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Thèse dirigée par Carlos CANUDAS DE WIT
et codirigée par Alexandre SEURET
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ayudado a finalizar con éxito esta aventura, están protagonizadas por muchos amigos
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Abstract

This dissertation focuses on cooperative control of multi-agent systems. This topic has

been extensively studied in recent literature due to its large number of applications.

This thesis is concerned by the design of collaborative control strategies in order to

achieve an underwater exploration mission. In particular, the final aim is to steer a

fleet of Autonomous Underwater Vehicles, which are equipped by appropriate sensors,

to the location of a source of temperature, pollutant or fresh water. In this situation

it is relevant to consider constraints in the communication between vehicles which are

described by means of a communication graph. The first contributions deal with the

development of cooperative formation control laws which stabilize the fleet to time-

varying formations and, in addition, which also distribute the vehicles uniformly along

the formation. Finally, the source-seeking problem is tackled by interpreting the fleet of

vehicles as a mobile sensor network. In particular, it is shown that the measurements

collected by the fleet of vehicles allows us to estimate the gradient of a scalar field.

Following this idea, a distributed algorithm based on consensus algorithms is proposed

to estimate the gradient direction of a signal distribution.

Cette thèse concerne le contrôle coopératif de systèmes multi-agents. Ce sujet

a été largement étudié dans la littérature récente en raison de son grand nombre

d’applications. Cette thèse propose des nouvelles conceptions de stratégies de contrôle

collaboratif afin de réaliser une mission d’exploration sous-marine. En particulier,

l’objectif final est de diriger une flotte de véhicules autonomes sous-marins, équipés de

capteurs appropriés, jusqu’à l’emplacement d’une source de température, de polluants

ou d’eau douce. Dans cette situation, il est pertinent de considérer les contraintes de

communication entre véhicules qui sont décrites au moyen d’un graphe de communi-

cation. Les premières contributions traitent du développement des lois de commande

d’une formation qui stabilisent la flotte vers des formations variant dans le temps, et

qui, de plus, distribuent uniformément les véhicules le long de la formation. Enfin,

le problème de recherche d’une source est abordé par l’interprétation de la flottille de

véhicules comme un réseau de capteurs mobiles. En particulier, il est démontré que

les mesures recueillies par la flotte de véhicules permettent d’estimer le gradient de

v



concentration de la quantité d’intérêt. En suivant cette idée, un algorithme distribué

basé sur des algorithmes de consensus est proposé pour estimer la direction du gradient

d’une distribution de signal.
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Preface

Statement of problem

The object of this preface is to discuss the problem statement considered in this thesis

and give an overview of the dissertation without entering in details.

This thesis deals with control of heterogeneous marine vehicles to achieve a scien-

tific mission composed of several phases. Different classes of surface and underwater

vehicles, such as autonomous crafts, Autonomous Underwater Vehicles (AUVs) or un-

derwater gliders, are considered in this context in order to reach several tasks such as,

exploration, survey and scientific sensor data sampling. The main objective of this the-

sis is to develop cooperative control strategies to steer a fleet of AUVs to the location

of an underwater source. For instance, the source could be of soft water or chemical

pollutants. In this situation, the key problems are concerned by the fields of non linear

systems, multi-agent systems, formation control, collaborative control and distributed

estimation. With a view to design a solution to these control problems, the dissertation

is articulated into three main contributions:

A Formation control

In a first step, we focus on circular formations composed of a group of autonomous

underwater vehicles. Consequently, our first contribution consists in designing a

feedback control to stabilize a fleet of vehicles to a circular formation, whose

center and radius are time-varying. A cooperative term is added in order to

dispose the vehicles in a particular configuration along the formation.

B General framework to motion coordination

In order to extend our previous result dealing with time-varying circular for-

mations, we develop a new framework based on affine transformations. This

formulation allows us to stabilize the vehicles to a large class, not only circular,

of time-varying formations.

C Source-seeking algorithms

The contributions in the field of formation control are the base to tackle the

1
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main objective of this thesis: location and tracking of an underwater source. We

present a distributed algorithm to estimate the gradient direction of a signal, by

a fleet of vehicles uniformly distributed along a circular formation.

Dissertation Outline

Chapter 1: Introduction

The purpose of this chapter is to put into context the main topics related to this

thesis and to give an exhaustive overview of the dissertation. Several contributions

are developed in order to achieve the challenges proposed by two projects and their

corresponding case study. At first, the case study is explained in detail. General

objectives of both projects and technical aspects of underwater missions are exposed.

The second part of the introduction is composed by a review, which deals with

multi-agent systems and especially, its application to formation control. These topics

are the bases to carry out cooperative tasks, which must be achieved by a group of

vehicles or sensors. This survey analyzes the applications of multi-agent systems and

different collaborative control strategies present in the literature.

Finally, we recall the main contributions developed, with a view to explain the

structure of the dissertation and the main challenges considered.

Chapter 2: Time-varying circular formation control

The first objective of the thesis deals with the control of a fleet of vehicles to reach

a time-varying formation. In this context, it is assumed that external or centralized

references define the desired shape and location of the formation. A first contribution

concerns an extension of existing results in circular control (Paley et al. 2005 [118],

Leonard et al. 2007 [86] and Sepulchre et al. 2008 [149, 150]). Two new control

laws are developed in order to stabilize the vehicles to a circular motion, whose center

tracks a time-varying reference or whose radius depends on time. For both control

laws, each vehicle converges independently to the desired formation. Therefore, the

phase arrangement of the vehicles along the formation is arbitrary.

A second contribution provides an additional control to ensure that the vehicles are

uniformly distributed along the circular formation. Indeed, in the context of source

localization by underwater vehicles, which is treated in Chapter 4, this configuration

is more adequate to provide efficient source-seeking motions. Consequently, both pre-

vious control laws are improved with a collaborative gradient term to achieve the

uniform distribution of the AUVs along the circle taking into account communication

constraints. The communication topology of the group of vehicles is represented by
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a communication graph, and its connectivity determines the stability of the desired

configuration.

Chapter 3: Formation control design based on affine transfor-

mations

Following the previous formation control approach, a new general framework is intro-

duced. This new formulation allows considering a richer class of formations, not only

circular, and also time-varying formations. To do so, the contribution comes from the

use of affine transformations, which are composed of linear transformations (scaling

and rotation) and translations. The key idea is that a sequence of affine transforma-

tions applied to the unit circle defines an elastic formation. In other words, a larger

class of time-varying formations with arbitrary shape can be obtained deforming a

unit circle. Then, a general control law, based on the circular formation control design,

which makes the vehicles reach these elastic formations is provided. The sequence of

transformations which defines the final formation is an external reference known to all

the vehicles.

This new framework based on affine transformations is pertinent also to define

several motions defined only by a desired velocity. The objective now is to make the

vehicles converge to the same motion following a velocity reference.

Both approaches are improved with collaborative algorithms in order to achieve

several additional aims such as, distribute the vehicles uniformly along the formation

and reach an agreement on an unknown parameter which defines the formation.

Chapter 4: Collaborative source-seeking

In this chapter, we tackle the final objective of the thesis dealing with the source-

seeking problem. The aim is here to locate the source of some signal distribution,

using a fleet of AUVs. In this situation, the vehicles are equipped with sensors. These

sensors are able to measure the concentration of the quantity of interest. The fleet

of vehicles becomes a mobile wireless sensor network. A first contribution shows that

collecting sensor data from vehicles, which are uniformly distributed along a fixed

circular formation, the gradient direction of the signal distribution is estimated. Then,

a distributed algorithm based on this idea is proposed, in order to take into account the

communication constraints. This approach combines the previous results on formation

control exposed in Chapters 2 and 3, and existing results on consensus filters (Olfati-

Saber and Shamma 2005 [112]) applied to this mobile sensor network situation. A

modified algorithm which uses the periodic properties of the circular formation is also

proposed with a view to improve the performances of the previous one. Finally, a
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comparison of the two distributed source-seeking algorithms is discussed and motivated

by simulations.

Chapter 5: Conclusion and Future works

In the last chapter of the thesis, we make a general conclusion, which summarizes

the dissertation contributions and describes ongoing and possible future extensions.

Appendix A reviews the fundamentals of graph theory and the most important prop-

erties of graphs used in this thesis. A summary of the thesis in French is provided in

Appendix B.

List of Publications

Proceedings of peer-reviewed international conferences
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Chapter 1

Introduction

Underwater exploration is the relatively recent process of investigating the depths of the

sea to understand its physical and chemical characteristics and to learn about the life

forms that inhabit this realm. Deep-sea exploration is a novel phenomenon (compared

to many other sciences) because the necessary technology to assure human safety in

deep water has been recently developed. Over the last decades, alternative technologies,

which use vehicles without crew, such as subsurface floats, Remotely Operated Vehicles

(ROVs) and Autonomous Underwater Vehicles (AUVs), have emerged to complement

the existing sensing techniques. All these vehicles are equipped with different sensors

in order to collect information from a region of interest. This information provides

fundamental support to understand the oceans’ processes from a biological point of

view (ecosystem productivity), or to predict physical properties of the ocean, such

as temperature and current. For this purpose, control strategies to command mobile

vehicles must be developed to steer the vehicles towards places where their data would

be most useful [39].

Mobile sensor networks are often used in environmental applications such as ocean

sampling, surveillance, mapping, space exploration and communication, see [39, 86,

177, 167] and the references therein. In these kinds of missions, the mobile sensor

platforms are commanded to measure an unknown scalar field. For instance, a chemical

concentration, a pollutant, or temperature. Since each platform can only take one

measurement at a time, the platforms should move in a formation to estimate the field

of interest. It seems appropriate that a group of vehicles collaborate in order to carry

out the exploration task while optimizing time and energy. Collaboration means that

each vehicle is able to communicate some information to the rest of the group and this

data is used to determine some action or particular behavior in order to accomplish

the exploration task.

Within this context, the present thesis discusses the problem of an underwater

exploration mission carried out by a group of AUVs in a cooperative way. The aim

7
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is to design control strategies to accomplish the different scientific challenges found in

such missions:

Control of multi-agent systems: A multi-agent system, more precisely defined in

Section 1.2, is a system composed by a group of autonomous individuals interact-

ing with each other. Therefore, a fleet of AUVs can be treated as a multi-agent

system in which each vehicle is considered as an agent with communication ca-

pabilities.

Formation control design: In order to accomplish an exploration task, a reasonable

choice is to coordinate the agents to form a particular configuration. The control

algorithms to reach this purpose, must assure some performances, such as the

inter-distance between the vehicles in the formation. The most important aim is

to move the group of vehicles while keeping the formation.

Control design under communication constraints: In a collaborative mission, the

individuals exchange information to achieve a particular task. The data trans-

mitted is subject to different communication problems due to the communication

channel, especially in underwater environments, such as noise in the signal trans-

mitted, packet loss, time delays during the transmission and fading problems of

the power of the signal.

This dissertation deals with these problems in the context of an underwater mission in

which a fleet of AUVs has to collaborate to locate a source.

1.1 Context of the thesis

This thesis is part of two research projects: the European project FeedNetBack1 and

the French project CONNECT2, funded by the ANR (National Research Agency).

Both projects deal with networked control systems (NCS) and they are particularly

interested in the problem of controlling multi-agent systems, i.e., systems composed of

several sub-systems interconnected by an heterogeneous communication network. The

main challenge of these projects is to learn how to design controllers taking into account

constraints on the network topology, and of the possibility to share computational

resources during the system operation, while preserving closed-loop system stability.

The FeedNetBack project involves several academic partners, and also industrial

participants in order to carry out the technological applications. A common case study

of both projects focuses on cooperative control design of a group of unmanned marine

1http://www.feednetback.eu/
2http://www.gipsa-lab.inpg.fr/projet/connect/
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vehicles, i.e., Autonomous Underwater Vehicles (AUVs) and Autonomous Surface Ves-

sels (ASVs). This case study, detailed later, concerns the partner IFREMER3 which is

charged with the technical aspects relating to the underwater vehicles. It will accom-

plish a demonstration using real vehicles. One of the academic participants which is

concentrated in the technical innovations of this case study, is the research institute IN-

RIA (Institut National de Recherche en Informatique et en Automatique) via the NeCS

Team4, in the heart of which, this thesis has been made. The CONNECT project also

considers the possibility to evaluate the proposed control structures through a graphi-

cal interface developed by PGES and simulations effectuated with a complex simulator

which is built by PROLEXIA.

1.1.1 Case study

Multi-agent networked systems, particularly underwater systems, which has presently

used or intended by the offshore industry and marine research, are subject to severe

technological constraints. The advantage of using several simple vehicles instead of

one complex, expensive and high capability system, is that a fleet is able to realize

tasks that can not easily be achieved by a single vehicle. This case study involves

heterogeneous marine vehicles (surface and underwater vehicles such as autonomous

crafts, AUVs or underwater gliders) to achieve a scientific mission composed of several

phases (exploration and survey, scientific sensor data sampling). The proposed case

study copes with a main mission whose objective is to carry out a gradient search and

following an underwater source by a fleet of AUVs. The nature of the source to be

detected, can be very different: fresh water, a chemical source, methane vent, etc. The

technical details corresponding to this case study are reported in [113].

Figure 1.1: The underwater vehicle AsterX

3Institut français de recherche pour l’exploitation de la mer, http://wwz.ifremer.fr/institut
4http://necs.inrialpes.fr/
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AsterX

The underwater vehicle considered in this case study and hence, in this thesis, is the

AsterX, which belongs to IFREMER (see Figure 1.1). The AsterX is an autonomous

underwater vehicle which is actuated by a main screw propeller for moving in the

longitudinal direction. The steering of the vehicle around its roll, pitch and yaw angles

is achieved through two fins in the front part of the vehicle (canard fins), and two

couples of fins at the tail of the vehicle (horizontal and vertical plan). Depending on

the payload its weight is between 580 and 800 kg in air, with a diving depth of 3000

metres. Its cruising speed is between 0.5 to 2.5 metres per second. Vehicle length is

4.5 meters and its autonomy is 11 hours executing a mission [135].

This AUV has several navigation sensors: a Doppler loch to measure the speed, an

inertial measurement unit (composed of a gyroscope, accelerometers and magnetome-

ters) to compute in real time its attitude (roll, pitch and yaw angle) and update its

position, and also an acoustic sensor for absolute positioning.

Underwater scenario and mission

The objective of the mission is to locate and follow a source by considering sensed data

provided by dedicated scientific sensors located on-board the AUVs, which measure

the concentration of the source flow. The configuration of the vehicles must be such

that spatial estimates of the gradient of the signal concentration can be computed

cooperatively. The cooperative control laws designed to reach this aim, should consider

communication constraints due to the underwater scenario.

Figure 1.2: Underwater source detection and tracking
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To perform missions involving several vehicles, coordinated motion is required, es-

pecially when the goal of the mission is sensor driven. In the case presented here,

the detection of the source can be performed with sensor information collected by the

vehicles measuring concentration in the source plume, as shown in Figure B.2. This

picture represents the objective of the case study and it is produced by the graphical

interface developed by PGES and the simulator which is provided by PROLEXIA. The

colored elliptical forms symbolize the level curves of the scalar field of interest. The

fleet of AUVs, organized in a particular formation, will compute in a collaborative way

the best direction to move the center of the formation towards the source location. It

is up to the fleet to maneuvre so as to seek the region of higher concentrations of the

signal distribution, and thus, to carry out the localization of the source.

Phases of the mission and challenges

In recent years, it can be noticed the deterioration of marine waters due to multiple

pollutants. This case study, developed in coordination with IFREMER, aims to locate

the sources of the leaks, following a shipwreck, or, conversely, sources of fresh water

for domestic consumption. The different steps considered to reach this objective are

detailed below.

The initial configuration is a fleet of five autonomous underwater vehicles equipped

with salinity sensors, which must locate a source of fresh water without human in-

tervention. Cooperation strategies with the pooling of information from each vehicle,

must be developed to exploit the advantages of using a fleet of vehicles and, to reduce

the time of exploration.

A first challenge is due to the difficulty of establishing reliable communication in

underwater environment. This is a key point for ensuring an effective cooperation.

Indeed, the data rate is only of a few hundred bits/s, the transmission delay is around

a second and about 10% of items are lost. In this situation, all control strategies

developed have to take into account communication constraints.

The source localization task will be carried out in two phases. Therefore, a second

challenge concerns the design of formation control laws appropriate to achieve the

objectives of each phase. The first one corresponds to the exploration phase. During

this exploration stage, the vehicles move in a V-shaped formation [103], in order to

collect information and to detect the signal distribution emitted by the source. Once

an agent detects a significant change in salinity, it transmits this information to the

others. Then the fleet starts a phase of consolidation.

In this second phase, the fleet is regrouping into a particular shape, for instance cir-

cular. With such formation, the movement might be slower than with the V-formation.

However, a circular formation has greater flexibility to move in all directions. Also,
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the distribution of AUVs along the formation is pertinent to collect spacial distributed

measurements which can allow a more precise localization of the source. It is also

possible to envisage many class of formations: it might be interesting to deform the

shape of the formation to adapt it to the environment, to follow a path or to avoid

obstacles.

With a view to form and maintain this formation, the vehicles must exchange mes-

sages according to their relative position to the center of the formation. A centralized

design can be considered such that a surface vehicle provides all necessary informations

to the fleet. Exchanges of data between the AUVs allow considering a decentralized

approach in which any vehicle is designed as a leader. In order to deal with communi-

cation constraints, such as limited communication area of the AUVs, only the nearest

neighbors are taken into account to exchange informations.

In order to fulfill the objective of source-seeking, a decision algorithm must be

developed. It will be also based on data exchanges between neighbors to ensure the

same robustness with respect to communications. The objective of this final task is to

allow all vehicles to agree on a direction for the formation to move towards the source

using the measurements collected by the vehicles. One can imagine extending this type

of algorithms for other applications such as contours seeking to delineate the extent

and evolution of a polluted area.

1.1.2 General objectives

The general common objectives of both FeedNetBack and CONNECT projects, cor-

responding to the underwater vehicles case study previously presented, are focused on

the following five key challenges:

Architecture: The need to coordinate the actions of the vehicles over channels with

limited capacity.

Control and Complexity: Centralised versus decentralized control strategies, which

are at the heart of this application.

Control and Communication: The available bandwidth is severely limited (few bits

per second), communication is subject to long and variable propagation delays,

multi-path, fading and high bit error rates.

Control and Computation: The case study will make use of the adaptive sampling

strategies, and distributed collaborative computation.

Control and Energy: In this application battery power is limited and usually bat-

teries cannot generally be recharged. Energy resources must be shared between

different functions.
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According to these general objectives, the following control strategy, based on a

technical report of the FeedNetBack project [152], to achieve a collaborative search

of an underwater source using a fleet of AUVs is proposed in this thesis. The first

challenge is to describe an adequate architecture to deal with a cooperative approach

taking into account all the elements of the problem statement and all the constraints. In

consequence, three main control loops are considered, as shown in Figure 1.3. Knowing

that this project aims to study fleets of vehicles working together to reach a common

objective, in terms of control and coordination of fleets, this thesis considers the fleet to

be composed of a homogeneous set of vehicles, i.e., all vehicles have the same dynamic

model.

AUVs
SENSOR

NETWORK

FORMATION

CONTROL SOURCE

agents’ position

center

measurements

control

reference

inputs

signalROBUST
CONTROL

N

FLEET OF AUVs

LOCALIZATION

COMMUNICATION
NETWORK

Figure 1.3: Architecture of the control strategy

The first aim is to develop a local control loop, called robust control, which stabilizes

each AUV. This control law takes into account the dynamic model of the vehicles in

order to control their orientation, velocity and deep. The motion along the three axes

is uncoupled so that, three different controllers are computed for the control of the

forward speed, the yaw angle and, the altitude respectively. The thesis of Roche [136],

which is also part of both FeedNetBack and CONNECT projects, deals with robust

control design for trajectory tracking of a single AUV via a variable sampling interval

approach.

Considering several identical vehicles, the external loop carries out the search task.

A cooperative control is implemented to reach a coordination motion of the fleet such

that, the group of AUVs is disposed in a particular configuration. The desired for-

mation is defined by several parameters such as, its center and radius in the case of
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a circular formation. A collaborative control law stabilizes the fleet to a formation

tracking the time-varying parameters which define it. This work is realized in two

dimensions, hence it is assumed that all the vehicles are moving at the same deep. Lin-

ear velocity and orientation are the control variables which depend on the AUV state

(position and velocity) and on the external references which define the desired forma-

tion. The uniform distribution of the vehicles along the formation is also considered.

In order to take into account communication constraints, a decentralized algorithm is

designed to stabilize the vehicles to the desired pattern (uniform distribution), only

using information from their closer neighbors.

Finally, the trajectory of the formation center is obtained by a distributed control

using the measurements of the signal distribution by a fleet of AUVs. The expected

data is measured by detection sensors. The trajectory to be followed by the fleet shifts

from the predefined search pattern to a sensor-based trajectory control in order to

detect the source of the measured data.

The implementation of control loops on a network of digital controllers induces

some additional disturbances with respect to the initial continuous time design, more

precisely due to sampling, delays, jitter, quantification and data loss. Consequently, it

is appropriate to take into account these communication constraints in order to design

the different control strategies previously defined.

In order to consider the underwater communication problems, the development of

efficient underwater acoustic communication protocols is needed. Current underwater

acoustic modems are based on very classical single-carrier modulation with a very low

bit rate. For achieving high data rate and large system capacity, Orthogonal Frequency

Division Multiplexing (OFDM) has been claimed to be an efficient communication tech-

nology [78]. It allows designing low complexity receivers to deal with highly dispersive

channels. This fact motivates the use of OFDM in underwater environments. More-

over, the multiple access channel technique called OFDMA (Orthogonal Frequency

Division Multiplex Access) can significantly reduce the latency induced by TDMA

(Time Division Multiplex Access) based protocols currently used [76, 77]. Using this

protocol the quality of the transmitted signal decay with the distance. Therefore, we

consider that each vehicle is able to communicate only in a region defined by a critical

communication distance ρ.

With a view to deal with these general objectives, the multi-agent systems and its

applications, particularly the formation control problem, are considered in this thesis.

Therefore, an overview on this kind of systems is presented in the following section.
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1.2 Survey on formation control of multi-agent sys-

tems

Cooperative behavior in large groups of individuals appears abundantly in nature.

There exist well known examples of such behaviors such as, schools of fish, flocks of

birds, collective food-gathering in ant colonies. The reader might refer to [158] to

find more examples. The fundamental property of this cooperation is that the group

behavior is not dictated by one of the individuals. On the contrary, the behavior results

implicitly from the local interactions between the individuals and their neighbors. For

instance every fish in a school knows where the other fish in its neighborhood are

heading, but it does not known the average heading of all fishes. Nonetheless the fishes

in the school stay together and moves as a group in a certain direction [37, 134], see

Figure 1.4.

Figure 1.4: School of fish. This image is used under the CC-BY-2.0 licence

(http://creativecommons.org/licenses/by/2.0/deed.fr), it is posted to Flickr by Jor-

danSu.

Many engineering systems also consist of large groups of cooperating dynamic sys-

tems. They are called multi-agent systems. One has to refer to a topic of research

that emerges in the 1980’s with the thesis of Tsitsiklis [168], which was one of the first

contributions in the field. Even if this thesis is more concerned by computer science

and distributed programming, the implication to the field of automatic control was

significant at this time and leads to open problems in many areas such as distributed
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optimization, consensus algorithms, formation control, etc.

Cooperative control has been extensively studied in the past few years. This field

includes consensus algorithms, collaborative control of multi-agent systems, motion

coordination, distributed optimization and distributed estimation in sensor networks.

Engineering motivations for studying cooperative control approaches stem from increas-

ing interest in groups of embedded systems, such as multi-vehicle and sensor networks.

Particularly, consensus problems have a long history in the field of computer science.

A consensus algorithm is an interaction rule that specifies the information exchange

between an individual and all of its neighbors on the network whose proposal is to con-

verge to an agreement value. There exist a huge number of contributions to this prob-

lem including consensus algorithms with time-delays, switching topology or consensus

filters, among many others [109, 111, 112, 130, 151]. These distributed agreement

problems are directly related with cooperative multi-agent applications. Moreover,

consensus algorithms represent an excellent tool to develop more complex cooperative

control laws. Furthermore, a decentralized algorithm presents several advantages in

comparison with a centralized approach, especially if the multi-agent system is subject

to communication limitations.

Hence, before going to the details of the technical achievements of the present

dissertation, it is necessary to provide a precise definition of multi-agent systems and

formation control.

1.2.1 Multi-agents systems

Multi-agent systems (MAS) has received a lot of attention in recent years. A MAS

is a system composed of multiple interacting intelligent agents. MAS can be used to

solve problems that are difficult or impossible for an individual agent or a monolithic

system to solve. Intelligence may include some methodical, functional, procedural or

algorithmic search, find and processing approaches. Topics where multi-agent systems

research may deliver an appropriate approach include on-line trading [137], disaster

response [144], and modelling social structures [161].

A broad definition of agent was introduced in [53]. This book presents and reviews

the concept of multi-agent systems and its applications. The author define an agent

as a physical or virtual entity having several important characteristics:

• Reactivity capabilities: An agent is able to act and has a behaviour to satisfy

its goals.

• Autonomy: An agent is at least partially autonomous.

• Perception: It is able to perceive its environment.
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• Local views: No agent has a full global view of the system, or the system is too

complex for an agent to make practical use of such knowledge.

• Communication capabilities: An agent is able to communicate with others

agents.

A multi-agent system is composed of an environment, objects and agents, relations

between all the entities, a set of operations that can be performed by the entities and

the changes of the environment in time and due to these actions. In this situation, the

agents are the only ones to act.

As a comment, it is worth noting that multi-agent systems research does not only

refer to automatic control. Among other fields, MAS often addressed computer sci-

ence [53, 169], distributed computation [11, 14], game theory [15], social science [40],

etc. A multi-agent system may contain combined computer’s agents, human teams and

agent-human teams.

In automatic control, the interests of MAS is particularly relevant when one has

to face with systems consisting of multiple vehicles (which are considered to be the

agents) with several sensors and actuators that are intended to perform a coordinated

task. This is currently an important and challenging field of research motivated by a

large number of applications in many areas. Potential applications for multi-agent sys-

tems include surveillance, collaborative search and rescue, environmental monitoring,

exploration and distributed reconfigurable sensor networks. To enable these applica-

tions, various cooperative control capabilities have been analyzed, including formation

control, rendezvous, attitude alignment, flocking, congestion control in communication

networks, task and role assignment, air traffic control, coverage and cooperative search.

Node

Link

Figure 1.5: Diagram of a multi-agent system

Summarizing, a multi-agent system is a group of nodes (agents) representing ve-

hicles, sensors, plants, etc., which are able to exchange information in order to reach

a common goal. Schematically, MAS can be represented by a network of nodes in-
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terconnected via a communication topology as shown in Figure 1.5. Interconnections

between agents in a MAS are usually modeled by directed or undirected graphs [12].

This paragraph presents some basic tools of graph theory. For an extensive analysis,

see Appendix A. The communication topology for the groups of agents is represented

by means of a graph G(V,E) where V = {1, 2, ..., N} is the set of vertices (agents) and

E the set of edges (communication links) such that (k, j) ∈ E if agent k communicates

with agent j. In this thesis all communication graphs considered are undirected. It

means that the communication between agents is bidirectional, i.e., if agent k commu-

nicates with agent j, agent j transmits also to agent k. When there is a communication

link between agent k and agent j, both agents are called neighbors. The set of neigh-

bors of agent k is denoted by Nk and the degree of agent k is represented by dk = |Nk|.
The Laplacian matrix L of a undirected graph G is defined as:

Lk,j =


dk, if k = j

−1, if j ∈ Nk
0 otherwise

(1.1)

The Laplacian matrix allows us to include, in a compact form, communication con-

straints to different control laws for MAS, see [12].

Classical objectives for MAS

a) Consensus and average consensus

The term consensus refers to an agreement in the value of a variable reached by

a multi-agent system. The average consensus refers to the agreement protocol in

which the final value of the consensus variable is the average of the initial values.

b) Synchronization

A multi-agent system reaches synchronization if the state of all the agents is the

same asymptotically. This definition can be interpreted as a consensus algorithm

but synchronization is usually applied in manifolds with particular symmetries,

such as in the case of oscillators.

c) Formation control

A collection of interacting agents disposed in a particular configuration whose

objective is to achieve a common goal is defined as a formation. There exist

several formation control strategies in order to make the agents converge to a

particular configuration or to maintain inter-agent distances, for instance.

d) Exploration task and coverage

The purpose of exploration is to collect information by searching or traveling
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around an area of interest. In particular, coverage is a collaborative task in which

the agents reach their optimal locations in order to maximize the monitored area.

In the sequel, an overview of different models for MAS gives several examples of

these main challenges.

Models of nodes

In the literature, different models to represent the dynamics of multi-agent systems

have been used. The description provided in this thesis deals only with continuous

models. Consider a MAS formed by k = 1, . . . , N agents. The state of agent k is

represented by xk ∈ Rm where m is the dimension of the state. The control input of

the system is denoted by uk.

The possible kinematics models of nodes can be classed as follows:

A) Linear models

i) General linear models

A general linear kinematic model for the agents is described by the following

equations:

ẋk =Axk + Buk (1.2a)

yk =Cxk (1.2b)

where A,B,C are matrices. The consensus algorithm corresponding to this

model can be writing as [171, 172]:

uk = −K
∑
j∈Nk

(yk − yj)

where K is a control matrix.

This model is used in the literature mainly to deal with formation control

design such as in [51, 52, 62, 65, 92].

ii) Single integrator model

A particular case of a kinematic linear model is the simple integrator:

ẋk = uk (1.3)

To achieve the agreement of the state of the agents the commonly used

consensus algorithm in this case is expressed by, see [8, 111, 151]:

uk = −
∑
j∈Nk

(xk − xj)
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Apart from consensus algorithms, there are many different applications for

MAS which contemplate this simple model to represent a group of agents.

Some of these applications are formation control [103], rendezvous [36], cycle

pursuit [79, 95], coverage [35, 122, 145] among many others [66, 71].

An important application of this model is the study of the coupled oscilla-

tors. The mathematical analysis of these systems composed of phase oscil-

lators interacting each others allows us to learn about the synchronization

problem. Kuramoto introduces the first notions to understand this kind

of systems and analyzes its collective behavior in [83], where the following

synchronization algorithm for coupled oscillators was presented:

uk = −
∑
j∈Nk

sin(xk − xj)

Many extensions dealing with Kuramoto oscillators have been developed in

recent literature, see [27, 83, 106, 157], among many others. The knowl-

edge provided by these works can be exploited to synchronize and stabilize

different patterns in a MAS configuration, [118].

iii) Double integrator model

In many cases, several vehicles can be governed by controlling the acceler-

ation of its actuators, for instance the time-derivative of the angular speed

of motors. Thus, a double integrator model is very used in the literature of

MAS:

ẍk = uk (1.4)

The consensus algorithm for double integrator dynamics is given by [129]:

uk = −
∑
j∈Nk

[(xk − xj) + α(ẋk − ẋj)]

where α is a control parameter. There exists several extensions of this

consensus algorithm taking into account different constraints, see [128].

As in the case of simple integrator, this model is utilized in several ap-

proaches of cooperative control such as distributed formation control [110,

138], rendezvous [159] and flocking [108]. This model allows the agents to

reach an agreement in their velocities. This particular case of consensus

problems is called flocking and, by definition, it is not possible to be applied

to simple integrator dynamics of the agents.

B) Nonlinear models
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i) General nonlinear models

Linear models are sometimes too simplistic to model the dynamics of a

real agent. For example, the dynamics of a sensor network might have

many non-linearities and it is not realistic to represent the dynamics of some

kind of vehicles such as, planes, marine vehicles and two-wheel vehicles,

by linear models. Therefore, several authors have studied the previously

presented coordinated algorithms for MAS by a nonlinear approach. A

general nonlinear model is described by:

ẋk =f(xk, uk) (1.5a)

yk =h(xk, uk) (1.5b)

where f(·) and h(·) are functions that could satisfy some particular condi-

tions according to the problem considered.

Consensus algorithms on nonlinear spaces are studied in [142, 146, 147]. The

applications of this model are focus on formation control [9, 10, 50, 114, 125],

motion planing [57], extremum-seeking problem [82] and plume tracking

[140].

ii) Unicycle kinematics

A particular nonlinear model extensively considered in the robotics and

automatic control is the unicycle model. This non-holonomic model is used

to represent dynamics of ground vehicles, Autonomous Underwater Vehicles

(AUVs) and Unmanned Aerial Vehicles (UAVs). The state of the agent k

is denoted by vector (xk, yk, θk)
T where (xk, yk)

T ∈ R2 is its position vector,

θk ∈ S1 is its heading angle and vk, uk are the control inputs:

ẋk =vk cos θk (1.6a)

ẏk =vk sin θk (1.6b)

θ̇k =uk (1.6c)

Basically, all the previous collaborative algorithms developed using simple

and double integrator kinematics to model the agents have been investigated

using this non-holonomic model. Formation control [24, 32, 33, 45, 69, 120,

149, 150], rendezvous [46], trajectory tracking [80, 81], motion planing [43],

synchronization [119], coverage [84, 94], exploration task [86] and source-

seeking problems [28, 30, 104] are the main cooperative problems studied in

the current literature.
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1.2.2 Motion coordination

The previous review on MAS summarizes some of the most important and commonly

studied applications in the field of cooperative control. This thesis deals with a system

formed by multiple vehicles whose common goal is to coordinate its motion to achieve

a task. In this situation, the collaborative approaches coping with motion coordination

are specially examined in the sequel.

Motion coordination is a phenomenon in biological systems as has been remarked

before, see Figure 1.4. Moreover, it is a useful tool for groups of vehicles, mobile sensors,

and embedded robotic systems. A motion coordination task is defined as a collaborative

behavior of a group of mobile agents in order to reach a common aim. In other words,

achieving a coordination task corresponds to moving the agents and changing their

state to maximize or minimize an objective function [97]. Several objective functions

can be specified to describe different behaviors and tasks. In addition, the geometry

and symmetric proprieties of the desired configuration, are directly related to control

design for motion coordination [142].

A review on motion coordination considering some aggregate objective functions is

presented in [97]. The authors consider three main objectives: deployment, consensus

and cohesiveness. In the context of mobile agents, deployment means placing the agents

in the optimal positions to achieve maximum coverage (monitoring or vision of the

environment) [7, 35, 133]. The consensus is a useful algorithm to reach rendezvous, i.e.,

all the agents converge to the same location [36, 46, 174]. Finally, the cohesiveness, is

characterized by a repulsion/attraction function which makes the agents in the network

maintain desired relative distances between its neighbors or achieve collision avoidance

[108, 164].

In this dissertation, other collaborative behaviors are considered as a motion co-

ordination such as, motion planing, collaborative path following, cooperative target

tracking and formation control. A multi-agent motion planing is a cooperative algo-

rithm for generating the motion of a group of vehicles in an environment that might

change over time, in which each agent takes into account the information of its neigh-

bors to compute its motion [43, 54, 160]. Coordinated path following is a control

strategy where multiple vehicles are required to follow pre-specified spatial paths while

keeping a desired inter-vehicle formation pattern in time [60]. The target tracking

problem can be accomplished by a group of mobile vehicles or sensors. In this case, the

objective for the agents is to locate and follow the trajectory of a moving target. There

exist many different approaches to deal with this topic in the literature, the reader can

refer to [96] and [170], and the references therein.

For many applications it is interesting to impose a particular configuration for the

agents. The next subsection reviews the main strategies dealing with formation control.
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1.2.3 Formation control

Formation control is an important issue in coordinated control for multi-agent systems.

A formation is defined as a group of autonomous agents (vehicles, sensors or robots)

with communication capacities, which form a particular configuration (i.e., desired po-

sitions and orientations), in which the agents collaborate to achieve a common goal.

Keeping a group of vehicles in formation presents several advantages as, for instance,

reducing the system cost, reconfiguration ability and structure flexibility of the system,

increasing the robustness of the system and improving the properties of the communi-

cation topology. There are many areas of application for the formation control field.

Surveillance, target tracking and environmental monitoring are some examples.

In the survey [26], the authors study in detail the different strategies dealing with

formation control presented in the literature. The analysis of the several approaches

is very exhaustive, therefore, in the sequel, a classification of the different formation

control designs based on [26] is elaborated, adding other approaches and references in

order to complete this overview.

Formation control via behavior-based approach and potential field approach:

In [5, 24], several motor schemas implement the overall behavior of a robot in order

to move it to a goal location while avoiding obstacles, collisions with other robots

and remaining in formation. Each schema generates a vector representing the desired

behavioral response (direction and magnitude of movement). Others works combined

the behavior-based approach with potential fields as in [48, 126]. The group forma-

tion behavior is based on social potential fields. Artificial potential trenches are used

to represent the formation trajectory of the group in [59]. The authors of [102] ap-

ply this method to a non-linear dynamic system for obstacle avoidance and trajectory

generation.

Formation control via generalized coordinates: In this strategy, the agent’s

position, its orientation and the shape with respect to a reference point in the formation

are defined by the generalized coordinates. These coordinates can be used to specify

the formation trajectories. This methodology is developed in several works [63, 153].

Formation control via leader-follower approach: In this approach one agent

is designated as being the leader and the mission of the rest of vehicles (followers) is

to maintain a desired distance to the leader. Hence, the followers receive information

from the leader in order to keep the desired formation, see Figure 1.6.

In [45], a controller is designed using input/output feedback and an application of

this strategy can be found in [162]. Other strategy to produce formation motions (i.e.,
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LEADER

FOLLOWERS

Figure 1.6: Illustration of the leader-follower structure

flight formations) is the virtual-leader approach [125] where a suitable inter-distance

(and orientation) is set between agents. The motion of the formation results from the

motion of the leader. Several extensions to multiple non-holonomic mobile robots are

presented in [25, 32, 33, 42, 49].

Formation control via virtual structure method: This method is developed to

enforce a group of agents to stay in a rigid formation. The controller of each agent is

designed to track the dynamics defined for the virtual structure. It means that, for a

desired formation, the control laws designed minimize the error between the desired

positions in the virtual structure and the real position of the agents, as shown in

Figure 1.7. Introduced by [87, 163], this approach is usually applied to spacecraft or

satellite formation flying control [9, 10].

VIRTUAL

STRUCTURE

Figure 1.7: Illustration of the virtual structure method
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Formation control induced by flocking: The paper [134] deals with animal be-

havior models during the motion of a flock of birds, a herd of land animals, or a school

of fish. In this work, Reynolds introduces three heuristic rules that led to creation of

the first computer animation of flocking:

1. Flock Centering: attempt to stay close to near by flockmates.

2. Obstacle Avoidance: avoid collisions with near by flockmates.

3. Velocity Matching: attempt to match velocity with near by flockmates.

Figure 1.8: Illustration of flocking

Based on this previous nearest-neighbor interaction rules, several works dealing with

flocking motions have been developed for double-integrator dynamics of the agents,

[108, 164, 165]. A common definition of this class of motion is: a group of mobile

agents that align their velocity vectors, and stabilize their inter-agent distances, us-

ing decentralized algorithms and taking into account the communication topology, as

shown in Figure 1.8.

Rendezvous: The multi-agent rendezvous problem, which was posed in [1], copes

with the collective behavior of a group of mobile agents, and cooperative algorithms

that cause all members of the group to eventually rendezvous at single unspecified

location, as defined in [88], see Figure 1.9. The same authors of this previous work

analyze the rendezvous strategies based on a sequence of stop-and-go maneuvers, in

the synchronous [89] and asynchronous case [90]. The rendezvous problem can also be

studied through consensus algorithms, see [71, 111]. A review of the various approaches

of this problem for linear models of motion can be found in [132]. A detailed analysis

of this class of coordinated algorithms to achieve rendezvous using proximity graphs is

provided in [36] and several improvements are presented in [46].

Cyclic pursuit: The authors of [95] propose a collaborative strategy for multi-vehicle

systems based on the notion of cyclic pursuit from mathematics. They focus on circular
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Figure 1.9: Illustration of rendezvous

formations of a group of N ordered identical vehicles. Cyclic pursuit means that each

agent k pursuit agent k+1 modulo N , then each agent is required to sense information

from only one other agent, see Figure 1.10. Based on a cyclic pursuit strategy, in [79]

a cooperative control of a multi-agent system to achieve a target-capturing task in 3-D

space is presented.

Figure 1.10: Illustration of cyclic pursuit

There are certainly other approaches of formation control that this survey has not

discussed in detail. Nevertheless, this review allows the reader to understand the state-

of-the-art on MAS and justify the main directions followed in this thesis to deal with

the challenges presented in the case study.

1.3 Contributions of the thesis

The community of automatic control has specially focused on multi-agent systems in

the last twenty years. The different aspects presented in previous overview has been

extensively studied due to the advantages of multi-agent systems, with respect to use

one single vehicle or sensor, in a large number of applications.

In the context of underwater exploration, designing collaborative missions allows

collecting information from extensive areas in a shorter time. The main advantage of
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using multiple systems in a coordinated motion is the extension of the sensor range with

respect to area coverage or depth coverage. This is especially important if properties

which shall be measured fluctuate with time.

According to the case study presented in this chapter, the main challenges addressed

in this dissertation are summarized as follows:

• Formation control of AUVs

• Collaborative control

• Source-seeking problem

• Control design under communication constraints

AUVs

SENSOR

NETWORK

FORMATION
CONTROL

COLLABORATIVE
SOURCE-SEEKING

agents’ position

center

measurements
control

reference

inputs
signal

Figure 1.11: Illustration of the contributions of this thesis

Figure 1.11 displays a diagram representing the main objectives which will be dis-

cussed along this thesis. The first control loop corresponds to the formation control

problem. The multi-agent system, in this case representing a group of AUVs, is gov-

erned by a control law which uses the agents’ positions and orientations, and given

references of the formation parameters. This algorithm stabilizes the fleet to time-

varying formations tracking external references of the parameters which define the

desired configuration, as its center for instance. Moreover, collaborative algorithms are

developed to distribute the vehicles in a particular pattern along the formation.

The second control loop is designed to reach the final objective, the collaborative

localization and tracking of a source. The AUVs are now considered as a mobile sensor

network obtaining measurements of a scalar field. These measurements will be used

to compute a distributed algorithm to achieve the source-seeking problem defined.
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Finally, this algorithm provides the adequate reference to move the formation towards

the location of the source.

At the end of this thesis, it will be seen how several tools in the domain of the

automatic control allow us to find a solution for the problems discussed at the beginning

of this chapter.



Chapter 2

Time-varying circular formation

control

In order to face the challenges mentioned in Chapter 1, the control strategy designed

in this thesis is structured in three phases. As shown in Figure 2.1, the first step

focuses on the formation control problem. This chapter deals with designing formation

control laws for a fleet of Autonomous Underwater Vehicles (AUVs). A formation

is a configuration conformed by a group of vehicles with communication capacities,

in which the vehicles collaborate to achieve a common goal. This first contribution

concentrates on control design to reach circular formations.

AUVs
SENSOR

NETWORK

FORMATION

CONTROL
COLLABORATIVE

SOURCE-SEEKING

agents’ position

center

measurements
control

reference

inputs
signal

TIME-VARYING

CIRCULAR FORMATION
GENERAL FRAMEWORK

AFFINE TRANSFORMATIONS

translation

scaling

uniform distribution

elastic formation

motion tracking

cooperative algorithms

Figure 2.1: Contributions of Chapter 2

29



30 Chapter2. Time-varying circular formation control

The circle has several interesting symmetric properties and its geometrical form can

be simply characterized by its center and its radius. For this reason, the circular motion

of vehicles is a large analyzed topic in the literature. There exist several approaches

which tackle this question. Collaborative cyclic pursuit strategy studied in [95] (see the

survey on formation control in Subsection 1.2.3), circumnavigation of a single vehicle

presented in [44] and collective circular motion from [86] are some examples.

Based on previous circular formation control results studied in the literature, in

this chapter different control laws are developed to stabilize the fleet of agents to time-

varying circular formations. Firstly, a control design to make the vehicles converge to a

circular motion following a time-varying reference of its center is provided. In a second

time, the agents are stabilized to a circular motion which changes its radius according

to an external reference. Both control laws are improved adding a potential function

in order to distribute the agents along the common formation in a collaborative way.

