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Abstract

This dissertation focuses on cooperative control of muligent systems. This topic has
been extensively studied in recent literature due to its Ilge number of applications.
This thesis is concerned by the design of collaborative coolt strategies in order to
achieve an underwater exploration mission. In particularthe nal aim is to steer a
eet of Autonomous Underwater Vehicles, which are equipped kgppropriate sensors,
to the location of a source of temperature, pollutant or freskwvater. In this situation
it is relevant to consider constraints in the communicatiorbetween vehicles which are
described by means of a communication graph. The rst contsutions deal with the
development of cooperative formation control laws which abilize the eet to time-
varying formations and, in addition, which also distributethe vehicles uniformly along
the formation. Finally, the source-seeking problem is tacktl by interpreting the eet of
vehicles as a mobile sensor network. In particular, it is sl that the measurements
collected by the eet of vehicles allows us to estimate the adient of a scalar eld.
Following this idea, a distributed algorithm based on conssus algorithms is proposed
to estimate the gradient direction of a signal distribution

Cette these concerne le contrble cooperatif de sysensemulti-agents. Ce sujet
a et largement etude dans la literature ecente en raison de son grand nombre
d'applications. Cette these propose des nouvelles contems de strakgies de contrble
collaboratif an de ealiser une mission d'exploration sas-marine. En particulier,
I'objectif nal est de diriger une otte de \ehicules autonomes sous-marins,equiges de
capteurs appropres, jusqua I'emplacement d'une soure de temgerature, de polluants
ou d'eau douce. Dans cette situation, il est pertinent de cesiterer les contraintes de
communication entre \ehicules qui sont decrites au moyemnl'un graphe de communi-
cation. Les premeres contributions traitent du develogpement des lois de commande
d'une formation qui stabilisent la otte vers des formatiors variant dans le temps, et
qui, de plus, distribuent uniformement les \ehicules le dng de la formation. Enn,
le probeme de recherche d'une source est aborce par I'etpetation de la ottille de
\ehicules comme un eseau de capteurs mobiles. En particer, il est cemonte que
les mesures recueillies par la otte de \ehicules permette d'estimer le gradient de

\Y



concentration de la quantie d'inerét. En suivant cett e icee, un algorithme distribe
base sur des algorithmes de consensus est propos poutirast la direction du gradient
d'une distribution de signal.

Vi
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Preface

Statement of problem

The object of this preface is to discuss the problem statenteronsidered in this thesis
and give an overview of the dissertation without entering iretails.

This thesis deals with control of heterogeneous marine velds to achieve a scien-
ti c mission composed of several phases. Dierent classes surface and underwater
vehicles, such as autonomous crafts, Autonomous Underwateghicles (AUVS) or un-
derwater gliders, are considered in this context in order teeach several tasks such as,
exploration, survey and scienti ¢ sensor data sampling. Téamain objective of this the-
sis is to develop cooperative control strategies to steer aet of AUVs to the location
of an underwater source. For instance, the source could besufft water or chemical
pollutants. In this situation, the key problems are concered by the elds of non linear
systems, multi-agent systems, formation control, collalative control and distributed
estimation. With a view to design a solution to these control fpblems, the dissertation
is articulated into three main contributions:

A Formation control
Ina rst step, we focus on circular formations composed of agup of autonomous
underwater vehicles. Consequently, our rst contributionconsists in designing a
feedback control to stabilize a eet of vehicles to a circutaformation, whose
center and radius are time-varying. A cooperative term is atkd in order to
dispose the vehicles in a particular con guration along theofmation.

B General framework to motion coordination
In order to extend our previous result dealing with time-vaying circular for-
mations, we develop a new framework based on a ne transforrtians. This
formulation allows us to stabilize the vehicles to a large ats, not only circular,
of time-varying formations.

C Source-seeking algorithms
The contributions in the eld of formation control are the base to tackle the



main objective of this thesis: location and tracking of an wterwater source. We
present a distributed algorithm to estimate the gradient diection of a signal, by
a eet of vehicles uniformly distributed along a circular fomation.

Dissertation Outline

Chapter 1: Introduction

The purpose of this chapter is to put into context the main togcs related to this
thesis and to give an exhaustive overview of the dissertatio Several contributions
are developed in order to achieve the challenges proposedtiwp projects and their
corresponding case study. At rst, the case study is explagd in detail. General
objectives of both projects and technical aspects of undeater missions are exposed.

The second part of the introduction is composed by a review, hich deals with
multi-agent systems and especially, its application to foration control. These topics
are the bases to carry out cooperative tasks, which must behéeved by a group of
vehicles or sensors. This survey analyzes the applicatioofsmulti-agent systems and
di erent collaborative control strategies present in theiterature.

Finally, we recall the main contributions developed, with a ,ew to explain the
structure of the dissertation and the main challenges comnlgred.

Chapter 2: Time-varying circular formation control

The rst objective of the thesis deals with the control of a ee of vehicles to reach
a time-varying formation. In this context, it is assumed th& external or centralized
references de ne the desired shape and location of the formea. A rst contribution
concerns an extension of existing results in circular coolr (Paley et al. 2005 [118],
Leonard et al. 2007 [86] and Sepulchre et al. 2008 [149, 150T)wo new control
laws are developed in order to stabilize the vehicles to a @ilar motion, whose center
tracks a time-varying reference or whose radius depends ameé. For both control
laws, each vehicle converges independently to the desiredinfiation. Therefore, the
phase arrangement of the vehicles along the formation is drary.

A second contribution provides an additional control to engre that the vehicles are
uniformly distributed along the circular formation. Indeel, in the context of source
localization by underwater vehicles, which is treated in Gipter 4, this con guration
is more adequate to provide e cient source-seeking motion€onsequently, both pre-
vious control laws are improved with a collaborative gradig term to achieve the
uniform distribution of the AUVs along the circle taking into account communication
constraints. The communication topology of the group of vetles is represented by



a communication graph, and its connectivity determines theatability of the desired
con guration.

Chapter 3: Formation control design based on a ne transfor-
mations

Following the previous formation control approach, a new geral framework is intro-
duced. This new formulation allows considering a richer da of formations, not only
circular, and also time-varying formations. To do so, the earibution comes from the
use of a ne transformations, which are composed of linear ansformations (scaling
and rotation) and translations. The key idea is that a sequexe of a ne transforma-
tions applied to the unit circle de nes an elastic formation In other words, a larger
class of time-varying formations with arbitrary shape can & obtained deforming a
unit circle. Then, a general control law, based on the circait formation control design,
which makes the vehicles reach these elastic formations ®yided. The sequence of
transformations which de nes the nal formation is an extenal reference known to all
the vehicles.

This new framework based on ane transformations is pertinet also to de ne
several motions de ned only by a desired velocity. The objgee now is to make the
vehicles converge to the same motion following a velocityfegence.

Both approaches are improved with collaborative algoriths in order to achieve
several additional aims such as, distribute the vehicles iormly along the formation
and reach an agreement on an unknown parameter which de nesetformation.

Chapter 4: Collaborative source-seeking

In this chapter, we tackle the nal objective of the thesis daling with the source-
seeking problem. The aim is here to locate the source of somgnal distribution,
using a eet of AUVs. In this situation, the vehicles are equippd with sensors. These
sensors are able to measure the concentration of the quantivf interest. The eet
of vehicles becomes a mobile wireless sensor network. A csintribution shows that
collecting sensor data from vehicles, which are uniformlyigdributed along a xed
circular formation, the gradient direction of the signal dstribution is estimated. Then,
a distributed algorithm based on this idea is proposed, in der to take into account the
communication constraints. This approach combines the preus results on formation
control exposed in Chapters 2 and 3, and existing results onrsensus lters (Olfati-
Saber and Shamma 2005 [112]) applied to this mobile sensotwwek situation. A
modi ed algorithm which uses the periodic properties of theircular formation is also
proposed with a view to improve the performances of the preus one. Finally, a



comparison of the two distributed source-seeking algoritiis is discussed and motivated
by simulations.

Chapter 5: Conclusion and Future works

In the last chapter of the thesis, we make a general conclusjowhich summarizes
the dissertation contributions and describes ongoing andopsible future extensions.
Appendix A reviews the fundamentals of graph theory and the nsb important prop-
erties of graphs used in this thesis. A summary of the thesis French is provided in
Appendix B.
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Chapter 1
Introduction

Underwater exploration is the relatively recent process afivestigating the depths of the
sea to understand its physical and chemical characterissi@and to learn about the life
forms that inhabit this realm. Deep-sea exploration is a n@ phenomenon (compared
to many other sciences) because the necessary technologyssure human safety in
deep water has been recently developed. Over the last decgd#ternative technologies,
which use vehicles without crew, such as subsurface oatseRotely Operated Vehicles
(ROVs) and Autonomous Underwater Vehicles (AUVs), have emerged tomplement
the existing sensing techniques. All these vehicles are quued with di erent sensors
in order to collect information from a region of interest. Tls information provides
fundamental support to understand the oceans' processesrr a biological point of
view (ecosystem productivity), or to predict physical progrties of the ocean, such
as temperature and current. For this purpose, control stragies to command mobile
vehicles must be developed to steer the vehicles towardsqaa where their data would
be most useful [39].

Mobile sensor networks are often used in environmental apgations such as ocean
sampling, surveillance, mapping, space exploration and mmunication, see [39, 86,
177, 167] and the references therein. In these kinds of miss, the mobile sensor
platforms are commanded to measure an unknown scalar eldoFinstance, a chemical
concentration, a pollutant, or temperature. Since each piorm can only take one
measurement at a time, the platforms should move in a formatn to estimate the eld
of interest. It seems appropriate that a group of vehicles taborate in order to carry
out the exploration task while optimizing time and energy. Gllaboration means that
each vehicle is able to communicate some information to thest of the group and this
data is used to determine some action or particular behavion order to accomplish
the exploration task.

Within this context, the present thesis discusses the probie of an underwater
exploration mission carried out by a group of AUVs in a cooperae way. The aim

7
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is to design control strategies to accomplish the di erentcgenti ¢ challenges found in
such missions:

Control of multi-agent systems: A multi-agent system, more precisely de ned in
Section 1.2, is a system composed by a group of autonomousvitials interact-
ing with each other. Therefore, a eet of AUVs can be treated as mnulti-agent
system in which each vehicle is considered as an agent withmgounication ca-
pabilities.

Formation control design: In order to accomplish an exploration task, a reasonable
choice is to coordinate the agents to form a particular congration. The control
algorithms to reach this purpose, must assure some perfomeas, such as the
inter-distance between the vehicles in the formation. The ast important aim is
to move the group of vehicles while keeping the formation.

Control design under communication constraints: In a collaborative mission, the
individuals exchange information to achieve a particularask. The data trans-
mitted is subject to di erent communication problems due tothe communication
channel, especially in underwater environments, such asis®in the signal trans-
mitted, packet loss, time delays during the transmission a@hfading problems of
the power of the signal.

This dissertation deals with these problems in the contextf@n underwater mission in
which a eet of AUVs has to collaborate to locate a source.

1.1 Context of the thesis

This thesis is part of two research projects: the European ject FeedNetBack and
the French project CONNECT?, funded by the ANR (National Research Agency).
Both projects deal with networked control systems (NCS) andhiey are particularly
interested in the problem of controlling multi-agent systms, i.e., systems composed of
several sub-systems interconnected by an heterogeneousicmnication network. The
main challenge of these projects is to learn how to design ¢atlers taking into account
constraints on the network topology, and of the possibilitto share computational
resources during the system operation, while preservingpsed-loop system stability.
The FeedNetBack project involves several academic partne@nd also industrial
participants in order to carry out the technological appliations. A common case study
of both projects focuses on cooperative control design of eogp of unmanned marine

thttp://www.feednetback.eu/
2http:/lwww.gipsa-lab.inpg.fr/projet/connect/
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vehicles,i.e., Autonomous Underwater Vehicles (AUVs) and Autonomous Surfacee¥-
sels (ASVs). This case study, detailed later, concerns the paer IFREMER 2 which is
charged with the technical aspects relating to the underwat vehicles. It will accom-
plish a demonstration using real vehicles. One of the acadenparticipants which is
concentrated in the technical innovations of this case stydis the research institute IN-
RIA (Institut National de Recherche en Informatique et en Autanatique) via the NeCS
Tean?, in the heart of which, this thesis has been made. The CONNECT pject also
considers the possibility to evaluate the proposed contrstructures through a graphi-
cal interface developed by PGES and simulations e ectuatealith a complex simulator
which is built by PROLEXIA.

1.1.1 Case study

Multi-agent networked systems, particularly underwater gstems, which has presently
used or intended by the o shore industry and marine researctare subject to severe
technological constraints. The advantage of using seversimple vehicles instead of
one complex, expensive and high capability system, is that aet is able to realize
tasks that can not easily be achieved by a single vehicle. Bhcase study involves
heterogeneous marine vehicles (surface and underwater ieé#s such as autonomous
crafts, AUVs or underwater gliders) to achieve a scienti c m&on composed of several
phases (exploration and survey, scienti c sensor data safimg). The proposed case
study copes with a main mission whose objective is to carry oa gradient search and
following an underwater source by a eet of AUVs. The nature ofhie source to be
detected, can be very di erent: fresh water, a chemical sotg, methane vent, etc. The
technical details corresponding to this case study are reped in [113].

Figure 1.1: The underwater vehicle AsterX

3Institut frarcais de recherche pour I'exploitation de la mer, htt p://wwz.ifremer.fr/institut
“http://necs.inrialpes.fr/
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AsterX

The underwater vehicle considered in this case study and e in this thesis, is the
AsterX, which belongs to IFREMER (see Figure 1.1). The AsterX is aautonomous
underwater vehicle which is actuated by a main screw propefl for moving in the
longitudinal direction. The steering of the vehicle aroundts roll, pitch and yaw angles
is achieved through two ns in the front part of the vehicle (@anard ns), and two

couples of ns at the tail of the vehicle (horizontal and verical plan). Depending on
the payload its weight is between 580 and 800 kg in air, with aivdng depth of 3000
metres. Its cruising speed is between 0.5 to 2.5 metres pec@al. Vehicle length is
4.5 meters and its autonomy is 11 hours executing a missior3§l.

This AUV has several navigation sensors: a Doppler loch to nmae the speed, an
inertial measurement unit (composed of a gyroscope, aceel@eters and magnetome-
ters) to compute in real time its attitude (roll, pitch and yaw angle) and update its
position, and also an acoustic sensor for absolute positing.

Underwater scenario and mission

The objective of the mission is to locate and follow a sourcg lbonsidering sensed data
provided by dedicated scienti ¢ sensors located on-boardé¢ AUVsS, which measure
the concentration of the source ow. The con guration of thevehicles must be such
that spatial estimates of the gradient of the signal concerdtion can be computed

cooperatively. The cooperative control laws designed toaeh this aim, should consider
communication constraints due to the underwater scenario.

Figure 1.2: Underwater source detection and tracking
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To perform missions involving several vehicles, coordiret motion is required, es-
pecially when the goal of the mission is sensor driven. In thease presented here,
the detection of the source can be performed with sensor infaation collected by the
vehicles measuring concentration in the source plume, asosm in Figure B.2. This
picture represents the objective of the case study and it iggduced by the graphical
interface developed by PGES and the simulator which is praled by PROLEXIA. The
colored elliptical forms symbolize the level curves of thealar eld of interest. The
eet of AUVs, organized in a particular formation, will compute in a collaborative way
the best direction to move the center of the formation towarsl the source location. It
is up to the eet to maneuvre so as to seek the region of higheortcentrations of the
signal distribution, and thus, to carry out the localization of the source.

Phases of the mission and challenges

In recent years, it can be noticed the deterioration of mar@ waters due to multiple
pollutants. This case study, developed in coordination witIFREMER, aims to locate
the sources of the leaks, following a shipwreck, or, convelss sources of fresh water
for domestic consumption. The di erent steps considered toeach this objective are
detailed below.

The initial con guration is a eet of ve autonomous underwater vehicles equipped
with salinity sensors, which must locate a source of fresh tga without human in-
tervention. Cooperation strategies with the pooling of irdrmation from each vehicle,
must be developed to exploit the advantages of using a eet wéhicles and, to reduce
the time of exploration.

A rst challenge is due to the di culty of establishing reliable communication in
underwater environment. This is a key point for ensuring an ective cooperation.
Indeed, the data rate is only of a few hundredits=s, the transmission delay is around
a second and about 10% of items are lost. In this situation, latontrol strategies
developed have to take into account communication constrds.

The source localization task will be carried out in two phase Therefore, a second
challenge concerns the design of formation control laws appriate to achieve the
objectives of each phase. The rst one corresponds to the dogation phase. During
this exploration stage, the vehicles move in a V-shaped forti@n [103], in order to
collect information and to detect the signal distribution enitted by the source. Once
an agent detects a signi cant change in salinity, it transnts this information to the
others. Then the eet starts a phase of consolidation.

In this second phase, the eet is regrouping into a particuteshape, for instance cir-
cular. With such formation, the movement might be slower thanvith the V-formation.
However, a circular formation has greater exibility to movein all directions. Also,
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the distribution of AUVs along the formation is pertinent to cdlect spacial distributed
measurements which can allow a more precise localizationtbé source. It is also
possible to envisage many class of formations: it might beténesting to deform the
shape of the formation to adapt it to the environment, to folbw a path or to avoid
obstacles.

With a view to form and maintain this formation, the vehicles nust exchange mes-
sages according to their relative position to the center ohé formation. A centralized
design can be considered such that a surface vehicle progid# necessary informations
to the eet. Exchanges of data between the AUVs allow consideg a decentralized
approach in which any vehicle is designed as a leader. In arde deal with communi-
cation constraints, such as limited communication area ohe AUVs, only the nearest
neighbors are taken into account to exchange informations.

In order to fulll the objective of source-seeking, a decish algorithm must be
developed. It will be also based on data exchanges betweemghbors to ensure the
same robustness with respect to communications. The obja& of this nal task is to
allow all vehicles to agree on a direction for the formationot move towards the source
using the measurements collected by the vehicles. One caragime extending this type
of algorithms for other applications such as contours seeki to delineate the extent
and evolution of a polluted area.

1.1.2 General objectives

The general common objectives of both FeedNetBack and CONNECTects, cor-
responding to the underwater vehicles case study previoygiresented, are focused on
the following ve key challenges:

Architecture: The need to coordinate the actions of the vehicles over charias with
limited capacity.

Control and Complexity: Centralised versus decentralized control strategies, vehi
are at the heart of this application.

Control and Communication: The available bandwidth is severely limited (few bits
per second), communication is subject to long and variablergpagation delays,
multi-path, fading and high bit error rates.

Control and Computation: The case study will make use of the adaptive sampling
strategies, and distributed collaborative computation.

Control and Energy: In this application battery power is limited and usually bat
teries cannot generally be recharged. Energy resources tros shared between
di erent functions.
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According to these general objectives, the following confretrategy, based on a
technical report of the FeedNetBack project [152], to achieva collaborative search
of an underwater source using a eet of AUVs is proposed in thihésis. The rst
challenge is to describe an adequate architecture to dealthve cooperative approach
taking into account all the elements of the problem statemesnd all the constraints. In
consequence, three main control loops are considered, asghin Figure 1.3. Knowing
that this project aims to study eets of vehicles working togther to reach a common
objective, in terms of control and coordination of eets, tis thesis considers the eetto
be composed of a homogeneous set of vehicies, all vehicles have the same dynamic
model.

N..'
control
i t agents' position
npurs ||| |aeens e SENSOR
AUVs NETWORK |
ROBUST signal
CONTROL i measurement
FLEET OF AUVs ! COMMUNICATION
< ' NETWORK
FORMATION i
—| CONTROL |, SOURCE

oenter | |LOCALIZATION

Figure 1.3: Architecture of the control strategy

The rstaim is to develop a local control loop, called robustontrol, which stabilizes
each AUV. This control law takes into account the dynamic modelfahe vehicles in
order to control their orientation, velocity and deep. The motion along the three axes
is uncoupled so that, three di erent controllers are compwd for the control of the
forward speed, the yaw angle and, the altitude respectiveliffhe thesis of Roche [136],
which is also part of both FeedNetBack and CONNECT projects, déawith robust
control design for trajectory tracking of a single AUV via a vaable sampling interval
approach.

Considering several identical vehicles, the external lo@arries out the search task.
A cooperative control is implemented to reach a coordinatiomotion of the eet such
that, the group of AUVs is disposed in a particular con guratim. The desired for-
mation is de ned by several parameters such as, its center damadius in the case of
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a circular formation. A collaborative control law stabilizs the eet to a formation
tracking the time-varying parameters which de ne it. This work is realized in two
dimensions, hence it is assumed that all the vehicles are ntay at the same deep. Lin-
ear velocity and orientation are the control variables whit depend on the AUV state
(position and velocity) and on the external references whiade ne the desired forma-
tion. The uniform distribution of the vehicles along the fomation is also considered.
In order to take into account communication constraints, a ecentralized algorithm is
designed to stabilize the vehicles to the desired pattern fiform distribution), only
using information from their closer neighbors.

Finally, the trajectory of the formation center is obtained ly a distributed control
using the measurements of the signal distribution by a eetfc)AUVs. The expected
data is measured by detection sensors. The trajectory to bellbwed by the eet shifts
from the prede ned search pattern to a sensor-based trajemty control in order to
detect the source of the measured data.

The implementation of control loops on a network of digital entrollers induces
some additional disturbances with respect to the initial atinuous time design, more
precisely due to sampling, delays, jitter, quanti cation ad data loss. Consequently, it
is appropriate to take into account these communication catraints in order to design
the di erent control strategies previously de ned.

In order to consider the underwater communication problemshe development of
e cient underwater acoustic communication protocols is neded. Current underwater
acoustic modems are based on very classical single-carm@rdulation with a very low
bit rate. For achieving high data rate and large system cap#g, Orthogonal Frequency
Division Multiplexing (OFDM) has been claimed to be an e ciert communication tech-
nology [78]. It allows designing low complexity receivers tdeal with highly dispersive
channels. This fact motivates the use of OFDM in underwater @ronments. More-
over, the multiple access channel technique called OFDMA (@wgonal Frequency
Division Multiplex Access) can signi cantly reduce the latacy induced by TDMA
(Time Division Multiplex Access) based protocols currentlyused [76, 77]. Using this
protocol the quality of the transmitted signal decay with tre distance. Therefore, we
consider that each vehicle is able to communicate only in agien de ned by a critical
communication distance .

With a view to deal with these general objectives, the multi-gent systems and its
applications, particularly the formation control problem are considered in this thesis.
Therefore, an overview on this kind of systems is presentedthe following section.



1.2. Survey on formation control of multi-agent systems 15

1.2 Survey on formation control of multi-agent sys-
tems

Cooperative behavior in large groups of individuals appearabundantly in nature.
There exist well known examples of such behaviors such ash@us of sh, ocks of
birds, collective food-gathering in ant colonies. The read might refer to [158] to
nd more examples. The fundamental property of this coopetin is that the group
behavior is not dictated by one of the individuals. On the cdrary, the behavior results
implicitly from the local interactions between the individuals and their neighbors. For
instance every sh in a school knows where the other sh in itsieighborhood are
heading, but it does not known the average heading of all ske Nonetheless the shes
in the school stay together and moves as a group in a certairrelition [37, 134], see
Figure 1.4.

Figure 1.4: School of sh. This image is used under the CC-BY-2.0 licence
(http://creativecommons.org/licenses/by/2.0/deed.fr), it is posted to Flickr by Jor-
danSu.

Many engineering systems also consist of large groups of ma@ting dynamic sys-
tems. They are calledmulti-agent systems One has to refer to a topic of research
that emerges in the 1980's with the thesis of Tsitsiklis [1§8~hich was one of the rst
contributions in the eld. Even if this thesis is more concemed by computer science
and distributed programming, the implication to the eld of automatic control was
signi cant at this time and leads to open problems in many aigs such adlistributed
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optimization, consensus algorithmsformation control, etc.

Cooperative control has been extensively studied in the gafew years. This eld
includes consensus algorithms, collaborative control ofutti-agent systems, motion
coordination, distributed optimization and distributed estimation in sensor networks.
Engineering motivations for studying cooperative contrapproaches stem from increas-
ing interest in groups of embedded systems, such as multiride and sensor networks.

Particularly, consensus problems have a long history in theld of computer science.
A consensus algorithm is an interaction rule that speci eshie information exchange
between an individual and all of its neighbors on the networwhose proposal is to con-
verge to an agreement value. There exist a huge number of adimtitions to this prob-
lem including consensus algorithms with time-delays, swhing topology or consensus
Iters, among many others [109, 111, 112, 130, 151]. Thesestdbuted agreement
problems are directly related with cooperative multi-agenapplications. Moreover,
consensus algorithms represent an excellent tool to deyelmore complex cooperative
control laws. Furthermore, a decentralized algorithm presits several advantages in
comparison with a centralized approach, especially if theutti-agent system is subject
to communication limitations.

Hence, before going to the details of the technical achievenerof the present
dissertation, it is necessary to provide a precise de nitioof multi-agent systemsand
formation control.

1.2.1 Multi-agents systems

Multi-agent systems (MAS) has received a lot of attention ine@cent years. A MAS
is a system composed of multiple interacting intelligent amts. MAS can be used to
solve problems that are di cult or impossible for an individual agent or a monolithic
system to solve. Intelligence may include some methodicélinctional, procedural or
algorithmic search, nd and processing approaches. Topieghere multi-agent systems
research may deliver an appropriate approach include omdi trading [137], disaster
response [144], and modelling social structures [161].
A broad de nition of agentwas introduced in [53]. This book presents and reviews

the concept of multi-agent systems and its applications. Tauthor de ne an agent
as a physical or virtual entity having several important cheacteristics:

Reactivity capabilities : An agent is able to act and has a behaviour to satisfy
its goals.

Autonomy : An agent is at least partially autonomous.

Perception : It is able to perceive its environment.
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Local views : No agent has a full global view of the system, or the system isd
complex for an agent to make practical use of such knowledge.

Communication capabilities : An agent is able to communicate with others
agents.

A multi-agent system is composed of an environment, objecaénd agents, relations
between all the entities, a set of operations that can be perined by the entities and
the changes of the environment in time and due to these actignlin this situation, the
agents are the only ones to act.

As a comment, it is worth noting that multi-agent systems resach does not only
refer to automatic control. Among other elds, MAS often addresed computer sci-
ence [53, 169], distributed computation [11, 14], game thgd15], social science [40],
etc. A multi-agent system may contain combined computer'sgents, human teams and
agent-human teams.

In automatic control, the interests of MAS is particularly rdevant when one has
to face with systems consisting of multiple vehicles (whichre considered to be the
agents) with several sensors and actuators that are interdi¢o perform a coordinated
task. This is currently an important and challenging eld ofresearch motivated by a
large number of applications in many areas. Potential apgiations for multi-agent sys-
tems include surveillance, collaborative search and res;lenvironmental monitoring,
exploration and distributed recon gurable sensor network To enable these applica-
tions, various cooperative control capabilities have beamalyzed, including formation
control, rendezvous, attitude alignment, ocking, congeasn control in communication
networks, task and role assignment, air tra c control, coveage and cooperative search.

‘ —— Link

Figure 1.5: Diagram of a multi-agent system

Summarizing, a multi-agent system is a group of nodes (agshtrepresenting ve-
hicles, sensors, plants, etc., which are able to exchangéommation in order to reach
a common goal. Schematically, MAS can be represented by a netw of nodes in-
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terconnected via a communication topology as shown in Figude5. Interconnections
between agents in a MAS are usually modeled by directed or ureltted graphs [12].

This paragraph presents some basic tools of graph theory. rlam extensive analysis,
see Appendix A. The communication topology for the groups of agts is represented
by means of a graptG(V; E) whereV = f1;2;:::;Ngis the set of vertices (agents) and
E the set of edges (communication links) such thak(j) 2 E if agentk communicates
with agent j. In this thesis all communication graphs considered are umdcted. It
means that the communication between agents is bidirectiah i.e., if agentk commu-
nicates with agentj , agentj transmits also to agentk. When there is a communication
link between agentk and agentj, both agents are called neighbors. The set of neigh-
bors of agentk is denoted byN and the degree of agerk is represented bydx = jNj.
The Laplacian matrix L of a undirected graphG is de ned as:

8
2 de; if k=
Lk;j = S 1, if ] 2Ny (1.2)
0 otherwise

The Laplacian matrix allows us to include, in a compact form, @ammunication con-
straints to di erent control laws for MAS, see [12].

Classical objectives for MAS

a) Consensus and average consensus
The term consensus refers to an agreement in the value of aishie reached by
a multi-agent system. The average consensus refers to theemgnent protocol in
which the nal value of the consensus variable is the averagé the initial values.

b) Synchronization
A multi-agent system reaches synchronization if the statef @ll the agents is the
same asymptotically. This de nition can be interpreted as @&onsensus algorithm
but synchronization is usually applied in manifolds with pdicular symmetries,
such as in the case of oscillators.

c) Formation control
A collection of interacting agents disposed in a particulacon guration whose
objective is to achieve a common goal is de ned as a formatioriThere exist
several formation control strategies in order to make the agts converge to a
particular con guration or to maintain inter-agent distances, for instance.

d) Exploration task and coverage
The purpose of exploration is to collect information by seahing or traveling
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around an area of interest. In particular, coverage is a caborative task in which
the agents reach their optimal locations in order to maximithe monitored area.

In the sequel, an overview of di erent models for MAS gives seral examples of
these main challenges.

Models of nodes

In the literature, di erent models to represent the dynamis of multi-agent systems
have been used. The description provided in this thesis dsabnly with continuous

represented byx, 2 R™ wherem is the dimension of the state. The control input of
the system is denoted byuy.
The possible kinematics models of nodes can be classed deviat

A) Linear models

i) General linear models
A general linear kinematic model for the agents is describég the following
equations:

Xi =AXk + Bu (1.2a)
Yk = CXy (1.2b)

whereA ; B; C are matrices. The consensus algorithm corresponding to ghi
model can be writing as [171, 172]:

X
u = K (YY)

J2N g
whereK is a control matrix.
This model is used in the literature mainly to deal with form&on control
design such as in [51, 52, 62, 65, 92].

i) Single integrator model
A particular case of a kinematic linear model is the simple tegrator:

Xk = Uk (1.3)

To achieve the agreement of the state of the agents the comnhprused
consensus algorithm in this case is expressed by, see [8, 151]:

X
Ux = (X X))
J2N g



20 Chapterl. Introduction

Apart from consensus algorithms, there are many di erent agjgations for
MAS which contemplate this simple model to represent a groud agents.
Some of these applications are formation control [103], m¢zvous [36], cycle
pursuit [79, 95], coverage [35, 122, 145] among many othe§,[71].

An important application of this model is the study of the couped oscilla-
tors. The mathematical analysis of these systems composddobase oscil-
lators interacting each others allows us to learn about theyschronization

problem. Kuramoto introduces the rst notions to understam this kind

of systems and analyzes its collective behavior in [83], whehe following
synchronization algorithm for coupled oscillators was psented:

X .
Uy = sin(Xk  Xj)
j2N

Many extensions dealing with Kuramoto oscillators have baedeveloped in
recent literature, see [27, 83, 106, 157], among many otherEhe knowl-
edge provided by these works can be exploited to synchronamed stabilize
di erent patterns in a MAS con guration, [118].

iif) Double integrator model
In many cases, several vehicles can be governed by contngllthe acceler-
ation of its actuators, for instance the time-derivative othe angular speed
of motors. Thus, a double integrator model is very used in thigerature of
MAS:

Xk = Ug (14)

The consensus algorithm for double integrator dynamics isvgn by [129]:

X
Uy = [(x X))+ (% %)l
J2N g
where is a control parameter. There exists several extensions dfig
consensus algorithm taking into account di erent constraits, see [128].

As in the case of simple integrator, this model is utilized ineveral ap-
proaches of cooperative control such as distributed format control [110,
138], rendezvous [159] and ocking [108]. This model allowse agents to
reach an agreement in their velocities. This particular casof consensus
problems is called ocking and, by de nition, it is not possble to be applied
to simple integrator dynamics of the agents.

B) Nonlinear models
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I) General nonlinear models

Linear models are sometimes too simplistic to model the dymacs of a

real agent. For example, the dynamics of a sensor network rhighave

many non-linearities and it is not realistic to represent te dynamics of some
kind of vehicles such as, planes, marine vehicles and twoeeh vehicles,
by linear models. Therefore, several authors have studietiet previously
presented coordinated algorithms for MAS by a nonlinear appach. A

general nonlinear model is described by:

Xk = (Xk; Uk) (1.53)
Yk = h(Xu; uk) (1.5b)

wheref () and h() are functions that could satisfy some particular condi-
tions according to the problem considered.

Consensus algorithms on nonlinear spaces are studied inZ1846, 147]. The
applications of this model are focus on formation control [40, 50, 114, 125],
motion planing [57], extremum-seeking problem [82] and phe tracking
[140].

i) Unicycle kinematics
A particular nonlinear model extensively considered in theobotics and
automatic control is the unicycle model. This non-holonomimodel is used
to represent dynamics of ground vehicles, Autonomous Under&aVehicles
(AUVs) and Unmanned Aerial Vehicles (UAVS). The state of the agenk
is denoted by vector &i; Y«k; «)' Where &i;y«)" 2 R? is its position vector,
« 2 St is its heading angle andy; u, are the control inputs:

Xk = Vk COS (1.6a)
Yk =V Sin (1.6b)
—+ — Uk (1.60)

Basically, all the previous collaborative algorithms deveped using simple
and double integrator kinematics to model the agents have ée investigated
using this non-holonomic model. Formation control [24, 333, 45, 69, 120,
149, 150], rendezvous [46], trajectory tracking [80, 81].0tion planing [43],
synchronization [119], coverage [84, 94], exploration ka§86] and source-
seeking problems [28, 30, 104] are the main cooperative pevbs studied in
the current literature.
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1.2.2 Motion coordination

The previous review on MAS summarizes some of the most impantaand commonly
studied applications in the eld of cooperative control. Ths thesis deals with a system
formed by multiple vehicles whose common goal is to coordieats motion to achieve
a task. In this situation, the collaborative approaches capg with motion coordination
are specially examined in the sequel.

Motion coordination is a phenomenon in biological systems das been remarked
before, see Figure 1.4. Moreover, itis a useful tool for graupf vehicles, mobile sensors,
and embedded robotic systems. A motion coordination taskae ned as a collaborative
behavior of a group of mobile agents in order to reach a commam. In other words,
achieving a coordination task corresponds to moving the age and changing their
state to maximize or minimize an objective function [97]. Seral objective functions
can be speci ed to describe di erent behaviors and tasks. laddition, the geometry
and symmetric proprieties of the desired con guration, arelirectly related to control
design for motion coordination [142].

A review on motion coordination considering some aggregatbjective functions is
presented in [97]. The authors consider three main objeatis. deployment, consensus
and cohesiveness. In the context of mobile agents, deploymmeans placing the agents
in the optimal positions to achieve maximum coverage (morting or vision of the
environment) [7, 35, 133]. The consensus is a useful alglonit to reach rendezvous,e.,
all the agents converge to the same location [36, 46, 174]. &iy, the cohesiveness, is
characterized by a repulsion/attraction function which m&es the agents in the network
maintain desired relative distances between its neighboos achieve collision avoidance
[108, 164].

In this dissertation, other collaborative behaviors are awidered as a motion co-
ordination such as, motion planing, collaborative path fébwing, cooperative target
tracking and formation control. A multi-agent motion planing is a cooperative algo-
rithm for generating the motion of a group of vehicles in an emronment that might
change over time, in which each agent takes into account theformation of its neigh-
bors to compute its motion [43, 54, 160]. Coordinated path lfowing is a control
strategy where multiple vehicles are required to follow prepeci ed spatial paths while
keeping a desired inter-vehicle formation pattern in time60]. The target tracking
problem can be accomplished by a group of mobile vehicles ensors. In this case, the
objective for the agents is to locate and follow the trajecty of a moving target. There
exist many di erent approaches to deal with this topic in theliterature, the reader can
refer to [96] and [170], and the references therein.

For many applications it is interesting to impose a particudr con guration for the
agents. The next subsection reviews the main strategies tlag with formation control.



1.2. Survey on formation control of multi-agent systems 23

1.2.3 Formation control

Formation control is an important issue in coordinated combl for multi-agent systems.
A formation is de ned as a group of autonomous agents (veh&d, sensors or robots)
with communication capacities, which form a particular comguration ( i.e., desired po-
sitions and orientations), in which the agents collaboratéo achieve a common goal.
Keeping a group of vehicles in formation presents severahadtages as, for instance,
reducing the system cost, recon guration ability and struture exibility of the system,
increasing the robustness of the system and improving theqperties of the communi-
cation topology. There are many areas of application for thBarmation control eld.
Surveillance, target tracking and environmental monitorig are some examples.

