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Chapter 1

General Introduction

In today’s industrial society more than 80% of the energy consumed on earth is produced by burning
fossil fuels. However, the progressive exhaustion of fossil fuels and the ecological problems derived require
an important technological progress in order to optimize the combustion processes. In this context of fuel
depletion, growing pollution and global earth warming, this statement is globally recognized. Indeed,
regulations on pollutant emissions recently adopted by many countries oblige a drastic reduction of
emissions and fuel consumption. Many other energy sources, alternatives to combustion, exist such as
nuclear, wind, solar and hydraulic power, biomass, etc. However, in the domain of aeronautical transport,
few other sources of energy other than hydrocarbons start to be considered nowadays. This limited impact
is mainly due to the necessity of a high power/weight ratio that only combustion of liquid fuels can provide
due to their high specific energy content and high volumetric energy density.

Many chemical components are produced during combustion. Some, like H2O or CO2, are intrinsic
to the process itself and cannot be avoided. Some others, like NOx, CO, unburnt hydrocarbons and soot
are also produced when burning hydrocarbon fuels. All these components can be grouped under the term
”pollutant emissions”. In order to reduce the quantity of these species produced during combustion,
several strategies may be adopted. The production of CO2 is directly linked to the quantity of fuel
burnt. For this reason, in order to reduce CO2 production, fuel comsumption must be reduced meaning
that more efficient engines must be designed. The formation of other pollutants is mainly linked to
the combustion mode. High temperature combustion increases the emissions of NOx, lean combustion
promotes the formation of CO and unburnt hydrocarbons. Pureness of the fuel itself has also a direct
impact on particle emissions.

Therefore, an improvement of the combustion process used in current aeronautical engines is necessary
both to increase the efficiency of combustion process and to reduce derived pollutant emissions. For this
reason, many efforts are being invested in research and development of new, more efficient and less
pollutant engines. Numerical simulations have become very important tools in this framework. Indeed,
during the past decades, the advances in computing resources and simulation methods allow sophisticated
simulations at industrial scale (Boileau (2007), Wolf et al. (2010)). This work is situated in this context
since the improvement of the actual techniques can only be achieved through a better comprehension of
the processes and phenomena taking place inside the engines.

1



2 General Introduction

1.1 The Numerical Simulation as a powerful tool

As an illustrative example, Figure 1.1 displays a cut of an aircraft engine showing its main parts. Despite
the specificity of this choice, the same general statements (with some modifications, especially regarding
the configuration and the thermodynamic cycle) may be applied to piston engines and other applications.

Figure 1.1: Mid-plane cut of an aircraft engine. (Source http://web.engr.oregonstate.edu).

The process to generate power is as follows: air enters the engine through the compressor, where the
pressure of the flow is increased. Then it enters the combustion chamber where it is mixed with the liquid
fuel injected in spray form. The spray evaporates, mixes with air and then burns. The exhaust gases exit
the engine through the turbine where the flow energy is transformed into work. The burnt gases may
be diluted with some air to decrease their temperature in order to reduce possible damages to the first
stages of the turbine. From the thermodynamic point of view, three main processes take place (Fig. 1.2):

1. Isentropic compression in the compressor

2. Isobaric combustion in the combustion chamber

3. Isentropic expansion in the turbine

Figure 1.2: Simplified sketch of the thermodynamic cycle of a gas turbine. Source Wikipedia.

In this work, only the processes taking place in the combustion chamber are of interest, and more precisely
the phenomena related to liquid fuel spray. For this reason, the compressor and the turbine will not be
taken into account. Moreover, since the phenomena involving the spray are of a high complexity, the
scope of this work is reduced to non-reactive cases.

In the past decades, Computational Fluid Dynamics (CFD) has become a very powerful tool both in
academic research and industrial applications. On one side, it permits the validation of analytical models
in a simple and fast manner. On the other side, they have partly replaced experiments in the industrial
field for the design of new components. Indeed, simulations are faster and much cheaper than experiments
when complex geometries are taken into account. This is due to the difficulties related to the simultaneous
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characterization of the different phenomena occuring in the flow (such as in two-phase reacting flows)
and to access the flow field in complex geometries. Moreover, it is rather simple to perform parametric
studies using CFD which allows to study the influence of individual parameters on the industrial device
performances.

There are three main strategies regarding CFD simulations:

• Direct Numerical Simulation (DNS), which completely solves flow dynamics up to the smallest
scales, requiring no modeling (i.e. all turbulence scales are explicitly determined), but is compu-
tationally very expensive. Furthermore, when including two-phase flows, it can quickly become
prohibitive and it is certainly not applicable today to real industrial configurations. For this rea-
son, its use is limited to canonical test cases, where it greatly contributes to the understanding and
related modeling efforts of many different types of flows.

• Reynolds Averaged Navier-Stokes (RANS) simulations (Jameson (1991), Lathouwers & Bellan
(2001)), which only solve the mean flow field (Chassaing (2000), Pope (2000)). The balance equa-
tions for mass-weighted averaged quantities are obtained by averaging the instantaneous balance
equations. The average equations require closure models for the turbulent dynamics of the flow.
The greatest advantage of RANS is its low computational cost and the years of research and de-
velopment invested in this approach. However, this approach is not suitable for the simulation of
unsteady or transient flows.

• Large Eddy Simulation (LES) (Smagorinsky (1963), Lilly (1967), Deardorff (1974)), in the middle
between DNS and RANS simulations, solves the largest scales of the flow up to a certain length-scale
and the scales smaller than that are modeled by means of subgrid models. The balance equations are
obtained by spatially filtering the instantaneous equations. The size of this filter determines the size
of the scales that are solved and those that are modeled. This approach provides information about
transient phenomena and is very suitable to perform unsteady flows simulations. Most developments
on LES derive from the study of academic configurations such as Homogeneous Isotropic Turbulence
(Kraichnan (1976), Chasnov (1991)) or turbulent channel flow (Deardorff (1970), Schumann (1975),
Moin & Kim (1982)). However, it has also been used in industrial configurations (Haworth et al.
(2000)). The computational cost of LES is bigger than that of RANS simulations and moderate
compared to DNS (depending on the size of the scales that are solved), but affordable in most cases.
It is in fact a very good compromise between accuracy and computational time.

Nowadays CFD uses DNS for the validation of numerical models in canonical test cases. In real
industrial applications RANS is a suitable approach for the simulation of the compressor and the turbine
in aircraft engines. Due to the unsteady nature of the phenomena occuring in the combustion chamber,
LES is the most suitable approach for the simulations of this part of the engine. In the context of this
work, stress is applied to model validation in a first part. DNS of academic configurations is used to assess
the validity of algebraic models. On a second part, where the application to more complex configurations
is studied, LES is used.
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1.2 The role of the liquid sprays

Many industrial applications involve liquid sprays. Most of them are used for power generation (liq-
uid rocket engines, diesel engines, jet engines, etc.), but there are many other applications involving
droplet/particle laden flows (refrigeration, fluidized beds, etc.). The study of turbulent gaseous flows is a
timely research topic. The study of liquid sprays in turbulent flows is more recent. For this reason, there
is still a long path to propose models for the simulation of two-phase turbulent flows which account for
all the phenomena involved in the dynamics of sprays in turbulent gaseous flows. The lack of experimen-
tal data in industrial configurations at real conditions is an important impediment for the validation of
models and numerical results. This is due to the high complexity of this type of systems. The measuring
techniques used nowadays to perform experiments need further developpement. It is crucial to obtain
simultaneous data on different quantities (related to the gaseous and the dispersed phase) to characterize
the flow. Indeed, two-phase flows include a number of processes involving very different time and length
scales. Simplifications must be done in order to be able to reproduce part of these phenomena. The
characteristic length-scales of an evaporating two-phase flow range from the size of the smallest droplets
of the spray (of the order of a micrometer) to the size of the combustion chamber (of several centimeters).
The characteristic time-scales of the flow depend on the size of the droplet, which has a major impact on
the inertia and the lifetime of the droplets.

Here, a brief overview of the principal processes involving the dispersed phase is provided.

1.2.1 Injection

The injection system represents one of the essential components of the combustion chamber. It provides
the liquid fuel and plays an important part in internal reacting flow aerodynamics. The liquid fuel is
injected in the form of a cylindrical column or a thin liquid sheet that due to an aerodnamic destructive
effect is atomized into a cloud of droplets. The characteristics of this cloud, such as the droplet density
and size, strongly depend on the injection parameters and geometry.

There are many types of injectors. Here, only three types are recalled:

• Rotary atomizers. The liquid flow is forced into a rotating device before entering the combustion
chamber. The rotation velocity of this device determines the size of the droplets that are formed.
These devices can control very tightly the final diameter of the droplets and generate very fine
clouds. However, they are too complex to be employed in aeronautical combustion chambers.

• Airblast atomizers. The shear effect of accelerated air flow parallel to the the fuel injection is
used to atomize the liquid fuel. A complex interaction between the air and the fuel produces the
formation of the droplet cloud. These mechanisms work at low relative speed and high air flow.
The configuratio of the injection streams can be planar or annular.

• Pressure atomizers. The liquid is forced to flow through a small hole by means of a strong pressure
force, generating a conical spray. The inlet can have a planar or annular geometry, combined or not
with a swirl diffusor. The liquid sheet is subjected to strong shear on both sides, which provokes
its disintegration into small droplets.

In aircraft engines, fuel is generally injected by means of pressure swirl atomizers. The characteristics
of the spray pattern highly depends not only on the parameters of the injection device, but also on the
gaseous flow inside the combustion chamber and the properties of the liquid fuel: for example the viscosity
(directly influencing the droplet size) and the fuel volatility (which impacts the vaporization process).
Pressure swirl atomizers and the influence of the different parameters on the resulting droplet cloud have
been extensively studied in the literature (Lefebvre (1989), Taylor (1948), Bayvel & Orzechowski (1993),
Jones & Whitelaw (1982)).
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1.2.2 Atomization

Fuels used in aircraft engines are not volatile enough to be ignited and burnt if the surface in contact with
the oxydizer is not augmented by pulverization. The liquid sheet exiting the injector must be atomized
into a cloud of droplets. The atomization process can be described as the ensemble of mechanisms that
occur in the injection of a high pressure liquid through a small fence. Two different phenomena can
be distinguished in this process: the primary atomization takes place in the region near the orifice, the
secondary atomization usually extends much further.

The mechanisms of liquid sheet disintegration have been widely studied. Several studies focus on
the linear stability analysis of the sheet oscillation by means of Navier-Stokes temporal stability analysis
of liquid sheets injected into still gaseous flow (Squire (1953), Taylor (1959)). These studies conclude
that the atomization process is caused by two types of instabilities (Reitz (1978)) formed in the liquid
sheet interface (sinusoidal antisymmetrical oscillations and symmetrical dilatation instabilities). The
waves caused by the sinusoidal mode are not strong enough to cause the liquid sheet break-up. Rangel
& Sirignano (1991) stated that the sheet may disintegrate following the growth of the amplitude of
the dilatation waves, producing a pinch resulting in the sheet break-up. Very fine liquid ligaments are
formed that suffer further disintegration into droplets of different sizes (secondary breakup). The primary
atomization has been studied experimentally by Stapper & Samuelsen (1990), Marmottant & Villermaux
(2004), Carvalho et al. (2002), Lefebvre (1989) and Lozano et al. (2001) amongst others.

The numerical simulation of the primary atomization process requires the explicit resolution of the
Navier-Stokes (NS) equations for both phases and the coupling between them through jump relations at
the interface. In addition, the position and motion of the interface must be accurately described (Couderc
& J.-L. (2003), Trontin (2009)). DNS of the primary atomization process needs extremely high resolution
meshes since the length scale of the smallest liquid structures can become very small as the liquid ligaments
approach their breakup. In general the mesh size is determined by the smallest droplet diameter. At
least two to five computational cells per droplets are needed (Gorokhovski & Herrmann (2008)). This
feature prevents the numerical simulations of the primary atomization at industrial scale. However, as
small droplets are only present at the periphery of the liquid sheet, mesh adaptation techniques (Berger
(1982), Almgren et al. (1993), Sussman et al. (1999), Zuzio (2010)) can be used in order to reduce the
computational cost. Level-Set (Osher & Fedwik (2003)) and Volume of Fluid (VOF, DeBar (1974))
methods are suitable approaches for this task (Menard et al. (2007)). Desjardins et al. (2008) developped
a Level-Set method combined with high-order implicit transport schemes to preserve mass conservation.
Moreau & Desjardins (2008) implemented a high-order Ghost Fluid method. Both approaches show
accurate results. Due to the large range of length and timescales involved in the process, direct and
detailed numerical predictions of the primary atomization process are computationally very expensive
and not affordable at large scales. Their application is limited in terms of Reynolds number and geometry
complexity. However, RANS and LES approaches for the simulation of the primary atomisation exist
(Beau et al. (2006, Paper 98166), Chesnel (2010)).

Once the liquid sheet has decomposed into fine liquid ligaments, further disintegration occurs and
droplets of different sizes arise due to air entrainment and aerodynamical forces acting on the ligaments.
This process is called secondary breakup. Several regimes, depending on the Weber number, exist. The
Weber number is a dimensionless number relating the aerodynamic forces acting on the droplet and its
surface tension. Those two forces have opposite effects on a droplet: the surface tension stabilizes the
droplet and the aerodynamic force tends to break it. This is a process of high difficulty in terms of
modeling and simulation. Indeed, there are many effects that must be taken into account, such as the
droplet deformations prior to breakup (which modifies the drag force law) and collisions and coalescence
which are predominant in this zone of the spray. Indeed, in the secondary breakup zone, the spray is very
dense, which increases the probability of collision between droplets. Numerical studies of this problem
may rely on different approaches (Fig 1.3 is an example for the case of the atomization of a liquid column).
DNS using an interface tracking method being out of reach for realistic applications, simplifications have
been proposed in literature. Apte et al. (2003a) use a Lagrangian method, neglecting the liquid column
and taking into account secondary breakup only. Rachner et al. (2002) use a Lagrangian method combined
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with modified laws for drag force and models for the column breakup based on empirical correlations.
Finally, a common solution consists on considering the primary atomization as a boundary condition for
the dispersed phase from which a distribution of droplets is directly injected.

Figure 1.3: Schematic of the modeling approaches for a liquid jet-in-cross-flow case. (Extracted from Jaegle
(2009)).
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Figure 1.4 shows a sketch of the main phenomena following the liquid injection. The secondary
atomization produces a cloud of droplets of different sizes. In this zone, far from the injection where the
spray is much denser, the volume fraction of droplets is very small compared to that of the gas phase.
Droplet/particle laden two-phase flows can be classified taking into account the particle volume (αp) and
mass fractions (Mp) of the spray (Fede et al. (2004)):

• αp < 10−4 and Mp < 10−2: very diluted flows. Inter-particle collisions and effects of particles on
the carrier fluid phase can be neglected due to the low inertia of the particles.

• αp < 10−4 and Mp > 10−2: diluted flows. Two-way coupling between the gaseous and the dispersed
phases must be taken into account.

• 10−4 < αp < 10−1: moderately dense sprays. Inter-particle collisions become important in this
type of flows. However, the carrier phase flow remains the main contribution to particle motion

• αp > 10−1: very dense sprays. Inter-particle collisions are the most important contribution to the
particle motion.

This work focuses on the diluted regime zone located after the secondary breakup zone. Only diluted
and very diluted flows are considered. Thus, inter-particle collisions are ignored and one-way or two-
way coupling with the carrier fluid is considered depending on the configuration. In this type of flows,
the principal physical phenomena is the particle dispersion due to the gaseous turbulence. If two-way
coupling is considered, the fluid turbulent energy tends to decrease due to the presence of the dispersed
phase. Note that throughout this work particle phase refers to a dispersed phase composed by solid
particles, liquid phase to a dispersed phase composed by liquid droplets and the term dispersed phase is
used indistinctly for both.

Figure 1.4: Phenomenology of the atomization of a spray. (Source M. Hermann, Summer Program of the CTR,
Stanford).
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1.2.3 Dipersion and Evaporation

In the diluted regime, dispersion and evaporation become predominant. In this case, particle trajectories
are directly influenced by the carrier flow turbulence. However, their response to the gaseous flow depends
also on their inertia. The Stokes number (St) relates the characteristic particle response timescale (τp)
to the characterisitc fluid timescale (τf ), giving a measure of the particle inertia. Very inertial particles
(St >> 1) have trajectories quite independent from the carrier fluid flow. On the contrary, very low
inertial particles (St << 1) quickly respond to changes in the gaseous flow. In industrial applications,
the inertia of the particles varies because their size and mass change due to evaporation and polydispersion
effects. Very different behaviors take place at the same time. When the evaporation timescale of the
droplets (τev) is very short, droplets evaporate very quickly and very few droplets are present far from the
injection zone. If, on the contrary, the droplet lifetime is long, droplets are present further downstream.

The dispersion of particles has been deeply studied. The first studies on particle motion date from
the nineteenth century. Later on, Tchen (1947) and Reeks (1991), amongst others, performed theoretical
analysis of particle dispersion which led to the definition of the main length and time-scales of the
particle motion in gaseous turbulence. Maxey (1987) proposed analytical methods able to predict complex
phenomena such as preferential concentration effects (i.e. cummulation of particles in low-vorticity and
high-strain regions, also called particle segragation (Squires & Eaton (1991a)), Eaton & Fessler (1994))
or particle trajectory crossing (Wells & Stock (1983)), which characterise the interactions of the particles
with the gaseous turbulence. The modulation of the turbulence by the presence of the particles is also a
process of interest. It is often assumed that the carrier fluid flow turbulence is not affected by the presence
of the particles (one-way coupling). This hypothesis is valid in very diluted regime. However, in diluted
regime inverse coupling in not negligible and the effects of the dispersed phase on the fluid turbulence
must be accounted for (Fede et al. (2004)). Turbulence modification due to the presence of particles has
been widely studied in particle-laden Homogeneous Isotropic Turbulence (HIT) flows (Squires & Eaton
(1990), Elghobashi & Truesdell (1993) (accounting for two-way coupling), Boivin et al. (1998) (using
DNS of the gaseous phase), Sundaram & Collins (1999)) and mean sheared configurations (Vermorel
et al. (2003), Vermorel (2003)).

Particle dipersion in gaseous turbulence has been widely studied experimentally (Snyder & Lumley
(1971)) and numerically (Squires & Eaton (1991a), Deutsch (1992), Mei et al. (1991) (accounting for
Basset force and gravity settling effects), Laviéille (1997) (taking into account interparticle collisions),
Elghobashi & Truesdell (1992) (using DNS) and Boivin et al. (2000) (using LES and accounting for
two-way coupling) in HIT, Reeks (1993) in simple shear flows, Simonin (1991) in particle-laden jets,
Vance et al. (2006), Wang & Pletcher (1996) (using LES), Yamamoto et al. (2001) (in vertical channel
configuration using LES and accounting for collisions) in particle-laden turbulent channel flows, Apte
et al. (2003a) in swirling flows, etc).

Regarding the vaporization process many models exist. Models are mainly based on empirical results
on single isolated droplets, which have been modified to include the effects of neighbouring droplets, con-
vection, multicomponent fuels, etc. (cf Part III). Many parameters have an influence on the vaporization
process. Indeed, the characteristics of the fuel, the spray and the carrier flow play an important role and
directly influence the evaporation of droplets inside the combustion chamber. An exhaustive review of
the theoretical models for droplet vaporization can be found in Sazhin (2006) or in classical textbooks
such as Sirignano (1999), Kuo (2005) or Williams (1985).

Experimental studies on droplet vaporization are often performed on isolated droplets, taking into
account or not the effects of convection (Wong & Lin (1992)), radiation, heat conduction through the
support fiber (Yang & Wong (2002), Chauveau et al. (2008)), multicomponent fuels (Ghassemi et al.
(2006)) and for high pressure and temperature (Matlosz et al. (1972), Kadota & Hiroyasu (1976), Nomura
et al. (1996) Morin et al. (2004)).

From the numerical point of view, the effect of ambient gas and fuel properties has been studied by
Hubbard et al. (1975). Yang & Chang (2001) performed a numerical study on the effects of the heat
conduction through the support fiber and the radiation of the furnace in the experiments of Nomura
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et al. (1996).

Evaporation has an important effect on the dispersion of particles in turbulent flows. Albrecht et al.
(1999) studied the dispersion of evaporating droplets in HIT flow, Réveillon & Vervisch (2004) studied
the dispersion of evaporating droplets in turbulent flows taking into account polydispersion effects.

1.2.4 Combustion of droplets

The combustion process considered often involves chemical reactions that only take place in the gaseous
phase (Williams (1971)). Thus, the evaporation of liquid fuel droplets is a necessary step for the combus-
tion to take place. However, two main types of combustion exist: single-phase combustion and two-phase
combustion. These two regimes depend on the ratio between the characteristic evaporation time and the
convection time of the carrier phase. When the characteristic evaporation time of the droplets is very
small compared to the convection time, the droplets completely evaporate before reaching the flame front.
Combustion taking place in the single-phase regime, it only depends on the gaseous fuel repartition in
the chamber. The gaseous fuel field will however depend on the characteristics of the evaporation process
and the dispersion of the droplets. On the other hand, when the evaporation time is longer than the con-
vection time, flame and spray are coupled. The droplets may reach the flame front and the characteristics
of the flame strongly depends on the spray parameters.

Isolated droplet combustion studies can be found in the work of Godsave (1953)

Numerical results obtained using DNS of sprays in different combustion regimes provide an extra
classification of the phenomena coupling spray and reaction (Réveillon & Vervisch (2005)). Two-phase
flow combustion has different characteristics than gaseous phase combustion. The characteristics of the
flame are modified due to the presence of liquid droplets and strongly depend on the quantity of fuel
that has been evaporated before reaching the flame front. Indeed, the gaseous field is modified by the
presence of droplets upstream from the flame which may lead to flame instabilities. Note also that the
evaporation rate depends, amongst other things, on the concentration of droplets. This may create zones
of very high concentration of gaseous fuel and very lean zones too. The mixing is then different from the
case where gaseous fuel is directly injected into the chamber.

Furthermore, if the droplets reach the flame front, the evaporation and combustion zones overlap,
leading to different combustion regimes. Réveillon & Vervisch (2005) give a symmetric description of the
spray flame structures that is recalled here. They classify the different modes depending on a dimen-
sionless number, G, which is the ratio between the droplet evaporation rate and the diffusion rate of hot
gases within the droplet cloud. When convection is more important than diffusion, G is approximated as
follows:

G ≈ 5N
2

3

p

S
(1.1)

where Np is the number of droplets in the cloud and S is a mean doplet spacing parameter linking the
characteristic average distance between droplets to the diffusion flame radius.

For large G numbers, the spray is very dense and diffusion inside the cloud is low, only the droplets
located at the periphery of the cloud evaporate. The flame enveloppes the whole cloud of droplets. It is
referred to as external sheath combustion. For diluted spray regimes, where G << 1 droplets are far from
each other and the evaporation rate increases due to hot gases diffusion. Separated flames surround each
droplet, which burn individually. Intermediate regimes exist between these two extremes: for G numbers
slightly larger than one, the flame surrounds the whole cloud of droplets but hot gases diffusion is high
enough, thus the droplets in the center of the cloud vaporize. When G < 1, the center of the cloud burns
in an external combustion regime and the droplets located at the periphery burn in an isolated manner.
Figure 1.5, taken from Réveillon & Vervisch (2005), illustrates four distinct modes of spray combustion
regimes depending on G.
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Figure 1.5: Classification of different spray combustion regimes. Extracted from Réveillon & Vervisch (2005).

Borghi (1996a) and Borghi & Champion (2000) propose another classification based on the charac-
teristic evaporation time τev, the characteristic time of the flame τf and the flame thickness δf . When
τev << τf , droplets evaporate in the preheating zone upstream from the flame which burns in a premixed
regime. In this case, spray characteristics fluctuations may lead to partially-premixed flames. When
the evaporation time is longer than the flame characteristic timescale, two distinct regimes are possible
depending on the ration between the flame thickness and the droplet flame radius. If the radius of the
flame surrounding the droplets is small compared to the flame thickness, burning droplets cross the flame
front and burn in a secondary reaction zone. On the contrary, for flame thicknesses smaller than the
radius of the flame surrounding the droplet, the presence of the last modify the behavior of the flame
front, thicknening it. This classification does not take into account turbulence effects and equivalence
ratio variations. Réveillon & Vervisch (2005) provide a different classification based on numerical results
of two-dimensional spray flames in counterflow:

• External combustion regime: in a case of low equivalence ratio, the premixed flame consumes the
totality of the fuel (liquid and gaseous). When the equivalence ratio is high, the fuel burns in
diffusion regime.

• Group combustion regime: droplet clusters individually burn on rich premixed flames ussually
followed by diffusion flames.

• Hybrid combustion regime: intermediate conditions between the external and the group combustion
regimes.

Reviews on droplet and spray combustion can be found in Faeth (1983), Faeth (1987), Law (1982) or
Sirignano (1983).

1.2.5 Numerical simulation of sprays

Two-phase flows involve complex physical phenomena, such as liquid-gas, or liquid-surface interactions,
atomization process, droplet dynamics and heat and mass transfer. Up to date, no analytical treatment
exist for a general representation of the complete set of processes involving particle/droplet laden flows.
Therefore, numerical modeling and simulations have been increasingly employed. Numerical simulations
are often preferred over experiments because they can usually be carried out faster due to a shorter
lead-time and with less expense. Aditionally, control is easier and they can be used to study a much
wider range of conditions, some of which are physically inaccesible (Liu (2000)). DNS of two-phase flows
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are not accesible for realistic configurations. Indeed, a direct simulation of the dispersed phase implies
the resolution of the flow field around each individual droplet and, in the case of liquid droplets, inside
the droplet too. In realistic configurations, where evaporation of liquid sprays is usually accounted for,
droplets can reach very small sizes (less than a micrometer), which need very fine computational grids.
The computational cost related is very high, both in time and memory requirements. Therefore, DNS of
two-phase flows is limited to canonical test cases in academical research. However, several options for the
modelisation of the dispersed phase exist. They can be coupled with DNS or LES of the gaseous phase.
An exhaustive review on LES approaches for the dispersed phase can be found in Fox (2012).

In this work, two modeling frameworks to simulate sprays in diluted regimes are used. The develop-
ments presented in this work concern the Euler-Euler approach. The Euler-Lagrange approach is used
for validation when no experimental data are available:

• In the Lagrangian approach (Sankaran & Menon (2002), Apte et al. (2003a)), the individual tra-
jectory of each particle is tracked in its own frame of reference. Droplets are treated through the
point source approximation and their trajectories are evaluated through force balance at each point
(Maxey & Patel (2001)). The carrier fluid flow is usually computed by solving the Navier-Stokes
(NS) equations. In the Lagrangian computations, the location of the discrete particle not neces-
sarily coincide with the computational grid. Therefore, in order to account for coupling between
the gaseous and the dispersed phases, the properties of the carrier fluid must be interpolated at
the location of the droplet or particle. An accurate numerical algorithm is needed for this task,
which increases the numerical complexity of this method. Moreover, the difficulty increases when
the gaseous flow is computed with a LES approach, since not all the scales of the carrier phase
are resolved, and the effects of the unresolved scales on the particle motion must be taken into
account (Dukowicz (1980)). On the other hand, polydispersity can easily be accounted for. The
Lagrangian methods may become computationally very expensive when the number of particles to
be followed increases. However, physical particles can be substituted by numerical particles repre-
senting a cluster of various real particles, which reduces the computational cost. On the other hand,
parallelization tasks must be carefully handled, since in configurations where particle cummulation
takes place (e.g. zones close to the injector), a bad load balance between processors takes place, for
which adapted partitioning algorithms should be used (Garćıa (2009)).

• Another alternative approach is the Eulerian method, which considers both phases (the carrier
and the dispersed phase) as continuum and captures only averaged quantities of the dispersed
phase (Ferry & Balachandar (2002)). Depending on the formalismm used, the spray properties
are averaged in a volumetric (Whitaker (1999)) or ensemble (Zhang & Prosperetti (1994), Simonin
(1991)) sense and calculated through the evolution of a probability density function (pdf) equation.
In general, the dispersed phase is solved using a set of conservation equations for the moments
of the pdf equation. Accounting for polydispersity is less obvious in this case. However, it may
be reproduced by discretizing the droplet size distribution leading the so called sectional methods
(Greenberg et al. (1993), Laurent et al. (2004), Vié (2010)); a complete set of transport equations
is solved for each section, which increases the computational cost and the complexity due to the
exchanges between each section when phenomena such as evaporation are taken into account.

Both methods have advantages and drawbacks. Table 1.1 displays a non-exhaustive comparison between
both approaches. Here, the supplementary modeling effort and the special treatment for particle trajec-
tory crossing (PTC) are stressed. Indeed, the Mesoscopic Eulerian Formalism (MEF) used in this work
needs closure for some terms appearing in the transport equations for the dispersed phase. These terms
are linked to the modelisation of PTC related phenomena. On the same way, the coupling terms between
phases, such as drag force and evaporation source terms also need modeling.

The CFD code used in this work, AVBP, has two different solvers for the dispersed phase, a Lagrangian
one and an Eulerian one. Here, only the Eulerian solver is used. It is based on the Mesoscopic Eulerian
Formalism (MEF, Février et al. (2005)) defined in Chapter 2. The basic idea is the distinction between
two different contributions in the particle velocity: an ensemble velocity, shared by all the particles
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Euler-Euler Euler-Lagrange

Advantages
⊕ Numerical straightforward treatment of ⊕ Numerically straightforward modeling of
dense zones. particle movements and interations.
⊕ Similarity with gaseous equations. ⊕ Robust and accurate if enough particles

are used.
⊕ Direct transport of Eulerian quantities. ⊕ Size distributions are easy to describe.
⊕ Similarity with gaseous computer paralelism ⊕ Numerically straightforward to implement

physical phenomena (e.g heat and mass
transfer, wall-particle interaction).

Drawbacks
⊖ Difficult description of polydispersion. ⊖ Delicate coupling with combustion.
⊖ Difficulty of droplet crossing treatment. ⊖ Difficult parallel implementation.
⊖ Limitation of the method in very diluted ⊖ CPU time spent in locating particles
zones. on unstructured grids.

Table 1.1: Advantages and drawbacks of Euler-Euler and Euler-Lagrange approches. Extracted from Garćıa
(2009).

and an uncorrelated part, which is specific to each individual particle. Due to the contribution of the
uncorrelated part of the particle velocity field, unclosed terms appear in the transport equations for the
dispersed phase. These terms are closed by means of algebraic models.

1.3 Objectives of the present work

This thesis has been supported by CERFACS (Centre Européen de Recherche et Formation Avancée en
Calcul Scientifique) and the European Union in the framework of the MYPLANET project (Massively
Parallel Computations of Combustion and Emission Simulations) in an initiative to train a new generation
of engineers in the field of high performance computing applied to the numerical combustion simulation,
energy conversion processes and related atmospheric pollution issues.

This work proposes to improve the modeling of the dispersion and evaporation phenomena for diluted
regimes oriented to the pre-vaporised combustion of sprays on industrial aeronautical chambers. Several
models are implemented in the AVBP code, dedicated to LES in complex geometries and tested on
academic and semi-industrial configurations. The results obtained are compared with reference data
(either Lagrangian simulations or experimental measurements) in order to assess the validity of the
models.

Combustion, both purely gaseous as well as spray combustion, is out of the scope of this study. This
brief overview of the main phenomena related to the dispersed phase in aeronautical combustion chambers
helps limiting the phenomena adressed in this work. Figure 1.6 displays a sketch of the processes followed
by the dispersed phase after the injection of the fuel in the combustion chamber. Here, only the dispersion
and the evaporation of droplets in non-reactive flows are taken into account.

Section 1.3.1 briefly recalls the previous developements performed on dispersed phase modeling with
the MEF for the Eulerian approach. Section 1.3.2 presents the global outline of this manuscript.

1.3.1 Previous developments

The main tool used during this work is the code AVBP. This finite-volume and finite-element unstructured
hybrid solver has been jointly developped by CERFACS and IFP-EN (Institut Francais du Pétrole -
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Figure 1.6: Sketch of the principal phenomena related to the dispersed phase in combustion chambers.

Energies Nouvelles) over the last 20 years. AVBP is a massively parallel code that explicitely solves both
DNS and LES Navier-Stokes equations in compressible form. It is based on the cell-vertex approach
(Schønfeld & Poinsot (1999)). High-order numerical schemes and characteristics boundary conditions
(Poinsot & Lele (1992)) are available. More information on AVBP can be found in Lamarque (2007).

Several studies involving the MEF for Eulerian approach for the simulation of two-phase flows have
been conducted until now. Février et al. (2005) introduced the MEF that allows the simulation of
the dispersed phase coupled with DNS or LES of the gaseous phase. Closure models for the transport
equations for the dispersed phase were firstly proposed by Simonin (2002) and Kaufmann et al. (2005).
Kaufmann (2004) implemented the MEF in AVBP and performed the first numerical simulations in
particle-laden HIT using DNS for the simulation of the carrier fluid flow. Validation of the implementation
was performed through comparisons with reference data from Lagrangian computations. Moreau (2006)
and Riber (2007) extended the MEF, until that time available only in the context of DNS, to LES. Closure
models for the subgrid-scale terms were a priori developped in the particle-laden decaying HIT (already
studied by Kaufmann (2004)) and Moreau (2006) and a posteriori validated in the same configuration by
Riber (2007). Riber (2007) alse performed studies on more complex configurations (Hishida et al. (1987),
Borée et al. (2001)). Mossa (2005) extended the MEF in order to take into account polydispersion.
The MEF has also been employed in industrial configurations taking into account gaseous combustion
(Pascaud (2006)). Boileau (2007) demonstrated the capability of this approach to simulate complex
industrial configurations in real conditions presenting a LES of the two-phase reacting flow of a complete
helicopter annular combustion chamber. Sanjosé (2009) implemented the FIM-UR methodology for the
modelisation of the spray injection. Roux et al. (2009) developped new numerical schemes more adapted
to the simulation of the dispersed phase. Masi (2010) recently proposed new algebraic equations for the
modelisation of the unclosed terms appearing in the transport equations of the dispersed phase for DNS
and LES and for the modelisation of the uncorrelated part of the particle temperature field from a priori
simulations of a mean-sheared particle-laden flow (Vermorel (2003)). Vié (2010) included the possibility
of taking into account polydispersion effects using a multi-section method. Recently Dombard (2011)
studied the effects of the uncorrelated motion in anisothermal mean-sheared configurations.

The MEF is currently used for the simulation of reactive flows in complex geometries. Polydispersion
effects can be accounted for. However, spray combustion is not taken into account and reactions occur
only in the gaseous phase. Regarding the modelisation of the unclosed terms related to the uncorrelated
motion (RUM, Février et al. (2005)), only one model (Simonin et al. (2001)) has been tested until now
in complex geometries. The studies performed on particle-laden HIT showed that the RUM must be
taken into account when low and high inertia particles are simulated. Otherwise, the simulation is
numerically unstable. However, the viscosity-type model proposed by Simonin et al. (2001) based on a
local-equilibrium assumption, leads to a re-laminarization of the dispersed phase flow in configurations
with mean-shear (Riber (2007)). Several studies have revealed the importance of the mesh resolution in
dispersed phase simulations. Indeed, a high resolution is needed in order to capture phenomena such
as the preferential concentration. Eulerian simulations of complex geometries not accounting for the
RUM show accurate mean particle velocity distributions but lead to an underestimation of the velocity
fluctuations.
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1.3.2 Plan of the manuscript

This work is organized as follows:

• Part I describes the governing equations for both the gaseous and the liquid phases in the context of
non-reactive two-phase flows. Chapter 2 presents the Navier-Stokes (NS) equations for the gaseous
phase in DNS as well as the equations for the dispersed phase in the Euler-Lagrange and the Euler-
Euler approaches. The Mesoscopic Eulerian Formalism is presented and the transport equations
and coupling terms with the gas phase described.

Chapter 3 presents the concept of LES and briefly describes the filtering process underneath the
approach. It presents the filtered governing equations for the gas and the dispersed phases. The
WALE model for gaseous phase and the filtered equations for the dispersed phase (Moreau (2006))
used for the simulation of the MERCATO configuration in Part IV are summarized.

• Part II is dedicated to the analysis and validation of different closure models for the deviatoric part
of the RUM stress tensor. First, Chapter 4 presents the different models (Masi (2010)) retained for
their evaluation in AVBP. These models have been proposed by Masi (2010) during her thesis per-
formed at IMFT (Institut de Mécanique de Fluides de Toulouse). Masi developped several closure
models and performed an a priori analysis in the configuration of a particle-laden slab (Vermorel
(2003)). Nine out of the eleven models developped by Masi along with the classic viscosity-type
model already implemented in AVBP (Simonin et al. (2001)) have been implemented in AVBP and
a posteriori validated against the Euler-Lagrange results of Masi (2010) in the same configuration
(Fig. 1.7). A classification of the models following two criteria (the order of the model and the
characteristic time scale used) as proposed by Masi (2010) is provided.

Chapter 5 presents the results obtained for the configuration of Fig. 1.7. This academic configuration
aims at being representative of the phenomena encountered in a hollow-cone type spray injection,
where the liquid fuel droplets are subject to very strong shear due to the effect of air entrainment.
Two different levels of turbulence and three levels of particle inertia have been tested. The models
have been evaluated using the same numerical setup in order to simplify the comparisons. Low-
order and high-order statistics have been compared as well as instantaneous fields of the droplet
number density, droplet velocity and Random Uncorrelated Energy (RUE). The results obtained
distinguish one model as the one giving the best performances (2ΦEASM3). This model has been
retained for the simulation of the configuration presented in Part IV.

Figure 1.7: Sketch of the case studied in Part II corresponding to the configuration initialy studied by Vermorel
(2003).

• Part III focuses on the development of a new model for the simulation of the evaporation process
of liquid fuel droplets. This part is motivated by the recent publication of experimental results on
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isolated droplet evaporation (Chauveau et al. (2008)) which are very different from the classical
results (Nomura et al. (1996).

Chapter 6 proposed a classification of the different evaporation models and introduces the assump-
tions employed in the model implemented in AVBP. The equations used for the calculation of the
main thermodynamic and transport properties are presented. A comparison between simulations
performed with two different calculations of the transport and thermodynamic properties (as previ-
ously done by Sanjosé (2009)) allowed the identification of the parameters having a major influence
on the process. Taking this into account, a new approach for the simulation of the evaporation
process is proposed. Chapter 7 shows the results obtained with the classical approach implemented
in AVBP and the new approach for both the Spalding and the Abramzon-Sirignano models for the
evaporation of single isolated droplets. The results are presented for two fuels for a wide range of
conditions (temperature and pressure).

• Finally, Part IV presents the simulations performed in the MERCATO configuration (Fig. 1.8) in
order to assess the applicability of RUM and evaporation models to complex configurations. The
MERCATO test rig is a semi-industrial configuration used for the study of spray autoignition at
high altitude conditions. Four cases are presented, they are issued by the combination between two
evaporation approaches and two RUM strategies (noRUM, which does not take into account the
RUM contribution and 2ΦEASM3 model). The mean and instantaneous gaseous and liquid fields
are studied. Both the gaseous and the liquid mean and root mean sqaure (RMS) velocity profiles
are analyzed, as well as the mean and RMS droplet diameter profiles. Particle velocity fields are
validated against the experimental data of Garćıa-Rosa (2008). For those quantities such as the
particle volume fraction, for which experimental data is not available, comparison with the classical
models implemented in AVBP are performed. The effects of the evaporation approach and the
RUM model are assessed separately.

Figure 1.8: Sketch of the MERCATO configuration studied in Part IV. Extracted from Senoner (2010).

• Chapter presents the main conclusions obtained and proposes new paths for the continuation of
this work.

• The Appendices include additional data which may be useful for a deeper analysis of the RUM
models but have not been included in the manuscript itself for the sake of simplicity.
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Part I

Equations and models for turbulent
two-phase flows
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Chapter 2

Transport equations for dispersed
two-phase flows

This part aims at describing the compressible Navier-Stokes (NS) equations as found in many text
books (Anderson (1990), Hirsch (2007)). Section 2.1 presents the NS equations for the gaseous phase.
Reactive terms are not be considered as combustion is not studied in this work. Section 2.2 presents
the conservation equations for the dispersed phase, both in the Euler-Lagrange (EL) and in the Euler-
Euler (EE) frameworks as implemented in AVBP. The implementation retained in AVBP is based on the
Mesoscopic Eulerian Formalism (MEF) for the Euler-Euler framework. It is described in Section 2.2.4. As
comparisons with the Euler-Lagrange approach are needed for validation and assessment of the Eulerian
closure models, the Euler-Lagrange approach is briefly described in Section 2.2.2. Coupling terms between
both phases which are common to both formalismsare finally described in Section 2.3.

2.1 Conservation equations for compressible gaseous flows

Assuming no chemical reaction, one may write the set of conservation equations that describes a com-
pressible gas flow as follows:

∂

∂t
ρk +

∂

∂xj
ρkug,j = − ∂

∂xj
Jj,k (2.1)

∂

∂t
ρgug,i +

∂

∂xj
ρgug,iug,j = − ∂

∂xj
[Pgδij − τg,ij ] (2.2)

∂

∂t
ρgEg +

∂

∂xj
ρgEgug,j = − ∂

∂xj
[ug,i(Pgδij − τg,ij) + qg,j ] . (2.3)

Equations (2.1) - (2.3) describe the conservation laws for species, momentum and total energy respec-
tively, where ρk is the density of each species k composing the gaseous mixture (ρk = ρgYk, Tk is the

mass fraction of species k), ρg is the gaseous mixture density (ρg =
∑N

k=1 ρk), Jj,k is the mass diffusive
flux of species k (Eq. (2.26)), ug,i is the i− th component of the gaseous velocity, Eg denotes the gaseous
total non-chemical energy, τg,ij denotes the viscous stress tensor and qg,j is the diffusive heat flux vector

(Eq. (2.27)). The species conservation imposes
∑N

k=1 Yk = 1.

This set of equations can be written in compressed form:

∂

∂t
w + ∇·F = sl−g, (2.4)
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where w = (ρk, ρgug,i, ρgEg)
T is the vector of conservative variables, F is the flux tensor and sl−g is the

source term vector due to the influence of the dispersed phase on the gaseous phase. The flux tensor can
be decomposed into an inviscid FI and a viscous FV part which read:

FI =




ρkug,j

ρgug,iug,j + Pgδij

(ρgEg + Pgδij)ug,j



 , FV =




Jj,k

−τg,ij

−(ug,iτg,ij) + qg,j



 . (2.5)

The hydrostatic pressure (Pg) is determined by the equation of state for perfect gases:

Pg = ρg
R
Wg

Tg (2.6)

where R = 8.3143J/(mol · K) is the universal gas constant, Wg is the molecular weight of the gaseous
mixture and Tg its temperature. The gaseous phase is usually composed by multiple species. It is
considered as a perfect mixture of N perfect gases, whose state is defined by Eq. (2.6), where, Wg is the
molecular weight of the mixture:

1

Wg
=

N∑

k=1

Yk

Wk
. (2.7)

The set of equations Eqs. (2.1) - (2.3) are closed provided the viscous flux tensor is modeled. In
practical situations, all fluids are assumed to be Newtonian, so the stress tensor is given by a Newton
law (Eq. (2.8)):

τg,ij = 2µg

(
Sg,ij −

1

3
δijSg,ll

)
, (2.8)

where µg is the dynamic viscosity of the gaseous mixture. Sg,ij is the gaseous rate-of-strain tensor:

Sg,ij =
1

2

(
∂ug,j

∂xi
− ∂ug,i

∂xj

)
. (2.9)

2.1.1 Thermodynamical laws for the gaseous phase

The thermodynamical properties of the gaseous mixture are calculated as a mass average of the properties
of each individual species. Thus, the mixture constant r and the heat capacities at constant pressure or
volume depend on the local composition of the mixture and are written as follows:

r =
R
Wg

=

N∑

k=1

R Yk

Wk
=

N∑

k=1

Ykrk, (2.10)

Cp =

N∑

k=1

YkCp,k, (2.11)

Cv =

N∑

k=1

YkCv,k. (2.12)

For the sake of clarity, the subscript g for the gas phase has been omitted; the superscript m denotes
molar quantities.

In AVBP, the thermodynamical properties (sensible enthalpy hs,k and sensible entropy sk) are tab-
ulated for each species. The tables include values from 0K to 5000K every 100K. They are referenced
at T0 = 0K and 1bar. The values in the tables are extracted from the JANAF tables (Stull & Prophet



Transport equations for dispersed two-phase flows 21

(1971)). The sensible enthalpy of each species is calculated from the tabulated values as in Eq. (2.13), as
well as the sensible entropy as in Eq. (2.14). Finally the sensible energy is calculated using Eq. (2.15).

hs,k(T ) =

∫ T

T0

Cp,k dT =
hm

s,k(T ) − hm
s,k(T0)

Wk
, (2.13)

sk(T ) =
sm

k (T ) − sm
k (T0)

Wk
, (2.14)

es,k(T ) =

∫ T

T0

Cv,k dT = hs,k(T ) − rkT. (2.15)

The sensible enthalpy (hs) and sensible energy (es) are defined as follows:

hs =

N∑

k=1

Ykhs,k, (2.16)

es =

N∑

k=1

Ykes,k. (2.17)

The heat capacities are considered as constant on each interval of 100K corresponding to the gap
between two consecutive values in the tables. They are evaluated as:

Cp,k =
∂hs,k

∂T
, Cv,k =

∂es,k

∂T
. (2.18)

2.1.2 Transport laws for the gaseous phase

In gaseous flow, there are two main mechanisms involving diffusion: the molecular diffusion due to local
differences in composition, and the heat diffusion due to local differences in temperature.

Diffusion coefficients for mass and heat transport

Molecular and heat diffusion laws depend on several transport properties, such as the dynamic viscosity
of the mixture (µg), its thermal conductivity (λg) or the diffusion coefficient of species k in the mixture
(Dk).

