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Introduction

The Morava stabilizer groups

Let n be a positive integer and K a separably closed field of characteristic p > 0. If
F' is a formal group law of height n defined over K, then the Dieudonné-Lubin theorem
D.3 says that the K-automorphism group Autg (F') of F' can be identified with the units
in the maximal order O,, of the central division algebra I, = D(Q), 1/n) of invariant 1/n
over Qy. In the case where F' = F, is the Honda formal group law of height n, as given
by theorem D.1, we have
Autg (Fn) = Autg,, (Fy).

We define
Sy, = AutFpn (F,) =2 0O)

to be the n-th (classical) Morava stabilizer group.

More generally, we are interested in the category FGL,, whose objects are pairs (F, k)
for k a perfect field of characteristic p and F' a formal group law of height n defined over
k, and whose morphisms are given by pairs

(f, )« (F1, k1) — (F, ko),

where ¢ : k1 — ko is a field homomorphism and f : @.F; — F5 is an isomorphism
from the formal group law given by applying ¢ on the coefficients of Fy. If (f,¢) is an
endomorphism of (F, k), then ¢ is an automorphism of k and ¢ € Gal(k/F,). We let

Autrge, (FL k) ={(f, @) : (F k) = (F,k) | ¢ € Gal(k/F,) and f: p . F = F}

denote the group of automorphisms of (F, k) in FGL,,. If F is already defined over F,,, the
Frobenius automorphism X? € Endg (F') defines an element £p € O,,. Then proposition
D.7 says that Endk (F) = Endy,, (F) if and only if the minimal polynomial of r over Z,
is g — up with u € Z;;. For such an F', we define

Gn(u) := Autrge, (F,Fpn)

to be the n-th extended Morava stabilizer group associated to u. We often note G,, = G,,(1).
Here ¢, F' = F for any ¢ € Gal(Fy» /Fp,). The group Gy, (u) contains S,, as the subgroup
of elements of the form (f, idy,, ), and there is an extension

1 — S, — Gp(u) — Gal(Fpn /Fp) — 1

where an element f € S, is mapped to the pair (f,idp,,) and where the image of a pair
(f,¢) € Gp(u) in the Galois group is the automorphism ¢ of Fyn. Moreover, the Frobenius
automorphism o € Gal(Fy» /F),) = Z/n splits as the pair (idp, o) in G, (u), and we get

Gn(u) =Sy, xp Gal(Fpn [F)p),

where the action on S, is induced by conjugation by £p. In terms of division algebras (see
appendix D), this extension translates into a split exact sequence

1— O —D)/(EF) — Z/n —> 1,
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so that
Gn(u) = Dy /(pu).

In the text we address the problem of classifying the finite subgroups of G, (u) up to
conjugation. In particular, we give necessary and sufficient conditions on n, p and u for
the existence in Gy, (u) of extensions of the form

1—G—F—7Z/n—1

with G maximal finite in S,, and if such extensions exist, we establish their classification
as finite subgroups of G, (u) up to conjugation.

Motivation

Given a prime p and for K(n) the n-th Morava K-theory at p, the stable homotopy
category of p-local spectra can be analysed from the category of K(n)-local spectra in
the sense of [9] section 1.1. In particular, letting L, = Lg(o)v...vx(n) e the localization
functor with respect to K(0) V...V K(n), there is a tower of localization functors

o.— Ly, — L1 — ... — Ly

together with natural maps X — L, X, such that for every p-local finite spectrum X the
natural map X — holimL,X is a weak equivalence. Furthermore, the maps L,X —
L, _1X fit into a natural commutative homotopy pullback square

| |

Lnle E— Ln—lLK(n)X-

In this way, the Morava K-theory localizations L ,)X form the basic building blocks for
the homotopy type of a p-local finite spectrum X, and of course, the localization of the
sphere L () S0 plays a central role in this approach.

The spectrum LK(n)SO can be identified with the homotopy fixed point spectrum
EQG" of the n-th Lubin-Tate spectrum FE,,, and the Adams-Novikov spectral sequence for
L K(n)SO can be identified with the spectral sequence

E;’t = Hs(Gn, (En)t) - Ft_SLK(n)SO.

Here the ring (E),)o is isomorphic to the universal deformation ring E(F,Fy») (in the sense
of Lubin and Tate) associated to a formal group law F' of height n over Fyn, and (Ey, ) is
a graded version of E(F,F,»). The functor

E(_,_ ):FGL, — Ringsg

to the category of complete local rings defines the action of Gy (u) on the universal ring
E(F,Fpn), which in turn induces an action on (Ey, ).

There is good hope that LK(H)SO can be written as the inverse limit of a tower of
fibrations whose successive fibers are of the form EM for F a finite subgroup of G,,(u).
This is at least true in the case n = 2, p = 3 and w = 1, which is the object of [6]. In
[9] the case n = p — 1, p > 2 and u = 1 is investigated. Moreover, the importance of the
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subgroups of Go(—1) for p = 3 is exemplified in [2]. As shown in the present text, the
choice of u plays an important role in the determination of the finite subgroups of G, (u).

For example, when n = 2 and p = 3 theorem 4.29 shows that the maximal finite
subgroups of Gy, (u) are represented up to conjugation by SDig, the semidihedral group
of order 16, and by a semi-direct product of the cyclic group of order 3 with either the
quaternion group Qg if u = 1 mod 3 or the dihedral group Dg of order 8 if u = —1 mod 3.

Another example is given by theorem 4.30 in the case n = 2 and p = 2: the maximal
finite conjugacy classes are given by two or four classes depending on u. When u =
1 mod 8, there are two of them given by a metacyclic group of order 12 and by

Ous if v =1 mod 8,
T24 X CQ if u = —1 mod 8,

for Oy the binary octahedral group of order 48, Cs the cyclic group of order 2 and Thy
the binary tetrahedral group of order 24. On the other hand when v #Z 1 mod 8, there are
four of them given by 754, by two distinct metacyclic groups of order 12, and by

Dg if u =3 mod 8,
Qs if u = —3 mod 8.

The group Go(—1) is the Morava stabilizer group associated to the formal group law
of a supersingular elliptic curve, while in general G,, = G,(1) is the one associated to the
Honda formal group law of height n.

Overview

In the first chapter of the text, we establish a classification up to conjugation of the
maximal finite subgroups of S,, for a prime p and a positive integer n. When n is not a
multiple of p — 1 the situation remains simple as no non-trivial finite p-subgroup exist. In
this case, all finite subgroups are subgroups in the unique conjugacy class isomorphic to

{Cp”—l if p > 2,

CZ(pn—l) pr = 2,

where C; denotes the cyclic group of order I. Otherwise, n = (p — 1)p*~'m with m prime
to p. For a < k and Euler’s totient function ¢, we let n, = % and we obtain:
Theorem. Ifp > 2 andn = (p — l)pkflm with m prime to p, the group S, has exactly
k + 1 conjugacy classes of maximal finite subgroups represented by

Go = Cpn_ and Go = Cpe X C(pna_l)(p_l) for 1<a<k.

Theorem. Let p = 2 and n = 2"'m with m odd. The group S,, respectively DX, has
exactly k mazimal conjugacy classes of finite subgroups. If k # 2, they are represented by

Ga = Cga(gna_l) fOT’ 1 § « S k.

If k = 2, they are represented by G, for a # 2 and by the unique mazimal nonabelian
conjugacy class
Qs % C3gm 1) = Tog X Com_y,

the latter containing Go as a subclass.
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The classification of the isomorphism classes of the finite subgroups of S,, has already
been found by Hewett in [10]; it is based on a previous classification made by Amitsur in
[1]. Our approach is different: it has the advantage of being more direct, exploiting the
structure of DX in terms of Witt vectors, and lays the foundations for our study of the
extended groups G, (u). A further attempt by Hewett to extend his classification from
isomorphism classes to conjugacy classes can be found in [11], but the results turn out to
be false (see remarks 1.34 and 1.36). In example 1.33, we provide an explicit family of
counter examples in the case p > 2.

In chapter 2, we present a theoretical framework for the classification of the finite
subgroups of G, (u) = D) /(pu). Most of the work is done in D) via a bijection (see
proposition 2.1) between the set of (conjugacy classes of) finite subgroups of G, (u) and
the set of (conjugacy classes of) subgroups of )¢ containing (pu) as a subgroup of finite
index. For a finite subgroup F' of G,,(u) for which F'NS,, has an abelian p-Sylow subgroup
(the remaining case of a quaternionic p-Sylow is quite specific and is treated in chapter
4), we consider its correspondent Fin D)< via the above bijection. This group fits into a
chain of successive extensions

FWCF CRCF=F,

where Fy = (FNSy, Zy (FNS,)) is cyclic for S,, the p-Sylow subgroup of S,, and Z,, (FNS,,)
the p/-part of the center of F'N'S,,, and where

Fy = Fy x (pu), Fy = F 0 Cpx(Fy) = Cx(F),
Fi = FNQy(Fy)*%, Fy = F 0 Nyx (Fy) = Np(Fp).

Referring to the above classification of the finite subgroups of S,, we note that Fy is
a subgroup of a cyclic group of order p®(p"> — 1) for an o < k, and that the whole
(nonabelian) groups of type G, when p > 2 can only be recovered in the last stage
of the chain of extensions. We then provide cohomological criteria (see theorem 2.16,
2.21, 2.27 and 2.28) for the existence and uniqueness up to conjugation of each of these
successive group extensions. We are mostly interested in the cases where each successive F,
is maximal, that is, Fj is a maximal abelian finite subgroup of S,,, and for 1 <+ < 3, each
F} is a maximal subgroup of the respective group Qp(Fo)™, Cpx (Fp), Npx (Fp) containing
Fvg as a subgroup of finite index.

In chapter 3, we treat the abelian cases which are covered up to the second extension
type Fy. Given Fy, we let F,(Q,(Fp), Fo,r1) denote the set of all Fy’s which give rise to
a finite subgroup F; of G, (u) extending Fy by a cyclic group of order r;. Then:

Theorem. If Fy is a maximal abelian finite subgroup of S,, then fu(Qp(Fo),ﬁ),n) 18
non-empty if and only if

if p > 2 with §, & Fo,
p—1 if p>2 with §, € Fo,

if p=2 with (3 ¢ Fy and u Z £1 mod 8, or with {4 & Fp,
2 if p =2 with {4 € Fy and either u = £1 mod 8 or (3 € Fy.

r1  divides

Furthermore, given Fy C Fy, we let fu(%s (FO),E,TQ) denote the set of all Fy’s which
give rise to a finite subgroup Fy of G, (u) extending F} by a group of order ry. Then:



Introduction 9

Theorem. Ifry is mazximal such that ]-N"M(QP(FO), FVO, r1) # 0 and zfj?vl belongs to this set,
then fu(C’Dé (Fy), F1,72) is non-empty if and only if ro divides m

In the particular case where Fp is a maximal abelian finite subgroup of S,, we have
P = F.

In chapter 4, we treat (nonabelian) finite extensions of F, in the case where QP(FVQ)

is a maximal subfield in ID,,; any such field is of degree n over Q,. We provide necessary
and sufficient conditions on n, p and u for the existence of F’s such that \15 / Fvg\ =n and
Fy = Fy:
Theorem. Let p > 2, n = (p — 1)p*~lm with m prime to p, u € Ly, Fo = Cpo X Cpra—1
be a mazimal abelian finite subgroup in S,, G = Gal(Qp(Fy)/Qp), Gy be the p'-part of
G, and let Fy = (z1) x Fy C Qp(Fp)* be mazimal as a subgroup of Q,(Fp)* having Fy as
subgroup of finite index.

1) For any 0 < a < k, there is an extension of E by Gy ; this extension is unique up
to conjugation.

2) If a < 1, there is an extension ofﬁ by G; this maximal extension is unique up to
conjugation.

3) If a > 2, there is an extension ofFVl by G if and only if
a=k and  u g wW(Zy) x{x € | 2 =1 mod (p?)},
in which case this maximal extension is unique up to conjugation.

Theorem. Let p =2, n = 2¥"1m with m odd, u € 735, Fy = Coa X Cona_1 be a mazimal
abelian finite subgroup of S,, G = Gal(Q2(Fp)/Q2), Go be the odd part of G, and let
Fy = (z1) x Fo € Qo(Fp)™ be mazximal as a subgroup of Qo(Fp)* having Fy as subgroup
of finite indewx.

1) For any 1 < a < k, there is an extension of ﬁvl by Gor; this extension is unique up
to conjugation.

2) If a = 1, there is an extension of i by G; the number of such extensions up to
conjugation s
{1 if n is odd,

2 ifn is even.

3) If a = 2, there is an extension ofj:’vl by G if and only if k = 2; the number of such
extensions up to conjugation is

1 ifu==£1mod 8,
2 ifu# £1 mod 8.

4) If o > 3, there is no extension ofﬁvl by G.

We then treat the specific remaining case where F'N'S,, has a quaternionic p-Sylow sub-
group; this only occurs when p = 2 and n = 2 mod 4.
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Theorem. Let p = 2, n = 2m with m odd, and u € Z5. A subgroup G isomorphic to
Ty x Com_1 in Sy, extends to a maximal finite subgroup F of order n|G| = 48m(2™ — 1)
in Gp(u) if and only if u = £1 mod 8; this extension is unique up to conjugation.

We end the chapter by explicitly analysing the case n = 2, where we obtain:

Theorem. Let n = 2, p = 3 and u € Z;. The conjugacy classes of mazimal finite
subgroups of Ga(u) are represented by

C3x Qs ifu=1mod 3,

SD16 and
C3 x Dg if u=—1 mod 3.

Theorem. Let n = 2, p = 2 and u € Z5. The conjugacy classes of maximal finite
subgroups of Go(u) are represented by

Cs x Co, Oyg if u=1mod 8,
C3 x Cy, Toy x Co if u=—1mod 8,
C3xCy, CgxCo Dg and 1oy if u=3mod S8,
C3x Cy, CgxCy Qg andTry if u=—3 mod 8.



Chapter 1:
Finite subgroups of S,

From now on, we will always consider p a prime, n a strictly positive integer, and

Dy, :== D(Qp,1/n)

the central division algebra of invariant 1/n over Q,. The reader may refer to appendix
A and C for the essential background on division algebras. We identify S,, as the group
of units O, of the maximal order O,, of D,,.

1.1. The structure of D, and its finite subgroups

The structure of D, can be explicitly given by the following construction; see appendix
C or appendix 2 of [17] for more details. Let W, = W(F,») be the ring of Witt vectors on
the finite field Fpn with p” elements. Here W), can be identified with the ring Z,[(yn—1] of
integers of the unramified extension of degree n over Q,. It is a complete local ring with
maximal ideal (p) and residue field F,» whose elements are written uniquely as

. '
w= Z w;p" with  w! = w;.
i>0

The Frobenius automorphism z +— 2P € Gal(F,» /IF,) can be extended to an automorphism
o:w— w’ of W, generating Gal(W,,/Z,) by setting

w? = wapi for each w = waipi e W,.
i>0 i>0

We then add to W,, a non-commutative element S satisfying S™ = p and Sw = w?S for
all w € W,,; the non-commutative ring we obtain in this way can be identified with

O, =W, (S)/(S" = p, Sw =w?S),
and

Dy, = Oy, ®Zp Qp-

The valuation map vg, : Q) — Z satisfying v(p) = 1 extends uniquely to a valuation
v = vp,, on D, with value group
1
/U(]D;Z) = Ezv

in such a way that

v(S) = and O, ={x €D, | v(z) > 0}.

1
n
Because v(z~!) = —v(z), we have

O) ={zeDb, | v(z) =0}

11
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Proposition 1.1. A finite subgroup of D) is a subgroup of O,°.
Proof. An element ¢ € D) of finite order i > 1 satisfies
0 =v(1) =iv((),
and it follows that v(¢) = 0. O

As we will now see, the structure of D,, given above greatly reduces the possibilities of
what form a finite subgroup of O,¢ can have.

The element S € ;5 generates a two-sided maximal ideal m of O,, with residue field
Op/m = Fpn. This maximal ideal satisfies

m={zeD, |v(z)>0}.

The kernel of the group epimorphism O,¢ — ]F;;n which results from this quotient is denoted
Sn . We thus have a group extension

1— 8, — Oy — F — 1.

The groups O, and S,, have natural profinite structures induced by the filtration of
subgroups
Sn:UlgUQQU;gQ...

given by
U o= Us(W) = {z €8, | v(z — 1) > %}
={z €S, |z=1mod S}, for i > 1.

The intersection of these groups is trivial and S,, = lim; S,,/U;. We also have canonical
isomorphisms A
Ui/Uz’—i-l = Fpn given by 14+aS"—a

for a € O, and @ the residue class of a in O,/m = Fp». In particular, all quotients
Sy /U; are finite p-groups and S, is a profinite p-subgroup of the profinite group O,. By
uniqueness of the maximal ideal m, we know that .S,, is the unique p-Sylow subgroup of
0. Consequently:

X
n’

Proposition 1.2. All p-subgroups of O, and only those, are subgroups of Sy,. O

Throughout the text we let ¢ denote Euler’s totient function, which for each positive
integer 7 associates the number (i) of integers 1 < j < i for which (¢;7) = 1.

Proposition 1.3. The group S, respectively O), has elements of order pF for k > 1 if
and only if p(p*) = (p — 1)p*~! divides n.

Proof. This is a straightforward consequence of the embedding theorem C.6, together with
proposition C.8 which states that

[Qp(Gr) = Q) = (") = (p — )P,

for (,x a primitive pF-th root of unity. 0
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Proposition 1.4. Every abelian finite subgroup of D, is cyclic.

Proof. If G is a finite multiplicative abelian subgroup of a division algebra of type D,
then it lies within the local commutative field F' = Q,(G) in D,, and is a subgroup of F*.
Because G is finite, proposition C.7 implies that G is a subgroup of the cyclic group u(F).
O

In the text, we are lead to use group cohomology H*(G, M) extensively for some group
G and G-module M. Most often, we will exploit the tools of low dimensional cohomology
to study group extensions. A good introduction to the subject is provided in [4] chapter IV.
In particular, we will invoke the following classic results; see [4] section IV .4 for proposition
1.5 (with exercise 4), and see [4] chapter IV corollary 3.13 and the following remark for
proposition 1.6.

Proposition 1.5. If G is a finite p-group whose abelian finite subgroups are cyclic, then
G is either cyclic or a generalized quaternion group

k—1 o _ k—2
G2 Qu=(z,y|2> =1, yay =zt 2%  =y?),

this last possibility being valid only when p = 2.

Proposition 1.6 (Schur-Zassenhaus). If G is a finite group of order mn with m prime
to n containing a normal subgroup N of order m, then G has a subgroup of order n and
any two such subgroups are conjugate by an element in G.

It follows that every finite subgroup G of D¢ is contained in S,, and determines a split
extension
1—P—G—C—1,

where P := GN S, is a finite normal p-subgroup which is the p-Sylow subgroup of GG, and
C := G/P is a cyclic group of order prime to p which embeds into F;n via the reduction
homomorphism. Moreover, P is either cyclic or a generalized quaternion group if p = 2.
If P is cyclic of order p® with a > 1, we know that n is a multiple of o(p®) = (p — 1)p*~ L.

Proposition 1.7. If n is odd or is not divisible by (p — 1), then
{cpn_l ~F, ifp>2,
Copr_1) ZFSx {1} ifp=2,
represents the only isomorphic class of mazimal finite subgroups of O).

Proof. Under the given assumptions, proposition 1.3 implies that the p-Sylow subgroup
P of a maximal finite subgroup G of D¢ is trivial if p is odd, and is {1} if p = 2. The
result then follows from the Skolem-Noether theorem A.9. O

By proposition 1.7, only those cases where n is even and divisible by p — 1 remain to
be studied. From now on, we will adopt the following notations.

Notation 1.8. Fix a prime p and n a multiple of p — 1. Then we define integers k and
m to satisfy
n=(p—1p"'m  with (m;p)=1,

and for 0 < o < k we set

n n if a =0,
kF=am if o > 0.
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Notation 1.9. For a finite subgroup G C D}y and a commutative ring R extending Z,, in
D, respectively a commutative field extending Q, in ID,,, we denote by

R(G) = {Z zq9 | x4 € R}

geG

the R-subalgebra of D,, generated by G.

For example if R = Q,, G is a finite cyclic group and ¢ is a generator of GG, then
Qp(G) = Qp(¢) is the cyclotomic field generated by ¢ over Q.

We note that R(G) is not in general isomorphic to the group ring R[G], although
there is a unique surjective homomorphism of R-algebras from R[G] to R(G) extending
the embedding of G (seen as abstract group) into D*.

1.2. Finite subgroups of D with cyclic p-Sylow

Let n = (p — 1)p*~'m with m prime to p as in notation 1.8. If G is a finite subgroup
of D), it is then a subgroup of O)° which determines an extension

1—P—G—C—1,

and whose p-Sylow subgroup P = G N .S, is either cyclic of order p® for 0 < a < k, or
a generalized quaternion group. The latter case only occurs when p = 2; it is studied in
section 1.3.

For now, we fix an integer 1 < o < k and assume that P is cyclic of order p*. We
know from proposition C.8 that Q,(P) is a totally ramified extension of degree p(p®) over
Qp. As P is abelian and normal in G, there are inclusions of subgroups

P C Cu(P) C Ng(P) =G,

and the group C' = G/P injects into IF;n. The following result establishes a stronger
condition on C'.

Proposition 1.10. The group Cg(P)/P injects into Fp. via the reduction homomor-
phism, and Ng(P)/Cq(P) identifies canonically with a subgroup of the p'-part of Aut(P).

Proof. First note that P generates a cyclotomic extension K = Q,(P), and Cg(P) is
contained in Cpx (K). By the centralizer theorem A.6, Cp,, (K) is itself a central division
algebra over K. Since

n = p(p*)na = [Qp(P) : Qp]na,
2

it is of dimension n7, over its center K and has residue field Fjn.. The reduction homo-
morphism in this division algebra induces a map Cg(P) — F ., whose kernel is P; this
shows the first assertion.

The second assertion follows from the facts that

P C Cg(P) and G = Ng(P),
and hence that Ng(P)/Cg(P) C C must be prime to p. O

Corollary 1.11. The group C is contained in the cyclic subgroup of order (p"> —1)(p—1)
in F.
P
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Proof. This follows from proposition 1.10 and the fact that the p’-part of

Cp1 % Chor ifp>2,

Aut(P) =
02 X CQa—Q lfp = 2,
is of order p — 1. O

We now proceed to the existence of such finite groups. Recall from proposition 1.3
that D has cyclic subgroups of order p* for any 1 < o < k.

Proposition 1.12. If P, is a cyclic subgroup of order p* > 1 in D) and v = vy, , then
WCoi(Pa) =12 and Ny (Pa)/Cpe (Pa) & Noyg (Pa) [Cop (Pa).
Proof. From the Skolem-Noether theorem A.9, we know that
Ny (Pa)/Crg (Pa) = Aut(Py).
This means that for any f in Aut(P,), there is an element @ in D¢ such that
f(x) =aza™t forallz € K, = Q,(Py).

As explained in appendix C, the fact that K, is a totally ramified extension of @, implies
that the value group of Cpx (K, ) is that of D} in other words

o(Cpy (Pa) = = L.

Hence there is an element b in Cpx (Kq) such that
v(ab) =0 and (ab)z(ab) ™! = aza™' = f(x)
for all x € K,. In particular ab € O, and
Nox(Fa)/Cox (Pa) = Aut(Pa),
as was to be shown. O

Lemma 1.13. If P, is a cyclic subgroup of order p® > 1 in D), the image of N, x(Py)
in F;n via the reduction homomorphism is cyclic of order (p" — 1)(p — 1).

Proof. Since the residue field of the division algebra

Cp, (@p(Pa)) = CD”(Pa)

is Fyna, the image of Cyx (Pa) = Cpx (Pa) MOy via the reduction homomorphism is cyclic
of order p"> — 1 in ]F;;n. Furthermore, there is a canonical surjection

Nox (Pa) — Aut(Pa) — Cp-1.

Clearly, Cpx(P,) is in the kernel of this projection, and since p — 1 is prime to p, the
p-Sylow subgroup of Nx(P,) must be contained in the kernel as well. It follows that
NO% (P,) contains a group which is sent surjectively onto Cj,_; and whose image in F;n is
the cyclic subgroup of order (p™ — 1)(p — 1). O
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Theorem 1.14. For each 1 < a < k and each cyclic subgroup P, of order p™ in D),
there exists a subgroup G of O) such that

GaoNS, =P, and Ga/Pa = C(p”a—l)(p—l) - F;n

Proof. We want to show that the cyclic subgroup of order (p"* —1)(p—1) in F. obtained
from lemma 1.13 can be lifted to an element of finite order in N« (Py).

Let Z be an element of order (p"* —1)(p—1) in Fj.. By lemma 1.13, T has a preimage
z in Npx (P,) generating by conjugation an element of order p—1 in Aut(P,). The closure
(x) in O, of the group generated by x fits into the exact sequence

l1—H— () — C —1,

where

H={(z)n§S, and C = (x)/H.

The group H being a cyclic profinite p-group, it must be isomorphic to Z, or to a finite
cyclic p-group. As [ := |C| is prime to p, any element in H is [-divisible, and because
z! € H, there is a y € H such that 2! = y'. Since z,y € () commute with each other,
(xy~")! =1 and xy~ ! is the desired element of finite order in Npx (Pa).- O

Remark 1.15. One can show that the isomorphism class of such a GG, is uniquely deter-
mined by «. This however is a consequence of the uniqueness of G, up to conjugation, a
fact established in theorem 1.31 and 1.35.

1.3. Finite subgroups of D) with quaternionic 2-Sylow

Continuing our investigation of the finite subgroups G of D¢, we now consider the case
where the p-Sylow subgroup P of GG is non-cyclic. We know from proposition 1.5 that in
this case p = 2 and P is a generalized quaternion group Qoo with a > 3. Throughout this
section we assume p = 2.

We first look at the case n = 2. Consider the filtration of ZJ = Z/2 x Zy given by

Ui=Ui(Z5)=1+2Zy ={x € Z5 |t =1mod 2'},  fori>1.

As —7 =1 mod 23, we have
—7 €Uz = (Z3)2

So let p be an element of Z5 such that p? = —7.
Remark 1.16. By remark C.5, we know that
Dy & Qa(w)(S)/(S* =2,Sz =179)
=~ Qu(w)(T)/(T? = —2,Tx = 2°T),
for w a primitive third root of unity which satisfies
l+w+w?=0,

and for S,T two elements generating the Frobenius o. Letting 7' = z + yS € DJ for
z,y € Qa(w), we have

22 4+ 2yy° = -2

-2 =T% = (2% + 2yy”) + (wy + ya°)S & {
zy + yx® = 0.
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Taking for solution

3+2 342
r=0 and y= i w’ so that T = Rl
P P

S,

we obtain an isomorphism between these two representations of Ds.

Via these representations, we may further exhibit an explicit embedding of Qg = (i, j)
into D5 in the following way. We first look for an element i = a + bT with a,b € W(Fy)
satisfying

—1=1i? = (a® — 200°) + (a + a%)bT.

2

Hence either b = 0 or @ + a” = 0. The first case being impossible as a® = —1 has no

solution in W(IF4), we must have a + a” = 0. A possible solution is

-1 1 1 1
=-(1+2 d b= =—s1+2

a =
meaning that
. 1 1

1 1
—- - Z (1 — 4w)S.
3(1 +2w) + 3p(l w)S

We then look for an element j = o’ + ¥'T with o/,b' € W(F,) satisfying j2 = —1 and
1j = —J1, in other words

(a"* = 26'07) 4 (d' + dO)WT = —1
and (aa’ — 2b6"7) + (ab +bd"?)T = —(d'a —2V'b7) — (a'b+ V'a”)T.
Asa+a’ =0 and a = —b = b7, these relations are equivalent to
{a’—ka"’zo - {a’—i—a"’:O
2aa’ = 2(bb'7 + V'b7) = 2b(b'7 — V') a=b-"b°.

A possible solution is
1
a’:a:§(1+2w) and V=>01+w)d ==(-1+w),

meaning that

1 1

j o= 21+ 2) + (-1 +w)T
3 3

= Tarow) - Ltws

Proposition 1.17. The quaternion group Qg embeds in D) if and only if n = 2 mod 4.

Proof. The Qq-algebra Q2(i,7) generated by (i,7) = Qg is non-commutative and is at
least of dimension 4 over Q9. By remark 1.16 we know that Qy(i,j) C Dy, and it follows
that Q2(i,j) = Do. Thus in particular, Qs embeds in D if and only if DS does, and by
corollary C.12 this happens if and only if n = 2 mod 4. U
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Remark 1.18. Using the elements ¢ and j obtained in remark 1.16, and defining

1

1
k:=ij= —g(l + 2w) 3p(4 + 5w)S,

we note that
2

Wi ? =wjw ! = —k.
This implies that the group
Toy = QS X C3 = <i7j7w>

embeds as a maximal finite subgroup of D5 . This group of order 24 is the binary tetrahe-
dral group; it is explicitly given by

Toy = {£1, i, +5, £k, %(:I:l titj+k)}
From proposition 1.17, we have obtained
D3 = Q2(Qs) = Qa(Th4).
Proposition 1.19. A generalized quaternion subgroup of D) is isomorphic to Qg.
Proof. Assume that QQ9a+1 embeds as a subgroup of D¢ for a > 2. Then Q)g embeds and
n =2 mod 4

by proposition 1.17. On the other hand, the cyclic group Coe embeds as well and generates
a cyclotomic extension of degree ¢(2%) = 2971 over Q,. Hence

n =0 mod 291
by the embedding theorem. Therefore a = 2. O

Proposition 1.20. If Qg is a quaternion subgroup of D)X and v = vp,,, then

WCos(@5) = -2, v(Npg(@s)) = 12,

and Npx (QS)/CO,f (Qs) injects into Npx (QS)/CD;; (Qs) as a subgroup of index 2.
Proof. Using the centralizer theorem A.6, together with remark 1.18, we know that

Dy, = Q2(Q8) ®q, Cp, (Xs),

where Cp, (Qs) is a central division algebra of dimension n?/4 over Q2 whose ramification
index is e(Cp,, (Qg)/Q2) = n/2 by proposition C.1. In particular,

o(Cr (Q8)) = 2. (*)

Now the existence of Qg in D) implies by proposition 1.17 that n = 2 mod 4, so that
n = 2(2r + 1) for an integer 7 > 0. As 2 and 2r + 1 are prime to each other, there are
integers a, b > 1 satisfying

a 1
2 1 2b=1 & — = —,
(2r+1)a+ 2+2r+1 -
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By () we can choose an element 2 € Cpyx (Qs) having valuation 2/n = 1/(2r+1). On the
other hand since

(1+4)jl+i)) ' =keQs and  (144)*=2i,

we know that 14 ¢ is an element of Npx(Qg) having valuation 1/2. We thus have found
an element (1 +4)%2® in Np« (Qs) of valuation

o(140)°2) = av(1 +3) + bo(a) = § + 2rb+ = %
so that )
U(NM (@s)) = HZ’
This result, together with (x), implies the last assertion of the proposition. g

Proposition 1.21. [Aut(Qs)| = |Aut(Tr)| = 24.

