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Abstract

In complex networks, the notion of community structure refers to the presence of
groups of nodes in a network. These groups are more densely connected internally than
with the rest of the network. The presence of communities inside a network gives an
insight on network structural properties. For example, in social networks, communities
are based on common interests, location, hobbies.... Generally, a community structure is
described by a partition of the network nodes, where each node belongs to a unique com-
munity. A more reasonable description seems to be overlapping community structure,
where nodes are allowed to be shared by several communities. Moreover, when con-
sidering dynamic networks whose interactions between nodes evolve in time, it appears
crucial to consider also the evolution of the intrinsic community structure.

This thesis focus on mining dynamic community evolution and overlapping com-
munity detection. We have proposed two distinct methods for overlapping community
detection. The first one named clique optimization and the second one called fuzzy
detection. Our clique optimization aims to identify granular overlaps and it is a fine
grain scale approach. Our fuzzy detection is at a coarser grain scale with the strategy of
identifying modular overlaps. Their applications in synthetic and real networks indicate
that both methods can be used for characterizing overlapping nodes but in distinct and
complementary views. We also propose the definition of predecessor and successor in
mining community evolution. Such definition describes the relationship between com-
munities at different time steps. We use it to detect community evolution in dynamic
networks and show how modular overlaps evolve over time. A visualization tool called
lineage diagrams is used to show community evolution by connecting communities in
relationship of predecessor and successor. Several cases are studied.

Keywords: community detection, overlapping community structure, complex net-
works, dynamic networks, community evolution, network science



Résumeé

Dans le contexte des réseaux complexes, la structure communautaire du réseau de-
vient un sujet important pour plusieurs domaines de recherche. Les communautés sont
en général vues comme des groupes intérieurement denses. La détection de tels groupes
offre un éclairage intéressant sur la structure du réseau. Par exemple, une communauté
de pages web regroupe des pages traitant du méme sujet. La définition de commu-
nautés est en général limitée & une partition de I’ensemble des noeuds. Cela exclut par
définition qu’un noeud puisse appartenir a plusieurs communautés, ce qui pourtant est
naturel dans de nombreux (cas des réseaux sociaux par exemple). Une autre question
importante et sans réponse est I’étude des réseaux et de leur structure communautaire en
tenant compte de leur dynamique. Cette these porte sur ’étude de réseaux dynamiques
et la détection de communautés recouvrantes.

Nous proposons deux méthodes différentes pour la détection de communautés re-
couvrantes. La premiere méthode est appelée optimisation de clique. L’optimisation de
clique vise a détecter les noeuds recouvrants granulaires. La méthode de I'optimisation
de clique est une approche a grain fin. La seconde méthode est nommée détection
floue (fuzzy detection). Cette méthode est & grain plus grossier et vise a identifier les
groupes recouvrants. Nous appliquons ces deux méthodes a des réseaux synthétiques et
réels. Les résultats obtenus indiquent que les deux méthodes peuvent étre utilisées pour
caractériser les noeuds recouvrants. Les deux approches apportent des points de vue
distincts et complémentaires. Dans le cas des graphes dynamiques, nous donnons une
définition sur la relation entre les communautés & deux pas de temps consécutif. Cette
technique permet de représenter le changement de la structure en fonction du temps.
Pour mettre en évidence cette relation, nous proposons des diagrammes de lignage pour
la visualisation de la dynamique des communautés. Ces diagrammes qui connectent
des communautés a des pas de temps successifs montrent 1’évolution de la structure et
I’évolution des groupes recouvrantes. Nous avons également appliquer ces outils a des
cas concrets.

Mots clés: structure communautaire, communautés recouvrantes, réseaux de terrain
dynamiques, évolution de communautés, réseaux complexes
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Introduction

Modular organization of complex networks

Complex networks are obtained by modeling real systems with graphs. This paradigm is
used to represent a wide variety of systems in different areas, such as the Internet [45],
World Wide Web, citation networks [47], coauthorship networks [64], metabolic net-
works [56]. Each citizen, as an individual, can construct a social network whose nodes
are connected by one or more specific types of relations, like friendship, kinship, common
interest [6, 13].

Studies in complex networks become a popular interest of research area. It was
triggered by two seminal papers: Watts and Strogatz on small-world networks [130] and
Barabasi and Albert on scale-free networks [9]. These studies have introduced common
non-trivial properties, which do not occur in simple networks such as lattices or random
graphs. It induced a large development of work on the studies of properties of real
networks.

The massive and comparative analysis of networks from several fields has produced a
series of unexpected and impressive results. One important issue is community structure.
Empirical studies on different networks such as World Wide Web, protein interaction
networks, email networks, etc. find their degree distributions different from each other.
Studies also find that the distribution of node degrees is not only globally, but also locally
heterogeneous. In another words, networks can be characterized by communities, with
dense connections within them and sparse connections between them.

The community structure of a real network is not only the result of the topology,
but also refers to system functions: in protein-protein interaction networks, communities
correspond to specific functions [21]; in the World Wide Web, they may relate to top-
ics [30]; in food webs they correspond to compartments [66], etc. Studies in community
structure should lead to a better understanding of complex systems.
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Community detection

In order to detect community structures, diverse techniques are proposed and are ap-
plied to real networks. As early as 1955, Weiss and Jacobson [107] carried out the first
analysis of community structure, which was at the basis of graph partitioning. Graph
partitioning divides nodes into predefined communities, such that the number of edges
lying between the groups is minimal. In a seminal paper appeared in 2001, Girvan and
Newman [48] proposed a new algorithm, which identified edges lying between communi-
ties for successive removal until the isolation of communities. This paper triggered a big
activity in the field, and many new modern methods have been proposed. For example,
modularity optimization is the most popular method for community detection on large
graphs [16, 91, 126], dynamic algorithms are based on physical techniques: spin mod-
els [116], random walks [102] and synchronization [2], and others like methods based on
statistical inference: Bayesian inference [132], blockmodeling [10], model selection [17]
and information theory.

These methods provide good performance in community detection, and have been
applied to real networks for analysis. Is the subject of community detection deserving
another report? At least two reasons have deeply motivated our work.

The first is that current complex networks become more complex, with the main focus
moving from the analysis of small static networks to that of systems with thousands
or millions of nodes, and with a renewed attention to the properties of networks of
dynamical units. For instance, the network of communications of millions of users is
changing its interactions across time. The structure of a real network is the result of
the continuous evolution of interactions which correspond to system functions. So that
the research on communities in dynamic networks would lead to a better knowledge of
system evolutionary mechanisms, and to a better cottoning on dynamical and functional
behaviours. Most of community detection methods are proposed for static networks.
There is a crucial need for algorithms that detect communities in dynamic networks.

The second is that overlapping community structure is still a problem. Most of com-
munity detection methods are proposed to detect disjoint communities without owver-
lapping nodes. QOwverlapping nodes are shared by several communities in overlapping
community structure. They are interesting to investigate since they play a key role as
intermediate between communities, with a special effect in predicting dynamic behaviors
of individuals in networks. Studies [125] in histories of personnel ties among the largest
enterprises in Hungary showed that overlapping nodes were possible mixing or recom-
bining memberships of groups. The membership of a long duration community changed
year by year. Some communities were built up through splitting and reuniting in an
ongoing pattern. This phenomenon, indeed, represents a crucial feature of overlapping
nodes in understanding structural organization of complex systems. Studying overlap-
ping community structure of networks will be helpful to understand system dynamic
mechanisms and predict future trends.

We explore this thesis to deal with the analysis of overlapping community structure
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in different networks and their dynamics. For this, methods for overlapping community
structure are proposed as well as approaches to track the evolution of these structures
over time. To verify their applicability, the presented methods are applied to different
real work data sets and the obtained results are evaluated.

Main contributions

The main contributions of this thesis are briefly summarized in the following.

e Two different views on overlapping node detection: In order to detect overlapping
community structure and characterize overlapping nodes, we have proposed two
definitions of overlapping nodes: granular overlaps and modular overlaps. Gran-
ular overlaps are a set of nodes, each of which connects several communities with
high cohesion. Modular overlaps are a set of groups, each of which is a group of
nodes having high community membership degree (how strong the group of nodes
belongs to the community) with at least two communities.

For the detection of granular overlaps, we have proposed clique optimization, which
detects cliques k-adjacent to communities (A clique which does not belong to the
community but shares at least K —1 common nodes). A granular overlapping node
in a weak sense is the member of one clique, which is adjacent to other communities
different from its community membership in the partition. A granular overlapping
node in a strong sense is the member of one clique, which is adjacent to at least
two communities simultaneously.

By running the Louvain algorithm several times, we can compute the probability
that pair of nodes appear in the same community. It allows us to detect robust
clusters, which have high stability against random impacts as every pair of con-
nected nodes has a high co-appearance probability. Furthermore, we are able to
detect community cores and modular overlaps. The community core is the max-
imum robust cluster within one community. The modular overlaps is one robust
cluster has the high co-appearance probability with several communities.

The applications of both methods to benchmark graphs have a high agreement
with the known community structure. We also apply them to a real network. In
the experiments, we observe that both methods provide meaningful but different
results in characterizing overlapping nodes.

e Tracking community evolution and identifying community dynamics: In order to
track community evolution and identify community dynamics, we have proposed
a two-stage method: we firstly apply our fuzzy community detection to detection
community structure at each time step, and secondly establish the relationship
between communities at different time steps through the definition of group per-
sistence. As the definition of group persistence is used to establish the relationship
between predecessor community and successor community, we are able to charac-
terize community dynamics even if parts of the membership fluctuate. To further
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analyze and explore community dynamics, we introduced a visualization technique
called lineage diagrams. The lineage diagrams allow us to observe how stable com-
munities hold their members over time and how structure changes in the evolution
of communities. This approach has been applied to a dynamic co-citation net-
work called historic complex system science. In the experiments, we have applied
citation analysis to understand the history of complex system science over time.

An important advantage of our method is its efficiency in detecting and charac-
terizing community dynamics in highly dynamic networks. Therefore, our method
is desirable to detect and analyse the evolution of communities in large, noisy
networks that exhibit a high number of changes over time.

Outline of this thesis

The thesis is organized as follows. Chapter 1 is the survey of community detection
in dynamic networks. We describe the definition of community structure and how a
community changes over time. Community detection in dynamic networks becomes a
popular issue. This problem is very hard and not yet satisfactorily solved. We review
the main algorithms designed for dynamic networks, which are based on techniques for
static networks. We also discuss crucial issues like how methods should be tested and
compared against each other.

Chapter 2 concerns on overlapping community detection. We discuss the impor-
tance of overlapping community structure in network analysis and limits of existing
algorithms in practice. Then, we transform the problem of overlapping community de-
tection to overlapping node detection, with the developed concept of overlapping nodes
into overlapping granularity and overlapping clusters. Therefore, we proposed two dis-
tinct methods: clique optimization and fuzzy detection. One is to detect overlapping
granularity and the other is to detect overlapping clusters. Applications of the both
methods in synthetic networks and real networks have good performances. Particularly,
applications in the network between articles, describing the common references of arti-
cles relevant to complex systems provide an impressive result: the both methods provide
knowledge of intermediate between communities but different characteristics.

In Chapter 3 we consider overlapping community structure on dynamic networks
and propose a method based on our previous work. The applications in dynamic net-
works such as the past history of complex system science, reveal overlapping nodes are
important for structural functions and interactions between modules.

Finally, we end in Chapter 4 by concluding our work in community detection with
the discussion in future work.



CHAPTER 1

A survey of community detection
in dynamic networks

The material in this chapter is intended to serve as a brief description of recent devel-
opments in community detection for dynamic network description. In Section 1.1, we
first introduce the concept of community, and discuss the basic quantities of community
structure. Then in Section 1.2, we introduce the description of community evolution
in dynamic networks. Next, we describe existing algorithms designed for dynamic net-
works in Section 1.3. The evaluation of the obtained clusterings is an important task,
therefore, Section 1.4 is devoted to the discussion of benchmarks for testing the reliabil-
ity of algorithms. Section 1.5 ends this chapter with a discussion about future research
directions in this issue.

1.1 Communities in networks

It appears natural and common to model the topology structure of a complex system
by a graph (or network). Many real world problems (biological, social, web) can be
effectively modeled as networks or graphs where nodes represent entities of interest and
edges mimic the interactions or relationships among them. A graph G = (V, E) consists
of two sets V and E, where V = {v1,v2,...,v,} are the nodes (or vertices, or points) of
the graph G and E C V x V are its links (or edges, or lines). The number of elements
in V and E are denoted by n and m, respectively.

In the context of graph theory, an adjacency (or connectivity) matrix A is often
used to describe a graph G. Specifically, the adjacency matrix of a finite graph G on n
vertices is the n X n matrix A = [A;;]nxn, where an entry A;; of A is equal to 1 if the
link e;; = (v;,vj) € E exists, and zero otherwise.

In the study of networks, such as computer, information networks, social networks
or biological networks, finding underlying community structure is common. Social net-
works often include community groups based on common location, interests, hobbies,
etc. Metabolic networks have communities based on modular functions [105]. Citation

13



CHAPTER 1. COMMUNITY DETECTION IN DYNAMIC NETWORKS 14

networks form communities by research topic. In each context, communities are groups
of nodes in a network with more edges inside than edges linking the rest of the network.

In the following, we introduce the definition of community, which depends on the
context. Social network analysts have devised many definitions of communities with
various degrees of internal cohesion among nodes [61, 111]. Many other definitions
have been introduced by computer scientists and physicists. We distinguish three main
classes of definitions: local, global and based on vertex similarity. We review the notion
of community structure and hierarchies of communities. We also discuss the definition
of the modularity function, derived to measure the quality of a graph partition into
communities.

1.1.1 Definitions of community
Local definitions

Communities are parts of the graph (group of nodes), within which the connections are
dense and between which the connections are sparse. In some specific systems or appli-
cations, they can be considered as separate entities with their own autonomy, which do
not depend on the whole graph. For instance in [80], communities are defined in a very
strict sense and require that all pairs of nodes are connected. In other words, this cor-
responds to a clique, i.e., a subset whose nodes are all adjacent to each other. However,
such a criterion is too strict. A relaxable extended definition is k-clique community,
which is the basis of CPM (Clique Percolation Method) [98]. A k-clique community is
a series of adjacent cliques, where two k-cliques are adjacent if they share k-1 nodes.

Another criterion for community cohesion is the difference between the internal and
external cohesion of the community. This idea is also used to define communities.
For instance, Radicchi et al. [104] proposed the definitions of strong communities and
weak communities. A set of nodes is a community in a strong sense if the internal
degree of each node is greater than its external degree. This definition seems too strict.
Its relaxable definition is the community in a weak sense: the internal degree of the
community (sum of all its node internal degree) should exceed its external degree. Note
that a community in a strong sense is also a weak community, while the converse is not
generally true.

Global definitions

Communities can be defined with respect to the graph as a whole. This seems to
be reasonable when the community structure is exactly the division of the graph into
several groups of nodes. In such a context, many global criteria are used to identify
communities, which are all based on the intrinsic idea that a graph offers a community
structure if it is not a random graph. Random networks such as Erdos-Renyi’s graphs
do not display community structure. Indeed, as any pair of nodes are linked with
the same probability, there should be no preferential wiring involving special groups of
nodes. Therefore, one may define a null model, i.e., a random graph that shares some
structural properties of the original graph such as its degree distribution. The null model
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is the basic element in the conception of the notion of modularity. The modularity is a
quality function that evaluates the partition of a graph into disjoint communities. The
most popular modularity is proposed by Newman and Girvan [91], which compares the
number of edges inside the community to the expected number of internal edges in the
null model. A series of algorithms using modularity maximization heuristics [16, 93] for
finding communities are proposed and developed.

Definitions based on node similarity

It seems also natural to assume that communities are groups of nodes similar to each
other. One can compute the similarity between each pair of nodes with respect to
some reference properties. An important class of node similarity measures is based
on properties of random walks on graphs, such as commute-time. The commute-time
between a pair of nodes is the average number of steps needed for a random walker,
starting at either node, to reach the other node for the first time and to come back to
the starting node. Saerens et al. [109] have studied and used the commute-time as a
similarity measure: the larger the commute-time is, the less similar nodes are.

1.1.2 Community structure
Basics

A partition is a division of a graph into disjoint communities, such that each node belongs
to a unique community. A division of a graph into overlapping (or fuzzy) communities
is called a cover. We use P = {Cy,...,Cp.} to denote the partition, which is composed
of n. communities. In P, the community to which the node v belongs to is denoted
by o,. By definition we have V = U*C; and Vi # j,C; N C; = 0. We denote by
S = {S1,...,5,.} a cover composed of n, communities. In S, we may find a pair of
community S; and S; such that S; N.S; # 0.