In the survey [26], the authors study in detail the di erent s$rategies dealing with
formation control presented in the literature. The analys of the several approaches
is very exhaustive, therefore, in the sequel, a classi cat of the di erent formation
control designs based on [26] is elaborated, adding otherpapaches and references in
order to complete this overview.

Formation control via behavior-based approach and potential eld appr oach:
In [5, 24], several motor schemas implement the overall befar of a robot in order
to move it to a goal location while avoiding obstacles, cddiions with other robots
and remaining in formation. Each schema generates a vect@presenting the desired
behavioral response (direction and magnitude of movementPthers works combined
the behavior-based approach with potential elds as in [48126]. The group forma-
tion behavior is based on social potential elds. Arti cial potential trenches are used
to represent the formation trajectory of the group in [59]. Te authors of [102] ap-
ply this method to a non-linear dynamic system for obstaclevaidance and trajectory
generation.

Formation control via generalized coordinates: In this strategy, the agent's
position, its orientation and the shape with respect to a refence point in the formation
are de ned by the generalized coordinates. These coordieatcan be used to specify
the formation trajectories. This methodology is developenh several works [63, 153].

Formation control via leader-follower approach: In this approach one agent
is designated as being the leader and the mission of the re§tvehicles (followers) is
to maintain a desired distance to the leader. Hence, the follers receive information
from the leader in order to keep the desired formation, see g 1.6.

In [45], a controller is designed using input/output feedbek and an application of
this strategy can be found in [162]. Other strategy to producformation motions {.e.,
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LEADER

FOLLOWERS

Figure 1.6: lllustration of the leader-follower structure

ight formations) is the virtual-leader approach [125] whee a suitable inter-distance
(and orientation) is set between agents. The motion of the fmation results from the
motion of the leader. Several extensions to multiple non-lamomic mobile robots are

presented in [25, 32, 33, 42, 49].

Formation control via virtual structure method: This method is developed to
enforce a group of agents to stay in a rigid formation. The ctwoller of each agent is

designed to track the dynamics de ned for the virtual structire. It means that, for a

desired formation, the control laws designed minimize therer between the desired
positions in the virtual structure and the real position of he agents, as shown in
Figure 1.7. Introduced by [87, 163], this approach is usualgpplied to spacecraft or
satellite formation ying control [9, 10].

VIRTUAL |
: STRUCTURE !

Figure 1.7: lllustration of the virtual structure method
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Formation control induced by ocking: The paper [134] deals with animal be-
havior models during the motion of a ock of birds, a herd of lad animals, or a school
of sh. In this work, Reynolds introduces three heuristic ries that led to creation of
the rst computer animation of ocking:

1. Flock Centering: attempt to stay close to near by ockmates
2. Obstacle Avoidance: avoid collisions with near by ockmais.

3. Velocity Matching: attempt to match velocity with near by ockmates.

Figure 1.8: lllustration of ocking

Based on this previous nearest-neighbor interaction ruleseveral works dealing with
ocking motions have been developed for double-integratatynamics of the agents,
[108, 164, 165]. A common de nition of this class of motion:isa group of mobile
agents that align their velocity vectors, and stabilize thie inter-agent distances, us-
ing decentralized algorithms and taking into account the gomunication topology, as
shown in Figure 1.8.

Rendezvous: The multi-agent rendezvous problem, which was posed in [Hopes

with the collective behavior of a group of mobile agents, andooperative algorithms

that cause all members of the group to eventually rendezvow single unspeci ed

location, as de ned in [88], see Figure 1.9. The same authorkthis previous work

analyze the rendezvous strategies based on a sequencst@b-and-gomaneuvers, in

the synchronous [89] and asynchronous case [90]. The rendes problem can also be
studied through consensus algorithms, see [71, 111]. A ewiof the various approaches
of this problem for linear models of motion can be found in [2R A detailed analysis

of this class of coordinated algorithms to achieve rendezx®using proximity graphs is

provided in [36] and several improvements are presented #6].

Cyclic pursuit: The authors of [95] propose a collaborative strategy for ntuthehicle
systems based on the notion of cyclic pursuit from mathemas. They focus on circular
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Figure 1.9: lllustration of rendezvous

formations of a group ofN ordered identical vehicles. Cyclic pursuit means that each
agentk pursuit agentk +1 modulo N, then each agent is required to sense information
from only one other agent, see Figure 1.10. Based on a cycliasuit strategy, in [79]
a cooperative control of a multi-agent system to achieve arget-capturing task in 3-D
space is presented.

Figure 1.10: Illustration of cyclic pursuit

There are certainly other approaches of formation controhtt this survey has not
discussed in detail. Nevertheless, this review allows theaker to understand the state-
of-the-art on MAS and justify the main directions followed inthis thesis to deal with
the challenges presented in the case study.

1.3 Contributions of the thesis

The community of automatic control has specially focused omulti-agent systems in
the last twenty years. The di erent aspects presented in prgous overview has been
extensively studied due to the advantages of multi-agent siems, with respect to use
one single vehicle or sensor, in a large number of applicaitso

In the context of underwater exploration, designing collatrative missions allows
collecting information from extensive areas in a shorterrtie. The main advantage of
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using multiple systems in a coordinated motion is the exteim of the sensor range with
respect to area coverage or depth coverage. This is espégimhportant if properties
which shall be measured uctuate with time.

According to the case study presented in this chapter, the machallenges addressed
in this dissertation are summarized as follows:

Formation control of AUVs
Collaborative control
Source-seeking problem

Control design under communication constraints

control signal
inputs agents' position SENSOR measurements
—
NETWORK
AUVs
COLLABORATIVE
SOURCE-SEEKING
-
I— — |
center
reference

Figure 1.11: Illustration of the contributions of this thesis

Figure 1.11 displays a diagram representing the main objeatis which will be dis-
cussed along this thesis. The rst control loop corresponds the formation control
problem. The multi-agent system, in this case representing group of AUVS, is gov-
erned by a control law which uses the agents' positions andiemtations, and given
references of the formation parameters. This algorithm dbdizes the eet to time-
varying formations tracking external references of the pameters which de ne the
desired con guration, as its center for instance. Moreovgcollaborative algorithms are
developed to distribute the vehicles in a particular pattan along the formation.

The second control loop is designed to reach the nal objees, the collaborative
localization and tracking of a source. The AUVs are now conside as a mobile sensor
network obtaining measurements of a scalar eld. These measments will be used
to compute a distributed algorithm to achieve the source-s&ing problem de ned.
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Finally, this algorithm provides the adequate reference to ave the formation towards
the location of the source.

At the end of this thesis, it will be seen how several tools inhe domain of the
automatic control allow us to nd a solution for the problemsdiscussed at the beginning
of this chapter.



Chapter 2

Time-varying circular formation
control

In order to face the challenges mentioned in Chapter 1, the minol strategy designed
in this thesis is structured in three phases. As shown in Figure 12 the rst step
focuses on the formation control problem. This chapter deaWith designing formation
control laws for a eet of Autonomous Underwater Vehicles (AUVs) A formation
is a con guration conformed by a group of vehicles with comnmication capacities,
in which the vehicles collaborate to achieve a common goal.hi§ rst contribution
concentrates on control design to reach circular formatisn

control SENSOR signal
inputs agents' position measurements
» AUVs >
NETWORK
a——
i center | COLLABORATIVE

referenceg SOURCE-SEEKING

TIME-VARYING
CIRCULAR FORMATION

translation
scaling

uniform distribution

Figure 2.1: Contributions of Chapter 2

29
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The circle has several interesting symmetric properties drits geometrical form can
be simply characterized by its center and its radius. For tkireason, the circular motion
of vehicles is a large analyzed topic in the literature. Therexist several approaches
which tackle this question. Collaborative cyclic pursuit gsategy studied in [95] (see the
survey on formation control in Subsection 1.2.3), circumnégation of a single vehicle
presented in [44] and collective circular motion from [86]@ some examples.

Based on previous circular formation control results studd in the literature, in
this chapter di erent control laws are developed to stabilie the eet of agents to time-
varying circular formations. Firstly, a control design to m&e the vehicles converge to a
circular motion following a time-varying reference of itsenter is provided. In a second
time, the agents are stabilized to a circular motion which @nges its radius according
to an external reference. Both control laws are improved addy a potential function
in order to distribute the agents along the common formatiomn a collaborative way.

2.1 Problem statement

In this chapter, circular formations of autonomous agentsiia 2-dimensional space are
considered. It is assumed that the agents have no physicaltexsion, that is, that
their positions are single points. Consider a group df identical vehicles modeled
with unicycle kinematics subject to a simple non-holonomiconstraint, adequate for
the underwater vehicles as presented in previous survey ofiltragent systems, such

that the dynamics of agents wher& = 1;:::;N are de ned by:
Xk =V COS g (2.1a)
Yk = Vk sin K (Zlb)
—+ = Uk (210)

wherer, = (Xx;Y¥k)' 2 R?is the position vector of agenk, 2 S!is its heading angle
and vi; ux are the control inputs.

The objective is to design control strategies to make congg the group of AUVS,
represented by system (2.1), to circular formations, whogarameters center and radius
are time-varying. Following assumptions are considered the sequel to deal with this
rst contribution:

the inertial frame.

The time-varying references which de ne the parameters di¢ circular formation,
I.e., its center and its radius, are known to all the vehicles.
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Each vehicle is able to communicate in a region delimited byaaitical communica-
tion distance . This is motivated by the underwater communication constriats
and the communication protocol used, as explained in Chapt&. This critical
radius is the same for all the vehicles.

Others communication problems such as, noise, packet loggldime delays, are
not considered.

control
inputs agents' position
—

AUVS

<«+—REFERENCES

Figure 2.2: Problem statement of Chapter 2

Under these assumptions, this chapter presents control laws stabilize a group
of vehicles to circular motions tracking time-varying refences, as is represented in
Figure 2.2. In addition, a collaborative algorithm allows dstributing the vehicles in a
particular desired pattern along the circular formation.

2.2 Collective motions

A particular class of motion coordination for multi-agent gstems is studied in [86, 115,
119, 148, 149, 150] under di erent constraints. These prewis works study the problem
of design feedback control laws that stabilize a collectivaotion. The evolution of the
dynamics of a system consisting of several mobile agents mhioating their motion
using relative positions and orientations with respect tolteir neighbors is called a
collective motion.

The authors of [74] has analyzed in detail model (2.1) whick extensively used to
represent the dynamics of multi-agent systems. These autischave emphasized the Lie
group structure that underlies the state space. The con gation space of a group o
agents consists in the same number of replicas of the gro8f(2). When the control
law only depends on relative phases and relative positionibe closed-loop vector eld is
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invariant under an action of the symmetry groupSE(2) and the closed-loop dynamics
evolve on a reduced quotient manifold. This manifold is call the shape space, and it
corresponds to the space of all relative phases and relatpesitions [150].

Parallel and circular collective motions of a group of vehies modeled with unicy-
cle kinematics (2.1) are analyzed under a Lyapunov approachParallel motions are
catarecterized by a common orientation for all the agents,nd the circular motions
are de ned by circular orbits of the agents around a xed poih This cooperative ap-
proach only depends on relative orientation and relative sttion, i.e., on the variables

K = k jandry =r, rj wherek;j =1;:::;N. As is explained in [143], circular
and parallel motions are the only possible coordinated motis on the symmetry group
SE(2) because the closed-loop vector eld is invariant undemaaction of SE(2).

In [86], the authors develop collaborative control laws taabilize the group of agents
to parallel and circular formations. A feedback control lawthat stabilizes circular
motion of a group ofN vehicles around its center of mass is provided. Each vehicle
moves in the plane subject to planar steering control, modsd by (2.1) with unit
constant velocity, such thatv, = 1. Two examples of constant control input are shown
to help understand this model:

ux = ! o 6 0: the vehicles travel on xed circles of radius %! oj and the sense of
rotation is given by the sign of!

ugx = !¢ = 0, each vehicle follows a straight trajectory in the diredbn of the
initial heading.

The motion of the group can be related to the vehicle headingsié to the unit speed
and unit mass assumptions. In [86], the authors suggest a tah law for stabilization
to a circular formation centered at the center of mass,, de ned as:

X

k=1

1
N
All previously cited works on circular formation use a complenotation due to the
isometry betweenR? and C. In order to be consistent with the notation which is used
in this thesis, the results obtained in [86] will be presentein R2. Let the relative
position vector from the center of mass to vehiclk be de ned as

1 X

fk =Tk Cm= szl(rk r)

Note that each+y depends only on the relative positions of the agents.
With a view to stabilize the agents to a circular formation theauthors propose the
following theorem:
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Theorem 2.1 (Leonard et al. [86]) Consider the vehicle modgl.1) with v = 1 for

Ue = o1+ Firy) (2.2)

where > 0is a scalar gain, ensures that all the agents converge to a circular formation
centered atc,,, and of radius15! j.

Proof 2.1 The stability of the circular motion of the group around a common point
can be studied using standard Lyapunov functions. The proof is based on the following

Lyapunov function:
1 X 2
Si)=5 tk 'Ry 0 (2.3)
k=1
where the matrixR _ 2 R? 2 represents a matrix rotation through an angle counter-
clockwise around the origin (of the corresponding reference frame) such that:
I

0 1
R _ =
2 1 0
and the vectors of positions and headings are dened as= (r];:::;;rf)" and =
( 1;:::; n)T respectively. This function has minimum zero for circular motion around

the xed center of mass because at the equilibrium, wh&(r; ) =0, the dynamics of
the vehicles satisfy:

e« 'oR, A =0

In consequence, the relative position vector from the center of mass to ag&nt

the vehiclek describes circular trajectories around the center of mass.
The derivative of the Lyapunov function is expressed as follows:

X

;
S(ri ) = P ToR B e 'oR Rk
k=1
X
.
= UR T ToR_re e 1oR_fy
k=1
= orerk(to k)
k=1

Thanks to the control law(2.2) this derivative becomes:

2
S(r; )= lorprk(lo o+ Mrk))= Lofgrx ~ 0
k=1 k=1
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By the LaSalle Invariance principle, solutions for the reduced system on shape space
converge to the largest invariant set where

ofelx O

and the conclusion is that solutions converge to a circular relative equilibrium. It means
that the agents converge to a circular motion centered at the center of masgs and
with radius 15! oj. The details of the proof can be found in [149].

Note that this circular formation control law depends only orrelative positionsr g
which stress the notion of collective motion and the centerfahe nal formation cy,
results from a consensus algorithm [149].

There exist several extensions of this theorem under limdecommunication [119,
150], considering the e ect of underwater currents [120, 1R&nd collective motions
in three-dimensional space [69]. In the sequel, two othertersions will be presented.
These contributions allows moving and contracting/expandg circular formations.

2.2.1 Circular motion control with xed center

Based on the same ideas from collective motions, the authafd118] present a feedback
control in order to stabilize a single vehicle to a circular wtion with xed center and
constant radius. Each vehicl&k knows its absolute positionry and its dynamics are
modeled by (2.1) with constant velocityvy = 1 for all k = 1;::;;N. The authors
propose a beacon control law composed of Hamiltonian and disgive terms, such as:

U= !o(l+rgry)

where! ; 6 0 is the angular velocity. In consequence, the following #orem is pre-
sented:

Theorem 2.2 (Paley et al. [118]) Consider the vehicle moddR.1) with v, = 1 for

ue = 1o(l+rgry) (2.4)

where! o > 0 ensures that all the agents converge to a clockwise circular motion with
radius 1=! ; about the origin of the coordinate systermg = (0;0)".

Proof 2.2 In order to proof this result Lyapunov techniques are used. Consider the
following Lyapunov function given by

1
Sk(re; «) = Ekrk RoR 1k
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whereRy = 15! ] is the radius of the desired circular motion.

The relative position of the vehicles with respect to a center poiog is de ned as
F« = ry  Co. Without loss of generality, the center point corresponds to the origin of
the coordinate system. Therefore, the following change of coordinates is proposed:

Xk

Yk

R, cos' (2.5a)
Rk sin' ¢ (25b)

whereRy 2 R* and

K= k Kkt =
2

In the new coordinates(Ry; ;' ) the system(2.1) with control (2.4) becomes:

Rk = sin (26)
W = 1oL+ Rysin )+ 2k 2.7)
k
and
, COS
k= Re

In the shape coordinates the circular motion equilibrium is a xed point. Using these
relations, the previous Lyapunov potential can be rewritten as

1
S(Rk; ) = > RZ+ R3 2RyRycos

and di erentiating
Sk(Ri; k)= Rgsin® ¢ 0

By the LaSalle invariance principle the vehicles converge to the largest invariant set
for which S¢(Rk; «) = 0. This set corresponds to the xed poin{Rx; «) = ( Ro;0),
hence the vehicles converge to a circular motion centered at the origin of the reference
frame and with radiusRy.

Remark 2.1 Note that this beacon control law stabilizes a group of agents to a clock-
wise circular motion centered at the origin of the coordinates system. This result can
be generalized considering an arbitrary xed center and an angular velocity! ; 6 0.
Under these hypothesis the previous control la{®.4) becomes:

U= o(l+rg(re c))

This circular motion control law ensures that a group of vehicles converge to a xed
circular motion centerd atc. The direction of rotation is determined by the sign of .
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2.3 Translation of a circular motion

Based on previous collaborative works on multi-agent cirtar formation [86, 149, 150],
this section presents a rst contribution dealing with formation control design and a
rst step to tackle the source-seeking problem.

Moving a formation of agents is pertinent to some applicatits where the agents
should perform collaborative tasks requiring the formatio to displace towards an a
priori unknown direction. For instance, in source seekingpalications, the formation
is driven following the source gradient direction (which i€omputed on-line, and in-
strumented as an additional outer loop) [64, 104]. The targeracking problem also
requires to consider time-varying formations. In this apptation, the agents attempt
encircling the target. Therefore, a circular formation in Wose center is located the
target, seems very appropriate to the target tracking prolelm. Some cooperative ap-
proaches to carry out this challenge using a eet of vehicldsave been studied in the
literature [80, 117]. Hence, a circular formation can be usefto track the trajectory
of a time-varying target [85].

Mk

10

Figure 2.3: Translation of a circular formation

This section presents a control strategy such that a multigent system de ned by
(2.1) converges to a circular motion which tracks a time-vgmg center, as described
in Figure 2.3. At the rst stage, the desired time-varying ceter c(t) is assumed to be
a given external reference which is shared to all the agentsthe formation.

To solve the problem of moving a circular formation, one ha®tfocus on the two
following issues:

a) Improving the previous circular control law from [118] to sabilize the eet of agents
to the same time-varying circular motion.
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b) De ning the class of functionsc(t) for which the translation of the circular motion
is possible.

2.3.1 Additional constraints on the center reference

A uniform circular motion describes the motion of a body tragrsing a circular path at
constant speed. The velocity of a point rotating with constat angular velocity around
a center point is perpendicular to the relative vector fromhe center to the moving
point and its magnitude is constant. Nevertheless, due to thegid body kinematics
during a combined motion composed by a uniform rotation and eonstant translation
the velocity of a point turning around a moving center is not enstant anymore.

Vi = 2! R

point i

RS

vj—O

Figure 2.4: A wheel, rolling without slipping, with the velocity of three points shown

For instance, in a circular motion of a wheel of radiu®, without slipping, repre-
sented in Figure 2.4, the center of the mass is moving with cdaast linear velocity
which magnitude, c = R! g, is equal to the tangent velocity. The parametelt o 6 0
represents the angular velocity. The velocity of each poinh the circle is a vectorial
sum of the velocity of the center of mass and the tangential kxity. Therefore, the
velocities of all the points are di erent during the motion.

In conclusion, considering constant angular velocity, inrder to track a time-varying
center the magnitude of the velocity vector of vehicles dedaing circular trajectories
around a moving center is time-varying. This fact leads to aontradiction with the
choice of constant linear velocity of the agents.

The results exposed in [86, 149] to obtain time-invariant i@ular formations and the
beacon control law from [118] dealing with circular motiongresented in Section 2.2,
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represent the vehicles with a unicycle model (2.1) with unilinear velocity, i.e. vx =

1; 8k. This assumption is pertinent to model several kind of undemter vehicles as
gilders, see [86]. The constant speed consideration is agstent with the circular motion
of the agents around a xed point. According to the relationv = R! ( satis ed during

a circular motion, in order to extend the algorithms based ononstant speed to time-
varying circular formations the only choice is to considerirhe-varying angular velocity
of rotation ! ¢. In this chapter, the parameter! o is assumed to be constant, therefore
the velocity vy becomes a new and necessary control input to overcome thiscmenical
constraint.

Another constraint belonging to AUV characteristics is that is velocity should
never be zero, otherwise the vehicle will sink to the bottomf the sea. According with
the previous example of a wheel motion, the zero velocity ¢esponds to the contact
point between the wheel and the oor. To avoid this situation it is easy to see in
Figure 2.4, that there is a constraint related to the velocityof the center of mass. The
motion of a circular formation of AUVSs, turning and tracking a ime-varying center, is
consistent with the rigid body kinematics described in Figwe 2.5.

vi = ! gR + kck

point i

— ///
kek -
/’point j

Vj:!oR k ck

Figure 2.5: Combination of a translational motion and a rotational motion

Nevertheless, this fact implies also conditions on the veigcof the reference of the
circular formation center, denoted byc, in order to keep the formation and avoid the
zero velocity of the agents. The situation in which the AUVs ar@ot moving must be
avoided. In reality, a minimum value of the velocity have to B guaranteed to allow
the vehicle to turn. In other words, the vehicle is only abled change its heading angle
during the motion. In the sequel, we will show how to deal witlthis problem.
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2.3.2 Introduction of a new system of coordinates

We want to stabilize system (2.1) to a circular motion of radis R and the given time-
varying reference of its centec(t). The methodology proposed in this thesis to design
a time-varying circular control law is structured in the folowing steps:

Change of coordinates: the position vector of each agent is expressed in a
transformed system which is moving with the desired time-vging center.

Fixed circular control law: the transformed system is stabilized to a circular
motion with xed center thanks to the beacon control law from[118].

Inverse transformation:  the control inputs of the original system are expressed
depending on the previous control law for the transformed siem.

The main idea and thus, the main contribution, is to expresshie multi-agent system
in a relative frame whose origin is the time-varying desiredenterc = (¢;¢c,)". This
transformed system, in which the agents' position are exmsed with respect to the
circle center, will be stabilized to a circular motion cented at ¢ and with radius R,
using the circular motion control law from [118]. The di eret steps of the control
design are explained schematically in Figure 2.6.

ORIGINAL Coordinates Transformation
SYSTEM

fk=rx C

Fe = (Xi; Vi) "

Xk = Vk COS g 2 = Rjl gj cos g

Yk = Vg Sin % = Rjl gjsin g
~+ = Uk 4= Oy
Translation Control Law
rg=f+c
+ T
vk = f( x0) Ok = 1o(1+ £1%)

Uk = f(Ok;ry; ci€)

Figure 2.6: Change of coordinates process

In order to express the position vector of each agenk in the relative frame which
is moving with the center of the circular motionc, the following change of coordinates
Is de ned:

=1k C (2.8)

wheref 2 R? represents the relative position vector.
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The circular control law from [118] can be applied to a multagent system modeled
by (2.1) with constant velocity vy = v. Therefore, to apply this circular control law
to the transformed system expressed in the relative refemmn frame with respect to
the moving center, the dynamics of the relative positions nsti have constant velocity.
The agents de ned by the transformed system will converge t@ circular motion with
radius R = v3! o) where! o 6 0 is the angular velocity. Then, the transformed system
is enforced to have constant linear velocity equal to = Rj! oj. Consequently, we
impose to the transformed system the following dynamics:

R =Rj! oj cOS ¢ (2.92)
% =Rjl gjsin (2.9b)
—+« =k (290)

where  represents the angular orientation of the transformed vetdy vector £y =
(R¢; %) and & is the control input.

The resulting transformed system, is time-invariant sincéhe center becomes xed
in the new transformed frame. Hence, circular control law fro

2.3.3 Translation control law

The problem is to design a control law such that the group of AUVBrms a circle that
tracks the time-varying centerc(t). The trajectory of the center c(t), is considered
here as an external reference. The radius of the cirdR and the rotation velocity ! o,
are constant given parameters. Applying the previous circait control law from [118]
but expressed in the new transformed frame, the system (2.8pnverges to a circle
centered atc(t) with radius R.

Consider the vector which contains all the transformed pdsyn vectors £ and the
vector containing all the inner new variables ,, denoted byt = (#1;:::;#)T and =

motion is analyzed using the following Lyapunov function, &sed on the analysis of the
circular control laws proposed in [86, 118]:
1 X 2
S(f; )= > B ToR _fix 0 (2.10)
k=1

Analyzing the equilibrium points of this Lyapunov function,when S(f; ) = 0 the dy-
namics of the transformed system (2.9) satis ! oR _fx = 0. Thus, the transformed
position vector and its velocity vector are perpendicular écausel! £, = 0. This con-
dition leads to the kinematic relation for the rotation of the rigid body, it means that
the transformed vectorsf, are turning around the frame originc at the equilibrium.
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Evaluating the derivative of S(f*; ) along the solutions of the resulting closed-loop
system (2.9) leads to:

X T
St ) = S oRfﬁk f 'oR Ef\k

k=1
XN T

= Okaﬁk | OREﬁk ﬁk ! OR fka
k=1
)(\l T

= I Okaﬁk(l 0 Ok)
k=1

Based on the circular control laws from [86, 118] and accondi with previous Lya-
punov function, the following control law is proposed for th transformed system:

0 = ! 0(1 + ﬁ;—f‘k) (211)

where > 0 is a control parameter. Note that for = 0, the control law becomes
Ok = « = !9 6 0 thus, each transformed position vecto®t, will undergo circular
motion with direction of rotation determined by the sign of! . The gain regulates
the contribution to the control of a dissipation term which $eers vectorfy such that,
it is perpendicular to its velocity vectorf.

Considering the proposed control law (2.11), the previousedvative of the Lya-
punov function becomes:

S(f; )= X (! ofB)? O (2.12)
k=1
In conclusion,S(f; ) is a suitable Lyapunov function for this transformed systa, and
the solutions converge to the largest invariant set , for wich S = 0.
After the previous detailed analysis a rst contribution of this thesis can be pre-
sented as a theorem:

Theorem 2.3 (Briron-Arranz et al. 2009 [16]) Consider a twice di erentiable func-
tion c(t) : R! R?, with bounded rst and second time-derivatives. LeR > 0 be the
radius of the desired circular motion, the control parameters be such thag 6 0, > 0
and the following condition is satis ed:

Rj! o > supfk c(t)kg (2.13)
t 0

wheresupf g represents the supremum of a real number.
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Then, the control law

Vi = Rj!gj(cos k;sin )T+ ¢ (2.14a)
rlc rwR_e
= 1 == 2 2.14
Uk VE —« VIE ( b)
+«=!o(l+ R jlgj(cos k;sin ¢)(rx c)) (2.14c)

with the inner state of the dynamic controller initialized as
k(0) = «(0) (2.15)

makes all the agents de ned by2.1) converge to a circular motion of radiusk, and
whose center tracks the time-varying referenagt). The direction of rotation is deter-
mined by the sign of .

Proof 2.3 The previous Lyapunov functionS(f; ) is positive semide nite and from
(2.12) is nonincreasing along the solutions. Thanks to the change of coordinaf{@s3),
the dynamic closed-loop equation corresponding to the transformed system is time-
invariant with respect to the referencec(t), hence LaSalle Principle can be applied.
Therefore, solutions for the reduced system on shape space converge to the largest in-
variant set where

it O 8k=1;:::;N
In this set, « = !, I.e, the transformed position vector describes circles of radius
Rj! oj3! oj. The transformed system(2.8) asymptotically reaches the circular motion
centered atc, radius R and with xed angular velocity! . Hence, the dynamics of the
agents satisfy:

rg=c+!oR_(r« ©)

which is the kinematic relation for the combined motion of a translation and a rotation
of the rigid body.

The next step of the proof concerns the design of the control input&; ux) of
the original system. According to the change of coordinat€2.8), di erentiating the
de nition of £ gives

rgy=f+c

This equation provides both expressions of the control inputs. Expressing previous equa-
tion in terms of its components, gives:

Vi COS ¢ = Rj! gjcos ¢ + ¢

Vi sin ¢ = Rjl gjsin ¢+ g
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Therefore, the control input vy is thus straightforwardly given by(2.14a) A more
particular attention is addressed to the inputi,. Using previous equations the following
equality holds:

N Ril isi N
W+S _ Rlgsin x+g (2.16)

tan | = —
K Ry + G Rj! oj cOS « + C«

and di erentiating

K+o)R+ &) (Kt )R + <)
(R + )2
(U + )R+ &) (B + &) ORy + <)

«(1+tan? )

—kV|§
To t with the change of coordinates previous relation becomes:

AVE = W(VE OXkG YKG) F Xk€ Vi€

Then, from uy = 4 the control input uy proposed in(2.14b) is retrieved. In order to
satisfy the relation (2.16) for all t, the initial conditions of the inner variable , must

be imposed as a function of the initial values of the system state. Let us consider that
the initial velocity of the center is equal to zero, such ag(0) = (0;0)". Therefore,
since equation(2.16) is satis ed, following relation holds:

k(0) = «(0)

Note that this control law has singular points whefrk = 0. This situation is
equivalent to:

Vi = Rjlgj(cos ;sin )T +c =0
This singular point occurs if there exists a timé, such that:

ke(to)k = Rj! o]
\ c(te) = k(te)

where\ represents the argument of a vector. The equatiq2.17) is a su cient con-
dition to avoid the singular points.

Remark 2.2 Physically, the singular points of the control law(2.14) represent the
contact point in a wheel motion, as seen previously in Figure 2.4. To understand this
singularity, consider the example of the cycloid whose rst derivative is not de ned at
some instants.
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Remark 2.3 The translation control law presented in Theorem 2.3 is an extension of
the circular control proposed in [118]. In this paper, the authors present a control law
which stabilizes a vehicle to a circular motion with xed center and constant radius using
its absolute position. The improvement with respect to this work comes from the fact
that is possible to stabilize the agents to circular motions whose center is time-varying.
Note that if the reference of the centec becomes time-invariant,i.e., c(t) = €(t) =0

for all t, according to equation(2.16) the angles ¢ and  become equal. Thus, the
control law (2.14) is the same control as in Theorem 2.2, this means:

Rj! o]
e =1o(l+ rg(re c©))

Vi

Uk

Therefore, this result dealing with a circular formation with time-varying center en-
compass the previous circular motion control problem from [118].

Theorem 2.3 presents a control law which stabilizes the eetf agents de ned by
(2.1) to a time-varying circular motion. It is worth noting that the center is an external
reference. This reference and its rst and second deriva&s are given and known to
all the agents.

With respect to [118], our approach also considers that eachent knows its absolute
position vector r,. This assumption is consistent with the real AUVs. As explained
in Chapter 1, the autonomous underwater vehicles belongirtg IFREMER have a
precise inertial measurement unit for navigation. This syem provides a very accurate
measurements of the absolute position of the vehicle. Othdgse, the agents do not
need to transmit any information to its neighbors, becauseaeh vehicle governed by
the control law (2.14) converges to the desired moving cirlew motion independently.
Hence, this result is not cooperative contrary to the circutacontrol laws presented in
[86, 150, 149]. A cooperative translation control for a cintar formation is presented
in Section 2.5.

2.3.4 Tracking on SE(2)

Previous subsection presents the rst contribution of thisthesis dealing with time-
varying circular control. The control law from Theorem 2.3 &bilizes the vehicles to
a circular motion with time-varying center. Due to the methalology applied and the
change of coordinates de ned by (2.8) the inner variable, must be initialized as a
function of the initial conditions of the heading angle . In consequence, the control
law is not robust to uncertainties in (0).

In order to avoid this problem, we propose a new control stragy. This approach
considers that both the dynamics of the transformed systemnd the time-varying
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center of the circular motion are references to the originaystem. The transformed
system, previously de ned by (2.8), is stabilized to a xed iccular motion. The control
design becomes a tracking problem between both systems. Siiew strategy follows
three phases:

Reference model: a relation between the original system (position vector of
each agent) and the reference system (relative position wqQ is determined.

Fixed circular control law: the reference system is stabilized to a circular
motion with xed center thanks to the beacon control law from[118].

Tracking approach: the control inputs of the original system are de ned by
tracking the dynamics of the reference system and the velgciof the desired
motion center.

In this case, the transformed system de ned by (2.8) is comi@red as a reference
system. The dynamics of the reference system satisfy (2.9)dathe closed-loop dy-
namics are imposed by the control law (2.11). In this situadin, the following theorem
presents the main result of this chapter.

Theorem 2.4 Consider a twice di erentiable functionc(t) : R ! R?, with bounded
rst and second time-derivatives. LetR > 0 be the radius of the desired circular motion,
the control parameters be such thdty 6 0, > 0, > 0 and the following condition
is satis ed:

vw>0 8k=1;:::;N (2.17)

Then, for all initial conditions r(0); (0), the control law

L OIR B+ rf(e+ (Bt 0)
Vi

Oclf+ tIRT(€+ (B + ©)
Uk =

Vk = Vg (2.18a)

(2.18b)

3
Vi

where £ and 0y are de ned by (2.9) and (2.11) respectively, makes all the agents
de ned by (2.1) converge to a circular motion of radiusR, and whose center tracks the
time-varying referencec(t). The direction of rotation is determined by the sign of .

Proof 2.4 According to previous results, the convergence of the reference system to a
xed circular motion can be analyzed with the Lyapunov function:
1 X 2

S )=3 & !R,A 0
k=1
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Thanks to this potential function, it has already proved that with the control la@2.11)
its derivative satis es S(f*; ) 0. Therefore, the reference systen{2.9) converge
to the largest invariant set whereS(ft; ) = 0 and consequently, the dynamics of the
reference system satisfy the following equation

B =1 oR iy

which corresponds to a circular motion.

According to relation (2.8), the objective now is to make converge the dynamics
of the original system to a combined motion de ned by the dynamics of the reference
system and the velocity of the desired center, i.e.:

rg! f&+c
In order to achieve this objective the tracking error is de ned as follows:

ex=rx (B+c)

With a view to make the error converge to zero, we wish to impose the error dynamics
e = ex where > 0. Then, the error converge exponentially to zero. Thanks to
previous de nition of the error the following equation holds when! 1

Taking into account the circular control law (2.11), the closed-loop dynamics of the
reference system converge o = ! oR _fi, hence previous equality can be written as
follows:

ry =oR_fx+c

and thanks to the relation between both systems (change of coordinates) the agents
converge to a time-varying circular motion since:

L= oRsf0k Q9+ 1y

circular motion ~ translation

The following step is to express the control inpusy; ux) depending on the reference
system. The dynamics of the error equation determines the control law for the original
system(2.1) since:

ex = Fg b €

(r« & ©

V|
Fro+uR_ry, OR_B €
Vk 2 2

V
Tt WR T (e B O+MWR B +e

k
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Multiplying the above equation by, and byr_IR; both following expressions hold:

Vik = VE+ (B + O+ IR A+ e
(xR (B + ) + Mty + iR e

UkVE

By de nition, this control law enforces exponential convergence of the tracking error
dynamics away from the singularity, = 0. If condition (2.17) is satis ed then, the
control inputs of (2.18) are respectively obtained.

Note that Theorem 2.4 presents a dynamic control law in which the control inputs
are (Vi; U).

This new result does not depend on the initial conditions othe reference system.
Therefore, for any initial conditions of the original and rérence system, «(0) and
«(0) respectively, each vehicl& converges to a circular motion with radiugR and the
time-varying center c(t).

2.3.5 Simulation results

This section presents the simulation results of the multigents system composed of
AUVs modeled by (2.1) in order to validate the previous theor@tal analysis of the
translation control law.
The simulation shown in Figure 2.7 displays a eet of ve agerst governed by the

translation control law from Theorem 2.4. The controller peameters are! ¢ = =

=1, the radius of the desired circular motion iR = 2 and the reference of the center
IS given by:

c(t) = (0:2t; 3sin (008)) "

Figure 2.7 shows a simulation of ve agents which describes iactilar motion track-
ing the time-varying reference of its center denoted by thelde line. The trajectory
of only one agent is represented by the red line. Each vehidenverges to this mo-
tion independently of the others vehicles in the eet for anynitial conditions. Thus,
according to de nition of formation introduced in the survey of previous Chapter 1,
the eet of agents does not exactly move in formation. Howevefor each instantt, all
the agents describe a circular trajectory with centec(t) and radius R, therefore, the
vehicles are in the same circle. Nevertheless, the distrilban of the agents does not
follow a particular pattern. This problem will be considerd in the last section of this
chapter.

Figure 2.8 shows the evolution of the control inputsy, and ug for all the agents,
obtained from the same simulation. The oscillations of botkariables are due to the
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Figure 2.7: Simulation of ve agents governed by the control la 2.18). The gure
represents three snapshots: the void blue agents correspond to the initial conditions and
the red ones to two di erent instants, att = 45s and att = 90s. The red line describes
the trajectory of one agent tracking the reference of the center in blue.