Proof. Let Qs = (i, j) and Thy = (Qg,w) with 4, j, k,w as defined in remark 1.16 and 1.18.
Counting on which of the 6 elements {£i, £j, £k} of order 4 the generators ¢ and j may be
sent via an automorphism, we know that |Aut(Qsg)| divides 24. The inner automorphism
group of Qg has order |Qs/{x1}| = 4; it is generated by conjugation by ¢ and j. Let

CQsg - T24 — Aut(Qg)

be the conjugation action of Qg by elements of T54. As noted in remark 1.18, the conju-
gation by w has order 3, and hence the cardinality of the image of cg, is 12. Since the
element (1 +¢) € D) acts by conjugation on Qg by i — i and j — k, it follows that the
automorphism of Qg induced by (1+1) is not in the image of cg,. Because |Aut(Qg)| < 24,
we obtain |Aut(Qg)| = 24.

Now using that Qg is the (normal) 2-Sylow subgroup of T4, consider the canonical
map ¢ : Aut(Try) — Aut(Qg); it is surjective since (1 + i) also induces an automorphism
of Tos. Let 0 € Aut(T24) be such that o|g, = idg,. Then for any ¢ € Toy and g € Qg we
have

cs(a(t)(a) = o(t)ao(t)™! = altqt™) = tat ™! = cq,(t)(q).
Hence o(t)t™! € Ker(cgy) = {£1} and o(t) = +t for any t € Tyy. In fact, t = sq with

q € Qg and s an element of order 3 in 754, and we have

o)t =0o(s)o(q)g st = o(s)sL.

Because s is of order 3 and —s is of order 6, the case o(t) = —t is impossible and we must
have o(t) =t for all ¢t € Tyy. Therefore the map ¢ is bijective, and as |Aut(Qs)| = 24, it
follows that |Aut(Ta4)| = 24. O

Now assume n = 2m with m odd and consider a finite subgroup G of D)’ whose 2-
Sylow subgroup P is isomorphic to Qg. Such a group determines a subgroup C' = G/P of

Proposition 1.22. If G is a finite subgroup of D)X with a quaternionic 2-Sylow subgroup
P = Qs, then G/P embeds into the cyclic subgroup of order 3(2™ — 1) in F,.
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Proof. Recall that Q2(P) = DJ and note that Ce(P) is contained in

Cpx (P) = Cpx (Q2(P)) = Cpx (D2)

which consists of the non-zero elements of a central division algebra of dimension m? over

Q2. Its residue field is Fom, and C(P)/PNCq(P) = P-Cg(P)/P injects via the reduction
homomorphism into F,..
Furthermore, we have an injection

Na(P)/Ca(P) — Npx (P)/Cpx (P) © Npx (P)/Cpx (P) = Aut(Qs),
where the last isomorphism is due to the Skolem-Noether theorem. Since |Aut(Qg)| = 24,
proposition 1.20 implies that |[Ng(P)/Cq(P)| divides 12. As P N Cq(P) = {£1} is of
index 4 in P, we know that Cg(P) is of index 4 in P - Cg(P), and consequently that

P - Cq(P) is of index a divisor of 3 in Ng(P).
We have thus obtained a chain of subgroups

PC P-Cq(P)C Ng(P) =G,

where the first group is of index a divisor of 2™ — 1 in the second group, and the latter is
of index a divisor of 3 in the third group. O

Theorem 1.23. If p =2 and n = 2m with m odd, the group
Thy x Com_1 = Qg x C3m_y)

embeds as a mazximal finite subgroup of D).

Proof. By the centralizer theorem

Dy, =Dy ®q, Cp, (D2) = Q2(Qs) ®q, Cn, (Q3).

By remark 1.18, Thy = Qs x C3 embeds as a subgroup of D ; more precisely Q2(Th4) = Ds.
Moreover, since Cp, (D3) is a central division algebra of dimension m? over Qs, its maximal
unramified extension of degree m over Q2 contains a cyclic subgroup Com_1 of order 2™ —1
which centralizes To4. Since m is odd, 2™ — 1 is not a multiple of 3 and D contains a
subgroup isomorphic to

Tp4 x Cym—1 = Qg X Cy(am_1);
its maximality as a finite subgroup then follows from proposition 1.22. O
Corollary 1.24. The center of Toy X Com_1 s
Z(T24 X Cgmfl) = {:l:l} X Cgm,l = CQ(Qm_l).

Proof. This follows from the proof of theorem 1.23 and the obvious fact that the center
of Qg is {£1}. O
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1.4. Conjugacy classes in S,

In this section, we establish a classification of the finite subgroups of S,, up to conju-
gation. We say that two subgroups G1, Gy C D) are conjugate in DX, respectively in O,
if there is an element a in DS, respectively in O, satisfying

aGla_l = GQ.

We will see that two finite subgroups G; and G5 whose respective p-Sylow subgroups
Py and P, are isomorphic, and for which the quotient groups G1/P, and Go/P, are also
isomorphic, are not only isomorphic but even conjugate in O)¢. This will imply that the
maximal subgroups of O, are classified up to conjugation by the type of their p-Sylow
subgroups. To do this, we will exploit the tools of nonabelian cohomology of profinite
groups as introduced in [23] chapter I paragraph 5.

For any subgroup G of a group H, we set

Sy(G) ={G'<H |G =G} and Cu(G):=Su(G)/ ~g
where ~p designates the relation of conjugation by an element in H.

Lemma 1.25. If P is a finite p-subgroup of Oy, then |Cox (P)| = 1.

Proof. Let @ be a finite p-subgroup of O, isomorphic to P. We have seen that these
two groups are either cyclic or quaternionic. In either case, the Skolem-Noether theorem
implies the existence of an element a in D¢ such that

Q(Q) = aQy(P)a™".

In the cyclic case, this clearly implies Q@ = aPa~'. In the quaternionic case, this yields
two quaternion groups @ and aPa~! within Q2(Q) = D5 in which we can use Skolem-
Noether once more to obtain an element a’ € Q2(Q) such that Q = a’aP(a’a)™'. Now by
proposition 1.12 and 1.20, we know that

o(Ny (P) = ~ 2 = v(D).
Thus there is an element b in D;° such that
v(ab)=0 and P =0bPb !,
and ab is an element of O,° conjugating P into Q. O

Lemma 1.26. Let P be a profinite p-group of the form P = lim,, P, where each P, is
a finite p-group and the homomorphisms in the inverse system are surjective, and let R
be a finite group of order prime to p which acts by group homomorphisms on all P, in
such a way that the homomorphisms in the inverse system are R-equivariant. Then the
(nonabelian) cohomology group H'(R, P) is trivial.

Proof. Denote by j, : P, — P,_1 the homomorphisms of the inverse system, and consider
the map ¢ : [[,, P, — [],, P defined by

0(fn) = (=1)"fu + (=) jnsa(farn),
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for f = (fn) € [, Po- Then note that § is surjective and that Ker(d) is the set of all
f = (fn) €11, Pn such that j,(f,) = fn_1 for all n. Hence there is a short exact sequence

1—>P—>HPni>HPn—>1
n n

which induces a long exact sequence

1= PR T[PE—=T]PF — H (R, P)— H'(R ][ Pn) = H' (R[] o),

n n

where P respectively P denotes the R-invariants. Using the canonical isomorphism
HY R, [ Pn) = [[H' (R, Py),
n n

and noting that each group H'(R, P,) is trivial by the Schur-Zassenhaus theorem 1.6, it
is enough to show that the homomorphism

11— 112
n n

in the above exact sequence is surjective, and hence that each homomorphism j,ﬁl :
PR — PIis surjective by the definition of .

For each n, let K, 1 be the kernel of the map j,11 : Py1 — P,. For each short exact
sequence of finite p-groups with action of R

1— Kyy1 — Pyy1 — P, — 1,

there is an associated exact cohomology sequence

‘R
1— KR — PR "™ PR HY(R, K, 11).

Applying the Schur-Zassenhaus theorem once more, we obtain that H'(R, K, 1) is trivial
and that the homomorphism jffﬂ is surjective. U

We recall the following fact from [23] chapter I §5.1:

Lemma 1.27. If P is an R-group with trivial (nonabelian) H'(R, P), and if
l1—P—N—R—1

s a split extension, then two splittings of R in N are conjugate by an element in P.
Theorem 1.28. Two finite subgroups G1 and Ga of O)° with respective isomorphic p-
Sylow subgroups Py = Py and isomorphic quotient groups G1/P) = Ga/ Py are conjugate
in O)F.
Proof. The groups G1 and G fit into exact sequences

1—P —G —C—1

1— P — Gy —C —1,
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where C' is the subgroup of IF‘;n isomorphic to G1/P; = Ga/P». We know from lemma 1.25
that P; and Py are conjugate in Q). By conjugating Ga, we can therefore assume that

P1:P2 =P and Gl,GQQNO:;(P)
Moreover, the latter groups fit into a split exact sequence
1 — Npx(P)NS, — Npx(P) — R — 1,

where R C F;;n is a finite cyclic group of order prime to p containing C. It follows from
lemma 1.26 that H!(R, Nox (P)NSy) is trivial, and hence by lemma 1.27 that G and G
are conjugate in Nyx(P) € O . O

Remark 1.29. Alternatively, we may directly apply [19] theorem 2.3.15, which shows
that if K is the p-Sylow subgroup of a profinite group G, then there is up to conjugation
in G a unique closed subgroup H of G such that G = KH and K N H = 1. Indeed, since
in our case both extensions

1—P—G —C—1
l1—P —G —C—1

are split by the Schur-Zassenhaus theorem, we obtain that both of the corresponding
sections are conjugate in Nyx (P), and hence that G and Gy are conjugate in Nyx (P).

Corollary 1.30. Two finite subgroups of O, are conjugate if and only if they are iso-
morphic. O

Theorem 1.31. Ifp is an odd prime and n = (p — 1)p*~lm with m prime to p, the group
Sn, respectively D¢, has exactly k + 1 conjugacy classes of mazximal finite subgroups; they
are represented by

Go = Cpn_1 and Go = Cpa X C(pna_l)(p_l) for 1<a<k.
Moreover, when p — 1 does not divide n, the only class of maximal finite subgroups is that

of Gy.

Proof. First note that proposition 1.7 and theorem 1.28 imply that there is a unique
maximal conjugacy class G of finite subgroups of order prime to p in O,¢ = S,,, respectively
in D) by proposition 1.1, and that this class is the only one among finite subgroups if n
is not a multiple of p — 1.

Now assume that 1 < a < k. By theorem 1.14, there is a finite subgroup G, in D,
realized as an extension

1 — Cpo — Go — Clpra_1)(p—1) — 1,

where

Cpa = Ga N Sn and Ga/Cpa = C(p"a—l)(p—l) Q F;;n

The Schur-Zassenhaus theorem implies that this extension splits, in other words that
Ga = Cpa A C(p"a—l)(p—l)-

Corollary 1.11 and theorem 1.28 ensure that G, represents the unique maximal conjugacy
class of finite subgroups of O,F = §,, which have a p-Sylow subgroup of order p®. O
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Corollary 1.32. If p>2 and 1 < a <k, then
Z(Ga) = Clpra—1)-

Proof. This follows from theorem 1.31 and proposition 1.10, where the latter shows that
C(pra—1) embeds into Z(Gy) and that Cipna_1y(p—1)/Clpra—1) = Cp-1 acts faithfully on
Cpe. O

The following case can be explicitly analyzed. As noted in remark 1.34, this provides
a counter example to the main results of [11].

Example 1.33. Assume that p is odd and n = (p—1)p*~!'m with (p;m) = 1. Let w € D
be a primitive (p™—1)-th root of unity in O,‘. Define
n

X=w'T8 €0 and Z:=X' withl= -
p_

A simple calculation shows
zrl = X" = —p.

We can show (see [9] lemma 19) that Q,(Z) contains a primitive p-th root of unity (.
Because the fields Q,(Z) and Q,((,) are of the same degree p — 1 over Q,, they must be
identical. We set

K = Qy(Z) = Qp(Gp)-
We note that p" — 1 is divisible by (p! — 1)(p — 1) and let

p"—1
T = w(Pl—l)(Z’—l) [= F;

We have -
o
rZr t=wrt Z = Cp—14,

for ¢,—1 a primitive (p—1)-th root of unity in O,;. Hence 7 induces an automorphism
of K of order p — 1 which sends (, to another root of unity of the same order, and 7
normalizes the group generated by (,. The group G generated by (, and 7 is clearly of
order p(pl —1)(p — 1); it is therefore maximal. Since X commutes with all elements of K,
it necessarily commutes with ¢,. Moreover the fact that

XrX~t=7P
shows that X belongs to the normalizer Ny« (G). The valuation of X is 1 by definition,
and we have

o(Npx (G)) = %Z.

As in lemma 1.25, we can then apply the Skolem-Noether theorem to obtain that there is
only one conjugacy class of subgroups of O, that are isomorphic to G.

In particular, if p = 3 and n = 4, then £k = 1, m = 2, the order of w is 80, and a
maximal finite 3-Sylow subgroup in O, is isomorphic to Cs. Here

X =ws, Z = wts? and 7% = -3.
In order to find an element (3 in Q3(X?), we may solve the equation

(x+yZ)? =1 with z,y € Qs.
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We find x = +y with z = —%, from which we obtain the primitive third roots of unity
1 4q2 2 1 4¢2
ng—i(l—i—wS) and ng—i(l—wS)

in the field Q3(Z). Here 7 = w® is of order 16 and we easily verify the relations
TC3T_1 = Cga X<3X_1 = <37 XTX_I = 7—37

showing as expected that

1
/U(ND;; (03 X 02(32_1))) = EZ and ‘CO;; (Cg X 02(32_1))| = 1.

Remark 1.34. Theorem 1.31 and example 1.33 (in particular the case where n = 4 and
p = 3) bring a contradiction to the main results of [11]. In the latter, a central result
concerning the nonabelian finite groups when p > 2 is proposition 3.9: it states that for
a > 1 the normalizer of G, in ;¢ has valuation group

F(Qp(Cpa(pra—1y/Qp)) 7

n

n
0Ny (Ga)) = = "oz,

where f denotes the residue degree of the given cyclotomic extension. As a consequence
of this incorrect result propositions 3.10 to 3.12 in [11] are incorrect as well.

Theorem 1.35. Let p = 2 and n = 25" 'm with m odd. The group S,, respectively DX,
has exactly k mazimal conjugacy classes of finite subgroups. If k # 2, they are represented
by
Gy = CQa(Qna_l) for 1<a<k.
If k = 2, they are represented by G, for a # 2 and by the unique maximal nonabelian
conjugacy class
Qs X Cggm_1) = Thy x Cam_1,

the latter containing Go as a subclass.

Proof. The argument for the cyclic classes GG, is identical to that of theorem 1.31 except
that in this case Gy = Cyn_q is contained in Gj.

Furthermore, proposition 1.19 ensures that a nonabelian finite subgroup may only
exist in O, = S,,, respectively in D;¢, when its 2-Sylow subgroup is isomorphic to Qg, and
proposition 1.17 shows that such a group occurs if and only if & = 2. In fact, assuming
k = 2, the group Qg x C3om_1y embeds in O, as a maximal finite subgroup by theorem
1.23, and its conjugacy class is unique among maximal nonabelian finite subgroups by
theorem 1.28. U

Remark 1.36. Theorem 1.35 contradicts theorem 5.3 in [11]. According to the latter,
we should have two distinct conjugacy classes in O,° for the finite groups containing
Toy = Qs x Cs. Letting Inn(Tsy) and Out(Ta4) denote the inner and outer automorphisms
of Ty, the error occurs before theorem 5.1 where it is said that Out(T54) is trivial. This
is absurd given that

’Aut(T24)‘ =24 and Inn(T24) = T24/{i1}.

All results given in section 5 of [11] are then wrong in this case.
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Corollary 1.37. The abelian finite subgroups of D) are classified up to conjugation in
O, respectively in D), by the pairs of integers (a, d) satisfying

0<a<k and 1<d | pt> —1;
each such pair represents the cyclic class Cpog.

Proof. By corollary 1.30, the finite cyclic subgroups are classified up to conjugation by
their isomorphism classes. The result then follows from the maximal finite classes provided
by theorem 1.31 and 1.35. ]

Remark 1.38. We restricted ourselves in considering the finite subgroups of D, as split
extensions of subgroups of F;n by finite p-subgroups in S,. It is also possible to express
these finite groups as subextensions of short exact sequences of the form

1 — Cpx (Cpo) — Ny (Cp) — Aut(Cpe) — 1,

as induced by the Skolem-Noether theorem. A finite group of type G, C DX can be seen
as a metacyclic extension

1— (A) — G4 — (B) — 1,

with
(Ay =G, x Z(G,)  and (B) = Cp-1,
where G, denotes the commutator subgroup of G,. The classification given in [10] follows

this approach, but has the disadvantages of being less direct and relying on a classification
previously established in [1].



Chapter 2:

A classification scheme for finite subgroups

We fix a prime p, a positive integer n which is a multiple of (p—1), and a unit u € Z;.
Given these, we adopt notation 1.8. In this chapter, we provide necessary and sufficient
conditions for the existence of finite subgroups of

Gn(u) =Dy /(pu)

whose intersection with S, have a cyclic p-Sylow subgroup. The remaining case of a
quaternionic 2-Sylow will be treated in chapter 4.

2.1. A canonical bijection
Let
m: D) — Gp(u)
denote the canonical homomorphism. In order to study a finite subgroup F' of G, (u), it
is often more convenient to analyse its preimage

F:=nY(F) eD}.

For any group G we define 7(G) to be the set of all finite subgroups of G; and if G is a
subgroup of D¢ we define F,(G) to be the set, eventually empty, of all subgroups of G
which contain (pu) as a subgroup of finite index.

Proposition 2.1. The map w induces a canonical bijection

Fu(Dy) — F(Gn(u)).
This bijection passes to conjugacy classes.

Proof. For any F € F(Gy(u)), it is clear that (pu) is a subgroup of finite index in 7= (F).
Moreover, the fact that 7 is surjective implies that 7 1(F) = F. On the other hand, for
G € F.(DY), as Ker(w) = (pu) is always a subgroup of G, we have 7~ 17(G) = G.
. In order to show the second assertion, let Fi, F5 be two subgrog@s of Qn(u) with
F, = 77 1(F;) for i € {1,2}. If there is an element a € D¢ such that I, = aFya™ !, then
since 7 is a group homomorphism we have
Fy = n(aFia™ )
= m(a)m(Fy)m(a)”!
= n(a)Fim(a)™L.

Conversely, if Fy = bF1b~! for some b € G,,(u), and if be D) satisfies 71'(5) = b, then from
the above identity we have o
W(bFlb_l) = F>,

as was to be shown. OJ
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28 Chapter 2: A classification scheme for finite subgroups

Remark 2.2. In a similar way, the map 7 induces a bijection between the set of all
subgroups of Gy, (u) and the set of all subgroups of D¢ containing (pu).

Notation 2.3. For a subgroup G of G, (u), we denote by
G=m4G)

its preimage under the canonical map 7 : DX — G,,(u). From now on, when introducing
a tilded group, its non-tilded correspondent will be implicitly defined.

Remark 2.4. The valuation v = vp,_ : p+— 1 on D¢ induces a commutative diagram with
exact rows and columns

(pu) ———
1 Sn DY ——1

b

1*>Sn*>Gn(u)L>% 7 —-1.

Z

17, 1
Z/
Subgroups of S,, can therefore be considered as subgroups of both G,,(u) and D).
Proposition 2.5. If F CS,, then F = F x (pu).

Proof. This follows from the exact commutative diagram of remark 2.4 and the fact that
(pu) is central in D). O

2.2. Chains of extensions
For F a finite subgroup of G, (u) such that F'N .S, is cyclic, we set
G:=FnS, and Fo:= (FNSy, Zy(G)),

for S,, the p-Sylow subgroup of S,, and Z,(G) the p/-part of the center Z(G) of G. As
previously seen, Fy is the maximal abelian subgroup of G equal to P x Z,(G) for P the
cyclic p-Sylow subgroup of G.

Remark 2.6. From proposition 2.5, we know that
Fy = Fy x (pu).

Remark 2.7. By definition, G consists of the elements of F' which are of valuation zero
in D). Hence G is normal in F' and there is a short exact sequence

l1—G—F—F/G—1,
where the quotient embeds via the valuation into 1Z/Z.

Proposition 2.8. We have

Cp(Fo) =Cx(Fo) 2 Fy  and  Cp(Fy)/Fo = Cx(Fo)/Fo.
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Proof. 1t is obvious that

Cr(Fo) 2 C(Fh) 2 F,
and the second assertion is a direct consequence of the first one.
It remains to check that Cr(Fp) C CF(J?B). If 7 € Cp(Fp) and f € Fp, then there is a

unique element z = 2(7, f) € (pu) such that
f=afz L.
Because (pu) is central, we have
2(7, £9) = (7, )2(7, 9),

for every f, ge Fb. This yields an exact sequence

1 — Cﬁ(ﬁ(/)) — CF(FO) — Hom(ﬁ(/)v <pu)),

where the image of 7 is the homomorphism f — z(Z, f ). As stated in remark 2.6 we know

that Fy = Fy x (pu). Because (pu) is central, the image of Cp(Fy) in Hom(Fp, (pu)) is
contained in the subgroup of those homomorphisms which are trivial on (pu) C Fy and
hence factors through Fy. Because Fy is finite and (pu) is torsion free, it follows that this

image is trivial and C’F(F’O) = Cr(Fyp). O

Proposition 2.9. We have
F=Np(Fy) and F=Ng(F).

Proof. Because P is the unique p-Sylow subgroup of G = F' NS, it is a characteristic
subgroup of G. Moreover as Fy = P x Zy(G) and Z,(G) is also a characteristic subgroup
of G, it follows that Fp is a characteristic subgroup of G; in other words

NG, w)(G) € Ng,u)(Fo)  and  Npx(G) € Npx (Fp).

Since G is by definition normal in F', its subgroup Fp is normal in F. Proposition 2.1
finally implies that Fy is normal in F'. U

Corollary 2.10. There are short exact sequences
1— Fy— F— F/Fy — 1,
1—>FT)—>}~7—>F/FO—>1.

Proof. This follows from that facts that Fy is normal in F, F’O is normal in F, and that
F/Fy = F/Fy. O

Note that in DX we have Q,(Fy) = Q,(Fp), and there are inclusions
Fy € Qp(Fp)* C Cpx (Fy) € Npx (Fb).

Given F and Fp, the second extension of corollary 2.10 can then be broken into three
pieces via the chain of subgroups

FhCh CFRCF=F
defined by:
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o [ = ﬁﬂQp(Fo)X;

o Fyi=FNCyx(Fy) = Ca(Fy);

o [} ::ﬁﬂND;(FO):NF(FO):F'

Clearly the groups Fy, Iy are abelian, and since Fb / Fy & B /EFy C %Z/Z is cyclic by
proposition 2.8 and remark 2.7, the group Fvg is also abelian. Moreover we note that for
0 < i < 2, each F} is normal in Fj,1. In particular, any finite subgroup F C Gy (u)
determines successive group extensions with abelian kernel

1—>E—>FZ:1—>E:1/E—>1 for 0<71<2.
In the following sections, we analyse these extensions recursively.

Remark 2.11. For Fj the situation is completely understood from chapter 1 (see corollary
1.37), where we have shown that the conjugacy classes of

FO = Cpa X Cd
are classified by the pairs of integers (o, d) satisfying

0<a<k and 1<d|phe—1.

2.3. Existence and uniqueness in cohomological terms

The following general approach will be applied to the F;’s that can be understood
through extensions with abelian kernel.

Let p : G — @ be a group homomorphism whose kernel Ker(p) is not necessarily
supposed to be abelian. Let A be an abelian normal subgroup of G which is contained in
the center of ker(p), and let B be a subgroup of Im(p).

G,(G,A,B):={H <G| HNKer(p) =A and H/A = B via p}.

When Ker(p) is abelian, we let e, € H*>(Im(p), Ker(p)) denote the cohomology class of
the extension
1 — Ker(p) — G — Im(p) — 1,

and we define e,(B) € H*(B, Ker(p)) to be the image of e, under the map
J*=H"(j, Ker(p))
induced by the inclusion j of B into Im(p).

Theorem 2.12. If Ker(p) is abelian, then the set G,(G, A, B) is non-empty if and only
if e,(B) becomes trivial in H*(B, Ker(p)/A).

Proof. Let H be an element of G,(G, A, B), and let ey € H?(B, A) be the extension class
of
l1—A—H—B—1.

Define H' to be the pushout of the diagram

Ker(p)éAHH
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given by the canonical inclusions of A into Ker(p) and H respectively. Then H' fits into
the commutative diagram

1 A H B 1
|
1 —— Ker(p) H' B 1,

where the horizontal sequences are exact; the top extension class being eg, and the bottom
extension class being i%(ey), the image of ey via the map i% = H?(B,4). Furthermore,
define G’ to be the pullback of the diagram

G — Im(p)~ B

given by the canonical inclusions of G and B into I'm(p). Then G’ fits into the commutative
diagram

1 — Ker(p) G’ B 1

|

| — Ker(p) — G — Im(p) —> 1,

where the horizontal sequences are exact; the top extension class being e,(B), and the
bottom extension class being e,. From the universal properties of the pushout and the
pullback, the above maps

H—B and Ker(p) — G

determine a homomorphism from H’ to G’ merging the above diagrams into

1 A H B 1

1—— Ker(p) H’ B 1

1— Ker(p) G’ B 1
|

1 — Ker(p) —> G —= Im(p) — 1,
so that i;(err) = e,(B). Now we have a short exact sequence
1— A5 Ker(p) — Ker(p)/A — 1,
which induces an exact sequence in cohomology
H2(B, A) "2y H2(B, Ker(p)) — H*(B, Ker(p)/A).

Since

e,(B) € H2(B, Ker(p))
is in the image of %, it must become trivial in H*(B, Ker(p)/A).
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Conversely, if e,(B) becomes trivial in H%(B, Ker(p)/A), then there is an element ey
in H?(B, A) satisfying i};(em) = e,(B). This means that there is an extension

1—A—H —B—1,

and a connecting map from the pushout H’ to the pullback G’ which induces the commu-
tative diagram

1 A H B 1
1 —— Ker(p) —= G —= Im(p) —= 1,
with H € G,(G, A, B). [l

Remark 2.13. We may interpret theorem 2.12 by saying that G,(G, A, B) is non-empty
if and only if the associated extension

1 — Ker(p)/A — G/A— Im(p) — 1
splits when pulled back to B C I'm(p).

Denote by G,(G, A, B)/ ~ker(p) the set of orbits with respect to the conjugation action
of Ker(p) on G,(G, A, B). Given a distinguished element Hy in G,(G, A, B), we have an ac-
tion of B on Ker(p)/A induced by the conjugation action of G on Ker(p). Indeed, since A
is normal in G, this conjugation action determines a homomorphism G — Aut(Ker(p)/A),
which in turn descends to a homomorphism G/A — Aut(Ker(p)/A) as A is in the center
of Ker(p). We thus obtain a canonical homomorphism

B = Hy/ACG/A — Aut(Ker(p)/A),

which allows us to consider H'(B, Ker(p)/A). The latter can be identified with the set of
Ker(p)/A-conjugacy classes of sections of the split extension of remark 2.13, as explained
in [4] chapter IV proposition 2.3 for the abelian case and [23] chapter I section 5.1 (see
exercise 1) for the nonabelian case.

Theorem 2.14. If G,(G, A, B) is non-empty and Hy is an element of G,(G, A, B), then
there exists a bijection

1/}H0 : Hl(B7 Ker(p)/A) — gp(G) A, B)/ ~Ker(p)»
which depends on the choice of Hy.

Proof. Let S(B, ) denote the set of all sections s : B — G/A of the canonical projection
m:GJ/A — G/Ker(p), that is

S(B, ) := {group homomorphism s: B — G/A | (mos)(b) =0 for all b € B}.

For any s € S(B, ), we denote by §: B — G the choice of a set theoretical lift of s. This
defines maps
gp(G7 Aa B) — S<B7 7T)
H+—s:B=H/A— G/A,

S(B,m) — G,(G, A, B)
s+—— (A, 3(B)),
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which can easily be checked to be mutually inverse to each other and compatible with the
obvious actions of Ker(p) by conjugation. The desired result then follows from the usual
interpretation of H'(B, Ker(p)/A) as conjugacy classes of sections. O

2.4. The first extension type

In this section we ~consi~der the first extension in the chain of ~section 2.2.~Recall that
for a given subgroup F' € F, (D)), we let Fy be such that Fy = (F NSy, Zy(FNSy)).

Lemma 2.15. Let Hy be an abelian finite subgroup of Sp, ft[vo = Hy x (pu), and let
Fu(Qp(Ho)*, Ho) be the set of all F € F,,(Qu(Hp)™) such that

° I% C }~7, and
o the valuation v: F — 17 induces a monomorphism F/Hy — iz/z.
If F € Fu(Qy(Ho)*, Hy), then Fo = Hy.
Proof. By assumption on F', we have in G, (u)
Hy=Ker(v: F —Z/n)=FnNS, = F,
and therefore I?O = ZA*"B. O
We now fix Fy and analyse the set 7, (Q,(Fp)*, Fo) of all F; € F,,(Q,(Fp)*) such that
e [ contains FB as a subgroups of finite index, and
e F}/F injects via v into iz/z.
Lemma 2.15 ensures that the elements of ]t'u((@p(Fo)X , Fy) are extensions of the form
1— Fvo s - Py /Fvg — 1

with (F1 NS, Ly (F1NSy)) = Fy. By definition, such an extension fits into a commutative
diagram

1 Fy Fy Fy/Fy 1

| l |

1 — Zy(Fo)* x (pu) —= Qp(Fy)* — sy Z/Z — 1,

where e(Q,(Fp)) denotes the ramification index of Q,(Fp) over Q,, where the horizontal
maps form exact sequences and where the vertical maps are the canonical inclusions. As

1 ~
mz/z = 7/e(Qp(Fv)),

the quotient group Fy/Fy must be cyclic of order a divisor of e(Qp(Fp)). Let

eu(Fo) € H*(Z/e(Qp(Fo)), Zp(Fo)™ x (pu))
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denote the class of this last extension. Furthermore, for r1 a divisor of e(Qy,(Fp)), we let
FulQu(Fo), Fo,r1) o= {Fy € Fu(Qp(F0)*, Fo) | |1/ Fo| = i},
and we define the cohomology class
eu(Fo,m1) € H*(Z/r1, Zp(Fo)* X (pu))
to be the image of e, (Fp) under the induced homomorphism
J7° = H2(j, Lp(Fo)* x (pu)),
for j the canonical inclusion of Fy/Fj into mZ/ Z.
Theorem 2.16. Let ry be a divisor of e(Q,(Fp)).