Given a community C C V of a graph G = (V, E), we define the internal degree
kint (respectively the external degree kS') of a node v € C, as the number of edges
connecting v to other nodes belonging to C (respectively to the rest of the graph). If
k&t = 0, the node v has only neighbors within C: assigning v to the current community
C is likely to be a good choice. If k"™ = 0 instead, the node is disjoint from C and it
should better be assigned to a different community. Classically, we note k, = k"t 4 kXt
the degree of node v. The internal degree k™ of C is the sum of the internal degrees of
its nodes. Likewise, the external degree k' of C is the sum of the external degrees of
its nodes. The total degree k¢ is the sum of the degrees of the nodes of C. By definition:
kC — kicnt + k:gxt.

Modularity

One may want to measure the quality of a partition through a quality function, which
assigns a score to each partition of a graph. In this way, partitions can be ranked based
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on their score given by the quality function. Partitions with high scores are ” good”, so
the one with the highest score is by definition the best.

The widest accepted quality function is the modularity introduced by Newman and
Girvan [91, 95]. Let e;; be the fraction of edges in the network that connect nodes in
community ¢ to those in community j, and a; = Zj ;. The modularity measure is

defined as:
Q= Z (e — af) . (1.1)

This quantity measures the fraction of the within-community edges in the network minus
the expected value in a network with the same community division but when connections
between nodes are random. If the number of within-community edges is less than the
expected number of edges in a random graph, we will get ) = 0. Values approaching
Q@ = 1, which is the maximum, indicate networks with strong community structure. In
practice, values for real networks typically fall in the range from 0.3 to 0.7. Higher
values are rare.

Suppose we have a division of a network into communities. Let o; be the community
to which node ¢ is assigned. The fraction of the edges in the graph that fall within
communities, i.e., that connect nodes that both lie in the same community, is

ZZA”L(S(O—MO—) 1
) LS oy
ij 4L —

)

where the function §(0;,0;) is 1 if 0; = o; and 0 otherwise. At the same time, the
expected number of edges between nodes i and j if edges are placed at random is
kik; /2m, where k; and k; are the degrees of the nodes and m is the total number of
edges in the network. Thus the modularity [90], as defined above, is given by:

1 kik;
=g 2 <Aif o

) 5(0s,05) - (1.2)

Note that the modularity is always smaller than one but can be negative as well. For
instance, the partition where each node represents a single community is always negative.
When considering the whole graph as a single community, the modularity is zero as the
two terms in this case are equal and cancels each other out. There are also other types
of modularity, some of which are motivated by specific classes of clustering problems or
graphs [43].

Modularity has been employed as quality function in many algorithms, like some
division algorithms [93] which give a tradeoff between high accuracy and low complex-
ity. In addition, modularity optimization is the most popular method for community
detection. Heuristic proposed in [16] runs fast and handles very large-scale networks.
Modularity also allows to assess the stability of partitions [84].

However, the applicability and reliability of modularity for the problem of graph
clustering may be limited. An important issue concerning the limits of modularity is
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raised by Fortunato and Barthelemy [44]. The study shows that a large value for the
maximum modularity does not necessarily mean that a graph has a clear community
structure. In a random graph, such as the Erdés-Rényi model, the distribution of edges
among the nodes is highly homogeneous. For instance, the distribution of the number of
neighbours of a node, or degree, is binomial, so most nodes have equal or similar degree.
The random graph is supposed to have no community structure, as the link probability
between nodes is either constant or a function of the node degrees, so there is no bias a
priori towards special groups of nodes. Still, random graphs may have partitions with
large modularity values [55, 106]. This is due to fluctuations in the distribution of edges
in the graph, which determine concentrations of links in some subsets of the graph,
which then appear as communities.

Moreover, Fortunato and Barthelemy [44] have found that modularity optimization
has a resolution limit. It may prevent from detecting communities which are compar-
atively small with respect to the graph as a whole. Given two communities A and B,
with a total degree k4 and kg respectively and where the number of edges connecting A
and B is [ 45. The difference of modularity determining the merge of two communities

with respect to the whole graph partition is:
RS R (Ra\® (ks
2m 2m 2m ’

If iag = 1, i.e., there is a single edge joining A to B, we expect that the two commu-

k
AR = A 2m 2m
1

nities should be separated. If kqkp/2m? < -, we have AQap > 0. For simplicity,
let us suppose that k4 ~ kg = k, i.e., that the two subgraphs have roughly the same
number of edges. We conclude that when k& < v/2m and the two communities A and
B are connected, then the modularity is higher if they are in the same cluster [44].
So, if the partition with maximum modularity includes clusters with total degree of
the order of O(y/m) (or smaller), one can not know a priori whether the clusters are
composed of single communities or are in fact a combination of smaller weakly intercon-
nected communities. This resolution problem may have important impacts in practical
applications.

Hierarchy

An important aspect related to community structure is the hierarchical organization. A
community structure can be hierarchically ordered, when the graph has several levels
of organization/structure at different scales. In this case, the community structure is
hierarchically composed of small communities at each level that are nested within large
communities at higher levels. As an example, in a social network of children living in the
same town, one could group the children according to schools they attend, but within
each school one can make a subdivision into classes.

The hierarchical form of organization is often represented as a tree or dendrogram, as
shown, for example, in Fig. 1.1. The hierarchy allows efficient analysis of several specific
functions using modules, such as majority consensus. Majority consensus is widely used
in the reconstruction of phylogenetic trees [25].
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Figure 1.1: A hierarchical tree or dendrogram illustrating the hierarchical form of orga-
nization described here. The circles at the bottom of the figure represent the individual
nodes of the network. As we move up the tree, the nodes join together to form larger
and larger communities, as indicated by the lines, until we reach the top, where all are
joined together in a single community. Alternatively, the dendrogram depicts an initially
connected network splitting into smaller and smaller communities as we go from top to
bottom. A cross section of the tree at any level, such the one indicated by a dotted line,
will give the communities at that level. The vertical height of the split points in the
tree are indicative only of the order in which the splits or joins take place, although it is
possible to construct more elaborate dendrograms in which these heights contain other
information. The figure is obtained from Ref. [95].

The presence of hierarchy motivates hierarchical clustering [95], which is a well-
known technique in social network analysis [129], biology [34] and finance [83]. Starting
from a partition in which each node is its own community, or all nodes are in the same
community, one merges or splits clusters according to a topological measure of similarity
between nodes. Though this method naturally produces a hierarchy of partitions, noth-
ing is known a priori about their qualities. The modularity is a good quality function
to identify a single partition, i.e., the selected partition corresponds to the largest value
of the modularity.

1.2 Community evolution in dynamic networks

In complex networks, the interactions between entities dynamically evolve over time [8].
Lets take Facebook! as an example: users add or delete ”friends” [35]. Similarly, new
forms of social contacts can be observed in phone calls, e-mail exchanges [78] or other
communications on the Internet.

Traditional analysis treats networks as static graphs, which is either derived from
an aggregation of data over the whole network life (experiment measure), or from a
snapshot of data at a particular time step. Although this study provides meaningful
results, the dynamic features are neglected. Dynamic features are also important in the
study of complex networks.

"http://www.facebook. com/
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During the last decade, the availability of large data set (thanks to Open Data
initiative), the optimized rating of computing facilities, as well as the development of
powerful and reliable data analysis tools, have constituted a better and better machinery
to explore the topological properties of several networked systems from the real world.
This has allowed to study the topology of the dynamic interactions in a large variety
of Big Data [27] as diverse as communication [100, 99], social [32, 94] and biological
systems [63, 18].

The goal of community detection in dynamic networks is to track community evo-
lution and to identify their dynamics. In the following, we first describe the definitions
and notations of a community which is observed at different time steps. Second, we
present community dynamics which are used to describe community changes.

1.2.1 Communities in dynamic graphs

A dynamic graph G(V,€) on a finite time sequence 1...A is a sequence of graph snap-
shots {G(1),...,G(A)}. There is a set V = {v1,...,v,} of nodes. Each node v; € V
appears at least one during the dynamic graph lifetime, i.e., 3t s.t. v; € G(t).

At each time step ¢t where 1 < t < A, the corresponding snapshot G(t) describes
interactions between active nodes at time ¢, where the edges of a snapshot graph is a
set of active dynamic links. G(t) is partitioned into a set of temporal clusters P(t) =
{C1(t),...,Cpue(t)}, where n! denotes the number of temporal clusters in G(t). In some
definitions of communities in dynamic networks [40, 41], the number of temporal clusters
may be not equal to the number of communities at the same time step t . One community
C; at time step t is possibly represented by a set of temporal clusters such that C;(t) =
{C1(b),... }.

The problem of tracking community evolution can be resolved by the identification
of a set of community evolution paths (or community evolution traces [128], dynamic
communities [51]).

Definition 1 (Community evolution path). For a given time window [6,0+A], an evolu-
tion path Evol(C;) is a time-series of temporal clusters: Evol(C;) := {C;(9),...,Ci(6 + A)}
where each temporal cluster C;(t) € Evol(C;),t € [0,0+ A] is the observation of the com-
munity C;.

In the definition of Wang et al. [128], the observation of the community C; at time ¢
can be the union of several temporal clusters. When a community appears for the first
time, it should be a unique temporal cluster.

1.2.2 Community dynamics

When we track community evolution, one problem is to characterize community dy-
namics. How does a community change over time? Palla et al. have introduced the
main phenomena occurring during the lifetime of a community (See Fig. 1.2): creation,
growth, reduction, fusion, split and death (or removal). Moreover, Chakrabarti et al. [19]
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Figure 1.2: Possible scenarios in the evolution of communities. The figure is gained
from [97].

proposed the definition of change point to describe a significant change in community
structure. In the following, we describe them in details.
Community changes

We show six community changes in Fig. 1.2, which are used to describe the main events
occurring in dynamic graphs. In order to identify them, Asur et al. [3] have proposed a
definition.

Definition 2. Let G(t) and G(t + 1) be snapshots of G at two consecutive time steps
with the cluster C;(t) and C;(t + 1) denoting the observations of the community C; at
time step t and t + 1, respectively.

Continue: C;(t + 1) is the continuation of C;(t) if Ci(t + 1) is the same as C;(t):

Cilt) = Cilt +1)

k—Merge: two clusters C;(t) and C;(t) merge into Ci(t + 1) if C;(t + 1) contains at
least k% of nodes belonging to the union of Ci(t) and C;(t) and the renewal of
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Ci(t) and C;(t) is at least 50%:

|(Ci(t) U C;(#)) N Ci(t + 1)
max(|C;(t) N C;(t)], |Ci(t + 1))
GO NCit+ 1) > |Ci(8)]/2
IC;@)NCit+ 1] > |C5(1)]/2

k—Split: C;(t) is split into C;(t + 1) and Cj(t + 1) if k% of nodes belonging to C;(t)
are in two different clusters at time t + 1, such as
[(Cit+1) UGt +1)) NCi(D))]
| max(|Ci(t + 1) N Cj(t + 1)1, [Ci(t)])
ICi()NCit+ 1) > [Cit+1)[/2
ICi(t)NCi(t+1)] > |Ci(t+1)]/2

Emerge: a new cluster Ci(t+1) emerges at time t+1 if none of the nodes in the cluster
C;(t+1) are grouped together at time't, i.e., A C;(t), such that |C;(t)NC;(t+1)] > 1 ;

Disappear: C;(t) disappears if none of the nodes in the cluster C;(t) are grouped at
time t + 1, i.e.,B Ci(t + 1), such that |C;(t) N Ci(t +1)| > 1.

This definition has several limits. First, the definition of one continuation is so
strict that almost all communities do not have any continuation at the next time step.
Second, the value of k needs be set to determine when a community is merged or when
a community is split. Varying x may lead to different results. Finally, the definition of
emerging community or disappearing community has weaknesses. Some clusters may be
generated only by the fluctuation of degree distribution. This artificial clusters will not
share a strong common interest. For the disappearance, the process may be too slow: a
community may lose its core nodes but still have node attached to it. In this case, the
observed community does not share a strong common interest anymore. It is difficult
to determine whether a community exists.

There are also other types of definitions [22, 49, 51]. For example, Chen et al.. [22]
characterize community dynamics by tracking community core evolution. Greene et
al.. [51] use the definition of dynamic communities described above but require that
if several dynamic communities share the same temporal cluster at time ¢, then these
dynamic communities should merge.

In Fig. 1.3, we have shown examples of community evolution. There are four dynamic
communities over the total three time steps, whose evolution paths are expressed as
following:

Evol(C1) <+ {Ci(t),Ci(t+1),Ci(t+2)}
Evol(Co) <+ {Co(t+1),Co(t+2)}
Evol(C3) <+ {Cs(t),Cs(t+1),Cs(t+2)}
Evol(C4) <+ {Cu(t+2)}
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t t+1 t+2

Figure 1.3: Examples of community evolution over three snapshot graphs by matching
temporal clusters to dynamic communities. We observe 4 dynamic communities, indi-
cated by colours: C; in dark blue, Cz in red, C3 in green and Cy4 in light blue. During
their evolution, we observe the community C; is split into C; and Cs between ¢t and ¢+ 1.

Through these evolution paths, we observe two new communities appearing during net-
work evolution: the community Cs is the branch of C; and the community Cy emerges
at time ¢t = 2.

This is an example to illustrate the relationship between community dynamics and
community evolution paths. We conclude that the problem of identifying and charac-
terizing community dynamics can be revealed by community evolution paths, whereas
the problem of tracking community evolution in dynamic networks can be reformulated
as a problem of constructing community evolution paths across one or more time steps.

Change point

There is another definition about community dynamics. Chakrabarti et al. [19] have
detected change point, which represents a significant time point when the system evolves,
i.e., a major change (or critical event) occurs in the graph structure during a short
period. The approach called GraphScope[19] applied the MDL (Minimum Description
Length) principle [53] to compute the encoding cost of assigning nodes into communities.
A segment presents a sequence of graphs without any change in its community structure.
So the graphs of each segment are characterized by the same partition with the lowest
encoding cost. If the cost for encoding a graph into the existing segment is higher than
the cost for encoding the graph into a new segment, a significant change of community
structure occurs. The change point offers one important benefit of detecting community
evolution using information theory.

1.3 Community detection in dynamic networks

In order to track community evolution, it is necessary to identify communities at different
time steps. In [58], Hopcroft et al. have detected the partition of each snapshot graph
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Figure 1.4: An example of a coupling graph, where graphs at different time steps are
connected through couplings. The real interactions between nodes are shown in solid
lines while the coupling interactions are denoted by dotted lines. The figure is gained
from Ref. [62].

by hierarchical clustering [60], and then matched communities at different time steps
through natural communities. Natural communities are groups of nodes having high
stability against perturbations of interactions. In analysing citation networks, natural
communities can be used to denote topics of communities. Tracking natural community
evolution allows us to understand the history of topics, such as the emergence of new
topics. The idea of detecting time-independent communities at different time steps and
then matching them, becomes the basis for several algorithms. They are called two-stage
approaches. Each time-independent community is detected independent of the results
at other time steps.

Another method [119, 123, 124] called evolutionary clustering is proposed to detect
time-dependent temporal clusters. The principle of evolutionary clustering [19] is to
simultaneously optimize two potentially conflicting criteria: first, the clustering at any
time step should remain faithful to the current data as much as possible; and second,
the clustering should not shift dramatically from one time step to the next.

There are also many other methods, such as coupling graph clustering. The coupling
graph clustering is a framework which detects community structure of a coupling graph.
A coupling graph is a graph linking a sequence of graphs over several time steps by
adding coupling edges between the same nodes at different time steps (See Fig. 1.4).
Given a coupling graph, a subgraph which describes all interactions at a specific time
step is call a slice.

In the following, we begin by listing the challenges raised by community detection
in dynamic communities. Next, we review current techniques proposed for community
detection in dynamic networks.
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1.3.1 Dynamic community detection challenges
Quality function: the cost

Reliable algorithms are supposed to provide results having a high quality value. In the
case of community detection in dynamic networks, a famous function named a-cost has
been used by several algorithms [68, 118, 124] for measuring the quality of the found
dynamic communities. This a-cost is motivated by the principle of evolution clustering:
the community structure at each time step is the evolution of the community structure
at the previous time step. Therefore, it is a combination of a snapshot cost and a past
history cost. The parameter a controls the relative weight of recent and past history:

cost =aCS+ (1 —a)CT (1.3)

where the snapshot cost CS measures how a community structure fits the graph inter-
actions at time t and the past history cost C7T qualifies how consistent the community
structure is with the past history community structure at time ¢ — 1.