The dynamic viscosity is assumed independent of the composition. It is calculated using a Power law
which takes into account the variations of temperature. µref and Tref are the reference viscosity and
temperature whereas b is the Power law exponent:

µg = µref

(
T

Tref

)b

. (2.19)

The thermal conductivity of the mixture is evaluated assuming a constant value for the Prandtl
number (Pr), it depends on the dynamic viscosity and the heat capacity of the mixture:

λg =
µgCp

Pr
. (2.20)

The Prandlt number is a dimensionless number representing the ratio of momentum diffusivity to thermal
diffusivity:

Pr =
ν

α
=

viscous diffusion rate

thermal diffusion rate
. (2.21)
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The molecular diffusion of each species k into the mixture is calculated assuming that the Schmidt
number of each species (Sck) is constant; it depends on the dynamic viscosity and the density of the
mixture:

Dk =
µg

ρgSck
. (2.22)

The Schmidt number is a dimensionless number representing the ratio of momentum diffusivity and mass
diffusivity. It relates the relative thickness of the hydrodynamic layer and the mass-transfer boundary
layer:

Sck =
νk

Dk
=

viscous diffusion rate

molecular diffusion rate
. (2.23)

Mass transport law

When the gaseous phase is composed of several species, the conservation equation (2.24) must be satisfied.
The species diffusion velocity Vk,i is approximated by the Hirschfelder-Curtis relation (Hirsch (1990)):

YkVk,i = −Dk
Wk

W
∂Xk

∂xi
, (2.24)

where Dk is the diffusion coefficient of the species k into the mixture given by Eq. (2.22). This approxi-
mation does not ensure the conservation of total mass for mixtures composed of more than two species.
A correction velocity V c

i is thus introduced to ensure mass conservation (Poinsot & Veynante (2005)):

V c
i =

N∑

k=1

Dk
Wk

W
∂Xk

∂xi
. (2.25)

The diffusive flux taking into account this correction reads:

Ji,k = −ρg

(
Dk

Wk

W
∂Xk

∂xi
− YkV c

i

)
. (2.26)

Heat transport law

The total heat flux q is composed of two contributions: the conductive heat flux and the heat flux through
species diffusion. The conductive heat flux is modeled by Fourier’s law. λg is the thermal conductivity
of the mixture given by Eq. (2.20):

qi = −λg
∂T

∂xi
+

N∑

k=1

Ji,khs,k. (2.27)

2.2 Conservation equations for the dispersed phase

While the gaseous phase is usually described as a continuum iwith an Eulerian approach, there are
different approaches for the description of the dispersed phase. Recently, Fox (2012) has provided a
classification of the different approaches for the DNS of two-phase flows (Fig. 2.1).

Two main frameworks for the simulation of the dispersed phase are used in this work: the Euler-
Lagrange approach and the so-called Mesoscopic Eulerian Formalism (MEF). Whatever the approach
used, to describe the behavior of droplets or particles in a gaseous flow, the first step os to determine
the forces acting on them (Section 2.2.1). Generally, then the conservation equations taking into account
those forces can be written. Section 2.2.2 briefly describes the Euler-Lagrange approach, introducing the
quantities of interest for this work. Section 2.2.3 positions the MEF among the multiple Euler-Euler
approaches. Finally, Section 2.2.4 describes the MEF itself and the transport equations which will be
solved.
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Figure 2.1: Classification of modeling approaches for DNS of two-phase flows. Extracted from Fox (2012).

2.2.1 Review of forces acting on an isolated particle

The first descriptions of the forces acting on an isolated particle date from the end of the 19th century.
Boussinesq (1885), Basset (1888) and Oseen (1927) studied the settling motion of particles in a quiescent
flow due to the action of gravity. However, it was Tchen (1947) who applied their conclusions to particles
in turbulent flows for the first time. He extended their work to the motion of rigid spherical particles
in Homogeneous Isotropic Turbulence (HIT). Tchen took into account the main forces described by
Boussinesq, Basset and Oseen, namely the Stokes drag, the pressure gradient force, the added mass, the
Basset force and the lift force. More recently, the work of Tchen has been revisited by Maxey & Riley
(1983). They considered isolated rigid spherical particles, with constant diameter dp and density ρp.

The kinematic equation for a particle that translates at velocity (rotation is excluded) vp,i reads:

d

dt
xp,i = vp,i. (2.28)

The momentum conservation equation is written as:

mp
d

dt
vp,i = Fp,i = Fu

p,i + F p
p,i. (2.29)

The total force Fp,i is the sum of two contributions: Fu
p,i is the force that would act on a fluid

particle occupying the position of the particle; F p
p,i denotes the force exerted upon the particle due to the

perturbation of the fluid velocity fields caused by the presence of the particle.

It is assumed that the particle diameter is small compared to the smallest scales of the fluid motion
(the Kolmogorov scale ηk in a turbulent flow as described in Chapter 3):

dp ≪ ηk , (2.30)

and a small particle Reynolds number Rep which reads:

Rep =
dp|uf@p − vp|

νg
, (2.31)

where νg stands for the gaseous kinematic viscosity.

The term Fu
p,i assumes that the forces due to pressure and viscous stress, that would have acted on a

fluid particle occupying the volume where the particle is actually located, are transmitted to the particle.
Maxey & Riley (1983) and Gatignol (1983) suggest:

Fu
p,i =

πd3
p

6

[
ρg

D

Dt
uf@p,i + (ρp − ρg)gi

]
, (2.32)
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where gi denotes the i − th component of the gravity vector, uf@p is the undisturbed fluid velocity at
the particle location, ρ is the density. The subscript g and p stands for the gas (or fluid) and the particle
respectively. D/Dt represents the total derivative along particle trajectories:

D

Dt
=

∂

∂t
+ uf@p,i

∂

∂xi
. (2.33)

The first term in the Right-Hand-Side (RHS) of Eq. (2.32) accounts for pressure and viscous stresses
and the second one for buoyancy effects.

The term F p
p,i stands for the aerodynamic forces acting on the particle: drag force, added-mass force,

Basset force and lift force.

Drag force

The drag force FD accounts for pressure and viscous stresses exerted on the particle surface. It corresponds
to the force originally derived by Stokes (1851) in quiescent fluid for small Rep, which allows to neglect
inertial effects of the fluid flow.

FD =
3

4
ρg

πd3
p

6

1

dp
CD|uf@p − vp|(uf@p − vp). (2.34)

where CD is the Stokes drag coefficient. Another definition introduces the particle response time τp to
describe the drag force:

FD =
mp

τp
(uf@p − vp) , (2.35)

where:

τp =
4

3

ρp

ρg

dp

CD
|uf@p − vp|−1. (2.36)

There are three main formulations for the Stokes drag coefficient CD, depending on the particle
Reynolds number. Stokes (1851) developped an analytical solution for Rep ≪ 1:

CD =
24

Rep
, (2.37)

Oseen (1927) proposed a correction of the Stokes’ relation to take into account inertial effects which is
valid for 1 ≤ Rep ≤ 5:

CD =
24

Rep

(
1 +

3

16
Rep

)
(2.38)

For larger Rep, semi-empirical correlations are available. Up to Rep = 1000, the correlation proposed
by Schiller & Nauman (1935) is widely accepted (this is, in fact, the correlation inplemented in AVBP
and used in this work):

CD =
24

Rep
(1 + 0.15Re0.687

p ). (2.39)

For applications where Rep > 1000, following Clift et al. (1978), the drag coefficient remains unaffected
by the wake behind the particle and stays constant:

CD = 0.44. (2.40)
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Added-mass force

The added-mass force accounts for the acceleration of the fluid due to the particle motion. When a
particle accelerates in a fluid, it implies an acceleration of the surrounding fluid at the expense of the
work exerted by the particle. It is usually written as:

FAM =
πd3

p

6
ρgCm

(
D

Dt
uf@p − d

dt
vp

)
. (2.41)

where Cm is the added-mass force constant: Cm = 0.5.

Since the added-mass froce depends on the fluid density, it is often neglected for particles much
denser than the fluid (Hinze (1975), Desjonqueres et al. (1986)). In this work, it is assumed that the
ratio between the particle’s density and the density of the fluid is larger than 103 (ρp/ρg > 1000), so that
the added-mass force can be neglected. In those cases where the fluid is denser than the particles (or
their densities are comparable), neglecting the added-mass force may lead to significant errors, since the
virtual added-mass may become larger than the particle mass itself.

Basset force

The History or Basset force is linked to the memory of the particle, the history of its past accelerations.
It accounts for the temporal delay in the boundary layer development due to the changes in the relative
velocity between the particle and the fluid (Crowe et al. (1998)):

FH =
πd3

p

6

9ρg

dp

(νg

π

)1/2
∫ t

∞

d

dτ
(uf@p − vp)

dτ√
t − τ

. (2.42)

It is usually neglected due to the dificulties of implementation (that is the case in this work). However,
neglecting it may lead to significant errors when the particle is accelerated at high rate (Thomas (1992),
Johnson (1998)), which is not the case in the configurations studied in this work.

Lift force

The lift force is due to the fluid vorticity Ωg, it is non-negligible for large particles where the fluid velocity
gradient differs significantly from one side of the particle to the other. It usually reads:

FL =
πd3

p

6
ρgCL(uf@p − vp) × Ωg. (2.43)

Hinze (1975) and Desjonqueres et al. (1986) showed that not only the added-mass force, but also
the pressure gradient and the Basset forces can be neglected when ρp/ρg > 1000, since they are small
compared to the particle agitation and dispersion mechanisms. In HIT, Elghobashi & Truesdell (1993)
showed that those two mechanisms are mainly due to Stokes drag and gravity.

2.2.2 Euler-Lagrange

The Lagrangian approach for the simulation of two-phase flows considers that the discrete phase is
composed of an ensemble of particles (physical individual particles or numerical particles representing
a cluster of real particles) each one with its own velocity. The individual trajectory of each particle is
tracked and the point mechanics equations are solved with momentum, mass and heat coupling with the
gas phase (treated with an Eulerian approach).
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This method is also referred as Discrete Particle Simulation (DPS). It has been widely used for the
simulation of gas-solid flows (Tchen (1947), Hinze (1975), Desjonqueres et al. (1986), Squires & Eaton
(1990), Deutsch & Simonin (1991), Druzhinin (1995), Boivin et al. (1998), Février et al. (2005), Moreau
(2006)), Masi (2010) in academic configurations. Following Boivin et al. (2000), this approach is limited
to weakly loaded flows (αp ≤ 0.001, where αp is the particle volume fraction, i.e. the ratio between the
total mass of the particles and the total mass of the gas) and particle response times larger than the
characteristic time of the gaseous flow. Indeed, a large amount of particles implies that the individual
equations of each particle must be solved, considerably increasing the computational cost of this approach.

The Euler-Lagrange (EL) approach has, however, an important advantage: it requires few modeling
efforts. The treatment of polydispersion, for example, is straightforward. This method is commonly
employed in Reynolds-Averaged-Navier-Stokes (RANS) codes and its potential in LES has been stated
(Mahesh et al. (2002), Mashayek & Pandya (2003), Pandya & Mashayek (2002), Garćıa (2009)). It has
also been applied to LES of industrial configurations (Senoner (2010)). There are still numerical issues
to be handled: the location of particles in the Eulerian mesh needs very efficient algorithms. Another
issue is the interpolation of the coupling terms from the Eulerian mesh nodes to the particle position and
vice-versa. In order to avoid numerical errors, high-order numerical schemes are requested, which notably
increases the computational cost. In parallel computing, the transfer of particles exiting the domain of
one processor and entering a different one is crucial and very efficient domain partitioning algorithms are
needed in order to avoir load balancing problems due to inhomogeneous repartition of the particles in
the computational domain (Garćıa (2009)).

Equations for the Euler-Lagrange approach:

In the EL approach, the gas phase is described by means of the Navier-Stokes equations described in
Section 2.1. Assuming that the only forces acting on a particle are the Stokes-drag and the gravity, the

position x
(k)
p and the velocity v

(k)
p of particle k are calculated at each time step as follows:

d

dt
x(k)

p = v(k)
p (2.44)

d

dt
(m(k)

p v(k)
p ) = F

(k)
p,i (2.45)

d

dt
m(k)

p = ṁ(k)
p (2.46)

d

dt
(m(k)

p C(k)
p T (k)

p ) = Q̇(k)
p , (2.47)

where m
(k)
p is the mass of the particle k, C

(k)
p is its specific heat at constant pressure, T

(k)
p is its tem-

perature, ṁ
(k)
p is the mass transfer rate due to evaporation (otherwise the mass of the particle remains

constant) and Q̇
(k)
p is the heat transfert rate from the gas phase to the particle.

Useful Lagrangian quantities

The averaging operator associated with the particle-phase is noted 〈·〉p, it is defined, for every Lagrangian
quantity Φ(k), as:

〈Φ(k)(x(k)
p )〉p =

1

Np

k=Np∑

k=1

Φ(k)(x(k)
p − δxp) (2.48)

where Np is the total number of particles.

Then, the particle kinetic energy q2
p, and the fluid-particle correlation qfp (where the subscript f is

used to denote the carrier fluid) yield:

q2
p =

1

2
〈v(k)

p · v(k)
p 〉p (2.49)
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qfp = 〈v(k)
p · uf (x(k)

p )〉p. (2.50)

For the gas phase, the fluid turbulent kinetic energy q2
f can be defined using the classical Reynolds

average operator (Hinze (1975)), noted 〈·〉f and corresponding to a statistical mean of N flow realizations:

q2
f =

1

2
〈u′

f · u′
f 〉f , (2.51)

where u′
f is the fluctuating part of the fluid velocity.

Tchen’s theory

Tchen (1947) proposed, for stationnary particle-laden HIT flows, a link between the previous quantities
through Eqs. (2.52)-(2.53), needed to have correspondance between the two operators applied to the fluid
and particle fields. These relations require two main assumptions: first, the aerodynamic force acting on
the particle must consist only of Stokes drag given by Eq. (2.35). Secondly, the relative velocity between
the particle and the fluid must be very small.

qfp =
2

1 + St
q2
f , (2.52)

2q2
p = qfp (2.53)

where St = τp/τ t
f stands for the Stokes number, and τ t

f is the Lagrangian turbulent time-scale (Haworth
& Pope (1986)).

Deutsch & Simonin’s extended theory

In order to relax the second assumption in Tchen’s theory, Deutsch & Simonin (1991) proposed an exten-
sion of Tchen’s theory using the fluid velocity along particle trajectories uf@p introduced in Section 2.2.1.
Consequently, the fluid turbulent kinetic energy sampled along particle trajectories q2

f@p reads:

q2
f@p =

1

2
〈u′

f@p · u′
f@p〉p, (2.54)

qfp =
2

1 + St′
q2
f@p, (2.55)

2q2
p = qfp. (2.56)

where St′ = c/τp is a modified Stokes number. In the limit of very small Stokes numbers, τ t
f@p → τ t

f .

Since τ t
f@p and q2

f@p are difficult to quantify, Eqs. (2.52) and (2.53) are often used as a first approximation

to evaluate q2
p.

2.2.3 Euler-Euler approach

In the Euler-Euler approach (EE), the dispersed phase is treated as a continuous phase, and instead of
computing the properties of each individual particle, the local average properties are calculated. There
are two main types of average operator: the volume average and the statistical average. For these
approaches, the same numerical approach used for the gaseous phase may be applied to the dispersed
phase, which greatly simplifies its implementation in parallel CFD codes. Moreover, no interpolation
procedure is needed for the coupling between phases, since the information for both liquid and gaseous
phases are stored at the same nodes of the grid. However, an important modeling effort is required which
nowadays remains the main challenge.
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For very low-inertial particles, the modeling effort is reduced, since the particles behave like tracers and
almost follow the fluid flow. The equilibrium approach (Ferry & Balachandar (2002), Rani & Balachandar
(2004)) has proved its efficiency and accuracy in the simulation of this type of flows. It consists in the
solution of one transport equation for the particle number density (np, the number of particles per unit
volume) and a Taylor expansion of the fluid velocity in particle relaxation time τp to predict the particle
velocity (Maxey (1987)). When heavier particles are to be modeled, their response time become larger
and the method reaches its applicability limits.

The two-fluid approach, originally developped by Druzhinin & Elghobashi (1998), is based on a spatial
average of the instantaneous equations for the gaseous and dispersed phases over a length scale of the
order of the Kolmogorov length scale (assuming that the particle diameter and the smallest length scale
of the particle velocity are significantly smaller than the Kolmogorov length scale, so the unity of the
particle velocity in the filtering volume is ensured). The two-fluid approach shows good results in the
simulation of particle-laden decaying HIT flow for particles with small Stokes number.

In configurations where the average values are not sufficient for a realistic representation of the dis-
persed phase, the complexity of modeling increases. This is the case, for example, for polydispersed
sprays. Following Greenberg et al. (1993), Laurent & Massot (2001) proposed to divide the dispersed
phase into different sections, each one containing one class of diameter. Then, a different set of Eule-
rian equations needs to be solved for each of the sections. This increases notably the computational
cost, but, the authors showed that a few sections are sufficient to obtain an accurate representation of a
spray with a wide distribution of diameters. Another challenge of this approach, called Eulerian Multi
Size Moment (EMSM), is the treatment of the exchanges between different classes of diameters; when
including evaporation, the droplet diameter reduces as they evaporate and they must be transferred to
a lower diameter class. Mossa (2005) proposed another approach where the addition of one equation for
the particle droplet surface allows the representation of polydispersion effects.

Collision and crossing trajectories are difficult to model in the Eulerian approach. Indeed, Eulerian
models derived from the Williams-Boltzmann equation through a near-equilibrium assumption along
with closures for the second-order velocity moments are unable to capture the multiple values of particle
velocity at the same time and location when particle trajectory crossing (PTC) takes place. The near-
equilibrium assumption is a strong hypothesis, and although those methods may be able to capture when
PTC takes place, they lead to singularities called δ-shocks (de Chaisemartin et al. (2008), de Chaisemartin
(2009)). However, it has been stated (Desjardins et al. (2006)) that it is possibe to predict the crossing
of particle trajectories in an Eulerian framework using the DQMOM approach (Marchisio & Fox (2005),
Fox et al. (2008)). More recently, Kah (2010) proposed a new method called Eulerian Multi-Fluid Multi-
Velocity (EMVM), using quadrature-based moment methods (Fox et al. (2008), Fox (2008), Fox (2009)),
preserving the moment phase-space realizability. Indeed, Wright (2007) showed that, in general, high-
order, finite-volume schemes do not guarantee realizable moments (i.e. the independent transport of
the moments with schemes of order greater than one, may lead to invalid moment sets), and thus new
realizable high-order algorithms must be used (Kah et al. (2011)). More details about this high-order
algorithm as well as EMSM and EMVM methods can be found in Kah (2010).

Finally, it is to be noted that the Eulerian approach implies some difficulties from the numerical point
of view due to high compressibility effects that require to transport very stiff gradients difficult to handle
numerically. Riber et al. (2006) showed that the use of low dispersion numerical schemes along with an
adapted artificial viscosity operator may be a solution.

The methods based on volume filtering show important limits when simulating flows with high inertial
particles. The reasons for this failure were first pointed out by Février et al. (2005). The authors proposed
a new method where the paticle velocity is split into two different contributions: a spatially correlated
part and a spatially uncorrelated part, which becomes negligible for very low inertial particles. The
Mesoscopic Eulerian Formalism (MEF) is based on a conditional ensemble averaging (Section 2.2.4).
This average operator leads to unclosed terms that need to be modeled (Part II). The resulting set of
equations is presented in Section 2.3. Figure 2.2 shows a classification of all these Euler-Euler formalisms.
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Figure 2.2: Classification of EE modelling approaches for the dispersed phase interacting with turbulent flows.
Modified from Masi (2010).

2.2.4 Mesoscopic Eulerian approach

The MEF is the approach that has been implement in AVBP (Kaufmann (2004)). The main idea in the
MEF is the distinction made between the properties of an ensemble of particles and the properties of an
individual particle. The statistically averaged Euler-Euler (EE) equations are obtained from a Probability
Density function (PDF) used to define a set of transport equations based on the kinetic theory of gases
of Boltzmann (Chapman & Cowling (1939 (digital reprint 1999), Reeks (1991)). Based on this PDF
evolution equation, direct integrations yield the transport equations of the desired moments for which
unknowns naturally arise. Once the set of equations has been established, models are to be supplied.
Contrary to the volume filtering of the equilibrium and two-fluid approaches, no assumption regarding
the size of the filter is required at this stage.

The main steps in the procedure for the development of the MEF transport equations are:

1. The function W
(k)
p describes the dynamics of the particles with respect to time and space. Each

particle is identified by its position x at time t, its mass µp, its velocity cp and its temperature ζp:

W (k)
p (cp, ζp, µp,x, t) = δ

(
cp − u(k)

p (t)
)

δ
(
ζp − ζ(k)

p (t)
)

δ
(
µp − µ(k)

p (t)
)

δ
(
x − x(k)

p (t)
)

. (2.57)

2. Applying an ensemble averaging over a large number of particle realisations Hp, conditioned by one
realisation of the carrier fluid Hf , a PDF for the particle presence is defined as:

f̆p(cp, ζp, µp,x, t|Hf ) = lim
Np→∞



 1

Np

∑

Np

Np∑

k=1

W (k)
p (cp, ζp, µp,x, t,Hp|Hf )



 . (2.58)

3. The Boltzmann type equation that describes the evolution of this PDF yields:

∂

∂t
f̆p +

∂

∂xj

[
cp,j f̆p

]
+

d

dcp,j

[
dup,j

dt
f̆p

]
+

d

dζp

[
dTp

dt
f̆p

]
+

d

dµp

[
dmp

dt
f̆p

]
=

(
df̆p

dt

)

coll

. (2.59)
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4. A statistical average operator is defined to decribe the average properties of the dispersed phase.
The mesoscopic quantities Ψ are defined by their mass ensemble average and correspond to the
moments of the PDF.

Ψ̆ = 〈Ψ〉p =
1

ρpᾰp

∫
µpΨ(cp, ζp, µp)f̆p(cp, ζp, µp,x, t|Hf )dcpdζpdµp. (2.60)

In AVBP, the first five moments are transported, they correspond to the following mesoscopic quantities:
n̆p is the particle number density (number of particles per unit volume), ᾰp is the volume fraction of

particles, ŭp is the particle velocity, δθ̆p is the uncorrelated energy and h̆p is the enthalpy.

5. The substitution of Ψ by the transported quantities produces a system of conservation equations
that describes the mean mesoscopic field.

Definiton of correlated and uncorrelated motions.

The phenomenon of preferential concentration of particles in regions of low vorticity and/or high strain
rate has been widely studied (Squires & Eaton (1991b), Rouson & Eaton (2001), Rani & Balachandar
(2004)). The origin resides in the interactions between the particle phase and the carrier fluid and relates
to the particle Stokes number. For low Stokes numbers, the particles follow the fluid flow and their
velocity vectors are close to those of the carrier phase. Moreover, neighbouring particles have similar
velocity vectors. On the contrary, for larger Stokes numbers, the particles do no follow the carrier fluid
flow and the velocities of neighboring particles are not similar. This difference is due to the particle
response time τp compared to a characteristic time of the fluid flow. For small Stokes numbers, τp is
small, which means that the particles react rapidly to the velocity changes that take place in the carrier
fluid flow. When τp increases, the particles are less sensitive to the surrounding changes, and the velocity
samples obtained at a certain location correspond to particles coming from very distant regions of the
flow.

Such observations are at the origin of the formalism proposed by Février et al. (2005). The Lagrangian
velocity of each particle is splitted into a spatially correlated part and an uncorrelated part, sketched in
Fig. 2.3, as follows:

u(k)
p (t) = ŭp(x

(k)
p (t), t) + δu(k)

p (t), (2.61)

where ŭp is the mesoscopic velocity defined in the Eulerian framework, which corresponds to the velocity
shared by all the particles. It provides a description of the structure of the velocity distribution and is

often called correlated velocity and δu
(k)
p (t) is the residual velocity component of the particle, or Random

Uncorrelated Velocity (RUV), defined for each individual particle along particle trajectories.

Figure 2.3: Sketch of the correlated and uncorrelated motions in the MEF. Extracted from Riber (2007).

The particle velocity may also be split in a mean and a fluctuating parts. As the Lagrangian mean
field and the mesoscopic mean field are identical (Février et al. (2005)), fluctuating velocity contributions
may also be written in terms of mesoscopic and residual contributions as follows:

u′
p(t) = ŭ′

p(x
(k)
p (t), t|Hf ) + δu′(k)

p (t). (2.62)
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Using the properties of the statistical average operator 〈·〉, several relations for the Eulerian equivalent
of the quantities defined in Section 2.2.2 can be obtained:

• the ensemble average of the particle uncorrelated velocity is zero:

〈δu(k)
p |Hf 〉 = 0; (2.63)

• the particle uncorrelated velocity is spatially decorrelated from the fluid velocity:

〈ŭf · δu(k)
p |Hf 〉 = 0; (2.64)

• the particle uncorrelated velocity component is spatially decorrelated from the particle mesoscopic
velocity:

〈ŭp · δu(k)
p |Hf 〉 = 0. (2.65)

Using these properties, the mean mesoscopic stress tensor R̆p,ij and the mean Random Uncorrelated

Motion (RUM) δR̆p,ij stress tensor are defined as:

R̆p,ij(x, t) =
〈n̆p(x, t)ŭ′

p,i(x, t)ŭ′
p,j(x, t)〉

〈n̆p(x, t)〉 , (2.66)

δR̆p,ij(x, t) =
〈n̆p(x, t)δup,i(x, t)δR̆p,ij(x, t)〉

〈n̆p(x, t)〉 . (2.67)

From this correlations, the definition of the turbulent kinetic energy q2
p, the correlated kinetic energy

q̆2
p and the Random Uncorrelated Energy δq2

p is straightforward:

q2
p = q̆2

p + δq2
p, (2.68)

q̆2
p =

1

2

〈n̆pŭ
′
p,iŭ

′
p,i〉

〈n̆p〉
, (2.69)

δq2
p =

〈n̆pδθ̆p〉
〈n̆p〉

, (2.70)

where δθ̆p is the Random Uncorrelated Energy (RUE) that will be defined later in this section. De-

pendencies of n̆p, ŭ′
p,i and δθ̆p with space and time have been omitted in Eqs. (2.69) and (2.70) and

summation convention is adopted for Latin indices other than p.

A first attempt to evaluate the two contributions (mesoscopic and uncorrelated) was made by Février
et al. (2005) in a DPS of a particle-laden stationnary HIT flow. He found that the ratio of kinetic RUE
to total particle kinetic energy increased with the particle inertia. Vance et al. (2006) showed the same
trend in a fully-developped channel flow for both colliding and non-colliding particles.

Particle mesoscopic transport equations

The transport equations for the mesoscopic variables are given in Eqs. (2.71)-(2.74). Γ denotes the mass
transfer rate from the liquid to the gas phase, Φp is the enthalpy transfer rate from the gaseous to the

liquid phase, FD is the drag force exerted by the fluid on the particles and δR̆p,ij denotes the 2nd order

particle uncorrelated velocity correlations tensor, δR̆p,ij(x, t) = 〈ŭp,i(t)ŭp,j(t)|xp(t) = x,Hf 〉.
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∂

∂t
n̆p +

∂

∂xj
n̆pŭp,j = 0 (2.71)

∂

∂t
ρpᾰp +

∂

∂xj
ρpᾰpŭp,j = − Γ (2.72)

∂

∂t
ρpᾰpŭp,i +

∂

∂xj
ρpᾰpŭp,iŭp,j = − ∂

∂xj
ρpᾰp δR̆p,ij − Γ ŭp,i + FD,i (2.73)

∂

∂t
ρpᾰph̆p +

∂

∂xj
ρpᾰpŭp,j h̆p = − Γh̆p + Φp (2.74)

❶ + ❷ = ❸ + ❹ + ❺ + ❻

where the terms noted ❶ correspond to the temporal variations, ❷ to the advection terms due to the
mesoscopic motion, ❸ to the advection terms due to the uncorrelated motion, ❹ to the terms linked
to the evaporation process, ❺ to the terms linked to drag force and ❻ to the terms linked to thermal
conduction.

Closure models for the drag force in Eq. (2.73), have been proposed in Section 2.2.1. Closure for the
terms linked to mass and heat transfer due to evaporation are worked on in Part III. In order to define
closure models, some assumptions are needed:

H1 -The particles are considered as rigid spheres.

H2 -ρp >> ρg so the only force exerted by the carrier phase on the dispersed phase is drag force.

H3 -Gravity is neglected.

H4 -Only diluted sprays are considered: ᾰp < 0.0001 and 1 − ᾰp ≡ 1 .

H5 -Considering H4, the effects of coalescence and collisions are neglected.

H6 -The spray is locally monodispersed.

Closure model for δR̆p,ij

The transport equation for δR̆p,ij reads:

∂

∂t
ρpᾰpδR̆p,ij +

∂

∂xj
ρpᾰpδR̆p,ij ŭp,j = − 2

ρpᾰp

τ̆p
δR̆p,ij − ρpᾰpδR̆p,im

∂ŭp,j

∂xm

− ρpᾰpδR̆p,mj
∂ŭp,i

∂xm
− ∂

∂xm
δQ̆p,ijm. (2.75)

In Eq. (2.75), the term representing the 3rd order particle uncorrelated velocity correlation tensor
δQ̆p,ijm = 〈ŭp,iŭp,j ŭp,m〉 needs closure as well.

Several approaches have been proposed for the closure of δR̆p,ij . Simonin et al. (2002) proposed a
method consisting in directly solving Eq. (2.75) i.e. the six components of the tensor. However, this
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shifts the difficulty to the modeling of δQ̆p,ijm. Based on the transport equation for this term:

∂

∂t
ρpᾰpδQ̆p,ijm +

∂

∂xj
ρpᾰpδQ̆p,ijm = − 3

ρpᾰp

τ̆p
δQ̆p,ijm + ρpᾰpδQ̆p,njm

∂

∂xn
ŭp,i

+ ρpᾰpδQ̆p,inm
∂

∂xn
ŭp,j − ρpᾰpδQ̆p,ijn

∂

∂xn
ŭp,m

+ δR̆p,ij
∂

∂xn
ρpᾰpδR̆p,mn + δR̆p,jm

∂

∂xn
ρpᾰpδR̆p,in

+ δR̆p,im
∂

∂xn
ρpᾰpδR̆p,jn − ∂

∂xn
ρpᾰpδM̆p,ijmn, (2.76)

where δM̆p,ijmn = 〈ŭp,iŭp,j ŭpmŭp,n〉 is the 4rd-order particle uncorrelated velocity correlation tensor.

Assuming equilibrium of δQ̆p,ijm and neglecting any deformation terms (2nd, 3rd and 4th terms on the
RHS of Eq. (2.76)), the transport equation reduces to (Moreau (2006)):

3
ρpᾰp

τ̆p
δQ̆p,ijm = δR̆p,jm

∂

∂xn
ρpᾰpδR̆p,in + δR̆p,im

∂

∂xn
ρpᾰpδR̆p,jn

+ δR̆p,ij
∂

∂xn
ρpᾰpδR̆p,mn − ∂

∂xn
ρpᾰpδM̆p,ijmn. (2.77)

It is now necessary to model the 4th order term δM̆p,ijmn. Simonin (1996) proposed to consider the

Gaussian value of δM̆p,ijmn in order to obtain a closure model:

δM̆p,ijmn = δR̆p,ijδR̆p,mn + δR̆p,imδR̆p,jn + δR̆p,inδR̆p,jm. (2.78)

Finally combining Eqs. (2.77) and (2.78) leads to (Kaufmann (2004)):

δQ̆p,ijm =
τ̆p

3

(
δR̆p,ml

∂

∂xl
δR̆p,ij + δR̆p,jl

∂

∂xl
δR̆p,im + δR̆p,il

∂

∂xl
δR̆p,jm

)
, (2.79)

which can be directly introduced in Eq. (2.75). However, this method is computationally very expensive
and modeling the δR̆p,ij tensor can follow simpler paths:

Simonin et al. (2002) introduced the particle RUE as half the trace of δR̆p,ij :

δθ̆p =
1

2
δR̆p,ll. (2.80)

Then Eq. (2.73) can be rewritten as follows:

∂

∂t
ρpᾰpŭp,i +

∂

∂xj
ρpᾰpŭp,iŭp,j = − ∂

∂xj

2

3
ρpᾰpδθ̆p − ∂

∂xj
ρpᾰp δR̆∗

p,ij − Γ ŭp,i + FD,i, (2.81)

where δR̆∗
p,ij is the deviatoric part of δR̆p,ij , similar to the viscosity contribution in the theory of diluted

gases. δθ̆p is the spherical part, similar to a pressure term:

δR̆∗
p,ij = δR̆p,ij −

2

3
δθ̆pδij . (2.82)

A transport equation for the particle RUE is derived from and substitutes the set of 2nd order particle
correlations conservation equations for the dispersed phase:

∂

∂t
ρpᾰpδθ̆p+

∂

∂xj
ρpᾰpŭp,jδθ̆p = − ∂

∂xj
ρpᾰpδQ̆p,iij−ρpᾰp

[
δR̆∗

p,ij +
2

3
δθ̆pδij

]
∂

∂xj
ŭp,i−Γδθ̆p+Wθ, (2.83)
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where Γδθ̆p is the source term of particle RUE linked to evaporation. Wθ is a source term linked to drag
force and its expression is deduced from Eq. (2.34):

Wθ =
2ρpᾰp

τ̆p
δθ̆p . (2.84)

A closure model for δQ̆p,iim is proposed hereinafter and there is only one more unclosed term left in

Eq. (2.83), δR̆∗
p,ij . Different closure models for this term are studied in Part II.

Closure model for δQ̆p,iim

Eq. (2.83) for particle RUE is very similar to the transport equation for fluid temperature (with the
exception of the last two terms on the RHS, that are linked to evaporation and drag force source terms).
Kaufmann et al. (2005) proposed a simpler model consisting in modeling δQ̆p,iim in analogy with the
Fick’s law for the fluid temperature:

1

2
δQ̆p,iim = −κRUM

∂δθ̆p

∂xm
, (2.85)

where κRUM stands for the uncorrelated diffusion coefficient and is modeled in analogy with the RANS
two-fluid approach (Simonin (1996)):

κRUM =
10

27
τ̆pδθ̆p. (2.86)

2.3 Final set of conservation equations for the dispersed phase
in the EE approach

In the remaining of the manuscript, the Mesoscopic Eulerian Approach is worked on (hereinafter it will be
referred indistinctly as MEF or EE). Part II is dedicated to the a posteriori analysis of the closure models
developped by Masi (2010) in the particle-laden slab HIT flow configuration. Part III presents a study
on the evaporation of fuel droplets. Different evaporation models are compared and a new approach for
the computation of the evaporation process of isolated droplets in AVBP is proposed. Finally, Part IV
presents an example of joint application of the model for the closure of the RUM terms retained in
Part II and the new approach for the evaporation presented in Part III. The configuration chosen is the
MERCATO bench, whose experimental data were acquired at ONERA (Toulouse, France) (Garćıa-Rosa
(2008)), and computed using EE (Sanjosé (2009)) and EL approaches (Senoner (2010)) in AVBP.

The final set of conservation equations for the dispersed phase that are transported in AVBP and
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considered in the rest of this work is:

∂

∂t
n̆p +

∂

∂xj
n̆pŭp,j = 0 (2.87)

∂

∂t
ρpᾰp +

∂

∂xj
ρpᾰpŭp,j = − Γ (2.88)

∂

∂t
ρpᾰpŭp,i +

∂

∂xj
ρpᾰpŭp,iŭp,j = − Γ ŭp,i + FD,i

− ∂

∂xj
ρpᾰp

[
δR̆∗

p,ij +
2

3
δθ̆pδij

]
(2.89)

∂

∂t
ρpᾰph̆p +

∂

∂xj
ρpᾰpŭp,j h̆p = − Γh̆p + Φp (2.90)

∂

∂t
ρpᾰpδθ̆p +

∂

∂xj
ρpᾰpŭp,jδθ̆p = − Γδθ̆p + Wθ −

∂

∂xj
ρpᾰpδQ̆p,iij

− ρpᾰp

[
δR̆∗

p,ij +
2

3
δθ̆pδij

]
∂

∂xj
ŭp,i. (2.91)

2.3.1 Transport equations for the dipersed phase in compressed form

Similarly to Section 2.1, the conservation equations for the dispersed phase can be written in a compressed
form. For the particle phase, one has:

∂

∂t
wp + ∇·Fp = sp, (2.92)

where wp = (n̆p, ρpᾰp, ρpᾰpup,i, ρpᾰph̆p, ρpᾰpδθ̆p)
T is the vector of conservative variables for the dispersed

phase, Fp is the flux tensor composed by two parts, one due to convection by the mesoscopic motion
(FM

p ) and one due to the uncorrelated motion (FU
p ). sp is the vector of source terms.

Convective fluxes due to the mesoscopic motion, FM
p and to the uncorrelated motion FU

p

The tensor of fluxes read:

FM
p =




n̆pŭp,j

ρpᾰpŭp,j

ρpᾰpŭp,iŭp,j

ρpᾰpŭp,j h̆p

ρpᾰpŭp,jδθ̆p




, FU
p =




0
0

ρpᾰp

[
δR̆∗

p,ij + 2
3δθ̆pδij

]

0

ρpᾰpδQ̆p,iij




. (2.93)

Vector of source terms, sp

There are two contributions to the source terms: the first one is linked to the exchanges with the gas
phase (sg−p) and the second one is linked to the uncorrelated motion (sθ). sg−p groups the source terms of
mass, momentum and energy with the gas phase whereas sθ contains only one term due to the exchanges
between the uncorrelated and the correlated motions. This term applies to the particle RUE transport
equation. The vectors of source terms read:

sp = sg−p + sθ (2.94)
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sg−p =




0
−Γ

−Γŭp,i + FD,i

−Γh̆p + Φp

−Γδθ̆p + Wθ




, sθ =




0
0
0
0

−ρpᾰp

[
δR̆∗

p,ij + 2
3δθ̆pδij

]
∂

∂xj
ŭp,i




. (2.95)

Inverse coupling between the dispersed and the gaseous phases

The source terms vector in Eq. (2.4) sp−g has not been defined yet. It represents the coupling terms that
include the influence of the particle phase on the gaseous phase. It reads:

sp−g =




Γδk,F

−Γŭp,i − FD,i

Πg + Γ 1
2 ŭ2

p,i − ŭp,iFD,i



 (2.96)

where Γ 1
2 ŭ2

p,i and ŭp,iFD,i represent the gaseous kinetic energy transfer due to evaporation and drag force
respectively. Πg is the sensible energy transfer rate due to evaporation and thermal conduction. Γ and
Πg will be defined in Part III.



Chapter 3

Transport equations for LES of
dispersed two-phase flows

Nowadays, the available computational power limits the use of DNS to academic configurations. When
a second phase is taken into account, the complexity of the problem increases. The use of DNS becomes
then prohibitive, especially in complex comfigurations. In LES, the equations are filtered, the large scales
of the motion are resolved and only the high frequency scales, smaller than the filter width, are modeled.

In turbulent flows the largest scales strongly depend on the geometry of the system while the smallest
ones present an universal behavior which is determined almost entirely by the rate at which they receive
energy from the large scales (flow Reynolds number Re (Eq. (3.1))), and by the fluid viscosity. In such
flows, LES has therefore a clear advantage compared to RANS since it is easier to develop models for the
smallest structures than models for the whole range of scales.

The application of LES to two-phase flows is more recent than for purely gaseous flows. Fox (2012)
provides a review of the different approaches for Large Eddy simulation of two-phase flows, pointing out
the main fields of application of each approach, as well as their advantages, drawbacks and a summary
of the closures and models for the sub-grid scale terms.

3.1 LES equations for the gaseous phase

The transition from laminar to turbulent flow is characterized by the Reynolds number Re, a dimensionless
number representing the ratio of inertial to viscous forces:

Re =
LU
ν

, (3.1)

where L the characteristic size of the flow, U the characteristic velocity and ν the fluid kinematic viscosity.
The higher the Reynolds number, the more turbulent the flow.

The velocity in a turbulent flow suffers significant variations in time and space. It is characterized
by the pressence of vortices or eddies of different sizes. These eddies are in fact vortical structures that
interact. The energy cascade (Richardson (1922)) suggests that the kinetic energy is essentially fed by the
turbulence at the largest scales and is then transferred to smaller and smaller scales until its dissipation
by the viscous forces at the smallest scales (Pope (2000)).

When the Reynolds number large enough, the smallest eddies of the flow can be characterized (Kol-
mogorov (1941)) being ǫ the dissipation rate of the flow, Kolmogorov (1941) stated that a unique set of
length, velocity and time scales can be expressed for the smallest scales:

37
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η ≡ (ν3/ǫ)1/4, (3.2)

uη ≡ (ǫν)1/4, (3.3)

τη ≡ (ν/ǫ)1/2. (3.4)

where η refers to the smallest scales of the flow.

It is then possible to link the length, velocity and time scales of the smallest eddies to those of the
largest eddies depending only on the Reynolds number:

η/l0 ∼ Re−3/4, (3.5)

uη/u0 ∼ Re−1/4, (3.6)

τη/τ0 ∼ Re−1/2, (3.7)

where the subscript 0 refers to the largest scales of turbulence.

Figure 3.1: Example of energy spectrum showing the distinction between integral, inertial and dissipation zones.
Source Pope (2000).

The energy spectrum E(κ) represents the turbulent contribution os all scales to the turbulent kinetic
energy. Figure 3.1 shows an example of energy spectrum. Three main zones can be distinguished (Pope
(2000)):

• The integral or energy containing zone: the largest eddies belong to this part. They are characterized
by the lowest frequencies and their size is comparable to the largest scales of the flow.

• The inertial zone represents the large eddies breaking into smaller ones and transferring their energy
to smallest eddies.

• The dissipation range contains the high frequency structures, i.e. the smallest eddies. The viscous
forces act in this zone converting the turbulent energy of the eddies into heat.

3.1.1 Filtering procedure

The separation of the small and large scales is achieved through the application of a low-pass filter G∆

to the exact equations (Leonard (1974)). The filtered quantity Φ is defined as the convolution of the
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non-filtered quantity Φ with the spatial filter G∆, whose characteristic lenght is ∆:

Φ(x) =

∫
Φ(x)G∆(x′ − x) dx′. (3.8)

The filtered quantity or resolved large scale field, Φ̄, is calculated solving its transport equation. The
unsolved residual field Φ′ contains all the flow scales smaller than the filter size 2∆:

Φ′ = Φ − Φ. (3.9)

For variable density flows, it is useful to use a mass weighted filtering or Favre averaging (Favre (1969))
in order to avoid unclosed terms due to density fluctuations:

φ̂ =
1

ρ̄
ρφ. (3.10)

In the context of this work, both phases are compressible, so Favre averaging is applied to both the
gaseous and the dispersed phases.

3.1.2 Filtered Navier-Stokes equations

The final set of filtered Navier-Stokes equations for the gas phase are directly obtained by filtering
Eqs. (2.1)-(2.3):

∂

∂t
ρg +

∂

∂xj
ρgûg,j = 0 (3.11)

∂

∂t
ρgûg,i +

∂

∂xj
ρgûg,iûg,j = − ∂

∂xj

[
Pgδij − τg,ij + ρgTg,ij

]
(3.12)

∂

∂t
ρgÊg +

∂

∂xj
ρgÊgûg,j = − ∂

∂xj

[
ûg,i(Pgδij − τg,ij) + qg,j + ρgQg,j)

]
. (3.13)

where the subgrid terms read:

Tg,ij = ûg,iug,j − ûg,iûg,j (3.14)

Qg,j = ûg,jEg − ûg,jÊg. (3.15)

The subgrid-scale terms are modeled by their dissipative effects on the computed scales following the
idea of energy transfer from the largest to the smallest scales (Kolmogorov (1941)). The Boussinesq
hypothesis (Boussinesq (1877)) assumes that the energy transfer mechanism from the resolved to the
subgrid scales is analogous to the molecular diffusion mechanism. Replacing the molecular viscosity by a
turbulent kinematic viscosity νt, the fluid subgrid model is written:

Tg,ij −
1

3
Tg,ll ≈ 2νt

(
Ŝg,ij −

1

3
δijŜg,ll

)
, (3.16)

where

Ŝg,ij =
1

2

(
∂ûg,i

∂xj
+

∂ûg,j

∂xi

)
. (3.17)

In Eq. (3.16) only the turbulent viscosity νt needs to be modeled. Various models for the turbulent
viscosity are available in AVBP (Smagorinsky (Smagorinsky (1963)), WALE (Ducros et al. (1998)),
Filtered Smagorinsky (Ducros et al. (1996)), Dynamic Smagorisnsky model (Germano et al. (1991), Lilly
(1992)) and the k-equation model). As it is not the scope of this work, the model used here is briefly
presented in Section 3.1.3.
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The subgrid-scale heat flux Qg,j model needs the determination of the turbulent thermal conductivity
λt, that is, the thermal conductivity due to the residual turbulent motion. Qg,j is written as:

Qg,j = −λt

ρg

∂T̂g

∂xj
, (3.18)

with

λt =
ρgνtCpg

Prt
. (3.19)

In the LES presented in this work, the turbulent Prandtl number Prt has been set to 0.6.

Finally, the remaining filtered terms are approximated as follows:

τg,ij = 2µg

(
Ŝg,ij −

1

3
δijŜg,ll

)
, (3.20)

qg,j = λg
∂T̂g

∂xj
, (3.21)

P = ρgrT̂g. (3.22)

3.1.3 WALE model for the gaseous turbulent viscosity

Multiple models for the evaluation of the dissipative effects of the subgrid-scales (Lesieur (1997), Pope
(2000)) exist. There are also several options to model the turbulent viscosity in AVBP. However, all the
LES presented in this work have been performed with the WALE (Wall-Adapting Local Eddy-viscosity)
model (Ducros et al. (1998)). This model automatically adapts the subgrid viscosity on boundary layer
flows while preserving the dissipative effects of turbulence in HIT flows.