1) The set fu(Qp(Fo)X,FVO, r1) is non-empty if and only if e, (Fy,r1) becomes trivial in
H*(Z/r1, Zp(Fo)* [ Fo).

2) If ]?u(Qp(FO)X,FVO,n) is non-empty and if F = (Fy,x1) belongs to this set with
v(zy) = %, then there is a bijection
1 HYZ 7y, Zy(Fo)* [ Fo) — Fu(Qp(Fo)*, Fo, 1)
y — (Fo,yx1).

Proof. Statements 1) and 2) are the respective specializations of theorem 2.12 and 2.14 in
the case where

p:G=QyR)* — ~Z/Z=Q

is induced by the valuation, G (and hence Ker(p)) acts trivially on ]?u((@p(Fo)X ,Fo,m1),
and

~ 1
A:F0:F0><<pu>, BZ*Z/Z;
1

in particular,
Ker(p) = Zp(Fo)™ x (pu),  Im(p) = —=——~32/Z,

and
ep = ey(Fo), ep(B) = eu(Fo,m1).
]
Remark 2.17. Note that F} € Fu(Q,(Fp)*) belongs to fu(@p(Fo)X,Fb, r1) if and only
if there exists an element x; € Q,(Fp)* with F = (Fp, z1) satisfying

1 .
v(zy) = - and z]' € F.

Clearly, E uniquely determines x; modulo Fj.
Corollary 2.18. If Fy = u(Q,(Fp)) is the group of roots of unity in Qp,(Fy), then

| Fu(Qu(Fo) %, Fo, )| < 1.
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Proof. By proposition C.7 we have Z,(Fp)* = u(Qp(Fo)) x ZI[)QP(FO):Q”]. Since the action
of Z/ry is trivial on Z,(Fp)*, we obtain

HY(Zr1, Zp(Fo)*/Fo) = H'Z/r1, ZI&E] x 1(Qy(Fy))/Fo)
HYZ/r1, 1(Qp(Fy))/Fo)
{1}.

The result then follows from theorem 2.16.2. U

1

12

Remark 2.19. The condition Fy = p(Qp(Fp)) is equivalent to the maximality of Fj as a
finite subgroup of Qp(Fo)*. In section 3.3 we will see that if p is odd and Fy = 1(Qp(F0)),

then the set F, (Qp(Fv), Fy,r1) is non-empty if and only if p does not divide 7. As for
the case p = 2, we will see in section 3.4 that this depends on w and Fy.

2.5. The second extension type

In this section we (pnsiéer the second eitensipn in the chain of section 2.2. Recall that
for a given subgroup F € F, (D)), we let F; = F'NQ,(Fp)*.

Lemma 2.20. Let Hy be an abelian finite subgroup of Sp, Ho = Hy x (pu), H, €
Fu(Qp(Hop)™, Hy), and let F, (Cpx (Ho), Hy) be the set of all F € F, (Cpx (Ho)) such that

° E = ﬁm@p(HO)X; and
e the valuation v : F — 17 induces a monomorphism F/H, — %Z/U(E)

If F € Fu(Cyx (Ho), Hy), then Fy = Hj.

Proof. Clearly F/H, injects via v into %Z/’U(E) if and only if we have in G,(u) a
monomorphism F/Hy — Z/n, and this is true if and only if Hy = F'NS,. Therefore
Fy = Hp and consequently

Fi = FNQy(Fy)* = FNQy(Ho)* = Hi.
O

We now fix Fy and r; such that F, (@p(FO) F’O,rl) is non- empty, and fix a group
Fi € Fu(Qp(Fy), Fo,r1). We consider the set F, (Cpx (Fo), Fy) of all Fy € F, (Cpx (Fb))
such that

o I} NQ,(Fy)* = F, and
e F,/F) injects via v into %Z/U(E)
Lemma 2.20 ensures that the elements of fu(CD;; (Fy), F1) are extensions of the form
1—F,— Fy— FyJF —> 1

with Fy N Qp(Fo)* = Fy and (F5 N Sy, Zp/(E NS,)) = Fy. For ry a divisor of n/ry, we
define N N - o
‘FU(C[D);;(FO)’FMTQ) = {FQ G.Fu(CD;(FO),Fl) | |F2/F1| :7“2}'
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Note that any = fu(CM (F(]),E ,72) determines a commutative field extension L =

QP(FVQ) of degree ry over Q,(Fp) which is obtained by adjoining to Q,(Fp) an element
z € Cpx (Fp) which satisfies

1

= d " F.
v(x2) e an xh I
We can thus partition our sets
f‘u(CD;f(FO)yﬁyr2) = H fu(CDé(FO)7E7L)7
L2Qp(Fp)
[L:Qp (Fb)]=r2

according to all L D Q,(Fp) obtained from Q,(Fp) via irreducible equations of the form

X" — g for 1 an element of valuation % in FY, where
]t—U(C]D)TXL (F0)>E7L) = {E € JEU(ODTXL (FO)aFl) | QP(E) =L}
Clearly, L determines ro and we have

fu(cmrf(FO)aFl) = H fU(CDTXL(FO)vFlaTQ)

r2|%
- ﬁu(CD;(FO)aﬁaL)
(L (Fo))| 2

Theorem 2.21. Let x1 be an element of Fy € ﬁu(Qp(Fo),Fb,rl) with v(z1) = %, let L
be an extension of Qu(Fo) of degree r2, and let L) denote the group of all x € L* such

that v(x) € %Z.

1) The set ]-N"u(C'M (Fy), F1, L) is non-empty if and only if r2[Qp(Fo) : Q] divides n,
there exists a § € Fy such that the equation X" — 0x1 is irreducible over Qp(Fy) and
L = Qp(x2) for xzo a root of this equation.

2) If ﬁu(%z (Fo), F1, L) is non-empty and if Fy = (Fi,x3) belongs to this set with
1

v(z2) = 5.5, then there is a bijection

o o HY(Z/ra, L) JF1) — Fu(Cpx (Fo), F1, L)
Yy — <ﬁ17yx2>

Proof. 1) This is a direct consequence of the embedding theorem.
2) This is a specialization of theorem 2.14 in the case where

1 1
p:G=L" — —Z/—7Z=Q
n ™

is induced by the valuation, G (and hence Ker(p)) acts trivially on fu(C’D; (Fy), F1, L),

and 1 !
A=F, B=—7Z/—1;
rir2 1

in particular, Ker(p) = L. O
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Remark 2.22. Note that o .
Fy e .Fu(CD; (Fo), F1)

satisfies QP(FVQ) = L if and only if there exists an element zo € L with Fy = (Fvl , T2)

satisfying
1 —
v(zg) = — and x5’ € Fy.
T2

Moreover, E uniquely determines such an zo modulo Fjp.
Corollary 2.23. If Fy = p(L) is the group of roots of unity in L, then
| Fu(Cx (Fo), Fy, L) < 1,

Proof. We know from proposition C.7 that L) = Z(x1) x (L) x Z,[;L:Q”]. Since the action
of Z/ry is trivial on L), we obtain

HY(Z/rs, LY /F) = HY(Z/ry, ZFY) x u(L)/ Fy)
HYZ/re, n(L)/Fo)
= {1}.

The result then follows from theorem 2.21.2. O

I

2.6. The third extension type

In this section we Eonsi~der the third e}gtvensi(ln in the chain of section 2.2. Recall that
for a given subgroup F' € F,(Dy), we let Fy = F'N Cpx (Fp).

Lemma 2.24. Let Hy be an abelian finite subgroup of S,, Hy = Hy x (pu), H, €
Fu(Qp(Ho)*, Hy), Hy € Fu(Cpx(Ho),Hy), and let .}’-'U(NDTXL (Hyp), Ha) be the set of all

Fe ﬁu(NJD),f (Hp)) such that

X
n

o Hy= IEOC’]D); (Hy), and
° ﬁg is normal in F.
If F € Fu(Npx(Ho), Hy), then
a) F,=H,; for0<i<2, or
b) p=2,n=2mod4, HyNS, =Cy, FN S, = Qs and Zy(FNS,) = Zy(HyNSy).

Proof. First note that the condition Hy = Fn Cpx (Hp) implies that the canonical ho-

momorphism F — Aut(Hy) induces an injective homomorphism F/Hy — Aut(Hp). In
particular, we have a monomorphism F' NS, /Hy — Aut(Hp) where

(Ho N Sn) X Zp/(H[)) =HyC FNS,,

for Z,, the p’-part of (the center of) Hy. By theorem 1.31 and 1.35 we know that F'N'S,
acts trivially on Z,,(Hp), so that we have a monomorphism

Fn Sn/Ho — Aut(Ho N Sn) (*)
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Assume for the moment that F'N .S, is abelian; this must be the case if p > 2, or if
p = 2 with either n # 2mod 4 or HyN S, 2 C4. Then F' NS, = (FNSp) x Zy(FNSy,)
is cyclic. Since (F'N S,,)/(Ho NSy,) injects into the kernel of the injective map (x), we
have FF'N S, = HyN S,,. Furthermore, the p’-part of Aut(Hy N S,) is a cyclic group of
order p—1, and the quotient group Zy (F'NSy,)/Zy (Hy) injects into Cp—1 C Aut(HoNSy).
Hence Z,(FN'S,) = Zy(Hp) by theorem 1.31 and 1.35, so that Fy = Hy and Fy = Hy.
Therefore

Fy = F 0 Cyx(Fy) = F N Cpx(Ho) = Hy,

and
Fi = FNQy(Fy)* = FNQy(Ho)* = F N Cpx (Hy) NQy(Ho)* = Hy N Qp(Ho)* = Hi.

Finally, if FNS,, is not abelian, then p = 2, n = 2 mod 4, HyNS, = Cy and FNS,, = Qs
by theorem 1.35. As seen above, the quotient group of the 2’-part of F'NS,, by the 2/-part
of Hy injects into the trivial group. O

We now fix a chain Fy C F; C F5 such that condition b) of lemma 2.24 is not satisfied,
and we let L be a subfield of D,, such that F, belongs to F, (CDX (Fy), 1, L); in particular

L= Qp(FQ) We consider the set Fy (NN px (Fo), Fy) of all Fy € Fyu(N, px (Fo)) such that
e 5N C’D; (Fy) = F,, and

e F} is normal in Fj.

Proposition 2.25. If F5 € F, (N, px (Fo), Fy), there is a commutative diagram of obvious
group homomorphisms

Fy ) Fy — Aut(Qpy(F2), Qy(Fp)) — Aut(Qp(Fp))

|

F3/F Aut(Fy, Fy) Aut(Fp)

in which all compositions starting at 1?’5 / E are injective.

Proof. Clearly, the condition Fy= EOCD; (Fp) is equivalent to the fact that the canonical

homomorphism Fj — Aut(Fp) induces an injective homomorphism Fy/Fy — Aut(Fp).
Furthermore, an automorphism of the field Q,(Fp) induces an automorphism of the group
1(Qp(Fp)) of roots of unity in Q,(Fp), and since this group is cyclic and contains Fy,
it also induces an automorphism of Fj;. This determines an injective homomorphism
Aut(Qp(Fo)) — Aut(Fp). The homomorphism F3/Fy — Aut(Fp) clearly takes its values
into the subgroup Aut(Qp(Fg))

The condition that Fy is normal in Fj yields canonical homomorphisms Fs — Aut(Fg)
and F3 — Aut(Qp(Fg)) Since Fj is abelian, these induce canonical homomorphisms
F3/Fy — Aut(F;) and F3/Fy — Aut((@p(fg)). Moreover, as E/Fé — Aut(F5) takes its
values into the subgroup AUt(FQ, Fpy) of those automorphisms of Fg which leave Fj invari-
ant, and as Fy/Fy — Aut(Qp(Fg)) takes its values into the subgroup Aut((@p(Fg) Qp(Fo))
of those automorphisms which leave Q,(Fp) invariant, we end up with the given commu-
tative diagram.

From the injectivity of the map Fy / Fy — Aut(Fp), we then obtain that all compositions
of homomorphism in the diagram starting at E / Fvg are injective. O
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Let Aut(L, Fy, Fy) denote the subgroup of all elements of Aut(L) which leave both Fj
and Fp invariant. By proposition 2.25, we may partition the set

Fu(Npx (Fo), Fy) = ]_[JT px (Fo), Fa, W)

according to all subgroups W of Aut(Fy) which lift to Aut(L, Fy, Fy), where
Fu(Npx (Fo), Fo, W) := {Fs € Fu(Npx (Fo), Fo) | Fs/Fp =W},

Let us fix such a W. Under our assumptions, lemma 2.24 and proposition 2.25 ensure that
the elements of F, (N, px (F0), Fy, W) are extensions of the form

1— E — F;, — W —1
with F5 N Cyx (Fp) = Fy, Fs N Q,(Fp)* = Fy and (F5N Sy, Zy(F3 N Sy)) = Fy. Define
K =LV CL=0Q,F)

to be the subfield of all elements of L that are fixed by the action of W. Clearly, K is an
extension of (@, and the respective dimensions of K and L over Q, divide n. Recall from
section B.2 that an element e € H?(W, L*) defines a central simple crossed K-algebra
(L/K,e) up to isomorphism.

Lemma 2.26. There is a generator of H*(W, L*) whose associated crossed algebra embeds
into Dy, if and only if |W| is prime to n[L : Q]!

Proof. Consider the tower of extensions Q, C K := LW C L. Let k = [K : Q),
[ :== [L: Q, w:= |W|, and let e be a generator of H>(W,L) & Z/w C Q/Z. By
proposition B.3, we know that the crossed algebra (L/K,e) = > oy Lu, is a central
division algebra over K of invariant r/w € Br(K) for some integer r prime to w. If
g = n/l, then the invariant of D := Cp, (K) is 1/qw € Br(K) by proposition C.10.

Suppose (L/K,e) can be embedded into D,. Then it embeds into D, and by the
centralizer theorem

D= (L/K,e)®k Cp(L/K,e),

where Cp(L/K,e) is central of dimension ¢? over K. On the level of Hasse invariants we
get a relation of the form

1 j—

ros

—=—+- modZ ()
qw  w ¢

for a suitable integer s which is prime to q. Hence

1=7rq+sw modqZ,

and it follows that ¢ is prime to w. Conversely if ¢ is prime to w, then there is an r prime
to w and an s prime to ¢ such that (%) holds. Therefore the algebra (L/K,e) embeds into
D, and consequently into D,,. O

Theorem 2.27. Let W be a subgroup of Aut(Fy) which lifts to Aut(L, Fy, Fy) and let
ity H2(W, Fy) — H?(W, LX)

be the map induced by the inclusion off’g into L*. Then F, (N, DX (Fo), B, W) is non-empty
if and only if |W| is prime to n[L : Q]! and i}y, is surjective.
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Proof. Suppose that |[W| is prime to n[L : Q,]~! and 4}, is surjective. By lemma 2.26,
there is a generator e € H2(W, L*) whose associated algebra (L/L" e) embeds into D,,.
The group of units (L/L",e)* contains

LW =[] L*us
oeW

as a subgroup, and we get an embedding of L*W into D). By the Skolem-Noether theorem
we can assume that this embedding restricts to the given embedding of L into D;,. Since
L = Qp(F), we have LW C Ny« (F3) and there is a commutative diagram

1 L~ L*W w 1

i L

1 —= Cpx (Fo) — Ny (Fy) — Aut(L) — 1,

whose vertical maps are inclusions and whose horizontal sequences are exact. Now, the
surjectivity of i}, implies the existence of an element ¢’ € H?(W, F3) such that i}, (¢/) = e,
in which case the above diagram extends to a commutative diagram

S A
T

1—— CID)% (FQ) — DX (FQ) —— Aut(L) E—— 1,

where the top exact sequence has extension class ¢’. Because of our assumption that W
injects into Aut(Fp), we have F' N Cpx (Fp) = I, and therefore I € F, (Npx (Fp), o, W).

Conversely, if F e ﬁu(NDx (Fo), F;, W), then F extends E by W and there are com-
mutative diagrams

T

1 — Cpx (Fy) — Ny (F2) — Aut(L) —= 1,

and

1 Fy F w 1

L

1——Lx HLXWHWH:L

whose vertical maps are inclusions and horizontal sequences are exact. Using the universal
property of the lower left pushout square, we may extend the latter diagram in an obvious
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way to obtain an embedding of extensions

1 Fy F W 1
1 L~ L*wW w 1

1 —— Cpx (F2) — Npx (F2) — Aut(L) —1,

where L*W C (L/LW,e) = 3 cw Lu, for e the image of the extension class of F in
H?(W,L*). By definition of L*W, the map i extends uniquely to an algebra homomor-
phism

IE (L/LW,e) — D, : Z:nguo — Zi(xgug), T, € L™,

Moreover since (L/LW , e) is simple and 4 is non-trivial, the kernel of i is trivial. Hence
4 is injective and (L/LW,e), which embeds into D, is a division algebra by proposition
A.3. Tt follows that e is a generator of H2(W, LX) and i} is surjective. Applying lemma
2.26 we finally obtain that |W| is prime to n[L : Q,] L. O

Theorem 2.28. Let W be a subgroup of Aut(Fy) which lifts to Aut(L, Fy, Fy). If the set
Fu(Npx (Fo), F2, W) is non-empty and contains Fs, then there is a bijection

by s B (W, Cop (F5) [ Fy) — Fu(Noye (Fo). P W)/~ i
n n C]D);f (FZ)
c— (E, 651;3%

for ¢ a cocycle and S5F, W — 1?’5 a set theoretic section of the epimorphism F’g, - W.

Proof. By proposition 2.25, we know that W lifts to an automorphism of F,. The result
is then a specialization of theorem 2.14 in the case where

p:G = Npx(Fy) — Aut(Fp) = Q
is given by the canonical homomorphism induced by conjugation and
A=F, B=W,;
in particular, Ker(p) = Cpx (Fy). O

Corollary 2.29. If Q,(Fy) is a mazimal subfield of I, such that p(Q,(Fy)) = Fo, and
if iy H2(W, Fy) — H2(W,L*) is an epimorphism for W a subgroup of Aut(Fy) which
lifts to Aut(L, E, Fy), then there is a bijection between the conjugacy classes of elements
of fu(NM (Fy), Fo, W) and the kernel of iy -

Proof. Under the stated assumptions, we have B = Fvl, L = Qy(Fp), [L : Qp) =n and
Cpx (Fp) = L*. Hence there is a short exact sequence

1—>E—>LX—>LX/E—>1,
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which for W C Aut(L, Fy) C Gal(L/ Qp) induces the long exact sequence

"*>H1 WLX)HH:L(WLX/FQ) L/LW
HQ(VV,F\;) ‘w H2 W, L*) R

where the left hand term is trivial by Hilbert’s theorem 90. The group H'(W, L* /Fj) is
therefore the kernel of i}, and the result follows from theorem 2.28. U

Theorem 2.30. Let H € F,(DY) be such that H N S, is abelian and w(Qy(Hyp)) =
1(Qp(Hs)). Then there is a subgroup F € Fu(DY) such that

= N(QP(H0>)7 @p(F2) = Qp(H2> and E - E for 0 <i<3.

Proof. We know that Hy = (Hy, x1) where z; commutes with Ho, v(z;) = and it € H,
and furthermore that Ho = <I?1,x2> where 29 commutes with Hl, (acg) = mlrz and
" € Hy. Defining Fy = p(Qy(Ho)), Fo = (Fo,pu), F1 = (Fy,z1) and Fy = (F1, x2), we
have - o .
Fo=FnS, F=FKBnQyF) and FC Gy (F).

It remains to show that the extension

l—Hy— Hy=H —W —1 ()
can be extended to an extension in D¢

1— Fy— F3=F—W—1. ()

Let L := QP(E) = Qp(ﬁ;). The existence of (x) implies that W C Aut(Hy) C Aut(Fp)
lifts to Aut(L, }72’ Hp). An automorphism o of L which leaves Hy invariant, also leaves
Qp(Hyp) invariant, and therefore the subgroups Fy = 1(Q,(Hop)) and Fy = (Fy, pu) are also
left invariant. Hence

—~ 1
o(x1)™ € Fy = (Fy, pu) and (Jfl)) € F.
1

Since Fp is the (unique) maximal finite subgroup of Q,(Fp)*, we have

ol € Fy and o(z1) € (Fy, 1) = F,
x1

and therefore o leaves Fvl invariant. This implies

o(xg)? € Fy and (U($2)> e NS, = .
€2

Using that u(Q,(Fp)) = /.L(QP(FQ)), we obtain as before that o(x2) € <F0,x2) F, and
consequently that o leaves Fy invariant. It follows that W lifts to Aut(L, FQ,FO) The
chain of inclusions H2 - FQ C L* induces a commutative diagram

HA(W, i)
H(W, Fy) —= H*(W, L)

whose oblique arrow is an epimorphism by theorem 2.27. The horizontal homomorphism
is therefore surjective and theorem 2.27 implies the existence of (xx) in D). O
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2.7. Classification of embeddings up to conjugation

In this section, we use the results obtained in this chapter to classify the chains of
subgroups
Fy CF CF, CF

that occur in D¢. In order to do this we proceed in four steps.

For a group G and a G-set S, we denote by §/ ~¢ the set of orbits with respect to
the G-action on S.
Classifying F‘o’s

As explained in remark 2.11, the map

Fu(DX) — Fu(Sn) : Fr— Fy:= (F 0 Sp, Zy(Q))
induces a well defined map
o FulD)/ ~px T Ful(Sn)/ ~DXo

whose image can be identified with the set

{(a,d) eNXN* [0<a <k, d]|p'—1}.

Classifying Fy’s
Pick Fy € Fu(Sn) and define the sets
o F(DX, Fy) of all subgroups F of DX such that Fy = F NS, is of finite index in F;

o .f(@p(Fo)j,Fvo) of all subgroups F of Q,(Fp)* such that Fy = F NS, is of finite
index in F.

Clearly the map
F(DY, Fo) — F(Qu(Fo)*, Fo) : Fr— Fy == FNQy(Fp)*
induces a well defined map
s FO5L R0~ 7y — F(Qp(Fo), Fo).

Cpx

n

As seen in section 2.4, every = f(Qp(Fo)X,FVO) determines an integer r = \E/Fb!
which is a divisor of n. Furthermore, according to theorem 2.16, if such a divisor rq is
realized by a subgroup Fy € F(Q,(Fp)*, Fo), then the set

{F1 € F(Qy(Fo)*, Fo) | |Fy/Fo| =1}

is in bijection with the set H(Z/ry, Zy[Fo)* | Fo).



44 Chapter 2: A classification scheme for finite subgroups

Classifying Fy’s
Pick F € F(Qp(Fp)*, Fp) and define the sets

o f(]@ﬁ,ﬁ) of all subgroups F of DX such that F; = F N Q,(Fp)* is of finite index
in F

o f(CM (F1), F1) of all subgroups F' of Cpx (Fy) such that F| = F N Qp(Fp)* is of
finite index in F.
Then the map
F(D, ) — F(Cpy (), F1) : Fr— Fy = FNCp(F)
induces a well defined map

P2t ]?(ID);;FI)/ NCDx(l:i)—> ]?(C]D),XL (F1), F1)/ NCDx(fi) :
In order to describe the image of (o, we recall that every FyeF (CM (E ) F ) determines

an extension L := QP(FQ) of Qp(Fl) Clearly, the isomorphism class of L is constant on
each conjugacy class of Fys by elements in CDX (Fl), and hence determine the integer

ro = [L: Qp(Fl)} dividing ;*. By the Skolem-Noether theorem, the set of isomorphism

classes of extensions Qp(ﬁ ) C L is in bijection with the set of Cpx (E)—conjugacy classes
of L’s. Thus denoting

F(L* F) = {Fs € F(Coe (F1), i) | Qy(Fy) = L},
we have a bijection

F(Cpx (F), R/ ~¢ (7 = TTFLF),
L]

where the union is taken over all isomorphism classes of extensions (@p(f’l) C L. Finally,

if for a given L the set F (EX,F:) is non-empty, then by theorem 2.21 it is in bijection
with the set H'(Z/rs, L) /Fy), and we have

F(Cos (RN g,y 5y * TTH' @1 L3
Classifying Fy’s
Pick Fy € F(L*, F1) and define the sets

o F(DX, F,) of all subgroups F of DX such that FNS, is abelian and Fy = ﬁ’ﬂC’DTXL (Fp)

is of finite index in F ;

o F( DX(FQ) F) of all subgroups F of NDX(FQ) such that F NS, is abelian and
F,=Fn Cpx (Fop) is of finite index in F.
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By proposition 2.9, each F in F(DX, Fy) satisfies F' C Npx (Fy), in which case F} is normal
in . Thus the map

F(DY, Fy) — F(Npx(Fo), F2) © F— Fy:= F N Ny (F)

is a bijection and induces a well defined bijection

Q3 : ].F:(ID);;’E)/ NCDX (fb)i f(ND;; (E)aﬁ;)/ NCDX (13;) '

In order to describe the image of ¢3, we recall that every Fyse F (Npx (E), F’g) determines
an extension - N
1— F — F5 — W — 1,

where W canonically injects into éut(E, Fp). Via this injection, W is independent of the
given representative in the CD; (F»)-conjugacy class of F3. Thus denoting

F(Npx (Fa), Fa, W) := {Fs € F(Nyx (Fy), Fy) | Fy/Fy = W},
we have a bijection

ﬁ(N[D)X (FQ) FQ) g H ]D)X FQ FQ,W)/ NCDx(ﬁz) .
1%% n

Finally, if for a given W the set F (Npx (Fy), Fy, W)/ ~ is non-empty, then by

Cyx (F2)
]D)n
theorem 2.28 it is in bijection with the set H'(W, Cpx (Fy)/F,), and we have

FNo (). P/ ~¢,_ 55y = TTH' (W.Cy (Fa)/ Fo)
W

n
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Chapter 3:

On abelian finite subgroups of G, (u)

Throughout this chapter we assume that n = (p — 1)p*~'m with m prime to p. Given

an abelian finite subgroup Fy of S, whose p-Sylow subgroup is cyclic of order p® for
1 < a <k, we want to determine what sequences of groups

FyCF CF

are realized in G, (u) = D} /(pu); here I3 is an abelian finite subgroup of G, (u) containing
Fy and Fp is such that F1 = F> N Q,(Fp). We know from chapter 2 that the tilded
correspondents of these groups in ;S are given by

E = <F(),.’IJ1> and E = <F0,.le2>
with 21,22 € D) such that

1 ~ 1 —~
v(xy) = - zy' € Fy, v(ze) = - and  xz5? € F.

We want to determine for what pairs of positive integers (r1,72) the sets
ﬁu(@p(FO)a-,F‘\aarl) and j}u(C]D);i (FO)a-,F‘:aTQ)

are non-empty.

3.1. Elementary conditions on r;

The question of determining for what r; the set fu(Qp(Fo), Fy,r1) is non-empty nat-
urally leads to studying the ri-th roots of pu in Q,(Fp). Clearly r; must be a divisor of
©(p®), the ramification index of Q,(Fp) over Q).

Proposition 3.1. Let (yo be a primitive p™-th root of unity in Q,(Fy)*. The principal
ideal generated by Cpo — 1 is maximal in Z,(Fy) and satisfies

(p) = (G — 1?7,

Proof. If a and b are integers prime to p, one can solve the equation a = bs mod p®, so
that

(l—1 1-¢5% b (s=1)b
T 4Gt T €G]
pe pe

b

. Cpa—1
The same is true for Cﬂa_l, and
P

(po — 1
o — 1

€ ZplGpe]™ whenever (a;p) = (b;p) = 1.

47
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Moreover since

p—1 o
i —1 1 - .’L‘p
Sor o 12T ] (-,
1=0 € (a;p)=1
1<a<p~

for x =1 we get

o7 Caa_].
p= I G -1=G - [ &,
(a;p)=1 (a;p)=1 p

1<a<p® 1<a<p®

showing that (p) = ((pe — 1)?P"). The ideal generated by (ye — 1 is hence maximal in
Zp(Fp). O

Corollary 3.2. We have

1
p= ((ha — 1) and  v((pe — 1) =
<u1;[_1 Y . v (p*)
1<a<p>

0

Let 1(Qp(Fp)) denote the roots of unity in Q,(Fp) and fix (pe a primitive p®-th root
of unity in pu(Qp(Fo)). Define the unit

Ea € Zp(Gpe)* CQu(F0)* by  (Go — 1)PP") = pe,.

Obviously as u € Z,, we know that <= belongs to Zp((pe)™. Let m(eu(Fp)) denote the
class of

eu(FO) S HQ(Z/SD(pa)v Zp(F())X X <pu>)
in HX(Z/o(p%), Zp(Fp)*) as defined in section 2.4.

Proposition 3.3. We have
Ea . o ~ <
m(eu(Fo)) = == in HY(Z/o(p"), Zy(Fo)*) = Zy(Fo)* [ (Zyp(Fp)*)#¥™).

Proof. This is a straightforward consequence of the fact that

€a

PEq = PU—

u

belongs to the class of e, (Fy) € H*(Z/o(p®), Zp(Fp)™ x {pu)). O
Recall from proposition C.7 that
Zy(F)" 2 p(Qp(Fy)) x 24P,

so that

H*(Z[ry, Zy(Fo)*) = Zyp(Fo)* /(Zp(Fo)* )"
1(Qp(F0)) /1l Qp(Fo))™ X (Zyp/112y) W FOIE](3.1)

12
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Theorem 3.4. The set ﬁu(Qp(Fo),Fvo,rl) is non-empty if and only if

%‘ =1 in Zp(Fo)™ /(Fo, (Zp(Fo)™)™).

Proof. The unit
£
;a € Zp(gp“)x c ZP(FO)X7
is equivalent to the trivial element if and only if g, (e, (Fp,r1)) is trivial in
H*(Z/ry, Zy(Fo)* | Fy),
for g. = H*(Z/r1,q) the map induced by the canonical homomorphism
q: LZy(Fo)* x (pu) — Zp(Fo)™ x {pu)/Fo = Zy(Fo)* / Fo.