Let X represent the current community structure, Y represent the community struc-
ture at the previous time step, W denote current graph interaction, A be an non-negative
diagonal matrix, and D(e) be the function for measuring the cost such that D(e) com-
putes the similarity between the network structure and the community structure and
the similarity between the current community structure and the previous community
structure.

In [124], authors defined D(e) as a KL-divergence between two objects such that:
CS = D(W || XAXT) and CT = D(Y || XA). Given two objects A and B, D(A ||
B) = Zij (aij log% —ai; + bij>. Through this cost definition, the snapshot cost is
high when the approximate community structure fails to fit the graph interactions at
time ¢ while the past history cost is high when there is a dramatic change of community
structure from time ¢t — 1 to ¢.

There exist also other definitions of D(e). In [68], two definitions of the cost are
introduced: one is the distance between all pairs of objects in an agglomerative hier-
archical clustering, and the other is associated with the centroid of the community in
k-means clustering [15]. In k-means clustering, community memberships are measured
by the membership degrees of nodes, i.e., the distance between the node to the centroid
of its community. Then, in the cost of the community structure of a dynamic graph, the
snapshot cost is associated with the distance between the node and the centroid of its
community, and the past history cost is computed by the difference between the current
community centroid and the community centroid at the previous time step.

In the case of multi-mode networks, Tang et al. [119] have suggested the resolution
by transforming the problem in multi-mode networks into the problem of two-mode.
Most of existing work concentrates on one-mode network. That is, there is only one
type of social actors (nodes) involved in the network and the ties (interactions) between
actors are all of the same type. This is common in a broad sense such as friendship
network, Internet, phone call network, etc. . However, some applications such as web
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mining, collaborative filtering, and online targeted marketing involve more than one
type of actors and multiple heterogeneous interactions between different types of actors.
Such a network is called multi-mode network [129).

Given an m-mode network, for each mode i, let X; denote this mode of nodes, such
as X; = {z%,... ,xﬁli}, where n; is the number of nodes for X;. Then, for each pair of
modes, we use jo C X; x X to represent interactions between two modes of nodes
X;, X at time t. Ideally, the interaction between nodes can be approximated by:

t oo (tAt (T
Ri; = CiAij(Cj)

where C! is the cluster membership for X; at time ¢ and Agj represents the group
interaction. The group interaction is computed by Agj = (Cg)TRijf; . Therefore, for
each temporal m-mode graph at time ¢, its snapshot cost CS can be formulated as:

> wiD (R || CIAL(CHT) |

1<i<yjsm

and its history cost CT is expressed as:

i t t—1
> wiD(Ci| CY) |
1<i<m
where wg is an importance factor for every pair of modes i and j, and w,@ is a relative
importance factor for each mode 3.

The optimal value of the cost corresponds to a good community structure which in-
corporates the deviation from the past history. There exist several algorithms detecting
community evolution by optimizing a-cost, such as community model (See Section 1.3.3).
However, the value of the parameter « is a priori unknown, which is a major limita-
tion. Since the parameter a controls the relative weight of recent and past history, the
obtained results [68] depend on the value of a: a lower value of « yields to a less change
of community structure. If @ = 0, the obtained community structure is exactly the
same as applying the community detection algorithm independently on each snapshot.
A good quality function for dynamic graphs should find the perfect compromise and
accommodate past history without compromising the snapshot quality.

Matching metric

A matching metric is a similarity function, which measures how similar two communities
are. It is often used in two-stage approaches to connect similar communities. Of course,
we can measure the similarity between two temporal clusters at different time steps.
Then, we obtain how one community evolves from one time step to the following time
steps.

Hopcroft et al. [58] defined a match function. Let C' and C’ be two clusters, their
match value is written as follows:

(1.4)

match(C, C’) = min (’C ne jen Cl')

e e
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Simple evolution More complex evolution Split of one community
and one apparition

Figure 1.5: Examples of community evolution in a time period [t,t + 1]. We match
clusters at time t to the clusters at time ¢ + 1. Given a cluster at time ¢, it remains
stable if it is matched to a unique cluster at time ¢ + 1; it splits if it is matched to more
than one cluster at time ¢ + 1. In addition, one new cluster appears at time ¢ + 1, if no
cluster at time ¢ is matched to it. The figure is obtained from [5].

Final communities

Community instances

t o t+1 t+2 t+3
Time

\/

Figure 1.6: An example of dynamic networks with community instances (nodes) and final
communities (in grey). At each time step, we may match several community instances
to the same temporal community.

The definition ensures that a high matching value (close to 1) occurs when two clusters
have many common nodes and are roughly of the same size. The best match value for
C' at time ¢, is the highest match(C, C”) value for any cluster C’ at time t.

Palla et al. [97] defined relative overlap, which is a Jaccard index. The relative
overlap value between two communities X and Y is written as follows:

_xny]

J(X’Y)—m-

(1.5)
By definition, the cluster C'(t+ 1) at time ¢+ 1 is matched to the cluster C(¢) which has
the largest overlap at time ¢.
Another bipartite mapping metric is dynamic Jaccard’s index, whose definition is:
J(X,Y)

JCLCD/(X,Y) = W (16)
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where |t — t/| represents the time interval duration between communities X and Y. It
allows a temporal cluster matched to an old one (|t —¢'| > 1) which disappeared during
several time steps.

Two communities are matched if they share the highest matching value. The match-
ing metric is a natural resolution to connect temporal clusters over time. So it is of-
ten used in two-stage methods [58, 97, 121]. Its another advantage is to characterize
community dynamics (See Section 1.2.2). However, there is no standard definition of
matching metric. In Hopcroft et al. [58)’s match function (Eq. 1.4), the minimum size of
communities is important for the comparison. Instead, the size of the union of commu-
nities is essential in the relative overlap (Eq. 1.5). Furthermore, a minimum intersection
size threshold needs to set, i.e., the minimum number of common nodes shared by the
matching communities.

1.3.2 Two-stage approaches

The basic idea of two-stage approaches is to detect temporal clusters at each time step,
and then establish relationships between clusters for tracking community evolution over
time. Figure 1.3 illustrates the result of applying a two-stage approach to a dynamic
network across three time steps. In a first phase, clusters at each time step are detected:
at time ¢, there are two clusters, then there are three clusters at time ¢ + 1 and four
clusters at time ¢ + 2. In a second phase, the relationship between clusters at different
time steps are established, which is shown by colours. Through the above results, we
learn how the community structure of this graph evolves from the time step t to the
time step ¢ + 2. For the first phase, we apply a graph clustering algorithm [48]. For the
second phase, we can use a matching metric (See Section 1.3.1). However, it may lead to
noisy results where some nodes often change their community memberships. Therefore,
many advanced resolutions are proposed to resolve this matching problem.

Core-based methods

If a partition is significant, it will be recovered even if the structure of the graph is
modified, as long as the modification is not too extensive. Instead, if a partition is
not significant, we may observe that minimal perturbations of the graph will suffice to
disrupt its group memberships. A significant cluster, i.e., a significant group of nodes, is
often defined as a community core. We can reduce noisy results by matching community
cores. This is the main principle of core-based methods. The matching metric (See
Section 1.3.1) is often applied. Two temporal clusters are matched if their community
cores share the highest similarity value.

Hopcroft et al. have proposed the concept of natural communities, which are signif-
icant clusters that have high stability against modification of graph structure. Given
a temporal graph, by applying 5% of perturbations, a set of modified graphs are pro-
duced, each of which has 95% of core nodes. Each natural community is identified by
the partitions corresponding to these modified graphs, which has the best match value
with clusters in those partitions.
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Rosvall et al. [108] used a bootstrap method [33] to detect significance of clusters.
The bootstrap method assesses the accuracy of an estimate by resampling from the
empirical distribution of observations. Each graph can be resampled by assigning to
each edge a weight taken from a Poisson distribution with mean equal to the original
edge weight. A graph clustering method is applied to the original graph and the samples.
For each community in the original graph’s partition, they define its largest subset of
nodes that are classified in the same community in at least 95% of all bootstrap samples,
as the significant cluster.

In some methods, core nodes are identified through their roles within their commu-
nities. Given a community, there are core nodes and peripheral nodes. Guimerd and
Amaral [54] have classified community members into different roles according to intra-
and inter-module connection patterns. With respect to core node identification, Wang et
al. [128] defined core nodes, where each core node v satisfies }_, ¢ cighbours (kv — ku) > 0.
In [12], k-cores nodes [1] are detected with a threshold k& where k-core decomposition is
used for filtering out peripheral nodes.

Although core-based approach can smooth variances caused by peripheral nodes, its
results still suffer from some limits such as the parameters used in matching metrics.
In additional, if we only track evolution of community cores, there is a risk of missing
important structural changes which are related to peripheral nodes.

Union-graph-based methods

Graph at time t Union graph

the circles become the gray community and
the squares become the white

Community on the union graph
Graph at time t+1 which contains the circle community
and the gray community

Figure 1.7: An example of an union graph which is constructed by jointing two graphs
at time ¢ and ¢ + 1. The figure is obtained from Ref. [97].

Another important early work [97] for detecting community evolution is related to
the union graph. Each union graph merges two graphs (union of their links) present
at contiguous time steps. Let G(t,t + 1) denote the union graph resulting from the
union of two graphs at time ¢t and ¢t + 1. We have F;;41 = E; U Eyq. Figure 1.7
gives an example of an union graph. Any community present at ¢ or ¢ + 1 is contained
in exactly one community in the union graph. Thus, communities in the union graph
provide a natural connection between communities at ¢ and ¢t + 1. If a community in
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the joined graph contains a single community from ¢ and a single community from ¢+ 1,
then they are matched. If the joined group contains more than one community from
both time steps, the communities are matched in decreasing order of their relative node
overlap (Eq. 1.5). The technique is validated by applying it to two social systems: a
graph of phone calls between customers of a mobile phone company over one year and
a collaboration network between scientists spanning a period of 142 months.

The union graph smooths the change between every pair of consecutive time steps.
This property can reduce the fluctuation caused by noisy data. In addition, the union
graph allows us to directly determine the links between temporal clusters at consecutive
time steps. It simplifies the problem of tracking community evolution.

The main disadvantage of this technique is that the CPM algorithm used only detects
communities in certain contexts, 7.e., CPM algorithm fails to detect community structure
of networks with few cliques. In addition, some parameters are used to determine how
community change due to the application of similarity metric.

Survival-graph-based methods

Given a dynamic graph, its community survival graph is constructed by representing
community instances as nodes which are linked via edges based on their similarity. One
can divide this community survival graph into final communities. Each final community
groups a set of temporal clusters and spans several time steps as shown in Fig. 1.6.

Algorithm 1 Hierarchical edge betweenness clustering
Input: G = (V,E)
Output: A dendrogram
repeat
Compute edge betweenness for all edges
Remove edge with highest betweenness
until no more edges in graph
Return a dendrogram // The dendrogram is produced from a top down approach: the
network is split into different communities with successive removals of links. The
leaves of the dendrogram are individual nodes.

The first approach associated with survival graph is proposed by Falkowski et al. [40,
41]: first cluster each temporal graph to find community instances at each time step,
then construct a community survival graph, and finally cluster the community survival
graph to find final communities by using a hierarchical edge betweenness clustering [48].

To construct a community survival graph, a time window is set to compare the sim-
ilarity between community instances and connect the similar community instances with
edges. In another words, this time window size is the largest time distance between ev-
ery pair of connected community instances in a community survival graph. The applied
hierarchical edge betweenness clustering (see Algorithm 1) contains an iteration, which
eliminates edges to separate subgraphs. In Falkowski et al.’s method, a parameter k is
applied to determine the number of iterations. The connected subgraphs retained after
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k iterations correspond to the final communities. A connected subgraphs consists of
similar community instances.

Chi et al. [23] have detected final communities through a soft clustering [131], after
detecting community instances [93, 113, 131] at each time step. At a time step i, the
graph interaction is denoted by A C V x V with I; basis subgraphs B' = [BY,. .., sz}
Fach basts subgraph describes interactions between nodes within a community instance.
Across a time window [1, ..., A], graph interactions can be denoted by a 3-dimensional
tensor: A = [Al,...,A®] € R™"™*A  For the total N, = Zle l; basis subgraphs,
another 3-dimensional tensor is defined: B = [B1,... ,Bﬁ] € RxnxNe,

Then, the final communities are obtained by minimizing the objective function:
D(A || BUVT). The matrices U = [ug;]n.xn, and V = [v;;]axn, are the solution of
the optimization problem. For each dynamic community j, uy; is a vector of weight
on k-th basis subgraph. At each time step ¢, v;; is a community intensity for j-th final
community.

In this method, the size of time windows and basis subgraphs are issues. A good
size value of time windows allows us to group small community instances into a final
community, if these small community instances have high frequency grouped together.
The size of basis subgraphs is related to insignificant subgraphs (for example, a subgraph
with only a couple of nodes), as insignificant subgraphs are removed for the computation.
The larger size threshold of basis subgraphs is, the less iterations are used for computing
U as less number of N.. Therefore, the computation time can be optimized by increasing
the size threshold of basis subgraphs.

For the number of communities n., they try different values to compare the re-
construction error and then choose one that is reasonably small and at the same time
explains data reasonably well.

In [121], authors use a similar approach which tracks community evolution by con-
necting community instances but they use another notion of final community. A quality
function called node cost is defined to determine the community membership for each
node over time. This function is the sum of two costs: the cost of one node to keep its
community membership and the cost of one node to change its community membership.
Therefore, final community detection is transformed into the problem of optimizing this
function. Optimizing this function is shown to be a NP-complet problem. Another
solution withan approximate factor is proposed in [120]. In their proposed node cost
function, the importance of different costs is predefined. Giving a high importance to
cost of a node to keep its community membership, makes node membership stable for
a long time duration. Giving a high importance to the cost of a node to change its
community member, makes node membership to fit to current snapshot structure.

Survival-graph-based method gives results about how dynamic communities evolve
over time directly. It simplifies the problem of tracking community evolution. Com-
pared to other two-stage approaches, which track community evolution by identifying
observations at each time step, this technique is more practical. However, some issues
arise: How to choose the time window size 7 How to choose the number of clustering
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iterations in [41]7 How to choose the size threshold of basis subgraphs and the number
of final communities in [23]7 And how to choose the importance value in [121].

Conclusion

Methods presented above are two-stage like approaches:

1. Clusters are detected at each time step independently of the results at any other
time step;

2. Relationships between clusters at different time steps are inferred successively.

Such natural process often produces significant variations between partitions that are
close in time, especially when the datasets are noisy. Since the first phase is independent
of the past history, smooth transitions are impossible. Such an approach may produce
artifacts if the data are noisy and variations between partitions may also be generated by
the community detection algorithm it-self. Such artifacts yield to artificial community
dynamics rather than the real graph evolution. For each graph, let O(P) denote the
partition detection time and O(M) represent the computation time for the matching
problem. The total time complexity of a two-stage approach on a time window of length
T isin O(P+M)T).

1.3.3 Evolutionary clustering

An evolutionary clustering approach follows a principle of detecting community struc-
ture based on the current graph topology information at a given time ¢ and on the
community structure at previous time steps. The quality function used for dynamic
community structure is: a-cost (See Eq. 1.3). By assuming that a good community
structure has a high a-cost value, many optimization methods are proposed and are
applied to real dynamic networks. For instance, Lin et al. [123, 124] used a probabilistic
model to capture community evolution by maximizing a-cost. On one hand, proposed
frameworks called community model usually search the optimal community structure for
modeling the sequence of graphs by encompassing interactions of the whole graphs. On
the other hand, incremental/online algorithms only consider interaction changes such
as link insertion or link deletion which also make sense in detecting structural changes.
In the following, we will review these evolutionary clustering methods.

Community model

Community evolution can be modelled by a sequence of graphs based on a probabilistic
model, which assumes that:

1. The interactions of the graph at each time step follow a certain distribution;

2. The community structure follows a certain distribution that is determined by the
community structure at the previous time step.
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The first attempt has been done by Lin et al. [123, 124] through a-cost function opti-
mization. Let W? denote a graph structure at time ¢ and X*A? represent its community
structure. By defining Z! = X!A*(X?)? the authors have devised an a-cost (Eq. 1.3):

cost =a D(W' || Z") + (1 —a) D(Z"1 || ZY) .

