ρ)) acts trivially on F̃u(CD×n (F0), F̃1, L),
and

A = F̃1, B = 1
r1r2

Z/
1
r1
Z;

in particular, Ker(ρ) = L×r1 . �
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Remark 2.22. Note that
F̃2 ∈ F̃u(CD×n (F0), F̃1)

satisfies Qp(F̃2) = L if and only if there exists an element x2 ∈ L with F̃2 = 〈F̃1, x2〉
satisfying

v(x2) = 1
r1r2

and xr2
2 ∈ F̃1.

Moreover, F̃2 uniquely determines such an x2 modulo F0.

Corollary 2.23. If F0 = µ(L) is the group of roots of unity in L, then

|F̃u(CD×n (F0), F̃1, L)| ≤ 1.

Proof. We know from proposition C.7 that L×r1
∼= Z〈x1〉×µ(L)×Z[L:Qp]

p . Since the action
of Z/r2 is trivial on L×r1 , we obtain

H1(Z/r2, L
×
r1/F̃1) ∼= H1(Z/r2, Z[L:Qp]

p × µ(L)/F0)
∼= H1(Z/r2, µ(L)/F0)
∼= {1}.

The result then follows from theorem 2.21.2. �

2.6. The third extension type

In this section we consider the third extension in the chain of section 2.2. Recall that
for a given subgroup F̃ ∈ F̃u(D×n ), we let F̃2 = F̃ ∩ CD×n (F0).

Lemma 2.24. Let H0 be an abelian finite subgroup of Sn, H̃0 = H0 × 〈pu〉, H̃1 ∈
F̃u(Qp(H0)×, H̃0), H̃2 ∈ F̃u(CD×n (H0), H̃1), and let F̃u(ND×n (H0), H̃2) be the set of all
F̃ ∈ F̃u(ND×n (H0)) such that

• H̃2 = F̃ ∩ CD×n (H0), and

• H̃2 is normal in F̃ .

If F̃ ∈ F̃u(ND×n (H0), H̃2), then

a) F̃i = H̃i for 0 ≤ i ≤ 2, or

b) p = 2, n ≡ 2 mod 4, H0 ∩ Sn ∼= C4, F̃ ∩ Sn ∼= Q8 and Zp′(F̃ ∩ Sn) ∼= Zp′(H̃0 ∩ Sn).

Proof. First note that the condition H̃2 = F̃ ∩ CD×n (H0) implies that the canonical ho-
momorphism F̃ → Aut(H0) induces an injective homomorphism F̃ /H̃2 → Aut(H0). In
particular, we have a monomorphism F ∩ Sn/H0 → Aut(H0) where

(H0 ∩ Sn)× Zp′(H0) = H0 ⊆ F ∩ Sn,

for Zp′ the p′-part of (the center of) H0. By theorem 1.31 and 1.35 we know that F ∩ Sn
acts trivially on Zp′(H0), so that we have a monomorphism

F ∩ Sn/H0 −→ Aut(H0 ∩ Sn). (∗)
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Assume for the moment that F ∩ Sn is abelian; this must be the case if p > 2, or if
p = 2 with either n 6≡ 2 mod 4 or H0 ∩ Sn 6∼= C4. Then F ∩ Sn = (F ∩ Sn)× Zp′(F ∩ Sn)
is cyclic. Since (F ∩ Sn)/(H0 ∩ Sn) injects into the kernel of the injective map (∗), we
have F ∩ Sn = H0 ∩ Sn. Furthermore, the p′-part of Aut(H0 ∩ Sn) is a cyclic group of
order p−1, and the quotient group Zp′(F ∩Sn)/Zp′(H0) injects into Cp−1 ⊆ Aut(H0∩Sn).
Hence Zp′(F ∩ Sn) = Zp′(H0) by theorem 1.31 and 1.35, so that F0 = H0 and F̃0 = H̃0.
Therefore

F̃2 = F̃ ∩ CD×n (F0) = F̃ ∩ CD×n (H0) = H̃2,

and

F̃1 = F̃ ∩Qp(F0)× = F̃ ∩Qp(H0)× = F̃ ∩ CD×n (H0) ∩Qp(H0)× = H̃2 ∩Qp(H0)× = H̃1.

Finally, if F∩Sn is not abelian, then p = 2, n ≡ 2 mod 4, H0∩Sn ∼= C4 and F∩Sn ∼= Q8
by theorem 1.35. As seen above, the quotient group of the 2′-part of F ∩Sn by the 2′-part
of H0 injects into the trivial group. �

We now fix a chain F0 ⊆ F1 ⊆ F2 such that condition b) of lemma 2.24 is not satisfied,
and we let L be a subfield of Dn such that F̃2 belongs to F̃u(CD×n (F0), F̃1, L); in particular
L = Qp(F̃2). We consider the set F̃u(ND×n (F0), F̃2) of all F̃3 ⊆ F̃u(ND×n (F0)) such that

• F̃3 ∩ CD×n (F0) = F̃2, and

• F̃2 is normal in F̃3.

Proposition 2.25. If F̃3 ∈ F̃u(ND×n (F0), F̃2), there is a commutative diagram of obvious
group homomorphisms

F̃3/F̃2
// Aut(Qp(F̃2),Qp(F0)) // Aut(Qp(F0))

��
F̃3/F̃2

// Aut(F̃2, F0) // Aut(F0)

in which all compositions starting at F̃3/F̃2 are injective.

Proof. Clearly, the condition F̃2 = F̃3∩CD×n (F0) is equivalent to the fact that the canonical
homomorphism F̃3 → Aut(F0) induces an injective homomorphism F̃3/F̃2 → Aut(F0).
Furthermore, an automorphism of the field Qp(F0) induces an automorphism of the group
µ(Qp(F0)) of roots of unity in Qp(F0), and since this group is cyclic and contains F0,
it also induces an automorphism of F0. This determines an injective homomorphism
Aut(Qp(F0)) → Aut(F0). The homomorphism F̃3/F̃2 → Aut(F0) clearly takes its values
into the subgroup Aut(Qp(F0)).

The condition that F̃2 is normal in F̃3 yields canonical homomorphisms F̃3 → Aut(F̃2)
and F̃3 → Aut(Qp(F̃2)). Since F̃2 is abelian, these induce canonical homomorphisms
F̃3/F̃2 → Aut(F̃2) and F̃3/F̃2 → Aut(Qp(F̃2)). Moreover, as F̃3/F̃2 → Aut(F̃2) takes its
values into the subgroup Aut(F̃2, F0) of those automorphisms of F̃2 which leave F0 invari-
ant, and as F̃3/F̃2 → Aut(Qp(F̃2)) takes its values into the subgroup Aut(Qp(F̃2),Qp(F0))
of those automorphisms which leave Qp(F0) invariant, we end up with the given commu-
tative diagram.

From the injectivity of the map F̃3/F̃2 → Aut(F0), we then obtain that all compositions
of homomorphism in the diagram starting at F̃3/F̃2 are injective. �



2.6. The third extension type 39

Let Aut(L, F̃2, F0) denote the subgroup of all elements of Aut(L) which leave both F̃2
and F0 invariant. By proposition 2.25, we may partition the set

F̃u(ND×n (F0), F̃2) =
∐
W

F̃u(ND×n (F0), F̃2,W )

according to all subgroups W of Aut(F0) which lift to Aut(L, F̃2, F0), where

F̃u(ND×n (F0), F̃2,W ) := {F̃3 ∈ F̃u(ND×n (F0), F̃2) | F̃3/F̃2 = W}.

Let us fix such aW . Under our assumptions, lemma 2.24 and proposition 2.25 ensure that
the elements of F̃u(ND×n (F0), F̃2,W ) are extensions of the form

1 −→ F̃2 −→ F̃3 −→W −→ 1

with F̃3 ∩ CD×n (F0) = F̃2, F̃3 ∩Qp(F0)× = F̃1 and 〈F̃3 ∩ Sn, Zp′(F̃3 ∩ Sn)〉 = F0. Define

K := LW ⊆ L = Qp(F̃2)

to be the subfield of all elements of L that are fixed by the action of W . Clearly, K is an
extension of Qp and the respective dimensions of K and L over Qp divide n. Recall from
section B.2 that an element e ∈ H2(W,L×) defines a central simple crossed K-algebra
(L/K, e) up to isomorphism.

Lemma 2.26. There is a generator of H2(W,L×) whose associated crossed algebra embeds
into Dn if and only if |W | is prime to n[L : Qp]−1.

Proof. Consider the tower of extensions Qp ⊆ K := LW ⊆ L. Let k := [K : Qp],
l := [L : Qp], w := |W |, and let e be a generator of H2(W,L) ∼= Z/w ⊆ Q/Z. By
proposition B.3, we know that the crossed algebra (L/K, e) =

∑
σ∈W Luσ is a central

division algebra over K of invariant r/w ∈ Br(K) for some integer r prime to w. If
q = n/l, then the invariant of D := CDn(K) is 1/qw ∈ Br(K) by proposition C.10.

Suppose (L/K, e) can be embedded into Dn. Then it embeds into D, and by the
centralizer theorem

D ∼= (L/K, e)⊗K CD(L/K, e),
where CD(L/K, e) is central of dimension q2 over K. On the level of Hasse invariants we
get a relation of the form

1
qw
≡ r

w
+ s

q
mod Z (∗)

for a suitable integer s which is prime to q. Hence

1 ≡ rq + sw mod qZ,

and it follows that q is prime to w. Conversely if q is prime to w, then there is an r prime
to w and an s prime to q such that (∗) holds. Therefore the algebra (L/K, e) embeds into
D, and consequently into Dn. �

Theorem 2.27. Let W be a subgroup of Aut(F0) which lifts to Aut(L, F̃2, F0) and let

i∗W : H2(W, F̃2) −→ H2(W,L×)

be the map induced by the inclusion of F̃2 into L×. Then F̃u(ND×n (F0), F̃2,W ) is non-empty
if and only if |W | is prime to n[L : Qp]−1 and i∗W is surjective.
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Proof. Suppose that |W | is prime to n[L : Qp]−1 and i∗W is surjective. By lemma 2.26,
there is a generator e ∈ H2(W,L×) whose associated algebra (L/LW , e) embeds into Dn.
The group of units (L/LW , e)× contains

L×W =
∐
σ∈W

L×uσ

as a subgroup, and we get an embedding of L×W into D×n . By the Skolem-Noether theorem
we can assume that this embedding restricts to the given embedding of L into Dn. Since
L = Qp(F̃2), we have L×W ⊆ ND×n (F̃2) and there is a commutative diagram

1 // L× //

��

L×W //

��

W //

��

1

1 // CD×n (F̃2) // ND×n (F̃2) // Aut(L) // 1,

whose vertical maps are inclusions and whose horizontal sequences are exact. Now, the
surjectivity of i∗W implies the existence of an element e′ ∈ H2(W, F̃2) such that i∗W (e′) = e,
in which case the above diagram extends to a commutative diagram

1 // F̃2
//

��

F̃ //

��

W // 1

1 // L× //

��

L×W //

��

W //

��

1

1 // CD×n (F̃2) // ND×n (F̃2) // Aut(L) // 1,

where the top exact sequence has extension class e′. Because of our assumption that W
injects into Aut(F0), we have F̃ ∩ CD×n (F0) = F̃2, and therefore F̃ ∈ F̃u(ND×n (F0), F̃2,W ).

Conversely, if F̃ ∈ F̃u(ND×n (F0), F̃2,W ), then F̃ extends F̃2 by W and there are com-
mutative diagrams

1 // F̃2
//

��

F̃ //

��

W //

��

1

1 // CD×n (F̃2) // ND×n (F̃2) // Aut(L) // 1,

and

1 // F̃2
//

��

F̃ //

��

W // 1

1 // L× // L×W // W // 1,

whose vertical maps are inclusions and horizontal sequences are exact. Using the universal
property of the lower left pushout square, we may extend the latter diagram in an obvious
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way to obtain an embedding of extensions

1 // F̃2
//

��

F̃ //

��

W // 1

1 // L× //

��

L×W //

i
��

W //

��

1

1 // CD×n (F̃2) // ND×n (F̃2) // Aut(L) // 1,

where L×W ⊆ (L/LW , e) =
∑
σ∈W Luσ for e the image of the extension class of F̃ in

H2(W,L×). By definition of L×W , the map i extends uniquely to an algebra homomor-
phism

ĩ : (L/LW , e) −→ Dn :
∑
σ

xσuσ 7−→
∑
σ

i(xσuσ), xσ ∈ L×.

Moreover since (L/LW , e) is simple and i is non-trivial, the kernel of ĩ is trivial. Hence
ĩ is injective and (L/LW , e), which embeds into Dn, is a division algebra by proposition
A.3. It follows that e is a generator of H2(W,L×) and i∗W is surjective. Applying lemma
2.26 we finally obtain that |W | is prime to n[L : Qp]−1. �

Theorem 2.28. Let W be a subgroup of Aut(F0) which lifts to Aut(L, F̃2, F0). If the set
F̃u(ND×n (F0), F̃2,W ) is non-empty and contains F̃3, then there is a bijection

ψ3 : H1(W,CD×n (F̃2)/F̃2) −→ F̃u(ND×n (F0), F̃2,W )/ ∼
CD×n

(F̃2)

c 7−→ 〈F̃2, csF̃3
〉,

for c a cocycle and s
F̃3

: W → F̃3 a set theoretic section of the epimorphism F̃3 →W .

Proof. By proposition 2.25, we know that W lifts to an automorphism of F̃2. The result
is then a specialization of theorem 2.14 in the case where

ρ : G = ND×n (F̃2) −→ Aut(F̃2) = Q

is given by the canonical homomorphism induced by conjugation and

A = F̃2, B = W ;

in particular, Ker(ρ) = CD×n (F̃2). �

Corollary 2.29. If Qp(F0) is a maximal subfield of Dn such that µ(Qp(F0)) = F0, and
if i∗W : H2(W, F̃2) → H2(W,L×) is an epimorphism for W a subgroup of Aut(F0) which
lifts to Aut(L, F̃2, F0), then there is a bijection between the conjugacy classes of elements
of F̃u(ND×n (F0), F̃2,W ) and the kernel of i∗W .

Proof. Under the stated assumptions, we have F̃2 = F̃1, L = Qp(F0), [L : Qp] = n and
CD×n (F̃2) = L×. Hence there is a short exact sequence

1 −→ F̃2 −→ L× −→ L×/F̃2 −→ 1,
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which for W ⊆ Aut(L, F̃2) ⊆ Gal(L/Qp) induces the long exact sequence

. . . // H1(W,L×) // H1(W,L×/F̃2)

��

Br(L/LW )

0 H2(W, F̃2)
i∗W // H2(W,L×) // . . . ,

where the left hand term is trivial by Hilbert’s theorem 90. The group H1(W,L×/F̃2) is
therefore the kernel of i∗W and the result follows from theorem 2.28. �

Theorem 2.30. Let H̃ ∈ F̃u(D×n ) be such that H ∩ Sn is abelian and µ(Qp(H0)) =
µ(Qp(H̃2)). Then there is a subgroup F̃ ∈ F̃u(D×n ) such that

F0 = µ(Qp(H0)), Qp(F̃2) = Qp(H̃2) and H̃i ⊆ F̃i for 0 ≤ i ≤ 3.

Proof. We know that H̃1 = 〈H̃0, x1〉 where x1 commutes with H̃0, v(x1) = 1
r1

and xr1
1 ∈ H̃0,

and furthermore that H̃2 = 〈H̃1, x2〉 where x2 commutes with H̃1, v(x2) = 1
r1r2

and
xr2 ∈ H̃1. Defining F0 = µ(Qp(H0)), F̃0 = 〈F0, pu〉, F̃1 = 〈F̃0, x1〉 and F̃2 = 〈F̃1, x2〉, we
have

F0 = F̃2 ∩ Sn, F̃1 = F̃2 ∩Qp(F0) and F̃2 ⊆ CD×n (F0).
It remains to show that the extension

1 −→ H̃2 −→ H̃3 = H̃ −→W −→ 1 (∗)
can be extended to an extension in D×n

1 −→ F̃2 −→ F̃3 = F̃ −→W −→ 1. (∗∗)

Let L := Qp(H̃2) = Qp(F̃2). The existence of (∗) implies that W ⊆ Aut(H0) ⊆ Aut(F0)
lifts to Aut(L, H̃2, H0). An automorphism σ of L which leaves H0 invariant, also leaves
Qp(H0) invariant, and therefore the subgroups F0 = µ(Qp(H0)) and F̃0 = 〈F0, pu〉 are also
left invariant. Hence

σ(x1)r1 ∈ F̃0 = 〈F0, pu〉 and
(
σ(x1)
x1

)r1

∈ F0.

Since F0 is the (unique) maximal finite subgroup of Qp(F0)×, we have
σ(x1)
x1

∈ F0 and σ(x1) ∈ 〈F0, x1〉 = F̃1,

and therefore σ leaves F̃1 invariant. This implies

σ(x2)r2 ∈ F̃1 and
(
σ(x2)
x2

)r2

∈ F̃1 ∩ Sn = F0.

Using that µ(Qp(F0)) = µ(Qp(F̃2)), we obtain as before that σ(x2) ∈ 〈F0, x2〉 = F̃2 and
consequently that σ leaves F̃2 invariant. It follows that W lifts to Aut(L, F̃2, F0). The
chain of inclusions H̃2 ⊆ F̃2 ⊆ L× induces a commutative diagram

H2(W, H̃2)

�� '' ''NNNNNNNNNNN

H2(W, F̃2) // H2(W,L×)

whose oblique arrow is an epimorphism by theorem 2.27. The horizontal homomorphism
is therefore surjective and theorem 2.27 implies the existence of (∗∗) in D×n . �
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2.7. Classification of embeddings up to conjugation

In this section, we use the results obtained in this chapter to classify the chains of
subgroups

F̃0 ⊆ F̃1 ⊆ F̃2 ⊆ F̃3

that occur in D×n . In order to do this we proceed in four steps.
For a group G and a G-set S, we denote by S/ ∼G the set of orbits with respect to

the G-action on S.

Classifying F̃0’s

As explained in remark 2.11, the map

F̃u(D×n ) −→ F̃u(Sn) : F̃ 7−→ F̃0 := 〈F̃ ∩ Sn, Zp′(G)〉

induces a well defined map

ϕ0 : F̃u(D×n )/ ∼D×n−→ F̃u(Sn)/ ∼D×n ,

whose image can be identified with the set

{(α, d) ∈ N× N∗ | 0 ≤ α ≤ k, d | pnα − 1}.

Classifying F̃1’s

Pick F̃0 ∈ F̃u(Sn) and define the sets

• F̃(D×n , F̃0) of all subgroups F̃ of D×n such that F̃0 = F̃ ∩ Sn is of finite index in F̃ ;

• F̃(Qp(F0)×, F̃0) of all subgroups F̃ of Qp(F0)× such that F̃0 = F̃ ∩ Sn is of finite
index in F̃ .

Clearly the map

F̃(D×n , F̃0) −→ F̃(Qp(F0)×, F̃0) : F̃ 7−→ F̃1 := F̃ ∩Qp(F0)×

induces a well defined map

ϕ1 : F̃(D×n , F̃0)/ ∼
CD×n

(F̃0)−→ F̃(Qp(F0)×, F̃0).

As seen in section 2.4, every F̃1 ∈ F̃(Qp(F0)×, F̃0) determines an integer r1 = |F̃1/F̃0|
which is a divisor of n. Furthermore, according to theorem 2.16, if such a divisor r1 is
realized by a subgroup F̃1 ∈ F̃(Qp(F0)×, F̃0), then the set

{F̃1 ∈ F̃(Qp(F0)×, F̃0) | |F̃1/F̃0| = r1}

is in bijection with the set H1(Z/r1,Zp[F0]×/F0).
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Classifying F̃2’s

Pick F̃1 ∈ F̃(Qp(F0)×, F̃0) and define the sets

• F̃(D×n , F̃1) of all subgroups F̃ of D×n such that F̃1 = F̃ ∩ Qp(F0)× is of finite index
in F̃ ;

• F̃(CD×n (F̃1), F̃1) of all subgroups F̃ of CD×n (F̃1) such that F̃1 = F̃ ∩ Qp(F0)× is of
finite index in F̃ .

Then the map

F̃(D×n , F̃1) −→ F̃(CD×n (F̃1), F̃1) : F̃ 7−→ F̃2 := F̃ ∩ CD×n (F̃1)

induces a well defined map

ϕ2 : F̃(D×n , F̃1)/ ∼
CD×n

(F̃1)−→ F̃(CD×n (F̃1), F̃1)/ ∼
CD×n

(F̃1) .

In order to describe the image of ϕ2, we recall that every F̃2 ∈ F̃(CD×n (F̃1), F̃1) determines
an extension L := Qp(F̃2) of Qp(F̃1). Clearly, the isomorphism class of L is constant on
each conjugacy class of F̃2’s by elements in CD×n (F̃1), and hence determine the integer
r2 = [L : Qp(F̃1)] dividing n

r1
. By the Skolem-Noether theorem, the set of isomorphism

classes of extensions Qp(F̃1) ⊆ L is in bijection with the set of CD×n (F̃1)-conjugacy classes
of L’s. Thus denoting

F̃(L×, F̃1) := {F̃2 ∈ F̃(CD×n (F̃1), F̃1) | Qp(F̃2) = L},

we have a bijection

F̃(CD×n (F̃1), F̃1)/ ∼
CD×n

(F̃1)
∼=
∐
[L]
F̃(L×, F̃1),

where the union is taken over all isomorphism classes of extensions Qp(F̃1) ⊆ L. Finally,
if for a given L the set F̃(L×, F̃1) is non-empty, then by theorem 2.21 it is in bijection
with the set H1(Z/r2, L

×
r1/F̃1), and we have

F̃(CD×n (F̃1), F̃1)/ ∼
CD×n

(F̃1)
∼=
∐
[L]
H1(Z/r2, L

×
r1/F̃1).

Classifying F̃3’s

Pick F̃2 ∈ F̃(L×, F̃1) and define the sets

• F̃(D×n , F̃2) of all subgroups F̃ of D×n such that F̃∩Sn is abelian and F̃2 = F̃∩CD×n (F0)
is of finite index in F̃ ;

• F̃(ND×n (F̃2), F̃2) of all subgroups F̃ of ND×n (F̃2) such that F̃ ∩ Sn is abelian and
F̃2 = F̃ ∩ CD×n (F0) is of finite index in F̃ .
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By proposition 2.9, each F̃ in F̃(D×n , F̃2) satisfies F̃ ⊆ ND×n (F0), in which case F̃2 is normal
in F̃ . Thus the map

F̃(D×n , F̃2)
∼=−→ F̃(ND×n (F̃2), F̃2) : F̃ 7−→ F̃3 := F̃ ∩ND×n (F̃2)

is a bijection and induces a well defined bijection

ϕ3 : F̃(D×n , F̃2)/ ∼
CD×n

(F̃2)
∼=−→ F̃(ND×n (F̃2), F̃2)/ ∼

CD×n
(F̃2) .

In order to describe the image of ϕ3, we recall that every F̃3 ∈ F̃(ND×n (F̃2), F̃2) determines
an extension

1 −→ F̃2 −→ F̃3 −→W −→ 1,

where W canonically injects into Aut(F̃2, F0). Via this injection, W is independent of the
given representative in the CD×n (F̃2)-conjugacy class of F̃3. Thus denoting

F̃(ND×n (F̃2), F̃2,W ) := {F̃3 ∈ F̃(ND×n (F̃2), F̃2) | F̃3/F̃2 = W},

we have a bijection

F̃(ND×n (F̃2), F̃2)/ ∼
CD×n

(F̃2)
∼=
∐
W

F̃(ND×n (F̃2), F̃2,W )/ ∼
CD×n

(F̃2) .

Finally, if for a given W the set F̃(ND×n (F̃2), F̃2,W )/ ∼
CD×n

(F̃2) is non-empty, then by

theorem 2.28 it is in bijection with the set H1(W,CD×n (F̃2)/F̃2), and we have

F̃(ND×n (F̃2), F̃2)/ ∼
CD×n

(F̃2)
∼=
∐
W

H1(W,CD×n (F̃2)/F̃2).
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Chapter 3:

On abelian finite subgroups of Gn(u)

Throughout this chapter we assume that n = (p− 1)pk−1m with m prime to p. Given
an abelian finite subgroup F0 of Sn whose p-Sylow subgroup is cyclic of order pα for
1 ≤ α ≤ k, we want to determine what sequences of groups

F0 ⊆ F1 ⊆ F2

are realized in Gn(u) = D×n /〈pu〉; here F2 is an abelian finite subgroup of Gn(u) containing
F0 and F1 is such that F̃1 = F̃2 ∩ Qp(F0). We know from chapter 2 that the tilded
correspondents of these groups in D×n are given by

F̃1 = 〈F0, x1〉 and F̃2 = 〈F0, x2〉

with x1, x2 ∈ D×n such that

v(x1) = 1
r1
, xr1

1 ∈ F̃0, v(x2) = 1
r1r2

and xr2
2 ∈ F̃1.

We want to determine for what pairs of positive integers (r1, r2) the sets

F̃u(Qp(F0), F̃0, r1) and F̃u(CD×n (F0), F̃1, r2)

are non-empty.

3.1. Elementary conditions on r1

The question of determining for what r1 the set F̃u(Qp(F0), F̃0, r1) is non-empty nat-
urally leads to studying the r1-th roots of pu in Qp(F0). Clearly r1 must be a divisor of
ϕ(pα), the ramification index of Qp(F0) over Qp.

Proposition 3.1. Let ζpα be a primitive pα-th root of unity in Qp(F0)×. The principal
ideal generated by ζpα − 1 is maximal in Zp(F0) and satisfies

(p) = (ζpα − 1)ϕ(pα).

Proof. If a and b are integers prime to p, one can solve the equation a ≡ bs mod pα, so
that

ζapα − 1
ζbpα − 1

=
1− ζbspα
1− ζbpα

= 1 + ζbpα + . . .+ ζ
(s−1)b
pα ∈ Zp[ζpα ].