2.1 Problem statement

In this chapter, circular formations of autonomous agents in a 2-dimensional space are

considered. It is assumed that the agents have no physical extension, that is, that

their positions are single points. Consider a group of N identical vehicles modeled

with unicycle kinematics subject to a simple non-holonomic constraint, adequate for

the underwater vehicles as presented in previous survey of multi-agent systems, such

that the dynamics of agents where k = 1, . . . , N are defined by:

ẋk =vk cos θk (2.1a)

ẏk =vk sin θk (2.1b)

θ̇k =uk (2.1c)

where rk = (xk, yk)
T ∈ R2 is the position vector of agent k, θk ∈ S1 is its heading angle

and vk, uk are the control inputs.

The objective is to design control strategies to make converge the group of AUVs,

represented by system (2.1), to circular formations, whose parameters center and radius

are time-varying. Following assumptions are considered in the sequel to deal with this

first contribution:

• Each vehicle k = 1, . . . , N knows its absolute vector position rk with respect to

the inertial frame.

• The time-varying references which define the parameters of the circular formation,

i.e., its center and its radius, are known to all the vehicles.
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• Each vehicle is able to communicate in a region delimited by a critical communica-

tion distance ρ. This is motivated by the underwater communication constraints

and the communication protocol used, as explained in Chapter 1. This critical

radius is the same for all the vehicles.

• Others communication problems such as, noise, packet loss and time delays, are

not considered.

AUVs

CIRCULAR FORMATION
CONTROL

agents’ position
control
inputs

REFERENCES
c, R

Figure 2.2: Problem statement of Chapter 2

Under these assumptions, this chapter presents control laws to stabilize a group

of vehicles to circular motions tracking time-varying references, as is represented in

Figure 2.2. In addition, a collaborative algorithm allows distributing the vehicles in a

particular desired pattern along the circular formation.

2.2 Collective motions

A particular class of motion coordination for multi-agent systems is studied in [86, 115,

119, 148, 149, 150] under different constraints. These previous works study the problem

of design feedback control laws that stabilize a collective motion. The evolution of the

dynamics of a system consisting of several mobile agents coordinating their motion

using relative positions and orientations with respect to their neighbors is called a

collective motion.

The authors of [74] has analyzed in detail model (2.1) which is extensively used to

represent the dynamics of multi-agent systems. These authors have emphasized the Lie

group structure that underlies the state space. The configuration space of a group of N

agents consists in the same number of replicas of the group SE(2). When the control

law only depends on relative phases and relative positions, the closed-loop vector field is
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invariant under an action of the symmetry group SE(2) and the closed-loop dynamics

evolve on a reduced quotient manifold. This manifold is called the shape space, and it

corresponds to the space of all relative phases and relative positions [150].

Parallel and circular collective motions of a group of vehicles modeled with unicy-

cle kinematics (2.1) are analyzed under a Lyapunov approach. Parallel motions are

catarecterized by a common orientation for all the agents, and the circular motions

are defined by circular orbits of the agents around a fixed point. This cooperative ap-

proach only depends on relative orientation and relative position, i.e., on the variables

θkj = θk − θj and rkj = rk − rj where k, j = 1, . . . , N . As is explained in [143], circular

and parallel motions are the only possible coordinated motions on the symmetry group

SE(2) because the closed-loop vector field is invariant under an action of SE(2).

In [86], the authors develop collaborative control laws to stabilize the group of agents

to parallel and circular formations. A feedback control law that stabilizes circular

motion of a group of N vehicles around its center of mass is provided. Each vehicle

moves in the plane subject to planar steering control, modeled by (2.1) with unit

constant velocity, such that vk = 1. Two examples of constant control input are shown

to help understand this model:

• uk = ω0 6= 0: the vehicles travel on fixed circles of radius 1/|ω0| and the sense of

rotation is given by the sign of ω0

• uk = ω0 = 0, each vehicle follows a straight trajectory in the direction of the

initial heading.

The motion of the group can be related to the vehicle headings due to the unit speed

and unit mass assumptions. In [86], the authors suggest a control law for stabilization

to a circular formation centered at the center of mass cm defined as:

cm =
1

N

N∑
k=1

rk

All previously cited works on circular formation use a complex notation due to the

isometry between R2 and C. In order to be consistent with the notation which is used

in this thesis, the results obtained in [86] will be presented in R2. Let the relative

position vector from the center of mass to vehicle k be defined as

r̃k = rk − cm =
1

N

N∑
j=1

(rk − rj)

Note that each r̃k depends only on the relative positions of the agents.

With a view to stabilize the agents to a circular formation the authors propose the

following theorem:



2.2. Collective motions 33

Theorem 2.1 (Leonard et al. [86]) Consider the vehicle model (2.1) with vk = 1 for

all k = 1, . . . , N . Then the control law:

uk = ω0(1 + κr̃Tk ṙk) (2.2)

where κ > 0 is a scalar gain, ensures that all the agents converge to a circular formation

centered at cm and of radius 1/|ω0|.

Proof 2.1 The stability of the circular motion of the group around a common point

can be studied using standard Lyapunov functions. The proof is based on the following

Lyapunov function:

S(r, θ) =
1

2

N∑
k=1

∥∥ṙk − ω0Rπ
2
r̃k
∥∥2 ≥ 0 (2.3)

where the matrix Rπ
2
∈ R2×2 represents a matrix rotation through an angle π

2
counter-

clockwise around the origin (of the corresponding reference frame) such that:

Rπ
2

=

(
0 −1

1 0

)

and the vectors of positions and headings are defined as r = (rT1 , . . . , r
T
N)T and θ =

(θ1, . . . , θN)T respectively. This function has minimum zero for circular motion around

the fixed center of mass because at the equilibrium, when S(r, θ) = 0, the dynamics of

the vehicles satisfy:

ṙk − ω0Rπ
2
r̃k = 0

In consequence, the relative position vector from the center of mass to agent k =

1, . . . , N is perpendicular to its position vector due to ṙTk r̃k = 0. In this situation,

the vehicle k describes circular trajectories around the center of mass.

The derivative of the Lyapunov function is expressed as follows:

Ṡ(r, θ) =
N∑
k=1

(
r̈k − ω0Rπ

2

˙̃rk
)T (

ṙk − ω0Rπ
2
r̃k
)

=
N∑
k=1

(
ukRπ

2
ṙk − ω0Rπ

2
ṙk
)T (

ṙk − ω0Rπ
2
r̃k
)

=
N∑
k=1

ω0r̃
T
k ṙk(ω0 − uk)

Thanks to the control law (2.2) this derivative becomes:

Ṡ(r, θ) =
N∑
k=1

ω0r̃
T
k ṙk(ω0 − ω0(1 + κr̃Tk ṙk)) = −κ

N∑
k=1

(
ω0r̃

T
k ṙk
)2 ≤ 0
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By the LaSalle Invariance principle, solutions for the reduced system on shape space

converge to the largest invariant set Λ where

ω0r̃
T
k ṙk ≡ 0

and the conclusion is that solutions converge to a circular relative equilibrium. It means

that the agents converge to a circular motion centered at the center of mass cm and

with radius 1/|ω0|. The details of the proof can be found in [149].

�

Note that this circular formation control law depends only on relative positions rkj

which stress the notion of collective motion and the center of the final formation cm

results from a consensus algorithm [149].

There exist several extensions of this theorem under limited communication [119,

150], considering the effect of underwater currents [120, 121] and collective motions

in three-dimensional space [69]. In the sequel, two other extensions will be presented.

These contributions allows moving and contracting/expanding circular formations.

2.2.1 Circular motion control with fixed center

Based on the same ideas from collective motions, the authors of [118] present a feedback

control in order to stabilize a single vehicle to a circular motion with fixed center and

constant radius. Each vehicle k knows its absolute position rk and its dynamics are

modeled by (2.1) with constant velocity vk = 1 for all k = 1, ..., N . The authors

propose a beacon control law composed of Hamiltonian and dissipative terms, such as:

uk = −ω0(1 + rTk ṙk)

where ω0 6= 0 is the angular velocity. In consequence, the following theorem is pre-

sented:

Theorem 2.2 (Paley et al. [118]) Consider the vehicle model (2.1) with vk = 1 for

all k = 1, . . . , N . Then the control law:

uk = −ω0(1 + rTk ṙk) (2.4)

where ω0 > 0 ensures that all the agents converge to a clockwise circular motion with

radius 1/ω0 about the origin of the coordinate system c0 = (0, 0)T .

Proof 2.2 In order to proof this result Lyapunov techniques are used. Consider the

following Lyapunov function given by

Sk(rk, θk) =
1

2
‖rk −R0Rπ

2
ṙk‖2
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where R0 = 1/|ω0| is the radius of the desired circular motion.

The relative position of the vehicles with respect to a center point c0 is defined as

r̃k = rk − c0. Without loss of generality, the center point corresponds to the origin of

the coordinate system. Therefore, the following change of coordinates is proposed:

xk = Rk cosϕk (2.5a)

yk = Rk sinϕk (2.5b)

where Rk ∈ R+ and

φk = θk − ψk +
π

2

In the new coordinates (Rk, φk, ϕk) the system (2.1) with control (2.4) becomes:

Rk = sinφk (2.6)

φ̇k = −ω0(1 +Rk sinφk) +
cosφk
Rk

(2.7)

and

ϕ̇k = −cosφk
Rk

In the shape coordinates the circular motion equilibrium is a fixed point. Using these

relations, the previous Lyapunov potential can be rewritten as

Sk(Rk, φk) =
1

2

(
R2
k +R2

0 − 2RkR0 cosφk
)

and differentiating

Ṡk(Rk, φk) = −Rk sin2 φk ≤ 0

By the LaSalle invariance principle the vehicles converge to the largest invariant set

for which Ṡk(Rk, φk) = 0. This set corresponds to the fixed point (Rk, φk) = (R0, 0),

hence the vehicles converge to a circular motion centered at the origin of the reference

frame and with radius R0.

�

Remark 2.1 Note that this beacon control law stabilizes a group of agents to a clock-

wise circular motion centered at the origin of the coordinates system. This result can

be generalized considering an arbitrary fixed center c and an angular velocity ω0 6= 0.

Under these hypothesis the previous control law (2.4) becomes:

uk = ω0(1 + ṙTk (rk − c))

This circular motion control law ensures that a group of vehicles converge to a fixed

circular motion centerd at c. The direction of rotation is determined by the sign of ω0.
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2.3 Translation of a circular motion

Based on previous collaborative works on multi-agent circular formation [86, 149, 150],

this section presents a first contribution dealing with formation control design and a

first step to tackle the source-seeking problem.

Moving a formation of agents is pertinent to some applications where the agents

should perform collaborative tasks requiring the formation to displace towards an a

priori unknown direction. For instance, in source seeking applications, the formation

is driven following the source gradient direction (which is computed on-line, and in-

strumented as an additional outer loop) [64, 104]. The target tracking problem also

requires to consider time-varying formations. In this application, the agents attempt

encircling the target. Therefore, a circular formation in whose center is located the

target, seems very appropriate to the target tracking problem. Some cooperative ap-

proaches to carry out this challenge using a fleet of vehicles have been studied in the

literature [80, 117]. Hence, a circular formation can be useful to track the trajectory

of a time-varying target [85].

c

rk

ṙk

θk

ċ

x

y

Figure 2.3: Translation of a circular formation

This section presents a control strategy such that a multi-agent system defined by

(2.1) converges to a circular motion which tracks a time-varying center, as described

in Figure 2.3. At the first stage, the desired time-varying center c(t) is assumed to be

a given external reference which is shared to all the agents in the formation.

To solve the problem of moving a circular formation, one has to focus on the two

following issues:

a) Improving the previous circular control law from [118] to stabilize the fleet of agents

to the same time-varying circular motion.
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b) Defining the class of functions c(t) for which the translation of the circular motion

is possible.

2.3.1 Additional constraints on the center reference

A uniform circular motion describes the motion of a body traversing a circular path at

constant speed. The velocity of a point rotating with constant angular velocity around

a center point is perpendicular to the relative vector from the center to the moving

point and its magnitude is constant. Nevertheless, due to the rigid body kinematics

during a combined motion composed by a uniform rotation and a constant translation

the velocity of a point turning around a moving center is not constant anymore.

ω0

point i

vi = 2ω0R

vj = 0

point j

R
vk

ċ = ω0R

point k

Figure 2.4: A wheel, rolling without slipping, with the velocity of three points shown

For instance, in a circular motion of a wheel of radius R, without slipping, repre-

sented in Figure 2.4, the center of the mass is moving with constant linear velocity

which magnitude, ċ = Rω0, is equal to the tangent velocity. The parameter ω0 6= 0

represents the angular velocity. The velocity of each point in the circle is a vectorial

sum of the velocity of the center of mass and the tangential velocity. Therefore, the

velocities of all the points are different during the motion.

In conclusion, considering constant angular velocity, in order to track a time-varying

center the magnitude of the velocity vector of vehicles describing circular trajectories

around a moving center is time-varying. This fact leads to a contradiction with the

choice of constant linear velocity of the agents.

The results exposed in [86, 149] to obtain time-invariant circular formations and the

beacon control law from [118] dealing with circular motions, presented in Section 2.2,
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represent the vehicles with a unicycle model (2.1) with unit linear velocity, i.e. vk =

1,∀k. This assumption is pertinent to model several kind of underwater vehicles as

gilders, see [86]. The constant speed consideration is consistent with the circular motion

of the agents around a fixed point. According to the relation v = Rω0 satisfied during

a circular motion, in order to extend the algorithms based on constant speed to time-

varying circular formations the only choice is to consider time-varying angular velocity

of rotation ω0. In this chapter, the parameter ω0 is assumed to be constant, therefore

the velocity vk becomes a new and necessary control input to overcome this mechanical

constraint.

Another constraint belonging to AUV characteristics is that its velocity should

never be zero, otherwise the vehicle will sink to the bottom of the sea. According with

the previous example of a wheel motion, the zero velocity corresponds to the contact

point between the wheel and the floor. To avoid this situation, it is easy to see in

Figure 2.4, that there is a constraint related to the velocity of the center of mass. The

motion of a circular formation of AUVs, turning and tracking a time-varying center, is

consistent with the rigid body kinematics described in Figure 2.5.

ω0

point i

vi = ω0R + ‖ċ‖

point j

R

‖ċ‖

ω0R

vk

‖ċ‖

vj = ω0R− ‖ċ‖

point k

Figure 2.5: Combination of a translational motion and a rotational motion

Nevertheless, this fact implies also conditions on the velocity of the reference of the

circular formation center, denoted by ċ, in order to keep the formation and avoid the

zero velocity of the agents. The situation in which the AUVs are not moving must be

avoided. In reality, a minimum value of the velocity have to be guaranteed to allow

the vehicle to turn. In other words, the vehicle is only able to change its heading angle

during the motion. In the sequel, we will show how to deal with this problem.
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2.3.2 Introduction of a new system of coordinates

We want to stabilize system (2.1) to a circular motion of radius R and the given time-

varying reference of its center c(t). The methodology proposed in this thesis to design

a time-varying circular control law is structured in the following steps:

• Change of coordinates: the position vector of each agent is expressed in a

transformed system which is moving with the desired time-varying center.

• Fixed circular control law: the transformed system is stabilized to a circular

motion with fixed center thanks to the beacon control law from [118].

• Inverse transformation: the control inputs of the original system are expressed

depending on the previous control law for the transformed system.

The main idea and thus, the main contribution, is to express the multi-agent system

in a relative frame whose origin is the time-varying desired center c = (cx, cy)
T . This

transformed system, in which the agents’ position are expressed with respect to the

circle center, will be stabilized to a circular motion centered at c and with radius R,

using the circular motion control law from [118]. The different steps of the control

design are explained schematically in Figure 2.6.

ẋk = vk cos θk

θ̇k = uk

uk = f(ûk, ṙk, ċ, c̈)

ORIGINAL
SYSTEM

TRANSFORMED
SYSTEM

ψ̇k = ûk

r̂k = rk − c

Coordinates Transformation

Coordinates Transformation

Circular Control Law

ûk = ω0(1 + κ ˙̂r
T

k r̂k)vk = f(ψk, ċ)

ẏk = vk sin θk

˙̂xk = R|ω0| cosψk
˙̂yk = R|ω0| sinψk

rk = (xk, yk)
T

Paley et al. 2005

Translation Control Law

Inverse

ṙk = ˙̂rk + ċ
⇓

Figure 2.6: Change of coordinates process

In order to express the position vector rk of each agent k in the relative frame which

is moving with the center of the circular motion c, the following change of coordinates

is defined:

r̂k = rk − c (2.8)

where r̂k ∈ R2 represents the relative position vector.
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The circular control law from [118] can be applied to a multi-agent system modeled

by (2.1) with constant velocity vk = v. Therefore, to apply this circular control law

to the transformed system expressed in the relative reference frame with respect to

the moving center, the dynamics of the relative positions must have constant velocity.

The agents defined by the transformed system will converge to a circular motion with

radius R = v/|ω0| where ω0 6= 0 is the angular velocity. Then, the transformed system

is enforced to have constant linear velocity equal to v = R|ω0|. Consequently, we

impose to the transformed system the following dynamics:

˙̂xk =R|ω0| cosψk (2.9a)

˙̂yk =R|ω0| sinψk (2.9b)

ψ̇k =ûk (2.9c)

where ψk represents the angular orientation of the transformed velocity vector ˙̂rk =

( ˙̂xk, ˙̂yk)
T and ûk is the control input.

The resulting transformed system, is time-invariant since the center becomes fixed

in the new transformed frame. Hence, circular control law from

2.3.3 Translation control law

The problem is to design a control law such that the group of AUVs forms a circle that

tracks the time-varying center c(t). The trajectory of the center c(t), is considered

here as an external reference. The radius of the circle R, and the rotation velocity ω0,

are constant given parameters. Applying the previous circular control law from [118]

but expressed in the new transformed frame, the system (2.9) converges to a circle

centered at c(t) with radius R.

Consider the vector which contains all the transformed position vectors r̂ and the

vector containing all the inner new variables ψk, denoted by r̂ = (r̂T1 , . . . , r̂
T
N)T and ψ =

(ψ1, . . . , ψN)T respectively. The convergence of the transformed system to a circular

motion is analyzed using the following Lyapunov function, based on the analysis of the

circular control laws proposed in [86, 118]:

S(r̂, ψ) =
1

2

N∑
k=1

∥∥∥ ˙̂rk − ω0Rπ
2
r̂k

∥∥∥2 ≥ 0 (2.10)

Analyzing the equilibrium points of this Lyapunov function, when S(r̂, ψ) = 0 the dy-

namics of the transformed system (2.9) satisfy ˙̂rk−ω0Rπ
2
r̂k = 0. Thus, the transformed

position vector and its velocity vector are perpendicular because ˙̂rTk r̂k = 0. This con-

dition leads to the kinematic relation for the rotation of the rigid body, it means that

the transformed vectors r̂k are turning around the frame origin c at the equilibrium.
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Evaluating the derivative of S(r̂, ψ) along the solutions of the resulting closed-loop

system (2.9) leads to:

Ṡ(r̂, ψ) =
N∑
k=1

(
¨̂rk − ω0Rπ

2

˙̂rk

)T (
˙̂rk − ω0Rπ

2
r̂k

)
=

N∑
k=1

(
ûkRπ

2

˙̂rk − ω0Rπ
2

˙̂rk

)T (
˙̂rk − ω0Rπ

2
r̂k

)
=

N∑
k=1

ω0r̂
T
k

˙̂rk(ω0 − ûk)

Based on the circular control laws from [86, 118] and according with previous Lya-

punov function, the following control law is proposed for the transformed system:

ûk = ω0(1 + κ ˙̂rTk r̂k) (2.11)

where κ > 0 is a control parameter. Note that for κ = 0, the control law becomes

ûk = ψ̇k = ω0 6= 0 thus, each transformed position vector r̂k will undergo circular

motion with direction of rotation determined by the sign of ω0. The gain κ regulates

the contribution to the control of a dissipation term which steers vector r̂k such that,

it is perpendicular to its velocity vector ˙̂rk.

Considering the proposed control law (2.11), the previous derivative of the Lya-

punov function becomes:

Ṡ(r̂, ψ) = −κ
N∑
k=1

(ω0r̂
T
k

˙̂rk)
2 ≤ 0 (2.12)

In conclusion, S(r̂, ψ) is a suitable Lyapunov function for this transformed system, and

the solutions converge to the largest invariant set Λ, for which Ṡ = 0.

After the previous detailed analysis a first contribution of this thesis can be pre-

sented as a theorem:

Theorem 2.3 (Briñón-Arranz et al. 2009 [16]) Consider a twice differentiable func-

tion c(t) : R → R2, with bounded first and second time-derivatives. Let R > 0 be the

radius of the desired circular motion, the control parameters be such that ω0 6= 0, κ > 0

and the following condition is satisfied:

R|ω0| > sup
t≥0
{‖ċ(t)‖} (2.13)

where sup{·} represents the supremum of a real number.
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Then, the control law

vk =
∥∥R|ω0|(cosψk, sinψk)

T + ċ
∥∥ (2.14a)

u̇k =

(
1− ṙTk ċ

v2k

)
ψ̇k −

ṙTkRπ
2
c̈

v2k
(2.14b)

ψ̇k =ω0 (1 + κR|ω0|(cosψk, sinψk)(rk − c)) (2.14c)

with the inner state of the dynamic controller initialized as

ψk(0) = θk(0) (2.15)

makes all the agents defined by (2.1) converge to a circular motion of radius R, and

whose center tracks the time-varying reference c(t). The direction of rotation is deter-

mined by the sign of ω0.

Proof 2.3 The previous Lyapunov function S(r̂, ψ) is positive semidefinite and from

(2.12) is nonincreasing along the solutions. Thanks to the change of coordinates (2.8),

the dynamic closed-loop equation corresponding to the transformed system is time-

invariant with respect to the reference c(t), hence LaSalle Principle can be applied.

Therefore, solutions for the reduced system on shape space converge to the largest in-

variant set Λ where

κr̂Tk
˙̂rk ≡ 0 ∀k = 1, . . . , N

In this set, ψ̇k = ω0, i.e., the transformed position vector describes circles of radius

R|ω0|/|ω0|. The transformed system (2.8) asymptotically reaches the circular motion

centered at c, radius R and with fixed angular velocity ω0. Hence, the dynamics of the

agents satisfy:

ṙk = ċ + ω0Rπ
2
(rk − c)

which is the kinematic relation for the combined motion of a translation and a rotation

of the rigid body.

The next step of the proof concerns the design of the control inputs (vk, uk) of

the original system. According to the change of coordinates (2.8), differentiating the

definition of r̂k gives

ṙk = ˙̂rk + ċ

This equation provides both expressions of the control inputs. Expressing previous equa-

tion in terms of its components, gives:

vk cos θk = R|ω0| cosψk + ċx

vk sin θk = R|ω0| sinψk + ċy
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Therefore, the control input vk is thus straightforwardly given by (2.14a). A more

particular attention is addressed to the input uk. Using previous equations the following

equality holds:

tan θk =
˙̂yk + ċy
˙̂xk + ċx

=
R|ω0| sinψk + ċy
R|ω0| cosψk + ċx

(2.16)

and differentiating

θ̇k(1 + tan2 θk) =
(¨̂yk + c̈y)( ˙̂xk + ċx)− ( ˙̂yk + ċy)(¨̂xk + c̈x)

( ˙̂xk + ċx)2

θ̇kv
2
k = (ûk ˙̂yk + c̈y)( ˙̂xk + ċx)− ( ˙̂yk + ċy)(−ûk ˙̂xk + c̈x)

To fit with the change of coordinates previous relation becomes:

θ̇kv
2
k = ûk(v

2
k − ẋkċy − ẏkċx) + ẋkc̈y − ẏkc̈x

Then, from uk = θ̇k the control input uk proposed in (2.14b) is retrieved. In order to

satisfy the relation (2.16) for all t, the initial conditions of the inner variable ψk must

be imposed as a function of the initial values of the system state. Let us consider that

the initial velocity of the center is equal to zero, such as ċ(0) = (0, 0)T . Therefore,

since equation (2.16) is satisfied, following relation holds:

ψk(0) = θk(0)

Note that this control law has singular points when ‖ṙk‖ = 0. This situation is

equivalent to:

vk =
∥∥R|ω0|(cosψk, sinψk)

T + ċ
∥∥ = 0

This singular point occurs if there exists a time tc such that:{
‖ċ(tc)‖ = R|ω0|
∠ċ(tc) = −ψk(tc)

where ∠ represents the argument of a vector. The equation (2.17) is a sufficient con-

dition to avoid the singular points.

�

Remark 2.2 Physically, the singular points of the control law (2.14) represent the

contact point in a wheel motion, as seen previously in Figure 2.4. To understand this

singularity, consider the example of the cycloid whose first derivative is not defined at

some instants.
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Remark 2.3 The translation control law presented in Theorem 2.3 is an extension of

the circular control proposed in [118]. In this paper, the authors present a control law

which stabilizes a vehicle to a circular motion with fixed center and constant radius using

its absolute position. The improvement with respect to this work comes from the fact

that is possible to stabilize the agents to circular motions whose center is time-varying.

Note that if the reference of the center c becomes time-invariant, i.e., ċ(t) = c̈(t) = 0

for all t, according to equation (2.16) the angles ψk and θk become equal. Thus, the

control law (2.14) is the same control as in Theorem 2.2, this means:

vk = R|ω0|
u̇k = ûk = ω0(1 + κṙTk (rk − c))

Therefore, this result dealing with a circular formation with time-varying center en-

compass the previous circular motion control problem from [118].

Theorem 2.3 presents a control law which stabilizes the fleet of agents defined by

(2.1) to a time-varying circular motion. It is worth noting that the center is an external

reference. This reference and its first and second derivatives are given and known to

all the agents.

With respect to [118], our approach also considers that each agent knows its absolute

position vector rk. This assumption is consistent with the real AUVs. As explained

in Chapter 1, the autonomous underwater vehicles belonging to IFREMER have a

precise inertial measurement unit for navigation. This system provides a very accurate

measurements of the absolute position of the vehicle. Otherwise, the agents do not

need to transmit any information to its neighbors, because each vehicle governed by

the control law (2.14) converges to the desired moving circular motion independently.

Hence, this result is not cooperative contrary to the circular control laws presented in

[86, 150, 149]. A cooperative translation control for a circular formation is presented

in Section 2.5.

2.3.4 Tracking on SE(2)

Previous subsection presents the first contribution of this thesis dealing with time-

varying circular control. The control law from Theorem 2.3 stabilizes the vehicles to

a circular motion with time-varying center. Due to the methodology applied and the

change of coordinates defined by (2.8) the inner variable ψk must be initialized as a

function of the initial conditions of the heading angle θk. In consequence, the control

law is not robust to uncertainties in θk(0).

In order to avoid this problem, we propose a new control strategy. This approach

considers that both the dynamics of the transformed system and the time-varying
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center of the circular motion are references to the original system. The transformed

system, previously defined by (2.8), is stabilized to a fixed circular motion. The control

design becomes a tracking problem between both systems. This new strategy follows

three phases:

• Reference model: a relation between the original system (position vector of

each agent) and the reference system (relative position vector) is determined.

• Fixed circular control law: the reference system is stabilized to a circular

motion with fixed center thanks to the beacon control law from [118].

• Tracking approach: the control inputs of the original system are defined by

tracking the dynamics of the reference system and the velocity of the desired

motion center.

In this case, the transformed system defined by (2.8) is considered as a reference

system. The dynamics of the reference system satisfy (2.9) and the closed-loop dy-

namics are imposed by the control law (2.11). In this situation, the following theorem

presents the main result of this chapter.

Theorem 2.4 Consider a twice differentiable function c(t) : R → R2, with bounded

first and second time-derivatives. Let R > 0 be the radius of the desired circular motion,

the control parameters be such that ω0 6= 0, κ > 0, β > 0 and the following condition

is satisfied:

vk > 0 ∀k = 1, . . . , N (2.17)

Then, for all initial conditions r(0), θ(0), the control law

v̇k =− βvk +
ûkṙ

T
kRπ

2

˙̂rk + ṙTk (c̈ + β( ˙̂rk + ċ))

vk
(2.18a)

uk =
ûkṙ

T
k

˙̂rk + ṙTkRT
π
2
(c̈ + β( ˙̂rk + ċ))

v2k
(2.18b)

where ˙̂rk and ûk are defined by (2.9) and (2.11) respectively, makes all the agents

defined by (2.1) converge to a circular motion of radius R, and whose center tracks the

time-varying reference c(t). The direction of rotation is determined by the sign of ω0.

Proof 2.4 According to previous results, the convergence of the reference system to a

fixed circular motion can be analyzed with the Lyapunov function:

S(r̂, ψ) =
1

2

N∑
k=1

∥∥∥ ˙̂rk − ω0Rπ
2
r̂k

∥∥∥2 ≥ 0
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Thanks to this potential function, it has already proved that with the control law (2.11)

its derivative satisfies Ṡ(r̂, ψ) ≤ 0. Therefore, the reference system (2.9) converge

to the largest invariant set where Ṡ(r̂, ψ) = 0 and consequently, the dynamics of the

reference system satisfy the following equation

˙̂rk = ω0Rπ
2
r̂k

which corresponds to a circular motion.

According to relation (2.8), the objective now is to make converge the dynamics

of the original system to a combined motion defined by the dynamics of the reference

system and the velocity of the desired center, i.e.:

ṙk → ˙̂rk + ċ

In order to achieve this objective the tracking error is defined as follows:

ek = ṙk − ( ˙̂rk + ċ)

With a view to make the error converge to zero, we wish to impose the error dynamics

ėk = −βek where β > 0. Then, the error converge exponentially to zero. Thanks to

previous definition of the error the following equation holds when t→∞:

ṙk = ˙̂rk + ċ ∀k = 1, . . . , N

Taking into account the circular control law (2.11), the closed-loop dynamics of the

reference system converge to ṙk = ω0Rπ
2
r̂k, hence previous equality can be written as

follows:

ṙk = ω0Rπ
2
r̂k + ċ

and thanks to the relation between both systems (change of coordinates) the agents

converge to a time-varying circular motion since:

ṙk = ω0Rπ
2
(rk − c)︸ ︷︷ ︸

circular motion

+ ċ︸︷︷︸
translation

The following step is to express the control inputs (vk, uk) depending on the reference

system. The dynamics of the error equation determines the control law for the original

system (2.1) since:

ėk = r̈k − ¨̂rk − c̈

−β(ṙk − ˙̂rk − ċ) =
v̇k
vk

ṙk + ukRπ
2
ṙk − ûkRπ

2

˙̂rk − c̈

v̇k
vk

ṙk + ukRπ
2
ṙk = −β(ṙk − ˙̂rk − ċ) + ûkRπ

2

˙̂rk + c̈
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Multiplying the above equation by ṙTk and by ṙTkRT
π
2

both following expressions hold:

v̇kvk = −βv2k + βṙTk ( ˙̂rk + ċ) + ûkṙ
T
kRπ

2

˙̂rk + ṙTk c̈

ukv
2
k = βṙTkRT

π
2
( ˙̂rk + ċ) + ûkṙ

T
k

˙̂rk + ṙTkRT
π
2
c̈

By definition, this control law enforces exponential convergence of the tracking error

dynamics away from the singularity vk = 0. If condition (2.17) is satisfied then, the

control inputs of (2.18) are respectively obtained.

Note that Theorem 2.4 presents a dynamic control law in which the control inputs

are (v̇k, uk).

�

This new result does not depend on the initial conditions of the reference system.

Therefore, for any initial conditions of the original and reference system, θk(0) and

ψk(0) respectively, each vehicle k converges to a circular motion with radius R and the

time-varying center c(t).

2.3.5 Simulation results

This section presents the simulation results of the multi-agents system composed of

AUVs modeled by (2.1) in order to validate the previous theoretical analysis of the

translation control law.

The simulation shown in Figure 2.7 displays a fleet of five agents governed by the

translation control law from Theorem 2.4. The controller parameters are ω0 = κ =

β = 1, the radius of the desired circular motion is R = 2 and the reference of the center

is given by:

c(t) = (0.2t, 3 sin (0.08t))T

Figure 2.7 shows a simulation of five agents which describes a circular motion track-

ing the time-varying reference of its center denoted by the blue line. The trajectory

of only one agent is represented by the red line. Each vehicle converges to this mo-

tion independently of the others vehicles in the fleet for any initial conditions. Thus,

according to definition of formation introduced in the survey of previous Chapter 1,

the fleet of agents does not exactly move in formation. However, for each instant t, all

the agents describe a circular trajectory with center c(t) and radius R, therefore, the

vehicles are in the same circle. Nevertheless, the distribution of the agents does not

follow a particular pattern. This problem will be considered in the last section of this

chapter.

Figure 2.8 shows the evolution of the control inputs vk and uk for all the agents,

obtained from the same simulation. The oscillations of both variables are due to the
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Figure 2.7: Simulation of five agents governed by the control law (2.18). The figure

represents three snapshots: the void blue agents correspond to the initial conditions and

the red ones to two different instants, at t = 45s and at t = 90s. The red line describes

the trajectory of one agent tracking the reference of the center in blue.

(a) Control inputs uk (b) Control inputs vk

Figure 2.8: Evolution of the control inputs uk (a) and vk (b) corresponding to the

previous simulation of five agents shown in Figure 2.7.

time-varying reference of the center. The velocity vk of the vehicles oscillates around

the value of the tangent velocity R|ω0| = 2. The mean value of the input uk is logically

equal to the angular velocity ω0 = 1.
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2.4 Scaling of a circular motion

This subsection presents a second contribution based on previous circular control from

[86, 118]. After the first result concerning the translation of a circular motion proposed

before, the problem considered here is to design a control law such that the group of

AUVs forms a circle whose center c is fixed and whose radius tracks a time-varying

reference R(t), as described in Figure 2.9. Using the same idea as in the translation

case, this extension to the scaling (contraction and expansion) of a circular motion is

the logical following step taking into account that the main parameters of a circle are

its center and its radius.

c

rk

ṙk

θk

x

y

R(t2)

R(t1)

Figure 2.9: Scaling of a circular formation

Changing the size of a formation can be useful in several situations. For instance, it

can be seen as a collision avoidance method such that the circular formation of AUVs

reduces its radius in order to go through a narrow place. On the other hand, a scaling

algorithm provides a solution to solve communication problems between the agents

with low communication range. For example, in order to guaranty the communication

between all the agents and theirs two neighbors in a circular formation the radius of

the circle should satisfy a geometrical condition with respect to the communication

range of the agents. These communication constraints and the influence in the radius

of the circle will be considered in the next section.

In the sequel, a new control law is developed so that the agents converge to a

circular motion with fixed center and whose radius tracks a time-varying reference.
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2.4.1 Coordinates transformation

As we explained before, in the field of circular control there exist several methods in

which, a unicycle model (2.1) with constant unit velocity, is consider to model the

agents. As in the translation case, considering constant angular velocity, the velocity

of the agents must be considered as a control input.

Basic mathematics show that for a uniform circular motion, there exists a relation

between the linear and the angular magnitudes, such that, the magnitude of the tan-

gential velocity of a point in a circular motion is equal to v = R|ω0|. Hence, is obvious

that if the radius R(t) is time-varying, considering a constant angular velocity ω0, the

velocity of the agents vk must be time-varying too. Note that another approach, which

was not considered here, could deal with this scaling problem if the angular velocity

becomes a control input and the velocity remains constant.

This situation is the base of the work [120] in which the authors stabilize a fleet

of vehicles to a fixed circular formation in a flowfield. The velocity of the vehicles is

constant therefore to keep the circular formation in the presence of currents, the vehicles

rotate with non constant angular velocity depending on the spacial distribution of the

flowfield.

To raise the scaling of a circular motion, the same method presented previously in

Figure 2.6 for the translation control of a circular motion will be followed. The main

idea, is to transform the multi-agent system (2.1) into a time-invariant system with

respect to the radius R(t). Then, the dynamics of this transformed system are enforced

to have constant velocity in order to apply the circular control law from [118]. In this

case the new variable r̂k is defined such that:

r̂k =
(rk − c)

R
(2.19)

The aim is to ensure the convergence of the transformed system defined by (2.19) to a

circle which has a fixed center c and unit radius, as shown in Figure 2.10. According

to the relation in a circular motion v = R|ω0|, to stabilize the transformed system to

a circle with unit radius the velocity should be equal to |ω0|. Therefore the dynamics

of the transformed position vector are defined as:

˙̂xk =|ω0| cosψk (2.20a)

˙̂yk =|ω0| sinψk (2.20b)

ψ̇k =ûk (2.20c)

where ψk represents the angular orientation of the transformed velocity vector.
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rk

c

rk − c

x

y

R(t)

1
r̂k

Figure 2.10: Coordinates transformation for the scaling problem

2.4.2 Scaling control law

Consider the problem of tracking a circular formation defined by a fixed and given

center c and a time-varying radius. Assume that the reference defined the radius of

the circular motion R(t) is always positive and its first and second time-derivative are

known and bounded. Moreover, the following assumption is required:

Assumption 2.1 Let ts > 0 be a sufficiently large time to be defined latter. Assume

the reference of the radius R(t) satisfies the conditions:

∀t < ts, R(t) = R0 > 0, Ṙ(t) = R̈(t) = 0

This assumption corresponds to a class of initialisation of the multi-agent system.

The idea is to allow the agents to reach a circular motion with constant radius and

then to start tracking the time-varying reference of the radius (see Figure 2.12). This

assumption is not restrictive since this initialization protocol could be used in practice.

Based on the previous translation control design, the convergence of the transformed

system to a fixed circular motion with unit radius is analyzed using the same Lyapunov

function:

S(r̂, ψ) =
1

2

N∑
k=1

∥∥∥ ˙̂rk − ω0Rπ
2
r̂k

∥∥∥2 ≥ 0

Following the same reasoning, in the minimum of this Lyapunov function corresponding

to S(r̂, ψ) = 0, the dynamics of the transformed system (2.20) satisfy ˙̂rk−ω0Rπ
2
r̂k = 0.

Thus, the transformed position vector and its velocity vector are perpendicular because
˙̂rTk r̂k = 0. This condition leads to the kinematic relation for the rotation of the rigid

body, it means that the transformed vectors r̂k are turning around c.
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Evaluating the derivative of S(r̂, ψ) along the solutions of the resulting closed-loop

system (2.20) leads to:

Ṡ(r̂, ψ) =
N∑
k=1

(
¨̂rk − ω0Rπ

2

˙̂rk

)T (
˙̂rk − ω0Rπ

2
r̂k

)
=

N∑
k=1

(
ûkRπ

2

˙̂rk − ω0Rπ
2

˙̂rk

)T (
˙̂rk − ω0Rπ

2
r̂k

)
=

N∑
k=1

ω0r̂
T
k

˙̂rk(ω0 − ûk)

Based on the circular control law from [86] and according to the previous Lyapunov

function, the same control law (2.11) is proposed to control the transformed system.

Note again that for κ = 0, each transformed position vector r̂k will undergo circular

motion which direction of rotation is determined by the sign of ω0 6= 0. The gain κ

regulates the contribution to the control of a dissipation term which steers vector r̂k

such that it is perpendicular to its velocity vector ˙̂rk.

Considering the proposed control law (2.11), the previous derivative of the Lya-

punov function becomes:

Ṡ(r̂, ψ) = −κ
N∑
k=1

(ω0r̂
T
k

˙̂rk)
2 ≤ 0 (2.21)

In conclusion, S(r̂, ψ) is a suitable Lyapunov function for this transformed system.

Thus, the solutions converge to the largest invariant set Λ, for which Ṡ = 0.

Theorem 2.5 (Briñón-Arranz et al. 2010 [17]) Consider three positive scalars ε > 0

and R2 > R1 > 0. Let ω0 6= 0 and κ > 0 be two control parameters. Let R :

R → [R1, R2] be a twice differentiable function, with bounded first and second time-

derivatives, which satisfies Assumption 2.1 and the condition:

∀t, Ṙ(t) <
R(t)|ω0|
(1 + ε)

(2.22)

Then the control law:

vk =

∥∥∥∥∥R|ω0|(cosψk, sinψk)
T +

Ṙ

R
(rk − c)

∥∥∥∥∥ (2.23a)

uk =

(
1− Ṙ

R

ṙTk (rk − c)

v2k

)
ψ̇k +

RR̈− 2Ṙ2

(Rvk)2
(rk − c)TRπ

2
ṙk (2.23b)

ψ̇k =ω0

(
1 + κ

|ω0|
R

(cosψk, sinψk)
T (rk − c)

)
(2.23c)
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with the initial conditions ψk(0) as:

ψk(0) = θk(0) (2.24)

makes all the agents defined by (2.1) converge to a circular motion of center c, and

whose radius follows the time-varying reference R(t). The direction of rotation is de-

termined by the sign of ω0.

Proof 2.5 The proof of this theorem follows the same steps that in the case of the

translation control law. First, the stability of the transformed system with the con-

trol law (2.23c) is established through the previous Lyapunov function S(r̂, ψ). The

Lyapunov function is positive definite and from (2.29), S is nonincreasing along the

solutions. Thanks to the change of coordinates (2.19), the dynamic closed-loop system

corresponding to the transformed system is time-invariant, hence LaSalle Principle can

be applied again. Therefore, solutions for the reduced system on shape space converge

to the largest invariant set Λ where

κr̂Tk
˙̂rk ≡ 0 ∀k

In this set, ψ̇k = ω0, i.e., the transformed position vector describes circles of unit radius.

The transformed system (2.19) asymptotically reaches the circular formation centered

at c and of unit radius with fixed angular velocity ω0. Hence, the dynamics of the

agents satisfy:

ṙk = ω0Rπ
2
(rk − c)︸ ︷︷ ︸

circular motion

+
Ṙ

R
(rk − c)︸ ︷︷ ︸

scaling term

The fist term describes the kinematic relation of a circular motion and the scaling term,

enforces the velocity vector ṙk to change its direction according to the derivative of the

radius, i.e. if Ṙ < 0 the velocity vector is deviated leading to the contraction term, and

the case of Ṙ > 0 corresponds to an expansion motion.

