. D. Bibliographie-[-1-]-j and . Watson, Lettre à Francis Crick, 1955.

G. Nils, S. A. Walter-bateley, and R. T. Woodson, Non-Protein Coding RNAs, 2008.

M. Guttman, I. Amit, M. Garber, C. French, M. F. Lin et al., Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals, Nature, vol.322, issue.7235, pp.458223-227, 2009.
DOI : 10.1038/nature07672

Z. Weinberg, J. Perreault, M. M. Meyer, and R. R. Breaker, Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis, Nature, vol.17, issue.7273, pp.656-659, 2009.
DOI : 10.1038/nature08586

N. B. Leontis and E. Westhof, Geometric nomenclature and classification of RNA base pairs, RNA, vol.7, issue.4, pp.499-512, 2001.
DOI : 10.1017/S1355838201002515

R. I. Dima, C. Hyeon, and D. Thirumalai, Extracting Stacking Interaction Parameters for RNA from the Data Set of Native Structures, Journal of Molecular Biology, vol.347, issue.1, pp.53-69, 2005.
DOI : 10.1016/j.jmb.2004.12.012

L. Nasalean, J. Stombaugh, C. L. Zirbel, and N. B. Leontis, RNA 3D Strutural Motifs : Definition, Identification, Annotation, and Database Searching, Non-Protein Coding RNAs, chapter, pp.8-9, 2009.

I. , T. Jr, and C. Bustamante, How RNA Folds, J. Mol. Biol, vol.293, pp.271-281, 1999.

N. B. Leontis, A. Lescoute, and E. Westhof, The building blocks and motifs of RNA architecture, Current Opinion in Structural Biology, vol.16, issue.3, pp.279-287, 2006.
DOI : 10.1016/j.sbi.2006.05.009

URL : https://hal.archives-ouvertes.fr/hal-00094324

M. Djelloul and A. Denise, Automated motif extraction and classification in RNA tertiary structures, RNA, vol.14, issue.12, pp.1-9, 2008.
DOI : 10.1261/rna.1061108

URL : https://hal.archives-ouvertes.fr/hal-00353402

A. Lescoute, N. B. Leontis, C. Massire, and E. Westhof, Recurrent structural RNA motifs, Isostericity Matrices and sequence alignments, Nucleic Acids Research, vol.33, issue.8, pp.2396-2409, 2005.
DOI : 10.1093/nar/gki535

URL : http://doi.org/10.1093/nar/gki535

A. Lescoute and E. Westhof, Topology of three-way junctions in folded RNAs, RNA, vol.12, issue.1, pp.83-93, 2006.
DOI : 10.1261/rna.2208106

URL : https://hal.archives-ouvertes.fr/hal-00094313

C. Laing, S. Jung, A. Iqbal, and T. Schlick, Tertiary Motifs Revealed in Analyses of Higher-Order RNA Junctions, Journal of Molecular Biology, vol.393, issue.1, pp.67-82, 2009.
DOI : 10.1016/j.jmb.2009.07.089

C. Schudoma, A. Larhlimi, and D. Walther, The influence of the local sequence environment on RNA loop structures, RNA, vol.17, issue.7, pp.1247-1257, 2011.
DOI : 10.1261/rna.2550211

M. D. , L. Pena, D. Dufour, and J. Gallego, Three-Way RNA Junctions with Remote Tertiary Contacts : A Recurrent and Highly Versatile Fold, RNA, vol.15, pp.1949-1964, 2009.