The same is true for
ζb
pα
−1

ζa
pα
−1 , and

ζapα − 1
ζbpα − 1

∈ Zp[ζpα ]× whenever (a; p) = (b; p) = 1.

47
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Moreover since
p−1∑
i=0

xip
α−1 = 1− xpα

1− xpα−1 =
∏

(a;p)=1
1≤a<pα

(ζapα − x),

for x = 1 we get

p =
∏

(a;p)=1
1≤a<pα

(ζapα − 1) = (ζpα − 1)ϕ(pα) ∏
(a;p)=1

1≤a<pα

ζapα − 1
ζpα − 1 ,

showing that (p) = (ζpα − 1)ϕ(pα). The ideal generated by ζpα − 1 is hence maximal in
Zp(F0). �

Corollary 3.2. We have

p =
∏

(a;p)=1
1≤a<pα

(ζapα − 1) and v(ζpα − 1) = 1
ϕ(pα) .

�

Let µ(Qp(F0)) denote the roots of unity in Qp(F0) and fix ζpα a primitive pα-th root
of unity in µ(Qp(F0)). Define the unit

εα ∈ Zp(ζpα)× ⊆ Qp(F0)× by (ζpα − 1)ϕ(pα) = pεα.

Obviously as u ∈ Z×p , we know that εα
u belongs to Zp(ζpα)×. Let π(eu(F0)) denote the

class of
eu(F0) ∈ H2(Z/ϕ(pα), Zp(F0)× × 〈pu〉)

in H2(Z/ϕ(pα), Zp(F0)×) as defined in section 2.4.

Proposition 3.3. We have

π(eu(F0)) = εα
u

in H2(Z/ϕ(pα), Zp(F0)×) ∼= Zp(F0)×/(Zp(F0)×)ϕ(pα).

Proof. This is a straightforward consequence of the fact that

pεα = pu
εα
u

belongs to the class of eu(F0) ∈ H2(Z/ϕ(pα), Zp(F0)× × 〈pu〉). �

Recall from proposition C.7 that

Zp(F0)× ∼= µ(Qp(F0))× Z[Qp(F0):Qp]
p ,

so that

H2(Z/r1,Zp(F0)×) ∼= Zp(F0)×/(Zp(F0)×)r1

∼= µ(Qp(F0))/µ(Qp(F0))r1 × (Zp/r1Zp)[Qp(F0):Qp]. (3.1)
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Theorem 3.4. The set F̃u(Qp(F0), F̃0, r1) is non-empty if and only if

εα
u
≡ 1 in Zp(F0)×/〈F0, (Zp(F0)×)r1〉.

Proof. The unit
εα
u
∈ Zp(ζpα)× ⊆ Zp(F0)×,

is equivalent to the trivial element if and only if q∗(eu(F0, r1)) is trivial in

H2(Z/r1,Zp(F0)×/F0),

for q∗ = H2(Z/r1, q) the map induced by the canonical homomorphism

q : Zp(F0)× × 〈pu〉 −→ Zp(F0)× × 〈pu〉/F̃0 = Zp(F0)×/F0.

By theorem 2.16, this is true if and only if F̃u(Qp(F0), F̃0, r1) is non-empty. �

Corollary 3.5. If 〈F0, x1〉 ∈ F̃u(Qp(F0), F̃0, r1) with v(x1) = 1
r1
, then xr1

1 = puδ for a δ
in F0 such that δ ≡ εα

u modulo (Zp(F0)×)r1.

Proof. This follows from remark 2.17 and theorem 3.4. �

Corollary 3.6. Let F0 = µ(Qp(F0)) and r1 be prime to p.

1) The set F̃u(Qp(F0), F̃0, r1) is non-empty if and only if r1 divides p− 1.

2) If F̃u(Qp(F0), F̃0, r1) is non-empty with r1 > 1, then p is odd, and there are elements
ζp ∈ F0 and t ∈ Zp(ζp)× such that

x1 = (ζp − 1)t and xp−1
1 ≡ pu mod µp−1.

Proof. 1) As r1 divides the ramification index of Qp(F0), it must be a divisor of p − 1.
The result then follows from corollary 3.5, the isomorphism (3.1) and the fact that Zp =
(p−1)Zp.

2) The condition r1 > 1 ensures that p > 2 and ζp ∈ F0. By 1) and theorem 3.4, we
know that

u

ε1
∈ 〈µ(Qp(ζp)), (Zp(ζp)×)p−1〉 = 〈µp−1, (Zp(ζp)×)p−1〉.

Hence there exists a t ∈ Zp(ζp)× such that uε−1
1 = tp−1δ for some (p−1)-th root of unity

δ ∈ µp−1. For x1 = (ζp − 1)t, we then have

xp−1
1 = (ζp − 1)p−1tp−1 = pε1 ·

u

ε1
δ−1 ≡ pu mod µp−1.

�

Remark 3.7. When F0 = µ(Qp(F0)), we know by corollary 2.18 that F̃1 is unique in the
set F̃u(Qp(F0), F̃0, r1). If r1 divides p− 1, we may therefore always assume F̃1 = 〈F0, x1〉
with x1 as given in corollary 3.6.
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Example 3.8. If p is odd, then

εα ≡ −1 mod (Zp(F0)×)p−1.

Indeed, by example 1.33 we know that

Qp(ζp) ∼= Qp(X
n
p−1 ),

where X = ω
p−1

2 S satisfies Xn = −p for ω a primitive (pn−1)-th root of unity in D×n .
Furthermore, both elements X and (ζpα − 1) belong to the field Qp(ζpα), and there is a
z ∈ Zp(ζpα)× with

(ζpα − 1)pα−1 = X
n
p−1 z.

Since Qp(ζpα)× ⊆ Qp(F0)×, we obtain

εαp = (ζpα − 1)ϕ(pα) = Xnzp−1 ≡ −p mod (Zp(F0)×)p−1.

Thus if u is a root of unity, the set F̃u(Qp(F0), F̃0, p−1) is non-empty.

Example 3.9. If p = 2, it is obvious that ε1 = −1. The case α = 1 however is not
interesting since then r1 must divide the trivial ramification index of Q2(F0) over Q2.

If p = 2 and α ≥ 2, we have

εα ≡ −ζ4 mod (Z2(F0)×)2

for a primitive 4-th root of unity ζ4 ∈ Z2(F0)×. Indeed, the element (ζ4− 1) has valuation
1
2 and

(ζ4 − 1)2 = ζ2
4 − 2ζ4 + 1 = −2ζ4.

Hence for z ∈ Z2(F0)× satisfying

(ζ2α − 1)2α−2 = (ζ4 − 1)z,

we obtain

2εα = (ζ2α − 1)2α−1 = (ζ4 − 1)2z2 ≡ −2ζ4 mod (Z2(F0)×)2.

This shows that if u = ±1, the set F̃u(Q2(F0), F̃0, 2) is non-empty.

3.2. Change of rings

Assume p to be any prime. For each 1 ≤ α ≤ k, we fix a root of unity ζpα in Qp(F0),
and we define

πα := ζpα − 1 and Rα := Zp[ζpα ].

Recall from proposition 3.1 that πα is a uniformizing element of Rα where (πϕ(pα)
α ) = (p).

Let
iα : Rα −→ Rα+1

be the ring homomorphism defined by iα(ζpα) = ζppα+1 . By definition, εα ∈ Rα for each α.
In this section, we compare εα+1 with the image of εα in Rα+1.
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Lemma 3.10. For any prime p and any α ≥ 1, we have

iα(πα) =
p∑
j=1

(
p

j

)
πjα+1.

Proof. Clearly iα(πα) = ζppα+1 − 1. This, together with the identity

Xp − 1 = (X − 1 + 1)p − 1 =
p∑
j=1

(
p

j

)
(X − 1)j

applied to the case X = ζpα+1 , yields the result. �

Corollary 3.11. For any prime p and any α ≥ 1, we have

iα(πα) ≡ πpα+1 mod (pπα+1).

Proof. This follows from lemma 3.10 and the p-divisibility of the binomial coefficients for
1 ≤ j < p. �

For any prime p and any α ≥ 2, define the positive integer

kα :=
{
pα − 2p+ 1 if p > 2,
2α − 2 if p = 2.

Lemma 3.12. If p > 2 and α ≥ 2, or if p = 2 and α ≥ 3, then

iα(πjα) ≡ πjpα+1 mod (πp
α+1+1
α+1 ) for any j ≥ kα.

Proof. Let j ≥ kα. Combining corollary 3.11 with the binomial formula yields

iα(πjα) = (πpα+1 + pπα+1z)j = πjpα+1 + w

with

z ∈ Rα+1 and w =
j−1∑
k=0

(
j

k

)
πkpα+1(pπα+1z)j−k.

Note that the valuation of the k-th term is at least kp+ (j − k)(ϕ(pα+1) + 1). Hence for
0 ≤ k ≤ j − 1 its valuation is at least

(j − 1)p+ ϕ(pα+1) + 1 ≥ (kα − 1)p+ ϕ(pα+1) + 1.

If p > 2 and α ≥ 2, we have

(j − 1)p+ ϕ(pα+1) + 1 ≥ (pα − 2p)p+ ϕ(pα+1) + 1
= pα+1 − 2p2 + pα+1 − pα + 1
= pα+1 + p2(pα−1 − pα−2 − 2) + 1
≥ pα+1 + 1.

Otherwise if p = 2 and α ≥ 3, we obtain

(j − 1)p+ ϕ(pα+1) + 1 ≥ (2α − 3)2 + 2α + 1
= 2α+1 − 6 + 2α + 1
≥ 2α+1 + 1.

�



52 Chapter 3: On abelian finite subgroups of Gn(u)

Lemma 3.13. If p > 2 and α ≥ 2, or if p = 2 and α ≥ 3, then

iα(πϕ(pα)
α ) ≡ πϕ(pα+1)

α+1 mod (πϕ(pα+1)+pα+1+1
α+1 ).

Proof. Combining corollary 3.11 with the binomial formula yields

iα(πpα) = (πpα+1 + π
ϕ(pα+1)+1
α+1 z0)p

= πp
2

α+1 +
p−1∑
j=1

(
p

j

)
π
jp+(ϕ(pα+1)+1)(p−j)
α+1 zp−j0 + π

(ϕ(pα+1)+1)p
α+1 zp0

= πp
2

α+1 + π
2ϕ(pα+1)+1
α+1 z1

for some suitable z0, z1 ∈ Rα+1, where we have used that the valuation of each term in
the middle sum is greater or equal to (p− 1)p+ 2ϕ(pα+1) + 1, while that of the last term
is (ϕ(pα+1) + 1)p > 2ϕ(pα+1) + 1. By iterating this procedure we obtain some zk with

iα(πpkα ) = πp
k+1

α+1 + π
(k+1)ϕ(pα+1)+1
α+1 zk for every k ≥ 0.

The required formula for p = 2 and α ≥ 3 directly follows from the case k = α− 1. Again,
by taking k = α− 1 if p > 2, we get

iα(πϕ(pα)
α ) = (πp

α

α+1 + π
αϕ(pα+1)+1
α+1 zα−1)p−1

= π
ϕ(pα+1)
α+1 + π

αϕ(pα+1)+1+(p−2)pα
α+1 z

for some z ∈ Rα+1. The desired result for p ≥ 3 and α ≥ 2 then follows from the fact that

αϕ(pα+1) + 1 + (p− 2)pα = ϕ(pα+1) + (α− 1)ϕ(pα+1) + (p− 2)pα + 1
= ϕ(pα+1) + pα[(α− 1)(p− 1) + p− 2] + 1
≥ ϕ(pα+1) + pα(2p− 3) + 1
≥ ϕ(pα+1) + pα+1 + 1.

�

Corollary 3.14. If p > 2 and α ≥ 2, or if p = 2 and α ≥ 3, then

iα(εα) ≡ εα+1 mod (πp
α+1+1
α+1 ).

Proof. This follows from lemma 3.13 together with the fact that pεα = π
ϕ(pα)
α . �

3.3. The p-part of r1 for p odd

Using notations introduced in sections 3.1 and 3.2, we assume p to be an odd prime.
Recall that α ≥ 0 is defined to satisfy |F0 ∩ Sn| = pα. The goal of the section is to
establish that for α ≥ 1 and F0 = µ(Qp(F0)), the set F̃u(Qp(F0), F̃0, r1) is non-empty if
and only if r1 divides p − 1. This is done by showing that εα

u is non-trivial in the group
Zp(F0)×/〈µ(Qp(F0)), (Zp(F0)×)p〉 when α ≥ 2, and hence that p does not divide r1.
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We know from proposition 3.1 that (πα) is the maximal ideal of Zp(F0). The situation
is clear when α = 1, because the ramification index of Qp(F0) over Qp is prime to p and
hence the p-part of r1 is trivial.

We need to establish a formula for the πα-adic expansion of εα = p−1π
ϕ(pα)
α . For this

we begin by analysing the cyclotomic polynomials

Qα(X) := (X + 1)pα − 1
(X + 1)pα−1 − 1

∈ Z[X].

Note that Qα(X) is the minimal polynomial of πα over Qp. We have

Qα(X) =
p−1∑
k=0

(X + 1)pα−1k =
ϕ(pα)∑
i=0

p−1∑
k=0

(
pα−1k

i

)Xi.

Define a(α)
i to be the coefficient of Xi in Qα(X), and let

b
(α)
i :=

{(pα−1

i

)
if 0 ≤ i ≤ pα−1,

0 if i > pα−1,

be the coefficient of Xi in (X + 1)pα−1 .

Lemma 3.15. For α, i ≥ 1, we have a strict identity

a
(α)
i = b

(α)
i +

p−1∑
k=2

∑
i1+...+ik=i

b
(α)
i1

. . . b
(α)
ik
.

Proof. This follows form the fact that

Qα(X) =
p−1∑
k=0

(X + 1)pα−1k.

�

Lemma 3.16. For α ≥ 3 and i ≥ 1, we have

b
(α)
i ≡

{
b

(α−1)
j mod p2 if i = pj,

0 mod p2 if i 6≡ 0 mod p.

Proof. This is a consequence of the identity

(1 +X)pα−1 = (1 +Xp + pX(1 + . . .+Xp−2))pα−2

≡ (1 +Xp)pα−2 + pα−1X(1 + . . .+Xp−2)(1 +Xp)pα−2−1 mod (pα).

�

Lemma 3.17. For α ≥ 3 and i ≥ 1, we have

a
(α)
i ≡

{
a

(α−1)
j mod p2 if i = pj,

0 mod p2 if i 6≡ 0 mod p.
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Proof. If i 6≡ 0 mod p, the result is a direct consequence of lemma 3.16. It remains to
consider the case where i = pj for some integer j ≥ 1. By lemma 3.15 and 3.16, it suffices
to show that

p−1∑
k=2

∑
i1+...+ik=pj

b
(α)
i1

. . . b
(α)
ik
≡

p−1∑
k=2

∑
j1+...+jk=j

b
(α−1)
j1

. . . b
(α−1)
jk

mod p2.

Using lemma 3.16 once again it suffices to show that

p−1∑
k=2

∗∑
i1+...+ik=pj

b
(α)
i1

. . . b
(α)
ik
≡ 0 mod p2,

where the symbol
∑∗
i1+...+ik=pj denotes the sum over all k-tuples (i1, . . . , ik) for which at

least one (and hence at least two) of the ik are not divisible by p. Then lemma 3.16 implies
that this sum is congruent to 0 modulo p2. �

The case α = 2 is of particular interest.

Remark 3.18. We note that

b
(2)
i


≡ 0 mod p if 0 < i < p,

= 1 if i ∈ {0, p},
= 0 if i > p.

Lemma 3.19. We have
a

(2)
(p−2)p+1 ≡ −p mod p2.

Proof. By lemma 3.15

a
(2)
(p−2)p+1 = b

(2)
(p−2)p+1 +

p−1∑
k=2

∑
i1+...+ik=(p−2)p+1

b
(2)
i1
. . . b

(2)
ik
.

According to remark 3.18, the only nontrivial contributions in this sum modulo p2 happen
when k = p− 1 and come from tuples where all but one ik are equal to p (and hence the
remaining one equal to 1). As there are p− 1 of such contributions we obtain

a
(2)
(p−2)p+1 ≡ (p− 1)b(2)

1 ≡ (p− 1)p ≡ −p mod p2.

�

Lemma 3.20. If 0 < j < p− 1, then

p−1∑
k=1

(
k

j

)
≡ 0 mod p.

Proof. For a fixed 0 < j < p− 1, we have

p−1∑
k=1

(
k

j

)
= 1
j!

p−1∑
k=1

k(k − 1) . . . (k − j + 1),
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where the expression k(k − 1) . . . (k − j + 1) is a polynomial of degree j in Z[k] with zero
constant term. It is consequently enough to check that

p−1∑
k=1

kr ≡ 0 mod p for every 0 < r < p− 1.

Given a ∈ F×p such that ar 6= 1, we have∑
x∈Fp

xr =
∑
x∈Fp

(ax)r = ar
∑
x∈Fp

xr,

so that ∑
x∈Fp

xr = 0 and
p−1∑
k=1

kr ≡ 0 mod p.

�

Lemma 3.21. If 0 ≤ r < p− 2 and 0 < j < p, then

a
(2)
pr+j ≡ 0 mod p2.

Proof. By lemma 3.15, we have

a
(2)
pr+j = b

(2)
pr+j +

p−1∑
k=2

∑
i1+...+ik=pr+j

b
(2)
i1
. . . b

(2)
ik

≡ b
(2)
pr+j +

p−1∑
k=2

∗∑
i1+...+ik=pr+j

b
(2)
i1
. . . b

(2)
ik

mod p2,

where the last sum is taken over all k-tuples (i1, . . . , ik) in which there is exactly one
element b(2)

i with i 6∈ {0, p}. Furthermore, this b(2)
i is in fact b(2)

j and b
(2)
i1
. . . b

(2)
ik

= b
(2)
j .

We hence get

a
(2)
pr+j ≡ b

(2)
pr+j + b

(2)
j

p−1∑
k=2

k

(
k − 1
r

)
mod p2.

If r = 0, then

a
(2)
j ≡ b

(2)
j + b

(2)
j

p−1∑
k=2

k ≡ b(2)
j

p(p− 1)
2 ≡ 0 mod p2.

If r > 0, then b(2)
pr+j = 0 and we have

a
(2)
pr+j ≡ b

(2)
j

p−1∑
k=2

k

(
k − 1
r

)
mod p2.

Since
p−1∑
k=2

k

(
k − 1
r

)
=

p−1∑
k=1

k

(
k − 1
r

)
= (r + 1)

p−1∑
k=1

(
k

r + 1

)
≡ 0 mod p

by lemma 3.20, we get a(2)
pr+j ≡ 0 mod p2. �
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Let F ′0 denote the p′-part of F0. Since Qα(X) is the minimal polynomial of πα in
Zp(F ′0), we have an isomorphism of algebras

ϕF0 : (Zp(F ′0)[X]/(Qα(X)))
∼=−→ Zp(F0) given by X 7−→ πα,

which restricts to an isomorphism on the groups of units

ϕF0 : (Zp(F ′0)[X]/(Qα(X)))×
∼=−→ Zp(F0)×.

Furthermore, there is a polynomial Q̃α(X) ∈ Z[X] of degree ϕ(pα)− 1 such that

Qα(X) = Xϕ(pα) + pQ̃α(X) and Q̃α(0) = 1,

and therefore we have
ϕF0(Q̃α(X)) = −p−1πϕ(pα)

α = −εα.

Recall from proposition 3.1 that πα is a uniformizing element in Zp(F0), so that (πα)
is the maximal ideal of this ring, and that (πϕ(pα)

α ) = (p). More precisely, the πα-adic
expansion of p in Rα = Zp[πα] ⊆ Zp(F0) is given below.

Proposition 3.22. If p > 2 and α ≥ 2, then

p ≡ −πϕ(pα)
α + p− 1

2 πp
α

α mod (πpα+1
α ).

Proof. Recall that

Qα(X) = p+
ϕ(pα)−1∑
i=1

a
(α)
i Xi +Xϕ(pα).

By lemma 3.17,

Qα(X) ≡ Qα−1(Xp) ≡ . . . ≡ Q2(Xpα−2) mod (p2X).

By lemma 3.21 we know that a(2)
i ≡ 0 mod p2 if 0 < i < p. Furthermore, by lemma 3.15

and remark 3.18 we have

a
(2)
i =

p−1∑
k=1

∑
i1+...+ik=i

b
(2)
i1
. . . b

(2)
ik

with b
(2)
i


≡ 0 mod p if 0 < i < p,

= 1 if i ∈ {0, p},
= 0 if i > p.

Then obviously

a(2)
p ≡

p−1∑
k=1

k = p(p− 1)
2 mod p2, a

(2)
i ≡ 0 mod p if i 6≡ 0 mod p,

and if i = pj we have ∑
i1+...+ik=i

b
(2)
i1
. . . b

(2)
ik
≡
(
k

j

)
mod p2.

For a fixed 0 < j < p− 1 we have by lemma 3.20

p−1∑
k=1

(
k

j

)
≡ 0 mod p,
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so that

a
(2)
i ≡


0 mod p if i 6≡ 0 mod p,
0 mod p if i = jp for 0 < j < p− 1,
1 mod p if i = p(p− 1).

Therefore
Q2(X) ≡ p+ p

p− 1
2 Xp +Xϕ(p2) mod (p2X, pXp+1).

Finally
Qα(πα) ≡ Q2(πpα−2

α ) ≡ p+ p
p− 1

2 πp
α−1
α + πϕ(pα) mod (πpα+1

α ),

and consequently

p ≡ −πϕ(pα)
α − pp− 1

2 πp
α−1
α

≡ −πϕ(pα)
α −

(
−πϕ(pα)

α − pp− 1
2 πp

α−1
α

)
p− 1

2 πp
α−1

≡ −πϕ(pα)
α + p− 1

2 πϕ(pα)
α πp

α−1
α

≡ −πϕ(pα)
α + p− 1

2 πp
α

α mod(πpα+1
α ).

�

Our interest in approximating modulo the ideal generated by πpα+1
α is explained in the

following remark. Consider the decreasing filtration

Zp(F0)× = U0 ⊇ U1 ⊇ U2 ⊇ . . .

given by U0 = Zp(F0)× and

Ui = Ui(Zp(F0)×) = {x ∈ U0 | x ≡ 1 mod (πiα)} for i ≥ 1,

where U0/U1 = µp′(Qp(F0)), and where Ui/Ui+1 is isomorphic to the residue field of Qp(F0)
for each i ≥ 1. Because Zp(F0) is complete with respect to the filtration, any x ∈ Zp(F0)×
admits a πα-adic expansion

x =
∑
i≥0

λiπ
i
α,

where the λi’s run in a given set of representative of the residue field chosen in such a way
that the representative in Fp are integers between 0 and p− 1.
Remark 3.23. For any a in U1, we have

(1 + aπiα)p ≡ 1 + apπipα + apπiα

≡ 1 + apπipα − aπϕ(pα)+i
α mod (πϕ(pα)+i+1

α ).

As
ip < ϕ(pα) + i ⇔ i < pα−1,

we obtain

(1 + aπiα)p ≡


1 + apπipα mod (πip+1

α ) if i < pα−1,

1 + (ap − a)πpαα mod (πpα+1
α ) if i = pα−1,

1 + aπ
ϕ(pα)+i
α mod (πϕ(pα)+i+1

α ) if i > pα−1.

The last congruence and the completeness of the filtration imply that every element of Ui
for i > ϕ(pα) + pα−1 = pα is a p-th power, and it follows that Upα+1 ⊆ Up1 .



58 Chapter 3: On abelian finite subgroups of Gn(u)

Setting µ := µ(Qp(F0)), we have

U0/〈µ,Up0 〉 ∼= U1/〈µ ∩ U1, U
p
1 〉,

where µ ∩ U1 is the subgroup generated by ζpα = πα + 1. By remark 3.23, there is a
commutative diagram

(Zp(F ′0)[X]/(Qα(X)))× ∼=

ϕF0 //

����

Zp(F0)×

����
(Zp(F ′0)[X]/(Qα(X), Xpα+1))× ∼=

//

����

Zp(F0)×/(πpα+1
α )

����
(Zp(F ′0)[X]/(Qα(X), Xpα+1))×/〈µ, p-th powers〉 ∼=

// U1/〈µ ∩ U1, U
p
1 〉,

in which the vertical maps are the canonical projections and the horizontal maps are
isomorphisms. Since −1 becomes trivial in U1, the images of Q̃α(X) and εα in the quotient
group U1/〈µ∩U1, U

p
1 〉 are equal. We want to prove that this image is non-trivial. In order

to do so, we consider the πα-adic expansion of −εα in Zp(πα)× ⊆ Zp(F0)×:

−εα = ϕF0(Q̃α(X)) =
∑
i≥0

c
(α)
i πiα,

where c(α)
0 = 1 and 0 ≤ c(α)

i < p for each i ≥ 0. For 0 ≤ i ≤ p2, we let ci := c
(2)
i .

Remark 3.24. By definition

c
(α)
i ≡ a

(α)
i

p
mod p for α ≥ 2 and 0 ≤ i < ϕ(pα).

Lemma 3.25. Let k2 = (p− 2)p+ 1. Then ck2 = −1 and

−ε2 ≡
p−2∑
i=0

cipπ
ip
2 − π

k2
2 +

p2∑
i=k2+1

ciπ
i
2 mod (πp

2+1
2 ).

Proof. This follows from lemma 3.19 and 3.21. �

Lemma 3.26. If

x = 1 +
∞∑
i=1

aiπ
i
α and y = 1 +

∞∑
i=1

biπ
i
α

are two elements of U1 ⊆ Zp(F0)× such that 0 ≤ ai, bi < p and x ≡ y modulo (πkα) for an
integer k ≥ 1, then

x

y
≡ 1 + (ak − bk)πkα mod (πk+1

α ).

Proof. Let z = x− y. Then

z ≡ 0 mod (πkα) and z

x
≡ 0 mod (πkα).
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Therefore

x

y
= 1

1− z
x

= 1 + z

x
+ z2

x2 + . . .

≡ 1 + z

x

≡ 1 + (ak − bk)πkα
x

≡ 1 + (ak − bk)πkα mod (πk+1
α ).