The next step involves expressing the original control inputs vk and uk in terms of

the inner state variable ψ̇k. According to the change of coordinates (2.19), differenti-

ating the definition of r̂k gives

ṙk = R ˙̂rk + Ṙr̂k = R ˙̂rk +
Ṙ

R
(rk − c)

This equation provides both expressions of the control inputs. Expressing previous equa-

tion in terms of its components, gives:

vk cos θk = R|ω0| cosψk +
Ṙ

R
(xk − cx)

vk sin θk = R|ω0| sinψk +
Ṙ

R
(yk − cy)
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Therefore, the control input vk is thus straightforwardly given by (2.23a). A more

particular attention is addressed to θ̇k. Using previous equations the following equality

holds:

tan θk =
R ˙̂yk + Ṙŷk

R ˙̂xk + Ṙx̂k
=
R|ω0| sinψk + Ṙ

R
(yk − cy)

R|ω0| cosψk + Ṙ
R

(xk − cx)
(2.25)

and differentiating

θ̇k(1+tan2 θk) =
(R ¨̂yk + 2Ṙ ˙̂yk + R̈ŷk)(R ˙̂xk + Ṙx̂k)− (R ˙̂yk + Ṙŷk)(R¨̂xk + 2Ṙ ˙̂xk + R̈x̂k)

(R ˙̂xk + Ṙx̂k)2

Developing previous expression the following equation holds:

θ̇kv
2
k = (ûkR ˙̂xk + 2Ṙ ˙̂yk + R̈ŷk)(R ˙̂xk + Ṙx̂k)− (R ˙̂yk + Ṙŷk)(−ûkR ˙̂yk + 2Ṙ ˙̂xk + R̈x̂k)

= ûk

(
R2( ˙̂x2k + ˙̂y2k) + ṘR( ˙̂xkx̂k + ˙̂ykŷk)

)
+ (RR̈− 2Ṙ2)( ˙̂xkŷk − ˙̂ykx̂k)

To fit with the change of coordinates previous relation becomes:

θ̇kv
2
k = ûk

(
v2k −

Ṙ

R
(ẋk(xk − cx) + ẏk(yk − cy))

)
+
RR̈− 2Ṙ2

R2
(ẋk(yk−cy)− ẏk(xk−cx))

Then, from uk = θ̇k, the control input uk proposed in (2.23b) is retrieved. In order to

satisfy the relation (2.25) for all t, the initial conditions of the inner variable ψk must

be imposed as a function of the initial values of θk. Therefore, since equation (2.25) is

satisfied and considering Assumption 2.1, following relation holds:

ψk(0) = θk(0)

Note that this control law, as in the translation control design, has singular points

when vk = 0. This singular point occurs if there exists a time tc such that:{
∠(rk(tc)− c) = −ψk(tc)
|Ṙ(tc)|
R(tc)
‖rk(tc)− c‖ = R(tc)|ω0|

(2.26)

To avoid the singular situation when vk = 0, the initialization protocol described in

Assumption 2.1 is required. Thanks to Theorem 2.5, considering a constant radius

R(t) = R0 described in Assumption 2.1, the multi-agents system converges asymptoti-

cally to a circle centered at c and with radius R0. The transformed system converges to

a circular motion also centered at c and whit unit radius. This means that there exists

a time ts such that:

∀t > ts, ‖r̂k(t)‖ − 1 =

∥∥∥∥rk(t)− c

R(t)

∥∥∥∥− 1 < ε

This inequality can be rewritten as:

∀t > ts, ‖rk(t)− c‖ < R(t)(1 + ε)
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This result is logical, because this inequality expresses the asymptotic convergence of the

original system to a circular motion of radius R(t). Starting from the singular point

(2.26) and taking into account this previous inequality, the following expression holds:

∀t > ts,
|Ṙ(t)|
R(t)

‖rk(t)− c‖ < |Ṙ(t)|
R(t)

R(t)(1 + ε) = |Ṙ(t)|(1 + ε)

If condition (2.27) is satisfied, this previous inequality can be rewritten:

∀t > ts,
|Ṙ(t)|
R(t)

‖rk(t)− c‖ < (1 + ε)
R(t)|ω0|

1 + ε
= R(t)|ω0|

which is in contradiction with (2.26). Thus, the singular point vk = 0 is avoided.

Note that this initialization protocol, described graphically in Figure 2.11, is not very

restrictive, and it could correspond to an engineering requirement.

�

R0

ts t

R0e
− ω0

1+ε

R0e
ω0
1+ε

R(t)

Figure 2.11: Graphical interpretation of the condition which is imposed to the reference

of the radius in Theorem 2.5. After a given instant ts, the radius R(t) is contained in

the blue striped region.

Remark 2.4 The scaling control law presented in Theorem 2.5 is an extension of the

circular control proposed in [118]. In this paper, the authors present a control law which

stabilizes a vehicle to a circular motion with fixed center and constant radius using its

absolute position. The improvement with respect to this work comes from the fact that

is possible to stabilize the agents to circular motions whose radius is time-varying. Note

that if radius R becomes time-invariant, i.e., Ṙ(t) = R̈(t) = 0 for all t, according to

equation (2.23b) and the initial condition (2.24) the angles ψk and θk become equal.
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Thus, the control law (2.23) is the same control as in Theorem 2.2 with a different

gain, such that:

vk = R|ω0|
uk = ûk = ω0

(
1 +

κ

R2
ṙTk (rk − c)

)
Remark 2.5 The domain of the reference of the radius for Theorem 2.5 is limited

by R2 ≤ vmax/|ω0| where vmax represents the maximum speed for the vehicles which

depends on the mechanical performances. Therefore, the maximum radius of the circle

is related to the physical constraints of the AUVs.

2.4.3 Tracking on SE(2) for the scaling problem

The control law from Theorem 2.5 stabilize the vehicles to a circular motion with time-

varying center. Due to the methodology applied and the change of coordinates defined

by (2.19) the inner variable ψk must be initialized as a function of the initial conditions

of the heading angle θk. In consequence, the control law is not robust to uncertainties

in θk(0).

Based on previous translation control design, we use the same methodology in

order to stabilize a fleet of agents modeled by (2.1) to a circular motion with time-

varying radius. Following a tracking process, the transformed system defined by the

change of coordinates (2.19) is considered as a reference to the original system (2.1).

The dynamics of the reference system satisfy (2.20) and the closed-loop dynamics are

imposed by the control law (2.11). In this situation, the following theorem presents

another contribution of this chapter.

Theorem 2.6 (Extension of Briñón-Arranz et al. 2010 [17]) Consider a twice differ-

entiable function R(t) : R→ R+, with bounded first and second time-derivatives. Let c

be the center of the desired circular motion, the control parameters be such that ω0 6= 0,

κ > 0, β > 0, and the following condition is satisfied:

vk > 0 ∀k = 1, . . . , N (2.27)

Then, for all initial conditions r(0), θ(0), the control law

v̇k =− βvk +
ûkRṙTkRπ

2

˙̂rk + R̈+βṘ
R

ṙTk (rk − c) + (2Ṙ + βR)ṙTk
˙̂rk

vk
(2.28a)

uk =
ûkRṙTk

˙̂rk + R̈+βṘ
R

ṙTkRT
π
2
(rk − c) + (2Ṙ + βR)ṙTkRT

π
2

˙̂rk

v2k
(2.28b)

where ˙̂rk and ûk are defined by (2.20) and (2.11) respectively, makes all the agents

defined by (2.1) converge to a circular motion centered at c, and whose radius tracks
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the time-varying reference R(t). The direction of rotation is determined by the sign of

ω0.

Proof 2.6 The proof of this theorem follows the same steps that in the case of the

translation control law. Based on the previous translation control design, the conver-

gence of the transformed system to a fixed circular motion with unit radius is analyzed

using the same Lyapunov function:

S(r̂, ψ) =
1

2

N∑
k=1

∥∥∥ ˙̂rk − ω0Rπ
2
r̂k

∥∥∥2 ≥ 0

Following the same reasoning, in the minimum of this Lyapunov function corresponding

to S(r̂, ψ) = 0, the dynamics of the transformed system (2.20) satisfy

˙̂rk = ω0Rπ
2
r̂k

Thus, the transformed position vector and its velocity vector are perpendicular because
˙̂rTk r̂k = 0. This condition leads to the kinematic relation for the rotation of the rigid

body, it means that the transformed vectors r̂k are turning around c.

Evaluating the derivative of S(r̂, ψ) along the solutions of the resulting closed-loop

system (2.20) leads to:

Ṡ(r̂, ψ) =
N∑
k=1

(
¨̂rk − ω0Rπ

2

˙̂rk

)T (
˙̂rk − ω0Rπ

2
r̂k

)
=

N∑
k=1

(
ûkRπ

2

˙̂rk − ω0Rπ
2

˙̂rk

)T (
˙̂rk − ω0Rπ

2
r̂k

)
=

N∑
k=1

ω0r̂
T
k

˙̂rk(ω0 − ûk)

Based on the circular control laws from [86, 118] and according to the previous Lya-

punov function, the control law (2.11) is proposed to control the transformed system.

Note again that for κ = 0, each transformed position vector r̂k will undergo circular

motion which direction of rotation is determined by the sign of ω0 6= 0. The gain κ

regulates the contribution to the control of a dissipation term which steers vector r̂k

such that it is perpendicular to its velocity vector ˙̂rk.

Considering the proposed control law (2.11), the previous derivative of the Lyapunov

function becomes:

Ṡ(r̂, ψ) = −κ
N∑
k=1

(ω0r̂
T
k

˙̂rk)
2 ≤ 0 (2.29)

In conclusion, S(r̂, ψ) is positive definite and is nonincreasing along the solutions.

Thanks to the change of coordinates (2.19), the dynamic closed-loop system corre-

sponding to the transformed system is time-invariant, hence LaSalle Principle can be
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applied again. Therefore, solutions for the reduced system on shape space converge to

the largest invariant set Λ where

κr̂Tk
˙̂rk ≡ 0 ∀k

In this set, ûk = ψ̇k = ω0, i.e., the transformed position vector describes circles of

unit radius. The transformed system (2.20) asymptotically reaches a circular motion

centered at c, with unit radius and fixed angular velocity ω0.

The objective now is to make converge the original system to the reference system

according to relation (2.19), i.e.:

ṙk → Ṙr̂k +R ˙̂rk

In order to achieve this objective the tracking error is defined as follows:

ek = ṙk − Ṙr̂k −R ˙̂rk

In order to make the error converge to zero, such that ek → 0, we impose the error

dynamics ėk = −βek where β > 0. Then, the error converge exponentially to zero.

Thanks to previous definition of the error the following equation holds when t→∞:

ṙk = Ṙr̂k +R ˙̂rk ∀k = 1, . . . , N

Hence, when the reference system is stabilized, the dynamics of the agents satisfy:

ṙk = ω0Rπ
2
(rk − c)︸ ︷︷ ︸

circular motion

+
Ṙ

R
(rk − c)︸ ︷︷ ︸

scaling term

The fist term describes the kinematic relation of a circular motion and the scaling term,

enforces the velocity vector ṙk to change its direction according to the derivative of the

radius, i.e. if Ṙ < 0 the velocity vector is deviated leading to the contraction term, and

the case of Ṙ > 0 corresponds to an expansion motion.

The dynamics of the error equation determines the control law for the original

system (2.1) since:

ėk = r̈k − R̈r̂k − 2Ṙ ˙̂rk −R¨̂rk

−β(ṙk − Ṙr̂k −R ˙̂rk) =
v̇k
vk

ṙk + ukRπ
2
ṙk − ûkRπ

2

˙̂rk − R̈r̂k − 2Ṙ ˙̂rk

v̇k
vk

ṙk + ukRπ
2
ṙk = −β(ṙk − Ṙr̂k −R ˙̂rk)− ûkRπ

2

˙̂rk − R̈r̂k − 2Ṙ ˙̂rk

Multiplying by the above equation by ṙTk and by ṙTkRT
π
2

both following expressions hold:

v̇kvk = −βv2k + βṙTk (Ṙr̂k +R ˙̂rk) + ûkṙ
T
kRπ

2

˙̂rk + R̈ṙTk r̂k + 2ṘṙTk
˙̂rk

ukv
2
k = βṙTkRT

π
2
(Ṙr̂k +R ˙̂rk) + ûkṙ

T
k

˙̂rk + R̈ṙTkRT
π
2
r̂k + 2ṘṙTkRT

π
2

˙̂rk
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By definition, this control law enforces exponential convergence of the tracking error

dynamics away from the singularity vk = 0. If condition (2.27) is satisfied then, the

control inputs of (2.28) are respectively obtained.

Note that Theorem 2.6 presents a dynamic control law in which the control inputs

are (v̇k, uk).

�

This result is independent on the initial conditions of the reference system. There-

fore, for any initial conditions of the original and reference system, θk(0) and ψk(0)

respectively, each vehicle k converges to a circular motion centered at c with the time-

varying radius R(t).

Remark 2.6 The domain of the reference of the radius for Theorem 2.6 is limited

by Rmax = vmax/|ω0| where vmax represents the maximum speed for the vehicles which

depends on the mechanical performances. Therefore, the maximum radius of the circle

is related to the physical constraints of the AUVs.

2.4.4 Simulation results

This section presents the simulation of a fleet of AUVs modeled by (2.1) governed by

the scaling control law (2.28). The control parameters are ω0 = −1 and κ = β = 1.

The reference of the radius is given by:

R(t) =



7 if t ≤ 30

30.25− 0.7t if 30 < t ≤ 35

4 if 35 < t ≤ 60

24.33− 0.33t if 30 < t ≤ 35

1 if 35 < t ≤ 60

In order to apply Theorem 2.6, the first and second time-derivatives of the reference

which defines the radius must be well-defined and bounded. Therefore, a filter is added

to the previous signal to avoid the singularities in the references R(t), Ṙ(t) and R̈(t).

The chosen filter is given by the transfer function F (s) = 1/(s3 + 2s2 + 2s+ 1).

Figure 2.12 (a) shows the evolution of the relative position magnitudes ‖rk − c‖
of five agents controlled by the control law (2.28) from Theorem 2.6. The five agents

converge to a circular motion following the time-varying reference of its radius R(t).

Figure 2.12 (b) shows the trajectory of only one agent governed by the control law

defined in Theorem 2.6 during the contraction motion defined by the time-varying

reference R(t) from Figure 2.12 (a). The contraction of the circular motion is achieved

for any random initial conditions (position and heading of the agents).
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(a) Relative distances between each agent and

the center of the circular formation

(b) Trajectory of one agent following the refer-

ence of the radius R(t)

Figure 2.12: Simulation of five agents governed by (2.28) tracking a time-varying ref-

erence for the radius.

Two previous sections present both contributions of this chapter dealing with time-

varying motions: translation and scaling of a circular motion. The combination of both

motions will be tacked in next Chapter 3. The contributions of this following chapter

are based on the methodology developed in these previous sections in order to consider

the main transformations of a formation.

The translation and scaling control laws are not cooperative because each agent is

able to reach the desired circular motion even if there does not exist communication be-

tween the agents. The following section improves both control laws with a collaborative

term in order to distribute the agents according to a desired pattern.

2.5 Uniform distribution along a circular formation

Both previous control laws do not take into consideration communication constraints,

because each agent converges independently to the desired circular motion. Therefore,

the phase arrangement of the particles is arbitrary. In other words, in order to stabi-

lize the agents to a circular formation the translation and scaling control laws must

include a cooperative term to distribute the agents along the same circle following a

particular pattern. Moreover, in the context of source-seeking for underwater vehicles,

ensuring that the agents are uniformly distributed along the formation might be more

appropriate to produce efficient search motions.

The objective is now, to design an extension of both translation and scaling control

laws in order to distribute uniformly the agents along the circular formation. Fig-
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ω0

2π
N 2π

N

2π
N

Figure 2.13: Uniform distribution of the vehicles along a circular formation

ure 2.14 shows the uniform distribution of three vehicles along a circular orbit, i.e., the

phase difference between adjacent vehicles is 2π
N

where N is the number of vehicles.

A first method would be to deploy a centralized controller. This controller would

deliver to each agent the control law to reach the uniform distribution. However, this

is not fit with an underwater situation in which the signal transmitted decays with the

distance. Hence, it is assumed that no agent has global knowledge of its neighbors’

position. Several works follow the main idea from [86] to stabilize the vehicles to

a circular motion tackling also the problem of distribute the agents along the circle

in a particular pattern. These results are based on the synchronization problem of

oscillators and the symmetric proprieties of the manifold S1, see [142]. In the sequel,

a review about control of symmetric patterns in a circular formation is presented.

2.5.1 Control of symmetric patterns

A first analysis of the stabilization of a group of agents to a uniform distribution along a

circular formation is presented in [118]. The authors design a methodology to stabilize

the splay state formation of a group of agents. This configuration is characterized by

a circular motion around the fixed center of mass of the group, with all vehicles being

evenly spaced on the circle. An extension to several kinds of patterns is studied in

[149] for all-to-all communication topology. Based on these results, the circular control

presented in [86] is improved in order to stabilize the vehicles to a fixed circular motion

with uniform distribution. This approach requires the communication topology to be

time-invariant and connected. Moreover, the communication is assumed to be bidi-

rectional. Transmitting the relative headings of the vehicles, the authors can stabilize

particular phase-locked patterns or arrangements of the agents in a circular formation.

This is achieved adding a gradient control term to the previous circular control law
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presented in Theorem 2.1 from [86] as follows:

uk = ω0(1 + κr̃Tk ṙk)−
∂U

∂θk
(2.30)

The potential function U(θ) depends on the heading angles of all the agents represented

by the vector θ = (θ1, . . . , θN)T and satisfy ∇U1 = 0, where ∇U = ( ∂U
∂θ1
, . . . , ∂U

∂θN
)

represents the gradient of the potential function and 1 ∈ RN is the vector of ones.

Then, the potential is invariant to rigid rotation of all the vehicles’ headings. Moreover,

the circular motion of the group in a phase-locked heading arrangement is a critical

point of U(θ).

The control of relative headings can be studied under two different approaches,

all-to-all communication assumption and limited communication. Considering limited

communication means that each agent may receive information from only some of the

other agents [109]. It is known that designing collaborative controllers leads to more

difficulties than in the case of all-to-all communication assumption. In both cases,

presented in detail in [149] and [150] respectively, the potential function enables us to

stabilize symmetric patterns of the vehicles in circular formations.

The results of both works are expressed in C. In order to define these results in the

R2 formulation the following notation is introduced. The Laplacian matrix considered is

L̄ = L⊗ I2 where ⊗ is the classical Kronecker product and IN ∈ RN×N is the identity

matrix. Let bmk = (cosmθk, sinmθk)
T be the vector which contains the orientation

angle of the agents and Bm = (bTm1, . . . , b
T
mN)T contains all the heading angles of the

system.

Symmetric (M,N)-patterns of the agents are characterized by 2 ≤M ≤ N heading

clusters separated by a multiple of 2π
M

, see [149]. To avoid local minimums and to

include higher harmonics, the moment of the phase distribution on the circle is defined

as:

pm =
1

mN

N∑
k=1

bmk

where m ∈ N. Let the potential Um(θ) = N
2
‖pm‖2 satisfy ∇Um1 = 0. Considering

all-to-all communication topology, the unique minimum of this potential corresponds

to the balancing modulo 2π
m

, reached when pm = 0. Its unique maximum is the syn-

chronization modulo 2π
m

, reached when the phase difference between any two phases is

an integer multiple of 2π
m

. Therefore, the function U(θ) defined as:

U(θ) = K

bN/2c∑
m=1

Um(θ) (2.31)

where K > 0 and bN/2c is the largest integer less than or equal to N/2, is called splay

state potential, whose global minimum is the splay state, equivalent to the symmet-

ric (N,N)-pattern. The splay state formation control law has the form from (2.30).
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Assuming all-to-al communication, the potential function is given by (2.31) and the

control law can be written as:

uk = ω0(1 + κr̃Tk ṙk) +
K

N

N∑
j=1

bN/2c∑
m=1

sinmθkj
m

where the relative headings θkj = θk − θj are the additional transmitted informations.

Theorem 2.7 (Sepulchre et al. 2007 [149]) Each (M,N)-pattern circular formation

of radius 1/|ω0| is an isolated relative equilibrium of the particle model (2.1) and is

exponentially stabilized by the control law (2.30) where the potential function is defined

by (2.31).

Proof 2.7 In order to analyze the stability of the motion, the authors of [149] propose

a combined Lyapunov function:

V (r, θ) = κS(r, θ) + U(θ) ≥ 0

where S(r, θ) = 1
2

∑N
k=1

∥∥ṙk − ω0Rπ
2
r̃k
∥∥2 as it was defined in (2.3). This function reach

its minimum for circular motion around the fixed center of mass as it was proved in

Theorem 2.1. Moreover, the agents are distributed in an (M,N)-pattern corresponding

to the minimum of the potential function U(θ). The derivative of the Lyapunov function

can be written by:

V̇ (r, θ) = κṠ(r, θ) +∇U(θ) =
N∑
k=1

(
κω0r̃

T
k ṙk −

∂U

∂θk

)
(ω0 − uk)

and thanks to control law (2.30) then V̇ (r, θ) ≤ 0.

By the LaSalle Invariance principle, solutions for the reduced system on shape space

converge to the largest invariant set Λ where

ω0r̃
T
k ṙk −

∂U

∂θk
≡ 0

for all k = 1, . . . , N , and the conclusion is that solutions converge to an (M,N)-pattern

circular equilibrium. It means that the agents converge to a circular motion centered

at the center of mass c0 and with radius 1/|ω0|. Moreover, the (M,N)-pattern is

exponentially stable.

�

This result is extended to the limited communication case in [116, 150]. In order

to isolate symmetric patterns of curve-phases, the authors restrict the interconnection

topology to d0-circulant graphs, see [41] and Appendix A. All d0-circulant graphs
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are d0-regular, which means that dk = d0 for all k. Both adjacency and Laplacian

matrices of a circulant graph are circulant, i.e., they are completely defined by their

first row. Each subsequent row of a circulant matrix is the previous row shifted one

position to the right with the first element equal to the last element of the previous

row. For example, the complete graph (all-to-all communication) is (N − 1)-circulant

and the cyclic graph (ring topology) is 2-circulant. For instance, the Laplacian matrix

corresponding to a ring topology of a fleet of N = 5 agents is defined as:

L =


2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2


The function U(θ) takes into account the communication constraints through the Lapla-

cian matrix of the communication graph of the multi-agent system. Based on previous

analysis for the all-to-all communication assumption, the previous potential function

is generalized to arbitrary connected topologies:

U(θ) =
K

N

bN/2c∑
m=1

BmL̄Bm

2m2

The splay state corresponding to the uniform distribution, is locally asymptotically

stable for d0-circulant graphs. An extensive analysis is detailed in [116] and [150].

Our objective is to apply this methodology to the previous translation and scal-

ing control laws. In the sequel, two improved circular control laws to stabilize the

agents to a uniform distributed circular formation tracking a time-varying center and

a time-varying radius respectively will be presented. The splay state control laws are

studied in the case of fixed communication topology and a new contribution for limited

communication range is presented.

2.5.2 Fixed communication graphs

A fixed communication topology of a sensor network or a group of vehicles is represented

by a time-invariant communication graph G. The constant Laplacian matrix of G
describes the communication links between agents. In this case, previous splay state

formation control law can be easily applied to the translation and scaling problems.

In order to apply previous cooperative approaches to our two contributions, the

potential U(θ) becomes a function depending on the transformed heading angle ψ =

(ψ1, . . . , ψN)T . In a fixed circular formation centered at the origin, the distribution of

the position vectors rk is equivalent to the distribution of the velocity vectors ṙk because
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when the vehicles are in the circle the equation ṙTk rk = 0 is satisfied. This is means

that the angle corresponding to the position vectors is equal to θk + π
2
. In the case of

a time-varying circle, the transformed system is stabilized to a fixed circle, therefore

the transformed position vectors r̂k are perpendicular to their velocity vectors. Hence,

our objective is to achieve the uniform distribution of the virtual agents defined by the

respective transformed systems (2.9) and (2.20) along a fixed circle using a potential

function U(ψ).

In this situation, the Laplacian matrix considered now is L̄ = L ⊗ I2 where ⊗ is

the classical Kronecker product and IN ∈ RN×N is the identity matrix. Let bmk =

(cosmψk, sinmψk)
T be the vector which contains the orientation angle of the virtual

agents and Bm = (bTm1, . . . , b
T
mN)T contains all the heading angles of the transformed

system.

Translation control: Considering the previous notation and applying the splay state

potential function mentioned before to our new formulation, the following corollary

holds:

Corollary 2.1 (Extension of Briñón-Arranz et al. 2009 [16]) Consider a twice dif-

ferentiable function c(t) : R→ R2, with bounded first and second time-derivatives and

the radius of desired formation R > 0. Let the control parameters be such that ω0 6= 0,

κ > 0, β > 0 and the condition (2.17) is satisfied. Let G be a fixed d0-circulant graph,

and L be its corresponding Laplacian matrix. Then the control law (2.18) now with:{
ûk = ω0(1 + κ ˙̂rTk r̂k)− ∂U

∂ψk

U(ψ) = K
N

∑bN/2c
m=1

1
2m2 BmL̄Bm

(2.32)

makes all the agents defined by (2.1) converge to a circular motion of radius R and of

center the time-varying reference c(t). Moreover the splay state is a critical point of

U(ψ). For K > 0, the set of curve-phase arrangements that are synchronized modulo

2π/N is locally exponentially stable.

Proof 2.8 Based on Theorem 2.7, the stability of the motion is analyzed by the com-

posed Lyapunov function

V (r̂, ψ) = κS(r̂, ψ) + U(ψ)

where S(r̂, ψ) is defined in (2.10). The time derivative of this function along the solu-

tions of (2.9) is given by V̇ (r̂, ψ) = κṠ(r̂, ψ)+∇U(ψ). The potential U(ψ) is invariant

to rigid rotation, thus
∑N

k=1
∂U
∂ψk

= 0 and by definition

∇U(ψ) =
N∑
k=1

∂U

∂ψk
ψ̇k
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Then, the derivative of the composed Lyapunov function is rewritten as:

V̇ (r̂, ψ) = κ
N∑
k=1

(
ω0r̂

T
k

˙̂rk

)
(ω0 − ûk) +

N∑
k=1

∂U

∂ψk
ûk

=
N∑
k=1

(
κω0r̂

T
k

˙̂rk −
∂U

∂ψk

)
(ω0 − ûk)

According to the control law (2.32) the following inequality holds:

V̇ (r̂, ψ) = −
N∑
k=1

(
κω0r̂

T
k

˙̂rk −
∂U

∂ψk

)2

≤ 0

Therefore, solutions converge to the largest invariant set, Λ, for which V̇ = 0. The

details of the proof can be found in [150].

�

1

Fixed connected Balanced symmetric
communication graph

2

3

4

1

4

3

2

pattern

Figure 2.14: An equilibrium configuration, balanced symmetric pattern, for a fixed con-

nected communication graph in the case of even number of agents.

Remark 2.7 Corollary 2.1 does not exclude convergence to formations which corre-

sponds to other critical points of U(ψ) [150]. For instance, when the fleet has a even

number of vehicles, the system could be stabilized to another critical point of the po-

tential function corresponding to a different (M,N)-pattern to the splay state (uniform

distribution) as is shown in Figure 2.14. This is due to the local stability of the splay

state in the case of fixed communication graph.

Remark 2.8 If the graph G is complete (all-to-all communication), then the set of

curve-phase arrangements that are balanced modulo 2π/N is a global maximum of U(ψ)

in the reduced space of relative curve-phases; this is asymptotically stable for K > 0.

Moreover if K < 0 the control law of Corollary 2.1 forces convergence to the synchro-

nized circular formation [149].
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Scaling control: Following the same reasoning, we can add the potential function

whose critical point correspond to the splay state, to the scaling control law to achieve

the uniform distribution of the vehicles along a circle with time-varying radius. Based

on Theorem 2.6, and applying previous results on uniform distribution the following

corollary holds:

Corollary 2.2 (Extension of Briñón-Arranz et al. 2010 [17]) Consider a twice differ-

entiable function R(t) : R → R+, with bounded first and second time-derivatives. Let

the control parameters be such that ω0 6= 0, κ > 0, β > 0, and assuming the condi-

tion (2.27) is satisfied. Let G be a fixed d0-circulant graph, and L be its corresponding

Laplacian matrix. Then the control law (2.28) now with:{
ûk = ω0

(
1 + κ ˙̂rTk r̂k

)
− ∂U

∂ψk

U(ψ) = K
N

∑bN/2c
m=1

1
2m2 BmL̄Bm

(2.33)

makes all the agents defined by (2.1) converge to a circular motion of center c and the

time-varying radius R(t). Moreover, for K > 0, the set of curve-phase arrangements

that are balanced modulo 2π/N is locally exponentially stable.

The proof is similar that in Corollary 2.1.

2.5.3 Limited communication range

Applying the method from [149, 150] to distribute the agents along the circular forma-

tion to both present translation and scaling control laws is straightforward, as shown

in the previous subsection for the case of fixed communication graph. Nevertheless, the

splay state corresponding to the uniform distribution, is only locally stable, then, oth-

ers configurations could be stabilized depending on the initial conditions of the system

as shown in Figure 2.14. The authors of [116] conclude that the simulations suggest

a large region of attraction for each (M,N)-formation for the complete graph but not

necessarily for d0-circulant graphs with d0 < N−1. To demonstrate convergence of the

closed-loop system with limited communication, they have selected initial conditions

near the desired (M,N)-formation.

Moreover in practice, considering fixed communication graphs is not realistic be-

cause the distance between two linked agents is not considered, [111, 109, 130]. In the

case of underwater communication, the quality of the link is strongly affected by the

distance between two agents [155]. Therefore, in an underwater scenario, it might be

more interesting to consider distance-dependent communication graphs. This means

that each agent can only receive information from its closed neighbors.

Moreover, in the context of the project CONNECT the multiple access channel

technique called OFDMA (Orthogonal Frequency Division Multiplex Access) is applied
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in order to reduce the latency induced by TDMA (Time Division Multiplex Access)

based protocols, as it has been explained in Chapter 1. Using this protocol the quality

of the transmitted signal decay with the distance.

In this situation, a communication area for each vehicle is introduce in our ap-

proach. The communication area for any agent is defined by ρ which is the critical

communication distance given by the characteristics of the communication devices and

the environment of the AUVs. Then, the radius ρ demarcates a circular communica-

tion region for each vehicle. For simplicity, it is assumed to be the same radius ρ for

all AUVs. This assumption is consistent whit the real modems installed in the IFRE-

MER’s AUV AsterX. However, we assume that there is a perfect communication inside

this region. Time-delays, packet loss, damping effect and noise are not considered in

our approach.

Assuming bidirectional communication, the condition to get a communication link

between vehicle k and vehicle j is expressed as:

k ∈ Nj ⇐⇒ j ∈ Nk ⇐⇒ ‖rk − rj‖ ≤ ρ

The distance-dependent communication graph is now time-varying because the position

of vehicles is changing in time. Based on graph theory, the time-varying Laplacian

matrix L(t) corresponding to a distance-dependent communication graph is defined as

follows:

Lk,j =


dk, if k = j

−1, if ‖rk − rj‖ ≤ ρ

0 otherwise

(2.34)

The above graph is also called proximity graph in the literature [36, 73].

Note that, for simplicity, in the simulation figures, the communication region de-

fined by the critical radius ρ is designed as a circle of radius ρ/2 to ameliorate the

visualization, as in Figure 2.15 for example.

Translation control: The splay state formation control law does not change with

respect to the fixed communication assumption. Nevertheless, a new condition is im-

posed to assure almost a d0-circular graph, see Appendix A. It corresponds to a

geometrical condition which relates the critical communication distance ρ to the radius

of the circular formation R and the number of agents N , as show in Figure 2.15.

The cooperative translation control for the distance-dependent communication as-

sumption is presented in the following corollary:

Corollary 2.3 (Extension of Briñón-Arranz et al. 2009 [16]) Consider a twice dif-

ferentiable function c(t) : R→ R2, with bounded first and second time-derivatives and

the radius of desired formation R > 0. Let the control parameters be such that ω0 6= 0,



2.5. Uniform distribution along a circular formation 69

ρ
2 R

‖rk − rj‖ ≤ ρ

agent k

agent j

2π
N

Figure 2.15: Geometrical condition to assure a circular communication graph for a

group of agents in a circular formation with communication radius ρ.

κ > 0, β > 0, and the condition (2.17) is satisfied. Let G(t) be the communication

graph, L(t) be its corresponding Laplacian matrix and the critical communication dis-

tance ρ satisfies:

ρ > 2R sin
π

N
(2.35)

Then the control law (2.18) with (2.32), makes all the agents defined by (2.1) con-

verge to a circular motion of radius R and of center the time-varying reference c(t).

Moreover, for K > 0, the splay state is the only critical point of U(ψ) exponentially

stable.

Proof 2.9 The stability of the uniformly distributed circular formation is analyzed by

the composed Lyapunov function

V (r̂, ψ) = κS(r̂, ψ) + U(ψ)

whose derivative satisfies V̇ (r̂, ψ) ≤ 0. Thanks to Theorem 2.4, the control law (2.18)

makes all the agents reach the circle whit radius R and centered at c(t). Then, consider

the potential function [150]:

U(ψ) =
K

N

[N/2]∑
m=1

1

2m2

N∑
k=1

Uk
m(ψ)

where Uk
m(ψ) is be expressed as:

Uk
m(ψ) = dk −

N∑
j=1,j 6=k

Lk,j(t) cosmψkj
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where ψkj = ψk − ψj denotes the relative angle between agents k and j. Note that∑N
k=1 U

k
m = BmL̄Bm. The objective of the collaborative control is to minimize the

function U(ψ), or equivalently to maximize the functions Uk
m(ψ) to achieve the uni-

form distribution. Without loss of generality, consider agent k. Uk
m(ψ) represents the

potential functions associated to agent k. The maximum of these functions is obtained

when the relative angles between agent k and its neighbors is π/m. This means that

the angle between agent k and its neighbors will tend to π/m. This works for all m

and this finally leads to an increase of the angles between connected agents until the

communication between them is lost. As shown in Figure 2.16, the geometry of the

problem ensures that the connection between agent k and a neighbor j is lost when:

R sin
ψkj
2

=
ρ

2

where ψkj = (ψk + π
2
)− (ψj + π

2
) On the other side, Uk

m(ψ) is discontinuous because of

the definition of the Laplacian matrix L. Note that the communication with any agent,

for instance j, leads to a contribution in the potential function of the following type:

1− cosψkj ≥ 0

Thus, if a communication link is broken, a positive contribution is removed. There-

fore, the potential functions decrease discontinuously. Finally the agents are deployed

along the circle. The condition (2.35) ensures that this expansion guarantees that the

agents are connected at least in d0-circular graph.

Applying Theorem 2.7, the fact that G is a circular graph implies that the splay

state, (N,N)-pattern, corresponding to the uniform distribution is locally asymptotically

stable. No other local critical point is achieved because other critical points of the

potential function require that a link between agents is broken and consequently an

increase of the potential function. Therefore all the agents are uniformly distributed

along the circle. Thanks to change of coordinates (2.9), the dynamic closed-loop system

corresponding to our approach (time-varying center) is time-invariant, hence LaSalle

principle can be applied.

�

Remark 2.9 The set of curve-phase arrangements that are balanced modulo 2π/N

(uniform distribution) is asymptotically stable for K > 0. Moreover if K < 0 the

control law of Corollary 2.3 forces convergence to the synchronized circular formation

[150].
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ρ

ψ(k−1)k

ψk(k+1)

ψ(k+1)(k+2)

d(k−1)k > 2ρ

dk(k+1) = 2ρ

Figure 2.16: Formation of communication chains during the contraction motion

Scaling control: The previous analysis for the translation control problem can be

applied directly to the scaling control law. In this case, the geometrical condition

imposed to ρ is related to the maximum value of the reference which defines the radius.

The following corollary summarize this result:

Corollary 2.4 (Based on Briñón Arranz et al. 2010 [17]) Consider a twice differen-

tiable function R(t) : R → (0, Rmax, with bounded first and second time-derivatives.

Let the control parameters be such that ω0 6= 0, κ > 0, β > 0, and assuming the condi-

tion (2.27) is satisfied. Let G(t) be the communication graph, L(t) be the corresponding

Laplacian matrix and the critical communication distance ρ satisfies:

ρ > 2Rmax sin
π

N
(2.36)

Then the control law (2.28) with (2.33) ensures that all agents reach the circular for-

mation centered at c and whose radius tracks reference R(t). Moreover, for K > 0 the

uniform distribution of the agents along the circle is achieved.

The proof is similar that the previous one from Corollary 2.3.

2.5.4 Simulation results

In the sequel, several computing simulations are shown to validate the cooperative con-

trol laws improved in this section. We are interested to show the different capabilities of

these control laws to achieve the uniform distribution of the agents along time-varying

circular formations. The problem of fixed communication graph is applied only to the

translation control (the same observations can be obtained with the scaling control

law). The simulations highlight the local stability of the critical points of U(ψ). A

specially attention is addressed to the case of limited communication which is studied

for the both translation and scaling control laws.
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Fixed communication graph

The simulation shown in Figure 2.17, displays a fleet of six agents governed by the

translation control law from Corollary 2.1. The controller parameters are ω0 = κ =

β = 1, and K = 0.1, the radius of the desired circular formation is R = 2 and the

reference of the center is given by

c(t) = (0.2t, 3 sin (0.08t))T

Figure 2.17: Simulation of six agents governed by the control law from Corollary 2.1

with circular communication graph, tracking the reference of the center formation in

blue. The figure displays three snapshots: the void blue agents correspond to the initial

conditions and the red ones to two different instants, at t = 30s and at t = 50s.

The vehicles are stabilized to a time-varying circular formation. The cooperative

term of the control law utilizes the transformed angles ψk transmitted taking into

account the fixed circular communication graph. According to Corollary 2.1 in this

simulation a 2-circulant graph (ring topology) is considered. Thanks to the connectivity

properties of its Laplacian matrix, a critical point of the potential U(ψ) is reached.

Nevertheless, this equilibrium point corresponds to the (2, 6)-pattern and the desired

splay state is not achieved.

Figure 2.18 shows the evolution in time of the control inputs vk and uk for all the

agents, obtained from the same simulation. The oscillations of both variables are due

to the time-varying reference of the center. The velocity vk of the vehicles oscillates

around the value of the tangent velocity magnitude R|ω0| = 2. The mean value of the

input uk is logically equal to the angular velocity ω0 = 1. The phases are balanced
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(a) Control inputs uk (b) Control inputs vk

Figure 2.18: Evolution in time of the control inputs (a) uk and (b) vk corresponding to

the previous simulation of six agents shown in Figure 2.17.

modulo 2π
2

then, there are two groups of three agents whose phases are synchronized

as show in Figure 2.18 (a).

Limited communication graph

In this case, the communication graph considered is distance-dependent and its cor-

responding Laplacian matrix is defined by (2.34). The following simulations show the

influence of the critical communication radius ρ according to conditions (2.35) and

(2.36) respectively.

The simulation shown in Figure 2.19, displays a fleet of six agents governed by the

translation control law from Corollary 2.3. The control parameters and the reference of

the center c(t) are the same that in the previous simulation. The critical communication

radius ρ = 3 satisfies condition (2.35). Therefore, the agents are uniformly distributed

along the circle.

Figure 2.20 shows the evolution of the control inputs vk and uk for all the agents,

obtained from this simulation. In this case, the phases are balanced modulo 2π
6

because

the stable splay state is reached.

In order to confirm the influence of the communication radius ρ to achieve the

uniform distribution, Fig. 2.21 shows a simulation of five agents governed by the coop-

erative control law from Corollary 2.4. The control parameters are ω0 = −1, κ = β = 1,

and K = 0.1 and the desired circular formation is centered at c = (1, 1)T . The reference

of the radius is given by:

R(t) =


R2 if t ≤ 30

R2 − R2−R1

80−30 (t− 30) if 30 < t ≤ 80

R1 if t > 80

where R2 = 7 and R1 = 2. The communication radius ρ = 1.5 satisfies the following
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Figure 2.19: Simulation of six agents governed by the control law from Corollary 2.3

tracking the reference of the center formation in blue. The black circles represent the

communication region of the agents. The figure displays two snapshots corresponding

to different instants, at t = 10s the uniform distribution is not achieved yet and at

t = 50s the splay state formation is stabilized.

(a) Control inputs uk (b) Control inputs vk

Figure 2.20: Evolution of the control inputs (a) uk and (b) vk corresponding to the

previous simulation of six agents shown in Fig 2.19.

inequalities:

2R1 sin
π

2
< ρ < 2R2 sin

π

2

Therefore, according to condition (2.36), the simulation shows how the uniform distri-

bution is not achieved whereas this condition is not satisfied.
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Figure 2.21: Simulation of five agents governed by the control law from Corollary 2.4

which converge to a circular formation tracking a time-varying radius. The black circles

represent the communication region of the agents. The figure displays two snapshots

corresponding to different instants, at t = 20s the uniform distribution is not achieved

yet and at t = 85s the splay state formation is stabilized.

2.6 Conclusions

This chapter presents the first contributions of this thesis dealing with control of a

fleet of non-holonomic agents in order to reach a time-varying circular formation. These

contributions are the initial step to achieve the final objective which is to steer a fleet of

AUVs to the location of an underwater source in a collaborative way. The control laws

presented in this chapter, has been developed to move the center of a circular formation

and to change its radius following a time-varying reference, respectively. In the next

chapter, a method based on these previous contributions which allows considering a

large class of formations, not only circular, will be presented.

In both cases, the functions which define the center and radius of the circular

motion are given external references. Its first and second derivatives are know for all

the vehicles in the fleet. The problems of delays, references corrupted by noise and

packet loss are not considered here.

In order to achieve both objectives, translation and scaling, a control design based

on a model matching approach is developed. The main idea is to transform the orig-

inal system representing the group of vehicles to a transformed system which is time-

invariant with respect to the reference (center or radius) which depends on time. This
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new system is stabilized to a fixed circular motion. The transformed system is a

reference now to the original one and a tracking process is followed to obtain the corre-

sponding control inputs for the vehicles. This method allows us to stabilize the fleet of

agents to time-varying circular motions defined only by few parameters, its center and

its radius. Moreover, thanks to our control strategy, existing cooperative approaches

can be applied directly to improve both time-varying circular motion control laws.

In addition, this Chapter 2 deals with collaborative control strategies in order to

reach the uniformly distribution of the agents along the circular formation. A coop-

erative control term based on potential functions has been added to both translation

and scaling control laws to achieve the uniform distribution. The communication con-

straints are considered using a communication graph. The notion of uniform distribu-

tion can be applied to another class of formations. This will constitute a contribution

of following chapter. Moreover, it will be shown that the uniform distribution of the

vehicles along a circular formation is decisive with a view to drive the fleet in a source-

seeking scenario.



Chapter 3

Formation control design based on

affine transformations

The previous chapter presents two contributions to the field of formation control: trans-

lation and scaling (contraction and expansion) of a circular formation. Even if these

two items are fundamental for the final objective, the source-seeking problem, it might

be interesting to not restrict the formation control law to circular formations. In order

to express these previous contributions in a compact form and with a view to extend

these results to more complex time-varying formations, a new framework based on

affine transformations is introduced.

AUVs
SENSOR

NETWORK

FORMATION

CONTROL
COLLABORATIVE

SOURCE-SEEKING

agents’ position

center

measurements
control

reference

inputs
signal

TIME-VARYING

CIRCULAR FORMATION
GENERAL FRAMEWORK

AFFINE TRANSFORMATIONS

translation

scaling

uniform distribution

elastic formation

motion tracking

cooperative algorithms

Figure 3.1: Contributions of Chapter 3
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This chapter focuses on the design of a novel formation control law using a different

approach. The objective is to generalize the previous control laws, employing affine

transformations, as shown in Figure 3.1. In the sequel, a new general formation control

law is developed to stabilize a group of vehicles to a richer class of formations, not

only circular, and time varying formations. The shape of the formation is defined by a

transformation matrix which is a given reference known to all the agents in the fleet. In

addition, a cooperative control is provided to distribute the agents uniformly along the

formation taking into account the communication constraints, as in previous chapter.

Finally, distributed algorithms are designed to improve the general formation control

law in the case that the reference of the formation center is unknown.

3.1 Problem statement

In this chapter, a large class of planar formations of autonomous agents in a 2-

dimensional space are considered. As in previous Chapter 2, it is assumed that the

agents have no physical extension, that is, that their positions are single points. Con-

sider a group of N identical vehicles modeled with unicycle kinematics subject to a

simple non-holonomic constraint. The dynamics of agents are defined by:

ẋk =vk cos θk (3.1a)

ẏk =vk sin θk (3.1b)

θ̇k =uk (3.1c)

where (xk, yk)
T ∈ R2 is the position vector of each agent k = 1, . . . , N , θk ∈ S1 is its

heading angle and vk, uk are the control inputs.

The aim now is to design control strategies to make the group of AUVs represented

by the system (3.1) converge to several classes of formations defined by a combination

of affine transformations. A general transformation matrix, which is a combination of

affine transformation matrices, will be defined in the next section. These matrices can

be time-varying. The following assumptions are considered in the sequel to deal with

this new contribution:

• Each vehicle k = 1, . . . , N knows its absolute vector position (xk, yk)
T with re-

spect to the inertial frame.

• The general matrix, which defines the desired motion, is known to all the vehicles.

• The communication topology of the fleet of vehicles is defined by an undirected

graph G.

• Communication problems such as, packet loss and time delays are not considered.
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Under these assumptions, this chapter presents two control strategies dealing with

the stabilization of the vehicles to an elastic formation and the motion-tracking control

design. Both contributions which will be mathematically defined in the sequel, are

developed using the same methodology based on affine transformations. In addition,

several collaborative algorithms will be presented to improve both results. For instance,

a cooperative control design will be introduced in order to distribute the vehicles in a

particular desired pattern along the formation and another cooperative approach will

allow the agents to reach the same formation following a reference velocity.