(a) Control inputs ug (b) Control inputs v

Figure 2.8: Evolution of the control inputsuy (a) and vi (b) corresponding to the
previous simulation of ve agents shown in Figure 2.7.

time-varying reference of the center. The velocityy, of the vehicles oscillates around
the value of the tangent velocityRj! oj = 2. The mean value of the inputuy is logically
equal to the angular velocity! o = 1.
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2.4 Scaling of a circular motion

This subsection presents a second contribution based on yiais circular control from
[86, 118]. After the rst result concerning the translation éa circular motion proposed
before, the problem considered here is to design a control lawch that the group of
AUVs forms a circle whose centec is xed and whose radius tracks a time-varying
referenceR(t), as described in Figure 2.9. Using the same idea as in the trétion
case, this extension to the scaling (contraction and expang) of a circular motion is
the logical following step taking into account that the mainparameters of a circle are
its center and its radius.

y Mk

Mk

R(t2)

R(t1)

X

Figure 2.9: Scaling of a circular formation

Changing the size of a formation can be useful in several stions. For instance, it
can be seen as a collision avoidance method such that the giec formation of AUVs
reduces its radius in order to go through a narrow place. On ¢hother hand, a scaling
algorithm provides a solution to solve communication probims between the agents
with low communication range. For example, in order to guardy the communication
between all the agents and theirs two neighbors in a circuldormation the radius of
the circle should satisfy a geometrical condition with resgzt to the communication
range of the agents. These communication constraints andethin uence in the radius
of the circle will be considered in the next section.

In the sequel, a new control law is developed so that the agentonverge to a
circular motion with xed center and whose radius tracks a tne-varying reference.
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2.4.1 Coordinates transformation

As we explained before, in the eld of circular control there»ast several methods in
which, a unicycle model (2.1) with constant unit velocity, $ consider to model the
agents. As in the translation case, considering constant aumgr velocity, the velocity
of the agents must be considered as a control input.

Basic mathematics show that for a uniform circular motion, ltere exists a relation
between the linear and the angular magnitudes, such that, ghmagnitude of the tan-
gential velocity of a point in a circular motion is equal tov = Rj! oj. Hence, is obvious
that if the radius R(t) is time-varying, considering a constant angular velocity o, the
velocity of the agentsvy must be time-varying too. Note that another approach, which
was not considered here, could deal with this scaling probteif the angular velocity
becomes a control input and the velocity remains constant.

This situation is the base of the work [120] in which the auths stabilize a eet
of vehicles to a xed circular formation in a ow eld. The velocity of the vehicles is
constant therefore to keep the circular formation in the prgence of currents, the vehicles
rotate with non constant angular velocity depending on thepacial distribution of the
ow eld.

To raise the scaling of a circular motion, the same method mwented previously in
Figure 2.6 for the translation control of a circular motion wil be followed. The main
idea, is to transform the multi-agent system (2.1) into a tine-invariant system with
respect to the radiusR(t). Then, the dynamics of this transformed system are enforde
to have constant velocity in order to apply the circular contol law from [118]. In this
case the new variablé is de ned such that:

e ¢
f\kz(kR )

(2.19)

The aim is to ensure the convergence of the transformed systele ned by (2.19) to a
circle which has a xed centerc and unit radius, as shown in Figure 2.10. According
to the relation in a circular motion v = Rj! oj, to stabilize the transformed system to
a circle with unit radius the velocity should be equal tg! oj. Therefore the dynamics
of the transformed position vector are de ned as:

R =j! gj cos (2.20a)
W =j!ojsin (2.20b)
—+ =k (2.20c)

where  represents the angular orientation of the transformed vebity vector.
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X

Figure 2.10: Coordinates transformation for the scaling problem

2.4.2 Scaling control law

Consider the problem of tracking a circular formation de nd by a xed and given
center c and a time-varying radius. Assume that the reference de neche radius of
the circular motion R(t) is always positive and its rst and second time-derivativeare
known and bounded. Moreover, the following assumption isqaired:

Assumption 2.1 Let ts > 0 be a su ciently large time to be de ned latter. Assume
the reference of the radiuk(t) satis es the conditions:

8t<ts, R()= Ro>0;, R(t)= R(t)=0

This assumption corresponds to a class of initialisation dhe multi-agent system.
The idea is to allow the agents to reach a circular motion witltonstant radius and
then to start tracking the time-varying reference of the radis (see Figure 2.12). This
assumption is not restrictive since this initialization potocol could be used in practice.

Based on the previous translation control design, the comgeence of the transformed
system to a xed circular motion with unit radius is analyzedusing the same Lyapunov
function:

L X 2
St )= > B ToR _fi 0
k=1

Following the same reasoning, in the minimum of this Lyapundunction corresponding
to S(f; ) =0, the dynamics of the transformed system (2.20) satisffx ! oR i = 0.
Thus, the transformed position vector and its velocity veair are perpendicular because
ﬁ[f‘k = 0. This condition leads to the kinematic relation for the raation of the rigid
body, it means that the transformed vectors', are turning aroundc.
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Evaluating the derivative of S(f; ) along the solutions of the resulting closed-loop
system (2.20) leads to:

b\ T
S(f; ) = B TR & B ToR_fx

k=1
X T

= OkREﬁk IR Eﬁk [P oRff‘k
k=1

= Lofet(lo Ok)
k=1

Based on the circular control law from [86] and according tde previous Lyapunov
function, the same control law (2.11) is proposed to contrdhe transformed system.
Note again that for = 0, each transformed position vectorfty will undergo circular
motion which direction of rotation is determined by the signof ! 6 0. The gain
regulates the contribution to the control of a dissipation érm which steers vectorf
such that it is perpendicular to its velocity vectorfy.

Considering the proposed control law (2.11), the previousedvative of the Lya-
punov function becomes:

X
S(f; )= (I off)® 0 (2.21)
k=1
In conclusion, S(f; ) is a suitable Lyapunov function for this transformed systa.
Thus, the solutions converge to the largest invariant set for which S.= 0.

Theorem 2.5 (Briron-Arranz et al. 2010 [17]) Consider three positive scalars > 0
and R, > R; > 0. Let!y 6 0 and > 0 be two control parameters. LeR :
R ! [R1;R5] be a twice di erentiable function, with bounded rst and second time-
derivatives, which satis es Assumption 2.1 and the condition:

: R(t)]! o]
8t; R(t) < @+ ) (2.22)
Then the control law:
o . r R
Vk = Rjlgj(cos g;sin §)' + ﬁ(rk c) (2.23a)
I
_ Rri(ry ¢) RR 2R? T
U|( - 1 ﬁv—lf —K + W(rk C) R§r_k (223b)
_ j! ol ain AT
«=!og 1+ (cos k;sin ) '(rk ©) (2.23c)

R
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with the initial conditions (0) as:
k(0) = «(0) (2.24)

makes all the agents de ned by2.1) converge to a circular motion of centerc, and
whose radius follows the time-varying referendg(t). The direction of rotation is de-
termined by the sign of .

Proof 2.5 The proof of this theorem follows the same steps that in the case of the
translation control law. First, the stability of the transformed system with the con-

trol law (2.23c) is established through the previous Lyapunov functi@(f; ). The
Lyapunov function is positive de nite and from(2.29), S is nonincreasing along the
solutions. Thanks to the change of coordinatd®.19), the dynamic closed-loop system
corresponding to the transformed system is time-invariant, hence LaSalle Principle can
be applied again. Therefore, solutions for the reduced system on shape space converge
to the largest invariant set where

i, O 8k

In this set, « = ! o, i.e., the transformed position vector describes circles of unit radius.
The transformed system(2.19) asymptotically reaches the circular formation centered
at ¢ and of unit radius with xed angular velocity! 5. Hence, the dynamics of the
agents satisfy:

re = !ORiirk c; + E'(rk C)

| R_{z—}

circular motion  gcaling term

The st term describes the kinematic relation of a circular motion and the scaling term,
enforces the velocity vectory to change its direction according to the derivative of the
radius, i.e. if R.< 0 the velocity vector is deviated leading to the contraction term, and
the case ofR> 0 corresponds to an expansion motion.

The next step involves expressing the original control inpwig and uy in terms of
the inner state variable . According to the change of coordinate$2.19), di erenti-
ating the de nition of f; gives

R
o= R+ R = R+ (e ©)

This equation provides both expressions of the control inputs. Expressing previous equa-
tion in terms of its components, gives:

. R
Vi €OS ¢ = Rj! gj cos  + ﬁ(xk Cx)

. L R
Viesin i = Rjtojsin i« + 2 (% G)
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Therefore, the control input v is thus straightforwardly given by(2.23a) A more
particular attention is addressed to. Using previous equations the following equality
holds:
_ R+ Ry Rjlgjsin  + %(yk c,)
tan =

= — (2.25)
R2+ RR«  Rjlojcos ,+ F(Xx )

and di erentiating

_ (R% + 2R + RY%)(R2R« + RR¢) (R + R%)(RR« + 2R2¢ + RRy)
) (R + RRy)?

«(1+tan? )

Developing previous expression the following equation holds:

(UkR&y + 2R% + RY)(RR + RR)  (R¥c+ RY)( OkR$k + 2R& + RRy)
e RZ(RZ+ 99) + RR(& R+ 1) +(RR 2R:)(Rf  HRw)

To t with the change of coordinates previous relation becomes:
|

2
—+ Vi

R " RR 2R2
«VE= V2 ﬁ()ik(xk )+ WYk ) +T(&(Yk o) Ye(Xk ©))

Then, from u, = 4, the control input u, proposed in(2.23b) is retrieved. In order to
satisfy the relation (2.25) for all t, the initial conditions of the inner variable , must
be imposed as a function of the initial values of. Therefore, since equation(2.25) is
satis ed and considering Assumption 2.1, following relation holds:

k(0) = «(0)

Note that this control law, as in the translation control design, has singular points
whenvy = 0. This singular point occurs if there exists a timd. such that:

\ (re(te) c©)= k(te)

RSk (te) k= R(to)j! of

(2.26)

To avoid the singular situation whenv, = 0, the initialization protocol described in
Assumption 2.1 is required. Thanks to Theorem 2.5, considering a constant radius
R(t) = Ro described in Assumption 2.1, the multi-agents system converges asymptoti-
cally to a circle centered att and with radiusR,. The transformed system converges to
a circular motion also centered at and whit unit radius. This means that there exists

a time ts such that:

: _ ne(t) c
8t>tg;, kfk(Hhk 1= RO 1<

This inequality can be rewritten as:

8t>tg;, kry(t) ck<R(t)(1+ )
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This result is logical, because this inequality expresses the asymptotic convergence of the
original system to a circular motion of radiusR(t). Starting from the singular point
(2.26) and taking into account this previous inequality, the following expression holds:

RO, RO

B> Ry R

k(t) ck<

RO@+ )= jRMOA+ )
If condition (2.27) is satis ed, this previous inequality can be rewritten:

jiﬁ;jkrk(t) ck< (1+ )R

R < Rt o

8t>tg; 1

which is in contradiction with (2.26). Thus, the singular pointvy = 0 is avoided.

Note that this initialization protocol, described graphically in Figure 2.11, is not very
restrictive, and it could correspond to an engineering requirement.

R(t)‘

»

Roe !
ts t

Figure 2.11: Graphical interpretation of the condition which is imposed to the reference
of the radius in Theorem 2.5. After a given instants, the radius R(t) is contained in
the blue striped region.

Remark 2.4 The scaling control law presented in Theorem 2.5 is an extension of the
circular control proposed in [118]. In this paper, the authors present a control law which
stabilizes a vehicle to a circular motion with xed center and constant radius using its
absolute position. The improvement with respect to this work comes from the fact that
is possible to stabilize the agents to circular motions whose radius is time-varying. Note
that if radius R becomes time-invariant,i.e., R(t) = R(t) = 0 for all t, according to
equation (2.23b) and the initial condition (2.24) the angles ¢y and , become equal.
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Thus, the control law (2.23) is the same control as in Theorem 2.2 with a di erent
gain, such that:

Vk Rj! o]

U = t="1g 1+@r_1(rk C)

Remark 2.5 The domain of the reference of the radius for Theorem 2.5 is limited
by R,  VmaxT! o] Where v represents the maximum speed for the vehicles which
depends on the mechanical performances. Therefore, the maximum radius of the circle
is related to the physical constraints of the AUVSs.

2.4.3 Tracking on SE(2) for the scaling problem

The control law from Theorem 2.5 stabilize the vehicles to arcular motion with time-
varying center. Due to the methodology applied and the changd coordinates de ned
by (2.19) the inner variable , must be initialized as a function of the initial conditions
of the heading angle . In consequence, the control law is not robust to uncertaiigs
in (0).

Based on previous translation control design, we use the samrmethodology in
order to stabilize a eet of agents modeled by (2.1) to a ciréar motion with time-
varying radius. Following a tracking process, the transfoned system de ned by the
change of coordinates (2.19) is considered as a referencéh® original system (2.1).
The dynamics of the reference system satisfy (2.20) and thiwysed-loop dynamics are
imposed by the control law (2.11). In this situation, the folbwing theorem presents
another contribution of this chapter.

Theorem 2.6 (Extension of Briron-Arranz et al. 2010 [17]) Consider a twice di er-

entiable functionR(t) : R! R*, with bounded rst and second time-derivatives. Let

be the center of the desired circular motion, the control parameters be such thagt O,
> 0, > 0, and the following condition is satis ed:

vw>0 8k=1;:::;N (2.27)

Then, for all initial conditions r(0); (0), the control law

ORITR A+ B RBrlr . )+ 2R+ R/
Vi + kMR 1k zﬁk R ry (Fe )+ ( ) By (2.28a)
Vi
y _Oer_Iﬁk+ R+RP‘V_IRT5(rk c)+(2R+ R)r_IR;ﬁk
. =

Vi

v (2.28b)

where £, and ¢ are de ned by (2.20) and (2.11) respectively, makes all the agents
de ned by (2.1) converge to a circular motion centered at, and whose radius tracks
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the time-varying referenceR(t). The direction of rotation is determined by the sign of

o

Proof 2.6 The proof of this theorem follows the same steps that in the case of the
translation control law. Based on the previous translation control design, the conver-
gence of the transformed system to a xed circular motion with unit radius is analyzed
using the same Lyapunov function:
1 X 2
S(f; )= > B ToR_f 0
k=1
Following the same reasoning, in the minimum of this Lyapunov function corresponding
to S(f; ) =0, the dynamics of the transformed syster(2.20) satisfy

ﬁk: !OREf}\k

Thus, the transformed position vector and its velocity vector are perpendicular because
ﬁ;[f‘k = 0. This condition leads to the kinematic relation for the rotation of the rigid
body, it means that the transformed vector®, are turning around c.

Evaluating the derivative ofS(f*; ) along the solutions of the resulting closed-loop
system(2.20) leads to:

b\ T
S(f, ) = P ToR, B B !oR_f

k=1
X T

= 7 OR_B ToR. B B 1R A
k=1
X T

= PofeB(Yo  Ok)
k=1

Based on the circular control laws from [86, 118] and according to the previous Lya-
punov function, the control law(2.11) is proposed to control the transformed system.
Note again that for = 0, each transformed position vectof, will undergo circular
motion which direction of rotation is determined by the sign ofy 6 0. The gain
regulates the contribution to the control of a dissipation term which steers vectty
such that it is perpendicular to its velocity vectofy.

Considering the proposed control lay2.11), the previous derivative of the Lyapunov

function becomes:
X
S(h; )= (ofet)? O (2.29)
k=1
In conclusion, S(f; ) is positive de nite and is nonincreasing along the solutions.
Thanks to the change of coordinate$2.19), the dynamic closed-loop system corre-

sponding to the transformed system is time-invariant, hence LaSalle Principle can be
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applied again. Therefore, solutions for the reduced system on shape space converge to
the largest invariant set where

fite O 8k

In this set, & = « = !y, i.e, the transformed position vector describes circles of
unit radius. The transformed system(2.20) asymptotically reaches a circular motion
centered atc, with unit radius and xed angular velocity! o.

The objective now is to make converge the original system to the reference system
according to relation (2.19), i.e.:

re! Rf + Ry
In order to achieve this objective the tracking error is de ned as follows:
ex=rx Rfi R

In order to make the error converge to zero, such th& ! 0, we impose the error
dynamics e, = ex where > 0. Then, the error converge exponentially to zero.
Thanks to previous de nition of the error the following equation holds wheri 1

Hence, when the reference system is stabilized, the dynamics of the agents satisfy:

R
r = 10R7$rk c; + —(rx ©)

| —Zz— R_z—}
circular motion Sca"ng term

The st term describes the kinematic relation of a circular motion and the scaling term,
enforces the velocity vectory to change its direction according to the derivative of the
radius, i.e. if R.< 0 the velocity vector is deviated leading to the contraction term, and
the case ofR > 0O corresponds to an expansion motion.

The dynamics of the error equation determines the control law for the original
system(2.1) since:

e = Fg Rf‘k 2R{y Rf‘k
(R R&) = Eno+uRon OR & RAC 2R
k

B uR I (e RAc R&) OR, B RA 2RE
k
Multiplying by the above equation by and byr_[RTf both following expressions hold:

ViVk = Vit rp(RAC+ RB) + Ur g R_B + R+ 2Rr gy
g = LERT(RA+ RE) + M [y + RITRT A+ 2RIIRT A
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By de nition, this control law enforces exponential convergence of the tracking error
dynamics away from the singularityyy = 0. If condition (2.27) is satis ed then, the
control inputs of (2.28) are respectively obtained.

Note that Theorem 2.6 presents a dynamic control law in which the control inputs
are (Vg; Uk).

This result is independent on the initial conditions of the eference system. There-
fore, for any initial conditions of the original and referenoe system, ((0) and (0)
respectively, each vehicl& converges to a circular motion centered at with the time-
varying radius R(t).

Remark 2.6 The domain of the reference of the radius for Theorem 2.6 is limited
by Rmax = Vmax 3! o] Wherevnax represents the maximum speed for the vehicles which
depends on the mechanical performances. Therefore, the maximum radius of the circle
is related to the physical constraints of the AUVSs.

2.4.4 Simulation results

This section presents the simulation of a eet of AUVs modeledyb(2.1) governed by

the scaling control law (2.28). The control parameters arep = land = = 1.
The reference of the radius is given by:
8
7 if t 30
% 30625 07t if 30<t 35

R(t)= _ 4 if 35<t 60
2433 0:3% if 30<t 35
1 if 35<t 60

In order to apply Theorem 2.6, the rst and second time-deritives of the reference
which de nes the radius must be well-de ned and bounded. Thefore, a lter is added
to the previous signal to avoid the singularities in the refencesR(t), R(t) and R(t).
The chosen lter is given by the transfer functionF (s) = 1 =(s® + 2s? + 2s + 1).

Figure 2.12 (a) shows the evolution of the relative position agnitudeskr, ck
of ve agents controlled by the control law (2.28) from Theoem 2.6. The ve agents
converge to a circular motion following the time-varying rierence of its radiusR(t).
Figure 2.12 (b) shows the trajectory of only one agent govermheby the control law
de ned in Theorem 2.6 during the contraction motion de ned ly the time-varying
referenceR(t) from Figure 2.12 (a). The contraction of the circular motions achieved
for any random initial conditions (position and heading of he agents).
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(a) Relative distances between each agent and(b) Trajectory of one agent following the refer-
the center of the circular formation ence of the radiusR(t)

Figure 2.12: Simulation of ve agents governed by2.28) tracking a time-varying ref-
erence for the radius.

Two previous sections present both contributions of this epter dealing with time-
varying motions: translation and scaling of a circular motin. The combination of both
motions will be tacked in next Chapter 3. The contributions bthis following chapter
are based on the methodology developed in these previoudises in order to consider
the main transformations of a formation.

The translation and scaling control laws are not cooperatéerbecause each agent is
able to reach the desired circular motion even if there doestrexist communication be-
tween the agents. The following section improves both cowirlaws with a collaborative
term in order to distribute the agents according to a desiregattern.

2.5 Uniform distribution along a circular formation

Both previous control laws do not take into consideration gomunication constraints,
because each agent converges independently to the desirecutar motion. Therefore,
the phase arrangement of the particles is arbitrary. In otlrewords, in order to stabi-
lize the agents to a circularformation the translation and scaling control laws must
include a cooperative term to distribute the agents along t same circle following a
particular pattern. Moreover, in the context of source-séeng for underwater vehicles,
ensuring that the agents are uniformly distributed along tk formation might be more
appropriate to produce e cient search motions.

The objective is now, to design an extension of both transian and scaling control
laws in order to distribute uniformly the agents along the ccular formation. Fig-
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O

Figure 2.13: Uniform distribution of the vehicles along a circular formation

ure 2.14 shows the uniform distribution of three vehicles@hg a circular orbit, i.e., the
phase di erence between adjacent vehicles % whereN is the number of vehicles.

A rst method would be to deploy a centralized controller. Ths controller would
deliver to each agent the control law to reach the uniform disbution. However, this
is not t with an underwater situation in which the signal transmitted decays with the
distance. Hence, it is assumed that no agent has global knodde of its neighbors'
position. Several works follow the main idea from [86] to dtdize the vehicles to
a circular motion tackling also the problem of distribute tle agents along the circle
in a particular pattern. These results are based on the synamnization problem of
oscillators and the symmetric proprieties of the manifol&?, see [142]. In the sequel,
a review about control of symmetric patterns in a circular fonation is presented.

2.5.1 Control of symmetric patterns

A rst analysis of the stabilization of a group of agents to a niform distribution along a
circular formation is presented in [118]. The authors desicga methodology to stabilize
the splay stateformation of a group of agents. This con guration is chara@rized by
a circular motion around the xed center of mass of the groupwith all vehicles being
evenly spaced on the circle. An extension to several kinds aditferns is studied in
[149] for all-to-all communication topology. Based on thesresults, the circular control
presented in [86] is improved in order to stabilize the veles to a xed circular motion
with uniform distribution. This approach requires the comnanication topology to be
time-invariant and connected. Moreover, the communicatis assumed to be bidi-
rectional. Transmitting the relative headings of the vehies, the authors can stabilize
particular phase-locked patterns or arrangements of the agts in a circular formation.
This is achieved adding a gradient control term to the previgs circular control law
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presented in Theorem 2.1 from [86] as follows:

)
b=l Ho) o (2.30)
@«
The potential function U( ) depends on the heading angles of all the agents represented
by the vector = ( 1;:::; )" and satisfyr U1 = 0, wherer U = (%;:::;%)

represents the gradient of the potential function andL 2 RN is the vector of ones.
Then, the potential is invariant to rigid rotation of all the vehicles' headings. Moreover,
the circular motion of the group in a phase-locked heading rangement is a critical

point of U( ).

The control of relative headings can be studied under two derent approaches,
all-to-all communication assumption and limited communiation. Considering limited
communication means that each agent may receive informatidrom only some of the
other agents [109]. It is known that designing collaborates controllers leads to more
di culties than in the case of all-to-all communication assaimption. In both cases,
presented in detail in [149] and [150] respectively, the paitial function enables us to
stabilize symmetric patterns of the vehicles in circular fonations.

The results of both works are expressed i@. In order to de ne these results in the
R? formulation the following notation is introduced. The Laphcian matrix considered is
L =L I,where isthe classical Kronecker product andy 2 RN N is the identity
matrix. Let by = (cosm ;sinm )7 be the vector which contains the orientation

system.

Symmetric (M; N )-patterns of the agents are characterized by 2 M N heading
clusters separated by a multiple ofzv, see [149]. To avoid local minimums and to
include higher harmonics, the moment of the phase distribign on the circle is de ned
as:

k=1

wherem 2 N. Let the potential Un( ) = Skpnk? satisfy r U,1 = 0. Considering
all-to-all communication topology, the unique minimum of his potential corresponds
to the balancing modulo%, reached whernp,, = 0. Its unique maximum is the syn-
chronization modulo%, reached when the phase di erence between any two phases is
an integer multiple of 2-. Therefore, the functionU( ) de ned as:

bN:ZC

u()=K Un() (2.31)

m=1
whereK > 0 andbN=2c is the largest integer less than or equal thl=2, is called splay
state potential, whose global minimum is the splay state, egvalent to the symmet-
ric (N; N )-pattern. The splay state formation control law has the fom from (2.30).
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Assuming all-to-al communication, the potential function $ given by (2.31) and the
control law can be written as:

K X X% ginm

U= Lo(l+ mn)+ o =

j=1 m=1 m

where the relative headingsy; = ¢ are the additional transmitted informations.

Theorem 2.7 (Sepulchre et al. 2007 [149]) EackM; N )-pattern circular formation

of radius 15! o is an isolated relative equilibrium of the particle mode{2.1) and is
exponentially stabilized by the control la2.30) where the potential function is de ned
by (2.31).

Proof 2.7 In order to analyze the stability of the motion, the authors of [149] propose
a combined Lyapunov function:

V(r; )= S(r;)+U() O

P
whereS(r; )= 1 E=1 ek !oR._ M ? as it was de ned in(2.3). This function reach

its minimum for circular motion around the xed center of mass as it was proved in
Theorem 2.1. Moreover, the agents are distributed in afM; N )-pattern corresponding

to the minimum of the potential functionU( ). The derivative of the Lyapunov function

can be written by:

X
V()= S )+ru()= Lo g—k“ (o uy)

k=1
and thanks to control law(2.30) then \/(r; ) O.
By the LaSalle Invariance principle, solutions for the reduced system on shape space
converge to the largest invariant set where

@uU

T
!0|"kr_k @—k 0

circular equilibrium. It means that the agents converge to a circular motion centered
at the center of masscy and with radius 15! oj. Moreover, the (M; N )-pattern is
exponentially stable.

This result is extended to the limited communication case ifil16, 150]. In order
to isolate symmetric patterns of curve-phases, the authorsstrict the interconnection
topology to dy-circulant graphs, see [41] and Appendix A. Aldy-circulant graphs
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are do-regular, which means thatd, = do for all k. Both adjacency and Laplacian
matrices of a circulant graph are circulantj.e., they are completely de ned by their
rst row. Each subsequent row of a circulant matrix is the prgious row shifted one
position to the right with the rst element equal to the last element of the previous
row. For example, the complete graph (all-to-all communideon) is (N 1)-circulant

and the cyclic graph (ring topology) is 2-circulant. For intance, the Laplacian matrix
corresponding to a ring topology of a eet oN =5 agents is de ned as:

1
1 2 1 0 O
0

The function U( ) takes into account the communication constraints througkhe Lapla-
cian matrix of the communication graph of the multi-agent sgtem. Based on previous
analysis for the all-to-all communication assumption, th@revious potential function
is generalized to arbitrary connected topologies:

K*B LB,

K
u()= N 2m?

m=1

The splay state corresponding to the uniform distribution,is locally asymptotically
stable for dp-circulant graphs. An extensive analysis is detailed in [11&nd [150].

Our objective is to apply this methodology to the previous tanslation and scal-
ing control laws. In the sequel, two improved circular contl laws to stabilize the
agents to a uniform distributed circular formation trackirg a time-varying center and
a time-varying radius respectively will be presented. Theptay state control laws are
studied in the case of xed communication topology and a newoatribution for limited
communication range is presented.

2.5.2 Fixed communication graphs

A xed communication topology of a sensor network or a groupfeehicles is represented
by a time-invariant communication graph G. The constant Laplacian matrix of G
describes the communication links between agents. In thiase, previous splay state
formation control law can be easily applied to the translatin and scaling problems.
In order to apply previous cooperative approaches to our twoontributions, the
potential U( ) becomes a function depending on the transformed headinggd®m =

the position vectorsr is equivalent to the distribution of the velocity vectorsr, because
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when the vehicles are in the circle the equationIrk = 0 is satis ed. This is means
that the angle corresponding to the position vectors is equto ¢ + 5. In the case of
a time-varying circle, the transformed system is stabilizkto a xed circle, therefore
the transformed position vectord', are perpendicular to their velocity vectors. Hence,
our objective is to achieve the uniform distribution of thevirtual agents de ned by the
respective transformed systems (2.9) and (2.20) along a decircle using a potential
function U( ).

In this situation, the Laplacian matrix considered now isL = L I, where s
the classical Kronecker product andy 2 RN N is the identity matrix. Let by =

(cosm ;sinm )" be the vector which contains the orientation angle of the iual

agents andB, = (bf,;;:::;0y )T contains all the heading angles of the transformed
system.
Translation control: Considering the previous notation and applying the splay ate

potential function mentioned before to our new formulation the following corollary
holds:

Corollary 2.1 (Extension of Brifon-Arranz et al. 2009 [16]) Consider a twice dif-
ferentiable functionc(t) : R! R?, with bounded rst and second time-derivatives and
the radius of desired formationR > 0. Let the control parameters be such thdt, 6 0,

> 0, > 0 and the condition (2.17) is satis ed. Let G be a xed d,-circulant graph,
and L be its corresponding Laplacian matrix. Then the control law2.18) now with:

0= o1t £5fR) &
()= K 22 L BnlBn

m=1 2m?2

(2.32)

makes all the agents de ned b{2.1) converge to a circular motion of radiuR and of
center the time-varying referencec(t). Moreover the splay state is a critical point of
U( ). For K > 0, the set of curve-phase arrangements that are synchronized modulo
2 =N is locally exponentially stable.

Proof 2.8 Based on Theorem 2.7, the stability of the motion is analyzed by the com-
posed Lyapunov function
V(f;, )= S(f; )+ U()

whereS(f*; ) is de ned in (2.10). The time derivative of this function along the solu-
tions of (2.9) is given By\L(f‘; )= S(f; )+r U( ). The potential U( ) is invariant
to rigid rotation, thus ~ |, & =0 and by de nition

* au

ru()= @

k=1
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Then, the derivative of the composed Lyapunov function is rewritten as:

X X au
\V(f ) = Lofaty (Lo Q)+ @—Ok
k=1 k=1 = K
X u
= T relac 27 (o 00
k=1 k
According to the control law(2.32) the following inequality holds:
XN 2
(P )= L ofs Py ey 0
- @«

Therefore, solutions converge to the largest invariant set,, for which\.=0. The
details of the proof can be found in [150].

Fixed connected Balanced symmetric
communication graph pattern

()
e »

Figure 2.14: An equilibrium con guration, balanced symmetric pattern, for a xed con-
nected communication graph in the case of even number of agents.

Remark 2.7 Corollary 2.1 does not exclude convergence to formations which corre-
sponds to other critical points ofU( ) [150]. For instance, when the eet has a even
number of vehicles, the system could be stabilized to another critical point of the po-
tential function corresponding to a di erent (M; N )-pattern to the splay state (uniform
distribution) as is shown in Figure 2.14. This is due to the local stability of the splay
state in the case of xed communication graph.

Remark 2.8 If the graph G is complete (all-to-all communication), then the set of
curve-phase arrangements that are balanced moddleN is a global maximum ofJ( )

in the reduced space of relative curve-phases; this is asymptotically stablekor O.
Moreover if K < 0 the control law of Corollary 2.1 forces convergence to the synchro-
nized circular formation [149].
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Scaling control:  Following the same reasoning, we can add the potential furch
whose critical point correspond to the splay state, to the ating control law to achieve
the uniform distribution of the vehicles along a circle withtime-varying radius. Based
on Theorem 2.6, and applying previous results on uniform digution the following

corollary holds:

Corollary 2.2 (Extension of Briton-Arranz et al. 2010 [17]) Consider a twice di er-
entiable functionR(t) : R! R™, with bounded rst and second time-derivatives. Let
the control parameters be such thdto 6 0, > 0, > 0, and assuming the condi-
tion (2.27)is satis ed. Let G be a xed dy-circulant graph, andL be its corresponding
Laplacian matrix. Then the control law (2.28) now with:
— T @u

H Kll: be:;cf\kl ox (2.33)

U()=§ m-=1 372BmlBnm
makes all the agents de ned b§2.1) converge to a circular motion of centec and the
time-varying radius R(t). Moreover, for K > 0, the set of curve-phase arrangements
that are balanced modul@ =N is locally exponentially stable.

The proof is similar that in Corollary 2.1.

2.5.3 Limited communication range

Applying the method from [149, 150] to distribute the agentslang the circular forma-
tion to both present translation and scaling control laws istraightforward, as shown
in the previous subsection for the case of xed communicatiggraph. Nevertheless, the
splay state corresponding to the uniform distribution, is oly locally stable, then, oth-
ers con gurations could be stabilized depending on the in&l conditions of the system
as shown in Figure 2.14. The authors of [116] conclude that tlsmulations suggest
a large region of attraction for each1; N )-formation for the complete graph but not
necessarily foidy-circulant graphs withd, < N 1. To demonstrate convergence of the
closed-loop system with limited communication, they haveetected initial conditions
near the desired i; N )-formation.

Moreover in practice, considering xed communication graps is not realistic be-
cause the distance between two linked agents is not consielér[111, 109, 130]. In the
case of underwater communication, the quality of the link istrongly a ected by the
distance between two agents [155]. Therefore, in an undetemscenario, it might be
more interesting to consider distance-dependent commuat®mn graphs. This means
that each agent can only receive information from its closeakighbors.

Moreover, in the context of the project CONNECT the multiple a&cess channel
technique called OFDMA (Orthogonal Frequency Division Muliplex Access) is applied
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in order to reduce the latency induced by TDMA (Time DivisionMultiplex Access)
based protocols, as it has been explained in Chapter 1. Usirlgs protocol the quality
of the transmitted signal decay with the distance.

In this situation, a communication area for each vehicle imiroduce in our ap-
proach. The communication area for any agent is de ned by which is the critical
communication distance given by the characteristics of theommunication devices and
the environment of the AUVs. Then, the radius demarcates a circular communica-
tion region for each vehicle. For simplicity, it is assumedot be the same radius for
all AUVs. This assumption is consistent whit the real modems stalled in the IFRE-
MER's AUV AsterX. However, we assume that there is a perfect commication inside
this region. Time-delays, packet loss, damping e ect and is® are not considered in
our approach.

Assuming bidirectional communication, the condition to ge communication link
between vehicle&k and vehiclej is expressed as:

kZNj 0 J 2Nk 0 Kk rg I'jk

The distance-dependent communication graph is now time-ang because the position
of vehicles is changing in time. Based on graph theory, thene-varying Laplacian
matrix L(t) corresponding to a distance-dependent communication giais de ned as
follows: 8
2 d; if k=]
Lyj = S 1, if kre rjk (2.34)
0 otherwise

The above graph is also callegroximity graph in the literature [36, 73].

Note that, for simplicity, in the simulation gures, the communication region de-
ned by the critical radius is designed as a circle of radius=2 to ameliorate the
visualization, as in Figure 2.15 for example.

Translation control: The splay state formation control law does not change with
respect to the xed communication assumption. Neverthelesa new condition is im-
posed to assure almost aj-circular graph, see Appendix A. It corresponds to a
geometrical condition which relates the critical communation distance to the radius
of the circular formation R and the number of agentdN, as show in Figure 2.15.

The cooperative translation control for the distance-depelent communication as-
sumption is presented in the following corollary:

Corollary 2.3 (Extension of Briron-Arranz et al. 2009 [16]) Consider a twice dif-
ferentiable functionc(t) : R! R?, with bounded rst and second time-derivatives and
the radius of desired formationR > 0. Let the control parameters be such thdt, 6 O,
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Figure 2.15: Geometrical condition to assure a circular communication graph for a
group of agents in a circular formation with communication radius .

> 0, > 0, and the condition (2.17) is satis ed. Let G(t) be the communication
graph, L (t) be its corresponding Laplacian matrix and the critical communication dis-
tance satis es:
> 2R sinﬁ (2.35)
Then the control law (2.18) with (2.32), makes all the agents de ned by2.1) con-
verge to a circular motion of radiusR and of center the time-varying reference(t).

Moreover, for K > 0, the splay state is the only critical point ofU( ) exponentially
stable.

Proof 2.9 The stability of the uniformly distributed circular formation is analyzed by
the composed Lyapunov function

V()= S(f )+ U()

whose derivative satis es(f*; ) 0. Thanks to Theorem 2.4, the control law(2.18)
makes all the agents reach the circle whit radi&s and centered atc(t). Then, consider
the potential function [150]:

[=2] N
— K 1 k
U( )= N ome Un( )
m=1 k=1
whereUK ( ) is be expressed as:
y X
Um( ): dk Lk;j (t) cosm ki

j=1;i6k
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\Igvhere K =k j denotes the relative angle between agemtsand j. Note that

N, Uk = ByLB . The objective of the collaborative control is to minimize the
function U( ), or equivalently to maximize the functiondJX( ) to achieve the uni-
form distribution. Without loss of generality, consider agenk. Uf( ) represents the
potential functions associated to agerk. The maximum of these functions is obtained
when the relative angles between agdntand its neighbors is=m. This means that
the angle between agemt and its neighbors will tend to=m. This works for all m
and this nally leads to an increase of the angles between connected agents until the
communication between them is lost. As shown in Figure 2.16, the geometry of the
problem ensures that the connection between agé&nand a neighbor is lost when:

where  =( k+3) ( j+ 3) Onthe other side,UX () is discontinuous because of
the de nition of the Laplacian matrix L. Note that the communication with any agent,
for instance j, leads to a contribution in the potential function of the following type:

1 cosy O

Thus, if a communication link is broken, a positive contribution is removed. There-
fore, the potential functions decrease discontinuously. Finally the agents are deployed
along the circle. The condition(2.35) ensures that this expansion guarantees that the
agents are connected at least idy-circular graph.