By theorem 2.16, this is true if and only if fu(@p(Fo), Fy,r1) is non-empty. O

Corollary 3.5. If (Fy, 1) € Fu(Qp(Fy), Fo, 1) with v(z1) = %, then z' = pud for a 6
in Fy such that 0 = == modulo (Zy(Fp)™)"™.

Proof. This follows from remark 2.17 and theorem 3.4. O

Corollary 3.6. Let Fy = u(Qp,(Fp)) and r1 be prime to p.
1) The set fu(Qp(Fo), Fp, r1) is non-empty if and only if r1 divides p — 1.

2) Ifﬁu(Qp(Fo), ﬁa,ﬁ) is non-empty with r1 > 1, then p is odd, and there are elements
Cp € Fy and t € Z,((p)* such that

x1= (G — 1)t and 2" =pu mod p, 1.

Proof. 1) As 1y divides the ramification index of Q,(Fp), it must be a divisor of p — 1.
The result then follows from corollary 3.5, the isomorphism (3.1) and the fact that Z, =
(p—1)Zp.

2) The condition 7 > 1 ensures that p > 2 and ¢, € Fy. By 1) and theorem 3.4, we

know that
U

— € (Qp(&p)), (Zp(Gp) VP = (pp1, (Zp(Gp)*)PH).

€1

Hence there exists a t € Z,((,)* such that ue;* = tP~1§ for some (p—1)-th root of unity
0 € pp—1. For z1 = (¢, — 1)t, we then have

— —1,p— w .
x 1:(Cp_1)p Lyp 1:p51.a(5 V= pu mod ;1.

0

Remark 3.7. When Fy = p(Q,(Fp)), we know by corollary 2.18 that F} is unique in the
set Fu(Qp(Fv), Fo,71). If r1 divides p — 1, we may therefore always assume Fy = (Fp, x1)
with z1 as given in corollary 3.6.
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Example 3.8. If p is odd, then
ca =—1 mod (Z,(Fp)*)P .
Indeed, by example 1.33 we know that

Qp(¢p) = Qp(X71),

where X = w"5 S satisfies X" = —p for w a primitive (p" —1)-th root of unity in D).
Furthermore, both elements X and ({p« — 1) belong to the field Q,({p), and there is a
2 € Lp(Cpe)™ with

(G — 1P = X712,

Since Qp((pe)* € Qp(Fo)™, we obtain
gap = ((po — 1)90(3’&) = X" l=_p mod (Zp(FO)X)p_l.
Thus if u is a root of unity, the set fu(Qp(Fo), E,p—l) is non-empty.

Example 3.9. If p = 2, it is obvious that e; = —1. The case @« = 1 however is not
interesting since then r1 must divide the trivial ramification index of Qy(Fp) over Q.
If p=2and a > 2, we have

£a = —C mod (Zo(Fp)*)?

for a primitive 4-th root of unity (4 € Zo(Fp)*. Indeed, the element ({4 — 1) has valuation
% and
(C=1)°=C =20 +1=-2G.

Hence for z € Zy(Fp)™ satisfying

(G = 1)* 7 = (G- 1)z,
we obtain
%0 = (Coo — )2 = (G —1)22 = —2¢4 mod (Zo(Fy)*)2.

This shows that if u = 41, the set F,(Qq(Fpy), Fo,2) is non-empty.

3.2. Change of rings

Assume p to be any prime. For each 1 < a < k, we fix a root of unity (pe in Q,(Fp),
and we define

To = Gpo — 1 and Ry = Zp[Cpe].

Recall from proposition 3.1 that 7, is a uniformizing element of R, where (mf(p a)) = (p).

Let
lo Ra — Ra+1

be the ring homomorphism defined by iq({pe) = ;’a 41 By definition, ¢, € R, for each a.

In this section, we compare €441 with the image of €, in Rqy1.
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Lemma 3.10. For any prime p and any o > 1, we have
P
. P i
ia(Ta) = Z ( ) 7rfl+1.
=1\
Proof. Clearly iq(my) = Cgaﬂ — 1. This, together with the identity
P (p '
XP—1=(X-14+1P—-1=> (T |(X-1)
=1\
applied to the case X = (ja+1, yields the result. O
Corollary 3.11. For any prime p and any « > 1, we have
ia(me) =7t mod (prat1).
Proof. This follows from lemma 3.10 and the p-divisibility of the binomial coefficients for
1<5<p. ]
For any prime p and any a > 2, define the positive integer
p*—=2p+1 ifp>2
ko =
2% —2 if p=2.
Lemma 3.12. Ifp>2and a>2, orif p=2 and o > 3, then

. . . a+1 .
io(m)) =mt  mod (nh +h for any j > kq.

Proof. Let j > k.. Combining corollary 3.11 with the binomial formula yields
io(7),) = (o1 + prat12) = Wgﬁﬂ +w
with

-1 /.
2 € Roa1 and w = Z (‘;) ﬂiﬁl(pwaﬂz)rk.
k=0
Note that the valuation of the k-th term is at least kp + (§ — k)(¢(p®*') + 1). Hence for
0 <k <j—1its valuation is at least
(7= Dp+ @@ ) +12 (ka — Dp + 0(p**) + 1.
If p>2and a > 2, we have

G—Dp+e@*™)+1 > (% —2p)p+e@p* ™) +1
poHrl _ 2p2 +pa+1 _pa +1

— pa—i—l +p2(po¢—1 _ pa—2 _ 2) +1
p

>

|
—

Otherwise if p = 2 and « > 3, we obtain
G—Dp+e@*) +1 > (22 -3)2+2% 41
= 2" —6+2% 41
2OL+1 + 1.

V
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Lemma 3.13. Ifp>2 and a > 2, orif p=2 and o > 3, then

. (o4 _ pa+1 ) pa+1 +pa+1+1
za(ﬂg(p )) :ﬂ'a_(H ) mod (Was_l ) ).

Proof. Combining corollary 3.11 with the binomial formula yields

. ath)+1
ia(mR) = (b, + a8 T )

1

p? E P\ _ip+(e(ptH)+1)(p—3) p—j (p(P>TH)+1p _p

= 7Ta+1+z i Tot1 2y "t Mot 20
j=1

_ P 2p(p*t)+1
= Tat1 T Mokl 21

for some suitable zg, 21 € Ro4+1, where we have used that the valuation of each term in

the middle sum is greater or equal to (p — 1)p + 20(p®*1) + 1, while that of the last term
is (p(p*t1) + 1)p > 2¢(p®*!) + 1. By iterating this procedure we obtain some z;, with

Pk phtl (k+1)so(p°‘“)+1z

ia(mh ) = Thi + Topt k for every k > 0.

The required formula for p = 2 and « > 3 directly follows from the case k = ae— 1. Again,
by taking k = a — 1 if p > 2, we get

~ o o ap(pth)+1 -1
io(7EP) = (7l + et )
_ et ap(pt)+1+(p—2)p™
= Top1 T Taii z

for some z € R,+1. The desired result for p > 3 and a > 2 then follows from the fact that

ap(P™) + 14+ (p—2)p* = o) + (@ = Dep(p™*) + (p — 2)p™ + 1
= o™ +p*la=Dp-1)+p—-2+1
> o(p*t) +p*(2p—3) +1
> o(p*t) +p* 41
O
Corollary 3.14. If p>2 and o > 2, orif p =2 and « > 3, then
. a—+1
ia(€a) = €ay1 mod (75 +1).
Proof. This follows from lemma 3.13 together with the fact that pe, = wﬁ(p ), U

3.3. The p-part of r; for p odd

Using notations introduced in sections 3.1 and 3.2, we assume p to be an odd prime.
Recall that « > 0 is defined to satisfy |Fy N S,| = p®. The goal of the section is to
establish that for o > 1 and Fy = pu(Qp(Fp)), the set ﬁu(Qp(F[)),F\(;,Tl) is non-empty if
and only if ry divides p — 1. This is done by showing that = is non-trivial in the group
Zp(Fo)* [{n(Qp(Fv)), (Zp(Fp)*)P) when o > 2, and hence that p does not divide 7.
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We know from proposition 3.1 that (7,) is the maximal ideal of Z,(Fp). The situation
is clear when o = 1, because the ramification index of Q,(Fpy) over Q, is prime to p and
hence the p-part of rq is trivial.

We need to establish a formula for the 7,-adic expansion of ¢, = p_lﬂg(p a). For this
we begin by analysing the cyclotomic polynomials

(X +1)P" —1

QalX) = (X +1)p" " —1

€ Z1X].

Note that Q(X) is the minimal polynomial of 7, over Q,. We have

k=0 =0 k=0 t

p—1 » o(p*) [p-1 a-1p. ,
Qu(X) =Y (X + 17" k= Y (Z (p . ))X’.

Define al(-a) to be the coefficient of X? in Q,(X), and let

{(P“[l) if0<i<prl

b(a) o—
0 ifi>prt,

H =

be the coefficient of X in (X + 1)P" .

Lemma 3.15. For «,i > 1, we have a strict identity

a§“>:b§“)+§ S p™ e,

71 1k
k=241 +...+ip=i

Proof. This follows form the fact that

p—1
QQ(X) = Z(X + 1)p0¢71k,’.
k=0
O
Lemma 3.16. For a > 3 and i > 1, we have
B — bg-a*l) mod p?  if i = pj,
‘ 0 mod p? if i Z 0 mod p.
Proof. This is a consequence of the identity
Q+X)P" = 1+ XP+pX(1+...+XP 2"
= (14+XP)P" 7 4 p® X (1 + ...+ XP2) (1 4+ XP)P" 71 mod (p%).
O

Lemma 3.17. For o> 3 and i > 1, we have

4@ = agafl) mod p? ifi = pj,
‘ 0 mod p? if i Z 0 mod p.
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Proof. 1f © # 0 mod p, the result is a direct consequence of lemma 3.16. It remains to
consider the case where ¢ = pj for some integer 7 > 1. By lemma 3.15 and 3.16, it suffices
to show that

p—1 p—1
-1 -1
SOy @@ =3 S e et mod p?
k=2141+...+ip=pj k=2 j1+...+jr=J
Using lemma 3.16 once again it suffices to show that

p—1 *
Z Z bgf)...bgg) = 0 modp?
k=2 i14...4+ir=pj

where the symbol 377 . ., _ . denotes the sum over all k-tuples (i1, ..., i) for which at
least one (and hence at least two) of the iy are not divisible by p. Then lemma 3.16 implies
that this sum is congruent to 0 modulo p?. O

The case a = 2 is of particular interest.
Remark 3.18. We note that

=0 modp if0<i<p,

B { =1 if i € {0, p},
=0 if i > p.
Lemma 3.19. We have
CL(Q) — IIlOd 2
(p—2)p+1 = P b
Proof. By lemma 3.15
2) @) = @ @
a(p—2)p+1 - b(p—2)p+1 + Z Z bz‘l e 'bik :

k=21i1+..4i,=(p—2)p+1

According to remark 3.18, the only nontrivial contributions in this sum modulo p? happen
when k£ = p — 1 and come from tuples where all but one i are equal to p (and hence the
remaining one equal to 1). As there are p — 1 of such contributions we obtain
2 _ 2) _ _ 2
aEp)f2)p+1 =(p— l)bg ) = (p—1)p=-p modp”.

Lemma 3.20. If0 < j <p—1, then

Proof. For a fixed 0 < j < p—1, we have

p—1 k 1p—1
Z() == > k(k—1)...(k—j+1),

=1 \J ) =1
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where the expression k(k —1)...(k — j+ 1) is a polynomial of degree j in Z[k] with zero
constant term. It is consequently enough to check that

p—1

Zk” =0 modp forevery 0 <r<p-—1.

k=1

Given a € F); such that a” # 1, we have

Z x' = Z(aw)r =a" Z x",

z€lF, z€lF, zelF,
so that
p—1
ZxT:O and ZkTEO mod p.
z€Fp k=1
O
Lemma 3.21. If0<r<p—2and 0 < j <p, then
2) _ 2
al(w)ﬂ- =0 mod p~.
Proof. By lemma 3.15, we have
@) _ @ (2 (2
Aprtj = pr‘ﬂ + Z Z bil T bik
k=2 i1+4..+ip=pr+j
_ (2 2 2 2
= o2+ Z Z b 6P mod p?,
=2 {1+...+ip=pr+j
where the last sum is taken over all k-tuples (iy,...,i;) in which there is exactly one

element b§2) with i ¢ {0,p}. Furthermore, this b§2) is in fact b§-2) and bl(-f) . bz(.z) = b§.2).
We hence get

2) 2) @k~ (k-1
- 2
Upppj = byl s + b5 E k( . ) mod p~.

k=2
If r =0, then
@ _,@ @5, _,@pp-1) _ 2
a;’ =b;" +b; l;k:bj 5 =0 mod p“.

If r > 0, then b( ) — 0 and we have

pr+j
L |
ﬁ)ﬂ b§2) Z k‘( . ) mod p?.
Since ) )
p— -1 p— -1 -
Zk‘(k >:Zk<k ) (r+1) Z( > 0 modp
k=2 r k=1 r

by lemma 3.20, we get a}(mn)ﬂ = 0 mod p?. O
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Let F{ denote the p’-part of Fy. Since Q,(X) is the minimal polynomial of 7, in
Zp(Fp), we have an isomorphism of algebras

or t (Zp(F)X]/(Qa(X))) —> Zy(Fy) given by X +— g,

which restricts to an isomorphism on the groups of units

ey ¢ (Zp(Fo)[X]/(Qa(X))) — Zp(Fp) ™.
Furthermore, there is a polynomial Q. (X) € Z[X] of degree p(p®) — 1 such that
Qa(X) = X¢P") 4 pQu(X)  and  Qa(0) =1,
and therefore we have N
ry(Qa(X)) = —p~ 7" = —eq.
Recall from proposition 3.1 that 7, is a uniformizing element in Z,(Fp), so that (m)
(pa)) = (

is the maximal ideal of this ring, and that (74 p). More precisely, the m,-adic

expansion of p in Ry = Z,[m,| C Z,(Fp) is given below.

Proposition 3.22. If p > 2 and a > 2, then

(e - 1 (a7 (a7
p=—me®) L P =t mod (m ).

Proof. Recall that

p(p)—1 A .
Qu(X) =p+ Z aga)Xz + x°(%)
i=1
By lemma 3.17,

Qu(X) = Qu1(XP)=...= Qx(X*" ")  mod (p2X).
)

By lemma 3.21 we know that a,” = 0 mod p? if 0 < i < p. Furthermore, by lemma 3.15

and remark 3.18 we have
p—1 =0 modp if0O<i<np,
=3 3 P with Y (=1 if i € {0, p},

11 ik
k=11i1+...4+ip=i =0 ifi>p

Then obviously

p—1
-1
al(,Q)EZk:MmodpQ, aZ@)EO mod p if ¢ £ 0 mod p,

For a fixed 0 < j < p — 1 we have by lemma 3.20

p—1 k
Z () =0 mod p,

=1 \J
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so that
0 mod p if i Z 0 mod p,
az(?)E 0 modp ifi=gpfor0<j<p-—1,
1 modp ifi=pp-1).
Therefore
Q2:0X)=p —l—p%Xﬁ + X9 mod (p? X, pXPTh.
Finally

a—2 - ]. a—1 e «
Qua(ma) =Q2(72 ") =p —i—ppTﬁg + 790" mod (wP +1),

and consequently

(a3 - ]. o —
pz—ﬂg(p)—ppz 7k '
= ") _ <_7Tg(p ) _pp P 1) p— 2 pt
2 2
= ") 4 %Wg(pa)ﬂg"‘l
(o3 - 1 (e3 (e3
= g™ 4 P ——nt mod (72" F1).

O

Our interest in approximating modulo the ideal generated by 72" ! is explained in the
following remark. Consider the decreasing filtration

Zp(Fo)* =Uy2U1 2 U2 D ...
given by Uy = Zy,(Fp)* and
Ui = Ui(Zy(Fo)*) = {z €Uy |  =1mod (75,)} fori>1,

where Uy /U1 = pyy (Qp(Fp)), and where U; /U; 1 is isomorphic to the residue field of Q,(Fp)
for each i > 1. Because Z,(Fp) is complete with respect to the filtration, any x € Z,(Fp)*
admits a m,-adic expansion

r = Z Ai’ﬂ' 3,

>0

where the A;’s run in a given set of representative of the residue field chosen in such a way
that the representative in F, are integers between 0 and p — 1.

Remark 3.23. For any a in U, we have

(1+ar’ )P = 14 aPr’? + apr’,

= 1+ aPn’? — am?P)H mod (r#PH)FHL),
As
ip < p(p*) +1i & i< pl,
we obtain
1+ aPr? mod (7iP+1) if i < p 1,
(1+ar’)? =14 (a? — a)7?" mod (72" +1) if § = p@ 1,
1+ arf®H mod (wg(pa)ﬂﬂ) if i > pa~L.

The last congruence and the completeness of the filtration imply that every element of Uj;
for i > (p®) + p®~1 = p is a p-th power, and it follows that Upyei; C UY.
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Setting p = pu(Qp(Fp)), we have
U0/</JJ7 Ug> = U1/<lu N U17 U{)>7

where N Uy is the subgroup generated by (e = 7, + 1. By remark 3.23, there is a
commutative diagram

(Zp(Fp)[X]/(Qa(X)))* Zp(Fo)*

i L

(Zp(F3)[X]/(Qa(X), XP"H1)) Zp(Fo)* /(75" *)

i i

(Zp(F5)[X]/(Qa(X), XP"+1))*/(, p-th powers) Ur/{(p UL, UT),

1%

1%

in which the vertical maps are the canonical projections and the horizontal maps are
isomorphisms. Since —1 becomes trivial in Uy, the images of QQ(X ) and &, in the quotient
group Uy /{uNUy, UY) are equal. We want to prove that this image is non-trivial. In order
to do so, we consider the m,-adic expansion of —e, in Z,(mq)* C Zy(Fo)™:

—Ea = PF, Qa Zc(a) Zm

1>0

where c(()a) =land 0 < cga) < pforeachi>0. For 0 <i < p2, we let ¢; := 052)

Remark 3.24. By definition

(e)
cga)za’? modp  for a>2and 0 <i < o(p®).

Lemma 3.25. Let ko = (p—2)p+ 1. Then ¢, = —1 and

—eg = Zcip@p—@ + Z cims  mod (mh Jrl)
= i=ko+1

Proof. This follows from lemma 3.19 and 3.21. O

Lemma 3.26. If
o0 . o0 .
:I:zl—i—Zam; and yzl—i—me&

are two elements of Uy C Z,(Fp)* such that 0 < a;,b; < p and z =y modulo (%) for an
integer k > 1, then

=1+ (ap — b))  mod (xF1).

< |8

Proof. Let z=x —y. Then

z=0 mod (7F) and
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Therefore
x 1 z 22
S= =1+ 4+ 54
Y 1-2 r T
= 1+E
x
14 (a, — by)mh
= 14 (a — b)) mod (7).

Lemma 3.27. If x € Uy C Z,(Fy)* is such that

z=1+am® mod (k1)

with 2 < k < p® prime to p and ax, £ 0 modulo (7), then x & (uN Uy, UY).

Proof. Recall that pNU; is generated by 1+m,. One must check that x cannot be written
in the form
= (1+m)%"
with 0 <7 < p—1and y € U;. Since k > 2 by assumption, it follows that ¢ = 0 and it
remains to verify that x is not a p-th power. As a direct consequence of remark 3.23, we
have
(1+ar’ )P =1+ aPa?  mod (xPTh)

for any a € Uy and anyiﬁ%. Hence z ¢ UY. O

We are now in position to prove that —e, (and hence ¢,) is non-trivial in the group
U1/<,Ltﬂ Ul,U1p>.

Theorem 3.28. If p is odd and o« > 2, then
€a & (1(Qp(F0)), (Zp(Fo)™)").-

Proof. In order to obtain the result, it suffices to show that —e, € Uj is non-trivial in the
quotient Uy /{u N Uy, UY). This is done by induction on a > 2.
First consider the case a = 2, and let k2 := (p — 2)p + 1. According to lemma 3.25

p—2 - p—2 '
—er =3 cpimy = [J(1L+&my)?  mod (n?),
=0 =0

where each 0 < ¢; < p is such that (¢;)” = ¢; mod p, and where the second equivalence is

due to the facts that ko — 1 < ¢(p?) and (p) = (Wg(pQ)). Letting

p—2
29 = H(l + Epiﬂ'é) S Zp(Trg)X,
=1
we get by lemma 3.26 and 3.25
;62:1_1_5 k2:1_ ko d ko+1
D — ko To™ = T mo (77-2 )

22
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As ko < p?, it follows from lemma 3.27 that —ey does not belong to (u N Uy, UT).
Now let @ > 2 and ko = p® — 2p + 1. Suppose there is an element z, in Z,(m,)* such
that

pa
—& o ; |
720‘ =1+ zk: d;m, mod (72" 1),
1=

with di,_, # 0 mod p. By corollary 3.14 and lemma 3.12 we have

(e}

P

. PN - etlyg
Eatl =ia(ea) = —(1+ Z dimh’ 1 )ia(za)? mod (7}, ),
i=ka
so that
pa
“Catl _ i atlyl
€ al)p =1+ > dint, mod (7h ;)
a+ i=kq
for some 2z, in Zy(mas1)™. Let
ka+1—1 ~
kat1 = ko +o(p**) and Zatl = H (I+dimar1) € Zp(Tat1)”
i=ka

with each 0 < d; < p such that CZ) = d; mod p. Then by proposition 3.22, there is an
element

/ ~
Za+l = Zq41%a+1 € Zp(ﬂa—s—l)

such that
pa+1
—Ca+l _ T ptlql
Zp f— 1 + Z dlﬂ-aJ,»l IIlOd (7Ta+1 )
a+1 i=kat1

with Jkaﬂ # 0 mod p. Since
ka1 = ko + @@t = p™ —2p + 1 < p*H,
we can apply lemma 3.27 to obtain that —e,; is non-trivial in Uy /(u, UT). O
Example 3.29. Let us have a look at the case p = 3. A straightforward calculation yields
4 5 6 10).

—eo=1475 -5 —n3 —aS —wl + 78 +7) mod (75

Here (p — 2)p+ 1 =4, so letting 2o = (1 + m2) we get
—==1-73 mod (r3).

As 4 < 32, we may apply lemma 3.27 to obtain the result. Then if & = 3 we have
—e3 =147 —mi2 —7id —wld g2l 4 g2 4 27 mod (73%).

Letting
z3 = (14m3) (1 —73)(1 — m3)(1 — 73),
so that

= (1+m)°(1 - 73)°(1 = 73)°(1 — 7§)°

_ 12 1 1 21 | 22 2
= 147 —m2 —mdd —al® 72 1 722 mod (723),

W
ww
Il
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we find -
3 _ 22 23
;:1—71'3 mod (73”).
3

As 22 < 33, we may again apply lemma 3.27 to obtain the result.

Corollary 3.30. Ifp is odd, « > 2 and u € Z, , then
%X is non-trivial in  Zy(Fo)™ /((Qp(Fo)), (Zp(Fo)™)P).
Proof. Let uy denote the projection of u onto Uy (Z,') € Z,. Then

uyt =1+ Zvipi =1+uvp mod (72 1),
i>1

for some 0 < v; < p. Clearly, the projection of e,u~" in the group U; via the canonical
decomposition Z; = py x Uy is equal to —6auf1, and it is enough to check that —5auf1
does not belong to (N Uy, UY).

If « = 2, then

—eurt = —e mod (p) = (7£#"))

= 1— a2t mod (N Uy, UL, (n£P))),

and the result follows from theorem 3.28.
If @ > 3, we know from the proof of theorem 3.28 that for a suitable z, € Z,(7m)* we

have
P74

for ko, = p® — 2p + 1, so that by proposition 3.22

=1+ (=1)%Fe  mod (xket1),

“fa — (14 (1)) (1
o = (1 (1) )1+ wip)
= 1— v a?®") 4 (—1)¥gke mod (rket1),
As N N
ka=@-2p+ 14> o@) < o),
i—3 i—2
we obtain .
—Ea -1 _1)« ka d ka+1
oSt mod (nf ),

where after successive multiplications eliminating all terms in 7% for 1 < k < k,, we have
have used the element

a-l k a—i
Yoo = (1= Tyme® ) L1+ (—1)F~ L 20770y
k=2
with ©; € Z such that (¥;)? = v; mod p. It follows that —e uy’ & (uN Uy, UY). O

Corollary 3.31. If p is odd and Fy = p(Qy(Fp)), then ﬁu(Qp(Fo),ﬁa,Tl) is non-empty
if and only if

1 f o =
r1  divides ifa=0,
p—1 ifa>1.
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Proof. The result for a = 0 is obvious; so let a > 1. Since Fy = pu(Q,(Fp)), corollary 3.6
applies if r divides p—1. Because 71 must divide the ramification index ¢(p®) = (p—1)p—t
of Q,(Fp) over @y, it remains to show that fu(Qp(Fo), Fy,r1) is empty whenever p divides
r1 with a > 2. This however is a direct consequence of theorem 3.4 and corollary 3.30. [

3.4. The p-part of r; for p =2

We now investigate the case where p = 2. Recall that o > 1 is defined to satisfy

|Fo N Sp| = 2% We know from example 3.9 that ¢, = 2*17r,f(2a) always belongs to
(Zo(Fp)*)? modulo the subgroup generated by —(y if @ > 2. We will hence look for 4-th
powers when o > 3.

Let 1 := pu(Q2(Fp)) denote the group of roots of unity in Q2(Fp) and fix (2o a primitive
2%th root of unity in u. As in the previous section we consider the decreasing filtration

Zo(Fo)* =Up2U1 DU D ...
given by Uy = Za(Fp)™ and
U={zeclUy|z=1 mod ()} for i >1,

where Uy /U1 = po (Qa(Fp)), and where U; /U; 41 is isomorphic to the residue field of Q2 (Fp)
for each i > 1. Recall that (72° ') = (2). Define

(X +1)2" -1
(X +1)27" —1

Qu(X) = =(X+1)* " +1 ez[X]

to be the minimal polynomial of 7, over Q.

Lemma 3.32. Ifp=2 and a > 3, then

2 + 47y + 672 + 4md 4+ 7d if =3,
C?a(ﬂa) ga—3 ga—2 32a—3 ga—1 .
= 2+4rw + 67,  + 4w, + mod (8) if a > 4.

« «

Proof. The result for a = 3 is clear. When a > 4, the result follows by induction on
4 < h < « using the identity

oh—1

1+X)2 = (1+X%+2X)
1+ X277 42 1x(1+ X221 mod (2M).

oh—2

Proposition 3.33. If p =2 and a > 2, then

2 = 72" 4 wg@a)“a‘z mod (72").

Proof. By lemma 3.32 we have

2a—1

Qulme) =2+ 27r(2;_2 + 7 mod (4).
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Hence
o 2&—1 2&—2
2 = —m, —2m
o 2&—1 2(1—1 2&—2 2(1—2 2(1—1 2(1—2 20(—1
= Mg - (_Tra - 27Ta )Tra - (—7Ta - 27Ta )7ra
o 2a—1 204—1 2a—2 204—1 20 2&—1 2a—2
=72 47w T +2r2 4wa 427 T

a—1 a—1 a—2 « o
773 + 773 +2 — 71'3 + 7r2
ga—1 + 7T2a—1+2a—2

«Q

«
a2 ),

a

mod (7
O

In the cases where Q2 (Fp) is completely ramified over Qq, for example if po (Qo(Fp)) is
trivial, we have Uy = Uy. From the fact that e, € Za(m,) C Zo(Fp)™ in general, it follows
that e, always belongs to U;.

Proposition 3.34. If p =2 and o > 3, then

.20473 4.20473 5,2&73 6.20(73

— 2 2o
€a =147, + 7,

T + 7, mod (77, ).
Proof. For simplicity we let Z = Wia_3. Since
—2=4Z+62*+423 +Z* mod (8)

by lemma 3.32, we obtain

© = 1-27-32%-27°
= 1+ (2" 4622 +4Z +47%) + Z(Z* +62% + 4Z 4 423)
+ 72+ Z3(Z* + 62% +- 4Z + 473)
= 1+224+ 2+ 22+ 2" +22% + 223 + 22°
= 1+ 22+ 2+ 22+ 77 - Z2(Z* + 62% + 4Z + 423)
— Z3ZA 4622 + AZ +473) — Z5(Z* 4 62% + 4Z + 47°)

= 1+ 22+ 2'+2°+ 28 mod (4).

We will now prove that e, is non-trivial in the quotient group Uy /(u N Uy, Uf).

Lemma 3.35. Let A
x=1+Y \mh € {(unU,U})
i>k

with A\, # 0 mod 7, and each \; satisfying A\l = X\; for q the cardinality of the residue field
of Qa(Fy). If 3 <k < 2% then k =0mod 4. If « =3 and k = 2, then A\¢ = 0.

Proof. Recall that p N Uy is generated by 1 + m,, so that x is of the form

= (14 m)y* with 0 < h <3 and y € U;.



64 Chapter 3: On abelian finite subgroups of G, (u)

If 3 < k < 2% it easily follows that h = 0 and x is a 4-th power. Furthermore, for any
a € Zo(Fp) we have

(1+ari)* = 1+4dan’, + 6672 + 40> 4 a* 7
= 1+ 6a*7% + a'nll mod (272,
As
4i < p(2%) 4 2i & i <2072
we obtain

1+ atmll mod (74F1) if § < 2072,
1+ (a* +a®)72" mod (72" 1) ifi =272

(1+ CLT('Z!)4 = {

and the result for 3 < k < 2% follows.
Now suppose that « = 3 and k& = 2. In this case h = 2 and y = 1 + brws for some
b € Za(Fp). Using proposition 3.33 we get

(1 +73)%(1 + br3)?
= (1+72 + 75 +75)(1 + birs + b?nf)
= 1+73 +b'nh + a5+ (V? + bY)7as + 7 mod (75).

x

If Ay = 0, then b = 0 mod (73) and consequently A\¢ = 0. On the other hand if \y = 1,
then b = 1 mod (73) and once again Ag = 0. O

The idea of theorem 3.36 is the same as in the case p > 2: we divide the my-adic
expression of €, by a 4-th power in U; in such a way that the resulting expression is in a
form that allows lemma 3.35 to be used.

Theorem 3.36. Ifp =2 and o > 3, then

ea & (1(Qa2(Fp)), (Za(Fo)*)*).

Proof. Since e, € Uj it is enough to show that e, & (1N Uy, Uf).
In case a = 3, we know from proposition 3.34 that

e3=1+m +m54+75+75 mod (7§),

and a direct application of lemma 3.35 yields the result.
Now assume « = 4, and let k4 := 2* — 2 = 14. By proposition 3.34

ea=1+n;+ 78+ 7m0+ 72 mod (m1°).