�

Lemma 3.27. If x ∈ U1 ⊆ Zp(F0)× is such that

x ≡ 1 + akπ
k
α mod (πk+1

α )

with 2 ≤ k < pα prime to p and ak 6≡ 0 modulo (πα), then x 6∈ 〈µ ∩ U1, U
p
1 〉.

Proof. Recall that µ∩U1 is generated by 1+πα. One must check that x cannot be written
in the form

x = (1 + πα)iyp

with 0 ≤ i ≤ p − 1 and y ∈ U1. Since k ≥ 2 by assumption, it follows that i = 0 and it
remains to verify that x is not a p-th power. As a direct consequence of remark 3.23, we
have

(1 + aπiα)p ≡ 1 + apπipα mod (πip+1
α )

for any a ∈ U1 and any i ≤ k
p . Hence x 6∈ U

p
1 . �

We are now in position to prove that −εα (and hence εα) is non-trivial in the group
U1/〈µ ∩ U1, U

p
1 〉.

Theorem 3.28. If p is odd and α ≥ 2, then

εα 6∈ 〈µ(Qp(F0)), (Zp(F0)×)p〉.

Proof. In order to obtain the result, it suffices to show that −εα ∈ U1 is non-trivial in the
quotient U1/〈µ ∩ U1, U

p
1 〉. This is done by induction on α ≥ 2.

First consider the case α = 2, and let k2 := (p− 2)p+ 1. According to lemma 3.25

−ε2 ≡
p−2∑
i=0

cpiπ
pi
2 ≡

p−2∏
i=0

(1 + c̃piπ
i
2)p mod (πk2

2 ),

where each 0 ≤ c̃j < p is such that (c̃j)p ≡ cj mod p, and where the second equivalence is
due to the facts that k2 − 1 < ϕ(p2) and (p) = (πϕ(p2)

2 ). Letting

z2 =
p−2∏
i=1

(1 + c̃piπ
i
2) ∈ Zp(π2)×,

we get by lemma 3.26 and 3.25

−ε2
zp2
≡ 1 + c̃k2π

k2
2 ≡ 1− πk2

2 mod (πk2+1
2 ).
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As k2 < p2, it follows from lemma 3.27 that −ε2 does not belong to 〈µ ∩ U1, U
p
1 〉.

Now let α ≥ 2 and kα = pα − 2p+ 1. Suppose there is an element zα in Zp(πα)× such
that

−εα
zpα
≡ 1 +

pα∑
i=kα

diπ
i
α mod (πpα+1

α ),

with dkα 6≡ 0 mod p. By corollary 3.14 and lemma 3.12 we have

εα+1 ≡ iα(εα) ≡ −(1 +
pα∑
i=kα

diπ
pi
α+1)iα(zα)p mod (πp

α+1+1
α+1 ),

so that
−εα+1
(z′α+1)p ≡ 1 +

pα∑
i=kα

diπ
pi
α+1 mod (πp

α+1+1
α+1 )

for some z′α+1 in Zp(πα+1)×. Let

kα+1 := kα + ϕ(pα+1) and z̃α+1 :=
kα+1−1∏
i=kα

(1 + d̃iπ
i
α+1) ∈ Zp(πα+1)×

with each 0 ≤ d̃i < p such that d̃pi ≡ di mod p. Then by proposition 3.22, there is an
element

zα+1 = z′α+1z̃α+1 ∈ Zp(πα+1)

such that
−εα+1
zpα+1

≡ 1 +
pα+1∑
i=kα+1

d̃iπ
i
α+1 mod (πp

α+1+1
α+1 )

with d̃kα+1 6≡ 0 mod p. Since

kα+1 = kα + ϕ(pα+1) = pα+1 − 2p+ 1 < pα+1,

we can apply lemma 3.27 to obtain that −εα+1 is non-trivial in U1/〈µ,Up1 〉. �

Example 3.29. Let us have a look at the case p = 3. A straightforward calculation yields

−ε2 ≡ 1 + π3
2 − π4

2 − π5
2 − π6

2 − π7
2 + π8

2 + π9
2 mod (π10

2 ).

Here (p− 2)p+ 1 = 4, so letting z2 = (1 + π2) we get
−ε2
z3

2
≡ 1− π4

2 mod (π5
2).

As 4 < 32, we may apply lemma 3.27 to obtain the result. Then if α = 3 we have

−ε3 ≡ 1 + π9
3 − π12

3 − π15
3 − π18

3 − π21
3 + π24

3 + π27
3 mod (π28

3 ).

Letting
z3 = (1 + π3

3)(1− π4
3)(1− π5

3)(1− π6
3),

so that

z3
3 ≡ (1 + π3

3)3(1− π4
3)3(1− π5

3)3(1− π6
3)3

≡ 1 + π9
3 − π12

3 − π15
3 − π18

3 − π21
3 + π22

3 mod (π23
3 ),
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we find
ε3
z3

3
≡ 1− π22

3 mod (π23
3 ).

As 22 < 33, we may again apply lemma 3.27 to obtain the result.

Corollary 3.30. If p is odd, α ≥ 2 and u ∈ Z×p , then
εα
u

is non-trivial in Zp(F0)×/〈µ(Qp(F0)), (Zp(F0)×)p〉.

Proof. Let u1 denote the projection of u onto U1(Z×p ) ⊆ Z×p . Then

u−1
1 = 1 +

∑
i≥1

vip
i ≡ 1 + v1p mod (πpα+1

α ),

for some 0 ≤ vi < p. Clearly, the projection of εαu−1 in the group U1 via the canonical
decomposition Z×p = µp′ × U1 is equal to −εαu−1

1 , and it is enough to check that −εαu−1
1

does not belong to 〈µ ∩ U1, U
p
1 〉.

If α = 2, then

−ε2u
−1
1 ≡ −ε2 mod (p) = (πϕ(p2)

α )

≡ 1− π(p−2)p+1
α mod 〈µ ∩ U1, U

p
1 , (πϕ(p2)

α )〉,

and the result follows from theorem 3.28.
If α ≥ 3, we know from the proof of theorem 3.28 that for a suitable zα ∈ Zp(πα)× we

have −εα
zpα
≡ 1 + (−1)απkαα mod (πkα+1

α ),

for kα = pα − 2p+ 1, so that by proposition 3.22
−εα
u1z

p
α
≡ (1 + (−1)απkαα )(1 + v1p)

≡ 1− v1π
ϕ(pα)
α + (−1)απkαα mod (πkα+1

α ).

As
kα = (p− 2)p+ 1 +

α∑
i=3

ϕ(pi) <
α∑
i=2

ϕ(pi),

we obtain −εα
u1z

p
αy

p
α
≡ 1 + (−1)απkαα mod (πkα+1

α ),

where after successive multiplications eliminating all terms in πkα for 1 < k < kα, we have
have used the element

yα = (1− ṽ1π
ϕ(pα−1)
α )

α−1∏
k=2

(1 + (−1)k−1π
[
∑k

i=1 ϕ(pα−i)]
α )

with ṽ1 ∈ Z such that (ṽ1)p ≡ v1 mod p. It follows that −εαu−1
1 6∈ 〈µ ∩ U1, U

p
1 〉. �

Corollary 3.31. If p is odd and F0 = µ(Qp(F0)), then F̃u(Qp(F0), F̃0, r1) is non-empty
if and only if

r1 divides
{

1 if α = 0,
p− 1 if α ≥ 1.
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Proof. The result for α = 0 is obvious; so let α ≥ 1. Since F0 = µ(Qp(F0)), corollary 3.6
applies if r1 divides p−1. Because r1 must divide the ramification index ϕ(pα) = (p−1)pα−1

of Qp(F0) over Qp, it remains to show that F̃u(Qp(F0), F̃0, r1) is empty whenever p divides
r1 with α ≥ 2. This however is a direct consequence of theorem 3.4 and corollary 3.30. �

3.4. The p-part of r1 for p = 2

We now investigate the case where p = 2. Recall that α ≥ 1 is defined to satisfy
|F0 ∩ Sn| = 2α. We know from example 3.9 that εα = 2−1π

ϕ(2α)
α always belongs to

(Z2(F0)×)2 modulo the subgroup generated by −ζ4 if α ≥ 2. We will hence look for 4-th
powers when α ≥ 3.

Let µ := µ(Q2(F0)) denote the group of roots of unity in Q2(F0) and fix ζ2α a primitive
2α-th root of unity in µ. As in the previous section we consider the decreasing filtration

Z2(F0)× = U0 ⊇ U1 ⊇ U2 ⊇ . . .

given by U0 = Z2(F0)× and

Ui = {x ∈ U0 | x ≡ 1 mod (πiα)} for i ≥ 1,

where U0/U1 = µ2′(Q2(F0)), and where Ui/Ui+1 is isomorphic to the residue field of Q2(F0)
for each i ≥ 1. Recall that (π2α−1

α ) = (2). Define

Qα(X) := (X + 1)2α − 1
(X + 1)2α−1 − 1

= (X + 1)2α−1 + 1 ∈ Z[X]

to be the minimal polynomial of πα over Q2.

Lemma 3.32. If p = 2 and α ≥ 3, then

Qα(πα)

= 2 + 4πα + 6π2
α + 4π3

α + π4
α if α = 3,

≡ 2 + 4π2α−3
α + 6π2α−2

α + 4π3·2α−3
α + π2α−1

α mod (8) if α ≥ 4.

Proof. The result for α = 3 is clear. When α ≥ 4, the result follows by induction on
4 ≤ h ≤ α using the identity

(1 +X)2h−1 = (1 +X2 + 2X)2h−2

≡ (1 +X2)2h−2 + 2h−1X(1 +X2)2h−2−1 mod (2h).

�

Proposition 3.33. If p = 2 and α ≥ 2, then

2 ≡ πϕ(2α)
α + πϕ(2α)+2α−2

α mod (π2α
α ).

Proof. By lemma 3.32 we have

Qα(πα) ≡ 2 + 2π2α−2
α + π2α−1

α mod (4).
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Hence

2 ≡ −π2α−1
α − 2π2α−2

α

≡ π2α−1
α − (−π2α−1

α − 2π2α−2
α )π2α−2

α − (−π2α−1
α − 2π2α−2

α )π2α−1
α

≡ π2α−1
α + π2α−1+2α−2

α + 2π2α−1
α + π2α

α + 2π2α−1+2α−2
α

≡ π2α−1
α + π2α−1+2α−2

α − π2α
α + π2α

α

≡ π2α−1
α + π2α−1+2α−2

α mod(π2α
α ).

�

In the cases where Q2(F0) is completely ramified over Q2, for example if µ2′(Q2(F0)) is
trivial, we have U0 = U1. From the fact that εα ∈ Z2(πα) ⊆ Z2(F0)× in general, it follows
that εα always belongs to U1.

Proposition 3.34. If p = 2 and α ≥ 3, then

εα ≡ 1 + π2·2α−3
α + π4·2α−3

α + π5·2α−3
α + π6·2α−3

α mod (π2α
α ).

Proof. For simplicity we let Z = π2α−3
α . Since

−2 ≡ 4Z + 6Z2 + 4Z3 + Z4 mod (8)

by lemma 3.32, we obtain

π2α−1
α

2 ≡ −1− 2Z − 3Z2 − 2Z3

≡ 1 + (Z4 + 6Z2 + 4Z + 4Z3) + Z(Z4 + 6Z2 + 4Z + 4Z3)
+ Z2 + Z3(Z4 + 6Z2 + 4Z + 4Z3)

≡ 1 + Z2 + Z4 + Z5 + Z7 + 2Z2 + 2Z3 + 2Z5

≡ 1 + Z2 + Z4 + Z5 + Z7 − Z2(Z4 + 6Z2 + 4Z + 4Z3)
− Z3(Z4 + 6Z2 + 4Z + 4Z3)− Z5(Z4 + 6Z2 + 4Z + 4Z3)

≡ 1 + Z2 + Z4 + Z5 + Z6 mod(4).

�

We will now prove that εα is non-trivial in the quotient group U1/〈µ ∩ U1, U
4
1 〉.

Lemma 3.35. Let
x = 1 +

∑
i≥k

λiπ
i
α ∈ 〈µ ∩ U1, U

4
1 〉

with λk 6≡ 0 mod πα and each λi satisfying λqi = λi for q the cardinality of the residue field
of Q2(F0). If 3 ≤ k < 2α, then k ≡ 0 mod 4. If α = 3 and k = 2, then λ6 = 0.

Proof. Recall that µ ∩ U1 is generated by 1 + πα, so that x is of the form

x = (1 + πα)hy4 with 0 ≤ h ≤ 3 and y ∈ U1.
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If 3 ≤ k < 2α, it easily follows that h = 0 and x is a 4-th power. Furthermore, for any
a ∈ Z2(F0) we have

(1 + aπiα)4 = 1 + 4aπiα + 6a2π2i
α + 4a3π3i

α + a4π4i
α

≡ 1 + 6a2π2i
α + a4π4i

α mod(πi+2ϕ(2α)
α ).

As
4i ≤ ϕ(2α) + 2i ⇔ i ≤ 2α−2,

we obtain

(1 + aπiα)4 ≡
{

1 + a4π4i
α mod (π4i+1

α ) if i < 2α−2,

1 + (a4 + a2)π2α
α mod (π2α+1

α ) if i = 2α−2,

and the result for 3 ≤ k < 2α follows.
Now suppose that α = 3 and k = 2. In this case h = 2 and y = 1 + bπ3 for some

b ∈ Z2(F0). Using proposition 3.33 we get

x ≡ (1 + π3)2(1 + bπ3)4

≡ (1 + π2
3 + π5

3 + π7
3)(1 + b4π4

3 + b2π6
3)

≡ 1 + π2
3 + b4π4

3 + π5
3 + (b2 + b4)π6

3 + π7
3 mod (π8

3).

If λ4 = 0, then b ≡ 0 mod (π3) and consequently λ6 = 0. On the other hand if λ4 = 1,
then b ≡ 1 mod (π3) and once again λ6 = 0. �

The idea of theorem 3.36 is the same as in the case p > 2: we divide the πα-adic
expression of εα by a 4-th power in U1 in such a way that the resulting expression is in a
form that allows lemma 3.35 to be used.

Theorem 3.36. If p = 2 and α ≥ 3, then

εα 6∈ 〈µ(Q2(F0)), (Z2(F0)×)4〉.

Proof. Since εα ∈ U1 it is enough to show that εα 6∈ 〈µ ∩ U1, U
4
1 〉.

In case α = 3, we know from proposition 3.34 that

ε3 ≡ 1 + π2
3 + π4

3 + π5
3 + π6

3 mod (π8
3),

and a direct application of lemma 3.35 yields the result.
Now assume α = 4, and let k4 := 24 − 2 = 14. By proposition 3.34

ε4 ≡ 1 + π4
4 + π8

4 + π10
4 + π12

4 mod (π16
4 ).

As

(1 + π4)4(1 + π2
4)4 ≡ (1 + π4

4 + π10
4 + π14

4 )(1 + π8
4 + π12

4 )
≡ 1 + π4

4 + π8
4 + π10

4 + π12
4 + π14

4 mod(π16
4 ),

letting
z4 = (1 + π4)(1 + π2

4)(1 + π3
4) in Z2(π4)×,

we get
ε4
z4

4
≡ 1 + πk4

4 mod (π16
4 ).
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Hence by lemma 3.35, it follows that ε4 does not belong to 〈µ ∩ U1, U
4
1 〉.

Furthermore assume α ≥ 4, and let kα := 2α − 2. Suppose there is an element zα in
Z2(πα)× such that

εα
z4
α

≡ 1 + dkαπ
kα
α mod (π2α

α ),

with dkα 6≡ 0 mod 2 in the residue field. By corollary 3.14 and lemma 3.12 we have

εα+1 ≡ iα(εα) ≡ (1 + dkαπ
2kα
α+1)iα(zα)4 mod (π2α+1

α+1 ),

so that
εα+1

(z′α+1)4 ≡ 1 + dkαπ
2kα
α+1 mod (π2α+1

α+1 )

for a suitable z′α+1 in Z2(πα+1)×. Let kα+1 := kα + ϕ(2α+1) = 2α+1 − 2, and let

z̃α+1 := 1 + d̃kαπ
kα
2
α+1 ∈ Z2(πα+1)×

with d̃kα in the residue field such that d̃4
kα
≡ dkα mod 2. Note that

(1 + d̃kαπ
kα
2
α+1)4 ≡ 1 + dkαπ

2kα
α+1 + d̃2

kαπ
2α+kα
α+1 mod (π2α+1

α+1 ),

where 2α + kα = 2α+1 − 2. Then by proposition 3.33, letting

zα+1 = z′α+1z̃α+1 ∈ Z2(πα+1)×,

we have
εα+1
z4
α+1
≡ 1 + d′kα+1π

kα+1
α+1 mod (π2α+1

α+1 ),

with d′kα+1
6≡ 0 mod 2 in the residue field. Since kα+1 < 2α+1, we can apply lemma 3.35

to obtain that εα+1 is non-trivial in U1/〈µ,Up1 〉. The result then follows by induction on
α ≥ 4. �

Corollary 3.37. If p = 2, α ≥ 3 and u ∈ Z×2 , then

εα
u

is non-trivial in Z2(F0)×/〈µ(Q2(F0)), (Z2(F0)×)4〉.

Proof. Since u ∈ Z×2 , its inverse is of the form

u−1 = 1 +
∑
i≥1

vi2i

≡ 1 + v12

≡ 1 + v1(π2α−1
α + π2α−1+2α−2

α ) mod (4) = (π2α
α ),

where vi ∈ {0, 1} and where the last equivalence follows from proposition 3.33. As in
theorem 3.36 it is enough to show that εαu−1 does not belong to 〈µ ∩ U1, U

4
1 〉.

If α = 3, we know from proposition 3.34 that

ε3 ≡ 1 + π2
3 + π4

3 + π5
3 + π6

3 mod (π8
3).
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Hence

ε3u
−1 ≡ (1 + π2

3 + π4
3 + π5

3 + π6
3)(1 + v1π

4
3 + v1π

6
3)

≡ 1 + π2
3 + (1 + v1)π4

3 + π5
3 + (1 + 2v1)π6

3

≡ 1 + π2
3 + (1 + v1)π4

3 + π5
3 + π6

3 mod (π8
3),

and lemma 3.35 implies ε3u
−1 6∈ 〈µ ∩ U1, U

4
1 〉.

Now if α ≥ 4, we know from theorem 3.36 that for a suitable zα ∈ Z2(πα)× we have

εα
z4 ≡ 1 + πkαα mod (πkα+1

α )

for kα = 2α − 2, so that by proposition 3.33

εα
uz4

α

≡ 1 + v1π
ϕ(2α)
α + v1π

ϕ(2α)+2α−2
α + πkαα mod (πkα+1

α ).

Letting
yα = (1 + v1π

ϕ(2α−2)
α ),

we have

y4
α ≡ 1 + v1π

ϕ(2α)
α + 2v1π

2α−2
α

≡ 1 + v1π
ϕ(2α)
α + v1π

ϕ(2α)+2α−2
α mod (π2α

α ).

Hence by lemma 3.35
εα

uz4y4
α

≡ 1 + πkαα mod (πkα+1
α ),

and εαu−1 6∈ 〈µ ∩ U1, U
4
1 〉. �

Corollary 3.38. If p = 2, then F̃u(Q2(F0), F̃0, r1) is non-empty if and only if

r1 divides
{

2 if α ≥ 2 with either u ≡ ±1 mod 8 or ζ3 ∈ F0,

1 if α ≤ 1, or u ≡ ±3 mod 8 and ζ3 6∈ F0.

Proof. The case α ≤ 1 is clear; so let α ≥ 2. A necessary condition for F̃u(Q2(F0), F̃0, r1)
to be non-empty is that r1 divides 2α−1, the ramification index of Q2(F0) over Q2. If
α = 2, then r1 divides 2. Otherwise if α ≥ 3, corollary 3.37 and theorem 3.4 imply that
r1 must also be a divisor of 2.

By theorem 3.4, the integer r1 may be any divisor of 2 if and only if εαu is a square of
Z2(F0)× modulo F0. In fact this is true if and only if u is a square of Z2(F0)× modulo
F0, since by example 3.9 we have εα ∈ 〈(Z2(F0)×)2, F0〉. The result is then obvious if
u ≡ ±1 mod 8. Otherwise if u ≡ ±3 mod 8 we have u = ±3z2 for some z ∈ Z×2 , and it
remains to verify that −3 belongs to 〈(Z2(F0)×)2, F0〉 if and only if F0 contains a 3rd root
of unity ζ3. If such a ζ3 exists, we let ρ = 2ζ3 + 1, so that

ρ2 = −3 and Q2(ρ) = Q2(ζ3).

Conversely if there is a ρ such that ρ2 = −3, we take ζ3 = 1
2(ρ− 1). �
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Corollary 3.39. If p = 2, F0 = µ(Q2(F0)), [Q2(F0) : Q2] = n, then F̃u(Q2(F0), F̃0, r1) is
non-empty if and only if

r1 divides
{

2 if α ≥ 2 with either u ≡ ±1 mod 8 or nα even,
1 if α ≤ 1, or u ≡ ±3 mod 8 and nα odd.

Proof. Under these assumptions, F0 ∼= C2α(2nα−1) by proposition C.8. The result follows
from corollary 3.38 and the fact ζ3 ∈ F0 if and only if nα is even. �

Remark 3.40. When F0 = µ(Q2(F0)), we know by corollary 2.18 that F̃1 is the unique
element of F̃u(Q2(F0), F̃0, r1). We may therefore assume F̃1 to be of the form

F̃1 = 〈x1〉 × F0 with x1 =
{

2u if r1 = 1,
(1 + i)t if r1 = 2,

for i a primitive 4-th root of unity in Q2(F0)× and

t ∈
{
Z×2 if u ≡ ±1 mod 8,
Z2(ζ3)× if u ≡ ±3 mod 8,

with t2 =
{
u if u ≡ 1 or − 3 mod 8,
−u if u ≡ −1 or 3 mod 8.

3.5. The determination of r2

We fix F0 and r1 such that F̃u(Qp(F0), F̃0, r1) is non-empty, and fix an element F̃1 in
F̃u(Qp(F0), F̃0, r1). Corollary 3.31 and 3.38 provide conditions on r1 for this to happen,
in which case, according to remark 2.17, there is an element x1 ∈ Qp(F0) satisfying

v(x1) = 1
r1

and F̃1 = 〈F0, x1〉.

We want to determine for which integer r2 the set F̃u(CD×n (F0), F̃1, r2) is non-empty, that
is, for which r2 dividing n

r1
there exists an element x2 ∈ D×n such that xr2

2 = a with
a ∈ F̃1 and v(a) = v(x1), and such that Qp(F0, x2) is a commutative field extension of
Qp(F0) = Qp(F̃1).

As seen in theorem 2.21, the existence of such an x2 is equivalent to the irreducibility
of the polynomial Xr2 − a over Qp(F0) with r2 dividing n[Qp(F0) : Qp]−1.

Theorem 3.41. Let K be a field, a ∈ K× and r ≥ 2 an integer. Then Xr−a is irreducible
over K if and only if for all primes q dividing r the class a ∈ H2(Z/r,K×) is non-trivial
in H2(Z/q,K×), and if −a4 is non-trivial in H2(Z/4,K×) when 4 divides r, where all
cohomology groups are with trivial modules.

Proof. This is just a cohomological interpretation of [14] chapter VI theorem 9.1. �

In general, there is a well defined map

Ξ : a 7−→ K[X]/(Xr − a)

fromH2(Z/r,K×) to the set of isomorphism classes of algebra extensions ofK by equations
of the form Xr−a = 0. This map is injective: if there is an extension in which Xr−a = 0
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and Xr − b = 0 both have solutions, then a
b is a r-th power and becomes trivial in

H2(Z/r,K×). Denote by
H2
F (Z/r,K×) ⊆ H2(Z/r,K×)

the subset of all elements of H2(Z/r,K×) that are sent to a commutative field extension
of K via Ξ. Furthermore assuming that K = Qp(F0) has ramification index e(Qp(F0))
over Qp, we consider the homomorphism

i∗ : H2(Z/r, F̃1) −→ H2(Z/r,Qp(F0)×)

induced by the inclusion F̃1 ⊆ Qp(F0)×. We are interested in understanding the set

H2
F (Z/r,Qp(F0)×) ∩ i∗(H2(Z/r, F̃1)).

Note that we have a non-canonically split exact sequence

1 −→ µ(Qp(F0))× Z[Qp(F0):Qp]
p −→ Qp(F0)× −→ 〈πF0〉 −→ 1,

for πF0 a uniformizing element in Qp(F0). Moreover there is a commutative diagram

H2(Z/r, F̃1) i∗ //

����

H2(Z/r,Qp(F0)×)

����
H2(Z/r, 〈x1〉) // H2(Z/r, 〈πF0〉)

Z/r // Z/r,

(3.2)

where the top vertical arrows are non-canonically split surjective homomorphisms respec-
tively induced by the canonical surjections

F̃1 ∼= F0 × 〈x1〉 −→ 〈x1〉 and Qp(F0)× −→ 〈πF0〉,

and where the bottom horizontal map is the identity if Qp(F0) is unramified over Qp, or
otherwise is by multiplication with

e(Qp(F0))
r1

=
{
pα−1 p−1

r1
if p > 2,

2α−1

r1
if p = 2.

Define rF0,r1 to be the greatest divisor of n
[Qp(F0):Qp] which is prime to


1 if e(Qp(F0)) = 1,
p−1
r1

if p > 2 and α ≥ 1,
2
r1

if p = 2, α ≥ 2 and either u ≡ ±1 mod 8 or ζ3 ∈ F0,

1 if p = 2, u 6≡ ±1 mod 8 and ζ3 6∈ F0.
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Theorem 3.42. Suppose p > 2 and F̃1 ∈ F̃u(Qp(F0), F̃0, r1) 6= ∅. If r2 divides rF0,r1,
then F̃u(CD×n (F0), F̃1, r2) is non-empty.

Proof. First note that if α = 0, we must have r1 = 1 and x1 is a uniformizing element of
the unramified extension Qp(F0)/Qp. In this case rF0,r1 = n

[Qp(F0):Qp] and the result follows
from the embedding theorem.