Applying Theorem 2.7, the fact thatG is a circular graph implies that the splay
state, (N; N )-pattern, corresponding to the uniform distribution is locally asymptotically
stable. No other local critical point is achieved because other critical points of the
potential function require that a link between agents is broken and consequently an
increase of the potential function. Therefore all the agents are uniformly distributed
along the circle. Thanks to change of coordinat€2.9), the dynamic closed-loop system
corresponding to our approach (time-varying center) is time-invariant, hence LaSalle
principle can be applied.

Remark 2.9 The set of curve-phase arrangements that are balanced modgleN
(uniform distribution) is asymptotically stable forK > 0. Moreover if K < 0 the
control law of Corollary 2.3 forces convergence to the synchronized circular formation
[150].
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Figure 2.16: Formation of communication chains during the contraction motion

Scaling control:  The previous analysis for the translation control probleman be
applied directly to the scaling control law. In this case, tB geometrical condition
imposed to s related to the maximum value of the reference which de ne&é¢ radius.
The following corollary summarize this result:

Corollary 2.4 (Based on Briton Arranz et al. 2010 [17]) Consider a twice di eren-
tiable function R(t) : R ! (0;Rmax, With bounded rst and second time-derivatives.
Let the control parameters be such thdt, 6 0, > 0, > 0, and assuming the condi-
tion (2.27)is satis ed. Let G(t) be the communication graphl.(t) be the corresponding
Laplacian matrix and the critical communication distance satis es:

> 2Rpmax SIN N (2.36)

Then the control law (2.28) with (2.33) ensures that all agents reach the circular for-
mation centered atc and whose radius tracks referend@(t). Moreover, for K > 0 the
uniform distribution of the agents along the circle is achieved.

The proof is similar that the previous one from Corollary 2.3

2.5.4 Simulation results

In the sequel, several computing simulations are shown toligate the cooperative con-
trol laws improved in this section. We are interested to shothe di erent capabilities of
these control laws to achieve the uniform distribution of th agents along time-varying
circular formations. The problem of xed communication grah is applied only to the
translation control (the same observations can be obtainedith the scaling control
law). The simulations highlight the local stability of the aitical points of U( ). A
specially attention is addressed to the case of limited conumication which is studied
for the both translation and scaling control laws.
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Fixed communication graph
The simulation shown in Figure 2.17, displays a eet of six agés governed by the
translation control law from Corollary 2.1. The controllerparameters arel o = =
= 1, and K = 0:1, the radius of the desired circular formation iR = 2 and the
reference of the center is given by

c(t) = (0:2t; 3sin (008))

Figure 2.17: Simulation of six agents governed by the control law from Corollary 2.1
with circular communication graph, tracking the reference of the center formation in

blue. The gure displays three snapshots: the void blue agents correspond to the initial

conditions and the red ones to two di erent instants, at = 30s and att = 50s.

The vehicles are stabilized to a time-varying circular foration. The cooperative
term of the control law utilizes the transformed angles ¢ transmitted taking into
account the xed circular communication graph. According toCorollary 2.1 in this
simulation a 2-circulant graph (ring topology) is considexd. Thanks to the connectivity
properties of its Laplacian matrix, a critical point of the potential U( ) is reached.
Nevertheless, this equilibrium point corresponds to the (B)-pattern and the desired
splay state is not achieved.

Figure 2.18 shows the evolution in time of the control inputs, and uy for all the
agents, obtained from the same simulation. The oscillatisnof both variables are due
to the time-varying reference of the center. The velocityx of the vehicles oscillates
around the value of the tangent velocity magnituddrj! oj = 2. The mean value of the
input uy is logically equal to the angular velocity! o = 1. The phases are balanced
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(a) Control inputs u (b) Control inputs vy

Figure 2.18: Evolution in time of the control inputs (a) uy and (b) v, corresponding to
the previous simulation of six agents shown in Figure 2.17.

modulo 2? then, there are two groups of three agents whose phases arecbyanized
as show in Figure 2.18 (a).

Limited communication graph
In this case, the communication graph considered is distagclependent and its cor-
responding Laplacian matrix is de ned by (2.34). The folloiwng simulations show the
in uence of the critical communication radius according to conditions (2.35) and
(2.36) respectively.

The simulation shown in Figure 2.19, displays a eet of six agés governed by the
translation control law from Corollary 2.3. The control paameters and the reference of
the centerc(t) are the same that in the previous simulation. The criticalammunication
radius = 3 satis es condition (2.35). Therefore, the agents are uformly distributed
along the circle.

Figure 2.20 shows the evolution of the control inputs, and uy for all the agents,
obtained from this simulation. In this case, the phases aralanced modulo% because
the stable splay state is reached.

In order to conrm the in uence of the communication radius to achieve the
uniform distribution, Fig. 2.21 shows a simulation of ve agets governed by the coop-
erative control law from Corollary 2.4. The control paramet¢rsarel o= 1, = =1,
andK = 0:1 and the desired circular formation is centered at= (1;1)". The reference
of the radius is given by:

8
>R, if t 30

R()=_ Ro Rz Rit 30) if 30<t 80

80 30
Ry, if t> 80

whereR, = 7 and R; = 2. The communication radius = 1:5 satis es the following



74 Chapter2. Time-varying circular formation control

Figure 2.19: Simulation of six agents governed by the control law from Corollary 2.3

tracking the reference of the center formation in blue. The black circles represent the
communication region of the agents. The gure displays two snapshots corresponding
to di erent instants, at t = 10s the uniform distribution is not achieved yet and at

t = 50s the splay state formation is stabilized.

(a) Control inputs ug (b) Control inputs v

Figure 2.20: Evolution of the control inputs (a) ux and (b) vk corresponding to the
previous simulation of six agents shown in Fig 2.19.

inequalities:

2Risin=- < < 2R,sin—
1 Sl > 2SI 5

Therefore, according to condition (2.36), the simulationf®ws how the uniform distri-
bution is not achieved whereas this condition is not satisa
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Figure 2.21: Simulation of ve agents governed by the control law from Corollary 2.4
which converge to a circular formation tracking a time-varying radius. The black circles
represent the communication region of the agents. The gure displays two snapshots
corresponding to di erent instants, att = 20s the uniform distribution is not achieved
yet and att = 85s the splay state formation is stabilized.

2.6 Conclusions

This chapter presents the rst contributions of this thesisdealing with control of a

eet of non-holonomic agents in order to reach a time-varygpcircular formation. These
contributions are the initial step to achieve the nal objetive which is to steer a eet of

AUVs to the location of an underwater source in a collaborativeray. The control laws

presented in this chapter, has been developed to move the terof a circular formation

and to change its radius following a time-varying referenceespectively. In the next

chapter, a method based on these previous contributions whi allows considering a
large class of formations, not only circular, will be presésd.

In both cases, the functions which de ne the center and radsuof the circular
motion are given external references. Its rst and second deatives are know for all
the vehicles in the eet. The problems of delays, referencesrrupted by noise and
packet loss are not considered here.

In order to achieve both objectives, translation and scal@ a control design based
on a model matching approach is developed. The main idea isttansform the orig-
inal system representing the group of vehicles to a transfoed system which is time-
invariant with respect to the reference (center or radius) hich depends on time. This
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new system is stabilized to a xed circular motion. The tranformed system is a
reference now to the original one and a tracking process ifidaved to obtain the corre-

sponding control inputs for the vehicles. This method allosvus to stabilize the eet of

agents to time-varying circular motions de ned only by few prameters, its center and
its radius. Moreover, thanks to our control strategy, exishg cooperative approaches
can be applied directly to improve both time-varying circuhr motion control laws.

In addition, this Chapter 2 deals with collaborative contrd strategies in order to
reach the uniformly distribution of the agents along the coular formation. A coop-
erative control term based on potential functions has beerdded to both translation
and scaling control laws to achieve the uniform distributin. The communication con-
straints are considered using a communication graph. The tan of uniform distribu-
tion can be applied to another class of formations. This wittonstitute a contribution
of following chapter. Moreover, it will be shown that the urfiorm distribution of the
vehicles along a circular formation is decisive with a viewtdrive the eet in a source-
seeking scenario.



Chapter 3

Formation control design based on
a ne transformations

The previous chapter presents two contributions to the eldf formation control: trans-

lation and scaling (contraction and expansion) of a circutaformation. Even if these
two items are fundamental for the nal objective, the sourceseeking problem, it might
be interesting to not restrict the formation control law to @rcular formations. In order

to express these previous contributions in a compact form arwith a view to extend

these results to more complex time-varying formations, a meframework based on
a ne transformations is introduced.

control SENSOR signal
inputs agents' position measurements
» AUVs >
NETWORK
a——
i center | COLLABORATIVE

referenceg SOURCE-SEEKING

GENERAL FRAMEWORK
AFFINE TRANSFORMATIONS

elastic formation
motion tracking

cooperative algorithms

Figure 3.1: Contributions of Chapter 3

77
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This chapter focuses on the design of a novel formation cooklaw using a di erent
approach. The objective is to generalize the previous coatrlaws, employing a ne
transformations, as shown in Figure 3.1. In the sequel, a newrgeral formation control
law is developed to stabilize a group of vehicles to a richelass of formations, not
only circular, and time varying formations. The shape of théormation is de ned by a
transformation matrix which is a given reference known to bthe agents in the eet. In
addition, a cooperative control is provided to distribute he agents uniformly along the
formation taking into account the communication constraits, as in previous chapter.
Finally, distributed algorithms are designed to improve thegeneral formation control
law in the case that the reference of the formation center imiknown.

3.1 Problem statement

In this chapter, a large class of planar formations of automwous agents in a 2-
dimensional space are considered. As in previous Chapter 2jsi assumed that the
agents have no physical extension, that is, that their posdns are single points. Con-
sider a group ofN identical vehicles modeled with unicycle kinematics suljeto a

simple non-holonomic constraint. The dynamics of agentsede ned by:

Xk =Vk COS g (3.1a)
Yk =Vk Sin (3.1b)
—+ = Uk (31C)
where i;y«)"T 2 R? is the position vector of each agenk = 1;:::;N, , 2 Stis its

heading angle andy; ux are the control inputs.

The aim now is to design control strategies to make the groug AUVs represented
by the system (3.1) converge to several classes of formasate ned by a combination
of a ne transformations. A general transformation matrix, which is a combination of
a ne transformation matrices, will be de ned in the next sedion. These matrices can
be time-varying. The following assumptions are considered the sequel to deal with
this new contribution:

spect to the inertial frame.
The general matrix, which de nes the desired motion, is knowto all the vehicles.

The communication topology of the eet of vehicles is de nedby an undirected
graph G.

Communication problems such as, packet loss and time delare not considered.
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Under these assumptions, this chapter presents two contrdtategies dealing with
the stabilization of the vehicles to arelastic formation and the motion-tracking control
design. Both contributions which will be mathematically dened in the sequel, are
developed using the same methodology based on a ne transfieations. In addition,
several collaborative algorithms will be presented to impke both results. For instance,
a cooperative control design will be introduced in order toistribute the vehicles in a
particular desired pattern along the formation and anothecooperative approach will
allow the agents to reach the same formation following a reémnce velocity.

3.2 De nition of a ne transformations

The a ne transformations are used in the elds of Computer seences and Robotics,
[2, 70, 72, 107]. They are very useful to express in a simpleammer the coordinates of
a manipulator robot [58] or to relate the local reference frae of a camera to an other
system of coordinates, for instance. In general, an a ne trasformation is composed
of linear transformations, such that rotation and scalingand translations. Since a
translation is an a ne transformation but not a linear transformation, homogeneous
coordinates are normally used to represent the translatiooperator by a matrix and
thus, to make it linear.

Homogeneous coordinates are a system of coordinates usedrajgetive geometry
much as Cartesian coordinates are used in Euclidean geornyetThey have the ad-
vantage that the coordinates of points, including points ain nity, can be represented
using nite coordinates. Formulas involving homogeneousoordinates are often sim-
pler and more symmetric than their Cartesian counterpartsHomogeneous coordinates
have a range of applications, including computer graphicsxd 3-D computer vision,
where they allow a ne transformations and, in general, progctive transformations to
be easily represented by a matrix.

TRANSLATION SCALING ROTATION

T JR()

Figure 3.2: A ne transformations applied to formations

The three main a ne transformations are translation, rotation and scaling. To ex-
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press these transformations in a matrix way, the homogeneoaoordinates are de ned,
see [56]. The homogeneous coordinates of a veaer ( z.; z,)" 2 R? can simply be de-
ned as the new vectorz" = (z;z,; 1)". Let the vectorse; = (1;0;0)7, &, = (0;1;,0)7,

e; = (0;0;1)" be a canonic base of the spade? expressed in homogeneous coordi-
nates. In the sequel, the basic a ne transformations and soenof their properties are
presented.

Translation:  The translation in the plane T of a point z by a vectorc = (¢; )"
corresponds to the following operatioff (z) = z+ c. This can be expressed in a matrix
multiplication of the form z°= T .z" where

0 1
1 0 ¢

T=Bo0 1¢X

001

and z%is expressed in homogeneous coordinates. Its inverse examd satis esT ! =
T .. Note that ¢ can be time-varying. The translation is pertinent to move tle center
of formations, see Figure 3.2.

Scaling: A non-uniform scaling expressed in homogeneous coordirgte a transfor-
mation such that z°= Sz" where

0 1
s, 0 O

s=Bos 0K
0 0 1

and s, > 0, s, > 0. Its inverse matrix contains the inverse of its elements. he
parameters of the scaling can be time-varying. Some examptdscaling can even lead
to ellipses or other closed curves, as shown in Figure 3.2.

Rotation: A rotation through an angle counterclockwise around the origin can be
written in a matrix form as previously, z°= R z", where

0 _ 1
cos sin O

R = %) sin cos O g
0 0 1

Its inverse exists and satisedR *= RT = R . The angle can be time-varying. A
rotation applied to a formation, can change its orientationwith respect to the frame
origin, as shown in Figure 3.2.
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3.3 Elastic formation control

For many applications it should be very appropriate to obtai formations with shapes
di erent from a circle. A result dealing with formation control design to stabilize a
group of agents to closed curves is presented in [119]. Indlpaper, the agents converge
to the set of trajectories that orbit a single closed curve.nlthis approach, the authors
require the curve to be convex with de nite curvature.

The idea presented in this chapter is to obtain formations wh arbitrary shape, not
only circular, and/or time-varying, by deforming a circula formation. The resulting
con gurations belong to a richer class of formations, de ree mathematically in the
following subsection, and they are calledlastic formations

3.3.1 De nition of elastic formation

A circular formation in the plane can be de ned by three basiparameters, its center,
its radius and the angular velocity of rotation. In order to nodify these parameters, the
a ne transformations are introduced. The objective now is b de ne a mathematical
formulation of elastic formations Considering the previous contributions, translation
and scaling of a circle, the main idea is to deform the unit ale in order to obtain the
desiredelastic formation. In this context, the unit circle G is de ned as a circumference
centered at the origin of the frame and with unit radius.

A sequence of a ne transformations, which are generated by @ombination of the
previous ones, is de ned as follows:

Y ¥ ¥
G = SR, Tg (3.2)
i ]k
where the subscripts denote the di erent transformations ofhe same type which are
applied. Note that, is this case, the product of matrices is macommutative. For
instance, the matrixG = S;S,R T, is a combination of one translation, one rotation
and two di erent scaling. Note that the matrix multiplicatio n is not commutative.
However, the general transformationG considered here, is a sequence of the three
a ne transformations and the order de ned in (3.2) can be chaged, for instance, to
G = R S;T.S;, which de nes another di erent elastic formation.

As it is shown in the previous section, the a ne transformatims are invertible,
therefore the inverse matrix of the general transformatioaxists and is denoted byz *.
Thanks to previous de nitions, G and G ! are di erentiable, if their parameters are
di erentiable. Note that the operators derivative and invetible are not commutative,
therefore:

d 1 d I 1
(EG) 6 E(G )= G
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Each combination of a ne transformations, expressed by a geral matrix G, de ne
an elastic formationF .

De nition 3.1  An elastic formation F is a curve which results of applying a sequence
of a ne transformations G de ned by (3.2), to the unit circle G such that:

F=G Gy

This elastic formation can be time-varying if at least one ement of the transfor-
mation matrices is time-varying. The nal formation depend on the sequence used to
de ne G. The term elastic denote the capability of the formation to mve and change
its shape in order, for instance, to avoid an obstacle (see Eig 3.5), to achieve the
source seeking problem, to delimit a polluted region, or tovaid unnecessary energy
waste.

3.3.2 Coordinates transformation

Thanks to the general transformation matrix denoted byG previously presented, sev-
eral elastic formations can be de ned according to De nitin 3.1. This transformation
matrix allows us to relate the unit circle to a complex desiik elastic formation trans-
forming the reference frame, as shown in Figure 3.3.

C~O A F
Y | elastic formation

unit circle

Figure 3.3: General transformation of the unit circle to an elastic formation

Consequently, the control strategy proposed here is compaisby the following steps.
First, the position vector of each vehicle is expressed in aatisformed reference frame
(%;9), according to the general transformation matrixG. Then, the circular control
law presented in Theorem 2.2 is applied to the new transformesystem in order to
stabilize the virtual agents to the unit circle. Finally, the control law expresseth the
original frame (x;y) is calculated applying the inverse transformation and theehicles
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converge to the desired formation which is de ned by matrixG applied to the unit
circle, as shown in Figure 3.3.

A similar methodology has been used to reach arbitrarily spad formations of
mobile robots also in [138, 139]. The authors develop a disted algorithm to sta-
bilize a group of agents to a formation with arbitrary shape s result of deforming a
regular polygon. In these papers, the agents are modeled bgldnomic double inte-
grator model. The objective of this chapter is to deal with tis problem considering a
non-holonomic kinematic model for the vehicles.

In the sequel, in order to apply the a ne transformations, al the vectors are ex-
pressed in homogeneous coordinates. The position vectottwaf agentk in homogeneous
coordinates is now de ned as, = (Xk;VYk;1)". The rst step is to express this position
vector in the transformed reference frame. According to thde nition of an elastic
formation F = G C, the following coordinates transformation is introduced:

fe= G ry (3.3)

wheref, = (X«;%; 1) is the transformed position vector expressed in homogensou
coordinates.

ORIGINAL Coordinates Transformation
SYSTEM

f‘k: G 1rk

Xk = Vi COS K .
re = (Xi; Y 1)

Yk = Vk sin K
+ = Uk
Elastic Control Law
re = Gfy + Gy
+

w=Tf(xG;Q)
Uk = (U 1, G; G; G)

Oc=1o(l+ B

Figure 3.4: Change of coordinates process

Recalling the main idea, explained schematically in Figure.8 the objective is
rst, to stabilize the new transformed system to a circle wit unit radius Ry = 1,
centered at the origin of the transformed reference frame @rwith angular velocity
o 6 0. Then, the circular control law from [118] is applied to ths transformed
system. Finally, applying the inverse transformation, combl laws are expressed in the
original framework.
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In order to implement the circular formation control law, the new transformed
system must have constant linear velocity equal t¢! oj. The reasoning is the same
that in the previous chapter for the translation and scalingof the circular formation.
By de nition, the linear velocity of a point in the xed unit c ircle isv = Rgj! q].
Therefore the dynamics of the transformed position vectorra imposed as:

R =]l gj cOs (3.4a)
W =]'oj Sin (3.4b)
—« :’Uk (34C)

where | represents the angular orientation of the transformed vedity vector (R¢; )"
and & denotes the control input.

3.3.3 Elastic motion control law

The problem now is to design a control law such that the eet cAUVs converges to an
elastic motion de ned by a matrix transformationG which is a sequence of translation,
scaling, and rotation matrices. The parameters of the desid motion are considered
as given external references therefore, the matr@ is known to all the agents. The
velocity of rotation of the agents around the motion center g is also a given parameter.
In a rst step, the control law presented in this chapter is nbcooperative. Cooperative
control laws to make converge the multi-agent system to anaddtic formation will be
presented in following subsections.

Following the main idea introduced previously, the rst st@ to design a control law
to stabilize the agents to an elastic motion is to control theéransformed system such
that it converges to the unit circle. Then, all previous analsis for both time-varying
circular control laws from Chapter 2 are pertinent also in tis case. The same Lyapunov
function that in the translation and scaling problems, but &pressed according with the
new formulation based on homogeneous coordinates, can bétemn as:

1 X 2
St )= > & 1oR fy 0 (3.5)
k=1
where the matrixR 2 R® 2 represents a rotation matrix through an angle; counter-
clockwise around the origin (of the corresponding referemérame) denoted byR - but
the element which corresponds to the homogeneous coordembecomes a zero, such
that: 0 1

0 10
R=01 0 0%
0 0 0
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At the equilibrium of this Lyapunov function, when S(#; ) = 0, the dynamics of
the transformed system (3.4) satisfx = ! R f¢x which corresponds to the kinematic
relation for the rotation of the rigid body. Its means that, the virtual transformed
agents {.e., the position vectors expressed in the transformed framedeaturning around
the origin of the transformed reference frame with rotatiorvelocity equal to! o at the
equilibrium.

Evaluating the derivative of S(f; ) along the solutions of the resulting closed-loop
system (3.4) leads to:

X T X .
S(f; )= R« 'R & & oRf = Pof B (to  Ok)
k=1 k=1
According to the circular control from [118] and the new contd laws presented in both
previous Theorems 2.4 and 2.6, we impose the closed-loopaiyics of the transformed
system (3.4) by the following control law:

O = Lo(l+ £5f) (3.6)

Replacing this expression in the derivative of the Lyapunowunction the following

inequality holds:
X 2
S(f; )= Lofif O (3.7)

k=1

Therefore S(f*; ) is a suitable Lyapunov function for this transformed syst@. Thus,
the solutions converge to the largest invariant set , for wich S = 0. Then, the
transformed system (3.4) asymptotically converges to a cinlar motion centered at the
origin of the transformed system of coordinates, with unitadius and with constant
angular velocity! 3. Thanks to the change of coordinates (3.3), the dynamic cled-loop
equation corresponding to the transformed system is timewsariant in the transformed
reference frame, hence LaSalle Principle can be applied. Aatad above, this result is
a generalization of circular motions, adapting the circukacontrol law from [118] to a
new framework.

Using the previous de nitions of elastic formations and the gneral transformation
matrix, a new general control law is proposed in the followgntheorem:

Theorem 3.1 (Briron-Arranz et al. 2011 [21]) Let G be a twice di erentiable matrix
function with bounded derivatives resulting of a sequence of a ne transformations as
dened in (3.2) andF = G Cg be the desired elastic formation. Let, 6 0, > 0 be
two control parameters such that the following condition is satis ed:

16 G GG 'ry (3.8)



86 Chapter3. Formation control design based on a ne transforrations

Then the control law:

Vi= GG Mri+jlojG(cos i;sin ;0)" (3.9a)

1 T
U= GG 'Ty+2GG Te+2GG 'y R_ri
k

.
+ X e '+G6 ', RTGTR_1, (3.9b)

Vk 2 2
«=1o 1+ jloj(cos :sin ;0)G ry (3.9¢)

with the inner state of the dynamic controller initialized as

k(0) = arctan (3.10)

where =0 if e{%(G 'r)(0) > 0 and =1 otherwise, makes all the agents de ned
by (3.4) converge to the elastic formatiorF. The direction of rotation is determined

by the sign of! ;.

Proof 3.1 The proof of this theorem follows the same steps that in both cases of trans-
lation and scaling control laws. First, thanks to the previous Lyapunov functi&(f; ),

the stability of the transformed system with the control la{B.9c) is proved. The Lya-
punov function is positive de nite and from(3.5), is also nonincreasing along the so-
lutions. Considering the change of coordinate8.3), the dynamic closed-loop equation
corresponding to the transformed system is time-invariant to the transformed refer-
ence frame, hence LaSalle Principle can be applied again. Therefore, solutions for the
reduced system on shape space converge to the largest invariant sethere

it O 8k

In this set, « = !, i.e.,, the transformed position vector describes circles of unit radius.
The transformed system(3.4) is stabilized asymptotically to a circula motion with unit
radius, whose center is the origin of the transformed reference frame and with xed
angular velocity! .

Applying the circular control law from [118] expressed in the transformed frame-
work, the system(3.4) converges toG. Now the following step is to come back to the
original framework to express the control inputs of the original system; ux with re-
spect to the transformed control input. According to the change of coordinateg3.3),

di erentiating the de nition of f, gives

ry= Gf+ Gy = GG A + Gy



3.3. Elastic formation control 87

This equation provides both expressions of the control inputs. Expressing previous equa-
tion in terms of its components, gives:
VkCoS = e (Gty + Gfy)
& (G + Gfy)
Therefore, the control inputvy is thus straightforwardly given by(3.9a). A more par-

ticular attention is addressed to. Using previous equations the following equality
holds:

Vi Sin g

tan y = & (Gh + Gf) (3.11)
eI(Gﬁk + G-f\k)
Di erentiating and according with the change of coordinates, then, fronu, = , the
control input uy proposed in(3.9b) is retrieved. In order to satisfy the relation(3.11)
for all t, the initial conditions of the inner variable , must be imposed as a function of
the initial values of . Therefore, since equation(3.11) is satis ed, following relation

holds:

T 4G r)(0
«(0) = arctan %%( ) )
e (G fk)(o)
where =0 if ] 2(G 'r()(0) > 0Oand =1 otherwise.

Note that, this control law, as in the previous translation and scaling previous cases,
has singular points whervy = 0, such that:

Vi = GG lrg+14G(cos ;sin ;0 =0
This singular point occurs if there exists a timé, such that:

G '(t)G(te)G *(trk(te) =il
\ G Mtd)G(te)G (to)ri(ted) = k(te)

where\ represents the argument of a vector. The equatidB.8) is a su cient condition
to avoid the singular points.

Remark 3.1 Equation (3.8) is a condition imposed to the transformation matrixG to
restrict the variation of its time-varying parameters with respect to the angular velocity

o- In the time-invariant case, such that matrixG is not time-varying, this condition
becomeg! ¢j 6 0. In each particular case, condition(3.8) can be expressed in a simple
manner, and correspond to an initialization protocol or a physical limitation.

For instance, to avoidvi = 0 in the case of a time-varying translationG = T ),

the velocity of the moving center cannot be equal to the linear velocity of the agents in
the circle, as it has been shown in Chapter 2. The conditid.8) becomeRj! oj & kck
whereR is the radius of the circle andc the velocity of its center.
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Theorem 3.1 presents a general control law expressed in thewnframework, to
stabilize a group of agents to an elastic formation. The maik G is a given reference
for all the agents. Note that each agent converges to the fortian independently of
the rest of the eet.

3.3.4 Tracking strategy

The control law from Theorem 3.1 stabilize the vehicles to aalastic motion de ned
by the transformation matrix (3.2). Due to the methodology aplied and the change
of coordinates de ned by (3.3) the inner variable y must be initialized as a function
of the initial conditions of the heading angle . In consequence, the control law is not
robust to uncertainties in (0).

Based on previous translation and scaling control desigron Chapter 2, we use the
same methodology in order to stabilize a eet of agents moael by (3.1) to an elastic
motion with time-varying parameters. Following a trackingprocess, the transformed
system de ned by the change of coordinates (3.3) is considdras a reference to the
original system (3.1). The dynamics of the reference systesatisfy (3.4) and the closed-
loop dynamics are imposed by the control law (3.6). In this siation, the following
theorem presents another contribution of this chapter.

Theorem 3.2 (Extension of Brifon-Arranz et al. 2011 [21]) Let G be a twice dif-
ferentiable matrix function with bounded derivatives resulting of a sequence of a ne
transformations as dened in (3.2) and F = G C, be the desired elastic motion.
let!' o 60, > 0, > 0 be three control parameters and the following condition is
satis ed:

V>0 8k=1;:::;N (3.12)

Then, for all initial conditions r(0); (0), the control law:

0GR A+ 1y GG 're+ GG 'rc+2GR+ Gfy)

Vg = Vgt (3.13a)
Vi

0rgRTGR A+ I;RT GG 're+ GG 're+2Gf+ Gfy)
U =

v (3.13b)
wherefy, = (2¢; %, 1)" and 0, are de ned by (3.4) and (3.6) respectively, makes all the
agents de ned by(3.1) converge to the elastic motion de ned b¥ . The direction of
rotation is determined by the sign of .

Proof 3.2 The proof of this theorem follows the same steps that in both cases of trans-
lation and scaling control laws. First, thanks to the previous Lyapunov functié@&(f; ),
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the stability of the transformed system with the control la8.6) is proved. The Lya-
punov function is positive de nite and from(3.7), is also nonincreasing along the so-
lutions. Considering the change of coordinate@.3), the dynamic closed-loop equation
corresponding to the transformed system is time-invariant to the transformed reference
frame, hence LaSalle Principle can be applied. Therefore, solutions for the reduced
system on shape space converge to the largest invariant sevhere

frite 0 8k

In this set, 0y = = !, i.e., the transformed position vector describes circles of unit
radius. The transformed system(3.4) is stabilized asymptotically to a circular motion
with unit radius, whose center is the origin of the transformed reference frame and with
xed angular velocity! o. Applying the circular control law from [118] expressed in the
transformed framework, the systen{3.4) converges t0G.

The objective now is to make converge the original system to the reference system
(transformed system). The original system is related to the transformed system through
the matrix G, i.e.:

rg! Gfg+ Gy

In order to achieve this objective the tracking error is de ned as follows:
e =rx (Gfv+ Gf)

In order to make the error converge to zero, such thaf ! 0, we wish to impose the

error dynamics gg = ex, where > 0. Therefore, the error converge exponentially

to zero. Thanks to previous de nition of the error the following equation holds when
t!l

The dynamics of the error equation determines the control law for the original
system(3.1) since:

ek = Fg Gf"k 2GRy Gr‘k

(L Gf GR) = Zrn+uR e OOR A Gfy 2G#
k

(rx  Gfc Gfy) +UGR A + Gy +2Gf

Vér_k + uR _ry
Vi 2
Multiplying by the above equation by; and byr_IRT7 both following expressions hold:

ViV = Vit g (GRc+ GR)+H A GR B+ 1y G+ 21, Gy
Ui =  IgRI(GRc+ GR) + Uy RIGR fx+ LRI G+ 2rf R Gy
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By de nition, this control law enforces exponential convergence of the tracking error
dynamics away from the singularity, = 0. If condition (3.12) is satis ed then, the
control inputs of (3.13) are respectively obtained.

Note that Theorem 3.2 presents a dynamic control law in which the control inputs
are (V; Ux)-

This result does not depend on the initial conditions of theaference system. There-
fore, for any initial conditions of the original and referene system, ,(0) and (0) re-
spectively, each vehicl& converges to an elastic motion de ned by the transformation
matrix G (t) applied to the unit circle.

Theorem 3.2 presents a general control law expressed in th&amework based on
a ne transformations, to stabilize a group of agents to an &lstic motion. The matrix
G is a given reference for all the agents. Note that each agenieerges to the motion
independently of the rest of the eet. The following subseain presents a collaborative
control to distribute the agents along a formation de ned byG.

3.3.5 Uniform distribution along elastic formations

This part is dedicated to the problem of homogenizing the disbution of the agents
along elastic formations. The control law from Theorem 3.2 akes the eet of agents
converge to the same desired motion. Each agent convergedeipendently to the
same elastic motion, however the phase arrangement of therfoaes is arbitrary. The
objective now is to stabilize the agents to an elastimrmation in a cooperative way.

It is important to mention that, in the unit circle G, the agents are uniformly
distributed when the angular di erence between adjacent vecles is 2=N . The dis-
tribution of the agents along an elastic formationF depends on the transformation
matrix G applied to G,.

Following the same cooperative control design presented Ghapter 2, a potential
function U( ) is included to reach this objective. Communication consaints are
represented by means of the Lapalcian matrix of the assoaatcommunication graphG.
Recalling the matrix notation for the Laplacian matrix preented in previous Chapter 2
such that, L = L 1, where is the classical Kronecker product, and the matrix
Bm = (cosm q;sinm ;::;cosm y;sinm )T contains all the transformed heading
angles.

Corollary 3.1 (Extension of Briron-Arranz et al. 2011 [21]) Let G be a twice di er-
entiable matrix with bounded derivatives resulting of a sequence of a ne transforma-
tions dened in (3.2) and F = G C; be the desired elastic formation. Let, 6 0,
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> 0, > 0, and K > 0 be four control parameters and the conditior{3.12) be satis-
ed. Let G be the communication graph andl be its corresponding Laplacian matrix.
Then the previous control law(3.13) with the closed-loop dynamics of the reference
system imposed by:
0=!o 1; f_i‘kff\k & (3.14)
u( )= K" " LBliB,
where bN=2c is the largest integer less than or equal tN=2, makes all the agents
de ned by (3.1) converge to the formationF. The direction of rotation is determined
by the sign of! ;. Moreover, the splay pattern is an extremum point of the potential
U( ). If the communication graph is complete (all-to-all communication) the splay
pattern is exponentially stable and the uniform distribution of the angleg alongG is
achieved. Therefore the agents are distributed in the formatidn, taking into account

the transformation G.

Proof 3.3 The proof is similar that in the previous Corollary 2.1. The stability is an-
alyzed by the composed Lyapunov functidof(f; )= S (f; )+ U( ) whose derivative
is expressed as:

V(5 )= S(f; )+ U()
Based on the previous works [86, 150], the potential functi&( ) is invariant to rigid
rotations. Therefore, using (3.14), the derivative of the Lyapunov function satis es:
X @Uu 2

(P ) = | ofpfy  ——
R

0

If the communication graph is complete the splay state is the only critical point of
U( ) global exponentially stable. Therefore, thanks to LaSalle Principle, the system
converges asymptotically to the elastic formation and the agents are distributed along
F taking into account the transformation matrixG.

Remark 3.2 This result can be extended for the case of limited communication pre-
serving the same formulation and considering the connectivity properties for the Lapla-
cian matrix which correspond to several communication graphs [12, 111, 150].

The cooperative control law (3.14) is an extension of the preus formation control
law to get elastic formations. The splay pattern (uniform dstribution) is an extremum
of the potential function U( ) which is added to the transformed control variableu:
The previous analysis provided in Chapter 2 in the case of litad communication rage
can also be considered here. In this situation, a communigat area is introduced.
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This means that each agent can only receive information frontsi close neighbors.
However, the geometrical condition imposed to the criticalaanmunication radius in
order to guarantee the connectivity of the graph, introduag in Chapter 2, cannot be
expressed with a simple equation for a general transformami matrix G.

3.3.6 Particular cases and simulations

The elastic formation control law from Corollary 3.1 allow&xpressing a general control
algorithm in a compact form in order to reach several kinds dbrmations. Afterwards,
some particular examples of sequences of a ne transformatis are presented in order
to clarify the previous Corollary 3.1. Firstly, it will be shovn how the previous circular
control laws can be obtained using this new formulation bad®n a ne transformations.
Then, another class of elastic formations are considered.

Fixed circular formation. The simplest case analyzed is when the transformation
matrix is equal to the identity matrix G = |3. In this case, the change of coordinates
de ned by (3.3) is equivalent tofx = ry. Hence, the tracking objective can be expressed
as follows:
e! & 0 re ! ToR ry
where the matrixR 2 R® 3 de ned previously represents a rotation matrix through an
angle 5 but erasing the homogeneous coordinate. It corresponds taciacular motion
centered at the origin of coordinates and with unit radius.
The general control law from Theorem 3.2 becomes:
L KR Bt i
Vk
Ol B+ [r R
Vi

Vi Vi

Uk =

This control law makes all the agents de ned by (3.1) conveggto the unit circle G
which is centered at the origin of the reference frame and \wiunit radius.

In order to stabilize a eet of vehicles to a circular formaton with a desired radius
R > 0 and centered atc = (c;c,)", the general transformationG is a sequence of a
time-invariant translation and a time-invariant uniform scaling, i.e., sy = sy, = R, such
that G = T .Sg. The change of coordinates de ned by (3.3) is thus equivaleto
r, ch

R
wherech = (c'; 1) is the position vector of the center in homogeneous coordira.
Therefore, the tracking objective can be written such as:

f\k = S%T k=

r, ch
re! R My ! R!oRf R
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This expression corresponds to a circular motion centeretl @ and with radius R. In
this situation, the general control law is expressed as in @vious particular case.