As
L+ m)* 1+t = (L +ap+m” +mh) 1+ 7 + 7%
= 1+7af+75+ 7m0 + 7%+ mit mod (7}%),
letting
Z4 = (1 + 7T4)(1 + 7['2)(1 + ﬂg) in Zz(ﬂ'4)><,
we get

€4
4= 1+7%  mod (x}9).
4
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Hence by lemma 3.35, it follows that 4 does not belong to (u N Uy, U{).
Furthermore assume « > 4, and let k, := 2% — 2. Suppose there is an element z, in

Za(my)™ such that
i—j =1+ d, ke mod (72"),
e

with di, # 0 mod 2 in the residue field. By corollary 3.14 and lemma 3.12 we have

. . a+1
Eatl =talea) = (1 + d;ga7@]3‘1)20((@)4 mod (727 ),
so that
Catl _ 2kq 2a+1
(z/a+1)4 =1+ dp, 75 mod (75,1 )
(0%

for a suitable 2/, 1 in Zo(maq1)™. Let ka1 := ko + @(20T1) = 2971 — 2 and let

~ ko
Zag1 =1+ dp,m 2, € Zy(mat1)”

with dvka in the residue field such that d%a = dj, mod 2. Note that

k
TS\ 2k 2%k, go+1
(I +dp,m20)" =1+ dp, 7 +di 7o mod (75,1 ),

where 2% + k, = 2°T! — 2. Then by proposition 3.33, letting

/ ~ X
Za4+1l = Za41%a+1 € Zo(Tav1)™,

we have
506"!‘1 _ / ka-{»l 2o+l
7 :1+dka+17ra+1 mod (75,1 ),
za+1

with dﬁcaﬂ # 0 mod 2 in the residue field. Since koy1 < 291!, we can apply lemma 3.35
to obtain that 441 is non-trivial in Uy /(u, UV). The result then follows by induction on

a > 4. O
Corollary 3.37. Ifp=2, a > 3 and u € Z;, then
€

;O‘ is non-trivial in Zo(Fy)* | (1u(Qa(Fp)), (Za(Fo)*)4).

Proof. Since u € Z3, its inverse is of the form
uw =1+ Z’L)Zﬂi
i>1
= 14+v12
= 14+ou (@2 + 722727 mod (4) = (£2%),
where v; € {0,1} and where the last equivalence follows from proposition 3.33. As in

theorem 3.36 it is enough to show that e,u~! does not belong to (uN Uy, Up).
If o = 3, we know from proposition 3.34 that

e3=1+m5+m5+75+75 mod (73).
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Hence

esu™t = (1473 + a5+ 75 +75) (1 + vi7s + vi7d)
= 14724+ (14 v)m5 + 75 + (14 20175
= 14724+ (14 v)ms + 75 + 75 mod (73),

and lemma 3.35 implies egu™! & (uN Uy, UY).
Now if a > 4, we know from theorem 3.36 that for a suitable z, € Za(m,)* we have

2 =147k  mod (zkt1)

for ko, = 2% — 2, so that by proposition 3.33

S =) o ke mod (eke ),

uza
Letting

a—2
Yo = (1 4+ 03782,
we have
yd = 140 4 2v17r§a_2
= 1+um@) + U17T£(2a)+2a72 mod (72").
Hence by lemma 3.35
o _ ko ka+1
wotyg = 17t mod (ma),

and equ~t & (un Uy, UP). 0

Corollary 3.38. If p =2, then ﬁu(QQ(FO), Fvo,rl) is non-empty if and only if

2 if a > 2 with either u = +1 mod 8 or (3 € Fy,

r1  divides { :
1 ifa<1, oru=+3mod8 and (3 ¢ Fy.

Proof. The case o < 1 is clear; so let a > 2. A necessary condition for F,(Qy(Fp), Fo,71)

to be non-empty is that 7 divides 2¢~!, the ramification index of Qo(Fy) over Qo. If

o = 2, then ry divides 2. Otherwise if & > 3, corollary 3.37 and theorem 3.4 imply that

r1 must also be a divisor of 2.

By theorem 3.4, the integer 1 may be any divisor of 2 if and only if = is a square of
Zo(Fp)* modulo Fy. In fact this is true if and only if u is a square of Za(Fp)* modulo
Fy, since by example 3.9 we have e, € ((Za(Fy)*)?, Fy). The result is then obvious if
u = +1 mod 8. Otherwise if u = +3 mod 8 we have u = £32? for some z € ZJ, and it
remains to verify that —3 belongs to ((Za(Fp)*)?, Fo) if and only if F contains a 3rd root
of unity (3. If such a (3 exists, we let p = 2(3 + 1, so that

pPP=-3 and  Qap) = Qa(&).

Conversely if there is a p such that p?> = —3, we take (3 = %(p —1). O
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Corollary 3.39. Ifp =2, Fy = pu(Q2(Fp)), [Q2(Fp) : Q2] = n, then ﬁu(QQ(Fo),Fé,Tl) 18
non-empty if and only if

2 if a > 2 with either u = +1 mod 8 or n, even,

r1  divides
1 ifa<1, oru=+3modS8 and ny odd.

Proof. Under these assumptions, Fy = Csa(gna_1) by proposition C.8. The result follows
from corollary 3.38 and the fact (5 € Fp if and only if n, is even. O]

Remark 3.40. When Iy = u(Q2(Fp)), we know by corollary 2.18 that F} is the unique
element of Fy, (Q2(Fp), Fo,71). We may therefore assume F} to be of the form

2u if ry =1,

F = (n) x F with T =
1= (o) > Fy ! {(l—i—i)t if =2,

for ¢ a primitive 4-th root of unity in Qq(Fp)* and

7z if w =41 mod 8, , 9 w ifu=1or —3modS§,
te with t° =

Z2(¢3)*  if u =43 mod 8, —u if u=—1or 3mod 8.

3.5. The determination of r

We fix Fy and r1 such that fu(Qp(Fo), Fb, r1) is non-empty, and fix an element F in
Fu(Qp(Fp), Fo,m1). Corollary 3.31 and 3.38 provide conditions on r; for this to happen,
in which case, according to remark 2.17, there is an element z, € Q,(Fp) satisfying

1 —
v(zy) = — and Fy = (Fy, z1).
1
We want to determine for which integer r9 the set fu(CM (Fo), E, r9) is non-empty, that
is, for which ro dividing % there exists an element zo € D) such that z? = a with

a € Fy and v(a) = v(z1), and such that Qp(Fo, x2) is a commutative field extension of

Qp(Fo) = Qp(F2).
As seen in theorem 2.21, the existence of such an x5 is equivalent to the irreducibility
of the polynomial X" — a over Q,(Fp) with ro dividing n[Q,(Fp) : Q)1

Theorem 3.41. Let K be a field, a € K* andr > 2 an integer. Then X" —a is irreducible
over K if and only if for all primes q dividing r the class a € H*(Z/r, K*) is non-trivial
in H*(Z/q, K*), and if 5* is non-trivial in H*(Z/4, K*) when 4 divides r, where all
cohomology groups are with trivial modules.

Proof. This is just a cohomological interpretation of [14] chapter VI theorem 9.1. O
In general, there is a well defined map
E: a— K[X]/(X"—a)

from H?(Z/r, K*) to the set of isomorphism classes of algebra extensions of K by equations
of the form X" —a = 0. This map is injective: if there is an extension in which X" —a =0
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and X" — b = 0 both have solutions, then ¢ is a r-th power and becomes trivial in
H?(Z/r, K*). Denote by

H%(Z/r,K*) C H*(Z/r, K*)

the subset of all elements of H?(Z/r, K*) that are sent to a commutative field extension
of K via Z. Furthermore assuming that K = Q,(Fp) has ramification index e(Q,(Fp))
over @, we consider the homomorphism

& HXZ/r, F1) — H*(Z/r,Qp(Fo)™)
induced by the inclusion F C Qp(Fo)*. We are interested in understanding the set
Hi(Z/r,Qp(Fo) ™) Ni*(H(Z/r, FY)).
Note that we have a non-canonically split exact sequence
1 — p(Qp(Fo)) x ZFI U] — @ (Fo)* — (mR,) — 1,

for mp, a uniformizing element in Q,(Fp). Moreover there is a commutative diagram

H2(Z)r, ) — = H*(Z/r, Qp(Fp)*) (3.2)

i i

H2(Z/r, (1)) —— H*(Z/r, (7 R,))

Z]r Z]r,

where the top vertical arrows are non-canonically split surjective homomorphisms respec-
tively induced by the canonical surjections

E = Foy x (x1) — (x1) and Qp(FO)X — (TR )

and where the bottom horizontal map is the identity if Q,(Fp) is unramified over Q,, or
otherwise is by multiplication with

1

e(Qp(F) _ [p'BE ifp > 2,
if p=2.

o n e
Define 75, », to be the greatest divisor of [OREDE] which is prime to

L if e(Qp(Fo)) = 1,

pT_ll if p>2and a>1,
% if p=2, o > 2 and either u = +1 mod 8 or (3 € Fy,
1 if p=2, u# +1mod 8 and (3 ¢ Fp.
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Theorem 3.42. Suppose p > 2 and F, € fu(Qp(Fo),E),rl) # 0. If ro divides rg, .y,
then fu(C’D; (Fy), F1,19) is non-empty.

Proof. First note that if @« = 0, we must have r; = 1 and z; is a uniformizing element of
the unramified ex‘tension Qp(Fo)/Qp. In this case rg, ,, = m and the result follows
from the embedding theorem.

Now assume that o > 1, and let 7’ = 7, . denote the p’-part of r = rg, . Then for
any prime ¢ dividing 7/, diagram (3.2) can be extended to the commutative diagram

H2(Z)r, Fy) —= H2(Z/r, Qy(Fo)*) == HX(Z/q,Qy(Fp)*)

| | |

Zr Zr Z/q;

where j : Z/q — Z/r is the inclusion and the bottom right horizontal map is the canonical
e(Qp(Fb))

T1
Thus for any ¢ € Fy, the image of z16 € F} is non-trivial in Z)q = H*(Z/q,{(rR,)), and
consequently non-trivial in H*(Z/q, Q,(Fp)*). In a similar way, it is equally non-trivial in
H?*(Z/4,Qp,(Fp)*) if 4 divides r. The result then follows from theorem 3.41 and corollary
3.30, where we have shown that x’l’_l, and hence 1, is non-trivial in H%(Z/p, Q,(Fp)>).
U

projection. Since r is prime to %, it follows that v/, and hence ¢, are prime to

Theorem 3.43. Suppose p = 2 and F; € fu(Qg(Fo),ﬁ),n) # 0. If ro divides rg,r,
then F,(Cpx (Fo), F1,r2) is non-empty.

Proof. First note that if @ < 1, we must have r; = 1 and z; is a uniformizing element of
the unramified extension Qq(Fp)/Q2. In this case rp, ,, = m and the result follows
from the embedding theorem.

Now assume that o > 2. If ro is divisible by 2, then so is rg ,, and we know from
corollary 3.38 that x1 is non-trivial in H?(Z/2, Qa(Fp)*). Moreover if 75 is divisible by 4,
the fact that

(1+¢)'=—14

imply that =f! is non-trivial in H?(Z/4,Q3(Fp)*). Furthermore for any odd prime ¢
dividing r = rg, ,,, diagram (3.2) can be extended to the commutative diagram

H2(Z/r, Fy) —= H2(Z/r, Qs(Fy)) = HX(Z/q, Qa(Fp)*)

| | |

Z)r Z/r Z/q;

where j : Z/q — 7Z/r is the inclusion and the bottom right horizontal map is the canonical
projection. As ¢ is prime to %, the image of z; is non-trivial in Z/q = H*(Z/q, (7F,)),
and consequently non-trivial in H?(Z/q, Q2(Fp)*). We may thus apply theorem 3.41 to
obtain the desired result. O

We say that 7y is mazximal if ﬁu(@p(Fb)v Fp, 1) is non-empty and fu(Qp(Fo), Fp, r) is
empty whenever r > ry.



70 Chapter 3: On abelian finite subgroups of G, (u)

Corollary 3.44. Let p be any prime. If r1 is mazimal, then

n

Fu(Cpx (Fo), Fi,ra) 20 if and only if 7o | Q) @]’
P * P

and any element Fy in ]-N"u(C’Dx (Fy), F1, n[Qp(Fo) : Q1) generates a mazimal commuta-

tive field Qp(ﬁvg) in Dy,. Moreover if Fy = u(Qp(Fp)), the number of such field extensions
1s equal to
\H?(Z/ra, Fy)| = |Fo @ Z/r2|.

Proof. By the maximality of r; we have

n

For = Qy(Fo) : Q)

and fu(CD; (Fy), F1,79) # 0 implies 75 | @, Fay - Lhe first assertion then follows from
theorem 3.42 and 3.43.

As for the last assertion, if Fy = u(Qp(Fp)), diagram (3.2) can be extended, via the
short exact sequences

1—>F0—>Fv1—><a;1)—>1,
1 — Fy x zZ[@F0®] 5 Q,(Fy)* — (1R,) — 1,
1 — Fy — Fy x 2[00 Q] 7[00 q

to the exact diagram

HY(Z/ry, (x1)) HYZ/ry, (7))

HY(Z/ry, 7Py —— H2(Z/ry, Fy) —— H2(Z/ry, Fy x 727

H(Z /12, Fy) ————= H*(Z/r2,Qy(Fp)*)

H?(Z/[ra, (1))

HQ(Z/T27 <7TF0>)a

where all three first cohomology groups are trivial, and where we know from diagram (3.2)
that the bottom vertical maps are surjective. In particular ¢* is injective on the kernels of
the bottom vertical maps, and therefore the number of maximal fields of the form QP(E)
in D,, is given by the cardinality of H?(Z/rq, Fy). O



Chapter 4:

On maximal finite subgroups of G, (u)

We consider a prime p, a positive integer n = (p — 1)p*~'m with m prime to p, and a
unit u € Z,. In this chapter, we work in the context of section 2.6 in order to study the
classes of maximal nonabelian finite subgroups of G,,(u).

More particularly, we consider (nonabelian) finite extensions of F, when Fj is maximal
as an abelian finite subgroup of S,, and the field L = Q,(F3) is maximal in D,,. In this
case CDE (Fy) = L™ and we have a short exact sequence

1—>F§—>LX—>LX/E—>1,

which for W C Aut(L, Fy, Fy) C Gal(L/ Qp) induces the long exact sequence

- HNW.LY) = (W, L/F) Br(L/LY)
H2(W, Fy) — %> HA(W, LX) —> >

where the left hand term is trivial by Hilbert’s theorem 90 (see for example [15] chapter
IV theorem 3.5). Then theorem 2.27 and 2.28 become explicit if we can determine the
homomorphism #j;,. We will use the following fact extensively.

Proposition 4.1. If iy, is an epimorphism, then iy, is an epimorphism for every sub-
group W' of W.

Proof. The bifunctoriality of the cohomology induces a commutative square

H2(W, Fy) —= H(W, L")

L

H2(W', Fy) —2> HX(W', L¥).

By corollary B.12, the right hand map of this square is surjective. Hence if i}, is surjective,
the bottom horizontal homomorphism is surjective as well. O

The cases p > 2 and p = 2 are treated separately.

71
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4.1. Extensions of maximal abelian finite subgroups of S,, for p > 2

In this section, we assume p to be odd, Fy to be maximal abelian, and Fvl to be maximal
as a subgroup of Q,(Fp)* having Fy as a subgroup of finite index; in other words

n
F0§C’a><0na,1 with Ogaék, Ng = R
no ()
and .
—~ F0:F0><<pu> ifOfZO,
F =
Fo X <$1> if > ]_,
where in the last case 21 € Q,((,) € Qp(Fo) satisfies
1 L~
v(zy) = -1 and 7t e Fy = Fy x (pu).
p—

In fact we may assume 7 to satisfy 1:11071 = pud for § € pp—1(Qp((p)) as given in corollary
3.6 and remark 3.7. By definition Q,(Fy) = Q,(F1), and because the latter is a maximal
subfield of ID,, we have I} = Fy. We let

C, if =0,
G = Gal I =
a (Qp( 0)/Qp) {Cpl X Cpa—l X Cna lf « Z ]"

as given by proposition C.8. From our choice of x1, we know that Fvl is stable under the
action of a subgroup W C G, this is because if ¢ € W, then %xll) is a (p—1)-th root of

unity in Q,, and hence o(r1) € z1(Cp—1) C Fy for (p—1 € Q). The goal of the section is
to determine necessary and sufficient conditions on n, p, © and « for the homomorphism

it H(G, Fy) — H*(G,Qu(Fp)™)

to be surjective, and whenever this happens, we want to determine its kernel. This is done
via the analysis of -
ity HA(W, Fy) — H*(W,Qp(Fp)™)

for suitable subgroups W C G.

The case a =0

The situation is much simpler when the p-Sylow subgroup of Fp is trivial.
Lemma 4.2. If a =0 and W = C,,, then
(pu) x Cp—1  if x =0,

H*(W,Fy) =240 if 0 < * is odd,
(pu) /((pu)™) if 0 < * is even;

0 if 0 < * is odd,
(py/(p"™) if 0 < % is even.

12

H™ (W, Qp(Fo)™)
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Proof. The action of C,, = W on F} 2 (pu) x Cpn_y is trivial on (pu) and acts on Cpn_;
by ¢ — (P.

For t a generator of C,,, written additively, and N = ?:_01 t, H *(Cn,ﬁ) is the
cohomology of the complex

— 1=t — —~  1-—t
Fl Fl N Fl e e e

Using additive notation for Fi 27 x Z/p™ — 1, we obtain

(1_t)(170):(070)7 (1—t)(0,1):(0,1—p),
N(1,0) = (n,0), N(0, 1):(0,1;:__11),

and the desired result for H* (W, FY) follows.
Now let L = Q,(Fp) = Q,(F1) and K = L. Then

HO(W,Qp(Fp)*) = K* = QJ

and H'(W,Q,(F})) = 0 by Hilbert’s theorem 90. Furthermore, since L/K is unramified,
we know from proposition B.13 that the valuation map induces an isomorphism

X\ ~~v 1 ~
H*(W,L*) = H(W, @Z) >~ 7.)|W|Z.

Here e(L) = 1, and as v(p) = 1, the element p represents a generator of the cyclic group
H?(W,L*). The result then follows from the periodicity of the cohomology. O

Corollary 4.3. If a =0 and W C C,,, then iy, is an isomorphism.

Proof. Let L = Q,(Fy) and K = L = Q,. Since L/K is unramified, O is in the image
of the norm by proposition B.13 and v € Ny i (L*). Hence i¢, (pu) = p and i¢, is an
isomorphism. For any subgroup W C C,, it follows from proposition 4.1 that iy, is an
epimorphism, and hence from lemma 4.2 that it is an isomorphism. ]

Example 4.4. Let o = 0 and Fy = Cpn_q generated by a primitive (p™—1)-th root of
unity w. Since Q,(Fp)/Q) is a maximal unramified commutative extension in D,,, we have
Fvo = ﬁ = ﬁvg Furthermore, as noted in remark C.5, there is an element &, in D that
generates the Frobenius ¢ of Q,(w) in such a way that

Dr, = Qp(w)(€u)/(&r = pu, &ux = 27¢u) and w? = wP.
Hence for any u € Z,;, F3 2 Fy % (&,). In G, (u), we therefore have an extension
1—Fy— F3—C,—1

with C), = Gal(Q,(Fp)/Qp) acting faithfully on the kernel and

n = =1

F3 = <wagu | wp"—l = gu = 17 guOqu = wp) = Cp"fl A Cn

for £, the class of &, in G, (u).
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The case o« > 1

For the rest of the section we let & > 1. The Galois group G of Q,(Fp)/Q, decomposes
canonically as

G =Gy x Gy,
where G, = Cpa—1 X Cna is the p-torsion subgroup in the abelian group G and G, =
Cp—1 x Cp, is the subgroup of elements of torsion prime to p. If W is any subgroup of G,
then W decomposes canonically in the same way as
W =Wy, x Wy with W, C G, and Wy C G,.
For any such W C G we define the groups

Wy = Wp/, Wi = Wy x (Wp N Aut(Cpa)) and Wy :=W.

Proposition 4.5. If a > 1, then iy, is always an isomorphism.

Proof. The inclusion FC Qp(Fp)* induces a short exact sequence
1 — Fy — Qu(Fo)* — Qu(Fo)*/F1 — 1,

which induces a long exact sequence

H2(W0a E)

5%k

H2(Wo, Qp(Fp)*) —= H*(Wo, Qu(Fp)* /1) —>

— H (W, Q,(Fo)*/F1)

The group Q,(Fp)*/ F} fits into an exact sequence
1 — Zy(Fo)* JFo — Qu(Fo)*/F1 — Z)Z{x1) — 1,
induced by the exact sequences
1 — Fy —F, =5 Z{zy) — 1,

1 — Zy(Fp)* —Qu(Fp)* 5 Z — 1.

Note that the group Z,(Fp)*/Fy is free over Z,, while as F} is maximal the quotient
Z]Z(zx1) = Z/nv(x1)Z is a p-torsion group. Since |Wp| is prime to p we get

H*(Wo,Zp(Fo)X/Fo) = H*(Wo,Z/Z<IE1>) =0 for = > 0.

Thus
H*(Wo,Qu(Fo)*/F1) =0  for x >0,

and the result follows. O



4.1. Extensions of maximal abelian finite subgroups of S, for p > 2 75

Lemma 4.6. Ifa>1 and W = Cp—1 C Aut(Cpe), then

(puy x Cpna 1 if * =0,
H*(W,F1) =<0 if 0 < % is odd,
Cpra—1 @ Cp_1 = Cp1 if 0 < x is even;

(Qp(Fo)Tr1)* if ¥ =0,
H*(W,Qp(Fp)*) =<0 if 0 < * is odd,
(Qp(FO)Cpfl)X/NW(@p(FO)X) = Cp-1 if 0 < x is even.

Proof. Consider the short exact sequence

1—>F0—>F:—>Z<x1>—>1;
it induces a long exact sequence in cohomology
HO(W, Fy) —» HO(W, Fr) — H(W, Z{z1)) — H'(W, Fy) — ...

where the action of W is trivial on Z(x;), while faithful on the first factor of Fy =
Cpe X Cpra—1 and trivial on the second factor. Note that the first factor of Fpy splits
off and has trivial cohomology. Hence for t a generator of W, written additively, and
N = Zf:_2 t', the cohomology H*(W, Fp) can be calculated from the additive complex

Z) (e —1) o z) (e — 1) Nz (e — 1) 5

with
(1-t)(1)=0 and N(1)=p—1;

while H*(W, Z(x1)) can be calculated from the additive complex

g Aot g N 1t
with
(I—-¢)(1)=0 and N(1)=p-—-1
Consequently
Cpna_l lf * = 0,
H*(W, Fy) = { Cpra—1 xCp_1 = Cpq if 0 < x is odd,
Cpra—1 @ Cp_1 = Cp_1  if 0 < x is even;
Z{x1) if % =0,
H*(W,Z{x1)) 2 <0 if 0 < * is odd,
Cp—1 if 0 < x is even,

where Cpna_1 % Cp—1 denotes the kernel of the (p—1)-th power map on Cpra _1.
~W _
Clearly, (pu) x Cpna—1 C Fy . Since zf 1= pud with § a (p—1)-th root of unity in Q,;,

~W
we know that Q,(z1)" = Q,. Consider an element z = z{y1yo in Fy with y; € ((po)
and y2 € ((pra—1). Then for o € W, ys is invariant under o, and we have

(sleny -
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o(z1)

Since the order of -~ divides a power of p and the order of o

o(y1)
must have Uéyyll) = 1, and hence y; = 1. Therefore a:ll is invariant under o, and as
Qp(z1)" = Q,(¢)" = Qp, we know that [ = 0 mod p — 1. It follows that the valuation

~W
of I is integral, and therefore

divides p — 1, we

~ ~W
H(W,F)=F = (pu) x Cpna_1.

Since the image of HO(W, F}) in HO(W, Z(z1)) = Z{x) is Z{pu), the group HO(W, Z{z))
surjects onto HY(W, Fy) = Cj_1, and therefore H! (W, F1) = 0. By the periodicity of the
cohomology, the map

H*(W, Z(1)) — H*(W, Fy)

is an isomorphism, and as H'(W,Z(x1)) = 0 we obtain
H*(W, Fy) = HY(W, Fy) = Cpna 1 @ Cp_1.
Finally, the triviality of H*(W,Q,(Fp)*) is a direct consequence of Hilbert’s theorem
90, while the remaining cases for H*(W, Q,(Fp)*) follow from the characterisation of the

Brauer group in terms of the invariants and the norm relative to the Galois group W as
given by theorem B.8 and corollary B.11. O

Lemma 4.7. Ifa =1, Cy, = Gal(Qy(Cpr1-1)/Qp), and Cp—1 = Aut(Cp), then
. (pu) x Cp—1  if =0,

H*(Cp, Fy " ={0 if 0 < % is odd,
(pu)/{(pu)™) if 0 < x is even;

Q if x=0,
H*(Cpyy (Qp(Fp)“»1)) 200 if 0 < * is odd,
(p)/(P™) if 0 < x is even.

~Cp—
Proof. The action of C,,, on Fy " 2 (pu) x Cpni_y is trivial on the first factor and acts
on Cyni_1 by ¢ — (7.
Let ¢t be generator of Cy,, written additively, and N = > "7 L4, Using additive

notation for ﬁ)cp_l =7 x Z/p™ — 1, we obtain

pt -1
N(1,0) = (n1,0), N(0,1) = (0, -

),

~Cp_
and the desired result for H*(Cp,, F1 " ") follows.
Now for L = Q,(Fp)»* and K = L1, we have
HO(Cp,, L*) = K* = Q)
and H(C,,,L*) = 0 by Hilbert’s theorem 90. Furthermore as L/K is unramified, we
know from proposition B.13 that the valuation map induces an isomorphism
1

e(L)
Here e(L) = 1, and as v(p) = 1, the element p represents a generator of the cyclic group
H?(Cy,, L*). The result then follows from the periodicity of the cohomology. O

H*(C,,,L*) = H*(Cy,, 7) = 7./n Z.
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Corollary 4.8. Ifa =1, then H*(Cnl,ﬁcpfl) — H*(Chy, (Qp(Fp)Cr=1)) is an isomor-
phism for 0 < x even.

Proof. Let L = Qp(ﬁ))q’—l and K = L = Qp. Because the extension L/K is unram-
ified, proposition B.13 implies that the group of units of the ring of integers Ok of K is
contained in the norm Ny (L*). As p is a uniformizing element of Q; = K, it is a
generator of the cyclic group K> /Ny (L*) = H?*(Cy,, L), and the result follows. O

Lemma 4.9. Ifa>2, Wy = Gy and Cpa-1 C Aut(Cpe), then

(pu) x C na if % =0,

* ~Wo, pm —1
H*(Cpa-1, F17) 240 if 0 < x is odd,
(puy /{(pu)?" ") = Cpo—1 if 0 < x is even;

(Qp(F0)™ o) ifx =0,
0 if 0 < * is odd,

Cpa— if 0 < * is even.

Il

H*(Cpa=1,(Qp(F0) "))

Proof. The action of Cp,_1 € Wy N Aut(Cpa) on F = (1) X Cpra—1 x Cpa being faithful

—~ W
on the first and last factors, we have Fy = 2 (pu) X Cpnﬁa _,» and consequently the action

~ W,
of Cpa-1 on Fy ® is trivial.
a—1 .
Let ¢ be generator of Cpa-1, written additively, and N = P Ly, Using additive

notation for EWO >~ 7, x Z/(p'm —1) we obtain
(1_t)(170) = (070)7 (l_t)(07 1) = (070)7

N(17O) - (pa71’0)7 N(()? 1) - (ija71)7

and the desired result for H *(Cpa—l,EWO) follows.
The case of H*(Cpa-1, (Qp(Fp)"?)*) follows from Hilbert’s theorem 90 when # is odd,
while the case where 0 < * is even is given by the isomorphism

(Qp(Fo)"™* =) [Ny (Qp(Fo) ")) 2 Cpas.

0

In view of theorem 4.13, we are only interested in the case where W7 is maximal, that
is Wi = Gy x (Gp N Aut(Cpe)).

Corollary 4.10. If a > 2, Wy = Gy and |Wy/Wp| = p*~!, then
H*(Wl/Wg,EWO) — H* (W1 /W, (Qu(Fo)™")*)  for 0 < x even
1s surjective if and only if it is an isomorphism, and this is true if and only if

ug wW(Z,y) x{x €2, | r=1mod (p*)} and a=k.
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Proof. The first assertion is an obvious consequence of lemma 4.9. Let
M :=Qy(Fy), L:=M" and K :=L%"'=M",
Since L/K is totally ramified, we know from proposition B.13 that
HY(Cpor, LX) = HX(Cpur, OF),
and as Ng/w, o Ne ., (OF) = Neyw, (OF), we may consider the homomorphism
7 H*(Cpar, L) — L5 /N yw, (OF)
given as the composite
HA(Cpo 1, L) = HX(Cpo 1, 05) = (01)% 4 N, (05) 5 2 /Ngy s (OF).

We claim that 7 is an isomorphism. Because Gal(L/Q)) preserves O, and hence [*
for [ the residue field of L, we have an epimorphism Gal(L/Q,) — Gal(l/F,) whose kernel
will be denoted A. Since K is the maximal unramified subextension of L/Q,, we may
consider the short exact sequences

1 —= 25 /Ngyw, (OF) —= Q) /Ngyw, (L*) —=Z/v(Ngw, (L*)) —1

l N\L(,L/Qp) NJ/"()

1 A Gal(L/Q,) — ™~ Gal(l/F,) ——1

gl |

Gal(L/K) Gal(L/Q,) — > Gal(K/Qy) — 1,

1

where the bottom two squares commute, the middle vertical isomorphism is the norm
residue symbol of L/Q), as defined in [20] section 2.2, the top left hand vertical map is
its restriction, and where the top right hand vertical isomorphism is given by the power
map of the Frobenius automorphism o € Gal(l/FF,). By local class field theory (see for
example [13] chapter 2 §1.3) we have

pr(z,L/Qp) = (z, K/Qp) for all z € Q) /Ne jw, (L™).
On the other hand [20] proposition 2 shows that
(z,K/Qy) =0"™  for all x € QX /Ngw, (L*).