Now assume that α ≥ 1, and let r′ = r′F0,r1
denote the p′-part of r = rF0,r1 . Then for

any prime q dividing r′, diagram (3.2) can be extended to the commutative diagram

H2(Z/r, F̃1) i∗ //

��

H2(Z/r,Qp(F0)×)

��

j∗ // H2(Z/q,Qp(F0)×)

��
Z/r // Z/r // // Z/q,

where j : Z/q → Z/r is the inclusion and the bottom right horizontal map is the canonical
projection. Since r is prime to p−1

r1
, it follows that r′, and hence q, are prime to e(Qp(F0))

r1
.

Thus for any δ ∈ F0, the image of x1δ ∈ F̃1 is non-trivial in Z/q = H2(Z/q, 〈πF0〉), and
consequently non-trivial in H2(Z/q,Qp(F0)×). In a similar way, it is equally non-trivial in
H2(Z/4,Qp(F0)×) if 4 divides r. The result then follows from theorem 3.41 and corollary
3.30, where we have shown that xp−1

1 , and hence x1, is non-trivial in H2(Z/p,Qp(F0)×).
�

Theorem 3.43. Suppose p = 2 and F̃1 ∈ F̃u(Q2(F0), F̃0, r1) 6= ∅. If r2 divides rF0,r1,
then F̃u(CD×n (F0), F̃1, r2) is non-empty.

Proof. First note that if α ≤ 1, we must have r1 = 1 and x1 is a uniformizing element of
the unramified extension Q2(F0)/Q2. In this case rF0,r1 = n

[Q2(F0):Q2] and the result follows
from the embedding theorem.

Now assume that α ≥ 2. If r2 is divisible by 2, then so is rF0,r1 and we know from
corollary 3.38 that x1 is non-trivial in H2(Z/2,Q2(F0)×). Moreover if r2 is divisible by 4,
the fact that

(1 + ζ4)4 = −4

imply that −x1
4 is non-trivial in H2(Z/4,Q2(F0)×). Furthermore for any odd prime q

dividing r = rF0,r1 , diagram (3.2) can be extended to the commutative diagram

H2(Z/r, F̃1) i∗ //

��

H2(Z/r,Q2(F0)×)

��

j∗ // H2(Z/q,Q2(F0)×)

��
Z/r // Z/r // // Z/q,

where j : Z/q → Z/r is the inclusion and the bottom right horizontal map is the canonical
projection. As q is prime to 2

r1
, the image of x1 is non-trivial in Z/q = H2(Z/q, 〈πF0〉),

and consequently non-trivial in H2(Z/q,Q2(F0)×). We may thus apply theorem 3.41 to
obtain the desired result. �

We say that r1 is maximal if F̃u(Qp(F0), F̃0, r1) is non-empty and F̃u(Qp(F0), F̃0, r) is
empty whenever r > r1.
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Corollary 3.44. Let p be any prime. If r1 is maximal, then

F̃u(CD×n (F0), F̃1, r2) 6= ∅ if and only if r2 |
n

[Qp(F0) : Qp]
,

and any element F̃2 in F̃u(CD×n (F0), F̃1, n[Qp(F0) : Qp]−1) generates a maximal commuta-
tive field Qp(F̃2) in Dn. Moreover if F0 = µ(Qp(F0)), the number of such field extensions
is equal to

|H2(Z/r2, F0)| = |F0 ⊗ Z/r2|.

Proof. By the maximality of r1 we have

rF0,r1 = n

[Qp(F0) : Qp]

and F̃u(CD×n (F0), F̃1, r2) 6= ∅ implies r2 | n
[Qp(F0):Qp] . The first assertion then follows from

theorem 3.42 and 3.43.
As for the last assertion, if F0 = µ(Qp(F0)), diagram (3.2) can be extended, via the

short exact sequences

1 −→ F0 −→ F̃1 −→ 〈x1〉 −→ 1,

1 −→ F0 × Z[Qp(F0):Qp]
p −→ Qp(F0)× −→ 〈πF0〉 −→ 1,

1 −→ F0 −→ F0 × Z[Qp(F0):Qp]
p −→ Z[Qp(F0):Qp]

p −→ 1,

to the exact diagram

H1(Z/r2, 〈x1〉)

��

H1(Z/r2, 〈πF0〉)

��

H1(Z/r2,Z
[Qp(F0):Qp]
p ) // H2(Z/r2, F0) //

��

H2(Z/r2, F0 × Z[Qp(F0):Qp]
p )

��
H2(Z/r2, F̃1) i∗ //

����

H2(Z/r2,Qp(F0)×)

����
H2(Z/r2, 〈x1〉) // H2(Z/r2, 〈πF0〉),

where all three first cohomology groups are trivial, and where we know from diagram (3.2)
that the bottom vertical maps are surjective. In particular i∗ is injective on the kernels of
the bottom vertical maps, and therefore the number of maximal fields of the form Qp(F̃2)
in Dn is given by the cardinality of H2(Z/r2, F0). �



Chapter 4:

On maximal finite subgroups of Gn(u)

We consider a prime p, a positive integer n = (p− 1)pk−1m with m prime to p, and a
unit u ∈ Z×p . In this chapter, we work in the context of section 2.6 in order to study the
classes of maximal nonabelian finite subgroups of Gn(u).

More particularly, we consider (nonabelian) finite extensions of F̃2 when F0 is maximal
as an abelian finite subgroup of Sn and the field L = Qp(F̃2) is maximal in Dn. In this
case CD×n (F̃2) = L× and we have a short exact sequence

1 −→ F̃2 −→ L× −→ L×/F̃2 −→ 1,

which for W ⊆ Aut(L, F̃2, F0) ⊆ Gal(L/Qp) induces the long exact sequence

. . . // H1(W,L×) // H1(W,L×/F̃2)

��

Br(L/LW )

0 H2(W, F̃2)
i∗W // H2(W,L×) // . . . ,

where the left hand term is trivial by Hilbert’s theorem 90 (see for example [15] chapter
IV theorem 3.5). Then theorem 2.27 and 2.28 become explicit if we can determine the
homomorphism i∗W . We will use the following fact extensively.

Proposition 4.1. If i∗W is an epimorphism, then i∗W ′ is an epimorphism for every sub-
group W ′ of W .

Proof. The bifunctoriality of the cohomology induces a commutative square

H2(W, F̃2)
i∗W //

��

H2(W,L×)

��
H2(W ′, F̃2)

i∗
W ′ // H2(W ′, L×).

By corollary B.12, the right hand map of this square is surjective. Hence if i∗W is surjective,
the bottom horizontal homomorphism is surjective as well. �

The cases p > 2 and p = 2 are treated separately.

71
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4.1. Extensions of maximal abelian finite subgroups of Sn for p > 2

In this section, we assume p to be odd, F0 to be maximal abelian, and F̃1 to be maximal
as a subgroup of Qp(F0)× having F̃0 as a subgroup of finite index; in other words

F0 ∼= Cpα × Cpnα−1 with 0 ≤ α ≤ k, nα = n

ϕ(pα) ,

and

F̃1 =
{
F̃0 = F0 × 〈pu〉 if α = 0,
F0 × 〈x1〉 if α ≥ 1,

where in the last case x1 ∈ Qp(ζp) ⊆ Qp(F0) satisfies

v(x1) = 1
p− 1 and xp−1

1 ∈ F̃0 = F0 × 〈pu〉.

In fact we may assume x1 to satisfy xp−1
1 = puδ for δ ∈ µp−1(Qp(ζp)) as given in corollary

3.6 and remark 3.7. By definition Qp(F0) = Qp(F̃1), and because the latter is a maximal
subfield of Dn we have F̃1 = F̃2. We let

G := Gal(Qp(F0)/Qp) ∼=
{
Cn if α = 0,
Cp−1 × Cpα−1 × Cnα if α ≥ 1,

as given by proposition C.8. From our choice of x1, we know that F̃1 is stable under the
action of a subgroup W ⊆ G; this is because if σ ∈ W , then σ(x1)

x1
is a (p−1)-th root of

unity in Q×p , and hence σ(x1) ∈ x1〈ζp−1〉 ⊆ F̃1 for ζp−1 ∈ Q×p . The goal of the section is
to determine necessary and sufficient conditions on n, p, u and α for the homomorphism

i∗G : H2(G, F̃1) −→ H2(G,Qp(F0)×)

to be surjective, and whenever this happens, we want to determine its kernel. This is done
via the analysis of

i∗W : H2(W, F̃1) −→ H2(W,Qp(F0)×)

for suitable subgroups W ⊆ G.

The case α = 0

The situation is much simpler when the p-Sylow subgroup of F0 is trivial.

Lemma 4.2. If α = 0 and W = Cn, then

H∗(W, F̃1) ∼=


〈pu〉 × Cp−1 if ∗ = 0,
0 if 0 < ∗ is odd,
〈pu〉/〈(pu)n〉 if 0 < ∗ is even;

H∗(W,Qp(F0)×) ∼=


Q×p if ∗ = 0,
0 if 0 < ∗ is odd,
〈p〉/〈pn〉 if 0 < ∗ is even.
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Proof. The action of Cn = W on F̃1 ∼= 〈pu〉 × Cpn−1 is trivial on 〈pu〉 and acts on Cpn−1
by ζ 7→ ζp.

For t a generator of Cn, written additively, and N =
∑n−1
i=0 t

i, H∗(Cn, F̃1) is the
cohomology of the complex

F̃1
1−t // F̃1

N // F̃1
1−t // . . . .

Using additive notation for F̃1 ∼= Z× Z/pn − 1, we obtain

(1− t)(1, 0) = (0, 0), (1− t)(0, 1) = (0, 1− p),

N(1, 0) = (n, 0), N(0, 1) = (0, p
n − 1
p− 1 ),

and the desired result for H∗(W, F̃1) follows.
Now let L = Qp(F0) = Qp(F̃1) and K = LW . Then

H0(W,Qp(F0)×) = K× = Q×p

and H1(W,Qp(F̃1)) = 0 by Hilbert’s theorem 90. Furthermore, since L/K is unramified,
we know from proposition B.13 that the valuation map induces an isomorphism

H2(W,L×) ∼= H2(W, 1
e(L)Z) ∼= Z/|W |Z.

Here e(L) = 1, and as v(p) = 1, the element p represents a generator of the cyclic group
H2(W,L×). The result then follows from the periodicity of the cohomology. �

Corollary 4.3. If α = 0 and W ⊆ Cn, then i∗W is an isomorphism.

Proof. Let L = Qp(F0) and K = LCn = Qp. Since L/K is unramified, O×K is in the image
of the norm by proposition B.13 and u ∈ NL/K(L×). Hence i∗Cn(pu) = p and i∗Cn is an
isomorphism. For any subgroup W ⊆ Cn, it follows from proposition 4.1 that i∗W is an
epimorphism, and hence from lemma 4.2 that it is an isomorphism. �

Example 4.4. Let α = 0 and F0 ∼= Cpn−1 generated by a primitive (pn−1)-th root of
unity ω. Since Qp(F0)/Qp is a maximal unramified commutative extension in Dn, we have
F̃0 = F̃1 = F̃2. Furthermore, as noted in remark C.5, there is an element ξu in D×n that
generates the Frobenius σ of Qp(ω) in such a way that

Dn ∼= Qp(ω)〈ξu〉/(ξnu = pu, ξux = xσξu) and ωσ = ωp.

Hence for any u ∈ Z×p , F̃3 ∼= F0 o 〈ξu〉. In Gn(u), we therefore have an extension

1 −→ F0 −→ F3 −→ Cn −→ 1

with Cn ∼= Gal(Qp(F0)/Qp) acting faithfully on the kernel and

F3 = 〈ω, ξu | ωp
n−1 = ξ

n
u = 1, ξuωξ

−1
u = ωp〉 ∼= Cpn−1 o Cn

for ξu the class of ξu in Gn(u).
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The case α ≥ 1

For the rest of the section we let α ≥ 1. The Galois group G of Qp(F0)/Qp decomposes
canonically as

G = Gp ×Gp′ ,

where Gp = Cpα−1 × Cnα
m

is the p-torsion subgroup in the abelian group G and Gp′ =
Cp−1 ×Cm is the subgroup of elements of torsion prime to p. If W is any subgroup of G,
then W decomposes canonically in the same way as

W = Wp ×Wp′ with Wp ⊆ Gp and Wp′ ⊆ Gp′ .

For any such W ⊆ G we define the groups

W0 := Wp′ , W1 := W0 × (Wp ∩Aut(Cpα)) and W2 := W.

Proposition 4.5. If α ≥ 1, then i∗W0
is always an isomorphism.

Proof. The inclusion F̃1 ⊆ Qp(F0)× induces a short exact sequence

1 −→ F̃1 −→ Qp(F0)× −→ Qp(F0)×/F̃1 −→ 1,

which induces a long exact sequence

// H1(W0,Qp(F0)×/F̃1) // H2(W0, F̃1)
i∗W0

��
H2(W0,Qp(F0)×) // H2(W0,Qp(F0)×/F̃1) //

The group Qp(F0)×/F̃1 fits into an exact sequence

1 −→ Zp(F0)×/F0 −→ Qp(F0)×/F̃1 −→ Z/Z〈x1〉 −→ 1,

induced by the exact sequences

1 −→ F0 −→F̃1
v−→ Z〈x1〉 −→ 1,

1 −→ Zp(F0)× −→Qp(F0)× v−→ Z −→ 1.

Note that the group Zp(F0)×/F0 is free over Zp, while as F̃1 is maximal the quotient
Z/Z〈x1〉 = Z/nv(x1)Z is a p-torsion group. Since |W0| is prime to p we get

H∗(W0,Zp(F0)×/F0) = H∗(W0,Z/Z〈x1〉) = 0 for ∗ > 0.

Thus
H∗(W0,Qp(F0)×/F̃1) = 0 for ∗ > 0,

and the result follows. �
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Lemma 4.6. If α ≥ 1 and W = Cp−1 ⊆ Aut(Cpα), then

H∗(W, F̃1) ∼=


〈pu〉 × Cpnα−1 if ∗ = 0,
0 if 0 < ∗ is odd,
Cpnα−1 ⊗ Cp−1 ∼= Cp−1 if 0 < ∗ is even;

H∗(W,Qp(F0)×) ∼=


(Qp(F0)Cp−1)× if ∗ = 0,
0 if 0 < ∗ is odd,
(Qp(F0)Cp−1)×/NW (Qp(F0)×) ∼= Cp−1 if 0 < ∗ is even.

Proof. Consider the short exact sequence

1 −→ F0 −→ F̃1 −→ Z〈x1〉 −→ 1;

it induces a long exact sequence in cohomology

H0(W,F0) −→ H0(W, F̃1) −→ H0(W,Z〈x1〉) −→ H1(W,F0) −→ . . . ,

where the action of W is trivial on Z〈x1〉, while faithful on the first factor of F0 ∼=
Cpα × Cpnα−1 and trivial on the second factor. Note that the first factor of F0 splits
off and has trivial cohomology. Hence for t a generator of W , written additively, and
N =

∑p−2
i=0 t

i, the cohomology H∗(W,F0) can be calculated from the additive complex

Z/(pnα − 1) 1−t // Z/(pnα − 1) N // Z/(pnα − 1) 1−t // . . .

with
(1− t)(1) = 0 and N(1) = p− 1;

while H∗(W,Z〈x1〉) can be calculated from the additive complex

Z
1−t // Z N // Z

1−t // . . .

with
(1− t)(1) = 0 and N(1) = p− 1.

Consequently

H∗(W,F0) ∼=


Cpnα−1 if ∗ = 0,
Cpnα−1 ∗ Cp−1 ∼= Cp−1 if 0 < ∗ is odd,
Cpnα−1 ⊗ Cp−1 ∼= Cp−1 if 0 < ∗ is even;

H∗(W,Z〈x1〉) ∼=


Z〈x1〉 if ∗ = 0,
0 if 0 < ∗ is odd,
Cp−1 if 0 < ∗ is even,

where Cpnα−1 ∗ Cp−1 denotes the kernel of the (p−1)-th power map on Cpnα−1.
Clearly, 〈pu〉×Cpnα−1 ⊆ F̃1

W . Since xp−1
1 = puδ with δ a (p−1)-th root of unity in Q×p ,

we know that Qp(x1)W = Qp. Consider an element z = xl1y1y2 in F̃1
W with y1 ∈ 〈ζpα〉

and y2 ∈ 〈ζpnα−1〉. Then for σ ∈W , y2 is invariant under σ, and we have(
σ(x1)
x1

)l
= y1
σ(y1) .
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Since the order of y1
σ(y1) divides a power of p and the order of σ(x1)

x1
divides p − 1, we

must have y1
σ(y1) = 1, and hence y1 = 1. Therefore xl1 is invariant under σ, and as

Qp(x1)W = Qp(ζp)W = Qp, we know that l ≡ 0 mod p − 1. It follows that the valuation
of F̃1

W is integral, and therefore

H0(W, F̃1) = F̃1
W = 〈pu〉 × Cpnα−1.

Since the image of H0(W, F̃1) in H0(W,Z〈x1〉) ∼= Z〈x1〉 is Z〈pu〉, the group H0(W,Z〈x1〉)
surjects onto H1(W,F0) ∼= Cp−1, and therefore H1(W, F̃1) = 0. By the periodicity of the
cohomology, the map

H2(W,Z〈x1〉) −→ H3(W,F0)
is an isomorphism, and as H1(W,Z〈x1〉) = 0 we obtain

H2(W, F̃1) ∼= H2(W,F0) ∼= Cpnα−1 ⊗ Cp−1.

Finally, the triviality of H1(W,Qp(F0)×) is a direct consequence of Hilbert’s theorem
90, while the remaining cases for H∗(W,Qp(F0)×) follow from the characterisation of the
Brauer group in terms of the invariants and the norm relative to the Galois group W as
given by theorem B.8 and corollary B.11. �

Lemma 4.7. If α = 1, Cn1 = Gal(Qp(Cpn1−1)/Qp), and Cp−1 = Aut(Cp), then

H∗(Cn1 , F̃1
Cp−1) ∼=


〈pu〉 × Cp−1 if ∗ = 0,
0 if 0 < ∗ is odd,
〈pu〉/〈(pu)n1〉 if 0 < ∗ is even;

H∗(Cn1 , (Qp(F0)Cp−1)×) ∼=


Q×p if ∗ = 0,
0 if 0 < ∗ is odd,
〈p〉/〈pn1〉 if 0 < ∗ is even.

Proof. The action of Cn1 on F̃1
Cp−1 ∼= 〈pu〉 × Cpn1−1 is trivial on the first factor and acts

on Cpn1−1 by ζ 7→ ζp.
Let t be generator of Cn1 , written additively, and N =

∑n1−1
i=0 ti. Using additive

notation for F̃0
Cp−1 ∼= Z× Z/pn1 − 1, we obtain

(1− t)(1, 0) = (0, 0) (1− t)(0, 1) = (0, 1− p),

N(1, 0) = (n1, 0), N(0, 1) = (0, p
n1 − 1
p− 1 ),

and the desired result for H∗(Cn1 , F̃1
Cp−1) follows.

Now for L = Qp(F̃0)Cp−1 and K = LCn1 , we have

H0(Cn1 , L
×) = K× = Q×p

and H1(Cn1 , L
×) = 0 by Hilbert’s theorem 90. Furthermore as L/K is unramified, we

know from proposition B.13 that the valuation map induces an isomorphism

H2(Cn1 , L
×) ∼= H2(Cn1 ,

1
e(L)Z) ∼= Z/n1Z.

Here e(L) = 1, and as v(p) = 1, the element p represents a generator of the cyclic group
H2(Cn1 , L

×). The result then follows from the periodicity of the cohomology. �
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Corollary 4.8. If α = 1, then H∗(Cn1 , F̃1
Cp−1)→ H∗(Cn1 , (Qp(F0)Cp−1)×) is an isomor-

phism for 0 < ∗ even.

Proof. Let L = Qp(F̃0)Cp−1 and K = LCn1 = Qp. Because the extension L/K is unram-
ified, proposition B.13 implies that the group of units of the ring of integers OK of K is
contained in the norm NL/K(L×). As p is a uniformizing element of Q×p = K×, it is a
generator of the cyclic group K×/NL/K(L×) ∼= H2(Cn1 , L), and the result follows. �

Lemma 4.9. If α ≥ 2, W0 = Gp′ and Cpα−1 ⊆ Aut(Cpα), then

H∗(Cpα−1 , F̃1
W0) ∼=


〈pu〉 × C

p
nα
m −1 if ∗ = 0,

0 if 0 < ∗ is odd,
〈pu〉/〈(pu)pα−1〉 ∼= Cpα−1 if 0 < ∗ is even;

H∗(Cpα−1 , (Qp(F0)W0)×) ∼=


(Qp(F0)W0×Cpα−1 )× if ∗ = 0,
0 if 0 < ∗ is odd,
Cpα−1 if 0 < ∗ is even.

Proof. The action of Cp−1 ⊆ W0 ∩ Aut(Cpα) on F̃1 = 〈x1〉 × Cpnα−1 × Cpα being faithful
on the first and last factors, we have F̃1

W0 ∼= 〈pu〉 ×C
p
nα
m −1, and consequently the action

of Cpα−1 on F̃1
W0 is trivial.

Let t be generator of Cpα−1 , written additively, and N =
∑pα−1−1
i=0 ti. Using additive

notation for F̃1
W0 ∼= Z× Z/(p

nα
m −1) we obtain

(1− t)(1, 0) = (0, 0), (1− t)(0, 1) = (0, 0),

N(1, 0) = (pα−1, 0), N(0, 1) = (0, pα−1),

and the desired result for H∗(Cpα−1 , F̃1
W0) follows.

The case of H∗(Cpα−1 , (Qp(F0)W0)×) follows from Hilbert’s theorem 90 when ∗ is odd,
while the case where 0 < ∗ is even is given by the isomorphism

(Qp(F0)W0×Cpα−1 )×/NCpα−1 ((Qp(F0)W0)×) ∼= Cpα−1 .

�

In view of theorem 4.13, we are only interested in the case where W1 is maximal, that
is W1 = Gp′ × (Gp ∩Aut(Cpα)).

Corollary 4.10. If α ≥ 2, W0 = Gp′ and |W1/W0| = pα−1, then

H∗(W1/W0, F̃1
W0) −→ H∗(W1/W0, (Qp(F0)W0)×) for 0 < ∗ even

is surjective if and only if it is an isomorphism, and this is true if and only if

u 6∈ µ(Z×p )× {x ∈ Z×p | x ≡ 1 mod (p2)} and α = k.
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Proof. The first assertion is an obvious consequence of lemma 4.9. Let

M := Qp(F0), L := MW0 and K := LCpα−1 = MW1 .

Since L/K is totally ramified, we know from proposition B.13 that

H2(Cpα−1 , L×) ∼= H2(Cpα−1 ,O×L ),

and as NG/W1 ◦NCpα−1 (O×L ) = NG/W0(O×L ), we may consider the homomorphism

τ : H2(Cpα−1 , L×) −→ Z×p /NG/W0(O×L )

given as the composite

H2(Cpα−1 , L×) ∼= H2(Cpα−1 ,O×L ) ∼= (O×L )Cpα−1/NCpα−1 (O×L )
NG/W1−→ Z×p /NG/W0(O×L ).

We claim that τ is an isomorphism. Because Gal(L/Qp) preserves O×L , and hence l×
for l the residue field of L, we have an epimorphism Gal(L/Qp)→ Gal(l/Fp) whose kernel
will be denoted A. Since K is the maximal unramified subextension of L/Qp, we may
consider the short exact sequences

1 // Z×p /NG/W0(O×L ) //

��

Q×p /NG/W0(L×) v //

∼= (_,L/Qp)
��

Z/v(NG/W0(L×)) //

∼= σ(_)

��

1

1 // A //

∼=
��

Gal(L/Qp) red // Gal(l/Fp)
∼=

��

// 1

1 // Gal(L/K) // Gal(L/Qp)
pr // Gal(K/Qp) // 1,

where the bottom two squares commute, the middle vertical isomorphism is the norm
residue symbol of L/Qp as defined in [20] section 2.2, the top left hand vertical map is
its restriction, and where the top right hand vertical isomorphism is given by the power
map of the Frobenius automorphism σ ∈ Gal(l/Fp). By local class field theory (see for
example [13] chapter 2 §1.3) we have

pr(x, L/Qp) = (x,K/Qp) for all x ∈ Q×p /NG/W0(L×).

On the other hand [20] proposition 2 shows that

(x,K/Qp) = σv(x) for all x ∈ Q×p /NG/W0(L×).

It follows that the top right hand square in the above diagram, and hence the diagram
itself, is commutative. From the five lemma, the top left hand vertical map of the diagram
is an isomorphism, and as Gal(L/K) ∼= Cpα−1 , we get

NG/W0(O×L ) = µ(Z×p )× Uα(Z×p )

as a subgroup of index pα−1 in Z×p . By corollary B.11, we know that H2(Cpα−1 , L×) has
order pα−1. The norm NG/W1 : O×K → Z×p being surjective by proposition B.15, it follows
that τ is an isomorphism.
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As a consequence of this latter result, our map of interest

i∗ : H2(Cpα−1 , F̃1
W0) ∼= 〈pu〉/〈(pu)pα−1〉 −→ H2(Cpα−1 , L×)

is surjective (and hence an isomorphism) if and only if τi∗ is surjective, that is, if and
only if τ(i∗(pu)) is a generator of the cyclic group Z×p /NG/W0(O×L ) ∼= U1(Z×p )/Uα(Z×p ). In
fact i∗(pu) = i∗(u). Indeed, as seen in example B.14, there is an element x̃ ∈ Qp(ζpα) such
that

p = NQp(ζpα )/Qp(x̃) = NCpα−1 (x)

for x = NCp−1(x̃) in Qp(ζpα)Cp−1 ⊆ L; by remark B.16 we then have

p ∈ NCp−1(L×) and i∗(pu) = i∗(u).