3.2 Definition of affine transformations

The affine transformations are used in the fields of Computer sciences and Robotics,

[2, 70, 72, 107]. They are very useful to express in a simpler manner the coordinates of

a manipulator robot [58] or to relate the local reference frame of a camera to an other

system of coordinates, for instance. In general, an affine transformation is composed

of linear transformations, such that rotation and scaling, and translations. Since a

translation is an affine transformation but not a linear transformation, homogeneous

coordinates are normally used to represent the translation operator by a matrix and

thus, to make it linear.

Homogeneous coordinates are a system of coordinates used in projective geometry

much as Cartesian coordinates are used in Euclidean geometry. They have the ad-

vantage that the coordinates of points, including points at infinity, can be represented

using finite coordinates. Formulas involving homogeneous coordinates are often sim-

pler and more symmetric than their Cartesian counterparts. Homogeneous coordinates

have a range of applications, including computer graphics and 3-D computer vision,

where they allow affine transformations and, in general, projective transformations to

be easily represented by a matrix.

ω0
ω0 ω0 ω0

c(t)

R(t)

α

TRANSLATION SCALING ROTATION

Figure 3.2: Affine transformations applied to formations

The three main affine transformations are translation, rotation and scaling. To ex-
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press these transformations in a matrix way, the homogeneous coordinates are defined,

see [56]. The homogeneous coordinates of a vector z = (zx, zy)
T ∈ R2 can simply be de-

fined as the new vector zh = (zx, zy, 1)T . Let the vectors e1 = (1, 0, 0)T , e2 = (0, 1, 0)T ,

e3 = (0, 0, 1)T be a canonic base of the space R2 expressed in homogeneous coordi-

nates. In the sequel, the basic affine transformations and some of their properties are

presented.

Translation: The translation in the plane T of a point z by a vector c = (cx, cy)
T

corresponds to the following operation T (z) = z+c. This can be expressed in a matrix

multiplication of the form z′ = Tcz
h where

Tc =

 1 0 cx

0 1 cy

0 0 1


and z′ is expressed in homogeneous coordinates. Its inverse exists and satisfies T−1c =

T−c. Note that c can be time-varying. The translation is pertinent to move the center

of formations, see Figure 3.2.

Scaling: A non-uniform scaling expressed in homogeneous coordinates is a transfor-

mation such that z′ = Szh where

S =

 sx 0 0

0 sy 0

0 0 1


and sx > 0, sy > 0. Its inverse matrix contains the inverse of its elements. The

parameters of the scaling can be time-varying. Some examples of scaling can even lead

to ellipses or other closed curves, as shown in Figure 3.2.

Rotation: A rotation through an angle α counterclockwise around the origin can be

written in a matrix form as previously, z′ = Rαz
h, where

Rα =

 cosα − sinα 0

sinα cosα 0

0 0 1


Its inverse exists and satisfies R−1α = RT

α = R−α. The angle α can be time-varying. A

rotation applied to a formation, can change its orientation with respect to the frame

origin, as shown in Figure 3.2.
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3.3 Elastic formation control

For many applications it should be very appropriate to obtain formations with shapes

different from a circle. A result dealing with formation control design to stabilize a

group of agents to closed curves is presented in [119]. In this paper, the agents converge

to the set of trajectories that orbit a single closed curve. In this approach, the authors

require the curve to be convex with definite curvature.

The idea presented in this chapter is to obtain formations with arbitrary shape, not

only circular, and/or time-varying, by deforming a circular formation. The resulting

configurations belong to a richer class of formations, defined mathematically in the

following subsection, and they are called elastic formations.

3.3.1 Definition of elastic formation

A circular formation in the plane can be defined by three basic parameters, its center,

its radius and the angular velocity of rotation. In order to modify these parameters, the

affine transformations are introduced. The objective now is to define a mathematical

formulation of elastic formations. Considering the previous contributions, translation

and scaling of a circle, the main idea is to deform the unit circle in order to obtain the

desired elastic formation. In this context, the unit circle C0 is defined as a circumference

centered at the origin of the frame and with unit radius.

A sequence of affine transformations, which are generated by a combination of the

previous ones, is defined as follows:

G =
I∏
i

J∏
j

K∏
k

SiRαjTck (3.2)

where the subscripts denote the different transformations of the same type which are

applied. Note that, is this case, the product of matrices is not commutative. For

instance, the matrix G = S1S2RαTc is a combination of one translation, one rotation

and two different scaling. Note that the matrix multiplication is not commutative.

However, the general transformation G considered here, is a sequence of the three

affine transformations and the order defined in (3.2) can be changed, for instance, to

G = RαS1TcS2, which defines another different elastic formation.

As it is shown in the previous section, the affine transformations are invertible,

therefore the inverse matrix of the general transformation exists and is denoted by G−1.

Thanks to previous definitions, G and G−1 are differentiable, if their parameters are

differentiable. Note that the operators derivative and invertible are not commutative,

therefore:

(
d

dt
G)−1 6= d

dt
(G−1) = Ġ

−1
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Each combination of affine transformations, expressed by a general matrix G, define

an elastic formation F .

Definition 3.1 An elastic formation F is a curve which results of applying a sequence

of affine transformations G defined by (3.2), to the unit circle C0 such that:

F = G ◦ C0

This elastic formation can be time-varying if at least one element of the transfor-

mation matrices is time-varying. The final formation depends on the sequence used to

define G. The term elastic denote the capability of the formation to move and change

its shape in order, for instance, to avoid an obstacle (see Figure 3.5), to achieve the

source seeking problem, to delimit a polluted region, or to avoid unnecessary energy

waste.

3.3.2 Coordinates transformation

Thanks to the general transformation matrix denoted by G previously presented, sev-

eral elastic formations can be defined according to Definition 3.1. This transformation

matrix allows us to relate the unit circle to a complex desired elastic formation trans-

forming the reference frame, as shown in Figure 3.3.

R = 1

ω0r̂k

ŷ

x̂

C0
unit circle

α

c
rk

y

x

F
elastic formation

F = G ◦ C0

ω0

G

Figure 3.3: General transformation of the unit circle to an elastic formation

Consequently, the control strategy proposed here is composed by the following steps.

First, the position vector of each vehicle is expressed in a transformed reference frame

(x̂, ŷ), according to the general transformation matrix G. Then, the circular control

law presented in Theorem 2.2 is applied to the new transformed system in order to

stabilize the virtual agents to the unit circle. Finally, the control law expressed in the

original frame (x, y) is calculated applying the inverse transformation and the vehicles
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converge to the desired formation which is defined by matrix G applied to the unit

circle, as shown in Figure 3.3.

A similar methodology has been used to reach arbitrarily shaped formations of

mobile robots also in [138, 139]. The authors develop a distributed algorithm to sta-

bilize a group of agents to a formation with arbitrary shape as result of deforming a

regular polygon. In these papers, the agents are modeled by holonomic double inte-

grator model. The objective of this chapter is to deal with this problem considering a

non-holonomic kinematic model for the vehicles.

In the sequel, in order to apply the affine transformations, all the vectors are ex-

pressed in homogeneous coordinates. The position vector of the agent k in homogeneous

coordinates is now defined as rk = (xk, yk, 1)T . The first step is to express this position

vector in the transformed reference frame. According to the definition of an elastic

formation F = G ◦ C0, the following coordinates transformation is introduced:

r̂k = G−1rk (3.3)

where r̂k = (x̂k, ŷk, 1)T is the transformed position vector expressed in homogeneous

coordinates.

ẋk = vk cos θk

θ̇k = uk

uk = (ûk, ṙk,G, Ġ, G̈)

ORIGINAL
SYSTEM

TRANSFORMED
SYSTEM

ψ̇k = ûk

ṙk = Ġr̂k +G ˙̂rk

Coordinates Transformation

Coordinates Transformation

Circular Control Law

ûk = ω0(1 + κ ˙̂r
T

k r̂k)vk = f(ψk,G, Ġ)

ẏk = vk sin θk
˙̂xk = |ω0| cosψk
˙̂yk = |ω0| sinψkrk = (xk, yk, 1)

T

Paley et al. 2005

Inverse

⇓

r̂k = G−1rk

Elastic Control Law

Figure 3.4: Change of coordinates process

Recalling the main idea, explained schematically in Figure 3.4, the objective is

first, to stabilize the new transformed system to a circle with unit radius R0 = 1,

centered at the origin of the transformed reference frame and with angular velocity

ω0 6= 0. Then, the circular control law from [118] is applied to this transformed

system. Finally, applying the inverse transformation, control laws are expressed in the

original framework.
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In order to implement the circular formation control law, the new transformed

system must have constant linear velocity equal to |ω0|. The reasoning is the same

that in the previous chapter for the translation and scaling of the circular formation.

By definition, the linear velocity of a point in the fixed unit circle is v = R0|ω0|.
Therefore the dynamics of the transformed position vector are imposed as:

˙̂xk =|ω0| cosψk (3.4a)

˙̂yk =|ω0| sinψk (3.4b)

ψ̇k =ûk (3.4c)

where ψk represents the angular orientation of the transformed velocity vector ( ˙̂xk, ˙̂yk)
T

and ûk denotes the control input.

3.3.3 Elastic motion control law

The problem now is to design a control law such that the fleet of AUVs converges to an

elastic motion defined by a matrix transformation G which is a sequence of translation,

scaling, and rotation matrices. The parameters of the desired motion are considered

as given external references therefore, the matrix G is known to all the agents. The

velocity of rotation of the agents around the motion center ω0 is also a given parameter.

In a first step, the control law presented in this chapter is not cooperative. Cooperative

control laws to make converge the multi-agent system to an elastic formation will be

presented in following subsections.

Following the main idea introduced previously, the first step to design a control law

to stabilize the agents to an elastic motion is to control the transformed system such

that it converges to the unit circle. Then, all previous analysis for both time-varying

circular control laws from Chapter 2 are pertinent also in this case. The same Lyapunov

function that in the translation and scaling problems, but expressed according with the

new formulation based on homogeneous coordinates, can be written as:

S(r̂, ψ) =
1

2

N∑
k=1

∥∥∥ ˙̂rk − ω0R
∗r̂k

∥∥∥2 ≥ 0 (3.5)

where the matrix R∗ ∈ R3×3 represents a rotation matrix through an angle π
2

counter-

clockwise around the origin (of the corresponding reference frame) denoted by Rπ
2

but

the element which corresponds to the homogeneous coordinates becomes a zero, such

that:

R∗ =

 0 −1 0

1 0 0

0 0 0


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At the equilibrium of this Lyapunov function, when S(r̂, ψ) = 0, the dynamics of

the transformed system (3.4) satisfy ˙̂rk = ω0R
∗r̂k which corresponds to the kinematic

relation for the rotation of the rigid body. Its means that, the virtual transformed

agents (i.e., the position vectors expressed in the transformed frame) are turning around

the origin of the transformed reference frame with rotation velocity equal to ω0 at the

equilibrium.

Evaluating the derivative of S(r̂, ψ) along the solutions of the resulting closed-loop

system (3.4) leads to:

Ṡ(r̂, ψ) =
N∑
k=1

(
Rπ

2

˙̂rkψ̇k − ω0Rπ
2

˙̂rk

)T (
˙̂rk − ω0R

∗r̂k
)

=
N∑
k=1

ω0r̂
T
k

˙̂rk(ω0 − ûk)

According to the circular control from [118] and the new control laws presented in both

previous Theorems 2.4 and 2.6, we impose the closed-loop dynamics of the transformed

system (3.4) by the following control law:

ûk = ω0(1 + κ ˙̂rTk r̂k) (3.6)

Replacing this expression in the derivative of the Lyapunov function the following

inequality holds:

Ṡ(r̂, ψ) = −κ
N∑
k=1

(
ω0r̂

T
k

˙̂rk

)2
≤ 0 (3.7)

Therefore S(r̂, ψ) is a suitable Lyapunov function for this transformed system. Thus,

the solutions converge to the largest invariant set Λ, for which Ṡ = 0. Then, the

transformed system (3.4) asymptotically converges to a circular motion centered at the

origin of the transformed system of coordinates, with unit radius and with constant

angular velocity ω0. Thanks to the change of coordinates (3.3), the dynamic closed-loop

equation corresponding to the transformed system is time-invariant in the transformed

reference frame, hence LaSalle Principle can be applied. As stated above, this result is

a generalization of circular motions, adapting the circular control law from [118] to a

new framework.

Using the previous definitions of elastic formations and the general transformation

matrix, a new general control law is proposed in the following theorem:

Theorem 3.1 (Briñón-Arranz et al. 2011 [21]) Let G be a twice differentiable matrix

function with bounded derivatives resulting of a sequence of affine transformations as

defined in (3.2) and F = G ◦ C0 be the desired elastic formation. Let ω0 6= 0, κ > 0 be

two control parameters such that the following condition is satisfied:

|ω0| 6=
∥∥∥G−1ĠG−1rk

∥∥∥ (3.8)



86 Chapter3. Formation control design based on affine transformations

Then the control law:

vk =
∥∥∥ĠG−1rk + |ω0|G(cosψk, sinψk, 0)T

∥∥∥ (3.9a)

uk =
1

v2k

(
G̈G−1rk + 2ĠĠ

−1
rk + 2ĠG−1ṙk

)T
Rπ

2
ṙk

+
ψ̇k
v2k

(
Ġ
−1

rk + G−1ṙk
)T

RT
π
2
GTRπ

2
ṙk (3.9b)

ψ̇k =ω0

(
1 + κ|ω0|(cosψk, sinψk, 0)G−1rk

)
(3.9c)

with the inner state of the dynamic controller initialized as

ψk(0) = arctan
eT2

d
dt

(G−1rk)(0)

eT1
d
dt

(G−1rk)(0)
+ επ (3.10)

where ε = 0 if eT1
d
dt

(G−1rk)(0) > 0 and ε = 1 otherwise, makes all the agents defined

by (3.4) converge to the elastic formation F . The direction of rotation is determined

by the sign of ω0.

Proof 3.1 The proof of this theorem follows the same steps that in both cases of trans-

lation and scaling control laws. First, thanks to the previous Lyapunov function S(r̂, ψ),

the stability of the transformed system with the control law (3.9c) is proved. The Lya-

punov function is positive definite and from (3.5), is also nonincreasing along the so-

lutions. Considering the change of coordinates (3.3), the dynamic closed-loop equation

corresponding to the transformed system is time-invariant to the transformed refer-

ence frame, hence LaSalle Principle can be applied again. Therefore, solutions for the

reduced system on shape space converge to the largest invariant set Λ where

κr̂Tk
˙̂rk ≡ 0 ∀k

In this set, ψ̇k = ω0, i.e., the transformed position vector describes circles of unit radius.

The transformed system (3.4) is stabilized asymptotically to a circula motion with unit

radius, whose center is the origin of the transformed reference frame and with fixed

angular velocity ω0.

Applying the circular control law from [118] expressed in the transformed frame-

work, the system (3.4) converges to C0. Now the following step is to come back to the

original framework to express the control inputs of the original system vk, uk with re-

spect to the transformed control input ψ̇k. According to the change of coordinates (3.3),

differentiating the definition of r̂k gives

ṙk = Ġr̂k + G ˙̂rk = ĠG−1r̂k + G ˙̂rk
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This equation provides both expressions of the control inputs. Expressing previous equa-

tion in terms of its components, gives:

vk cos θk = eT1 (G ˙̂rk + Ġr̂k)

vk sin θk = eT2 (G ˙̂rk + Ġr̂k)

Therefore, the control input vk is thus straightforwardly given by (3.9a). A more par-

ticular attention is addressed to θ̇k. Using previous equations the following equality

holds:

tan θk =
eT2 (G ˙̂rk + Ġr̂k)

eT1 (G ˙̂rk + Ġr̂k)
(3.11)

Differentiating and according with the change of coordinates, then, from uk = θ̇k, the

control input uk proposed in (3.9b) is retrieved. In order to satisfy the relation (3.11)

for all t, the initial conditions of the inner variable ψk must be imposed as a function of

the initial values of θk. Therefore, since equation (3.11) is satisfied, following relation

holds:

ψk(0) = arctan
eT2

d
dt

(G−1rk)(0)

eT1
d
dt

(G−1rk)(0)
+ επ

where ε = 0 if eT1
d
dt

(G−1rk)(0) > 0 and ε = 1 otherwise.

Note that, this control law, as in the previous translation and scaling previous cases,

has singular points when vk = 0, such that:

vk =
∥∥∥ĠG−1rk + ω0G(cosψk, sinψk, 0)T

∥∥∥ = 0

This singular point occurs if there exists a time tc such that:{ ∥∥∥G−1(tc)Ġ(tc)G
−1(tc)rk(tc)

∥∥∥ = |ω0|
∠G−1(tc)Ġ(tc)G

−1(tc)rk(tc) = ψk(tc)

where ∠ represents the argument of a vector. The equation (3.8) is a sufficient condition

to avoid the singular points.

�

Remark 3.1 Equation (3.8) is a condition imposed to the transformation matrix G to

restrict the variation of its time-varying parameters with respect to the angular velocity

ω0. In the time-invariant case, such that matrix G is not time-varying, this condition

becomes |ω0| 6= 0. In each particular case, condition (3.8) can be expressed in a simple

manner, and correspond to an initialization protocol or a physical limitation.

For instance, to avoid vk = 0 in the case of a time-varying translation G = Tc(t),

the velocity of the moving center cannot be equal to the linear velocity of the agents in

the circle, as it has been shown in Chapter 2. The condition (3.8) becomes R|ω0| 6= ‖ċ‖
where R is the radius of the circle and ċ the velocity of its center.
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Theorem 3.1 presents a general control law expressed in the new framework, to

stabilize a group of agents to an elastic formation. The matrix G is a given reference

for all the agents. Note that each agent converges to the formation independently of

the rest of the fleet.

3.3.4 Tracking strategy

The control law from Theorem 3.1 stabilize the vehicles to an elastic motion defined

by the transformation matrix (3.2). Due to the methodology applied and the change

of coordinates defined by (3.3) the inner variable ψk must be initialized as a function

of the initial conditions of the heading angle θk. In consequence, the control law is not

robust to uncertainties in θk(0).

Based on previous translation and scaling control design from Chapter 2, we use the

same methodology in order to stabilize a fleet of agents modeled by (3.1) to an elastic

motion with time-varying parameters. Following a tracking process, the transformed

system defined by the change of coordinates (3.3) is considered as a reference to the

original system (3.1). The dynamics of the reference system satisfy (3.4) and the closed-

loop dynamics are imposed by the control law (3.6). In this situation, the following

theorem presents another contribution of this chapter.

Theorem 3.2 (Extension of Briñón-Arranz et al. 2011 [21]) Let G be a twice dif-

ferentiable matrix function with bounded derivatives resulting of a sequence of affine

transformations as defined in (3.2) and F = G ◦ C0 be the desired elastic motion.

Let ω0 6= 0, κ > 0, β > 0 be three control parameters and the following condition is

satisfied:

vk > 0 ∀k = 1, . . . , N (3.12)

Then, for all initial conditions r(0), θ(0), the control law:

v̇k =− βvk +
ûkṙ

T
kGRπ

2

˙̂rk + ṙTk

(
G̈G−1rk + βĠG−1rk + 2Ġ ˙̂rk + βG ˙̂rk)

)
vk

(3.13a)

uk =
ûkṙ

T
kRT

π
2
GRπ

2

˙̂rk + ṙTkRT
π
2

(
G̈G−1rk + βĠG−1rk + 2Ġ ˙̂rk + βG ˙̂rk)

)
v2k

(3.13b)

where ˙̂rk = ( ˙̂xk, ˙̂yk, 1)T and ûk are defined by (3.4) and (3.6) respectively, makes all the

agents defined by (3.1) converge to the elastic motion defined by F . The direction of

rotation is determined by the sign of ω0.

Proof 3.2 The proof of this theorem follows the same steps that in both cases of trans-

lation and scaling control laws. First, thanks to the previous Lyapunov function S(r̂, ψ),
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the stability of the transformed system with the control law (3.6) is proved. The Lya-

punov function is positive definite and from (3.7), is also nonincreasing along the so-

lutions. Considering the change of coordinates (3.3), the dynamic closed-loop equation

corresponding to the transformed system is time-invariant to the transformed reference

frame, hence LaSalle Principle can be applied. Therefore, solutions for the reduced

system on shape space converge to the largest invariant set Λ where

κr̂Tk
˙̂rk ≡ 0 ∀k

In this set, ûk = ψ̇k = ω0, i.e., the transformed position vector describes circles of unit

radius. The transformed system (3.4) is stabilized asymptotically to a circular motion

with unit radius, whose center is the origin of the transformed reference frame and with

fixed angular velocity ω0. Applying the circular control law from [118] expressed in the

transformed framework, the system (3.4) converges to C0.
The objective now is to make converge the original system to the reference system

(transformed system). The original system is related to the transformed system through

the matrix G, i.e.:

ṙk → Ġr̂k + G ˙̂rk

In order to achieve this objective the tracking error is defined as follows:

ek = ṙk − (Ġr̂k + G ˙̂rk)

In order to make the error converge to zero, such that ek → 0, we wish to impose the

error dynamics ėk = −βek, where β > 0. Therefore, the error converge exponentially

to zero. Thanks to previous definition of the error the following equation holds when

t→∞:

ṙk = Ġr̂k + G ˙̂rk ∀k = 1, . . . , N

The dynamics of the error equation determines the control law for the original

system (3.1) since:

ėk = r̈k − G̈r̂k − 2Ġ ˙̂rk −G¨̂rk

−β(ṙk − Ġr̂k −G ˙̂rk) =
v̇k
vk

ṙk + ukRπ
2
ṙk − ûkGRπ

2

˙̂rk − G̈r̂k − 2Ġ ˙̂rk

v̇k
vk

ṙk + ukRπ
2
ṙk = −β(ṙk − Ġr̂k −G ˙̂rk) + ûkGRπ

2

˙̂rk + G̈r̂k + 2Ġ ˙̂rk

Multiplying by the above equation by ṙTk and by ṙTkRT
π
2

both following expressions hold:

v̇kvk = −βv2k + βṙTk (Ġr̂k + G ˙̂rk) + ûkṙ
T
kGRπ

2

˙̂rk + ṙTk G̈r̂k + 2ṙTk Ġ ˙̂rk

ukv
2
k = βṙTkRT

π
2
(Ġr̂k + G ˙̂rk) + ûkṙ

T
kRT

π
2
GRπ

2

˙̂rk + ṙTkRT
π
2
G̈r̂k + 2ṙTkRT

π
2
Ġ ˙̂rk
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By definition, this control law enforces exponential convergence of the tracking error

dynamics away from the singularity vk = 0. If condition (3.12) is satisfied then, the

control inputs of (3.13) are respectively obtained.

Note that Theorem 3.2 presents a dynamic control law in which the control inputs

are (v̇k, uk).

�

This result does not depend on the initial conditions of the reference system. There-

fore, for any initial conditions of the original and reference system, θk(0) and ψk(0) re-

spectively, each vehicle k converges to an elastic motion defined by the transformation

matrix G(t) applied to the unit circle.

Theorem 3.2 presents a general control law expressed in the a framework based on

affine transformations, to stabilize a group of agents to an elastic motion. The matrix

G is a given reference for all the agents. Note that each agent converges to the motion

independently of the rest of the fleet. The following subsection presents a collaborative

control to distribute the agents along a formation defined by G.

3.3.5 Uniform distribution along elastic formations

This part is dedicated to the problem of homogenizing the distribution of the agents

along elastic formations. The control law from Theorem 3.2 makes the fleet of agents

converge to the same desired motion. Each agent converges independently to the

same elastic motion, however the phase arrangement of the particles is arbitrary. The

objective now is to stabilize the agents to an elastic formation in a cooperative way.

It is important to mention that, in the unit circle C0, the agents are uniformly

distributed when the angular difference between adjacent vehicles is 2π/N . The dis-

tribution of the agents along an elastic formation F depends on the transformation

matrix G applied to C0.
Following the same cooperative control design presented in Chapter 2, a potential

function U(ψ) is included to reach this objective. Communication constraints are

represented by means of the Lapalcian matrix of the associated communication graph G.

Recalling the matrix notation for the Laplacian matrix presented in previous Chapter 2

such that, L̄ = L ⊗ I2 where ⊗ is the classical Kronecker product, and the matrix

Bm = (cosmψ1, sinmψ1, ..., cosmψN , sinmψN)T contains all the transformed heading

angles.

Corollary 3.1 (Extension of Briñón-Arranz et al. 2011 [21]) Let G be a twice differ-

entiable matrix with bounded derivatives resulting of a sequence of affine transforma-

tions defined in (3.2) and F = G ◦ C0 be the desired elastic formation. Let ω0 6= 0,
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κ > 0,β > 0, and K > 0 be four control parameters and the condition (3.12) be satis-

fied. Let G be the communication graph and L be its corresponding Laplacian matrix.

Then the previous control law (3.13) with the closed-loop dynamics of the reference

system imposed by: {
ûk = ω0

(
1 + κ ˙̂rTk r̂k

)
− ∂U

∂ψk

U(ψ) = K
N

∑bN/2c
m=1

1
2m2 BT

mL̄Bm

(3.14)

where bN/2c is the largest integer less than or equal to N/2, makes all the agents

defined by (3.1) converge to the formation F . The direction of rotation is determined

by the sign of ω0. Moreover, the splay pattern is an extremum point of the potential

U(ψ). If the communication graph is complete (all-to-all communication) the splay

pattern is exponentially stable and the uniform distribution of the angles ψk along C0 is

achieved. Therefore the agents are distributed in the formation F , taking into account

the transformation G.

Proof 3.3 The proof is similar that in the previous Corollary 2.1. The stability is an-

alyzed by the composed Lyapunov function V (r̂, ψ) = κS(r̂, ψ) +U(ψ) whose derivative

is expressed as:

V̇ (r̂, ψ) = κṠ(r̂, ψ) +∇U(ψ)

Based on the previous works [86, 150], the potential function U(ψ) is invariant to rigid

rotations. Therefore, using (3.14), the derivative of the Lyapunov function satisfies:

V̇ (r̂, ψ) = −
N∑
k=1

(
κω0r̂

T
k

˙̂rk −
∂U

∂ψk

)2

≤ 0

If the communication graph is complete the splay state is the only critical point of

U(ψ) global exponentially stable. Therefore, thanks to LaSalle Principle, the system

converges asymptotically to the elastic formation and the agents are distributed along

F taking into account the transformation matrix G.

�

Remark 3.2 This result can be extended for the case of limited communication pre-

serving the same formulation and considering the connectivity properties for the Lapla-

cian matrix which correspond to several communication graphs [12, 111, 150].

The cooperative control law (3.14) is an extension of the previous formation control

law to get elastic formations. The splay pattern (uniform distribution) is an extremum

of the potential function U(ψ) which is added to the transformed control variable ûk.

The previous analysis provided in Chapter 2 in the case of limited communication rage

can also be considered here. In this situation, a communication area ρ is introduced.
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This means that each agent can only receive information from its close neighbors.

However, the geometrical condition imposed to the critical communication radius ρ in

order to guarantee the connectivity of the graph, introduced in Chapter 2, cannot be

expressed with a simple equation for a general transformation matrix G.

3.3.6 Particular cases and simulations

The elastic formation control law from Corollary 3.1 allows expressing a general control

algorithm in a compact form in order to reach several kinds of formations. Afterwards,

some particular examples of sequences of affine transformations are presented in order

to clarify the previous Corollary 3.1. Firstly, it will be shown how the previous circular

control laws can be obtained using this new formulation based on affine transformations.

Then, another class of elastic formations are considered.

Fixed circular formation. The simplest case analyzed is when the transformation

matrix is equal to the identity matrix G = I3. In this case, the change of coordinates

defined by (3.3) is equivalent to r̂k = rk. Hence, the tracking objective can be expressed

as follows:

ṙk → ˙̂rk ⇐⇒ ṙk → ω0R
∗rk

where the matrix R∗ ∈ R3×3 defined previously represents a rotation matrix through an

angle π
2

but erasing the homogeneous coordinate. It corresponds to a circular motion

centered at the origin of coordinates and with unit radius.

The general control law from Theorem 3.2 becomes:

v̇k =− βvk +
ûkṙ

T
kRπ

2

˙̂rk + βṙTk
˙̂rk

vk

uk =
ûkṙ

T
k

˙̂rk + βṙTkRT
π
2

˙̂rk

v2k

This control law makes all the agents defined by (3.1) converge to the unit circle C0
which is centered at the origin of the reference frame and with unit radius.

In order to stabilize a fleet of vehicles to a circular formation with a desired radius

R > 0 and centered at c = (cx, cy)
T , the general transformation G is a sequence of a

time-invariant translation and a time-invariant uniform scaling, i.e., sx = sy = R, such

that G = TcSR. The change of coordinates defined by (3.3) is thus equivalent to

r̂k = S 1
R
T−crk =

rk − ch

R

where ch = (cT , 1)T is the position vector of the center in homogeneous coordinates.

Therefore, the tracking objective can be written such as:

ṙk → R ˙̂rk ⇐⇒ ṙk → Rω0Rπ
2

rk − ch

R
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This expression corresponds to a circular motion centered at c and with radius R. In

this situation, the general control law is expressed as in previous particular case.

Previous works already cited [86, 149, 150] deal with the control problem of a fixed

circular formation. As shown in Theorem 2.1, their approach is cooperative, such that

the center of the final circular formation is not a given parameter for the controller but

the result of a consensus algorithm. The final radius is equal to 1/|ω0|. The control

law presented previously for a fixed circular formation stabilize the agents to a fixed

circular formation with desired and given center and radius. This is the first step to

achieve the time-varying circular control.

Translation of a circular motion. The transformation matrix representing a trans-

lation of a circular formation corresponds logically to a time-varying translation matrix,

such that G(t) = Tc(t) where c(t) ∈ R2 is the time-varying trajectory reference of the

center of the circle. The relation between the transformed system and the original

system defined by (3.3) becomes

r̂k = T−c(t)rk = rk − ch(t)

In this case, the tracking objective is expressed by:

ṙk → ˙̂rk + ċh ⇐⇒ ṙk → ω0R
∗(rk − ch) + ċh

This expression represents the combined motion of a rotation and a translation, i.e., a

circular motion with time-varying center.

The elastic formation control law (3.13) becomes:

v̇k =− βvk +
ûkṙ

T
kRπ

2

˙̂rk + ṙTk (c̈ + β( ˙̂rk + ċ))

vk
(3.16a)

uk =
ûkṙ

T
k

˙̂rk + ṙTkRT
π
2
(c̈ + β( ˙̂rk + ċ))

v2k
(3.16b)

where ch, ċh and c̈h are the references of the center and its first and second derivatives

expressed in homogeneous coordinates respectively.

This is equivalent to the translation control law from Theorem 2.4 using the ho-

mogeneous coordinates. Note that, in this case, the agents are stabilized to a circular

motion with unit radius.

Scaling of a circular motion. The second contribution dealing with time-varying

circular formations presented in Chapter 2 is represented by a time-varying uniform

scaling matrix, G(t) = SR(t), in which sx = sy = R(t) where R(t) is the desired

reference of the radius. The change of coordinates defined by (3.3) is equivalent to

r̂k = S 1
R(t)

rk =
rk
R(t)
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Therefore, the tracking objective can be written such as:

ṙk → Ṙr̂k +R ˙̂rk ⇐⇒ ṙk →
Ṙ

R
rk + ω0R

∗rk

This expression corresponds to a circular motion centered at the origin of the reference

frame and the scaling term allows the circle to track the time-varying radius R.

The following control law obtained from (3.13) is equivalent to the scaling control

law from Theorem 2.6 using the homogeneous coordinates:

v̇k =− βvk +
ûkRṙTkRπ

2

˙̂rk + R̈+βṘ
R

ṙTk rk + (2Ṙ + βR)ṙTk
˙̂rk

vk

uk =
ûkRṙTk

˙̂rk + R̈+βṘ
R

ṙTkRT
π
2
rk + (2Ṙ + βR)ṙTkRT

π
2

˙̂rk

v2k

where R, Ṙ and R̈ are the reference of the radius and its first and second derivatives

respectively.

This result is equivalent to the scaling control law from Theorem 2.6. Note that,

in this case, the agents converge to a circular formation centered at the origin of the

inertial frame.

Combined Motion of a circular motion. The new formulation presented in this

chapter makes possible the combination of several transformations to define a complex

time-varying motion in a more elegant manner. This is the case of the combined

motion problem in which a circular formation with time-varying radius tracks a time-

varying center. Consider the transformation G(t) = Tc(t)SR(t) where the center of the

desired formation c(t) : R→ R2 and its radius R(t) : R→ R+ are twice differentiable

functions with bounded first and second time-derivatives. Applying Corollary 3.1, the

agents converge to a circular formation which follows the time-varying parameters of

the transformation G(t). In this situation, the change of coordinates defined by (3.3)

can be expressed by

r̂k = S 1
R(t)

T−c(t)rk =
rk − ch(t)

R(t)

Therefore, the tracking objective is equivalent to:

ṙk → Ṙr̂k +R ˙̂rk + ċh ⇐⇒ ṙk →
Ṙ

R
(rk − ch) + ω0R

∗rk + ċh

This expression represents the combined motion of a rotation, a translation and a

scaling term, i.e., a circular motion with time-varying radius tracking a time-varying

center.
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The following combined motion control law is obtained from (3.13):

v̇k =− βvk +
ûkRṙTkRπ

2

˙̂rk + R̈+βṘ
R

ṙTk rk + (2Ṙ + βR)ṙTk
˙̂rk + ṙTk (c̈ + βċ)

vk

uk =
ûkRṙTk

˙̂rk + R̈+βṘ
R

ṙTkRT
π
2
rk + (2Ṙ + βR)ṙTkRT

π
2

˙̂rk + ṙTkRT
π
2
(c̈ + βċ)

v2k

This control law make converge the fleet of vehicles to the same circular motion with

time-varying radius R(t) and tracking the time-varying center c(t).

Figure 3.5: Simulation of five agents governed by the control law (3.13) with G(t) =

Tc(t)SR(t). The circular formation, whose center tracks a time-varying reference,

changes its radius in order to avoid the obstacles (black blocks).

Figure 3.5 shows the simulation of five agents governed by the control law from

Corollary 3.1 where G(t) = Tc(t)SR(t). The control law parameters are ω0 = κ = β = 1

and K = 0.1. The time-varying reference of the radius is

R(t) = 5 + 2 cos
2π

500
t

and the reference tracked by the center corresponds to

c(t) = (
1

10
t, 3 sin

2π

300
t)T

The agents converge to the time-varying circular formation for any random initial

conditions (position and heading of the agent) represented in the figure by the blue
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void agents. This is an example of one possible application of the combined motion

control law and a first step to achieve the final objective of designing a collaborative

control to generate both references in a distributed way.

Moreover, the communication radius considered here is ρ = 10 which satisfies the

geometrical condition

ρ > 2Rmax sin
π

N

where Rmax is the up-bound of the reference of the radius, in this case Rmax = 7.

Therefore the agents are distributed along the time-varying circular formation.

Elliptic formation. The general elastic formation control law is pertinent also to

stabilize the fleet to non-circular formations as an ellipse. In this situation, the trans-

formation is a non-uniform time-invariant scaling

G = S =

 a 0 0

0 b 0

0 0 1


where sx = a 6= sy = b. In this situation, the change of coordinates defined by (3.3)

can be expressed by

r̂k = S−1rk =

 1/a 0 0

0 1/b 0

0 0 1

 rk

Applying this transformation matrix to the control law from Theorem 3.2, following

algorithm makes the agents converge to an ellipse centered at the origin which major

axis is equal to a and the minor axis is equal to b:

v̇k =− βvk +
ûkṙ

T
kSRπ

2

˙̂rk + βṙTkS ˙̂rk

vk

uk =
ûkṙ

T
kS ˙̂rk + βṙTkRT

π
2
S ˙̂rk

v2k

Figure 3.6 shows a simulation of five agents with the controller designed in Corol-

lary 3.1 and all-to-all communication assumption. The control law parameters are

ω0 = κ = β = 1 and K = 0.1. The agents are stabilized to the elliptic formation

defined by the non-uniform scaling sx = 5, sy = 1. Moreover the agents are distributed

along the formation considering the transformation of the splay pattern which is stable

in the unit circle (transformed system).
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Figure 3.6: Simulation of five agents stabilized in an elliptic formation. The red line

represents the trajectory of the agents at the final state (elliptic formation). The figure

shows two snapshots. The blue agents represent the initial conditions. The reds ones

represent the final state at t = 400s.

3.3.7 Distributed algorithm applied to elastic formation con-

trol

The first contribution of this chapter is the elastic motion control law presented in

Theorem 3.2. This control law makes a group of agents converge to the curve defined

by the transformation matrix G. This matrix function is a given reference known to

all the agents. Therefore, each agent converge independently to the curve. There is

not cooperation between agents. However, the notion of formation here makes sense

because all the agents converge to the same configuration. Moreover, the improved

control law from Corollary 3.1 provides a collaborative solution to distribute the agents

uniformly along the formation.

Nevertheless, the final objective of this thesis is to solve the source-seeking prob-

lem taking into account the underwater communication problems. In this context,

the agents must be able to collaborate in order to decide the trajectory of the for-

mation center. Therefore, the idea now is to implement a cooperative algorithm to

make the fleet of vehicles converge to the same elastic formation considering that the

transformation matrix G is unknown.

Consensus with a reference velocity. A first approach is to consider that each

agent only knows the first and second derivatives of the matrix which defines the elastic

formation. Then, the consensus protocol is designed to reach the same reference matrix

G for all the agents.

For simplicity, the particular case of a time-varying circular formation is analyzed
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in the sequel. The given reference is thus, the desired velocity of the center. The

objective is for the agents to reach the same circular formation, it means, to reach a

consensus on the center of the circle. Consensus problems with a reference velocity

are already studied in [127, 128, 173] for double-integrator dynamics. In the context

of a moving circle, the velocity of the center is a given reference denoted by vrefc ∈ R2

known to all the vehicles. Besides, the acceleration represented by arefc ∈ R2 is also

known to all the vehicles. Nevertheless, the center trajectory is not defined. This is

coherent with a source-seeking situation in which the gradient of the scalar field of

interest is the desired velocity of the formation center. This information could be a

given reference for the agents, but the center of the circular formation is not a known

parameter. In this situation, each agent computes:

• its own estimated position of the center of the circular formation represented by

pck ∈ R2

• its own estimated velocity of the center denoted by vck ∈ R2

• its own estimated acceleration of the center represented by ack ∈ R2

AUVs

TRANSLATION
CONTROL

CONSENSUS

ALGORITHM

agents’ position
control
inputs

pck vck ack

VELOCITY

REFERENCE

vrefc
arefc

Figure 3.7: Control strategy: consensus with a reference velocity

In order to keep the formation, the position of the center calculated for all the

vehicles must be the same. Summarizing, the proposed control strategy, which is

explained schematically in Figure 3.7, is composed by the following steps:

1. Each agent computes its own estimated position of the center and its derivatives.

2. A distributed algorithm is implemented to reach consensus on the position of the

formation center using the external references of the desired velocity of the center

and its acceleration.
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3. The inputs of the translation control law for each agent are obtained from the

consensus algorithm.

In order to fulfil the previous items, a new dynamic variable to estimate the center

of the formation is introduced. This variable representing the center of the circle

computed by each agent, satisfies the following dynamics:

ṗck =vck (3.20a)

v̇ck =ack (3.20b)

The dynamics of the estimated center pck correspond to a double-integrator model

which was studied in the survey on multi-agent systems from Chapter 1. This choice

comes from the fact that in the translation control approach presented here, the refer-

ence of the center and its first and second derivatives are needed to compute the control

law (3.16). Therefore, to be consistent with (3.16), the double-integrator dynamics are

the most appropriate.

As explained before, the main idea is to implement a consensus algorithm on the

estimated position of the formation center in order to stabilize the fleet of agents to

the same desired formation. Consensus is reached for (3.20) if for all pck(0) and vck(0),

then pck(t)→ pcj(t) and vck(t)→ vrefc (t) asymptotically as t→∞.

Based on [128, 131], the following consensus algorithm with a group reference ve-

locity can be applied here:

ack = arefc − α(vck − vrefc )−
∑
j∈Nk

(pck − pcj) (3.21)

where α is a positive gain and Nk represents the neighborhood of agent k according

to the communication graph. The author of [128] shows that this consensus algorithm

converges when the directed communication graph has a spanning tree. This is a

generalization of the results presented in [127] for directed graphs. In this chapter, the

communication between the vehicles is considered undirected, such that the Laplacian

matrix of the communication graph is always symmetric. Therefore all its eigenvalues

are real and nonnegative, see Appendix A. In consequence, the result on consensus

algorithms with a group reference velocity from [128] can be rewritten for undirected

graphs as follows:

Theorem 3.3 (Ren 2008 [128]) Consider the consensus algorithm (3.21), if the undi-

rected communication graph between the agents is connected and α > 0 then pck(t) →
pcj(t) and vck(t)→ vrefc (t) asymptotically as t→∞ for all k, j.

Proof 3.4 The details of the proof can be found in [128] for the general case of a

directed graph. The principal properties of convergence of this algorithm can be also
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analyzed by a Lyapunov function. Rewriting the consensus algorithm with a group

reference velocity in a vectorial form, previous equation (3.21) becomes:

ac = 1⊗ arefc − α(vc − 1⊗ vrefc )− Lpc (3.22)

where pc = (pTc1, . . . ,p
T
cN)T represents the vector of all the local positions of the center

computed by each agent (analogically the vectors vc and ac) and 1 = (1, . . . , 1)T ∈ RN is

the vector of ones. Considering that prefc represents the reference trajectory associated

to the given vrefc , a new variable χ = (χ1, . . . , χN)T is introduced to express the following

error equation:

χ = pc − 1⊗ prefc

By definition, the vector of ones 1 is always a right eigenvector of the Laplacian

matrix L corresponding to the eigenvalue 0. Using this property of the Laplacian matrix,

the previous compact form of the consensus algorithm (3.22) can be rewritten as:

ac − 1⊗ arefc = −α(vc − 1⊗ vrefc )− L(pc − 1⊗ prefc )

According to this equation, the dynamics of the error are expressed using the new vari-

able χ, and thus the following equation holds:

χ̈ = −αχ̇− Lχ (3.23)

which corresponds to a simple double-integrator consensus algorithm. Choosing the

following Lyapunov function

V (χ) =
1

2
χ̇T χ̇+

1

2
χTLχ ≥ 0

At the equilibrium when V (χ) = 0, the dynamics of the equation error satisfy:

χ̇T χ̇+ χTLχ ≡ 0

If the communication graph is connected the vector of ones 1 is the only eigenvector

of L associated to the zero eigenvalue. Therefore, the zero minimum of the Lyapunov

function is reached when:

χ̇ = 0 and χ = χ01

where χ0 is a constant value.

Differentiating and taking into account equation (3.23), then

V̇ (χ) = χ̈T χ̇+ χ̇TLχ = −αχ̇T χ̇− χTLχ̇+ χ̇TLχ

The communication graph is undirected, hence the Laplacian matrix is symmetric.

Therefore, the derivative of the Lyapunov function is given by:

V̇ (χ) = −αχ̇T χ̇ = −α‖χ̇‖2 ≤ 0
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In conclusion, for all χk(0) and χ̇k(0), then χk(t)→ χj(t) and χ̇k(t)→ 0 asymptotically

as t → ∞. Therefore, for all pck(0) and vck(0), pck(t) → pcj(t) and vck(t) → vrefc (t)

asymptotically as t→∞.

�

This previous consensus algorithm allows the agents to reach an agreement on the

trajectory of the center of the circular formation from a given velocity reference known

to all the agents. The center trajectory and its first and second derivatives computed

for each agent are the inputs of the translation control law presented in Chapter 2.