The WALE turbulent viscosity reads:

νt = (Cw∆)2
(sd

ijs
d
ij)

3/2

(Ŝg,ijŜg,ij)5/2 + (sd
ijs

d
ij)

5/4
. (3.23)

where Cw is the same constant as in the Smagorinsky model, fixed to Cw = 0.4929. sd
ij is the residual

part in the resolved rate-of-deformation tensor:

sd
ij = Ŝg,imŜg,mj + Ω̂g,imΩ̂g,mj −

1

3
δij

[
Ŝg,nlŜg,nl + Ω̂g,nlΩ̂g,nl

]
, (3.24)

where Ω̂g is the filtered rotation rate tensor:

Ω̂g,ij =
1

2

(
∂ûg,i

∂xj
− ∂ûg,j

∂xi

)
. (3.25)

3.2 LES equations for the dispersed phase

Filtering the mesoscopic Eulerian equations is done in analogy with the filtering of the gaseous phase
equations presented in Section 3.1.1. Favre averaging is performed replacing the gaseous density ρg in
Eq. (3.26) by the mesoscopic particle volume fraction ᾰp:

αpφ̂ = ᾰpφ̆ . (3.26)
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An equivalence between the Favre average based on ᾰp and the particle number density n̆p can be
obtained assuming that the dispersed phase is locally monodisperse, i.e. within the filter size. Thus, the
Favre average also reads:

n̆pφ̆ =
6ᾰp

πd3
φ̆ = npφ̂. (3.27)

In the remaining of this chapter, the notation .̆ will be abandoned for the sake of simplicity.

3.2.1 Filtered Mesoscopic Eulerian equations

The final set of LES equations for the dispersed phase reads:

∂

∂t
np +

∂

∂xj
npûp,j = 0 (3.28)

∂

∂t
ρpαp +

∂

∂xj
ρpαpûp,j = − Γ (3.29)

∂

∂t
ρpαpûp,i +

∂

∂xj
ρpαpûp,iûp,j = − Γ ûp,i + FD,i

− ∂

∂xj
ρpαp

[
δ̂R∗

p,ij +
2

3
δ̂θpδij + Tp,ij

]
(3.30)

∂

∂t
ρpαpĥp +

∂

∂xj
ρpαpûp,j ĥp = − Γĥp + Φp (3.31)

∂

∂t
ρpαpδ̂θp +

∂

∂xj
ρpαpûp,j δ̂θp = − Γδ̂θp + Wθ −

∂

∂xj
ρpαpδ̂Qp,iij

− ρpᾰp

[
δR̆∗

p,ij +
2

3
δθ̆pδij

]
∂

∂xj
ŭp,i. (3.32)

In the set of equations Eq. (3.28) - (3.32) several terms need closure. In this section, the closure
approximations for the source terms due to drag force and evaporation are recalled. The filtered evapo-
ration source terms here presented correspond to the classical model implemented in AVBP. The filtered
terms corresponding to the models presented in Part III are computed similarly.

• Filtered source terms linked to evaporation:

– Mass evaporation rate:

Γ ≈ πnpdSh
µ

ScF
ln(1 + BM ), (3.33)

Sh ≈ 2 + 0.55Re
1/2

p Sc
1/3
F , (3.34)

BM ≈ YF,ζ(T̂p) − ŶF

1 − YF,ζ(T̂p)
. (3.35)

– Sensible energy variation rate du to thermal conduction:

Φp ≈ Γ(ĥp − hs,F (T̂p)) − πnpdNu(T̂p − T̂ ), (3.36)

Nu ≈ 2 + 0.55Re
1/2

p Pr1/3. (3.37)

• Filtered source terms linked to drag force:

– Momentum variation rate due to drag:

FD,i ≈
ρpαp

τp
(ûi − ûl,i). (3.38)
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• Filtered source term linked to the RUM:

– Rate of RUE variation due to drag force:

Wθ ≈ −2ρpαp

τp
δ̂θp, (3.39)

where the filtered particle relaxation time is approximated as follows:

τp ≈ (1 + 0.15Re
0.687

p )
ρpd

2

18µ
, (3.40)

and the filtered particle Reynolds number:

Rep ≈ |û − ûp|d
ν

. (3.41)

Special attention is needed for the terms related to the Random Uncorrelated Motion:

• Tp,ij is due to the subgrid correlated motion and is analogous to the fluid Reynolds tensor
(Eq. (3.16)):

Tp,ij = ûp,iup,j − ûp,iûp,j . (3.42)

• δ̂Qp,iij is modeled similarly to in Eq. (2.85):

δ̂Qp,iij = −κ̂RUM
∂δ̂θp

∂xj
, (3.43)

where κ̂RUM = 10
27τp

ˆδθp.

• The filtered RUE production term is written as:

ρpᾰp

[
δR̆∗

p,ij +
2

3
δθ̆pδij

]

︸ ︷︷ ︸
δR̆p,ij

∂

∂xj
ŭp,i = ρpαpδ̂Rp,ij

∂ûp,i

∂xj
−
[
ρpᾰpδR̆p,ij

∂ŭp,i

∂xj
− ρpαpδ̂Rp,ij

∂ûp,i

∂xj

]

︸ ︷︷ ︸
U

t

θ

,

(3.44)

where δ̂Rp,ij = δ̂R∗
p,ij + 2

3 δ̂θpδij . ˆδθp is captured through its transport equation (Eq. 3.32). ˆδR∗
p,ij is

evaluated through the models described in Part II using filtered quantities.

U
t

θ is a RUE production term due to the subgrid scale motion and is assumed to have a dissipative
effect on the subgrid correalted energy. Assuming equilibrium in the subgrid correlated energy, Moreau

(2006) modeled U
t

θ as:

U
t

θ = Tp,ij
∂ûp,i

∂xj
. (3.45)

For more details the reader is encouraged to see Moreau (2006) and Riber (2007).



Part II

Modeling the Random Uncorrelated
Stress Tensor
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Chapter 4

Modeling the RUM stress tensor

This Chapter, inspired in the work of Masi (2010), is dedicated to the closure models for the deviatoric
part of the Random Uncorrelated Motion (RUM) stress tensor (δR̆∗

p,ij) appearing for the MEF approach
in the momentum (Eq. (2.89)) and Random Uncorrelated Energy equations (Eq. (2.91)). Such tensor
may be compared to the fluid stress tensor due to thermal agitation in the Navier-Stokes equations for
the gaseous phase. As stated in Chapter 2, the second order uncorrelated velocity correlation tensor,
or RUM tensor δR̆p,ij , is splitted into an spherical part, the so-called RUE (δθ̆p) and a deviatoric part

δR̆∗
p,ij . Section 2.2.4 presented the development of a transport equation for the RUE, while the deviatoric

part remained unclosed.

Simonin et al. (2002) proposed to close the deviatoric RUM stress tensor using a viscosity assumption,
the so-called VISCO model (Section 4.2). This model has proven to give satisfactory results in a posteriori
inertial particle-laden HIT flows simulations (Kaufmann (2004), Riber (2007), Kaufmann et al. (2008),
Vié (2010)). However, Riber (2007) showed that it failed when performing a posteriori tests in mean-
sheared flows (Hishida et al. (1987)). Recently, Masi (2010) proposed new models for the closure of
δR̆∗

p,ij , that are briefly recalled in this Chapter. She performed an a priori analysis of a particle-laden
turbulent planar jet (Fig. 4.1) proposed and validated models on this configuration with mean shear. The
corresponding a posteriori study of the same configuration is presented in Chapter 5.

Figure 4.1: Particle-laden turbulent planar jet configuration (Particle-laden HIT slab). Initial carrier phase
velocity magnitude field.
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4.1 Preliminary considerations

In this Part of the manuscript, and in order to respect the notation used by Masi (2010), the equations
are written using n̆p instead of ρpᾰp. In a monodisperse context, both quantities are proportional:

ᾰp =
d3

p · π · n̆p

6
. (4.1)

Several quantites that are used throughout this Chapter are here defined. The RUM anisotropy stress
tensor reads:

b∗p,ij =
δR̆p,ij

2δθ̆p

− 1

3
δij =

δR̆∗
p,ij

2δθ̆p

. (4.2)

The particle rate-of-strain is the symmetric part of the mesoscopic particle velocity gradient:

Sp,ij =
1

2

(
∂ŭp,i

∂xj
+

∂ŭp,j

∂xi

)
. (4.3)

The mesoscopic vorticity or rotation tensor Ω reads:

Ωp,ij =
1

2

(
∂ŭp,i

∂xj
− ∂ŭp,j

∂xi

)
. (4.4)

The mesoscopic velocity-gradient tensor is thus defined as:

∂ŭp,i

∂xj
= S∗ +

1

3
{S}I + Ω, (4.5)

where I is the identity matrix, bold notation denotes three-dimensional (3D) second order tensors and
{.} represents the tensor trace. Asterisk is used to denote traceless tensors when associated with bold
notation, otherwise means ”deviatoric”. The deviatoric particle rate-of-strain accounts for shearing and
the spherical part for contraction or expansion.

The alignment between the particle rate-of-strain tensor and the rotation tensor provides information
about the configuration of the flow. For information on the local behavior of the tensors the reader is
referred to the works of Lund & Rogers (1994), Simonin (1991), George & Hussein (1991) and Masi
(2010)).

4.2 A local equilibrium assumption

In order to be coherent with the notation used by Masi (2010), the equations for the RUM model proposed
by Simonin et al. (2001) are here rewritten.

The transport equation for the 2nd order particle velocity stress tensor δR̆p,ij reads:

∂

∂t
n̆pδR̆p,ij +

∂

∂xj
n̆pδR̆p,ij ŭp,j = −2

n̆p

τ̆p
δR̆p,ij − n̆pδR̆p,ik

∂ŭp,j

∂xk
− n̆pδR̆p,kj

∂ŭp,i

∂xk
− ∂

∂xk
δQ̆p,ijk. (4.6)

Neglecting all transport terms, Eq. (4.6) reduces to:

δR̆p,ij = − τ̆p

2

[
δR̆p,ik

∂ŭp,j

∂xk
+ δR̆p,kj

∂ŭp,i

∂xk

]
. (4.7)
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The RUM stress tensor is then splitted into an spherical and a deviatoric part (Eq. (2.82)). Substracting
the trace leads:

δR̆∗
p,ij = − τ̆p

2

[
2

3
δθ̆p

(
∂ŭp,i

∂xj
+

∂ŭp,j

∂xi
− 2

3

∂ŭp,m

∂xm
δij

)]

− τ̆p

2

[
δR̆∗

p,kj

∂ŭp,i

∂xk
+ δR̆∗

p,ik

∂ŭp,j

∂xk
− 2

3
δR̆∗

p,mn

∂ŭp,m

∂xn
δij

]
. (4.8)

In order to close the deviatoric RUM stress tensor δR̆∗
p,ij , a condition of equilibrium may be assumed.

Assuming light anisotropy leads to neglect the 2nd term in the RHS of Eq. (4.8) giving the known
viscosity-like model (Simonin et al. (2001)):

δR̆∗
p,ij = − τ̆p

2

[
2

3
δθ̆p

(
∂ŭp,i

∂xj
+

∂ŭp,j

∂xi
− 2

3

∂ŭp,m

∂xm
δij

)]
= −2νRUMS∗

p,ij , (4.9)

where νRUM = τ̆pδθ̆p/3 is the so-called RUM viscosity.

This model has been extensively used to perform Eulerian-Eulerian simulations (Kaufmann et al.
(2008), Riber (2007), Riber et al. (2009), Sanjosé (2009), Vié et al. (2009), Dombard (2011)). Riber
(2007) showed that this model conducts to a re-laminarization of the dispersed phase flow when in the
presence of mean shear (configuration of Hishida et al. (1987)). Hereinafter, Eq. (4.9) will be referred to
as “VISCO” model.

Note that the viscosity model assumes that the deviatoric RUM and the particle rate-of-strain are
related by a linear equation through an eddy-viscosity which uses the particle relaxation time as timescale.
This assumption may be related to the kinetic theory of diluted gases. It implies that molecular motion
adjust rapidly to the changes imposed by the local strain. This basic assumption at the basis of the
VISCO model is violated when the Knudsen number (Kn, a dimensionless number relating the particle
relaxation time and the mesoscopic shear timescale) is large.

4.3 A viscosity-type model for axisymmetric tensors

Masi (2010) adapted an idea of Jovanović & Otić (2000) suggested for turbulent flows to the dispersed
phase behaving in one-component limit state. According to numerical onservations of turbulent flows,
the tensors are assumed axisymmetric with respect to a preferential direction. That is, fluctuations are
developed in a privileged direction of the flow. They can be written in bilinear form using eigenval-
ues (Batchelor (1946), Chandrasekhar (1950)). By using the second invariants of the rate-of-strain (S,
Eq. (4.3)), the anisotropy (b) tensors, and the signs of their third invariants, one may write the following
equation for δR̆∗

p,ij :

δR̆∗
p,ij = sign(IIIS)sign(IIIb)II

1/2
b 2δθ̆p

S∗
p,ij

S
. (4.10)

The magnitude of the rate-of-strain tensor reads:

S = II
1/2
S = {S∗2}1/2, (4.11)

S is the second invariant of the rate-of-strain tensor. The third dimensional invariant reads:

IIIS = {S∗3}, (4.12)

The same invariants can be defined for the anisotropy tensor b respectively noted: IIb and IIIb.

In Eq. (4.10), the product of the invariants’ signs accounts for the possibility of both tensors being
in the same configuration of contraction or expansion if positive, or in the opposite configuration if
negative. Numerical simulations (Masi (2010)) showed that IIIb is locally positive and only the sign
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of IIIS changes, and that b behaves in one-component limit state, which gives IIb = 2
3 . Taking into

account these considerations, the Eq. (4.10) leads to:

δR̆∗
p,ij = sign(IIIS)

(
2

3

)1/2

2δθ̆p

S∗
p,ij

S
. (4.13)

Equation (4.13) still accounts for the possibility of reverse exchanges of energy through sign(IIIS). Under
these assumptions, the sign of IIIS reproduces both positive and negative viscosities, and thus energy
exchanges from the RUM to the mesoscopic motion are accounted for. Equation (4.13) may be rewritten
without including the sign of the third invariant of S:

δR̆∗
p,ij = −

(
2

3

)1/2

2δθ̆p

S∗
p,ij

S
. (4.14)

Hereinafter, Eq. (4.14) will be referred as “AXISY” model and Eq. (4.13) as “AXISY-C”, “-C” standing
for corrected, since the model includes a correction in the form of sign(IIIS).

4.3.1 Two different timescales

Section 4.2 presented a model for the deviatoric RUM stress tensor using the particle relaxation time
τ̆p as timescale for the relationship between δR̆∗

p,ij and S∗
p,ij (Eq. (4.9)). The so called AXISY model

presented in Section 4.3 uses instead the mesoscopic-shear timescale to relate both tensors (Eq. (4.14)):

τ̆p

3︸︷︷︸
V ISCO

−→ II
1/2
b

S︸ ︷︷ ︸
AXISY

. (4.15)

Hence, VISCO and AXISY are both eddy-viscosity models differing in their timescale: F(τ̆p) for VISCO
and F(S−1) for AXISY.

4.4 Quadratic algebraic approximation

Assuming equilibrium of stress components (i.e. neglecting all transport terms) in Eq. (4.8) and applying
an iterative procedure invoking the isotropic approximation (δR̆∗

p,ij = 0) at the zeroth-order approxi-
mation, Zaichik developped a non-linear model that, at the first approximation, is equivalent to VISCO
model. The second approximation gives:

δR̆∗
p,ij = −2τ̆pδθ̆p

3
S∗

p,ij +
2τ̆2

p δθ̆p

6

(
S∗

p,ik

∂ŭp,j

∂xk
+ S∗

p,jk

∂ŭp,i

∂xk
− 2

3
S∗

p,mn

∂ŭp,m

∂xn
δij

)
. (4.16)

Equation (4.16) is referred as “QUAD” model in Masi (2010). It has not been implemented in AVBP
and analysis nor results concerning this model are presented in this work. However, it is a necessary step
for the understanding of the model presented in Section 4.4.1.

4.4.1 A “rescaled” quadratic algebraic approximation.

Masi (2010) used Eq. (4.15) to construct a new non-linear model from Eq. (4.16). Replacing τ̆p with the
timescale S−1 (cf Section 4.3.1) and applying the same iterative procedure to Eq. (4.8) that has been
applied to obtain Eq. (4.16) leads to:

δR̆∗
p,ij = −2

(
2

3

)1/2

δθ̆p

S∗
p,ij

S
+

2δθ̆p

S2

(
S∗

p,ik

∂ŭp,j

∂xk
+ S∗

p,jk

∂ŭp,i

∂xk
− 2

3
S∗

p,mn

∂ŭp,m

∂xn
δij

)
. (4.17)
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Equation (4.17) at the first order leads to “AXISY” model (Eq. (4.14)), if one-component limit state
is assumed and a positive viscosity is used. It can be rewritten for the anisotropy tensor b∗:

b∗ = −
[(

2

3

)1/2

− 2

3
{S+}

]
S∗+ − (S∗+Ω+ − Ω+S∗+) + 2

(
S∗+2 − 1

3
{S∗+2}I

)
, (4.18)

where the superscript + stands for dimensionless tensors (normalization by II
1/2
S ). The assessment of

the model on the mean components of the stress tensor showed that including a coefficient of 0.5 in
Eq. (4.18) produces better agreement in the particle-laden turbulent planar jet configuration (Fig. 4.1) of
(Masi (2010)). Hereinafter, Eq. (4.18) will be referred as “QUAD-MOD” model. It has been implemented
in AVBP with a coefficient of 0.5 for the study of Chapter 5 for the configuration shown in Fig. 4.1.

4.5 A local weak-equilibrium assumption

In the context of gaseous turbulence, Rodi (1972) introduced a “weak-equilibrium” assumption which
does not need to neglect the transport terms in the stress equations. Instead, it supposes that the
spatial and temporal variations of the stresses are related to the variations of the kinetic energy. The
equilibrium hypothesis is thus transposed onto the anisotropy tensor. From this idea, Pope (1975)
suggested an effective-viscosity approach. Several authors (Gatski & Speziale (1993), Girimaji (1996),
Wallin & Johansson (2000)) contributed to the development of the so-called Algebraic Stress Models
(ASM) where an “E”, for explicit, is often added (EASM).

From this idea, Masi (2010) proposed an implicit equation for the modelisation of the RUM (Eq. (4.22))
and used the methods of Gatski & Speziale (1993), Girimaji (1996) and Wallin & Johansson (2000) to
develop explicit solutions for it. Here, the main steps leading to Eq. (4.22) are recalled and the explicit
solutions obtained presented.

Introducing the same “weak-equilibrium” assumption to the RUM anisotropy stress tensor leads:

D

Dt
b∗p,ij = 0, (4.19)

or using Eq. (4.2) gives:

D

Dt
δR̆p,ij =

δR̆p,ij

δθ̆p

D

Dt
δθ̆p. (4.20)

Injecting Eq. (2.75) and (2.91) into Eq. (4.20) and assuming equality between third-order correlations
yields:

δR̆p,ij

(
−δR̆p,nm

2δθ̆p

∂ŭp,n

∂xm

)
= −1

2
δR̆p,kj

∂ŭp,i

∂xk
− 1

2
δR̆p,ik

∂ŭp,j

∂xk
. (4.21)

The term inside the parenthesis represents the production of the local RUM kinetic energy by shear
and compression (normalized by 2δθ̆p). Equation (4.21) may be written for the anisotropy tensor:

b∗ (−2{b∗S∗}) = −2

3
S∗ −

(
b∗S∗ + S∗b∗ − 2

3
{b∗S∗}I

)
+ (b∗Ω − Ωb∗) , (4.22)

which is a non-linear implicit system. Masi (2010), developped explicit solutions for Eq. (4.22) following
the ideas of Gatski & Speziale (1993), Girimaji (1996) and Wallin & Johansson (2000). They are briefly
recalled in Sections 4.5.1 - 4.5.3. The family of models arising from the explicit solutions of Eq. (4.22)
will be referred as “2ΦEASM” models.

Equation (4.22) is a more generalized form of equilibrium “production-dissipation” that contains the
models presented in previous sections.
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T (1) = S+ T (6) = Ω+2S+ + S+Ω+2 − 2
3{S+Ω+2}I

T (2) = S+Ω+ − Ω+S+ T (7) = Ω+S+Ω+2 − Ω+2S+Ω+

T (3) = S+2 − 1
3{S+2}I T (8) = S+Ω+S+2 − S+2Ω+S+

T (4) = Ω+2 − 1
3{Ω+2}I T (9) = Ω+2S+2 + S+2Ω+2 − 2

3{S+2Ω+2}I
T (5) = Ω+S+2 − S+2Ω+ T (10) = Ω+S+2Ω+2 − Ω+2S+2Ω+

Table 4.1: The integrity basis for fully three-dimensional flows. Reproduced from Masi (2010).

G(1) = − 1
2 (6 − 3η1 − 21η2 − 2η3 + 30η4)/D G(6) = −9/D

G(2) = −(3 + 3η1 − 6η2 + 2η3 + 6η4)/D G(7) = 9/D
G(3) = (6 − 3η1 − 12η2 − 2η3 − 6η4)/D G(8) = 9/D
G(4) = −3(3η1 + 2η3 + 6η4)/D G(9) = 18/D
G(5) = −9/D G(10) = 0

Table 4.2: Coefficients associated to the integrity basis. Reproduced from Masi (2010).

In order to provide an explicit solution, Eq. (4.22) is rearranged as follows:

b+ = −S+ −
(
b+S+ + S+b+ − 2

3
{b+S+}I

)
+
(
b+Ω+ − Ω+b+

)
, (4.23)

where b+ = 3
2b

∗, S+ = S∗/(−2{b∗S∗}) and Ω+ = Ω/(−2{b∗S∗}). According to Pope (1975), the
anisotropy can be expressed in a general form:

b+ =
∑

ς

G(ς)T (ς), (4.24)

where a set of ten tensors T (ς) and coefficients G(ς) is needed to form the integrity basis shown in Table 4.1.
The coefficients are presented in Table 4.2. They are functions of the five dimensionless invariants:

η1 = {S+2}, η2 = {Ω+2}, η3 = {S+3}, η4 = {S+Ω+2}, η5 = {S+2Ω+2}, (4.25)

the denominator D reading:

D = 3 − 7

2
η1 + η2

1 − 15

2
η2 − 8η1η2 + 3η2

2 − η3 +
2

3
η1η3 − 2η2η3 + 21η4 + 24η5 + 2η1η4 − 6η2η4. (4.26)

Singularities may appear when the denominator D vanishes. For this reason Gatski & Speziale (1993)
proposed a regularization procedure applied to the two-dimensional formulation to ensure stability. In
practice the 2D formulation is also used for three-dimensional flows. Two-dimensional flows are mean-
free in one of the three directions. According to Gatski & Speziale (1993) in that case only three tensors
from the integrity basis (Table 4.1) are needed: T (1), T (2) and T (3). Moreover, in 2D: η3 = η4 = 0 and
η5 = 1

2η1η2. The expression for 2D flows reads:

b+ = − 3

3 − 2η1 − 6η2

[
S+ +

(
S+Ω+ − Ω+S+

)
− 2

(
S+2 − 1

3
{S+2}I

)]
. (4.27)

4.5.1 Modeling the non-linearity

Equation (4.27) is implicit. In order to provide an explicit expression, an equation for −2{b∗S∗} has to
be provided. b∗ and S∗ are both axisymmetric tensors, b∗ behaving in one-component limit state and S∗
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in axisymmetric expansion (Masi (2010)). Assuming alignment between the tensors and axisymmetric
directions leads to:

− 2{b∗S∗} = 2

(
2

3

)1/2

II1/2
s . (4.28)

Equation (4.28) is invariant by definition. Using Eq. (4.28) to normalize the tensors in Eq. (4.27) guar-
antees that the 2D form is always non-singular. Re-writting the denominator for two-dimensional flows
using the variable change η2 = η1, ζ2 = −η2 leads to:

D = 3 − 2η2 + 6ζ2, (4.29)

which in the limit case where ζ2 = 0, η2 must be greater than 3
2 in order to avoid D becoming zero. This

condition is always fulfilled. Combination of Eq. (4.27) and Eq. (4.28) will be referred to as “2ΦEASM1”
model.

4.5.2 An explicit solution accounting for non-linearity I

Girimaji (1996) suggested a fully-explicit and consistent solution for 2D flows in the context of gaseous
turbulence. Masi (2010) adapted the same approach to provide an explicit solution to Eq. (4.22). Equa-
tion (4.22) is rewritten in Girimaji’s notation as follows:

b∗
(
L0

1 − L1
1{b∗S+}

)
= L2S

+ + L3

(
b∗S+ + S+b∗ − 2

3
{b∗S+}I

)
− L4

(
b∗Ω+ − Ω+b∗

)
(4.30)

where L0
1 = 0, L1

1 = 2, L2 = − 2
3 , L3 = −1 and L4 = −1 and where the normalization is done dividing by

II
1/2
S . The general representation of the anisotropy tensor in 2D reads:

b∗ = G1S
+ + G2

(
S+Ω+ − Ω+S+

)
+ G3

(
S+2 − 1

3
{S+2}I

)
(4.31)

where the coefficients G are:

G2 =
L4

η1L1
1

, G3 = − 2L3

η1L1
1

, (4.32)

and

G2
1 = − 1

η1L1
1

[
L2 +

1

3
η1L3G3 − 2η2L4G2

]
. (4.33)

Here η1 = {S+2} and η2 = {Ω+2}. Unfortunately, as η2 is always negative, Eq. (4.33) admits real
solutions only for η1 ≥ −η2. In the implementation of this model, local negative values will be set to
zero. Concerning the sign of G1, in the simplest case it is taken as negative. Combination of Eq. (4.31)
and the coefficients in Eq. (4.32) and (4.33) (with negative sign) will be referred to as “2ΦEASM2” model.

4.5.3 An explicit solution accounting for non-linearity II

Another technique to provide explicit solutions was suggested by Wallin & Johansson (2000) in the context
of turbulent gaseous flows and used in the context of the RUM by Masi (2010) to provide new explicit
solution to Eq. (4.22). Using the integrity basis of Table 4.1, Eq. (4.23) is written for the dispersed phase,
using the notation of Wallin & Johansson (2000), as follows:

Nb∗ = −A1S
+ − A2

(
b∗S+ + S+b∗ − 2

3
{b∗S+}I

)
+ (b∗Ω∗ − Ω∗b∗) , (4.34)

where
N = A3 + A4(−2{b∗S+}), (4.35)
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A1 = 2
3 , A2 = 1, A3 = 0, A4 = 2 and the normalization is done as in Section 4.5.2. In very diluted flows,

as A3 = 0, the polynomial of N is depressed to the second order and reads:

N = 2η1 + 2η2. (4.36)

N admits real solutions only for η1 ≥ −η2. As it has been done for 2ΦEASM2 model, local negative values
are set to zero. Concerning the sign of N it must lead to a positive sign of the production and hence it
will be chosen as positive in the simplest case. Masi (2010) developped the limit solutions for three and
two-dimensional flows. Here, only the 2D form is presented. The final equation for the anisotropy tensor
reads:

b∗ = G1T
(1) + G2T

(2) + G3T
(3), (4.37)

where the coefficients of the model depend on N as follows:

G1 = −A1N

Q
, G2 = −A1

Q
, G3 = 2

A1A2

Q
, (4.38)

with

Q = N2 − 2η2 −
2

3
AA2

2η1. (4.39)

Hereinafter this model will be referred to as “2ΦEASM3”. 2ΦEASM2 and 2ΦEASM3 models lead to the
same solution under the two-dimensional flows assumption. Since only the 2D form has been implemented
in AVBP, only results using the 2D formulation will be shown in this work. The reader is encouraged to
see Masi (2010) for more details about the development of the models briefly presented in this section.

4.5.4 Model correction

Section 4.3 showed that it is possible to acoount for a reverse exchange in the energy by introducing a
correction by means of sign(IIIS). In the so-called “2ΦEASM” models, the reverse sign in the energy
exchange is related to the sign of the coefficient G1, which is the same than that of the scalar quantity
{b∗S∗}. This coefficient is negative in single-phase turbulent flows (“weak-equilibrium”, Girimaji (1996)).
However, in dispersed phase interacting with turbulent flows, it is usual to have a reverse exchange of
energy from the RUM to the mesoscopic motion, which would correspond to a reverse sign of G1. Masi
(2010) proposed to model this reverse exchange of energy in the 2ΦEASM models in the same way than
in AXISY-C, giving the so-called “2ΦEASM-C” models.

2ΦEASM1-C model is constructed by including in Eq. (4.28) the sign of the third invariant of S,
sign(IIIS), as follows:

− 2{b∗S∗} = −2sign(IIIS)

(
2

3

)1/2

II
1/2
S . (4.40)

The coefficient G1 of the model 2ΦEASM2 obtained by Eq. (4.33) is rewritten as

G1 = sign(IIIS)

√
2η1 + 2η2

2η1
(4.41)

giving the so-called 2ΦEASM2-C model.

Finally, 2ΦEASM3-C model is obtained through a modification of the quantity N (Eq. (4.36)) as
follows:

N = −sign(IIIS)
√

2η1 + 2η2 . (4.42)
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4.6 A hierarchy of models: Classification

Figure 4.2 shows a classification of the models presented in this Chapter taking into account wether
they are linear or not and depending on the timescale they use (cf Section 4.3.1). There are two linear
models: VISCO and AXISY that differ on their timescale (F(τ̆p) for VISCO and F(S−1) for AXISY).
QUAD is a non-linear model using the timescale of VISCO. However, since QUAD-MOD (a non-linear
model using F(S−1) as timescale) showed better a priori results in the particle-laden turbulent planar
jet configuration (Masi (2010)) than QUAD only QUAD-MOD has been implemented in AVBP and no
results using QUAD model will be shown here. Finally, all 2ΦEASM models are non-linear models using
F(S−1) as characteristic timescale.

Figure 4.2: Schematic representation of models. L=Linear, NL=Non-Linear constitutive relations. Modified
from Masi (2010).

4.7 Verification of the realizability conditions of the model

It is well known in gaseous turbulence, that certain models for the Reynolds stress tensor, containing
closure assumptions relating algebraically unknown correlations to the known quantities, may not have
a solution for a given set of initial and boundary conditions in the sense that the realizability conditions
(Vachat (1977), Schumann (1977)) may be violated. The problem of non-realizable solutions has already
been found in complicated analytical models for the turbulence. In particular, negative energies may
develop (André et al. (1976)) and some properties of the turbulence can be violated (Orszag (1970)).
Such realizability conditions for single-flow are written (Schumann (1977), Ortega (1987)):

Rαβ ≥ 0 for α = β, (4.43)

R2
αβ ≤ RααRββ for α 6= β. (4.44)

Here, Rαβ is any velocity based stress tensor. Summation is adopted for latin indices but not for greek
indices. These conditions are the consequence of real velocities and Schwarz’s inequality. Equation (4.43)
implies non-negative energies and Eq. (4.44) states that the cross-correlations between different compo-
nents of the fluctuating velocity are bounded by the magitude of the autocorrelations. Another condition
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must be added to the set of Eqs. (4.43)-(4.44):

det(Rαβ) ≥ 0. (4.45)

Equation (4.45) can be rearranged as follows:

R12R23R31

R11R22R33
≥ 1

2

[
R2

12

R11R22
+

R2
23

R22R33
+

R2
31

R11R33
− 1

]
. (4.46)

Equation (4.46) implies that the cross-correlations can not take arbitrary values (i.e. if two are well
correlated with the same signs, the third one must be positive). Equation (4.43) to (4.46) produce five
independent inequalities. However, Schumann (1977) showed that only three are independent.

Regarding the applicability of these conditions to numerical simulations, Deardorff (1973) and André
et al. (1976) proposed to clip the non-realizable solutions at each time step and at every node of the grid.
That is, for all points where the inequalities (4.43) - (4.46) do not hold, the stress tensor components take
a new value corresponding to the equal sign of the condition. However, as Schumann (1977) showed, these
changes may depend upon the orientation of the system and lead to nonsteady and noninvariant models.
However, situations where the stress tensor is close to the extreme state of equality in the realizability
conditions are rare and models which do not guarantee the realizability conditions at every location and
instant might still be valid in most applications.

The models presented in this Chapter for the RUM stress tensor may lead to non-physical solutions
in centain conditions. Since the realizability of the models is not always verified and in order to avoid
imaginary solutions, the approach of Deardorff (1973) and André et al. (1976) has been retained to
guarantee that the solutions produced by the models verify the realizability conditions. Since only three
inequalities are independent, only Eqs. (4.43) and (4.44) have been implemented in AVBP. However, a
number of tests including Eq. (4.45), and checking that the order on which the conditions are verified
has no impact on the instantaneous fields, have been performed. The final set of equations retained for
the conditioning of the models is:

δR̆p,αβ ≥ 0 for α = β, (4.47)

δR̆2
p,αβ ≤ δR̆p,ααδR̆p,ββ for α 6= β. (4.48)

In the cases where conditioning is required, a third equation is to guarantee that δR̆∗
p,ij remains a traceless

tensor so:
δR̆∗

p,ij = 0 for i = j . (4.49)

This conditioning has been applied to all the simulations presented in this work.



Chapter 5

Modeling the RUM: an a posteriori
analysis.

In this Chapter, the different models for the deviatoric part of the RUM stress tensor presented in
Chapter 4 are validated a posteriori against projected fields (cf Appendix A) issued from Euler-Lagrange
calculations performed with the code NTMIX-2Φ (cf Appendix A). The test case chosen is presented in
Section 5.1. It consists in a Direct Numerical Simulation (DNS) of a temporal particle-laden turbulent
planar jet subject to a homogeneous isotropic decaying turbulence (Fig. 4.1). This test case aims at being
representative of a control volume in the periphery of a hollow-cone spray (Fig. 5.1), where the flow is
subjected to a strong mean shear. It is indeed a model of the local behavior of the dispersed phase in
mean-sheared unsteady, inhomogeneous turbulent flows.

Figure 5.1: Generic representation of the flow in a hollow-cone spray. Modified from Vermorel (2003).

Masi (2010) performed an a priori analysis of the performances of the RUM models in this configu-
ration (a simplified sketch is shown in Fig. 5.3). She performed Euler-Lagrange simulations for different
particle inertia (i.e. Stokes numbers) and different levels of initial gaseous turbulence in the HIT field
(i.e. acoustic Reynolds numbers, Reac) with the code NTMIX-2Φ. The a priori analysis uses particle
Eulerian fields extracted from Euler-Lagrange DNS by means of a projection algorithm (Kaufmann et al.
(2008)). Then, the models are tested against “exact” Eulerian fields. Statistics are computed over all
the planes (YZ) of the slab. Since these planes may be considered as planes of homogeneity, the average
gives an estimation of the theoretical ensemble average computed over a large number of particle and
fluid realizations. Instantaneous fields are shown in the (XY) plane at the coordinate Z = 0 (Fig. 5.2).

The results obtained from the a priori analysis of the RUM models using the Eulerian projection of
the Lagrangian fields computed with NTMIX-2Φ (Masi (2010)) are compared with a posteriori Euler-
Euler simulations of the same configuration performed with the code AVBP. The a priori study of the

55
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exact Lagrangian computations of this configuration was used for the validation of the models presented
in Chapter 4. The results of Masi (2010) are not influenced by the choice of the RUM model. Indeed, the

a priori analysis consists in the calculation of the RUM quantities (δθ̆p, the RUM production terms and
the components of the deviatoric RUM stress tensor) from the fields issued from an exact Lagrangian
simulation. That is, from the fields of particle number density and velocity, the values of RUE and the
other RUM quantities are calculated for every physical time at which the analysis is performed. Indeed,
in the Lagrangian equations, there are no unclosed terms related to RUM, so no RUM modeling is needed.
On the other hand, in the a posteriori simulations performed with AVBP, the choice of the model has an
influence since the discrete phase flow field is affected by the field at the previous timestep, while the a
priori results are obtained postprocessing exact Lagrangian simulations. There is then an effet of history
in the a posteriori simulation. The magnitude of this effect is very difficult to quantify and this task is
out of the scope of this work.

Figure 5.2: Sketch of the (XY) cutting plane located at Z = 0 used to show instantaneous fields.

This Chapter is organized as follows. In Section 5.1 the configuration, along with the initial and bound-
ary conditions, and the numerical setup used for the simulations with AVBP, are presented. Section 5.2
presents a validation of the carrier phase flow. In Sections 5.3, a first validation for a low turbulent case
(Reac = 5500) with a mean inertia (St ∼ 1) is presented: statistics of low and high order moments along
with instantaneous fields of the main moments are shown. Section 5.4 shows the results obtained for both
a higher and a lower inertia (St ∼ 3 and St ∼ 0.33) flow. Section 5.5 shows the application to a higher
turbulent case (Reac = 20000, St ∼ 1). For all test cases, comparisons with the “exact” Eulerian fields
obtained by Masi (2010) are provided. For the sake of simplicity, the term “Lagrangian” is used here
to denote the a priori Eulerian fields coming from the projection of the Euler-Lagrange computations
with NTMIX-2Φ (with the sense “from-Lagrangian”) in order to distinguish them from the a posteriori
Euler-Euler results obtained with AVBP, which will be referred to as “Eulerian”.

5.1 Description of the test case

Figure 5.3 shows a simplified sketch of the configuration chosen to assess the a posteriori performances
of the RUM models presented in Chapter 4. It consists in a temporal particle-laden turbulent planar
jet embedded in a homogeneous decaying isotropic turbulence first studied by Vermorel (2003). The
simulation domain is a cubic box with periodic boundary conditions in all directions. A slab with a mean
gaseous velocity whose shape is a double hyperbolic tangent is added in the centrer of the box. Solid
particles are added to the slab. Diluted conditions are assumed, and one-way coupling between the gas
and the dispersed phase is taken into account. In fact, since the configuration is in diluted regime, it can
be assumed that the dispersed phase has no impact on the carrier phase. A definition of the quantities
used for the normalization and the equivalent in NTMIX-2Φ is briefly presented in Section 5.1.3, more
details can be found in Dombard (2011).
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Figure 5.3: Simplified sketch of the particle-laden turbulent planar jet configuration. (Extracted from Vermorel
(2003)).

5.1.1 Initial and boundary conditions

The initial condition for the carrier phase is the same for NTMIX-2Φ and AVBP in all cases. A slab with
a gaseous mean velocity (U) is added to a homogeneous decaying isotropic turbulence. In this way, the
jet is already turbulent at the initial time. The slab width Lslab is 0.25Lbox, where Lbox is the length
of the cube. The HIT is initialized with a Passot-Pouquet spectrum (Passot & Pouquet (1987)), setting
the most energetic lengthscale to Le = 0.4Lref , where Lref is a reference length. The choice of Le yields
initial turbulent eddies with a size approximately equal to one quarter of the slab width. This allows the
jet to develop additional velocity fluctuations from the mean velocity gradient (Masi (2010)). The initial
velocity profile in the slab is imposed as a hyperbolic-tangent profile:

φ(y) = φo + f(y)
(
φi − φo

)
, (5.1)

f(y) =
1

2

(
1 + tanh

1
2Lslab − |y|

2δθ

)
, (5.2)

where φi and φo denote the velocity in and outside the jet, y is the vertical coordinate and δθ refers to
the initial momentum thickness of the slab.

For the low turbulence case, the initial turbulent Reynolds number based on Le is Re ≈ 73. For the
high turbulence case, it is approximately Re ≈ 264.

In NTMIX-2Φ, particles are randomly embedded at the initial time at the same velocity than the gas
phase. For the low turbulence cases, 80 millions particles are introduced in the domain, 210 millions for
the high turbulence case. The corresponding particle velocities compared to the initial fluid velocities for
both cases are listed in Table 5.1. Note that the initial particle volume fraction profile from NTMIX-2Φ
has a very steep gradient at the periphery of the slab. he 3rd order schemes implemented in AVBP are
however not capable of handling such a steep gradient. For this reason, the initial particle volume fraction
in AVBP has been initialized with a hyperbolic-tangent profile (Eq. (5.1)). A very low particle volume
fraction field (six orders of magnitude lower than the value in the slab) is added to the whole domain
to simulate the zones where no particles are present. Regarding the initial RUE profile, in NTMIX-2Φ
it is initially equal to zero. However, due to the transport equation for RUE solved in AVBP, the RUM
would never develop. A RUE profile is thus imposed at the initial time for the simulations with AVBP
since all the terms on the RHS of the RUE transport equation directly depend on RUE. This initial RUE
profile has been initialised in AVBP with two narrow hyperbolic-tangent profiles on each side of the slab,
in order to mimic two “relaxed” Dirac’s delta functions. This profile is assumed equivalent to the RUE
profile of the NTMIX-2Φ calculation close to the initial time.

Boundary conditions are periodic in all directions for both codes.
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The mesh used for the simulations is a 1283 grid for NTMIX-2Φ and the low turbulence case. It
is a 2563 grid for the high turbulence simulations. Dombard (2011) analyzed the impact of the mesh
resolution on the dispersed phase in this configuration using AVBP. He deduced that although the carrier
phase is converged for a given mesh, it might not be the case for the dispersed phase. Increasing the
mesh resolution in the Euler-Euler simulations leads to better agreement for the dispersed phase RMS
quantities statistics. For this reason in AVBP, a 2563 grid is used for both the low and the high turbulence
cases. Some cases have also been performed on a 5123 grid to assess the mesh resolution and for result
comparison purposes. All meshes are composed by hexahedric cells.

Velocity Low turbulence High turbulence

MEAN-X U0
p = U0

f U0
p = U0

f

MEAN-Y V 0
p = V 0

f = 0 V 0
p = V 0

f = 0

MEAN-Z W 0
p = W 0

f = 0 W 0
p = W 0

f = 0

FLUCTUATION-X u0′

p = 0 u0′

p = 0

FLUCTUATION-Y v0′

p = v0′

f v0′

p = 0

FLUCTUATION-Z w0′

p = w0′

f w0′

p = 0

Table 5.1: Initial particle velocity conditions.

5.1.2 Summary of test cases

The configuration is unsteady and depends only on initial conditions and parameters of the carrier and the
dispersed phases. These parameters and initial conditions differ depending on the inertia and turbulence
level simulated. Different levels of turbulence have been simulated. For the low Reynolds case (LR), three
different values of particle inertia have been simulated. For the higher Reynolds (HR) case, one Stokes
number has been simulated. Table 5.2 summarizes the test cases presented in this work. The symbol #
represents the different RUM models tested for each case. Not all the RUM models have been evaluated
for each case. Indeed, the results obtained in cases LR St1 # and LR St3 # allowed to distinguish the
models that produced the best results. Those models were afterwards tested on both a lower inertia
(LR St033 #) and a higher turbulence cofigurations (HR St1 #) along with the classical model VISCO
and noRUM when possible. Table 5.3 shows the different models tested and in which configuration.

keyword Reac St

LR St # 5500 1
LR St3 # 5500 3
LR St033 # 5500 0.333
HR St1 # 20000 1

Table 5.2: Matrix of the tests presented in this chapter.

Note that some simulations performed with the VISCO model or without taking into account the
contribution of the RUM in the dispersed phase equations (noRUM model) were not numerically stable
with the numerical setup chosen (cf Section 5.1.4). In all cases, the VISCO and noRUM models were
tested as they may be taken as a reference for the comparison, since they were the only two models for
the Random Uncorrelated Motion available until now in AVBP.

5.1.3 Normalization

This Section provides a summary of the quantities used for normalization that are needed to compare the
results issued from AVBP and NTMIX-2Φ. Indeed, NTMIX-2Φ uses non-dimensional variables, while
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Case
RUM model LR St1 # LR St3 # LR St033 # HR St1 #

noRUM X X(unstable) X(unstable) X(unstable)
VISCO X(unstable) X(unstable) X X(unstable)
AXISY X X - -

AXISY-C X X - -
QUAD-MOD X X X X
2ΦEASM1 X X - -

2ΦEASM1-C X X - -
2ΦEASM3 X X X X

2ΦEASM3-C X X - -

Table 5.3: Matrix of the RUM models tested on each case.

AVBP does not. In this Section, asterisk will denote non-dimensional quantities to make the difference
with dimensional ones. This notation will be abandoned afterwards.

The reference length is chosen as Lref = 10−3m, it is an arbitrary value. The simulation domain is
a cubic box of size L∗

box = 2π. The carrier phase is composed of pure air (density ρf = 1.138 kg/m3,
dynamic viscosity µf ) at constant pressure Pref = 101325 Pa and temperature Tref = 300 K (γ = 1.4).
Particles have the same temperature as the carrier fluid. Under these conditions, the speed of sound in
the flow is:

c =

√
γ

Pref

ρref
, (5.3)

the reference time reads:

tref =
Lref

c
. (5.4)

The non-dimensional numbers characterizing the carrier phase are:

• The acoustic Reynolds number, Reac:

Reac =
cLref

νf
, (5.5)

where νf = µf/ρf is the kinematic viscosity of the carrier fluid.

• The Mach number, M :

M =
U

c
, (5.6)

where U is the mean velocity of the carrier phase.

• The turbulence intensity:

I =
u′

U
, (5.7)

where u′ is the fluctuating velocity of the carrier phase

For the characterization of the dispersed phase the Stokes number is used:

• Dynamic Stokes number, St:

St =
τF
fp

τf
, (5.8)

where τF
fp is the characteristic particle relaxation time and τf is a characteristic timescale of the

carrier flow.
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In fact, in the a posteriori simulations the Stokes number used corresponds to the one of the a priori
analysis. The Stokes number in the a priori analysis is computed over a characteristic timescale of the
turbulence seen by the particles (Deutsch & Simonin (1991)). Such a timescale is estimated using the
Tchen equilibrium in the z-direction (which is mean-flow free) (Simonin (1991)). The Stokes number is
defined as done in Masi (2010). She estimates the Stokes number and τF

fp at the end of a simulation of
reference, referred as “St = 1”. The Stokes number of all other simulations is evaluated comparing the
particle density (ρp), which is the only parameter modified. For example, the simulation called “St = 3”
is initialized with a particle density which is three times larger than the particle density in the simulation
St = 1, all other parameters remaining unchanged.