Furthermore as µ(Z×p ) ⊆ NG/W0(O×L ), we have τ(u) = τ(u1) for u1 the component of
u ∈ Z×p in U1(Z×p ) via the isomorphism Z×p ∼= µ(Zp)× U1(Z×p ) of proposition C.7. Letting
z ∈ Zp be such that u1 = 1 + zp, we finally obtain that

τ(pu) = NG/W1(u1) = u
|G/W1|
1 ≡ 1 + z|G/W1|p mod p2

is a generator if and only if

u 6∈ µ(Z×p )× {x ∈ Z×p | x ≡ 1 mod (p2)} and |G/W1| 6≡ 0 mod p,

the latter condition being equivalent to α = k (or nα = m). �

Lemma 4.11. If α ≥ 2, W0 = Gp′, |W/W1| 6= 1 and L = Qp(F0)W1 with v(L) = 1
e(L)Z,

then

H∗(W/W1, F̃0
W1) ∼=


〈pu〉 × Cp−1 if ∗ = 0,
0 if 0 < ∗ is odd,
〈pu〉/〈(pu)|W/W1|〉 if 0 < ∗ is even;

H∗(W/W1, L
×) ∼=


(LW/W1)× if ∗ = 0,
0 if 0 < ∗ is odd,
〈π〉/〈π|W/W1|〉 if 0 < ∗ is even,

for π a unifomizing element of LW/W1.

Proof. Since W0 = Gp′ ⊆ W1, none of the elements of Cpα are left invariant by W1, and
we have F̃0

W1 ∼= 〈pu〉 × C
p
nα
m −1. The action of W/W1 on this group is trivial on the first

factor and acts on C
p
nα
m −1 by ζ 7→ ζp.

Let t be generator ofW/W1, written additively, and N =
∑|W/W1|−1
i=0 ti. Using additive

notation for F̃0
W1 ∼= Z× Z/(p

nα
m − 1), we get

(1− t)(1, 0) = (0, 0), (1− t)(0, 1) = (0, 1− p),

N(1, 0) = (|W/W1|, 0), N(0, 1) = (0, p
nα
m − 1
p− 1 ),
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and the desired result for H∗(W/W1, F̃0
W1) follows.

Now let K = LW/W1 . Then

H0(W/W1, L
×) = K× and H1(W/W1, L

×) = 0

by Hilbert’s theorem 90. Finally, as L/K is unramified, proposition B.13 yields

H2(W/W1, L) ∼= H2(G, 1
e(L)Z) ∼=

1
e(L)Z/|W/W1| ·

1
e(L)Z

∼= 〈πK〉/〈π|W/W1|
K 〉

for πK a uniformizing element of K. The result then follows from periodicity of the
cohomology. �

Corollary 4.12. If α ≥ 2, W0 = Gp′, |W/W1| 6= 1 and L = Qp(F0)W1 with v(L) = 1
e(L)Z,

then
H∗(W/W1, F̃1

W1) −→ H∗(W/W1, L
×) for 0 < ∗ even

is surjective if and only if it is an isomorphism, and this is true if and only if e(L) divides
p− 1.

Proof. The short exact sequence

1 −→ F̃0 −→ F̃1 −→ Z/p− 1 −→ 1

induces a long exact sequence

1 −→ F̃0
W1 −→ F̃1

W1 −→ (Z/p− 1)W1 −→ H1(W1, F̃0
W1) −→ . . . ,

which in turn induces a short exact sequence

1 −→ F̃0
W1 −→ F̃1

W1 −→ I −→ 1

where |I| divides p− 1. Since W/W1 is a p-group, |W/W1| is prime to p− 1 and we have
H∗(W/W1, I) = 0 for ∗ ≥ 1. Hence

H∗(W/W1, F̃1
W1) ∼= H∗(W/W1, F̃0

W1) for ∗ ≥ 2,

and by the periodicity of the cohomology of the finite cyclic group W/W1 this is also true
for ∗ = 1. For ∗ = 2, we are interested in the image of this group in H2(W/W1, L

×). Let
K = LW/W1 and M = Qp(F0). From lemma 4.11 we have

H2(W/W1, L
×) ∼=

1
e(L)Z/

|W/W1|
e(L) Z,

and we know that e(L) divides e(M) = (p − 1)pα−1. Because L/K is unramified, the
group O×K is contained in the norm NL/K(L×) by proposition B.13. The map

H2(W/W1, F̃1
W1) −→ H2(W/W1, L

×)

is therefore surjective if and only if v(pu) = v(p) = 1 is a generator of 1
e(L)Z/

|W/W1|
e(L) Z, and

this is true if and only if p does not divide e(L). �
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Theorem 4.13. Let p be an odd prime, n = (p − 1)pk−1m with m prime to p, u ∈ Z×p ,
F0 = Cpα × Cpnα−1 be a maximal abelian finite subgroup in Sn, G = Gal(Qp(F0)/Qp),
Gp′ be the p′-part of G, and let F̃1 = 〈x1〉 × F0 ⊆ Qp(F0)× be maximal as a subgroup of
Qp(F0)× having F̃0 as subgroup of finite index.

1) For any 0 ≤ α ≤ k, there is an extension of F̃1 by Gp′; this extension is unique up
to conjugation.

2) If α ≤ 1, there is an extension of F̃1 by G; this maximal extension is unique up to
conjugation.

3) If α ≥ 2, there is an extension of F̃1 by G if and only if

α = k and u 6∈ µ(Z×p )× {x ∈ Z×p | x ≡ 1 mod (p2)},

in which case this maximal extension is unique up to conjugation.

Proof. 1) From corollary 4.3 and proposition 4.5 we know that the map

i∗Gp′ : H2(Gp′ , F̃1) −→ H2(Gp′ ,Qp(F0)×)

is an isomorphism. Existence and uniqueness up to conjugation of an extension of F̃1 by
Gp′ then follow from corollary 2.29.

2) The case α = 0 follows from corollary 4.3 and corollary 2.29. Now assume that
α = 1 and that W = G = Cp−1 × Cn1 . We have a short exact sequence

1 −→ Cp−1 −→W −→ Cn1 −→ 1,

which gives rise to the Hochschild-Serre spectral sequences (see [4] section VII.6)

Es,t2
∼= Hs(Cn1 , H

t(Cp−1, F̃1)) =⇒ Hs+t(W, F̃1),

Es,t2
∼= Hs(Cn1 , H

t(Cp−1,Qp(F0)×)) =⇒ Hs+t(W,Qp(F0)×).

By lemma 4.6 and proposition 4.5, each map Es,t2 → Es,t2 is an isomorphism for t > 0.
Moreover, by lemma 4.6 we have

H0(Cp−1, F̃1) = F̃1
Cp−1 ∼= 〈pu〉 × Cpn1−1

and
H0(Cp−1,Qp(F0)×) = (Qp(F0)Cp−1)× ∼= Qp(Cpn1−1)×.

Then lemma 4.7 and corollary 4.8 imply that the map Es,t2 → Es,t2 is an isomorphism as
well for t = 0 and s > 0. It follows that

i∗W : H∗(W, F̃1) −→ H∗(W,Qp(F0)×)

is an isomorphism for ∗ > 0. Existence and uniqueness up to conjugation then follows
from corollary 2.29.

3) Assume that α ≥ 2 and that W ⊆ G is such that W0 = Gp′ with |W1/W0| 6= 1 and
|W/W1| 6= 1. We have a short exact sequence

1 −→W0 −→W1 −→W1/W0 −→ 1,
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which gives rise to the spectral sequences

Es,t2
∼= Hs(W1/W0, H

t(W0, F̃1)) =⇒ Hs+t(W1, F̃1),

Es,t2
∼= Hs(W1/W0, H

t(W0,Qp(F0)×)) =⇒ Hs+t(W1,Qp(F0)×).

By proposition 4.5 each map Es,t2 → Es,t2 is an isomorphism for t > 0. Moreover, we know
from lemma 4.9 and corollary 4.10 that when t = 0 and s > 0, a necessary and sufficient
condition for

Hs(W1/W0, F̃1
W0) −→ Hs(W1/W0, (Qp(F0)W0)×)

to be surjective (and hence an isomorphism) is that u is a topological generator in
Z×p /µ(Zp) and α = k. The map

H∗(W1, F̃1) −→ H∗(W1,Qp(F0)×), for ∗ > 0

is thus surjective if and only if it is an isomorphism, and this is true if and only if

u 6∈ µ(Z×p )× {x ∈ Z×p | x ≡ 1 mod (p2)} and α = k.

Now assuming these conditions are satisfied, the short exact sequence

1 −→W1 −→W −→W/W1 −→ 1

induces spectral sequences

Es,t2
∼= Hs(W/W1, H

t(W1, F̃1)) =⇒ Hs+t(W, F̃1),

Es,t2
∼= Hs(W/W1, H

t(W1,Qp(F0)×)) =⇒ Hs+t(W,Qp(F0)×),

where each map Es,t2 → Es,t2 is an isomorphism for t > 0. Furthermore, lemma 4.11 and
corollary 4.12 imply that in case t = 0 and s > 0, the map

Hs(W/W1, F̃1
W1) −→ Hs(W/W1, (Qp(F0)W1)×)

is surjective (and hence an isomorphism) if and only if e(Qp(F0)W1) divides p − 1. In
particular for W = G, the map

i∗G : H2(G, F̃1) −→ H2(G,Qp(F0)×)

is surjective (and hence an isomorphism) if and only if W1 is realized and e(Qp(F0)W1)
divides p − 1, that is, if and only if W1 is realized and W1/W0 ∼= Cpα . The result then
follows from theorem 2.27 and corollary 2.29. �

4.2. Extensions of maximal abelian finite subgroups of Sn for p = 2

In this section, we assume p = 2, F0 to be a maximal abelian finite subgroup of Sn,
and F̃1 to be maximal as a subgroup of Q2(F0)× having F̃0 as a subgroup of finite index;
in other words

F0 ∼= C2α × C2nα−1 with 1 ≤ α ≤ k, nα = n

ϕ(2α) .

By corollary 3.39, we have F̃1 = 〈x1〉 × F0 with

v(x1) =
{

1 if α ≤ 1, or if u ≡ ±3 mod 8 and nα is odd,
1
2 if α ≥ 2 and either u ≡ ±1 mod 8 or nα is even.
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Remark 4.14. Since nα = 2k−αm with m odd, we have

nα ≡ 1 mod 2 ⇔ α = k.

By remark 3.40, we may in fact choose x1 ∈ F̃1 to be x1 = 2u in the cases where its
valuation is 1, otherwise to be x1 = (1 + i)t for i ∈ Q2(F0)× a primitive 4-th root of unity
and

t ∈
{
Z×2 if u ≡ ±1 mod 8,
Z2(ζ3)× if u ≡ ±3 mod 8,

with t2 =
{
u if u ≡ 1 or − 3 mod 8,
−u if u ≡ −1 or 3 mod 8.

By definition Q2(F0) = Q2(F̃1), and because the latter is a maximal subfield of Dn we
have F̃1 = F̃2. We let

G := Gal(Q2(F0)/Q2) ∼=
{
Cn if α = 1,
Cnα × C2α−2 × C2 if α ≥ 2,

as given by proposition C.8. From our choice of x1, we know that F̃1 is stable under the
action of a subgroup W ⊆ G: if x1 = 2u this is clear, and if v(x1) = 1

2 and σ ∈ W we
have σ(x1)

x1
∈ F0 and hence σ(x1) ∈ x1F0 ⊆ F̃1. The goal of the section is to determine

necessary and sufficient conditions on n, u and α for the homomorphism

i∗G : H2(G, F̃1) −→ H2(G,Q2(F0)×)

to be surjective, and whenever this happens, we want to determine its kernel. This is done
via the analysis of

i∗W : H2(W, F̃1) −→ H2(W,Q2(F0)×)

for suitable subgroups W ⊆ G.

The case α = 1

The situation is much simpler when the 2-Sylow subgroup of F0 is contained in Q×2 .
Recall that C2α ∗ Cn denotes the kernel of the n-th power map on C2α .

Lemma 4.15. If α ≤ 1 and W = Cn, then F̃1 = 〈2u〉 × F0 and

H∗(W, F̃1) ∼=


〈2u〉 × C2α if ∗ = 0,
C2α ∗ Cn if 0 < ∗ is odd,
〈2u〉/〈(2u)n〉 × C2α ⊗ Cn if 0 < ∗ is even;

H∗(W,Q2(F0)×) ∼=


Q×2 if ∗ = 0,
0 if 0 < ∗ is odd,
〈2〉/〈2n〉 if 0 < ∗ is even.

Proof. We know from corollary 3.39 that F̃1 = F̃0. The action of W = Cn on F̃1 ∼=
〈2u〉 × C2α × C2n−1 is trivial on 〈2u〉 × C2α and acts on C2n−1 by ζ 7→ ζ2.

For t a generator of Cn, written additively, and N =
∑n−1
i=0 t

i, H∗(Cn, F̃1) is the
cohomology of the complex

F̃1
1−t // F̃1

N // F̃1
1−t // . . . .
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Using additive notation for F̃1 ∼= Z× Z/2α × Z/2n − 1, we obtain

(1− t)(1, 0, 0) = (0, 0, 0), N(1, 0, 0) = (n, 0, 0),
(1− t)(0, 1, 0) = (0, 0, 0), N(0, 1, 0) = (0, n, 0),
(1− t)(0, 0, 1) = (0, 0,−1), N(0, 0, 1) = (0, 0, 2n − 1),

and the desired result for H∗(W, F̃1) follows.
Now let L = Q2(F0) = Q2(F̃1) and K = LW . Then

H0(W,Q2(F0)×) = K× = Q×2

and H1(W,Q2(F0)×) = 0 by Hilbert’s theorem 90. Furthermore as L/K is unramified,
proposition B.13 imply

H2(W,Q2(F0)×) ∼= 〈2〉/〈2n〉

as desired. �

Corollary 4.16. If α = 1 and W ⊆ Cn, then i∗W : H2(W, F̃1) → H2(W,Q2(F0)×) is an
epimorphism. It is an isomorphism if and only if n is odd. If n is even, its kernel is {±1}.

Proof. First assume that W = Cn with L = Q2(F0) and K = LW . As L/K is unramified,
proposition B.13 yields u ∈ NCn(L×). Hence i∗Cn is surjective by lemma 4.15. The case
W ⊆ Cn follows from proposition 4.1, and the other assertions are clear. �

Example 4.17. When α = 1, the group F0 ∼= C2 × C2n−1 is generated by −ω for ω a
(2n−1)-th root of unity in Sn. Here Q2(F0)/Q2 is a maximal unramified commutative
extension in Dn and F̃0 = F̃1 = F̃2. Now for any u ∈ Z×2 there are elements ξu and ξ−u of
valuation 1

n in ND×n (F0) such that

ξnu = 2u, ξn−u = −2u and ξ±uωξ
−1
±u = ω2,

with F̃+
3 = 〈ξu〉 × F0 and F̃−3 = 〈ξ−u〉 × F0. In Gn(u), this gives extensions

1 −→ F0 −→ F±3 −→ Cn −→ 1,

having classes in

H2(Cn, F0) ∼= H2(Cn, C2)⊕H2(Cn, C2n−1) ∼= H2(Cn, C2) ∼=
{

0 if n is odd,
Z/2 if n is even.

One of the extensions is a semi-direct product, represented by

〈−ω, ξu〉 ∼= C2(2n−1) o Cn,

for ξu the class of ξu in Gn(u). When n is even, we have

(−ξ−u)n = (−1)n(ξ−u)n = −1

for ξ−u the class of ξ−u in Gn(u). The respective 2-Sylow subgroups of 〈−ω, ξu〉 and
〈−ω, ξ−u〉 are C2 × C2k−1 and C2k which are clearly not isomorphic.
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The case α ≥ 2

We let α ≥ 2. In this case Q2(i) ⊆ Q2(F0).

Proposition 4.18. If α ≥ 2 and W0 is a subgroup of odd order in Cnα ⊆ Aut(C2nα−1),
then i∗W : H2(W0, F̃1)→ H2(W0,Q2(F0)×) is an isomorphism.

Proof. We may use the same argument as proposition 4.5. Using that α ≥ 2, we know
that Z/Z〈x1〉 is either trivial or a 2-torsion group, while Z2(F0)×/F0 is free over Z2. Hence

H∗(W0,Z2(F0)×/F0) = H∗(W0,Z/Z〈x1〉) = H∗(W0,Q2(F0)×/F̃1) = 0 for ∗ > 0,

and the result follows. �

Lemma 4.19. If α ≥ 2, u ≡ ±3 mod 8, nα is odd and W = Cnα ⊆ Aut(C2nα−1), then
F̃1 = F̃0 and

H∗(W, F̃1) ∼=


〈2u〉 × C2α if ∗ = 0,
C2α ∗ Cnα if 0 < ∗ is odd,
〈2u〉/〈(2u)nα〉 × C2α ⊗ Cnα if 0 < ∗ is even;

H∗(W,Q2(F0)×) ∼=


Q2(ζ2α)× if ∗ = 0,
0 if 0 < ∗ is odd,
〈ζ2α − 1〉/〈(ζ2α − 1)nα〉 if 0 < ∗ is even.

Proof. We know from corollary 3.39 that F̃1 = F̃0. The calculations for H∗(W, F̃1) and
H∗(W,Q2(F0)) are identical to that of lemma 4.15, except that 2 is replaced with (ζ2α−1)
in the second case. �

Lemma 4.20. If α ≥ 2, u ≡ ±1 mod 8 andW = Cnα ⊆ Aut(C2nα−1), then F̃1 = 〈x1〉×F0
with v(x1) = 1

2 and

H∗(W, F̃1) ∼=


〈x1〉 × C2α if ∗ = 0,
C2α ∗ Cnα if 0 < ∗ is odd,
〈x1〉/〈xnα1 〉 × C2α ⊗ Cnα if 0 < ∗ is even;

H∗(W,Q2(F0)×) ∼=


Q2(ζ2α)× if ∗ = 0,
0 if 0 < ∗ is odd,
〈ζ2α − 1〉/〈(ζ2α − 1)nα〉 if 0 < ∗ is even.

Proof. We know from corollary 3.39 that F̃1 = 〈x1〉 × F0 with v(x1) = 1
2 . The action of

Cnα on F̃1 ∼= 〈x1〉 × C2α × C2nα−1 is trivial on the first two factors and acts on the third
by ζ 7→ ζ2.

Let t be generator of Cnα , written additively, and N =
∑nα−1
i=0 ti. Using additive

notation for F̃1 ∼= Z× Z/2α × Z/2nα − 1, we obtain

(1− t)(1, 0, 0) = (0, 0, 0), (1− t)(0, 1, 0) = (0, 0, 0), (1− t)(0, 0, 1) = (0, 0,−1),

N(1, 0, 0) = (nα, 0, 0), N(0, 1, 0) = (0, nα, 0), N(0, 0, 1) = (0, 0, 0),
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and the desired result for H∗(W, F̃1) follows.
Now for L = Q2(F0) and K = LW = Q2(ζ2α), we have

H0(W,Q2(F̃1)) = Q2(Ker(1− t))× = Q2(ζ2α)×

and H1(W,Q2(F0)×) = 0 by Hilbert’s theorem 90. Furthermore, as L/K is unramified,
ζ2α − 1 is a uniformizing element of L and proposition B.13 implies

H2(W,Q2(F0)×) ∼= 〈ζ2α − 1〉/〈(ζ2α − 1)nα〉

as desired. �

Lemma 4.21. If α ≥ 3, u ≡ ±3 mod 8, nα is odd and W = C2α−2 ⊆ Aut(C2α) is
generated by ζ 7→ ζ5, then F̃1 = F̃0 and

H∗(W, F̃1) ∼=


〈2u〉 × C4 × C2nα−1 if ∗ = 0,
0 if 0 < ∗ is odd,
〈2u〉/〈(2u)2α−2〉 ∼= C2α−2 if 0 < ∗ is even;

H∗(W,Q2(F0)×) ∼=


(Q2(F0)C2α−2 )× if ∗ = 0,
0 if 0 < ∗ is odd,
(Q2(F0)C2α−2 )×/NW (Q2(F0)×) ∼= C2α−2 if 0 < ∗ is even.

Proof. We know from corollary 3.39 that F̃1 = F̃0. The action of C2α−2 on F̃1 ∼= 〈2u〉 ×
C2α × C2nα−1 is trivial on 〈2u〉 × C2nα−1 and acts on C2α by ζ 7→ ζ5.

For t a generator of C2α−2 , written additively, and N =
∑2α−2−1
i=0 ti, we obtain

(1− t)(1, 0, 0) = (0, 0, 0), N(1, 0, 0) = (2α−2, 0, 0),
(1− t)(0, 1, 0) = (0,−4, 0), N(0, 1, 0) = (0, 2α−2, 0),
(1− t)(0, 0, 1) = (0, 0, 0), N(0, 0, 1) = (0, 0, 2α−2),

and the desired result for H∗(W, F̃1) follows.
The case of H∗(W,Q2(F0)×) for 0 < ∗ odd follows from Hilbert’s theorem 90, and the

rest is clear. �

Lemma 4.22. Let α ≥ 3, and assume either u ≡ ±1 mod 8 or u ≡ ±3 mod 8 with nα
even. If W = C2α−2 ⊆ Aut(C2α) is generated by ζ 7→ ζ5, then F̃1 = 〈x1〉 × F0 with
v(x1) = 1

2 and

H∗(W, F̃1) ∼=


〈x1〉 × C4 × C2nα−1 if ∗ = 0,
0 if 0 < ∗ is odd,
〈x1〉/〈x2α−2

1 〉 ∼= C2α−2 if 0 < ∗ is even;

H∗(W,Q2(F0)×) ∼=


(Q2(F0)C2α−2 )× if ∗ = 0,
0 if 0 < ∗ is odd,
(Q2(F0)C2α−2 )×/NW (Q2(F0)×) ∼= C2α−2 if 0 < ∗ is even.
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Proof. We know from corollary 3.39 that F̃1 = 〈x1〉×F0 with v(x1) = 1
2 . The calculations

are identical to that of lemma 4.21, except that 2u is replaced by x1 for the calculation of
H∗(W, F̃1). �

Corollary 4.23. If α ≥ 3 and W = C2α−2 ⊆ Aut(C2α) is generated by ζ 7→ ζ5, then
i∗W : H2(W, F̃1)→ H2(W,Q2(F0)×) is never surjective.

Proof. Let L := Q2(F0) and K := LW . Since L/K is totally ramified, we know from
proposition B.13 that H2(W,L×) ∼= H2(W,O×L ). As NG/W ◦ NW (O×L ) = NG(O×L ), we
may consider the homomorphism

τ : H2(W,L×) −→ Z×2 /NG(O×L )

given by the norm

NG/W : H2(W,O×L ) ∼= (O×K)/NW (O×L ) −→ Z×2 /NG(O×L ).

In order to analyse this homomorphism, we consider the short exact sequences

1 // Z×2 /NG(O×L ) //

��

Q×2 /NG(L×) v //

∼= (_,L/Q2)
��

Z/v(NG(L×)) //

∼= σ(_)

��

1

1 // Gal(L/LC2α−2×C2) // Gal(L/Q2) pr // Gal(l/F2) // 1

where

Gal(L/LC2α−2×C2) ∼= C2α−2 × C2, Gal(LC2α−2×C2/Q2) ∼= Gal(l/F2) ∼= Cnα

for l the residue field of L, where the middle vertical isomorphism is the norm residue
symbol of L/Q2 as defined in [20] section 2.2, the left hand vertical map is its restriction,
and where the right hand vertical isomorphism is given by the power map of the Frobenius
automorphism σ ∈ Gal(l/F2). We know from local class field theory (see for example [13]
chapter 2 §1.3) that

pr(x, L/Q2) = (x, LC2α−2×C2/Q2) for all x ∈ Q×2 /NG(L×).

On the other hand [20] proposition 2 shows that

(x, LC2α−2×C2/Q2) = σv(x) for all x ∈ Q×2 /NG(L×).

Thus the right hand square in the above diagram, and hence the diagram itself, is com-
mutative. The five lemma then implies

Z×2 /NG(O×L ) ∼= C2α−2 × C2 and NG(O×L ) = Uα(Z×2 ).

The image of τ however is U2(Z×2 )/Uα(Z×2 ). To see this, consider the tower of extensions

Q2
C2 Q2(i)

Cnα
K

W
L.

Since K/Q2(i) is unramified, we know from proposition B.15 that

NCnα : O×K −→ Z2(i)×
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is surjective. Hence for any a1, a2 ∈ Z2, there exists an element x = 1 + a(1 + i) in O×K
with a ∈ Z2 such that

NCnα (x) = 1 + (a1 + a2i)(1 + i) ∈ Z2(i)×.

Therefore

NG/W (x) = NC2(1 + (a1 + a2i)(1 + i))
= [1 + (a1 + a2i)(1 + i)][1 + (a1 − a2i)(1− i)]
= 1 + 2(a2

1 + a2
2 + a1 − a2)

= 1 + 2(a2
1 + a1) + 2(a2

2 − a2)
≡ 1 mod 4, (4.1)

and the map τ : H2(W,O×L )→ U2(Z×2 )/Uα(Z×2 ) is an isomorphism.
By to lemma 4.21 and 4.22, the map i∗W is therefore surjective if and only if τ(x1) is

a generator of U2(Z×2 )/Uα(Z×2 ). Recall that

x1 =
{

2u if u ≡ ±3 mod 8 and nα is odd,
(1 + i)t otherwise,

with

t2 =
{
u if u ≡ 1 or − 3 mod 8,
−u if u ≡ −1 or 3 mod 8.

Since both 2 and 1 + i belong to NQ2(ζ2α )/Q2(i)(Q2(ζ2α)) according to example B.14, it
follows by remark B.16 that 2 and 1 + i both belong to NL/K(L×). Thus if u ≡ ±3 mod 8
with nα odd, we have

τ(2u) = τ(u) = u2nα ≡ 1 mod 8.
On the other hand if u ≡ ±1 mod 8, then

τ(x1) = τ(t) = t2nα =
{
unα if u ≡ 1 mod 8,
(−u)nα if (−u) ≡ 1 mod 8,

≡ 1 mod 8.