The transformed system is now defined by

r̂k = rk − pck ∀k = 1, ..., N

where the dynamics of the transformed system ˙̂rk satisfy (3.4) and the closed-loop

dynamics are imposed by the control law (3.6). Therefore, this previous control law

developed to move the center of a circular formation following a given reference be-

comes:

v̇k =− βvk +
ûkṙ

T
kRπ

2

˙̂rk + ṙTk (ack + β( ˙̂rk + vck))

vk
(3.24a)

uk =
ûkṙ

T
k

˙̂rk + ṙTkRT
π
2
(ack + β( ˙̂rk + vck))

v2k
(3.24b)

where the position of agent k is represented by rk = (xk, yk)
T ∈ R2, and the position

of the center computed for agent k and its velocity and acceleration are pck, vck and

ack respectively, obtained from the consensus algorithm.

To formalize this new collaborative approach the following corollary holds.

Corollary 3.2 Let vref and aref be the velocity and acceleration references of the de-

sired center formation. Let ω0 6= 0, κ > 0, β > 0 and α > 0 be four control parameters

such that the following condition is satisfied:

vk > 0 ∀k = 1, . . . , N

Then the control law (3.24) makes each agent defined by (3.1) converge to a circular

motion with unit radius and time-varying center pck. Thanks to the consensus algorithm

(3.21) applied to the center dynamics (3.20), if the undirected communication graph is

connected then all the centers reach a consensus asymptotically and their velocities

follow the reference velocity vref . The direction of rotation is determined by the sign

of ω0.
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Proof 3.5 As it is shown in Figure 3.7, the whole system consists of two uncoupled

systems. The first one is composed of the dynamics of the multi-agent system (3.4) and

the translation control law which stabilize each agent k = 1, . . . , N to a circular motion

whose center is defined by pck. The translation control law uses the first and second

derivatives of the reference of the center. Thanks to Theorem 2.3 from Chapter 2,

the control law (3.24) makes each agent converge to a circular motion with center the

time-varying reference pck.

In the other hand, the second system represents a consensus algorithm which is

implemented to reach an agreement on the center of the formation for all the agents.

Thanks to Theorem 3.3, the collaborative algorithm (3.21) makes system (3.20) reach

consensus asymptotically. Therefore, asymptotically, all the computed centers satisfy

pck = pcj = c0 ∀k, j. Consequently, all the vehicles describes a circular motion

following the time-varying center c0.

�

Remark 3.3 Note that this result can be applied to other time-varying elastic for-

mations, such as circular formation with time-varying radius or an elliptic formation

tracking a time-varying reference of its center. In these cases, the consensus algorithm

will be applied to the time-varying parameters of the general transformation matrix G

which defines the elastic formation.

Simulation Results. The consensus algorithm (3.21) is implemented to generate

the reference of the center circular formation in order to apply the translation control

law (3.24). The group reference velocity is given by

vrefc = (0.2, 0.24 cos 0.08t)T

and the initial conditions of the position of the center are different for each agent.

Figure 3.8 shows a simulation of five agents governed by the translation control law

(3.24) with the consensus algorithm (3.21) to provide the reference of the center of the

circular formation. The control parameters are R = 2, ω0 = κ = β = 1 and α = 0.1.

The communication graph is a ring, therefore is connected. The figure shows three

snapshots, the initial conditions, and two states for t = 45s and t = 116s. The red

circles represent the circular motion corresponding to each agent at each instant. The

black lines represent the trajectories of each estimated center. This simulation shows

that the center of each agent achieve consensus, then the common center tracks the

given reference velocity and the circular formation is kept.

Figure 3.9 displays the evolution of the trajectories of centers pck computed by each

agent k for the same simulation of five agents. Starting from any initial condition, the

collaborative algorithm (3.21) makes the agents reach consensus on the center position.
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Figure 3.8: Simulation of five agents governed by the control law (3.24) where the center

computed by each agent results from the consensus algorithm (3.21). The black lines

represent the centers’ trajectories.

(a) X-coordinate of the centers’ positions (b) Y-coordinate of the centers’ positions

Figure 3.9: Evolution of the centers’ positions pck = (pcxk, pcyk)
T corresponding to the

previous simulation of five agents shown in Figure 3.8.

In Figure 3.10, the evolution of the centers’ velocities vck computed by each agent

k, is compared to the reference velocity vrefc represented by the black dashed line. For

any initial conditions, all the centers’ velocities converge asymptotically to the external

reference.

Consensus with reference velocity corrupted by noise. Previous collabora-

tive algorithm can be improved by considering that each agent receives the external

reference velocity corrupted by noise. This assumption is more realistic in underwa-

ter scenarios, in which, the signals transmitted through water are exposed to some
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(a) X-coordinate of the centers’ velocities (b) Y-coordinate of the centers’ velocities

Figure 3.10: Evolution of the centers’ velocities vck = (vcxk, vcyk)
T corresponding to

the previous simulation of five agents shown in Figure 3.8 and the reference velocity

vrefc = (vrefcx , v
ref
cy )T (black dashed line).

perturbations such as currents and fading.

It is assumed that the external reference received for each agent is then s(t) =

vrefc +w1, where w1 ∈ R2 is a vector whose components are Gaussian zero-mean noise.

Based on previous corollary, an extension of the consensus with a group reference

velocity is proposed.

Proposition 3.1 Let vref and aref be the references of velocity and acceleration of

the desired formation center, both corrupted by bounded zero-mean noise represented

by w1 and w2 respectively. Let ω0 6= 0, κ > 0, β > 0 and α > 0 be four control

parameters. Then the control law (3.24) makes each agent defined by (3.4) converge to

a circular motion with unit radius and time-varying center pck. Thanks to the consensus

algorithm:

ack = arefc + w2 − α(vck − vrefc −w1)−
∑
j∈Nk

(pck − pcj) (3.25)

all the centers reach a consensus asymptotically and their velocities follow the reference

velocity vref . The direction of rotation is determined by the sign of ω0.

Intuitively, if the noise is bounded then, the previous algorithm reaches consensus in

a closed ball centered at the consensus final value. However, the mathematical details

of the proof of this proposition have to be analyzed formally.

Simulation Results. The reference of the center formation used in the translation

control law (3.24) is generated from consensus algorithm (3.25). The group reference
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velocity is the same that in previous case, and the initial conditions of the position of

the center are different for each agent.

Figure 3.11: Simulation of five agents governed by the control law (3.24) where the

center computed by each agent results from the consensus algorithm (3.25). The black

lines represent the centers’ trajectories.

Figure 3.11 shows a simulation of five agents governed by the translation control

law (3.24) with the consensus algorithm (3.25) to provide the reference of the center

of the circular formation. The control parameters are R = 2, ω0 = κ = β = 1 and

α = 0.1. The communication graph is a ring, therefore is connected. The figure shows

three snapshots, the initial conditions, and two states for t = 45s and t = 116s. The

red circles represent the circular motion corresponding to each agent in each instant.

The black lines represent the trajectories of each estimated center.

(a) X-coordinate of the centers’ position (b) Y-coordinate of the centers’ positions

Figure 3.12: Evolution of the centers’ positions pck = (pcxk, pcyk)
T corresponding to the

previous simulation of five agents shown in Figure 3.11.
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(a) X-coordinate of the centers’ velocities (b) Y-coordinate of the centers’ velocities

Figure 3.13: Evolution of the centers’ velocities vck = (vcxk, vcyk)
T corresponding to

the previous simulation of five agents shown in Figure 3.11 and the reference velocity

vrefc = (vrefcx , v
ref
cy )T corrupted by noise.

Figure 3.12 displays the evolution of the trajectories of centers pck computed by

each agent k for the same simulation of five agents. Starting from any initial condition,

the collaborative algorithm (3.21) makes the agents to reach consensus on the center

position.

In Figure 3.13, the evolution of the centers’ velocities vck computed by each agent

k, is compared to the reference velocity vrefc represented by the dashed black line. For

any initial conditions, all the centers’ velocities converge asymptotically to the external

reference corrupted by noise.

3.4 Motion-tracking based on affine transformations

The previous section presents a first result on formation control based on affine trans-

formations. This approach provides a general framework very powerful in order to

express a richer class of curves including time-varying formations. According to this

new framework, a motion-tracking control design which use the affine transformations

to define a desired reference velocity is presented in this section. The general con-

trol law proposed enables to track a reference velocity and to obtain several motions

expressed with few time-varying parameters.

3.4.1 Definition of motion-tracking

Consider the standard vehicle model commonly used in the literature to model AUVs

restricted kinematics presented before (3.1). It corresponds to a kinematic unicycle
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fitting with model properties subject to a simple non-holonomic constraint. All the

vectors are expressed in homogeneous coordinates, then rk = (xk, yk, 1)T is the position

vector of the agent k expressed in homogeneous coordinates, θk the heading angle and

vk, θ̇k are the control inputs. Note that v ∈ RN and θ ∈ RN represent the vector of all

velocities and the vector of all heading angles respectively.

The objective is for the agents to follow different reference velocities and to con-

verge to different formations in a cooperative way. The idea is now to use the general

transformation matrix G defined by (3.2) to characterize a class of motion. The de-

sired trajectory of the motion is the result of applying the transformation matrix to a

constant vector. Therefore, the idea is to relate some constant vector to a time-varying

vector which point to the trajectory of the motion desired for the vehicles. This aim

can be expressed as:

rk = Gr0

where r0 is a constant vector. The differentiation of previous equation leads to:

ṙk = Ġr0 = ĠG−1rk (3.26)

This equation represents the objective in terms of velocity. Therefore, we consider a

dynamic control in the velocity in order to deal with this control problem. In previous

section a definition of elastic formation based on affine transformations is provided.

Now, motion-tracking is defined as a common motion of a group of agents so that all

the agents follow the same kind of motion (circular, rectilinear, periodical) in terms of

velocity. It is important to recall that this definition does not imply trajectory tracking

because each agent describes a different trajectory. This can be considered as a velocity

tracking due to the fact that the group of agents follows the same reference velocity.

3.4.2 Motion-tracking control design

The purpose is now to design a general and compact control law to stabilize a fleet of

vehicles to several formation motions using the affine transformations.

With a view to analyze the stability of the system, the following Lyapunov function

is proposed:

S(r,v, θ) =
1

2

N∑
k=1

∥∥∥ṙk − ĠG−1rk

∥∥∥2 ≥ 0 (3.27)

Note that when S(r,v, θ) = 0 the dynamics of the system satisfy ṙk = ĠG−1rk which

is the objective defined in (3.26). Evaluating the derivative of S(r,v, θ) along the

solutions of system (3.1) leads to:

Ṡ(r,v, ψ) =
N∑
k=1

(
r̈k − G̈G−1rk − ĠĠ

−1
rk − ĠG−1ṙk

)T (
ṙk − ĠG−1rk

)
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In this case, a transformed system which dynamics have been enforced to have constant

velocity is not considered. Unlike the previous cases of time-varying circular formations

and elastic formations, the Lyapunov function depends on the position and velocity

vector of the AUVs. Therefore, differentiating this Lyapunov function, the first deriva-

tive of the velocity vk appears explicitly. Due to the expression of the second derivative

of the position vector rk, such that

r̈k =
v̇k
vk

ṙk + θ̇kR
∗ṙk (3.28)

where R∗ is the rotation matrix through an angle π
2

but erasing the homogeneous

coordinate, the two control inputs become u1k = v̇k and u2k = θ̇k. In consequence, a

dynamic velocity control law is proposed in the following theorem:

Theorem 3.4 (Briñón-Arranz et al. 2011 [18]) Let G be a twice differentiable matrix

with bounded derivatives resulting from a sequence of affine transformations defined in

(3.2). Let κ > 0 be a control parameter and the condition vk 6= 0 is satisfied. Then the

control law:

u1k = −κvk +
1

vk
ṙTk ĠG−1ṙk +

1

vk
ṙTk

(
G̈G−1 + ĠĠ

−1
+ κĠG−1

)
rk (3.29a)

u2k =
1

v2k
ṙTkR∗T ĠG−1ṙk +

1

v2k
ṙTkR∗T

(
G̈G−1 + ĠĠ

−1
+ κĠG−1

)
rk (3.29b)

makes all the agents defined by (3.1) converge to the motion defined by the transfor-

mation G applied to the constant vector r0.

Proof 3.6 The Lyapunov function defined by (3.27) is positive semidefinite. Evaluat-

ing the derivative of the Lyapunov function along the solution of the resulted closed-loop

system (3.1) and using the equation (3.28), Ṡ(r, v, ψ) can be rewritten as:

Ṡ(r, v, ψ) =
N∑
k=1

(
u1k
vk

ṙk + u2kR
∗ṙk − G̈G−1rk − ĠĠ

−1
rk − ĠG−1ṙk

)T
·
(

ṙk − ĠG−1rk
)

Considering the previous control law (3.29) the derivative of the Lyapunov function

becomes:

Ṡ(r, v, ψ) = −κ
N∑
k=1

∥∥∥ṙk − ĠG−1rk

∥∥∥2 = −2κS(r, v, θ) ≤ 0

Therefore S(r, v, θ) is nonincreasing along the solutions. The solutions thus converge

to the largest invariant set, Λ, for which Ṡ = 0. Then, system (3.1) asymptotically

reaches the conditions corresponding to the following dynamics of the vehicles:

ṙk = ĠG−1rk
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which describe a formation motion defined by the transformation matrix G.

�

Remark 3.4 The control law presented in the previous theorem has a singular points

when vk = 0. A mathematical condition to avoid this situation in all cases cannot

straightforward be obtained. Nevertheless, the simulation results for some particular

cases presented in the following subsections, show that, if the initial velocities are posi-

tive for all the agents, and the time-varying formation motion represented by G varies

slowly, the singular point is avoided.

This previous theorem presents a general result to stabilize the agents to a mo-

tion whose characteristics (shape, speed) are defined by the matrix G. The following

subsections present particular types of motions to show the applicability of this new

framework.

3.4.3 Particular cases and simulations

Velocity tracking. First of all, the simplest case when the transformation is the

identity matrix, that is G = I3, is studied. The objective becomes ṙk = 0. Thus, the

control inputs become:

u1k = −κvk (3.30)

u2k = 0 (3.31)

It is clear that in such situation, the objective only concerns the velocity and no

constraint appears on the final position of the agents. These final positions depend on

the initial conditions of the agents. This fact is important to understand the following

cases.

The trajectory tracking problem can be expressed as a transformation, specifically

a translation by the reference vector rref = (xref , yref ). Thus, the objective is:

rk = Trref r0 =

 1 0 xref

0 1 yref

0 0 1

 (0, 0, 1)T = rhref

where rhref is the reference position vector in homogeneous coordinates. This objective

expressed in the new formulation presented before leads with:

ṙk = ṪrrefT
−1
rref

rk = ṙhref

Therefore, the system will be able to follow a reference velocity. According to Theo-

rem 3.4, and considering G = Trref then, the control law dealing with this problem is
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written as:

u1k = −κvk +
1

vk
ṙTk (r̈href + κṙhref ) (3.32a)

u2k =
1

v2k
ṙTkR∗T (r̈href + κṙhref ) (3.32b)

Note that, the agents follow the reference velocity and not the exact reference trajec-

tory. This is not a trajectory tracking or path following problem. The formulation of

the problem allows the agents to track the same velocity. In this thesis, this result

is defined as a velocity tracking, as shown in Figure 3.14. Note that parallel motion

problem analyzed in [149] loads to a straight line reference. Here, the control law (3.32)

allows considering more general class of planar motions. Nevertheless, our approach is

not cooperative and each vehicle converge to the desired motion independently.

Figure 3.14: Simulation of five agents governed by (3.32). The blue lines represent

the trajectories of the agents following a reference velocity given by the red dashed line

ṙref = (1,−2 sin t
2
). The figure shows two snapshots. The blue agents represent the

initial conditions. The red ones represent the final state at t = 20s.

Circular trajectory. A circular trajectory centered at the origin of the reference

frame and with unit radius is described using the following parametrization in time:

x(t) = cos(ω0t)

y(t) = sin(ω0t)

where ω0 6= 0 is the angular velocity of the rotation. In this case, the transformation

matrix G becomes a time-varying rotation by angle ω0t, that is, G = Rω0t. Conse-

quently, the objective can be expressed as:

ṙk = Ṙω0tR
−1
ω0t

rk = ω0R
∗rk



3.4. Motion-tracking based on affine transformations 111

Adapting this objective to Theorem 3.4 the following control law is obtained:

u1k = −κvk + κ
ω0

vk
ṙTkR∗rk (3.33a)

u2k = ω0 + κ
ω0

v2k
ṙTk rk (3.33b)

Once more, this formulation ensures that the agents converge to a circular motion.

This leads to the same problem analyzed in [118]. However, no conditions on its

radius is stated for now. As in the previous case, the initial conditions will influence

the final radius. Note that the radius of the final circle of each agent satisfies Rk =

vk∞/ω0, where vk∞ = limt→∞vk denotes the final velocity of agent k = 1, . . . , N .

According to equation (3.33), this final value vk∞ is related to the initial conditions of

the agent. Therefore, the radius of the final circular motion of each agent depends of

its initial conditions and thus, all vehicle converge to circular trajectories with different

radius. Applying different sequences of transformations the agents can track a time-

varying circular trajectories with a moving center and not constant radius. In order to

achieve the same circle, and for more complex cases, for instance the same formation,

a cooperative control is introduced later.

Not circular formations. A particular case of the contraction or scaling of a circular

motion can be considered when the radius depends on the agent position. In this way,

many curves can be expressed by scaling a circle. For example, a non-uniform time-

invariant scaling, as previously presented in the definition of affine transformations,

corresponds to

S =

 a 0 0

0 b 0

0 0 1


where a and b are some positive constant parameters which can define the mayor and

minor axes of an ellipse respectively. In general, a scaling matrix depending on the

position of the agent can be expressed as

Sk =

 Rk 0 0

0 Rk 0

0 0 1


where the uniform scaling parameter Rk is a function leading to:

Rk = R(αk)

tanαk =
yk
xk

The transformation matrices dealing with these problems are G = SRω0t and Gk =

SkRω0t respectively. The following analysis focuses on this second formulation with a
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Figure 3.15: Simulation of five agents governed by the control law (3.34) and the refer-

ence of the radius Rk = cos 6αk + 5. The red line represents the trajectory of one agent

and the blue ones represent the final curves achieves for each agent. The figure shows

two snapshots. The blue agents represent the initial conditions. The red ones represent

the final state t = 50s.

transformation matrix depending on the position of the agent Gk. Let R : R→ R+ be

a twice differentiable function with bounded first and second derivatives, as in (3.34)

and denote Rk = R(αk) the value of the function at position rk of agent k. The previous

control law (3.29) becomes:

u1k = −κvk +
Ṙk

Rk

vk + κ
ω0

vk
ṙTkR∗rk +

RkR̈k + κRkṘk − Ṙ2
k

vkR2
k

ṙTk rk (3.34a)

u2k = ω0 + κ
ω0

v2k
ṙTk rk +

RkR̈k + κRkṘk − Ṙ2
k

vkR2
k

ṙTk rk (3.34b)

Note that once more, the final trajectory of each agent is related to its final velocity

which depends on the initial conditions. Therefore, each agent converge to a different

curve but with the same shape and velocity of rotation, as shown in Figure 3.15.

In the sequel, a cooperative method which ensures that the trajectories of each

agent converge to the same curve is presented. In this situation, the agents reach a

consensus on some variable in order to achieve the same formation.

3.4.4 Cooperative control design

The general formulation presented in Theorem 3.4 allows us to govern a group of agents

to follow a reference velocity or to converge to a time-varying motion defined by the

matrix G. Note that each agent converges to a different trajectory depending on the
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initial conditions but with the same shape. The aim now is to develop a cooperative

control to make the agents converge to the same formation.

This subsection presents collaborative control laws to obtain consensus on velocities

and on the heading angles to reach the same formation and the uniform distribution

of the agents along the formation respectively.

Consensus on velocities for circular formation. In a circular motion, there

exists a relation between the linear velocity and the radius of the circle. Due to the

relation v = Rω0, whose implications are extensively analyzed in Chapter 2, if the

linear velocity of all the agents converge to the same value v0 then, all the vehicles turn

around the same circular trajectory with radius R = v0/ω0. The conclusion is that,

to reach the same circular formation, the agents need to reach the same final velocity.

Consequently, a consensus algorithm is adding to the previous control law.

The following composed Lyapunov function is proposed to analyze the system:

V (r,v, θ) = κ1S(r,v, θ) + κ2Q(v) (3.35)

where κ1 > 0, κ2 > 0 are two control parameters, S(r,v, θ) is the previous Lyapunov

function defined in (3.27) which is used in the analysis of the formation motion control

design and the quadratic form Q(v) is expressed by the following equation:

Q(v) =
1

2
vTLv

where L represents the Laplacian matrix of the communication graph. According to

the properties of the Laplacian matrix (see Appendix A), L is positive semidefinite

because the communication graph considered is undirected. Hence, Q(v) is nonneg-

ative. Moreover, if the communication graph is connected then, the only eigenvector

associated to the eigenvalue 0 is the vector of ones 1 ∈ RN . Therefore, the quadratic

form reaches its minimum only when v = v01 where v0 is a constant value, that is,

when all agents have the same linear velocity.

In the sequel, a cooperative control law which stabilizes a multi-agent system to

circular formation is proposed. The idea is to introduce an additional control term to

the previous control law (3.33) which assures a consensus on the velocities of all the

agents.

Theorem 3.5 (Briñón-Arranz et al. 2011 [18]) Let ω0 6= 0, κ1 > 0 and κ2 > 0 be three

control parameters and the condition vk 6= 0 is satisfied. Let G be the communication

graph and L be the corresponding Laplacian matrix, where Lk represents its kth row.
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Then the control law:

u1k = −κ1vk + κ1
ω0

vk
ṙTkR∗rk − κ2Lkv (3.36a)

u2k = ω0 + κ1
ω0

v2k
ṙTk rk (3.36b)

makes all the agents defined by (3.1) converge to a circular motion centered at the

origin and the direction of the rotation defined by the sign of ω0. Moreover, if the com-

munication graph G is connected, all the agents converge to the same circular formation

whose radius is obtained through a consensus algorithm on the agents’ velocities.

Proof 3.7 Consider the Lyapunov function (3.35). Its derivative is expressed as fol-

lows:

V̇ (r, v, θ) = κ1Ṡ(r, v, θ) + κ2Q̇(v)

Evaluating the derivative of V (r, v, θ) along the solutions of system (3.1) and using

the equation (3.28) leads to:

V̇ (r, v, θ) = κ1

N∑
k=1

(r̈k − ω0R
∗ṙk)

T (ṙk − ω0R
∗rk) + κ2v̇

TLv

=
N∑
k=1

u1k

(
κ1vk − κ1

ω0

vk
ṙTkR∗rk + κ2Lkv

)

+κ1

N∑
k=1

(ω0 − u1k)ω0ṙ
T
k rk

Considering the control law (3.36) the previous equation leads to:

V̇ (r, v, θ) = −
N∑
k=1

(
κ1vk − κ1

ω0

vk
ṙTkR∗rk − κ2Lkv

)2

− κ1
N∑
k=1

(
ω0

vk
ṙTk rk)

2 ≤ 0

Therefore, V (r, v, θ) is a suitable Lyapunov function for this system. If the com-

munication graph G is connected, the equilibrium point of the quadratic form Q(v) is

asymptotically stable, thus all the agents converge to the same circular formation.

�

Previous works already cited [86, 149, 150] deal with the circular formation problem.

The agents have unit velocity and converge to a circle of radius R = 1/ω0. In the control

laws presented in Chapter 2 to stabilize the agents to time-varying circular motions,

the radius is a parameter of the control law or a desired time-varying reference. In the

approach presented in Theorem 3.5, the consensus algorithm provides the final radius

of the circular formation. Therefore, the final radius of the circular formation depends

on the initial velocities of the agents.
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Remark 3.5 Based on [111] and [150], if the graph is uniformly connected (see Ap-

pendix A), the collaborative control law from Theorem 3.5 makes the agents converge

to the same circular formation considering time-varying and switched communication

graphs.

Uniform distribution along a circular formation. The methodology developed

to accomplish the general control law presented in Theorem 3.4 does not make use

of a transformed system. Hence, the potential function already defined in previous

sections and applied to distribute the vehicles along a formation depends now on the

real heading angle of the vehicles θk. We recall the matrix notation for the Laplacian

matrix such that, L̄ = L ⊗ I2 where ⊗ is the classical Kronecker product, and the

matrix Bm = (cosmθ1, sinmθ1, ..., cosmθN , sinmθN)T contains all the heading angles

of the agents.

The following corollary adds a potential function to the control input u2k whose

minimum corresponds to the uniform distribution of the agents along the circular

formation.

Corollary 3.3 (Briñón-Arranz et al. 2011 [18]) Let ω0 6= 0, κ1 > 0, κ2 > 0, and

K > 0 be four control parameters. Let G be the communication graph and L be the

corresponding Laplacian matrix. Then the control law:

u1k = −κ1vk + κ1
ω0

vk
ṙTkR∗rk − κ2Lkv (3.37a)

u2k = ω0 + κ1
ω0

v2k
ṙTk rk −

∂U

∂θk
(3.37b)

and

U(θ) = −K
N

bN/2c∑
m=1

1

2m2
BT
mL̄Bm (3.38)

where bN/2c is the largest integer less than or equal to N/2, makes all the agents defined

by (3.1) converge to a circular formation centered at the origin and the direction of the

rotation defined by the sign of ω0. Moreover, if the communication graph G is almost

d0-circular, the radius of the circle is obtained through a consensus algorithm on the

agents’ velocities and the uniform distribution of the agents along the circle is achieved.

Proof 3.8 The stability is analyzed by the composed Lyapunov function

V1(r, v, θ) = V (r, v, θ) + U(θ)

whose derivative is expressed as

V̇1(r, v, θ) = V̇ (r, v, θ) +∇U(θ)



116 Chapter3. Formation control design based on affine transformations

Based on previous works of [149, 150], the potential function U(θ) is invariant to rigid

rotations. Therefore, using (3.37) the derivative of the Lyapunov function satisfies

V̇1(r, v, θ) ≤ 0 and the uniform distribution of the agents along the circular formation

is locally exponentially stable. The details of the proof are similar than in previous

Theorem 2.1 from Chapter 2.

�

Simulation results. This paragraph presents the simulation results in order to show

the performance of previous collaborative control laws. The control law (3.37) is applied

to the multi-agent system (3.4) with ω0 = 1, κ1 = 0.1, κ2 = 0.1 and K = 0.1. The

communication graph is a ring, therefore is connected.

Figure 3.16: Simulation of five agents governed by the control law (3.37). The red line

represents the trajectory of one agent. The same circular formation (blue line) with

uniform distribution is reached. t = 50s.

Figure 3.16 displays a simulation of five agents governed by (3.37). The figure

shows two snapshots. The blue agents represent the initial conditions and the red ones

represent the final state. The agents converge to the same circular motion with angular

velocity ω0. The radius of this circular formation is provided by the consensus term of

the control law which enforce agreement on the linear velocity for all the agents.

Figure 3.17 shows the evolution of the linear velocities vk of the agents from previous

simulation. The consensus is reached asymptotically, therefore the agents are stabilized

to the same circular formation. The radius of the formation is related to the consensus

value for the velocities v0, such that R = v0/ω0.
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Figure 3.17: Evolution of the agents’ velocities corresponding to the simulation of Fig-

ure 3.16

3.5 Conclusions

This chapter deals with the generalization of the previous results in circular formation

control argued in Chapter 2. The main contribution consists in introducing the affine

transformations in order to define a larger class of formations called elastic formations.

This new formulation allows expressing previous results from Chapter 2 in a compact

way and many class of configurations which can be non-circular and time-varying can

be obtained.

An elastic motion is defined by a transformation matrix known to all the agents. It

is considered as a given reference and its first and second derivatives are not influenced

by delays, noise or any other constraints. Nevertheless, some extensions are developed

taking into account communication limitations between the agents. The first one,

tackle the problem of distributing the agents uniformly along the elastic formation

in a collaborative way. A second distributed algorithm based on consensus protocols

stabilizes the fleet of agents to a formation whose time-varying center is unknown but

its velocity and acceleration are given references. This is the following step to achieve

the source-seeking problem.

The new formulation based on affine transformations presented in this chapter is

also exploited to elaborate a motion-tracking control law. This algorithm makes a

group of agents converge to a time-varying configuration in terms of velocity. It means

that all the vehicles follow the same kind of motion (same shape, same speed), defined

by a transformation matrix, but not the same trajectory. This control law is improved

with cooperative algorithms to make the agents converge to the same formation.
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Chapter 4

Collaborative source-seeking

Previous Chapters 2 and 3 deal with the first objective addressed in this thesis: the

formation control design of a fleet of autonomous underwater vehicles (AUVs). The

contributions presented stabilize the vehicles to time-varying formations which change

their shape and are able to follow a given reference of the formation center. The

main contribution of this chapter is the design of control strategies in order to generate

cooperatively the appropriate direction to move the center formation in order to achieve

a source-seeking. The objective is to develop a novel decentralized algorithm which

makes the agents agree on a common direction.

AUVs
SENSOR

NETWORK

FORMATION
CONTROL

COLLABORATIVE

SOURCE-SEEKING

agents’ position

center

measurements
control

reference

inputs
signal

approximation of gradient direction

distributed estimation algorithm

collaborative source-seeking

Figure 4.1: Contributions of Chapter 4

In particular, the problem of source-seeking using a multi-agent system is addressed

here. In order to locate the source of a scalar field, the AUVs are equipped with sensors

119
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which measure the field of interest such as, temperature, salinity, pollutant flow. In this

situation, the fleet of vehicles can be seen as a mobile sensor network. The stabilization

of the agents uniformly distributed along a circular formation is pertinent to tackle

the source-seeking problem. According to previous results in formation control, this

chapter focuses on obtaining the adequate reference of the center to steer the fleet of

agents to the location of an underwater source, as explained in Figure 4.1.

A first contribution shows that collecting the sensor data from vehicles, which

are uniformly distributed along a fixed circular formation, allows us to approximate

the gradient of the signal distribution. Then, a distributed algorithm based on this

result is proposed to estimate the gradient direction taking into account communication

constraints. This approach combines the previous results on formation control exposed

in Chapter 2 and existing results on consensus filters applied to this mobile sensor

network situation. A modified algorithm which exploits the periodic properties of

the circular formation is also proposed. Finally, a comparison of the two distributed

algorithms is discussed and motivated by simulations.

4.1 Problem statement

This chapter deals with collaborative source-seeking algorithms in order to drive a

formation of AUVs to the location of an underwater source. The problem is tackled in

a 2-dimensional space, hence the configuration considered is a planar formation. As in

previous chapters, it is assumed that the agents have no physical extension, i.e., their

positions are single points.

The following assumptions are considered in the sequel to deal with this new con-

tribution:

• The fleet composed by N vehicles is stabilized to a circular formation with radius

R and centered at c. The vehicles are uniformly distributed along the circular

formation.

• Each vehicle k = 1, . . . , N is able to measure the signal strength in the environ-

ment. It is assumed that the sensor has not dynamics.

• The communication topology of the fleet of vehicles is represented by an undi-

rected graph G.

• Communication constraints such as noise, packet loss and time delays are not

considered.

This chapter takes into consideration several assumptions about the scalar field

measured. The signal distribution representing the scalar field is continuous. This
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Figure 4.2: Signal distribution modeled as a Gaussian function emitted by a single

source.

signal is emitted by a single source such that the source is the only maximum or

minimum of the scalar field. The signal distribution is assumed to decay away from

the position of the source. There are not local extremum thus, the signal distribution

decreases or increases from the source, as shown in Figure 4.2.

Under these assumptions, this chapter presents distributed strategies to estimate

the gradient direction of a signal distribution by a circular formation of agents. This

direction can be used to steer the fleet to the maximum or minimum of the signal.

4.2 Survey on source-seeking

The source localization of a signal distribution is a problem considered in recent litera-

ture. There are different approaches to deal with this topic, but the common objective

is to calculate the position of a source using measurements of the signal propagation. In

mathematical terms, the signal distribution is a spacial function representing the scalar

field with a maximum or minimum in the position where the source is located. The

source could be a radio transmitter and the signal would be a radio frequency transmis-

sion, for instance. Alternatively, the source could be a point of chemical contamination

and the signal would be that chemical’s concentration in the environment.

Source-seeking algorithms are designed to steer a vehicle or a group of vehicles to

the physical location of the source (or at least to the vicinity thereof). It means that

some techniques to estimate the location of the source such as triangulation are not

considered here. Several different approaches have been proposed in current literature.

Some results dealing with odor source localization, based on swarms intelligence [38, 67,

175], present distributed algorithms which use measurements of the source plume and of

the wind or flow that creates this plume. In an underwater context, usually, the vehicles



122 Chapter4. Collaborative source-seeking

are only equipped with sensors which are able to take concentration measurements of

the quantity of interest (salinity, pollutant or methane concentrations, for instance).

The aim is thus, to drive the vehicles to the source avoiding the estimation of the real

plume and eluding the computation of the function representing the scalar field.

Several source-seeking algorithms are based on gradient-descent methods. A com-

parison between gradient search and evolutionary algorithms is presented in [141].

These strategies are usually developed and applied in the field of Computer Sciences.

In [34], a gradient method which converges in finite-time is developed. In this work

the bases of the gradient search are presented. Consider a scalar function f : Rd → R,

where d ∈ N and the following gradient system:

ẋ = −∇f(x)

The minimum of function f is a stable equilibrium for this system and if the level

sets of the function are bounded then, the trajectories converge asymptotically to

the set of critical points of f . Note that, changing the sign of the algorithm the

gradient-descent method makes the system converge to the maximum of the function.

In conclusion, the computation of the gradient of the signal propagation allows steering

a vehicle to the source location (if there only exists a minimum or a maximum of

the signal distribution). If it is available, the gradient of the signal strength can be

used to produce a gradient-decent algorithm for a vehicle or group of vehicles [4], but

this information may not be available in reality. One alternative is to use spatially

distributed measurements of the signal strength to approximate its gradient. In the

literature there are two different strategies to collect distributed measurements. The

fist one uses a single vehicle which changes its position over time in order to measure

the signal propagation in different positions. The other option considers a group of

vehicles collaborating to collect the measurements. A proposed classification of the

different approaches to deal with the source-seeking problem is presented in the sequel.

One single vehicle

In this approach, one single vehicle (mobile sensor) measures a scalar field distribution

during its motion. Spatially distributed measurements of the signal propagation are

collected to estimate its gradient and steer the vehicle to the maximum or minimum

of the scalar field. There exist different methodologies to estimate the gradient of a

signal propagation. The following results tackle the source-seeking problem with a

single vehicle.

a) Gradient-descent method

A first result concerning the location of a source with a single vehicle is presented
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in [23]. In this work, an AUV obtains different measurements of a hydrothermal

plume by a circle maneuvre. This technique allows estimating the two dimen-

sional gradient and thanks to a least squares solution of the overall slop the

vehicle is driven towards the source. A least square gradient estimation com-

bined with a gradient-descent method is also used in [4] to steer a single vehicle

to the maximum or minimum of a scalar field. A reactive control law for unicycle

vehicles for ascending/descending along a potential field is presented in [6]. In

this approach the control is related to the geometry of the potential field.

In [166], the gradient of the signal distribution is estimated in discrete time by a

nonlinear optimization algorithm. In [123], an algorithm to achieve the location

of a vapor-emitting source with a single mobile sensor is developed computing

the gradients of the Cramér-Rao bound on the location error with respect to the

sensor’s coordinates.

b) Extremum seeking

The extremum seeking problem is an important contribution on the field of adap-

tive control [156]. This method is a non-model-based optimization which can be

simply defined as tracking a maximum or minimum of a function. The first sta-

bility proof of the extremum seeking algorithm appears in [82]. This technique

has been adopted to many different applications [3].

The extremum seeking method applied to the source-seeking problem consist in

adding an excitatory input to the vehicle’s steering control, using a special filter

on the signal strength measurement to approximate its gradient, and using this

information to drive the vehicle towards the source. This approach has been

analyzed under different assumptions [28, 29, 30, 176]. In [100, 101], an hybrid

controller is implemented to improve the extremum seeking performances accord-

ing to the source localization task. In these works, an optimization method with

successive line minimizations and heading changes, based on conjugate vectors,

is developed. For a certain class of signal strength distributions, the resulting

system is shown to be practically stable under perturbations. An extension to

3-dimensions is accomplished in [31]. Finally, a novel stochastic approach based

on the clasical extremum seeking algorithm is introduced in [93] and [154].

Another interesting approach proposed in [99], presents a strategy belonging to

the class of sliding mode control laws, but in this case, the single vehicle does not

need to compute the gradient of the signal distribution to reach its source.

All these works consider a single vehicle collecting the measurements. The main

disadvantage of these approaches is that in order to collect sufficient information, the
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vehicle may have to travel over large distances. In this situation the vehicle’s conver-

gence to the source location may be delayed.

Multi-agent systems

A group of moving vehicles allows gathering sufficient information about the signal to

carry out the source-seeking problem. Spatially distributed vehicles collecting mea-

surements are considered in order to avoid sinusoidal excitation of a vehicle used in the

extremum seeking method or the long distances traveled by a single mobile sensor, for

instance. In the sequel, the principal results in source-seeking with multi-agent systems

are detailed.

a) Gradient climbing

A first approach developed in [105], considers that each vehicle is able to mea-

sure the full gradient at its current position. The authors present an algorithm

including a gradient-descent term and inter-vehicle forcing terms for a group of

vehicles modeled with simple integrator dynamics. Another strategy consists in

approximating the gradient value of the signal using concentration measurements

of multiple vehicles at different locations [64]. In this work, a group of gilders

equipped with sensors estimates the model parameters of the scalar field via col-

lected measurements. A least square approximation is applied in order to steer

the group of agents to the source location. In [55], a real application of previous

approach is presented. A gradient-descent method is applied in [4] considering

that each vehicle of the fleet is driven by an estimate of the local environmental

gradient together with control forces that maintain uniformity in group geometry.

b) Extremum seeking

Based on previous results in extremum seeking for one vehicle, the authors of

[13] are able to drive a formation of agents to the maximum or minimum of a

scalar field. This approach considers one leader which implements the extremum

seeking algorithm and the rest of agents follows the leader keeping a particular

formation. Therefore, this is not a collaborative source-seeking algorithm, and

the source localization is carried out only by the leader. In [61], the extremum

seeking method is improved to make a group of agents accomplish the source-

seeking task in 1-dimension in a collaborative way.

c) Stochastic approach

In [140], a group of chemical sensors placed at different locations, measures plume

concentration values to estimate the source of that plume. The source localiza-

tion is achieved using a stochastic approximation technique. This approach can
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be considered as a distributed estimation method as in [124], which employs

the sensor measurements to estimate the model parameters of the concentration

plume.

A collaborative control law to steer a fleet of AUVs to the source of a signal dis-

tribution using only direct signal measurements by a circular formation of agents is

presented in [104]. This work will be analyzed in detail in the previous section.

4.3 Preliminaries

The aim is here to locate the source of some signal distribution using a fleet of AUVs.

In this situation, the vehicles are equipped with sensors which are able to measure the

concentration of the quantity of interest. The fleet of agents becomes a mobile wireless

sensors network. The contribution of this chapter focuses on designing a collaborative

algorithm to chose an appropriate direction in order to steer a formation of AUVs to

the source localisation. The control strategy proposed in this thesis is composed of two

levels:

1. Estimation of the gradient direction of the signal distribution of the source.

2. Generation of a reference trajectory for the formation center based on the esti-

mated gradient direction.

This chapter copes only with the first step: to provide an algorithm which estimates the

gradient direction of a signal distribution by a formation of agents. In future research,

this direction will be used to drive the formation center to the maximum or minimum

of the scalar field.

Considering the source as a target, it seems interesting to use a circular formation to

cope with the source-seeking problem. When the formation reach the source position,

the vehicles will turn around this source. This strategy is suitable in the context

of underwater source localization because, even if the source is fixed, the AUVs are

always moving. This is convenient considering that the agents must to avoid zero

speed. The same constraints appear in an aerial scenario in which a fleet of Unmanned

Aerial Vehicles (UAVs) accomplishes a target tracking mission, for instance. Some

results in target localization and circumnavigation (it means that the vehicles describes

circular trajectories around the target) have been recently developed using bearing

measurements [44]. This result are built on the idea that each agent can measure

the bearing angle between its position and the target. The source-seeking problem

considered in this thesis regards the previous approaches in the field in which the
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source of a signal propagation is locate by the signal measurements. Therefore, the

techniques using bearing measurements are not applicable in this context.

In Chapter 2, a control law which asymptotically stabilizes a group of vehicles

modeled with unicycle kinematics, such as

ẋk = vk cos θk

ẏk = vk sin θk

θ̇k = uk

where ṙk = (ẋk, ẏk)
T , to a circular formation around a dynamic center point c(t) =

(cx, cy)
T with a uniform distribution (i.e., with the agents evenly separated on the circle

by 2π/N radians each) is presented. This translation control law from Corollary 2.1 is

given by:

v̇k =− βvk +
ûkṙ

T
kRπ

2

˙̂rk + ṙTk (c̈ + β( ˙̂rk + ċ))

vk
(4.1a)

uk =
ûkṙ

T
k

˙̂rk + ṙTkRT
π
2
(c̈ + β( ˙̂rk + ċ))

v2k
(4.1b)

where the closed-loop dynamics of the reference model ˙̂rk = ( ˙̂xk, ˙̂yk)
T defined by

˙̂xk = R|ω0| cosψk

˙̂yk = R|ω0| sinψk
ψ̇k = ûk

are imposed by {
ûk = ω0(1 + κ ˙̂rTk r̂k)− ∂U

∂ψk

U(ψ) = K
N

∑bN/2c
m=1

1
2m2 BmL̄Bm

where the Laplacian matrix of the communication graph considered is L̄ = L⊗I2, bmk =

(cosmψk, sinmψk)
T represents the vector which contains the transformed orientation

angle, Bm = (bTm1, . . . , b
T
mN)T , and ω0 6= 0, κ > 0, β > 0 are three control parameters.

This control law makes a fleet of agents modeled with unicycle kinematics, converge

to a circular motion of radius R, and whose center tracks the time-varying reference

c(t). The direction of rotation is determined by the sign of ω0. Moreover, for K > 0, if

the graph is d0-circulant, the set of curve-phase arrangements that are balanced modulo

2π/N is locally exponentially stable.

In this situation, the center of the formation c(t) is an external reference known to

all the agents. This result is a first step to deal with the source-seeking problem. To

move the formation towards the location of the source, the objective now is to compute

the trajectory of the formation center in a collaborative way taking into account the

measurements of the signal distribution emitting by the source.
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Figure 4.3: Illustration of the source-seeking problem

Thanks to previous control law (4.1), the vehicles are stabilized to a circular for-

mation described by a center point c, a radius R and an angle φ which is linearly

increasing with time (i.e. φ = ω0t for some angular speed ω0 > 0). In the sequel, the

position of each agent k in the formation is given by the following equation:

xk =cx +R cos

(
φ+ k

2π

N

)
(4.2a)

yk =cy +R sin

(
φ+ k

2π

N

)
(4.2b)

This equation describes a formation where the agents are uniformly distributed along

a circle of radius R. In the context of source-seeking problem, the objective is that the

center of the formation c(t) follows a trajectory which converges to the maximum of a

signal, that is usually its source.

4.3.1 Approximation of the gradient by a fixed circular for-

mation

The first idea is to design an algorithm to estimate the gradient direction of the signal

distribution based on the concentration measurements obtained by a circular formation

of agents. Communication constraints between the vehicles are taken into account.

This estimated direction will be the reference velocity of the formation center in order

to steer the group of agents to the source position as represented in Figure 4.3.

Consider a fleet of N vehicles uniformly distributed along a circular formation.

The position of each agent k is described by equation (4.2). In this first step of

the control strategy previously detailed to deal with the source-seeking problem, the
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circular formation is not moving. Only the estimation of gradient direction is addressed

here.

Assumption 4.1 The center of the circular formation c is fixed and known to all the

agents.