In order to calculate the dimensional values of the parameters for the calculation with AVBP, the
following procedure is used (Dombard (2011)):

From the chosen values for the reference lenght Lref = 10−3 m, mean pressure Pf = 101325 Pa
and temperature Tf = 300 K, the speed of sound is calculated (c = 352.9 m/s, Eq. (5.3)). The acoustic
Reynolds number Reac and the Mach number M are conserved since they are, by definition, dimensionless
quantities. They allow to evaluate the convective Reynolds number, Rec:

Rec =
ULbox

νf
=

U

c

Lbox

Lref

c · Lref

νf
= M · Lbox · Reac . (5.9)

The mean velocity of the jet, is calculated from the Mach number and the sound speed:

U = M · c . (5.10)

The kinematic viscosity is:

νf =
cLref

Reac
, (5.11)

which allows to evaluate the dynamic viscosity needed for AVBP:

µf = νf · ρf . (5.12)

Specifying the convective Reynolds number, the initial mean velocity of the jet along with the charater-
istics of the carrier fluid (pressure, temperature, density and viscosity), the gaseous fluid is defined. The
characteristics of the initial carrier flow field are described in Section 5.1.1.

Regarding the dispersed phase, the characteristics of the solid particles need to be defined:

The Stokes number must be the same in the Lagrangian and the Eulerian calculations:

StNTMIX−2Φ = StAV BP . (5.13)

The characteristic fluid timescales between NTMIX-2Φ and AVBP are linked:

τf = τ∗
f · tref = τ∗

f

Lref

c
, (5.14)

where the superscript ∗ denotes a non-dimensional time. Throughout this Chapter, the reference time tref

will be used to characterize the physical time of the Eulerian simulation for which results are compared.
In the Lagrangian simulation, since NTMIX-2Φ uses non-dimensional quantities, t∗ref = 1. The particle
relaxation time is calculated assuming a Stokes regime, so no Schiller-Naumann correction (Schiller
& Nauman (1935), Eq. (2.39)) is taken into account. Note that, the Schiller-Naumann correction is
accounted for in the Euler-Euler simulations. However, since the relative velocity between particles
and fluid is small, the Schiller-Naumann correction has a very limited influence on the results in this
configuration. Simulations performed on all the cases studied in this Chapter with 2ΦEASM3 model
(not presented here for the sake of conciseness) and without taking into account the Schiller-Naumann
correction did not show any noteworthy difference.

τp =
4

3

ρpdp

ρf
24

Rep
||urel||

=
1

18

ρpd
2
p

ρfνf
, (5.15)
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where ||uref || is the relative velocity between the particles and the carrier fluid.

Equation (5.15) the allows to calculate the particle density ρp:

ρp =
18ρfνf

d2
p

τp =
18ρfνf

d2
p

τF∗
p · tref . (5.16)

The particle diameter can be chosen arbitrarly, however, the Stokes regime must be conserved, and
the particle’s relaxation times must be as similar as possible between the Lagrangian and the Eulerian
simulations. In this case, the particle diameter used for the Lagrangian calculations with NTMIX-2Φ
is too small, leading to dimensional values of the diameter for AVBP lower than 1µm. This may lead
to numerical stability problems when performing calculations with AVBP: in AVBP, variables ᾰp and
n̆p are transported whereas the particle diameter is reconstructed. Small values of dp may lead to very
small values of ᾰp, close to the zero machine, which may produce numerical errors affecting the results
or the stability of the code when reconstructing the diameter. A higher value of the particle diameter is
therefore chosen for the Euler-Euler computations: dp = 2µm for all cases.

Table 5.4 shows the values of the parameters used for the different simulations performed at low
turbulence (Reac = 5500, St ∼ 1). For case LR St3 # only the particle density is modified :ρp =
3.633 · 104kg/m3. For case LR St033 #, ρp = 0.4037 · 104kg/m3. Table 5.5 shows the parameters of the
high turbulence simulation (case HR St1 #).

Parameter AVBP
Lbox 2π · 10−3 [m]
Reac 5500 [−]
M 0.15 [−]
I 0.1 [−]

Rec 5183.63 [−]
Pf 101325 [Pa]
Tf 300 [K]
ρf 1.138 [kg/m3]
νf 6.42 · 10−5 [m2/s]
µf 7.31 · 10−5 [kg/m · s]
c 352.9 [m/s]
U 52.935 [m/s]
u′ 5.2935 [m/s]

tref 2.834 · 10−6 [s]
St 1
dp 2 · 10−6 [m]
Wp

Wf
3.69 [−]

ρp 1.2111 · 104 [kg/m3]

Table 5.4: Summary of AVBP initial parameters for the low turbulence mean inertia case (LR St1 #).

5.1.4 Numerical setup

Details about NTMIX-2Φ and the numerical setup used for the Euler-Lagrange reference simulations can
be found in Appendix A. AVBP simulations have been performed using 3rd order numerical scheme TTGC
(Colin et al. (2000)) coupled with artificial viscosity (AV) for the dispersed phase. No AV is applied on the
gaseous phase. The particle AV sensor used is CMS-Lite (Sanjosé (2009)). The values for the 2nd-order
(ǫ2) and 4th-order (ǫ4) parameters are shown in Table 5.6. These values have been minimized for the
LR St1 2ΦEASM1 test case. All other simulations have been performed with exactly the same numerical
setup. In order to avoid numerical problems in the regions of void numerical dissipation is applied for
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Parameter AVBP
Reac 20000 [−]
Rec 18850 [−]
νf 1.7645 · 10−5 [m2/s]
µf 2.008001 · 10−5 [kg/m · s]
St 1
dp 2 · 10−6 [m]
ρp 2.417 · 103 [kg/m3]

Table 5.5: Summary of AVBP initial parameters for the high turbulence case (HR St1 #). Only the parameters
which differ from those of the LR St1 # case are shown.

particle number densities lower than 2 ·107m−3, which corresponds to a minimal particle volume fraction
of 8.37 · 10−11. Moreover, only positive values of RUE are kept to avoid unphysical phenomena.

Note that in the Euler-Euler approach, there is no lower limit in terms of numerical resolution.
Compared with the gaseous flow, where the Kolmogorov length scale represents the lower limit for the
energy transfer, there is no length scale at which it may be considered that the energy is completely
dissipated. For solid, non-deformable particles, the particle diameter may be considered as the smallest
length scale. On the contrary, for deformable particles or liquid droplets, compressibility and deformation
effects make this assumption not valid. This characteristic of the dispersed flow treated with an Euler-
Euler approach derives from the equations of conservation themselves. For this reason, the numerical
scheme and the resolution of the mesh grid may have an enlarged importance compared to single-phase
flows.

– Gaseous phase –
AV sensor ǫ2 ǫ4

no AV 0.00 0.00

– Dispersed phase –
AV sensor ǫ2 ǫ4

CMS-Lite 0.55 0.00

Table 5.6: Artificial Dissipation parameters for all the simulation performed with AVBP.

5.2 Gas phase validation

This Section presents a validation of the carrier phase flow. Comparisons between the Euler-Euler (AVBP)
and Euler-Lagrange (NTMIX-2Φ) simulations at low and high Reynolds numbers are proposed in terms
of mean and root mean squared fluctuations (RMS) fluid velocities as well as turbulent kinetic energy
(q2

f ).

Since the simulations are performed taking into account the effect of the carrier flow on the dispersed
phase, but not the effect of the particles on the carrier fluid (i.e. one-way coupling) it is not needed to
verify the carrier phase flow for every simulation. Moreover, the carrier fluid flow is the same for all
inertia (i.e. same Stokes number) if the level of turbulence (i.e. the Reynolds number) is the same. This
means that all the simulations of a given case have the same carrier fluid flow whatever the RUM model
used. Also, all simulations at low turbulence (LR St1 #, LR St3 # and LR St033 #) share the same
carrier fluid flow at the same instant.

Section 5.2.1 presents a validation of the carrier phase flow for the low turbulence cases (LR St1 #,
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LR St3 #, LR St033 #). Section 5.2.2 presents the results for the high turbulence case (HR St1 #).

5.2.1 Low turbulence case

This section presents the validation of the carrier fluid flow for cases LR St1 #, LR St3 # and
LR St033 #. Mean and RMS velocities in the three directions, along with the turbulent kinetic energy
profiles at times corresponding to 5, 40 and 80tref are shown. Instantaneous fields of fluid velocity
magnitude are also shown.

Figures 5.4, 5.5 and 5.6 show the profiles of the mean velocity and the product of the fluid density ρf

and the RMS fluid velocity in the X-, Y- and Z-directions respectively. Note that X-direction is the main
direction of the flow. The agreement between AVBP and NTMIX-2Φ is very good for both the mean and
the RMS values in all directions. Some discrepancies appear in the profiles of Vg which are due to small
differences in the fluid density between AVBP and NTMIX-2Φ. Both codes solve the compressible NS
equations, however, they differ in the numerical schemes they use, which may lead to small discrepancies.
Nevertheless, the differences remain small and appear only in the Y- and Z- directions, where the order of
magnitude of the velocity is much smaller than in the X-direction. This is also the reason why the RMS
profiles are shown multiplied by the fluid density. Since the quantity transported in AVBP is the product
of the density and the velocity, it has been chosen as the quantity to be shown. However, the mean
velocities are shown without taking into account the density in order to show the order of magnitude
of this difference. Finally in order to assess the quality of the carrier phase flow, Fig. 5.7 shows the
profiles of turbulent kinetic energy at the three times chosen for the analysis. Since the profiles are very
similar, it is guaranteed that the fluid flow is almost the same in the simulations performed with AVBP
and with NTMIX-2Φ. Thus, the discrepancies that may appear between the simulations performed with
the different RUM models are due to the models themselves and not to potential differences in the fluid
phase flow.

In order to provide a qualitative comparison, the instantaneous fields of the fluid velocity magnitude
are shown in Fig. 5.8 at 5, 40 and 80tref . The results of both approaches are very close for the three
times.

(a) (b)

Figure 5.4: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase velocities in X-direction. LR St1 #
case. (a) Mean velocity (Uf ) and (b) RMS velocity times the fluid density (ρfUf,RMS).
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(a) (b)

Figure 5.5: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase velocities in Y-direction. LR St1 #
case. (a) Mean velocity (Vf ) and (b) RMS velocity times the fluid density (ρfVf,RMS).

(a) (b)

Figure 5.6: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase velocities in Z-direction. LR St1 #
case. (a) Mean velocity (Wf ) and (b) RMS velocity times the fluid density (ρfWf,RMS).
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Figure 5.7: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase turbulent kinetic energies (q2

f ).
LR St1 # case.

Figure 5.8: Comparison of instantaneous NTMIX-2Φ and AVBP carrier phase fields ([m/s]) at 5, 40 and
80tref . LR St1 # case.
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5.2.2 High turbulence case

The carrier phase flow is modified with the Reynolds number changes. For this reason, it is necessary
to verify that the carrier fluid flow keeps the same for the Lagrangian and the Eulerian simulations also
for the HR St1 # case. Since for the low turbulence cases, the agreement for the carrier phase profiles
was very good, a good agreement is also expected in this case. The high turbulence Euler-Lagrnage
simulations have been carried out only up to 70tref due to limited computational resources. Comparisons
between Euler-Euler and Euler-Lagrange results are therefore shown at that time. Figure 5.9 shows
the instantaneous carrier phase velocity magnitude fields for the Euler-Lagrange and the Euler-Euler
simulations at 70tref . It provides a qualitative assessment of the gaseous phase simulations of both
codes. The results are very similar although the differences between the two simulations are more
visible than in the low turbulence case (Fig. 5.8). In order to provide quantitative results, the profiles
of mean and RMS velocities in the three spatial directions are compared at 70tref . The profile of
turbulent kinetic energy is also displayed on Fig. B.4. The same profiles corresponding to 5 and
40tref can be found in Appendix B. The agreement, as expected, is very good. The same discrep-
ancies in the mean Y- and Z-velocity are present in this case due to differences in the fluid density
profiles. The agreement for the RMS velocity and the turbulent kinetic energy profiles is again very good.

Figure 5.9: Comparison of instantaneous NTMIX-2Φ and AVBP carrier phase fields ([m/s]) at 70tref .
HR St1 # case.
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(a) (b)

Figure 5.10: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase velocities in X-direction. HR St1 #
case. (a) Mean velocity (Uf ) and (b) RMS velocity times the fluid density (ρfUf,RMS) at 70tref .

(a) (b)

Figure 5.11: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase velocities in Y-direction. HR St1 #
case. (a) Mean velocity (Uf ) and (b) RMS velocity times the fluid density (ρfUf,RMS) at 70tref .
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(a) (b)

Figure 5.12: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase velocities in Z-direction. HR St1 #
case. (a) Mean velocity (Uf ) and (b) RMS velocity times the fluid density (ρfUf,RMS) at 70tref .

Figure 5.13: Comparison of AVBP (—) and NTMIX-2Φ (–•–) carrier phase turbulent kinetic energy (q2

f ) at
70tref . HR St1 # case.
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5.3 Dispersed phase validation. Case LR St1 #

The simulations of case LR St1 # with the six models proposed in Chapter 4 and their corrected versions
have been performed with AVBP. This case corresponds to a low turbulence, mean inertia simulation.
The characteristic particle relaxation time is τF

fp ∼ 13tref .

The VISCO model crashed after few iterations. Indeed, the particle RUE is considerably overestimated
using VISCO for this range of particle inertia. Particle RUE has a diffusion effect in the fields of
mesoscopic particle number density and particle volume fraction, as well as in the particle velocity
fields. VISCO producing too much RUE from the beginning of the calculation, it leads to an excessive
diffusion of the particles towards the periphery of the jet, creating empty zones which can not be handled
numerically by the code. This behavior was somehow already pointed out by the a priori analysis of
Masi (2010): VISCO overpredicted the shear-component of the deviatoric RUM stress tensor (δR̆∗

p,12) and

underpredicted the diagonal components (δR̆∗
p,11, δR̆∗

p,22 and δR̆∗
p,33). In fact, the two models using τ̆p,

the characteristic particle relaxation time, as timescale (VISCO and QUAD) showed the same behavior,
QUAD even overpredicting all the components of the tensor. Confirming the a priori analysis, the
simulations with AVBP and QUAD model have not been possible either, since this model crashed even
before VISCO does. In both cases a huge overproduction of particle RUE, makes the simulation unstable.
For this reason, no results are displayed concerning these two models for LR St1 # case.

Section 5.3.1 presents the statistics of the main low-order moments and RMS mean particle number
density and particle velocity for three times: at the beginning of the simulation (5tref , after approx.
0.38τF

fp), at the middle (40tref , after 3.07τF
fp) and at the end of the simulation (80tref , after 6.15τF

fp).
Results obtained in a particle-laden stationary HIT configuration (Février et al. (2005)) showed that at
least three particle relaxation times are required to obtain statistics not influenced by the initial condition.
This means that results at 5tref are not discriminatory to evaluate the performance of the models, and
that results after 40tref must be taken into account to assess the validity of the models in this case. The
results at 80tref allow to confirm the conclusions drawn at 40tref . Instantaneous fields of particle number
density and particle velocity at the end of the simulation are also displayed. Section 5.3.2 presents the
statistics of the main high-order moments, including the particle RUE and the total particle agitation as
well as the mean profiles of the tensor components and RUM production rates. Instantaneous fields of
RUE at the end of the simulation are also shown. Complementary data can be found in Appendix C.

5.3.1 Low order moments

Low order moments such as the particle number density or the particle velocity are important since they
define the main characteristics of a given dispersed phase flow field. In the presence of turbulence, the
root-mean-square (RMS) values are of importance too, since they measure the fluctuations in the flow.
These are in fact the variables of interest in most industrial applications. However, in this configuration,
the particle preferential concentration (Squires & Eaton (1991a)) is an important parameter too. Indeed,
in turbulent flows, the particles tend to accumulate in low-vorticity and high-shear regions, creating both
high concentration and empty zones close to each other. This produces very steep particle number density
gradients in the flow field similarly to a highly compressible gaseous flow. This behavior is strongly related
to the particle number density and the particle velocity divergency fields. The preferential concentration
is measured by the so-called “segregation” parameter, noted seg:

seg =
〈n̆2

p〉
〈n̆p〉2

. (5.17)
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Figure 5.14 shows the statistics of the particle number density for three different times along the
simulation. The values are normalized by the initial particle number density at the center of the slab.
The results at 5tref are presented to show that when the simulation is close to the begining, the results
are very influenced by the initial condition. Indeed, Figs. 5.14(a), 5.15(a), 5.16(a), 5.17(a) and 5.18(a)
show that all models give the same results. All models perform equally in the prediction of the particle
number density and the particle velocity at 5, 40 and 80tref , except AXISY and its corrected version
AXISY-C. Figure 5.14(b) shows that both models predict peaks at the borders of the plateau located
at the center of the slab. Note that the peaks are stronger for AXISY than for AXISY-C. At 80tref

(Fig. 5.14(c)), the two peaks have disappeared, but both models overestimate the maximum of 〈n̆p〉 at
the center of the slab. Regarding the mean particle velocity (Fig. 5.15), all models give very close results.
Figure 5.15(a) underlines a slight inaccuracy of the projection algorithm. Indeed, the profiles obtained
by projection from NTMIX-2Φ deviate from the hyperbolic tangent profile at the borders of the jet. This
is due to the steepness of the velocity gradient or to a lack of particles in this region in the Lagrangian
sumulations, which introduces errors when projected onto the Eulerian grid.

The profiles of particle RMS number density (Fig. 5.16) and particle RMS velocity (Fig. 5.17) produced
by the models are also very similar. However, AXISY predicts a steeper gradient at the periphery of
the slab. AXISY-C and QUAD-MOD give the same maximum level of RMS number density but both
models predict lower levels towards the periphery producing a thinner slab. QUAD-MOD underestimates
the maximum RMS particle velocity and AXISY behaves even worse. This behavior is already visible at
40tref and remains at 80tref .

Figure 5.18 shows the profiles of particle segregation at 5, 40 and 80tref . AVBP is not able to capture
the initial shock. This is due to the influence of numerics which are not capable of handling such highly
compressible dispersed phase flows.

A qualitative analysis of the instantaneous fields of the particle number density and particle velocity
(Figs. 5.19 and 5.20) is not sufficiently discriminatory. Indeed, from the instantaneous fields of these
variables, the noRUM model arises as the model who performs the best, but Section 5.3.2 will explain the
reasons for this behavior. Indeed, the noRUM model does not take into account the Random Unocrrelated
Motion and thus, the balance between the mesoscopic energy, the RUE and the total particle energie is
not correct. Taking this into account, only AXISY shows a clear weakness if compared to the rest of the
models.

In conclusion, the results concerning the low order moments do not allow to differenciate between the
models, and are definitely not sufficient to discard a model in front of the others. Analysing the statistics
of the higher order moments is therefore necessary.
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(a)

(b)

(c)

Figure 5.14: Comparison of Eulerian and Lagrangian mean particle number density (< n̆p >) at 5, 40 and
80tref . Normalized by the initial particle number density at the center of the slab. LR St1 # case.
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(a)

(b)

(c)

Figure 5.15: Comparison of Eulerian and Lagrangian mean particle velocity in X-direction (< ŭp >p) at 5, 40
and 80tref . Normalized by the initial particle velocity in X-direction at the center of the slab.

LR St1 # case.
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(a)

(b)

(c)

Figure 5.16: Comparison of Eulerian and Lagrangian RMS particle number density (< n̆p,RMS >) at 5, 40 and
80tref . Normalized by the initial particle number density at the center of the slab. LR St1 # case.
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(a)

(b)

(c)

Figure 5.17: Comparison of Eulerian and Lagrangian RMS particle velocity in X-direction (< ŭp,RMS >p) at 5,
40 and 80tref . Normalized by the initial particle velocity in X-direction at the center of the slab.

LR St1 # case.



Modeling the RUM: an a posteriori analysis. 75

(a)

(b)

(c)

Figure 5.18: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2

p > / < n̆p >2) at 5, 40 and
80tref . LR St1 # case.
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Figure 5.19: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 80tref .
LR St1 # case.
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Figure 5.20: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 80tref .
LR St1 # case.
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5.3.2 High order moments

The analysis of the higher order moments such as the RUE (δθ̆p) and mesoscopic energy (q̆2
p) energies,

is expected to enable to discriminate which models produce better a posteriori results in mean-sheared
configuration. In industrial applications, the only high-order moment really taken into account is the
total energy or total particle agitation (q2

p = q̆2
p + δq̆p). The importance of the Random Uncorrelated

Motion is due to the particle trajectory crossing (PTC, Falkovich et al. (2002)). Indeed, the prediction of
the RUE is crucial in applications (industrial or not) where particle collision and/or coalescence are taken
into account (such as fluidized beds or non-diluted regimes, i.e. injector-close zones in sprays). If the
RUE is not well predicted, the dispersed phase will not have enough energy for collisions or coalescence.
For example, if δθ̆p is overestimated, it may lead to a relaminarization of the dispersed phase flow (Riber
(2007)). Masi (2010) performed an a priori analysis of the particle-laden temporal turbulent planar-jet
studied here taking into account the particle collisions. Masi rewrote the models presented in Chapter 4 to
the case of a colliding dispersed phase in diluted regime (one-way coupling with the gas phase). However,
as in AVBP the possibility of taking into account collisions or coalescence is not available yet, these
phenomena have not been studied here. Nevertheless, collisions may be taken into account in AVBP with
minor modifications along with the implementation of the corresponding RUM models.

Figure 5.21 shows the predicted RUE profiles at 5, 40 and 80tref . While AXISY overestimates the
particle RUE, 2ΦEASM1 underestimates it. QUAD-MOD, 2ΦEASM3 and AXISY-C provide correct
levels of RUE. However, QUAD-MOD and 2ΦEASM3 are able to recover the good profile at 40tref while
AXISY-C underestimates the RUE level at 40tref and predicts a correct value at 80tref . Figure 5.22
shows the mesoscopic energy q̆2

p and the total energy q2
p = q̆2

p + δq̆p for the three simulation times. The
main conclusions obtained comparing the statistics of δq̆p, q̆2

p and q2
p are:

1. The main contribution to the total agitation q2
p comes from the mesoscopic motion (i.e. from q̆2

p),
while the RUM has a limited impact for such particle inertia.

2. The models that overestimate the particle RUE (e.g. AXISY), predict a lower value of the meso-
scopic energy. In the same way, the models that underestimate the RUM energy (e.g. 2ΦEASM1)
produce higher values of q̆2

p than the Lagrangian reference. In all cases, the final energy budget
gives the correct amount of total agitation (q2

p).

The analysis of the high-order models is completed with the statistics of the productions of RUE by
shear and by compression. The production (Fig. 5.23) is defined as:

PShear
RUM = −δR̆∗

p,ij

∂ui

∂xj
. (5.18)

The production by compression (Fig. 5.24) depends on the divergence of the particle velocity and reads:

PCompression
RUM = −2

3
δθ̆p

[
∂ui

∂xi

]
. (5.19)

QUAD-MOD and 2ΦEASM3 give the best predictions of PShear
RUM . However, the profile of PCompression

RUM

produced by 2ΦEASM3 is closer to the reference than that of QUAD-MOD. AXISY greatly overestimates
the production by shear. As well, the production by compression is no longer a production term but a
dissipation term when using this model. A test performed without taking into account the production by
compression term (Eq. (5.19)) in the RUE transport equation using the AXISY model has shown that
the overestimation of RUE was much larger neglecting this term, confirming the dissipative nature of
.PCompression

RUM in AXISY model. Finally for all models, the shear term is one order of magnitude larger
than the compression term.
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The main components of the deviatoric RUM stress tensor are also shown (Figs. 5.25 - 5.28). The
diagonal components (δR̆∗

p,11, δR̆∗
p,22 and δR̆∗

p,33) are well predicted by QUAD-MOD and 2ΦEASM3
models, greatly underpredicted by AXISY-C, 2ΦEASM1 and 2ΦEASM1-C models and slightly under-
predicted by AXISY and 2ΦEASM3-C models. In fact, the a priori analysis showed that the diagonal
components have a limited impact in the prediction of the mean RUE compared to the components out of
the diagonal. δR̆∗

p,12 is shown in Fig. 5.28 for all the models. QUAD-MOD and 2ΦEASM3 profiles agree
well with the Lagrangian reference, AXISY-C produces as well good results, which is coherent with the
RUE predictions of this three models. The good agreement in the shear component for AXISY-C helps
to overcome the small underestimation of the diagonal components. On the contrary, AXISY greatly
overestimates this component, which has a direct impact on PShear

RUM terms and creates large amounts of
RUE (Fig. 5.21). Regarding 2ΦEASM1 models (with and without correction), both models underesti-
mate all components of the deviatoric RUM stress tensor, and thus underestimate the RUE as well. In
fact, the correction seems to have a more limited impact on this model than predicted by a priori anal-
ysis. In the case of the 2ΦEASM3-C model, the a priori analysis showed that the correction improved
the predictions of the deviatoric tensor components (and thus the productions and the RUE). In the a
posteriori simulations, the correction has the opposite effect: it gives worse agreement.

A qualitative comparison of the model predictions for RUE is shown in Fig. 5.29. It shows the
instantaneous fields of RUE at 80tref (5 and 40tref fields can be found in Appendix C). All models
capture the zones where the RUE must be located referencing to the Lagrangian simulations. However,
AXISY gives too high levels and the structures overlap giving two continuous bands located at the
limits of the slab. The rest of the models are able to correctly reproduce the structures. 2ΦEASM1
and 2ΦEASM1-C show again very similar results but the predicted level of RUE is smaller than the
Lagrangian reference, as for 2ΦEASM3-C and AXISY models. QUAD-MOD and 2ΦEASM3 give the
best predictions for both the location of the structures and the level of RUE.
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(a)

(b)

(c)

Figure 5.21: Comparison of Eulerian and Lagrangian mean Random Uncorrelated Energy (< δθ̆p >p) at 5, 40
and 80tref . Normalized by the square of the initial particle velocity in X-direction at the center of

the slab. LR St1 # case.
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(a)

(b)

(c)

Figure 5.22: Comparison of Eulerian and Lagrangian mean total energy (< q2

p >p) and mean mesoscopic energy
(〈q̆2

p〉p) at 5, 40 and 80tref . Normalized by the square of the initial particle velocity in X-direction
at the center of the slab. LR St1 # case.
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(a)

(b)

(c)

Figure 5.23: Comparison of Eulerian and Lagrangian mean productions of RUM energy by shear (< P Shear
RUM >p)

at 5, 40 and 80tref . Normalized by the square of the initial particle velocity in X-direction at the
center of the slab and the reference time (tref ). LR St1 # case.
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(a)

(b)

(c)

Figure 5.24: Comparison of Eulerian and Lagrangian mean productions of RUM energy by compression
(< P Compression

RUM >p) at 5, 40 and 80tref . Normalized by the square of the initial particle velocity in
X-direction at the center of the slab and the reference time (tref ). LR St1 # case.
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(a)

(b)

(c)

Figure 5.25: Comparison of Eulerian and Lagrangian mean deviatoric RUM stress tensor XX component
(< δR̆∗

p,11 >p) at 5, 40 and 80tref . Normalized by the square of the initial particle velocity in
X-direction at the center of the slab. LR St1 # case.



Modeling the RUM: an a posteriori analysis. 85

(a)

(b)

(c)

Figure 5.26: Comparison of Eulerian and Lagrangian mean deviatoric RUM stress tensor YY component
(< δR̆∗

p,22 >p) at 5, 40 and 80tref . Normalized by the square of the initial particle velocity in
X-direction at the center of the slab. LR St1 # case.
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(a)

(b)

(c)

Figure 5.27: Comparison of Eulerian and Lagrangian mean deviatoric RUM stress tensor ZZ component
(< δR̆∗

p,33 >p) at 5, 40 and 80tref . Normalized by the square of the initial particle velocity in
X-direction at the center of the slab. LR St1 # case.
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(a)

(b)

(c)

Figure 5.28: Comparison of Eulerian and Lagrangian mean deviatoric RUM stress tensor XY component
(< δR̆∗

p,12 >p) at 5, 40 and 80tref . Normalized by the square of the initial particle velocity in
X-direction at the center of the slab. LR St1 # case.
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Figure 5.29: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 80tref .
LR St1 # case.
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5.3.3 Effect of the user-defined artificial dissipation

Artificial dissipation (AD) is required in AVBP to guarantee the stability of the simulation using a
centered numerical scheme (TTGC). It plays an important role in the development of the two-phase flow
simulation itself. Artificial dissipation is applied in two steps. First, a sensor detecting too steep gradients
to be resolved on the current grid is computed. There are several expressions for this sensor in AVBP
which can take values from 0 to 1, 0 being no AD applied and 1 denotes where the maximum value of
AD is applied in the domain. Second, a certain amount of 2nd (shock capturing) and 4th (background
dissipation) AD is applied depending on the sensor value and user-defined coefficients. As a matter of
fact, the AV sensor (CMS-Lite) used during this work seems to act similarly to the RUM, i.e. it has an
effect of diffusion in the fields of the particle number density and velocity. Actually, there seems to exist
an inverse correlation between the activation of the AV sensor and the RUE.

The models which are not able to predict the correct amount of RUE (e.g. noRUM) compensate the
lack of diffusion naturally produced by the model by a higher amount of AD, which artificially smoothes
the gradients and allows the code to complete the simulation. On the contrary, the AV sensor activates
much less when models which overestimate the RUE are used (e.g. AXISY). The noRUM model for
example, is able to correctly predict the low order moments such as the particle number density, the
particle velocity and their RMS values. AD helps to stabilize the code producing an effect that mimics
the one of the RUM. However, it is not able to produce RUE and thus it predicts a wrong repartition
between the energies (the only contribution to the total energy is the mesoscopic energy, which leads to
an underestimation of q2

p). On the one hand, a correct balance between the RUM and the mesoscopic
energy is a key point to reproduce complex effects such as PTC or collisions/coalescence. On the other
hand, the effect of RUM becomes more important as the particle inertia increases. This means that
while at St = 1 the simulations with models which underpredict the RUE are stable enough (due to the
AD) to complete the calculation, it is not guaranteed that these models will keep valid at larger Stokes
(Section 5.4.1).

Recently, another numerical scheme called PSI (Lamarque (2007), Roux et al. (2010)) has been im-
plemented in AVBP. This residual distribution scheme is lower order than TTGC, but positive and linear
preserving, which are interesting properties to capture shocks or very steep gradients. No AD is required
when using PSI. Some tests performed during this work have shown that this scheme diffused too much
at the limits of the slab due to the initial condition gradients. Thus, the slab spreads in the Y-direction,
giving worse predictions of the low order and high order moments than the combination of TTGC scheme
with a higher amount of AD. This effect was already visible after 5tref only. For this reason, the use of
PSI scheme was quickly discarded in this configuration.

Figure 5.30 shows profiles of AV sensor for all models (included the calculation without RUM (no-
RUM)) at 5, 40 and 80tref . It should be pointed out that due to the steep gradients at the limits of the
slab in the initial solution, the AV sensor initially activates whatever the RUM model, and always at the
same locations and with the same strength. This helps the code to overcome that extreme initial condi-
tion. Afterwards, the differences between the models are clear: AXISY, which greatly overestimates the
RUE, needs less AD than 2ΦEASM1, which underestimates the RUE. Since Euler-Euler simulations need
the application of a certain amount of AD in order to numerically stabilize the computations, the goal is
then to find a model which presents good compromise between RUM and AD. That is, a model able to
capture the physical phenomena related to RUM and that limits the action of AD to the dissipation of
numerical instabilities. QUAD-MOD and 2ΦEASM3 seem good candidates.

Figure 5.31 shows an instantaneous field AV sensor at 80tref . When neglecting the RUM contribution
(noRUM model), the AV sensor is activated in a wider way and with a higher level than when using a
RUM model. The sensor is very little activated with AXISY model. 2ΦEASM3 model seems again to be
the best compromise.
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(a)

(b)

(c)

Figure 5.30: Mean Artificial Viscosity sensor activation at 5, 40 and 80tref . LR St1 # case.
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Figure 5.31: Comparison of AV sensor levels at 80tref . LR St1 # case.
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5.3.4 Effect of mesh resolution

The effect of mesh resolution is studied in this Section. Case LR St1 # has been computed on a 5123

hexahedrical grid with the 2ΦEASM3 model. That is, the resolution has been doubled compared to
the 2563 mesh used in the computations presented in the previous sections. It is conjectured that the
mesh resolution has an important impact on high order moments statistics of the dispersed phase. This
effect has already been studied by Dombard (2011) on the Euler-Euler simulations. However, the mesh
resolution may impact the Euler-Lagrange simulations too. Due to limited computational resources, the
simulation has been carried out until 40tref and with one model only. 2ΦEASM3 has been chosen to
perform the high resolution simulation following the results obtained in Sections 5.3.1-5.3.3. Furthermore,
only the low order moments and the RUE have been computed.

Figure 5.32(a) shows the statistics of the non-dimensional particle number density obtained from the
Euler-Lagrange computation performed with NTMIX-2Φ and the Euler-Euler computations performed
with AVBP using 2ΦEASM3 model and two different grids. Mesh 256 corresponds to the simulation
on a 2563 grid and Mesh 512 to the 5123 grid simulation. The numerical setups are the same for the
two Euler-Euler calculations, including the Artificial Dissipation parameters. The scales of the graphs
have been stretched to highlight the differences between the two meshes, otherwise they are not visible
and the profiles given by the two meshes superpose and there is no noticeable difference. Figure 5.32(b)
shows the profiles of the non-dimensional particle velocity. At the center of the slab, Mesh 256 matches
the reference NTMIX-2Φ, the same happens with Mesh 512. However, at the periphery of the jet, only
the simulation performed with the high resolution mesh (Mesh 512) reproduces the opening of the jet.
Indeed, Mesh 512 sticks to the profile of NTMIX-2Φ except at some points where the differences are
attributed to the projection algorithm used to recontruct the Eulerian fields from the Euler-Lagrange
computation with NTMIX-2Φ.

(a) Non-dimensional mean particle number density. (b) Non-dimensional mean particle velocity.

Figure 5.32: Comparison between Lagrangian and Eulerian results. The Lagrangian computation has been
performed on a 1283 mesh grid. Mesh 256 corresponds to the Eulerian simulation on a 2563 mesh

and Mesh 512 to the Eulerian simulation on a 5123 mesh.

The increase in mesh resolution improves the predictions of RMS particle number density profiles
(Fig. 5.33(a)) as well. The profile corresponding to Mesh 512 captures the maximum level predicted by
NTMIX-2Φ at the peaks located at the periphery. However, the opening of the jet is the same as for
Mesh 256, narrower than the corresponding to NTMIX-2Φ. On the contrary, Fig. 5.33(b) shows the RMS
particle velocity statistics. The increase in mesh resolution leads to a decrease in the maximum value
of the profile. Otherwise, the opening of the jet is wider in Mesh 512 case. Note that the projection
algorithm produces inaccurate results at the periphery of the slab for NTMIX-2Φ computations. The
accuracy of the reference values at the periphery and thus the jet opening can not be assessed in this
case.
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(a) Non-dimensional RMS particle number density. (b) Non-dimensional RMS particle velocity.

Figure 5.33: Comparison between Lagrangian and Eulerian results. The Lagrangian computation has been
performed on a 1283 mesh grid. Mesh 256 corresponds to the Eulerian simulation on a 2563 mesh

and Mesh 512 to the Eulerian simulation on a 5123 mesh.

Figure 5.34 shows the segregation profiles for both mesh resolutions. Mesh 512 simulation predicts
a higher segregation peak than Mesh 256 at one of the borders of the slab. However, the position of
the second peak has moved outwards the slab and its level has decreased. On both meshes, the level is
too low compared to NTMIX-2Φ, except at the center of the slab, where both simulations give a good
approximation of preferential concentration. Note that, the projection errors due to the presence of too
few particles in the computational cells at the periphery of the slab on the Lagrangian simulation, provide
very high segregation levels in that zone. However, the stretching on the graphs scale allows a better
comparison between the simulations. Indeed, the accuracy with NTMIX-2Φ decreases when reaching the
periphery.

Figure 5.34: Comparison between Lagrangian and Eulerian results. The Lagrangian computation has been
performed on a 1283 mesh grid. Mesh 256 corresponds to the Eulerian simulation on a 2563 mesh

and Mesh 512 to the Eulerian simulation on a 5123 mesh.

The high order moments statistics analyzed for Mesh 512 simulation reduce to the energy profiles.
The finer the mesh resolution the higher the RUE level, which leads to a slight overprediction of RUE
(Fig. 5.35(a)). The total agitation profiles are very similar, excepted at the slab borders where the total
particle agitation predicted by Mesh 512 case is higher (Fig. 5.35(c)). The overprediction of RUE leads to
a slight underprediction of the mesoscopic energy compared to Mesh 256 case (Fig. 5.35(b)). In general,
increasing the mesh resolution has only a limited impact on the statistics of the dispersed phase.
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(a) Non-dimensional RUE. (b) Non-dimensional particle mesoscopic energy.

(c) Non-dimensional total particle energy.

Figure 5.35: Comparison between Lagrangian and Eulerian results. The Lagrangian computation has been
performed on a 1283 mesh grid. Mesh 256 corresponds to the Eulerian simulation on a 2563 mesh

and Mesh 512 to the Eulerian simulation on a 5123 mesh.

That is not the case for the instantaneous fields. Fig. 5.36 shows the instantaneous fields of particle
number density at 40tref . The regions where the differences between 2ΦEASM3 256 and 2ΦEASM3 512
cases are the most visible have been highlighted using circles and arrows. Increasing the mesh resolution
has an important impact on the particle number density fields. Indeed, the small structures are better
captured as well as the diffusion at the periphery of the jet. The empty zones, as well as the zones of
high concentration are also more precisely reproduced when the mesh resolution is increased. In Fig. 5.37
the only visible effect on the particle velocity fields is an increased diffusion at the borders (Fig. 5.37).
Compared to NTMIX-2Φ, Mesh 256 gives the best qualitative results. Nevertheless, the statistics of
Mesh 512 case are in better agreement with the Lagrangian reference at the periphery. The inaccuracy
of the projection algorithm hinders any conclusion at this respect. Regarding the RUE fields (Fig. 5.38),
2ΦEASM3 512 predicts, in general, higher RUE levels (Fig. 5.38). Confirming the statistics (Fig. 5.35(a)),
the RUE is slightly overpredicted when the mesh resolution is increased. Euler-Lagrange results on a
higher resolution grid are nevertheless needed in order to compare Eulerian and Lagrangian results on
the same conditions.



Modeling the RUM: an a posteriori analysis. 95

Figure 5.36: Comparison betwenn Lagrangian and Eulerian particle number density instantaneous fields at
40tref . The Lagrangian computation has been performed in a 1283 grid. 2ΦEASM3 256

corresponds to the Eulerian simulation on a 2563 mesh and 2ΦEASM3 512 to an Eulerian
simulation on a 5123 mesh.

Figure 5.37: Comparison between Lagrangian and Eulerian particle velocity instantaneous fields at 40tref . The
Lagrangian computation has been performed in a 1283 grid. 2ΦEASM3 256 corresponds to the

Eulerian simulation on a 2563 mesh and 2ΦEASM3 512 to an Eulerian simulation on a 5123 mesh.
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Figure 5.38: Comparison between Lagrangian and Eulerian RUE instantaneous fields at 40tref . The Lagrangian
computation has been performed in a 1283 grid. 2ΦEASM3 256 corresponds to the Eulerian
simulation on a 2563 mesh and 2ΦEASM3 512 to an Eulerian simulation on a 5123 mesh.
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5.4 Performances of the RUM models at different inertia

In real applications the particle or droplet size can range from less than 1µm (once they have evaporated)
up to millimeters (at injection). The range of particle Stokes numbers encountered is thus very large.
This implies that the performances of the different models presented in Chapter 4 must be analyzed on a
wide range of Stokes numbers too. Masi (2010) performed an a priori analysis for many Stokes numbers.
This work only presents three, the more significative ones.

The results presented in Section 5.3 distinguished 2ΦEASM3 and QUAD-MOD as the models giving
the best predictions for the low and the high-order moments for a Reac = 5500 and St ∼ 1 particle-laden
turbulent sheared flow. The particles in case LR St3 # are very inertial. The phenomena of particles
being pushed towards the upper and lower outer regions observed on LR St1 # case is expected to
increase. This Section aims at analyzing if the two models still behave correctly at St ∼ 3 (Section 5.4.1)
confirming the potential of the 2ΦEASM3 and QUAD-MOD models.

Then in Section 5.4.2, the ability of the two models to correctly predict the dispersed phase in a
low inertia case is tested. Indeed, the Stokes number in LR St033 # case (St ∼ 0.33) is very close to
the value of the Stokes number for which the preferential concentration phenomenon is maximal in this
configuration, creating empty spaces close to regions of very high particle concentration. The particle
density gradients are thus very steep and difficult to handle numerically potentially leading to simulation
crashes.

5.4.1 High inertia case: Stokes=3

All RUM models are tested here in a low turbulence high inertia case. The Stokes number is St ∼ 3. The
particle relaxation time is τF

fp ∼ 39. The simulation has been performed up to 120tref (3.07τF
fp). Note

that results at 120tref will not be equivalent to those of LR St1 # case at 40tref (equally 3.07τF
fp) since

the corresponding physical time is not the same from the fluid flow point of view. All results are then
shown at 120tref . Additional results at 40 and 80tref can be found in Appendix D.

In this case, the AD model is not sufficient to allow the simulation without any RUM (noRUM model)
to finish since numerical instabilities appear. This fact clearly reveals the importance of the RUM in this
type of two-phase flow configurations.

Low order moments

At high inertia, the particle laden slab, subjected to strong flow shear at its limits, diffuses towards
the periphery of the box as a result of the entrainment of particles by the fluid turbulence eddies. For
this reason, the particle number density profiles (Fig. 5.39(a)) are much flatter than in the LR St1 #
case. As already pointed out, the AD is not able to sufficiently diffuse the profile for those models that
underpredict the RUE (2ΦEASM1 and 2ΦEASM1-C) showing a higher level of n̆p at the center of the
jet. AXISY and its corrected version AXISY-C present the same behavior as for the mean inertia case.
The maximum of n̆p is highly overpredicted and consequently, the global shape of the profile is not well
captured: the slope of the predicted profile is too high in the center and too low in the periphery. This
effect is more visible for AXISY. On the contrary, QUAD-MOD and both 2ΦEASM3 or 2ΦEASM3-C
models give very accurate results at the periphery and slightly overestimate the maximum level at the
center line.

The initial guess of QUAD-MOD and 2ΦEASM3 as the best models seems to be confirmed by the
predictions of the RMS values of n̆p and ŭp. Indeed, the agreement with the Lagrangian results is very
good for these two models (Fig. 5.40(a)). 2ΦEASM3 captures not only the good trend but also the
correct level of n̆p,RMS . The agreement is slightly worse with QUAD-MOD. The effect of the correction
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is more pronounced at high inertia when compared to LR St1 # case. The results obtained when using
the correction in 2ΦEASM3 are worse than when not using it. The same happens with 2ΦEASM1.
However, it seems that when applied to the linear model (AXISY) the correction greatly improves the
predictions. Figure 5.40(a) shows that AXISY-C and 2ΦEASM1-C reproduce the shape of the n̆p,RMS

profile although they overestimate the level of the peak at the center of the jet. On the contrary, AXISY
and 2ΦEASM1 show a flatter profile at the periphery of the slab followed by a steeper slope near the
center of the slab.

Regarding the particle velocity statistics, all models perfectly reproduce the mean particle velocity
(Fig. 5.39(b)) and all models except AXISY produce acceptable RMS velocity profiles (Fig. 5.40(b)).
Again, QUAD-MOD and 2ΦEASM3 give the best results together with 2ΦEASM1 (but 2ΦEASM1 fails
to reproduce mean and RMS particle number density).

The instantaneous fields of particle number density (Fig. 5.42) and particle velocity (Fig. 5.43) pro-
duce a qualitative comparison of the performances of the models . The particle velocity is well predicted
by all models (except AXISY that diffuses too much at the border of the jet) but there are important
differences in the particle number density fields. AXISY produces a very concentrated jet at the center
of the box and all the corrected models (AXISY-C, 2ΦEASM1-C and 2ΦEASM3-C) predict well defined
filaments towards the periphery of the jet, which are not predicted by the Lagrangian reference simula-
tions. 2ΦEASM is unable to recover the separated spots of high particle concentration at the center of
the slab. QUAD-MOD shows a lot of wiggles (node-to-node or high-frequency oscillations). This can be
avoided by adding some 4th-order artificial dissipation to the simulation. However, as the idea is to keep
the same numerical setup for all the simulations performed, it has been decided to keep the results as
they are shown. Indeed, the results for RUE could be biased by this additional dissipation term.

Figure 5.41 displays the segregation profiles. QUAD-MOD and 2ΦEASM3 agree very well with the
Lagrangian results. As a matter of fact, the agreement is better in this case than in LR St1 # case. There
is less preferential concentration effect at this inertia, the slab being flattened, the segregation peaks at
the limits of the jet present in LR St1 # case (cf Fig 5.18(c)) have disappeared. The segregation then
shows a more uniform profile. The model correction increases the segregation for all models, that is
largely overestimated. All the corrected profiles are very similar. Similarly, AXISY, which produces a
very flat profile at the periphery, produces very small values of segregation in this region.