R. Tyagi and D. H. Mathews, Predicting helical coaxial stacking in RNA multibranch loops, RNA, vol.13, issue.7, pp.939-951, 2007.
DOI : 10.1261/rna.305307

M. Sarver, C. L. Zirbel, J. Stombaugh, A. Mokdad, and N. B. Leontis, FR3D: finding local and composite recurrent structural motifs in RNA 3D structures, Journal of Mathematical Biology, vol.31, issue.13, pp.215-252, 2008.
DOI : 10.1007/s00285-007-0110-x

E. Bindewald, R. Hayes, Y. Yingling, W. Kasprzak, and B. A. Shapiro, RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign, Nucleic Acids Research, vol.36, issue.Database, pp.392-397, 2008.
DOI : 10.1093/nar/gkm842

J. L. Chen and C. W. Greider, Functional analysis of the pseudoknot structure in human telomerase RNA, Proceedings of the National Academy of Sciences, vol.102, issue.23, pp.8080-8085, 2005.
DOI : 10.1073/pnas.0502259102

D. Thirumalai and C. Hyeon, Theory of RNA Folding: From Hairpins to Ribozymes, Non-Protein Coding RNAs, chapter, 2009.
DOI : 10.1007/978-3-540-70840-7_2

M. Mandal and R. R. Breaker, Gene regulation by riboswitches, Nature Reviews Molecular Cell Biology, vol.13, issue.6, pp.451-463, 2004.
DOI : 10.1002/anie.199410841

C. Laing and T. Schlick, Computational approaches to 3D modeling of RNA, Journal of Physics: Condensed Matter, vol.22, issue.28, pp.17-24
DOI : 10.1088/0953-8984/22/28/283101

R. Nussinov, G. Piecznik, J. R. Griggs, and D. J. Kleitman, Algorithms for Loop Matchings, SIAM Journal on Applied Mathematics, vol.35, issue.1, pp.68-82, 1978.
DOI : 10.1137/0135006

M. Zuker and P. Stiegler, Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Research, vol.9, issue.1, pp.133-14848, 1981.
DOI : 10.1093/nar/9.1.133

I. L. Hofacker, W. Fontana, S. Bonhoeffer, and P. F. Stadler, Schnelle Faltung und Vergleich von Sekund???rstrukturen von RNA, Monatshefte f???r Chemie Chemical Monthly, vol.157, issue.2, pp.167-188, 1994.
DOI : 10.1007/BF00818163

Y. Ding and C. E. Lawrence, A statistical sampling algorithm for RNA secondary structure prediction, Nucleic Acids Research, vol.31, issue.24, pp.7280-7301, 2003.
DOI : 10.1093/nar/gkg938

R. Giegerich, B. Voß, and M. Rehmsmeier, Abstract shapes of RNA, Nucleic Acids Research, vol.32, issue.16, pp.4843-4851, 2004.
DOI : 10.1093/nar/gkh779

C. B. Do, D. A. Woods, and S. Batzoglou, CONTRAfold: RNA secondary structure prediction without physics-based models, Bioinformatics, vol.22, issue.14, pp.90-98, 2006.
DOI : 10.1093/bioinformatics/btl246

R. B. Lyngsø and C. N. Pedersen, RNA Pseudoknot Prediction in Energy-Based Models, Journal of Computational Biology, vol.7, issue.3-4, pp.409-436, 2007.
DOI : 10.1089/106652700750050862

E. Rivas and S. R. Eddy, A dynamic programming algorithm for RNA structure prediction including pseudoknots11Edited by I. Tinoco, Journal of Molecular Biology, vol.285, issue.5, pp.2053-68, 1999.
DOI : 10.1006/jmbi.1998.2436

E. Bindewald, T. Kluth, and B. A. Shapiro, CyloFold: secondary structure prediction including pseudoknots, Nucleic Acids Research, vol.38, issue.Web Server, pp.368-372, 2010.
DOI : 10.1093/nar/gkq432

URL : http://doi.org/10.1093/nar/gkq432

Y. Ponty and C. Sault, A Combinatorial Framework for the Design of (pseudoknotted ) RNA Algorithms, 2011.

M. Geis, C. Flamm, M. T. Wolfinger, I. L. Hofacker, M. Middendorf et al., Folding Kinetics of Large RNAs, Journal of Molecular Biology, vol.379, issue.1, pp.160-173, 2008.
DOI : 10.1016/j.jmb.2008.02.064

A. Xayaphoummine, T. Bucher, and H. Isambert, Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots, Nucleic Acids Research, vol.33, issue.Web Server, pp.605-615, 2005.
DOI : 10.1093/nar/gki447

P. P. Gardner and R. Giegerich, A Comprehensive Comparison of Comparative RNA Structure Prediction Approaches, BMC Bioinformatics, vol.5, issue.21, pp.20-22, 2004.