The distribution of the signal strength in the environment will be described by an

unknown positive spatial mapping σ : R2 → R+, and so agent k measures the signal

strength at its position as σ(rk). Let us consider a mobile sensor network, in which the

position of the sensor k is given by (4.2), taking measurements of a signal distribution

σ. Let ∇σ(c) = (∇xσ(c),∇yσ(c)) denote the gradient of function σ at the center of

the circular formation c. The following lemma is proposed:

Lemma 4.1 (Briñón-Arranz et al. 2011 [20]) Let σ be a bounded function and σ(rk)

the measure obtained by agent k where rk is its position vector given by (4.2). Con-

sidering a fleet of N > 2 agents, if Assumption 4.1 is satisfied and the agents are

uniformly distributed along the circle centered at c, then:

1

N

N∑
k=1

σ(rk)(rk − c) =
R2

2
∇σ(c)T + o(R2) (4.3)

where o(R2) is a vector such that ‖o(R2)‖ is negligible with respect to R2.

Proof 4.1 To prove this result it is necessary to define the following equation:

N−1∑
k=0

zk =

{
(1− zN)/(1− z), if z 6= 1

N if z = 1
(4.4)

where z ∈ C and N ∈ R+. This equation is satisfied according to some properties of

telescoping series [22].

According to the linear approximation of function σ at a fixed location c the following

equation holds:

σ(rk)− σ(c) = ∇σ(c)(rk − c) + o(R) (4.5)

This expression is equivalent to the first two terms in the multi-variable Taylor series

expansion of σ at c.

Multiplying the previous equation (4.5) by the relative vector (rk− c) and summing

over k = 1, . . . , N , it yields:

1

N

N∑
k=1

(σ(rk)− σ(c))(rk − c) =
1

N

N∑
k=1

(∇σ(c)(rk − c)) (rk − c) + o(R2)
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The first sum is equivalent to:

1

N

N∑
k=1

(σ(rk)− σ(c))(rk − c) =
1

N

N∑
k=1

σ(rk)(rk − c)− σ(c)
1

N

N∑
k=1

(rk − c)

Considering the model defined in (4.2) for the agents and using equation (4.4) when

z = ei
2π
N the following equality is satisfied if N > 1:

N∑
k=1

(rk − c) = R
N∑
k=1

(
ei

2π
N

)k
=

1− ei2π
1− ei 2πN

= 0

Therefore the previous equation can be rewritten as:

1

N

N∑
k=1

σ(rk)(rk − c) =
1

N

N∑
k=1

(∇σ(c)(rk − c)) (rk − c) + o(R2)

Analyzing in terms of components and using (4.2) to express the position of the

agents rk, the right-hand side of the previous equation is given by:

N∑
k=1

(∇σ(c)(rk − c)) (rk − c) = R2

N∑
k=1

(
∇xσ(c) cos2 φk +∇yσ(c) cosφk sinφk

∇xσ(c) sinφk cosφk +∇yσ(c) sin2 φk

)

where φk = φ+ k 2π
N

.

Using trigonometric properties each component of the right sum is rewritten:

∇xσ(c) cos2 φk +∇yσ(c) cosφk sinφk = ∇xσ(c) cos2 φk +
1

2
∇yσ(c) sin 2φk (4.6a)

∇xσ(c) sinφk cosφk +∇yσ(c) sin2 φk =
1

2
∇xσ(c) sin 2φk +∇yσ(c) sin2 φk (4.6b)

Consequently, there are two sums which need an exhaustively analysis:

N∑
k=1

sin2 φk and
N∑
k=1

sin 2φk

Using the trigonometric identity and other trigonometric properties, the first previ-

ous sum can be expressed as:

N∑
k=1

sin2 φk =
N∑
k=1

1− cos 2φk
2

=
N

2
− 1

2

N∑
k=1

(
cos(2φ) cos(k

4π

N
)− sin(2φ) sin(k

4π

N
)

)

=
N

2
− cos(2φ)

2

N∑
k=1

cos(k
4π

N
) +

sin(2φ)

2

N∑
k=1

sin(k
4π

N
)
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In order to determine the result of these new trigonometric sums, a detailed math-

ematical study is provided. According to the properties of the telescoping series (4.4),

choosing z = ei
4π
N , the following equality is satisfied if N > 2:

N∑
k=1

(
ei

4π
N

)k
=

1− ei 4πN N

1− ei 4πN
=

1− ei4π
1− ei 4πN

= 0

In conclusion, due to the definition ei
4π
N = cos(4π

N
)+ i sin(4π

N
), the following trigono-

metric sums are equal to zero, if N > 2:

N∑
k=1

cos(k
4π

N
) = 0 and

N∑
k=1

sin(k
4π

N
) = 0 (4.7)

Therefore, the first sum studied here can be expressed as:

N∑
k=1

sin2 φk =
N

2
(4.8)

In the sequel, the sum of the term corresponding to sin 2φk is studied:

1

N

N∑
k=1

sin 2φk =
1

N

N∑
k=1

sin

(
2φ+ k

4π

N

)

=
sin 2φ

N

N∑
k=1

cos(k
4π

N
) +

cos 2φ

N

N∑
k=1

sin(k
4π

N
)

Thanks to (4.7) (i.e., due to the uniform distribution), if N ≥ 2 then:

N∑
k=1

sin(2φk) = 0 (4.9)

Since both equalities (4.8) and (4.9) are satisfied and by the decomposition of previous

components equations (4.6), finally, the following equation holds:

1

N

N∑
k=1

(∇σ(c)(rk − c)) (rk − c) =
R2

2
∇σ(c)T

Thus, the equality (4.3) presented in Lemma 4.1 is satisfied.

�

Lemma 4.2 (Briñón-Arranz et al. 2011 [20]) Let σ be a bounded function and σ(rk)

the measure obtained by agent k where rk is its position vector given by (4.2). Consid-

ering a limitless number of agents along the circular formation (N →∞), if Assump-

tion 4.1 is satisfied, then:

1

2π

∫ 2π

0

σ(rk)(rk − c)dφ =
R2

2
∇σ(c)T + o(R2) (4.10)
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Proof 4.2 A similar analysis that it is followed in previous lemma, can be applied to

this second case. Integrating along the circle (in the interval [0, 2π]) and multiplying

by the relative positions of the agents rk − c, the equation (4.5) becomes:

1

2π

∫ 2π

0

(σ(rk)− σ(c))(rk − c)dφ =
1

2π

∫ 2π

0

(∇σ(c)(rk − c)) (rk − c)dφ+ o(R2)

In this case, considering (4.2) when N →∞, it is easy to see that the following equation

holds: ∫ 2π

0

(rk − c)dφ = R

∫ 2π

0

eiφ = 0

In consequence the first expression is now rewritten as:

1

2π

∫ 2π

0

σ(rk)(rk − c)dφ =
1

2π

∫ 2π

0

(∇σ(c)(rk − c)) (rk − c)dφ+ o(R2)

Hence, one more time the right-hand term of the previous equation have to be analyzed

in detail. Using trigonometric properties the following integrals are solved:∫ 2π

0

sin2 φdφ = π and

∫ 2π

0

cosφ sinφdφ = 0 (4.11)

Thanks to these equalities (4.11) the following equation holds:

1

2π

∫ 2π

0

(∇σ(c)(rk − c)) (rk − c)dφ =
R2

2
∇σ(c)T (4.12)

and (4.10) is straightforwardly obtained.

�

Both results provide an approximation of the gradient of the signal distribution at

the center of the circular formation. A similar result can be obtained for a moving

source (which is equivalent to a time-varying signal propagation function in the space),

such that the signal distribution σ depends both on position and time, i.e. σ(rk, t).

Consider a fleet of agents given by (4.2) taking measurements of a signal distribution

σ. An extension of the previous Lemma 4.1 is proposed in the sequel to cope with this

time-varying signal distribution.

Lemma 4.3 (Briñón-Arranz et al. 2011 [19]) Let σ be a bounded function and σ(rk, t)

the measure obtained at time t by agent k, where rk is its position vector given by

(4.2). If Assumption 4.1 is satisfied and the agents are uniformly distributed along

the circular formation centered at c, then for a fleet of N > 2 agents, the following

equation is satisfied:

1

N

N∑
k=1

σ(rk, t)(rk − c) =
R2

2
∇σ(c, t)T + o(R2) (4.13)
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Proof 4.3 The proof is similar to the one of Lemma 4.1. According to the linear

approximation of the function σ at a fixed location c the following equation holds:

∀t σ(rk, t)− σ(c, t) = ∇σ(c, t)(rk − c) + o(R)

Multiplying this equation by the relative vector (rk−c) and summing over k = 1, . . . , N ,

it yields:

∀t 1

N

N∑
k=1

(σ(rk, t)− σ(c, t))(rk − c) =
1

N

N∑
k=1

(∇σ(c, t)(rk − c)) (rk − c) + o(R2)

Considering the model defined in (4.2) for the agents and using equation (4.4) when

z = ei
2π
N the following equality is satisfied if N > 1:

∀t
N∑
k=1

(rk − c) = R
N∑
k=1

(
ei

2π
N

)k
=

1− ei2π
1− ei 2πN

= 0

Therefore, the previous equation can be rewritten as:

∀t, 1

N

N∑
k=1

σ(rk, t)(rk − c) =
1

N

N∑
k=1

(∇σ(c, t)(rk − c)) (rk − c) + o(R2)

The rest of the proof follows the same steps that in previous one from Lemma 4.1 taking

into account that function σ depends now on time. Using trigonometric properties

equation (4.13) is obtained.

�

The previous three lemmas show that the gradient direction of a signal distribution

can be approximated via collected measurements obtained by a fixed circular forma-

tion of vehicles. Following sections will make use of this result to built collaborative

algorithms to estimate the direction of the gradient in order to steer the formation of

agents to the source position.

4.3.2 Centralized approach

A first result in collaborative source-seeking by a circular formation of agents is ac-

complished in [104]. The authors consider here a stable circular formation of N mobile

agents in the plane. The agents are stabilized by the previous translation control

law (4.1) presented in Chapter 2. An outer-loop control that steers the formation by

determining ċ(t) in a collaborative way is provided. In this case the source-seeking

is achieved by a time-varying circular formation. That is to say that the system is

considered as the two dimensional single integrator such that:

ċ = u (4.14)
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The control signal u will be based on measurements of signal strength taken by the

individual agents. The following control law is proposed:

u = λ

N∑
k=1

σ(rk)(rk − c) (4.15)

which is a sum of the agents’ current normalized displacement vectors from the center

of the formation, rk − c, weighted by their individual signal strength measurements,

σ(rk), and a common possibly time-varying gain factor, λ > 0. This control law steers

the formation in the direction of an estimate of the gradient of σ at the point c based

on the signal strength measurements taken by the agents distributed uniformly about

c.

The stability of system (4.14) under the control law (4.15) is analized in two cases:

signal distributions with circular level sets and signal distributions with elliptical level

sets. This result does not takes into account the previous Lemma 4.1, hence the authors

of [104] only study the convergence of this centralized algorithm if the level sets of the

signal distribution are convex. Note that, Lemma 4.1 only addresses the case of a fixed

formation.

Signal distributions with circular level sets: The first result presented in [104]

deals with a simple case in which the level sets of the signal distribution are circular,

it means that the source plume has a Gaussian profile.

Theorem 4.1 (Moore and Canudas-de-Wit 2010 [104]) Assume that the signal strength

is a continuously differentiable mapping and satisfies the following property:

‖p1 − p∗‖ > ‖p2 − p∗‖ ⇒ σ(p1) < σ(p2) (4.16)

where pj ∈ R2 represents an arbitrary point in the 2-D space. The previous inequality

means that the signal strength has a maximum at some point p∗ and is strictly decreas-

ing as the Euclidean distance from p∗ increases (and thus has circular level sets). Under

the control input of (4.15) the point c = p∗ is an asymptotically stable equilibrium of

system (4.14).

Proof 4.4 To analyze the stability of the system the following Lyapunov function is

defined:

V (c) = σ(p∗)− σ(c) (4.17)

which is zero at c = p∗ and positive otherwise. This Lyapunov function has the time

derivative

V̇ (c) = −∇σ(c)ċ (4.18)
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Substituting the control formula (4.15) for ċ in (4.18) yields

V̇ (c) = −∇σ(c)λ
N∑
k=1

σ(rk)(rk − c) = −λ
N∑
k=1

σ(rk)∇σ(c)(rk − c) (4.19)

The assumption (4.16) about σ means that its gradient can be expressed as follows

∇σ(c)T = α(‖c− p∗‖) c− p∗

‖c− p∗‖
which is to say that ∇σ(c)T points from c towards p∗ with a magnitude determined by

a function α of the distance from c to p∗. Because of the assumptions about σ, this

magnitude function α is continuous and satisfies

α(0) = 0 and α(d) > 0, ∀ d > 0

Substituting the expression for ∇σ(c) into V̇ (c),

V̇ (c) = −λα(‖c− p∗‖)
‖c− p∗‖

N∑
k=1

σ(rk)(c− p∗)T (rk − c)

In order to determine a bound on V̇ (c), define a time-varying set of agents M to be

those agents whose displacement from the formation center, has a positive projection

onto the vector c− p∗ such that:

M = {k : (c− p∗)T (rk − c) > 0} (4.20)

Now separate the sum in V̇ (c) as follows,

V̇ (c) = −λα(‖c− p∗‖)
‖c− p∗‖

∑
k∈M

σ(rk)(c− p∗)T (rk − c)

−λα(‖c− p∗‖)
‖c− p∗‖

∑
k 6∈M

σ(rk)(r− p∗)T (rk − c) (4.21)

Due to the geometry of the situation (circular level sets of the signal strength map-

ping and a circular formation of the agents) we know that if c 6= p∗ then the agents in

M are all closer to the source p∗ than those agents not in M (see Figure 4.4).

Hence any agent fromM has a higher signal measurement than any agent not from

M and there must be some middle value between them both. Mathematically speaking,

it means that:

∀k ∈M,m 6∈ M, ∃ δ>0 such that σ(rk)>δ>σ(rm) (4.22)

Applying this inequality to the summation terms in (4.21) then

k ∈M⇒ σ(rk)︸ ︷︷ ︸
>δ

(c−p∗)T (r− c)︸ ︷︷ ︸
>0

>δ(c−p∗)T (rk − c) (4.23)
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p∗

r2

r1

r3

c

∇σ(c)

Figure 4.4: Illustration of vectors used in the proof of Theorem 4.1. Level curves of σ

are shown in red. In this situation the set M contains only agent 2.

and

k 6∈ M ⇒ σ(rk)︸ ︷︷ ︸
<δ

(c−p∗)T (rk − c)︸ ︷︷ ︸
≤0

≥δ(c−p∗)T (rk − c) (4.24)

Assuming that M is not empty (which is guaranteed if N ≥ 3), the sum in (4.21) can

be bounded from below as

∑
k∈M

σ(rk)(c−p∗)T (rk − c) +
∑
k 6∈M

σ(rk)(c−p∗)T (rk − c) > δ(c−p∗)T
N∑
k=1

(rk − c)

Due to the uniform distribution of the agents, this previous sum is equal to zero and

since λ is positive and α(‖c − p∗‖2)/‖c − p∗‖2 is non-negative the conclusion is that

V̇ (c) < 0 for all c 6= p∗ whenever M is not empty.

The only situation where M is empty occurs when N = 2 and the agents’ displace-

ment vectors from the center of the formation, r1 − c and r2 − c, are orthogonal to

c−p∗. In this instance, due to the symmetry of σ it must be the case that σ(r1) = σ(r2)

and thus u = 0. Since φ keeps increasing, V̇ (c) will immediately become negative again

so these situations do not constitute an invariant set. Thus by LaSalle’s principle [75],

the point c = p∗ is an asymptotically stable equilibrium of the system (4.14) under

control law (4.15).

�

Figure 4.5 shows the trajectory of the formation center for three simulations for

different number of agents in the fleet, N = 2 in blue, N = 3 in red and N = 4 in green.
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Figure 4.5: Trajectories of the formation center c for different numbers of agents N

when σ has circular level sets. Location of source is denoted by the ×. Image courtesy

of Brandon J. Moore.

For this simulation from [104], σ(z) = e−5x10
−7(x2+y2), R = 200m, and ω0 = 0.01rad/s.

In all cases, the algorithm from Theorem 4.1 steers the center of the circular formation

to the source position.

Signal distributions with elliptical level sets: Following theorem presents a simi-

lar result that previous one but considering elliptical level sets of the signal propagation.

In simulation, the authors of [104] obtain also successful results when the level sets are

a combination of a three ellipsis, but the theoretical analysis is not provided in the

paper.

Theorem 4.2 (Moore and Canudas-de-Wit 2010 [104]) Assume that the signal strength

is a continuously differentiable mapping and satisfies the following property

(p2−p∗)TA(p2−p∗)>(p1−p∗)TA(p1−p∗) =⇒ σ(p1)<σ(p2) (4.24)

for some positive definite matrix A. This is to say that the signal strength has a

maximum at some point p∗ and has compact elliptical level sets. If the number of agents

N is even, then under the control input of (4.15) the point c = p∗ is an asymptotically

stable equilibrium of system (4.14).

The proof is similar than in the case of a signal distributions with circular level sets.

The details of the proof can be found in [104].

The control law (4.15) allows the formation to move such that its center converges to

the source position, if the signal distribution decreases around the source in such a way
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that level sets are circles or ellipses centered on the maximum or minimum of the signal

distribution. The main constraint of this algorithm is the all-to-all communication

assumption. The control law proposed by the authors is centralized, in consequence

communication constraints are not considered. This constitutes a first result to solve

the source-seeking problem by a circular formation of agents in a collaborative way.

Nevertheless, this centralized approach is not realistic according to the underwater

communication problems presented in Chapter 1, and the objective of this thesis is to

extend this result towards a distributed approach.

4.4 Collaborative estimation of gradient direction

by a fixed circular formation

The objective of this section focuses on the fist step of the control strategy previously

exposed in the problem formulation. The idea is to develop an algorithm to estimate

the gradient direction of the signal distribution of the source. As explained before, this

estimation will be achieved by a circular formation of AUVs. Thanks to Lemmas 4.1

and 4.2, the gradient of a signal strength distribution can be approximated by the mea-

surements obtained from a fixed circular formation of agents uniformly distributed. A

first centralized algorithm based on this result is addressed in [104]. Nevertheless, in

order to consider communication constraints between the agents, a distributed algo-

rithm is developed in this section to estimate the direction of the gradient by a fixed

circular formation.

In this situation, each agent calculates its own estimation of the gradient direction

computing its own measurement of the signal distribution and the measurements of its

neighbors. Consequently, each agent computes a different gradient direction. With a

view to obtain the same estimated direction for all the agents, a consensus algorithm is

included. This algorithm allows the agents to converge to the same estimated gradient

direction, taking into account the communication topology of the system.

4.4.1 Fixed source

The simplest case, when the circular formation is fixed and the source is also fixed is

analyzed here. The presence of currents is not considered. A fixed source implies that

the signal distribution is time-invariant. The idea is to develop a distributed algorithm

to estimate the gradient direction of the signal distribution σ at the center c of a

circular formation of agents.

Communication constraints are taken into account by a communication graph G.

Due to these communication restrictions each agent estimates its own gradient direction
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zk using the information of its neighbors according to the communication topology. The

objective is to make all estimated directions zk converge to the mean direction defined

as:

u∗ =
1

N

N∑
k=1

uk; uk = σk(rk − c) (4.25)

where uk is the relative position vector of agent k weighted by its concentration mea-

surement σk = σ(rk). Thanks to Lemma 4.1, this mean vector u∗ approximates the

gradient direction of the signal distribution at the center of the formation c. A consen-

sus algorithm is implemented to reach an agreement on the estimated gradient direction

of the signal distribution for all the agents.

Distributed algorithm design

This paragraph presents some notations used in the sequel. Let G = (V,E) be an

undirected graph with adjacency matrix A = [akj] that specifies the communication

topology of the multi-agent system. If agents k, j are connected then akj = 1 and

akj = 0 otherwise. Let Nk = {j ∈ V : akj 6= 0} be the set of neighbors of agent k and

Jk = Nk∪{k}. The Laplacian matrix L of graph G is defined as L = ∆−A where ∆ is

the diagonal matrix which contains the degree of each agent, i.e., ∆kk = dk =
∑

j akj.

More details of graph theory can be found in Appendix A. In the sequel, ⊗ denotes the

Kronecker product and, for simplicity, the following notation is defined M2 = M⊗ I2

where M is a square matrix and IN is the identity matrix of order N .

The fixed formation of agents taking concentration measurements can be considered

as a sensor network. The mission of this sensor network is to estimate the gradient

direction of the signal propagation measured in a collaborative way. Based on consensus

filters for sensor networks presented in [112], the following consensus algorithm for the

multi-agents system is proposed:

żk = κ
∑
j∈Nk

(zj − zk) +
∑
j∈Jk

(uj − zk)

where κ > 0 is a control parameter which is introduced to make the algorithm more

flexible. The consensus variable is the vector zk ∈ R2 which represents the estimated

gradient direction by agent k. The input uk = σk(rk − c) ∈ R2, depends on the

concentration measurements and the position of the agent in the formation. The main

difference to the consensus filter from [112] is that the input of the algorithm is not a

given signal known to all the agents corrupted by noise, but a different vector for each

agent.

Using the Laplacian matrix of the communication topology of the multi-agent sys-
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tem the previous equation can be rewritten in a matrix way:

ż = −κL⊗ I2z + IN ⊗ I2(u− z) +A⊗ I2u−∆⊗ I2z

= −(IN + ∆ + κL)2z + (IN +A)2u (4.26)

where z = (zT1 , z
T
2 , . . . , z

T
N)T and u = (uT1 ,u

T
2 , . . . ,u

T
N)T are vectors of dimension 2N ,

and IN the identity matrix of order N . Let Aκ = (IN + ∆ + κL)2, and B = (IN +A)2.

Note that by definition, Aκ is a positive definite matrix. Then, the previous equation

becomes:

ż = −Aκz + Bu (4.27)

The objective of the consensus algorithm is to make all the estimated directions zk

converge to the mean direction u∗. Consider the vector of dimension 2N

u∗1 = 1⊗ u∗ = (u∗T , . . . ,u∗T )T

where 1 = (1, . . . , 1)T ∈ RN is the vector of ones that is always a right eigenvector of L

corresponding to the eigenvalue 0. Therefore, the error equation is η = z− u∗1. Using

equation (4.27), the dynamics of the error can be written as:

η̇ = −Aκz + Bu− u̇∗1 + (IN + ∆ + κL)2u
∗
1 − (IN + ∆)2u

∗
1

η̇ = −Aκη + B(u− u∗1)− u̇∗1 (4.28)

The stability of this algorithm is analyzed using the Lyapunov function given by:

V (η) =
1

2
ηTAκη (4.29)

which is a nonnegative function because the matrix A is positive definite. At the

equilibrium, when V (η) = 0 the following equation is satisfied:

ηTAκη ≡ 0

Therefore, the minimum of the Lyapunov function corresponds to η = 0. This is

equivalent to the expression z = u∗1, which represents the initial objective.

Differentiating the previous Lyapunov function (4.29):

V̇ (η) = −ηTAT
κAκη + (u− u∗1)TBTAκη − u̇∗T1 Aκη

According to the previous matrix definitions and the mixed-product property of the

Kronecker product, it yields:

u̇∗T1 Aκ = 1T ⊗ u̇∗T (IN + ∆ + κL)2 = 1T (IN + ∆ + κL)⊗ u̇∗T I2
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Using the properties of the Laplacian matrix the previous equation becomes:

u̇∗T1 Aκ = (1 + d1, . . . , 1 + dN)⊗ u̇∗T

It is assumed that the distribution of the signal strength in the environment considered

here varies softly, it means that the derivative of the signal propagation is bounded. Let

‖u̇∗1‖ ≤ ν, due to the soft variation of the concentration levels of the signal distribution.

Therefore, the following inequality holds:

‖u̇∗T1 Aκ‖ ≤ ‖u̇∗‖

√√√√ N∑
k=1

(1 + dk)2 ≤ ν
√
N(1 + dmax)

Hence, previous derivative of the Lyapunov function (4.30) can be bounded by:

V̇ (η) ≤ −λ2min(Aκ)‖η‖2 + ν
√

2N(1 + dmax)‖η‖+ ‖(u− u∗1)TBTAκη‖

It is plausible to assume that a bound on maximal signal concentration is known

from the problem setting. Therefore, ‖(u−u∗1)‖ ≤ α where α depends on the radius of

the circular formation and on the greatest concentration measurement obtained by the

agents. For simplicity, let γ be a bound of the following matrix norm
∥∥BTAκ

∥∥ ≤ γ.

Taking these considerations into account the following equation holds:

‖(u− u∗1)TBTAκ‖ ≤ αγ

The derivative of the Lyapunov function is bounded by:

V̇ (η) ≤ −λ2min(Aκ)‖η‖2 +
(
ν
√
N(1 + dmax) + αγ

)
‖η‖

Based on the proof of Proposition 2 from [112] a closed ball Bβ centered at η = 0 is

defined with radius

β =
ν
√
N(1 + dmax) + αγ

λ2min(Aκ)

Let Ωm = {η : V (η) ≤ m} be a level set of the Lyapunov function V (η) with m =
1
2
λmax(Aκ)β

2. Then, Bβ is contained in Ωm because

‖η‖ ≤ β =⇒ V (η) =
1

2
ηTAκη ≤

1

2
λmax(Aκ)β

2 = m,

and thus η ∈ Ωm. As a result, any solution of (4.28) starting in the set R2N\Ωm

satisfies V̇ (η) < 0. Thus, it enters Ωm in some finite time and remains in Ωm there-

after. This guarantees global asymptotic ε-stability of η = 0 with a radius ε =

βλmax(Aκ)/λmin(Aκ). To show this, note that

1

2
λmin(Aκ)‖η‖2 ≤ V (η) ≤ 1

2
λmax(Aκ)β

2
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Thus, the solutions enter the region

‖η‖ ≤ β

√
λmax(Aκ)

λmin(Aκ)

which implies the radius of ε-stability is

ε =
ν
√
N(1 + dmax) + αγ

λ2min(Aκ)

√
λmax(Aκ)

λmin(Aκ)

The ε-stability of η = 0 implies ε-tracking of the mean vector u∗1 by every agent,

therefore ε-consensus is asymptotically reached.

After the previous detailed analysis this result can be presented as a theorem:

Theorem 4.3 (Briñón-Arranz et al. 2011 [20]) Consider a circular formation of N

agents defined by (4.2) with a connected communication graph G and Assumption 4.1

is satisfied. Let σ : R2 → R+ be a bounded function and the mean vector u∗ defined

in (4.25) satisfies ‖u̇∗‖ ≤ ν. Then, z∗(t) = 1⊗ u∗ is a globally asymptotically ε-stable

equilibrium of the dynamics of the distributed algorithm given by

ż = −κL2z− L2u + (IN + ∆)2(u− z) (4.30)

with u = (σ1(r1 − c)T , . . . , σN(rN − c)T )T and

ε =
(ν
√
N(1 + dmax) + αγ)λ

1
2
max(Aκ)

λ
5
2
min(Aκ)

where the matrix Aκ and the constants α and γ are previously defined.

Remark 4.1 Analyzing the linear system (4.27), it seems straightforward that the con-

trol parameter κ has an important role in the convergence of the algorithm. The sim-

ulation results show that taking κ >> 1, the amplitude of oscillations of the estimated

gradient directions zk are smaller. Therefore, the error η is also reduced.

Simulations

In order to show the performances of this distributed algorithm some simulation results

are presented. All simulations show a fixed circular formation of five agents with radius

R = 1m and angular velocity of ω0 = 1rad/s. The communication graph is a ring (d1-

circulant graph).

In Figures 4.6 and 4.7, the source-seeking consensus algorithm (4.30) from Theo-

rem 4.3 is implemented with κ = 50. For these simulations, the function σ representing

the signal distribution centered at the origin has circular level sets:

σ(x, y) = 100e−(x
2+y2)/10
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(a) Estimated directions zk for t = 0s (black

dashed lines) and for t = 50s (red lines)

(b) X and Y coordinates of estimated directions

zk

Figure 4.6: Simulation of a circular formation of five agents centered at c = (2, 2)T .

The function σ representing the signal distribution centered at the origin has circular

level sets. The consensus algorithm of Theorem 4.3 is implemented with κ = 50.

Therefore, the gradient vector ∇σ(c) provides the adequate direction to steer the for-

mation to the source location. Both Figures 4.6(a) and 4.7(a) show two snapshots.

The void circles represent the initial conditions and the black dashed lines the initial

estimated direction zk of each agent. The red circles represent the position of the

agents at t = 50s and the red lines are the estimated gradient directions at that time.

The blue line is the real direction of the gradient at center c. Both Figures 4.6(b)

and 4.7(b) show the components of the consensus variable zk and the mean vector u∗.

The estimated directions zk oscillate around the vector u∗ which approximates the true

gradient direction for any initial conditions.

In Figure 4.6 the circular formation of agents is centered at c = (2, 2)T and the

oscillations of the estimated gradient directions zk are smaller than in Figure 4.7 where

the formation is centered at source location. In this second case, the mean of the

directions is equal to zero but, the convergence region of radius ε leads to completely

wrong gradient direction estimations.

Conclusions and limitations of the algorithm

The final gradient direction zk estimated by each agent oscillates with period T =

2π/ω0. The amplitude of these oscillations depends on the concentration measurements

σk. When the formation is close to the source location, the measurements are greater,

thus, the amplitude of oscillations are greater as well. Moreover, as the gradient is close

to zero in the neighborhood of the source (at least with the Gaussian profile used in
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(a) Estimated directions zk for t = 0s (black

dashed lines) and for t = 50s (red lines)

(b) X and Y coordinates of estimated directions

zk

Figure 4.7: Simulation of a circular formation of five agents centered at c = (0, 0)T .

The function σ representing the signal distribution centered at the origin has circular

level sets. The consensus algorithm (4.30) is implemented with κ = 50.

these simulations), a ball of radius ε around 0 leaves the gradient direction essentially

unknown; thus Theorem 4.3 does not guarantee good behaviour in the neighborhood

of the source.

Another limitation of the consensus algorithm (4.30) is that the radius ε depends

on the constants α and γ which cannot necessarily be small values. In order to avoid

these problems, an averaging approach is presented in the sequel.

Input-averaging

With a view to improve the distributed algorithm presented before, the periodic prop-

erties of the situation assumed in the problem formulation are studied.

The agents describe a periodic movement, it means that rk(t) = rk(t + T ) with

T = 2π/ω0. Therefore, the measurements σk obtained by agent k are a periodic map

because σ(rk(t)) = σ(rk(t + T )). In conclusion, the input variable of the consensus

algorithm uk = σk(rk − c) is a T -periodic function with T = 2π/ω0. Estimated

directions zk obtained by the consensus algorithm (4.30) shown in Figures 4.6 and 4.7

are also periodic. The average of these solutions approximates the gradient direction of

the source. Thanks to these observations, an analysis of the average properties of the

input variable uk seems adequate. The idea now is to improve the previous distributed

consensus algorithm using the periodic properties of the measurements σ(rk).

The input vector uk in previous consensus algorithm is replaced by its mean value
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over one period T = 2π/ω0 which is defined as:

ūk =
1

T

∫ t

t−T
σk(rk(τ)− c)dτ (4.31)

Therefore, thanks to Lemma 4.2 the new mean vector ū∗ approximates the gradient of

the signal propagation σ at the center of the circular formation:

ū∗ =
1

N

N∑
k=1

ūk (4.32)

The new input variable of the improved algorithm based on (4.30), is the mean

vector ū = (ūT1 , ū
T
2 , . . . , ū

T
N)T , and the objective is defined as ū∗1 = 1 ⊗ ū∗. Following

the analysis developed previously, assumed that the signal distribution varies softly,

thus, following inequality ‖(ū − ū∗1)‖ ≤ ᾱ is satisfied. Using these considerations, a

new algorithm is proposed in the following corollary:

Corollary 4.1 (Briñón-Arranz et al. 2011 [20]) Consider a circular formation of N

agents defined by (4.27) with a connected communication graph G and Assumption 4.1

is satisfied. Let σ : R2 → R+ be a bounded function and the mean vector ū∗ defined

in (4.32) satisfies ‖ ˙̄u∗‖ ≤ ν̄. Then, z∗(t) = 1⊗ ū∗ is a globally asymptotically ε̄-stable

equilibrium of the dynamics of the distributed algorithm given by

ż = −κL2z− L2ū + (IN + ∆)2(ū− z) (4.33)

with

ε̄ =
(ν̄
√
N(1 + dmax) + ᾱγ)λ

1
2
max(Aκ)

λ
5
2
min(Aκ)

where the matrix Aκ and the constants ᾱ and γ are previously defined.

Considering Assumption 4.1 (the circular formation is fixed) by definition, the mean

input ū is a constant vector after a time period T . Therefore, the input variable ū

converges to the mean vector ū∗1 and moreover, its derivative is equal to zero. It means

that:

ν̄ → 0 and ᾱ→ 0

It implies that the radius of the convergence region ε̄ converges to zero after a period

T , the consensus is achieved and all the agents estimate the mean vector ū∗ which

approximates the gradient direction at the center of the formation.

The gradient direction estimated by the agents will be the reference velocity of the

formation center to steer the fleet of agents to the source location. If the formation is

moving, the gradient of the signal distribution in the circle center becomes time-varying

and the concentration measurements does not satisfy the periodic properties anymore.
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Therefore, the consensus algorithm makes that the agents estimate the gradient direc-

tion before a period T . A detailed investigation of our algorithms when the formation

moves along the estimated gradient direction towards the source location is the next

research goal discussed later.

Simulations

The simulations show the same circular formation of five agents from the previous ones.

In Figures 4.8 and 4.9 the improved distributed algorithm (4.33) from Corollary 4.1 is

implemented with κ = 1 by a circular formation centered at c = (2, 2)T and at source

location, respectively. The measured signal is the same as in previous simulations. Due

to the circular level sets of the signal propagation the gradient vector ∇σ(c) provides

the adequate direction to steer the formation to the source location.

(a) Estimated directions zk for t = 0s (black

dashed lines) and for t = 50s (red lines)

(b) Components of estimated directions zk

Figure 4.8: Simulation of a circular formation of five agents centered at c = (2, 2)T .

The function σ representing the signal distribution centered at the origin has circular

level sets. The mean input consensus algorithm (4.33) is implemented.

Both Figures 4.8(a) and 4.9(a) show two snapshots, the initial conditions and the

stable situation at t = 50s. Both Figures 4.8(b) and 4.9(b) show the components of

consensus variable zk. This algorithm allows us to remove the oscillations and the final

vectors for all the agents zk (red lines) are parallel to the gradient direction (blue line).

The problem of oscillations when the formation is centered at source location is also

solved and the final directions zk are equal to zero, i.e., the formation decides to stay

in the desired location. The estimated directions zk converge to the gradient direction

approximated by the mean vector ū∗ for any initial conditions.
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(a) Estimated directions zk for t = 0s (black

dashed lines) and for t = 50s (red lines)

(b) Components of estimated directions zk

Figure 4.9: Simulation of a circular formation of five agents centered at c = (0, 0)T .

The function σ representing the signal distribution centered at the origin has circular

level sets. The mean input consensus algorithm of (4.33) is implemented.

In Figure 4.10 the same algorithm (4.33) is implemented with an elliptical signal

distribution defined by

σ(x, y) = 100e−(x
2/10+y2/2)/10

The estimated directions zk converge to the gradient direction ∇σ(c). In this case, this

direction will not directly steer the formation to the source location, but a formation

moving along the respective gradient direction will be progressively steered towards

the source over several consecutive steps, as in a gradient-descent method, see [34].

4.4.2 Time-varying source

In this section a time-varying source is considered. In this situation, the signal distri-

bution in the environment becomes a time-varying function, such that σ depends both

on the position and time, i.e. σ(rk, t).

The previous Lemma 4.3 shows that a fleet of N > 2 agents uniformly distributed

along a fixed circular formation is able to approximate the gradient direction of a scalar

field varying with time. A direct consequence of this lemma is that the distributed

estimation algorithm from Theorem 4.3 with the uk’s defined in (4.25) also holds in

the case of time-varying signal distribution.

However the extension presented in Lemma 4.2 to time-varying signal distributions

is not straightforward. Indeed, if the signal distribution depends on the time variable,

equation (4.12) is not valid anymore.
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Figure 4.10: Simulation of the distributed algorithm (4.33) by a circular formation of

five agents centered at c = (2, 2)T . The function σ representing the signal propagation

centered at the origin has elliptical level sets.

Simulations

The same circular formation of five agents from the previous simulations is still con-

sidered. Figure 4.11 shows the simulation results of the gradient estimation of a time-

varying signal distribution. The distribution is given by

σ((x, y), t) = 100e−((x−2cos(t/10))
2+y2)/10

In order to compare the directions of the effective gradient and of the resulting estima-

tions, we consider the angle (in radians) between the ∇σ(c, t)T (and zk, respectively)

and (1, 0)T . In Figure 4.11 (a), one can see that each estimated direction, obtained by

the algorithm (4.30) from Theorem 4.3 with κ = 100, oscillates around the effective

gradient direction. Figure 4.11 (b) shows the same situation but implementing the

algorithm from Corollary 4.1 with κ = 100. In this case, a consensus on the estimates

is clearly reached. However there exists an error (on time) between the estimated di-

rection and the effective one. This delay, equal to the period T , is due to the fact that

with the input-averaging algorithm each agent needs one period in order to compute

the direction uk defined by (4.31).

4.5 Conclusions

The source-seeking problem is considered in this chapter. By way of introduction, an

exhaustive study of different approaches proposed in the recent literature, which deal
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(a) Simulation results using the algorithm from

Theorem 4.3

(b) Simulation results using the algorithm from

Corollary 4.1

Figure 4.11: Evolution of the direction, given in radians of the estimates (soft lines)

and the real gradient (red bold line) for a time-varying signal distribution.

with the source-seeking problem, is provided. There are only a few works that consider

a collaborative strategy.

In this context, the main contributions presented in this chapter, are the three

lemmas presented in Subsection 4.3.1, which prove that the measurements of a signal

distribution, obtained by a group of sensors uniformly distributed along a fixed circular

formation, allow us to approximate the gradient direction of the signal at the center of

the formation. Based on this result, a distributed algorithm is developed to estimate

the gradient direction of a signal by a circular formation of AUVs. Communication

constraints are considered via a communication graph. This new collaborative strategy

is based on a consensus filter algorithm in order to make the agents reach an agreement

on the estimated gradient direction. The estimated directions oscillate around the real

direction of the gradient.

According to the periodic properties of the measurements obtained by the circu-

lar formation of agents, the previous distributed algorithm is modified. Using the

average of the directions computed by each agent and applying the previous consen-

sus algorithm, the agents reach a consensus on the gradient direction asymptotically.

Both algorithms are analyzed when the source emitting the signal distribution is time-

varying.

The estimated gradient direction will be used to drive the fleet of AUVs to the source

position thanks to a gradient-descent approach. A control strategy, based on several

results presented in this dissertation, will be developed to achieve the source-seeking

in future researches.



Chapter 5

Conclusion and Future works

The purpose of this chapter is to summarize the contributions presented in the dis-

sertation and introduce some perspectives of future research to complete and improve

this work.

5.1 Review of the contributions and conclusions

Cooperative control is an important issue due to its large number of applications.

Collaborative behavior of a group of agents means that there exist several intercon-

nections between them in order to reach a common objective. In the context of this

thesis, the agents represent autonomous underwater vehicles (AUVs) and the common

goal is to locate and follow an underwater source (fresh water, pollutant flow, chemical

source). To achieve the final aim, the collaborative mission is structured in several

phases. Firstly, the vehicles reach a desired formation thanks to a feedback control.

The main contribution is to stabilize the fleet to time-varying formations. Besides, a

cooperative control law distributes the AUVs uniformly along the formation, tacking

into account the communication constraints. These results constitute the support to

tackle the source-seeking problem. A distributed algorithm is developed to estimate

the gradient direction of a signal by a group of vehicles in formation. This estimated

direction will steer the fleet of AUVs to the source location.

5.1.1 Formation control tracking time-varying references

Feedback control laws to stabilize the vehicles to time-varying formations are devel-

oped. The vehicles are modeled by unicycle kinematics as is detailed in Chapter 2.

Collective motions, particularly circular motions, have been studied in recent litera-

ture. The main contribution according to the field of formation control, is that the

vehicles are stabilized to a formation which is defined by time-varying parameters. The

149
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first control law developed in this thesis allows the AUVs to describe a circular trajec-

tory whose center is an external time-varying reference. The main idea is to change

the coordinates reference frame to a relative frame which is invariant with respect to

the time-varying center. The coordinates transformation is appropriate to take into

account some properties of the new manifold, in which the multi-agent system is ex-

pressed. Based on the same idea, a control law is presented to govern the AUVs in

order to converge to circular motions with time-varying radius.

Consequently, the following contribution, presented in Chapter 3, deals with the

generalization of both previous control laws using the same idea, i.e., by transforming

the reference frame. As result, a new framework is developed to express a large class

of motions by deforming a unit circle. The three main transformations which can be

applied to a formation in order to change its shape, position and orientation, are the

scaling, translation and rotation, respectively. Therefore, a sequence of affine transfor-

mations applied to the unit circle defines a new formation which results from deforming

that circle. The configurations obtained with this methodology are called elastic forma-

tions in this thesis. Thanks to a coordinates transformation, a new general formation

control law is developed to stabilize a group of vehicles to elastic formations defined

by affine transformations. Moreover, this new formulation allows us to specify several

class of motions defined by a velocity reference. A new algorithm based also on affine

transformations, makes a group of agents converge to a time-varying configuration in

terms of velocity.

5.1.2 Collaborative algorithms to formation control

The notion of formation is introduced in the survey from Chapter 1. An important

characteristic of formation control is that the agents collaborate between them. There-

fore, several cooperative algorithms are included to the control laws presented in both

Chapters 2 and 3 in order to achieve different objectives. The first cooperative ap-

proach deals with the distribution of the vehicles along formations. The agents have

to exchange some information: in this case, their heading angle or their transformed

heading angle with respect to a relative frame. Hence, interconnections between agents

must be taking into account. The communication topology of the network is repre-

sented by an undirected graph. The convergence of collaborative algorithms presented

in this dissertation, is related to the connectivity properties of graphs studied in detail

in Appendix A.

The first contribution is to consider a graph in which the interconnections depend on

the relative position of the vehicles. It means that, each vehicle can only communicate

with its spacial neighbors, i.e., two vehicles are connected if the distance between

them is smaller than a certain value. This value, called critical communication radius,
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defines the communication region. Previous control laws to stabilize the agents to a

uniformly distribution along a circular formation are considered now under this new

communication approach. Moreover, this collaborative algorithm is also applied in the

case of elastic formations.

Another contribution deals with the application of consensus algorithms to the

previous formation control laws developed in this thesis. Note that, the time-varying

parameters which define the formations, are considered external references and are

known to all the vehicles. The objective of the cooperative approach is to relax this

assumption. A particular case, when the center reference of a circular formation is

unknown, is analyzed. In this situation, the velocity and acceleration of the desired

center trajectory are given references and thanks to a consensus algorithm the agents

reach consensus on the center position of the circular formation. This result, can be

seen as a preliminary step to achieve the source-seeking problem.

5.1.3 Distributed estimation of the gradient direction

Several control techniques have been developed in the last years in order to locate

the source of a signal distribution. Source-seeking strategies are designed to steer a

single vehicle or a group of vehicles to the source location. The vehicles are equipped

with sensors which are able to measure the scalar signal originating from the source.

Nevertheless, the sensor does not have the capability of sensing the position of the

source.

In this context, our main contribution is to prove mathematically that the gradient

direction of a signal distribution can be approximated by the measurements obtained

by a group of agents uniformly distributed along a fixed circular formation. The sensors

do not have any knowledge of the functional form of the field. This is an important

result because the gradient direction could be used to drive the center of the formation

to the desired location of the source.

Taking into account communication constraints between the vehicles, a distributed

algorithm based on consensus filters, which exploits the previous mathematical result,

is developed. This collaborative method allows estimating the gradient direction of

the signal distribution at the center of a circular formation of AUVs. Due to the

circular motion of the agents, the measurements obtained are periodical. Therefore,

the estimated directions oscillate around the real direction of the gradient. Using the

average of the computed directions, an improved distributed algorithm is presented in

order to reduce these oscillations. In this second case, exactly consensus is reached and

all the agents estimate the same gradient direction.