(a) (b)

Figure 5.39: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by
the initial particle number density at the center of the slab) and (b) mean particle velocity in

X-direction (< ŭp >p, normalized by the initial particle velocity in X-direction at the center of the
slab) at 120tref . LR St3 # case.
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(a) (b)

Figure 5.40: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >,
normalized by the initial particle number density at the center of the slab) and (b) RMS particle
velocity in X-direction (< ŭp,RMS >p, normalized by the initial particle number density at the

center of the slab)at 120tref . LR St3 # case.

Figure 5.41: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2

p > / < n̆p >2) at 120tref .
LR St3 # case.
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Figure 5.42: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density fields (Np) at
120tref . LR St3 # case.



Modeling the RUM: an a posteriori analysis. 101

Figure 5.43: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude fields (Up) at
120tref . LR St3 # case.
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High order moments

The analysis of the high-order moments reveals that, globally, the models have the same behavior for
the high inertia case (St = 3) as observed in the mean inertia case (St = 1, cf Section 5.3). Indeed,
2ΦEASM3 and QUAD-MOD give the best agreement with the Lagrangian results. Figure 5.44(a) shows
the mean RUE profiles. QUAD-MOD performs very well at the periphery of the slab but it is not
able to recover the good level of the peaks and at the center of the jet. 2ΦEASM1 gives very similar
predictions. The correction degrades the performances of the model, giving highly underestimated RUE
levels. The same happens with 2ΦEASM3-C, while 2ΦEASM3 predicts the good shape and level of the
profile, 2ΦEASM3-C underestimates the level over the whole width of the slab. The correction has the
same impact on AXISY, AXISY-C underestimating the results. At the same time, AXISY predicts (as it
did for LR St1 # case) too high RUE values, especially for the peaks location. Figure 5.44(b) shows the
mesoscopic energy (q̆2

p) profile and the total energy. The agreement of the non-linear models is very good
when the correction is not taken into account. Indeed, the corrected models give good predictions of total
agitation but overestimate the mesoscopic energy compensating the underestimation of the RUM energy.
The linear model AXISY does not capture well the levels with or without correction. The performances
on the RUE can be linked to the predictions of the RUM productions. As stated in Section 5.3.2, RUM
production by shear is more important than RUM production by compression. For this reason, models
that underestimate PShear

RUM (all the corrected models) underestimate as well the RUE. AXISY shows
at high inertia the same behavior as observed in Fig. 5.23(c) for a mean inertial case. Even when the

production by compression, PCompression
RUM , Fig. 5.45(b), acts as a dissipation, PShear

RUM is so overestimated
that it cannot be overcome by the dissipative effects and thus, the RUE level is too high. In this case, it
is 2ΦEASM3 which gives the best predictions both for the shear and the compression productions. For
comparisons, QUAD-MOD produces a level of PShear

RUM too low and overestimates PCompression
RUM .

The results for the components of the deviatoric RUM stress tensor are in agreement with those
of LR St1 # case. Indeed, AXISY slightly underestimates the diagonal components, but due to the
huge overestimation of the shear component, it shows too high values of PShear

RUM and thus of δq̆p. When
applying the correction to this model, the levels of all components are damped resulting in productions
and RUE levels that are too low (Figs. 5.46 and 5.47). QUAD-MOD slightly underestimates the diagonal
components but gives very good agreement for the shear component (the most important) and thus
predicts acceptable values of RUE. 2ΦEASM1 model has an intermediate behavior between AXISY and
AXISY-C. In any case, it is 2ΦEASM3 that gives the best predictions for the components of the tensor,
the productions as well as for the energies. The instantaneous RUE fields shown in Fig. 5.48 confirm
this statement. 2ΦEASM1 and 2ΦEASM3 produce fields in very good agreement with NTMIX-2Φ.
2ΦEASM3, however, reproduces better local RUE values. QUAD-MOD is also able to reproduce the
shape of the RUE field, however, wiggles are clearly present.
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(a)

(b)

Figure 5.44: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and
(b) mean total (〈q2

p〉p) and mesoscopic (〈q̆2

p〉p) particle energies at 120tref . Normalized by the
square of the initial particle velocity in X-direction at the center of the slab. LR St3 # case.
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(a) (b)

Figure 5.45: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear
(< P Shear

RUM >p) and (b) mean productions of RUM energy by compression (< P Compression
RUM >p) at

120tref . Normalized by the square of the initial particle velocity in X-direction at the center of the
slab and the reference time (tref ). LR St3 # case.

(a) (b)

Figure 5.46: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component
(< δR̆∗

p,11 >p) and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗

p,12 >p) at
120tref . Normalized by the square of the initial particle velocity in X-direction at the center of the

slab. LR St3 # case.
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(a) (b)

Figure 5.47: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component
(< δR̆∗

p,22 >p) and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗

p,33 >p) at 120tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

LR St3 # case.

Figure 5.48: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy (δq̆p) at
120tref . LR St3 # case.
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Effect of Artificial Dissipation

For this case (LR St3 #), where AD is not powerful enough to allow the whole calculation without RUM
(noRUM) to finish, the activation of the AV sensor is very reduced when the models giving the best
predictions (2ΦEASM3 and QUAD-MOD) are used. This effect can be observed in Fig. 5.49 where the
profiles of the AV sensor are shown. Again, as it happened with LR St1 # case, the AD activates when
the RUM models do not predict the correct level of RUE. This fact is confirmed by Fig 5.50 where the
instantaneous fields of AV sensor at 120tref are shown. Indeed, non-corrected 2ΦEASM# models do not
need much artificial viscosity. QUAD-MOD however, needs much more artificial viscosity to overcome
the problems due to the high-frequency oscillations.

In fact, it seems that, unexpectedly, the AV sensor CMS-Lite activates at the same locations where
the RUE is maximal. This may be due to a need to diffuse the steep concentration and velocity gradients.
When the RUM model correctly predicts the RUE field, the RUE diffuses those gradients, but in those
cases where the RUE is not active or its value is too low to diffuse the gradients, the sensor activates to
stabilize the simulation. The AV sensor has not been developped to this purpose and the effects observed
are more a matter of coincidence.

Figure 5.49: Mean Artificial Viscosity sensor activation at 120tref . LR St3 # case.
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Figure 5.50: Fields of Artificial Viscosity sensor activation at 120tref . LR St3 # case.
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5.4.2 Low inertia case: Stokes=0.33

Sections 5.3 and 5.4.1 have shown the results of the RUM models proposed in Chapter 4 in a low turbulence
case for mean (St ∼ 1) and high (St ∼ 3) inertia respectively. From the assessment of the models, both
qualitatively and quantitatively, two models (QUAD-MOD and 2ΦEASM3) have been identified as the
ones giving the best performances when compared with the Lagrangian reference.

In this Section, the capability of QUAD-MOD and 2ΦEASM3 to correctly predict the low and high
order moments in a case of low turbulence and low inertia is analyzed. The Reynolds number keeps the
same (Reac = 5500) but the Stokes number is now St ∼ 0.33. The particle relaxation time is τF

fp ∼ 4.33.
This case is in fact an extreme case. Indeed, as already pointed out, the preferential concentration effect
is maximal at St = 0.3, which creates empty spaces close to very high concentration spots. The steep
concentration gradients between both zones are very difficult to handle numerically and the Artificial
Diffusion is expected not to be powerful enough to diffuse them.

Only noRUM, VISCO, QUAD-MOD and 2ΦEASM3 models have been tested in this case. noRUM
crashed shortly after 5tref . In contrast to LR St1 # and LR St3 # cases, VISCO model was able to

complete the whole simulation. This is due to the dependency of the model to τ̆p (Eq. 4.9). Since δR̆∗
p,ij

is directly proportional to τ̆p in the VISCO model, the RUE production at small inertia (small particle
response time) is reduced when decreasing the Stokes number. In this case, the overestimation of RUE
observed in cases St=1 and St=3 is no longer present.

Results are shown at 80tref . Complementary data at 5, 20 and 40tref can be found in Appendix E.

Figures 5.51(a) and 5.51(b) show the mean particle number density and the mean particle velocity
profiles. Figure 5.52 shows the RMS particle number density and particle velocity profiles, included
here for the sake of simplicity. Figure 5.53 shows the mean segregation profiles. The three models
(VISCO, QUAD-MOD and 2ΦEASM3) give the same results for the low order moments, the mean and
the RMS quantities and the segregation. The RMS particle number density and segregation profiles are
underestimated by all models. There are no differences on the instantaneous fields either (Figs. 5.54 and
5.55). None of the models captures the empty spaces inside the slab as predicted by the Lagrangian
reference. This is due to the reduced contribution of RUE in this configuration (as conjectured).
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(a) (b)

Figure 5.51: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by
the initial particle number density at the center of the slab) and (b) mean particle velocity in

X-direction (< ŭp >p, normalized by the initial particle velocity in X-direction at the center of the
slab) at 80tref . LR St033 # case.

(a) (b)

Figure 5.52: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >,
normalized by the initial particle number density at the center of the slab) and (b) RMS particle
velocity in X-direction (< ŭp,RMS >p, normalized by the initial particle number density at the

center of the slab) at 80tref . LR St033 # case.
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Figure 5.53: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2

p > / < n̆p >2) at 80tref .
LR St033 # case.

Figure 5.54: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 80tref .
LR St033 # case.
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Figure 5.55: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 80tref .
LR St033 # case.
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Indeed, compared to q̆2
p, δq̆p is much smaller (Figs. 5.56(a) and 5.56(b)). The main contribution to

the total particle agitation comes from the mesoscopic energy (q̆2
p) and thus the RUM has a very limited

effect. However, Fig. 5.56(a) shows that VISCO is not able to produce the correct level of RUE. Even
when the low order moments are well predicted, this model will not work in configurations with collisions
or coalescence without being modified (besides the fact that it crashes for mean and high inertia). On the
other hand, QUAD-MOD and 2ΦEASM3 provide very good agreement with the Lagrangian reference.
They give very good results for the low order moments providing the correct repartition between the
mesoscopic and the RUE at the same time. Indeed, the RUM productions (Fig. 5.57) as well as the
deviatoric RUM tensor components (Figs. 5.58 and 5.59) are very accurately predicted by both models,
whose results are in fact very similar.

The qualitative analysis of the instantaneous fields of RUE shows that, while VISCO underestimates
the RUE, QUAD-MOD and 2ΦEASM3 correctly predict the locations where the RUE is predicted by
NTMIX-2Φ. However, only the largest structures are reproduced. This is probably due to a lack of reso-
lution of the Eulerian calculation (Dombard (2011)) which prevents from capturing the small structures
caused by the high segregation.

(a) (b)

Figure 5.56: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and
(b) mean total (〈q2

p〉p) and mesoscopic (〈q̆2

p〉p) particle energies at 80tref . Normalized by the square
of the initial particle velocity in X-direction at the center of the slab. LR St033 # case.
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(a) (b)

Figure 5.57: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear
(< P Shear

RUM >p) and (b) mean productions of RUM energy by compression (< P Compression
RUM >p) at

80tref . Normalized by the square of the initial particle velocity in X-direction at the center of the
slab and the reference time (tref ). LR St033 # case.

(a) (b)

Figure 5.58: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component
(< δR̆∗

p,11 >p) and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗

p,12 >p) at 80tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

LR St033 # case.
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(a) (b)

Figure 5.59: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component
(< δR̆∗

p,22 >p) and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗

p,33 >p) at 80tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

LR St033 # case.

Figure 5.60: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy (δq̆p) at
80tref . LR St033 # case.
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5.5 High turbulent conditions

The performances of QUAD-MOD and 2ΦEASM3 models have been until now validated in a low turbu-
lence case for three different inertia. However, the Reynolds numbers encountered in industrial configu-
rations are very high and flows are, in general, much more turbulent. In this Section, both models are
evaluated in a higher turbulence case (Reac = 20000, St ∼ 1, τF

fp ∼ 9.44). This study aims at assessing
the validity of these models and their application in more complex cases such as the MERCATO test rig
presented in Part IV.

From the a priori results, it is expected that the interaction of the particle phase with the vortical
structures of the carrier phase (stronger that in case LR St1 #) will create much more smaller structures
in the dispersed phase fields that in the low turbulence case. The entrainment of the particles by the eddies
will create very thin filaments that will afterwards detach from the jet. The capability of QUAD-MOD
and 2ΦEASM3 to capture this kind of small structures is analyzed in this Section.

The Euler-Lagrange simulation of this case has been performed in a 2563 mesh (i.e. the resolution
has been doubled compared to the low turbulence computations). This means that in order to achieve
the same level of comparison as for the previous sections, it may be necessary to double the resolution of
the grid used in the Eulerian simulations of this case.

Figure 5.61 shows the statistics for the particle number density and particle velocity at 70tref (7.41τF
fp).

The agreement with the Lagrangian reference is again very good for both models. They also give very
good results in the RMS particle velocity (Fig. 5.62(b)). However, the levels obtained for the RMS particle
number density (Fig. 5.62(a)) are too low. Figure 5.63 shows the segregation profiles. Both models give
the same results. The segregation levels are too low compared to the reference. This behavior has already
been observed in the low turbulence cases. It is again probably due to a lack of resolution.

(a) (b)

Figure 5.61: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by
the initial particle number density at the center of the slab) and (b) mean particle velocity in

X-direction (< ŭp >p, normalized by the initial particle velocity in X-direction at the center of the
slab) at 70tref . HR St1 # case.
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(a) (b)

Figure 5.62: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >,
normalized by the initial particle number density at the center of the slab) and (b) RMS particle
velocity in X-direction (< ŭp,RMS >p, normalized by the initial particle number density at the

center of the slab)at 70tref . HR St1 # case.

Figure 5.63: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2

p > / < n̆p >2) at 70tref .
HR St1 # case.
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Figure 5.64: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 70tref .
HR St1 # case.

Figure 5.65: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 70tref .
HR St1 # case.
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Although the resolution of the Eulerian grid may not be enough, both models show good agreement for
the profiles of RUE (Fig. 5.66(a)). However, none of them captures the level reached at the upper border
of the jet. Nevertheless, both closures are able to reproduce the non-symmetric profile. The production
by shear (Fig. 5.67(a)) is well predicted by both models. δR̆∗

p,12 is equally well reproduced (Fig. 5.68(b)).
2ΦEASM3 provides better agreement for the production by compression (Fig. 5.67(b)), which may come
from a better balance between the components belonging to the diagonal of the deviatoric RUM tensor.
Even when at first sight QUAD-MOD seems to provide better agreement, its level is good for δR̆∗

p,11 and

δR̆∗
p,22 components and too low for δR̆∗

p,33. On the other hand, 2ΦEASM3 gives very good δR̆∗
p,22 results

and an overestimation of the δR̆∗
p,11 and δR̆∗

p,33 components. But the total balance between both terms
is better than for QUAD-MOD.

Finally, the analysis of the instantaneous fields confirms that both models give very similar results.

(a) (b)

Figure 5.66: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and
(b) mean total (〈q2

p〉p) and mesoscopic (〈q̆2

p〉p) particle energies at 70tref . Normalized by the square
of the initial particle velocity in X-direction at the center of the slab. HR St1 # case.
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(a) (b)

Figure 5.67: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear
(< P Shear

RUM >p) and (b) mean productions of RUM energy by compression (< P Compression
RUM >p) at

70tref . Normalized by the square of the initial particle velocity in X-direction at the center of the
slab and the reference time (tref ). HR St1 # case.

(a) (b)

Figure 5.68: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component
(< δR̆∗

p,11 >p) and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗

p,12 >p) at 70tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

HR St1 # case.
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(a) (b)

Figure 5.69: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component
(< δR̆∗

p,22 >p) and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗

p,33 >p) at 70tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

HR St1 # case.

Figure 5.70: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy (δq̆p) at
70tref . HR St1 # case.
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5.5.1 Effect of mesh resolution

Case HR St1 has been computed on a higher resolution mesh grid (5123 computational cells) with AVBP
for 2ΦEASM3 model. Results are compared with the lower resolution mesh (2563) and with the reference
(Eulerian fields obtained by projection from Euler-Lagrange simulation performed on a 2563 grid). Due
to computational limitations in time and memory, the simulation has only been performed up to 40tref

and only the fields of particle number density, particle velocity and RUE stored. The fields corresponding
to the RUM stress tensor components and the productions are not accesible for this simulation.

Figures 5.71(a) and 5.71(b) shows the plane averages of the mesoscopic particle number density and
particle velocity respectively. Increasing the mesh resolution does not have an impact on the statistics
of these two quantities. Indeed, no noticeable difference exists on the profiles of the mean quantities.
On the contrary, the profiles of the RMS quantities (Figs. 5.72(a) and 5.72(b)) are improved when using
a higher resolution mesh for the computations. The RMS particle number density is improved of 25%
approximately. The improvement on the RMS particle velocity is much more reduced. This improvement
is transposed to the segregation profiles too (Fig. 5.73). The segregation level is highly increased at the
center of the slab and the level of the maximal peaks at the periphery is greatly increased too. Thus, the
agreement with the reference is improved.

Increasing the resolution of the mesh has a negative impact on the RUE profile (Fig. 5.74(a)). In-
deed, the level of uncorrelated energy increases, which produces an overestimation of the RUE already
overestimated with the lower resolution mesh. Nevertheless, the level increase is not very high and at the
same time the mesoscopic energy statistics are improved (Fig. 5.74(b)). This leads to a slight overesti-
mation of the total particle agitation, which is very accurately captured with the lower-resolution mesh
(Fig. 5.74(c)).

(a) Non-dimensional mean particle number density. (b) Non-dimensional mean particle velocity.

Figure 5.71: Comparison Lagrangian and Eulerian results. The Lagrangian computation has been performed in a
1283 mesh grid. Mesh 256 corresponds to the Eulerian simulation on a 2563 mesh and Mesh 512 to

an Eulerian simulation on a 5123 mesh.
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(a) Non-dimensional RMS particle number density. (b) Non-dimensional RMS particle velocity.

Figure 5.72: Comparison Lagrangian and Eulerian results. The Lagrangian computation has been performed in a
1283 mesh grid. Mesh 256 corresponds to the Eulerian simulation on a 2563 mesh and Mesh 512 to

an Eulerian simulation on a 5123 mesh.

Figure 5.73: Comparison Lagrangian and Eulerian particle segregation. The Lagrangian computation has been
performed in a 1283 mesh grid. Mesh 256 corresponds to the Eulerian simulation on a 2563 mesh

and Mesh 512 to an Eulerian simulation on a 5123 mesh.

Regarding the qualitative comparison of the instantaneous fields, the structures of particle number
density (Fig. 5.75) are more defined when increasing the resolution, the diffusion seems to be reduced and
thus the empty spaces and high concentration spots are better captured. However, the overall appearence
of the fields has not changed much. Changes are even less obvious in the case of the particle velocity
fields (Fig. 5.76), the fields corresponding to the Eulerian simulations with the two computational meshes
are very similar and changes appear but may be due to small differences on the physical times of the
simulations. The RUE field corresponding to the high resolution mesh (Fig. 5.77) is more defined than
the one corresponding to the lower resolution grid. More small structures are present and the size of the
spots of very high RUE has been reduced. This seems to be in disagreement with the increased level
of the RUE average profiles (cf Fig. 5.74(a)), however, the number of small structures in the field has
considerably increased which increases the global RUE level.
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(a) Non-dimensional RUE. (b) Non-dimensional particle mesoscopic energy.

(c) Non-dimensional total particle energy.

Figure 5.74: Comparison Lagrangian and Eulerian results. The Lagrangian computation has been performed in a
1283 mesh grid. Mesh 256 corresponds to the Eulerian simulation on a 2563 mesh and Mesh 512 to

an Eulerian simulation on a 5123 mesh.
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Figure 5.75: Comparison Lagrangian and Eulerian particle number density instantaneous fields at 40tref . The
Lagrangian computation has been performed in a 1283 mesh grid. 2ΦEASM3 256 corresponds to the
Eulerian simulation on a 2563 mesh and 2ΦEASM3 512 to an Eulerian simulation on a 5123 mesh.

Figure 5.76: Comparison Lagrangian and Eulerian particle velocity instantaneous fields at 40tref . The
Lagrangian computation has been performed in a 1283 mesh grid. 2ΦEASM3 256 corresponds to the
Eulerian simulation on a 2563 mesh and 2ΦEASM3 512 to an Eulerian simulation on a 5123 mesh.
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Figure 5.77: Comparison Lagrangian and Eulerian RUE instantaneous fields at 40tref . The Lagrangian
computation has been performed in a 1283 mesh grid. 2ΦEASM3 256 corresponds to the Eulerian

simulation on a 2563 mesh and 2ΦEASM3 512 to an Eulerian simulation on a 5123 mesh.
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5.6 Conclusions

The different approaches for the modelisation of the deviatoric RUM tensor presented in Chapter 4 have
been a posteriori validated in a configuration with mean shear. Comparisons with a priori results issued
from exact Lagrangian calculations projected onto an Eulerian grid have been carried out for two levels of
turbulence (Reac = 5000, 20000) and three levels of inertia (St ∼ 0.33, 1, 3). The observations resulting
from these tests are:

• The model based on a viscosity assumption and τ̆p as timescale, VISCO, crashes after a few it-
erations in all cases except for the low inertia case (LR St0.33 #). When performing simulations
without taking into account the contribution of the RUM (noRUM), only the low turbulence unity
Stokes number case (LR St1 #) is able to complete the simulation. If the turbulence is increased
or the Stokes number changed, the simulation crashes before reaching the end. The rest of the
models presented have been tested in low Reynolds, mean and high Stokes numbers with success
(LR St0.33 # and LR St3 #).

• The results obtained in LR St1 # and LR St3 # cases show that AXISY model is too diffusive due
to an overestimation of the RUE level. The correction (AXISY-C) improves the results by reducing
the RUE levels and thus the diffusion of the particle number density and particle velocity fields.
The overestimation of RUE seems to be characteristic of the linear models (VISCO and AXISY).
Increasing the order of the model (QUAD-MOD) clearly improves the results. Indeed, from the
comparisons performed in Sections 5.3 and 5.4.1, QUAD-MOD has been identified as one of the
models to be retained.

• 2ΦEASM1 underestimates the RUE level at low turbulence and mean inertia. It gives better results
when increasing the inertia. The correction (2ΦEASM1-C) has a very limited effect for this model.
2ΦEASM3 gives very good results at low turbulence for mean and high inertia and for higher
turbulence and mean inertia. This model is to be retained for future simulations. In this case, the
correction (2ΦEASM3-C) reduces the RUE level yielding a degradation of the results.

• For low turbulence and low inertia limit case (LR St0.33 #) both QUAD-MOD and 2ΦEASM3
correctly downgrade: the RUM is reduced, giving accurate results. The two models have also been
tested in a mean inertia and high turbulence case (HR St1 #), also providing good agreement with
the Lagrangian reference.

Special attention must be paid to artificial dissipation:

• AD is needed for all models at the beginning to numerically stabilize the simulation due to the
presence of too steep gradients on the borders of the slab that the centered scheme TTGC is unable
to handle.

• A link between the AD and the RUM has been observed: AD activates in the zones where RUE
should be produced but is not because RUM has not been accounted for or because the RUM model
behaves uncorrectly. The models that overestimate the RUE show very low levels of AD and vice
versa.

• Although the models that underestimate RUE produce good results of the low order moments,
AD is not able to substitute the RUM contribution in terms of high order moments and numerical
stability.

The effect of the resolution needed to perform two-phase Eulerian calculations has also been adressed.
Cases LR St1 2ΦEASM3 and HR St1 2ΦEASM3 have been simulated on a 5123 grid. Due to limited
computational resources, the simulations have been carried out until 40tref only. The profiles of mean and
RMS particle number density and particle velocity, segregation and mean RUE have been compared with
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the simulations performed on the lower resolution (2563) grid and the Lagrangian reference. Dombard
(2011) studied the effect of the mesh resolution on this configuration showing that it has an important
impact on the statistics of the high order moments. This statement has been confirmed by the results
presented here. The mean particle number density and particle velocity statistics are not affected by
the increase in mesh resolution. However, the instantaneous fields of particle number density are highly
improved. The presence of small structures is better captured whit the 5123 grid. The location of the
spots of high and low particle concentration are better reproduced and the diffusion is reduced. The
simulations in the higher resolution mesh provide a better prediction of the RMS particle number density
and particle velocity, especially on the higher turbulence simulation where the particle number density
fluctuation level (very underestimated by the lower grid resolution simulation) is highly improved. The
impact on the RMS particle velocity is much more limited. The RUE instantaneous fields are also
improved when the grid resolution is increased. The shape of the Lagrangian field is better reproduce
and the presence and location of the small structures are better captured. However, the mean RUE
profiles are slightly overestimated by the higher resolution simulations, while the total particle agitation
is less affected.

The presence of wiggles in the instantaneous fields for the QUAD-MOD model provided a reason to
choose between 2ΦEASM3 and QUAD-MOD to perform the simulations of the configuration presented in
Part IV. Those wiggles are due to high frequency oscillations coming from numerical errors and potential
low grid resolution, which makes the simulation susceptible to numerical instabilities or to the need of
additional AD. The reason why they only appear in QUAD-MOD has not been identified yet. It may
mean that this particular model needs a higher resolution than the rest of the models. The simulations
on a 5123 mesh with QUAD-MOD have not been performed during this work due to a lack of time and
computational resources.

Finally, the 2ΦEASM3 model provides very good agreement with the Lagrangian reference for all the
cases tested. This model represents a good compromise in terms of reproduction of physical phenomena
and AD. The model has been implemented in the code AVBP. On the short term, deeper analysis of the
link between the RUM and the AD is however necessary for future studies. Recently, new AV sensors have
been implemented in AVBP (Vié (2010)) which have proven to provide good results on particle-laden
HIT and two-dimensional particle-laden spatial jet configurations (Dombard (2011)). On the mean and
long term, the implementation of high-order upwind numerical schemes (de Chaisemartin (2009), Kah
(2010)) in AVBP may solve the issues related to AD, providing simpler analysis of the performances of
the RUM models.

Masi (2010) studied the impact of LES in the configuration studied here. The performances of the
models were assessed and the coefficients of the dispersed phase turbulent viscosity model developed by
Moreau (2006) adjusted. The model proposed by Moreau (2006) was implemented in AVBP by Riber
(2007). The same study presented here in the case of a DNS approach needs to be conducted in the LES
context in order to further validate the RUM models with the perspective of their application to LES
simulations of industrial configurations.

2ΦEASM3 model correctly reproduces the level of RUE in this configuration, which allows the con-
sideration of collisions in two-phase flows simulations, which was not the case of the model available until
now (VISCO). The modification of the dispersed transport equations in not extremely difficult and Masi
(2010) provided an extense Lagrangian data base on a colliding particle-laden turbulent planar jet which
may be used for validation purposes as has been done here.

The effect of the grid resolution needs further analysis. First, it is desirable to perform simulations on
the higher resolution mesh grid both with the Euler-Lagrange and the Euler-Euler approaches with the
condition of being able to obtain detailed information on the deviatoric RUM stress tensor components
and RUM production terms. Indeed, comparisons between Euler-Euler and Euler-Lagrange simulations
performed with the same mesh resolution eliminates a possible source of differences between the simula-
tions. Having access to the tensor components and production terms allows a deeper comparison.
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Masi (2010) performed an analysis of the performances of the RUM models in the context of the LES
of the particle-laden temporal planar jet configuration studied here. The results showed that 2ΦEASM3
behaves correctly when applied along with the model of Moreau (2006) for the dispersed phase turbulent
viscosity (with minor modifications). This justifies the application of the 2ΦEASM3 model to the LES
of the MERCATO configuration presented in Part IV. However, an a posteriori validation of the RUM
models in the configuration presented her using LES is of great importance. Due to a lack of time, it has
not been done during this work, but it is planned for the future.

Finally, the application of 2ΦEASM3 model to a complex semi-academic configuration is on sight.
The configurations of Hishida et al. (1987) or Sommerfeld & Qiu (1993) are good candidates for this
task. For both configurations, experimental data are available. For the configuration of Sommerfeld &
Qiu (1993), numerical data obtained from Euler-Lagrange simulations (Apte et al. (2003b)) are available
too. The Euler-Euler LES of both simulations with 2ΦEASM3 model is in prospect at CERFACS.



Part III

Evaporation of single isolated
droplets
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Chapter 6

Modeling the evaporation of fuel
droplets

The process of droplet vaporization is of great importance in many energy systems involving spray
combustion such as diesel engines, gas turbines, liquid rocket engines, industrial furnaces, etc. In a
general way, without accounting for droplet burning at injection, the liquid fuel atomizes into multiple
droplets of different sizes, creating a polydispersed spray, the fuel droplets vaporize, the gaseous fuel mixes
with the oxydant and then burns. In this type of studies the prediction of the gaseous fuel concentration
is of primary importance for the correct evaluation of critical parameters, such as flame position and heat
release (Lefebvre (1999)).

The vaporization of droplets has been widely studied during the past century, experimentally and
theoretically. Many studies were performed on complex spray flows in similar conditions to those en-
countered in real applications (theoretically by Faeth (1996) and Borghi (1996b) and experimentally by
Sommerfeld & Qiu (1998) and Li et al. (2011) amongst others). The phenomena taking place in this
type of configurations are very complex. Multiple interactions between the atomization, the dispersion
and the evaporation of droplets take place at the same time. For this reason, developping models from
studies of complex configurations is almost an impossible task.

Another approach is to study the evaporation of single droplets, under different conditions, as a first
step towards the understanding of the process in a spray. An isolated droplet represents an ideal model
of the physical phenomena involved in the diluted regions of the spray. The vaporization of a single
droplet is a process involving heat, mass and momentum transfers in both gas and liquid phases, with
coupling at the droplet interface. Its study provides the basis for the development of complex spray flow
modeling, which may be found in many textbooks: Williams (1985), Kuo (2005), Sirignano (1999) and
reviews: Sirignano (1983), Faeth (1977), Law (1982) and more recently Birouk & Gokalp (2006). Heating,
evaporation and combustion models of isolated droplets are widely available in the literature (Sirignano
(1983); Abramzon & Sirignano (1989), Sazhin (2006); Sazhin et al. (2006); Harstad & Bellan (2001)).

Many experimental studies have been performed on suspended evaporating droplet. Studies on droplet
evaporation in convective streams have also been reported by several authors (Ranz & Marshall (1952),
Yang & Wong (2002), Maqua et al. (2008), Kristyadi et al. (2010)). Most non-convective droplet evapo-
ration studies have been conducted at normal gravity. However, under microgravity conditions (Nomura
et al. (1996), Yang & Wong (2001), Chauveau et al. (2008)), the spherical symmetry of the droplet is
guaranteed and the models simplified. For this reason experiments performed under microgravity con-
ditions are better suited for the validation of theoretical and numerical models which usually suppose
droplet symmetry.

Numerical studies of isolated droplets in the literature are devoted to the study of theoretical models
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in comparison with experimental results. Zhang et al. (2008) studied the evaporation of single droplets in
stagnant and convective stream. Yang & Chang (2001) and Yang & Wong (2002) analyzed the effects of
heat conduction through the support fiber and furnace radiation in the evaporation of suspended droplets.
Hubbard et al. (1975) studied the effects of different properties on the evaporation of single droplets of
different types of fuels into a stagnant atmosphere. Hohmann & Renz (2003) studied the influence of real
gas effects and gas solubility.

The Chapter is organized as follows. Section 6.1 provides a classification of the evaporation models
existing in the literature and summarizes the main assumptions of the classical model implemented in
AVBP. Section 6.2 gives the context of the work presented in this Part of the manuscript. Finally,
Section 6.3 present the evaporation models studied in this work and the formulation of the transport and
themodynamic governing laws.

6.1 Review of the existing evaporation models

Following Sirignano (1999) the models of droplet-vaporization can be classified into the following six
groups with increasing complexity:

1. constant droplet-temperature model: the droplet surface temperature is uniform and does not change
with time; it yields the famous d2 law.

2. infinite liquid-conductivity model: the droplet surface temperature is uniform, time-varying and
equal to the temperature inside the droplet.

3. spherically symmetric transient droplet heating model: it takes into account finite liquid thermal
conductivity, but not the recirculation inside the droplets (conduction limit).

4. effective-conductivity model: it takes into account both finite liquid thermal conductivity and recir-
culation.

5. vortex model for droplet heating: it describes the recirculation inside the droplet in terms of vortex
dynamics.

6. Navier-Stokes solution: full exact solution of the Navier-Stokes equations inside the droplet and in
the gaseous flow.

The evaporation models can be more precisely classified by independently describing the models used
on each of the process taking place in the vaporization of a droplet. Four main phenomena take place in
the evaporation of an isolated droplet:

1. the heat in the gas phase diffuses to the droplet surface.

2. the heat arriving to the droplet surface is diffused inside the droplet.

3. the molecules of fuel detach fron the droplet surface due to their increased internal energy (vapor-
ization process).

4. the gaseous fuel is diffused from the droplet surface to the surrounding gas.

Most models assume the diffusion in the gas phase (from and to the droplet surface) to be spherically
symmetric. This assumption is at the root of the Spalding model (Spalding (1953)) used in AVBP.
However, some effects due to convection may modify the flow around the droplet. The spherically
symmetric model takes into account the convection effects through the Frössling correlations (Frössling
(1938)) for the Sherwood and Nusselt numbers. Other models include the effect of convection taking
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into account the presence of a film around the droplet, introducing correction factors in the spherically
symmetric model (Abramzon & Sirignano (1989), Yao et al. (2003)) or completely solving the flow around
the droplet (Sirignano (1999)). This last option is computationally very expensive.

By addition, transport properties are often considered constant between the droplet surface and the
infinity. Miller et al. (1998) showed that the heat and mass fluxes to the droplet strongly depend on the
evaluation of the transport and thermodynamic properties of both the gas and the liquid phases. This
will be specifically studied in Section 6.3.1.

To model the temperature distribution inside the droplet (and thus the diffusion in the liquid phase),
multiple options exist: the simplest models neglect the heat diffusion inside the droplet and suppose
constant droplet temperature, assuming that all the heat arriving to the surface is employed for the
vaporization process. The model implemented in AVBP takes a step further in the modelisation of the
diffusion in the liquid phase by assuming an infinitely rapid heat diffusion inside the droplet. The droplet
temperature is considered uniform but may vary with time. Sazhin et al. (2005) and Laurent (2008)
supposed the droplet temperature to follow a polynomial profile. More complex models solve the heat
equation inside the droplet, suppose a Hill’s vortex flow type inside the droplet (Abramzon & Sirignano
(1989)) or even solve the complete set of equations inside the droplet (Rangel & Sirignano (1989)). A
comparison of the effects of each of these models may be found in Abramzon & Sirignano (1989).

6.2 A new experimental approach for the characterization of
evaporating droplets.

Chauveau et al. (2008) recently presented new experimental measurements for the evaporation of n-
heptane droplets in the configuration previously studied by Nomura et al. (1996). In these experiments,
a unique n-heptane droplet of initial diameter d0 = 500 µm, suspended by quartz fibers, evaporates
in a N2 quiescent atmosphere at different temperatures and pressures under microgravity conditions.
Chauveau used a new method to suspend the droplets during the evaporation process: while Nomura
used horizontal quartz fibers of 0.15 mm of diameter (Fig 6.1(a)), Chauveau suspended the droplets by
the center using a ”cross-fiber” system of 14 µm (Fig 6.1(b)). He claimed that this new method was more
accurate, since it reduces the heat conduction through the fiber and keeps the droplet spherical until the
last stages of evaporation.

(a) (b)

Figure 6.1: Droplet suspending technique: classical fiber (a), cross-fiber (b). Extracted from
Chauveau et al. (2008).

The evaporation times measured by Chauveau et al. (2008) were much larger than those measured by
Nomura et al. (1996) or Ghassemi et al. (2006). To explain this difference he adduced that in Ghassemi and
Nomura’s experiments, the measurements were conditioned by the heat conduction through the support
fiber. Yang & Wong (2002) performed a numerical study of the experience carried out by Nomura to
investigate the effects of radiation and fiber heat conduction. They simulated the evaporation of a single
n-heptane droplet under the same conditions for a wide range of gaseous temperatures and pressures.
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They used three numerical models:

• the first model computes the evaporation process without any source term other than the exchanges
between the gas and the liquid phases (case 1).

• the second model takes into account an extra contribution due to the heat conduction through the
fiber (case 2)

• the third model takes into account the radiation emitted by the internal walls of the furnace where
the experiments were performed and the fiber heat conduction (case 3).

They showed that when radiation and fiber conduction effects are not included, the evaporation rate is
slower. They also showed that the results of Nomura are very sensitive to the contributions of the fiber
and radiative source terms. Results including radiation and the effect of the fiber matched the results of
Nomura for a wide range of pressures and temperatures. In AVBP, fiber heat conduction and radiation
are often ignored. For this reason, only case 1 in Yang & Wong (2001) will be used for comparison means
in this work. Nevertheless, these terms may be accounted for coupling AVBP with the codes AVTP
(Duchaine et al. (2009)) to account for the heat conduction through the support fiber, and PRISSMA
(Joseph et al. (2005), Amaya et al. (2010) ) to take into account the radiation effects.

6.3 Evaporation models for single isolated droplet

Section 6.3 recalls the equations used in the evaporation model of Spalding (Spalding (1953)) and intro-
duces the modifications proposed by Abramzon and Sirignano (Abramzon & Sirignano (1989)) into this
evaporation model. Section 6.3.1 compares two procedures to evaluate the transport and thermodynamic
properties and proposes a new method for the calculation of the transport properties in the gas phase
around the droplet with the code AVBP. Following the classification proposed by Sazhin (2006), infinite
conduction in the liquid and spherical symmetry are assumed. In other words, inside the droplet, the
thermal conductivity is considered infinitely fast and the temperature is uniform (Fig 6.2). The gas is
considered quasi-stationary, so the thermal and mass transferts in the gaseous phase depend only on
the distance to the surface of the droplet. Furthermore, the particle density being larger than the fluid
density (ρp >> ρg), the velocity of regression of the droplet surface is much smaller than that of the
gaseous fuel leaving the surface, so that the position of the liquid surface may be considered constant.

Figure 6.2: Sketch of the heat fluxes and temperature profile in the evaporation of an isolated droplet following
the infinite liquid-conductivity model. Source AVBP Handbook.
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The Spalding evaporation model (Spalding (1953))

The mass exchange through the droplet surface may be represented by the fuel mass flux leaving the
surface (ζ represents the surface of the droplet and u the droplet surface regression velocity):

ṁF = (4πρgur2
p)ζ . (6.1)

where rp is the droplet radius.

Another description of this mass exchange is obtained using the temporal evolution of the total mass
of the droplet mp:

ṁp =
dmp

dt
. (6.2)

As the mass loss of the droplet due to evaporation is totally converted into gaseous fuel, a simple
relationship between ṁp and ṁF can be obtained:

ṁF = −ṁp. (6.3)

Spalding (1953) proposed the following expression for the calculation of the droplet mass loss:

ṁp = −πdpShρgDF ln(1 + BM ), (6.4)

where ρgDF includes the diffusion coefficient (DF ) of the fuel species in the mixture and the density (ρg)
of the gaseous mixture. Sh is the Sherwood number, a dimensionless number that represents the ratio of
convective to diffusive mass transport and BM is the so-called mass Spalding number given by:

BM =
YF,ζ − YF,∞

1 − YF,ζ
, (6.5)

where YF,ζ and YF,∞ are the mass fractions of evaporated fuel in the film surrounding the droplet surface
and at the far field respectively. The vapor mass fraction at the droplet surface is deduced from the
Clausius-Clapeyron law:

pF,ζ = pccexp

(WpLevap

R

(
1

Tcc
− 1

Tζ

))
, (6.6)

where the subscript cc designates an arbitrary reference point on the saturation curve of the fuel. Wp

is the molecular weight of the liquid fuel, R is the universal gas constant and Levap is the latent heat
of vaporization of the liquid fuel. The vapor partial pressure pF,ζ yields the molar fraction XF,ζ which
allows to obtain YF,ζ . Tabulating the saturation pressure versus the temperature from 0K to the critical
temperature of the fuel species, Eq. (6.6) is not needed and the values of pF,ζ are directly looked up in
the table.

The Sherwood number is equal to 2 in the case of evaporation in quiescent atmosphere. When
convection effects are taken into account, different correlations are available: Ranz & Marshall (1952)
proposed a modification of the one originally derived by Frössling (Frössling (1938)), based on the particle
Reynolds number Rep and the Schmidt number of the fuel species ScF :

Sh = 2 + 0.55Re1/2
p Sc

1/3
F . (6.7)

The mass evaporation rate is evaluated with Eq. (6.4). In order to completely characterize the evap-
oration process, an equation for the evolution of the droplet temperature needs to be provided. The
energy conservation equation on the gas side of the droplet surface leads to:

ρgur2
p

dhs,g

dr
=

d

dr

(
r2
p

λ

Cp

dhs,g

dr

)
. (6.8)
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Furthermore evaluating the conductive Φc and convective Φev heat fluxes in the gaseous and the liquid
phases (with subscripts g and p respectively, Fig 6.2) yields:

Φc
p + Φev

p + Φc
g + Φev

g = 0 . (6.9)

The fluxes leaving the liquid are due to the vaporization process itself and depend directly on the latent
heat of vaporization:

Φc
p + Φev

p = −ṁF hs,p(Tζ) + ṁphs,F (Tζ) = −ṁpLevap(Tζ) . (6.10)

The total heat flux out of the liquid phase Φp = Φc
p + Φev

p is directly linked to the temporal evolution
of the liquid enthalpy:

Φp =
d

dt
(mphs,p(Tp)) . (6.11)

The liquid conductive flux is opposite to the conductive flux in the gas phase (Φc
p = −Φc

g). Using
Eq. (6.10) and the relation dhs,p(Tp) = Cp,p dTp one may write:

d

dt
Tp =

1

mpCp,p

(
−Φc

g − ṁpLevap(Tζ)
)

. (6.12)

Similarly to the saturation pressure, the latent heat of vaporization Levap may be tabulated versus
temperature. The equation for the conductive heat flux in the gas phase is obtained integrating Eq. (6.8)
twice. Assuming constant thermal conductivity, λ, yields:

Φc
g = πdpλNu (Tζ − T∞)

ln(BT + 1)

BT
, (6.13)

where BT is the Spalding thermal number, analogous to the mass Splading number (Eq.(6.5)):

BT = (1 + BM )
β − 1 , (6.14)

with

β =
Sh · Pr

Nu · ScF
. (6.15)

Pr is the Prandtl number of the gaseous mixture and Nu is the Nusselt number, representing the ratio
of convective to conductive heat transfer normal to the droplet boundary. It is equal to 2 for evaporation
in quiescent atmosphere. When convection is taken into account, the Ranz-Marshall correlation (Ranz
& Marshall (1952)) is used:

Nu = 2 + 0.55Re1/2
p Pr1/3. (6.16)

When the mass fraction of evaporated fuel at the surface of the droplet, YF,ζ , approaches 1, the
evaporation reaches saturation conditions. Accordingly, the Spalding mass number (Eq. (6.5)) becomes
singular. When saturation is reached, the droplet is assumed to be at its saturation point, that is, the
evaporation takes place without heating in the liquid and the droplet temperature stays constant. All
the heat arriving to the droplet is invested on the evaporation of the liquid fuel. In this case, the mass
transfer can be evaluated directly from the conductive heat transfer:

ṁp =
φc

g

hs,F (Tζ) − hs,p(Tζ)
, (6.17)

where hs,F (Tζ) is the enthalpy of the gaseous fuel at the temperature of the droplet surface (Tζ) and
hs,p(Tζ) is the enthalpy of the liquid fuel at the same temperature. It is calculated from the tables of
latent heat of evaporation Levap and gaseous sensible enthalpy, hs,F :

hs,p(T ) = hs,F (T ) − Levap(T ) . (6.18)
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The Abramzon-Sirignano evaporation model (Abramzon & Sirignano (1989))

The Spalding model for evaporation does not take into account the existence of a vapour film around
the droplet. That is, it does not consider the finite thickness of the thermal and mass boundary layers
around the droplet. Taking into account these layers leads to the following modified expressions for the
Sherwood and Nusselt numbers appearing in the equations for the mass and heat fluxes respectively:

Sh = 2 + 0.55
Re

1/2
p Sc

1/3
F

F (BM )
(6.19)

Nu = 2 + 0.55
Re

1/2
p Pr1/3

F (BT )
, (6.20)

where

F (B) = (1 + B)0.7 ln(1 + B)

B
(6.21)

where B refers to BM for the Sherwood number and BT for the Nusselt number.

The parameter β in the relation between BM and BT (Eq.(6.15)) is also modified to take into account
the thickness of the thermal boundary layer as follows:

β =
CpF,ref

Cpg,ref

Sh · Pr

Nu · ScF
. (6.22)

CpF,ref
and Cpg,ref

are the heat capacity at constant pressure of the gaseous fuel and the gaseous mixture
in the film around the droplet (or reference state) respectively.

The composition and temperature of the mixture in the film (or reference state) are evaluated by
interpolation between their values at the droplet surface and the conditions in the far field (denoted by
the subscript ∞) using the third law (Hubbard et al. (1975), Miller et al. (1998)). This law assumes that
the properties of the gaseous mixture in the film around the droplet, follow a quasi-stationary evolution.
Afterwards, the different thermodynamic properties are calculated at this temperature and composition
(cf Section 6.3.1).

Tref = Tζ +
1

3
(T∞ − Tζ) (6.23)

Yk,ref = Yk,ζ +
1

3
(Yk,∞ − Yk,ζ) (6.24)

Due to the inter-dependency of BT and Nu through β (Eq.(6.22)), this model requires an iterative
method to find the converged value of BT . A convergence study in a real test case (the MERCATO test
rig studied in Part IV), including evaporation and combustion, shows that few iterations (approximately
five) allow to converge.