Previous works already cited [86, 149, 150] deal with the doml problem of a xed
circular formation. As shown in Theorem 2.1, their approachsicooperative, such that
the center of the nal circular formation is not a given paraneter for the controller but
the result of a consensus algorithm. The nal radius is equab 15! oj. The control
law presented previously for a xed circular formation stalhze the agents to a xed
circular formation with desired and given center and radiusThis is the rst step to
achieve the time-varying circular control.

Translation of a circular motion. The transformation matrix representing a trans-
lation of a circular formation corresponds logically to a the-varying translation matrix,

such that G(t) = Ty wherec(t) 2 R? is the time-varying trajectory reference of the
center of the circle. The relation between the transformed stem and the original
system de ned by (3.3) becomes

=T ¢yl =re c(t)
In this case, the tracking objective is expressed by:
! fe+c ! ToR (re c"+ch

This expression represents the combined motion of a rotati@nd a translation, i.e., a
circular motion with time-varying center.
The elastic formation control law (3.13) becomes:
L DER B+ (et (B+ Q)
Vi
OkIif+ IERT(€+ (B + ©)
V2
k

Vk = Vg (3.16a)

U =

(3.16h)

wherec", c" and €" are the references of the center and its rst and second deatives
expressed in homogeneous coordinates respectively.

This is equivalent to the translation control law from Theoem 2.4 using the ho-
mogeneous coordinates. Note that, in this case, the agent® atabilized to a circular
motion with unit radius.

Scaling of a circular motion. The second contribution dealing with time-varying
circular formations presented in Chapter 2 is representedyta time-varying uniform
scaling matrix, G(t) = Sg(), in which s, = s, = R(t) where R(t) is the desired
reference of the radius. The change of coordinates de ned (8.3) is equivalent to

‘Pk:Sﬁrk:—(t)
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Therefore, the tracking objective can be written such as:

R
re! R+ RE My ! ﬁrk+!0Rrk

This expression corresponds to a circular motion centerettae origin of the reference
frame and the scaling term allows the circle to track the tim&arying radius R.

The following control law obtained from (3.13) is equivalerto the scaling control
law from Theorem 2.6 using the homogeneous coordinates:

, ORICR B+ B 2rnc+ 2R+ R)ch

Vi

OcRrg i+ MR+ 2R+ R)IZRI A
U =

Vik = Vi

2
Vi

whereR, R-and R are the reference of the radius and its rst and second deritiges
respectively.

This result is equivalent to the scaling control law from Therem 2.6. Note that,
in this case, the agents converge to a circular formation dened at the origin of the
inertial frame.

Combined Motion of a circular motion. The new formulation presented in this
chapter makes possible the combination of several trangfoations to de ne a complex
time-varying motion in a more elegant manner. This is the casof the combined
motion problem in which a circular formation with time-varying radius tracks a time-
varying center. Consider the transformatiorG (t) = T ) Sg(;y Where the center of the
desired formationc(t) : R! R? and its radiusR(t) : R! R* are twice di erentiable
functions with bounded rst and second time-derivatives. Aplying Corollary 3.1, the
agents converge to a circular formation which follows thertie-varying parameters of
the transformation G (t). In this situation, the change of coordinates de ned by ()

can be expressed by

_ _re c'(v)
e = SR%)T ct)ylk = W

Therefore, the tracking objective is equivalent to:

R
! R+ Ric+c" ! o (r c") + 1R e+ ¢

This expression represents the combined motion of a rotatipa translation and a
scaling term,i.e., a circular motion with time-varying radius tracking a time-varying
center.
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The following combined motion control law is obtained from3.13):

ORIR B+ BoRrlr + @R+ R)8+ e+ ©
Vk

OcRrg i+ BB fRInc+ 2R+ R)GRIK+ R (e+ ¢)
Uk =

Vg = Vit

2
Vi

This control law make converge the eet of vehicles to the saacircular motion with
time-varying radius R(t) and tracking the time-varying centerc(t).

Figure 3.5: Simulation of ve agents governed by the control laB.13) with G(t) =
T¢nSr)- The circular formation, whose center tracks a time-varying reference,
changes its radius in order to avoid the obstacles (black blocks).

Figure 3.5 shows the simulation of ve agents governed by theowtrol law from
Corollary 3.1 whereG(t) = T 1) Sgr(). The control law parameters ard o= = =1
and K =0:1. The time-varying reference of the radius is

2
=5+ R
R(t) =5+ 2cos 500t
and the reference tracked by the center corresponds to
1 2 4
c(t) =( f)t’ 35|n300t)

The agents converge to the time-varying circular formatiorfor any random initial
conditions (position and heading of the agent) representad the gure by the blue
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void agents. This is an example of one possible applicatiof the combined motion
control law and a rst step to achieve the nal objective of designing a collaborative
control to generate both references in a distributed way.

Moreover, the communication radius considered here is= 10 which satis es the
geometrical condition

> ZRmaX Sinﬁ

where Ry IS the up-bound of the reference of the radius, in this cas®y.x = 7.
Therefore the agents are distributed along the time-varym circular formation.

Elliptic formation. The general elastic formation control law is pertinent alsdo
stabilize the eet to non-circular formations as an ellipseln this situation, the trans-
formation is a non-uniform time-invariant scaling

0 1
aoo

G=S=®0 b 0¥

0 01

wheres, = a 6 s, = b. In this situation, the change of coordinates de ned by (3)3
can be expressed by

0 1
1=a 0 0

=Sz 0 1=b 0Xr,
0 0 1

Applying this transformation matrix to the control law from T heorem 3.2, following
algorithm makes the agents converge to an ellipse centeregtl@e origin which major
axis is equal toa and the minor axis is equal tob:

Ocry SR_f + 1) Shy
Vk

Ocry SP + TfRT Sk
U =

Vk= Vit

2
Vi

Figure 3.6 shows a simulation of ve agents with the controltedesigned in Corol-
lary 3.1 and all-to-all communication assumption. The combl law parameters are
lo= = =1and K =0:1. The agents are stabilized to the elliptic formation
de ned by the non-uniform scalings, =5, s, = 1. Moreover the agents are distributed
along the formation considering the transformation of the@ay pattern which is stable
in the unit circle (transformed system).
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Figure 3.6: Simulation of ve agents stabilized in an elliptic formation. The red line
represents the trajectory of the agents at the nal state (elliptic formation). The gure
shows two snapshots. The blue agents represent the initial conditions. The reds ones
represent the nal state att = 400s.

3.3.7 Distributed algorithm applied to elastic formation con-
trol

The rst contribution of this chapter is the elastic motion control law presented in
Theorem 3.2. This control law makes a group of agents convertp the curve de ned
by the transformation matrix G. This matrix function is a given reference known to
all the agents. Therefore, each agent converge independgrib the curve. There is
not cooperation between agents. However, the notion of forti@n here makes sense
because all the agents converge to the same con guration. Mover, the improved
control law from Corollary 3.1 provides a collaborative sation to distribute the agents
uniformly along the formation.

Nevertheless, the nal objective of this thesis is to solve thsource-seeking prob-
lem taking into account the underwater communication prol@ms. In this context,
the agents must be able to collaborate in order to decide theajectory of the for-
mation center. Therefore, the idea now is to implement a coemtive algorithm to
make the eet of vehicles converge to the same elastic format considering that the
transformation matrix G is unknown.

Consensus with a reference velocity. A rst approach is to consider that each
agent only knows the rst and second derivatives of the matxiwhich de nes the elastic
formation. Then, the consensus protocol is designed to réabe same reference matrix
G for all the agents.

For simplicity, the particular case of a time-varying circlar formation is analyzed



98 Chapter3. Formation control design based on a ne transforrations

in the sequel. The given reference is thus, the desired vetpmf the center. The

objective is for the agents to reach the same circular fornmian, it means, to reach a
consensus on the center of the circle. Consensus problemthva reference velocity
are already studied in [127, 128, 173] for double-integratdynamics. In the context
of a moving circle, the velocity of the center is a given refence denoted by 2 R?

known to all the vehicles. Besides, the acceleration repessed by a®" 2 R? is also
known to all the vehicles. Nevertheless, the center trajeatpis not de ned. This is

coherent with a source-seeking situation in which the graeht of the scalar eld of
interest is the desired velocity of the formation center. Tis information could be a
given reference for the agents, but the center of the circuléormation is not a known

parameter. In this situation, each agent computes:

its own estimated position of the center of the circular for@tion represented by
pck 2 R2

its own estimated velocity of the center denoted by 2 R?

its own estimated acceleration of the center represented hy, 2 R?

control
inputs agents' position
>
AUVs VELOCITY
REFERENCE
- Vref
C
CONSENSUS a!
I Pck Vek Ack
< ALGORITHM  je—

Figure 3.7: Control strategy: consensus with a reference velocity

In order to keep the formation, the position of the center callated for all the
vehicles must be the same. Summarizing, the proposed cohtstrategy, which is
explained schematically in Figure 3.7, is composed by thelfwing steps:

1. Each agent computes its own estimated position of the cemtand its derivatives.
2. A distributed algorithm is implemented to reach consensuon the position of the

formation center using the external references of the desir velocity of the center
and its acceleration.
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3. The inputs of the translation control law for each agent & obtained from the
consensus algorithm.

In order to ful | the previous items, a new dynamic variable b estimate the center
of the formation is introduced. This variable representinghe center of the circle
computed by each agent, satis es the following dynamics:

Do = Vek (3.20a)
Vek = ck (3.20b)

The dynamics of the estimated centep, correspond to a double-integrator model
which was studied in the survey on multi-agent systems fromHapter 1. This choice
comes from the fact that in the translation control approactpresented here, the refer-
ence of the center and its rst and second derivatives are rasd to compute the control
law (3.16). Therefore, to be consistent with (3.16), the ddale-integrator dynamics are
the most appropriate.

As explained before, the main idea is to implement a consensalgorithm on the
estimated position of the formation center in order to staliize the eet of agents to
the same desired formation. Consensus is reached for (3.2@r all p,(0) and v(0),
then pg () ! pg(t) and ve(t) ! vIef (1) asymptotically ast ! 1

Based on [128, 131], the following consensus algorithm withgeoup reference ve-
locity can be applied here:

X
Ack = a::ef (Vck V(r:ef) (pck pcj) (321)
J2N g
where is a positive gain andNy represents the neighborhood of agett according
to the communication graph. The author of [128] shows that iB consensus algorithm
converges when the directed communication graph has a spamntree. This is a
generalization of the results presented in [127] for direset graphs. In this chapter, the
communication between the vehicles is considered undiredt such that the Laplacian
matrix of the communication graph is always symmetric. Theffere all its eigenvalues
are real and nonnegative, see Appendix A. In consequence, theule on consensus
algorithms with a group reference velocity from [128] can krewritten for undirected
graphs as follows:

Theorem 3.3 (Ren 2008 [128]) Consider the consensus algorith(8.21), if the undi-
rected communication graph between the agents is connected ard O then p,(t) !
pg (1) and v (t) ! v (t) asymptotically ast ! 1 for all k;j.

Proof 3.4 The details of the proof can be found in [128] for the general case of a
directed graph. The principal properties of convergence of this algorithm can be also
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analyzed by a Lyapunov function. Rewriting the consensus algorithm with a group
reference velocity in a vectorial form, previous equatio(.21) becomes:

ref

ac=1 al (ve 1 V) Lp, (3.22)

error equation:
ref

=p. 1 pc
By de nition, the vector of ones1 is always a right eigenvector of the Laplacian

matrix L corresponding to the eigenvalu@ Using this property of the Laplacian matrix,
the previous compact form of the consensus algorithf®.22) can be rewritten as:

ac 1 a® = (v 1 Vv&) Lp. 1 p*

C Cc

According to this equation, the dynamics of the error are expressed using the new vari-
able , and thus the following equation holds:

.= L (3.23)

which corresponds to a simple double-integrator consensus algorithm. Choosing the
following Lyapunov function
1 1
V()==T +Z2TL 0
() 2—— 2
At the equilibrium whenV ( ) =0, the dynamics of the equation error satisfy:

T_+ TL 0

If the communication graph is connected the vector of ondsis the only eigenvector
of L associated to the zero eigenvalue. Therefore, the zero minimum of the Lyapunov
function is reached when:

=0 and = ol

where o is a constant value.
Di erentiating and taking into account equation (3.23), then

\L():'T_"'_TL = T TL_+_TL

The communication graph is undirected, hence the Laplacian matrix is symmetric.
Therefore, the derivative of the Lyapunov function is given by:

V()= T = kK 0
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In conclusion, for all (0) and _(0), then (t)! ;(t) and (t)! Oasymptotically
ast!1 . Therefore, for all py(0) and vek(0), pe(t) ! pg(t) and ve(t) ! Ve (t)
asymptotically ast ! 1

This previous consensus algorithm allows the agents to réaan agreement on the
trajectory of the center of the circular formation from a gien velocity reference known
to all the agents. The center trajectory and its rst and secod derivatives computed
for each agent are the inputs of the translation control law qgsented in Chapter 2.
The transformed system is now de ned by

M =Tk Pa 8k=1;:5N

where the dynamics of the transformed systerfy satisfy (3.4) and the closed-loop
dynamics are imposed by the control law (3.6). Therefore, it previous control law

developed to move the center of a circular formation followmy a given reference be-
comes:

N okr_IRfﬁk + I;I(ack + (B + V)
Vi
T TpT
0kr_kﬁk + ry Rg(ack + (ﬁk + Vck))

>
Vi

Vk = Vg (3.24a)

Uy = (3.24b)

where the position of agenk is represented byr, = (X«;Y¥«)" 2 R?, and the position
of the center computed for agenk and its velocity and acceleration arg,, V¢ and
ack respectively, obtained from the consensus algorithm.

To formalize this new collaborative approach the followingorollary holds.

Corollary 3.2 Let v'® and a™ be the velocity and acceleration references of the de-
sired center formation. Let! (60, > 0, > Oand > 0 be four control parameters
such that the following condition is satis ed:

Then the control law (3.24) makes each agent de ned b{3.1) converge to a circular
motion with unit radius and time-varying centerp... Thanks to the consensus algorithm
(3.21) applied to the center dynamicg3.20), if the undirected communication graph is
connected then all the centers reach a consensus asymptotically and their velocities
follow the reference velocitw™’ . The direction of rotation is determined by the sign

of ! .
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Proof 3.5 As it is shown in Figure 3.7, the whole system consists of two uncoupled
systems. The rst one is composed of the dynamics of the multi-agent systé3) and

whose center is de ned by.. The translation control law uses the rst and second
derivatives of the reference of the center. Thanks to Theorem 2.3 from Chapter 2,
the control law (3.24) makes each agent converge to a circular motion with center the
time-varying referencep.

In the other hand, the second system represents a consensus algorithm which is
implemented to reach an agreement on the center of the formation for all the agents.
Thanks to Theorem 3.3, the collaborative algorithn3.21) makes system(3.20) reach
consensus asymptotically. Therefore, asymptotically, all the computed centers satisfy
P = P = Co 8k;j. Consequently, all the vehicles describes a circular motion
following the time-varying centerc.

Remark 3.3 Note that this result can be applied to other time-varying elastic for-
mations, such as circular formation with time-varying radius or an elliptic formation
tracking a time-varying reference of its center. In these cases, the consensus algorithm
will be applied to the time-varying parameters of the general transformation matix
which de nes the elastic formation.

Simulation Results. The consensus algorithm (3.21) is implemented to generate
the reference of the center circular formation in order to gy the translation control
law (3.24). The group reference velocity is given by

v =(0:2;,0:24 cos O&)"

and the initial conditions of the position of the center are derent for each agent.

Figure 3.8 shows a simulation of ve agents governed by the tnalation control law
(3.24) with the consensus algorithm (3.21) to provide the ference of the center of the
circular formation. The control parameters areR =2, '¢= = =1and =0:1.
The communication graph is a ring, therefore is connected. h€& gure shows three
snapshots, the initial conditions, and two states fot = 45s andt = 116s. The red
circles represent the circular motion corresponding to da@agent at each instant. The
black lines represent the trajectories of each estimatednter. This simulation shows
that the center of each agent achieve consensus, then the ecoam center tracks the
given reference velocity and the circular formation is kept

Figure 3.9 displays the evolution of the trajectories of ceetsp, computed by each
agentk for the same simulation of ve agents. Starting from any inial condition, the
collaborative algorithm (3.21) makes the agents reach carsus on the center position.
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Figure 3.8: Simulation of ve agents governed by the control la{8.24) where the center
computed by each agent results from the consensus algorit8121). The black lines
represent the centers' trajectories.

(a) X-coordinate of the centers' positions (b) Y-coordinate of the centers' positions

Figure 3.9: Evolution of the centers' positionspy, = (Pexk; Peyk) ' cOrresponding to the
previous simulation of ve agents shown in Figure 3.8.

In Figure 3.10, the evolution of the centers' velocitiesx computed by each agent
k, is compared to the reference velocity™' represented by the black dashed line. For
any initial conditions, all the centers' velocities convege asymptotically to the external
reference.

Consensus with reference velocity corrupted by noise. Previous collabora-
tive algorithm can be improved by considering that each agemeceives the external
reference velocity corrupted by noise. This assumption isare realistic in underwa-
ter scenarios, in which, the signals transmitted through war are exposed to some
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(a) X-coordinate of the centers' velocities (b) Y-coordinate of the centers' velocities

Figure 3.10: Evolution of the centers' velocitiesvex = (Vexk; Veyk)' corresponding to
the previous simulation of ve agents shown in Figure 3.8 and the reference velocity
viet = (yref ;vgf,f T (black dashed line).

perturbations such as currents and fading.

It is assumed that the external reference received for eaclgemt is then s(t) =
v{ff + w1, wherew; 2 R? is a vector whose components are Gaussian zero-mean noise.
Based on previous corollary, an extension of the consensughwa group reference
velocity is proposed.

Proposition 3.1 Let v'®" and a™®" be the references of velocity and acceleration of
the desired formation center, both corrupted by bounded zero-mean noise represented
by w; and w, respectively. Let!g 6 0, > 0, > 0and > 0 be four control
parameters. Then the control law(3.24) makes each agent de ned b8.4) converge to

a circular motion with unit radius and time-varying centerp,. Thanks to the consensus

algorithm:
g X

ack = ay’ + W (Vo Ve wy) (Pek  Pg) (3.25)
j2N
all the centers reach a consensus asymptotically and their velocities follow the reference
velocity v'® . The direction of rotation is determined by the sign of .

Intuitively, if the noise is bounded then, the previous algithm reaches consensus in
a closed ball centered at the consensus nal value. Howevelngtmathematical details
of the proof of this proposition have to be analyzed formally

Simulation Results. The reference of the center formation used in the translatio
control law (3.24) is generated from consensus algorithm.25). The group reference
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velocity is the same that in previous case, and the initial cwlitions of the position of
the center are di erent for each agent.

Figure 3.11: Simulation of ve agents governed by the control laWB8.24) where the
center computed by each agent results from the consensus algori{l8225). The black
lines represent the centers' trajectories.

Figure 3.11 shows a simulation of ve agents governed by theamslation control
law (3.24) with the consensus algorithm (3.25) to provide #reference of the center
of the circular formation. The control parameters areR =2, 'y = = =1 and

= 0:1. The communication graph is a ring, therefore is connectedhe gure shows
three snapshots, the initial conditions, and two states for = 45s andt = 116s. The
red circles represent the circular motion corresponding teach agent in each instant.
The black lines represent the trajectories of each estimateenter.

(a) X-coordinate of the centers' position (b) Y-coordinate of the centers' positions

Figure 3.12: Evolution of the centers' positiong, = ( Pexk; Peyk) " corresponding to the
previous simulation of ve agents shown in Figure 3.11.
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(a) X-coordinate of the centers' velocities (b) Y-coordinate of the centers' velocities

Figure 3.13: Evolution of the centers' velocitiesvex = (Vexk; Veyk)' corresponding to
the previous simulation of ve agents shown in Figure 3.11 and the reference velocity

veeh = (v ;v )T corrupted by noise.

Figure 3.12 displays the evolution of the trajectories of ce&rs p, computed by
each agenk for the same simulation of ve agents. Starting from any inial condition,
the collaborative algorithm (3.21) makes the agents to reaacconsensus on the center
position.

In Figure 3.13, the evolution of the centers' velocities, computed by each agent
k, is compared to the reference velocity’®' represented by the dashed black line. For
any initial conditions, all the centers' velocities convege asymptotically to the external
reference corrupted by noise.

3.4 Motion-tracking based on a ne transformations

The previous section presents a rst result on formation carol based on a ne trans-

formations. This approach provides a general framework wepowerful in order to

express a richer class of curves including time-varying foations. According to this
new framework, amotion-tracking control design which use the a ne transformations
to de ne a desired reference velocity is presented in thiscd®n. The general con-
trol law proposed enables to track a reference velocity and bbtain several motions
expressed with few time-varying parameters.

3.4.1 De nition of motion-tracking

Consider the standard vehicle model commonly used in thediature to model AUVs
restricted kinematics presented before (3.1). It correspds to a kinematic unicycle
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tting with model properties subject to a simple non-holonanic constraint. All the
vectors are expressed in homogeneous coordinates, ther ( Xi; Yi; 1)" is the position
vector of the agentk expressed in homogeneous coordinateg,the heading angle and
Vk; « are the control inputs. Note thatv 2 RN and 2 RN represent the vector of all
velocities and the vector of all heading angles respectiyel

The objective is for the agents to follow di erent referencevelocities and to con-
verge to di erent formations in a cooperative way. The ideasi now to use the general
transformation matrix G de ned by (3.2) to characterize a class of motion. The de-
sired trajectory of the motion is the result of applying the tansformation matrix to a
constant vector. Therefore, the idea is to relate some coast vector to a time-varying
vector which point to the trajectory of the motion desired fo the vehicles. This aim
can be expressed as:

re = Gro

whererg is a constant vector. The di erentiation of previous equatn leads to:
re= Gro= GG !ry (3.26)

This equation represents the objective in terms of velocityTherefore, we consider a
dynamic control in the velocity in order to deal with this cortrol problem. In previous
section a de nition of elastic formation based on a ne trangormations is provided.
Now, motion-tracking is de ned as a common motion of a group of agents so that all
the agents follow the same kind of motion (circular, rectiiear, periodical) in terms of
velocity. It is important to recall that this de nition does not imply trajectory tracking
because each agent describes a di erent trajectory. Thisrthe considered as aelocity
tracking due to the fact that the group of agents follows the same refarce velocity.

3.4.2 Motion-tracking control design

The purpose is now to design a general and compact control lawstabilize a eet of
vehicles to several formation motions using the a ne trangfrmations.
With a view to analyze the stability of the system, the followng Lyapunov function
IS proposed:
1 X 2
S(r;v; )= > re GG 'ry 0 (3.27)
k=1
Note that when S(r;v; ) = 0 the dynamics of the system satisfyr, = GG *r, which
is the objective de ned in (3.26). Evaluating the derivativeof S(r;v; ) along the

solutions of system (3.1) leads to:

X T
S(riv; ) = f« GG ry GG ry GG 'y, 1, GG Ir,
k=1
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In this case, a transformed system which dynamics have beeari@ced to have constant
velocity is not considered. Unlike the previous cases of tirvarying circular formations
and elastic formations, the Lyapunov function depends on éposition and velocity
vector of the AUVs. Therefore, di erentiating this Lyapunov function, the rst deriva-
tive of the velocity v, appears explicitly. Due to the expression of the second detive
of the position vectorry, such that

\Y/
fi = Vér_u 4R 1y (3.28)
k

where R is the rotation matrix through an angle 5 but erasing the homogeneous
coordinate, the two control inputs becomeuy, = v and ux = 4. In consequence, a
dynamic velocity control law is proposed in the following thorem:

Theorem 3.4 (Briron-Arranz et al. 2011 [18]) Let G be a twice di erentiable matrix
with bounded derivatives resulting from a sequence of a ne transformations de ned in
(3.2). Let > 0 be a control parameter and the condition, 6 O is satis ed. Then the
control law:
1 1
U = Vit Zr]GG '+ =i GG '+ GG '+ GG ! ry (3.29)
k k
1 1
Uz = SUJRTGG '+ ZiRT GG '+ GG '+ GG ! ry(3.29)
k k
makes all the agents de ned by3.1) converge to the motion de ned by the transfor-
mation G applied to the constant vector .

Proof 3.6 The Lyapunov function de ned by(3.27) is positive semide nite. Evaluat-
ing the derivative of the Lyapunov function along the solution of the resulted closed-loop
system(3.1) and using the equation3.28), S(r;v; ) can be rewritten as:

. X Uik 1 1 1
S(r;v; ) = V—er<+ uxR ry GG 'ry GG ry GG “ry
k=1

r« GG Iry

Considering the previous control law(3.29) the derivative of the Lyapunov function
becomes:

S(riv; ) = GG ' = 2S(vi) O
k=1
Therefore S(r;v; ) is nonincreasing along the solutions. The solutions thus converge
to the largest invariant set, , for which S = 0. Then, system(3.1) asymptotically
reaches the conditions corresponding to the following dynamics of the vehicles:

re = GG Iry
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which describe a formation motion de ned by the transformation matris .

Remark 3.4 The control law presented in the previous theorem has a singular points
whenvy = 0. A mathematical condition to avoid this situation in all cases cannot
straightforward be obtained. Nevertheless, the simulation results for some particular
cases presented in the following subsections, show that, if the initial velocities are posi-
tive for all the agents, and the time-varying formation motion represented & varies
slowly, the singular point is avoided.

This previous theorem presents a general result to stab#izhe agents to a mo-
tion whose characteristics (shape, speed) are de ned by tineatrix G. The following
subsections present particular types of motions to show trepplicability of this new
framework.

3.4.3 Particular cases and simulations

Velocity tracking. First of all, the simplest case when the transformation is the
identity matrix, that is G = I3, is studied. The objective becomes, = 0. Thus, the
control inputs become:

Uik = V k (330)
s = O (3.31)

It is clear that in such situation, the objective only concears the velocity and no
constraint appears on the nal position of the agents. Thesaal positions depend on
the initial conditions of the agents. This fact is importantto understand the following
cases.

The trajectory tracking problem can be expressed as a tramsiation, speci cally

a translation by the reference vectores = ( Xref ; Yref ). Thus, the objective is:

0 1
1 O Xref

k= TreTo= % 0 1 Ve X 0;0; 1)T = rPef
00 1

whererl., is the reference position vector in homogeneous coordirgté his objective

expressed in the new formulation presented before leads hwit
— 1 — ¢h
Mg = T_rref Trref Nk = Dret

Therefore, the system will be able to follow a reference velty. According to Theo-
rem 3.4, and considerings = T, . then, the control law dealing with this problem is

ref
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written as:

1
Uy = vk+gglo&f+ (o) (3.32a)

1
Uae = SR T(Fer + L) (3.32b)
k

Note that, the agents follow the reference velocity and not #hexact reference trajec-
tory. This is not a trajectory tracking or path following problem. The formulation of
the problem allows the agents to track the same velocity. Inhis thesis, this result
is de ned as a velocity tracking, as shown in Figure 3.14. Notéat parallel motion
problem analyzed in [149] loads to a straight line referencklere, the control law (3.32)
allows considering more general class of planar motions. Meweless, our approach is
not cooperative and each vehicle converge to the desired mootindependently.

Figure 3.14: Simulation of ve agents governed by3.32). The blue lines represent
the trajectories of the agents following a reference velocity given by the red dashed line
ret = (1; Zsin%). The gure shows two shapshots. The blue agents represent the
initial conditions. The red ones represent the nal state at = 20s.

Circular trajectory. A circular trajectory centered at the origin of the referene
frame and with unit radius is described using the followinggrametrization in time:
x(t) = cos(! ot)
y(t) = sin(!ot)

where! o 6 0 is the angular velocity of the rotation. In this case, the tansformation
matrix G becomes a time-varying rotation by anglé ot, that is, G = R, ;. Conse-
guently, the objective can be expressed as:

— 1 -
re = Ry gtRy 5irk = T oR Tk
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Adapting this objective to Theorem 3.4 the following controlaw is obtained:
Uy = Vot !V—Er_IR M (3.33a)
s = Lo+ -2re (3.33h)
Vi
Once more, this formulation ensures that the agents converdgo a circular motion.
This leads to the same problem analyzed in [118]. However, nonditions on its
radius is stated for now. As in the previous case, the initialonditions will in uence
the nal radius. Note that the radius of the nal circle of eachagent satis esRy =
Vi1 =!o, Wherevg; = limy; Vv denotes the nal velocity of agentk = 1;:::;N.
According to equation (3.33), this nal valuevy; is related to the initial conditions of
the agent. Therefore, the radius of the nal circular motionof each agent depends of
its initial conditions and thus, all vehicle converge to cicular trajectories with di erent
radius. Applying di erent sequences of transformations thegents can track a time-
varying circular trajectories with a moving center and not onstant radius. In order to
achieve the same circle, and for more complex cases, for amste the same formation,
a cooperative control is introduced later.

Not circular formations. A particular case of the contraction or scaling of a circular
motion can be considered when the radius depends on the agpaosition. In this way,
many curves can be expressed by scaling a circle. For exam@lenon-uniform time-
invariant scaling, as previously presented in the de nitin of a ne transformations,

corresponds to 0 1
a 0o

S=Bo0 b ok
0 01
wherea and b are some positive constant parameters which can de ne the ya and
minor axes of an ellipse respectively. In general, a scalingatrix depending on the
position of the agent can be expressed as

0 1
Re 0 0

Sc=® 0 R, 0
0 0 1

where the uniform scaling parameteRy is a function leading to:

Re = R( «)
%
tan ( = Xe

The transformation matrices dealing with these problems ailG = SR, ; and Gy =
SkR t respectively. The following analysis focuses on this sedoformulation with a



112 Chapter3. Formation control design based on a ne transforrations

Figure 3.15: Simulation of ve agents governed by the control 1a¥B.34) and the refer-
ence of the radiusRx = cos6 ¢ +5. The red line represents the trajectory of one agent
and the blue ones represent the nal curves achieves for each agent. The gure shows
two snapshots. The blue agents represent the initial conditions. The red ones represent
the nal state t = 50s.

transformation matrix depending on the position of the agenGy. LetR: R! R* be
a twice di erentiable function with bounded rst and secondderivatives, as in (3.34)
and denoteRy = R( ) the value of the function at positionr of agentk. The previous
control law (3.29) becomes:

! R«Re+ R¢Rx RE

— 0T T
u = Vi+ —vie+ —r, R r+ r,r 3.34a
1k k Rk k Vk_k k VkRﬁ lglk ( )
'o 1 RcRe+ RR« RE ;
u = 1o+ =r)re+ r,r 3.34b
2k 0 VIE_k k VkR& ek ( )

Note that once more, the nal trajectory of each agent is relad to its nal velocity
which depends on the initial conditions. Therefore, each agt converge to a di erent
curve but with the same shape and velocity of rotation, as shm in Figure 3.15.

In the sequel, a cooperative method which ensures that theajectories of each
agent converge to the same curve is presented. In this siti@t, the agents reach a
consensus on some variable in order to achieve the same fdroma

3.4.4 Cooperative control design

The general formulation presented in Theorem 3.4 allows us gjovern a group of agents
to follow a reference velocity or to converge to a time-vanyg motion de ned by the
matrix G. Note that each agent converges to a di erent trajectory dep®ling on the
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initial conditions but with the same shape. The aim now is to evelop a cooperative
control to make the agents converge to the same formation.

This subsection presents collaborative control laws to ofin consensus on velocities
and on the heading angles to reach the same formation and thaif@rm distribution
of the agents along the formation respectively.

Consensus on velocities for circular formation. In a circular motion, there
exists a relation between the linear velocity and the radiusf the circle. Due to the
relation v = R! 3, whose implications are extensively analyzed in Chapter #, the
linear velocity of all the agents converge to the same valwg then, all the vehicles turn
around the same circular trajectory with radiusR = vp=!,. The conclusion is that,
to reach the same circular formation, the agents need to rdathe same nal velocity.
Consequently, a consensus algorithm is adding to the preuscontrol law.

The following composed Lyapunov function is proposed to alyae the system:
V(rvi )= 1S(r;v; )+ 2Q(v) (3.35)

where ;> 0, , > 0 are two control parametersS(r;v; ) is the previous Lyapunov
function de ned in (3.27) which is used in the analysis of théormation motion control
design and the quadratic formQ(v) is expressed by the following equation:

Q(v) = :—2LVT Lv

where L represents the Laplacian matrix of the communication graphAccording to
the properties of the Laplacian matrix (see Appendix A)L is positive semide nite
because the communication graph considered is undirecteHence, Q(v) is nonneg-
ative. Moreover, if the communication graph is connected tine the only eigenvector
associated to the eigenvalue 0 is the vector of ong2 RN. Therefore, the quadratic
form reaches its minimum only wherv = vyl where vy is a constant value, that is,
when all agents have the same linear velocity.

In the sequel, a cooperative control law which stabilizes aulti-agent system to
circular formation is proposed. The idea is to introduce andaitional control term to
the previous control law (3.33) which assures a consensustbe velocities of all the
agents.

Theorem 3.5 (Briron-Arranz etal. 2011 [18]) Let ! 60, ;> Oand , > 0 be three
control parameters and the conditionv, 6 O is satis ed. Let G be the communication
graph andL be the corresponding Laplacian matrix, where, represents itsk™ row.
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Then the control law:
|
U = W+ 1'V—°rjR e oLV (3.36a)
k
|
Ux = !o+ 1%V_Irk (3.36b)
Vk
makes all the agents de ned by3.1) converge to a circular motion centered at the
origin and the direction of the rotation de ned by the sign of . Moreover, if the com-
munication graphG is connected, all the agents converge to the same circular formation
whose radius is obtained through a consensus algorithm on the agents' velocities.

Proof 3.7 Consider the Lyapunov function(3.35). Its derivative is expressed as fol-
lows:
M(rsvs )= aS(riv; )+ 2Q(V)
Evaluating the derivative oV (r;v; ) along the solutions of systeni3.1) and using
the equation(3.28) leads to:

X
V(riv;) = 1 (Fc ToR M) (rk 'oR r)+ ov'Lv

k=1

X o

= Uk 1V 1—I R rg+ olgv
Vi

k=1
X T

+ 1 (Yo un)loryrk
k=1

Considering the control law(3.36) the previous equation leads to:

X o ? o
\(r;v; ) = k1 —T R re  olyv 1 (—rir)? 0
Vi Vi
k=1 k=1
Therefore, V(r;v; ) is a suitable Lyapunov function for this system. If the com-
munication graph G is connected, the equilibrium point of the quadratic fornQ(v) is
asymptotically stable, thus all the agents converge to the same circular formation.

Previous works already cited [86, 149, 150] deal with the cilar formation problem.
The agents have unit velocity and converge to a circle of radiR = 1=!,. In the control
laws presented in Chapter 2 to stabilize the agents to timeawing circular motions,
the radius is a parameter of the control law or a desired timearying reference. In the
approach presented in Theorem 3.5, the consensus algoritipnovides the nal radius
of the circular formation. Therefore, the nal radius of thecircular formation depends
on the initial velocities of the agents.
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Remark 3.5 Based on [111] and [150], if the graph is uniformly connected (see Ap-
pendix A), the collaborative control law from Theorem 3.5 makes the agents converge
to the same circular formation considering time-varying and switched communication
graphs.

Uniform distribution along a circular formation. The methodology developed
to accomplish the general control law presented in Theorem43does not make use
of a transformed system. Hence, the potential function alreg de ned in previous
sections and applied to distribute the vehicles along a foation depends now on the
real heading angle of the vehicles,. We recall the matrix notation for the Laplacian
matrix such that, L = L |, where is the classical Kronecker product, and the
matrix B, = (cosm q;sinm 4;:::;cosm y;sinm y)T contains all the heading angles
of the agents.

The following corollary adds a potential function to the cotrol input uy whose
minimum corresponds to the uniform distribution of the agets along the circular
formation.

Corollary 3.3 (Briton-Arranz et al. 2011 [18]) Let 1o 60, ;> 0, ,> 0, and
K > 0 be four control parameters. LetG be the communication graph and. be the
corresponding Laplacian matrix. Then the control law:

|

Uik = 1V + 1V—0I’_IR Ik oLV (3378_)

k

! @u
Uz = o+ 1V—§rjrk o (3.37b)
and
K X* 1

()= — ——B LB 3.38
() N omzom m (3.38)

wherebN=2c is the largest integer less than or equal t¢=2, makes all the agents de ned
by (3.1) converge to a circular formation centered at the origin and the direction of the
rotation de ned by the sign of! ,. Moreover, if the communication graphG is almost
do-circular, the radius of the circle is obtained through a consensus algorithm on the
agents' velocities and the uniform distribution of the agents along the circle is achieved.

Proof 3.8 The stability is analyzed by the composed Lyapunov function
Vi(r;v; )= V(r;v; )+ U()
whose derivative is expressed as

Va(r;v; )= \M(r;v; )+ r U()
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Based on previous works of [149, 150], the potential functi®i ) is invariant to rigid
rotations. Therefore, using (3.37) the derivative of the Lyapunov function satis es
V4(r;v; ) 0 and the uniform distribution of the agents along the circular formation
is locally exponentially stable. The details of the proof are similar than in previous
Theorem 2.1 from Chapter 2.