Several simulations are provided to support these results and to analyze the per-

formances of both algorithms. Moreover, the performance of both strategies, when the
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source emitting the signal distribution is time-varying, is evaluated by simulations.

5.2 Ongoing and future works

This dissertation proposes control strategies to carry out several challenges present in

cooperative underwater missions. The main contributions previously presented have

been developed considering several assumptions related to the model of the vehicles,

precision of sensors, communication constraints, model of the environment, etc. Con-

sequently, the futures research directions focus on relax previous assumptions in order

to consider more realistic situations.

5.2.1 Perspectives in formation control design

All formation control laws developed in this thesis take into consideration that the

vehicles know their absolute position vector with respect to the inertial frame. This

assumption is consistent to the fact that the vehicles are equipped with a precise

inertial measurement unit for navigation. Nevertheless, according to previously cited

works dealing with circular formation control [69, 86, 120, 149, 150], it seems very

appropriate to consider that each vehicle is only able to compute the relative distance

with respect to its neighbors. In this situation, the time-varying circular control laws

from Chapter 2 and the elastic formation control design presented in Chapter 3 will be

improved by cooperative algorithms in order to take into account the relative positions

between the vehicles instead of their absolute positions.

Another research direction copes with extending the control strategies studied in

this dissertation with a view to stabilize a fleet of autonomous underwater vehicles to

time-varying formations in the presence of currents. The authors of [120, 121] provides

control laws to stabilize a group of vehicles to circular formations in a time-invariant

and estimated time-varying flowfield respectively. Following the same reasoning of

these works, and thanks to the ideas presented in this thesis, cooperative control laws

will be developed to make the vehicles converge to time-varying elastic formations in

a flowfield.

Throughout this thesis, we assume a two-dimensional kinematic model of the vehi-

cles. In consequence, the motions and formations obtained are planar, i.e., the vehicles

are moving in a 2-D framework. In the literature, different control strategies are pro-

posed to obtain coordinated motion in three-dimensions of a group of vehicles, see [91]

and [69] for instance. A logical extension of the results studied in this dissertation

considers the possibility of develop three-dimensional time-varying formation control

laws.
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Finally, another future work to improve the presented formation control laws deals

with collision and obstacle avoidance. The cooperative control proposed in Chapters 2

and 3 to distribute uniformly the vehicles along a formation can be seen as a collision

avoidance method. The potential term added to the formation control law allows the

vehicles to avoid collisions with their neighbors in the formation. However, we cannot

assure collision avoidance until the vehicles are stabilized to the final configuration.

Therefore, some techniques based on cooperative strategies [47, 98] can be applied in

order to guarantee that vehicles do not impact each other. In the same way, potential

terms can be added to the formation control laws to achieve obstacle avoidance during

the motion of the fleet [108].

5.2.2 Perspectives in source-seeking algorithms

Chapter 4 tackles the source-seeking problem from a collaborative point of view. A

mathematical result demonstrates that a group of sensors uniformly distributed along

a fixed circular configuration taking measurement of a scalar field can approximate the

gradient of the signal distribution of that field at the center of the circular formation.

The first obvious research direction is to analyze the implications of a time-varying

center of the formation.

Based on this previous result, two distributed algorithms are developed to estimate

the gradient direction of the signal by a circular formation of autonomous underwater

vehicles. The idea is to use this direction in order to steer the formation to the location

of the source, i.e., to the maximum or minimum of the scalar field. A collaborative

approach merging time-varying formation control, consensus with reference velocity

algorithms and the estimated gradient direction will be considered in future works to

reach the source localization.

We assume perfect communication between two connected vehicles. With a view

to analyze the performance of the control algorithms studied in this dissertation in the

presence of more realistic communication constraints, cooperative approaches dealing

with packet loss, noise and time delays can be considered in further research.
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Appendix A

Fundamentals of graph theory

The present appendix looks forward to provide a sufficient detailed description of the

area of graph theory which mathematical properties have been used in this thesis.

This following exposition is based on both excellent talks Distributed Control of

Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms1 pre-

sented by Francesco Bullo, Jorge Cortés and Sonia Mart́ınez at the 47th IEEE Con-

ference on Decision and Control at Cancun, Mexico in December 2008 and Consensus,

flocking and opinion dynamics2 given by Antoine Girard during the International sum-

mer school of Automatic Control at Grenoble, France in September 2010. The reader

can also refer to the book Algebraic Graph Theory [12], for an exhaustive and complete

dissertation on the field. In addition, the PhD Thesis of Sarlette [142] presents very

detailed mathematical preliminaries in graph theory and the PhD Thesis of Hendrickx

[68] study the proprieties of graphs for the analysis of multi-agent systems.

A.1 Definition of Graph

Definition A.1 A direct graph or digraph is defined as a couple G = (V,E) con-

sisting of a set of with N elements called vertices, denoted by V = {1, 2, . . . , N} and a

set of ordered pair of vertices called edges, represented by E ⊆ V × V . The pair (k, j)

denotes an edge from the element k to j.

Definition A.2 An undirected graph consists of a set of vertices V and a set of

edges E which satisfies for all pair of elements k, j ∈ V , if and only if (k, j) ∈ E then

(j, k) ∈ E.

1The slides of the authors can be found at http://coordinationbook.info/pdfs/CDC08workshop-

DCRN-BulloCortesMartinez-lecture1.pdf
2The corresponding slides can be found in the Antoine Girard webpage: http://www-

ljk.imag.fr/membres/Antoine.Girard/Talks/auto-school.pdf

155



156 ChapterA. Fundamentals of graph theory

The graphs usually represent the interconnections in a group of elements also called

nodes. In this thesis, an edge between two nodes symbolizes that these elements can

communicate. In this situation, the notion of neighbors and neighborhood are very

useful to understand the mathematical notation dealing with graph theory.

Definition A.3 The neighborhood of a vertex k ∈ V is the set

Nk = {j ∈ V |(k, j) ∈ E}

Therefore, all the elements j ∈ Nk are called the neighbors of element k. This means

that there is a edge from node k to each node j which belongs to the neighborhood.

Definition A.4 The degree of a vertex k ∈ V is the number its neighbors, such that

dk = |Nk|

In a visual representation of an undirected graph, the edges between neighbors are

symbolized by bidirectional arrows or usually by non-oriented segments. Figure A.1

shows a directed and an undirected graph with N = 5 nodes. In the case of the directed

graph, the degree of node 1 is d1 = |N1| = 2 because the nodes 2 and 5 are the only

vertices which belong to its neighborhood. Note that, the edges (1, 2), (1, 5) ∈ E. In

the other example, the vertex 1 in the undirected graph has three neighbors such that,

vertices 2, 3, 5 ∈ N1, thus the degree of vertex 1 is d1 = 3.

1

2

3

4

5

1

2

3

4

5

DIRECTED GRAPH UNDIRECTED GRAPH

Figure A.1: Directed and undirected graphs

Definition A.5 A graph G ′ = (V ′, E ′) is a subgraph of G = (V,E) if its set of vertices

and its set of edges are subsets of the corresponding sets of graph G respectively, such

that, V ′ ⊂ V and E ′ ⊂ E.

In addition, if V ′ = V then G ′ is a spanning subgraph of G.

Definition A.6 A spanning subgraph is a subgraph in which V ′ ≡ V .
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Definition A.7 A direct tree is a digraph in which there is a vertex, called root, such

that any other vertex of the digraph can be reached by one and only one path starting

at the root.

Definition A.8 A direct spanning tree is a spanning subgraph in which there is a

vertex, called root, such that any other vertex of the digraph can be reached by one and

only one path starting at the root.

Definition A.9 A digraph is balanced if each vertex k ∈ V has the same number of

incoming and outgoing edges.

In particular, an undirected graph is balanced.

A.2 Connectivity of a graph

In this section connectivity notions and several properties of the graphs are presented.

The stability of an algorithm, which use a graph in order to represent the interconnec-

tions between the different systems evolved in the algorithm, is directly related to the

connectivity properties of the graph. An example with consensus algorithms will be

analyzed in the sequel.

Consider a digraph G = (V,E) which vertices are denoted by V = {k1, k2, . . . , kN}.
In order to analyze the connectivity properties of the graphs, the notion of direct path

is introduced as follows:

Definition A.10 A direct path in a digraph G = (V,E) is an ordered sequence of

vertices (k1, k2)(k2, k3) . . . (km−1, km) such that any ordered pair of vertices appearing

consecutively in the sequence is an edge of the digraph, i.e., (kp−1, kp) ∈ E for all

p = 1, . . . ,m, where m ≤ N .

The notion of connectivity is associated to the idea of that the information transmitted

by one node in the graph can be received for the rest of the nodes of the communication

graph. A vertex of a digraph is globally reachable if it can be reached from any other

vertex by traversing a direct path.

Definition A.11 A digraph G = (V,E) is strongly connected if every vertex is

globally reachable, such that, for all k ∈ V there is a direct path starting from each

other vertex j ∈ V, j 6= k which finish in k.

For undirected graphs the notion of connectivity is expressed as follows. If for all

k, j ∈ V , there exist a path (non-ordered sequence) joining k and j (its means they are

connected), then the undirected graph is connected.
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In Figure A.1 the directed graph is strongly connected because all its vertices are

globally reachable. In other words, starting from every node, there exist a direct path

to reach the rest of nodes. The undirected graph of Figure A.1 is connected because

all its vertices are connected.

A.2.1 Adjacency matrix

The adjacency matrix allows to represent in a simple numeric form the interconnections

in a graph. The connectivity of a graph is directly related to several properties of this

matrix, such that its eigenvalues. The relationship between a graph and the eigenvalues

and eigenvectors of its adjacency matrix is studied in spectral graph theory.

Definition A.12 The adjacency matrix of a digraph G = (V,E) is the N × N

matrix A = (akj) given for all j, k ∈ V by:

akj =

{
1, if (k, j) ∈ E
0 otherwise

In the case of undirected graphs, by definition, the adjacency matrix is symmetric. Note

that, in this appendix self-loops are not considered, therefore all diagonal elements of

the adjacency matrix are equal to zero.

For illustration, the adjacency matrix of both directed and undirected graphs dis-

played in Figure A.1 can be written as follows:

Adirected =


0 1 0 0 1

0 0 1 0 1

1 0 0 1 0

0 0 1 0 0

1 0 0 0 0

 Aundirected =


0 1 1 0 1

1 0 1 0 1

1 1 0 1 0

0 0 1 0 0

1 1 0 0 0


A diagonal matrix, called also degree matrix, is defined in order to represent, in a

matrix form, the number of neighbors of each agent.

Definition A.13 The degree matrix of a digraph G = (V,E) is the N × N matrix

∆ = (dkj) given for all j, k ∈ V by:

dkj =

{
dk, if k = j

0 otherwise

By definition, each diagonal element of the degree matrix is equal to the sum of elements

of its corresponding row in the adjacency matrix. Hence, the degree matrix of both
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graphs can be expressed as:

∆directed =


2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 1 0

0 0 0 0 1

 ∆undirected =


3 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 1 0

0 0 0 0 2


Note that, for digraphs, two different degree matrices can be defined. The first one,

is also called the out-degree matrix and it is defined as (∆out)kk =
∑N

j=1 akj. This

diagonal matrix is the same which has been determined in Definition A.13. The other

one, is the in-degree matrix, expressed as (∆in)kk =
∑N

j=1 ajk.

A.2.2 Laplacian matrix of a graph

According to these previous adjacency and degree matrices, a new matrix is built in

order to analyze the connectivity properties of graphs using the matrix theory.

Definition A.14 The Laplacian matrix of a digraph G = (V,E) is the N × N

matrix L = (lkj) given for all j, k ∈ V by:

lkj =


dk, if k = j

−1, if (k, j) ∈ E
0 otherwise

Consequently, the Laplacian matrix is also defined as L = ∆−A.

The Laplacian matrix of a digraph has several interesting properties, especially with

a view to study the connectivity of the graph. The following list summarizes some of

the most important:

• The vector of ones 1 = (1, . . . , 1)T ∈ RN is always an eigenvector of the Laplacian

matrix with eigenvalue zero, such that, L1 = 0, where 0 = (0, . . . , 0)T ∈ RN

represents the vector of zeros.

• All the eigenvalues of L have nonnegative real parts, such that:

0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1

• The digraph G contains a vertex globally reachable if and only if the rank of its

Laplacian matrix is equal to N − 1.

• The quadratic expression xTLx, where x ∈ RN , is positive semidefinited if and

only if the digraph associated G is balanced.



160 ChapterA. Fundamentals of graph theory

Following with both examples of Figure A.1, the corresponding Laplacian matrices

of the directed and undirected graph can be expressed as:

Ldirected =


2 −1 0 0 −1

0 2 −1 0 −1

−1 0 2 −1 0

0 0 −1 1 0

−1 0 0 0 1

 Lundirected =


3 −1 −1 0 −1

−1 3 −1 0 −1

−1 −1 3 −1 0

0 0 −1 1 0

−1 −1 0 0 2


In the case of undirected graphs, the Laplacian matrix has additional interesting

properties:

• The Laplacian matrix of an undirected graph G is symmetric. Therefore, all its

eigenvalues are real.

• The Laplacian matrix of an undirected graph G is positive semidefinite.

• The quadratic expression xTLx = 1
2

∑N
j∈Nk(xk − xj)2, for all x ∈ RN .

The properties of the Laplacian matrix provide information about the connectivity

of its associated graph. In the case of undirected graphs, these properties are stronger

than for directed graphs.

Definition A.15 The second smallest eigenvalue λ1 of the Laplacian matrix L is re-

ferred to as the algebraic connectivity of the undirected graph G.

And it can be proved that this second eigenvalue is positive λ1 > 0 if and only if the

is connected. This result is equivalent to:

• If the digraph G is strongly connected then 0 is a simple eigenvalue of L.

• The algebraic multiplicity of the eigenvalue 0 of L is equal to the number of

connected components in the undirected graph G.

A.3 Time-varying graphs

It is of both theoretical and practical interest to consider time-varying communication

topologies. During a coordinated motion or a collaborative task, the interconnections

between the agents that conform the network can evolve such that, new communication

links are created and others are broken. In this situation, the links of the network are

represented by a time-varying graph. It means that the set of edges E depends on time

and consequently the adjacency matrix is time-varying too.
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Time-varying communication topologies are described by a time-varying δ-digraph

G(t) = (V,E(t)), where the elements of its adjacency matrix A(t) are bounded and

satisfy some threshold δ > 0, that is, akj(t) = 0 in the absence of a communication

link and akj(t) ≥ δ in the presence of a communication link.

Definition A.16 Consider a time-varying graph G(t) = (V,E(t)) with adjacency ma-

trix A, and let Ḡ(t) = (V̄ , Ē(t)) be the graph in which Ē(t) contains all edges that appear

in G(τ) for τ ∈ [t, t + T ] and its adjacency matrix is defined as Ā =
∫ t+T
t
A(τ)dτ . A

node k is said to be connected to node j 6= k in the interval [t, t+ T ] if there is a path

from vertex k to j, which respects the orientation of the edges for the directed graph Ḡ.

Then, G(t) is said to be uniformly connected if there exists an index k and a time

horizon T > 0 such that, for all t, node k is connected to all the other nodes across

[t, t+ T ].

A.4 Circulant graphs

A circulant graph is an undirected graph in which, the adjacency matrix is circulant

and all the vertices k = 1, . . . , N of the graph have the same degree dk = d0 > 1.

It means that the graph has a cyclic group of symmetries that includes a symmetry

taking any vertex to any other vertex, see Figure A.2.
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Figure A.2: Circulant graphs

A d0-circulant graph is a circulant graph in which each node is connected to d0 other

nodes, where d0 is a fixed integer in the interval [2, N − 1]. All d0-circulant graphs are

d0-regular, which means that dk = d0 for all k. Both adjacency and Laplacian matrices

of a circulant graph are circulant, i.e., they are completely defined by their first row

[41]. Each subsequent row of a circulant matrix is the previous row shifted one position
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to the right with the first element equal to the last element of the previous row. For

example, the complete graph (all-to-all communication) is (N − 1)-circulant and the

cyclic graph (ring topology) is 2-circulant. Note that, by definition, all d0-circulant

graphs are connected [150].

The Laplacian matrix of the 2-circulant graph shown in Figure A.2 is written as

follows:

L2−circulant =


2 −1 0 · · · 0 −1

−1 2 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1

−1 0 0 · · · −1 2


In the same manner, the corresponding Laplacian matrix of the 4-circulant graph from

Figure A.2 is expressed by:

L4−circulant =


4 −1 −1 · · · −1 −1

−1 4 −1 · · · 0 −1
...

...
...

. . .
...

...

−1 0 0 · · · 4 −1

−1 −1 0 · · · −1 4





Appendix B

Resumé en français

B.1 Introduction

L’exploration sous-marine est le processus relativement récent d’enquêter sur les pro-

fondeurs de la mer pour comprendre ses caractéristiques physiques et chimiques et

approfondir nos connaisances sur les formes de vie qui peuplent cet environnement.

L’exploration sous-marine est un phénomène nouveau (par rapport à beaucoup d’autres

sciences), car la technologie nécessaire pour assurer la sécurité humaine dans les eaux

profondes n’a été que dévelopée récemment. Au cours des dernières décennies, des

technologies alternatives, qui utilisent des véhicules sans équipage, tels que flotteurs

avec capteurs immergés, véhicules télécommandés (ROV pour le sigle en anglais) et

véhicules autonomes sous-marins (AUV pour le sigle en anglais), ont émergé pour

compléter les techniques de détection existantes. Tous ces véhicules sont équipés de

différents capteurs afin de recueillir les informations d’une région d’intérêt. Ces in-

formations fournissent un soutien fondamental à la compréhension des processus des

océans d’un point de vue biologique (productivité de l’écosystème), ou à prédire les

propriétés physiques de l’océan, comme la température et les courants. À cette fin, des

stratégies de contrôle pour la commande des véhicules mobiles doivent être développées

pour orienter les véhicules vers les endroits où leurs données seraient les plus utiles [39].

Les réseaux de capteurs mobiles sont souvent utilisés dans des applications envi-

ronnementales telles que l’échantillonnage des océans, la surveillance, la cartographie,

l’exploration spatiale et de la communication, voir [39, 86, 167, 177] et les références in-

cluses. Dans ces sortes de missions, les capteurs mobiles sont commandés pour mesurer

un champ scalaire inconnu. Par exemple, une concentration de produits chimiques, un

polluant, ou la température. Comme chaque capteur ne peut prendre qu’une mesure

à la fois, les capteurs doivent se déplacer dans une formation pour estimer le champ

d’intérêt. Il semble approprié que le groupe de véhicules collabore afin de mener à bien

la tâche d’exploration tout en optimisant le temps et l’énergie. Collaboration signifie

163
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que chaque véhicule est capable de communiquer certaines informations pour le reste

du groupe et ces données sont utilisées pour déterminer une action ou un comportement

particulier pour accomplir la tâche d’exploration.

Dans ce contexte, la présente thèse aborde le problème d’une mission d’exploration

sous-marine effectuée par un groupe d’AUVs de façon coopérative. L’objectif est de

concevoir des stratégies de contrôle pour accomplir les différents défis scientifiques

trouvés dans ces missions :

Commande de systèmes multi-agent : Un système multi-agent, défini plus précisément

dans la Section 1.2, est un système composé par un groupe d’individus autonomes

qui interagissent les uns avec les autres. Par conséquent, une flotte d’AUVs peut

être traitée comme un système multi-agents dans lequelle chaque véhicule est

considéré comme un agent avec des capacités de communication.

Contrôle d’une formation : Afin d’accomplir une tâche d’exploration, un choix rai-

sonnable est de coordonner les agents pour former une configuration particulière.

Les algorithmes de contrôle pour atteindre ce but doivent assurer certaines per-

formances, telles que l’inter-distance entre les véhicules dans la formation. L’ob-

jectif le plus important est de déplacer le groupe de véhicules tout en gardant la

formation.

Algorithms de contrôle avec contraintes de communication : Dans une mission

collaborative, les individus échangent des informations pour atteindre une tâche

particulière. Les données transmises sont soumises à différents problèmes de com-

munication dus au canal de communication, tout particulièrement dans les en-

vironnements sous-marins, comme le bruit dans le signal transmis, les pertes de

paquets, les retards lors de la transmission et les problèmes d’affaiblissement de

la puissance du signal.

Cette thèse traite de ces problèmes dans le contexte d’une mission sous-marine dans

laquelle une flotte de AUVs doit collaborer pour localiser une source.

B.1.1 Contexte de la thèse

Cette thèse s’inscrit dans le cadre de deux projets de recherche : le projet européen

FeedNetBack1 et le projet français CONNECT2, financé par l’ANR (Agence Natio-

nale de la Recherche). Les deux projets traitent de systèmes commandés en réseau

(NCS pour le sigle en anglais) et ils sont particulièrement intéressés par le problème

du contrôle des systèmes multi-agents, c’est-à-dire, des systèmes composés de plusieurs

1http ://www.feednetback.eu/
2http ://www.gipsa-lab.inpg.fr/projet/connect/
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sous-systèmes interconnectés par un réseau de communication hétérogène. Le défi prin-

cipal de ces projets est d’apprendre à concevoir des contrôleurs en prenant en compte

des contraintes sur la topologie du réseau et la possibilité de partager des ressources

informatiques au cours du fonctionnement du système, tout en préservant la stabilité

du système en boucle fermée.

Le projet FeedNetBack regroupe plusieurs partenaires académiques, et aussi des

participants industriels en vue de réaliser les applications technologiques. Le cas d’étude

commun à ces deux projets se concentre sur la commande coopérative d’un groupe de

véhicules marins sans pilote, c’est-à-dire, véhicules autonomes sous-marins (AUV) et

navires de surface autonomes (ASV). Ce cas d’étude, détaillé plus tard, concerne le

partenaire IFREMER3 qui est chargé des aspects techniques relatifs à des véhicules

sous-marins. Il permettra d’accomplir une démonstration utilisant des véhicules réels.

Un des participants universitaires qui se concentre sur les innovations techniques de

cette étude de cas, est l’institut de recherche INRIA (Institut National de Recherche

en Informatique et en Automatique) à travers de l’équipe NeCS4, au coeur de laquelle,

cette thèse a été faite. Le projet CONNECT considère également la possibilité d’évaluer

les structures de contrôle proposées par le biais d’une interface graphique développée

par PGES et des simulations effectuées avec un simulateur complexe qui est construit

par PROLEXIA.

Cas d’étude

The proposed case study copes with a main mission whose objective is to carry out

a gradient search and following an underwater source by a fleet of AUVs. The nature

of the source to be detected, can be very different : fresh water, a chemical source,

methane vent, etc. The technical details corresponding to this case study are reported

in

Les systèmes multi-agents en réseau, en particulier les systèmes sous-marins, qui

sont actuellement utilisés ou développés par l’industrie et la recherche marine, sont

soumis à de sévères contraintes technologiques. L’avantage d’utiliser plusieurs véhicules

simples au lieu d’un système complexe, coûteux et de haute capacité, est que la flotte

est capable de réaliser des tâches qui ne peuvent pas être facilement obtenues par un

seul véhicule. Ce cas d’étude comprend des véhicules hétérogènes marins (de surface

et sous-marins tels que des embarcations autonomes, AUVs ou planeurs sous-marins)

afin de réaliser une mission scientifique composée de plusieurs phases (exploration et

recherche, échantillonnage des données par des capteurs). Le cas d’étude proposé traite

d’une mission dont l’objectif est d’effectuer une recherche de gradient et de suivre une

3Institut français de recherche pour l’exploitation de la mer, http ://wwz.ifremer.fr/institut
4http ://necs.inrialpes.fr/
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source sous-marine avec une flotte de AUVs. La nature de la source à détecter, peut

être très différente : de l’eau douce, une source chimique, du méthane, etc. Les détails

techniques correspondant à ce cas d’étude sont détaillés dans [113].

Figure B.1 – Le véhicule sous-marin AsterX

AsterX : Le véhicule sous-marin pris en compte dans ce cas d’étude et, par conséquent,

dans cette thèse, est l’AsterX, qui appartient à l’IFREMER (voir Figure B.1). L’AsterX

est un véhicule autonome sous-marin qui est actionné par une hélice principale destinée

au déplacement dans la direction longitudinale. La direction du véhicule autour de ses

angles de roulis, tangage et lacet est assurée par deux ailettes dans la partie avant du

véhicule (ailettes de canard), et deux couples d’ailettes à l’arrière du véhicule (plan

horizontal et vertical). En fonction de la charge utile, son poids est compris entre 580

et 800 kg dans l’air, avec une profondeur de plongée de 3000 mètres. Sa vitesse de

croisière est comprise entre 0, 5 et 2, 5 mètres par seconde. La longueur du véhicule est

de 4, 5 mètres et son autonomie est de 11 heures [135].

Ce AUV a plusieurs capteurs de navigation : un système Doppler pour mesurer

la vitesse, une centrale inertielle (composée d’un gyroscope, d’accéléromètres et de

magnétomètres) pour calculer en temps réel son attitude (roulis, tangage et l’angle

de lacet) et mettre à jour sa position, et également un capteur acoustique pour le

positionnement absolu.

Mission et scénario sous-marin : L’objectif de la mission est de localiser et de

suivre une source en prenant en compte les données mesurées fournies par des capteurs

situés à bord des AUVs, qui mesurent la concentration de l’écoulement de la source. La

configuration des véhicules doit être telle que des estimations spatiales de le gradient

de la concentration peuvent être calculés d’une façon coopérative. Les lois de com-

mande coopérative conçues pour atteindre cet objectif devraient prendre en compte les

contraintes de communication dues au scénario sous-marin.
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Figure B.2 – Détection et suivi d’une source sous-marine

Pour effectuer des missions impliquant plusieurs véhicules, le mouvement coordonné

est nécessaire, surtout lorsque l’objectif de la mission est de diriger des capteurs. Dans

le cas présenté ici, la détection de la source peut être réalisée avec les informations des

capteurs recueillies par les véhicules en mesurant la concentration dans la zone de diffu-

sion de la source, comme le montre la Figure B.2. Cette image représente l’objectif du

cas d’étude et elle a été produite par l’interface graphique développée par PGES et le

simulateur qui est fourni par PROLEXIA. Les formes colorées elliptiques symbolisent

les courbes de niveau du champ scalaire d’intérêt. La flotte d’AUVs, organisée dans

une formation particulière, calcule de manière collaborative la meilleure direction pour

déplacer le centre de la formation vers l’emplacement de la source. La flotte doit ma-

noeuvrer afin de rechercher la région de concentration la plus élevée de la distribution

du signal, et donc, procéder à la localisation de la source.

Etapes de la mission et défis : Ces dernières années, il peut être remarqué la

détérioration des eaux marines due à de multiples polluants. Ce cas d’étude, dévéloppé

en coordination avec l’IFREMER, vise à localiser les sources des fuites, à la suite d’un

naufrage, ou, inversement, les sources d’eau douce pour la consommation domestique.

Les différentes étapes considérées pour atteindre cet objectif sont détaillées ci-dessous.

La configuration initiale est une flottille composée de cinq véhicules autonomes

sous-marins équipés de capteurs de salinité, qui doivent trouver une source d’eau douce,

sans intervention humaine. Les stratégies de coopération avec la mise en commun d’in-

formations provenant de chaque véhicule, doivent être développées pour exploiter les

avantages de l’utilisation d’une flotte de véhicules et pour réduire le temps de l’explo-
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ration.

Un premier défi est dû à la difficulté d’établir une communication fiable dans un

environnement sous-marin. C’est un point clé pour assurer une coopération efficace.

En effet, le débit de données est seulement de quelques centaines de bits/s, le délai de

transmission est d’environ une seconde et environ 10% de paquets sont perdus. Dans

cette situation, toutes les stratégies de contrôle développées doivent prendre en compte

les contraintes de communication.

La localisation d’une source sera effectuée en deux phases. Par conséquent, un

deuxième défi concerne la conception des lois de commande d’une formation appro-

priées pour atteindre les objectifs de chaque phase. La première correspond à la phase

d’exploration. Au cours de cette étape d’exploration, les véhicules se déplacent dans

une formation en forme de V [103], dans le but de recueillir des informations et pour

détecter la distribution de signal émise par la source. Une fois qu’un agent détecte un

changement significatif de la salinité, il transmet cette information aux autres. Puis la

flotte commence une phase de consolidation.

Dans cette deuxième phase, la flotte se regroupe dans une forme particulière, par

exemple circulaire. Avec une telle formation, le mouvement pourrait être plus lent que

lors de la formation en V. Toutefois, une formation circulaire a une plus grande sou-

plesse pour se déplacer dans toutes les directions. En outre, la répartition des AUVs le

long de la formation est pertinente pour recueillir des mesures distribuées spatialement

qui peuvent permettre une localisation plus précise de la source. Il est également pos-

sible d’envisager un grand nombre de formations : il peut être intéressant de déformer

la formation pour l’adapter à l’environnement, de suivre un chemin ou pour éviter des

obstacles.

En vue de former et de maintenir cette formation, les véhicules doivent échanger

des messages en fonction de leur position par rapport au centre de la formation. Une

conception centralisée peut être considérée où un véhicule de surface fournit toutes les

informations nécessaires à la flotte. Les échanges de données entre les AUVs permettent

d’envisager une approche décentralisée dans laquelle aucun véhicule n’est consideré

comme un leader. Afin de prendre en compte les contraintes de communication, telles

qu’une zone limitée de communication pour les AUVs, seuls les voisins les plus proches

sont pris en compte pour échanger des informations.

Afin d’atteindre l’objectif de la recherche d’une source, un algorithme de décision

doit être développée. Il sera également basé sur les échanges de données entre voisins

pour assurer la même robustesse que dans le cas des contraintes de communication.

L’objectif de cette dernière tâche est de permettre à tous les véhicules de se mettre

d’accord sur une orientation de la formation pour se déplacer vers la source en utilisant

les mesures collectées par les véhicules. On peut imaginer d’étendre ce type d’algo-
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rithmes pour d’autres applications telles que la definition des contours qui cherche à

délimiter l’étendue et l’évolution d’une zone polluée.

Objectifs généraux

Les objectifs généraux communs aux deux projects FeedNetBack et CONNECT, cor-

respondant au cas d’étude des véhicules sous-marins déjà présenté, se concentrent sur

les cinq défis principaux suivants :

Architecture : La nécessité de coordonner les actions des véhicules sur des canaux

de capacité limitée.

Contrôle et Complexité : Stratégies de contrôle centralisées contre décentralisées,

qui sont au coeur de cette application.

Contrôle et Communication : La bande passante disponible est très limitée (quelques

bits par seconde), la communication est soumise à des retards de propagation

longs et variables, des multi-trajets, de la décoloration et des taux élevés d’er-

reurs de transmissions.

Contrôle et Calcul : Le cas d’étude fera usage des stratégies d’échantillonnage adap-

tatif et de calcul collaboratif distribué.

Contrôle et Énergie : Dans cette application la puissance des batteries est limitée

et généralement les batteries ne peuvent pas être rechargées pendant une mission.

Les ressources énergétiques doivent être partagées entre les différentes fonctions.

Conformément à ces objectifs généraux, la stratégie de contrôle suivante, basée

sur un rapport technique du projet FeedNetBack [152], pour parvenir à la recherche

collaborative d’une source sous-marine à l’aide d’une flotte de AUVs est proposée dans

cette thèse. Le premier défi est de décrire une architecture adéquate pour faire face à

une approche coopérative en prenant en compte tous les éléments de la formulation du

problème et toutes les contraintes. En conséquence, trois boucles de contrôle principales

sont prises en considération, comme le montre la Figure B.3. Sachant que ce projet vise

à étudier des flottes de véhicules qui travaillent ensemble pour atteindre un objectif

commun, en termes de contrôle et de coordination des flottes, cette thèse considère

que la flotte est composée d’un ensemble homogène de véhicules, c’est-à-dire, tous les

véhicules ont le même modèle dynamique.

Le premier objectif est de développer une boucle de régulation locale, appelée com-

mande robuste, qui stabilise chaque AUV. Cette loi de commande prend en compte

le modèle dynamique des véhicules, afin de contrôler leur orientation, la vitesse et la
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Figure B.3 – Architecture de la stratégie du contrôle

profondeur. Le mouvement le long des trois axes est découplé de telle sorte que, trois

contrôleurs différents sont calculés pour le contrôle de la vitesse d’avancement, l’angle de

lacet et de l’altitude respectivement. La thèse de Roche [136], qui fait également partie

des projets FeedNetBack et CONNECT, s’occupe de la conception robuste des com-

mandes pour le suivi de trajectoire d’un seul AUV par une approche d’échantillonnage

variable.

En considérant plusieurs véhicules identiques, la boucle externe effectue la tâche

de recherche. Un contrôle coopératif est mis en oeuvre pour atteindre un mouvement

coordonné de la flotte de telle sorte que le groupe des AUVs est disposé dans une

configuration particulière. La formation souhaitée est définie par plusieurs paramètres

tels que son centre et son rayon dans le cas d’une formation circulaire. Une loi de

commande collaborative stabilise la flotte vers une formation qui suit des paramètres

variant dans le temps. Ce travail est réalisé en deux dimensions, par conséquent, il est

supposé que tous les véhicules se déplacent à la même profondeur. La vitesse linéaire et

l’orientation sont les variables de contrôle qui dépendent de l’état de l’AUV (sa position

et sa vitesse) et des références externes qui définissent la formation désirée. La distri-

bution uniforme des véhicules le long de la formation est également considérée. Afin

de prendre en compte les contraintes de communication, un algorithme décentralisé est

conçu pour stabiliser les véhicules vers la configuration désirée (distribution uniforme),

en utilisant uniquement les informations de leurs voisins les plus proches.

Enfin, la trajectoire du centre de la formation est obtenue par une commande dis-

tribuée en utilisant les mesures du signal collectées par la flotte de AUVs. Les données

attendues sont mesurées par des capteurs de détection. La trajectoire à suivre par
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la flotte passe d’une configuration de recherche prédéfinie à un contrôle de suivi de

trajectoire basé sur les données des capteurs afin de détecter la source des données

mesurées.

La mise en oeuvre des boucles de régulation sur un réseau de contrôleurs numériques

induit des perturbations supplémentaires par rapport à la conception initiale à temps

continu, plus précisément en raison de l’échantillonnage, les retards, la quantification

et de la perte de données. Par conséquent, il convient de prendre en compte ces

contraintes de communication afin de concevoir les différentes stratégies de contrôle

définies précédemment.

B.1.2 Contributions de la thèse

La communauté d’automatique a spécialement porté son attention sur les systèmes

multi-agents dans les vingt dernières années. Les différents aspects présentés dans l’état

de l’art précédent ont été largement étudiés à cause des avantages des systèmes multi-

agents, par rapport à l’utilisation d’un seul véhicule ou d’un capteur, dans un grand

nombre d’applications.

Dans le contexte de l’exploration sous-marine, la conception des missions collabo-

ratives permet la collecte d’informations provenant de zones étendues dans un temps

plus court. Le principal avantage d’utiliser plusieurs systèmes dans un mouvement co-

ordonné est d’augmenter la portée d’un capteur par rapport à sa zone de couverture.

Ceci est particulièrement important si les propriétés qui doivent être mesurées fluctuent

avec le temps.

Selon le cas d’étude présenté dans cette introduction, les principaux défis abordés

dans cette thèse sont résumés comme suit :

• Contrôle d’une formation de AUVs

• Commande coopérative

• Recherche d’une source

• Algorithmes du contrôle avec contraintes de communication

La figure B.4 présente les principaux objectifs qui seront discutés dans cette thèse.

La première boucle de commande correspond au problème de contrôle d’une formation.

Le système multi-agents, dans ce cas représenté par un groupe d’AUVs, est régi par une

loi de commande qui utilise les positions des agents et leurs orientations, et qui dépendt

de paramètres de références externes pour la formation. Cet algorithme stabilise la

flotte vers des formations variant dans le temps. Ces formations suivent des paramètres

de références externes qui définissent la configuration souhaitée, comme son centre,
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Figure B.4 – Contributions de cette thèse

par exemple. Par ailleurs, nous avons développé des algorithmes collaboratifs pour

distribuer les véhicules autour de la formation d’une façon particulière.

La deuxième boucle de commande est conçue pour atteindre l’objectif final, la lo-

calisation et le suivi collaboratif d’une source. Les AUVs sont maintenant considérés

comme un réseau de capteurs mobiles pour obtenir des mesures d’un champ scalaire.

Ces mesures seront utilisées pour calculer un algorithme distribué pour réaliser la re-

cherche d’une source. Enfin, cet algorithme fournit la référence adéquate pour déplacer

la formation vers la localisation de la source.

A la fin de cette thèse, nous verrons comment plusieurs outils du domaine de l’Auto-

matique nous permetent de trouver une solution pour les problèmes discutés au début

de cette introduction.

B.2 Contrôle d’une formation circulaire variant dans

le temps

Afin de faire face aux défis mentionnés dans l’introduction, la stratégie de contrôle

élaborée dans cette thèse est structurée en trois phases. La première étape se concentre

sur le problème du contrôle d’une formation. Cette section traite de la conception des

lois de commande d’une formation pour une flotte de véhicules autonomes sous-marins.

Une formation est une configuration composée par un groupe de véhicules capables de

communiquer, dans lequel les véhicules collaborent pour atteindre un objectif commun.

Cette première contribution se concentre sur la conception de lois de commande pour

obtenir des formations circulaires.
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Le cercle a plusieurs propriétés symétriques intéressantes et sa forme géométrique

peut être simplement caractérisée par son centre et son rayon. Pour cette raison, le mou-

vement circulaire des véhicules est un sujet très vastement analysé dans la littérature.

Il y a plusieurs approches qui abordent cette question. Par example, la stratégie col-

laborative appellée poursuite cyclique étudiée dans [95], circumnavigation d’un seul

véhicule présenté dans [44] ou les mouvements circulaires collectifs dans [86].

Sur la base des résultats précédents sur le contrôle d’une formation circulaire étudiés

dans la littérature, plusieurs lois de commande sont développées dans cette section pour

stabiliser une flottille d’agents vers des formations circulaires variant dans le temps.

D’une part, le contrôle de convergence de véhicules vers un mouvement circulaire dont

le centre suit une référence variant dans le temps est présenté. Dans un second temps,

les agents sont stabilisés vers un mouvement circulaire qui change son rayon selon une

référence externe. Les deux lois de commande sont améliorées en ajoutant une fonction

potentiel afin de distribuer les agents autour de la formation dans un esprit collaboratif.

B.2.1 Formulation du problème

Dans cette section, on considère des formations circulaires d’agents autonomes dans

un espace à 2 dimensions. Il est supposé que les agents n’ont pas d’extension physique,

c’est-à-dire, que leurs positions sont de simples points. Considérons un groupe de N

véhicules identiques modélisés avec une cinématique unicycle soumise à une simple

contrainte non-holonomique, adéquate pour les véhicules sous-marins, tels que la dy-

namique des agents, où k = 1, . . . , N , est définie par :

ẋk =vk cos θk (B.1a)

ẏk =vk sin θk (B.1b)

θ̇k =uk (B.1c)

où rk = (xk, yk)
T ∈ R2 est le vecteur position de l’agent k, θk ∈ S1 est son angle du

cap et vk, uk sont les variables d’entrée de la commande.

L’objectif est de concevoir des stratégies de contrôle pour faire converger le groupe

d’AUVs, représenté par le système (B.1), vers des formations circulaires, dont les pa-

ramètres, centre et rayon, sont variant dans le temps. Les hypothèses suivantes sont

prises en compte dans la suite pour établir à cette première contribution :

• Chaque véhicule k = 1, . . . , N connâıt son vecteur de position absolute rk par

rapport au système de référence inertiel.

• Les références variant dans le temps qui définissent les paramètres de la formation

circulaire, c’est-à-dire, son centre et son rayon, sont connus par tous les véhicules.
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• Chaque véhicule est capable de communiquer dans une région délimitée par

une distance de communication critique ρ. Ce rayon est le même pour tous les

véhicules.

• Les problèmes de communication tels que, le bruit, la perte de paquets et les

délais, ne sont pas considérés.
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inputs
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Figure B.5 – Formulation du problème de la section B.2

Sous ces hypothèses, cette section présente des lois de commande pour stabiliser un

groupe de véhicules vers des mouvements circulaires qui suivent des références variant

dans le temps, comme le représente la Figure B.5. De plus, un algorithme collaboratif

permet de distribuer les véhicules dans une configuration désirée autour de la formation.

B.2.2 Translation d’un mouvement circulaire

Sur la base des travaux précédents sur les formations circulaires de multi-agents [86,

118, 149, 150], cette subsection présente une première contribution dans le domaine du

contrôle d’une formation et une première étape pour résoudre le problème de recherche

d’une source.

Le déplacement d’une formation d’agents est pertinent pour certaines applications

où les agents doivent exécuter des tâches collaboratives nécessitant que la formation

se déplace vers une direction a priori inconnue. Par exemple, dans les applications de

recherche d’une source, la formation est dirigée en suivant la direction du gradient

de la source (qui est calculée en ligne, et implémentée comme une boucle externe

supplémentaire) [64, 104]. Le problème de la poursuite de cible nécessite également

de considérer des formations variant dans le temps. Dans cette application, les agents

tentent d’entourer la cible. Par conséquent, une formation circulaire dont le centre
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est situé sur l’objectif, semble particulièrement appropriée au problème du suivi d’une

cible. Certaines approches coopératives pour atteindre ce défi en utilisant une flotte de

véhicules ont été étudiées dans la littérature [80, 117]. Par conséquent, une formation

circulaire peut être utile pour suivre la trajectoire d’une cible variant dans le temps

[85].

Cette subsection présente une stratégie de contrôle de telle sorte qu’un système

multi-agent définie par (B.1) converge vers un mouvement circulaire qui suit un centre

variant dans le temps. À la première étape, on suppose que le centre désiré variant

dans le temps c(t) est une référence externe donnée qui est connue par tous les agents

de la formation.

Pour résoudre le problème de déplacement d’une formation circulaire, on doit se

concentrer sur les deux questions suivantes :

a) L’amélioration du contrôle circulaire précédemment presenté dans [118] pour stabi-

liser la flotte d’agents vers le même mouvement circulaire variant dans le temps.

b) Définir la classe des fonctions c(t) pour lesquelles le déplacement du mouvement

circulaire est possible.

Introduction d’un nouveau système de coordonnées

Nous voulons stabiliser le système (B.1) vers un mouvement circulaire de rayon R et

de centre c(t) variant deans le temps suivant une référence donnée. L’idée principale

et donc, la principale contribution, consiste à exprimer le système multi-agents dans

un cadre relatif dont l’origine est le centre désiré variant dans le temps c = (cx, cy)
T .

Ce système transformé, dans lequel la position des agents est exprimée par rapport au

centre du cercle, sera stabilisé vers un mouvement circulaire centré sur c et de rayon

R, en se basant sur le contrôle d’une formation circulaire presenté dans [118].

On considère que le système transformé est une référence pour le système original.

Le système transformé est stabilisé vers un mouvement circulaire fixe. Le problème de

concevoir une loi de commande devient un problème de suivi entre les deux systèmes.

Cette stratégie suit trois phases :

• Modèle de référence : une relation entre le système original (vecteur de position

de chaque agent) et le système de référence (vecteur de position relative) est

déterminée.

• Contrôle d’un cercle fixe : le système de référence est stabilisé vers un mou-

vement circulaire avec centre fixe grâce à la loi de commande de [118].

• Suivi du modèle : les entrées de commande du système original sont définies

par un procédé de suivi de référence.



176 ChapterB. Resumé en français

Afin d’exprimer le vecteur position rk de chaque agent k dans le cadre relatif qui

se déplace suivant le centre du mouvement circulaire c, le changement de coordonnées

suivant est défini :

r̂k = rk − c (B.2)

où r̂k ∈ R2 représente le vecteur de position relative.

La loi de commande de [118] peut être appliquée à un système multi-agent modélisé

par (B.1) avec une vitesse constante vk = v. Par conséquent, pour appliquer cette loi

de commande circulaire au système transformé, exprimé dans le système de référence

relatif par rapport au centre mobile, la dynamique des positions relatives doit avoir

une vitesse constante. Les agents virtuels définis par le système transformé convergent

vers un mouvement circulaire avec rayon R = v/|ω0| où ω0 6= 0 est la vitesse angulaire.