J. Thompson, D. Higgins, and T. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

I. L. Hofacker, M. Fekete, and P. F. Stadler, Secondary Structure Prediction for Aligned RNA Sequences, Journal of Molecular Biology, vol.319, issue.5, pp.1059-1066, 2002.
DOI : 10.1016/S0022-2836(02)00308-X

B. Knudsen and J. Hein, Pfold: RNA secondary structure prediction using stochastic context-free grammars, Nucleic Acids Research, vol.31, issue.13, pp.3423-3428, 2003.
DOI : 10.1093/nar/gkg614

D. Sankoff, Simultaneous Solution of the RNA Folding, Alignment and Protosequence Problems, SIAM Journal on Applied Mathematics, vol.45, issue.5, pp.810-825, 1985.
DOI : 10.1137/0145048

J. Hull-havgaard, R. B. Lyngsø, G. D. Stormo, and J. Gorodkin, Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%, Bioinformatics, vol.21, issue.9, pp.1815-1824, 2005.
DOI : 10.1093/bioinformatics/bti279

D. H. Mathews and D. Turner, Dynalign: an algorithm for finding the secondary structure common to two RNA sequences, Journal of Molecular Biology, vol.317, issue.2, pp.191-203, 2002.
DOI : 10.1006/jmbi.2001.5351

O. Perriquet, H. Touzet, and M. Daucher, Finding the common structure shared by two homologous RNAs, Bioinformatics, vol.19, issue.1, pp.108-116, 2003.
DOI : 10.1093/bioinformatics/19.1.108

M. Höchsmann, Y. Töller, R. Giegerich, and S. Kurtz, Local similarity in RNA secondary structures, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003, pp.159-168, 2003.
DOI : 10.1109/CSB.2003.1227315

M. Höchsmann, Tree Alignment Model : Algorithms, Implementations and Applications for the Analysis of RNA Secondary Structures, The, 2005.

S. Siebert and R. Backofen, MARNA: multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons, Bioinformatics, vol.21, issue.16, pp.3352-3359, 2005.
DOI : 10.1093/bioinformatics/bti550

H. M. Martinez, J. V. Maizel, and B. A. Shapiro, RNA2D3D: A program for Generating, Viewing, and Comparing 3-Dimensional Models of RNA, Journal of Biomolecular Structure and Dynamics, vol.407, issue.6, pp.669-83, 2008.
DOI : 10.1080/07391102.2008.10531240

F. Jossinet, T. E. Ludwig, and E. Westhof, Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels, Bioinformatics, vol.26, issue.16, 2010.
DOI : 10.1093/bioinformatics/btq321

URL : https://hal.archives-ouvertes.fr/hal-00529831

S. Sharma, F. Ding, N. V. Dokholyan, F. Ding, S. Sharma et al., iFoldRNA: three-dimensional RNA structure prediction and folding, Bioinformatics, vol.24, issue.17, pp.1951-1953, 2008.
DOI : 10.1093/bioinformatics/btn328

M. A. Jonikas, R. J. Radmer, A. Laederach, R. Das, S. Pearlman et al., Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters, RNA, vol.15, issue.2, pp.189-99, 2009.
DOI : 10.1261/rna.1270809

R. Das and D. Baker, Automated de novo prediction of native-like RNA tertiary structures, Proceedings of the National Academy of Sciences, vol.104, issue.37, pp.14664-14673, 2007.
DOI : 10.1073/pnas.0703836104

M. Parisien and F. Major, The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data, Nature, vol.349, issue.7183, pp.51-55, 2008.
DOI : 10.1038/nature06684

A. Lamiable, D. Barth, A. Denise, F. Quessette, S. Vial et al., Automated prediction of three-way junction topological families in RNA secondary structures, Computational Biology and Chemistry, vol.37, pp.2012-2044
DOI : 10.1016/j.compbiolchem.2011.11.001