Consequently, they estimate X’ and A? for optimizing the cost. The problem of commu-
nity detection at each time step becomes a problem in terms of maximum a posteriori
(MAP) estimation. An EM algorithm for solving the MAP problem is given in [123, 124]
with a low complexity where the graph structure is sparse.

This technique enables to detect overlapping community structure and track com-
munity evolution directly. So it is a good resolution for the problem of community
detection in dynamic graphs. However, a priori the value of « is a drawback.

Yang et al. [132] also used a dynamic stochastic block model (DSBM) for finding
communities and their evolutions in a dynamic social network. In their study, they have
applied a Bayesian treatment for parameter estimation that computes the posterior
distributions for all the unknown parameters.

Let Wt € R™*" denote a graph structure at time ¢t and Z* € R"*"¢ is its community
structure. For each node i, it is assigned into community k with a probability 7, such as
Il =[m,..., ] € R™. For a pair of nodes i and j whose community memberships are k
and [ respectively, the link connecting them is assumed to follow a Bernoulli distribution
with parameter Py, such as wj; ~ Beronulli(e | P), i.e., W' ~ Pr(W' | P,Z"), where
P = [Py]n.xn,- For a community matrix Z¢~1, a transition matrix B € R™*" is assumed
to model Z!, such as Z' ~ Pr(Z! | Z'~1,B). So we write the likelihood for the DSBM
model as follows:

Pr(W', Z' |II,P,B) .

With the Bayesian Model, a posterior probability Pr(Z! | W?) is computed with an
inference algorithm.

There is no parameter in this technique. However, the authors only provide perfor-
mances of the applications to networks with nearly ten time steps and a few hundred
nodes. For large networks such as millions nodes and hundreds of time steps, the per-
formance of this technique is not clear.

The community model captures community evolution by modeling the sequence of
graphs. It performs well when applied to stable evolving graphs. However, it suffers
from scalability problems due to an expensive matrix computation and storage cost.

Incremental/Online algorithms

The incremental spectral clustering [96] is one of the early incremental algorithms that
update matrices like the degree matrix or the Laplacian matrix according to changes of
graph interactions [81]. In traditional spectral clustering, community detection is trans-
formed into the eigenvalue problem of Lq = ADq, where L is the Laplacian matrix, q is
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the cluster indicator, A is the eigenvalue and D is the degree matrix. Using incremental
computation yields to a lower computational cost than the standard spectral clustering.
Incremental computation only takes into account changes, thus the computation matrix
is sparse. In addition, a tunable threshold 7 is used to balance the computational cost
and the accuracy. One drawback is that errors are accumulated after several steps and
when the dataset grows or changes frequently the associated cost becomes expensive.

Modularity optimization is the most popular method for community detection. It is
extended to detect community evolution, e.g., the modularity-driven clustering proposed
by Gorke et al. [50]. Their basic idea is to detect community structure by starting from
a pre-clustering obtained from a standard modularity optimization heuristic. Then,
they proposed and discussed heuristics based on global greedy algorithms or on local
greedy algorithms. They pass a pre-clustering to the global version to adapt it to the
dynamic case (dGlobal). Similarly, the local version remembers its old results: roughly
speaking, the dynamic local version (dLocal) starts by letting all free (elementary) nodes
reconsider their cluster. Then it lets all those (super-)nodes on higher levels reconsider
their cluster, whose content has changed due to lower level revisions. Similarly, Dinh et
al. [29] proposed another method extended from community optimization.

The community detection based on node similarity such as DBSCAN [37] is also
extended for detecting dynamic community evolution [36]. DBSCAN considers a com-
munity as a core node and a neighbourhood. For each core node, its community must
consist of at least 7 nodes within a radius distance €. In Incremental DBSCAN [36],
each community updates its neighbourhood if its community members have changed
their neighbours. Similarly, DENGRAPH [39] detected community evolution according
to the core nodes and their neighbourhoods. Instead of a distance radius €, a different
distance function is proposed to compute core nodes and their neighbourhoods.

Incremental or online method can detect dynamic communities and save time by
avoiding computations on sub-graphs where there is no change. However, all above
approaches need predefined parameters.

Conclusion

There exist many other evolutionary clustering approaches. As mentioned in Sec-
tion 1.2.2, information theory has also been used to detect community evolution in
dynamic graphs. Sun et al. applied the MDL to find the minimum encoding cost to
describe a time sequence of graphs and their partitions into communities. The basic
principle of this method is to encode the graph topology into a compression information
with the minimum cost of the description. This method enables to provide meaningful
information on community evolutions. However, one drawback is the problem called
relevant variable, which is the variance between real data and data compression. To
what extent is information theory able to capture community structures? To our knowl-
edge, we are still far from a precise definition of community while modularity (defined
by Eq.1.2) is the widest accept quality function.
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Figure 1.8: Schematic of a multislice (couplings) network. Four slices s = {1,2, 3,4}
represented by adjacencies A;j; encode intra-slice connections (solid). Inter-slice con-
nections (dashed) are encoded by Cj,s , specifying coupling of node j to itself between
slices r and s. For clarity, inter-slice couplings are shown for only two nodes and depict
two different types of couplings: (1) coupling between neighboring slices, appropriate for
ordered slices; and (2) all-to-all inter-slice coupling, appropriate for categorical slices.
The figure is gained from Ref. [88].

As opposed to two-stage approaches, evolutionary clustering does not encounter the
matching problem. However, most methods are using parameters. Furthermore, we
stress that evolutionary clustering results are generally too strongly correlated with
community history which may occult structural changes.

1.3.4 Coupling graph clustering

Coupling graph clustering approach is based on a coupling graph as shown in Fig. 1.4.
The underlying idea is once the coupling graph built (encompassing the time dimension
as edges) to use an efficient standard static community detection heuristic. The first
attempt is [62] where authors built a temporal graph and then used the classical com-
munity detection algorithm Walktrap [102]. The community evolution can be traced
through group memberships over time.

Another method is proposed by Mucha et al. [88]. They detected dynamic com-
munities by optimizing a modified modularity, which is motivated by a-cost (Eq. 1.3).
The modified modularity balances the contribution of community memberships to each
slice and the cost for changing community memberships. The major advantage of this
algorithm is to smooth community evolution. However, its results rely on the parameter
« and the relative weight of coupling.
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This idea of coupling graph clustering simplifies the problem of detecting community
evolution. However, it introduces the problem about how to construct coupling graphs:
how to add the weight on coupling edges? what is the length of coupling windows (i.e.,
the longest time interval between nodes connected by coupling edges)? For the length
of coupling windows, we illustrate examples in Fig. 1.8. This figure is taken from [88],
where each snapshot graph is called a slice. Two different lengths of coupling windows
are given: a) couplings between neighboring slices such that the length is two time steps;
and b) all-to-all inter-slice couplings such that the length is the total time steps.

1.4 Benchmarks

When designing a new algorithm, it is necessary to stress it through series of simple
benchmark graphs, artificial or from the real world, for which the community structure
is known. If the algorithm provides results agreeing with the ground truth, we may
consider that the algorithm is reliable and can be used in applications. In this section, we
firstly describe current benchmarks for testing dynamic community detection algorithms,
and secondly review measures for comparing the similarity between computed modular
structure and a ground truth.

1.4.1 Benchmark graphs
Computer-generated graphs

Computer-generated graphs try to build random graphs that have natural partitions.
The simplest model of this form is for the graph bisection problem. This is the problem of
partitioning the vertices of a graph into two equal-sized sets while minimizing the number
of edges bridging the sets. To create an instance of the planted bisection problem, we
first choose a partition of the vertices into equal-sized sets V; and Vo. When then choose
probabilities pin > pout, and place edges between vertices with the following probabilities:
The expected number of edges crossing between Vi and Va will be pout|Vi| [Va|. If pin
is sufficiently larger than po,t, then every other bisection will have more crossing edges.
There have been many analyses of the generalization of planted partition models to
more than 2 partitions [26, 85]. The number of sub-graphs is equal to the number of
predefined communities, and nodes within the same community are connected with a
probability of piy, and connect to the rest with a probability of poyt. In addition, each
subgraph is modeled by an Erdés-Rényi’s model, which assigns equal probability to all
graph edges. The model is motivated by the idea that vertices (or general items) belong
to certain categories, and that vertices in the same categories are more likely to be
connected. Such models also arise in the analysis of clustering algorithms. However, it
is not clear that these models represent practice very well.

Lin et al. [123] have proposed a computer-generated benchmarks for testing their
evolutionary clustering framework called FacetNet (See Section 1.3.3). They use the
model of Newman [95] similar to the previous model as a basis (4 clusters of 32 nodes).
They generate different graphs for each time steps. In each time step, dynamic is
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introduced as the following: from each community, they randomly select 3 members
to leave their original community and to join randomly the other three communities.
Edges are added randomly with a higher probability p;, for within-community edges and
a lower probability pey: for between-community edges. The average degree for nodes is
set to 16.

Another similar benchmark is proposed in [31]. To introduce change points (See
Section 1.2.2), sequence of graphs are separated into segments. FEach segment is a
sequence of graphs sharing the same community structure. The average degree of nodes
and the internal and external connection probability are fixed. The edge weights are
integers randomly chosen from 1 to 10 for intra-community edges and from 1 to 6 for
inter-community edges.

All benchmarks for dynamic community detection extended from the planted par-
tition model, used by Newman et al. have two main drawbacks: a) all nodes have the
same expected degree; b) all communities have equal size. These features are unrealistic,
as complex networks are known to be characterized by heterogeneous distributions of
degree and community sizes.

Greene and Doyle [51] proposed a set of benchmarks based on Lancichinetti and
Fortunato’s technique [72]. Lancichinetti and Fortunato assumed that the distributions
of degree and community size are power laws, with exponents 7 and 7o, respectively.
Each node shares a fraction 1 — u of its edges with the other nodes of its community
and a fraction p with the rest of the graph; u is a mixing parameter in range of [0, 1].
Greene and Doyle contracted four different synthetic networks for four different event
types, covering 15,000 nodes over 5 time steps. In each of the four synthetic datasets,
20% of node memberships were randomly permuted at each step to simulate the natural
movement of users between communities over time. Subsequently, community dynamic
events were added as follows:

Intermittent communities at each time step, 10% of communities are unobserved
from time ¢t = 2 onwards.

Expansion and Contraction at each time step, 40 randomly selected communities
expand or contract by 25% of their previous size.

Birth and death at each time step, 40 additional communities are created by remov-
ing nodes from other existing communities, and randomly remove 40 existing com-
munities.

Merging and splitting at each time step, 40 temporal clusters of communities split,
together with 40 cases where two existing communities were merged.

Chen et al. [22] constructed benchmark graphs using GTgraph [7] based on a re-
cursive matrix graph model (R-MAT) [20]. The R-MAT model follows the preferential
attachment idea (growing model where new nodes prefer to connect to existing nodes
with higher degrees). In order to build a graph, the R-MAT recursively subdivides
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Figure 1.9: The R-MAT model. The figure is gained from Ref. [20].

the adjacency matrix into four equal-sized partitions, and assigns edges within these
partitions with a unequal probabilities:

1. Starting with an empty adjacency matrix, which represents a subgraph for edge
assignment;

2. Assign edges into the matrix with probabilities a, b, ¢, d respectively (See Fig. 1.9).

The chosen partition is again subdivided into four smaller partitions, and the above
procedure is repeated until the chosen partition is composed of a simple cell such as a
single node. In Chen et al.’s method, they define some nodes as graph-dependent nodes.
These graph-dependent nodes play the role of core nodes, and are used to identify
communities. The community dynamics can be revealed by the community member
changes, where these communities are mapped through graph-dependent nodes.

The main drawback of above computation-generated benchmarks is that the evolu-
tion of a dynamic network corresponds to a fixed probability. We may expect that in
real networks communities may experience heterogeneous changes such as bursty node
insertion probability, node deletion probability, link insertion probability or link deletion
probability.

1.4.2 Real networks

Real networks are also used to show performances of algorithms, such as Karate, Foot-
ball, Dolphins and Neural. When dealing with real data, the main issue is generally the
ground truth or a fine and precise expertise on the data sets. Real networks are released
by Newman and can be downloaded from http://www-personal.umich.edu/~mejn/
netdata/.



CHAPTER 1. COMMUNITY DETECTION IN DYNAMIC NETWORKS 38

coupling=0
5
10
3 15
T
3 -1
£ 2
25
30F "
1 2 3
resolution parameters
coupling = 0.1
5-
10F
3 15F
g
o (e
=

1 2 3
resolution parameters

coupling =1

2 3 4
resolution parameters

Figure 1.10: Multislice community detection of the Zachary Karate Club network [133]
across multiple resolutions. Colors depict community assignments of the 34 nodes in
each of the 16 slices (with resolution parameters ya = {0.25,0.5,...,4}), for w = 0
(top), w = 0.1 (middle), and w = 1 (bottom). Dashed lines bound the communities
obtained using Newman-Girvan modularity [95]. The figure is gained from Ref. [88].
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Mucha et al. [88] performed simultaneous community detection across multiple res-
olutions (scales) in the well-known Zachary Karate Club network, which encoded the
friendships between 34 members of a 1970s university karate club [133]. Keeping the
same unweighted adjacency matrix across slices (each slice represents a graph at a time
step), the resolution associated to each slice is dictated by a specified sequence of ya
parameters, such as ya = {0.25,0.5,0.75,...,4}. In other words, given a serie of slices
Aijn = {Ai;(1),..., Aij(A)}, these slices share the same unweighted adjacency matrix
such as V t,,ts , Ajj(t,) = Aij(ts). Figure 1.10 depicts the community assignments ob-
tained for coupling strengths w = {0,0.1,1} between each neighboring pair of the 16
ordered slices. These results simultaneously probe all scales, including the partition of
the Karate Club into four communities at the default resolution of modularity. Addition-
ally, nodes that have an especially strong tendency to break off from larger communities
are identified.

The previous definition for building benchmark graphs does not change interactions
between nodes. Community structure changes observed are caused by tuning the res-
olution (scale) of the networks. Therefore, we can not use it to test the reliability of
community dynamic detecting algorithms. Its other drawback is that the algorithm
should use the same resolution parameter, otherwise it fails to test the performance of
the algorithm in smoothing community evolution.

1.4.3 Comparing partitions

To measure the similarity between the built-in modular structure of a benchmark and
the one delivered by an algorithm, several similarity measurements are possible. The
most used similarity measurement is the normalized mutual information, which is based
on information theory [28]. The idea is that, if two community structures are similar
to each other, only little information is used to infer one community structure by given
the other one.

The normalized mutual information is based on the mutual information. The mutual
information for two random variables X, Y is denoted by I(X,Y’), and is defined as:

P(x,y)
I[(X,Y)= P(z,y)log ———=—~
2.2 PE)PW)

where P(z) indicates the probability that X = x (similarly for P(y)) and P(x,y) is the
joint probability of X and Y, i.e., P(z,y) = P(X = z,Y = y). Actually, (X,Y) =
H(X) — H(X|Y), where H(X) is the Shannon entropy of X and H(X|Y') is the the
entropy of X conditional on Y.

Danon et al. [28] defined the normalized mutual information (NMI) for comparing
the similarity between two partitions: P, and P,. Let n, and n, denote the num-
ber of communities in the partition P, and P, respectively. The normalized mutual
information is defined as:

21(Py, Py)

ML= ) T aem,)

(1.7)
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where n, and n, denote the number of communities in two partitions P, and P, respec-
Ci C
tively, P(C;) = |Cn—| and P(C;,C) = Ging;|

(2] 7 n
Danon et al.’s normalized mutual mformation can be directly written in:

-2 > N;jlog N”N.J
ZZ 1 Nie log = Nie | Zj 1 Nejlog —

where Nj;; represents the size of overlaps in communities ¢ and community j, N, is the
sum of 4-th row in matrix IV;;, and N,; is the sum of j-th column. The normalized mutual
information is equal to 1 if the partitions are identical, whereas it has an expected value
of 0 if the partitions are independent.

This normalized mutual information is extended for comparing covers in [70]. The
normalized mutual information for covers S, and S, is denoted by N(S.|S,), and is
defined as:

NMI =

o (1.8)

N(SelS,) = 1 5 (S kS, hnorm + HIS, |82 orn] (19)

where the normalized conditional entropy of H(Sy|Sy)norm (similarly to H(Sy|Sz)norm)
of the cover S, with respect to S, is defined as:

1 <& H(S,|S,)

H T norm — ) hy i x Ny = |Ox
(Sz|Sy) - H(S) where S; € S, ,ny = |Sy

The conditional entropy of \S; with respect to all the components of S, is defined by:
H(S;|Sy) = min H(S;|S} 1.10
(515)) = gpin H(1S) (1.10)

where H(SZ\S;) denotes the conditional entropy of a community .S; by given a community
S;.