Ensuite, on impose une vitesse linéaire constante égale à v = R|ω0| au système trans-

formé. En conséquence, nous imposons au système transformé la dynamique suivantes :

˙̂xk =R|ω0| cosψk (B.3a)

˙̂yk =R|ω0| sinψk (B.3b)

ψ̇k =ûk (B.3c)

où ψk représente l’angle d’orientation du veteur position transformé ˙̂rk = ( ˙̂xk, ˙̂yk)
T .

Le système résultant transformé, est invariant dans le temps car le centre est fixe

dans le nouveau cadre de référence transformé. Par conséquent, on peut appliquer la loi

de commande pour un mouvement circulair de [118]. L’objectif est donc de contrôler

une flotte d’agents fictifs modélisés par (B.3), de telle sorte que ces agents virtuels

convergent vers un mouvement circulaire centré à l’origine du système de coordonnées

transformé. La loi de commande suivante garantit que le système (B.3) converge vers

un mouvement circulaire :

ûk = ψ̇k = ω0(1 + κ ˙̂rTk r̂k) (B.4)

Translation d’un mouvement circulaire

Le système transformé défini par (B.2) est considéré comme un système de référence.

La dynamique du système de référence satisfait (B.3) et la dynamique en boucle fermée

est imposée par la loi de commande (B.4). Dans cette situation, le théorème suivant

présente le résultat principal de cette section.

Théorème B.1 Considerons une fonction deux fois différentiable c(t) : R→ R2, avec

ses première et seconde dérivés bornées. Le rayon du mouvement circulaire désiré est
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représenté par R > 0, les paramètres de contrôle sont tels que ω0 6= 0, κ > 0, β > 0 et

que la condition suivante est satisfaite :

vk > 0 (B.5)

Alors, la loi de commande

v̇k =− βvk +
ûkṙ

T
kRπ

2

˙̂rk + ṙTk (c̈ + β( ˙̂rk + ċ))

vk
(B.6a)

uk =
ûkṙ

T
k

˙̂rk + ṙTkRT
π
2
(c̈ + β( ˙̂rk + ċ))

v2k
(B.6b)

où ˙̂rk et ûk sont définies par (B.3) and (B.4) respectivement, fait converger tous les

agents définis par (B.1) vers un mouvement circulair de rayon R, et dont le centre suit

la référence variant dans le temps c(t). La direction de rotation est déterminée par le

signe de ω0.

B.2.3 Contraction d’un cercle

Après le premier résultat concernant la translation d’un mouvement circulaire proposé

précédemment, on considère aussi le problème de concevoir une loi de commande de

telle sorte que le groupe des AUVs forme un cercle dont le centre c est fixe et dont le

rayon suit une référence variant dans le temps R(t). En utilisant la même idée que dans

le cas de la translation, cette extension à la contraction et l’expansion d’une formation

circulaire est l’étape logique suivante en prenant en compte du fait que les principaux

paramètres d’un cercle sont son centre et son rayon. Une loi de commande similaire à

(B.6) est proposée pour ce cas de contraction d’un mouvement circulaire.

B.2.4 Répartition uniforme autour d’une formation circulaire

Les deux lois de contrôle précédentess ne prennent pas en considération les contraintes

de communication, car chaque agent converge indépendamment vers le mouvement

circulaire désirée. Par conséquent, la disposition des particules autour du cercle est

arbitraire. En d’autres termes, afin de stabiliser les agents à une formation circulaire

des lois de commande pour la translation et la contraction doivent inclure un terme

coopératif pour distribuer les agents autour du même cercle en suivant un schéma

particulier. En outre, dans le contexte de la recherche d’une source avec véhicules sous-

marins, faire en sorte que les agents soient répartis uniformément le long de la formation

pourrait être plus approprié pour produire des mouvements de recherche efficaces.

Considérer des graphes de communication fixes n’est pas réaliste car la distance

entre deux agents connectés n’est pas considérée, [109, 111, 130]. Dans le cas de commu-

nication sous-marine, la qualité de la transmission est fortement affectée par la distance
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entre deux agents [155]. Par conséquent, dans un scénario sous-marin, il pourrait être

plus intéressant de considérer des graphes de communication dépendants de la distance.

Cela signifie que chaque agent peut seulement recevoir des informations de ses voisins

proches. Ainsi, une région de communication pour chaque véhicule est introduite dans

notre approche. La région de communication pour n’importe quel agent est définie par

ρ, qui est la distance de communication critique donnée par les caractéristiques des

dispositifs de communication et de l’environnement des AUVs. Pour la suite, le rayon

ρ délimite une région de communication circulaire pour chaque véhicule. Cependant,

nous supposons qu’il existe une communication parfaite à l’intérieur de cette région.

Le graphe de communication, qui dépend de la distance, est maintenant variant dans

le temps parce que la position des véhicules évolue dans le temps. En se basant sur la

théorie des graphes, la matrice Laplacienne variant dans le temps L(t) qui correspond

à un graphe de communication dépendant de la distance est définie comme suit :

Lk,j =


dk, si k = j

−1, si ‖rk − rj‖ ≤ ρ

0 autrement

(B.7)

La formulation de la notation suivante est introduite. La matrice Laplacienne

considérée est L̄ = L ⊗ I2 où ⊗ est le produit de Kronecker et IN ∈ RN×N est la

matrice indentité. Le vecteur bmk = (cosmψk, sinmψk)
T contient les angles d’orien-

tation des agents fictifs et Bm = (bTm1, . . . , b
T
mN)T contient tous les angles de cap du

système transformé.

Le contrôle coopératif pour la translation d’une formation circulaire avec l’hy-

pothèse de communication dépendant de la distance est présenté dans le corollaire

suivant :

Corollaire B.1 (Extension de Briñón-Arranz et al. 2009 [16]) Considerons une func-

tion deux fois dérivable c(t) : R→ R2, avec ses dérivées, première et seconde, bornées

et le rayon de la formation désiré est R > 0. Les paramètres de contrôle sont tels que

ω0 6= 0, κ > 0, β > 0, et la condition (B.5) est satisfaite. Le graphe de communication

est representé par G(t), L(t) est sa matrice Laplacienne correspondante et le rayon de

communication ρ satisfait :

ρ > 2R sin
π

N
(B.8)

Donc, la loi de commande (B.6) avec{
ûk = ω0(1 + κ ˙̂rTk r̂k)− ∂U

∂ψk

U(ψ) = K
N

∑bN/2c
m=1

1
2m2 BmL̄Bm

(B.9)

fait converger tous les agents définis par (B.1) vers une formation circulaire de rayon

R et de centre c(t) qui est une référence variant dans le temps. En outre, pour K > 0,
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la distribution uniforme des agents autour de la formation est le seul point critique de

U(ψ) exponentiellement stable.

Simulations

La simulation montrée dans la Figure B.6, présente un groupe de six agents régis par

la loi de commande pour la translation du Corollaire B.1. Les paramètres de contrôle

sont ω0 = κ = β = 1 et K = 0.1. Le rayon de la formation circulaire désiré est R = 2

et la référence du centre c(t) est donnée par :

c(t) = (0.2t, 3 sin (0.08t))T

Le rayon de communication essentiel ρ = 3 satisfait la condition (B.8). Par conséquent,

les agents sont distribués uniformément le long du cercle.

Figure B.6 – Simulation de six agents régis par la coi de commande du Corollaire B.1

qui suit la référence du centre de la formation en bleu. Les cercles noirs représentent

la région de communication des agents. La figure montre deux moments correspondant

à des instants différents, à t = 10s la distribution uniforme n’a pas encore été obtenue

et à t = 50s les agents sont distribués uniformement autour du cercle.

B.3 Contrôle d’une formation basé sur les transfor-

mations affines

La section précédente présente deux contributions dans le domaine de contrôle d’une

formation : la translation et la mise à l’échelle (contraction et expansion) d’une forma-

tion circulaire. Même si ces deux éléments sont fondamentaux pour l’objectif final, la
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recherche d’une source, il peut être intéressant de ne pas restreindre les lois de com-

mande à des formations circulaires. Afin d’exprimer les contributions précédentes sous

une forme compacte et en vue d’étendre ces résultats à des formations plus complexes

variant dans le temps, un nouveau cadre de travail basé sur des transformations affines

est introduit.

Cette section se concentre sur la conception de nouvelles lois de commande d’une

formation utilisant une approche différente. L’objectif est de généraliser les lois de

commande précédentes, utilisant des transformations affines. Dans la suite, une nouvelle

loi générale de commande d’une formation est développée pour stabiliser un groupe de

véhicules vers plusieurs types de formations, non plus uniquement circulaire, ansi que

des formations variant dans le temps. La configuration de la formation est définie

par une matrice de transformation qui est une référence donnée et connue par tous

les agents de la flotte. En outre, un contrôle coopératif est prévu pour distribuer les

agents uniformément le long de la formation en prenant en compte des contraintes

de communication. Enfin, des algorithmes distribués sont conçus pour améliorer la loi

de commande d’une formation générale dans le cas où la référence du centre de la

formation est inconnu.

Les transformations affines sont utilisées dans les domaines de l’informatique et de

la robotique, [2, 70, 72, 107]. Elles sont très utiles pour definir d’une manière plus simple

les coordonnées d’un robot manipulateur [58] ou pour relier le cadre de référence local

d’une caméra vidéo à un autre système de coordonnées, par exemple. En général, une

transformation affine est composée de transformations linéaires, tels que la rotation et

l’homothétie, et les translations. Puisque une translation est une transformation affine,

mais pas une transformation linéaire, les coordonnées homogènes sont normalement

utilisées pour représenter l’opérateur translation par une matrice, et donc, pour le

rendre linéaire.

Les trois principales transformations affines sont la translation, la rotation et l’ho-

mothétie. Pour exprimer ces transformations de façon matricielle, les coordonnées ho-

mogènes sont définis, voir [56]. Les coordonnées homogènes d’un vecteur z = (zx, zy)
T ∈

R2 peuvent être simplement définies comme le nouveau vecteur zh = (zx, zy, 1)T . Le

vecteur de position de l’agent k en coordonnées homogènes est maintenant défini comme

rk = (xk, yk, 1)T .

Definition de formation élastique

Une formation circulaire dans le plan peut être définie par trois paramètres, son centre,

son rayon et la vitesse angulaire de rotation. Pour modifier ces paramètres, les trans-

formations affines sont introduites. L’objectif maintenant est de définir une formu-

lation mathématique pour les formations élastiques. En considerant les contributions
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précédentes, la translation et la contraction d’un cercle, l’idée principale est de déformer

le cercle unité afin d’obtenir la formation élastique désirée. Dans ce contexte, le cercle

unité C0 est définie comme une circonférence centrée à l’origine du système de référence

et de rayon unité.

Des séquences de transformations affines, qui sont générées par une combinaison de

translations, homothéties et rotations, est définie comme suit :

G =
I∏
i

J∏
j

K∏
k

SiRαjTck (B.10)

Ici, les indices représentent les différentes transformations du même type qui sont ap-

pliquées. Notez que le produit de matrices n’est pas commutatif.

Chaque combinaison de transformations affines, exprimée par une matrice générale

G, définit une formation élastique F .

Définition B.1 Une formation élastique F est une courbe qui résulte de l’application

d’une séquence de transformations affines G définie par (B.10), au cercle unité C0 de

telle sorte que :

F = G ◦ C0

Contrôle d’une formation élastique

La première étape pour concevoir une nouvelle loi de commande consiste à exprimer

le vecteur position dans le système de référence transformé. Selon la définition d’une

formation élastique F = G ◦ C0 la transformation des coordonnées suivante est intro-

duit :

r̂k = G−1rk (B.11)

où r̂k = (x̂k, ŷk, 1)T est le vecteur de position transformé exprimé en coordonnées

homogènes.

Afin d’utiliser la loi de commande pour une formation circulaire fixe, le nouveau

système transformé doit avoir une vitesse linéaire constante égale à |ω0|. Le raisonne-

ment est le même que dans la section précédente pour la translation et contraction

du cercle. Par définition, la vitesse linéaire d’un point dans le cercle unité fixe est

v = R0|ω0|. Par conséquent, la dynamique du vecteur position transformé est imposée

comme suit :

˙̂xk =|ω0| cosψk (B.12a)

˙̂yk =|ω0| sinψk (B.12b)

ψ̇k =ûk (B.12c)
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où ψk représente l’angle d’orientation du vecteur vitesse transformé ˙̂rk. Le vecteur des

nouvelles entrées de contrôle pour le système transformé est ψ̇ = (ψ̇1, . . . , ψ̇N)T .

En utilisant les définitions précédentes d’une formation élastique et la matrice

générale de transformation, une nouvelle loi de commande générale est proposé dans

le théorème suivant :

Théorème B.2 (Extension de Briñón-Arranz et al. 2011 [21]) La matrice G est deux

fois dérivable avec des dérivés bornées résultant d’une séquence de transformations

affines définie comme (B.10) et F = G ◦ C0 est la formation élastique désirée. Les

paramètres du contrôle sont ω0 6= 0, κ > 0, β > 0 et la condition suivante est satisfaite :

vk > 0 (B.13)

Donc, la loi de commande :

v̇k =− βvk +
ûkṙ

T
kGRπ

2

˙̂rk + ṙTk

(
G̈G−1rk + βĠG−1rk + 2Ġ ˙̂rk + βG ˙̂rk)

)
vk

(B.14a)

uk =
ûkṙ

T
kRT

π
2
GRπ

2

˙̂rk + ṙTkRT
π
2

(
G̈G−1rk + βĠG−1rk + 2Ġ ˙̂rk + βG ˙̂rk)

)
v2k

(B.14b)

où ˙̂rk et ûk sont définis par (B.12) et (B.9) respectivement, stabilise tous les agents

définis par (B.1) vers la formation élastique définie par F . Le sens de rotation est

déterminé par le signe de ω0. En plus, pour K > 0, la distribution uniforme autour du

cercle unité est le seul point critique de U(ψ) exponentiellement stable. Par conséquent,

les agents sont répartis dans la formation F , en prenant en compte la transformation

G.

Simulations

La Figure B.7 montre la simulation de cinq agents régis par la loi de commande du

Theorème B.2 où G(t) = Tc(t)SR(t). Les paramètres de contrôle sont ω0 = κ = β = 1

and K = 0.1. La référence du rayon variant dans le temps est

R(t) = 5 + 2 cos
2π

500
t

et la référence suivie par le centre correspond à

c(t) = (
1

10
t, 3 sin

2π

300
t)T

Les agents convergent vers la formation circulaire variant dans le temps pour toutes les

conditions initiales aléatoires (position et le cap de l’agent) représentés dans la figure

par les agents bleu vides. Ceci est un exemple d’une application possible de la loi de
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Figure B.7 – Simulation de cinq agents régis par la loi de commande (B.14) avec

G(t) = Tc(t)SR(t). La formation circulaire, dont le centre suit une référence variant

dans le temps, change de rayon, afin d’éviter les obstacles (blocs noirs).

commande d’un mouvement combiné et une première étape pour atteindre l’objectif

final de la conception d’un contrôle collaboratif pour générer les deux références d’une

manière distribuée.

En plus, le rayon de communication considéré ici est ρ = 10, ce qui satisfait la

condition géométrique

ρ > 2Rmax sin
π

N

où Rmax est la borne supérieur de la référence du rayon, dans ce cas Rmax = 7. Par

conséquent, les agents sont distribués autour de la formation circulaire variant dans le

temps.

B.4 Recherche collaborative d’une source

Les sections précédents B.2 et B.3 traitent du premier objectif abordée dans cette

thèse : la conception des lois de commande pour une formation d’une flotte de véhicules

autonomes sous-marins (AUVs). Les contributions présentées stabilisent les véhicules

vers des formations variant dans le temps qui changent sa forme et qui sont capables

de suivre une référence donnée du centre de la formation. La principale contribution

de cette section est la conception de stratégies de contrôle qui permetent de générer de
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façon coopérative la direction appropriée pour déplacer le centre de la formation afin

d’atteindre la recherche d’une source. L’objectif est de développer un nouvel algorithme

décentralisé pour que les agents se mettent d’accord sur une orientation commune.

Le problème principal abordé ici est celui de la recherche d’une source en utilisant

un système multi-agent. Afin de localiser la source d’un champ scalaire, les AUVs sont

équipés de capteurs qui mesurent le champ d’intérêt tel que la température, la salinité,

les flux de polluants. Dans cette situation, la flotte de véhicules peut être vue comme

un réseau de capteurs mobiles. La stabilisation des agents uniformément répartis le

long d’une formation circulaire est pertinente pour aborder le problème de la recherche

d’une source. En fonction des résultats précédents dans le domaine du contrôle d’une

formation, cette section se concentre sur l’obtention de la référence appropriée du centre

afin de diriger la flotte d’agents vers l’emplacement d’une source sous-marine.

Une première contribution montre que la collecte des données à partir des capteurs

des véhicules, qui sont uniformément réparties le long d’une formation circulaire fixe,

permet de rapprocher le gradient d’un signal. Ensuite, un algorithme distribué basé

sur ce résultat est proposé pour estimer la direction du gradient en prenant en compte

des contraintes de communication. Cette approche combine les résultats précédents en

matière de contrôle d’une formation exposés dans la section B.2 et les résultats exis-

tants sur des algorithms de consensus appliqués à la situation d’un réseau de capteurs

mobiles. Un algorithme modifié qui exploite les propriétés périodiques de la forma-

tion circulaire est également proposé. Enfin, une comparaison des deux algorithmes

distribués est discuté et motivée par des simulations.

B.4.1 Formulation du problème

Cette section prend en considération plusieurs hypothèses sur le champ scalaire mesuré.

Le signal qui représente le champ scalaire est continu. Ce signal est émis par une source

de telle sorte que la source est le maximum ou le minimum du champ scalaire. On

suppose que la distribution de signal décrôıt à partir de la position de la source.

L’objectif est localiser la source d’un signal à l’aide d’une flotte d’AUVs. Dans ce cas,

les véhicules sont équipés de capteurs qui sont capables de mesurer la concentration de

la quantité d’intérêt. La flotte d’agents devient un réseau sans fil de capteurs mobiles. La

contribution de cette section se concentre sur la conception d’un algorithme collaboratif

pour choisir une direction appropriée afin de diriger une formation d’AUV vers la

position de la source. La stratégie de contrôle proposée dans cette thèse se compose de

deux niveaux :

1. Estimation de la direction du gradient du signal emis par la source.
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ω0

r1 − c

r2 − c
r4 − c

r3 − c

SOURCE

∇σ(c)

Figure B.8 – Représentation de la recherche d’une source

2. Génération d’une trajectoire de référence pour le centre de la formation en consi-

derant la direction estimée du gradient.

Cette section ne considére que la première étape : fournir un algorithme qui estime

la direction du gradient d’un signal par une formation d’agents. Dans des recherches

futures, cette direction sera utilisée pour diriger le centre de la formation vers la valeur

maximale ou minimale du champ scalaire, comme le montre la Figure B.8

Si l’on considère la source comme une cible, il semble intéressant d’utiliser une

formation circulaire pour faire face au problème de la recherche d’une source. Lorsque

la formation atteindra la position de la source, les véhicules vont tourner autour de

cette source. Cette stratégie est adaptée dans le contexte de la localisation d’une source

sous-marine car, même si la source est fixe, les AUVs sont toujours en mouvement. Les

agents doivent éviter une vitesse nulle. Les mêmes contraintes apparaissent dans un

scénario aérien dans lequel une flotte de véhicules aériens autonomes (UAVs par le sigle

en anglais) accomplit une mission de suivi d’une cible, par exemple. Quelques résultats

dans le contexte de localisation de cibles et de circumnavigation (cela signifie que les

véhicules décrivent des trajectoires circulaires autour de la cible) ont été récemment

mis au point en utilisant des ”bearing” mesures [44]. Ce résultat est construit sur l’idée

de que chaque agent peut mesurer l’angle entre sa position et la position de la cible. Le

problème de recherche d’une source de cette thèse considère les approches précédentes

dans ce domaine dans lequel la source d’un signal est localisée par les mesures de

ce signal. Par conséquent, les techniques utilisant des bearing mesures ne sont pas

applicables dans ce contexte.
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Approximation du gradient par une formation circulaire fixe

La première idée est de concevoir un algorithme pour estimer la direction du gradient

du signal sur la base des mesures de concentration obtenues par une formation circulaire

d’agents. Les contraintes de communication entre les véhicules sont prises en compte.

Cette direction estimé du gradient sera la vitesse de référence du centre de la formation

afin de diriger le groupe de véhicules vers la position de la source.

Grâce à la loi de commande précédente (B.9), les véhicules sont stabilisés vers une

formation circulaire décrite par un point central c, un rayon R et un angle φ, ce qui

est linéairement croissant dans le temps (c’est-à-dire φ = ω0t pour une certaine vitesse

angulaire ω0 > 0). En suite, la position de chaque agent k dans la formation est donnée

par l’équation suivante :

xk =cx +R cos

(
φ+ k

2π

N

)
(B.15a)

yk =cy +R sin

(
φ+ k

2π

N

)
(B.15b)

Cette équation décrit une formation dans laquelle les agents sont distribués uniformément

autour d’un cercle de rayon R. Dans le contexte de la recherche d’une source, l’objectif

est que le centre de la formation c(t) suive une trajectoire qui converge vers le maximum

d’un signal, qui est généralement sa source.

La distribution du signal dans l’environnement sera décrite par une fonction spatiale

inconnue σ : R2 → R+, de telle sorte que l’agent k mesure le signal à sa position

σ(rk). On consière un réseau de capteurs mobiles, dans lequel la position du capteur

k est donnée par (B.15). Chaque capteur obtient des mesures du signal σ. Le gradient

de la fonction σ au centre de la formation circulaire c est représenté par ∇σ(c) =

(∇xσ(c),∇yσ(c)). Les lemmes suivants sont proposés :

Lemme B.1 (Briñón-Arranz et al. 2011 [20]) La fonction σ est bornée et σ(rk) représente

la mesure obtenue par l’agent k où rk est son verteur position donné par (B.15). On

considère une flotte de N > 2 agents uniformement distribués atour d’un cercle dont

le centre c est fixe, alors :

1

N

N∑
k=1

σ(rk)(rk − c) =
R2

2
∇σ(c)T + o(R2) (B.16)

où o(R2) est un vecteur tel que ‖o(R2)‖ est négligeable par rapport à R2.

Lemme B.2 (Briñón-Arranz et al. 2011 [20]) La fonction σ est bornée et σ(rk) représente

la mesure obtenue par l’agent k où rk est son verteur position donné par (B.15). On
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considère un nombre illimité d’agents atour de la formation circulaire dont le centre

est fixe, alors :
1

2π

∫ 2π

0

σ(rk)(rk − c)dφ =
R2

2
∇σ(c)T + o(R2) (B.17)

Les deux résultats fournissent une approximation du gradient du signal au centre de

la formation circulaire.

B.4.2 Estimation collaborative de la direction du gradient par

une formation circulaire fixe

L’objectif de cette partie se concentre sur la première étape de la stratégie du contrôle

exposée précédemment dans la formulation du problème. L’idée est de développer un

algorithme d’estimation de la direction du gradient du signal émis par la source. Comme

c’était expliqué précédemment, cette estimation sera réalisée par une formation circu-

laire d’AUVs. Grâce aux Lemmes B.1 et B.2, le gradient d’un signal peut être approchée

par les mesures obtenues à partir d’une formation circulaire fixe d’agents répartis uni-

formément. Un premier algorithme centralisé basé sur ce résultat est abordé dans [104].

Néanmoins, afin de prendre en compte des contraintes de communication entre les

agents, un algorithme distribué est développé pour évaluer cette direction du gradient

par une formation circulaire fixe.

Dans cette situation, chaque agent calcule sa propre estimation de la direction

du gradient avec ses propres mesures du signal et les mesures de ses voisins. En

conséquence, chaque agent calcule une direction différente. Afin d’obtenir la même

direction estimée pour tous les agents, un algorithme de consensus est inclus. Cet al-

gorithme permet aux agents de converger vers la même direction estimée du gradient,

en prenant en compte la topologie du graphe de communication.

Source fixe

Les contraintes de communication sont prises en compte par un graphe de communi-

cation G. En raison de ces restrictions de communication chaque agent estime que son

propre direction du gradient zk en utilisant l’information de ses voisins en fonction du

graphe de communication. L’objectif est de faire converge toutes les directions estimées

zk vers la direction moyenne définie comme suit :

u∗ =
1

N

N∑
k=1

uk; uk = σk(rk − c) (B.18)

où uk est le vecteur position relative de l’agent k étant pondéré par sa mesure de la

concentration σk = σ(rk). Grâce au Lemme 4.1, ce vecteur u∗ est une bonne estimation
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de la direction du gradient du signal au centre c de la formation. Un algorithme de

consensus est mis en oeuvre pour atteindre un accord sur la direction estimée du

gradient par tous les agents.

Il est plausible de supposer qu’une borne maximal de la concentration du signal est

connue pour ce problème. Par conséquent, ‖u− 1⊗u∗‖ ≤ α où α dépend du rayon de

la formation circulaire et de la mesure de concentration la plus grande obtenue par les

agents.

Théorème B.3 (Briñón-Arranz et al. 2011 [20]) Considerons une formation circu-

laire de N agents définie par (B.15) avec un graphe de communication connecté G et

le centre de la formation est fixe. La foncion σ : R2 → R+ est bornée et le vecteur

u∗ défini dans (B.18) satisfait ‖u̇∗‖ ≤ ν. Donc, z∗(t) = 1 ⊗ u∗ est un équilibre global

asymptotiquement ε-stable de

ż = −κL2z− L2u + (IN + ∆)2(u− z) (B.19)

avec u = (σ1(r1 − c)T , . . . , σN(rN − c)T )T et

ε =
(ν
√
N(1 + dmax) + αγ)λ

1
2
max(Aκ)

λ
5
2
min(Aκ)

où les matrices Aκ = (IN + ∆ + κL)2 et B = (IN +A)2 satisfont la relation suivante∥∥BTAκ

∥∥ ≤ γ et la constante α a été définie précédemment.

Simulations

Afin de montrer les performances de cet algorithme distribué des résultats de simula-

tions sont présentés. La simulation montre une formation circulaire fixe de cinq agents

de rayon R = 1m et vitesse angulaire de ω0 = 1rad/s. Le graphe de communication

est un anneau (d1 graphe circulant). Dans la Figure B.9 l’algorithme de consensus

pour la recherche d’une source (B.19) d’après le Théorème 4.3 est mis en oeuvre avec

κ = 50. Pour cette simulation, la fonction σ qui représente le signal dont la source est

à l’origine, a des courbes de niveau circulaires :

σ(x, y) = 100e−(x
2+y2)/10

Par conséquent, le vecteur gradient ∇σ(c) fournit l’orientation adéquate pour diriger

la formation à l’emplacement de la source.

La Figure B.9(a) montre deux instants différents. Les cercles vides représentent

les conditions initiales et les lignes noires pointillés la direction initiale estimée zk par

chaque agent. Les cercles rouges représentent la position des agents à t = 50 et les

lignes rouges sont les directions du gradient estimées à ce moment là. La ligne bleue est
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la vraie direction du gradient au centre c. La Figure 4.6(b) montre les composants de

la variable du consensus zk et le vecteur u∗. Les directions estimées zk oscillent autour

du vecteur u∗, ce qui est une bonne estimation de la vrai direction du gradient, pour

toutes les conditions initiales.

(a) Directions estimées zk à t = 0s (lignes noires

pointillés) et à t = 50s (lignes rouges)

(b) Coordonnées X et Y des directions estimées zk

Figure B.9 – Simulation d’une formation circulaire fixe de cinq agents centrée à

c = (2, 2)T . La fonction σ qui représente le signal dont la source est à l’origine a

courbes de niveau circulaires. L’algorithme de consensus du Théorème 4.3 est appliqué

avec κ = 50.

Afin d’améliorer l’algorithme distribué présenté précédemment, les propriétés périodiques

de la situation supposé dans la formulation du problème sont étudiés.

Les agents décrivent un mouvement périodique, cela signifie que rk(t) = rk(t + T )

avec T = 2π/ω0. Pour cette raison, les mesures σk obtenues par l’agent k sont une

fonction périodique car σ(rk(t)) = σ(rk(t + T )). En conclusion, la variable d’entrée

de l’algorithme de consensus uk = σk(rk − c) est une fonction T -périodique avec T =

2π/ω0. Les directions estimées zk obtenues par l’algorithme de consensus (B.19) sont

périodiques aussi. La moyenne de ces solutions se rapproche de la direction du gradient

du signal emis par la source. Grâce à ces observations, une analyse des propriétés

moyennes de la variable d’entrée uk semble adéquate. Maintenant l’idée est d’améliorer

l’algorithme de consensus distribué précédent en utilisant les propriétés périodiques des

mesures σ(rk).

Le vecteur d’entrée uk dans l’algorithme de consensus précédent est remplacée par

sa valeur moyenne sur une période T = 2π/ω0, ce qui est défini comme suit :

ūk =
1

T

∫ t

t−T
σk(rk(τ)− c)dτ (B.20)
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Donc, grâce au Lemme B.2 le nouveau vecteur ū∗ approche le gradient du signal σ au

centre de la formation circulaire :

ū∗ =
1

N

N∑
k=1

ūk (B.21)

La nouvelle variable d’entrée de l’algorithme amélioré basé sur (B.19), est le vec-

teur ū = (ūT1 , ū
T
2 , . . . , ū

T
N)T , et l’objetif est défini par ū∗1 = 1 ⊗ ū∗. Suite à l’analyse

développée précédemment, supposons que la distribution du signal varie doucement,

donc, la inégalité suivante est satisfaite ‖(ū− ū∗1)‖ ≤ ᾱ. Partant de ces considérations,

un nouvel algorithme est proposé dans le corollaire suivant :

Corollaire B.2 (Briñón-Arranz et al. 2011 [20]) Considerons une formation circu-

laire de N agents définie par (4.27) avec un graphe de communication connecté G et

le centre de la formation est fixe. La fonction σ : R2 → R+ est bornée et le vecteur ū∗

est défini par (B.21) satisfait ‖ ˙̄u∗‖ ≤ ν̄. Alors, z∗(t) = 1 ⊗ ū∗ est un équilibre global

asymptotiquement ε̄-stable de

ż = −κL2z− L2ū + (IN + ∆)2(ū− z) (B.22)

avec

ε̄ =
(ν̄
√
N(1 + dmax) + ᾱγ)λ

1
2
max(Aκ)

λ
5
2
min(Aκ)

où la matrice Aκ et les constantes ᾱ et γ ont été définies précédemment.

Simulations

La simulation montre la même formation circulaire de cinq agents de la simulation

précédente. Dans la Figure B.10 l’algorithme distribué amelioré (B.22) du Corollaire B.2

est implementé avec κ = 1 par une formation circulaire centée à c = (2, 2)T . Le signal

mesuré est le même que dans la simulation précédente. La Figure B.10(a) montre

deux instants différents, les conditions initiales et la situation stable à t = 50s. La

Figure B.10(b) montre les composants de la variable de consensus zk. Cet algorithme

nous permet d’éliminer les oscillations et les vecteurs finaux de tous les agents zk (lignes

rouges) sont parallèles à la vrai direction du gradient (ligne bleue).

B.5 Conclusions et Travaux à venir

Le but de ce chapitre est de résumer les contributions présentées dans le manuscrit et

d’introduire quelques perspectives de futures recherches pour compléter et améliorer

ce travail.
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(a) Directions estimées zk à t = 0s (lignes noires

pointillés)et à t = 50s (lignes rouges)

(b) Composants des directions estimées zk

Figure B.10 – Simulation d’une formation circulaire de cinq agents centrée à c =

(2, 2)T . La fonction σ qui représente le signal dont la source est à l’origine a courbes de

niveau circulaires. En ce cas, le nouveau algorithme de consensus (4.33) est appliqué.

B.5.1 Resumé des contributions et conclusions

Le contrôle coopératif est un enjeu important en raison de son grand nombre d’applica-

tions. Le comportement collaboratif d’un groupe d’agents signifie qu’il existe plusieurs

interconnexions entre eux afin d’atteindre un objectif commun. Dans le cadre de cette

thèse, les agents représentent des véhicules autonomes sous-marins (AUVs) et l’objectif

commun est de localiser et de suivre une source sous-marine (d’eau douce, de flux pol-

luant, de produits chimiques). Pour atteindre l’objectif final, la mission collaborative

est structurée en plusieurs phases. Premièrement, les véhicules atteignent une forma-

tion souhaitée grâce à un asservissement de position. La contribution principale est

de stabiliser la flotte vers des formations variant dans le temps. Par ailleurs, une loi

de commande coopérative distribue les AUVs uniformément autour de la formation,

en prenant en compte des contraintes de communication. Ces résultats constituent le

support pour attaquer le problème de recherche d’une source. Un algorithme distribué

est élaboré pour estimer la direction du gradient d’un signal par un groupe de véhicules

en formation. Cette direction estimée dirigera la flotte d’AUVs vers l’emplacement de

la source.

Commande d’une formation qui suit des réferences variant dans le temps

Nous avons développé différents lois de commande pour stabiliser les véhicules vers

une formation variant dans le temps. Les véhicules sont modélisés par une cinématique

unicycle. Les mouvements collectifs, en particulier des mouvements circulaires, ont été
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étudiés dans la littérature récente. La principale contribution de cette thèse au domaine

du contrôle d’une formation, est que les véhicules sont stabilisés vers une formation

qui est défini par des paramètres variant dans le temps. La première loi de commande

développée dans cette thèse permet à chaque AUV décrire une trajectoire circulaire

dont le centre est une réference externe variant dans le temps. L’idée principale est

de changer le système de référence par un systeme de coordonnées relatives qui est

invariant par rapport au centre. La transformation de coordonnées est appropriée pour

prendre en compte certaines propriétés de la nouvelle variété, dans laquelle le système

multi-agent est exprimé. Basée sur la même idée, une loi de commande est présentée

pour gouverner les AUVs, afin de converger vers des mouvements circulaires avec un

rayon variant dans le temps.

En conséquence, la contribution suivante, présentée dans la section B.3, traite de la

généralisation des deux lois de commande précédentes en utilisant la même idée, c’est-

à-dire, en transformant le système de référence. Comme résultat, un nouveau cadre

est développé pour exprimer une grande classe de mouvements en déformant un cercle

unitaire. Les trois principales transformations qui peuvent être appliquées à une for-

mation afin de changer sa forme, sa position et son orientation, sont la homotethie,

la translation et la rotation, respectivement. Par conséquent, une séquence de trans-

formations affines appliquées au cercle unité définit une nouvelle formation qui résulte

de la déformation de ce cercle. Les configurations obtenues avec cette méthode sont

appelées formations élastiques dans cette thèse. Grâce à une transformation de coor-

données, une nouvelle loi de commande générale est conçue pour stabiliser un groupe

de véhicules vers des formations élastiques qui sont définies par les transformations af-

fines. Par ailleurs, cette nouvelle formulation nous permet de spécifier plusieurs classes

de mouvements définies par une référence de vitesse. Un nouvel algorithme basé aussi

sur des transformations affines, permet à un groupe d’agents de converger vers une

configuration variant dans le temps en termes de vitesse.

Algorithmes collaboratifs pour le contrôle d’une formation

Une caractéristique importante du contrôle d’une formation est que les agents colla-

borent entre eux. Par conséquent, plusieurs algorithmes coopératifs sont inclus dans les

lois de commande présentées dans les deux sections B.2 et B.3 afin d’atteindre différents

objectifs. La première approche coopérative traitée est la répartition des véhicules au-

tour d’une formation. Les agents doivent échanger des informations : dans ce cas, leur

angle de cap ou leur angle transformé par rapport à un système de coordonnées rela-

tives. Par conséquent, les interconnexions entre les agents doivent être prises en compte.

La topologie de communication du réseau est représentée par un graphe non orienté.

La convergence des algorithmes collaboratifs présentés dans cette thèse est liée aux
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propriétés de connectivité des graphes, étudiées en détail dans l’Annexe A.

La première contribution est de considérer un graphe dans lequel les interconnexions

dépendent de la position relative des véhicules. Cela signifie que, chaque véhicule

ne peut communiquer qu’avec ses voisins proches, c’est-à-dire, deux véhicules sont

connectés, si la distance entre eux est plus petite qu’une certaine valeur. Cette valeur,

appelée rayon maximal de communication, définit la région de communication. Les lois

de commande précédentes pour stabiliser les agents vers une formation circulaire uni-

formement distribuée autour du cercle sont considérées désormais sous cette approche

de communication. Par ailleurs, cet algorithme collaboratif est également appliqué dans

le cas des formations élastiques.

Une autre contribution traite de l’application des algorithmes de consensus à des

lois de commande précédentes développées dans cette thèse pour contrôler une forma-

tion. Notez que les paramètres variant dans le temps qui définissent les formations,

sont considérés comme des références externes et sont connus par tous les véhicules.

L’objectif de l’approche coopérative est d’assouplir cette hypothèse. Le cas particu-

lier lorsque le centre de référence d’une formation circulaire est inconnue est analysée.

Dans cette situation, la vitesse et l’accélération de la trajectoire désirée du centre sont

des références données et grâce à un algorithme de consensus les agents atteignent un

consensus sur la position du centre de la formation circulaire. Ce résultat, peut être vu

comme une étape préliminaire pour atteindre l’objectif de recherche d’une source.

Estimation distribuée de la direction du gradient

Plusieurs techniques de contrôle ont été développées ces dernières années afin de loca-

liser la source d’un signal. Les stratégies de recherche d’une source sont conçues pour

piloter un seul véhicule ou un groupe de véhicules vers l’emplacement de la source.

Les véhicules sont équipés de capteurs qui sont capables de mesurer le signal scalaire

provenant de la source. Néanmoins, le capteur n’a pas la capacité de détection de la

position de la source.

Dans ce contexte, notre principale contribution est de prouver mathématiquement

que la direction du gradient d’un signal peut être approchée par les mesures obtenues

par un groupe d’agents répartis uniformément autour d’une formation circulaire fixe.

Les capteurs n’ont pas de connaissance de la forme fonctionnelle du champ. C’est

un résultat important parce que la direction du gradient pourrait être utilisée pour

déplacer le centre de la formation vers l’endroit désiré où se trouve la source.

Prenant en compte des contraintes de communication entre les véhicules, nous avons

développé un algorithme distribué basé sur consensus filters qui exploite le résultat

mathématique précédent. Cette méthode collaborative permet d’estimer la direction

du gradient du signal au centre d’une formation circulaire d’AUVs. Grâce au mou-
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vement circulaire des agents, les mesures obtenues sont périodiques. Par conséquent,

les directions estimées oscillent autour de la direction réelle du gradient. En utilisant

la moyenne des directions calculées, nous avons présenté un algorithme amélioré qui

a pour but de réduire ces oscillations. Dans ce deuxième cas, le consensus est atteint

exactement et tous les agents estiment la même direction du gradient.

Plusieurs simulations sont fournis pour appuyer ces résultats et pour analyser les

performances des deux algorithmes. Par ailleurs, les performances des deux stratégies,

lorsque la source émettrice du signal est variant dans le temps, sont évaluées par simu-

lation.

B.5.2 Travaux en cours et à venir

Cette thèse propose des stratégies de contrôle pour effectuer plusieurs défis présents

dans les missions coopératives sous-marines. Les principales contributions présentées

précédemment ont été développés en envisageant plusieurs hypothèses relatives au

modèle des véhicules, à la précision des capteurs, aux contraintes de communication,

au modèle de l’environnement, etc. Par conséquent, les futures directions de recherche

se concentrent sur l’assouplissement des hypothèses précédentes afin d’analyser des

situations plus réalistes.

Perspectives dans le contrôle d’une formation

Toutes les lois de commande pour contrôler une formation développées dans cette thèse

prennent en considération le fait que les véhicules connaissent leur vecteur de position

absolue par rapport au système de réference inertiel. Cette hypothèse est conforme

au fait que les véhicules sont équipés d’une centrale à inertie pour la navigation très

précise. Néanmoins, selon plusieurs travaux cités précédemment qui portent sur le

contrôle d’une formation circulair [69, 86, 120, 149, 150], il semble très approprié de

considérer que chaque véhicule est seulement capable de calculer la distance relative

par rapport à ses voisins. Dans cette situation, les lois de commande pour une forma-

tion circulaire variant dans le temps presentées dans la section B.2 et le contrôle de

formations élastiques présenté dans la section B.3 seront améliorés par des algorithmes

coopératifs afin de prendre en compte les positions relatives entre les véhicules au lieu

de leurs positions absolues.

Une autre direction de recherche s’occupe de l’extension des stratégies de contrôle

étudiés dans cette thèse en vue de stabiliser une flotte de véhicules autonomes sous-

marins vers des formations variant dans le temps en présence de courants. Les auteurs

de [120, 121] fournissent différentes lois de commande pour stabiliser un groupe de

véhicules vers des formations circulaires en présence de courants constants et variant
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dans le temps respectivement. Suivant le même raisonnement de ces travaux, et grâce

à des idées présentées dans cette thèse, nous allons développer des lois de commande

coopératives pour faire converger les véhicules vers des formations élastiques variant

dans le temps en présence de courants.

Tout au long de cette thèse, nous supposons un modèle cinématique bidimensionnel

du véhicule. En conséquence, les trajectoires et les formations obtenues sont planes,

c’est-à-dire, les véhicules sont en mouvement dans un cadre en 2-D. Dans la littérature,

différentes stratégies de contrôle sont proposées pour obtenir un mouvement coordonné

en trois dimensions d’un groupe de véhicules, voir [91] et [69] par exemple. Une exten-

sion logique des résultats étudiés dans cette thèse considère la possibilité de développer

des lois de commande d’une formation variant dans le temps en trois dimensions.

Enfin, un futur travail pour améliorer les algorithmes de contrôle d’une forma-

tion présentés traite sur l’évitement d’obstacles et de collisions entre les véhicules. Le

contrôle coopératif proposé dans les sections B.2 et B.3 pour répartir uniformément les

véhicules autour d’une formation peut être considéré comme une méthode d’évitement

des collisions. Le terme potentiel ajouté à la loi de commande permet à ces véhicules

d’éviter les collisions avec leurs voisins dans la formation. Cependant, nous ne pou-

vons assurer l’évitement des collisions jusqu’à ce que les véhicules soient stabilisés vers

la configuration finale. Par conséquent, certaines techniques basées sur les stratégies

coopératives [47, 98] peuvent être appliquées afin de garantir que les véhicules ne

s’heurtent pas les uns avec les autres. De la même manière, différents termes potentiels

peuvent être ajoutés à la loi de commande pour contrôler la formation afin d’atteindre

l’évitement d’obstacles pendant le mouvement de la flottille [108].

Perspectives dans la recherche d’une source

La section B.4 aborde le problème de la recherche d’une source sous une perspective

collaborative. Un premier résultat mathématique démontre que les mesures collectées

par un groupe de capteurs uniformément répartis autour d’une configuration circulaire

fixe peuvent servir à rapprocher le gradient du signal d’un champ scalair au centre de la

formation circulaire. Le premier axe de recherche évident est d’analyser les implications

si le centre de la formation est variant dans le temps.

Nous avons développé deux algorithmes distribués, basés sur ce résultat précédent,

pour estimer la direction du gradient du signal par une formation circulaire des véhicules

autonomes sous-marins. L’idée est d’utiliser cette direction afin de diriger la formation

vers l’emplacement de la source, c’est-à-dire, au maximum ou minimum du champ

scalaire. Une approche collaborative qui fusionne le contrôle d’une formation variant

dans le temps, des algorithmes de consensus avec une réference de vitesse et la direc-

tion du gradient estimé sera prise en compte dans les travaux futurs pour atteindre la
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localisation de la source.

Nous supposons une communication parfaite entre deux véhicules connectés. En

vue d’analyser la performance des algorithmes de contrôle étudiés dans cette thèse en

présence de contraintes de communication plus réalistes, des approches coopératives

concernants la perte de paquets, les problèmes de bruit et les délais de communication

peuvent être envisagées dans d’autres recherches.
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