It follows that the top right hand square in the above diagram, and hence the diagram
itself, is commutative. From the five lemma, the top left hand vertical map of the diagram

is an isomorphism, and as Gal(L/K) = Cja-1, we get

Neyw, (OF) = n(Zy) x Ua(Zy)

as a subgroup of index p®~! in Z, . By corollary B.11, we know that H 2(C’pwl,LX) has
order p®*~!. The norm N JWy O — Z, being surjective by proposition B.15, it follows
that 7 is an isomorphism.
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As a consequence of this latter result, our map of interest
’\/W o —
i HA(Cpor, Fy ') = (pu) [ (pu)P™ ) — H*(Cpo-r, LX)

is surjective (and hence an isomorphism) if and only if 7¢* is surjective, that is, if and
only if 7(i*(pu)) is a generator of the cyclic group Z,' /Ngw, (OF) = Ui(Z))/Ua(Z,). Tn
fact i*(pu) = ¢*(u). Indeed, as seen in example B.14, there is an element € Q,((pe) such
that

P = No,(¢,0)/0, () = Nojo - (2)
for » = N¢,_, () in Qp(¢pe)®P=1 C L; by remark B.16 we then have
pE Ncpfl(LX) and i*(pu) = i*(u).

Furthermore as ((Z,) € Ngyw,(Of ), we have 7(u) = 7(u1) for u; the component of
u € Z, in Uy(Z,) via the isomorphism Z; = ji(Zy) x U1(Z,;) of proposition C.7. Letting
z € Zyp be such that u; = 1 + 2zp, we finally obtain that

u‘lG/W1| =1+ 2|G/Wilp mod p?

7(pu) = Neyw, (u1) =
is a generator if and only if

ug w(Zy) x{x €Z, | =1mod (p*)} and |G /W1| # 0 mod p,

the latter condition being equivalent to oo = k (or no = m). O
Lemma 4.11. If a > 2, Wy = Gy, [W/Wi| # 1 and L = Q,(Fo)™* with v(L) = e(lL)Z,
then
(pu) x Cp_1 if x =0,
~W
H*(W/Wy,Fy ) =40 if 0 < * is odd,

(pu) /{(pu)V/Wily i 0 < % is even;

(LWV/Wiyx if =0,
H*(W/W1,L*) =<0 if 0 < * is odd,
(m) /(mWIWily if 0 < x s even,

for m a unifomizing element of L'W/W1.

Proof. Since Wy = Gy C W1, none of the elements of Cpa are left invariant by Wi, and
we have f’owl = (pu) x Cp"ﬁa _,- The action of W/W on this group is trivial on the first
factor and acts on Cp“ﬁa_l by ¢+ (P.

Let t be generator of W /W7y, written additively, and N = ZLI/:V({ Wil=14 Using additive
notation for Z?BWI > 7 x L/(pm — 1), we get

(1 - t)(l,()) = (O’O)’ (1 - t)(()? 1) = (Oa 1 7p)7

N(1,0) = (W/Wi],0), NO.D) = (0.2,
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and the desired result for H*(W /W7, ﬁ)wl) follows.
Now let K = L"W/Wi_ Then

HO(W/Wy,L*)=K* and  HYW/W,L*) =0

by Hilbert’s theorem 90. Finally, as L/K is unramified, proposition B.13 yields

1 1 1 W/Wi|
H>(W/Wy, L) = HXG, ——7) & —L]|W/Wy| - ——7 = W/W
( / 1 ) ( ’e(L) ) €(L) /| / 1| €(L) <7TK>/<7TK >
for mx a uniformizing element of K. The result then follows from periodicity of the
cohomology. O

Corollary 4.12. Ifa > 2, Wy = Gy, [W/Wi| # 1 and L = Q,(Fo)™"* with v(L) = e(lL)Z,
then
H*(W/Wl,flwl) — H*(W/W1,L*)  for 0 < x even

is surjective if and only if it is an isomorphism, and this is true if and only if e(L) divides
p— 1.

Proof. The short exact sequence
1—Fy— F —Z/p—1—1
induces a long exact sequence
1R s B s 2y ) s HY (WL By ) —
which in turn induces a short exact sequence
1—>17“6W1 —>ﬁWl — I —1

where |I| divides p — 1. Since W/Wj is a p-group, |W/W}| is prime to p — 1 and we have
H*(W/Wy,I)=0 for + > 1. Hence

H (W/W, FL Y = HY(W/Wh, By ) for + > 2,

and by the periodicity of the cohomology of the finite cyclic group W/W; this is also true
for + = 1. For * = 2, we are interested in the image of this group in H*(W/W1, L*). Let
K =LY/ and M = Q,(F). From lemma 4.11 we have

L [W/Wi
e(L)Z/ e(L)

and we know that e(L) divides e(M) = (p — 1)p®*~!. Because L/K is unramified, the
group O is contained in the norm N, /i (L) by proposition B.13. The map

H*(W/Wh, L) = z,

HA(W/Wy, i) — H2(W/Wy, L)

is therefore surjective if and only if v(pu) = v(p) = 1 is a generator of e(lL) z) ‘VZ(/Z‘)/”Z, and

this is true if and only if p does not divide e(L). O
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Theorem 4.13. Let p be an odd prime, n = (p — 1)p*~'m with m prime to p, u € Zy,
Fy = Cpe X Cpra—1 be a mazimal abelian finite subgroup in S,, G = Gal(Q,(Fy)/Qp),
Gy be the p'-part of G, and let P = (1) x Fo € Qp(Fp)* be mazimal as a subgroup of
Qp(Fp)* having Fy as subgroup of finite index.

1) For any 0 < a < k, there is an extension of Fy by Gy ; this extension is unique up
to conjugation.

2) If a < 1, there is an extension ofﬁ by G; this maximal extension is unique up to
conjugation.

3) If a > 2, there is an extension ofﬁvl by G if and only if
a=k and  ud p(Zy) x{xcZ, | 2 =1 mod (p?)},
in which case this maximal extension is unique up to conjugation.
Proof. 1) From corollary 4.3 and proposition 4.5 we know that the map

iG, H2(Gp’j’:1) — Hz(Gp”Qp(FO)X)

P

is an isomorphism. Existence and uniqueness up to conjugation of an extension of F by
G then follow from corollary 2.29.

2) The case o« = 0 follows from corollary 4.3 and corollary 2.29. Now assume that
a=1and that W = G = C,_1 x Cy,. We have a short exact sequence

1—Cpy — W — 0, — 1,
which gives rise to the Hochschild-Serre spectral sequences (see [4] section VIL.6)
Ey' = H3(Cp,, H(Cp 1, F1)) = HPY W, F),
By = H*(Cpy, HY(Cpo1,Qp(F0))) = H¥(W,Qp(Fp)%).

By lemma 4.6 and proposition 4.5, each map ES’t — ES’t is an isomorphism for ¢ > 0.
Moreover, by lemma 4.6 we have

~ ~Cpe
HY(Cp 1, F1)=F1 " 2 (pu) x Cymi 1

and
HO(Cp—vap(FO)X) = (QP(FO)Cp_l)X = Qp(Cpra—1)™.
Then lemma 4.7 and corollary 4.8 imply that the map EZS’t — Eg’t is an isomorphism as
well for ¢t =0 and s > 0. It follows that
iy« HY(W, L) — H' (W, Q,(F0)*)

is an isomorphism for * > 0. Existence and uniqueness up to conjugation then follows
from corollary 2.29.

3) Assume that a > 2 and that W C G is such that Wy = G,y with |W;/Wy| # 1 and
|W/W1| # 1. We have a short exact sequence

1—)W0—)W1—)W1/W0—>1,
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which gives rise to the spectral sequences
B3’ = H (Wi /Wo, H'(Wo, ) = H*(Wy, F),
Ey' = H* (Wi /Wo, H' (Wo,Qp(F0)*)) = H*™ (W1, Qp(Fp)%).

By proposition 4.5 each map E;’t — E;’t is an isomorphism for ¢ > 0. Moreover, we know
from lemma 4.9 and corollary 4.10 that when t = 0 and s > 0, a necessary and sufficient
condition for

HY (W /Wo, By ) — H* (W1 /Wo, (Qp(Fo)"0)¥)

to be surjective (and hence an isomorphism) is that w is a topological generator in
Zy [u(Zy) and o = k. The map

H*(Wy, Fy) — H*(W1,Q,(Fp)*), for % >0
is thus surjective if and only if it is an isomorphism, and this is true if and only if
ud (Zy) x{x €Z, | *=1mod (p*)} and a=k.
Now assuming these conditions are satisfied, the short exact sequence
l— W, — W —W/W, — 1
induces spectral sequences
E3' = HY(W/Wy, H' Wy, F)) = H(W,FY),
Ey' = H(W/Wi, H'(W, Qy(Fy)")) = H™(W,Q(Fo)”),

where each map Ey* — E5" is an isomorphism for ¢ > 0. Furthermore, lemma 4.11 and
corollary 4.12 imply that in case t = 0 and s > 0, the map

HY(W/Wi, By ) — HS(W/W, (Qy(Fp)™)%)

is surjective (and hence an isomorphism) if and only if e(Q,(Fp)"*) divides p — 1. In

particular for W = G, the map
i HYG, Fr) — HY(G,Q,()")

is surjective (and hence an isomorphism) if and only if W is realized and e(Q,(Fp)"?)
divides p — 1, that is, if and only if W is realized and W;/Wy = Cpa. The result then
follows from theorem 2.27 and corollary 2.29. U

4.2. Extensions of maximal abelian finite subgroups of S,, for p = 2

In this section, we assume p = 2, Fyy to be a maximal abelian finite subgroup of Sy,
and Fj to be maximal as a subgroup of Qo(Fp)* having Fj as a subgroup of finite index;
in other words

Fy = Cga X Cona_q with 1 <a <k, n,=

p(2%)°
By corollary 3.39, we have Fvl = (x1) X Fp with
1 ifa<1, orif u=23mod8 and n, is odd,
v(z1) =

if & > 2 and either v = +1 mod 8 or n,, is even.

N =
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Remark 4.14. Since n, = 2~%m with m odd, we have
Nneg = 1 mod 2 & a=k.

By remark 3.40, we may in fact choose z1 € Fvl to be x1 = 2u in the cases where its
valuation is 1, otherwise to be x1 = (1 + 1)t for i € Qo(Fp)* a primitive 4-th root of unity
and
7z if w =41 mod 8, , N w ifu=1or —3modS8,
te with t° =

Z2(¢3)* if u =43 mod 8, —u if u=—1or 3mod 8.

By definition Q2(Fp) = Q2(F}), and because the latter is a maximal subfield of D, we
have F; = F5. We let

Ch if =1,

G = Gal E =
al(Q2(Fo)/Q2) {Cna X Cyaz x Cy ifa>2,

as given by proposition C.8. From our choice of x1, we know that FY is stable under the

action of a subgroup W C G: if x; = 2u this is clear, and if v(z;) = % and o € W we

have %ﬁl) € Fy and hence o(z1) € x1Fy C Fvl The goal of the section is to determine

necessary and sufficient conditions on n, u and « for the homomorphism
it : H(G, F1) — H*(G,Qq(Fp)*)

to be surjective, and whenever this happens, we want to determine its kernel. This is done

via the analysis of .
ity H*(W, Fy) — H*(W,Qq2(Fp)™)

for suitable subgroups W C G.

The case o =1

The situation is much simpler when the 2-Sylow subgroup of Fj is contained in Q.
Recall that Caa x C), denotes the kernel of the n-th power map on Csa.

Lemma 4.15. If a <1 and W = C,, then F = (2u) x Fy and

(2u) x Caa if ¥ =0,
H*(W,Fy) = O x Oy if 0 < * is odd,
(2u) /((2u)") x C2a @ Cp,  if 0 < x is even;

Q3 if x =0,
H*(W,Qa(Fp)*) =<0 if 0 < * is odd,
(2)/(2™) if 0 < % is even.

Proof. We know from corollary 3.39 that Fvl = Fb. The action of W = (), on F; =
(2u) x O9a x Con_q is trivial on (2u) x Oz« and acts on Can_1 by ¢ +— (2.

For t a generator of (), written additively, and N = ?:_01 t, H *(Cn,ﬁ) is the
cohomology of the complex

~ 1-t —~ N —~ 1-t
F"1 Fl Fl
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Using additive notation for F} = Z x Z,/2% x Z/2" — 1, we obtain

(1 —1)(1,0,0) = (0,0,0), N(1,0,0) = (n,0,0),
(1-1)(0,1,0) = (0,0,0), N(0,1,0) = (0,n,0),
(1-1)(0,0,1) = (0,0,-1), N(0,0,1) = (0,0,2" — 1),

and the desired result for H*(W, F) follows.
Now let L = Qa(Fp) = Qo(F}) and K = L. Then

H(W,Q2(Fp)*) = K* = Q5

and HY(W,Q2(Fp)*) = 0 by Hilbert’s theorem 90. Furthermore as L/K is unramified,
proposition B.13 imply
H*(W, Q2 (Fo)*) = (2)/(2")

as desired. n

Corollary 4.16. If a = 1 and W C C,,, then il : HX(W, Fy) — H2(W,Qqo(Fp)*) is an
epimorphism. It is an isomorphism if and only if n is odd. Ifn is even, its kernel is {£1}.

Proof. First assume that W = C,, with L = Qq(Fp) and K = L. As L/K is unramified,
proposition B.13 yields u € N¢, (L*). Hence i, 1s surjective by lemma 4.15. The case
W C C, follows from proposition 4.1, and the other assertions are clear. O

Example 4.17. When a = 1, the group Fy = Cs x Con_1 is generated by —w for w a
(2" —1)-th root of unity in S,,. Here Q2(Fj)/Q2 is a maximal unramified commutative
extension in D,, and ﬁa = Fvl = ﬁ; Now for any u € ZJ there are elements &, and £_,, of
valuation % in Npx (Fo) such that

& = 2u, &, = —2u and Erywért = W,
with %’3: = (&) x Fy and Fy = (€_y) X Fy. In G, (u), this gives extensions
1 — Fy— Ff —C, — 1,
having classes in

0 if n is odd,

HQ(CnaFO) gHz(CnaC2)@H2(Cn;CQ"—1) gI—IQ(C'TL’C’Q) = . .
ZJ)2 if nis even.

One of the extensions is a semi-direct product, represented by
<_wvgu> = C'2(2"71) X Ch,

for £, the class of &, in G, (u). When n is even, we have

for £_, the class of £, in G,(u). The respective 2-Sylow subgroups of (—w,§,) and
(—w,€_,) are Cy x Cor—1 and Cye which are clearly not isomorphic.
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The case oo > 2
We let o > 2. In this case Q2(i) C Qa(Fp).

Proposition 4.18. If o > 2 and Wy is a subgroup of odd order in Cp,, C Aut(Cona—1),
then iy, + H*(Wo, F1) — H?(Wo, Q2(Fp)*) is an isomorphism.

Proof. We may use the same argument as proposition 4.5. Using that a > 2, we know
that Z/Z(x1) is either trivial or a 2-torsion group, while Zo(Fy)* / Fy is free over Zs. Hence

H*(Wo,ZQ(Fo)X/Fo) == H*(Wo,Z/Z<{[J1>) == H*(WO,QQ(FO)X/Fl) =0 for * > 0,

and the result follows. OJ

Lemma 4.19. If a > 2, u = £3mod 8, ny is odd and W = C,, C Aut(Cana 1), then
Fy = Fy and

(2u) x Caa if % =0,
HY (W, Fy) = § Cya % Cp, if 0 < x is odd,
(2u) /{((2u)™) x Coa @ Cyp,, if 0 < * is even;

Q2(C2a)*™ if x =0,
H*(W,Q2(Fp)*) = {0 if 0 < x is odd,
(Coo — 1) /{(Cae — 1)) if O < * is even.

Proof. We know from corollary 3.39 that F = F(). The calculations for H*(W, ﬁ) and
H*(W,Q2(Fp)) are identical to that of lemma 4.15, except that 2 is replaced with ({ga —1)
in the second case. U

Lemma 4.20. Ifo > 2, u = +1mod 8 and W = C,,, C Aut(Cona_1), then Fy = (x1)x F}
with v(z1) = 5 and

(x1) x Coa if x =0,
H* (W, F1) = { Cae % Cy, if 0 < % is odd,
(w1)/(x]*) X Ca @ Cp, if 0 < x is even;

QQ(gQO‘)X Zf* =0,
0 if 0 < * is odd,

(Coo — 1) /{(Caa — 1)) if O < * is even.

12

H* (W, Q2(Fp)™)

Proof. We know from corollary 3.39 that Fy = (1) x Fy with v(z1) = :. The action of
Ch,, on F} = (x1) X Cya X Cona 1 is trivial on the first two factors and acts on the third

by ¢ — (2. '
Let t be generator of C,,, written additively, and N = !~ L4, Using additive

notation for Fy & Z x Z/2% x Z,/2" — 1, we obtain
(1 -1)(1,0,0) = (0,0,0), (1-1)(0,1,0) = (0,0,0), (1 -1)(0,0,1) = (0,0,-1),
N(1,0,0) = (n4,0,0), N(0,1,0) = (0,n4,0), N(0,0,1) = (0,0,0),
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and the desired result for H*(W, F}) follows.
Now for L = Qo(Fp) and K = LW = Q2((22), we have

HO(W,Qa(F)) = Qo(Ker(1 — )% = Qg(Coa)

and HY(W,Qa(Fp)*) = 0 by Hilbert’s theorem 90. Furthermore, as L/K is unramified,
(oo — 1 is a uniformizing element of L and proposition B.13 implies

HA (W, Q(Fp)™) = (Go = 1)/{(Ge = 1))
as desired. O

Lemma 4.21. If « > 3, u = £3mod 8, ng is odd and W = Cha—2 C Aut(Cze) is
generated by ¢ — C°, then Fy = Fy and

2u) x Cy x Cona_1 if * =0,

(2u)

H*(W,E)% 0 if 0 < * is odd,
(2u)/{(2u)2" 7Y 2 Cyaz  if 0 < x is even;

(Qa(Fp)“2r2)> if ¥ =0,
0 if 0 < x is odd,
(Q2(Fo)“=2)* /Nw (Qa(Fp)*) = Cyaz  if 0 < x is even.

I

H* (W, Q2(Fo)™)

Proof. We know from corollary 3.39 that Fvl = Fvg. The action of Cya—2 on Fvl = (2u) X
Coa x Ogna _1 is trivial on (2u) x Cona 1 and acts on Cza by ¢+ ¢°.
For t a generator of Cya—2, written additively, and N = Z?ingl t!, we obtain

(1 —1)(1,0,0) = (0,0,0), N(1,0,0) = (272,0,0),
(1 — t)(O, 1,0) = (0, —4, 0), N(O, 1,0) = (O, 20‘_2,0),
(1—1)(0,0,1) = (0,0,0), N(0,0,1) = (0,0,2°72),

and the desired result for H*(W, Fy) follows.
The case of H*(W, Qa(Fp)*) for 0 < * odd follows from Hilbert’s theorem 90, and the
rest is clear. O

Lemma 4.22. Let o > 3, and assume either u = +1 mod 8 or u = +3 mod 8 with ny
even. If W = Cya—2 C Aut(Caa) is generated by ¢ — (°, then Fy = (x1) x Fy with
v(z1) = % and

<l’1> X 04 X CQ"afl Zf* = 0,
H*(W,F1) =<0 if 0 < * is odd,

<$1>/($%a_2> = Cha—2  if 0 < * is even;

(Qa2(Fp)“2r2)* if x =0,
0 if 0 < % s odd,
(Qa(Fp)“20-2)% /Ny (Qo(Fp)*) = Cga—z  if 0 < * is even.

1%

H* (W, Q2(Fp)™)
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Proof. We know from corollary 3.39 that F} = (x1) x Fy with v(z;) = 1. The calculations
are identical to that of lemma 4.21, except that 2u is replaced by z; for the calculation of
H*(W, FY). O

Corollary 4.23. If a > 3 and W = Cga—2 C Aut(Csa) is generated by ¢ ¢?, then
ity H2(W, Fy) — H?(W,Qq(Fp)™) is never surjective.

Proof. Let L := Qo(Fp) and K := LY. Since L/K is totally ramified, we know from
proposition B.13 that H*(W,L*) = H*(W,0f). As Ng/w o Nw(0}) = Ng(Of), we
may consider the homomorphism

T H*(W,L*) — Z3 /Nc(OF)
given by the norm
Negyw = HA(W,0F) = (O) /Nw(Of) — L5 /Nc(OF).

In order to analyse this homomorphism, we consider the short exact sequences

1 Z3 /NG (OF) Q3 /Na(L*) —=Z/v(Ng(L*)) —1

i Ei (LL/Q2) glam

1 — Gal(L/LC20-2%C2) — Gal(L/Qq) —— Gal(l/Fy) — 1

where
Gal(L/L%=2%C2) = Chan x Oy,  Gal(LC-2%2 /Qy) = Gal(l/F3) = C,,

for [ the residue field of L, where the middle vertical isomorphism is the norm residue
symbol of L/Q as defined in [20] section 2.2, the left hand vertical map is its restriction,
and where the right hand vertical isomorphism is given by the power map of the Frobenius
automorphism o € Gal(l/F2). We know from local class field theory (see for example [13]
chapter 2 §1.3) that

pr(z, L)Qo) = (x, L%-2%C2 /QQy) for all z € Q5 /Ng(L™).
On the other hand [20] proposition 2 shows that
(z, LC2=2%C2 JQy) = ¢*®)  for all € QF /Ng(LX).

Thus the right hand square in the above diagram, and hence the diagram itself, is com-
mutative. The five lemma then implies

Z5 ING(OF) = Coa—2 x Co and Ne(Of) = Ua(Z5).
The image of 7 however is Us(Z3)/Uq(Z3 ). To see this, consider the tower of extensions

Cy

Q) kW,

Since K/Q2(i) is unramified, we know from proposition B.15 that

N¢

n

o - OIX( — ZQ(i)X
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is surjective. Hence for any ai,as € Zs, there exists an element z = 1+ a(1 + i) in O
with a € Zs such that

Ne,. (x) =1+ (a1 +agi)(1 +1) € Z(i)™.
Therefore
Neyw (@) = Ney(1+ (a1 + azi)(1+14))

1+ (a1 + az2i)(1 +9)][1+ (a1 — agi)(1 — )]

= 1+2(al + a3 + a1 — as)

= 1+2(a? +ay1) +2(a3 — az)

= 1 mod 4, (4.1)
and the map 7 : H2(W, Of) — U(Z5)/Uq(Z5) is an isomorphism.

By to lemma 4.21 and 4.22, the map i, is therefore surjective if and only if 7(x;) is
a generator of Us(Z3)/Uy(Z5). Recall that

2u if w = £3 mod 8 and n,, is odd,
Tr =
(1+4)t otherwise,

with

2 U ifu=1or —3mod 8,
—u if u= -1 or 3 mod 8.

Since both 2 and 1 + i belong to Ng,(¢ya)/@s(i)(Q2(¢2e)) according to example B.14, it
follows by remark B.16 that 2 and 1+ both belong to Ny, g (L*). Thus if u = 43 mod 8
with n, odd, we have

7(2u) = 7(u) = v?" =1 mod 8.

On the other hand if © = £1 mod 8, then

ue if u =1 mod 8,

o _ 42na
T(Z’l) = T(t) =t = {(_u)na if (_u> =1 mod 8,

=1 mod 8.

Finally if w = 43 mod 8 with n,, even, there is a subgroup of index 2 in G/W which acts
trivially on ¢, and we have

ran) = 7(t) = (H(~1)" = (~1)"¢¥ = (&)™ =1 mod 8,
In any case, the map iy, is never surjective. O

Lemma 4.24. Let o > 2, u = £3 mod 8, nq be odd, and let Co C Aut(Caa) be generated
by ¢ — (L If Wy is a subgroup of odd order in G, then EWO = JATBWO and

<2u) X(Cga*CQ) X C' na if*:O,

2 Wol —1

* =Wo, o
H*(Co, Fy ") 2 { Cha 0 Cy i 0 < % is odd,
(2u)/{(2u)?) x (Coa * Cs) if 0 < x is even;

(Qa(Fp)“2)* if ¥ =0,
H*(Cy, (Q2(F0)WO)X) =40 if 0 < x s odd,
(Qa(Fp)“2)* /Ny (Qa(Fp)*) =2 Oy if 0 < * is even.
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Proof. We know from corollary 3.39 that Fvl = E). The action of Cy on Fvlwo = (2u) X
Coa X C 1na is trivial on the first and last factors and acts on the second by ¢ — (1.
2

[Wol —1

Let t the generator of Co, written additively, and N = 1 + ¢t. Using additive notation
—~ W, Na
for Fi " =7 x 7/2% x Z./(2W — 1), we obtain

(1—1)(1,0,0) = (0,0,0), N(1,0,0) = (2,0,0),
(1—1)(0,1,0) = (0,2,0), N(0,1,0) = (0,0,0),
(1—1)(0,0,1) = (0,0,0), N(0,0,1) = (0,0,2),

and the desired result for H*(Cy, IATIWD) follows.
The case of H*(Cy, (Q2(Fp)"0)*) for 0 < * odd follows from Hilbert’s theorem 90, and
the rest is clear. O

Lemma 4.25. Let a = 2 and either u = £1 mod 8 or u = +3 mod 8 with n, even. If
Co C Aut(Caa) is generated by ¢ — (=1, and if Wy is a subgroup of odd order in G, then

Fvlwo = (1) x Fy"° with v(z) = 3 and

<2U>X(CQQ*CQ)XC”7Q Zf*:(],

21Wol —1

* = W ~
H*(Cy, F1 ") =4 if0 < % odd,
Cha * Cy if 0 < * even;
(Q2(Fp)©2)> if =0,
H*(Ca, (Q2(Fp)"*)*) = {0 if 0 < * odd,

(@2(F0)CQ)X/NW(Q2(F0)X) =2y if 0 < x even.

Proof. We know that Fvlwo = (1) X F(}/VO with v(zy) = The action of Cy on Fvlwo =

1

5-

(x1) X Ca x C e is trivial on the last factor, acts on Caa by (2o Cz_al on the second,
21Wol —1

and sends x1 to —ix7.

Note that the last factor splits off and has trivial cohomology. Hence for t a generator

~W,
of Cy, written additively, and N = 1+ ¢, the cohomology H*(Cs, F} 0) can be calculated
from the additive complex

ZxZ/A—52x2/4-No7x7/a "%,

vhere t(1,0) = (1,1) and t(0,1) = (0, —1).
Therefore
(1=1)(1,0) = (0,-1), (1-1)(0,1) = (0,2),
N(1,0) = (2,1), N(0,1) = (0,0).
Hence
Ker(1—1) = ((2,1),(0,2)), Im(1— ) = {(0,1)),
Ker(N) = ((0,1)), Im(N) = ((2,1)),

and the desired result for H*(Cy, EWD) follows.
The case of H*(Cs, (Q,(Fp)"™"0)*) for 0 < * odd follows from Hilbert’s theorem 90, and
the rest is clear. O
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We have seen in corollary 4.23 that if, is not surjective whenever o > 3. Thus the case
a = 2 is all that we want to consider in the following corollary.

Corollary 4.26. Let o = 2, Cy = Aut(Cax) and let Wy be a subgroup of odd order in
G. Then H2(C’2,FV1WO) — H*(Oy, (Qa(Fp)V0)*) is surjective if and only if o = k. In

this case, its kernel is isomorphic to Co if u = £3 mod 8 and it is an isomorphism if
u = +1 mod 8.

Proof. Let L := Qa(Fp)"°, K := LY and H := G/W,y = Gal(L/Q,). Note that L/K is
totally ramified. Similarly to corollary 4.23, we may consider the homomorphism

71 H*(Co, L™) — Z5 /Ny (OF)
given by the norm
Ny, : H2(C2, L) 2 H?(Cs, OF) = (0g) /Ney (OF) — L5 /Nu(OF).

Here again, as in corollary 4.23, we have short exact sequences forming a commutative
diagram

1 —Z5 /Nu(0f) —= Q5 /Ny (L*) — Z/v(Ng(L*)) — 1

El %i (LL/Q2) Eiam

1— Gal(L/K) Gal(L/Q) —2— Gal(l/Fs) — 1

where

Gal(L/K) = Cy and  Gal(l/F2) = C na_,

[Wol

for I the residue field of L. Since LCma/Wo = Qqy(Fy)“ma = Qy(i), and since L/Qo(i) is
unramified, we know from proposition B.15 that

Nuje, Of — Zs(i)*
is surjective; consequently
Nu(OF) = Ne, © Ngyey (Of ) = Ny (Z2(i)™).
Furthermore, as in (4.1), for any elements aj, as € Zo we have
Ne, (14 (a1 + agi)(1+4)) = 1 mod 4.
Hence Ny (OF) = Us(Z3 ) and the map
71 H*(Cy, L*) — L5 JUs(Z5) = {£1}

is surjective by proposition B.15.

~ Wi
Using lemma 4.24 and 4.25, the map i* : H2(Co, Fy ') — H?(Co, L*) is therefore
surjective if and only if

|- {T(Zu) or 7(—1) if u =43 mod 8 and n, odd,

T(—1) otherwise.
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Since N¢,(1+1i) = (1 +4)(1 —4) = 2, remark B.16 implies
7(2u) = 7(u) = w2 and  7(=1) = (=1)H/Cl
Hence 7(—1) = —1 if and only if
|H/Cs| = |Cy,, /W] is odd & ng is odd & a=k,
and the result follows. O

Theorem 4.27. Let p = 2, n = k=L with m odd, u € ZQX, Fy = Coa X Cona_1 be a
mazximal abelian finite subgroup of Sy, G = Gal(Q2(Fy)/Q2), Gor be the odd part of G,
and let Fy = (z1) x Fy C Qa(Fy)* be mazimal as a subgroup of Qa(Fy)* having Fy as
subgroup of finite indewx.

1) For any 1 < a < k, there is an extension of E by Gor; this extension is unique up
to conjugation.

2) If a = 1, there is an extension of Fvl by G; the number of such extensions up to
conjugation s

{1 if n is odd,

2 ifn is even.

3) If a = 2, there is an extension ofFvl by G if and only if k = 2; the number of such
extensions up to conjugation is

1 dfu=+1mod 8,
2 ifu# £1 mod 8.
4) If a > 3, there is no extension ofFvl by G.
Proof. 1) From corollary 4.16 and proposition 4.18 we know that
iy, « H*(Gy, F1) — H*(Gy, Qa(Fp)*)

is an isomorphism. Existence and uniqueness up to conjugation then follows from corollary
2.29.

2) This follows from corollary 4.16 and 2.29.