As Eq. 1.10 only counts the minimum H(S;]S), this extended normalized mutual
information suffers from the following problem: some communities sharing few common
nodes may be not be taken into account. Moreover, this normalized mutual information
is not ideal: given two covers S;, Sy, if only one community of S; is divided into several
small ones in S, while all the others communities stay identical, the normalized mutual
information is low because some communities have very low conditional entropy.

The main drawback of the above similarity measurements is that they are proposed
for static graphs, and they do not consider the community dynamics. Therefore, we pro-
pose to measure the similarity between the found community structure and the ground
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truth of dynamic graphs by counting the similarity between every pair of communities’
evolution paths. We can write NMI (Eq. 1.7) by setting

S 1Ci(t)]
PC) = =52
@) Y n(t)
Sr L |Ci(t) N Cy(t)]
Y n(t)

where n(t) represents the nodes assigned to the partition in time ¢ and C;(t) represents
the observation of community C; at time ¢ (similarly for C;(t)).

1.5 Conclusion

In this chapter, we have reviewed current research about community detection in dy-
namic networks. From our review, we observe that this issue has attracted a lot of
work in recent years. Diverse approaches have been proposed and applied for detecting
communities in dynamic networks and mining community dynamic models. A number
of important issues stay open, such as benchmark graphs, overlapping community evo-
lution. Finally, the main motivation encouraging us is to mine the relationship between
the algorithmic communities compare to the reality. Why communities split, or merge,
or disappear? What is the effect of overlapping nodes? To answer these questions, we
study features behind graph topology and hope to learn more information.



CHAPTER 2

Overlapping communities and
modularity

In real networks, it is common for nodes to belong to several communities. Communities
may thus overlap with each other. For example, people may share the same hobbies in
social networks [122], some predator species have the same prey species in food webs [66]
and different sciences are connected by their interdisciplinary domain in co-citation net-
works [86]. However, most of heuristic algorithms are proposed for partition detection,
whose results are disjoint communities. We devote this chapter to the detection of
overlapping community structure.

Diverse methods have been proposed to detect overlapping community structure.
However, the problem remains. For example, Palla et al. [98] have proposed the clique
percolation method (CPM) to detect overlapping communities. This method is based
on clique percolation: a k-clique (a complete subgraph of k nodes) is rolled over the
network through other cliques with £ — 1 common nodes. In this way a set of nodes
can be reached, which is identified as a community. One node can participate in more
than one community, therefore overlaps naturally occur. The method, however, is not
suitable for non-trivial networks, such as WikiTalk which is a sparse network consisting
of star-like communities.

In order to provide the exhaustive information about overlapping community struc-
ture of a graph, we introduce a novel quality function to measure the quality of the
overlapping community structure. This quality function is derived from the Hamilto-
nian and explains the quality of community structure through the energy of spin system.

In this chapter, we propose two different methods to detect overlapping nodes based
on partitions. We can obtain overlapping community structure by adding these over-
lapping nodes to their related communities. Our first method is called clique optimiza-
tion. Clique optimization aims at detecting granular overlaps. The clique optimization
method is a fine grain scale approach. Each granular overlap is a node connected to
distinct communities and it is highly connected to each community. Roughly speaking,
a granular overlap is shared by several distinct communities while being intrinsically a

42
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member of each of them. The second method is named fuzzy detection. Fuzzy detection
is at a coarser grain scale and aims at identifying modular overlaps. Modular overlaps
represent groups of nodes that have high community membership degrees with several
communities. A modular overlap is itself a possible cluster/sub-community. As opposed
to granular overlaps, modular overlaps imply the hierarchical organization of the graph:
modular overlaps are sub-communities shared by several communities. The obtained
results of the two methods are different. Since the two methods offer a different granu-
larity scale (fine and coarse), they are complementary and meaningful in characterizing
overlapping nodes.

The outline of this chapter is as follows. Section 2.1 introduces current work in cover
detection. In Section 2.2, we describe our novel extension of modularity. In Section 2.3
and Section 2.4, we present clique optimization and fuzzy detection in details. We also
show their performances when analyzing a real network in Section 2.5. In Section 2.6,
we discuss our methods and give a brief conclusion in Section 2.7.

2.1 Related work on cover detection

In the following, we present a class of network clustering algorithms which allow nodes
to belong to more than one community.

Baumes et al. [11] proposed a density metric for clustering nodes. In their method,
nodes are added into clusters if and only if their fusion improves the cluster density.
Under this condition, the results really depend on the initial seeds. Seeds can be a
random node or disjoint communities. As shown in their results, there is a huge variation
in the number of communities regarding the type of seed used.

Lancichinetti et al. has made efforts in cover detection including fitness-based func-
tion [71] and OSLOM (Order Statistics Local Optimization Method) [73]. The former is
based on the local optimization of a k-fitness function, whose drawback is to introduce
the tunable parameter k. The later uses the statistical significance [74] of clusters wich
induces an expansive computational cost as it sweeps all nodes for each ”"worst” node.
For the optimization, Lancichinetti et al. [73] propose to detect significant communities
based on a partition. They detect a community by adding nodes, between which the
togetherness is high. This is one of the popular techniques for overlapping community
detection. There have similar endeavors like greedy clique expansion technique [76] and
community strength-based overlapping community detection [127]. However, as all ap-
proaches applied Lancichinetti et al.’s k-fitness function, the results are limited by the
tunable parameter k.

Some cover detection approaches are based on different basis. For example, Reichardt
et al. [106] introduced the energy landscape survey method, and Sales Pardo et al. [110]
proposed the modularity-landscape survey method to construct a hierarchical tree. They
aim at detecting fuzzy community structure, whose communities consist of nodes having
high probability to belong to the same group. As noticed in [110], they are mainly limited
by a scalability factor in terms of network size.

Evans et al. [38] proposed to construct the line graph of the original network which
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transforms the problem of node clustering into the problem of link clustering. It allows
nodes to be shared by several communities. The main drawback is that, in their results,
whatever the network, overlapping communities always exist.

2.2 Modified modularity for covers

2.2.1 A novel modularity

Modularity has been employed by a large number of community detection methods.
However, it only evaluates the quality of partitions. Here, we introduce a novel extension
for covers, which is combined with the Hamiltonian.

Many scientists deal with the problems in the area of computer science based on
principles from statistical mechanics or analogies with physical models. When using
spin models for clustering of multivariate data, the similarity measures are translated
into coupling strengths and either dynamical properties such as spin-spin correlations are
measured or energies are interpreted as quality functions. A ferromagnetic Potts model
has been applied successfully by Blatt et al. [103]. Bengtsson and Roivainen [14] have
used an antiferromagnetic Potts model with the number of clusters as input parameter
and the assignment of spins in the ground state of the system defines the clustering
solution. These works have motivated Reichardt and Bornholdt [106] to interpret the
modularity of the community structure by an energy function of the spin glass with the
spin states. The energy of the spin system is equivalent to the quality function of the
clustering with the spins states being the community indices.

Let a community structure be represented by a spin configuration {o} associated to
each node u of a graph G. Each spin state represents a community, and the number
of spin states represents the number of communities of the graph. The quality of a
community structure can thus be represented through the energy of spin glass. In [106],
a function of community structure is proposed to

1. reward within-community links (internal links),
2. penalize within-community missing links (internal non-links),
3. reward non-links between different communities (external non-links), and

4. penalize existing links between different communities (external links).

Its expression is written as:

H({J}) = — Zi;éj Qjj Aij(S(UZ‘, O’j) + Ei;ﬁj bij (1-— Az‘j)(S(UZ', Uj)
—_——
internal links internal non-links
+ 2 iz Cij Aij (1 = 0(0i,05)) — 22545 dij (1= Aij)(1 = 6(0i, 05))
external links external non-links

where o; denotes the spin state (or community index) of node i, and a;j, bij, ¢ij, dij
denote the weights of different contributions, respectively. The Kronecker delta symbol
d(04,05) yields 1 if and only if o; = o and 0 otherwise.
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ns

Figure 2.1: Example of [-],,., where the union of clusters n; and ng is n, such that
n1 Ung = n, and the cluster ng belongs to the rest of the graph.

Let the weights on existing links be equal, i.e., aj; = ¢;;. (Similarly for non-links,
we have b;; = d,;j). Then, only internal links and non-internal links are considered. A
convenient choice to balance the importance of internal links and non-internal links is
a;j = 1 — yp;; and b;; = vp;;, where «y is a parameter and p;; denotes the probability of
a link existing between nodes ¢ and j, normalized such that Zi# Dij = 2m.

A further simplified Hamiltonian for measuring the quality of a community structure,
is written as:
H({o}) = = (Aij —pij) (0, 7)) (2.1)
i#j

We also can write the function (Eq. 2.1) in the following two ways:

H({O}) = - Z(mss - ’7 mss p” = Z Cs (2.2)

S

and

H({U}) = Z(msr - msr pl] Z Qgr (23)
s<r
where for each community Cs, we note mgs the number of links within Cy, mg, represents
the number of links between a community Cs and another community C,, [mss]pij and
[Msr]p;; are the expected number of links given a link distribution p;;. The cohesion
of Cy is noted cs; and ag,- represents the adhesion between a community Cs and another
community C,.
We can assume diverse expressions of [-],, ;» which is an expectation under the link
distribution p;;. In case of Fig. 2.1 for disjoint clusters n; and ng, the choice should
satisfy the following:

1. when n is a cluster belonging to the rest of the graph, [misp,; + [maslp,; =
[m1+2,8]pij;
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(a) niy MNng = (b) no1 N No2 = No nrsl NnNrs2 = Ny Ung

Figure 2.2: Let us denote the union of the clusters ng and ny by ng;. Similarly, we
denote the union of the clusters ng and ng by nge, the union of the clusters n,. and ng by
nrs, the union of the clusters ny, n, and ng by n,s1 and the union of the clusters ns, n,
and ng by n,s2. Three different subdivisions of the community n3: (a) two disjoint sub-
communities ni,ns ; (b) two overlapping sub-communities ng1, ng2 sharing a cluster ng;
and (c) two overlapping sub-communities n,s1,n,s2 sharing two clusters n, ,ns, where
ny,ns are disjoint sub-communities of ng such as n, Nng = 0 and n, Ung = ny.

2. when n,. is an union cluster composed of ny and na, [mr|p,; = [M11]p,; + [Maalp,; +
[le]pij'

Similarly, we give a relation for the cohesion of a community n3 (the whole graph)
and two sub-communities n; and ng with an empty intersection such as ny Ung = ng
and n1 Nng =0 (See Fig. 2.2 (a)). From Eq. 2.2 and Eq. 2.3, we can easily prove:

€3 = c1 + C2 + a1z (2.4)

where c3 denotes the cohesion of ng that is the union of n; and ny with an empty
intersection, a1 denotes the adhesion between n1 and ng, ¢; and ¢y are the cohesions of
sub-communities n1; and ng respectively.

Furthermore, we can give the relations for the cohesion of n3 and two sub-communities
ny and ng in other cases (See Fig. 2.2).

In the subdivision (See Fig. 2.2 (b)), there is an overlapping cluster ny between ng;
and nge. We write the cohesions for sub-communities ng; and ngo as:

0

081 :68+01+a81
0 0
602260+02+a02,

where 081 and 082 denote the cohesion of the sub-communities ng; and ngy respectively,
ad; and aJ, denote the adhesion between ng and ni, ng. Here, ng is shared by ng; and
no2.

For the adhesion, we have:

0o _ 0 0
ap1,02 = Aoy + Ao + a12

between ng; and ngs.
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For the union of ng = ngy U nge, we obtain

c3 =co+c1+co+agr + age + aln

= 268 +c1+co+ 2a81 + 2@82 +ao .

So we derive 1 1 1
68 = 500 ,a81 = 56101 and a82 = 5“02- (2.5)

In the subdivision (See Fig. 2.2 (c)) such as n, U ng = ng, we replace ¢y and ¢J by

{COZCT+Cs+ars (26)

0 r S TS
Co :Cr+cs+arsa
where ¢ and ¢ denote the cohesion of overlapping sub-communities n, and ng respec-
tively. a;.: denotes the adhesion between overlapping sub-communities n, and ng, which

satisfies a;.; = %a,«s due to Eq. 2.5.
Therefore, we propose the contribution of a,s for all communities {Cy,...,C}:

k
1 dy N dy|
T g %9rs — T 1 TS 9 2'7
Zl dy Uds] ™™ ™ |dy Uds” 27)

where d, and ds denote the community memberships of n, and ng, respectively.
With the Hamiltonian (Eq. 2.1), we rewrite the modularity @ 1.2 as:

Q=-—H({o}). (28)

Consequently, we can write the quality of an overlapping community structure in
the form of the modularity function:

1 kik; \ |di N dj
o = — A — L I eV 2.9
@ 2m oy ( J 2m> |diUdj’ ’ ( )

where d; and d; are memberships of nodes ¢ and j, respectively. For a pair of nodes ¢ and

J always belonging to the same community such as d;Nd; = d;Ud;, their contribution to

kik;

the modularity is (Aij — ij> For a pair of nodes ¢ and j never belonging to the same

community such as d; N d; = 0, their contribution is 0. Otherwise, their contribution
kik;
om
is a strict partition, its quality Q,, is equal to the initial modularity Q) defined by the
Equation 1.2.

is within the range of [0, (Al-j — )} Furthermore, if the found community structure
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2.2.2 Existing modularity for covers

There are other extensions of modularity designed to evaluate the quality of overlapping
community structure. However, we are going to prove that they fail to satisfy above
necessary constraints.

In the case Fig. 2.2 (c), we assume that n, is an overlapping node v;. Similarly for
ng, Ng is an another overlapping node v; which connects to v;. The union of v; and v;
is ng such that ng = v; Uv;. The overlapping communities ng; and ngz are denoted by
C; and Cy of a graph Gexample, respectively.

Let O, be the number of communities to which node v belongs. Shen et al. [112]
have introduced an extended modularity:

1§ 1 Fuku
Qshen — % Z Z OUOw <Av’u) - o > 5(01},0’10) (210)

1=1 veC;,weCjvFw

From Eq. 2.8, it is easy to obtain aglshen derived from Qgpen (Eq. 2.10):

1 kyk 1 ky. ky.
0 E vhw v; v
e = 2 (Avw - 2m ) * 2 (Avivj 2m mj)

vENQ,WECL\No

It fails to satisfy a3, = 1ag (Eq. 2.5), where

ok sk,
aOlshen = Z <Avw - 2m > + 2 (Avivj — 2mj>

vENQ,wECL\no

In other words, through the definition of Qghen, we obtain different values of the
quality in views of Fig. 2.2 (b) and Fig. 2.2 (c) although they represent the same cover.

In [89], Tamas Nepusz et al. haved proposed a variant of modularity measure, which

is defined by:
1 kik;
quzzy = % Z (A’L] - m ) Sij
2y

where s;; = 226:1 Ug;ug;. The membership degree between node i and community £,
uk; satisfies > ¢ wip = 1.
As we did previously, for node v;, € 19 in Gexample, Under the assumption: wu,,c, =
Uy, = Un;Cp = UpjC,y = %, it is easy to obtain
0 vy ¢CUC,
Svpve = 0.5 Uy € C3 UCy, vy & o , (2.11)
0.25 UV F Uy

We obtain that

1 kyk 1 ko Ky,
0 _ vhw v; Vo
aOlfuzzy - 5 Z <Avw - om ) + 5 (A'ij - om )

vENQ,WECL\No
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It also does not satisfy aJ; = Zao (Eq. 2.5) with 01440y = A0 gpen-

By using the novel proposed modified modularity (Eq. 2.9), we obtain

1 kyk Ky, Ko,
0 _ § : vhw v; v
aolov - 5 <AU’LU - 2m ) + <AUZ"U]' - 2mj> :

vENQ,WECL\no

It satisfies a3, = %ao (Eq. 2.5), therefore we consider that our novel modified mod-
ularity is more reasonable to evaluate the quality of overlapping community structure.
However, we can not detect covers by optimizing it since overlapping nodes may degen-
erate the modularity value. For example, in the case Fig. 2.2 (b), the quality can be
represented by

oover = —EH({U}) = (co+c1+ co+ag; + agy)
where a81 = %am and a82 = %aog. And the quality of the partition is

1
" - (co+ c1+ c2+ap1) ,when P = {no1,na2}
par 1tion ___
ov -

- (co+c1 + c2+ ap2) ,when P = {ni,no2}

We find QoVer = partition when ag = agy; otherwise, Qover < QPATHtoOn e to
min(agy, ag2) < ad; + ady = %am + %aoz < max(ap1, ap2). Thus, even in a toy example
where clearly there is a clear overlap (See Fig 2.2 (b)), if the number of links between
ng et ny differs from the number of links between ng et no the quality of the cover will
be less than the quality of the partition once the difference between the number of links
is greater than 0.