This model will be called from now on Abramzon-Sirignano or AS model. As shown by Sazhin (2006),
the AS model predicts larger evaporation times compared to the Spalding model in the same conditions,
i.e. the evaporation rate decreases when considering a finite thickness of the thermal and mass boundary
layers around the droplet (instead of an infinitely thin film).

6.3.1 Governing laws for the thermodynamic and transport properties

Sanjosé (2009) performed a numerical study of the effects of the thermodynamic and transport properties
in the evaporation of single droplets, using the results of the experiments of Nomura et al. (1996) and
Chauveau et al. (2008) as reference. Using the Spalding evaporation model, Sanjosé showed that the
models used for the transport properties of the gaseous mixture have a considerable impact on the
evaporation process. Two different approaches for the calculation of the thermodynamics and transport
properties were studied:
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• the simplified calculation implemented in AVBP (called thermo AVBP),

• a more complex evaluation based on collision potentials and CHEMKIN coefficients implemented
in the code CANTERA1 (Goodwin (2009)) (referred to as thermo CANTERA)).

The use of detailed thermodynamics and transport properties implies the calculation of binary species
collision potentials, which considerably increases the complexity of the code as well as the computational
cost.

In the following, the model for the transport and thermodynamic properties for the gaseous mixture
implemented in AVBP (thermo AVBP) as well as the complex formulation implemented in CANTERA
(thermo CANTERA, used as reference) are first described. Then, the results of a parametric study are
described to show the impact of the Prandtl and Schmidt numbers of the gaseous fuel species in the evap-
oration process. Finally, a method is proposed to account for the mixture composition when computing
the transport and thermodynamic properties without explicitly evaluating the collision integrals which
would be too expensive in AVBP (thermo AVBPmix).

Simplified transport and thermodynamic properties

To evaluate the mixture dynamic viscosity, the thermal conductivity and the heat capacity at the droplet
surface the third law is used (Eqs. (6.23) and (6.24)).

The product ρgDF is considered constant in the film, evaluated with a constant Schmidt number for
the fuel (ScF ):

ρgDF =
µ(Tref )

ScF
= const . (6.25)

Similarly, the thermal conductivity and the heat capacity of the mixture are evaluated at the reference
state and considered constant between the droplet surface and the far field. The heat capacity depends on
the reference state composition and on the species heat capacity evaluated at the reference temperature.
A constant Prandtl number is used to evaluate the thermal conductivity:

Cp =
N∑

k=1

Yk,ref · Cpk(Tref ) , (6.26)

λ =
Cp · µ(Tref )

Pr
. (6.27)

The viscosity of the mixture is computed using a Power law (Eq. (2.19)) that depends only on the
temperature of the reference state. Both the Prandtl and the Schmidt numbers are fixed by the chemical
scheme used in reactive conditions.

Complex transport and thermodynamic properties

The kinetic theory for gases (Hirschfelder et al. (1964), Chapman & Cowling (1939 (digital reprint 1999))
is used to compute the transport and thermodynamic properties of the mixture. The Lennard-Jones
potentials (Hirschfelder et al. (1964), Bird et al. (1960)) are used to calculate the inter-molecular forces
(Kee et al. (1986)). The expressions for diffusivity, conductivity and viscosity are summarized in this
section, more details can be found in Kuo (2005).

1CANTERA is an open-source code that computes reactive flows for zero and one-dimensional problems using detailed
chemistry, thermodynamic and transport properties based on CHEMKIN potentials.
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First, the diffussion coefficient of a species k into a gaseous mixture reads:

Dk =
1 − Yk∑

j 6=k Xj/Djk
, (6.28)

where Yk and Xk are the mass and molar fractions of species k and Djk is the binary mass diffusion
coefficient of species k into species j, which reads:

Djk =
3

16

√
2πκ3

BT 3/mjk

πPσ2
jkΩD,jk

. (6.29)

mjk is the reduced atomic mass of the pair j − k, σjk is the reduced collision diameter and ΩD,jk is the
collision integral for the diffusion coefficient.

Second, the thermal conductivity of the mixture is calculated using the Mathur’s equation (Kee et al.
(1986)):

λ =
1

2

(
∑

k

Xkλk +
1∑

k Xk/λk

)
, (6.30)

where the thermal conductivity of each species λk is calculated using a complex function of the parameters
describing the geometry of the molecule (here denoted FG, Kee et al. (1986)) and the dynamic viscosity
of species k:

λk =
µk

Wk
FG . (6.31)

The dynamic viscosity of species k is evaluated as:

µk =
5

16

√
πmkκBT

πσ2
kΩµ,k

(6.32)

with σk being the collision diameter, mk the mass of the molecule, κB the Boltzmann’s constant and
Ωµ,k the collision integral for the dynamic viscosity. The viscosity of the mixture is calculated following
Wilke’s equation (Bird et al. (1960)):

µ =
∑

i

Xiµi∑
j XjΦij

(6.33)

Φij =
1√
8

(
1 +

Wi

Wj

)−1/2
[
1 +

(
µi

µj

)1/2(
Wj

Wi

)1/4
]

. (6.34)

This formulation, is evaluated at the reference state (Eqs. (6.23) and (6.24)) when used for the
calculation of the evaporation processes presented in this work.

To evaluate the impact of the complex transport and thermodynamic properties on the evaporation
process, Sanjosé (2009) computed the evaporation of single monocomponent droplets in a quiescent
atmosphere using the Spalding model with simple and detailed thermodynamic and transport properties:

Results sowed a great impact of the thermodynamic and transport properties on the evaporation
process, demonstrating the necessity to take into account accurate transport properties in evaporation
calculations. This however is very expensive in terms of CPU time, and a methodology proposed here
provides accurate results for transport and thermodynamic properties without increasing drastically the
CPU cost of the evaporation calculation in a CFD code.

A new methodology for the evaluation of the transport and thermodynamic properties in
CFD codes

The Prandtl and Schmidt numbers used in simplified models are usually fixed by adjusting the reduced
chemical schemes in the context of reacting flows. However, there is no reason why the values required
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to adjust reduced chemistry would be suitable to describe the evaporation process. Therefore, in this
work, it is proposed to use different values for the Prandtl and fuel Schmidt numbers (Prevap and Scevap

F )
than those used for the gaseous phase for evaporation. These values are adjusted from an evaporation
calculation using detailed properties. This new methodology will be referred to as thermo AVBPmix.

Concerning viscosity, the Wilke’s formula (Eq.(6.33)) is used when each species viscosity µk is modeled
by a Power law, fitted on thermodynamic tables:

µk = µk,0

(
T

T0

)b

k

. (6.35)

where µk,0 is a reference viscosity and bk is the exponent for the Power law, both depending on the species
k, T0 = 300 K is the reference temperature used for all the species.

This new methodology allows to take into account complex transport properties art a reduced cost in
a CFD calculation. It requires only one simple a priori evaporation calculation to fit the Prandtl and
Schmidt evaporation numbers (Prevap and Scevap

F ). The delicate point is here to determine the reference
state for this evaporation calculation, which should be representative for the whole CFD simulation. This
will be discussed in Section 7.4.



Chapter 7

Application to the evaporation of a
single droplet in stagnant
atmosphere

7.1 Implementation

The CFD codes chosen to perform the study presented in this chapter are AVBP for thermo AVBP and
thermo AVBPmix methods and CANTERA to account for complex thermodynamic and transport prop-
erties (thermo CANTERA). This Section briefly describes the implementation of the new methodology
in AVBP and the methodology allowing to perform evaporation calculations with CANTERA.

The evaporation of liquid fuel in AVBP follows a model developped for single isolated droplet, where
the interactions between droplets are neglected. The Spalding evaporation model is the classical model
used by AVBP which was implemented in the code by Jaegle (2009). Here, it is referred to as ievap 1.
During this work, the AS model has been included in AVBP. It is referred to as ievap 11. Sanjosé
(2009) developed a fortran tool coupling an evaporation module from AVBP with the code CANTERA.
This tool allowed to perform evaporation calculations using complex thermodynamical and transport
properties as in CANTERA. During this work, the tool has been modified to include the Abramzon-
Sirignano evaporation model. The methodology thermo AVBPmix has also been implemented. This
tool is actually included in AVBP under the name “CANTEVOL EVAP0D”. It is used to perform the
preliminary evaporation calculation that allows to obtain the values of Prevap and Scevap

F needed to
simulate evaporation processes with thermo AVBPmix method. Finally, thermo AVBPmix model has
been implemented in AVBP for both the Spalding and the Abramzon-Sirignano evaporation models
(denoted ievap 2 and ievap 21 respectively).

Note that, in AVBP, the latent heat of evaporation and the saturation pressure are tabulated. The
tables have been provided by IPF-EN. They are issued from the code IFP-C3D, based on experimental
results. However, the number of fuels for which the tables are available is limited. For those fuels for
which tabulated values are not available, tables of saturation pressure and latent heat of evaporation have
been calculated using the Clasius-Clapeyron law (Eq. (6.6)) and assuming constant liquid heat capacity
respectively.

The models presented in Chapter 6 are validated hereafter in the configuration of Nomura et al. (1996)
where, a n-heptane droplet of initial diameter dp = 500 µm, evaporates in a quiescent N2 atmosphere. The
initial droplet temperature is 300 K. The pressure is 1 bar and the initial gas temperature ranges from
473 K to 973 K. The experimental results of Chauveau et al. (2008) and the results of the simulations
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of Yang & Wong (2001) are also included for comparison. Table 7.1 describes the six calculations used
in the following:

Evaporation model: Thermo and transport formulation Referred as:

Spalding thermo CANTERA ievap 0
AS thermo CANTERA ievap 01

Spalding thermo AVBP ievap 1
AS thermo AVBP ievap 11

Spalding thermo AVBPmix ievap 2
AS thermo AVBPmix ievap 21

Table 7.1: Classification of the different models studied in this work.

Section 7.2 shows the performances of the three models for the thermodynamic and transport prop-
erties using the AS evaporation model. Section 7.3 shows the effect of the evaporation model (either
Spalding or AS). In real industrial applications, the fuel droplets are subject to different conditions of
gaseous temperature and composition, depending on their position in the combustion chamber. There-
fore, Section 7.4 discusses the choice of the temperature at which Prevap and Scevap

F are evaluated to
be afterwards applied to a wide rage of initial gas temperatures. Section 7.5 shows the limits of the
methodology thermo AVBPmix presented in Section 6.3.1 when used over a range of pressures, which is
the case of piston engines for instance. Finally, Section 7.6 shows the results for a kerosene droplet in
similar conditions to those of the MERCATO configuration.

7.2 Effect of the thermodynamic and transport properties on
the evaporation

This Section presents the numerical results for the configuration of Nomura et al. (1996) at ambient
pressure and a temperature of 623 K using the AS evaporation model. The effect of the methodology
used for the computation of the thermodynamic and transport properties (ievap 01 (thermo CANTERA),
ievap 11 (thermo AVBP) and ievap 21 (thermo AVBPmix)) on both the gaseous and liquid phases is
analyzed.

Table 7.2 summarizes the values of the Prandtl and Schmidt numbers chosen for thermo AVBP and
thermo AVBPmix models. The values of the Prandtl and Schmidt numbers for thermo AVBPmix model
have been obtained from a first calculation with thermo CANTERA model. They correspond to the
values at equilibrium obtained with thermo CANTERA model. Note that in the calculations performed
with thermo CANTERA, the Prandlt and Schmidt numbers are not constant. Figure 7.1 shows the
evolution of the Prandtl and Schmidt numbers during the evaporation process for the three calculations.

Name Properties Prandtl Schmidt
ievap 11 thermo AVBP 0.71 2.10
ievap 21 thermo AVBPmix 0.82536 1.4807
ievap 01 thermo CANTERA variable variable

Table 7.2: Prandtl and Schmidt numbers used in the calculations presented in Section 7.2.
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(a) (b)

Figure 7.1: Prandtl and Schmidt numbers used in the calculations. n-heptane, Tg = 623K, Pg = 1bar.
Numerical simulations performed using the AS evaporation model.

Figure 7.2 shows that the diffferent methods produce important differences on the evolution and
equilibrium values of the main transport properties: the implementation of Wilke’s formula (Eq.(6.33))
in ievap 21 predicts an evolution of the gaseous mixture viscosity at the reference state close to that of
ievap 01. The main differences are due to the fitting of the individual viscosities by a Power law instead
of using the collision potentials as it is done in CANTERA. Moreover, it demonstrates that the use of
individual fittings of the dynamic viscosity using Power laws along with Wilke’s formula (Eq.(6.33)), is
a good compromise for the calculation of the viscosity of the mixture in the film.

However, a study performed during this work revealed that the change in the computation of the
viscosity alone, was not a sufficient condition to obtain a correct prediciton of the thermal conductivity
(λg, Fig. 7.2(b)) or the diffusion coefficient (DF , Fig. 7.2(c)). However, including the use of the pre-
calculated equilibrium values for the Prandtl and Schmidt numbers, as shown in Fig. 7.1, allows a better
agreement on the estimation of these properties.

Figure 7.3 shows the temporal evolution of the droplet diameter normalized by its initial value.

• The characteristic evaporation time ranges, for n-heptane in the conditions of the experiment, from
1 s for Nomura to 2 s for the results of Chauveau, i.e. the evaporation time predicted by Chauveau
et al. (2008) is approximately two times longer than that predicted by Nomura et al. (1996).
Chauveau et al. (2008) and Yang & Wong (2001) experimentally and numerically respectively,
showed that the results of Nomura are, in general, notably influenced by the heat conduction
through the support fiber and by radiation of the internal walls of the furnace. For this reason,
the experimental results of Nomura et al. (1996) must be carefully considered when performing
comparisons with numerical results, especially when the computational code used does not take
into account those effects.

• The numerical results obtained using ievap 11 predict an evaporation process one third shorter
than the evaporation time predicted by ievap 01. The evaporation time obtained with ievap 21 is
slightly longer than that of ievap 01. However, ievap 01 and ievap 21 are very similar in terms of
droplet diameter temporal evolution.

• Compared with the experimental results, ievap 01 and ievap 21 agree well with the results of Chau-
veau et al. (2008). ievap 11 produces results very close to the experimental measurements of Nomura
et al. (1996).
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(a)

(b) (c)

Figure 7.2: Temporal evolution of the main transport properties: (a) gaseous mixture viscosity, (b) thermal
conductivity, (c) diffusion coefficient. n-heptane, Tg = 623K, Pg = 1bar. Numerical simulations

performed using the AS evaporation model.

Figure 7.3: Temporal evolution of the non-dimensional droplet surface. n-heptane, Tg = 623K, Pg = 1bar.
Numerical simulations performed using the AS evaporation model. Experimental results of Chauveau

et al. (2008) and Nomura et al. (1996).
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The choice of the Prandtl and Schmidt numbers has a great impact on the calculation of the equilibrium
or wetbulb temperature. The wetbulb temperature Twb corresponds to the temperature of a droplet
surrounded by hot gases once the equilibrium state is reached:

Twb = Tg − Levap(Tref )

Cp
BT , (7.1)

where Tg is the gaseous temperature in the far field, Levap is the latent heat of evaporation of the liquid
fuel evaluated at the reference temperature Tref (Eq. (6.23)), Cp is the heat capacity of the gaseous
mixture in the film around the droplet (Eq. (6.26)) and BT is the Spalding thermal number (Eq. (6.14)).
The Prandtl and Schmidt numbers have a direct impact on the parameter β (Eq. (6.22)) and thus on
BT . As the choice of Prevap and Scevap

F for ievap 21 depends on the conditions, the effect on the liquid
temperature will also vary with the conditions. In this particular case, Prevap for ievap 21 is higher than
the Pr used for ievap 11. On the contrary Scevap

F is smaller than the Schmidt number used for ievap 11.
This choice produces an increase in β and a smaller value for BT , resulting in an increase of the wetbulb
temperature. Yuen & Chen (1976) measured the wetbulb temperature of n-heptane droplets evaporating
in N2 at atmospheric pressure for a wide range of initial gaseous temperatures. An interpolation of the
results of Yuen & Chen (1976) gives a wetbulb temperature of 344 K in the conditions of the experiment
of Nomura et al. (1996).

Figure 7.4 shows the influence of each model on the droplet temperature Tl. The liquid temperature
has a non-negligible impact on the evaporation process, but also on other phenomena in the combustion
chamber such as liquid films on the inner walls due to droplet impinging and heat losses at walls. The
droplet temperature at equilibrium obtained with ievap 11 is approximately 15 K lower than the temper-
ature predicted with ievap 01. ievap 21 gives a droplet temperature evolution very similar to ievap 01.
The wetbulb temperature predicted by ievap 01 and ievap 21 is in very good agreement with the wetbulb
temperature experimentally measured by Yuen & Chen (1976).

Figure 7.4: Temporal evolution of the droplet temperature. n-heptane, Tg = 623K, Pg = 1bar. Numerical
simulations performed using the AS evaporation model.

The new calculation methodology implemented in AVBP (ievap 21) have also a strong impact on the
value of mass transfer rate Γ (Fig. 7.5(a)), even when its impact in the heat transfer rate Φg is limited
(Fig. 7.5(b)). ievap 21 shows a behavior very close to the one predicted by ievap 01: the slope of the
mass transfer rate during the early stage of the vaporization process is less stiff than the corresponding to
ievap 11, which predicts a more rapid evaporation at the beginning of the process, while the evaporation
rate decays very quickly. The evaporation rates calculated with ievap 01 and ievap 21 are slower at the
beginning but more sustained along the whole period needed for the complete evaporation.
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(a) (b)

Figure 7.5: Evolution of the mass (a) and heat transfer rates (b). n-heptane, Tg = 623K, Pg = 1bar. Numerical
simulations performed using the AS evaporation model.

The differences in diameter and equilibrium droplet temperature temporal evolution have an important
influence on the variables involved in the vaporization process. Figure 7.6 shows the temporal evolution
of the gaseous mixture temperature, pressure and density, as well as the mass fraction of gaseous fuel.

(a) (b)

(c) (d)

Figure 7.6: Temporal evolution of the main gaseous mixture properties: (a) gaseous temperature, (b) pressure,
(c) gaseous density and (d) mass fraction of gaseous fuel. n-heptane, Tg = 623K, Pg = 1bar.

Numerical simulations performed using the AS evaporation model.
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The results of ievap 21 are very close to those of ievap 01, predicting a slower decrease in gaseous
temperature and pressure and a slower increase in gaseous fuel mass fraction and gaseous density. As
expected, once the evaporation is finished, the values at equilibrium are the same for the three models,
as they depend only on the final compostion of the mixture, driven by the initial quantity of liquid fuel.

7.3 Comparison of the Spalding and the Abramzon-Sirignano
evaporation models

Section 7.2 showed that the thermodynamic and transport properties strongly impact the evaporation
process. This Section proposes to evaluate the impact of the evaporation model itself once the ther-
modynamic and transport properties are fixed, comparing the Spalding and AS models. The same
configuration as in Section 7.2 is computed, varying the evaporation model for the three methodologies
for the calculation of the thermodynamic and transport properties (thermo AVBP, thermo CANTERA,
thermo AVBPmix). Figure 7.7 displays the droplet diameter and the droplet temperature temporal
evolutions.

Whatever the thermodynamic and transport properties used, the AS model predicts a longer evapo-
ration time and a smaller liquid temperature at equilibrium. Comparing with the experimental results
of Chauveau et al. (2008), the AS model using complex thermodynamic and transport properties shows
the best agreement in terms of droplet diameter temporal evolution.

These comparisons show that the transport and thermodynamic properties have a stronger impact
than the evaporation model itself on the evaporation process.

(a) (b)

Figure 7.7: Comparison of the evolution of the non-dimensional droplet surface (a) and temperature (b) for the
different evaporation models. n-heptane droplet, Tg = 623K, Pg = 1bar. Simulations performed with

the Spalding and the AS evaporation models. Experimental results of Chauveau et al. (2008) and
Nomura et al. (1996).

7.4 Application of a determined fitting to different ambient tem-
peratures

Sections 7.2 and 7.3 showed that the new methodology proposed in Chapter 6, namely thermo AVBPmix,
correctly predicts the evaporation process as measured by Chauveau et al. (2008) and as computed with
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a complex thermodynamic and transport properties calculation (thermo CANTERA).

In real applications, such as aeronautical combustion chambers, the conditions (in the evaporation
zone) are not homogeneous. The droplets issued from the atomization process may reach very different
regions in terms of gaseous temperature and mixture composition. For example, the biggest droplets (with
high inertia) may penetrate further inside the chamber than the smallest ones, therefore encountering
much higher gaseous temperatures. The effect of gaseous temperature used to evaluate Prevap and Scevap

F

at equilibrium for ievap 21 must therefore be evaluated.

In this Section, the configuration of Nomura et al. (1996) is simulated using the AS evaporation model,
for a wide range of initial gaseous temperatures (Tg = 473 K, 548 K and 748 K). The values of Prevap

and Scevap
F numbers are kept from the case at an initial gaseous temperature of 623K (Table 7.2). These

values have been used for all the other gaseous temperatures. The fitting has been performed at 623K
because it approximately corresponds to the middle of the temperature range and because experimental
measurements are available at this temperature.

Figure 7.8 shows the results for the three initial gaseous temperatures using the three methodologies for
the computation of the transport and thermodynamic properties. The experimental results of Nomura
et al. (1996) show evaporation times much shorter than the results of Chauveau et al. (2008). The
numerical results of Yang & Wong (2001) are very close to the experimental results of Chauveau et al.
(2008) in all cases.

The agreement between ievap 21 and ievap 01 is good for 548K and 748K, however, the differences
between both methods increase at 473K. For the three temperatures, ievap 11 is in good agreement with
Nomura, while ievap 21 is closer to Chauveau and agrees very well with the results of Yang.

Figure 7.9 shows the evaporation rates corresponding to the linear part of the squared diameter evo-
lution curve for a wide range of initial gaseous temperatures and at ambient pressure. The experimental
results show that the evaporation rate increases linearly with the gaseous temperature. The results of
Nomura et al. (1996) and Morin et al. (2000) are very similar. Ghassemi et al. (2006) predicts much
higher evaporation rates for the whole range of gaseous temperatures. Chauveau et al. (2008), however,
obtains evaporation rates 50% lower than Nomura et al. (1996). The numerical results of Yang & Wong
(2001), obtained without taking into account the radiation and fiber conduction effects, are very close to
the experimental measurements of Chauveau et al. (2008).

The numerical results obtained with thermo AVBP method (ievap 1 and ievap 11) are close to the
experiments of Nomura and Ghassemi, and that for the whole range of temperatures. themo CANTERA
(ievap 0 and ievap 01) and thermo AVBPmix (ievap 2 and ievap 21) produce very similar results. In
both cases, the evaporation rates predicted are in very good agreement with the results of Chauveau
et al. (2008) and Yang & Wong (2001).

The results showed that the fitting of the Prandtl and Schmidt numbers for thermo AVBPmix method
at a determined gaseous temperature can be used for the calculation of the evaporation over a wide
range of gas temperatures and produces good agreement with experimental results (Chauveau et al.
(2008)) and numerical results obtained with complex thermodynamic and transport calculation (Yang and
thermo CANTERA). This validates the application of the new method (thermo AVBPmix) for industrial
configurations where the gaseous temperature is not constant or homogenous.
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(a)

(b) (c)

Figure 7.8: Temporal evolution of the non-dimensional droplet surface. n-heptane, P = 1bar: (a) T = 473K, (b)
T = 548K, (c) T = 748K. Numerical simulations performed using the AS evaporation model.

Experimental results of Chauveau et al. (2008) and Nomura et al. (1996); numerical results of case 1
in Yang & Wong (2001).

Figure 7.9: Comparison of the vaporization rate of n-heptane isolated droplets, versus temperature. Experimental
results of Chauveau et al. (2008), Nomura et al. (1996), Yang & Wong (2001), Morin et al. (2000)

and Ghassemi et al. (2006)
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7.5 Evaluation of the fitting procedure for different pressures

The variations of pressure are not very significative in aeronautical combustion chambers. However, that
is not the case in piston engines. Indeed, in spark ignition piston engine, the evaporation process takes
place at a narrow interval of moderately high pressures (4 to 5 bars). The mixture is ignited shortly
after ignition. On Diesel engines, however, the pressure is much higher and the range larger. Indeed, the
pressure in one cycle may vary from 20 bar to 150 bar. The evaporation process takes place of pressures
around 45 bar.

Several reviews are available on high pressure droplet vaporization (Givler & Abraham (1996), Bellan
(2000)), but only a few studies have been conducted on convective flows (Lee et al. (1990), Delplanque &
Sirignano (1993), Lee et al. (1990)). Nomura et al. (1996) and Matlosz et al. (1972) performed experiments
on n-heptane and n-hexadecane evaporation under normal and microgravity conditions at high pressures.
Yang & Wong (2001) and Gogos et al. (2003) studied the same test cases numerically. Both found that
the numerical models for the calculation of the thermodynamic properties and the assumptions made on
the evaporation models used, are not suitable for their application at high pressures.

The purpose being to assess the performances of the different approaches for the calculation of the
thermodynamic and transport properties and evaporation models at different initial conditions, four
different gaseous pressures have been tested: 1, 5, 10 and 20 bar. The gaseous temperature varies from
one pressure to the other depending on the availability of experimental measurements, but it is close to
500 K for the four pressures tested.

The results for the AS evaporation model along with the three different approaches for the calculation
of the thermodynamic and transport properties (ievap 01, ievap 11 and ievap 21) are compared with the
experimental results of Nomura et al. (1996) (and Chauveau et al. (2008) only for the case at 1 bar) as
well as the numerical simulations Yang & Wong (2001) for different pressures: 1 bar (Fig. 7.10(a)), 5 bar
(Fig. 7.10(b)), 10 bar (Fig. 7.10(c)) and 20 bar (Fig. 7.10(d)).

Contrary to Section 7.4, the Prevap and Scevap
F values for the computations performed with

thermo AVBPmix (ievap 21) have been fitted with a pre-calculation with thermo CANTERA for each
pressure. Table 7.3 summarizes the values of PrEvap and Scevap

F obtained from the pre-calculations with
thermo CANTERA.

Pressure Prevap Scevap
F

1 bar 0.804 1.5382
5 bar 0.829 1.566
10 bar 0.819 1.667
20 bar 0.826 1.7055

Table 7.3: Prandtl and Schmidt numbers used in the calculations presented in Section 7.5.

Figure 7.10 first shows that the agreement between ievap 21 and ievap 01 is very good for all pressures.
Second, the differences between ievap 11 and ievap 21 or ievap 01 keep constant when the pressure
increases. Using complex thermodynamic and transport properties leads to an evaporation time 1.5
times slower than using simplified thermodynamic and transport properties.

Finally, whereas at low pressure (1 bar) the results of the models ievap 01 and ievap 21 are also close
to those of Yang & Wong (2001), the discrepancies increase when the pressure increases. Yang & Wong
(2001) and Gogos et al. (2003) already explained the sources of the differences between the numerical
results and the experiments. First, high pressure effects, such as the solubility of the gas into the droplet
and the real-gas effects on vapor-liquid equilibrium at the gaseous film surrounding the droplet, are not
taken into account. Moreover, at high pressure, the droplet may also deform, thus the spherical symmetry
assumption is no longer valid, due to a decrease in the surface tension. Natural convection effects also
increase with the pressure. Note that to account for natural convection, gravity must be considered, which
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is not the case in this work, nor in the work of Yang & Wong (2001). Gogos et al. (2003) showed that
taking into account the gravity effects through the inclusion of the Grashof number in the correlations for
the Sherwood and Nusselt numbers (Ranz & Marshall (1952)) leads to shorter evaporation times, which
would modify the results.

Figure 7.11 shows the evolution of the evaporation rate for n-heptane droplets as a function of the
surrounding pressure at different gaseous temperatures (Tg = [673 K, 973 K]). Ghassemi et al. (2006)
found that the evaporation rate increases with temperature and pressure, whereas Nomura et al. (1996)
obtained almost constant evaporation rates for a pressure range between 1 and 25 bar, except for the
high temperature case. The numerical results obtained with ievap 21 show very small variations with the
gaseous temperature. The evaporation rates predicted are constant for the whole range of pressures.

Note that on the one hand, Chauveau et al. (2008) and Yang & Wong (2001) showed that the experi-
mental results of Nomura and Ghassemi are questionable since they are biased by the setup used for the
measurements in terms of heat conduction through the support fiber and radiation. On the other hand,
Yang discarded the data of Nomura at 20 bar and high temperature considering that it was inconsistent
with the rest of results.

(a) P = 1 bar (b) P = 5 bar

(c) P = 10 bar (d) P = 20 bar

Figure 7.10: Temporal evolution of the non-dimensional droplet surface. Evaporation of n-heptane droplet.
T = 548K. P = 1bar (a), P = 5bar (b), P = 10bar (c) and P = 20bar (d). Comparison of

numerical results performed using AS evaporation model, case 1 in Yang & Wong (2001) and
eperimental results of Nomura et al. (1996).
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Figure 7.11: Comparison of the vaporization rate of n-heptane isolated droplets, according to the pressure.
Experimental results of Ghassemi et al. (2006) and Nomura et al. (1996).

7.6 Application to the evaporation of kerosene droplets

In the prospect of aeronautical combustion chamber simulations, this Section proposes to test the evapora-
tion models for isolated kerosene droplets on conditions that are representative of those of the MERCATO
test rig. Droplets are injected at an initial temperature of 400K approximately with an initial diameter
of 55µm. The pressure is 1 bar and the average gaseous temperature 440K. These conditions correspond
to the outer part of the hollow cone injection of the MERCATO configuration as simulated by Sanjosé
(2009). Sanjosé (2009) proposed a modelisation of the properties for the kerosene surrogate relying on
the work of Luche (2003). This surrogate is chosen because it is very similar to the kerosene models used
by SNECMA and TURBOMECA. It is composed of three main components: nC10H22, C9H12, C9H18

(Table 7.4). The properties of the so-called surrogate KERO LUCHE are calculated as averages of the
properties of the three main components. The values of the main thermodynamic and transport proper-
ties can be found in Franzelli et al. (2010) and in Sanjosé (2009) for the liquid phase. The lack of data for
liquid heat capacity and latent heat of vaporization for this surrogate as a function of the temperature
requires to tabulate the properties from a constant value of heat capacity at constant pressure.

Composition Mass fraction [-] Molar weight [g/mol] Molar fraction [-]

Linear nC10H22 0.767 142.284 0.7396
Aromatic C9H12 0.132 120.1916 0.1507

Naphthenic C9H18 0.101 126.241 0.1097
KERO LUCHE C9.73957H20.0542 1.000 137.195 1.0000

Table 7.4: Definition of the composition of the kerosene surrogate by Luche (2003) (KERO LUCHE).
Reproduced from Franzelli et al. (2010).
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Figure 7.12(a) shows the temporal evolution of the non-dimensional droplet diameter using the AS
model and the three approaches for the thermodynamic and transport properties. The computations
with ievap 01 and ievap 21 shows very similar results and an evaporation time larger than ievap 11
(25%). Figure 7.12(b) shows the evolution of the droplet temperature normalized by the initial droplet
temperature: the evolution is similar for all the calculations, the equilibrum values being 5 K lower with
ievap 01 and ievap 21 than with ievap 11.

(a) (b)

Figure 7.12: Temporal evolution of the non-dimensional droplet surface (a) and droplet temperature (b).
Evaporation of KERO LUCHE droplet. T = 440K, P = 1bar and T l0 = 426K.

Ghassemi et al. (2006) performed experiments on evaporation of kerosene droplets, obtaining the rates
of evaporation of the fuel in a N2 atmosphere. The results correspond to the evaporation of a kerosene
droplet of 1mm of diameter at 0.1MPa and different gaseous temperatures. The experiment of Ghassemi
et al. (2006) have been reproduced in this work using the Spalding and the AS evaporation models and
the three approaches for the calculation of the properties implemented in AVBP. The results obtained
using the thermo CANTERA approach are very close to those of the thermo AVBPmix approach and
are not presented. The evaporation rates are extracted once the pre-heating period is finished (in the
straight part of the curve in Fig. 7.12(a)).

The results of ievap 11 show good agreement with Ghassemi for low temperatures. As the temperature
increases, ievap 11 deviates and ievap 1 agrees better with the experimental results. As it happened with
the test for n-heptane, the AS model reduces the evaporation rate. This is also the case of the results
obtained with thermo AVBPmix.

The calculations performed with complex transport and thermodynamic properties laws show worst
agreement with the experimental results of Ghassemi et al. (2006), except for 500◦C. None of the
numerical models predict the exponential behaviour of the curve. All of them predict a linear increase in
the evaporation rate with the temperature.

The ievap 21 model will be retained to be used when performing the simulation of the MERCATO
configuration in Part IV. Taking into account that the same experiments performed by Ghassemi et al.
(2006) with n-heptane overestimated the evaporation rate at high temperature (Fig. 7.9), the same results
for kerosene are expected. The conditions in the MERCATO configuration studied in Part IV correspond
to a cold operating point close to 400K. The good agreement between ievap 21 and the experiments
at low temperature justifies the choice of ievap 21 as the evaporation model for the simulations of this
configuration.
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Figure 7.13: Evaporation rates of kerosene as a function of the gaseous temperature. Comparison with
experimental results of Ghassemi et al. (2006)

7.7 Conclusions

This Chapter presents a study on the evaporation of single isolated droplets. This work is motivated by
the publication of new experimental results (Chauveau et al. (2008)) that question the widely accepted
results of Nomura et al. (1996). Chauveau et al. (2008) proposed a new experimental setup able to reduce
the heat conduction through the support fiber during the experiment keeping the spherical shape of the
droplet at the same. This new technique leads to much slower evaporation processes. The importance of
the heat conduction though the fiber was already pointed out by Yang & Chang (2001), who demonstrated,
using numerical calculations, that the experimental data obtained by Nomura et al. (1996) were biased
by the contribution of a radiative source term coming from the inner walls of the furnace were the
experiments were conducted and by an extra heat contribution through the support fiber.

Sanjosé (2009) showed that the thermodynamic and transport properties have a great impact on the
evaporation process and that taking into account complex laws for them is crucial to perform evap-
oration calculations. However, the complex thermodynamics and transport laws are not adapted to
perform industrial-type simulations due to their increased computational cost. The evaporation model
available in AVBP (ievap 1) uses the Spalding evaporation model and simplified thermodynamic and
transport properties (thermp AVBP) and shows very good agreement with the results of Nomura et al.
(1996). The Abramzon-Sirignano evaporation model has been implemented in AVBP, showing small
di?erences with the former model, which confirms the importance of the thermodynamical and transport
properties. A new methodology consisting in using adapted Prandtl and Schmidt numbers for the evap-
oration, di?erent from those optimized for the reduced chemical schemes implemented in AVBP, along
with a laminar viscosity law depending not only on the temperature but also on the mixture composition
(thermo AVBPmix) has been proposed. The new methodology produces results close to the experimental
results of Chauveau et al. (2008) and to the simulation using a complex evaluation of the thermodynamic
and transport properties, without increasing the computational cost of the simulation.

Table 7.5 shows a summary of the performances of the different approaches studied when comparing
with the reference (results obtained with thermo CANTERA). All the approaches show the same evolution
when applied to a different range of temperatures or pressures and to different fuels too. Test have been
performed on evaporation of n-heptane droplets for temperatures in the range [473 K, 748 K] and
pressures in the rage [1 bar, 20 bar]. When the ambient pressure increases, the saturation state is reached
sooner and the evaporation time further increases. Evaporation of kerosene droplets in the conditions of
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the MERCATO combustion chamber configuration.

Agreement with reference:
Evaporation model: thermo AVBP thermo AVBPmix

Spalding - ++
AS + +++

Table 7.5: Summary of the performances of the different approaches studied in this Part, for the comparison
with the reference under the same conditions.

In real applications, the initial diameter of the droplets is usually smaller than 100 µm, the spray is
injected in most cases at ambient temperature. In non-reactive cases, the gas temperature is usually lower
than 700 K, resulting in relatively long evaporation times. In reactive cases, droplets may encounter the
flame close to the injection. Depending on the characteristics of the liquid fuel and the spray (diameter,
initial droplet temperature) they may then evaporate before reaching the flame or cross the flame front
and enter a droplet burning regime. In this case the effect of the evaporation model in the global statistics
of the gaseous and the dispersed phases is reduced.

during this work, the impact of the evaporation has been studied in a complex configuration: the
MERCATO test rig (Part IV). In the MERCATO configuration, the characteristic droplet evaporation
time ranges from about 45 to 60 ms, while the droplet response time ranges from 1.5 · 10−2 to 5.3 ms
and convective time is 20 ms. The life-time of the droplets is larger than the flow convective time. The
droplets are expected to occupy a large portion of the chamber and to interact with the largest scales of
the gas flow, being trapped in the reciculation zones where they finish their evaporation. The evaporation
model should therefore have a major effect on the gaseous fuel distribution in the recirculation zones.

The application of the new methodology to a wider variety of fuel species and conditions would confirm
the validity of the new method. To do so, a detailed experimental data based on liquid fuel evaporation
is needed. As it has been demonstrated by Chauveau et al. (2008), the improvement of the experimental
measurement techniques is key for the development and validation of numerical models. Accounting for
natural and forced convection on single isolated configuration for which experimental data is already
available is straightforward with AVBP. This step, however, has been skipped here but it would provide
deeper insight in the behavior and performances of the model. Moreover, convection effects may increase
considerably the differences between the AS and the Spalding models, although the general tendency is
expected to remain unchanged. As it has been done in the methodology proposed here for the mixture
viscosity, an improvement of the evaluation of the diffusion coefficient and/or the thermal conductivity
by means of the implementation of more accurate expressions but without including collision potentials
may further improve the results. A step further in the validation of the methodology proposed here is
to perform simulations in more complex configurations and to compare with experiments which would
provide both the droplet and the gaseous fuel distributions.
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Chapter 8

MERCATO configuration:
Experimental and Numerical setups

This Part of the manuscript discusses the application of the developpements of RUM modeling presented
in Part II and the evaporation modeling presented in Part III on a semi-industrial configuration: the
MERCATO test rig. This configuration has been experimentally investigated by ONERA in a timely
collaboration with CERFACS and TURBOMECA. The goal being to obtain a better comprehension of
the ignition sequences in a real aeronautical combustion chamber in high altitude conditions, prior to
the experiments in ignition conditions, the experimental campaign has extensively measured both the
single-phase and the two-phase flows for this setup. For this reason, it is a very good candidate for
the evaluation of two-phase flow LES: the experimental data on both phases is very comprehensive and
provides detailed comparisons.

The experimental investigations of this combustor were performed by Garćıa-Rosa (2008) under the
supervision of R. Lecourt. Numerically, this configuration has been extensively investigated in the past.
Lamarque (2007) and Sanjosé (2009) performed simulations of the non-reacting two-phase flow using
an Euler-Euler approach for the liquid phase. Sanjosé (2009) performed comparisons using different
numerical schemes, mesh resolutions and numerical parameters, Roux (2009) also studied the influence
of a more adapted numerical scheme (PSI) for the LES of the dispersed phase. Senoner (2010) performed
non-reacting simulations using a Lagrangian approach for the dispersed phase and studied the effect of
polydispersity and secondary-breakup modeling. Extensive comparisons between the results of Sanjosé
and Senoner can be found in Sanjosé (2009) and Senoner (2010). Vié (2010) performed simulations using
a sectional approach (Laurent et al. (2004)) to account for polydispersity. Sanjosé et al. (2011) developed
a new model for spray injection adapted to the Euler-Euler approach and tested it in this configuration.
Finally, Eyssartier (2012) simulated a confined variation of the configuration to study ignition phenomena.

In the present work, the non-confined evaporating configuration studied by Garćıa-Rosa (2008),
Lamarque (2007), Roux (2009), Sanjosé (2009) and Senoner (2010) is investigated.The aim is to analyze
the performances of the models retained in Parts II and III. This work benefits from past experiences and
conclusions obtained in previous works in terms of geometry description, boundary conditions, numerical
scheme and parameters.

This Chapter is organized as follows: the experimental configuration and setup are described in
Section 8.1, a brief description of the mesurement techniques used is also provided. The numerical setup
is then deeply described in Section 8.2. The simulation domain, mesh, boundary conditions and numerical
parameters used are specified. In Section 8.2.3 a test matrix summarizing the different cases simulated
is presented. Finally, the results are shown in Chapter 9.
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8.1 Description of the experimental setup

Figure 8.1 shows two pictures of the MERCATO test rig experimentally investigated by ONERA at the
Fauga-Mauzac center located near Toulouse (France). It contains all elements of a standard aeronautical
combustor: plenum, swirler, liquid fuel injector and a combustion chamber. It is a relatively complex
configuration. The air is injected through an inlet channel into a plenum of square section (100 × 100
mm) and 200 mm in length. At the end of the plenum a radial swirler system composed by 12 channels
imposes a very strong rotating motion to the flow entering the combustion chamber. Afterwards, but
prior to the flow entry into the chamber, a cylindrical diffusor of 30 mm in diameter leads the flow into
the combustion chamber (13 cm2 square section and 285 mm in length). The combustion chamber has
plane walls in order to have optical access to the flow. If the combustion chamber is rather simple it is
not the same for the rest of components. The liquid fuel injection system is located at the center of the
diffusor and corresponds to a modified pilot injector of the Malika helicopter chamber (Turbomeca). The
atomizing system uses a pressure swirl type Delavan atomizer for the liquid kerosene. To finish, the flow
leaves the combustion chamber directly into the atmosphere.

(a) (b)

Figure 8.1: Views of the MERCATO experimental setup at Fauga (Garćıa-Rosa (2008)).

8.1.1 Experimental conditions

Many operating points have been experimentally investigated in this configuration (Garćıa-Rosa (2008)).
Only one operating point, defined by the reduced flow rate (WR, Eq. (8.1)) is investigated here (Table 8.1).
The conditions presented correspond to WR = 0.32 kg

√
K/(s · bar) and a liquid fuel flow rate of 1 g/s.

WR =
ṁair

√
Tair

P
. (8.1)

Air flow rate [g/s] TAir [K] TKerosene [K] Kerosene flow rate [g/s] Injection equiv. ratio

463 15 300 1 0.97

Table 8.1: Parameters of the operating point presented in this Part.
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8.1.2 Experimental data measurement

Laser Doppler Anemometry (LDA) was used to characterize the gaseous flow. This technique analyses
the frequency signal emmited by a particle when crossing a laser volume at the point where two distinct
laser sheets interfere. The measurements were performed in purely gaseous flow seeded with fine oil
droplets (dp < 2 µm) in order to obtain the gaseous velocity fields. Measurements were performed in
five different axial planes at 6, 26, 56, 86 and 116 mm away from the injector outlet located at an axial
coordinate z = 0 mm. The data was collected along the vertical and horizontal orientations (Fig. 8.2).
The measurements of the gaseous flow include mean and root mean square (RMS) velocity values in the
axial, radial and tangential directions.

y

z

x

6 mm

26
mm
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mm
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inject

eur

z = 0 mm

Figure 8.2: Sketch of the experimental measurement planes (Extracted from Sanjosé (2009)).

Phase Doppler Anemometry (PDA) technique was used for the liquid phase flow. It gives information
about the droplet diameters. The combination of LDA and PDA techniques provides a complete char-
acterization of the two-phase flow. However, the formation of a liquid film on the visualization windows
limited the measurement planes at which experimental data was collected. Indeed, droplet diameter and
velocities are available only at z = 6, 26 and 56 mm. Moreover, for the measurements at z = 56 mm, the
air mass flow rate was increased to 18 g/s in order to reduce the liquid film formation on the visualization
windows. For this reason, comparisons between numerical and experimental results at this axial location
must be taken with care due to this difference in air mass flow rates.

The operating point detailed in Table 8.1 was used to adjust the optical diagnostics for the experi-
mental measurements. For this reason, redundant data was collected, which allows the calculation of an
estimation of the error in the experimental results (Table 8.2). Since the gaseous phase data was collected
in single-phase conditions, an extra contribution in the gaseous data due to two-way coupling, must be
added to these values.
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Measured Variable Standard Deviation Measured Variable Standard Deviation
Mean value between measurement sets RMS value between measurement sets

ug,z 9% ug,z|RMS 12%
ug,y 13% ug,y|RMS 6%
ul,z 18% ul,z|RMS 10%
ul,y 30% ul,y|RMS 20%
d10 25%

Table 8.2: Estimation of the measurement errors of the LDA system. Calculated over the measurements obtained
at z = 26mm. Reproduced from Sanjosé (2009).

8.2 Description of the numerical setup

This section is devoted to the description of the numerical setup used for the Euler-Euler simulations
performed with AVBP in the MERCATO configuration. The computational domain includes all the
elements relevant to the characterization of the flow field inside the chamber (Fig. 8.3).

The experiments were performed in a configuration where the flow exited directly into the atmosphere.
For this reason, apart from the air inlet tube and all the other elements until the chamber exit, part of
the atmosphere at the chamber outlet is included in the computational domain. Indeed, the central
toroidal recirculation zone appearing at the center of the chamber is longer than the chamber itself. The
combination of inflow and outflow in the same boundary condition is very difficult to handle numerically,
in particular due to the present formulation of the NSCBC formalism (Poinsot & Lele (1992)) which is
one-dimensional at boundaries. The atmosphere is taken into account by means of a cubic box with a
slight coflow of air. A simplified sketch of the simulation domain is shown in Fig. 8.4.

Figure 8.3: Sketch of the MERCATO geometry (z is the axial coordinate). Extracted from Senoner (2010).
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Figure 8.4: Sketch of the domain retained for the numerical simulations. Extracted from Senoner (2010).

8.2.1 Computational mesh

The mesh grid used is totally composed by tetrahedra, which allows fine refinements in the zones of
interest. Indeed, the zones close to the swirler and the injector have been strongly refined. The grid
is progressively coarsened up to the chamber exit. Finally the atmosphere has been coarsely meshed in
order to reduce the computational cost since the flow field in this region is of no interest. Figure 8.5
shows total and partial views of the mesh grid in 3D and 2D. Table 8.3 summarizes the main parameters
describing the mesh grid used.