3) Let a = 2. Applying proposition 4.1 and corollary 2.29 together with corollary 4.26
in the case where W) is trivial, we obtain that F; can never be extended by G when n,, is
even. Assume then that n, is odd. In this case G decomposes canonically as

G = Gy x Cy with Gy =C,,,.
In particular, there is a short exact sequence
1—0C,, —G—Cy —1
which gives rise to the Hochschild-Serre spectral sequences (see [4] section VII.6)
Byt = H*(Co, H'(C,, F1)) = HG, F),

Byt = H(Co, H'(Cy,,, Qa(Fp)*)) = H(G,Qz(Fp)").
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From lemma 4.19, 4.20 and proposition 4.18, each map Eg’t — E;t is an isomorphism for
t > 0. We also have

HO(C,,,, F1) = Ecna = (x1) x Caa

and
H®(Cry Qa(Fo)™) = (Qa(Fp) ) = Qa(i) .
Then corollary 4.26 applied to the case Wy = C),,, shows that the map

H(Cy, 1) — HY(Cy, (Qa(Fp)Cne)®)

is surjective when ¢t = 0 and s > 0; its kernel is trivial if w = 41 mod 8, otherwise it is of

cardinality 2. In fact, since n, is odd, all the terms Eg’t for which s > 0 and t > 0 are

trivial. By the results of lemma 4.19 and 4.20, the non-trivial terms for which s = 0 are of

odd order, and the non-trivial terms for which ¢ = 0 are powers of 2. Hence all differentials

of the spectral sequences are trivial and Ey™ = EX*. Consequently, i, is surjective if and

only if n,, is odd, that is, if and only if & = k. The result then follows from corollary 2.29.
4) By corollary 4.23 and proposition 4.1 the map

ity : HX(G, Fy) — H*(G,Q(Fp)™)

is never surjective if o > 3. The result is then a consequence of corollary 2.29. 0

4.3. Extensions of maximal finite subgroups of S, containing (s

In this section, we establish under what condition a maximal finite subgroup G of
S, with a quaternionic 2-Sylow subgroup extends to a subgroup of order n|G| in G,,(u).
Recall from theorem 1.35 that such a G exists if and only if p = 2 and n = 2m with m
odd, in which case
G = Qs x C3gm_1) = Thy X Com_1.

Theorem 4.28. Letp =2, n = 2m with m odd, and u € Z5 . A subgroup G isomorphic to
Tog x Cam_1 in S, extends to a mazimal finite subgroup F of order n|G| = 48m(2™ —1) in
Gn(u) if and only if u = £1 mod 8; this extension is unique up to conjugation. Moreover if
u # +1 mod 8 and G’ is a subgroup isomorphic to Qg X Com_1 in'S,, there is no extension
of G’ of order n|G'| in Gy (u).

Proof. Let i,j,(s3,(am_1 be elements of respective order 4, 4, 3 and 2™ — 1 generating G,
and let T := (i, 7, (3) = Toy. We first establish the structure of the centralizer of G. By
the centralizer theorem A.6, there is a Q2-algebra isomorphism

Dy, = Q2(T) ®q, Cn, (T),

where Cp, (T) is a central division algebra of dimension m? over Qy. Note that the
commutative extension Qg(Cam_1)/Q2 is maximal unramified in Cp, (T"). Consequently

Cpx (G) = Qa(Gom—1)”, Cs, (G) = Zo(Cam 1),

and as Qa(¢2m—1)/Q2 is unramified we have Cs, (G) = Cg, () (G)-
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We now show the existence of the desired extension of order n|G| assuming v = +1 mod
8, that is u = £1 mod (Z)2. Let t € Z5 be such that

9 {u if w =1 mod 8,
2 =

—u if u =—1mod 8.
The valuation map gives rise to a short exact sequence
1 — Ng,(G) — Ng,)(G) — %Z/Z ~7Z/n — 1.
Let &, € C’D; (T') be an element satisfying £]/' = 2u and acting on (am_; by raising it to
its square. Consider the element (1 + )tj§, € DX. It becomes a generator in Z/n as

o1+ 0)6) = oL+ 1) +ule) = 5+ = T

where m + 2 is prime to n. Furthermore as t, £, commute with ¢, j, we have

[(1+ )€ = [(140)5(1+10)jt*]™
= [+ =)™
= [-262¢]™

~[—(2u)™*? if u=1modS8,
w2 ifu=—1modS8,

and it is easy to check that (1 +4)tj&, € Npx (G). This shows the existence of F' in the
case u = +1 mod 8.

We proceed to the non-existence part of the result for u Z 1 mod 8. First note that
there is a short exact sequence

1 — Cpx (G) — Npx (G) 5 Aut(Taa) x Gal(Qa(Com—1)/Q2) — 1,

where |Aut(Th4)] = 24 and Gal(Q2(¢am—1)/Q2) is cyclic of order m. Indeed, if z €
ND;; (G), then the conjugation action by x preserves both G and its 2-Sylow subgroup
Q. Consequently Q2(Q)* = Q2(T)* and Cpx(G) are preserved as well. As for the
surjectivity of p, we know from the Skolem-Noether theorem that the restriction of p to
Q2(T)* € Npx (G) is surjective on Aut(T»4), while by definition the element &, € Npx(G)
maps to a generator of Gal(Q2((am_1)/Q2). Now since

Cps(G) = QalGon 1) and  v(Np«(G)) = -7,

n n
as shown in proposition 1.20, we know that
N]D);f (G) = <C]D)7>l< (G)a Ga (1 + Z)’ £u> = <ZQ[C2m—1]X7T7 (1 + Z)a §u>

In the case u # £1 mod 8, we claim that there is no z € Npx (G) such that

v(z) = and 2" € (G,2u).

1
n
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Indeed, if such an z existed, there would be a y € T and a z € Za[(em_1]* such that
2™ = (1 +1i)yz, in which case

2" = (14i)y(1 +i)yz"
= (141 +d) ty(1 +4)y2?
= 2io(y)yz’
would belong to 2227, for o the automorphism of T induced by the conjugation by (1+3)~!.
In this case 222 € (G, 2u) N Q2((am_1)*, and there would be a g € G with

22% = g(2u) & 22 = gu.

Since both 22 and u are in Zy(Cam_1)*, so does g and 2?2 = +u. As shown in corollary
3.38, this is impossible since m is odd and u # +1 mod (Z3)?. Tt follows that G cannot be
extended as a subgroup of order n|G| in G,,(u) when u # £1 mod 8. In fact, the argument
also shows the corresponding result for G’: since Q2(Qs) = Q2(7%4), we have

QG =Qa(G)  and Ny (G') = Ny (G),

and there is no z of valuation 1 in Npx (G') such that z" € (G, 2u) C (G, 2u).
It remains to verify the statement on uniqueness when v = +1 mod 8. For a finite
group F' of order n|G| extending G, we have F' € Npx(G). Let

A:=FnKer(p) = (2u,—1,(am_1) and B:=F/A

Applying theorem 2.14 to the case F' € G,(Npx(G), A, B), it is enough to check that the
cohomology group H'(B, Ker(p)/A) is trivial. As

|B| <00,  Ker(p)/A=Qa(Cem-1)"/A= L3,
and because the B-module structure is trivial, we obtain

HY(B, Ker(p)/A) = Hom(B,Z5") = 0.

4.4. Example of the case n =2

In this section, we illustrate the situation for n = 2 and we find the finite subgroups of
Gao(u) up to conjugation for p € {2, 3}, that is for those primes p for which p — 1 divides
n.

For a given p, we let w € Sy be a primitive (p? —1)-th root of unity and o be the
Frobenius automorphism of Q,(w)/Q,. For each u € Z), we let &, € Dy be an element
associated to o such that 2 = pu. Asin example 4.4 and 4.17 the multiplicative subgroups
in the division algebra

Dy = Qp(w)<§u>/(£g = pu, & = lﬂ&u)a VS Qp(w)7

which correspond to finite subgroups of Ga(u) are easily expressible in terms of &, and w.
This allows to determine the conjugacy classes of those finite subgroups explicitly.
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The case p =3
Let p=3. Here k=1, m =1 and a € {0, 1}.
1) If @ = 0, then Fy = (w) = Cs and Fy = Fy x (3u). As shown in example 4.4
R=F=F  F=(R&) with =3
and for £, the class of &, in G, (u) the group
F3=(w,&,) = SDig

is a semidihedral group of order 16.

2) If a = 1, then Fy = ((3) x (w?) = Cg where w? = —1. The primitive third root of
unity (3 € So may be given by

1
C3:—§(1—i—wS) for S =¢;.
In this case
—1 2 1 2
G =G :—5(1—0.}5) and (3 — (3 =ws.

According to theorem 4.13 there is no restriction on u, and x; can be chosen as x1 =

(C% — (3)t with t € Z; such that

9 {u if u =1 mod 3,
t? =

—u if u=—1mod 3.

Indeed,
27 = (wS)*t? = wiS?t? = —3t%,

so that v(z1) = 3, and we have

(1+ (wS)?(wS)™) = ¢,

_ 1
Gyt = 3

riw?r! = wSw?STlw! = (W?)3.
Hence Fy = Fy = (21) x ((3) x (w?), where
2 {—3u if w =1 mod 3,

o —1 if u =1 mod 3,
T =
13 ifu=—1modS3,

and ] =
1 if u = —1 mod 3,
for 7 the class of 21 in Go(u). Furthermore w? € NDQX (f’;) given that w?(zw™2 = (3, and

Vriw? =G - Gl = G- G) = (G+ GG - G) =
Thus F3 = (Fy,w?) and Fy = (T, (3,w?) is a maximal finite subgroup of order 24 in Go(u).

We let
Dg = {a,b|a* =b*=1,bab~! =a 1)

denote the dihedral group of order 8.
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Theorem 4.29. Letn =2, p =3 and u € Z;. The conjugacy classes of mazimal finite
subgroups F' of Go(u) are represented by

SDus o {Cg%@g if u=1mod 3,
C3x Dg ifu=—1mod 3.

Proof. We first consider the cases where Fj is such that [Q3(Fp) : Q3] = 2; by theorem
2.30 we may assume that Fy is maximal. The first class originates from the case o = 0;
its existence and uniqueness follow from example 4.4 and theorem 4.13.

Suppose then that o = 1. If v = 1 mod 3, the 2-Sylow subgroup (w? T;) of F3 is
isomorphic to Qg. As the latter does not contain a subgroup isomorphic to Cy x Cs, the
short exact sequence

1—>F2:<C3,Tl>—>F3—>02—>1

does not split. However, ((3) being normal in F3, we obtain F3 = C35 x Qs. On the other
hand if © = —1 mod 3, the group F3 contains a subgroup isomorphic to Co x Cs. In this
case we have a split extension

1 — Fy = <<3,—1,fl> —>F3 —)CQ — 1

4 2 1 2>
)

with a 2-Sylow subgroup isomorphic to Dg = (w?, 7 | (w?)* =77 = 1,707 = w™
and F3 = (3 x Dg. Uniqueness of the class of F3 in Go(u) follows from theorem 4.13.

It remains to consider the case where Fyy = {£1} = Cy, that is, Fy is maximal such
that Q3(Fp) = Q3. Then obviously Fy = Fy. Because QF /(QF)? & Z/2Z x {1} is
represented by the elements of the set {£1,+3}, we know that there are three possible
quadratic extensions of Q3 given by

Ly :=Q3/(X% —v) for v e {—1,43};

each of them is unique up to conjugation. Among these L_; = Q3((s) and L_35 = Q3((3)
have already been considered.
Hence suppose v = 3 and let z9 := Xt with ¢ € Z3 such that

2 U if v =1 mod 3,
—u if w=—1mod 3.

Then
=3 = 3u =1 mod (3u) if w =1 mod 3,
—3u = —1mod (3u) if u=—1mod 3,

and we have an extension
1 — F1 = Qu,+1) — Fy = (29,41) — Cy — 1,

where

Joe CQXCQ ifuzlmod?),
2T Cy if u = —1 mod 3.

By corollary 2.23, this group is unique up to conjugation. Because the group Aut(Fp) is
trivial, proposition 2.25 implies F3 = F5. This class however is neither new nor maximal.
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Indeed, for the group (w, &,) C Dy whose corresponding group (w, £,,) in G,,(u) represents
the class SDqg found above, one can take

(& ifw=1mod 3,
€T =
? w&, if u=—1mod 3,

in order to see that Fy C SDqs. ]

The case p =2

Let p=2. Here k =2, m =1 and « € {1,2}.
1) If a = 1, then Fy = (—w) = Cg and Fy = Fy x (2u). As shown in example 4.17

Fy=F =F,  Ff=(F,tw) withl, =+2u,
and we have
F3+:<_w7gu>gc6><]027 Fg_:<_w,g_u>203>404,

for £, the class of {4y, in Gy, (u).

2) If @« = 2, then Fy = Cy C Thy with Cy = <Z> and Toy = <Z,j> X <C3> According to
theorem 4.27 and 4.28, a finite maximal extension of Fjy in Ga(u) is an extension of Thy if
and only if v = £1 mod 8. Let

(14 i)t witht? =u  if u=1mod 8,
z1 =< (1 +i)t with ? = —u if u = —1 mod 8,
2u it v = £3 mod 8.

Then we know that Fvl = 13; = (1) X Fp. In case u = £1 mod 8, we have Fvg = 13; and we

find 22 = 2it?, x{ = —4u? and 2§ = (2u)*, so that the group Fj is cyclic of order 8; it is
unique up to conjugation by corollary 2.18.
We let

O = (a,b,c | a> = b® = ¢* = abe)
denote the binary octahedral group of order 48.

Theorem 4.30. Let n =2, p =2 and u € Z; . The conjugacy classes of mazimal finite
subgroups F' of Go(u) are represented by

Cg X Oy, Oyg if u =1 mod 8,
C3 x Cy, Toy x Cy if u=—1 mod 8,
C3x Cy, CgxCy, Dg andTby if u=3mod 8,
C3xCy, CgxCy, Qg and Ty if u=—3 mod 8.

Proof. We first consider the cases where Fp is such that [Q2(Fp) : Q2] = 2; by theorem
2.30 we may assume that Fp is maximal. The classes Cg x Co and C5 x Cy originate from
the case o = 1. They are respectively represented by

}?3+ = <_w7€u > and F?: = <_wa€7u >
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Their existence and uniqueness follow from example 4.17 and theorem 4.27. We will now
analyse the case where Fy = (i) = Cy.
Suppose that © = +1 mod 8. Then

, mod (2 if w =1 mod 8
(1422 o = (I med (2 ifu=1modS, 24 = —1 mod (2u)
—imod (2u) if u=—1mod 8,
and ,
1—1 1
xliazflzi, xljxflz(l—i—i)j( 1) = (1+1) j=1ij=k.

Therefore, we have a chain of subgroups
Fo=(i,2u) C Py = Fy = (i,21) € F3 = (i, j,z1),

Where F; is normal in Fj,, for 1 < i < 3, and where |F}/Fy| = |F3/F| = 2. Because
2? = +imod (2u) and x{ = —1 mod (2u), we know that for Z; the class of z1 in G,,(u)
we have F7 = (g and there is an extension

1—>F1:<T1> —>F3:<T17j>—>02—>17
where j71 € F3 maps non-trivially to the quotient group. As

(j21)* = jlarjay et = j(if)(2it%) = 2t

[ =1 mod ( if u =1 mod 8,
N 1 mod ( if w = —1 mod 8,
and since
(e))z1 ()~ = jo =t = —(z) eyt = 2677
_ :Efl mod (2u) if w =1 mod 8,
|~z mod (2u) if u = —1mod 8,
we find

P Q16 if w=1mod 8,
5T CgxCy=SD1g if u=—1mod 8.

Clearly, F3 is a 2-Sylow subgroup of F' := (F3,w) and Thy = (i, j,w) C F. As seen above,
x1 and jz; both belong to Npx ({4, 7)) = Npx((i, j,w)), and there is an extension

1— T = (i,j,w) — F — Cy — 1,

where 1, jx1 € F are mapped non-trivially to the quotient group.
Assume for the moment that u = 1 mod 8. We let a := 1, so that a® = i, and we
consider the element of order 6

1
b::§(1+i+j+k) €Ty CF.

Then we can take w = —b and we easily check that

1
—(1—-i—j—k), b la*b=j.

b*l:_ 2:
YTy
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In particular F' = (a,b) is generated by the elements a and b of respective order 8 and 6.
These two elements interact via ba = —a~'b~! since

1
(ba1)? = 12+ 2i)?u = (i+j)*u=—2u= -1 mod (2u).
Letting ¢ := ba, it follows that
F={(a,b| (ba)> =b*=0a*=—-1) = (a,b,c | ¢ =b* = a* = cba)

is isomorphic to the binary octahedral group O4s. Uniqueness of F' up to conjugation is
given by theorem 4.28; its class is clearly maximal. In fact since

) Lo 1. o 1.
(ja)w(jz) ™t = —§J$1(1+Z+J+k)931 it

1
= —i(l+itk—j)j "

1 . .
= —S(-i-k-j)
2

= W s
we may take £, = jz; in order to find that F' contains F; = (b, jZ;). On the other
hand, F' does not have a subgroup isomorphic to F; since its 2-Sylow subgroup F3 = Q16
has no subgroup isomorphic to Co x Cy. The class of Fgr is therefore maximal when
[Q2(Fp) : Q2] =2 and w =1 mod 8.
Now assume u = —1 mod 8. Then (jx1)? = 1 mod (2u), in which case

F = <f1,j,w> = Toy x Cy.

The above calculations show that we may take &, = jx1 in order to find that F; = (b,jT1)
is a subgroup of F'. On the other hand one easily verifies that the group (z1,1, j) does not
have an element of valuation % which has order 4 modulo (2u). This means that the class
of F' does not contain that of Fi; . The latter is therefore maximal when [Qa(Fp) : Q2] = 2
and v = —1 mod 8.

We now suppose ©v = +3 mod 8. By theorem 1.35, a maximal finite subgroup F of
Gg(u) containing Fy = <7,> = Oy satisfies Cy € F NSy C Toy. If FF C Sy, then F' = Ty
contains the subgroup F'N.S, = Qg as in lemma 2.24.b. Otherwise if F' Z So, the 2-Sylow
subgroup of F'N Se must be Cy by theorem 4.28, and we have a chain of subgroups

Fp=Fi=FRCFRB=F,

where 1?'; / 1?0 is a cyclic group of order at most 2. We are thus looking for an element
x3 € DS such that 23 € Fy = Fy x (2u). By the Skolem-Noether theorem, there is a short
exact sequence

11— C]D); (FO) - QQ(i)X — N]D); (F()) = <Q2(1)X,]> — CQ — 1,

where j is mapped non-trivially to the quotient group. Hence x3 is of the form z3 = j°2
for e € {1} and z € Q2(i)*. We have

23 = j°zj7 = —(j°2j %)z = —=N(2)
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for N : Q2(i)* — Q5 the norm of the extension Q2(i)/Q2. In the proof of corollary 4.26
we have shown that N(Q2(i)*) = (2) x Ua(Z2(i)*). Since

N(2+4i)=@2+i)(2—i)=5=-3 mod8s,

we have —6 € N(Q2(7)*). We may therefore choose z such that

9 2u if ¥ =3 mod 8,
Tao =
3 —2u  if u = —3 mod 8.

In this case E, = (i, z3), and for T3 the class of z3 in Ga(u) we get
(1,3 | i* =1, T3iT3' =i~ ", T3 =1)= Dg  if u =3 mod 8,
Fy =
(1,73 | i* =1, T3img ' =i7!, T3 = —1) 2 Qg if u=—3mod 8§,

as a maximal finite subgroup of Go(u). Since v(z3) = %, the conjugacy classes of F3
and Thy N S = Qg must be distinct (although they are isomorphic if v = —3 mod 8).
By theorem 4.27, F3 and Th4 represent the only two maximal classes containing (i) when
u = +3 mod 8. The maximality of F; and Fj5 in this case is obvious.

It remains to consider the cases where Fy = {1} = Cy, that is, Fp is maximal such
that Q2(Fy) = Q2. Then obviously Fy = F} = (2u, +1) = Z x Cy. Because Q5 /(Q))*
Z)27 x 75 |Us(Z3) is represented by the elements of the set {£1,+2,+3, 46}, we know
that there are seven possible quadratic extensions of Q2 given by

Ly :=Qy/(X? —v) for v € {—1,42,4+3, +6};

each of them is unique up to conjugation. Among these L_1 = Q2({4) and L_35 = Q2((3)
have already been considered. Furthermore if v = 3, and if a,b € Q,, the element

(a+bX)* = a® + 30 + 2abX

cannot belong to F} = (2u, +1) and the later can never be extended non-trivially to some
Fy.

Let us then consider the cases where v € {£2,46}. If u = £§ mod 8, we let 2 := Xt
with ¢ € Z such that

v

2u

2 _ 2u if u =3 mod 8,
—=¢ if u= -5 mod 8.

Then
2= u? = 2u =1 mod (2u) if u= ¢ mod 8,
—2u = —1mod (2u) if u=—F mod 8,

and for T the class of x5 in Ga(u) we have

Co x Cy if u = § mod 8,

Fy = (Ty,+1) =
2= (@2 ) {04 if u = —3 mod 8.

These classes however are not new: in the case [Q2(Fp) : Q2] = 2 and o = 1 treated above,

considering the situation where

& ifu=1or —3modS,
€Tro =
? &y ifu=-—1or3modS,
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we see that Cy x Cy C F3+ and Cy C F5 . We also know from corollary 2.23 that the
group F» is unique up to conjugation. On the other hand if u # £§ mod 8, that is if v #

+2u mod 8, there is no z € L, such that 22 € (2u) mod {£1} and we have Fy = F; = Fy.
Finally, because Aut(Fp) is trivial independently of the value of w, it follows from
proposition 2.25 that F5 = Fs. (|

Remark 4.31. For o = 2, we have shown

Q16 if u =1 mod 8,
SDig if u=—1modS8,
Dg if w =3 mod 8,
Qs if w = —3 mod 8.

When u = +3, the second conjugacy class obtained in theorem 4.27.3 is not maximal as
a finite subgroup of Ga(u). It is contained in Th4 and is represented by Thy N Sy = Qs. It
comes from the existence of an element j of valuation zero in D which induces the action

of Gal(Q2(i)/Q2) on Fy = (i) given by i — —i.
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Appendix A:
Simple algebras

We provide here the essential background and some classic results on finite dimensional
simple algebras. An overview of the subject can be found in [16].

Definition. Let A be an associative ring with unit.
e A is called simple if the only two sided ideals of A are A itself and the zero ideal.

o Ais a skew field if for every non-zero element a of A there is an element a~! € A
satisfying

Clearly, a commutative skew field is a field, and the set of non-zero elements A* of a
skew field A forms a group under multiplication. On the other hand, the center Z(A) of
a simple ring A is a field, as for any non-zero element a in Z(A) the two sided ideal a A
is A by simplicity, and its inverse a~! exists in Z(A). In particular, a simple ring A is an
algebra over any subfield K of Z(A).

Definition. A finite dimensional simple algebra A over a field K which is also a skew
field is a division algebra over K. When K = Z(A), the division algebra A is said to be
central and is also referred to as an Azumaya algebra.

Example A.1. The algebra M, (K) of all n x n matrices over a field K is a simple
algebra. To see this consider the canonical basis {e;;} of M, (K), where e;; denotes the
matrix having zero coefficients everywhere except 1 for the entry on the i-th row and j-th
column. We need to show that given a non-zero two-sided ideal I of M, (K), every e;;

belongs to I. Since
€il 1f] =k,
€; ekl — . .
Y 0 ifj#Ek,
we only have to show that I contains at least on of the e;;. Let
n
a = Z aijeij € 1
Q=1
be an element of I with a;; € K and az; # 0 for some 1 < k,I < n. Then
aglext = egkaey € 1

and ey € I as desired. It is clear however that when n > 2, M, (K) is not a division
algebra.

Example A.2. When K is an algebraically closed field, there is no K-division algebra
other than K itself, for if A is such an algebra we must have K(a) = K for every element
ain A.
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Proposition A.3. If A is a division algebra over a field K, then any K-subalgebra B of
A is itself a division algebra.

Proof. For any non-zero element x € B, we must show that 2! € A is an element of B.
Since B is of finite dimension over K, the elements of the sequence 1, z, 22, ... are linearly
dependent via a polynomial in B we can assume to be unitary and with a non-zero constant
term; in other words

l’m—i-bm_l.%'m_l—l—...-i-blx-i-bo:() with b; € B and by # 0.

Hence

2

x(xm_l +bp12" + ...+ b)) = —by,

and therefore
et = by @™ by 2™ .+ b)) €B

as desired. m

The following classic result reduces the study of finite dimensional simple algebras to
the particular case of division algebras. A proof can be found in [12] theorem 2.5 or [18]
section 7a.

Theorem A.4 (Wedderburn). A finite dimensional simple algebra A over a field K is
isomorphic as a K-algebra to M, (D) for D a K -division algebra. The integer n is unique
and D is unique up to isomorphism.

Corollary A.5. The dimension of a central simple algebra is a square.

Proof. If A is a central simple algebra of dimension [A : K] over a field K and if K denotes
the algebraic closure of the latter, we obtain a central simple algebra A ® K of the same
dimension

Aok K : K] =[A: K].

By Wedderburn’s theorem A ®x K is K-isomorphic to M, (D) for D a central division
algebra over K. Because K is algebraically closed, we have D = K by example A.2. This
implies that A @ K has dimension n? over K. O

From the Wedderburn theorem, we know that if A is a central simple algebra of
dimension n? over K, then A = M, (D) for D an Azumaya algebra over K, and there is
an integer m with

n?=[A: K] =r*D: K| =r*m’

The skewfield D is called the skewfield part of A, the integer deg(A) = n is the degree of
A and ind(A) = m is its index.

Another classic result we use in the text is the following. For an algebra A and a
subalgebra B of A, we denote by

Ca(B)={a € A | ab=ba for any b € B}

the centralizer of B in A, and we denote by B the opposite ring of B. As shown in [12]
theorem 8.4, we have:
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Theorem A.6 (Centralizer). Let A be a central simple algebra of finite dimension over
a field K, and let B be a simple subalgebra of A. Then

1) there is a K-algebra homomorphism Ca(B) @k Mp.k|(K) = A @k BP;
2) C4(B) is a central simple algebra over Z(B);
) Ca(Ca(B)) = B;
4) Ca(B) ®@zpy B = Ca(Z(B)) via the map
Ca(B) x B— Cy(Z(B)) : (x,b) — xb.
In particular if B is central over K, then
Z(B)=K, Cs(Z(B))=A and [A:K|=[B:K]|[Ca(B):K].

Corollary A.7. The degree of a commutative extension L of K contained in a finite
dimensional central simple K -algebra A divides deg(A).

Proof. Because L C C4(L), we have
(Ca(L) : K] = [Ca(L) < LIIL : K],
and therefore
[A: K] =|L:K|[Ca(L): K] =[L: K’[Ca(L) : L].
O
Thus the problem of describing subfields of finite dimensional central simple algebras
is reduced to the problem of describing their maximal subfields, that is, those subfields of

A containing K that are not properly contained in a subfield of A. Because A is assumed
to be of finite dimension, maximal subfields always exist in A.

Proposition A.8. If L is a mazimal subfield of a finite dimensional central simple K -
algebra A, then Cy(L) = M,(L). In particular, if A is an Azumaya algebra, then

Ca(L)=L and [L:K]=[A:K]? = ind(A).

Proof. According to the Wedderburn theorem, if the first assertion was not true we would
have C4(L) =2 M, (D) for a noncommutative division algebra D over L. This division
algebra would then contain a subfield properly containing L, and this would contradict
the maximality of L in A. Furthermore if A is a skew field, we must have n = 1, so that

Ca(L) = L. By the centralizer theorem,
[A: K] =[Ca(L): K|[L: K] =I[L: K)?
as desired. O

We end the section by stating one of the most useful results in the theory of simple
algebras. See [18] section 7d or [12] section 8 for proofs.

Theorem A.9 (Skolem-Noether). Let A be a finite dimensional central simple algebra
over a field K and let B be a simple K-subalgebra of A. If ¢ : B — A is a K-algebra
homomorphism, then there exists a unit a € A* satisfying

@(b) = aba™* forallb e B.

In particular, every K-isomorphism between subalgebras of A can be extended to an inner
automorphism of A.
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Appendix B:

Brauer groups of local fields

We collect here the needed results on Brauer groups, cyclic algebras and local class
field theory. More details can be found in [18] chapter 7.

B.1. Brauer groups

Let K be a field and let A, B be a central simple K-algebras. We say that A and B
are equivalent, denoted A ~ B, if their skewfield parts are K-isomorphic, in other words
if there is an isomorphism of K-algebras

A®K MT(K) =B QK MS(K)

for some integers r and s. Let [A] and [B] denote the respective equivalence classes of A
and B. Under multiplication defined by

[A]- [B] = [A®K B,

the set of classes of central simple K-algebras forms an abelian group denoted Br(K); it
is called the Brauer group of K. Clearly, its unit is [K].
For an extension L of K, there is a group homomorphism

Br(K) — Br(L) : [Al— [L®Kk 4],
whose kernel Br(L/K) = Br(L,K) is the relative Brauer group of L over K. Thus
[A] € Br(L/K) if and only if L ® x A = M, (L) for some integer r, in which case we say
that L splits A, or is a splitting field of A. As shown in [18] theorem 28.5 and remark 28.9,

we have the following:

Proposition B.1. For D a central division algebra over K, a field L splits D if and only
if it embeds as a maximal subfield of D.

For [A] € Br(K), we define the ezponent exp|A] of [A] to be the order of [A] in Br(K),
and we define the index ind[A] of [A] to be the index of the skewfield part of A, that is

ind[A] = ind(D) = [D : K]2

for D a division algebra equivalent to A in Br(K). As given in [18] theorem 29.22, we
have:

Proposition B.2. For any [A] in Br(K), ind[A] is a multiple of exp[A].
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B.2. Crossed algebras

Let L be a Galois extension of K with Galois group G = Gal(L/K). We define an

algebra
A= Z Lu,
oceG
having as L-basis a set of symbols {u, | o € G} satisfying

0'(55)“0 = UgT, UsUr = fa,'ruo'ra and p(fa,T)fp,UT = fp,afpcr,T

for v € L, p,o,7 € G and f, € L*. Amap f: G x G — L* satisfying this third
condition is a factor set from G to L*. Given such an f, the algebra A thus constructed
is a crossed(-product) algebra and is denoted (L/K, f).

According to [18] theorem 29.6, for each f, (L/K, f) is a finite dimensional central
simple algebra over K having L as maximal subfield.