To overcome this optimization issue, we propose two methods not based on modular-
ity like function. One is called clique optimization for detecting granular overlaps, and
the other is named fuzzy detection aiming at identifying modular overlaps. Although
granular overlaps and modular overlaps are used to denote overlapping nodes shared by
several communities, they are intrinsically different. Granular overlaps represent nodes
that have high togetherness with distinct communities while modular overlaps denote
sub-communities shared by several communities. Therefore, given a pair of communi-
ties, we may observe several modular overlaps shared by them, while there are only one
group of granular overlaps.

Communities are groups of nodes which probably share common properties. For
instance, communities are groups of proteins participating a specific function in protein-
protein interaction networks; communities are groups of pages dealing with the same or
related topics in the World Wide Web; communities are groups of customers with similar
interests in the network of purchase relationships between customers and products of
online retailers (e.g., www.amazon.com). Communities may overlap, i.e., distinct com-
munities share many nodes. These overlapping nodes reveal the relationships between



CHAPTER 2. OVERLAPPING COMMUNITIES AND MODULARITY 50

N

Figure 2.3: Two different partitions given by a partition detection method. One partition
is shown in green and the other is in red. Both partitions have the same modularity.

communities. Detecting these overlapping nodes and characterizing them can help us
to more understand communities.

One method to detect overlapping nodes is through cover detection, i.e., communities
in covers share overlapping nodes. Of course, we can detect covers by overlapping node
detection, i.e., only overlapping nodes are shared by several communities. Therefore, we
propose the following methods to detect covers. Both them are composed of two phases:
in the first phase, we detect overlapping nodes based on a partition, i.e., the found
overlapping nodes have strong connection or strong membership degree (how strong the
nodes belong to the communities.); and in the second phase, we add these overlapping
nodes to their related communities. Both phases are based on the same partition.
Consequently, we obtain covers and become able to characterize overlapping nodes.

2.3 Clique optimization

The definition of community is not standard. There are different definitions, which
depend on the context such as global definition, local definition and the community
based on node similarity (See Section 1.1.1). Although communities are detected based
on any of above definitions, the most commonly used one for overlapping community
detection is that communities are clique-like objects. Given a clique, each member has
connections with all other members. They are supposed to share common interests.
The applications which detect clique-like communities like CPM [98], SCP [69] on social
networks have good performance. Based on these observations, we propose to detect
covers based on cliques.

2.3.1 Our proposed definition

On the graph example shown on Figure 2.3, its community structure is a cover composed
of two k-cliques. By applying a partition detection method (a modularity optimization
algorithm such as the Louvain algorithm), we obtain two different partitions with the
same high modularity (See Fig. 2.3). We observe that overlapping nodes are separated
by disjoint community boundaries. This observation motivates us to detect overlapping
nodes through cliques, which are separated by disjoint community boundaries.

CPM [98] is one popular method for cover detection. It is designed to uncover the
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community structure composed of k-clique-communities. A k-clique-community is the
union of all k-cliques that can be reached from each other through a series of adjacent
k-cliques. Two k-cliques are said to be adjacent if they share k& — 1 nodes. A k-cligue
template is a clique-like object. It is placed onto any k-clique of the network, and rolled
to an adjacent k-clique by relocating one of its nodes and keeping its other k¥ — 1 nodes
fixed. In CPM, each k-clique-community of a graph is a subgraph that can be fully
explored by rolling a k-clique template on them. Each k-clique template is maximal
for the ’'rolling’ process: there does not exist any other k-clique & — 1 adjacent to the
k-clique template. Through the definition of k-clique-community, each k-clique can be
assigned to the community that contains its one adjacent k-clique.

Similarly, for each disjoint community of a partition, we propose to apply the k-
clique adjacency rolling process on them. A clique is adjacent to a community if and
only if both share £ — 1 common nodes. If a disjoint community can be rolled to an
adjacent k-clique, all members of this k-clique can be assigned to this community. If a
node can be assigned into more than one community, it is a granular overlapping node.

In the following, we give the definition of granular overlapping nodes in two senses:

Definition 3. A node v is a k-granular overlapping node shared by £ communities £ =
{C1,...,Cs} in a strong sense if it belongs to a clique K adjacent to these communities,
that is: YC; € &, \KHCZ\ >k—1.

Definition 4. A node v is a k-granular overlapping node shared by £ communities
E={C1,...,Co} in a weak sense if it is involved in ¢ cliques K = {Ky,..., Ky} which
are adjacent to them, that is: VC; € £, AK; € K such that |[K; NC;| > k — 1.

Remark: Clearly an overlapping node in the strong sense is also an overlapping node
in the weak sense, whereas the converse is not true.

Algorithm 2 A k-clique detection

Input: e = (41, ji01), Nl-i]r-li, k
Output: K a set of nodes describing a k-clique
LN« NS k= k =2, K« {i,j}
2: while k > 0 do
if Kk =1 then
Add anodeve N to K: K+ KUw
K Kk—1
else
Add a pair of connected nodes {iPi°, jPi°} C N to K: K « K U {iPi°, jPic}
N N0 NBE
K4 k—2
10:  end if
11: end while

12: Return KC
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Algorithm 3 Clique optimization
Input: G = (V,E), k
Output: S = {S1,...,S,.} an overlapping community covering of V'
1: Obtain a partition P = {Cy,...,Cp.} by running an efficient partition detection
algorithm on the graph G.
22 S+ P
// STEP 1: Find cliques which are k—adjacent to communities
: for all Edges connecting one granular overlapping node candidate do
4:  Find a clique K}, which is k—adjacent to at least one community

w

5. Find all communities £ = {C1,...,C¢} k-adjacent to K;: VC; € &;, |K;NC;| > k—1
// STEP 2: Update overlapping communities

6: for all k-adjacent communities C; € &; do

T Merge Kj to C;:5; + S; U Kj

8: end for

9: end for

10: Return &

2.3.2 The clique optimization algorithm

Our clique optimization is proposed to detect k-granular overlapping nodes for cover
detection. This algorithm consists of two phases: based on a partition, the first phase
is to detect cliques which are k-adjacent to communities; the second phase is merging
the above detected cliques into communities. The algorithm is sketched in Algo. 3. We
describe it in details below.

After obtaining a partition by running an efficient partition detection algorithm (such
as the Louvain algorithm) on the graph (line 1), we start our first phase.

In order to detect cliques, we use a k-clique detection algorithm (Algo. 2). It starts
by one edge e = (i j). Then this algorithm proceeds by collecting all nodes that
are neighbors of both nodes Nl-i;.li = Njini U Njini, where N denotes neighborhood. Now,
when the edge e = (i™, ™) is added, each k — 2—clique contained in the set N’ (N is
initialized by N;]m) will give rise to a new k-clique (lines 2 — 11 in Algo. 2). Therefore, all
newly formed k-cliques are found by detecting all the & — 2— cliques in the N, where A/
is iteratively updated through the selected edges (iP, jPi°). For commonly used small
clique sizes, this is very fast: for 3-cliques, k — 2-clique is a single node, while for k£ = 4,
all connected pairs of nodes in A/ give rise to a new 4-clique.

We define a node to be a granular overlapping node candidate if its external degree is
at least k— 1. In the first phase (line 3 — 9), we detect all cliques which are k-adjacent to
communities. A simple resolution is based on edges connecting one granular overlapping
node candidate to detect a clique which is k-adjacent to at least one community. Chosen
a granular overlapping node candidate, when a k — 1—clique whose k£ — 1 nodes belong
to the same community is found from N (N is initialized by the neighbourhood of the
chosen granular overlapping node candidate), we find another k—1 clique whose members
belong to another community from the current A/. The final clique is k-adjacent to at
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least one community.

Next, we merge this clique to communities in the second phase (line 6 — 8). For each
clique which shares sets of K — 1 nodes with one community, we merge them. If this
clique shares sets of & — 1 nodes with several communities, we merge this clique into
several communities. Finally, we obtain a cover where granular overlapping nodes are
shared by overlapping communities.

In general, we detect granular overlapping nodes in a weak sense by setting k = 4,
where 4-clique is the smallest cluster larger than a triangle. However, if more than half
of nodes are identified as granular overlapping nodes in a weak sense by using k = 4,
we restrict the definition such that the number of granular overlapping nodes should be
less than half of the nodes in the graph.

The granular overlapping nodes in the strong sense can be used to characterize
community overlaps when we observe many communities sharing a large number of
granular overlapping nodes in a network. In this case, we use granular overlapping
nodes in the strong sense to characterize community overlaps for the following reasons:
a) granular overlapping nodes in the strong sense are granular overlapping nodes in
the weak sense and b) the number of nodes sharing the same common interest with a
granular overlapping node in the strong sense is larger than in the weak sense.

Since granular overlapping nodes in the strong sense are granular overlapping nodes
in the weak sense, the obtained characteristics through granular overlapping nodes in
the strong sense should be shared by granular overlapping nodes in the weak sense.
When the number of overlapping nodes between communities is large enough (e.g.,
more than 100), these overlapping nodes can be considered as a large community for
the characterization!. Therefore, we expect to identify the common interest shared by
these overlapping nodes. Although the weak overlapping nodes have dense connections
between several communities, the number of nodes sharing the same common interest
with a granular overlapping node in the strong sense is more than in the weak sense.
For instance, the maximal clique containing one weak granular overlapping nodes may
have k members. In other words, only k£ — 1 nodes share the common interest with this
weak granular overlapping node. However, for a strong granular overlapping node, at
least 2k — 2 nodes share the common interest.

The worst-case complexity of clique optimization is in O(n*k?): there are O(n*)
subgraphs to check, each of which has O(k?) edges, where n represents the number of
nodes whose external degree is at least 1. Note than n is the size of the community
given by the partition algorithm and one may expect that n is smaller than the total
number of nodes in the graph. Our method is faster than CPM [98] or SCP [69], since
it only detects cliques separated by community boundaries.

Remark on directed graph: From the definitions given above, our clique optimiza-
tion is defined for undirected and unweighted graphs. When analyzing an arbitrary

In [77], best communities are defined to have a size scale between 10 to 100 nodes. Therefore,
when the number of overlapping nodes is above 100, it is better to treat it as a community for the
characterization.
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system, one could decide that the directionality of the links could be ignored if it makes
sense. If u — v means that the entity u is in interaction with the entity v, we may want
to infer that v — w remains valid, yielding u <> v.

Remark on weighted graphs: If connections are weighted, a threshold weight w* is
used to prune weak links and keep those that are stronger than w*. Depending on the
weight distribution, the threshold could be w* = ﬁ > oy kv, where k, is the weighted
degree of node v. If we want to keep all links, w* is simply set to zero. If the threshold
weight is increased, the number of edges is decreased and so is the number of overlapping
nodes. Note that, if w* is increased, the granular overlapping nodes should have stronger
links to their related communities.

2.3.3 Benchmark graphs

We are now going to test the performances of clique optimization. We have considered
a set of synthetic networks and a real network for which the community structure is
known. We show the accuracy of our method through the normalized mutual information
(NMI) [71] by comparing the computed covers to a ground truth. The higher the
variation of information is, the more similar two covers are. If two covers are identical,
NMI is 1. The results obtained by our clique optimization on the following benchmark
graphs are good and presented bellow.

Synthetic networks

In Fig. 2.4, we present the comparison between our clique optimization heuristic and
other cover detection algorithms including CPM [98], COPRA [52] and OSLOM [73].
Figure 2.4 presents the NMI of the results of all selected algorithms applied to LFR
benchmarks [74]. LFR benchmarks are constructed by using a series of parameters:
N the number of nodes, k the average degree, max; the maximum degree, number of
overlapping nodes on, the number of overlapping community memberships om and a
mixing parameter p. The mizing parameter p is the ratio of intra-community to inter-
community connections. For each overlapping node u shared by v, communities, if it
belongs to community &, its adjacent links to & satisfies: K5 = k" Ju,. As we can see,
clique optimization performs near perfectly for small p and small portion of overlapping
nodes on/N: the NMI obtained if roughly greater than 0.9 when p < 0.5. It outperforms
all other heuristic when ¢ < 0.3 and has only a lower NMI than OSLOM when p > 0.3.
Such case could be early explain since OSLOM only detects significant communities. A
stgnificant community is a group of nodes having a larger density of internal connections
than of external links. If a node can not improve any community’s significance (the
difference between the internal connection density and external connection density), it
is defined as an individual node and it is not considered in the community structure
which changes the rules of the comparison.
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Figure 2.4: Tests of our clique optimization on computer generated networks with known
community structure and comparison with CPM [98], CORPA [52] and OSLOM [52].
Here, z-axis denotes the varying mixing parameter p and y-axis represents the average
NMI of 50 samples by comparing the found community structure and the ground truth.
Besides the number of nodes N, the number of overlapping nodes on and the tunable
parameter u, the other parameters are identical: average degree & = 20, maximum
degree max; = 300, minus exponent for the degree sequence t; = 2, minus exponent for
the community size distribution ¢o = 1, minimum community sizes min, = 10, maximum
for community max, = 300, and number of memberships of overlapping nodes om = 2.

Yeast protein complexes

To perform further tests, we consider yeast protein complexes data base (See Fig 2.5).
The combined-AP/MS network? describes 9070 interactions among 1622 proteins. In
order to compare the results to a ground truth, we use a catalogue of protein complexes
provided by CYC2008 [103]. All results are shown in Tab. 2.1.

2 Available at http://interactome.dfci.harvard.edu/S_cerevisiae/
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Binary Co-complex Literature
(Y2H-union) (Combined-AP/MS) (LC-multiple)

Figure 2.5: Graphical representation of three different types of yeast interactome
datasets. (taken from High-Quality Binary Protein Interaction Map of the Yeast In-
teractome Network, Yu et al., Science 2008.)

[ Method [ NMI [ Sensitivity [ Specificity [ Accuracy [ Modularity Eq. 2.9 ]
Clique Optimization | 0.824323 0.514852 0.874587 0.6947195 0.772569
Fuzzy detection 0.702184 0.970297 0.290757 0.630527 0.866759
CPM 0.699512 0.287129 0.801471 0.5442995 0.816893
OSLOM [73] 0.52039 0.257426 0.965677 0.6115515 0.662716
Copra [52] 0.517806 0.118812 0.967657 0.5432345 0.888672

Table 2.1: Results of different overlapping community detections on Yeast protein com-
plexes, in views of NMI, sensitivity, specificity, accuracy and modularity. The results of
fuzzy detection are used to show its performance in identifying granular overlaps. As
we can see, its advantage is not obvious.

We see that clique optimization identifies protein complexes with a high degree
of success. By comparing to other overlapping detection techniques, it provides the
highest NMI [71]. Remind that NMI measures the similarity between the results and
the ground truth. We also provide additional measures: sensitivity, specificity, accuracy
and modularity. Sensitivity is related to the ability to identify the real overlapping
nodes, which is the proportion of real overlapping nodes among the found overlapping
nodes. The low sensitivity of clique optimization is caused by our definition of k-granular
overlapping nodes, i.e., not all real overlapping nodes participate in k-cliques. Specificity
is related to the ability to identify non-overlapping nodes, which is the proportion of non-
overlapping nodes among all found non-overlapping nodes. The accuracy is a ”balanced
accuracy”, which is the sum of sensitivity and specificity. The accuracy focuses on the
capacity of detecting overlapping nodes. One can observe that our clique optimization
heuristic offers the highest accuracy score.
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2.4 Fuzzy detection

In this section, we will introduce another method for cover detection named fuzzy detec-
tion. This novel cover detection heuristic aims at identifying modular overlaps. Modular
overlaps are groups of nodes shared by communities. As mentioned above, there is a
difference between granular overlaps introduced in the previous section and modular
overlaps. Modular overlaps are related to the hierarchy organization. That is, modular
overlaps are sub-communities shared by several communities.