Simulation results. This paragraph presents the simulation results in order tadhe®w
the performance of previous collaborative control laws. Ehcontrol law (3.37) is applied
to the multi-agent system (3.4) with! =1, ;=0:1, ,=0:1andK =0:1. The
communication graph is a ring, therefore is connected.

Figure 3.16: Simulation of ve agents governed by the control 1a{B8.37). The red line
represents the trajectory of one agent. The same circular formation (blue line) with
uniform distribution is reached.t = 50s.

Figure 3.16 displays a simulation of ve agents governed by .&). The gure
shows two snapshots. The blue agents represent the initiarditions and the red ones
represent the nal state. The agents converge to the same cidar motion with angular
velocity ! 5. The radius of this circular formation is provided by the cosensus term of
the control law which enforce agreement on the linear veldgifor all the agents.

Figure 3.17 shows the evolution of the linear velocitieg of the agents from previous
simulation. The consensus is reached asymptotically, trefore the agents are stabilized
to the same circular formation. The radius of the formationg related to the consensus
value for the velocitiesvg, such that R = vg=!y.
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Figure 3.17: Evolution of the agents' velocities corresponding to the simulation of Fig-
ure 3.16

3.5 Conclusions

This chapter deals with the generalization of the previousesults in circular formation
control argued in Chapter 2. The main contribution consist$n introducing the a ne
transformations in order to de ne a larger class of formatius called elastic formations.
This new formulation allows expressing previous resultsoim Chapter 2 in a compact
way and many class of con gurations which can be non-circuland time-varying can
be obtained.

An elastic motion is de ned by a transformation matrix known © all the agents. It
Is considered as a given reference and its rst and second idatives are not in uenced
by delays, noise or any other constraints. Nevertheless, serxtensions are developed
taking into account communication limitations between theagents. The rst one,
tackle the problem of distributing the agents uniformly alag the elastic formation
in a collaborative way. A second distributed algorithm baskon consensus protocols
stabilizes the eet of agents to a formation whose time-vamg center is unknown but
its velocity and acceleration are given references. Thistige following step to achieve
the source-seeking problem.

The new formulation based on a ne transformations present in this chapter is
also exploited to elaborate a motion-tracking control law. This algorithm makes a
group of agents converge to a time-varying con guration inerms of velocity. It means
that all the vehicles follow the same kind of motion (same sha, same speed), de ned
by a transformation matrix, but not the same trajectory. This control law is improved
with cooperative algorithms to make the agents converge tti¢ same formation.
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Chapter 4
Collaborative source-seeking

Previous Chapters 2 and 3 deal with the rst objective addresed in this thesis: the
formation control design of a eet of autonomous underwatevehicles (AUVs). The

contributions presented stabilize the vehicles to time-vging formations which change
their shape and are able to follow a given reference of the rwation center. The

main contribution of this chapter is the design of control sategies in order to generate
cooperatively the appropriate direction to move the centefiormation in order to achieve
a source-seeking. The objective is to develop a novel decahited algorithm which

makes the agents agree on a common direction.

control SENSOR signal
inputs agents' position measurement:
AUVs >
NETWORK
FORMATION center COLLABORATIVE
CONTROL reference
DU— SOURCE-SEEKING

e approximation of gradient direction
« distributed estimation algorithm

« collaborative source-seeking

Figure 4.1: Contributions of Chapter 4

In particular, the problem of source-seeking using a mulgent system is addressed
here. In order to locate the source of a scalar eld, the AUVs arquipped with sensors

119
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which measure the eld of interest such as, temperature, s$aity, pollutant ow. In this
situation, the eet of vehicles can be seen as a mobile sensetwork. The stabilization
of the agents uniformly distributed along a circular formabn is pertinent to tackle
the source-seeking problem. According to previous results formation control, this
chapter focuses on obtaining the adequate reference of thenter to steer the eet of
agents to the location of an underwater source, as explaingdFigure 4.1.

A rst contribution shows that collecting the sensor data fom vehicles, which
are uniformly distributed along a xed circular formation, allows us to approximate
the gradient of the signal distribution. Then, a distributed algorithm based on this
result is proposed to estimate the gradient direction takig into account communication
constraints. This approach combines the previous results dormation control exposed
in Chapter 2 and existing results on consensus Iters apptieto this mobile sensor
network situation. A modi ed algorithm which exploits the periodic properties of
the circular formation is also proposed. Finally, a comparis of the two distributed
algorithms is discussed and motivated by simulations.

4.1 Problem statement

This chapter deals with collaborative source-seeking algihms in order to drive a
formation of AUVSs to the location of an underwater source. Thenpblem is tackled in
a 2-dimensional space, hence the con guration considereda planar formation. As in
previous chapters, it is assumed that the agents have no piga extension,i.e., their
positions are single points.

The following assumptions are considered in the sequel toadlevith this new con-
tribution:

The eet composed byN vehicles is stabilized to a circular formation with radius
R and centered atc. The vehicles are uniformly distributed along the circular
formation.

ment. It is assumed that the sensor has not dynamics.

The communication topology of the eet of vehicles is represted by an undi-
rected graphG.

Communication constraints such as noise, packet loss andng delays are not
considered.

This chapter takes into consideration several assumptiorebout the scalar eld
measured. The signal distribution representing the scalaeld is continuous. This
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Figure 4.2: Signal distribution modeled as a Gaussian function emitted by a single
source.

signal is emitted by a single source such that the source isettonly maximum or
minimum of the scalar eld. The signal distribution is assured to decay away from
the position of the source. There are not local extremum thusghe signal distribution
decreases or increases from the source, as shown in Figure 4.2

Under these assumptions, this chapter presents distributestrategies to estimate
the gradient direction of a signal distribution by a circula formation of agents. This
direction can be used to steer the eet to the maximum or mininam of the signal.

4.2 Survey on source-seeking

The source localization of a signal distribution is a probia considered in recent litera-
ture. There are di erent approaches to deal with this topicput the common objective
IS to calculate the position of a source using measurementslee signal propagation. In
mathematical terms, the signal distribution is a spacial faction representing the scalar
eld with a maximum or minimum in the position where the soure is located. The
source could be a radio transmitter and the signal would be adio frequency transmis-
sion, for instance. Alternatively, the source could be a pdiof chemical contamination
and the signal would be that chemical's concentration in thenvironment.
Source-seeking algorithms are designed to steer a vehiaglearoup of vehicles to
the physical location of the source (or at least to the vicinyt thereof). It means that
some techniques to estimate the location of the source such taiangulation are not
considered here. Several di erent approaches have beengweed in current literature.
Some results dealing with odor source localization, based ®wvarms intelligence [38, 67,
175], present distributed algorithms which use measurentsrof the source plume and of
the wind or ow that creates this plume. In an underwater cont&t, usually, the vehicles
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are only equipped with sensors which are able to take concextton measurements of
the quantity of interest (salinity, pollutant or methane cancentrations, for instance).
The aim is thus, to drive the vehicles to the source avoidinghé estimation of the real
plume and eluding the computation of the function represeimg the scalar eld.

Several source-seeking algorithms are based on gradieesckent methods. A com-
parison between gradient search and evolutionary algoritis is presented in [141].
These strategies are usually developed and applied in theldeof Computer Sciences.
In [34], a gradient method which converges in nite-time is éveloped. In this work
the bases of the gradient search are presented. Consider alacfunctionf : RY! R,
whered 2 N and the following gradient system:

x=r1 f(x)

The minimum of function f is a stable equilibrium for this system and if the level
sets of the function are bounded then, the trajectories coekge asymptotically to

the set of critical points of f. Note that, changing the sign of the algorithm the
gradient-descent method makes the system converge to theximaum of the function.

In conclusion, the computation of the gradient of the signgropagation allows steering
a vehicle to the source location (if there only exists a miniam or a maximum of

the signal distribution). If it is available, the gradient o the signal strength can be
used to produce a gradient-decent algorithm for a vehicle group of vehicles [4], but
this information may not be available in reality. One altermtive is to use spatially
distributed measurements of the signal strength to appraxiate its gradient. In the

literature there are two di erent strategies to collect disributed measurements. The
st one uses a single vehicle which changes its position owéne in order to measure
the signal propagation in di erent positions. The other opion considers a group of
vehicles collaborating to collect the measurements. A proped classi cation of the
di erent approaches to deal with the source-seeking probteis presented in the sequel.

One single vehicle

In this approach, one single vehicle (mobile sensor) meassira scalar eld distribution

during its motion. Spatially distributed measurements of he signal propagation are
collected to estimate its gradient and steer the vehicle tche maximum or minimum

of the scalar eld. There exist di erent methodologies to d@#mate the gradient of a

signal propagation. The following results tackle the soueeseeking problem with a
single vehicle.

a) Gradient-descent method
A rst result concerning the location of a source with a sing vehicle is presented



4.2. Survey on source-seeking 123

in [23]. In this work, an AUV obtains di erent measurements ofa hydrothermal

plume by a circle maneuvre. This technique allows estimatnthe two dimen-

sional gradient and thanks to a least squares solution of thaverall slop the

vehicle is driven towards the source. A least square gradiesstimation com-

bined with a gradient-descent method is also used in [4] toesr a single vehicle
to the maximum or minimum of a scalar eld. A reactive controllaw for unicycle

vehicles for ascending/descending along a potential eld ipresented in [6]. In
this approach the control is related to the geometry of the gential eld.

In [166], the gradient of the signal distribution is estimagd in discrete time by a
nonlinear optimization algorithm. In [123], an algorithm b achieve the location
of a vapor-emitting source with a single mobile sensor is ddgped computing
the gradients of the Cranmer-Rao bound on the location errowith respect to the
sensor's coordinates.

b) Extremum seeking
The extremum seeking problem is an important contribution o the eld of adap-
tive control [156]. This method is a non-model-based optization which can be
simply de ned as tracking a maximum or minimum of a function.The rst sta-
bility proof of the extremum seeking algorithm appears in [§. This technique
has been adopted to many di erent applications [3].

The extremum seeking method applied to the source-seekingplem consist in
adding an excitatory input to the vehicle's steering contr using a special Ilter
on the signal strength measurement to approximate its gradig and using this
information to drive the vehicle towards the source. This gmoach has been
analyzed under di erent assumptions [28, 29, 30, 176]. Inq@, 101], an hybrid
controller is implemented to improve the extremum seekinggeformances accord-
ing to the source localization task. In these works, an optiation method with
successive line minimizations and heading changes, basedconjugate vectors,
is developed. For a certain class of signal strength disttibons, the resulting
system is shown to be practically stable under perturbatian An extension to
3-dimensions is accomplished in [31]. Finally, a novel stagtic approach based
on the clasical extremum seeking algorithm is introduced if93] and [154].

Another interesting approach proposed in [99], presents arategy belonging to
the class of sliding mode control laws, but in this case, théngle vehicle does not
need to compute the gradient of the signal distribution to rach its source.

All these works consider a single vehicle collecting the measments. The main
disadvantage of these approaches is that in order to colleat sient information, the
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vehicle may have to travel over large distances. In this siation the vehicle's conver-
gence to the source location may be delayed.

Multi-agent systems

A group of moving vehicles allows gathering su cient infornation about the signal to

carry out the source-seeking problem. Spatially distribetd vehicles collecting mea-
surements are considered in order to avoid sinusoidal exatibn of a vehicle used in the
extremum seeking method or the long distances traveled by sgle mobile sensor, for
instance. In the sequel, the principal results in sourceadng with multi-agent systems
are detailed.

a) Gradient climbing

A rst approach developed in [105], considers that each vefe is able to mea-
sure the full gradient at its current position. The authors pesent an algorithm
including a gradient-descent term and inter-vehicle forog terms for a group of
vehicles modeled with simple integrator dynamics. Anothertrategy consists in
approximating the gradient value of the signal using concémtion measurements
of multiple vehicles at di erent locations [64]. In this wok, a group of gilders
equipped with sensors estimates the model parameters of $malar eld via col-
lected measurements. A least square approximation is apgdi in order to steer
the group of agents to the source location. In [55], a real ajpgation of previous
approach is presented. A gradient-descent method is apmlién [4] considering
that each vehicle of the eet is driven by an estimate of the kal environmental
gradient together with control forces that maintain unifomity in group geometry.

b) Extremum seeking

Based on previous results in extremum seeking for one vehicthe authors of
[13] are able to drive a formation of agents to the maximum or immum of a
scalar eld. This approach considers one leader which imphents the extremum
seeking algorithm and the rest of agents follows the leadeedping a particular
formation. Therefore, this is not a collaborative sourceegking algorithm, and
the source localization is carried out only by the leader. If61], the extremum
seeking method is improved to make a group of agents accoraplithe source-
seeking task in 1-dimension in a collaborative way.

c) Stochastic approach

In [140], a group of chemical sensors placed at di erent la@ans, measures plume
concentration values to estimate the source of that plume. he source localiza-
tion is achieved using a stochastic approximation technigu This approach can
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be considered as a distributed estimation method as in [124yhich employs
the sensor measurements to estimate the model parameterdhad concentration
plume.

A collaborative control law to steer a eet of AUVs to the sourceof a signal dis-
tribution using only direct signal measurements by a circal formation of agents is
presented in [104]. This work will be analyzed in detail in th previous section.

4.3 Preliminaries

The aim is here to locate the source of some signal distribati using a eet of AUVS.
In this situation, the vehicles are equipped with sensors wit are able to measure the
concentration of the quantity of interest. The eet of agens becomes a mobile wireless
sensors network. The contribution of this chapter focusesia@esigning a collaborative
algorithm to chose an appropriate direction in order to steea formation of AUVs to
the source localisation. The control strategy proposed imis thesis is composed of two
levels:

1. Estimation of the gradient direction of the signal distifbution of the source.

2. Generation of a reference trajectory for the formation oger based on the esti-
mated gradient direction.

This chapter copes only with the rst step: to provide an algdthm which estimates the
gradient direction of a signal distribution by a formation @ agents. In future research,
this direction will be used to drive the formation center to he maximum or minimum
of the scalar eld.

Considering the source as a target, it seems interesting teaia circular formation to
cope with the source-seeking problem. When the formation i@athe source position,
the vehicles will turn around this source. This strategy is wstable in the context
of underwater source localization because, even if the soairis xed, the AUVs are
always moving. This is convenient considering that the agenmust to avoid zero
speed. The same constraints appear in an aerial scenario inigh a eet of Unmanned
Aerial Vehicles (UAVs) accomplishes a target tracking missiorfor instance. Some
results in target localization and circumnavigation (it mans that the vehicles describes
circular trajectories around the target) have been recentldeveloped using bearing
measurements [44]. This result are built on the idea that elacagent can measure
the bearing angle between its position and the target. The sme-seeking problem
considered in this thesis regards the previous approachestire eld in which the
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source of a signal propagation is locate by the signal measorents. Therefore, the
techniques using bearing measurements are not applicabbethis context.

In Chapter 2, a control law which asymptotically stabilizesa group of vehicles
modeled with unicycle kinematics, such as

Xk = VkCOS
Yk = W sin Kk
+« = Uk

wherery, = (Xk;Yk)', to a circular formation around a dynamic center pointc(t) =
(¢ ¢,)" with a uniform distribution ( i.e., with the agents evenly separated on the circle
by 2 =N radians each) is presented. This translation control lawdm Corollary 2.1 is
given by:

, OR A+ (64 (B + Q)
Vi

Oklf+ [IRT(e+ (B + Q)

Vi

Vk = Vg (4.1a)

Uy = (4.1b)

where the closed-loop dynamics of the reference moégk (2¢;%)" de ned by

2« = Rjlgjcos
ﬁ( = R]' oj sin K
+« =

are imposed by

Ok = !o(1 3 b.gfk) o

Ui )=% 5°3>BnlBn
where the Laplacian matrix of the communication graph conderedisL = L 1,, by =
(cosm ;sinm )" represents the vector which contains the transformed oritation
angle,B, = (hL;:::;0 )", and! (60, > 0, > O are three control parameters.

This control law makes a eet of agents modeled with unicyclkinematics, converge
to a circular motion of radiusR, and whose center tracks the time-varying reference
c(t). The direction of rotation is determined by the sign of . Moreover, forK > 0, if
the graph isdo-circulant, the set of curve-phase arrangements that are lz&aced modulo
2 =N is locally exponentially stable.

In this situation, the center of the formationc(t) is an external reference known to
all the agents. This result is a rst step to deal with the souce-seeking problem. To
move the formation towards the location of the source, the géctive now is to compute
the trajectory of the formation center in a collaborative wg taking into account the
measurements of the signal distribution emitting by the sage.
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Figure 4.3: lllustration of the source-seeking problem

Thanks to previous control law (4.1), the vehicles are stabied to a circular for-
mation described by a center pointc, a radius R and an angle which is linearly
increasing with time (.e. = !t for some angular speetl; > 0). In the sequel, the
position of each agenk in the formation is given by the following equation:

Xk =¢c+ Rcos + kzﬁ (4.2a)
. 2
Yk =C¢ + Rsin  + kﬁ (4.2b)

This equation describes a formation where the agents are forimly distributed along
a circle of radiusR. In the context of source-seeking problem, the objective tisat the
center of the formationc(t) follows a trajectory which converges to the maximum of a
signal, that is usually its source.

4.3.1 Approximation of the gradient by a xed circular for-
mation

The rst idea is to design an algorithm to estimate the gradiet direction of the signal
distribution based on the concentration measurements obiteed by a circular formation
of agents. Communication constraints between the vehiclese taken into account.
This estimated direction will be the reference velocity offte formation center in order
to steer the group of agents to the source position as repratal in Figure 4.3.
Consider a eet of N vehicles uniformly distributed along a circular formation
The position of each agentk is described by equation (4.2). In this rst step of
the control strategy previously detailed to deal with the sorce-seeking problem, the
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circular formation is not moving. Only the estimation of graient direction is addressed
here.

Assumption 4.1 The center of the circular formationc is xed and known to all the
agents.

The distribution of the signal strength in the environment wll be described by an
unknown positive spatial mapping : R>! R*, and so agentk measures the signal
strength at its position as (r¢). Let us consider a mobile sensor network, in which the
position of the sensok is given by (4.2), taking measurements of a signal distribign

. Letr (c)=(r x (c);ry (c)) denote the gradient of function at the center of
the circular formation c. The following lemma is proposed:

Lemma 4.1 (Briron-Arranz et al. 2011 [20]) Let be a bounded function and (r)
the measure obtained by agekt wherer is its position vector given by(4.2). Con-
sidering a eet of N > 2 agents, if Assumption 4.1 is satis ed and the agents are
uniformly distributed along the circle centered at, then:

1 X 2

N0 9= 51 © R 43)

whereo(R?) is a vector such thatko(R?)k is negligible with respect tdR?.

Proof 4.1 To prove this result it is necessary to de ne the following equation:

D“k:( 1 M=1 2); if z61

z 4.4
N if z=1 (4.4)

k=0

wherez 2 C and N 2 R*. This equation is satis ed according to some properties of
telescoping series [22].

According to the linear approximation of function ata xed location c the following
equation holds:

(re)  (©)=r1 (e)(rc c)+ ofR) (4.5)

This expression is equivalent to the rst two terms in the multi-variable Taylor series
expansion of at c.
Multiplying the previous equation(4.5) by the relative vector(r, ~ ¢) and summing

1 X

X
N () @) =5 @ ©Uk €)(r ¢+ o(R?)
= k

k=1 =1
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The rst sum is equivalent to:

1 X 1 X 1 X
N ) ( (re) (Ce)(rk c¢)= N ) (r)(re c©) (C)W ) (r« c)
k=1 k=1 k=1

Considering the model de ned in(4.2) for the agents and using equatio(4.4) when
z = €W the following equality is satis ed ifN > 1:

X Xk j2
(r«k ¢)=R en -1 el =0
k=1 k=1 e

Z‘N

[ —

Therefore the previous equation can be rewritten as:

1 X
N (ri)(re c¢)= N (r (©)(re c)(rx c)+ ofR?
k=1 k=1
Analyzing in terms of components and using4.2) to express the position of the
agentsry, the right-hand side of the previous equation is given by:

!
X (r (©)(rx c)(rk c¢)= RZX\I I« (c)cos k+ry (c)cos ksin i

1 ;. Tx (c)sin ycos +r, (c)sin®
where = + k%
Using trigonometric properties each component of the right sum is rewritten:
. 1 .
ry (c)cogd y+r, (c)cos gsin = 1, (c)cos i+ 5Ty (c)sin2  (4.6a)

. . 1 . .
r« (c)sin ycos +r (c)sin® i = 51 x (c)sin2 y+r (c)sin® y (4.6b)

Consequently, there are two sums which need an exhaustively analysis:

w - w -
siP , and sin2
k=1 k=1

Using the trigonometric identity and other trigonometric properties, the rst previ-
ous sum can be expressed as:

o X1 cos2,
sin® = —
k=1 k=1
N 1 X 4 . .4
= 5 §k=1 cos(2)cosa<ﬁ) S|n(2)sm(kW)
_ N cos(2) X 4 sin)X a4
= 3 2 coskp) + sin(k )

k=1 k=1
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In order to determine the result of these new trigonometric sums, a detailed math-
ematical study is provided. According to the properties of the telescoping ser{és4),
choosingz = dv, the following equality is satis ed ifN > 2:

X k 1 dvN 1 ¢4

div = — = =
- 1 év 1 éW

In conclusion, due to the de nition€~ = cos(4-) + i sin(4-), the following trigono-
metric sums are equal to zero, iIN > 2:

X X

cos«%) =0 and sin(k%) =0 4.7)
k=1 k=1

Therefore, the rst sum studied here can be expressed as:

X N
sin? = — (4.8)
2
k=1
In the sequel, the sum of the term corresponding &in 2  is studied:
1 X oA X 4
N sin2 y = N sin 2+kW
k=1 k=1
sin2 X 4 cos2 X 4
= N coskﬁ) + N sm(kW)
k=1 k=1
Thanks to (4.7) (i.e., due to the uniform distribution), if N 2 then:
X
sin(2 x) =0 (4.9)
k=1

Since both equalitieg4.8) and (4.9) are satis ed and by the decomposition of previous
components equationg4.6), nally, the following equation holds:

1 X 2

N @ o 9= G @

Thus, the equality(4.3) presented in Lemma 4.1 is satis ed.

Lemma 4.2 (Briton-Arranz et al. 2011 [20]) Let be a bounded function and (r)
the measure obtained by agektwherer is its position vector given by(4.2). Consid-
ering a limitless number of agents along the circular formatiorN(! 1 ), if Assump-
tion 4.1 is satis ed, then:

122 2

— (r)(re c©)d :R—r ()" + o(R?) (4.10)
2 2
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Proof 4.2 A similar analysis that it is followed in previous lemma, can be applied to
this second case. Integrating along the circle (in the intervd; 2 ]) and multiplying
by the relative positions of the agents, c, the equation(4.5) becomes:

Z 2 Z 2

1
> ) ©)(rc od = (r (©)(rc c)(rk c)d + o(R?)

0 0
In this case, considering(4.2) whenN !'1 | itis easy to see that the following equation
holds: Z, Z,

(re« cd =R € =0
0 0

In consequence the rst expression is now rewritten as:
142
'R (ri)(re c)d = > (r (e)(ri c¢)(rc c)d + oR?
0 0
Hence, one more time the right-hand term of the previous equation have to be analyzed

in detail. Using trigopnometric properties the following integrals are solved:
Z 2 YA 2

sifd =  and cos sind =0 (4.11)
0 0

Thanks to these equalitieg4.11) the following equation holds:
1 Z 2 RZ
> @ N od =1 (© (4.12)
0

and (4.10) is straightforwardly obtained.

Both results provide an approximation of the gradient of thesignal distribution at
the center of the circular formation. A similar result can beobtained for a moving
source (which is equivalent to a time-varying signal propagion function in the space),
such that the signal distribution depends both on position and timej.e. (rg;t).
Consider a eet of agents given by (4.2) taking measurementd a signal distribution

. An extension of the previous Lemma 4.1 is proposed in the setjto cope with this
time-varying signal distribution.

Lemma 4.3 (Briton-Arranz et al. 2011 [19]) Let be a bounded function and(r;t)
the measure obtained at time by agentk, wherery is its position vector given by
(4.2). If Assumption 4.1 is satis ed and the agents are uniformly distributed along
the circular formation centered atc, then for a eet of N > 2 agents, the following
equation is satis ed:

1 X 2

N e 9= G @+ oR) 413)
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Proof 4.3 The proof is similar to the one of Lemma 4.1. According to the linear
approximation of the function at a xed location c the following equation holds:

8t (ret) (ci)=r (cO)(re c)+ oR)

Multiplying this equation by the relative vectorx ¢) and summing ovek =1;:::;N,
it yields:
1 X 1 X ,
8t N ( (rt)  (t)(rk )= N (r (ct)(re c))(rc c)+ o(R%)
k=1 k=1

Considering the model de ned in(4.2) for the agents and using equatioi4.4) when
z=d¥ the following equality is satis ed ifN > 1:
X X« j2
8t (r« ¢ =R di =1 € g
k=1 k=1

Therefore, the previous equation can be rewritten as:

X X
8t; 1 (rt)(re c)= x
N N

k=1 k=1

(r (c;)(rc c)(rc c¢)+ oR?

The rest of the proof follows the same steps that in previous one from Lemma 4.1 taking
into account that function depends now on time. Using trigonometric properties
equation (4.13) is obtained.

The previous three lemmas show that the gradient directionf@ signal distribution
can be approximated via collected measurements obtained by xed circular forma-
tion of vehicles. Following sections will make use of this selt to built collaborative
algorithms to estimate the direction of the gradient in ordeto steer the formation of
agents to the source position.

4.3.2 Centralized approach

A rst result in collaborative source-seeking by a circulaformation of agents is ac-
complished in [104]. The authors consider here a stable cilar formation of N mobile
agents in the plane. The agents are stabilized by the previsuranslation control
law (4.1) presented in Chapter 2. An outer-loop control that teers the formation by
determining c(t) in a collaborative way is provided. In this case the sourcgeeking
is achieved by a time-varying circular formation. That is tosay that the system is
considered as the two dimensional single integrator suchati

c=u (4.14)
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The control signalu will be based on measurements of signal strength taken by the
individual agents. The following control law is proposed:

X
u= (r)(re  ©) (4.15)

k=1
which is a sum of the agents' current normalized displacemnterectors from the center
of the formation, ry ¢, weighted by their individual signal strength measuremest

(rk), and a common possibly time-varying gain factor,> 0. This control law steers

the formation in the direction of an estimate of the gradienbf at the point ¢ based
on the signal strength measurements taken by the agents disuted uniformly about
C.

The stability of system (4.14) under the control law (4.15)9 analized in two cases:
signal distributions with circular level sets and signal ditributions with elliptical level
sets. This result does not takes into account the previous irena 4.1, hence the authors
of [104] only study the convergence of this centralized alggom if the level sets of the
signal distribution are convex. Note that, Lemma 4.1 only ad@sses the case of a xed
formation.

Signal distributions with circular level sets: The rst result presented in [104]
deals with a simple case in which the level sets of the signastibution are circular,
it means that the source plume has a Gaussian pro le.

Theorem 4.1 (Moore and Canudas-de-Wit 2010 [104]) Assume that the signal strength
is a continuously di erentiable mapping and satis es the following property:

ko, pk>kp, pk) (p)< (po) (4.16)

wherep; 2 R? represents an arbitrary point in the 2-D space. The previous inequality
means that the signal strength has a maximum at some pgintand is strictly decreas-
ing as the Euclidean distance frorp increases (and thus has circular level sets). Under
the control input of (4.15) the pointc = p is an asymptotically stable equilibrium of
system(4.14).

Proof 4.4 To analyze the stability of the system the following Lyapunov function is
de ned:

Vie)= (p) (o) (4.17)
which is zero atc = p and positive otherwise. This Lyapunov function has the time

derivative
(c)=Tr1 (c)c (4.18)
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Substituting the control formula(4.15) for ¢ in (4.18) yields

h\ X
V(c)=r1 (c) (r)(re c©)= (ri)r () (rk ©) (4.19)
k=1 k=1

The assumption(4.16) about means that its gradient can be expressed as follows

T = k k _Ei__Jz__
T @' = (e PR
which is to say thatr (c)" points from ¢ towardsp with a magnitude determined by
a function of the distance fromc to p . Because of the assumptions about, this

magnitude function is continuous and satis es
(0)=0 and (d>0 8d>0
Substituting the expression for (c) into \.(c),

(ke pkX

We)= kc pk

(rdc p)'(rc o

k=1

In order to determine a bound on\V(c), de ne a time-varying set of agentdM to be
those agents whose displacement from the formation center, has a positive projection
onto the vectorc p such that:

M =fk:(c p)'(r« c)>0g (4.20)

Now separate the sum in.(c) as follows,

ki k) X
wo = ST o Py o
éEM
ke pk
E«:C—ppk) rd(r p)i(re ¢ (4.21)

k62M

Due to the geometry of the situation (circular level sets of the signal strength map-
ping and a circular formation of the agents) we know that ¢ 6 p then the agents in
M are all closer to the sourcgg than those agents not irM (see Figure 4.4).

Hence any agent fromM has a higher signal measurement than any agent not from
M and there must be some middle value between them both. Mathematically speaking,
it means that:

8k2M ;m62M; 9 >0 suchthat (ry)>> (rm) (4.22)

Applying this inequality to the summation terms in(4.21) then

k2M) l_%rz&”c p){TZ(r c?> (c p)'(re © (4.23)
>0

>
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Figure 4.4: Illustration of vectors used in the proof of Theorem 4.1. Level curves of
are shown in red. In this situation the seM contains only agent2.

and

k 62 M ra(c Tre ¢ C Tre ¢ 4.24
) 19 p){zo(k ) (€ p)(re o (4.24)
Assuming thatM is not empty (which is guaranteed iN  3), the sum in (4.21) can
be bounded from below as

X X X
(r)(c p)T(re c)+ (ri)c p)'(re ¢> (¢ p)  (r« ¢

k2Mm k62M k=1
Due to the uniform distribution of the agents, this previous sum is equal to zero and
since is positive and (kc p ky)=kc p k, is non-negative the conclusion is that
\V(c) < Ofor all c 6 p wheneverM is not empty.

The only situation whereM is empty occurs wheN = 2 and the agents' displace-
ment vectors from the center of the formationr;, c andr, c, are orthogonal to
c p . Inthis instance, due to the symmetry of it must be the case that (r,) = (r»)
and thusu = 0. Since keeps increasing).(c) will immediately become negative again
so these situations do not constitute an invariant set. Thus by LaSalle's principle [75],
the pointc = p is an asymptotically stable equilibrium of the systerf.14) under
control law (4.15).

Figure 4.5 shows the trajectory of the formation center for tlee simulations for
di erent number of agents in the eet, N =2 inblue, N =3inred andN =4 in green.
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Figure 4.5: Trajectories of the formation centerc for di erent numbers of agentsN
when has circular level sets. Location of source is denoted by the Image courtesy
of Brandon J. Moore.

For this simulation from [104], (z) = e 10 "&**¥*) R =200m, and ! , = 0:0lrad=s.
In all cases, the algorithm from Theorem 4.1 steers the centef the circular formation
to the source position.

Signal distributions with elliptical level sets: Following theorem presents a simi-
lar result that previous one but considering elliptical legl sets of the signal propagation.
In simulation, the authors of [104] obtain also successfldsults when the level sets are
a combination of a three ellipsis, but the theoretical anabis is not provided in the
paper.

Theorem 4.2 (Moore and Canudas-de-Wit 2010 [104]) Assume that the signal strength
is a continuously di erentiable mapping and satis es the following property

(P2 P)AMP, P>y P)A(P, P)=)  (PD)< (Py) (4.24)

for some positive de nite matrix A. This is to say that the signal strength has a
maximum at some poinp and has compact elliptical level sets. If the number of agents
N is even, then under the control input of(4.15) the pointc = p is an asymptotically
stable equilibrium of systen(4.14).

The proof is similar than in the case of a signal distributios with circular level sets.
The details of the proof can be found in [104].

The control law (4.15) allows the formation to move such thaits center converges to
the source position, if the signal distribution decreasesaund the source in such a way
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that level sets are circles or ellipses centered on the maxim or minimum of the signal
distribution. The main constraint of this algorithm is the dl-to-all communication
assumption. The control law proposed by the authors is cemtlized, in consequence
communication constraints are not considered. This consiies a rst result to solve
the source-seeking problem by a circular formation of agenin a collaborative way.
Nevertheless, this centralized approach is not realistic @arding to the underwater
communication problems presented in Chapter 1, and the olajive of this thesis is to
extend this result towards a distributed approach.

4.4 Collaborative estimation of gradient direction
by a xed circular formation

The objective of this section focuses on the st step of the ntvol strategy previously
exposed in the problem formulation. The idea is to develop aadgorithm to estimate
the gradient direction of the signal distribution of the souce. As explained before, this
estimation will be achieved by a circular formation of AUVs. Thnks to Lemmas 4.1
and 4.2, the gradient of a signal strength distribution can & approximated by the mea-
surements obtained from a xed circular formation of agentsiniformly distributed. A
rst centralized algorithm based on this result is addresskein [104]. Nevertheless, in
order to consider communication constraints between the agts, a distributed algo-
rithm is developed in this section to estimate the directiorof the gradient by a xed
circular formation.

In this situation, each agent calculates its own estimationf the gradient direction
computing its own measurement of the signal distribution ashthe measurements of its
neighbors. Consequently, each agent computes a di erentaglient direction. With a
view to obtain the same estimated direction for all the agest a consensus algorithm is
included. This algorithm allows the agents to converge to thsame estimated gradient
direction, taking into account the communication topologyof the system.

4.4.1 Fixed source

The simplest case, when the circular formation is xed and # source is also xed is
analyzed here. The presence of currents is not considered.x&d source implies that
the signal distribution is time-invariant. The idea is to develop a distributed algorithm
to estimate the gradient direction of the signal distributon at the center ¢ of a
circular formation of agents.

Communication constraints are taken into account by a comnmication graph G.
Due to these communication restrictions each agent estinest its own gradient direction
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z, using the information of its neighbors according to the comnmication topology. The
objective is to make all estimated directiong, converge to the mean direction de ned
as:

1 X

u = —
Nk=

U, U= k(re ©) (4.25)
1
whereuy is the relative position vector of agenk weighted by its concentration mea-
surement = (ryx). Thanks to Lemma 4.1, this mean vectou approximates the
gradient direction of the signal distribution at the centerof the formation c. A consen-
sus algorithm is implemented to reach an agreement on the iesated gradient direction
of the signal distribution for all the agents.

Distributed algorithm design

This paragraph presents some notations used in the sequeletlG = (V;E) be an
undirected graph with adjacency matrixA = [a;] that speci es the communication
topology of the multi-agent system. If agentk;j are connected thena; = 1 and
ag = 0 otherwise. LetNy = fj 2 V : ay 6 0g be the set of neighbors of agerk and
Jk = Ng[f kg. The Laplacian matrix L of graphGisdenedasL = A Wh%re is

the diagonal matrix which contains the degree of each agene., = dg = =
More details of graph theory can be found in Appendix A. In the spiel, denotes the
Kronecker product and, for simplicity, the following notaton is denedM,=M I,
whereM is a square matrix andly is the identity matrix of order N.

The xed formation of agents taking concentration measuresnts can be considered
as a sensor network. The mission of this sensor network is tstimate the gradient
direction of the signal propagation measured in a collabdree way. Based on consensus
Iters for sensor networks presented in [112], the followgnconsensus algorithm for the
multi-agents system is proposed:

X X

Z = (zp z)+ (U Z)

j 2N g j2Jd
where > 0 is a control parameter which is introduced to make the algthm more
exible. The consensus variable is the vector, 2 R? which represents the estimated
gradient direction by agentk. The input u, = (rx ¢) 2 R? depends on the
concentration measurements and the position of the agent the formation. The main
di erence to the consensus Iter from [112] is that the inputof the algorithm is not a
given signal known to all the agents corrupted by noise, but @ erent vector for each
agent.