Finally if u ≡ ±3 mod 8 with nα even, there is a subgroup of index 2 in G/W which acts
trivially on t, and we have

τ(x1) = τ(t) = (t(−t))nα = (−1)nαt2nα ≡ (±3)nα ≡ 1 mod 8.

In any case, the map i∗W is never surjective. �

Lemma 4.24. Let α ≥ 2, u ≡ ±3 mod 8, nα be odd, and let C2 ⊆ Aut(C2α) be generated
by ζ 7→ ζ−1. If W0 is a subgroup of odd order in G, then F̃1

W0 = F̃0
W0 and

H∗(C2, F̃1
W0) ∼=


〈2u〉 × (C2α ∗ C2)× C

2
nα
|W0|−1

if ∗ = 0,

C2α ⊗ C2 if 0 < ∗ is odd,
〈2u〉/〈(2u)2〉 × (C2α ∗ C2) if 0 < ∗ is even;

H∗(C2, (Q2(F0)W0)×) ∼=


(Q2(F0)C2)× if ∗ = 0,
0 if 0 < ∗ is odd,
(Q2(F0)C2)×/NW (Q2(F0)×) ∼= C2 if 0 < ∗ is even.
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Proof. We know from corollary 3.39 that F̃1 = F̃0. The action of C2 on F̃1
W0 ∼= 〈2u〉 ×

C2α × C
2
nα
|W0|−1

is trivial on the first and last factors and acts on the second by ζ 7→ ζ−1.
Let t the generator of C2, written additively, and N = 1 + t. Using additive notation

for F̃1
W0 ∼= Z× Z/2α × Z/(2

nα
|W0| − 1), we obtain

(1− t)(1, 0, 0) = (0, 0, 0), N(1, 0, 0) = (2, 0, 0),
(1− t)(0, 1, 0) = (0, 2, 0), N(0, 1, 0) = (0, 0, 0),
(1− t)(0, 0, 1) = (0, 0, 0), N(0, 0, 1) = (0, 0, 2),

and the desired result for H∗(C2, F̃1
W0) follows.

The case of H∗(C2, (Q2(F0)W0)×) for 0 < ∗ odd follows from Hilbert’s theorem 90, and
the rest is clear. �

Lemma 4.25. Let α = 2 and either u ≡ ±1 mod 8 or u ≡ ±3 mod 8 with nα even. If
C2 ⊆ Aut(C2α) is generated by ζ 7→ ζ−1, and if W0 is a subgroup of odd order in G, then
F̃1

W0 = 〈x1〉 × FW0
0 with v(x1) = 1

2 and

H∗(C2, F̃1
W0) ∼=


〈2u〉 × (C2α ∗ C2)× C

2
nα
|W0|−1

if ∗ = 0,

0 if 0 < ∗ odd,
C2α ∗ C2 if 0 < ∗ even;

H∗(C2, (Q2(F0)W0)×) ∼=


(Q2(F0)C2)× if ∗ = 0,
0 if 0 < ∗ odd,
(Q2(F0)C2)×/NW (Q2(F0)×) ∼= C2 if 0 < ∗ even.

Proof. We know that F̃1
W0 = 〈x1〉 × FW0

0 with v(x1) = 1
2 . The action of C2 on F̃1

W0 ∼=
〈x1〉×C2α×C

2
nα
|W0|−1

is trivial on the last factor, acts on C2α by ζ2α 7→ ζ−1
2α on the second,

and sends x1 to −ix1.
Note that the last factor splits off and has trivial cohomology. Hence for t a generator

of C2, written additively, and N = 1 + t, the cohomology H∗(C2, F̃1
W0) can be calculated

from the additive complex

Z× Z/4 1−t // Z× Z/4 N // Z× Z/4 1−t // . . . ,

where
t(1, 0) = (1, 1) and t(0, 1) = (0,−1).

Therefore

(1− t)(1, 0) = (0,−1), (1− t)(0, 1) = (0, 2),
N(1, 0) = (2, 1), N(0, 1) = (0, 0).

Hence

Ker(1− t) = 〈(2, 1), (0, 2)〉, Im(1− t) = 〈(0, 1)〉,
Ker(N) = 〈(0, 1)〉, Im(N) = 〈(2, 1)〉,

and the desired result for H∗(C2, F̃1
W0) follows.

The case of H∗(C2, (Qp(F0)W0)×) for 0 < ∗ odd follows from Hilbert’s theorem 90, and
the rest is clear. �
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We have seen in corollary 4.23 that i∗G is not surjective whenever α ≥ 3. Thus the case
α = 2 is all that we want to consider in the following corollary.

Corollary 4.26. Let α = 2, C2 = Aut(C2α) and let W0 be a subgroup of odd order in
G. Then H2(C2, F̃1

W0) → H2(C2, (Q2(F0)W0)×) is surjective if and only if α = k. In
this case, its kernel is isomorphic to C2 if u ≡ ±3 mod 8 and it is an isomorphism if
u ≡ ±1 mod 8.

Proof. Let L := Q2(F0)W0 , K := LC2 and H := G/W0 = Gal(L/Qp). Note that L/K is
totally ramified. Similarly to corollary 4.23, we may consider the homomorphism

τ : H2(C2, L
×) −→ Z×2 /NH(O×L )

given by the norm

NH/C2 : H2(C2, L
×) ∼= H2(C2,O×L ) ∼= (O×K)/NC2(O×L ) −→ Z×2 /NH(O×L ).

Here again, as in corollary 4.23, we have short exact sequences forming a commutative
diagram

1 // Z×2 /NH(O×L ) //

∼=
��

Q×2 /NH(L×) v //

∼= (_,L/Q2)
��

Z/v(NH(L×)) //

∼= σ(_)

��

1

1 // Gal(L/K) // Gal(L/Q2) pr // Gal(l/F2) // 1

where
Gal(L/K) ∼= C2 and Gal(l/F2) ∼= C nα

|W0|
,

for l the residue field of L. Since LCnα/W0 = Q2(F0)Cnα = Q2(i), and since L/Q2(i) is
unramified, we know from proposition B.15 that

NH/C2 : O×L −→ Z2(i)×

is surjective; consequently

NH(O×L ) = NC2 ◦NH/C2(O×L ) = NC2(Z2(i)×).

Furthermore, as in (4.1), for any elements a1, a2 ∈ Z2 we have

NC2(1 + (a1 + a2i)(1 + i)) ≡ 1 mod 4.

Hence NH(O×L ) = U2(Z×2 ) and the map

τ : H2(C2, L
×) −→ Z×2 /U2(Z×2 ) = {±1}

is surjective by proposition B.15.
Using lemma 4.24 and 4.25, the map i∗ : H2(C2, F̃1

W0) → H2(C2, L
×) is therefore

surjective if and only if

−1 =
{
τ(2u) or τ(−1) if u ≡ ±3 mod 8 and nα odd,
τ(−1) otherwise.
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Since NC2(1 + i) = (1 + i)(1− i) = 2, remark B.16 implies

τ(2u) = τ(u) = u|H/C2| and τ(−1) = (−1)|H/C2|.

Hence τ(−1) = −1 if and only if

|H/C2| = |Cnα/W0| is odd ⇔ nα is odd ⇔ α = k,

and the result follows. �

Theorem 4.27. Let p = 2, n = 2k−1m with m odd, u ∈ Z×2 , F0 = C2α × C2nα−1 be a
maximal abelian finite subgroup of Sn, G = Gal(Q2(F0)/Q2), G2′ be the odd part of G,
and let F̃1 = 〈x1〉 × F0 ⊆ Q2(F0)× be maximal as a subgroup of Q2(F0)× having F̃0 as
subgroup of finite index.

1) For any 1 ≤ α ≤ k, there is an extension of F̃1 by G2′; this extension is unique up
to conjugation.

2) If α = 1, there is an extension of F̃1 by G; the number of such extensions up to
conjugation is {

1 if n is odd,
2 if n is even.

3) If α = 2, there is an extension of F̃1 by G if and only if k = 2; the number of such
extensions up to conjugation is{

1 if u ≡ ±1 mod 8,
2 if u 6≡ ±1 mod 8.

4) If α ≥ 3, there is no extension of F̃1 by G.

Proof. 1) From corollary 4.16 and proposition 4.18 we know that

i∗G2′
: H2(G2′ , F̃1) −→ H2(G2′ ,Q2(F0)×)

is an isomorphism. Existence and uniqueness up to conjugation then follows from corollary
2.29.

2) This follows from corollary 4.16 and 2.29.
3) Let α = 2. Applying proposition 4.1 and corollary 2.29 together with corollary 4.26

in the case where W0 is trivial, we obtain that F̃1 can never be extended by G when nα is
even. Assume then that nα is odd. In this case G decomposes canonically as

G = G2′ × C2 with G2′ = Cnα .

In particular, there is a short exact sequence

1 −→ Cnα −→ G −→ C2 −→ 1

which gives rise to the Hochschild-Serre spectral sequences (see [4] section VII.6)

Es,t2
∼= Hs(C2, H

t(Cnα , F̃1)) =⇒ Hs+t(G, F̃1),

Es,t2
∼= Hs(C2, H

t(Cnα ,Q2(F0)×)) =⇒ Hs+t(G,Q2(F0)×).
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From lemma 4.19, 4.20 and proposition 4.18, each map Es,t2 → Es,t2 is an isomorphism for
t > 0. We also have

H0(Cnα , F̃1) = F̃1
Cnα = 〈x1〉 × C2α

and
H0(Cnα ,Q2(F0)×) = (Q2(F0)Cnα )× = Q2(i)×.

Then corollary 4.26 applied to the case W0 = Cnα shows that the map

Hs(C2, F̃1
Cnα ) −→ Hs(C2, (Q2(F0)Cnα )×)

is surjective when t = 0 and s > 0; its kernel is trivial if u ≡ ±1 mod 8, otherwise it is of
cardinality 2. In fact, since nα is odd, all the terms Es,t2 for which s > 0 and t > 0 are
trivial. By the results of lemma 4.19 and 4.20, the non-trivial terms for which s = 0 are of
odd order, and the non-trivial terms for which t = 0 are powers of 2. Hence all differentials
of the spectral sequences are trivial and E∗,∗2 = E∗,∗∞ . Consequently, i∗G is surjective if and
only if nα is odd, that is, if and only if α = k. The result then follows from corollary 2.29.

4) By corollary 4.23 and proposition 4.1 the map

i∗G : H2(G, F̃1) −→ H2(G,Q2(F0)×)

is never surjective if α ≥ 3. The result is then a consequence of corollary 2.29. �

4.3. Extensions of maximal finite subgroups of Sn containing Q8

In this section, we establish under what condition a maximal finite subgroup G of
Sn with a quaternionic 2-Sylow subgroup extends to a subgroup of order n|G| in Gn(u).
Recall from theorem 1.35 that such a G exists if and only if p = 2 and n = 2m with m
odd, in which case

G ∼= Q8 o C3(2m−1) ∼= T24 × C2m−1.

Theorem 4.28. Let p = 2, n = 2m with m odd, and u ∈ Z×2 . A subgroup G isomorphic to
T24×C2m−1 in Sn extends to a maximal finite subgroup F of order n|G| = 48m(2m−1) in
Gn(u) if and only if u ≡ ±1 mod 8; this extension is unique up to conjugation. Moreover if
u 6≡ ±1 mod 8 and G′ is a subgroup isomorphic to Q8×C2m−1 in Sn, there is no extension
of G′ of order n|G′| in Gn(u).

Proof. Let i, j, ζ3, ζ2m−1 be elements of respective order 4, 4, 3 and 2m − 1 generating G,
and let T := 〈i, j, ζ3〉 ∼= T24. We first establish the structure of the centralizer of G. By
the centralizer theorem A.6, there is a Q2-algebra isomorphism

Dn ∼= Q2(T )⊗Q2 CDn(T ),

where CDn(T ) is a central division algebra of dimension m2 over Q2. Note that the
commutative extension Q2(ζ2m−1)/Q2 is maximal unramified in CDn(T ). Consequently

CD×n (G) ∼= Q2(ζ2m−1)×, CSn(G) ∼= Z2(ζ2m−1)×,

and as Q2(ζ2m−1)/Q2 is unramified we have CSn(G) ∼= CGn(u)(G).
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We now show the existence of the desired extension of order n|G| assuming u ≡ ±1 mod
8, that is u ≡ ±1 mod (Z×2 )2. Let t ∈ Z×2 be such that

t2 =
{
u if u ≡ 1 mod 8,
−u if u ≡ −1 mod 8.

The valuation map gives rise to a short exact sequence

1 −→ NSn(G) −→ NGn(u)(G) v−→ 1
n
Z/Z ∼= Z/n −→ 1.

Let ξu ∈ CD×n (T ) be an element satisfying ξmu = 2u and acting on ζ2m−1 by raising it to
its square. Consider the element (1 + i)tjξu ∈ D×n . It becomes a generator in Z/n as

v((1 + i)tjξu) = v(1 + i) + v(ξu) = 1
2 + 1

m
= m+ 2

n
,

where m+ 2 is prime to n. Furthermore as t, ξu commute with i, j, we have

[(1 + i)tjξu]n = [(1 + i)j(1 + i)jt2ξ2
u]m

= [(1 + i)(1− i)j2t2ξ2
u]m

= [−2t2ξ2
u]m

=
{
−(2u)m+2 if u ≡ 1 mod 8,
(2u)m+2 if u ≡ −1 mod 8,

and it is easy to check that (1 + i)tjξu ∈ ND×n (G). This shows the existence of F in the
case u ≡ ±1 mod 8.

We proceed to the non-existence part of the result for u 6≡ 1 mod 8. First note that
there is a short exact sequence

1 −→ CD×n (G) −→ ND×n (G) ρ−→ Aut(T24)×Gal(Q2(ζ2m−1)/Q2) −→ 1,

where |Aut(T24)| = 24 and Gal(Q2(ζ2m−1)/Q2) is cyclic of order m. Indeed, if x ∈
ND×n (G), then the conjugation action by x preserves both G and its 2-Sylow subgroup
Q. Consequently Q2(Q)× = Q2(T )× and CD×n (G) are preserved as well. As for the
surjectivity of ρ, we know from the Skolem-Noether theorem that the restriction of ρ to
Q2(T )× ⊆ ND×n (G) is surjective on Aut(T24), while by definition the element ξu ∈ ND×n (G)
maps to a generator of Gal(Q2(ζ2m−1)/Q2). Now since

CD×n (G) = Q2(ζ2m−1)× and v(ND×n (G)) = 1
n
Z

as shown in proposition 1.20, we know that

ND×n (G) = 〈CD×n (G), G, (1 + i), ξu〉 = 〈Z2[ζ2m−1]×, T, (1 + i), ξu〉.

In the case u 6≡ ±1 mod 8, we claim that there is no x ∈ ND×n (G) such that

v(x) = 1
n

and xn ∈ 〈G, 2u〉.
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Indeed, if such an x existed, there would be a y ∈ T and a z ∈ Z2[ζ2m−1]× such that
xm = (1 + i)yz, in which case

x2m = (1 + i)y(1 + i)yz2

= (1 + i)2(1 + i)−1y(1 + i)yz2

= 2iσ(y)yz2

would belong to 2z2T , for σ the automorphism of T induced by the conjugation by (1+i)−1.
In this case 2z2 ∈ 〈G, 2u〉 ∩Q2(ζ2m−1)×, and there would be a g ∈ G with

2z2 = g(2u) ⇔ z2 = gu.

Since both z2 and u are in Z2(ζ2m−1)×, so does g and z2 = ±u. As shown in corollary
3.38, this is impossible since m is odd and u 6≡ ±1 mod (Z×2 )2. It follows that G cannot be
extended as a subgroup of order n|G| in Gn(u) when u 6≡ ±1 mod 8. In fact, the argument
also shows the corresponding result for G′: since Q2(Q8) = Q2(T24), we have

Q2(G′) = Q2(G) and ND×n (G′) = ND×n (G),

and there is no x of valuation 1
n in ND×n (G′) such that xn ∈ 〈G′, 2u〉 ⊆ 〈G, 2u〉.

It remains to verify the statement on uniqueness when u ≡ ±1 mod 8. For a finite
group F of order n|G| extending G, we have F ∈ ND×n (G). Let

A := F ∩Ker(ρ) = 〈2u,−1, ζ2m−1〉 and B := F/A

Applying theorem 2.14 to the case F ∈ Gρ(ND×n (G), A,B), it is enough to check that the
cohomology group H1(B,Ker(ρ)/A) is trivial. As

|B| <∞, Ker(ρ)/A = Q2(ζ2m−1)×/A ∼= Zm2 ,

and because the B-module structure is trivial, we obtain

H1(B,Ker(ρ)/A) ∼= Hom(B,Zm2 ) = 0.

�

4.4. Example of the case n = 2

In this section, we illustrate the situation for n = 2 and we find the finite subgroups of
G2(u) up to conjugation for p ∈ {2, 3}, that is for those primes p for which p− 1 divides
n.

For a given p, we let ω ∈ S2 be a primitive (p2−1)-th root of unity and σ be the
Frobenius automorphism of Qp(ω)/Qp. For each u ∈ Z×p , we let ξu ∈ D×2 be an element
associated to σ such that ξ2

u = pu. As in example 4.4 and 4.17 the multiplicative subgroups
in the division algebra

D2 ∼= Qp(ω)〈ξu〉/(ξ2
u = pu, ξux = xσξu), x ∈ Qp(ω),

which correspond to finite subgroups of G2(u) are easily expressible in terms of ξu and ω.
This allows to determine the conjugacy classes of those finite subgroups explicitly.
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The case p = 3

Let p = 3. Here k = 1, m = 1 and α ∈ {0, 1}.

1) If α = 0, then F0 = 〈ω〉 ∼= C8 and F̃0 = F0 × 〈3u〉. As shown in example 4.4

F̃0 = F̃1 = F̃2, F̃3 = 〈F̃0, ξu〉 with ξ2
u = 3u,

and for ξu the class of ξu in Gn(u) the group

F3 = 〈ω, ξu〉 ∼= SD16

is a semidihedral group of order 16.

2) If α = 1, then F0 = 〈ζ3〉 × 〈ω4〉 ∼= C6 where ω4 = −1. The primitive third root of
unity ζ3 ∈ S2 may be given by

ζ3 = −1
2(1 + ωS) for S = ξ1.

In this case
ζ−1

3 = ζ2
3 = −1

2(1− ωS) and ζ2
3 − ζ3 = ωS.

According to theorem 4.13 there is no restriction on u, and x1 can be chosen as x1 =
(ζ2

3 − ζ3)t with t ∈ Z×3 such that

t2 =
{
u if u ≡ 1 mod 3,
−u if u ≡ −1 mod 3.

Indeed,
x2

1 = (ωS)2t2 = ω4S2t2 = −3t2,

so that v(x1) = 1
2 , and we have

x1ζ3x
−1
1 = −1

2(1 + (ωS)2(ωS)−1) = ζ3,

x1ω
2x−1

1 = ωSω2S−1ω−1 = (ω2)3.

Hence F̃1 = F̃2 = 〈x1〉 × 〈ζ3〉 × 〈ω4〉, where

x2
1 =

{
−3u if u ≡ 1 mod 3,
3u if u ≡ −1 mod 3,

and x2
1 =

{
−1 if u ≡ 1 mod 3,
1 if u ≡ −1 mod 3,

for x1 the class of x1 in G2(u). Furthermore ω2 ∈ ND×2
(F̃1) given that ω2ζ3ω

−2 = ζ2
3 , and

ω2x1ω
−2 = ω2ζ3(1− ζ3)ω−2 = ζ2

3 (1− ζ2
3 ) = (ζ3 + ζ2

3 )(ζ3 − ζ2
3 ) = −x1.

Thus F̃3 = 〈F̃1, ω
2〉 and F3 = 〈x1, ζ3, ω

2〉 is a maximal finite subgroup of order 24 in G2(u).

We let
D8 ∼= 〈a, b | a4 = b2 = 1, bab−1 = a−1〉

denote the dihedral group of order 8.
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Theorem 4.29. Let n = 2, p = 3 and u ∈ Z×p . The conjugacy classes of maximal finite
subgroups F of G2(u) are represented by

SD16 and
{
C3 oQ8 if u ≡ 1 mod 3,
C3 oD8 if u ≡ −1 mod 3.

Proof. We first consider the cases where F0 is such that [Q3(F0) : Q3] = 2; by theorem
2.30 we may assume that F0 is maximal. The first class originates from the case α = 0;
its existence and uniqueness follow from example 4.4 and theorem 4.13.

Suppose then that α = 1. If u ≡ 1 mod 3, the 2-Sylow subgroup 〈ω2, x1〉 of F3 is
isomorphic to Q8. As the latter does not contain a subgroup isomorphic to C2 × C2, the
short exact sequence

1 −→ F2 = 〈ζ3, x1〉 −→ F3 −→ C2 −→ 1

does not split. However, 〈ζ3〉 being normal in F3, we obtain F3 ∼= C3 oQ8. On the other
hand if u ≡ −1 mod 3, the group F3 contains a subgroup isomorphic to C2 × C2. In this
case we have a split extension

1 −→ F2 = 〈ζ3,−1, x1〉 −→ F3 −→ C2 −→ 1

with a 2-Sylow subgroup isomorphic to D8 ∼= 〈ω2, x1 | (ω2)4 = x2
1 = 1, x1ω

2x−1
1 = ω−2〉,

and F3 ∼= C3 oD8. Uniqueness of the class of F3 in G2(u) follows from theorem 4.13.
It remains to consider the case where F0 = {±1} ∼= C2, that is, F0 is maximal such

that Q3(F0) = Q3. Then obviously F̃0 = F̃1. Because Q×3 /(Q
×
3 )2 ∼= Z/2Z × {±1} is

represented by the elements of the set {±1,±3}, we know that there are three possible
quadratic extensions of Q3 given by

Lv := Q3/(X2 − v) for v ∈ {−1,±3};

each of them is unique up to conjugation. Among these L−1 = Q3(ζ8) and L−3 = Q3(ζ3)
have already been considered.

Hence suppose v = 3 and let x2 := Xt with t ∈ Z×3 such that

t2 =
{
u if u ≡ 1 mod 3,
−u if u ≡ −1 mod 3.

Then

x2
2 = 3t2 =

{
3u ≡ 1 mod 〈3u〉 if u ≡ 1 mod 3,
−3u ≡ −1 mod 〈3u〉 if u ≡ −1 mod 3,

and we have an extension

1 −→ F̃1 = 〈2u,±1〉 −→ F̃2 = 〈x2,±1〉 −→ C2 −→ 1,

where

F2 ∼=
{
C2 × C2 if u ≡ 1 mod 3,
C4 if u ≡ −1 mod 3.

By corollary 2.23, this group is unique up to conjugation. Because the group Aut(F0) is
trivial, proposition 2.25 implies F3 = F2. This class however is neither new nor maximal.



4.4. Example of the case n = 2 97

Indeed, for the group 〈ω, ξu〉 ⊆ D×2 whose corresponding group 〈ω, ξu〉 in Gn(u) represents
the class SD16 found above, one can take

x2 =
{
ξu if u ≡ 1 mod 3,
ωξu if u ≡ −1 mod 3,

in order to see that F2 ⊆ SD16. �

The case p = 2

Let p = 2. Here k = 2, m = 1 and α ∈ {1, 2}.

1) If α = 1, then F0 = 〈−ω〉 ∼= C6 and F̃0 = F0 × 〈2u〉. As shown in example 4.17

F̃0 = F̃1 = F̃2, F̃±3 = 〈F̃0, ξ±u〉 with ξ2
±u = ±2u,

and we have

F+
3 = 〈−ω, ξu 〉 ∼= C6 o C2, F−3 = 〈−ω, ξ−u 〉 ∼= C3 o C4,

for ξ±u the class of ξ±u in Gn(u).

2) If α = 2, then F0 = C4 ⊆ T24 with C4 = 〈i〉 and T24 = 〈i, j〉 o 〈ζ3〉. According to
theorem 4.27 and 4.28, a finite maximal extension of F0 in G2(u) is an extension of T24 if
and only if u ≡ ±1 mod 8. Let

x1 =


(1 + i)t with t2 = u if u ≡ 1 mod 8,
(1 + i)t with t2 = −u if u ≡ −1 mod 8,
2u if u ≡ ±3 mod 8.

Then we know that F̃1 = F̃2 = 〈x1〉 ×F0. In case u ≡ ±1 mod 8, we have F̃3 = F̃2 and we
find x2

1 = 2it2, x4
1 = −4u2 and x8

1 = (2u)4, so that the group F3 is cyclic of order 8; it is
unique up to conjugation by corollary 2.18.

We let
O48 ∼= 〈a, b, c | a2 = b3 = c4 = abc〉

denote the binary octahedral group of order 48.

Theorem 4.30. Let n = 2, p = 2 and u ∈ Z×2 . The conjugacy classes of maximal finite
subgroups F of G2(u) are represented by

C6 o C2, O48 if u ≡ 1 mod 8,
C3 o C4, T24 o C2 if u ≡ −1 mod 8,
C3 o C4, C6 o C2, D8 and T24 if u ≡ 3 mod 8,
C3 o C4, C6 o C2, Q8 and T24 if u ≡ −3 mod 8.

Proof. We first consider the cases where F0 is such that [Q2(F0) : Q2] = 2; by theorem
2.30 we may assume that F0 is maximal. The classes C6 oC2 and C3 oC4 originate from
the case α = 1. They are respectively represented by

F+
3 = 〈−ω, ξu 〉 and F−3 = 〈−ω, ξ−u 〉.
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Their existence and uniqueness follow from example 4.17 and theorem 4.27. We will now
analyse the case where F0 = 〈i〉 ∼= C4.

Suppose that u ≡ ±1 mod 8. Then

x2
1 = (1 + i)2t2 = 2it2 ≡

{
i mod 〈2u〉 if u ≡ 1 mod 8,
−i mod 〈2u〉 if u ≡ −1 mod 8,

x4
1 ≡ −1 mod 〈2u〉,

and
x1ix

−1
1 = i, x1jx

−1
1 = (1 + i)j (1− i)

2 = (1 + i)2

2 j = ij = k.