2.4.1 Motivation

Our fuzzy detection algorithm is based on the Louvain algorithm [16]. The Louvain
algorithm is an efficient partition detection algorithm that provides good partitions
with high modularity. It consists of two phases that are iteratively repeated until no
more positive gain of modularity is obtained. Initially, all nodes are assigned into a
single community. Then, for each node whose move improves the modularity, it will be
removed from its current community to the neighbor community which offers the largest
gain of modularity. The first phase repeatedly and sequentially sweeps all nodes until
no further improvement of modularity can be gained. The second phase builds a new
meta graph based on communities found in the first phase. It aggregates nodes of the
same community and builds a new network whose nodes are the communities. Once the
second phase is completed, the first phase is reapplied to the new network. The two
phases are iteratively applied until no more change in community structure or maximum
modularity is achieved. In the following, we use iteration to denote the combination of
these two phases. The partition found by this algorithm is hierarchical organized, the
hierarchy height is determined by the number of iterations. The Louvain algorithm is
extremely fast and provides highly optimized partitions with high modularity.

When running several times the Louvain algorithm on the same given network, we
observe from a run to another that nodes may be grouped together with different com-
munity members in distinct partitions. Since the Louvain algorithm sweeps nodes in a
non deterministic fashion (a random permutation of V'), it naturally introduces insta-
bility which may be a weakness. It turns out that we can take benefit of this instability.
By detecting nodes that jump from one community to another between distinct runs,
we are in fact able to uncover nodes that have high community memberships with dis-
tinct communities. Such ”oscillating” nodes can be considered as overlapping nodes.
Therefore, we propose a fuzzy detection algorithm which detects groups of nodes having
strong connection probability with several communities.

2.4.2 Fuzzy detection algorithm

To have the benefit of the potential Louvain algorithm instability [4], we force the
algorithm to use a random seed at each run. The random seed makes the nodes be swept
in a random permutation during the modularity optimization. Thus, different runs may
produces different partitions. By repeating Louvain algorithm, we are able to compute, a
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Algorithm 4 Louvain algorithm.

Input: G = (V, E), I* a level threshold
Output: P a partition
1: 1+ 0;Gyg G

2: repeat
3: [+ 1+1
4:  Initialize a partition P; of G(V}, E)
// First phase: partition update
5. repeat
6: Nodes in a random permutation
7 for all Nodes: v € V; do
8: Move from o, to one selected o, (v' is a neighbour of v)
9: end for
10:  until no more change increases modularity
// Second phase: Construct a new meta graph
11:  Replace each community by a node
12:  Replace connections between a pair of communities by one weighted edge
13: until P; is not updated or [ = [*.
14: Return P corresponding to the roots of the hierarchical tree.

10 : 5 I I I I I I

I I I
College football ~ +
Karate club
Word adjacencies  *

00001 1 1 1 1 1 1 1 1 1 J
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

runs k

Figure 2.6: As the number of runs increases, the shape of the function value Eq. 2.12
gets closer and closer to 0. The figure shows results on College football [48], Karate
club [133] and Word adjacencies [92].
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Algorithm 5 Fuzzy detection.

Input: G = (V, E), o*, B*
Output: S an overlapping community covering of V'
// STEP 1: Detect robust clusters

1: PY + 0; k < O;modularity, . <+ —o0

2: repeat

3 k+k+1

4: P < Run the Louvain algorithm on G

5. Update P*

6:  if modularity of P greater than modularity,,,, then
T: Save the partition P in P,p¢ and update modularity,,,
8 end if

9: until [|[P¥ —P* 1| <

10: Psc = Popt

11: for all edge e = (i, j) such that p;; < a* do

12:  Remove the external edge e from Py

13: end for

// STEP 2: Adjust the membership of robust clusters
Input: G = (V, E), Psc, S < Popt
14: for all C; € P, do
15:  Identify community core: ¢; = argmax, cc, |¢;|
16: end for
17: Compute P, .,
18: for all ¢; € Py and ¢; ¢ {c1,...,} do
19:  if pc, 5 > B* then
20: S; < S; U Cj
21:  end if
22: end for
23: Return &

co-appearance matrix P = [p;;] . For each pair of nodes (4, ), p;; of P represents the
probability for the pair nodes ¢ and j to appear in the same community. Having p;; = 1
implies that nodes ¢ and j are always in the same community while edges e = (i,7)
having a p;; close to 0 implies that edge e connects two different communities. The
underlying idea of fuzzy detection approach is thus to detect overlapping communities
from a classical partition approach.

Detecting overlapping nodes also allows to detect more stable nodes that always be-
long together in the same community. In this algorithm, we use the notion of community
cores to denote communities. Given a community, its core is a group of nodes offering
high stability against random perturbation. To detect community cores, we're going to
remove edges in order to keep only core nodes. First we remove all external edges, i.e.,
all edges e = (i, j), having a connection probability p;; less than a threshold o*. After
this pruning phase, a set of disjoint robust cluster is obtained. A robust cluster is a
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group of nodes connected by edges having in-cluster probability larger than or equal to
a*. Note that a given community may have several robust clusters. We choose the com-
munity core corresponding to the robust cluster having the maximum size. The notion
of external edges was used in [46] where authors add a random noise over the weight of
the edges of the network (equally distributed between [—o,c]). Once community cores
are identified, we continue iteratively, following the Louvain approach. Similarly, in our
method, we replace the robust clusters by supernodes and connect them through the
connection between robust clusters. In this case, the weight of the edge between the
supernodes is the sum of the weights of the edges between the identified robust clusters.
We run again the Louvain algorithm to compute the probability of robust clusters and
community cores to appear in the same community. Finally, we add each robust clus-
ter to the community if they have a high community membership degree such as their
probability of appearing in the same community is high.

Figure 2.7: Illustration of our fuzzy detection on a toy graph which consists of two
overlapping cliques. After removing all edges in low probability p;; = 50% shown in
red, robust clusters are obtained, concluding {v1, va, v3, v4, v5}, {ve,v7,v8,v9,v10}, and
a single vg.

The global algorithm is shown in Algo. 5. First, (lines 2 — 9) we compute the co-
appearance matrix P = [p;;] . by running the Louvain algorithm of Algo. 4 several
times with a random seed®. The number of runs is determined by the convergence

criteria (line 9):

1 2
||Pk+17PkH: ~ Z (pfflfpfj) < g, (2.12)

(i,5)eE

where P* represents the result after k-th run and pfj denotes the statistical probability
of nodes i and j to belong to the same community after k-th runs (line 5) and ¢ is a

3Louvain algorithm is a hierarchical clustering algorithm. It iteratively merges small clusters to max-
imize modularity. Therefore, it provides a hierarchical tree (or dendrogram) to illustrate the hierarchical
form of organization. If the level parameter is not set, Louvain algorithm gives the partition correspond-
ing to the largest value of the modularity; otherwise, this algorithm returns the partition corresponding
to the roots, that is the partition obtained in the last iteration.
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small threshold. Figure 2.6 illustrates the convergence of the norm when running fuzzy
detection algorithm. We observe that ||[P¥*! — P*|| decreases as the number k of runs
increases.

Then, we detect robust clusters {c1, ca,...,¢cs} = Psc (lines 10 — 13). Given a parti-
tion P,y which has the maximum modularity among all computed partitions obtained
during the first phase, the robust clusters are detected by removing all edges having a
probability p;; lower that a given threshold a* (typically o* = 0.9). A simple illustration
is given in Fig. 2.7.

Finally in the second phase, we identify modular overlaps which have high community
memberships with several communities. Given a community C; € Pop, its core ¢; is the
robust cluster ¢; C C; having the maximum size, such as:

¢; = argmax, cc, |l (2.13)

We assign each robust cluster ¢; to the community C; if and only if their community
membership p,; z is larger than a threshold §* such as p, 5 > 8* (typically 5* = 0.1).
If one robust cluster is assigned to at least two communities, we call it a modular
overlaps. Given a modular overlaps, its members are possible granular overlapping
nodes. Only the granular overlapping node are required to have dense connection with
related communities. The nodes shared by the same modular overlaps are not only
required to have dense connection with related communities and also are required to
have high internal modular degree (the number of links connected to other members
within the robust cluster).

Fine tunning: In cases where a community consists of several robuster clusters of
comparable size, one may tune and increase the value of o* in order to refine the core
identification.

Since fuzzy detection is used to identify modular overlaps, which are sub-communities
shared by several communities, we restrict the modular overlaps to have a size greater
than 3. We can now introduce the notion of unstable nodes, which are nodes connecting
communities with few links but are observed to have high co-appearance probability
with several communities. The Fig. 2.8 illustrates such case. Due to unstable nodes,
we do not use fuzzy detection to identify granular overlaps. As shown in Tab. 2.1, the
results of fuzzy detection may be degenerated by unstable nodes. Moreover, the method
suffers from the classical resolution limit of modularity optimization [44]. Indeed, due
to this resolution limit, two weakly connected communities may possibly be grouped
together if their merge improves the modularity during modularity optimization phase.
Therefore, we may observe some modular overlaps that are not real overlapping nodes
but are the results of modularity optimization. We call them unstable clusters.

The running time of fuzzy detection mainly depends on the co-appearance matrix
calculation. The complexity to find a partition by the Louvain algorithm is estimated by
authors in [16] to be in O(m), where m is the number of edges in the network (the worst
complexity is much higher, but in practice, on real network, Louvain algorithm performs
very well). Thus the computational complexity of fuzzy detection is in O(Km), where
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Figure 2.8: An example graph that contains a unstable node 5. Node 5 has a relatively
high membership degrees with two communities (p = 0.5). However, it is connected to
each community with only 1 link.

K is the number of runs of Louvain algorithm needed before reaching an acceptable
convergence of P. Once more, in practice, we take benefit of the efficient Louvain
algorithm running time and our fuzzy detection is fast. We experiment storage limitation
due to the matrices P* and P**! more that time computing one.

2.4.3 Benchmark graphs

In the following, we test the performances of fuzzy detection. We have considered a set of
synthetic networks and a real network for which the community structure is known. The
results show that our fuzzy detection algorithm extracts communities while preserving
the hierarchical organization and also providing overlaps.

A community structure can be hierarchically ordered when the graph offers several
levels of organization/structure at different scales. In this case, the community structure
is hierarchically constructed by small communities at each level, all nested within large
communities at higher levels. As an example, one may consider in a social network the
granularity of the living place (town), the working place (school) and refine it toward
the graduate or class level.

Synthetic graphs containing hierarchical structure

First, we apply the fuzzy detection algorithm to an artificial graph containing hierar-
chical structure [71]. The result is shown in Fig. 2.9. We observe that fuzzy detection
extracts communities in hierarchical organization. The benchmark graph consists in 512
nodes, assigned into 16 groups of 32 nodes each. These 16 groups are ordered into 4
supergroups. The benchmark is constructed by assigning edges between nodes within
the same micro-community. Each node has a micro-internal degree k1 = 41. Then we
assign edges between nodes belonging into different micro-communities but in the same
macro-community. Fach node has a macro-internal degree ko = 17. Finally we add
edges between nodes to connect them to the rest of the network. All nodes have the
same total degree k = 64 and an external degree k3 = 6. This process constructs two
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Figure 2.9: The co-appearance matrix of synthetic networks containing a hierarchical
structure. The color corresponds to the probability of nodes to be in the same commu-
nity: the darker the color, the higher the probability; color is white if the probability is
0.0.
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Figure 2.10: The co-appearance matrix of artificial networks containing hierarchical
structure. The color corresponds to the probability of nodes in the same community:
the deep color represents the high probability; the color is white if the probability is 0%.

hierarchical levels: one consisting of 16 small groups, and the other one composed of 4
supergroups with 128 nodes each. Figure 2.9 (b) illustrates the co-appearance matrix by
running the Louvain algorithm without fixing the level threshold I* (See Algo. 4), while
Figure 2.9 (a) provides the result by running the Louvain algorithm with [* = 1. In
both figures, the nodes are sorted in the same order corresponding to the robust clusters
and the selected partition Popi. As the distinction among robust clusters is not clear in
Fig. 2.9 (b), we use Fig. 2.9 (a) for the visualization. We observe 4 communities and 32
robust clusters, which agrees with the ground truth.

Remark that, when running our fuzzy detection to identify modular overlaps, we
may need to increase the value of a* to obtain a reasonable community core whose size
is larger than the others within the same community. It occurs when one community
contains several large robust clusters having comparable size.

Next, we apply the fuzzy detection algorithm to a random graph containing modular

Co-appearance %
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overlaps. The graph is composed of 512 nodes, which belong to 12 groups, arranged into
4 supergroups and one group is shared by two supergroups. Every node has an average
of k1 = 30 links with nodes in the same micro-community, ks = 13 links with nodes in
the same macro-community but different micro-community. In addition, each node has
ks = 5 links with the rest of the networks. As the modular overlaps has macro-links with
two communities, its nodes have a total degree £ = 61 while the other nodes only have
a total degree k = 48. Figure 2.10 illustrates the result. We observe two communities
that share one modular overlap. Results show the good performance of fuzzy detection
algorithm in uncovering modular overlaps.

College football network
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Figure 2.11: The co-appearance matrix of college football network by running our fuzzy
detection. We order the nodes corresponding to their conferences and mark the confer-
ence indices. The color corresponds to the probability of nodes in the same community:
the deep color represents the high probability; the color is white if the probability is 0%.

We also run the fuzzy detection algorithm to real networks. A famous real but small
and tractable network is the US college football [48] . This network records the schedule
of Division I games for the 2000 season: 115 nodes represent teams (identified by their
college names) and 613 edges represent regular season games between the two teams
they connect. What makes this network interesting [48] is that it incorporates a known
community structure. The teams are divided into ”conferences” containing around 8
to 12 teams each. Games are more frequent between members of the same conference
than between members of different conferences, with teams playing an average of about
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7 intra-conference games and 4 inter-conference games fraction of vertices classified
correctly in the 2000 season. Inter-conference play is not uniformly distributed; teams
that are geographically close to one another but belong to different conferences are more
likely to play one another than teams separated by large geographic distances.

In Fig. 2.11, we illustrate the results: the community ”Mountain West Sunbelt”
is split into "Mountain West” and ”Sunbelt;”, the community ”Sunbelt SEC” has a
possible subdivision into ”Sunbelty”* and "SEC”, and a node ” CentralFlorida” is split
from the community ”Pac 10”. Among them, only ”Sunbelt;” is identified as a modular
overlaps. ”CentralFlorida” has high membership degree with different communities,
too. But it is a granular overlapping node rather than a modular overlaps. In reality,
the team ”CentralFlorida” did not belong to any conference, and the teams in the
?Sunbelt” conference played nearly as many games against Western Athletic teams as
they did within their own conference. Therefore, we consider fuzzy detection has a good
performance in detecting modular overlaps for this real network.

2.5 Application to real networks: Complex System Sci-
ence

In this section we consider the applications of clique optimization and fuzzy detection to
a real network called Complex System Science. It is a co-citation network, whose dataset
is composed of articles extracted from the ISI Web of knowledge. Article were published
between 2000 and 2009. The network is composed of 141 163 nodes and 19 603 888 links.
The nodes correspond to articles containing a set of keywords relevant to the field of
complex systems. The weight of the links between articles is calculated through their
common references (bibliographic coupling [65]). A link exists between two articles
if they share references, meaning that they cite common work which may implies that
they are dealing with a same scientific object/domain. More precisely, given two articles
(nodes) ¢ and j, each one having a set of references R; (respectively R;), there exists a

link e = (7,7) between i and j if ¢ and j share at least one reference and the weight is
’Ri N Rj‘
measured by: w;; = —————.
VIR Rl
For the visualization, we only show clusters which contain at least 100 nodes®. The
partition of the graph is shown in Fig. 2.12. Each community corresponds to a unique
color. Our obtained robust clusters are shown in Fig. 2.13. The color of each robust
cluster corresponds to the relevant community in the partition shown in Fig. 2.12. Only
robust clusters belonging to the same community in the partition share the same color.
In Fig. 2.12, we observe 12 communities. These communities can be identified by
research topics or theoretical fields through studies in topic keywords, see Tab. B.1. We
compute the frequency of topic keywords by aggregating the number of units (articles).
For instance, if only one unite contains the topic keywords ”Neurons”, the corresponding

4We do not mark ”Sunbelts” due to the visualization, since its position is too close to ” CentralFlorida”
in the figure.
5 In [77], the community which has size roughly 100 nodes is good.
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Figure 2.12: The community structure of Complex System Science, in which communi-
ties are identified by research topics or theoretical fields.

frequency is 1. In the figure, the light green community is identified by neuroscience:
biology psychology. This community contains high frequent keywords (NEURONS, PER-
FORMANCE, CENTRAL-NERVOUS-SYSTEM) very general in neuroscience while some high
frequent keywords (BRAIN, LONG-TERM POTENTIATION, DISEASE) seem to emphasize
the study in the field of biological psychology. To our knowledge, biological psychology
or behavioral neuroscience is the study of the biological substrates of behavior and men-
tal processes. Physiological psychologists use animal models, typically rats, to study the
neural, genetic, and cellular mechanisms that underlie specific behaviors such as learn-
ing and memory and fear responses. Cognitive neuroscientists investigate the neural
correlates of psychological processes in humans using neural imaging tools, and neu-
ropsychologists conduct psychological assessments to determine, for instance, specific
aspects and extent of cognitive deficit caused by brain damage or disease.