Using the Laplacian matrix of the communication topology oftie multi-agent sys-
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tem the previous equation can be rewritten in a matrix way:

z = L l,z+ Iy I(u 20+ A Py
= (In+ +  L)z+(In+ A)u (4.26)
wherez = (z];z};:::;28)" andu = (ul;ul;:::;ul)T are vectors of dimension g,

and |y the identity matrix of order N. Let A =(Iy+ + L)y, andB =(Iy + A),.
Note that by de nition, A is a positive de nite matrix. Then, the previous equation
becomes:

z= A z+Bu (4.27)

The objective of the consensus algorithm is to make all thetesated directions z,
converge to the mean directiou . Consider the vector of dimension g

corresponding to the eigenvalue 0. Therefore, the error egjionis =z u;. Using
equation (4.27), the dynamics of the error can be written as:

Az+Bu u;+(In+ + L)u;, (Un+) 2uy

A +BUu u) u (4.28)

The stability of this algorithm is analyzed using the Lyapuv function given by:
1+
V()= 5 A (4.29)

which is a nonnegative function because the matriA is positive de nite. At the
equilibrium, when V ( ) = 0 the following equation is satis ed:

TA 0

Therefore, the minimum of the Lyapunov function corresporgito = 0. This is
equivalent to the expressiorz = u,, which represents the initial objective.
Di erentiating the previous Lyapunov function (4.29):

V()= TATA +(u u))"BTA u,"A

According to the previous matrix de nitions and the mixed-pioduct property of the
Kronecker product, it yields:

c

JA =17 u (vt v L)=1T(In+ v L) Ul
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Using the properties of the Laplacian matrix the previous eqiion becomes:

It is assumed that the distribution of the signal strength in he environment considered
here varies softly, it means that the derivative of the sigigropagation is bounded. Let
ku, k , due to the soft variation of the concentration levels of theignal distribution.

Therefore, the following inequality holds:
v

ﬁ)(\' p__
klilTA k k U_k (1+ dk)2 N(1+ dmax)

k=1

Hence, previous derivative of the Lyapunov function (4.30)an be bounded by:
V() ain (A )k K2+ IDm(1+ Omax)K k+ k(u uy)"TBTA k

It is plausible to assume that a bound on maximal signal conagation is known
from the problem setting. Thereforek(u u,)k where depends on the radius of
the circular formation and on the greatest concentration nasurement obtained by the
agents. For simplicity, let be a bound of the following matrix norm BTA
Taking these considerations into account the following e@tion holds:

k(u uy))"BTA k
The derivative of the Lyapunov function is bounded by:
V() Za(A)kK+ CN@+dmw)+ kK

Based on the proof of Proposition 2 from [112] a closed b&l centered at =0 is

de ned with radius p_
N(1+ dmax) +

%ﬂn (A )
Let ,=f :V() mgbe a level set of the Lyapunov functiovV( ) with m =
z max(A ) 2 Then, B is contained in , because

1

k k =) V():%TA émax(A)Z:m;

and thus 2 . As a result, any solution of (4.28) starting in the selR™Nn

satises \L( ) < 0. Thus, it enters |, in some nite time and remains in , there-

after. This guarantees global asymptotic -stability of = 0 with a radius =
max (A )= min (A ). To show this, note that

1 1
E min (A )k k2 V( ) é max(A ) 2
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Thus, the solutions enter the region

s
A)
k k max(
min (A )
which implies the radius of -stability is
p_ s
_ N(+ dw) * max (A )
r2nin (A ) min (A )
The -stability of = 0 implies -tracking of the mean vectoru, by every agent,

therefore -consensus is asymptotically reached.
After the previous detailed analysis this result can be prestd as a theorem:

Theorem 4.3 (Briron-Arranz et al. 2011 [20]) Consider a circular formation of N

agents de ned by(4.2) with a connected communication grapls and Assumption 4.1
is satised. Let :R?! R be a bounded function and the mean vectar de ned
in (4.25) satis es ku k . Then,z (t)= 1 u is a globally asymptotically -stable
equilibrium of the dynamics of the distributed algorithm given by

z= Loz Lou+(In+) 2(u 2 (4.30)
with u=( o(r; ¢T3t w(ry  ©)7)T and

C("N@+ dme)t ) he(A)

i i (A)

where the matrixA and the constants and are previously de ned.

Remark 4.1 Analyzing the linear system(4.27), it seems straightforward that the con-

trol parameter has an important role in the convergence of the algorithm. The sim-
ulation results show that taking >> 1, the amplitude of oscillations of the estimated
gradient directionsz, are smaller. Therefore, the error is also reduced.

Simulations

In order to show the performances of this distributed algahm some simulation results
are presented. All simulations show a xed circular formatin of ve agents with radius
R = 1m and angular velocity of! ; = 1rad=s. The communication graph is a ring ¢;-
circulant graph).

In Figures 4.6 and 4.7, the source-seeking consensus altpomit(4.30) from Theo-
rem 4.3 is implemented with = 50. For these simulations, the function representing
the signal distribution centered at the origin has circulatevel sets:

(x;y) = 100 (*+¥)<10
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(a) Estimated directions zx for t = 0s (black (b) X and Y coordinates of estimated directions
dashed lines) and fort = 50s (red lines) Z

Figure 4.6: Simulation of a circular formation of ve agents centered at = (2;2)".
The function representing the signal distribution centered at the origin has circular
level sets. The consensus algorithm of Theorem 4.3 is implemented with 50.

Therefore, the gradient vector (c) provides the adequate direction to steer the for-
mation to the source location. Both Figures 4.6(a) and 4.7(aghow two snapshots.
The void circles represent the initial conditions and the laick dashed lines the initial
estimated direction z, of each agent. The red circles represent the position of the
agents att = 50s and the red lines are the estimated gradient directions at #t time.
The blue line is the real direction of the gradient at centec. Both Figures 4.6(b)
and 4.7(b) show the components of the consensus varialleand the mean vectoru .
The estimated directionsz, oscillate around the vectoiu which approximates the true
gradient direction for any initial conditions.

In Figure 4.6 the circular formation of agents is centered at = (2;2)" and the
oscillations of the estimated gradient directiong, are smaller than in Figure 4.7 where
the formation is centered at source location. In this seconchse, the mean of the
directions is equal to zero but, the convergence region ofdias leads to completely
wrong gradient direction estimations.

Conclusions and limitations of the algorithm

The nal gradient direction z, estimated by each agent oscillates with period =

2 =! . The amplitude of these oscillations depends on the conceation measurements
k- When the formation is close to the source location, the measments are greater,

thus, the amplitude of oscillations are greater as well. Meover, as the gradient is close

to zero in the neighborhood of the source (at least with the Gasian pro le used in
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(a) Estimated directions zx for t = 0s (black (b) X and Y coordinates of estimated directions
dashed lines) and fort = 50s (red lines) Zy

Figure 4.7: Simulation of a circular formation of ve agents centered at = (0;0)".
The function representing the signal distribution centered at the origin has circular
level sets. The consensus algorithii#.30) is implemented with = 50.

these simulations), a ball of radius around O leaves the gradient direction essentially
unknown; thus Theorem 4.3 does not guarantee good behavionrthe neighborhood
of the source.

Another limitation of the consensus algorithm (4.30) is thathe radius depends
on the constants and which cannot necessarily be small values. In order to avoid
these problems, an averaging approach is presented in thejsel.

Input-averaging

With a view to improve the distributed algorithm presented béore, the periodic prop-
erties of the situation assumed in the problem formulationra studied.

The agents describe a periodic movement, it means thag(t) = ry(t + T) with

T =2 =! ,. Therefore, the measurementsy obtained by agentk are a periodic map
because (r¢(t)) = (rx(t+ T)). In conclusion, the input variable of the consensus
algorithm uy = (rx c¢) is a T-periodic function with T = 2 =! 3. Estimated
directions z, obtained by the consensus algorithm (4.30) shown in Figuressdand 4.7
are also periodic. The average of these solutions approxiesthe gradient direction of
the source. Thanks to these observations, an analysis of theerage properties of the
input variable u, seems adequate. The idea now is to improve the previous dilstrted
consensus algorithm using the periodic properties of the asirements (ry).

The input vector uy in previous consensus algorithm is replaced by its mean valu
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over one periodl =2 =! 3 which is de ned as:
Z

Uy = k(re( ) ©)d (4.31)

1 t
T (1
Therefore, thanks to Lemma 4.2 the new mean vector approximates the gradient of
the signal propagation at the center of the circular formation:

X

u = Uy (4.32)

1
N k=1
The new input variable of the improved algorithm based on (80), is the mean
vectoru = (uj;ul;:::;uf)", and the objective is de ned asu; = 1 u . Following
the analysis developed previously, assumed that the signdiktribution varies softly,
thus, following inequality k(u  u,)k is satis ed. Using these considerations, a

new algorithm is proposed in the following corollary:

Corollary 4.1 (Briron-Arranz et al. 2011 [20]) Consider a circular formation of N

agents de ned by(4.27) with a connected communication grapls and Assumption 4.1
is satised. Let :R?! R" be a bounded function and the mean vectar de ned
in (4.32) satis es ku k . Then,z (t)= 1 wu is a globally asymptotically -stable
equilibrium of the dynamics of the distributed algorithm given by

z= Loz Lu+(In+) 2u 2 (4.33)
with D )
_ (O NQ@+dma)*+ ) fax(A)
r%in (A )

where the matrixA and the constants and are previously de ned.

Considering Assumption 4.1 (the circular formation is xed)y de nition, the mean
input u is a constant vector after a time periodl. Therefore, the input variable u
converges to the mean vectan, and moreover, its derivative is equal to zero. It means
that:

I 0O and ! O

It implies that the radius of the convergence region converges to zero after a period
T, the consensus is achieved and all the agents estimate theamevector u which
approximates the gradient direction at the center of the fanation.

The gradient direction estimated by the agents will be the ference velocity of the
formation center to steer the eet of agents to the source lation. If the formation is
moving, the gradient of the signal distribution in the circé center becomes time-varying
and the concentration measurements does not satisfy the potic properties anymore.
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Therefore, the consensus algorithm makes that the agentgisste the gradient direc-
tion before a periodT. A detailed investigation of our algorithms when the formabn
moves along the estimated gradient direction towards the se location is the next
research goal discussed later.

Simulations

The simulations show the same circular formation of ve agesfrom the previous ones.
In Figures 4.8 and 4.9 the improved distributed algorithm (483) from Corollary 4.1 is
implemented with =1 by a circular formation centered atc = (2;2)" and at source
location, respectively. The measured signal is the same agrevious simulations. Due
to the circular level sets of the signal propagation the graeht vectorr (c) provides
the adequate direction to steer the formation to the sourcetation.

(a) Estimated directions zx for t = 0s (black (b) Components of estimated directionszy
dashed lines) and fort = 50s (red lines)

Figure 4.8: Simulation of a circular formation of ve agents centered at = (2;2)".
The function representing the signal distribution centered at the origin has circular
level sets. The mean input consensus algorith(¥.33) is implemented.

Both Figures 4.8(a) and 4.9(a) show two snapshots, the inifizonditions and the
stable situation att = 50s. Both Figures 4.8(b) and 4.9(b) show the components of
consensus variable,. This algorithm allows us to remove the oscillations and thenal
vectors for all the agentsy (red lines) are parallel to the gradient direction (blue lie).
The problem of oscillations when the formation is centered @ource location is also
solved and the nal directionszx are equal to zeroj.e., the formation decides to stay
in the desired location. The estimated directiong, converge to the gradient direction
approximated by the mean vectomu for any initial conditions.
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(a) Estimated directions zx for t = 0s (black (b) Components of estimated directionszy
dashed lines) and fort = 50s (red lines)

Figure 4.9: Simulation of a circular formation of ve agents centered ac = (0;0)".
The function representing the signal distribution centered at the origin has circular
level sets. The mean input consensus algorithm ¢4.33) is implemented.

In Figure 4.10 the same algorithm (4.33) is implemented withraelliptical signal
distribution de ned by
(x;y) = 100e (x2=10+y2=2)=10

The estimated directionszy converge to the gradient directiorr  (c). In this case, this
direction will not directly steer the formation to the soure location, but a formation
moving along the respective gradient direction will be pragssively steered towards
the source over several consecutive steps, as in a gradigascent method, see [34].

4.4.2 Time-varying source

In this section a time-varying source is considered. In thisituation, the signal distri-
bution in the environment becomes a time-varying functionsuch that depends both
on the position and time,i.e. (rg;t).

The previous Lemma 4.3 shows that a eet oN > 2 agents uniformly distributed
along a xed circular formation is able to approximate the gadient direction of a scalar
eld varying with time. A direct consequence of this lemma ighat the distributed
estimation algorithm from Theorem 4.3 with theuy's de ned in (4.25) also holds in
the case of time-varying signal distribution.

However the extension presented in Lemma 4.2 to time-varyirgignal distributions
is not straightforward. Indeed, if the signal distributiondepends on the time variable,
equation (4.12) is not valid anymore.
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Figure 4.10: Simulation of the distributed algorithm(4.33) by a circular formation of
ve agents centered atc = (2;2)". The function representing the signal propagation
centered at the origin has elliptical level sets.

Simulations

The same circular formation of ve agents from the previousimulations is still con-
sidered. Figure 4.11 shows the simulation results of the giadt estimation of a time-
varying signal distribution. The distribution is given by

((X, y), t) = 100e ((x 2cos(t=10))2+y2)=10

In order to compare the directions of the e ective gradient ad of the resulting estima-
tions, we consider the angle (in radians) between the (c;t)" (and zy, respectively)
and (1, 0)". In Figure 4.11 (a), one can see that each estimated directionbtained by
the algorithm (4.30) from Theorem 4.3 with = 100, oscillates around the e ective
gradient direction. Figure 4.11 (b) shows the same situatiobut implementing the
algorithm from Corollary 4.1 with = 100. In this case, a consensus on the estimates
is clearly reached. However there exists an error (on time) taeen the estimated di-
rection and the e ective one. This delay, equal to the period, is due to the fact that
with the input-averaging algorithm each agent needs one ped in order to compute
the direction uy de ned by (4.31).

4.5 Conclusions

The source-seeking problem is considered in this chaptery Bay of introduction, an
exhaustive study of di erent approaches proposed in the reat literature, which deal
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(a) Simulation results using the algorithm from (b) Simulation results using the algorithm from
Theorem 4.3 Corollary 4.1

Figure 4.11: Evolution of the direction, given in radians of the estimates (soft lines)
and the real gradient (red bold line) for a time-varying signal distribution.

with the source-seeking problem, is provided. There are grd few works that consider
a collaborative strategy.

In this context, the main contributions presented in this clapter, are the three
lemmas presented in Subsection 4.3.1, which prove that theeasurements of a signal
distribution, obtained by a group of sensors uniformly distbuted along a xed circular
formation, allow us to approximate the gradient direction 6the signal at the center of
the formation. Based on this result, a distributed algoritim is developed to estimate
the gradient direction of a signal by a circular formation ofAUVs. Communication
constraints are considered via a communication graph. Thigw collaborative strategy
is based on a consensus Iter algorithm in order to make the agts reach an agreement
on the estimated gradient direction. The estimated directins oscillate around the real
direction of the gradient.

According to the periodic properties of the measurements abihed by the circu-
lar formation of agents, the previous distributed algoritin is modi ed. Using the
average of the directions computed by each agent and applgithe previous consen-
sus algorithm, the agents reach a consensus on the gradiemedtion asymptotically.
Both algorithms are analyzed when the source emitting thegsial distribution is time-
varying.

The estimated gradient direction will be used to drive the et of AUVs to the source
position thanks to a gradient-descent approach. A controltmtegy, based on several
results presented in this dissertation, will be developedtachieve the source-seeking
in future researches.



Chapter 5

Conclusion and Future works

The purpose of this chapter is to summarize the contributios presented in the dis-
sertation and introduce some perspectives of future researto complete and improve
this work.

5.1 Review of the contributions and conclusions

Cooperative control is an important issue due to its large maber of applications.
Collaborative behavior of a group of agents means that themxist several intercon-
nections between them in order to reach a common objectiven the context of this
thesis, the agents represent autonomous underwater vekgl(AUVSs) and the common
goal is to locate and follow an underwater source (fresh watgollutant ow, chemical
source). To achieve the nal aim, the collaborative missionsistructured in several
phases. Firstly, the vehicles reach a desired formation thies to a feedback control.
The main contribution is to stabilize the eet to time-varying formations. Besides, a
cooperative control law distributes the AUVs uniformly alongthe formation, tacking
into account the communication constraints. These resultsoastitute the support to
tackle the source-seeking problem. A distributed algorith is developed to estimate
the gradient direction of a signal by a group of vehicles in fimation. This estimated
direction will steer the eet of AUVs to the source location.

5.1.1 Formation control tracking time-varying references

Feedback control laws to stabilize the vehicles to time-wging formations are devel-
oped. The vehicles are modeled by unicycle kinematics as istalled in Chapter 2.
Collective motions, particularly circular motions, have leen studied in recent litera-
ture. The main contribution according to the eld of formation control, is that the
vehicles are stabilized to a formation which is de ned by tire-varying parameters. The

149
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rst control law developed in this thesis allows the AUVs to desribe a circular trajec-
tory whose center is an external time-varying reference. €hmain idea is to change
the coordinates reference frame to a relative frame which irsvariant with respect to
the time-varying center. The coordinates transformations appropriate to take into
account some properties of the new manifold, in which the ntithgent system is ex-
pressed. Based on the same idea, a control law is presentedytvern the AUVS in
order to converge to circular motions with time-varying radis.

Consequently, the following contribution, presented in Cdpter 3, deals with the
generalization of both previous control laws using the sanigea, i.e., by transforming
the reference frame. As result, a new framework is developexléxpress a large class
of motions by deforming a unit circle. The three main transfonations which can be
applied to a formation in order to change its shape, positioand orientation, are the
scaling, translation and rotation, respectively. Theref@, a sequence of a ne transfor-
mations applied to the unit circle de nes a new formation whah results from deforming
that circle. The con gurations obtained with this methodobgy are called elastic forma-
tions in this thesis. Thanks to a coordinates transformatio, a new general formation
control law is developed to stabilize a group of vehicles tdastic formations de ned
by a ne transformations. Moreover, this new formulation alows us to specify several
class of motions de ned by a velocity reference. A new algttnm based also on a ne
transformations, makes a group of agents converge to a timarying con guration in
terms of velocity.

5.1.2 Collaborative algorithms to formation control

The notion of formation is introduced in the survey from Chafer 1. An important
characteristic of formation control is that the agents codlborate between them. There-
fore, several cooperative algorithms are included to the ool laws presented in both
Chapters 2 and 3 in order to achieve di erent objectives. Therst cooperative ap-
proach deals with the distribution of the vehicles along fonations. The agents have
to exchange some information: in this case, their heading gle or their transformed
heading angle with respect to a relative frame. Hence, intemasnections between agents
must be taking into account. The communication topology ofhe network is repre-
sented by an undirected graph. The convergence of collabtiva algorithms presented
in this dissertation, is related to the connectivity propeties of graphs studied in detall
in Appendix A.

The rst contribution is to consider a graph in which the interconnections depend on
the relative position of the vehicles. It means that, each ¥cle can only communicate
with its spacial neighbors,i.e., two vehicles are connected if the distance between
them is smaller than a certain value. This value, called cital communication radius,
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de nes the communication region. Previous control laws totabilize the agents to a
uniformly distribution along a circular formation are congdered now under this new
communication approach. Moreover, this collaborative atgithm is also applied in the
case of elastic formations.

Another contribution deals with the application of consenss algorithms to the
previous formation control laws developed in this thesis. N® that, the time-varying
parameters which de ne the formations, are considered extal references and are
known to all the vehicles. The objective of the cooperativeparoach is to relax this
assumption. A particular case, when the center reference afcircular formation is
unknown, is analyzed. In this situation, the velocity and aceleration of the desired
center trajectory are given references and thanks to a conses algorithm the agents
reach consensus on the center position of the circular fortima. This result, can be
seen as a preliminary step to achieve the source-seekinglem.

5.1.3 Distributed estimation of the gradient direction

Several control techniques have been developed in the lagtays in order to locate
the source of a signal distribution. Source-seeking stragfies are designed to steer a
single vehicle or a group of vehicles to the source locatiohhe vehicles are equipped
with sensors which are able to measure the scalar signal amgting from the source.
Nevertheless, the sensor does not have the capability of segsthe position of the
source.

In this context, our main contribution is to prove mathematcally that the gradient
direction of a signal distribution can be approximated by te measurements obtained
by a group of agents uniformly distributed along a xed circlar formation. The sensors
do not have any knowledge of the functional form of the eld. Tis is an important
result because the gradient direction could be used to drivee center of the formation
to the desired location of the source.

Taking into account communication constraints between theehicles, a distributed
algorithm based on consensus lters, which exploits the pr®us mathematical result,
is developed. This collaborative method allows estimatinthe gradient direction of
the signal distribution at the center of a circular formation of AUVs. Due to the
circular motion of the agents, the measurements obtained eperiodical. Therefore,
the estimated directions oscillate around the real direan of the gradient. Using the
average of the computed directions, an improved distributkealgorithm is presented in
order to reduce these oscillations. In this second case, ethaconsensus is reached and
all the agents estimate the same gradient direction.

Several simulations are provided to support these result®ié to analyze the per-
formances of both algorithms. Moreover, the performance bbth strategies, when the
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source emitting the signal distribution is time-varying, $ evaluated by simulations.

5.2 Ongoing and future works

This dissertation proposes control strategies to carry owgeveral challenges present in
cooperative underwater missions. The main contributionsreviously presented have
been developed considering several assumptions relatedtte model of the vehicles,

precision of sensors, communication constraints, modeltbe environment, etc. Con-

sequently, the futures research directions focus on relarkepious assumptions in order
to consider more realistic situations.

5.2.1 Perspectives in formation control design

All formation control laws developed in this thesis take intoconsideration that the
vehicles know their absolute position vector with respecttthe inertial frame. This
assumption is consistent to the fact that the vehicles are agpped with a precise
inertial measurement unit for navigation. Nevertheless, aording to previously cited
works dealing with circular formation control [69, 86, 120149, 150], it seems very
appropriate to consider that each vehicle is only able to cqmte the relative distance
with respect to its neighbors. In this situation, the time-vaying circular control laws
from Chapter 2 and the elastic formation control design presited in Chapter 3 will be
improved by cooperative algorithms in order to take into acunt the relative positions
between the vehicles instead of their absolute positions.

Another research direction copes with extending the contrdtrategies studied in
this dissertation with a view to stabilize a eet of autonomais underwater vehicles to
time-varying formations in the presence of currents. The dlors of [120, 121] provides
control laws to stabilize a group of vehicles to circular fonations in a time-invariant
and estimated time-varying ow eld respectively. Followng the same reasoning of
these works, and thanks to the ideas presented in this thes@operative control laws
will be developed to make the vehicles converge to time-vamg elastic formations in
a ow eld.

Throughout this thesis, we assume a two-dimensional kinetmamodel of the vehi-
cles. In consequence, the motions and formations obtaine glanar, i.e., the vehicles
are moving in a 2-D framework. In the literature, di erent cantrol strategies are pro-
posed to obtain coordinated motion in three-dimensions ofgroup of vehicles, see [91]
and [69] for instance. A logical extension of the results stied in this dissertation
considers the possibility of develop three-dimensionalnte-varying formation control
laws.



5.2. Ongoing and future works 153

Finally, another future work to improve the presented formabn control laws deals
with collision and obstacle avoidance. The cooperative dool proposed in Chapters 2
and 3 to distribute uniformly the vehicles along a formatiorcan be seen as a collision
avoidance method. The potential term added to the formatiorontrol law allows the
vehicles to avoid collisions with their neighbors in the fonation. However, we cannot
assure collision avoidance until the vehicles are stab#éid to the nal con guration.
Therefore, some techniques based on cooperative strategi7, 98] can be applied in
order to guarantee that vehicles do not impact each other. Ithe same way, potential
terms can be added to the formation control laws to achieve stacle avoidance during
the motion of the eet [108].

5.2.2 Perspectives in source-seeking algorithms

Chapter 4 tackles the source-seeking problem from a collabtive point of view. A
mathematical result demonstrates that a group of sensors ormly distributed along
a xed circular con guration taking measurement of a scalareld can approximate the
gradient of the signal distribution of that eld at the center of the circular formation.
The rst obvious research direction is to analyze the impl@ations of a time-varying
center of the formation.

Based on this previous result, two distributed algorithms @ developed to estimate
the gradient direction of the signal by a circular formationof autonomous underwater
vehicles. The idea is to use this direction in order to steeh¢ formation to the location
of the source,i.e., to the maximum or minimum of the scalar eld. A collaborative
approach merging time-varying formation control, consens with reference velocity
algorithms and the estimated gradient direction will be casidered in future works to
reach the source localization.

We assume perfect communication between two connected \a&s. With a view
to analyze the performance of the control algorithms studikin this dissertation in the
presence of more realistic communication constraints, querative approaches dealing
with packet loss, noise and time delays can be considered umther research.
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Appendix A

Fundamentals of graph theory

The present appendix looks forward to provide a su cient dediled description of the
area of graph theory which mathematical properties have beeised in this thesis.

This following exposition is based on both excellent talkBistributed Control of
Robotic Networks: A Mathematical Approach to Motion Coordination Algorithmspre-
sented by Francesco Bullo, Jorge Cores and Sonia Martneat the 47th IEEE Con-
ference on Decision and Control at Cancun, Mexico in Decemi®#008 andConsensus,
ocking and opinion dynamics’ given by Antoine Girard during the International sum-
mer school of Automatic Control at Grenoble, France in Septelmer 2010. The reader
can also refer to the boolAlgebraic Graph Theory[12], for an exhaustive and complete
dissertation on the eld. In addition, the PhD Thesis of Sarktte [142] presents very
detailed mathematical preliminaries in graph theory and th PhD Thesis of Hendrickx
[68] study the proprieties of graphs for the analysis of mulagent systems.

A.1 De nition of Graph

De nition A.1 A direct graph or digraph is de ned as a couplez = (V; E) con-
sisting of a set of withN elements called vertices, denoted W= f1,2;:::;Ngand a
set of ordered pair of vertices called edges, representediby V V. The pair (k;j)
denotes an edge from the elemektto j.

De nition A.2  An undirected graph consists of a set of vertice and a set of
edgestE which satis es for all pair of elements;j 2 V, if and only if (k;j) 2 E then
(ik)2 E.

1The slides of the authors can be found at http://coordinationbook.info/pdf s/CDC0O8workshop-
DCRN-BulloCortesMartinez-lecturel.pdf

2The corresponding slides can be found in the Antoine Girard webpage: kp:/www-
lik.imag.fr/membres/Antoine.Girard/Talks/auto-school.pdf
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The graphs usually represent the interconnections in a grpwf elements also called
nodes. In this thesis, an edge between two nodes symbolizkeattthese elements can
communicate. In this situation, the notion of neighbors andeighborhood are very
useful to understand the mathematical notation dealing wit graph theory.

De nition A.3  The neighborhood of a vertexk 2 V is the set
N = fj 2 Vjkij) 2 Eg

Therefore, all the elementg 2 N are called the neighbors of elemert. This means
that there is a edge from nodd to each nodg which belongs to the neighborhood.

De nition A.4  The degree of a vertexk 2 V is the number its neighbors, such that
di = Ny

In a visual representation of an undirected graph, the edgdmetween neighbors are
symbolized by bidirectional arrows or usually by non-origad segments. Figure A.1
shows a directed and an undirected graph witN = 5 nodes. In the case of the directed
graph, the degree of node 1 id; = jN;j = 2 because the nodes 2 and 5 are the only
vertices which belong to its neighborhood. Note that, the eég (1 2);(1;5) 2 E. In
the other example, the vertex 1 in the undirected graph has the neighbors such that,
vertices 23;52 N 4, thus the degree of vertex 1 isl; = 3.

DIRECTED GRAPH UNDIRECTED GRAPH

Figure A.1: Directed and undirected graphs

De nition A5 A graphG= (V%E9 is asubgraph of G=(V;E) if its set of vertices
and its set of edges are subsets of the corresponding sets of gapbspectively, such
that, VY V andE® E.

In addition, if V%= V then G’is a spanning subgraph of.

De nition A.6 A spanning subgraph is a subgraph in whichv® V.
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De nition A.7 A direct tree is a digraph in which there is a vertex, called root, such
that any other vertex of the digraph can be reached by one and only one path starting
at the root.

De nition A.8 A direct spanning tree is a spanning subgraph in which there is a
vertex, called root, such that any other vertex of the digraph can be reached by one and
only one path starting at the root.

De nition A.9 A digraph is balanced if each vertexk 2 V has the same number of
incoming and outgoing edges.

In particular, an undirected graph is balanced.

A.2 Connectivity of a graph

In this section connectivity notions and several propertgeof the graphs are presented.
The stability of an algorithm, which use a graph in order to rpresent the interconnec-
tions between the di erent systems evolved in the algorithiis directly related to the
connectivity properties of the graph. An example with conseus algorithms will be
analyzed in the sequel.

In order to analyze the connectivity properties of the graph the notion of direct path
IS introduced as follows:

De nition A.10 A direct path in a digraph G = (V;E) is an ordered sequence of
vertices (Ki; ko)(ko; k3) i (km 1;Kkm) such that any ordered pair of vertices appearing
consecutively in the sequence is an edge of the digraph, i, 1;kp) 2 E for all

The notion of connectivity is associated to the idea of thathte information transmitted
by one node in the graph can be received for the rest of the nedef the communication
graph. A vertex of a digraph is globally reachable if it can beesached from any other
vertex by traversing a direct path.

De nition A.11 A digraph G = (V;E) is strongly connected if every vertex is
globally reachable, such that, for ak 2 V there is a direct path starting from each
other vertexj 2 V;j 6 k which nish in k.

For undirected graphs the notion of connectivity is expressl as follows. If for all
k;j 2 V, there exist a path (non-ordered sequence) joinidgand | (its means they are
connected), then the undirected graph isonnected .
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In Figure A.1 the directed graph is strongly connected becausdl its vertices are
globally reachable. In other words, starting from every nag there exist a direct path
to reach the rest of nodes. The undirected graph of Figure A.1 ®nnected because
all its vertices are connected.

A.2.1 Adjacency matrix

The adjacency matrix allows to represent in a simple numerform the interconnections

in a graph. The connectivity of a graph is directly related taseveral properties of this
matrix, such that its eigenvalues. The relationship betweea graph and the eigenvalues
and eigenvectors of its adjacency matrix is studied in speat graph theory.

De nition A.12  The adjacency matrix of a digraphG = (V;E) isthe N N
matrix A = (&) given for allj;k 2 V by:

1, if (kj)2E

A = 0 otherwise

In the case of undirected graphs, by de nition, the adjaceryamatrix is symmetric. Note
that, in this appendix self-loops are not considered, thef@e all diagonal elements of
the adjacency matrix are equal to zero.

For illustration, the adjacency matrix of both directed and undirected graphs dis-
played in Figure A.1 can be written as follows:

0 1 0 1
01001 01101
00101 10101

A directed = 10010 Aundirected = 11010
00100 00100
1 0000 11000

A diagonal matrix, called also degree matrix, is de ned in @ker to represent, in a
matrix form, the number of neighbors of each agent.

De nition A.13  The degree matrix of a digraphG= (V;E) istheN N matrix
=( dy) given for allj;k 2 V by:
(

de; if k=
dg = k J

0 otherwise

By de nition, each diagonal element of the degree matrix isgeial to the sum of elements
of its corresponding row in the adjacency matrix. Hence, theedree matrix of both
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graphs can be expressed as:

0 1 0 1

2 0000 30000

02000 03000

directed — 00200 undirected = 003 00O

00010 00010

0 00O01 0 00O02
Note that, for digraphs, two di erent degree matrices can be @ned._ The rst one,
is also called the out-degree matrix and it is de ned as (out)kk = J.Nzl a. This
diagonal matrix is the same which has been determined in Ddtion A.13. The other

one, is the in-degree matrix, expressed as i Jkk = jN:1 aj .

A.2.2 Laplacian matrix of a graph

According to these previous adjacency and degree matricespew matrix is built in
order to analyze the connectivity properties of graphs usinthe matrix theory.

De nition A.14  The Laplacian matrix  of a digraphG = (V;E) is the N N
matrix L = (l;) given for allj;k 2 V by:
8
2 di if k=]
ly=_ L if (kj)2E

>
0 otherwise

Consequently, the Laplacian matrix is also de ned ak = A .

The Laplacian matrix of a digraph has several interesting pperties, especially with
a view to study the connectivity of the graph. The following ist summarizes some of
the most important:

represents the vector of zeros.

All the eigenvalues ofL have nonnegative real parts, such that:
0= o 1 i N 1

The digraph G contains a vertex globally reachable if and only if the rankfats
Laplacian matrix is equal toN 1.

The quadratic expressionx"Lx, wherex 2 RN, is positive semide nited if and
only if the digraph associatedG is balanced.
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Following with both examples of Figure A.1, the correspondingaplacian matrices
of the directed and undirected graph can be expressed as:

0 1 0 1
1 0
0 2 1 O 1 1 3 1 0 1
L directed = 1 0 2 1 0 L undirected = 1 1 3 1 0
0 0 1 1 0 0 0 1 1 0
1 0 0 0 1 1 1 O 0 2

In the case of undirected graphs, the Laplacian matrix has ddional interesting
properties:

The Laplacian matrix of an undirected graphG is symmetric. Therefore, all its
eigenvalues are real.

The Laplacian matrix of an undirected graphG is positive semide nite.

i o T 1 P 2 N
The quadratic expressiork'Lx = 5 5y, (X« Xj)%, forall x 2 R™.

The properties of the Laplacian matrix provide informationabout the connectivity
of its associated graph. In the case of undirected graphsgse properties are stronger
than for directed graphs.

De nition A.15  The second smallest eigenvalug of the Laplacian matrixL is re-
ferred to as thealgebraic connectivity  of the undirected graphG.

And it can be proved that this second eigenvalue is positive; > 0 if and only if the
is connected. This result is equivalent to:

If the digraph G is strongly connected then 0 is a simple eigenvalue lof

The algebraic multiplicity of the eigenvalue 0 ofL is equal to the number of
connected components in the undirected grap®G.

A.3 Time-varying graphs

It is of both theoretical and practical interest to considettime-varying communication
topologies. During a coordinated motion or a collaborativeask, the interconnections
between the agents that conform the network can evolve sudhat, new communication
links are created and others are broken. In this situation hie links of the network are
represented by a time-varying graph. It means that the set afdgesE depends on time
and consequently the adjacency matrix is time-varying too.
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Time-varying communication topologies are described by ane-varying -digraph
G(t) = (V;E(t)), where the elements of its adjacency matriA(t) are bounded and
satisfy some threshold > 0, that is, akj(t) = 0 in the absence of a communication
link and ay; (t) in the presence of a communication link.

De nition A.16  Consider a time-varying graphG(t) = ( V; E(t)) with adjacency ma-
trix A, and letG(t) = (V;E(t)) be the graph in whiclt (t) contains all ﬁdges that appear
in G( ) for 2 [t;t + T] and its adjacency matrix is de ned asA = t“T A()d. A
nodek is said to be connected to node6 k in the interval [t;t + T] if there is a path
from vertexk to j, which respects the orientation of the edges for the directed graph
Then, G(t) is said to beuniformly connected if there exists an indexk and a time
horizon T > 0 such that, for allt, node k is connected to all the other nodes across
[t;t+ TJ.

A.4 Circulant graphs

A circulant graph is an undirected graph in which, the adjaagcy matrix is circulant

It means that the graph has a cyclic group of symmetries thahcludes a symmetry
taking any vertex to any other vertex, see Figure A.2.

2-CIRCULANT GRAPH 4-CIRCULANT GRAPH

Figure A.2: Circulant graphs

A dp-circulant graph is a circulant graph in which each node is anected tod, other
nodes, whereal, is a xed integer in the interval [2,N  1]. All do-circulant graphs are
do-regular, which means thatdy = d, for all k. Both adjacency and Laplacian matrices
of a circulant graph are circulant,i.e., they are completely de ned by their rst row
[41]. Each subsequent row of a circulant matrix is the previs row shifted one position
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to the right with the rst element equal to the last element ofthe previous row. For
example, the complete graph (all-to-all communication) i§N  1)-circulant and the
cyclic graph (ring topology) is 2-circulant. Note that, by denition, all dy-circulant
graphs are connected [150].