Therefore, we have a chain of subgroups

F̃0 = 〈i, 2u〉 ( F̃1 = F̃2 = 〈i, x1〉 ( F̃3 = 〈i, j, x1〉,

where F̃i is normal in F̃i+1 for 1 ≤ i ≤ 3, and where |F̃1/F̃0| = |F̃3/F̃2| = 2. Because
x2

1 ≡ ±i mod 〈2u〉 and x4
1 ≡ −1 mod 〈2u〉, we know that for x1 the class of x1 in Gn(u)

we have F1 ∼= C8 and there is an extension

1 −→ F1 = 〈x1〉 −→ F3 = 〈x1, j〉 −→ C2 −→ 1,

where jx1 ∈ F3 maps non-trivially to the quotient group. As

(jx1)2 = j(x1jx
−1
1 )x2

1 = j(ij)(2it2) = −2t2

≡
{
−1 mod 〈2u〉 if u ≡ 1 mod 8,
1 mod 〈2u〉 if u ≡ −1 mod 8,

and since

(jx1)x1(jx1)−1 = jx1j
−1 = −(jx1)2x−1

1 = 2t2x−1
1

≡
{
x−1

1 mod 〈2u〉 if u ≡ 1 mod 8,
−x−1

1 mod 〈2u〉 if u ≡ −1 mod 8,

we find

F3 ∼=
{
Q16 if u ≡ 1 mod 8,
C8 o C2 = SD16 if u ≡ −1 mod 8.

Clearly, F3 is a 2-Sylow subgroup of F := 〈F3, ω〉 and T24 = 〈i, j, ω〉 ⊆ F . As seen above,
x1 and jx1 both belong to ND×n (〈i, j〉) = ND×n (〈i, j, ω〉), and there is an extension

1 −→ T24 = 〈i, j, ω〉 −→ F −→ C2 −→ 1,

where x1, jx1 ∈ F are mapped non-trivially to the quotient group.
Assume for the moment that u ≡ 1 mod 8. We let a := x1, so that a2 = i, and we

consider the element of order 6

b := 1
2(1 + i+ j + k) ∈ T24 ⊆ F.

Then we can take ω = −b and we easily check that

b−1 = −ω2 = 1
2(1− i− j − k), b−1a2b = j.
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In particular F = 〈a, b〉 is generated by the elements a and b of respective order 8 and 6.
These two elements interact via ba = −a−1b−1 since

(bx1)2 = 1
4(2i+ 2j)2u = (i+ j)2u = −2u ≡ −1 mod 〈2u〉.

Letting c := ba, it follows that

F = 〈a, b | (ba)2 = b3 = a4 = −1〉 = 〈a, b, c | c2 = b3 = a4 = cba〉

is isomorphic to the binary octahedral group O48. Uniqueness of F up to conjugation is
given by theorem 4.28; its class is clearly maximal. In fact since

(jx1)ω(jx1)−1 = −1
2jx1(1 + i+ j + k)x−1

1 j−1

= −1
2j(1 + i+ k − j)j−1

= −1
2(1− i− k − j)

= ω2,

we may take ξ−u = jx1 in order to find that F contains F−3 = 〈b, jx1〉. On the other
hand, F does not have a subgroup isomorphic to F+

3 since its 2-Sylow subgroup F3 ∼= Q16
has no subgroup isomorphic to C2 × C2. The class of F+

3 is therefore maximal when
[Q2(F0) : Q2] = 2 and u ≡ 1 mod 8.

Now assume u ≡ −1 mod 8. Then (jx1)2 ≡ 1 mod 〈2u〉, in which case

F = 〈x1, j, ω〉 ∼= T24 o C2.

The above calculations show that we may take ξu = jx1 in order to find that F+
3 = 〈b, jx1〉

is a subgroup of F . On the other hand one easily verifies that the group 〈x1, i, j〉 does not
have an element of valuation 1

2 which has order 4 modulo 〈2u〉. This means that the class
of F does not contain that of F−3 . The latter is therefore maximal when [Q2(F0) : Q2] = 2
and u ≡ −1 mod 8.

We now suppose u ≡ ±3 mod 8. By theorem 1.35, a maximal finite subgroup F of
G2(u) containing F0 = 〈i〉 ∼= C4 satisfies C4 ⊆ F ∩ S2 ⊆ T24. If F ⊆ S2, then F ∼= T24
contains the subgroup F ∩Sn ∼= Q8 as in lemma 2.24.b. Otherwise if F 6⊆ S2, the 2-Sylow
subgroup of F ∩ S2 must be C4 by theorem 4.28, and we have a chain of subgroups

F̃0 = F̃1 = F̃2 ⊆ F̃3 = F̃ ,

where F̃3/F̃0 is a cyclic group of order at most 2. We are thus looking for an element
x3 ∈ D×2 such that x2

3 ∈ F̃0 = F0× 〈2u〉. By the Skolem-Noether theorem, there is a short
exact sequence

1 −→ CD×2
(F0) = Q2(i)× −→ ND×2

(F0) = 〈Q2(i)×, j〉 −→ C2 −→ 1,

where j is mapped non-trivially to the quotient group. Hence x3 is of the form x3 = jεz
for ε ∈ {±1} and z ∈ Q2(i)×. We have

x2
3 = jεzjεz = −(jεzj−ε)z = −N(z)
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for N : Q2(i)× → Q×2 the norm of the extension Q2(i)/Q2. In the proof of corollary 4.26
we have shown that N(Q2(i)×) = 〈2〉 × U2(Z2(i)×). Since

N(2 + i) = (2 + i)(2− i) = 5 ≡ −3 mod 8,

we have −6 ∈ N(Q2(i)×). We may therefore choose z such that

x2
3 =

{
2u if u ≡ 3 mod 8,
−2u if u ≡ −3 mod 8.

In this case F̃3 = 〈i, x3〉, and for x3 the class of x3 in G2(u) we get

F3 =

〈i, x3 | i4 = 1, x3ix
−1
3 = i−1, x2

3 = 1〉 ∼= D8 if u ≡ 3 mod 8,

〈i, x3 | i4 = 1, x3ix
−1
3 = i−1, x2

3 = −1〉 ∼= Q8 if u ≡ −3 mod 8,

as a maximal finite subgroup of G2(u). Since v(x3) = 1
2 , the conjugacy classes of F3

and T24 ∩ S2 ∼= Q8 must be distinct (although they are isomorphic if u ≡ −3 mod 8).
By theorem 4.27, F3 and T24 represent the only two maximal classes containing 〈i〉 when
u ≡ ±3 mod 8. The maximality of F+

3 and F−3 in this case is obvious.
It remains to consider the cases where F0 = {±1} ∼= C2, that is, F0 is maximal such

that Q2(F0) = Q2. Then obviously F̃0 = F̃1 = 〈2u,±1〉 ∼= Z × C2. Because Q×2 /(Q
×
2 )2 ∼=

Z/2Z × Z×2 /U3(Z×2 ) is represented by the elements of the set {±1,±2,±3,±6}, we know
that there are seven possible quadratic extensions of Q2 given by

Lv := Q2/(X2 − v) for v ∈ {−1,±2,±3,±6};

each of them is unique up to conjugation. Among these L−1 = Q2(ζ4) and L−3 = Q2(ζ3)
have already been considered. Furthermore if v = 3, and if a, b ∈ Q2, the element

(a+ bX)2 = a2 + 3b2 + 2abX

cannot belong to F̃1 = 〈2u,±1〉 and the later can never be extended non-trivially to some
F̃2.

Let us then consider the cases where v ∈ {±2,±6}. If u ≡ ±v
2 mod 8, we let x2 := Xt

with t ∈ Z×2 such that

t2 =
{2u

v if u ≡ v
2 mod 8,

−2u
v if u ≡ −v

2 mod 8.

Then

x2
2 = vt2 =

{
2u ≡ 1 mod 〈2u〉 if u ≡ v

2 mod 8,
−2u ≡ −1 mod 〈2u〉 if u ≡ −v

2 mod 8,

and for x2 the class of x2 in G2(u) we have

F2 = 〈x2,±1〉 ∼=
{
C2 × C2 if u ≡ v

2 mod 8,
C4 if u ≡ −v

2 mod 8.

These classes however are not new: in the case [Q2(F0) : Q2] = 2 and α = 1 treated above,
considering the situation where

x2 =
{
ξu if u ≡ 1 or − 3 mod 8,
ξ−u if u ≡ −1 or 3 mod 8,
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we see that C2 × C2 ⊆ F+
3 and C4 ⊆ F−3 . We also know from corollary 2.23 that the

group F2 is unique up to conjugation. On the other hand if u 6≡ ±v
2 mod 8, that is if v 6≡

±2u mod 8, there is no x ∈ Lv such that x2 ∈ 〈2u〉 mod {±1} and we have F̃2 = F̃1 = F̃0.
Finally, because Aut(F0) is trivial independently of the value of u, it follows from

proposition 2.25 that F3 = F2. �

Remark 4.31. For α = 2, we have shown

F3 ∼=


Q16 if u ≡ 1 mod 8,
SD16 if u ≡ −1 mod 8,
D8 if u ≡ 3 mod 8,
Q8 if u ≡ −3 mod 8.

When u ≡ ±3, the second conjugacy class obtained in theorem 4.27.3 is not maximal as
a finite subgroup of G2(u). It is contained in T24 and is represented by T24 ∩ S2 = Q8. It
comes from the existence of an element j of valuation zero in D×2 which induces the action
of Gal(Q2(i)/Q2) on F0 = 〈i〉 given by i 7→ −i.
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Appendix A:

Simple algebras

We provide here the essential background and some classic results on finite dimensional
simple algebras. An overview of the subject can be found in [16].

Definition. Let A be an associative ring with unit.

• A is called simple if the only two sided ideals of A are A itself and the zero ideal.

• A is a skew field if for every non-zero element a of A there is an element a−1 ∈ A
satisfying

aa−1 = 1 = a−1a.

Clearly, a commutative skew field is a field, and the set of non-zero elements A× of a
skew field A forms a group under multiplication. On the other hand, the center Z(A) of
a simple ring A is a field, as for any non-zero element a in Z(A) the two sided ideal aA
is A by simplicity, and its inverse a−1 exists in Z(A). In particular, a simple ring A is an
algebra over any subfield K of Z(A).

Definition. A finite dimensional simple algebra A over a field K which is also a skew
field is a division algebra over K. When K = Z(A), the division algebra A is said to be
central and is also referred to as an Azumaya algebra.

Example A.1. The algebra Mn(K) of all n × n matrices over a field K is a simple
algebra. To see this consider the canonical basis {eij} of Mn(K), where eij denotes the
matrix having zero coefficients everywhere except 1 for the entry on the i-th row and j-th
column. We need to show that given a non-zero two-sided ideal I of Mn(K), every eij
belongs to I. Since

eijekl =
{
eil if j = k,

0 if j 6= k,

we only have to show that I contains at least on of the eij . Let

a =
n∑

i,j=1
aijeij ∈ I

be an element of I with aij ∈ K and akl 6= 0 for some 1 ≤ k, l ≤ n. Then

aklekl = ekkaell ∈ I

and ekl ∈ I as desired. It is clear however that when n ≥ 2, Mn(K) is not a division
algebra.

Example A.2. When K is an algebraically closed field, there is no K-division algebra
other than K itself, for if A is such an algebra we must have K(a) = K for every element
a in A.
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Proposition A.3. If A is a division algebra over a field K, then any K-subalgebra B of
A is itself a division algebra.

Proof. For any non-zero element x ∈ B, we must show that x−1 ∈ A is an element of B.
Since B is of finite dimension over K, the elements of the sequence 1, x, x2, . . . are linearly
dependent via a polynomial in B we can assume to be unitary and with a non-zero constant
term; in other words

xm + bm−1x
m−1 + . . .+ b1x+ b0 = 0 with bi ∈ B and b0 6= 0.

Hence
x(xm−1 + bn−1x

n−2 + . . .+ b1) = −b0,

and therefore
x−1 = −b−1

0 (xm−1 + bn−1x
n−2 + . . .+ b1) ∈ B

as desired. �

The following classic result reduces the study of finite dimensional simple algebras to
the particular case of division algebras. A proof can be found in [12] theorem 2.5 or [18]
section 7a.

Theorem A.4 (Wedderburn). A finite dimensional simple algebra A over a field K is
isomorphic as a K-algebra to Mn(D) for D a K-division algebra. The integer n is unique
and D is unique up to isomorphism.

Corollary A.5. The dimension of a central simple algebra is a square.

Proof. If A is a central simple algebra of dimension [A : K] over a field K and if K denotes
the algebraic closure of the latter, we obtain a central simple algebra A⊗K K of the same
dimension

[A⊗K K : K] = [A : K].

By Wedderburn’s theorem A ⊗K K is K-isomorphic to Mn(D) for D a central division
algebra over K. Because K is algebraically closed, we have D = K by example A.2. This
implies that A⊗K K has dimension n2 over K. �

From the Wedderburn theorem, we know that if A is a central simple algebra of
dimension n2 over K, then A ∼= Mr(D) for D an Azumaya algebra over K, and there is
an integer m with

n2 = [A : K] = r2[D : K] = r2m2.

The skewfield D is called the skewfield part of A, the integer deg(A) = n is the degree of
A and ind(A) = m is its index.

Another classic result we use in the text is the following. For an algebra A and a
subalgebra B of A, we denote by

CA(B) = {a ∈ A | ab = ba for any b ∈ B}

the centralizer of B in A, and we denote by Bop the opposite ring of B. As shown in [12]
theorem 8.4, we have:
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Theorem A.6 (Centralizer). Let A be a central simple algebra of finite dimension over
a field K, and let B be a simple subalgebra of A. Then

1) there is a K-algebra homomorphism CA(B)⊗K M[B:K](K) ∼= A⊗K Bop;

2) CA(B) is a central simple algebra over Z(B);

3) CA(CA(B)) = B;

4) CA(B)⊗Z(B) B ∼= CA(Z(B)) via the map

CA(B)×B → CA(Z(B)) : (x, b) 7→ xb.

In particular if B is central over K, then

Z(B) = K, CA(Z(B)) = A and [A : K] = [B : K][CA(B) : K].

Corollary A.7. The degree of a commutative extension L of K contained in a finite
dimensional central simple K-algebra A divides deg(A).

Proof. Because L ⊆ CA(L), we have

[CA(L) : K] = [CA(L) : L][L : K],

and therefore
[A : K] = [L : K][CA(L) : K] = [L : K]2[CA(L) : L].

�

Thus the problem of describing subfields of finite dimensional central simple algebras
is reduced to the problem of describing their maximal subfields, that is, those subfields of
A containing K that are not properly contained in a subfield of A. Because A is assumed
to be of finite dimension, maximal subfields always exist in A.
Proposition A.8. If L is a maximal subfield of a finite dimensional central simple K-
algebra A, then CA(L) ∼= Mn(L). In particular, if A is an Azumaya algebra, then

CA(L) = L and [L : K] = [A : K]
1
2 = ind(A).

Proof. According to the Wedderburn theorem, if the first assertion was not true we would
have CA(L) ∼= Mn(D) for a noncommutative division algebra D over L. This division
algebra would then contain a subfield properly containing L, and this would contradict
the maximality of L in A. Furthermore if A is a skew field, we must have n = 1, so that
CA(L) = L. By the centralizer theorem,

[A : K] = [CA(L) : K][L : K] = [L : K]2,

as desired. �

We end the section by stating one of the most useful results in the theory of simple
algebras. See [18] section 7d or [12] section 8 for proofs.
Theorem A.9 (Skolem-Noether). Let A be a finite dimensional central simple algebra
over a field K and let B be a simple K-subalgebra of A. If ϕ : B → A is a K-algebra
homomorphism, then there exists a unit a ∈ A× satisfying

ϕ(b) = aba−1 for all b ∈ B.

In particular, every K-isomorphism between subalgebras of A can be extended to an inner
automorphism of A.
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Appendix B:

Brauer groups of local fields

We collect here the needed results on Brauer groups, cyclic algebras and local class
field theory. More details can be found in [18] chapter 7.

B.1. Brauer groups

Let K be a field and let A,B be a central simple K-algebras. We say that A and B
are equivalent, denoted A ∼ B, if their skewfield parts are K-isomorphic, in other words
if there is an isomorphism of K-algebras

A⊗K Mr(K) ∼= B ⊗K Ms(K)

for some integers r and s. Let [A] and [B] denote the respective equivalence classes of A
and B. Under multiplication defined by

[A] · [B] = [A⊗K B],

the set of classes of central simple K-algebras forms an abelian group denoted Br(K); it
is called the Brauer group of K. Clearly, its unit is [K].

For an extension L of K, there is a group homomorphism

Br(K) −→ Br(L) : [A] 7−→ [L⊗K A],

whose kernel Br(L/K) = Br(L,K) is the relative Brauer group of L over K. Thus
[A] ∈ Br(L/K) if and only if L ⊗K A ∼= Mr(L) for some integer r, in which case we say
that L splits A, or is a splitting field of A. As shown in [18] theorem 28.5 and remark 28.9,
we have the following:

Proposition B.1. For D a central division algebra over K, a field L splits D if and only
if it embeds as a maximal subfield of D.

For [A] ∈ Br(K), we define the exponent exp[A] of [A] to be the order of [A] in Br(K),
and we define the index ind[A] of [A] to be the index of the skewfield part of A, that is

ind[A] = ind(D) = [D : K]
1
2

for D a division algebra equivalent to A in Br(K). As given in [18] theorem 29.22, we
have:

Proposition B.2. For any [A] in Br(K), ind[A] is a multiple of exp[A].
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B.2. Crossed algebras

Let L be a Galois extension of K with Galois group G = Gal(L/K). We define an
algebra

A =
∑
σ∈G

Luσ

having as L-basis a set of symbols {uσ | σ ∈ G} satisfying

σ(x)uσ = uσx, uσuτ = fσ,τuστ , and ρ(fσ,τ )fρ,στ = fρ,σfρσ,τ

for x ∈ L, ρ, σ, τ ∈ G and fσ,τ ∈ L×. A map f : G × G → L× satisfying this third
condition is a factor set from G to L×. Given such an f , the algebra A thus constructed
is a crossed(-product) algebra and is denoted (L/K, f).

According to [18] theorem 29.6, for each f , (L/K, f) is a finite dimensional central
simple algebra over K having L as maximal subfield.

Proposition B.3. If A = (L/K, f) and exp[A] = [L : K], then A is a division algebra.

Proof. Let n = [L : K], so that [A : K] = n2, and let D be the skewfield part of A with
A ∼= Mr(D) and m = ind[D]. Then n = mr, and exp[A] divides m by proposition B.2.
Because exp[A] = n, we have m = n and r = 1, in which case A is a division algebra. �

We also know from [18] theorem 29.6 that the set of factor sets from G to L× can
be partitioned under an equivalence relation to form a multiplicative group of classes [f ],
isomorphic to the second cohomology group H2(G,L×), in such a way that two crossed
algebras (L/K, e), (L/K, f) areK-isomorphic if and only if [e] = [f ]. Then by [18] theorem
29.12 we have the following:

Theorem B.4. Let L be a finite Galois extension of a field K with Galois group G. Then

H2(G,L×) ∼= Br(L/K)

given by mapping [f ] ∈ H2(G,L×) onto the class [(L/K, f)] ∈ Br(L/K).

Remark B.5. As noted in remark (i) following theorem 29.13 of [18], if K ⊆ K ′ ⊆ L
are finite Galois extensions with Galois groups G = Gal(K/L) and G′ = Gal(K ′/L), then
there is a commutative diagram

H2(G,L×)
∼= //

res
��

Br(L/K)

_⊗KK′
��

H2(G′, L×)
∼= // Br(L/K ′)

where the left hand vertical map is the restriction homomorphism induced by the inclusion
G ⊆ G′.

B.3. Cyclic algebras

Let L be a finite Galois extension of a field K with cyclic Galois group G = Gal(L/K)
of order n generated by σ; such an extension is called cyclic. Let a be an element of K×
and form the associative K-algebra

A = (L/K, σ, a) =
n−1∑
i=0

Lui,
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for an element u satisfying ux = σ(x)u and un = a for all x ∈ L, where u0 is identified
with the unit of A. Such a K-algebra is called cyclic.

As explained in [18] section 30, A is isomorphic to the crossed algebra (L/K, f) where
the factor set f from G to L× is given by

fσi,σj =
{

1 if i+ j < n,

a if i+ j ≥ n,

for 0 ≤ i, j ≤ n− 1. In particular, A is a central simple K-algebra split by L. Conversely,
[18] theorem 30.3 establishes that if L/K is a cyclic extension with Galois group G of
order n generated by σ, and if f is a factor set from G to L×, then the crossed algebra
(L/K, f) is isomorphic to the cyclic algebra (L/K, σ, a) for

a =
n−1∏
i=0

fσi,σ ∈ K×.

According to [18] theorem 30.4, we have:

Proposition B.6. Let L/K be a cyclic extension with Galois group of order n generated
by σ, and let a, b ∈ K×. Then

1) (L/K, σ, a) ∼= (L/K, σs, as) for any integer s prime to n;

2) (L/K, σ, 1) ∼= Mn(K);

3) (L/K, σ, a) ∼= (L/K, σ, b) if and only if ab belongs to the norm NL/K(L×). In partic-
ular, (L/K, σ, a) ∼= K if and only if a ∈ NL/K(L×);

4) (L/K, σ, a)⊗K (L/K, σ, b) ∼= (L/K, σ, ab).

Corollary B.7. Let A = (L/K, σ, a) be a cyclic algebra. Then exp[A] is the smallest
positive integer s such that as ∈ NL/K(L×).

Proof. Since [A]s = [(L/K, σ, as)], we have [A]s = 1 if and only if as ∈ NL/K(L×). �

We know from class field theory and theorem B.4 that the map

K× −→ Br(L/K) : a 7−→ [(L/K, σ, a)]

is an epimorphism of group which induces an isomorphism:

Theorem B.8. If L/K is a cyclic extension with Galois group G, then

H2(G,L×) ∼= Br(L/K) ∼= K×/NL/K(L×).

�
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B.4. The local case

Suppose that K is a local field with residue field of cardinality q and a uniformizing
element πK . Let n be a positive integer, Kn an unramified extension of degree n over K,
and let σ ∈ Gal(Kn/K) ∼= Z/n be the Frobenius of this extension. For a positive integer
r, we consider the cyclic algebra A = (Kn/K, σ, π

r
K) and we define the Hasse invariant of

A to be
invK(Kn/K, σ, π

r
K) = r

n
.

By [18] theorem 31.1 and 31.5, we know that the isomorphism class of A only depends on
r modulo n, and that the skewfield part of A has the same invariant as A. Consequently,
the invariant of A only depends on the class [A] in Br(K) and there is a well defined map

invK : Br(K) −→ Q/Z;

it is in fact an isomorphism by [18] theorem 31.8:

Theorem B.9. If K is a local field, then Br(K) ∼= Q/Z via invK .

By [18] theorem 31.9, we have:

Theorem B.10. Let L be a finite extension of degree m over a local field K. There is a
commutative diagram

Br(K) invK∼=
//

L⊗K_
��

Q/Z

·m
��

Br(L) invL
∼=

// Q/Z

where the right hand vertical map is multiplication by m.

Corollary B.11. Let L be a finite Galois extension of degree m over a local field K with
Galois group G. Then

H2(G,L×) ∼= Br(L/K) ∼= Z/m.

Proof. By theorem B.10 and the definition of Br(L/K), there is a commutative diagram

1 // Br(L/K) // Br(K) //

∼=
��

Br(L)
∼=

��
Q/Z m

// Q/Z

where the top row is exact, the bottom map is multiplication by m, and the vertical maps
are isomorphisms. Hence Br(L/K) is isomorphic to the kernel of the bottom map. �

Corollary B.12. If K ⊆ K ′ ⊆ L are finite Galois extensions of local fields with Galois
groups G = Gal(L/K) and G′ = Gal(L/K ′), then the restriction map

H2(G,L×) −→ H2(G′, L×)

induced by the inclusion G′ ⊆ G is surjective.
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Proof. The diagram

H2(G,L×)
∼= //

res
��

Br(L/K) inc //

��

Br(K) _⊗KL//

_⊗KK′
��

Br(L)
∼= // Q/Z

H2(G′, L×)
∼= // Br(L/K ′) inc // Br(K ′)

_⊗′KL// Br(L)
∼= // Q/Z

given by theorem B.4 and B.10 is commutative by remark B.5. By corollary B.11, the
relative Brauer groupsBr(L/K) andBr(L/K ′) are cyclic of order |G| and |G′| respectively,
and the second square in the above diagram may be identified with the commutative square

Z/|G|

��

inc // Q/Z

· |G||G′|
��

Z/|G′| inc // Q/Z,

where the right hand vertical map is multiplication by |G||G′| according to theorem B.10. In
particular this latter map is surjective and sends 1

|G| to
1
|G′| . Hence the generator of Z/|G|

associated to 1
|G| must be sent to a generator of Z/|G′|. The second vertical map in the

first diagram given above is therefore surjective and the result follows. �

Proposition B.13. Let L/K be a finite Galois extension of local fields of characteristic
zero with cyclic Galois group G.

1) If L/K is unramified, the valuation map induces an isomorphism

H2(G,L×) ∼= H2(G, 1
e(L)Z) ∼= 〈πK〉/〈π|G|K 〉,

for e(L) the ramification index of L/Qp and πK a uniformizing element of K.

2) If L/K is totally ramified, the valuation map induces an isomorphism

H2(G,L×) ∼= H2(G,O×L ),

for OL the ring of integers of L.

Proof. The valuation map v = vQp : L× → 1
e(L)Z is surjective and induces a short exact

sequence
1 −→ O×L −→ L× −→ 1

e(L)Z −→ 1,

which in turns induces a long exact sequence

H1(G, 1
e(L)Z)→ H2(G,O×L )→ H2(G,L×)→ H2(G, 1

e(L)Z)→ H3(G,O×L ).

If L/K is unramified, [20] proposition 1 says that H i(G,O×L ) is trivial for all i ∈ Z and
hence yields the result.