Proposition B.3. If A= (L/K, f) and exp[A] = [L : K], then A is a division algebra.
Proof. Let n = [L : K], so that [A : K] = n? and let D be the skewfield part of A with

A = M, (D) and m = ind[D]. Then n = mr, and exp[A] divides m by proposition B.2.
Because exp[A] = n, we have m = n and r = 1, in which case A is a division algebra. [

We also know from [18] theorem 29.6 that the set of factor sets from G to L™ can
be partitioned under an equivalence relation to form a multiplicative group of classes [f],
isomorphic to the second cohomology group H?(G, L*), in such a way that two crossed
algebras (L/ K, e), (L/K, f) are K-isomorphic if and only if [¢] = [f]. Then by [18] theorem
29.12 we have the following:

Theorem B.4. Let L be a finite Galois extension of a field K with Galois group G. Then
H?*(G,L*) = Br(L/K)
given by mapping [f] € H*(G, L*) onto the class [(L/K, f)] € Br(L/K).

Remark B.5. As noted in remark (i) following theorem 29.13 of [18], if K C K’ C L
are finite Galois extensions with Galois groups G = Gal(K/L) and G’ = Gal(K'/L), then
there is a commutative diagram

H*(G,L*) ——= Br(L/K)
resl \L®KK/
H%(G',L*) — Br(L/K’)

where the left hand vertical map is the restriction homomorphism induced by the inclusion
GCd@.

B.3. Cyclic algebras

Let L be a finite Galois extension of a field K with cyclic Galois group G = Gal(L/K)
of order n generated by o; such an extension is called cyclic. Let a be an element of K*
and form the associative K-algebra

=(L/K,0,a) = ZLu
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for an element u satisfying ur = o(x)u and u"™ = a for all x € L, where u is identified
with the unit of A. Such a K-algebra is called cyclic.

As explained in [18] section 30, A is isomorphic to the crossed algebra (L/K, f) where
the factor set f from G to L™ is given by

fos = 1 ifi+j<n,
S P ifi+j5>mn,

for 0 <1i,j <mn—1. In particular, A is a central simple K-algebra split by L. Conversely,
[18] theorem 30.3 establishes that if L/K is a cyclic extension with Galois group G of

order n generated by o, and if f is a factor set from G to L™, then the crossed algebra
(L/K, f) is isomorphic to the cyclic algebra (L/K,0,a) for

n—1
a=1[ frio €K™
=0

According to [18] theorem 30.4, we have:

Proposition B.6. Let L/K be a cyclic extension with Galois group of order n generated
by o, and let a,b € K*. Then

1) (L/K,o0,a) = (L/K,0*,a®) for any integer s prime to n;
2) (L/K,0,1) = My (K);

8) (L/K,0,a) = (L/K,0,b) if and only if § belongs to the norm Ny, i (L*). In partic-
ular, (L/K,0,a) = K if and only if a € N/ (L);

4) (L/K,0,a) ®k (L/K,0,b) 2 (L/K,0,ab).

Corollary B.7. Let A = (L/K,o0,a) be a cyclic algebra. Then exp[A] is the smallest
positive integer s such that a® € Np i (L™).

Proof. Since [A]* = [(L/K, o,a®)], we have [A]* = 1 if and only if a® € N (LX). O
We know from class field theory and theorem B.4 that the map
K* — Br(L/K) : a—[(L/K,0,a))
is an epimorphism of group which induces an isomorphism:

Theorem B.8. If L/K is a cyclic extension with Galois group G, then

H*(G,L*) = Br(L/K) = K* /Ny x(L*).
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B.4. The local case

Suppose that K is a local field with residue field of cardinality ¢ and a uniformizing
element 7y . Let n be a positive integer, K, an unramified extension of degree n over K,
and let 0 € Gal(K,,/K) = Z/n be the Frobenius of this extension. For a positive integer

r, we consider the cyclic algebra A = (K,,/K, 0, 7)) and we define the Hasse invariant of
A to be

invg (Kn/K,o,my) = .
n

By [18] theorem 31.1 and 31.5, we know that the isomorphism class of A only depends on
r modulo n, and that the skewfield part of A has the same invariant as A. Consequently,
the invariant of A only depends on the class [A] in Br(K) and there is a well defined map

invg : Br(K) — Q/Z;
it is in fact an isomorphism by [18] theorem 31.8:

Theorem B.9. If K is a local field, then Br(K) = Q/7Z via invg.

By [18] theorem 31.9, we have:

Theorem B.10. Let L be a finite extension of degree m over a local field K. There is a
commutative diagram

INUK

Br(K) —=Q/Z

L®K_ -“m

mnur,

Br(L) —= Q/Z
where the right hand vertical map is multiplication by m.

Corollary B.11. Let L be a finite Galois extension of degree m over a local field K with
Galois group G. Then
H*(G,L*) = Br(L/K) = Z/m.

Proof. By theorem B.10 and the definition of Br(L/K), there is a commutative diagram

1— Br(L/K) —— Br(K) — Br(L)

ig lg

Q/Z——Q/Z

where the top row is exact, the bottom map is multiplication by m, and the vertical maps
are isomorphisms. Hence Br(L/K) is isomorphic to the kernel of the bottom map. O

Corollary B.12. If K C K' C L are finite Galois extensions of local fields with Galois
groups G = Gal(L/K) and G' = Gal(L/K'), then the restriction map

H*(G,L*) — H*(G', L)

induced by the inclusion G' C G is surjective.
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Proof. The diagram

HY(G,L*) —— Br(L/K) ™~ Br(K) =" Br(L) > Q/Z

~ ®’

H(G',L*) —= Br(L/K') 2~ Br(K/) —> Br(l) — Q/Z

given by theorem B.4 and B.10 is commutative by remark B.5. By corollary B.11, the
relative Brauer groups Br(L/K) and Br(L/K') are cyclic of order |G| and |G’| respectively,
and the second square in the above diagram may be identified with the commutative square

Z/|G] =~ Q/Z

L e

Z/|¢'| =~ Q/z,

|G|

where the right hand vertical map is multiplication by Ted according to theorem B.10. In

particular this latter map is surjective and sends ﬁ to ﬁ Hence the generator of Z/|G|

associated to ﬁ must be sent to a generator of Z/|G’|. The second vertical map in the
first diagram given above is therefore surjective and the result follows. O

Proposition B.13. Let L/K be a finite Galois extension of local fields of characteristic
zero with cyclic Galois group G.

1) If L/K is unramified, the valuation map induces an isomorphism

(G, 1) = H*(G, e(lL)Z> = () /(rl),

for e(L) the ramification index of L/Q, and mx a uniformizing element of K.
2) If L/K is totally ramified, the valuation map induces an isomorphism
H?*(G,L*) = H*(G,0}),
for O, the ring of integers of L.

Proof. The valuation map v = vg, : L™ — e(lL) a short exact

sequence

1
1 — 0 —- L — —7Z—1,

e(L)

which in turns induces a long exact sequence

1 1
——7) — H* ) — H*(G,L*) » H*(G, ——~7Z) — H* 5).
G(L) ) - (G7OL) - (G7 )_> (G7 G(L) )_> (G7OL)
If L/K is unramified, [20] proposition 1 says that H'(G, 0;}) is trivial for all i € Z and
hence yields the result.

If L/K is totally ramified, there are unifomizing elements 7x of K and m, of L such
that

H'(G,

mx = (w16,
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Therefore 1

v(rk) = |Glo(rr) = |G| - @Z’
and consequently the map H?(G,L*) — H?*(G, ﬁZ) is trivial. Moreover, since G is
finite and e(lL)Z is infinite, we have H!(G, ﬁZ) = 0 and the result follows. O

Example B.14. For any prime p and o > 1, we have
P € Ng, (¢,a)/0, (Qp(p2) ™)
Indeed, for 1 <7 < a —1let o be a generator of Gal(Q,(¢yr+1)/Qp((pr)) satisfying

O-(Cp"”rl ) = <p7"+1 Cpa

and define
(X, ..., Xp)
to be the homogeneous symmetric polynomial of degree ¢ in p variables Xi,...,X,, so
that
p P A A
[[X =X) = D> (—1)'Si(Xi,. ., X)X
i=1 i=1
Then for 1 < k <p— 1 we have
p—1
k ik
NQ, (i) Qo) (1 = Gren) = [ (1 =07 (Gr))
j=0
¢ i k k 1/ -k
— Z(*l)l Ei(CpTJrla O-(CpT+1)a ey Up_ ( pTJrl))
i=0
¢ ; k k k
= > (1) i, 0(GrnGp)*, -y (Gt
i=0
S i ik k 1k
= > (=1 ¢ Bi(1, o(Eh), -, o(¢PTIR)
i=0
= 1- Cgﬁ

where the last equality is a consequence of the fact that
1 ifi=0,p
(1, o(Ch), ..., o(¢PDR)) = o
L o), o ol = (o
As shown in corollary 3.2

p—1
p= 11 =1 =No,)@, (G =1
k=1
Consequently
P € Ng,(¢,a)/0,(Qp(Ge))  and  p € No,(¢,a)/0,(¢) (Qp(Gpe)™)-

Moreover if p = 2, we have

2, (1£C4) € Noy(ea0)/02(c) (Q2(G2e) ™) for a >2.
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For a local field K of characteristic zero with uniformizing element 7x and ring of
integers Ok, we let

UAO5) = (e € 0 | vie(w — 1) > i}
={r €O | r=1mod 7%}, >0,
be the i-th group in the filtration
O = Us(05) 2 U1(0F) 2 Th(0F) 2 ...

Proposition B.15. Let L/K be a finite Galois extension of local fields of characteristic
zero with Galois group G. If L/K is unramified, then the trace

Trg=Trpx:l—k
1s surjective on the residue fields, and the norm
Ng = Nk : Of — O
1s surjective on the groups of units of the rings of integers.

Proof. Since G' = Gal(l/k) is cyclic, Hilbert’s theorem 90 yields H'(G,1) = 0. Let ¢ denote
a generator of G, and let Tr := T'rg. In the periodic complex

l 1—t l Tr l 1—t l Tr

we have Ker(Tr) = Im(1 —t). Hence

__
C[Im(1—t)|  |Ker(Tr)|
and H?(G,1) = 0. Because Ker(1 —t) = k, it follows that Im(Trg) = k.

In order to show the second assertion, we first note that for any ¢ > 1 the norm Ng
becomes the trace

|Ker(1—t)| = [Im(Tr)|,

Tr:Ui(0F)/Uit1(0F) — Ui(0Of) /Ui+1(0OF)

on the successive quotients of the filtration of the units of the rings of integers; these maps
are surjective by the first assertion. For each ¢ > 1, consider the commutative diagram

1 —=Ui(0F)/Ui1(Of) — U1(OF) /Ui1(Of) — U1(OF) /Ui(Of ) — 1

" | |

1 —=Ui(Ok)/Uit1(Ok) —= U1(Ok) /Ui1 (O ) — U1(Ok) /Ui(O ) — 1,

where the horizontal lines are exact and the vertical maps are induced by the norm. If
1 = 1 the vertical maps are obviously surjective. Moreover if ¢ > 2 and if the vertical
map on the right hand side is surjective, then the middle one is also surjective by the five
lemma. We conclude by induction on ¢ that N¢ is surjective on Uy (O} ), and consequently
on O. O

Remark B.16. According to classical Galois theory (see for example [14] chapter VI
theorem 1.12), if K and K are extensions of Q, such that K1 Ky = L, K1 N Ky = K
and L/K is Galois with abelian Galois group, then any x € K such that 2 € Ny, /i (K{°)
satisfies © € N, /g, (K*).
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Appendix C:

Division algebras over local fields

We provide here a short account on division algebras over local fields. The reader may
refer to [18] chapter 3 for more details.

Let K be a local field with residue field of cardinality ¢, let mx be a uniformizing
element of K, and let D be a central division algebra of dimension n? over K. As shown
in [18] theorem 12.10, the normalized valuation vg : g + 1 on K extends in a unique
way to a valuation v = vp on D. By [18] section 13, we know that the skew field D is
complete with respect to v and that the maximal order Op of D is of degree n? over the
ring of integers Ok of K. Let d and k denote the residue fields of D and K respectively.
By [18] theorem 13.3 we have

where
e e=¢(D/K) = |v(D*)/v(K*)| denotes the ramification index of D over K;

e f=f(D/K)=[d: k] denotes the inertial degree of D over K.

Proposition C.1. If D is a central division algebra of dimension n? over a local field K,
then
e(D/K) = f(D/K) = n.

Proof. Because there exists an element x € D such that v(z) = ¢(D/K)~! and as = belongs
to a commutative subfield of degree at most n over K, it follows that e(D/K) < n. On
the other hand k is a finite field and d = k(7) is a commutative field, for 7 the image in d
of some suitable y € D. Hence f(D/K) < n and the result follows. O

Since [d : k] = n, we can find an 2 € Op such that k(Z) = d. Let K,, = K(z). Because
K, is commutative, [K, : K] < n. On the other hand, 7 is an element of the residue field
k, of K, while k, = d, so that [k, : k| = n. It follows that K, is a maximal unramified
extension of degree n over K in D. Such a K, is referred to as an inertia field of D.
Of course the above construction of K,, is not unique, but the Skolem-Noether theorem
implies that all inertia fields are conjugate.

Let w € D* be a root of unity satisfying

K(w) = Kp;

in particular w is of order ¢" —1. According to [18] theorem 14.5, there exists a uniformizing
element 7 of D satisfying

™ =Tk and rwr T =w?,

where s < n is a positive integer prime to n, uniquely determined by D, which does not
depend upon the choice of w or m. Let r € Z be such that rs = 1 mod n; in particular r is

115
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prime to n. Using [18] theorem 31.1 and proposition B.6, we know that D is isomorphic
to the cyclic algebra
D= (K,/K, o k)= (K,/K,o,7}),

and is classified up to isomorphism by its invariant

. r

invg (D) = - € Q/Z.
In other words we have:

Theorem C.2. All Azumaya algebras over a local field K are classified up to isomor-
phism, via invg, by the elements of the additive group Q/Z.

Notation C.3. For a class in Q/Z represented by an element r/n € Q with (r;n) =1
and 1 <r < n, the corresponding Azumaya algebra is denoted D(K,r/n). When K = Q,,
r =1 and p is understood, we write D,, = D(Q,,1/n).

Corollary C.4. If D is a central division algebra over a local field, then exp[D] = ind[D].

Proof. Suppose invg(D) = L, where K denotes the center of D and [D : K] = n?. By
definition ind[D] = n. We know from proposition B.2 that exp[A] must divide n. Because
r is prime to n, it follows that exp[A] = n. O

T

Remark C.5. Suppose invg (D) = . By the Skolem-Noether theorem, the Frobenius
automorphism o of K(w) = K, is given by

o(x) = Exg™!

for a suitable element £ € D* determined up to multiplication by an element of K (w)*.
Then clearly the image of v(§) in

1
—Z]7 C Q/Z
n
is none other than the invariant of D. Furthermore, as ¢” is the identity on the inertia

field K(w), we know that " commutes with all elements of K(w) and hence belongs to
K (w). Because

o(E) = Tole™)

we have v(§) = r/n. Hence {" = mju for a unit v € K(w)*. In this case,

D= D(K,r/n) = K(w)(§)/(§" = 7k, §x = 27¢)
as mentioned in the paragraph following the proof of [18] theorem 14.5.

So far, we have dealt with unramified extensions of the base field K, but there are in
D many more commutative subfields. It can in fact be shown that all extensions of K of
degree dividing n exist; see [18] theorem 31.11, [7] 23.1.4 and 23.1.7, or [20] section 1 for
proofs.

Theorem C.6 (Embedding). If D is a central division algebra of dimension n? over a

local field K, then the degree of a commutative extension L of K in D divides n, and any
extension L of K whose degree divides n embeds as a commutative subfield of D.
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In particular, a local field L of characteristic zero embeds in some D, in which case
its group of units L* is a subgroup of D). The structure of L*, both algebraically
and topologically, is well known and is recorded below; see for example [15] chapter II
proposition 5.3 and 5.7.

Proposition C.7. Let L be a local field of characteristic zero with residue field | = F,
roots of unity (L) and uniformizing element 7r,. Then

L* = <7TL> X O;
= (mp) x I* x U1(OF)
~ 7 x p(L) x ZF®],

The most frequently encountered fields are the cyclotomic extensions of Q@,. Recall the
following result from [15] chapter II proposition 7.12 and 7.13.

Proposition C.8. Let ¢ be a primitive k-th root of unity for k = Bp® > 1 with (B;p) = 1,
and let f be the smallest positive integer such that p/ = 1 mod B. Then Q,(€)/Qp is a
Galois extension with ramification index @(p®) and residue degree f, where

Z/p*(pf —1) ifp>2ora>1,

1(Qp(C)) = {2/2(2]6_1) ifp=2and a =0,

(Z/p*)* X Z]f ifa=>1,

Gal(Qp(¢)/Qp) = {Z/f if a = 0.

Corollary C.9. We have

Z x Z/Pa(pf—l) X Zf(pa)f ifp>2ora>1,

Qp(¢)* = Z x Zy[(] 2{ZXZ/Q(Qf_l)XZg ifp=2and a =0.

Proof. This follows from proposition C.7 and C.8. O

We end the section by analysing the invariant of some embeddings that are useful in
the text.

Proposition C.10. Let D be a central division algebra of invariant - over a local field
K for r prime ton, let L C D be a commutative extension of K, and let m be such that
n =m|L : K]. Then Cp(L) is a central division algebra of invariant ;- over L.

Proof. Using the centraliser theorem A.6, we know that Cp(L) is a central division algebra
of dimension m? over L, and we have

Dok L = Cp(L) @k Mym(K)
= Cp(L) ®L My (L).
Hence the invariant of Cp(L) is that of D ®x L, which is = [L : K| by theorem B.10. [

Proposition C.11. For any prime p, D, embeds as a Qp-subalgebra of Iy, if and only if
n = km with k = 1 mod m.
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Proof. If D(Qp,1/m) embeds as a Qp-subalgebra of D(Q,,1/n), then the centralizer the-
orem provides an isomorphism

D(Qp,1/n) = D(Qp, 1/m) @q, Cp, (D(Qp, 1/m)),

so that there is an integer k satisfying n = km. Because Cp,(D(Qyp,1/m)) is a central
division algebra over @, we also know the existence of an integer I such that

Cp, (D(Qp, 1/m)) = D(Qp, l/k).

The law on the Brauer group Q/Z being defined as such a tensor product over the Q-
Azumaya algebra classes (see appendix B), it follows that
l

1

S

Consequently 1 =k + Im mod n, and £ = 1 mod m.

Conversely, if n = km with £ = 1 mod m, there is an integer [ prime to k such that
1 = k+Im mod n. It follows that (x) is verified and D(Q,, 1/m) embeds as a Q,-subalgebra
of D(Q,1/n). O

Corollary C.12. When p = 2, Dy embeds in Dy, if and only if n = 2 mod 4. U
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Endomorphisms of formal group laws

We give here a short account on endomorphisms of formal group laws of finite height
n defined over a field of characteristic p > 0. We summarize how these occurs as elements
of the central division algebra D, = D(Q,,1/n) of invariant 2 over Q,. The reader may
refer to [7] or [5] for more details.

Definition. Let R be a commutative ring with unit. A formal group law over R is a
power series F' = F(X,Y) = X +r Y € R[[X,Y]] satisfying

e F(X,0)=F(0,X) =X,
e F(X,Y)=F(Y,X), and
o F(X,F(Y,Z)) = F(F(X,Y),Z) in R[[X,Y, Z]].

We denote by FGL(R) the set of formal group laws defined over R. For F,G € FGL(R),
a homomorphism from F to G is a power series f = f(X) € R[[X]] without constant term
such that f(F(X,Y)) = G(f(X), f(Y)). It is an isomorphism if it is invertible, that is, if
the coefficient of X is a unit in R.

The set Homp(F,G) of homomorphisms from F' to G forms an abelian group under
formal addition
G(f(X),9(X)) = f(X) +¢ g(X).
When F' = G, the group Endgr(F) = Hompg(F, F) becomes a ring via the composition of
series. Its group of units is written Endgr(F)* = Autg(F'). For an integer n € Z, we define
the n-series [n]p to be the image of n in Endg(F) via the canonical ring homomorphism
Z — Endg(F), in other words

| —
n times

As shown in [5] chapter I §3, when R = k is a field of characteristic p > 0, any homomor-
phism f € Homy(F,G) can be written as a series
fX) = a; X"
i>1

for some integer n = ht(f) € N* U {oo} defined as the height of f, where by convention
ht(f) = oo if f = 0. For F' € FGL(k) we then define ht(F') to be the height of [p|r. As
shown in [5] chapter III §2, this induces a valuation ht on Endy(F') which turns Endy(F')
into a complete local ring. In particular, the definition of [n]p extends to the p-adic
integers Zp, and ht(f) = 0 if and only if f is invertible.

Let us fix a separably closed field K of characteristic p > 0. As shown in [5] chapter
IIT §2, we have the following three results: the first two provide a classification of the K-
isomorphism classes of formal group laws defined over K and the third one describes the
endomorphism ring as a subring of the central division algebra of Hasse invariant 1/ht(F')
over Q.

119
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Theorem D.1 (existence). For a positive integer n, there exists a formal group law
F, € FGL(F,) such that [p|g, (X) = XP"; it is the Honda formal group law of height n.

Theorem D.2 (Lazard). Two formal group laws F,G € FGL(K) are K-isomorphic if
and only if ht(F) = ht(G).

Theorem D.3 (Dieudonné - Lubin). For a formal group law F € FGL(K) of finite
height n, the ring Endy (F) is isomorphic to the maximal order O,, of the central division
algebra D, = D(Qy,1/n) of invariant + over Q.

We now describe the image in D, of the ring of endomorphisms defined over a finite
subfield of K. For this we identify O,, with Endg(F,) and fix two integers n,r > 1. Let
v denote the unique extension to D} of the p-adic valuation p — 1 on Q. Let C, be the
set of conjugacy classes of elements of valuation T in O, and let Z(F,r,n) denote the set
of Fpr-isomorphism classes of formal group laws of height n. Define the map

(b N I(Fpr,n) — CT’

by assigning to a formal group law F' € FGL(F,-) of height n and a K-isomorphism
f: F, — F, the conjugacy class of £, € O)¢ the element associated to the endomorphism
f~IXP"f. Then ® is a bijection (see [7] 24.4.2, or [5] chapter IIT §3 theorem 2).

Theorem D.4. The map
Endg,,. (F) — Co, () + v+ flaf

is a ring isomorphism from Endg,, (F) to the subring of all elements of O, commuting
with .

Proof. In Endg (F) = Oy, the ring Endg,, (F') is characterized by {pz = x&f, as a series
g(X) € K[[X]] satisfies g(X)P" = g(XP") if and only if its coefficients are in Fr. O

In other words if m = [Q,(&) : @], then m divides n and Endy,, (F) is isomorphic
to the maximal order of the division algebra

D(Qy(&F), m/n) = Cp, (€x) € Dh.
In particular Endg,, (F') is the ring of integers of the Q,-algebra Endg,, (F) ®@z, Qp.

Corollary D.5. There exists a formal group law F' defined over IF,r and of height n such
that

Endy,, (F) = Endg(F) = O,

if and only if v is a multiple of n.

Proof. This follows from the fact that the valuation group of the center Q, of D, is Z,
and hence that End, (F) = O, if and only if Endp,, (F) C Zy. O

Corollary D.6. If r = 1, then Endyp,(F) is commutative and its field of fractions is
totally ramified of degree n over Q.
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Proof. In this case, the element {r € D, has valuation % Hence Q,({r) has ramification
index at least n over Q. Since Q,({F) is a commutative subfield of D,,, we have [Q,({F) :
Qp] < n and Q,(£r)/Qy is totally ramified of degree n. The commutativity of Endg, (F)
follows from the fact that the centralizer of Q,({r) in Dy, is Q, (&) itself. O

Generally Endy (F) =2 O, for F a formal group law of height n. If F' is already defined
over ), the element {r € O,, corresponds to the Frobenius endomorphism X? € Endg (F').

Proposition D.7. If I is defined over F),, then Endy(F) = Endg,, (F) if and only if
the minimal polynomial of {r € Oy, over Zy is £ — up with u € Z,; .

Proof. One has Endy ,, (F) = Cgna, (r)(§F), and therefore Endg (F) = Endy,, (F) if and
only if £} is central. The result then follows form the fact that the center of Endg (F) is
Zy, and the valuation of £} is equal to the valuation of p. O

From appendix C, we know that

On & Zp(w)(Ep)/(Ep = pu, Epapt = 0(2)), € Zy(w),

for a primitive (p" —1)-th root of unity w and ¢ € Gal(Zy(w)/Z,) = Gal(Fyn /F)) the
Frobenius automorphism. Here o lifts to an action on O,, given by

i>0 i>0

d (Z fﬁiﬁ%) =Y 0@, mi € Lp(w).

Since {} = pu, we know that v({p) = % Thus the valuation map and the canonical
projection 7 : DX — D /(pu) induce the exact commutative diagram

1 1

in which the bottom horizontal sequence splits and the group (£7)/(pu) = Gal(Fyn /F))
acts on O = §,, by the above given action. It follows that

Dy /{pu) = Sy, xp Gal(Fpn [Fy) = Gy (u).
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Notations

Integers

a positive integer
a prime

n
p
k  the maximal integer such that pk divides n
m

the positive integer

ne the positive integer

so(g’“)

w(p™)

when p — 1 divides n
for0<a<k

;b) the greatest common divisor of a and b

;  the positive integer |F;/F;_;| for 1 <i <3

an element of D generating the Frobenius such that S™ = p

an element of D¢ such that v(z;) = ([[h_; 7))~ and = € Fi

,
: K] the dimension of A over K

the ramification index of D over K
the inertial degree of D over K

an element satisfying (Cpo — 1)?P") = peja

[A
deg(A) the degree of A
ind(A) the index of A
erp(A) the exponent of A
e(D/K)
f(D/K)
Elements
u aunit in Z;
S
¢ ai-th root of unity
T
Ep
To  the element (po —1
7w  a uniformizing element of K
Sets

Fu(Ch

Fu(Cpx (Fo), F1, L

" ﬁu(@p(FO)a FVO
Fu(Qp(Fo), Fo,m1
]:u(CD;(

 FulNpy (Fo), Fy
FulNp,

the centralizer of H in G
the normalizer of H in G
S/ ~q the set of orbits with respect to the G-action on S

F(G) the set of all finite subgroups of G

the set of all subgroups of G' containing (pu)

as a subgroup of finite index

X
n

)
)
)
(FO)v Fjlv’ TQ)
)
)
)

(F0)7 Féa w

X
n

as defined in
as defined in
as defined in
as defined in
as defined in
as defined in
as defined in

123

i

o

o

TOT T

T T T YT Y T

13
13

13

104
104
107
115
115

11

34, 37
48
50

27

27
33
34
35
35
36
38
39



124 Notations
Groups
S, the n-th (classical) Morava stabilizer group p. 5
S, the p-Sylow subgroup of S, p. 12
Gp(u) the n-th extended Morava stabilizer group associated to u p- 5
w(R)  the roots of unity in R
wi(R)  the i-th roots of unity in R
F; the i-th subgroup of G, (u) associated to a finite F' C G,,(u) p. 28
F; the i-th subgroup of DX, associated to a finite F C G, (u) p. 29
Z(G) the center of G
Z{zx) the infinite cyclic group generated by z
C, the cyclic group of order n
C, x Cp, the kernel of the m-th power map on C,
Q2 the (generalized) quaternionic group order 2" p. 13
T54 the binary tetrahedral group of order 24 p- 18
Dg  the dihedral group of order 8 p- 95
SDig the semidihedral group of order 16 p- 95
O48 the binary octahedral group of order 48 p. 97
Br(K) the Brauer group of K p. 107
Br(L/K) the relative Brauer group of L over K p. 107
Rings, fields
F,» the finite field with p" elements
Qp the field of p-adic numbers
Zy,  the ring of p-adic integers
W(R) the ring of Witt vectors over R
D(K,r/n) the K-central division algebra of invariant p. 116
D, the Q,-central division algebra of invariant % p- 116
O,, the maximal order of D,
Ok the ring of integers of the field K
U;(Of) the i-th filtration group {z € O | vk (z — 1) > i} p. 118
R(G) the R-algebra generated by G p. 14
R[G] the group ring generated by G
R, the ring Z,[(pe] p. 50
Maps
v the valuation p — 1 relative to Q,
vr  the valuation mx — 1 relative to the field K
vp the valuation 7z py — 1 relative to the division algebra D p- 115
¢ Euler’s totient function p- 12

N/ the norm of the extension L /K

Trr k.  the trace of the extension L/K
N¢g  the norm relative to the Galois group G
Trg  the trace relative to the Galois group G
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Finite subgroups of extended
Morava stabilizer groups

Résumé

L'objet de la theése est la classification a conjugaison prés des sous-groupes finis du groupe de
stabilisateur (classique) de Morava S_n et du groupe de stabilisateur étendu G_n(u) associé a une
loi de groupe formel F de hauteur n définie sur le corps F_p a p éléments. Une classification
compléte dans S_n est établie pour tout entier positif n et premier p. De plus, on montre que la
classification dans le groupe étendu dépend aussi de F et son unité associée u dans 'anneau des
entiers p-adiques. On établit un cadre théorique pour la classification dans G_n(u), on donne des
conditions nécessaires et suffisantes sur n, p et u pour I'existence dans G_n(u) d'extensions de
sous-groupes finis maximaux de S_n par le groupe de Galois de F_{p”n} sur F_p, et lorsque de
telles extensions existent on dénombre leurs classes de conjugaisons. On illustre nos méthodes en
fournissant une classification compléte et explicite dans le cas n=2.

Mots-clés : lois de groupe formel de hauteur finie, groupes de stabilisateur de Morava, cohomologie
des groupes, extensions de groupes, algebres a division, groupes de Brauer, corps locaux, théorie
du corps de classes.

Résumé en anglais

The problem addressed is the classification up to conjugation of the finite subgroups of the
(classical) Morava stabilizer group S_n and the extended Morava stabilizer group G_n(u) associated
to a formal group law F of height n over the field F_p of p elements. A complete classification in S_n
is provided for any positive integer n and prime p. Furthermore, we show that the classification in the
extended group also depends on F and its associated unit u in the ring of p-adic integers. We
provide a theoretical framework for the classification in G_n(u), we give necessary and sufficient
conditions on n, p and u for the existence in G_n(u) of extensions of maximal finite subgroups of S_n
by the Galois group of F_{p"n} over F_p, and whenever such extension exist we enumerate their
conjugacy classes. We illustrate our methods by providing a complete and explicit classification in
the case n=2.

Key words : Formal group laws of finite height, Morava stabilizer groups, cohomology of groups,
group extensions, division algebras, Brauer groups, local fields, local class field theory.