The Laplacian matrix of the 2-circulant graph shown in FigureA.2 is written as

follows: 0 1
2 1 0 0 1
1 2 1 0O O
Lo circulant = : : .
O O O 2 1
1 0 O 1 2

In the same manner, the corresponding Laplacian matrix of thé-circulant graph from
Figure A.2 is expressed by:

0 1
4 1 1 1 1
1 4 1 0 1
L4 circulant =
1 0 O 4 1
1 1 O 1 4



Appendix B

Resune en frarcais

B.1 Introduction

L'exploration sous-marine est le processus relativemeetent d'enquéter sur les pro-
fondeurs de la mer pour comprendre ses caraceristiquesysifues et chimiques et
approfondir nos connaisances sur les formes de vie qui peumplcet environnement.
L'exploration sous-marine est un pkenormrene nouveau (paapporta beaucoup d'autres
sciences), car la technologie recessaire pour assurereleuse humaine dans les eaux
profondes n'aet que cevelopee ecemment. Au cours deglerneres dcecennies, des
technologies alternatives, qui utilisent des \ehiculesass equipage, tels que otteurs
avec capteurs immerges, \ehicules eecommandes (R® pour le sigle en anglais) et
\ehicules autonomes sous-marins (AUV pour le sigle en anglp ont emerge pour
compkter les techniques de cetection existantes. Touses \ehicules sontequipes de
dierents capteurs an de recueillir les informations d'une egion d'inerét. Ces in-
formations fournissent un soutien fondamentala la comghension des processus des
oeans d'un point de vue biologique (productivie de lecosyseme), oua pedire les
proprees physiques de l'oean, comme la temperatureet les courants.A cette n, des
strakgies de contrble pour la commande des \ehicules roibes doivent &tre cevelopees
pour orienter les \ehicules vers les endroits a leurs doees seraient les plus utiles [39].
Les eseaux de capteurs mobiles sont souvent utiliees dardes applications envi-
ronnementales telles que lechantillonnage des oeans, surveillance, la cartographie,
I'exploration spatiale et de la communication, voir [39, 86167, 177] et les ekrences in-
cluses. Dans ces sortes de missions, les capteurs mobilescnmandes pour mesurer
un champ scalaire inconnu. Par exemple, une concentratioe groduits chimiques, un
polluant, ou la temperature. Comme chaque capteur ne peutrpndre qu'une mesure
a la fois, les capteurs doivent se teplacer dans une formah pour estimer le champ
d'inerét. Il semble appropre que le groupe de \ehicuks collabore a n de menera bien
la tache d'exploration tout en optimisant le temps et lerergie. Collaboration signi e
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gue chaque \ehicule est capable de communiquer certaineformations pour le reste
du groupe et ces donrees sont utilies pour cetermineme action ou un comportement
particulier pour accomplir la tache d'exploration.

Dans ce contexte, la pesente these aborde le probeEme uhe mission d'exploration
sous-marine e ectiee par un groupe d'AUVs de facon coopetare. L'objectif est de
concevoir des straegies de contrble pour accomplir lesedents ce s scienti ques
trouves dans ces missions :

Commande de sysemes multi-agent : Un syseme multi-agent, ¢ ni plus pecisement
dans la Section 1.2, est un syseme composge par un groupendlividus autonomes
qui interagissent les uns avec les autres. Par conequenhe otte d'AUVs peut
@tre traiee comme un syseme multi-agents dans lequedl chaque \ehicule est
consicee comme un agent avec des capacies de communiican.

Controle d'une formation : A n d'accomplir une tache d'exploration, un choix rai-
sonnable est de coordonner les agents pour former une conajion particulere.
Les algorithmes de contrble pour atteindre ce but doiventsgurer certaines per-
formances, telles que l'inter-distance entre les \ehice$ dans la formation. L'ob-
jectif le plus important est de ceplacer le groupe de \ehugles tout en gardant la
formation.

Algorithms de contréle avec contraintes de communication : Dans une mission
collaborative, les individusechangent des informationpour atteindre une tache
particulere. Les donrees transmises sont soumisesaelients probemes de com-
munication dus au canal de communication, tout particuleement dans les en-
vironnements sous-marins, comme le bruit dans le signal fremis, les pertes de
paquets, les retards lors de la transmission et les probks®s d'a aiblissement de
la puissance du signal.

Cette these traite de ces probkemes dans le contexte d'unaission sous-marine dans
laquelle une otte de AUVs doit collaborer pour localiser uneairce.

B.1.1 Contexte de la tlese

Cette these s'inscrit dans le cadre de deux projets de reafcke : le projet europeen
FeedNetBack et le projet francais CONNECT?, nane par 'ANR (Agence Natio-
nale de la Recherche). Les deux projets traitent de sysemeommandes en eseau
(NCS pour le sigle en anglais) et ils sont particulerementnieresses par le probeme
du contrble des sysemes multi-agents, c'esta-dire, & sysemes composs de plusieurs

thttp ://www.feednetback.eu/
2http ://www.gipsa-lab.inpg.fr/projet/connect/
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Sous-sysemes interconneckes par un eseau de commuat®n feerogene. Le ce prin-
cipal de ces projets est d'apprendrea concevoir des cooletirs en prenant en compte
des contraintes sur la topologie du eseau et la possilalile partager des ressources
informatiques au cours du fonctionnement du syseme, tougn peservant la stabilie
du syseme en boucle fernee.

Le projet FeedNetBack regroupe plusieurs partenaires a@diques, et aussi des
participants industriels en vue de ealiser les applicatins technologiques. Le cas detude
communa ces deux projets se concentre sur la commande cexgtive d'un groupe de
\ehicules marins sans pilote, c'esta-dire, \ehiculesautonomes sous-marins (AUV) et
navires de surface autonomes (ASV). Ce cas detude, cetailplus tard, concerne le
partenaire IFREMER® qui est charge des aspects techniques relatifs a des \a&hiles
sous-marins. Il permettra d'accomplir une cemonstratiorutilisant des \ehicules eels.
Un des participants universitaires qui se concentre sur lesniovations techniques de
cette etude de cas, est l'institut de recherche INRIA (Instiut National de Recherche
en Informatique et en Automatique)a travers de lequipe NeGS*, au coeur de laquelle,
cette these aee faite. Le projet CONNECT consicereegalement la possibilie devaluer
les structures de contrble proposes par le biais d'unetémface graphique developpee
par PGES et des simulations e ectiees avec un simulateur oglexe qui est construit
par PROLEXIA.

Cas detude

The proposed case study copes with a main mission whose obyecis to carry out
a gradient search and following an underwater source by a tef AUVs. The nature
of the source to be detected, can be very dierent : fresh watea chemical source,
methane vent, etc. The technical details corresponding tdis case study are reported
in

Les sysemes multi-agents en eseau, en particulier leysemes sous-marins, qui
sont actuellement utilies ou developpes par l'industie et la recherche marine, sont
soumisa de ®\eres contraintes technologiques. L'avaage d'utiliser plusieurs \ehicules
simples au lieu d'un syseme complexe, colOteux et de hautapacie, est que la otte
est capable de ealiser des taches qui ne peuvent pas efaeilement obtenues par un
seul ehicule. Ce cas detude comprend des \ehicules tgognes marins (de surface
et sous-marins tels que des embarcations autonomes, AUVs oarn@urs sous-marins)
a n de ealiser une mission scienti que compose de plusurs phases (exploration et
recherche,echantillonnage des donrees par des capteuise cas detude propo< traite
d'une mission dont I'objectif est d'e ectuer une recherchée gradient et de suivre une

3Institut frarcais de recherche pour I'exploitation de la mer, htt p ://wwz.ifremer.fr/institut
“http ://necs.inrialpes.fr/
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source sous-marine avec une otte de AUVs. La nature de la soaie cetecter, peut
étre tes dierente : de I'eau douce, une source chimiquedu nmethane, etc. Les cktails
techniques correspondanta ce cas detude sont cetaidls dans [113].

Figure B.1 { Le \ehicule sous-marin AsterX

AsterX :  Le\ehicule sous-marin pris en compte dans ce cas detudg par conequent,
dans cette these, est I'AsterX, qui appartienta I''FREMER (v oir Figure B.1). L'AsterX
est un \ehicule autonome sous-marin qui est actionre parne helice principale destiree
au ceplacement dans la direction longitudinale. La direébn du \ehicule autour de ses
angles de roulis, tangage et lacet est assuee par deux #és dans la partie avant du
\ehicule (ailettes de canard), et deux couples d'ailettes I'arrere du \ehicule (plan
horizontal et vertical). En fonction de la charge utile, sorpoids est compris entre 580
et 800 kg dans l'air, avec une profondeur de plongee de 3006tmes. Sa vitesse de
croisere est comprise entre (b et 2 5 netres par seconde. La longueur du \ehicule est
de 45 netres et son autonomie est de 11 heures [135].

Ce AUV a plusieurs capteurs de navigation : un syseme Dopplgour mesurer
la vitesse, une centrale inertielle (compose d'un gyragge, d'acekronetres et de
magretonetres) pour calculer en temps eel son attitude(roulis, tangage et l'angle
de lacet) et mettre a jour sa position, et egalement un capur acoustique pour le
positionnement absolu.

Mission et s@nario sous-marin : L'objectif de la mission est de localiser et de
suivre une source en prenant en compte les donrees messgaurnies par des capteurs
sittesa bord des AUVs, qui mesurent la concentration de leoulement de la source. La
con guration des \ehicules doit &tre telle que des estiniens spatiales de le gradient
de la concentration peuvent etre calcues d'une facon agerative. Les lois de com-
mande cooperative corcues pour atteindre cet objectif deaient prendre en compte les
contraintes de communication dues au senario sous-marin
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Figure B.2 { Detection et suivi d'une source sous-marine

Pour e ectuer des missions impliquant plusieurs \ehicukg le mouvement coordonre
est recessaire, surtout lorsque l'objectif de la missiorsede diriger des capteurs. Dans
le cas pesent ici, la cetection de la source peut étreealiee avec les informations des
capteurs recueillies par les \ehicules en mesurant la camtration dans la zone de di u-
sion de la source, comme le montre la Figure B.2. Cette imageesente I'objectif du
cas detude et elle aet produite par l'interface graphigue ceveloppee par PGES et le
simulateur qui est fourni par PROLEXIA. Les formes coloees|Iiptiques symbolisent
les courbes de niveau du champ scalaire d'inerét. La o# d'AUVs, organiee dans
une formation particulere, calcule de manere collabaative la meilleure direction pour
ceplacer le centre de la formation vers I'emplacement de kource. La otte doit ma-
noeuvrer a n de rechercher la egion de concentration la pkelewee de la distribution
du signal, et donc, proedera la localisation de la source

Etapes de la mission et &S : Ces derneres anrees, il peut étre remargwe la
ceerioration des eaux marines duea de multiples polluats. Ce cas detude, cewveloppe
en coordination avec I'lFREMER, visea localiser les soursedes fuites,a la suite d'un
naufrage, ou, inversement, les sources d'eau douce pourdasommation domestique.
Les dierentesetapes consiceees pour atteindre cet djectif sont cetailbes ci-dessous.
La con guration initiale est une ottille compose de cinq \ehicules autonomes
sous-marinsequiges de capteurs de salinie, qui doiverrouver une source d'eau douce,
sans intervention humaine. Les straegies de cooperatioavec la mise en commun d'in-
formations provenant de chaque \ehicule, doivent étre eeloppees pour exploiter les
avantages de l'utilisation d'une otte de \ehicules et pou eduire le temps de I'explo-
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ration.

Un premier ce est doa la di cule detablir une communi cation able dans un
environnement sous-marin. C'est un point ck pour assuremine coogeration e cace.
En e et, le cebit de donrees est seulement de quelques cermes debits=s, le ctlai de
transmission est d'environ une seconde et environ 10% de patg sont perdus. Dans
cette situation, toutes les strakgies de controle ceMeppees doivent prendre en compte
les contraintes de communication.

La localisation d'une source sera e ectilee en deux phaseBar congquent, un
deuxeme & concerne la conception des lois de commandeude formation appro-
prees pour atteindre les objectifs de chaque phase. La pnere corresponda la phase
d'exploration. Au cours de cette etape d'exploration, lesehicules se deplacent dans
une formation en forme de V [103], dans le but de recueillir slenformations et pour
cetecter la distribution de signalemise par la source. Undois qu'un agent cetecte un
changement signi catif de la salinie, il transmet cette nformation aux autres. Puis la
otte commence une phase de consolidation.

Dans cette deuxeme phase, la otte se regroupe dans une fiog particulere, par
exemple circulaire. Avec une telle formation, le mouvemenbprrait étre plus lent que
lors de la formation en V. Toutefois, une formation circulag a une plus grande sou-
plesse pour se teplacer dans toutes les directions. En ajtia epartition des AUVs le
long de la formation est pertinente pour recueillir des meges distriblees spatialement
gui peuvent permettre une localisation plus pecise de laosrce. |l estegalement pos-
sible d'envisager un grand nombre de formations : il peutrt ineressant de dceformer
la formation pour l'adaptera I'environnement, de suivre un chemin ou poureviter des
obstacles.

En vue de former et de maintenir cette formation, les \vehides doiventechanger
des messages en fonction de leur position par rapport au gentle la formation. Une
conception centralisee peut etre consiceee ai un wicule de surface fournit toutes les
informations recessairesa la otte. Lesechanges de dages entre les AUVs permettent
d'envisager une approche cecentralie dans laquelle @n \ehicule n'est considee
comme un leader. A n de prendre en compte les contraintes densmunication, telles
gu'une zone limiee de communication pour les AUVs, seuls lesisins les plus proches
sont pris en compte pourechanger des informations.

A n d'atteindre I'objectif de la recherche d'une source, un lgorithme de decision
doit étre ceveloppee. Il seraegalement bas sur lesehanges de donrees entre voisins
pour assurer la méme robustesse que dans le cas des cortgaide communication.
L'objectif de cette dernere tache est de permettre a tog les ehicules de se mettre
d'accord sur une orientation de la formation pour se cepla vers la source en utilisant
les mesures collecees par les \ehicules. On peut imagindetendre ce type d'algo-
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rithmes pour d'autres applications telles que la de nitiondes contours qui cherchea
celimiter letendue et levolution d'une zone pollee .

Objectifs gereraux

Les objectifs gereraux communs aux deux projects FeedNetiBk et CONNECT, cor-
respondant au cas detude des \ehicules sous-marins agpesent, se concentrent sur
les cing ¢k s principaux suivants :

Architecture : La recessit de coordonner les actions des \ehicules sdes canaux
de capacit limiee.

Contréle et Complexie : Strakgies de contrble centralies contre cecentréakes,
qui sont au coeur de cette application.

Contréle et Communication : La bande passante disponible est tes limiee (quelques
bits par seconde), la communication est soumise a des retisr de propagation
longs et variables, des multi-trajets, de la decoloratioret des taux elewes d'er-
reurs de transmissions.

Contréle et Calcul :  Le cas detude fera usage des stratgies dechantillorage adap-
tatif et de calcul collaboratif distribie.

Contrdle et Energie : Dans cette application la puissance des batteries est liget
et gereralement les batteries ne peuvent pas etre rechgees pendant une mission.
Les ressourcesenergetiques doivent étre partageestes les dierentes fonctions.

Confornmement a ces objectifs gereraux, la straegie de contrble suivante, base
sur un rapport technique du projet FeedNetBack [152], pour peenira la recherche
collaborative d'une source sous-marinea l'aide d'une dé& de AUVs est propose dans
cette trese. Le premier ce est de decrire une architectuwe acequate pour faire facea
une approche cooperative en prenant en compte tous legshents de la formulation du
probeme et toutes les contraintes. En conequence, tr@boucles de contrble principales
sont prises en consiceration, comme le montre la Figure B.Sachant que ce projet vise
aetudier des ottes de \ehicules qui travaillent ensemle pour atteindre un objectif
commun, en termes de contrble et de coordination des ottesette these consicere
que la otte est compose d'un ensemble homogene de \ehites, c'esta-dire, tous les
\ehicules ont le m&me mockle dynamique.

Le premier objectif est de cevelopper une boucle de egulan locale, appeke com-
mande robuste, qui stabilise chaque AUV. Cette loi de commangbeend en compte
le mockle dynamique des \ehicules, a n de contrbler leuorientation, la vitesse et la
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Figure B.3 { Architecture de la strakgie du contrble

profondeur. Le mouvement le long des trois axes est cecauple telle sorte que, trois
contréleurs dierents sont calcuks pour le controle ck la vitesse d'avancement, I'angle de
lacet et de l'altitude respectivement. La these de Roche 8B], qui faitegalement partie
des projets FeedNetBack et CONNECT, s'occupe de la conceptioobuste des com-
mandes pour le suivi de trajectoire d'un seul AUV par une appobe dechantillonnage
variable.

En consicerant plusieurs \ehicules identiques, la bouel externe e ectue la tache
de recherche. Un contrble cooperatif est mis en oeuvre poatteindre un mouvement
coordonre de la otte de telle sorte que le groupe des AUVs estispoe dans une
con guration particulere. La formation souhaite est c& nie par plusieurs paramnetres
tels que son centre et son rayon dans le cas d'une formatiomcaiaire. Une loi de
commande collaborative stabilise la otte vers une formabin qui suit des paramnetres
variant dans le temps. Ce travail est eali® en deux dimesions, par congequent, il est
suppos que tous les ehicules se teplacenta la mémegfiondeur. La vitesse lireaire et
I'orientation sont les variables de contrble qui cependw de letat de I'AUV (sa position
et sa vitesse) et des ekrences externes qui e nisseitd formation cesiee. La distri-
bution uniforme des \ehicules le long de la formation estgalement consickee. An
de prendre en compte les contraintes de communication, urgatithme cecentralie est
corcu pour stabiliser les ehicules vers la con guratiortesiee (distribution uniforme),
en utilisant uniqguement les informations de leurs voising$ plus proches.

En n, la trajectoire du centre de la formation est obtenue paune commande dis-
tribtee en utilisant les mesures du signal collecees pda otte de AUVs. Les donrees
attendues sont mesuees par des capteurs de cetection. lteajectoire a suivre par
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la otte passe d'une con guration de recherche pecd niea un contréle de suivi de
trajectoire base sur les donrees des capteurs an de deteer la source des donrees
mesuees.

La mise en oeuvre des boucles de egulation sur un eseauamtrodleurs nuneriques
induit des perturbations suppementaires par rapporta b conception initialea temps
continu, plus peciement en raison de lechantillonnaye, les retards, la quanti cation
et de la perte de donrees. Par congquent, il convient de @ndre en compte ces
contraintes de communication an de concevoir les dieretes straegies de contrble
e nies peedemment.

B.1.2 Contributions de la these

La communaue d'automatique a specialement pore son atention sur les sysemes
multi-agents dans les vingt derneres anrees. Les dieents aspects pesenes dans letat
de l'art pe@dent ontek largementetudesa cause des avantages des sysemes multi-
agents, par rapporta l'utilisation d'un seul \ehicule ou d'un capteur, dans un grand
nombre d'applications.

Dans le contexte de I'exploration sous-marine, la concepii des missions collabo-
ratives permet la collecte d'informations provenant de z@s etendues dans un temps
plus court. Le principal avantage d'utiliser plusieurs symmes dans un mouvement co-
ordonre est d'augmenter la poree d'un capteur par rappara sa zone de couverture.
Ceci est particulerement important si les proprees qui doivent &tre mesuees uctuent
avec le temps.

Selon le cas detude pesent dans cette introduction,ds principaux ce s abordes
dans cette these sont esunes comme sulit :

Contr6le d'une formation de AUVs

Commande coogperative

Recherche d'une source

Algorithmes du contrble avec contraintes de communication

La gure B.4 pesente les principaux objectifs qui seront tcues dans cette trese.
La premere boucle de commande correspond au probeme dentrdle d'une formation.
Le syseme multi-agents, dans ce cas repesent par un gupe d'AUVs, est egi par une
loi de commande qui utilise les positions des agents et leorgentations, et qui cependt
de paranetres de ekrences externes pour la formationCet algorithme stabilise la
otte vers des formations variant dans le temps. Ces formains suivent des paranetres
de ekrences externes qui e nissent la con guration ®uhaiee, comme son centre,
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Figure B.4 { Contributions de cette trese

par exemple. Par ailleurs, nous avons ceveloppe des algihmes collaboratifs pour
distribuer les \ehicules autour de la formation d'une faon particulere.

La deuxeme boucle de commande est corcue pour atteindrelyjectif nal, la lo-
calisation et le suivi collaboratif d'une source. Les AUVs sbmaintenant consicees
comme un eseau de capteurs mobiles pour obtenir des mesuttun champ scalaire.
Ces mesures seront utilies pour calculer un algorithmestliblte pour ealiser la re-
cherche d'une source. En n, cet algorithme fournit la eérence adequate pour ceplacer
la formation vers la localisation de la source.

Ala n de cette these, nous verrons comment plusieurs ousldu domaine de I'Auto-
matique nous permetent de trouver une solution pour les prbmes discues au cebut
de cette introduction.

B.2 Contréle d'une formation circulaire variant dans
le temps

A n de faire face aux ce s mentionres dans l'introduction, la straegie de contrble
elaboee dans cette these est structuee en trois phase La premereetape se concentre
sur le probeme du contréle d'une formation. Cette sectio traite de la conception des
lois de commande d'une formation pour une otte de \ehicukeautonomes sous-marins.
Une formation est une con guration compose par un groupe dehicules capables de
communiquer, dans lequel les \ehicules collaborent poutt@indre un objectif commun.
Cette premere contribution se concentre sur la conceptiode lois de commande pour
obtenir des formations circulaires.
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Le cercle a plusieurs proprees synetriques ineresantes et sa forme geonetrique
peut &tre simplement caracerisee par son centre et sorayon. Pour cette raison, le mou-
vement circulaire des \ehicules est un sujet tes vastenmé analyse dans la literature.
Il'y a plusieurs approches qui abordent cette question. Pakample, la straktgie col-
laborative appelke poursuite cycliqueetudee dans [95], circumnavigation d'un seul
\ehicule pesene dans [44] ou les mouvements circulas collectifs dans [86].

Sur la base des esultats peedents sur le controle diwe formation circulaireetudes
dans la literature, plusieurs lois de commande sont ceMeppees dans cette section pour
stabiliser une ottille d'agents vers des formations circlaires variant dans le temps.
D'une part, le contrble de convergence de \ehicules vers mouvement circulaire dont
le centre suit une ekrence variant dans le temps est pgene. Dans un second temps,
les agents sont stabilises vers un mouvement circulaire igchange son rayon selon une
ekrence externe. Les deux lois de commande sont anekes en ajoutant une fonction
potentiel a n de distribuer les agents autour de la formatio dans un esprit collaboratif.

B.2.1 Formulation du probéme

Dans cette section, on consicere des formations circulas d'agents autonomes dans
un espacea 2 dimensions. Il est suppo% que les agents m'pas d'extension physique,
c'esta-dire, que leurs positions sont de simples points. Consicerons groupe deN
\ehicules identiques moctlies avec une cirematique nicycle soumise a une simple
contrainte non-holonomique, acequate pour les ehicuke sous-marins, tels que la dy-

namique des agents, ak = 1;:::;N, est & nie par :
Xk = Vk COS (B.1a)
Yk =V Sin g (B.1b)
—+ = Uk (B].C)

@ re = (Xk;Ye)' 2 R? est le vecteur position de l'agenk, , 2 S! est son angle du
cap etvg; Uy sont les variables d'entee de la commande.

L'objectif est de concevoir des straegies de contrble pofaire converger le groupe
d'AUVs, repesent par le syseme (B.1), vers des formatias circulaires, dont les pa-
ranetres, centre et rayon, sont variant dans le temps. Lesybotheses suivantes sont
prises en compte dans la suite pouretablira cette premee contribution :

rapport au syseme de etrence inertiel.

Les ekrences variant dans le temps qui ce nissent les @granetres de la formation
circulaire, c'esta-dire, son centre et son rayon, sont connus par tous les \ehicules
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Chaque \ehicule est capable de communiquer dans une egiatlimiee par
une distance de communication critique . Ce rayon est le méme pour tous les
\ehicules.

Les probemes de communication tels que, le bruit, la pertde paquets et les
celais, ne sont pas consices.
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Figure B.5 { Formulation du probeme de la section B.2

Sous ces hypotleses, cette section pesente des lois denamande pour stabiliser un
groupe de \ehicules vers des mouvements circulaires quivant des ekrences variant
dans le temps, comme le repesente la Figure B.5. De plus, ulgarithme collaboratif
permet de distribuer les \ehicules dans une con guratiorediee autour de la formation.

B.2.2 Translation d'un mouvement circulaire

Sur la base des travaux peedents sur les formations cutaires de multi-agents [86,
118, 149, 150], cette subsection pesente une premerentgbution dans le domaine du
contréle d'une formation et une premereetape pour esudre le probeme de recherche
d'une source.

Le ceplacement d'une formation d'agents est pertinent paucertaines applications
al les agents doivent executer des taches collaboratiseecessitant que la formation
se ceplace vers une direction a priori inconnue. Par exengpldans les applications de
recherche d'une source, la formation est dirigee en suivata direction du gradient
de la source (qui est calcuke en ligne, et impemenee come une boucle externe
suppementaire) [64, 104]. Le probeme de la poursuite deible recessite egalement
de consicerer des formations variant dans le temps. Danstteapplication, les agents
tentent d'entourer la cible. Par consquent, une formatio circulaire dont le centre
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est sitte sur I'objectif, semble particulerement apprgree au probeme du suivi d'une
cible. Certaines approches coogeratives pour atteindreak en utilisant une otte de
\ehicules ontekeetudees dans la literature [80, 1 17]. Par congquent, une formation
circulaire peut etre utile pour suivre la trajectoire d'ure cible variant dans le temps
[85].

Cette subsection pesente une strakgie de contrble deslle sorte qu'un syseme
multi-agent & nie par (B.1) converge vers un mouvement gculaire qui suit un centre
variant dans le temps.A la premere etape, on suppose que le centre cesie vaant
dans le tempsc(t) est une eerence externe donree qui est connue par touss agents
de la formation.

Pour esoudre le probeme de teplacement d'une formatio circulaire, on doit se
concentrer sur les deux questions suivantes :

a) L'anelioration du controéle circulaire peedemment presene dans [118] pour stabi-
liser la otte d'agents vers le méme mouvement circulaireaviant dans le temps.

b) De nir la classe des fonctionsc(t) pour lesquelles le teplacement du mouvement
circulaire est possible.

Introduction d'un nouveau syseme de coordonrees

Nous voulons stabiliser le syseme (B.1) vers un mouvemenirculaire de rayonR et
de centrec(t) variant deans le temps suivant une etrence donree. licke principale
et donc, la principale contribution, consistea exprimeré syseme multi-agents dans
un cadre relatif dont I'origine est le centre cesie variat dans le tempsc = (¢;¢)".
Ce syseme transfornme, dans lequel la position des agengst exprinee par rapport au
centre du cercle, sera stabili vers un mouvement circuda cente sur c et de rayon
R, en se basant sur le contrble d'une formation circulaire psente dans [118].

On consicere que le syseme transforme est une etrece pour le syseme original.
Le syseme transfornme est stabilie vers un mouvement ctulaire xe. Le probeme de
concevoir une loi de commande devient un probeme de suivitee les deux sysemes.
Cette strakgie suit trois phases :

Mogckle de eérence : une relation entre le syseme original (vecteur de positio

de chagque agent) et le syseme de ekrence (vecteur de gition relative) est

cetermiree.

Contréle d'un cercle xe : le syseme de ekrence est stabilie vers un mou-

vement circulaire avec centre xe gracea la loi de commardde [118].

Suivi du moekle : les entees de commande du syseme original sont ce nies
par un proece de suivi de ekrence.
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A n d'exprimer le vecteur position r, de chaque agenk dans le cadre relatif qui
se eplace suivant le centre du mouvement circulaire, le changement de coordonrees
suivant est e ni :

fk =Tk C (BZ)

a f, 2 R? repesente le vecteur de position relative.

La loi de commande de [118] peut &tre appligteea un sysee multi-agent mocelie
par (B.1) avec une vitesse constante, = v. Par congquent, pour appliquer cette loi
de commande circulaire au syseme transforme, exprine a@ns le syseme de etrence
relatif par rapport au centre mobile, la dynamique des postns relatives doit avoir
une vitesse constante. Les agent@rtuels e nis par le syseme transforne convergent
vers un mouvement circulaire avec rayoR = v3! oj a1 ! o 6 0 est la vitesse angulaire.
Ensuite, on impose une vitesse lireaire constanteegakev = Rj! o) au syseme trans-
forme. En consequence, nous imposons au syseme transf@ la dynamique suivantes :

2« =Rj! gjcos (B.3a)
SA( = R]l oj sin K (BSb)
a4 = (B.3c)

al  repesente I'angle d'orientation du veteur position trarsforme 4 = (R« )" .

Le syskeme esultant transforne, est invariant dans le emps car le centre est xe
dans le nouveau cadre de etrence transfornme. Par coaequent, on peut appliquer la loi
de commande pour un mouvement circulair de [118]. L'objet®st donc de contrbler
une otte d'agents ctifs moceliees par (B.3), de telle sorte que ces agents virtuels
convergent vers un mouvement circulaire centea l'origie du syseme de coordonrees
transfornme. La loi de commande suivante garantit que le sgsne (B.3) converge vers
un mouvement circulaire :

0= 4= lo(l+ £5R) (B.4)

Translation d'un mouvement circulaire

Le syseme transforme ¢k ni par (B.2) est consicke comme un syseme de etrence.
La dynamique du syseme de ekrence satisfait (B.3) etd dynamique en boucle fernee
est impose par la loi de commande (B.4). Dans cette situatn, le treoeme suivant
pesente le esultat principal de cette section.

Treoeme B.1  Considerons une fonction deux fois dierentiablec(t) : R! R?, avec
ses premere et seconde cerives borrees. Le rayon du mouvement circulaire cesie est
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repesene par R > 0, les paranetres de contrble sont tels que, 6 0, > 0, > Oet
que la condition suivante est satisfaite :

v >0 (B5)
Alors, la loi de commande

T T
P LA AGAL) ©.60)
k
0 lt+ R (e+ (B + 0)

3
Vi

(B.6b)

Ug =

a £y et 0 sont ¢ nies par (B.3) and (B.4) respectivement, fait converger tous les
agents ce nis par (B.1) vers un mouvement circulair de rayorR, et dont le centre suit
la ekrence variant dans le tempsc(t). La direction de rotation est cetermiree par le
signe de! .

B.2.3 Contraction d'un cercle

Apes le premier esultat concernant la translation d'un mouvement circulaire propose
peecdemment, on consicere aussi le probeme de concew une loi de commande de
telle sorte que le groupe des AUVs forme un cercle dont le centrest xe et dont le
rayon suit une eerence variant dans le tempsR(t). En utilisant la m&me icee que dans
le cas de la translation, cette extensiona la contractiontd'expansion d'une formation
circulaire est letape logique suivante en prenant en contg du fait que les principaux
paranetres d'un cercle sont son centre et son rayon. Une loeccommande similairea
(B.6) est proposee pour ce cas de contraction d'un mouventetirculaire.

B.2.4 Repartition uniforme autour d'une formation circulaire

Les deux lois de contrble peedentess ne prennent pas eonsiceration les contraintes
de communication, car chaque agent converge incependammbesers le mouvement
circulaire cesiee. Par congquent, la disposition degarticules autour du cercle est
arbitraire. En d'autres termes, a n de stabiliser les agesta une formation circulaire
des lois de commande pour la translation et la contraction dent inclure un terme
cooperatif pour distribuer les agents autour du méme cele en suivant un sclema
particulier. En outre, dans le contexte de la recherche d'@nsource avec \ehicules sous-
marins, faire en sorte que les agents soient epartis unifiement le long de la formation
pourrait étre plus appropre pour produire des mouvemerst de recherche e caces.
Consicerer des graphes de communication xes n'est pasafiste car la distance
entre deux agents conneces n'est pas consiceee, [10B11, 130]. Dans le cas de commu-
nication sous-marine, la qualie de la transmission est fiement a ecee par la distance



178 ChapterB. Resun® en frarcais

entre deux agents [155]. Par conequent, dans un se@nasous-marin, il pourrait étre
plus ineressant de consicerer des graphes de communigat cependants de la distance.
Cela signi e que chaque agent peut seulement recevoir deformmations de ses voisins
proches. Ainsi, une egion de communication pour chaque hécule est introduite dans
notre approche. La egion de communication pour n'importeuel agent est & nie par

, qui est la distance de communication critique donree patwes caraceristiques des
dispositifs de communication et de I'environnement des AUV®our la suite, le rayon

celimite une egion de communication circulaire pour chgue \ehicule. Cependant,
nous supposons qu'il existe une communication parfaiteanerieur de cette egion.

Le graphe de communication, qui cepend de la distance, eseintenant variant dans
le temps parce que la position des \ehiculesevolue dansteEmps. En se basant sur la
treorie des graphes, la matrice Laplacienne variant dang tempsL (t) qui correspond
a un graphe de communication cependant de la distance ese diie comme suit :

8
2 di; si k=]
I—k;j = . 1, si krg I’jk (B?)
0 autrement

La formulation de la notation suivante est introduite. La marice Laplacienne
consiceee estL = L 1, a est le produit de Kronecker etly 2 RN N est la
matrice indentie. Le vecteur by = (cosm ;sinm )7 contient les angles d'orien-

syseme transforne.

Le contréle cooperatif pour la translation d'une formaton circulaire avec I'hy-
potlese de communication cependant de la distance est gsente dans le corollaire
suivant :

Corollaire B.1 (Extension de Briron-Arranz et al. 2009 [16]) Considerons une func-
tion deux fois cerivablec(t) : R! R?, avec ses ckrivees, premere et seconde, borrees
et le rayon de la formation cesie estR > 0. Les paranetres de contréle sont tels que
1060, > 0, > 0, etla condition (B.5) est satisfaite. Le graphe de communication
est represent parG(t), L(t) est sa matrice Laplacienne correspondante et le rayon de
communication satisfait :

> 2R smﬁ (B.8)

Donc, la loi de commandgB.6) avec

0= o1t B5fR) &

U( )= &7 B BB,

(B.9)

fait converger tous les agents ¢ nis par(B.1) vers une formation circulaire de rayon
R et de centrec(t) qui est une ekrence variant dans le temps. En outre, pouK > 0,
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la distribution uniforme des agents autour de la formation est le seul point critique de
U( ) exponentiellement stable.

Simulations

La simulation montee dans la Figure B.6, pesente un group de six agents egis par
la loi de commande pour la translation du Corollaire B.1. Leparanetres de controle
sont! o= = =1et K =0:1. Le rayon de la formation circulaire cesie estR = 2
et la eerence du centrec(t) est donree par :

c(t) = (0:2t; 3sin (008)) T

Le rayon de communication essentiel = 3 satisfait la condition (B.8). Par consquent,
les agents sont distribtes uniformement le long du cercle

Figure B.6 { Simulation de six agents egis par la coi de commande du Corollaire B.1
qui suit la eerence du centre de la formation en bleu. Les cercles noirs repesentent
la egion de communication des agents. La gure montre deux moments correspondant
a des instants dierents,a t = 10s la distribution uniforme n'a pas encoreet obtenue
eta t = 50s les agents sont distribtes uniformement autour du cercle.

B.3 Contréle d'une formation ba® sur les transfor-
mations a nes

La section peedente pesente deux contributions dande domaine de contrble d'une
formation : la translation et la misea lechelle (contradion et expansion) d'une forma-
tion circulaire. Méme si ces deuxekments sont fondameéaux pour I'objectif nal, la
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recherche d'une source, il peut étre ineressant de ne passtreindre les lois de com-
mandea des formations circulaires. A n d'exprimer les comtbutions peedentes sous
une forme compacte et en vue detendre ces esultatsa ddsrmations plus complexes
variant dans le temps, un nouveau cadre de travail bag sued transformations a nes
est introduit.

Cette section se concentre sur la conception de nouvelles [de commande d'une
formation utilisant une approche dierente. L'objectif est de cereraliser les lois de
commande peedentes, utilisant des transformations anes. Dans la suite, une nouvelle
loi ererale de commande d'une formation est ceveloppe pour stabiliser un groupe de
\ehicules vers plusieurs types de formations, non plus wquement circulaire, ansi que
des formations variant dans le temps. La con guration de laofmation est & nie
par une matrice de transformation qui est une ektrence duoee et connue par tous
les agents de la otte. En outre, un contrble cooperatif @spevu pour distribuer les
agents uniformement le long de la formation en prenant en oapte des contraintes
de communication. En n, des algorithmes distribtes sont arcus pour aneliorer la loi
de commande d'une formation gererale dans le cas ai la frence du centre de la
formation est inconnu.

Les transformations a nes sont utilies dans les domairede l'informatique et de
la robotique, [2, 70, 72, 107]. Elles sont tes utiles pourednir d'une manere plus simple
les coordonrees d'un robot manipulateur [58] ou pour relide cadre de ekrence local
d'une canera vickoa un autre syseme de coordonrees, ar exemple. En gereral, une
transformation a ne est compose de transformations liraires, tels que la rotation et
I'hnomottetie, et les translations. Puisque une translatn est une transformation a ne,
mais pas une transformation lireaire, les coordonrees hwgenes sont normalement
utilisees pour repesenter l'ogerateur translation par une matrice, et donc, pour le
rendre lireaire.

Les trois principales transformations a nes sont la transhtion, la rotation et I'ho-
mothetie. Pour exprimer ces transformations de facon maicielle, les coordonrees ho-
mogenes sont e nis, voir [56]. Les coordonrees homoges d'un vecteurz = (z; z,)" 2
R? peuvent &tre simplement ce nies comme le nouveau vectew” = (z;z,;1)". Le
vecteur de position de I'agenk en coordonrees homogenes est maintenant ce ni comme
e = (X Vi 1T

De nition de formationelastique

Une formation circulaire dans le plan peut &tre ce nie par tois paranetres, son centre,
son rayon et la vitesse angulaire de rotation. Pour modi eras paranetres, les trans-
formations a nes sont introduites. L'objectif maintenant est de ce nir une formu-

lation matlkematique pour les formations elastiques En considerant les contributions



































































