If L/K is totally ramified, there are unifomizing elements πK of K and πL of L such
that

πK = (πL)|G|.
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Therefore
v(πK) = |G|v(πL) = |G| · 1

e(L)Z,

and consequently the map H2(G,L×) → H2(G, 1
e(L)Z) is trivial. Moreover, since G is

finite and 1
e(L)Z is infinite, we have H1(G, 1

e(L)Z) = 0 and the result follows. �

Example B.14. For any prime p and α ≥ 1, we have

p ∈ NQp(ζpα )/Qp(Qp(ζpα)×).

Indeed, for 1 ≤ r ≤ α− 1 let σ be a generator of Gal(Qp(ζpr+1)/Qp(ζpr)) satisfying

σ(ζpr+1) = ζpr+1ζp,

and define
Σi(X1, . . . , Xp)

to be the homogeneous symmetric polynomial of degree i in p variables X1, . . . , Xp, so
that

p∏
i=1

(X −Xi) =
p∑
i=1

(−1)iΣi(X1, . . . , Xn)Xn−i.

Then for 1 ≤ k ≤ p− 1 we have

NQp(ζpr+1 )/Qp(ζpr )(1− ζkpr+1) =
p−1∏
j=0

(1− σj(ζkpr+1))

=
p∑
i=0

(−1)i Σi(ζkpr+1 , σ(ζkpr+1), . . . , σp−1(ζkpr+1))

=
p∑
i=0

(−1)i Σi(ζkpr+1 , σ(ζpr+1ζp)k, . . . , σ(ζpr+1ζp−1
p )k)

=
p∑
i=0

(−1)i ζikpr+1 Σi(1, σ(ζkp ), . . . , σ(ζ(p−1)k
p ))

= 1− ζkpr ,

where the last equality is a consequence of the fact that

Σi(1, σ(ζkp ), . . . , σ(ζ(p−1)k
p )) =

{
1 if i = 0, p,
0 if i 6= 0, p.

As shown in corollary 3.2

p =
p−1∏
k=1

(ζkp − 1) = NQp(ζp)/Qp(ζp − 1).

Consequently

p ∈ NQp(ζpα )/Qp(Qp(ζpα)×) and p ∈ NQp(ζpα )/Qp(ζp)(Qp(ζpα)×).

Moreover if p = 2, we have

2, (1± ζ4) ∈ NQ2(ζ2α )/Q2(ζ4)(Q2(ζ2α)×) for α ≥ 2.
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For a local field K of characteristic zero with uniformizing element πK and ring of
integers OK , we let

Ui(O×K) = {x ∈ O×K | vK(x− 1) ≥ i}

= {x ∈ O×K | x ≡ 1 mod πiK}, i ≥ 0,

be the i-th group in the filtration

O×K = U0(O×K) ⊇ U1(O×K) ⊇ U2(O×K) ⊇ . . .

Proposition B.15. Let L/K be a finite Galois extension of local fields of characteristic
zero with Galois group G. If L/K is unramified, then the trace

TrG = TrL/K : l −→ k

is surjective on the residue fields, and the norm

NG = NL/K : O×L −→ O
×
K

is surjective on the groups of units of the rings of integers.

Proof. Since G = Gal(l/k) is cyclic, Hilbert’s theorem 90 yields H1(G, l) = 0. Let t denote
a generator of G, and let Tr := TrG. In the periodic complex

l
1−t // l

Tr // l
1−t // l

Tr // . . .

we have Ker(Tr) = Im(1− t). Hence

|Ker(1− t)| = |l|
|Im(1− t)| = |l|

|Ker(Tr)| = |Im(Tr)|,

and H2(G, l) = 0. Because Ker(1− t) = k, it follows that Im(TrG) = k.
In order to show the second assertion, we first note that for any i ≥ 1 the norm NG

becomes the trace

Tr : Ui(O×L )/Ui+1(O×L ) −→ Ui(O×K)/Ui+1(O×K)

on the successive quotients of the filtration of the units of the rings of integers; these maps
are surjective by the first assertion. For each i ≥ 1, consider the commutative diagram

1 // Ui(O×L )/Ui+1(O×L ) //

Tr
����

U1(O×L )/Ui+1(O×L ) //

��

U1(O×L )/Ui(O×L ) //

��

1

1 // Ui(O×K)/Ui+1(O×K) // U1(O×K)/Ui+1(O×K) // U1(O×K)/Ui(O×K) // 1,

where the horizontal lines are exact and the vertical maps are induced by the norm. If
i = 1 the vertical maps are obviously surjective. Moreover if i ≥ 2 and if the vertical
map on the right hand side is surjective, then the middle one is also surjective by the five
lemma. We conclude by induction on i that NG is surjective on U1(O×K), and consequently
on O×K . �

Remark B.16. According to classical Galois theory (see for example [14] chapter VI
theorem 1.12), if K1 and K2 are extensions of Qp such that K1K2 = L, K1 ∩ K2 = K
and L/K is Galois with abelian Galois group, then any x ∈ K such that x ∈ NK1/K(K×1 )
satisfies x ∈ NL/K2(K×).
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Appendix C:

Division algebras over local fields

We provide here a short account on division algebras over local fields. The reader may
refer to [18] chapter 3 for more details.

Let K be a local field with residue field of cardinality q, let πK be a uniformizing
element of K, and let D be a central division algebra of dimension n2 over K. As shown
in [18] theorem 12.10, the normalized valuation vK : πK 7→ 1 on K extends in a unique
way to a valuation v = vD on D. By [18] section 13, we know that the skew field D is
complete with respect to v and that the maximal order OD of D is of degree n2 over the
ring of integers OK of K. Let d and k denote the residue fields of D and K respectively.
By [18] theorem 13.3 we have

n2 = ef,

where
• e = e(D/K) = |v(D×)/v(K×)| denotes the ramification index of D over K;

• f = f(D/K) = [d : k] denotes the inertial degree of D over K.

Proposition C.1. If D is a central division algebra of dimension n2 over a local field K,
then

e(D/K) = f(D/K) = n.

Proof. Because there exists an element x ∈ D such that v(x) = e(D/K)−1 and as x belongs
to a commutative subfield of degree at most n over K, it follows that e(D/K) ≤ n. On
the other hand k is a finite field and d = k(y) is a commutative field, for y the image in d
of some suitable y ∈ D. Hence f(D/K) ≤ n and the result follows. �

Since [d : k] = n, we can find an x ∈ OD such that k(x) = d. Let Kn = K(x). Because
Kn is commutative, [Kn : K] ≤ n. On the other hand, x is an element of the residue field
kn of Kn, while kn = d, so that [kn : k] = n. It follows that Kn is a maximal unramified
extension of degree n over K in D. Such a Kn is referred to as an inertia field of D.
Of course the above construction of Kn is not unique, but the Skolem-Noether theorem
implies that all inertia fields are conjugate.

Let ω ∈ D× be a root of unity satisfying

K(ω) = Kn;

in particular ω is of order qn−1. According to [18] theorem 14.5, there exists a uniformizing
element π of D satisfying

πn = πK and πωπ−1 = ωq
s
,

where s < n is a positive integer prime to n, uniquely determined by D, which does not
depend upon the choice of ω or π. Let r ∈ Z be such that rs ≡ 1 mod n; in particular r is
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prime to n. Using [18] theorem 31.1 and proposition B.6, we know that D is isomorphic
to the cyclic algebra

D ∼= (Kn/K, σ
s, πK) ∼= (Kn/K, σ, π

r
K),

and is classified up to isomorphism by its invariant

invK(D) = r

n
∈ Q/Z.

In other words we have:

Theorem C.2. All Azumaya algebras over a local field K are classified up to isomor-
phism, via invK , by the elements of the additive group Q/Z.

Notation C.3. For a class in Q/Z represented by an element r/n ∈ Q with (r;n) = 1
and 1 ≤ r < n, the corresponding Azumaya algebra is denoted D(K, r/n). When K = Qp,
r = 1 and p is understood, we write Dn = D(Qp, 1/n).

Corollary C.4. If D is a central division algebra over a local field, then exp[D] = ind[D].

Proof. Suppose invK(D) = r
n , where K denotes the center of D and [D : K] = n2. By

definition ind[D] = n. We know from proposition B.2 that exp[A] must divide n. Because
r is prime to n, it follows that exp[A] = n. �

Remark C.5. Suppose invK(D) = r
n . By the Skolem-Noether theorem, the Frobenius

automorphism σ of K(ω) = Kn is given by

σ(x) = ξxξ−1

for a suitable element ξ ∈ D× determined up to multiplication by an element of K(ω)×.
Then clearly the image of v(ξ) in

1
n
Z/Z ⊆ Q/Z

is none other than the invariant of D. Furthermore, as σn is the identity on the inertia
field K(ω), we know that ξn commutes with all elements of K(ω) and hence belongs to
K(ω). Because

v(ξ) = 1
n
v(ξn),

we have v(ξ) = r/n. Hence ξn = πrKu for a unit u ∈ K(ω)×. In this case,

D ∼= D(K, r/n) ∼= K(ω)〈ξ〉/(ξn = πrK , ξx = xσξ)

as mentioned in the paragraph following the proof of [18] theorem 14.5.

So far, we have dealt with unramified extensions of the base field K, but there are in
D many more commutative subfields. It can in fact be shown that all extensions of K of
degree dividing n exist; see [18] theorem 31.11, [7] 23.1.4 and 23.1.7, or [20] section 1 for
proofs.

Theorem C.6 (Embedding). If D is a central division algebra of dimension n2 over a
local field K, then the degree of a commutative extension L of K in D divides n, and any
extension L of K whose degree divides n embeds as a commutative subfield of D.
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In particular, a local field L of characteristic zero embeds in some Dn, in which case
its group of units L× is a subgroup of D×n . The structure of L×, both algebraically
and topologically, is well known and is recorded below; see for example [15] chapter II
proposition 5.3 and 5.7.

Proposition C.7. Let L be a local field of characteristic zero with residue field l ∼= Fpf ,
roots of unity µ(L) and uniformizing element πL. Then

L× = 〈πL〉 × O×L
= 〈πL〉 × l× × U1(O×L )
∼= Z× µ(L)× Z[L:Qp]

p .

The most frequently encountered fields are the cyclotomic extensions of Qp. Recall the
following result from [15] chapter II proposition 7.12 and 7.13.

Proposition C.8. Let ζ be a primitive k-th root of unity for k = βpα ≥ 1 with (β; p) = 1,
and let f be the smallest positive integer such that pf ≡ 1 mod β. Then Qp(ζ)/Qp is a
Galois extension with ramification index ϕ(pα) and residue degree f , where

µ(Qp(ζ)) ∼=
{
Z/pα(pf−1) if p > 2 or α ≥ 1,
Z/2(2f−1) if p = 2 and α = 0,

Gal(Qp(ζ)/Qp) ∼=
{

(Z/pα)× × Z/f if α ≥ 1,
Z/f if α = 0.

Corollary C.9. We have

Qp(ζ)× ∼= Z× Zp[ζ]× ∼=
{
Z× Z/pα(pf−1)× Zϕ(pα)f

p if p > 2 or α ≥ 1,
Z× Z/2(2f−1)× Zf2 if p = 2 and α = 0.

Proof. This follows from proposition C.7 and C.8. �

We end the section by analysing the invariant of some embeddings that are useful in
the text.

Proposition C.10. Let D be a central division algebra of invariant r
n over a local field

K for r prime to n, let L ⊆ D be a commutative extension of K, and let m be such that
n = m[L : K]. Then CD(L) is a central division algebra of invariant r

m over L.

Proof. Using the centraliser theorem A.6, we know that CD(L) is a central division algebra
of dimension m2 over L, and we have

D ⊗K L ∼= CD(L)⊗K Mn/m(K)
∼= CD(L)⊗L L⊗K Mn/m(K)
∼= CD(L)⊗LMn/m(L).

Hence the invariant of CD(L) is that of D ⊗K L, which is r
n [L : K] by theorem B.10. �

Proposition C.11. For any prime p, Dm embeds as a Qp-subalgebra of Dn if and only if
n = km with k ≡ 1 mod m.
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Proof. If D(Qp, 1/m) embeds as a Qp-subalgebra of D(Qp, 1/n), then the centralizer the-
orem provides an isomorphism

D(Qp, 1/n) ∼= D(Qp, 1/m)⊗Qp CDn(D(Qp, 1/m)),

so that there is an integer k satisfying n = km. Because CDn(D(Qp, 1/m)) is a central
division algebra over Qp, we also know the existence of an integer l such that

CDn(D(Qp, 1/m)) ∼= D(Qp, l/k).

The law on the Brauer group Q/Z being defined as such a tensor product over the Qp-
Azumaya algebra classes (see appendix B), it follows that

1
n
≡ 1
m

+ l

k
mod Z. (∗)

Consequently 1 ≡ k + lm mod n, and k ≡ 1 mod m.
Conversely, if n = km with k ≡ 1 mod m, there is an integer l prime to k such that

1 ≡ k+lm mod n. It follows that (∗) is verified andD(Qp, 1/m) embeds as aQp-subalgebra
of D(Q, 1/n). �

Corollary C.12. When p = 2, D2 embeds in Dn if and only if n ≡ 2 mod 4. �



Appendix D:
Endomorphisms of formal group laws

We give here a short account on endomorphisms of formal group laws of finite height
n defined over a field of characteristic p > 0. We summarize how these occurs as elements
of the central division algebra Dn = D(Qp, 1/n) of invariant 1

n over Qp. The reader may
refer to [7] or [5] for more details.

Definition. Let R be a commutative ring with unit. A formal group law over R is a
power series F = F (X,Y ) = X +F Y ∈ R[[X,Y ]] satisfying

• F (X, 0) = F (0, X) = X,

• F (X,Y ) = F (Y,X), and

• F (X,F (Y, Z)) = F (F (X,Y ), Z) in R[[X,Y, Z]].

We denote by FGL(R) the set of formal group laws defined over R. For F,G ∈ FGL(R),
a homomorphism from F to G is a power series f = f(X) ∈ R[[X]] without constant term
such that f(F (X,Y )) = G(f(X), f(Y )). It is an isomorphism if it is invertible, that is, if
the coefficient of X is a unit in R.

The set HomR(F,G) of homomorphisms from F to G forms an abelian group under
formal addition

G(f(X), g(X)) = f(X) +G g(X).
When F = G, the group EndR(F ) = HomR(F, F ) becomes a ring via the composition of
series. Its group of units is written EndR(F )× = AutR(F ). For an integer n ∈ Z, we define
the n-series [n]F to be the image of n in EndR(F ) via the canonical ring homomorphism
Z→ EndR(F ), in other words

[n]F (X) = X +F . . .+F X︸ ︷︷ ︸
n times

.

As shown in [5] chapter I §3, when R = k is a field of characteristic p > 0, any homomor-
phism f ∈ Homk(F,G) can be written as a series

f(X) =
∑
i≥1

aiX
ipn

for some integer n = ht(f) ∈ N∗ ∪ {∞} defined as the height of f , where by convention
ht(f) = ∞ if f = 0. For F ∈ FGL(k) we then define ht(F ) to be the height of [p]F . As
shown in [5] chapter III §2, this induces a valuation ht on Endk(F ) which turns Endk(F )
into a complete local ring. In particular, the definition of [n]F extends to the p-adic
integers Zp, and ht(f) = 0 if and only if f is invertible.

Let us fix a separably closed field K of characteristic p > 0. As shown in [5] chapter
III §2, we have the following three results: the first two provide a classification of the K-
isomorphism classes of formal group laws defined over K and the third one describes the
endomorphism ring as a subring of the central division algebra of Hasse invariant 1/ht(F )
over Qp.
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Theorem D.1 (existence). For a positive integer n, there exists a formal group law
Fn ∈ FGL(Fp) such that [p]Fn(X) = Xpn; it is the Honda formal group law of height n.

Theorem D.2 (Lazard). Two formal group laws F,G ∈ FGL(K) are K-isomorphic if
and only if ht(F ) = ht(G).

Theorem D.3 (Dieudonné - Lubin). For a formal group law F ∈ FGL(K) of finite
height n, the ring EndK(F ) is isomorphic to the maximal order On of the central division
algebra Dn = D(Qp, 1/n) of invariant 1

n over Qp.

We now describe the image in Dn of the ring of endomorphisms defined over a finite
subfield of K. For this we identify On with EndK(Fn) and fix two integers n, r ≥ 1. Let
v denote the unique extension to D×n of the p-adic valuation p 7→ 1 on Q×p . Let Cr be the
set of conjugacy classes of elements of valuation r

n in On, and let I(Fpr , n) denote the set
of Fpr -isomorphism classes of formal group laws of height n. Define the map

Φ : I(Fpr , n) −→ Cr

by assigning to a formal group law F ∈ FGL(Fpr) of height n and a K-isomorphism
f : Fn → F , the conjugacy class of ξrF ∈ O×n the element associated to the endomorphism
f−1Xprf . Then Φ is a bijection (see [7] 24.4.2, or [5] chapter III §3 theorem 2).

Theorem D.4. The map

EndFpr (F ) −→ COn(ξrF ) : x 7−→ f−1xf

is a ring isomorphism from EndFpr (F ) to the subring of all elements of On commuting
with ξrF .

Proof. In EndK(F ) ∼= On, the ring EndFpr (F ) is characterized by ξrFx = xξrF , as a series
g(X) ∈ K[[X]] satisfies g(X)pr = g(Xpr) if and only if its coefficients are in Fpr . �

In other words if m = [Qp(ξrF ) : Qp], then m divides n and EndFpr (F ) is isomorphic
to the maximal order of the division algebra

D(Qp(ξrF ),m/n) ∼= CDn(ξrF ) ⊆ Dn.

In particular EndFpr (F ) is the ring of integers of the Qp-algebra EndFpr (F )⊗Zp Qp.

Corollary D.5. There exists a formal group law F defined over Fpr and of height n such
that

EndFpr (F ) ∼= EndK(F ) ∼= On

if and only if r is a multiple of n.

Proof. This follows from the fact that the valuation group of the center Qp of Dn is Z,
and hence that EndFpr (F ) ∼= On if and only if EndFpr (F ) ⊆ Zp. �

Corollary D.6. If r = 1, then EndFp(F ) is commutative and its field of fractions is
totally ramified of degree n over Qp.
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Proof. In this case, the element ξF ∈ Dn has valuation 1
n . Hence Qp(ξF ) has ramification

index at least n over Qp. Since Qp(ξF ) is a commutative subfield of Dn, we have [Qp(ξF ) :
Qp] ≤ n and Qp(ξF )/Qp is totally ramified of degree n. The commutativity of EndFp(F )
follows from the fact that the centralizer of Qp(ξF ) in Dn is Qp(ξF ) itself. �

Generally EndK(F ) ∼= On for F a formal group law of height n. If F is already defined
over Fp, the element ξF ∈ On corresponds to the Frobenius endomorphismXp ∈ EndK(F ).

Proposition D.7. If F is defined over Fp, then EndK(F ) = EndFpn (F ) if and only if
the minimal polynomial of ξF ∈ On over Zp is ξnF − up with u ∈ Z×p .

Proof. One has EndFpn (F ) = CEndK(F )(ξnF ), and therefore EndK(F ) = EndFpn (F ) if and
only if ξnF is central. The result then follows form the fact that the center of EndK(F ) is
Zp and the valuation of ξnF is equal to the valuation of p. �

From appendix C, we know that

On ∼= Zp(ω)〈ξF 〉/(ξnF = pu, ξFxξ
−1
F = σ(x)), x ∈ Zp(ω),

for a primitive (pn−1)-th root of unity ω and σ ∈ Gal(Zp(ω)/Zp) ∼= Gal(Fpn/Fp) the
Frobenius automorphism. Here σ lifts to an action on On given by

σ

∑
i≥0

xiξ
i
F

 =
∑
i≥0

σ(xi)ξiF , xi ∈ Zp(ω).

Since ξnF = pu, we know that v(ξF ) = 1
n . Thus the valuation map and the canonical

projection π : D×n → D×n /〈pu〉 induce the exact commutative diagram

1

��

1

��
〈pu〉

��

// 〈pu〉

��
1 // O×n

��

// D×n
π

��

v // 〈ξF 〉

��

// 1

1 // O×n // D×n /〈pu〉
v //

��

〈ξF 〉/〈pu〉 //

��

1

1 1

in which the bottom horizontal sequence splits and the group 〈ξF 〉/〈pu〉 ∼= Gal(Fpn/Fp)
acts on O×n ∼= Sn by the above given action. It follows that

D×n /〈pu〉 ∼= Sn oF Gal(Fpn/Fp) ∼= Gn(u).
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Notations

Integers

n a positive integer
p a prime
k the maximal integer such that pk divides n p. 13
m the positive integer n

ϕ(pk) when p− 1 divides n p. 13
nα the positive integer n

ϕ(pα) for 0 ≤ α ≤ k p. 13
(a; b) the greatest common divisor of a and b

ri the positive integer |Fi/Fi−1| for 1 ≤ i ≤ 3
[A : K] the dimension of A over K
deg(A) the degree of A p. 104
ind(A) the index of A p. 104
exp(A) the exponent of A p. 107
e(D/K) the ramification index of D over K p. 115
f(D/K) the inertial degree of D over K p. 115

Elements

u a unit in Z×p
S an element of D×n generating the Frobenius such that Sn = p p. 11
ζi a i-th root of unity
xi an element of D×n such that v(xi) = (

∏i
k=1 ri)−1 and xrii ∈ F̃i−1 p. 34, 37

εpα an element satisfying (ζpα − 1)ϕ(pα) = pεpα p. 48
πα the element ζpα − 1 p. 50
πK a uniformizing element of K

Sets

CG(H) the centralizer of H in G
NG(H) the normalizer of H in G
S/ ∼G the set of orbits with respect to the G-action on S
F(G) the set of all finite subgroups of G p. 27
F̃u(G) the set of all subgroups of G containing 〈pu〉

as a subgroup of finite index p. 27
F̃u(Qp(F0), F̃0) as defined in p. 33

F̃u(Qp(F0), F̃0, r1) as defined in p. 34
F̃u(CD×n (F0), F̃1) as defined in p. 35

F̃u(CD×n (F0), F̃1, r2) as defined in p. 35
F̃u(CD×n (F0), F̃1, L) as defined in p. 36
F̃u(ND×n (F0), F̃2) as defined in p. 38

F̃u(ND×n (F0), F̃2,W ) as defined in p. 39
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Groups

Sn the n-th (classical) Morava stabilizer group p. 5
Sn the p-Sylow subgroup of Sn p. 12

Gn(u) the n-th extended Morava stabilizer group associated to u p. 5
µ(R) the roots of unity in R
µi(R) the i-th roots of unity in R

Fi the i-th subgroup of Gn(u) associated to a finite F ⊆ Gn(u) p. 28
F̃i the i-th subgroup of D×n , associated to a finite F ⊆ Gn(u) p. 29

Z(G) the center of G
Z〈x〉 the infinite cyclic group generated by x
Cn the cyclic group of order n

Cn ∗ Cm the kernel of the m-th power map on Cn
Q2n the (generalized) quaternionic group order 2n p. 13
T24 the binary tetrahedral group of order 24 p. 18
D8 the dihedral group of order 8 p. 95

SD16 the semidihedral group of order 16 p. 95
O48 the binary octahedral group of order 48 p. 97

Br(K) the Brauer group of K p. 107
Br(L/K) the relative Brauer group of L over K p. 107

Rings, fields

Fpn the finite field with pn elements
Qp the field of p-adic numbers
Zp the ring of p-adic integers

W(R) the ring of Witt vectors over R
D(K, r/n) the K-central division algebra of invariant r

n p. 116
Dn the Qp-central division algebra of invariant 1

n p. 116
On the maximal order of Dn
OK the ring of integers of the field K

Ui(O×K) the i-th filtration group {x ∈ O×K | vK(x− 1) ≥ i} p. 118
R(G) the R-algebra generated by G p. 14
R[G] the group ring generated by G
Rα the ring Zp[ζpα ] p. 50

Maps

v the valuation p 7→ 1 relative to Qp

vK the valuation πK 7→ 1 relative to the field K
vD the valuation πZ(D) 7→ 1 relative to the division algebra D p. 115
ϕ Euler’s totient function p. 12

NL/K the norm of the extension L/K
TrL/K the trace of the extension L/K

NG the norm relative to the Galois group G
TrG the trace relative to the Galois group G
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If F is a formal group law of finite height n defined over a separably closed field K
of characteristic p > 0, then the K-automorphism group AutK(F ) of F is isomorphic
to the Morava stabilizer group Sn = AutFpn

(Fn), for Fn the Honda formal group law of
height n over Fp. It is well known that Sn can be identified as the group of units of the
maximal order On of the central division algebra Dn of Hasse invariant 1/n over Qp.
Moreover if F is already defined over Fp, the Frobenius endomorphism Xp ∈ EndK(F )
defines en element ξF ∈ On whose minimal polynomial over Zp is ξnF − up for some
u ∈ Z×

p if and only if EndK(F ) = EndFpn
(F ). This element induces an action of the Galois

group Gal(Fpn/Fp) on Sn which depends on u, and the extended Morava stabilizer group
Gn(u) ∼= Sn oF Gal(Fpn/Fp) associated to F is realized as a split extension of Sn by
Gal(Fpn/Fp) which is isomorphic to the quotient group D×

n /〈pu〉.

The object of the thesis is the classification up to conjugation of the finite subgroups
of Sn and more generally Gn(u) for n a positive integer, p a prime and u a unit in the
ring of p-adic integers. More particularly, we provide a complete classification of the
finite subgroups of Sn, we give necessary and sufficient conditions on n, p and u for
the existence in Gn(u) of extensions of maximal finite subgroups of Sn by the Galois
group Gal(Fpn/Fp), and whenever such an extension exists we enumerate its conjugacy
classes.

In order to do this, we begin by establishing the classification of the finite subgroups of
Sn, which are those of D×

n , by exploiting its structure in terms of Witt vectors. Based on
these results, we provide a theoretical framework for the classification in Gn(u), which
notably breaks a given extension in Gn(u) into three successive stages. Starting with
a maximal abelian finite subgroup of Sn, each stage is then analysed explicitly, first
covering the abelian cases before reaching the maximal conjugacy classes. We finally
illustrate these methods by providing a complete and explicit classification in the case
n = 2.
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