Parameter Value
Number of cells 14047346
Number of nodes 2486230

Smallest cell volume 1.54719 · 10−12 m3

Time step (CFL=0.7) 1.498 · 10−7 s

Table 8.3: Parameters describing the mesh grid.



164 MERCATO configuration: Experimental and Numerical setups

(a) (b)

(c) (d)

Figure 8.5: Different views of the mesh grid used. Total views including the atmosphere: (a) and (b). Partial
views, zoom on plenum and chamber: (c) and (d).

8.2.2 Boundary conditions

Table 8.4 shows the Boundary Conditions (BCs) for the gaseous phase. Table 8.5 shows the BCs for the
liquid phase. The liquid fuel used is kerosene, modeled by the species KERO LUCHE already defined
in Section 7.6. The FIM UR methodology (Sanjosé et al. (2011)) is used to mimic the liquid injection
without simulating the liquid jet itself, i.e. neglecting the primary and secondary atomizations. The
parameters used are presented in Table 8.6. Due to the Euler-Euler formulation, a small liquid volume
fraction must be specified in the regions where there are no droplets in practice. For this reason, a
minimal value of liquid volume fraction and droplet number density at a very small droplet diameter
is injected along with the carrier fluid at the air injection and the coflow injection with the same gas
velocity to avoid drag force effects. At the beginning of the simulation, considered at the moment when
the liquid injection starts after several gaseous convection times, a uniform field of droplets of diameter
3 µm of diameter and droplet number density 7 · 106 m−3 is added at the initial time with the same
velocity of the gas phase.

The injection parameters mimic the values measured in the experiments. Since the MEF implemented
in AVBP treats only monodispersed flows, the droplet diameter at the liquid injection has been chosen
equal to the mean droplet diameter experimentally measured at z = 6 mm.
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BC name Type Imposed value
Inlet channel Inlet NSCBC Tg = 463K

ṁg = 15.0g/s
YN2

= 0.767; YO2
= 0.232

Coflow Inlet NSCBC Tg = 463K
u = 0.15m/s

YN2
= 0.767; YO2

= 0.232
Injector Inlet NSCBC Tg = 463K

u = 1.3 · 10−3m/s
YN2

= 0.767; YO2
= 0.232

Plenum Wall No-slip adiabatic
Swirler Wall No-slip adiabatic

Chamber Wall No-slip adiabatic
Atmosphere lateral walls Wall Slip adiabatic

Outlet Outlet NSCBC P = 1atm

Table 8.4: Boundary conditions for the gaseous phase.

BC name Type Imposed value
Inlet channel Dirichlet Tl = 300K

αl = 7.7 · 10−9

nl = 5 · 108m−3

ul = 22m/s
Coflow Dirichlet Tl = 300K

αl = 7.7 · 10−9

nl = 5 · 108m−3

ul = 0.15m/s
Injector Dirichlet Tl = 300K

ṁl = 1g/s
dl = 55µm

Plenum Wall Slip
Swirler Wall Slip

Chamber Wall No-slip
Atmosphere lateral walls Wall Slip

Outlet Convective

Table 8.5: Boundary conditions for the liquid phase.

Parameter Imposed value
Mass flow rate ṁl = 1g/s

Atomizer orifice diameter D0 = 0.5mm
Half-spray angle θS = 40◦

Swirl rotation direction clockwise

Table 8.6: Characteristics of the liquid injection.



166 MERCATO configuration: Experimental and Numerical setups

8.2.3 Numerical parameters

This section describes the numerical parameters used for the simulations of the MERCATO configuration.
As it has been done with the configuration presented in Part III, the numerical parameters have been
kept equal for all the cases simulated in order to reduce the possible sources of variability and ease the
comparisons. Table 8.7 summarizes the main parameters for both the gaseous and liquid phases. TTGC
numerical scheme (3rd order in time and space) is chosen for the convection of both phases because of its
low numerical dissipation. Roux (2009) performed Eulerian simulations using two different combinations
of numerical schemes: TTGC and FCT PSI-LW. However, the results showed for the second case were
not sufficiently converged, so no clear conclusions could be drawn. Since the FCT PSI-LW scheme was
not available in AVBP at the moment when the simulations presented here were performed, it was not
possible to use it. Sanjosé (2009) performed comparisons using TTGC for both phases and PSI for the
liquid phase along with LW for the gaseous phase. The results were better when using TTGC.

Subgrid scale modeling relies on the WALE model (Ducros et al. (1998)) for the gas phase since its
behavior is expected to be more physical in zones of pure shear compared to the Smagorinsky model.
The Moreau (Moreau (2006)) model is used for the liquid phase. The walls are non-slip and no model
is used to take into account either the boundary-layer effects or any liquid film at the walls. Indeed,
near-wall phenomena are out of the scope of this work. Colin sensor (Colin et al. (2000)) is used for
artificial viscosity in the gaseous phase. The values of the coefficients are limited to the lowest levels
guaranteeing numerical stability. The CMS AD model (Sanjosé (2009)) is used for the liquid phase. The
parameters of the model are the lowest values that ensure numerical stability.

Parameter Value
Numerical scheme TTGC
Diffusion operator 2∆

Sub-grid scale model WALE
AV model (gas phase): Colin ǫ2 = 0.10

ǫ4 = 0.01
AV model (liquid phase): CMS ǫ2 = 0.50

ǫ4 = 0.01

Table 8.7: Summary of the numerical parameters.

8.2.4 Test cases

The purpose being to assess the performances of the RUM model retained in Part II (2ΦEASM3) and
the new evaporation procedure proposed in Part III (ievap 21) four different combinations are tested.

Regarding the RUM modeling, a case that does not take into account the RUM at all (the RUE is zero
during the whole calculation) is opposed to a case for which the RUM is modeled with the 2ΦEASM3
model. Note that, the classic RUM model implemented in AVBP, namely VISCO does not work for this
configuration. Indeed, the simulation is numerically unstable and the problem can not be overcome with
the use of AD. Previous works showed results using VISCO model (Sanjosé (2009)). However, in these
studies, the maximum value of the RUE was artificially limited to a percentage of the mesoscopic energy
(around 20%) to ensure stability. Indeed, as shown in Part II, VISCO model overpredicted the RUE and
the simulations became unstable. Limiting the maximum value of RUE was the only way to stabilize
the simulations performed taking into account the RUM. However, the results presented in Chapter 5
showed that, depending on the Stokes number, the RUE can be larger than the mesosocopic energy (e.g.
Figs. 5.44(a) and 5.44(b)). For these cases, limiting the RUE to a percentage of the mesoscopic energy
means ignoring a part of the flow physics. In this work, when a model needs to be limited in order to be
numerically stable, it is considered that the model does not work and it is discarded.
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The new methodology for the evaporation of liquid droplets proposed in Part III (ievap 21) is com-
pared to the classical evaporation model (Spalding along with a gaseous viscosity depending only in the
temperature and the gaseous Prandtl and Schmidt numbers) (ievap 1). At the time the results of San-
josé (2009) were obtained, only the ievap 1 model existed in AVBP. When studying the evaporation of
kerosene isolated droplets and performing comparisons with the results obtained with CANTERA, San-
josé (2009) showed that the evaporation rate was largely overestimated using ievap 1. The problem was
overcome applying a correction factor to the evaporation source terms. New models have been developed
and implemented during this work which solve this problem.

Table 8.8 shows the matrix of test cases presented in this Part of the manuscript.

Case name RUM model Evaporation model

noRUM Ev1 noRUM evap 1
noRUM Ev21 noRUM evap 21

RUM Ev1 2ΦEASM3 evap 1
RUM Ev21 2ΦEASM3 evap 21

Table 8.8: Matrix of test cases.
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Chapter 9

MERCATO configuration:
Numerical Results

This Chapter presents the results obtained from the LES of the MERCATO configuration presented in
Chapter 8. The main purpose is to assess the impact of the evaporation model developed in Part III and
the RUM model retained in Part II in a complex geometry. Four cases have therefore been simulated
(Table 8.8) that combine two evaporation models and two RUM models. Since the objective is to
validate the models ievap 21 for the evaporation and 2ΦEASM3 for RUM, results will be compared with
the classical evaporation model implemented in AVBP (ievap 1) and without any RUM model (noRUM).
The classical RUM model used until now in AVBP (VISCO) is not well suited for this configuration. It
leads to the crash of the simulation.

Previous works (Sanjosé (2009), Senoner (2010)) have studied the MERCATO configuration perform-
ing an extensive analysis of the carrier fluid flow. The operating point is the same as studied by Sanjosé
(2009). For this reason, only the topology of the carrier flow will be presented here. No frequency analysis
has been performed because and interested readers are redirected to Sanjosé (2009) since it is considered
that the results of Sanjosé are applicable to this case.

The Chapter is organized as follows: Section 9.1 evaluates the main timescales of the flow field, for the
gas and liquid phases, which can be useful to understand the phenomena taking place. Section 9.2 presents
the main features of the carrie flow topology. Qualitative comparisons in the form of instantaneous and
time-averaged fields are shown. Quantitative analysis is performed by comparing the numerical results
with the experimental data of Garćıa-Rosa (2008) assessing the quality of the LES. Section 9.3 presents an
analysis of the liquid phase. In this Section, the effect of the evaporation model (cf Section 9.3.2) is first
analyzed in a case where the RUM effects are ignored (Cases noRUM Ev1 and noRUM Ev21 in Table 8.8).
Finally, in Section 9.3.3, the effect of the RUM model is analyzed by comparing the simulations performed
with 2ΦEASM3 model and without RUM for the same evaporation model (ievap 21) (Cases noRUM Ev21
and RUM Ev21). Qualitative as well as quantitative comparisons are performed. Appendix G shows
additional quantitative comparisons (i.e. time-averaged profiles compared to the experimental data) of
the four cases for the liquid phase.
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9.1 Characteristic timescales of the flow

The Reynolds number of the flow at the entrance of the chamber is evaluated using the bulk velocity, the
gaseous density, the gaseous dynamic viscosity and the diameter of the diffusor:

Re =
ρgubulkD

µg
≈ 25000. (9.1)

One way to characterize the flow inside the MERCATO configuration is to compare the characteristic
timescales of the phenomena taking place:

• The convective timescale τconv is the time that the flow takes for a complete passage through the
chamber. It can be linked to the axial velocity if the rotational motion due to the swirl is ignored.
Since the axial velocity is not constant in the whole domain, an approximation can be made using
the bulk velocity calculated from the mass flow rate at the entrance of the chamber, ubulk ≈ 28 m/s.

τconv =
Lchamber

ubulk
. (9.2)

• The swirl timescale τswirl is linked to the tangential velocity. It is the time for a complete rotation
of the flow. If the radial expansion of the flow is ignored, it can be calculated using the rotation
velocity of the flow at the exit of the diffusor, ug,x and the radius of the diffusor:

τswirl =
Rdπ

ug,x
. (9.3)

The dispersed or liquid phase may also be characterized by its own timescales:

• The droplet relaxation timescale τp represents the response time of a droplet to changes in the
carrier fluid flow. It depends on the droplet diameter. In this case where evaporation is accounted
for, the diameter of the droplets is not constant in the whole domain. Each droplet has its own
response time, creating differences in the drag force terms and thus, different behaviors depending
on their diameter. In this work, the injection model assumes a monodisperse distributions at the
nozzle. Afterwards and depending on the topology of both the gaseous and liquid phases, each
droplet will encounter different conditions and the evaporation process will be different for each
one. A range of characteristic relaxation timescale is then evaluated: 1.52 · 10−5 s for the smallest
droplets (dp = 3 µm) and 5.3 ms for the biggest ones (dp = 55 /mum).

This range of particle relation time leads to a range of Stokes numbers depending on the location
inside the chamber, which directly impacts the evolution of the dispersed phase flow fields and also
the gaseous flow since two-way coupling is accounted for. A Stokes number range can be calculated
using a fluid timescale based on the bulk velocity and the width of the chamber:

St =
τp

τf
=

ρpd2

18µg

Lside

ubulk

, (9.4)

The Stokes number obtained ranges from 0.15 for the smallest droplets to 1.14 for the biggest
ones. It is desirable to compare this value to the Stokes numbers of the temporal particle-laden
planar jet studied in Chapter 5. However, since the fluid timescale used for the calculation of the
Stokes number in the slab is obtained from the Tchen’s equilibrium, a new evaluation of the Stokes
number based on a fluid timescale comparable to that used in the MERCATO configuration, must
be computed. For the case LR St1 # in Chapter 5, a new timescale for the carrier phase can be
calculated using the initial gaseous velocity in the slab (u = 52.935 m/s) and the length of the box
(Lbox = 2π mm). This leads to St ≈ 0.31.
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HIT SLAB MERCATO
Case St (Tchen’s equilibrium) St (Initial slab velocity) Stokes

LR St0.33 0.33 0.10 Stmin = 0.15
LR St1 1 0.31
LR St3 3 0.93 Stmax = 1.14

Table 9.1: Equivalence of Stokes numbers based on Tchen’s equilibrium and on initial slab velocity for the
temporal particle-laden planar jet configuration of Chapter 5.

Table 9.1 summarizes the equivalence between Stokes numbers based on Tchen’s equilibrium and
based on the initial slab velocity for the configuration presented in Chapter 5, as well as the Stokes
numbers in the MERCATO configuration.

The Stokes numbers in MERCATO range from 0.5 to 3.5 times the value on the temporal particle-
laden planar jet. This means that in the MERCATO configuration the behaviors of the cases
LR St1, LR St3 and LR St0.33, are present at the same time. The level of turbulence is however
much higher.

• The evaporation timescale τevap: is the time needed for the complete evaporation of a droplet. Here,
two different evaporation models are used. The first one (ievap 1) is the classic model implemented
in AVBP. It uses simple transport laws and the Spalding evaporation model along with the gaseous
Prandtl and Schmidt numbers. The second one, ievap 21, uses more adapted Prandtl and Schmidt
numbers along with a more complex calculation of the viscosity in the gaseous film around the
droplet and the Abramzon-Sirignano evaporation model. As stated in Chapter 7, these two models
give different results in single isolated droplet evaporation. The associated evaporation timescales
are thus different. They can be obtained from a 0D calculation of the evaporation of a droplet
exiting the injection system of MERCATO (dp = 55µm) assuming the mean conditions for the
gaseous pressure (P = 1 atm), gaseous and liquid temperatures (Tg = 440 K and Tl = 340 K).

The evaporation timescale, corresponding to the droplet lifetime, is longer for ievap 21. This means
that the droplets will evaporate slower than with ievap 1. This may have an impact on the dispersed
phase topology, since bigger droplets could be convected further downstream, increasing gaseous
kerosene concentration further from the injection than in the ievap 1 case.

In all cases, the evaporation timescale is larger than any other timescale of the flow as shown in
Table 9.2. In a case without swirl motion, the droplets would exit the chamber before finishing their
evaporation. Here the swirl motion creates recirculation zones in the center and in the corners of the
chamber where the droplets get trapped and have enough time to completely evaporate. This is a very
important feature regarding the possibility of combustion in this configuration, since the presence of
recirculation zones also has a stabilizing effect on the flame position.

Timescale Value

τconv ≈ 19.6 ms
τswirl ≈ 2.65 ms

τp [1.52 · 10−5, 5.3] ms
τevap (ievap 1) ≈ 44.1 ms
τevap (ievap 21) ≈ 57.6 ms

Table 9.2: Summary of the characteristic timescales of the flow.
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9.2 Analysis of the carrier phase flow

The gaseous phase in the MERCATO configuration is characterized by the turbulent nature of the flow
field. The analysis performed by Sanjosé (2009) and Senoner (2010) revealed that the flow increases
its turbulence while passing through the swirler. Indeed, the gaseous phase is only weakly turbulent at
the entrance of the swirler but the rotating motion imposed by the swirler to the flow greatly modifies
its nature. Furthermore, the rotational motion combined with the increase in section at the entrance
of the combustion chamber leads to a sudden opening of the gaseous jet. At the border of the jet,
the shear is strong due to the velocity difference with the quiescent flow inside the chamber, which
creates additional turbulence. The turbulence is then gradually dissipated while the flow is convected
downstream. Figure 9.1 shows an isosurface of Q-criterion at the entrance of the chamber. This quantity
gives an idea of the presence of vortical structures in the flow which have a longitudinal direction and
acquire a spiral shape due to the rotating motion imposed by the swirler. The results presented in this
Section correspond to Case RUM Ev21 in Table 8.8.

Figure 9.1: Instantaneous isosurface of Q-criterion (Q = 2 · 108) at the entrance of the chamber.
Case RUM Ev21.

Figure 9.2 shows a mean axial velocity field with zero axial velocity isolines in a longitudinal plane
at the center of the chamber. Figure 9.3 shows a transverse cut at z = 20 mm and z = 40 mm. These
two figures show the structure of the recirculation zones. A first recirculation zone, the CTRZ (Central
Toroidal Recirculation Zone), appears at the center of the chamber. Other recirculation zones appear
in the corners of the configuration (CRZ or Corner Recirculation Zones). They are clearly visible in
Fig. 9.3(a) where the cross-shaped structure of the CRZ delimited by zero velocity contours is observed.
These CRZ are no longer present in the cut plane located at z = 40 mm as shown by Fig. 9.3(b).
These recirculation zones will be useful for the stabilization of a flames in this configuration. Indeed,
the negative axial velocities at the center of the domain anchor the flame in front of the injection zone
and avoid its convection downstream. The rotation motion creates a negative pressure gradient at the
center of the CRZ just in front of the injection nozzle. The gaseous jet opens due to the sudden change in
cross-section, however, the negative pressure gradient leads the flow at the center to invert its direction.
Figure 9.4 recapitulates the main characteristics of the flow topology: the two types of recirculation zones
along with the opening of the gaseous jet at the exit of the nozzle and the mean zones of gaseous shear.
Note that the fluid is strongly accelerated at the exit of the diffusor, the axial velocity is very high in this
zone and allows the observation of the gaseous jet opening direction.
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Figure 9.2: Mean gaseous axial velocity field with isolines of axial velocity in the range -20 m/s and 20 m/s in
the longitudinal cut x = 0 mm. Case RUM Ev21.

(a) (b)

Figure 9.3: Mean gaseous axial velocity in transverse cuts at (a) z = 20 mm and (b) z = 40 mm. Isolines of
axial velocity in the range -10 m/s and 25 m/s. Case RUM Ev21.

Figure 9.5 shows the mean swirl (or tangential) velocity field. The same behavior as found on the
axial velocity field is retrieved here. Indeed, the tangential velocity suddenly decreases at the entrance
of the chamber since the flow is no more confined by the diffusor and the rotation is no longer imposed
by the geometry. However, the swirl endures in the chamber although weakening away from the swirler.
Sanjosé (2009) performed a frequency analysis of the gaseous flow. She showed that the gaseous jet is
characterized by a precessing vortex core (PVC) located on a highly sheared zone close to the exit of the
diffusor. The PVC is an oscillating structure typical of swirling flows with Swirl number higher than 0.6
(Lucca-Negro & O’Doherty (2001)). In this case the Swirl number is equal to 0.75. The PVC rotates
around the CTRZ with a frequency close to 830 Hz (Sanjosé (2009)).
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Figure 9.4: Main features of the gaseous flow topology in the longitudinal cut x = 0 mm. Case RUM Ev21.

Figure 9.5: Mean gaseous tangential velocity field in the longitudinal cut x = 0 mm. Isolines of tangential
velocity in the range -25 m/s and 25 m/s. Case RUM Ev21.

9.2.1 Comparison between the gaseous phase results and experiments

The previous Section describes the flow topology. This Section presents the statistics of the gaseous
field only for the our cases in Table 8.8. The mean and RMS profiles of the axial, radial and tangential
gaseous velocities are compared with the experimental results. Profiles are shown at five different axial
coordinates (6, 26, 56, 86 and 116 mm) for the four cases simulated (Fig. 9.6).

LES provides space-filtered values, while the experimental data are generally obtained with a different
type of filter. However, for constant density flows, time-averages of scalar quantities are left unchanged
by the filtering operation if the filter size is sufficiently small compared to the spatial evolution of the
time-averaged scalar (Veynante & Knikker (2006)). Since the gaseous flow in this configuration is weakly
compressible and the filter width is assumed small enough, numerical and experimental spatially filtered



MERCATO configuration: Numerical Results 175

Figure 9.6: Location of the five sections used for comparisons. Extracted from Senoner (2010).

data can be directly compared. Time-averaging has been performed during approximately 50 ms for all
the cases simulated. This corresponds to two and a half convective times, which may be insufficient to
obtain fully converged statistics.

Mean velocities

Figure 9.7 shows the mean axial velocity profiles for the four cases in the five sections. Figure 9.8 shows
the mean profiles of the radial velocity and Fig. 9.9 the mean tangential velocity profiles. The results of
the four cases are very similar, and that, for the three components of the velocity vector. The profiles
match quite well the experimental results, except at the axial coordinates located the further downstream
where issues about grid resolution are possible.

Regarding the axial velocity, results at z = 56 mm show a small deviation from the experimental
results. Note that the experimental profiles are not symmetric at this location. Taking this into account,
both the shape and the level of the axial velocity is well captured by all cases. Nevertheless, at z = 86 mm
the deviation is more visible. Indeed, the peaks of maximum velocity are located more towards the walls
of the chamber. The gaseous jet almost impacts the lateral walls, while in the experiment the peaks
are located closer to the center line. A good agreement is however recovered at z = 116 mm. The
same behavior has already been observed by Sanjosé (2009), who studied the source of discrepancies at
this position. She noticed that around that axial location, the gaseous jet suffered a sudden expansion
which makes the flow approach the walls. She stated that the attachment of the jet to the walls and the
difficulties to capture this type of phenomena would be at the origin of the disagreements between the
numerical and the experimental results.

The experimental radial velocity profiles show important asymmetry downstream of z = 26 mm
(Fig. 9.8). On the contrary, the numerical results are perfectly symmetric for the four cases, noRUM Ev1
showing slightly higher levels, especially at the peaks. Nevertheless, the overall agreement is good. In all
sections, the shape of the profile is well reproduced and the maximum of at least one peak is captured.
The agreement is even better for the tangential component of the velocity (Fig. 9.9). Indeed, in this
case the experimental results are almost perfectly symmetric and the numerical results are in very good
agreement with measurements. The exception is the profile at z = 26 mm where, again, the experimental
profile is not symmetric.
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Figure 9.7: Mean axial velocity profiles. Gaseous phase.

Figure 9.8: Mean radial velocity profiles. Gaseous phase.
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Figure 9.9: Mean tangential velocity profiles. Gaseous phase.
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RMS velocities

The RMS profiles shown in Fig. 9.10, 9.11 and 9.12 (for the axial, radial and tangential components of
the velocity respectively) show relatively good agreement with the experiment. The main features of the
profiles are captured by the LES but the level of the fluctuations progressively decreases downstream
the chamber and the levels given by the simulations seem too low compared to the experimental results.
It is conjectured that this is caused by the progressive de-refinement of the computational mesh, which
increases the influence of the subgrid-scale fluctuation terms not taken into account. Note also that
a longer averaging time would in general lead to higher RMS values. The profiles are not sufficiently
converged. However, some differences between the models are already visible. Case RUM Ev21 predicts
higher RMS values at the center of the chamber. noRUM Ev21 predicts RMS levels lower than the
other three models at the center of the chamber. The section located at z = 86 mm presents the worst
agreement between the LES and the experiments.

Figure 9.10: RMS axial velocity profiles. Gaseous phase.
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Figure 9.11: RMS radial velocity profiles. Gaseous phase.

Figure 9.12: RMS tangential velocity profiles. Gaseous phase.
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9.2.2 Quality of the gaseous LES

This Section aims at providing an analysis of the quality of the LES in terms of turbulent and artificial
gaseous viscosities. Figure 9.13 displays the ratio of subgrid scale to dynamic laminar viscosities corre-
sponding to an instantaneous field at t = 56.76 ms of the simulation of Case RUM Ev21. The maxima are
saturated for better visibility and isolines in the range 0 − 20 are included to hightlight the zones where
the ratio is higher. The contribution of the subgrid scale model is very local and follows the opening of
the gaseous jet. Close to the exit of the chamber the subgrid scale model contribution is increased due
to the progressive mesh derefinement.

Figure 9.14 shows the ratio of artificial to laminar viscosities corresponding to the same instantaneous
solution shown in Fig. 9.13.

The artificial viscosity is calculated with the formula proposed by Lamarque (2007) and provides an
estimation of the 2nd order artificial dissipation applied in the LES:

νAV,j =
ǫ2ζjV

2

3

j

4∆t
, (9.5)

where ǫ2 is a user defined parameter, ζj is the artificial viscosity sensor, Vj represents the nodal volume
and ∆t is the local timestep. The artificial viscosity levels are one order of magnitude lower than the
laminar viscosity. Its application is localized at the borders and follows the shape of the gaseous jet.
Globally, the quality of the LES is ensured.

Figure 9.13: Ratio of turbulent to laminar viscosity corresponding to an instantaneous solution of Case
RUM Ev21.
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Figure 9.14: Ratio of artificial to laminar viscosity corresponding to an instantaneous solution of Case
RUM Ev21.

Conclusions

This Section has shown that LES is able to reproduce the behavior of the gaseous phase flow. The main
features of the flow are well captured. The profiles of the mean and the RMS velocities over the three
spatial directions agree well with the experimental results. However, the simulations are not able to
reproduce the level of fluctuations for the profiles located further from the chamber entrance and room
for improvement is clear here.

The four cases simulated (noRUM Ev1, noRUM Ev21, RUM Ev1 and RUM Ev21) show very similar
results. It is expected that the gaseous flow field will have a limited impact on the discrepancies between
the four cases concerning the liquid phase flow. The level of convergence of the simulation is yet not
sufficient and time-averaging should be performed longer.
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9.3 Analysis of the dispersed phase flow

This Section provides an analysis of the dispersed phase fields in the MERCATO configuration. First, an
analysis of the global topology of the dispersed phase is presented in Section 9.3.1. Then, Section 9.3.2
focuses on the impact of the evaporation model comparing the cases noRUM Ev1 and noRUM Ev21. In
these two LES, the RUM is neglected to avoid any impact of the RUM model on the evaporation process.

Section 9.3.3 provides an analysis of the effect of the RUM model. Comparisons between cases no-
RUM Ev21 and RUM Ev21 are presented. The evaporation model is ievap 21, which gives the best
agreement with the reference (the code CANTERA) on single isolated droplet evaporation. The per-
formances of 2ΦEASM3 RUM model are assessed through comparison with a simulation without RUM.
Comparisons are shown in terms of mean and RMS profiles as well as time-averaged and instantaneous
profiles.

The numerical setup is the same in terms of numerical scheme and artificial dissipation for both the
gaseous and the dispersed phases for all cases. A simulation with 2ΦEASM3 model for the RUM and
ievap 1 model for the evaporation has also been performed. For the sake of conciseness, the corresponding
results are not included here. However, they can be found in Appendix G.

9.3.1 Topology of the dispersed phase flow

This Section provides a general overview of the topology of the liquid phase flow field. Liquid droplets of
55µm of diameter are injected at a temperature of 300 K in the chamber. The temperature of the gas field
is initially higher than that of the liquid spray. The injection nozzle is located on the swirler axis at one
end of the chamber. The spray is injected following a hollow cone pattern. Droplets are entrained by the
gaseous flow and the liquid jet pattern follows the gaseous jet opening. The general features of the liquid
phase flow field are similar for the four simulations performed. For the sake of simplicity, only the results
corresponding to case RUM Ev21 are included in this Section. Figure 9.15(a) shows a time-averaged field
of liquid mean axial velocity. The liquid spray opening follows the shape of the gas jet. Similarly to
the gaseous phase, two recirculation zones, a CRZ and a CTRZ are present. The CTRZ is located close
to the injector nozzle and extends downstream towards the exit of the chamber, as happened with the
gaseous CTRZ. However, the liquid phase shows a particular behavior close to the injector. The CTRZ is
divided in two parts. A small zone characterized by negative axial velocities is located near the injector
nozzle. This zone is separated from the main CTRZ located further downstream. The CRZ are disposed
on the same way than in the gaseous phase.

Figure 9.15(b) displays the mean tangential velocity field. The spray is entrained by the rotating
movement of the gaseous swirl. The frequency analysis performed by Sanjosé (2009) showed that the
liquid spray interacts with the gaseous PVC, following the rotating motion of the gas phase at the exit
of the diffusor. However, the intensity of the liquid phase rotation movement is lower than that of the
gaseous phase. The opening of the liquid phase swirl is not the same either.

Figure 9.16(a) shows an instantaneous field of gaseous velocity magnitude taken at t = 48 ms. Fig-
ure 9.16(b) shows the magnitude of the liquid velocity. The liquid velocity field presents the same features
as the gaseous velocity field. It is maximal at the same locations of the gaseous velocity. This is due
to the entrainment of the droplets by the gaseous flow. The droplets are accelerated at the exit of the
diffusor due to the opening of the gaseous jet. Note that the structures present on the gaseous field are
much smaller than those of the liquid field. Indeed, the liquid phase is denser than the gaseous phase
and the level of turbulence is much lower in the dispersed phase.

Figure 9.17 shows binarized thresholded snapshots extracted from experimental tomographic visual-
ization of the fuel spray (Linassier et al. (2011)). It provides a visual description of the spray structure.
Note that the flow is oriented on the direction contrary to the flow in the LES. Figure 9.18 shows an
instantaneous field of liquid volume fraction corresponding to case RUM Ev21 (t = 48 ms). Both images
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(a) Liquid axial velocity

(b) Liquid tangential velocity

Figure 9.15: Average fields of liquid phase axial (a) and tangential (b) velocities. Case RUM Ev21.

show similar features. There is a high concentration of liquid close to the injector nozzle as well as on
the lips of the diffusor. The liquid spray impacts the lips of the diffusor and impinges the inner walls at
this location. Semi-circular clusters of droplets detach from the main jet and are convected downstream
by the gaseous flow. As shown by Fig. 9.18, LES is able to capture this phenomena. Nevertheless, due
to the continuous nature of the liquid phase in the Euler-Euler approach and the LES filtering, the field
appears more diffused than the experimental images.
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(a) Gaseous velocity magnitude (b) Liquid velocity magnitude

Figure 9.16: Instantaneous fields of gaseous (a) and Liquid (b) velocity magnitude at t = 48 ms. Case
RUM Ev21.

Figure 9.17: Tomographic visualization of the fuel spray. Binarized thresholded snapshots. Source Linassier
et al. (2011).

Figure 9.18: Instantaneous field of liquid volume fraction at t = 48 ms. Case RUM Ev21
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9.3.2 Effect of the evaporation model

The goal of this Section is to compare the performances of two different evaporation models in the
MERCATO configuration. Cases noRUM Ev1 and noRUM Ev21 are compared. Case noRUM Ev1 uses
the classical approach for the evaporation implemented in AVBP which corresponds to the Spalding model
where the viscosity at the droplet surface is calculated with a simple Power law depending only on the
temperature of the mixture and the Prandtl and Schmidt numbers fixed by chemistry (Pr = ScF = 0.739).
Case noRUM Ev21 uses the new approach presented in Part III. The Abramzon-Sirignano model is
used for the droplet evaporation, the viscosity in the film around the droplet is calculated by means
of the Bird’s formula (i.e. the viscosity is function of the mixture temperature and composition) and
adapted Prandtl and Schmidt numbers fitted with a pre-calculation performed with CANTERA are
used (Prevap = 0.782043, Scevap

F = 2.0495). The test on isolated droplets presented in Part III showed
that ievap 21 (case noRUM Ev21 in this Section) predicts slower evaporation process than ievap 1 (case
noRUM Ev1).

Mean and RMS profiles of the components of the velocity vector are compared as well as mean fields
of the quantities of interest regarding evaporation.

Velocity profiles

Figure 9.19 shows a comparison of the mean and RMS liquid axial velocity profiles between cases no-
RUM Ev1, noRUM Ev21 and the experiments. The mean velocity profiles are very similar between both
cases simulated and they agree very well with the experiments. Small differences are however visible
at the axial coordinate z = 56 mm. The axial velocity corresponding to noRUM Ev1 case is higher at
the center of the jet for this axial position. This improves slightly the agreement with the experimental
results. At this location, the droplets corresponding to case noRUM Ev1 are larger (Fig. 9.20). The
gaseous velocities at this location are very similar in both cases, and of the order of −10 m/s. The liquid
phase axial velocity is smaller at this point. Larger droplets have a larger response time and thus (for
equal fluid characteristic time) a higher Stokes number. Droplets are more inertial and less affected by
the gaseous flow. This is why the negative axial velocity at this location produces negative axial velocities
on the smaller droplets of case noRUM Ev21 but not on the big droplets of case noRUM Ev1, whose axial
velocity is close to zero. Close to the chamber walls, noRUM Ev21 produces slightly better agreement
with the experiment. Note that in the experiments the droplet spray is polydisperse, which is not the
case here. Polydispersity effects are very important when studying the droplet diameter fields. For this
reason, results regarding the diameter profiles must very carefully treated.

Figures 9.21(a) and 9.22(a) show the mean profiles of radial and tangential liquid velocities for cases
noRUM Ev1 and noRUM Ev21. The overall agreement with the experiments is good. In both cases,
there is no noticeable difference between the two LES.

Figures 9.19(b), 9.21(b) and 9.22(b) shows the profiles of axial, radial and tangential velocity RMs fluc-
tuations respectively. The profiles of noRUM Ev1 and noRUM Ev21 are very similar. Case noRUM Ev1
shows slightly higher level of fluctuations at the center of the chamber. However, the RMS levels are too
low compared to the experiments.
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(a) Mean axial velocity. (b) RMS axial velocity.

Figure 9.19: Mean and RMS axial velocity profiles. Liquid phase. Cases noRUM Ev1 and noRUM Ev21.
Comparison with the experiments.

Figure 9.20: Profiles of mean droplet diameter. Cases noRUM Ev1 and noRUM Ev21. Comparison with the
experiments.
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(a) Mean radial velocity. (b) RMS radial velocity.

Figure 9.21: Mean and RMS radial velocity profiles. Liquid phase. Cases noRUM Ev1 and noRUM Ev21.
Comparison with the experiments.

(a) Mean tangential velocity. (b) RMS tangential velocity.

Figure 9.22: Mean and RMS tangential velocity profiles. Liquid phase. Cases noRUM Ev1 and noRUM Ev21.
Comparison with the experiments.
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Impact of the evaporation model on the topology of the dispersed phase flow

The evaporation model has almost no impact on the liquid velocity profiles and impacts slightly the
diameter profiles close to the chamber walls. The evaporation models affects, however, in a stronger
manner:

• the concentration of droplets close to the walls,

• the heat and mass transfer fields due to evaporation,

• and the gaseous kerosene distribution.

Figures 9.23 and 9.24 show the time-averaged fields of the liquid volume fraction and the droplet
diameter for both cases. The spray penetrates further downstream in case noRUM Ev21. The liquid
spray impinges more the chamber wall and the spray angle is smaller. Indeed, at the corners of the
chamber, case noRUM Ev21 shows higher values of liquid volume fraction. Figure 9.25 shows the profiles
of liquid volume fraction extracted from the averaged solutions of both cases. The profiles are very
similar close to the longitudinal axis of the chamber and differ close to the walls. From the axial location
z = 6 mm, the level of liquid volume fraction predicted by case noRUM Ev21 is higher than that of case
noRUM Ev1. In case noRUM Ev21 bigger droplets are present inside the CRZ and close to the walls.
This is due to the evaporation model ievap 21, which predicts lower evaporation rates than ievap 1, as
shown by the instantaneous fields of mass evaporation rate (Fig. 9.26). Both fields have globally the same
shape, however, the levels predicted by noRUM Ev1 are higher.

Figure 9.23: Liquid volume fraction time-averaged fields. Cases noRUM Ev1 (right) and noRUM Ev21 (left).
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Figure 9.24: Droplet diameter time-averaged fields. Cases noRUM Ev1 (right) and noRUM Ev21 (left).

Figure 9.25: Profiles of mean liquid volume fraction. Cases noRUM Ev1 and noRUM Ev21. Comparison with
the experiments.

The heat transfer rate is not the same either. Figure 9.27 shows the time-averaged fields of the gaseous
and liquid temperatures. Hot gases from the plenum reach the combustion chamber through the swirler.
Liquid kerosene is injected at the center of the diffusor at a lower temperature. When both mix, there is a
heat transfer from the gaseous phase to the liquid phase which evaporates. Figure 9.27(a) shows that the
gaseous temperature averaged fields are very similar in both cases. However, the liquid temperature fields
show several differences. Cold droplets penetrate the chamber further downstream in case noRUM Ev21
than in case noRUM Ev1. Moreover, the liquid temperature is globally higher in case noRUM Ev1. The
tests performed on single isolated droplets (cf Part III) showed that the heat transfer rate is higher and
quicker when using ievap 1 model. Indeed, the pre-heating time of the droplets is shorter and the droplet
temperature higher than when ievap 21 is used.
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Figure 9.26: Evaporation mass transfer rate instantaneous fields. Cases noRUM Ev1 (right) and noRUM Ev21
(left).

(a)

(b)

Figure 9.27: Gaseous (a) and liquid (b) temperatures. Time-averaged fields. Cases noRUM Ev1 (right) and
noRUM Ev21 (left).

This is the behavior found in this configuration as shown by Fig. 9.28, where the instantaneous fields
of heat transfer rate for both cases are shown. Note that the heat transfer rate includes the transfers
from the gaseous phase to the liquid phase and vice versa. For this reason this quantity has a very
wide scale range. Here, the scale has been on purpose saturated on both extremes to show the locations
where the higher heat transfer rates take place. The dark blue zone close to injection delimits the zone
where the bigger droplets are present. In this zone, the liquid temperature is very cold and the gaseous
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temperature very high. Heat is transferred from the gaseous to the liquid phase. The mass transfer rate
in this zone is not very high. This is due to the high concentration of liquid at low temperature, which
favors a saturation regime. This zone is smaller in case noRUM Ev1 because the liquid temperature is
higher in this case. Close to the inner walls of the chamber high heat transfer zones are present. In these
zones, the liquid volume fraction is smaller than close to the injection. It is zone of high mass transfer
rate where a large amount of heat needs to be provided to evaporate the already pre-heated droplets.
According to the fields of mass transfer rate (fig. 9.26), case noRUM Ev1 presents higher heat transfer
rate in these zones, which in addition are bigger and extend further towards the center of the chamber.

The impact of the evaporation model is of high importance for the prediction of the gaseous fuel
field, in views of a reactive case computation. Figure 9.29 displays the gaseous kerosene mass fraction
time-averaged field. noRUM Ev1, due to the higher evaporation and heat transfer rates predicted, shows
higher concentration of gaseous fuel globally in the whole chamber but especially close to the walls. This
feature may be of key importance for ignition studies in this configuration.

Figure 9.28: Evaporation heat transfer rate instantaneous fields. Cases noRUM Ev1 (right) and noRUM Ev21
(left).

spe

Figure 9.29: Gaseous kerosene mass fraction averaged fields. Cases noRUM Ev1 (right) and noRUM Ev21 (left).
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9.3.3 Effect of the RUM model

This Section aims at analyzing the performances of 2ΦEASM3 RUM model in complex configurations
by comparing the results of a simulation performed with this model (RUM Ev21) with a simulation
performed with the same evaporation model but without taking into account the RUM (noRUM Ev21).
2ΦEASM3 model was chosen over the rest of the models presented in Chapter 4 because it gives the best
results in a non-evaporating configuration with mean shear (cf Chapter 5) for different particle inertia (i.e.
Stokes numbers) and fluid turbulence levels (i.e. Reynolds numbers). In the MERCATO configuration,
however, evaporation is taken into account, which implies that droplets of different sizes are present
leading to different levels of particle inertia (cf Table 9.1). Moreover, the Reynolds number is higher in
the MERCATO configuration (Re = 25000) than in the configuration of Chapter 5 (Rec ≈ 18850). The
VISCO model classically sued in AVBP does not work on this configuration.

Velocity profiles

First, the effect of the RUM on the configuration is analyzed through comparison of the mean and
RMS velocity profiles of cases noRUM Ev21 and RUM Ev21. Figure 9.30(a) shows the mean axial
velocity profiles of both cases compared to the experimental measurements. In the section z = 6 mm
case noRUM Ev21 shows higher axial velocities at the borders of the liquid jet. This behavior has an
impact on the profiles downstream. At z = 56 mm, the location of the peaks are different between case
noRUM Ev21 and case RUM Ev21. Indeed, for noRUM Ev21, the peaks of profile are located closer to
the chamber walls. Moreover, the axial velocity at the center of the chamber is negative (it corresponds
to a recirculation point), where in case RUM Ev21 is zero, which corresponds to a stagnation point.
The agreement with the experimental measurements is better for case RUM Ev21. The difference in jet
opening angles are confirmed by the profiles of the mean radial velocity shown in Fig. 9.31(a). Indeed, the
maximal radial velocity is higher in the case noRUM Ev21, and that for all the axial locations. Moreover,
any of the simulations captures the position of the peaks of radial velocity observed on the experiments.
In both cases, the peaks are located closer to the chamber axis than in the experimental results. No
noticeable differences are visible on the profiles of mean tangential velocity (Fig. 9.32(a)), both cases
show good agreement with the experiments.

Accounting for the RUM increases the RMS velocity values, improving the agreement with the exper-
imental results (especially close to the chamber walls), for the three velocity components (Figs. 9.30(b),
9.31(b) and 9.32(b)). At the center of the profiles, both cases give similar results at the axial locations
close to the injection. Further downstream, accounting for the RUM improves the results. Note that a
reason for the underestimation of the RMS velocities downstream is the progressive derefinement of the
computational mesh. As shown in Chapter 5, the mesh resolution needed for a correct reproduction of
the dispersed phase phenomena is higher than the required for the gaseous phase. The high compress-
ibility of the liquid phase needs a higher mesh resolution to capture certain features such as the particle
segregation and the RMS values of droplet number density and velocity. Polydispersity effects, which
are not considered here, must be taken into account too. A shown by Fig. 9.33, the RMS values of the
droplet diameter are not captured by any of the cases simulated due to the monodispersed nature of the
dispersed phase considered here.

Impact of the evaporation model on the topology of the dispersed phase flow

Figure 9.34(a) shows the mean liquid volume fraction profiles corresponding to cases noRUM Ev21 and
RUM Ev21. Case RUM Ev21 shows a flatter profile than noRUM Ev21. The RUM acts on the liquid
phase diffusing the droplets located on the borders of the jet. The droplets are ejected of the main jet
both in the inner and outer directions. For this reason, the liquid volume fraction at the center of the
chamber and close to the walls is higher in case RUM Ev21, while the levels at the peaks are similar for
both cases. The RUM contributes to keep the spray jet in a more confined region. Indeed, the mean axial
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(a) Mean axial velocity. (b) RMS axial velocity

Figure 9.30: Mean and RMS axial velocity profiles. Liquid phase. Cases noRUM Ev21 and RUM Ev21.
Comparison with the experiments.

(a) Mean radial velocity. (b) RMS radial velocity

Figure 9.31: Mean and RMS radial velocity profiles. Liquid phase. Cases noRUM Ev21 and RUM Ev21.
Comparison with the experiments.

liquid volume flux profiles (Fig. 9.34(b)) show that the spray penetrates further downstream and with
a wider angle on case noRUM Ev21. This is also visible on the liquid volume fraction averaged fields
displayed on Fig. 9.35.



194 MERCATO configuration: Numerical Results

(a) Mean tangential velocity. (b) RMS tangential velocity

Figure 9.32: Mean and RMS tangential velocity profiles. Liquid phase. Cases noRUM Ev21 and RUM Ev21.
Comparison with the experiments.

Figure 9.33: RMS droplet diameter profiles. Cases noRUM Ev1, noRUM Ev21 RUM Ev1 and RUM Ev21.
Comparison with the experiments.

The field corresponding to case noRUM Ev21 shows a spray on which a higher quantity of liquid
impinges the chamber walls. On case RUM Ev21, the spray is diffused towards the center creating a
different repartition of the liquid phase on the chamber and modifying the liquid behavior on the inner
walls. Figure 9.36 shows the time-averaged field of the mean droplet diameter. The simulation performed
with RUM shows a field of diameter on which bigger droplets penetrate further downstream along the
central axis, as also shown by the profiles of Fig. 9.37.
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(a) Mean liquid volume fraction. (b) Mean axial liquid volume flux.

Figure 9.34: Mean liquid volume fraction (a) and axial liquid volume flux (b) profiles. Cases noRUM Ev21 and
RUM Ev21.

Figure 9.35: Liquid volume fraction averaged fields. Cases noRUM Ev21 (left) and RUM Ev21 (right).

Figure 9.38 shows an instantaneous profile of mass transfer rate due to evaporation for both cases.
The snapshots have been taken 48 ms after injection started. The mass transfer rate at the center of the
chamber is higher on noRUM Ev21 case, which corresponds to the information shown by the mean profiles
of droplet diameter. On the contrary, in the CRZ the evaporation rate is higher for case RUM Ev21.
This is also the case for heat transfer rate (Fig. 9.39). Inside the CRZ, heat transfer is much higher in
case RUM Ev21. Further downstream and close to the walls case noRUM Ev21 shows a stranger heat
transfer rate.
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Figure 9.36: Droplet diameter averaged fields. Cases noRUM Ev21 (left) and RUM Ev21 (right).

Figure 9.37: Profiles of mean droplet diameter. Cases noRUM Ev21and RUM Ev21. Comparison with the
experiments.

The differences on heat and mass transfer rates have a direct impact on the gaseous kerosene repartition
inside the chamber. Figure 9.40 shows instantaneous fields of gaseous kerosene mass fraction for both
cases. The quantity of kerosene inside the CRZ is higher in case RUM Ev21 and close to the walls
downstream for noRUM Ev21. This is very important in real applications, because the ignition system is
usually located close to the walls and moreover in the CRZ, as it is the case of the ignition tests performed
in this configuration (Linassier et al. (2011)).