URL : https://hal.archives-ouvertes.fr/hal-00641738

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

H. Yang, F. Jossinet, N. B. Leontis, L. Chen, J. Westbrook et al., Tools for the automatic identification and classification of RNA base pairs, Nucleic Acids Research, vol.31, issue.13, pp.313450-3460, 2003.
DOI : 10.1093/nar/gkg529

S. Smit, K. Rother, J. Heringa, and R. Knight, From knotted to nested RNA structures: A variety of computational methods for pseudoknot removal, RNA, vol.14, issue.3, pp.410-416, 2008.
DOI : 10.1261/rna.881308

C. Laing and T. Schlick, Analysis of Four-Way Junctions in RNA Structures, Journal of Molecular Biology, vol.390, issue.3, pp.547-559, 2009.
DOI : 10.1016/j.jmb.2009.04.084

W. K. Olson, M. Bansal, S. K. Burley, R. E. Dickerson, M. Gerstein et al., A standard reference frame for the description of nucleic acid base-pair geometry, Journal of Molecular Biology, vol.313, issue.1, pp.229-237, 2001.
DOI : 10.1006/jmbi.2001.4987

W. Kabsch, A solution for the best rotation to relate two sets of vectors, Acta Crystallographica Section A, vol.32, issue.5, pp.69-132, 1976.
DOI : 10.1107/S0567739476001873

T. Kamada and S. Kawai, An algorithm for drawing general undirected graphs, Information Processing Letters, vol.31, issue.1, pp.7-15, 1989.
DOI : 10.1016/0020-0190(89)90102-6

T. M. Fruchterman and E. M. Reingold, Graph Drawing by Force-Directed Placement. Software ? Practice and Experience, pp.1129-1164, 1991.
DOI : 10.1002/spe.4380211102

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.8444

J. H. Holland, Genetic Algorithms, Scientific American, 1992.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1989.

C. Darwin, On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. 1859

J. , V. Neumann, and O. Morgenstern, Theory of Games and Economic Behavior, 1944.

J. F. Nash-jr, Equilibrium Points in N-Person Games, pp.89-90, 1950.

C. H. Papadimitriou, Complexity of Finding Nash Equilibria, The. In Algorithmic Game Theory, 2007.

C. H. Papadimitriou, On the complexity of the parity argument and other inefficient proofs of existence, Journal of Computer and System Sciences, vol.48, issue.3, 1994.
DOI : 10.1016/S0022-0000(05)80063-7

P. S. Sastry, V. V. Phansalkar, and M. A. Thathachar, Decentralized learning of Nash equilibria in multi-person stochastic games with incomplete information, IEEE Transactions on Systems, Man, and Cybernetics, vol.24, issue.5, pp.769-777, 1994.
DOI : 10.1109/21.293490

T. J. Lambert, M. Epelman, and R. L. Smith, A Fictitious Play Approach to Large-Scale Optimization, Operations Research, vol.53, issue.3, pp.477-489, 2005.
DOI : 10.1287/opre.1040.0178

M. Epelman, A. Ghate, and R. L. Smith, Sampled fictitious play for approximate dynamic programming, Computers & Operations Research, vol.38, issue.12, pp.1705-1718, 2011.
DOI : 10.1016/j.cor.2011.01.023

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.187.6331

G. W. Brown, Iterative Solution of Games by Fictitious Play, 1951.

J. and R. B. Matthews, An Iterative Method of Solving a Game Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme, BBA) -Protein Structure, pp.296-301442, 1951.

M. Parisien, J. A. Cruz, E. Westhof, and F. Major, New metrics for comparing and assessing discrepancies between RNA 3D structures and models, RNA, vol.15, issue.10, pp.1875-1885, 2009.
DOI : 10.1261/rna.1700409

URL : https://hal.archives-ouvertes.fr/hal-00561427

C. Berge, Graphes Et Hypergraphes, 1969.