MERCATO configuration: Numerical Results 197

Figure 9.38: Evaporation mass transfer rate instantaneous fields. Cases noRUM Ev21 (left) and RUM Ev21
(right).

Figure 9.39: Evaporation heat transfer rate instantaneous fields. Cases noRUM Ev21 (left) and RUM Ev21
(right).

Finally, the RUE has an important effect on the spray. The zones where the RUE is higher are located
(Fig. 9.41(b)):

1. on the diffusor lips, where the spray impinges the walls and where, as experimentally observed, the
liquid film formed is atomized by the swirled flow (Linassier et al. (2011)),

2. in highly sheared zones,

3. close to the walls on the zones where the spray impinges the chamber inner walls.

Liquid velocity shear is an important mechanism of RUE production. A link between the RUE and the
phenomenon of droplet cluster detachment and convection (cf Section 9.3.1) can be stated by comparing
the instantaneous fields of RUE and liquid volume fraction (Fig. 9.41(a)). Indeed, similar structures are
present on both fields. A correct prediction of the RUE in these zones is very important since it is crucial
for the prediction of phenomena such as collisions and coalescence, which have a higher importance in
these zones.
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Figure 9.40: Gaseous kerosene mass fraction instantaneous fields. Cases noRUM Ev21 (left) and RUM Ev21
(right).

Figure 9.42 displays the mesoscopic kinetic energy averaged fields corresponding to noRUM Ev21
and RUM Ev21 cases. As already pointed out in the configuration studied on Chapter 5, when the
RUM is not taken into account, the level of mesoscopic energy increases. This is also the case here.
Case noRUM Ev21 shows higher levels of mesoscopic energy located on the zones of high liquid velocity
magnitude at the exit of the diffusor. The field corresponding to the case with RUM (RUM Ev21) shows
lower maxima and a more diffused mesoscopic energy field. Note that the level of mesoscopic energy is
lower than the level of RUE. This is consistent with the presence of highly inertial droplets, which is the
case here (Table 9.2), as shown in Chapter 5 for the high inertia case.

(a) Liquid volume fraction. (b) Uncorrelated energy.

Figure 9.41: Instantaneous fields of (a) liquid volume fraction and (b) RUE at t = 48 ms. Case RUM Ev21.

As observed in Chapter 5, the activation of the artificial viscosity sensor is reduced when the RUM is
accounted for. Figure 9.43 shows the activation of the AV sensor at a given instant in the chamber. Close
to the chamber exit, the artificial viscosity acts due to the low concentration of liquid in that zone in
order to avoid numerical problems since AVBP cannot manage empty spaces. Nevertheless, on the zones
where that is not a concern for the numerical stability of the code (i.e. closer to the injection), the AV
sensor is less activated in case RUM Ev21, especially on the zones where the RUE acts (cf Fig. 9.41(b)).
Indeed, for this case and close to the injection, the sensor is activated in the zones where the liquid volume
fraction is smaller.
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Figure 9.42: Mesoscopic kinetic energy averaged fields. Cases noRUM Ev21 (left) and RUM Ev21 (right).

Figure 9.43: Artificial viscosity sensor activation. Instantaneous field. Cases noRUM Ev21 (left) and
RUM Ev21 (right).
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9.4 Conclusions

Four different cases combining two approaches for the RUM modeling and two evaporation models (Ta-
ble 8.8) have been simulated using LES in the MERCATO configuration. The gaseous flow topology has
been analyzed and compared with experimental results. Profiles of mean and RMS velocity in the three
directions of space have been computed and the flow field topology analyzed by means of averaged fields
of axial, radial and tangential velocities. Two recirculation zones, the CTRZ and the CRZ, have been
identified. The same flow configuration was already reported by Sanjosé (2009) and Senoner (2010). The
mean velocity profiles agree well with the experimental results, however, small differences between the
LES and the experiments have been identified. The RMS velocities corresponding to the LES show lower
levels of fluctuations on the profiles located more downstream of the chamber. This has been attributed
to the progressive derefinement of the computational mesh. The results presented showed that either the
RUM model nor the evaporation model produce great differences on the gaseous flow field, even when
two-way coupling is taken into account. Indeed, the mean and RMS velocity profiles of the four simula-
tions are very similar for all axial locations. However, the level of convergence of the gaseous field is not
optimum, averaging during a longer period should be performed in order to obtain definitive conclusions.
Finally an analysis of the quality of the LES simulation has been performed. Instantaneous fields of
turbulent to laminar viscosity and artificial to laminar viscosity ratios have been presented. The fields
show that the contribution of the subgrid scale model is very local and follows the gaseous jet opening.
The artificial viscosity levels, calculated with the method proposed by Lamarque (2007) is lower than the
laminar viscosity.

Then the liquid field topology has been analyzed. First, a general analysis of the topology of the liquid
phase flow has been presented. The averaged fields of liquid velocity show the same features previously
observed on the gaseous flow topology. Two recirculation zones are present, a CTRZ divided in two parts
by a stagnation point downstream the liquid injection and a CRZ zone located on the chamber corners.
The opening of the liquid jet follows that of the gaseous jet. The liquid spray is accelerated at the exit
of the diffusor due to the sudden expansion of the gaseous jet. Instantaneous fields of gaseous and liquid
velocity magnitude have been presented too. Both phases show similar fields, the liquid phase field being
less turbulent, with fewer structures larger than those of the gaseous phase, due to the higher density of
the liquid phase. The droplet cluster detachment phenomena observed experimentally (Linassier et al.
(2011)) is also reproduced by the LES. However, the LES results are more diffused due to the description
of the dispersed phase as a continuum in the Euler-Euler approach and to filtering of the smallest scales
of the LES approach.

The effects of the evaporation model and the RUM model have been assessed:

• The impact of the evaporation model has been analyzed comparing the results of two simulations
performed first with the Spalding evaporation model coupled with simple thermodynamic and
transport properties (the only model existing in AVBP before this work), namely noRUM Ev1, and
secondly with the Abramzon-Sirignano evaporation model along with a more complex calculation
of the properties (cf Part III) or case noRUM Ev21. RUM has not been taken into account in
these simulations in order to avoid the possibility of coupling effects between the RUM and the
evaporation. The results showed that the evaporation is stronger in case noRUM Ev1 than in case
noRUM Ev21. This is consistent with the results of the tests performed on the evaporation of
single isolated droplets in Chapter 7. However, the evaporation models have a limited impact on
the liquid velocity profiles. Indeed, few differences have been noticed on the mean and RMS profiles
of the three components of the liquid velocity vector. The stronger effects due to the evaporation
model are linked to the distribution of the biggest droplets inside the chamber and the production
of gaseous fuel. Indeed, case noRUM Ev1 showed gaseous kerosene concentration much higher than
case noRUM Ev21, especially close to the chamber walls. This may have a non-negligible impact
on the study of the ignition process on this configuration.

• The impact of the RUM modeling has been analyzed through comparisons of the results obtained
from cases noRUM Ev21 and RUM Ev21. The first case does not take into account the contribution
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of the RUM, the second case uses the so-called 2ΦEASM3 model retained from the study of the
configuration presented in Chapter 5. Both cases use the same approach for the modeling of the
evaporation. The analysis of the mean and RMS velocity profiles shows that accounting for the RUM
increases the level of RMS fluctuations, which produces better agreement with the experiments.
In any case the RMS levels are still far from the experimental results, especially at downstream
locations. This is mainly due to the progressive derefinement of the computational mesh on a first
place, and to polydispersion effects not taken into account on a second place. Regarding the mean
velocity profiles, the simulation performed with RUM is the only that captures the zero velocity
point on the chamber axis at an axial location z = 56 mm as reported by the experimental results.
Secondly, ignoring the RUM contribution leads to higher radial velocities, reducing the level of
agreement with the experiments and leading to a larger angle of the spray jet. The analysis of
the dispersed flow field in these cases confirmed the observations on the configuration studied in
Chapter 5. The RUM has a diffusive effect on the fields of liquid volume fraction. Indeed, the
results of case noRUM Ev21 presented a more penetrating liquid jet with a smaller opening angle
and a lower liquid concentration along the axis of the chamber. The RUM has also an impact on
the evaporation process. Indeed, the fields of mass and heat transfer rates as well as the gaseous
kerosene fields are affected by the RUM. Due to the diffusive effect of the RUE, the droplets located
on the borders of the spray are captured inside the CRZ where they evaporate. The mass and
heat transfer rates in this zone is higher for case RUM Ev21. Case noRUM Ev21 show higher
evaporation rates further downstream and close to the chamber walls. The gaseous kerosene field
is thus modified by the RUM modeling. Case RUM Ev21 shows a higher kerosene concentration in
the CRZ, which may have an important impact on the ignition process, since the ignition devices
are often located close to the walls and near the injection plane.

Finally, the analysis of the instantaneous fields of liquid volume fraction and RUE showed that the
RUE is activated in the regions of high shear where clusters of droplets are detached from the main
jet and convected downstream by the gaseous flow. Zones of high RUE are also present on the
diffusor lips, where the experiments show an impingement of the wall by the spray and the liquid
film formed is atomized by the swirled flow. In agreement with the results on the configuration of
Chapter 5, it has been observed that ignoring the RUM contribution leads to an increase in the
predicted mesoscopic energy. Moreover, in this case, the RUE level is higher than the mesoscopic
energy (due to the presence of highly inertial droplets). For this reason, the RUM contribution must
be absolutely accounted for. Moreover, the simulation performed with RUM shows a more local
and less strong activation of the artificial viscosity applied to the liquid phase than the simulation
performed without RUM.

This work is part of a set of studies performed in the MERCATO configuration both with the Euler-
Euler and the Euler-Lagrange approaches. In this sense, other works in the same configuration are
in process at CERFACS. Eyssartier (2012) studied the ignition effects on the confined version of the
MERCATO test rig. However, the effects of the RUM and the evaporation models stated here are
expected to have a considerable impact on the reactive simulations of this configuration. Eyssartier
(2012) used seven different ignition criteria. One on those criteria directly depends on the gaseous fuel
field. The evaporation models studied here predict very different gaseous fuel distributions. Moreover,
using the same evaporation model, the choice of the RUM model also have an impact on the gaseous fuel
field. This statement is to be confirmed by future studies.

The application of the new RUM and evaporation models to the multi-fluid (Laurent et al. (2004))
Euler-Euler approach implemented by Vié (2010) in AVBP may considerably improve the results, espe-
cially regarding the droplet diameter fluctuations which are not well reproduced by the monodispersed
simulations. Further comparisons with Euler-Lagrange LES of this configuration (Senoner et al. (2009),
Hannebique (2012)) are of interest too. Indeed, the evaluation of the evaporation models on an Euler-
Lagrange simulation will decouple the effects of the evaporation model from those of the RUM. Including
the effect of collisions and coalescence may also change the results and may provide better agreement
with the experiments. Finally, as it has been observed, the liquid spray impinges the diffusor lips and
the inner walls of the chamber, for which liquid films models (actually not included in AVBP for the
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Euler-Euler approach) are needed in order to completely represent the physics of the dispersed phase
flow. The effect of these liquid films on the wall temperature can be assessed with a LES using AVBP
coupled with the code AVTP (Duchaine et al. (2009)).



Conclusions

The main objective of this work is to develop and validate models for the two main phenomena occurring
in a combustion chamber after primary and secondary atomization and before combustion, i.e. the
dispersion and the evaporation of liquid droplets. Using the mesoscopic Euler-Euler approach (Février
et al. (2005)), new RUM models are being tested to be used in mean sheared two-phase flows and
the evaporation model used in AVBP is being improved. In both cases the models are first studied
in academic configurations with the perspective of applying them to a semi-academic configuration to
assess their validity for their future use in LES of two-phase flow industrial configurations. The results
are validated against experimental data or Euler-Lagrange simulations depending on the available data.
The conservation equations for the gaseous and the dispersed phase both in DNS and LES contexts
are briefly described in Part I along with the models for the unclosed terms in the transport equations.
Part II is dedicated to the study of the Random Uncorrelated Motion. Part III presents a study of the
evaporation of single isolated droplets. Finally, Part IV presents the results obtained in LES of a complex
configuration (MERCATO) comparing two RUM modeling approaches and two evaporation models.

Numerous algebraic models for the RUM deviatoric tensor developed and a priori validated by Masi
(2010) have been a posteriori validated in a particle-laden temporal planar jet configuration in strong
collaboration with Dr. E. Masi and Pr. O. Simonin. Linear and non-linear models using two different
characteristic timescales (the particle relaxation timescale and the mesoscopic shear timescale) have been
studied. Simulations at two levels of gaseous turbulence and different particle Stokes numbers have
been performed and compared to a Lagrangian reference. The influence of the mesh resolution and the
artificial dissipation has been assessed. The results show that using the particle relaxation timescale
to model the RUM (which is the case of the viscosity-type model (“VISCO”) proposed by Simonin
et al. (2001)) leads to overestimated RUE fields and numerical instabilities when the level of gaseous
turbulence increases or the particle inertia is not moderate. This confirms the results of Riber (2007)
in LES of particle-laden turbulent jet (Hishida et al. (1987)). Linear models using the mesoscopic shear
timescale (‘AXISY” model) also lead to RUE overestimation but the application of a correction (“AXISY-
C”) in order to account for reverse energy exchanges (from the RUM to the mesoscopic motion) greatly
improves the results. However, the performances of the corrected model strongly depend on the gaseous
turbulence level and particle inertia. The so-called non-linear “QUAD-MOD” model gives satisfactory
results but high-frequency oscillations are present on the instantaneous fields, which may eventually
produce numerical instabilities and an indiscriminate application of artificial dissipation when used in
complex configurations. Other high order models have been tested. The 2ΦEASM1 model underpredicts
the particle RUE in all cases and needs high amounts of artificial dissipation to keep the numerical
stability of the code. The 2ΦEASM3 model predicts very accurate statistics of the low and high order
moments of the dispersed phase flow, at the same time giving good accuracy on the instantaneous fields.
Applying the correction proposed by Masi (2010) to this family of models decreases the level of RUE
which increases the necessity of artificial dissipation to numerically stabilize the simulation. The artificial
dissipation model used in AVBP has been shown capable of artificially playing the role of the RUM.
However, compared to the non-linear models, it does not degenerate correctly neither when the Stokes
number changes nor when the gaseous turbulence is increased. The effect of the mesh resolution has
been assessed in two cases with different levels of gaseous turbulence for a unity Stokes number using
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the 2ΦEASM3 model. The dispersed phase needs higher grid resolution than the gaseous phase due to
strong compressibility effects present on the dispersed phase. Increasing the mesh resolution leads to a
better prediction of RMS fluctuations and segregation. Although, it has no noticeable effect on the low
order moments statistics, it considerably improves both the high order statistics and the quality of the
instantaneous fields. Finally, the 2ΦEASM3 model has been retained for implementation in AVBP and is
used in the LES of the MERCATO combustion chamber configuration presented in Part IV of this work.
A first conference paper showing the a priori results obtained with the AXISY model was presented
to the International Conference of Multiphase Flow, 2010. A second publication presenting the models
tested and the a priori results in the particle-laden temporal planar jet has been submitted to Journal
of Fluid Mechanics both with Dr. E. Masi and Pr. Simonin. A second one showing the a posteriori
analysis is being prepared to be submitted to JFM too.

Following another research line, a study on the evaporation of single isolated droplets motivated by the
publication of new experimental results (Chauveau et al. (2008)) questioning the widely accepted results
of Nomura et al. (1996) has been carried out in Part III. The new experimental technique proposed by
Chauveau et al. (2008) is claimed to be less affected by heat conduction by the support fiber and by
radiation from the furnace walls leading to much slower evaporation processes. The importance of these
effects on the experimental results of Nomura et al. (1996) was already identified by Yang & Wong (2001)
using numerical simulations including radiation and heat conduction through the support fiber. The
model available in AVBP (ievap 1) uses the Spalding evaporation model and simplified thermodynamic
and transport properties (thermo AVBP) and shows very good agreement with the results of Nomura
et al. (1996). The Abramzon-Sirignano evaporation model has been implemented in AVBP, showing
small differences with the former model. The thermodynamic and transport properties are shown to
have a much larger impact on the evaporation process. A new methodology consisting in using adapted
Prandtl and Schmidt numbers for the evaporation different from those optimized for the reduced chemical
schemes implemented in AVBP along with a laminar viscosity law depending not only on the temperature
but also on the mixture composition (thermo AVBPmix) has been proposed. The new methodology
produces results close to the experimental results of Chauveau et al. (2008) and to the simulation using
a complex evaluation of the thermodynamic and transport properties, which would considerably increase
the computational cost in AVBP. The new methodology has been validated in a wide range of gaseous
temperature and pressure conditions using the Spalding (ievap 2, Spalding (1953)) and the Abramzon-
Sirignano evaporation models (ievap 21, Abramzon & Sirignano (1989)). A conference paper showing a
LES of a complex aeronautical burner using the new methodology was presented at the Mediterranean
Combustion Symposium 2011 in collaboration with G. Hannebique.

Finally, Part IV presents the LES of the MERCATO configuration (Garćıa-Rosa (2008), Sanjosé
(2009), Roux (2009), Senoner (2010), Vié (2010)) using two evaporation models (the classical approach
using the Spalding evaporation model and a simplified evaluation of the thermodynamic and transport
properties (ievap 1) and the Abramzon-Sirignano evaporation model along with thermo AVBPmix ap-
proach (ievap 21)) and two approaches for the RUM (neglecting the RUM contribution (noRUM model
in Part II) and using the 2ΦEASM3 model retained in Part II to model the RUM). Note that the VISCO
RUM model previously implemented in AVBP cannot be used in this configuration since it considerably
overpredicts the RUE in the shear regions and makes the simulation crash. First the gaseous flow is
validated. Second, the general features of the liquid phase flow are presented. The effects of the evapo-
ration and the RUM models are then analyzed separately. The new evaporation model leads to longer
evaporation times. The spray distribution, as well as its temperature and the gaseous fuel field are con-
siderably affected by the choice of the evaporation model, which may have an important impact on the
ignition characteristics and the flame position in reactive conditions. The lack of experimental data and
the use of a monodisperse approach (not able to reproduce the RMS fluctuations of droplet diameter)
prevents further validation. The RUM model affects the results too. Accounting for RUM improves the
predictions of RMS velocities and has an impact on the evaporation process too. The changes on the
dispersed phase distribution due to the RUM lead to changes in the fields of mass and heat transfers
due to evaporation and on the gaseous fuel field too. Phenomena such as spray impingement on the
diffusor lips and detachment of clusters of droplets from the main jet observed in the experiments are
also present on the LES. The 2ΦEASM3 model also enables to decrease and localize more the application
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of the artificial dissipation.

There are still many working lines related to the evaporation and the RUM modeling and room for
improvement too. The RUM models have been a posteriori validated in the DNS of an academic configu-
ration and directly applied afterwards to the LES of a complex semi-industrial evaporating configuration.
A posteriori validation in LES of a non-evaporating academic configuration by comparison with a La-
grangian reference is the main missing step. Note that this step was not studied in this work due to a
lack of time. The a priori results shown by Masi (2010) however provided confidence in the capacity of
the 2ΦEASM3 model to be valid in LES with only minor modifications. Including both dispersion and
evaporation models increases the complexity of the analysis not allowing to obtain final conclusion on the
effect of the RUM (and the evaporation) models due to the mutual interaction of the evaporation and
the RUM processes. One solution would consist in comparing the evaporation models in Euler-Lagrange
simulations where the uncorrelated motion of the particles is implicitly accounted for. There is however
an obvious lack of experimental data providing at the same time the droplet distribution and the gaseous
fuel distribution. New techniques have recently been developed (Duchaine (2010)) and should provide
additional information to further validate the models.

Several options are foreseen in the way to real industrial two-phase flows simulations. In order to
account for a large number of physical phenomena the following is on perspective:

1. To further improve the MEF in LES context:

• Account for polydispersity, for which the multi-fluid method (Laurent et al. (2004)) imple-
mented in AVBP by Vié (2010) is an option.

• Account for collisions and coalescence. Since the RUE field is well reproduced with the
2ΦEASM3 model, the simulation of colliding two-phase flows can be accounted for with the
MEF implemented in AVBP.

• Implement higher order numerical schemes more adapted to the simulation of the dispersed
phase (de Chaisemartin (2009), Kah (2010)) in order to reduce the application of artificial
diffusion and provide better numerical accuracy and stability.

2. To test the impact of the models analyzed here in other phenomena taking place in the combustion
chamber:

• Study the impact of RUM and evaporation models on ignition phenomena which is affected
by the gaseous fuel distribution.

3. Integration of new phenomena actually not taken into account:

• Model the formation of liquid films both on the diffusor walls and on the inner walls of the
chamber. Even further, LES in the combustion chamber could be coupled to conduction on the
walls (Duchaine et al. (2009)) to predict mode accurately the wall temperature and thermal
flux through the walls.

• Account for droplet burning regime is key to correctly predict flame instabilities, especially in
configurations where the flame is located close to the injector.

• Account for primary atomization and secondary breakup to improve the description of the
injection. The numerical methods used in AVBP are not adapted to solve these phenomena
using the classical methods currently developed (VOF, level set, ghost fluid (Menard et al.
(2007), Desjardins et al. (2008), Zuzio et al. (2011) )). The idea would be to couple the primary
and secondary atomization with a polydispersed Euler-Euer (or Euler-Lagrange) simulation.
Preliminary tests have recently been shown by Zuzio et al. (2011). This is in fact a long term
perspective.
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M. 2008 Turbulent combustion of polydisperse evaporating sprays with droplets crossing: Eulerian
modeling and validation in the infinite Knudsen limit. In Proc. of the Summer Program. Center for
Turbulence Research, NASA Ames/Stanford Univ. 28

Chandrasekhar, S. 1950 The theory of axisymmetric turbulence. Proceedings of the Royal Society of
London. Series A: Mathematical, Physical and Engineering Sciences 242 (855), 557–577. 47

Chapman, S. & Cowling, T. G. 1939 (digital reprint 1999) The Mathematical Theory of Non-Uniform
Gases, Cambridge Mathematical Library edn. Cambridge University Press. 29, 138

Chasnov, J. R. 1991 Simulation of the Kolmogorov inertial subrange using an improved subgrid model.
Phys. FluidsA 3, 188–200. 3
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modélisation à l’usage de l’ingénieur . Toulouse, France: Cépaduès-éditions. 3
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Kaufmann, A., Hélie, J., Simonin, O. & Poinsot, T. 2005 Comparison between Lagrangian and
eulerian particle simulations coupled with DNS of homogeneous isotropic decaying turbulence. In Pro-
ceedings of the Estonian Academy of Sciences, , vol. 11, pp. 91–105. 13, 34

Kaufmann, A. & Moreau, M. 2008 A spectral projection method for analysis of autocorrelation
functions and projection errors in discrete particle simulation. Int. J. Numer. Meth. Fluids 58 (7),
709–725. 221
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Institut Supérieur de l’Aéronautique et de l’Espace - Ecole doctorale MEGeP, EDyF, ONERA-DMAE,
Toulouse. 133

Laurent, F. & Massot, M. 2001 Multi-fluid modelling of laminar polydisperse sprayflames: origin,
assumptions and comparison of sectional and sampling methods. Combust. Theory and Modelling 5,
537–572. 28

Laurent, F., Massot, M. & Villedieu, P. 2004 Eulerian multi-fluid modeling for the numerical
simulation of coalescence in polydisperse dense liquid sprays. J. Comput. Phys. 194 (2), 505–543. 11,
159, 201, 205
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gaz-particules dans le formalisme eulérien mésoscopique. Phd thesis, INP Toulouse. 13, 14, 26, 33, 42,
127, 128, 166

Moreau, V. & Desjardins, O. 2008 A second-order ghost-fluid method for the primary atomization
of liquid fuel in air-blast type injectors. In Proceedings of the Summer Program (ed. CTR). 5, 221

Morin, C., Chauveau, C., Dagat, P., Gokalp, I. & Cathonnet, M. 2004 Vaporization and oxi-
dation of liquid fuel droplets at high temperature and pressure. application to n-alkanes and vegetable
oil methyl esters. Combust. Sci. Tech. 176, 499–524. 8

Morin, C., Chauveau, C. & Gokalp, I. 2000 Droplet vaporisation characteristics of vegetable oil
derived biofuels at high temperatures. Exp. Thermal Fluid Sci. 21 (1 - 3), 41 – 50. 148, 149

Mossa, J.-B. 2005 Extension polydisperse pour la description Euler-Euler des écoulements diphasiques
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application aux foyers aéronautiques. Phd thesis, INP Toulouse. 13

Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the
turbulent regime. J. Fluid Mech. 181, 441–466. 57

Poinsot, T., Echekki, T. & Mungal, M. G. 1992 A study of the laminar flame tip and implications
for premixed turbulent combustion. Combust. Sci. Tech. 81 (1-3), 45–73. 221

Poinsot, T. & Lele, S. 1992 Boundary conditions for direct simulations of compressible viscous flows.
J. Comput. Phys. 101 (1), 104–129. 13, 162

Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. R.T. Edwards, 2nd edition.
22

Pope, S. B. 1975 A more general effective-viscosity hypothesis. J. Fluid Mech. 72 (02), 331–340. 49, 50

Pope, S. B. 2000 Turbulent flows. Cambridge University Press. 3, 37, 38, 40



216 Conclusions

Rachner, M., Becker, J., Hassa, C. & Doerr, T. 2002 Modelling of the atomization of a plain
liquid fuel jet in crossflow at gas turbine conditions. Aerospace science and technology 6, 495–506. 5

Rangel, R. & Sirignano, W. 1991 The linear and nonlinear shear instability of a fluid sheet. Phys.
Fluids 3, 2392–2400. 5

Rangel, R. H. & Sirignano, W. A. 1989 An evaluation of point-source approximation in spray
calculations. Num. Heat TRansfer 16 (A), 37–57. 133

Rani, S. & Balachandar, E. 2004 Preferential concentration of particles in isotropic turbulence:
a comparison of the Lagrangian and the equilibrium Eulerian approaches. Int. J. Multiphase Flow
141 (1-2), 109–118. 28, 30

Ranz, W. E. & Marshall, W. R. 1952 Evaporation from drops. Chem. Eng. Prog. 48 (4), 173. 131,
135, 136, 151

Reeks, M. W. 1991 On a kinetic equation for the transport of particles in turbulent flows. Phys. Fluids
3 (3). 8, 29

Reeks, M. W. 1993 On the constitutive relations for dispersed particles in nonuniform flows. I. Dispersion
in a simple shear flow. Phys. Fluids 5 (3), 750–761. 8

Reitz, R.D. 1978 Atomization and other breakup regimes of a liquid jet. PhD thesis, Princeton Univer-
sity. 5
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Appendix A

Eulerian-Lagrangian simulations
with the code NTMIX-2Φ

A.1 The code NTMIX-2Φ

NTMIX-2Φ is a parallel code. It solves the compressible Navier-Stokes equations in three-dimensions
and non-dimensional form. The temporal advancement uses third-order Runge-Kutta scheme and it uses
a sixth-order compact difference scheme on cartesians grids (Lele (1992)). Direct Particle Simulation
by means of Lagrangian tracking is performed through the Newton’s equations. The dispersed phase
simulations use the same time advancement scheme that the gaseous phase. Two-way coupling between
the gas and the dispersed phase is taken into account. The interpolation of the gaseous properties at the
particle’s position is done by means of a third-order Lagrangian polynomial algorithm.

In the configuration of Chapter 5 boundary conditions are periodic in all directions. However, NTMIX-
2Φ can use non-reflecting boundary conditions (Poinsot et al. (1992)) if needed. The calculations per-
formed by Masi (2010) in the particle-laden temporal turbulent planar jet used a domain decomposition
method (Vermorel (2003)) with MPI message passing protocol. More details about the code and its
characteristics can be found in Masi (2010).

A.2 Projection algorithm

Eulerian fields are obtained from Lagrangian quantities by means of a projection algorithm, that projects
the Lagrangian quantities into an Eulerian grid. Kaufmann & Moreau (2008) performed comparisons
of different projection algorithms. The retained projector is a Gaussian filter (Eq. (A.1), Kaufmann &
Moreau (2008), Moreau & Desjardins (2008)):

w(x(k)
p − x) =

(2∆p)
3

erf(63/2)

(
6

π∆2
p

)
exp

(
−6|x(k)

p − x|2
∆2

p

)
, (A.1)

where w(x
(k)
p is the weight function, ∆p is the filter width or the size of the projection, which is taken

equal to the grid spacing. x
(k)
p is the particle position and x is the coordinates of each grid node in the

mesh.
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222 Eulerian-Lagrangian simulations with the code NTMIX-2Φ

The projected Eulerian particle density and velocity read:

n̆p(x, t) =
1

(2∆p)3

∑

k

w(x(k)
p (t) − x), (A.2)

n̆p(x, t)ŭp(x, t) =
1

(2∆p)3

∑

k

w(x(k)
p (t) − x)ŭ(k)

p (t). (A.3)

Problems may appear in regions of the flow where the number of particles is not sufficient. This
may lead to discontinuities in the Eulerian projected fields. This problem can be overcome with an
interpolation procedure taking the values in the cells around the problematic point. In the simulations
performed by Masi (2010), low-inertia cases presented a higher level of preferential concentration, leading
to more empty zones in the flow and thus, the simulations of low Stokes numbers (between 0.1 and 0.5)
were the most affected by this problem.



Appendix B

Gaseous phase validation for
particle-laden slab. Additional
graphs.

B.1 High turbulence case (HR St1 #).

(a) (b)

Figure B.1: Comparison of Eulerian and Lagrangian carrier phase velocities in X-direction. HR St1 # case. (a)
Mean velocity (Uf ) and (b) RMS velocity times the fluid density (ρfUf,RMS) at 5 and 40tref .

Simulations performed with AVBP (—) and NTMIX-2Φ (–•–).
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224 Gaseous phase validation for particle-laden slab. Additional graphs.

(a) (b)

Figure B.2: Comparison of Eulerian and Lagrangian carrier phase velocities in Y-direction. HR St1 # case. (a)
Mean velocity (Vf ) and (b) RMS velocity times the fluid density (ρfVf,RMS) at 5 and 40tref .

Simulations performed with AVBP (—) and NTMIX-2Φ (–•–).

(a) (b)

Figure B.3: Comparison of Eulerian and Lagrangian carrier phase velocities in Z-direction. HR St1 # case. (a)
Mean velocity (Wf ) and (b) RMS velocity times the fluid density (ρfWf,RMS) at 5 and 40tref .

Simulations performed with AVBP (—) and NTMIX-2Φ (–•–).



Gaseous phase validation for particle-laden slab. Additional graphs. 225

Figure B.4: Comparison of Eulerian and Lagrangian carrier phase turbulent kinetic energy (q2

f ) at 5 and 40tref .
HR St1 # case. Simulations performed with AVBP (—) and NTMIX-2Φ (–•–).



226 Gaseous phase validation for particle-laden slab. Additional graphs.



Appendix C

Particle-laden slab. Case LR St1 #.
Additional data.

Figure C.1: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 5tref .
LR St1 # case.
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228 Particle-laden slab. Case LR St1 #. Additional data.

Figure C.2: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 40tref .
LR St1 # case.

Figure C.3: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 5tref .
LR St1 # case.



Particle-laden slab. Case LR St1 #. Additional data. 229

Figure C.4: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 40tref .
LR St1 # case.

Figure C.5: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 5tref .
LR St1 # case.



230 Particle-laden slab. Case LR St1 #. Additional data.

Figure C.6: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 40tref .
LR St1 # case.

Figure C.7: Comparison of AV sensor levels at 5tref . LR St1 # case.



Particle-laden slab. Case LR St1 #. Additional data. 231

Figure C.8: Comparison of AV sensor levels at 40tref . LR St1 # case.



232 Particle-laden slab. Case LR St1 #. Additional data.



Appendix D

Particle-laden slab. Case LR St3 #.
Additional data.

D.1 Dispersed phase statistics at 40tref

(a) (b)

Figure D.1: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by
the initial particle number density at the center of the slab) and (b) mean particle velocity in

X-direction (< ŭp >p, normalized by the initial particle velocity in X-direction at the center of the
slab) at 40tref . LR St3 # case.
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234 Particle-laden slab. Case LR St3 #. Additional data.

(a) (b)

Figure D.2: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized
by the initial particle number density at the center of the slab) and (b) RMS particle velocity in
X-direction (< ŭp,RMS >p, normalized by the initial particle number density at the center of the

slab)at 40tref . LR St3 # case.

Figure D.3: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2

p > / < n̆p >2) at 40tref .
LR St3 # case.



Particle-laden slab. Case LR St3 #. Additional data. 235

(a)

(b)

Figure D.4: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and (b)
mean mesoscopic (〈/mesoq2

p〉p) and mesoscopic (〈q̆2

p〉p) particle energies at 40tref . Normalized by
the square of the initial particle velocity in X-direction at the center of the slab. LR St3 # case.



236 Particle-laden slab. Case LR St3 #. Additional data.

(a) (b)

Figure D.5: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear components
(< P Shear

RUM >p) and (b) mean productions of RUM energy by compression (< P Compression
RUM >p) at

40tref . Normalized by the square of the initial particle velocity in X-direction at the center of the
slab and the reference time (tref ). LR St3 # case.

(a) (b)

Figure D.6: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component
(< δR̆∗

p,11 >p) and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗

p,12 >p) at 40tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

LR St3 # case.



Particle-laden slab. Case LR St3 #. Additional data. 237

(a) (b)

Figure D.7: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component
(< δR̆∗

p,22 >p) and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗

p,33 >p) at 40tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

LR St3 # case.

Figure D.8: Mean Artificial Viscosity sensor activation at 40tref . LR St3 # case.



238 Particle-laden slab. Case LR St3 #. Additional data.

D.2 Dispersed phase statistics at 80tref

(a) (b)

Figure D.9: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by
the initial particle number density at the center of the slab) and (b) mean particle velocity in

X-direction (< ŭp >p, normalized by the initial particle velocity in X-direction at the center of the
slab) at 80tref . LR St3 # case.

(a) (b)

Figure D.10: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >,
normalized by the initial particle number density at the center of the slab) and (b) RMS particle
velocity in X-direction (< ŭp,RMS >p, normalized by the initial particle number density at the

center of the slab)at 80tref . LR St3 # case.



Particle-laden slab. Case LR St3 #. Additional data. 239

Figure D.11: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2

p > / < n̆p >2) at 80tref .
LR St3 # case.



240 Particle-laden slab. Case LR St3 #. Additional data.

(a)

(b)

Figure D.12: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and
(b) mean total (〈q2

p〉p) and mesoscopic (〈q̆2

p〉p) particle energies at 80tref . Normalized by the square
of the initial particle velocity in X-direction at the center of the slab. LR St3 # case.



Particle-laden slab. Case LR St3 #. Additional data. 241

(a) (b)

Figure D.13: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear components
(< P Shear

RUM >p) and (b) mean productions of RUM energy by compression (< P Compression
RUM >p) at

80tref . Normalized by the square of the initial particle velocity in X-direction at the center of the
slab and the reference time (tref ). LR St3 # case.

(a) (b)

Figure D.14: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component
(< δR̆∗

p,11 >p) and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗

p,12 >p) at 80tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

LR St3 # case.



242 Particle-laden slab. Case LR St3 #. Additional data.

(a) (b)

Figure D.15: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component
(< δR̆∗

p,22 >p) and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗

p,33 >p) at 80tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

LR St3 # case.

Figure D.16: Mean Artificial Viscosity sensor activation at 80tref . LR St3 # case.



Particle-laden slab. Case LR St3 #. Additional data. 243

D.3 Instantaneous fields at 40 and 80tref

Figure D.17: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 40tref .
LR St3 # case.

Figure D.18: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 80tref .
LR St3 # case.



244 Particle-laden slab. Case LR St3 #. Additional data.

Figure D.19: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 40tref .
LR St3 # case.

Figure D.20: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 80tref .
LR St3 # case.



Particle-laden slab. Case LR St3 #. Additional data. 245

Figure D.21: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 40tref .
LR St3 # case.

Figure D.22: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 80tref .
LR St3 # case.



246 Particle-laden slab. Case LR St3 #. Additional data.

Figure D.23: Comparison of AV sensor levels at 40tref . LR St3 # case.

Figure D.24: Comparison of AV sensor levels at 80tref . LR St3 # case.
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Particle-laden slab. Case
LR St0.33 #. Additional data.

E.1 Dispersed phase statistics at 20tref

(a) (b)

Figure E.1: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by
the initial particle number density at the center of the slab) and (b) mean particle velocity in

X-direction (< ŭp >p, normalized by the initial particle velocity in X-direction at the center of the
slab) at 20tref . LR St033 # case.
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248 Particle-laden slab. Case LR St0.33 #. Additional data.

(a) (b)

Figure E.2: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized
by the initial particle number density at the center of the slab) and (b) RMS particle velocity in
X-direction (< ŭp,RMS >p, normalized by the initial particle number density at the center of the

slab)at 20tref . LR St033 # case.

Figure E.3: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2

p > / < n̆p >2) at 20tref .
LR St033 # case.



Particle-laden slab. Case LR St0.33 #. Additional data. 249

(a) (b)

Figure E.4: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and (b)
mean mesoscopic (〈q̆2

p〉p) particle energies at 20tref . Normalized by the square of the initial particle
velocity in X-direction at the center of the slab. LR St033 # case.

(a) (b)

Figure E.5: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear components
(< P Shear

RUM >p) and (b) mean productions of RUM energy by compression (< P Compression
RUM >p) at

20tref . Normalized by the square of the initial particle velocity in X-direction at the center of the
slab and the reference time (tref ). LR St033 # case.



250 Particle-laden slab. Case LR St0.33 #. Additional data.

(a) (b)

Figure E.6: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component
(< δR̆∗

p,11 >p) and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗

p,12 >p) at 20tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

LR St033 # case.

(a) (b)

Figure E.7: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component
(< δR̆∗

p,22 >p) and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗

p,33 >p) at 20tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

LR St033 # case.
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E.2 Dispersed phase statistics at 40tref

(a) (b)

Figure E.8: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by
the initial particle number density at the center of the slab) and (b) mean particle velocity in

X-direction (< ŭp >p, normalized by the initial particle velocity in X-direction at the center of the
slab) at 40tref . LR St033 # case.

(a) (b)

Figure E.9: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized
by the initial particle number density at the center of the slab) and (b) RMS particle velocity in
X-direction (< ŭp,RMS >p, normalized by the initial particle number density at the center of the

slab)at 40tref . LR St033 # case.



252 Particle-laden slab. Case LR St0.33 #. Additional data.

Figure E.10: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2

p > / < n̆p >2) at 40tref .
LR St033 # case.

(a) (b)

Figure E.11: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and
(b) mean mesoscopic (〈q̆2

p〉p) particle energies at 40tref . Normalized by the square of the initial
particle velocity in X-direction at the center of the slab. LR St033 # case.
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(a) (b)

Figure E.12: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear components
(< P Shear

RUM >p) and (b) mean productions of RUM energy by compression (< P Compression
RUM >p) at

40tref . Normalized by the square of the initial particle velocity in X-direction at the center of the
slab and the reference time (tref ). LR St033 # case.

(a) (b)

Figure E.13: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component
(< δR̆∗

p,11 >p) and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗

p,12 >p) at 40tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

LR St033 # case.



254 Particle-laden slab. Case LR St0.33 #. Additional data.

(a) (b)

Figure E.14: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component
(< δR̆∗

p,22 >p) and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗

p,33 >p) at 40tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

LR St033 # case.



Particle-laden slab. Case LR St0.33 #. Additional data. 255

E.3 Instantaneous fields at 40 and 20tref

Figure E.15: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 20tref .
LR St033 # case.

Figure E.16: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 40tref .
LR St033 # case.



256 Particle-laden slab. Case LR St0.33 #. Additional data.

Figure E.17: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 20tref .
LR St033 # case.

Figure E.18: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 40tref .
LR St033 # case.
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Figure E.19: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 20tref .
LR St033 # case.

Figure E.20: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 40tref .
LR St033 # case.



258 Particle-laden slab. Case LR St0.33 #. Additional data.

Figure E.21: Comparison of AV sensor levels at 20tref . LR St033 # case.

Figure E.22: Comparison of AV sensor levels at 40tref . LR St033 # case.
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Figure E.23: Comparison of AV sensor levels at 80tref . LR St033 # case.



260 Particle-laden slab. Case LR St0.33 #. Additional data.



Appendix F

Particle-laden slab. Case HR St1 #.
Additional data.

F.1 Dispersed phase statistics at 5tref

(a) (b)

Figure F.1: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by
the initial particle number density at the center of the slab) and (b) mean particle velocity in

X-direction (< ŭp >p, normalized by the initial particle velocity in X-direction at the center of the
slab) at 5tref . HR St1 # case.

261



262 Particle-laden slab. Case HR St1 #. Additional data.

(a) (b)

Figure F.2: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized
by the initial particle number density at the center of the slab) and (b) RMS particle velocity in
X-direction (< ŭp,RMS >p, normalized by the initial particle number density at the center of the

slab) at 5tref . HR St1 # case.

Figure F.3: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2

p > / < n̆p >2) at 5tref .
HR St1 # case.
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(a) (b)

Figure F.4: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and (b)
mean mesoscopic (〈q̆2

p〉p) particle energies at 5tref . Normalized by the square of the initial particle
velocity in X-direction at the center of the slab. HR St1 # case.

(a) (b)

Figure F.5: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear components
(< P Shear

RUM >p) and (b) mean productions of RUM energy by compression (< P Compression
RUM >p) at

5tref . Normalized by the square of the initial particle velocity in X-direction at thecenter of the slab
and t[h!]e reference time (tref ). HR St1 # case.



264 Particle-laden slab. Case HR St1 #. Additional data.

(a) (b)

Figure F.6: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component
(< δR̆∗

p,11 >p) and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗

p,12 >p) at 5tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

HR St1 # case.

(a) (b)

Figure F.7: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component
(< δR̆∗

p,22 >p) and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗

p,33 >p) at 5tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

HR St1 # case.
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F.2 Dispersed phase statistics at 40tref

(a) (b)

Figure F.8: Comparison of Eulerian and Lagrangian (a) mean particle number density (< n̆p >, normalized by
the initial particle number density at the center of the slab) and (b) mean particle velocity in

X-direction (< ŭp >p, normalized by the initial particle velocity in X-direction at the center of the
slab) at 40tref . HR St1 # case.

(a) (b)

Figure F.9: Comparison of Eulerian and Lagrangian (a) RMS particle number density (< n̆p,RMS >, normalized
by the initial particle number density at the center of the slab) and (b) RMS particle velocity in
X-direction (< ŭp,RMS >p, normalized by the initial particle number density at the center of the

slab)at 40tref . HR St1 # case.



266 Particle-laden slab. Case HR St1 #. Additional data.

Figure F.10: Comparison of Eulerian and Lagrangian RMS particle segregation (< n̆2

p > / < n̆p >2) at 40tref .
HR St1 # case.

(a) (b)

Figure F.11: Comparison of Eulerian and Lagrangian (a) mean Random Uncorrelated Energy (< δq̆p >p) and
(b) mean mesoscopic (〈q̆2

p〉p) particle energies at 40tref . Normalized by the square of the initial
particle velocity in X-direction at the center of the slab. HR St1 # case.
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(a) (b)

Figure F.12: Comparison of Eulerian and Lagrangian (a) mean production of RUM energy by shear components
(< P Shear

RUM >p) and (b) mean productions of RUM energy by compression (< P Compression
RUM >p) at

40tref . Normalized by the square of the initial particle velocity in X-direction at the center of the
slab and the reference time (tref ). HR St1 # case.

(a) (b)

Figure F.13: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor XX component
(< δR̆∗

p,11 >p) and (b) mean deviatoric RUM stress tensor XY component (< δR̆∗

p,12 >p) at 40tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

HR St1 # case.



268 Particle-laden slab. Case HR St1 #. Additional data.

(a) (b)

Figure F.14: Comparison of Eulerian and Lagrangian (a) mean deviatoric RUM stress tensor YY component
(< δR̆∗

p,22 >p) and (b) mean deviatoric RUM stress tensor ZZ component (< δR̆∗

p,33 >p) at 40tref .
Normalized by the square of the initial particle velocity in X-direction at the center of the slab.

HR St1 # case.
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F.3 Instantaneous fields at 5 and 40tref

Figure F.15: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 5tref .
HR St1 # case.

Figure F.16: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle number density (Np) at 40tref .
HR St1 # case.



270 Particle-laden slab. Case HR St1 #. Additional data.

Figure F.17: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 5tref .
HR St1 # case.

Figure F.18: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian particle velocity magnitude (Up) at 40tref .
HR St1 # case.
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Figure F.19: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 5tref .
HR St1 # case.

Figure F.20: Comparison of Lagrangian (NTMIX-2Φ) and Eulerian Random Uncorrelated Energy at 40tref .
HR St1 # case.



272 Particle-laden slab. Case HR St1 #. Additional data.

Figure F.21: Comparison of AV sensor levels at 5tref . HR St1 # case.

Figure F.22: Comparison of AV sensor levels at 40tref . HR St1 # case.
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Figure F.23: Comparison of AV sensor levels at 70tref . HR St1 # case.



274 Particle-laden slab. Case HR St1 #. Additional data.



Appendix G

MERCATO configuration.
Additional graphs.

(a) (b)

Figure G.1: Mean (a) and RMS (b) droplet diameter profiles.

275



276 MERCATO configuration. Additional graphs.

(a) (b)

Figure G.2: Mean (a) and RMS (b) liquid axial velocity profiles.

(a) (b)

Figure G.3: Mean (a) and RMS (b) liquid radial velocity profiles.



MERCATO configuration. Additional graphs. 277

(a) (b)

Figure G.4: Mean (a) and RMS (b) liquid tangential velocity profiles.

(a) (b)

Figure G.5: Mean liquid volume fraction (a) and liquid volume flux (b).
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