Table B.2 shows results of clique optimization in identifying granular overlaps in
a strong sense® with a choice of k = 5. We see the applications of chaos theory in

5Between several pairs of communities, their granular overlaps contain more than 100 nodes.
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different disciplines including complex networks, nervous systems and ecosystems. We
also observe the intermediation: visual cortex between neural networks and neuroscience:
biological psychology. Visual cortex is one part of the visual systems, which receives
visual information for processing images. These results are interesting in understanding
the combination of different disciplines and applications.
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Figure 2.13: Results of fuzzy detection on Complex System Science. Robust clusters are
marked by the highest frequent topic keywords. Their colors correspond to the relevant
communities as shown in Fig. 2.12.

Robust clusters are depicted on Fig. 2.13. These robust clusters can be considered
as sub-specialities of the identified disciplines listed in Tab. B.5. For example, the com-
munity identified by neuroscience: biology psychology is composed of several clusters,
which are also characterized by research topics or theoretical areas. Note that, the study
in neuroplasticity supports the treatments of brain damage, long-term potentiation con-
cerns learning and memory, pre-botzinger complex is essential for respiratory rhythm,
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and the activities in prefrontal cortex are considered to be orchestration of thoughts and
actions in accordance with internal goals. All these topics and fields refer to the study
in neuroscience and biological psychology. It reveals that fuzzy detection can extract
communities in hierarchical organization.

In terms of modular overlaps, our results are shown in Tab. B.4. Except astronomy-
ISM(Interstellar medium) which acts like a unstable cluster, the rest has a good agree-
ment compared to the reality: discrete-event systems and multi-agents are very common
for modeling and analyzing general systems, computational complexity is a common
property of complex systems, and genetic expression [59, 79] studies are often used to
determine whether a genetic variant is associated with a disease or trait.

Granular and/or Modular Overlaps. Comparing the results of granular overlaps
and modular overlaps is interesting since it reveals their intrinsic differences. For in-
stance, fuzzy detection considers three modular overlaps related to computer science:
communication systems and ecosystems simultaneously, while clique optimization does
not provide any result. We can also observe their similarity. For example, both results
use visual cortex to characterize the overlapping nodes shared by neural networks and
neuroscience: biological psychology. It mainly indicates that, for some cases, the two
types of overlapping nodes can reach an agreement in characterizing overlaps.

Obviously, we can not compare and rank the two methods in a definitive and quanti-
tative way. Granular overlaps and modular overlaps represent results based on different
definitions. To the best of our knowledge, both definitions seem really reasonable to
use since they are more complementary by their intrinsic uncovering structure. Finally,
we conclude that both methods: clique optimization and fuzzy detection, are useful to
identify overlaps in complex networks and to give insights on the complex structure of
real networks.

2.6 Discussion

In this section, we discuss the value of parameter used in our methods. We first present
two networks used in our discussion.

Geography collaboration Geography collaboration is a co-author network combined
with NUTS (The Nomenclature of Territorial Units for Statistics or Nomenclature of
Units for Territorial Statistics)”. Nodes represent geo-codes, which are subdivisions
of countries. Nodes are connected if there exists the collaboration between regions in

scientific publications.

Wikipedia vote network Wikipedia is a free encyclopedia written collaboratively by
volunteers around the world. A small part of Wikipedia contributors are administrators,

TNUTS is a geocode standard for referencing the subdivisions of countries, which is based on the
existing national administrative subdivisions.
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Figure 2.14: Relative performances of clique optimization for the Geography Collab-
oration network when k£ = [4,10]. The number of overlaps decreases 2.14 (a) as k is
increasing. The modularity value increases 2.14 (b) as k is increasing. We notice that
the modularity of the community structure containing overlapping nodes is less than
the partition whose modularity is 0.620506.

who are users with access to additional technical features that aid in maintenance. In
order for a user to become an administrator a Request for adminship (RfA) is issued
and the Wikipedia community via a public discussion or a vote decides who to promote
to adminship. Using the dump of Wikipedia page edit history, 2,794 elections with
103,663 total votes and 7,066 users participating in the elections (either casting a vote
or being voted on) are extracted. About half of the votes in the dataset are by existing

admins, while the other half comes from ordinary Wikipedia users 8.

2.6.1 Granular overlaps and the parameter k

In clique optimization, the parameter k is used to prune nodes that are not overlapping
nodes. If k increases, the number of granular overlapping nodes becomes smaller, but
they are also more cohesive to the relevant communities. By applying clique optimization
to real networks, we discuss the impacts of the parameter k.

We apply our clique optimization to the geography collaboration network. The
average weight of the network edges w* = 0.00402245 is used to prune the weak links.
We compare the relative performances in detecting weak granular overlapping nodes for
different values of k. In Fig. 2.14 (a) the number of overlapping nodes decreases as the
value of k increases. The modularity of overlapping community structure is less than the
modularity of the partition Pop (@p,,, = 0.620506), see Fig. 2.14 (b). Next we compare
the relative distributions for overlapping nodes in weak sense obtained for different values
of k (See Fig. 2.15). In Fig. 2.15 (a) there are differences in the membership number of
overlapping nodes for different values of k. For k = 4, the maximum membership number

Shttp://snap.stanford.edu/data/wiki-Vote.html
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Figure 2.15: Statistics of clique optimization for Geography Collaboration at k& =
4,6,8,10. (a) the cumulative distribution function of the membership number of over-
lapping nodes (b) the cumulative distribution function of the overlap size, (c¢) the cumu-
lative distribution function of p,,; which is the portion of the sum weights on external
degrees to the sum of the weights on the total degrees for a overlapping node.

of overlapping nodes is 9, but it is 6 for £ = 10. We also note the small difference for the
membership number distribution for overlapping nodes between k = 4 and k = 6: only
26% overlapping nodes have the membership number om < 3 for k = 4 while it is 30%
for k = 4 however due to nearly 51% overlapping nodes have the membership number
om < 5 for k = 4 while it is 50% for k = 6. It reveals that the overlapping nodes obtained
at k = 4 are easier to have the membership number om = 4. Figure 2.15 (b) shows the
overlap size distributions for pairs of communities found in the network. We observe
that most pairs of communities share 1 or 0 overlapping nodes: 56% for k = 4 and 79%
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for £ = 10. It is a very good agreement between the relevant statistic distributions that
overlapping nodes are not very common. Finally the distributions of the portion of the
sum weights on external degrees are shown in Fig. 2.15 (c). we note all overlapping
nodes having py.: < 50%.

Figure 2.16: Community structure of Geography Collaboration. The figure illustrates
communities by different colors. We find the found communities corresponding to coun-
tries, where each country can be identified by its geographic boundaries.

We also study the results in characterizing overlapping nodes. The community struc-
ture is displayed on the map of EU Countries (See Fig. 2.16): each color represents a
computed community. We observe that the community structure corresponds to coun-
tries. For example, the regions belonging to United Kingdom form a light green commu-
nity. The organization of the geography collaboration network into different countries
indicates that the collaborations within the same countries are much more important
(from a quantitative point of view) than international collaborations.

Our clique optimization detects a large number of overlapping nodes at k = 4. Some
" popular” overlapping nodes can even be assigned up to 8 communities. The results
are shown in Tab. 2.2. We observe that they refer to large cities or regions have well



CHAPTER 2. OVERLAPPING COMMUNITIES AND MODULARITY 72

established and famous universities. For example in UKJ14(Oz fordshire), there is
the University of Oxford. It reveals that our results are well matched to the reality
since these large cities or regions having famous universities play important roles in
international collaborations.

By comparing to the results obtained at ¥ = 5 or £ = 6, we observe their high
similarity. We define popular overlapping nodes as nodes having the maximum number
of memberships at different values of k. We found 18 popular overlapping nodes for
k = 5 and 12 for £ = 6 that are part of popular overlapping nodes for k = 4. The
total number of popular overlapping nodes (om = 8) are 27 for k = 4, the total number
(om = 7) are 18 for k = 5 and the number (om = 6) are 12 for k = 6. Of course, the
popular overlapping nodes are also large cities or regions that have famous universities
and international collaborations (See Tab. 2.2). It tends to show that our method can
characterize the fundamental properties of overlapping nodes among communities, which
are independent of the value of k.

Next we study the impact of k£ on another dataset: Complex System Science (See
details in Section 2.5). The results are listed in Tab. B.2 and Tab. B.3. It can be seen
that the obtained granular overlaps have the same highest frequent topic keywords and
very similar high frequent topic keywords at k = 5 or kK = 6. For example, high frequent
topic keywords owned by overlaps between ecosystems and chaos theory obtained for
k = 6 totally match to the results obtained for £ = 5: DYNAMICS, SELF-ORGANIZATION,
MoDEL, COMPLEXITY, CHAOS, SYSTEMS, STABILITY, PATTERNS where " EVOLUTION”
and "CELLUAR AUTOMATA” are not shown in Tab. B.3 as their frequency are not high
enough for k = 6. Totally, we obtained the same characteristics by mining these granular
overlaps at different values of k. In other words, the fundamental properties of the found
granular overlaps are largely independent of k and represent the characteristics owned
by the system itself.

’ Node \ Location H Node \ Location
DE122 | Karlsruhe, Stadtkreis || ES300 Madrid
ES523 Valencia FR101 Paris
FR716 Rhone ITC11 Torino
ITC45 Milano ITD36 Padova
ITD55 Bologna NL326 | Amsterdam
SE010 Stockholm County SE044 | Skane County
UKDb52 Liverpool UKJ14 | Oxfordshire

Table 2.2: Part results of popular overlapping nodes which are shared by 8 communities
for k = 4 (which are still popular for & = 5). These popular overlapping nodes are
related to big cities or regions having famous universities.
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Figure 2.17: Performances of fuzzy detecting in networks for pc, ., between pairs of
robust clusters, where robust clusters are sorted by their size in ascending order.

2.6.2 Community memberships and membership degree

Our fuzzy detection typically sets * = 0.1 to determine community memberships. If
the threshold * increased, the number of modular overlaps decreased; otherwise, more
robust clusters are identified as modular overlaps. The criterion we used to fix the
optimal g* values should be based on finding a community structure having the good
quality.

We studied the membership degree, which is used to determine community mem-
berships. In Fig. 2.17, we show results by applying fuzzy detection to Geographical
Collaboration and Wikipedia vote network. The figures show the obtained p, ., for
pairs of robust clusters, where the nodes are listed through their size in ascending order.
From the results, we observe that most p; ¢, are in values of approximate 99.9% (dark
blue) and a few of p, ., are in values of nearly 10% (light pink). It seems that robust
clusters which perform unstable (belonging to different communities in the partition
examples) have the low membership degree with the relevant community. If we set 5*
in a high value, we would find no modular overlap.

In Fig. 2.18, we show the modularity by increasing the value of 8*. These results
are obtained by applying fuzzy detection in Geographical Collaboration and Wikipedia
vote network. We observe some critical points, which are important for the modularity
like 8* = 9% in Fig. 2.18 (a) and * = 18% in Fig. 2.18 (b). In practice, we use the
value corresponding to the critical point to set 8*, which is approximate 10%.

2.7 Conclusion

In this chapter, we have presented our studies in overlapping community structure. We
have discussed the limits of existing modularity for qualifying the covers, and proposed
a new extension, which is based on the Hamiltonian. We have also introduced two novel
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Figure 2.18: Performances of fuzzy detection in Geographical Collaboration and
Wikipedia vote network, where the value of the modularity corresponds to the com-
munity structure obtained by the relevant 5*. Several critical points for modularity are
observed.

methods to identify overlapping nodes. One is called clique optimization for identifying
granular overlaps, and the other is named fuzzy detection for modular overlaps. Both
methods have been tested successfully in synthetic graphs. Moreover, studies and the
analysis on large networks like the Complex System Science one give good results and
useful insights on the structure of the network.

We believe that the elements presented in this chapter can be of great help in the
analysis of networks. On the one hand, the definition of granular overlaps and mod-
ular overlaps provide different insights in characterizing overlapping nodes for network
analysis. On the other hand, the introduction of clique optimization and fuzzy detec-
tion could open the way for applications to large-scale systems. Remind the results in
studying Yeast protein complexes in Section 2.3.3. The low sensitivity of clique opti-
mization is caused by our definition of k-granular overlapping nodes, i.e., not all real
overlapping nodes participate in k-cliques. However, fuzzy detection provides results
with a high sensitivity. Since fuzzy detection assigns nodes into communities without
computing their connections. Simultaneously, clique optimization will not misclassify
unstable nodes. Therefore, it has a higher specificity value than fuzzy detection. It
suggests us to combine both methods to study overlapping community structure. We
may obtain the complementary results.



CHAPTER 3

Overlapping communities and
community evolution

In dynamic networks, change is a fundamental ingredient of interaction patterns in
biology, technology, economy, and science: interactions within and between organisms
change; transportation patterns by air, land, and sea all change; the global financial
flow changes; and the frontiers of scientific research change.

Network clustering methods have become important tools to detect community evo-
lution. Most methods make endeavours to distinguish between real trends and noisy
data. However, detecting community dynamics is also important to study community
evolution. For example: How has the network of global air traffic changed over the
past half century? How does the organization of social contacts change when diseases
develop and spread? How does the network structure of the federal funds market change
when credit markets freeze up? How do gene regulatory networks differ between cancer
and non-cancer states? And how does science evolve as research tools, strategies, and
agendas shift through time?

Asur et al. [3] have detected clusters at each snapshot graph independently and used
event definitions (Def. 2) to compute and identify community dynamics. Their studies in
the DBLP co-authorship network showed how semantic content and category hierarchy
information were related to community fusion or split. However, their event definitions
need the parameter value. Furthermore, we do not have a good visualization tool to
illustrate these diverse community dynamics.

In this chapter, we contribute to community detection in dynamic networks (Sec-
tion 3.1) including a matching technique and a visualization tool. Our matching tech-
nique is able to resolve the problem of characterizing community dynamics. Our vi-
sualization tool makes community dynamics observable. We validate our method by
applying it to a synthetic dataset and a blog network in Section 3.2. We also ana-
lyze a dynamic co-citation network called the past history of complex system science in
Section 3.3 with the discussion of modular overlaps.
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3.1 Tracking community evolution in dynamic networks

In the context of dynamic graphs, the interactions between nodes change over time. As
the community is defined as a set of nodes having dense internal connections and sparse
external connections, the changes of interactions can cause the evolution of communities
in networks.

In the early analysis of community structure in dynamic networks, Palla et al. [97]
have already introduced six basic scenarios in the evolution of communities: birth,
growth, contraction, merging, splitting and death as we mentioned in Fig. 1.2. Recently,
some studies [82, 101] have discussed the reason why a community structure may change.
Their reasons can be divided into two categories: a) internal and b) external influences.

e Internal influences

Common ground. It is the ”mutual knowledge, mutual beliefs, and mutual sup-
positions” shared by individuals [24]. It attracts interactions between indi-
viduals. However, the common ground may change. For instance, increasing
community size may increase fringe nodes (or unstable nodes). It increases
the dissimilarity among members. Therefore, it can be observed that a rapidly
growing community looses its common ground, and then changes.

Community membership. A community may have relatively permanent mem-
bers (or core nodes), but also has many fluid members (who join in communi-
ties occasionally and change their community memberships after several time
steps). In addition, there are new members joining in communities, which
also influences community dynamics.

e External influences: The external influences are various: a specie community
changes by following food seasons [22]; a political community might be more active
in the run-up to elections; and a science field community can disappear caused by
a replaced criteria such as AIDS-related complex!.

The influences described above result in the change of a community: creation, growth,
shrunken, fusion, split or disappearance.

If one community is not involved in fusion events or split events but only increases its
size or decreases its size, we say that the community survives. In [97], it turns out that
the age of a community is positively correlated with its size, i.e., the older communities
are also larger (on average). In an organizational context, a community is created
or survives if it maintains a coherence, i.e., common ground. The investigation of a
survival community allows us to learn how common ground evolves over time.

For the fusion of communities, Gongla and Rizzuto [49] have given two definitions:
a) fusion between equal communities and b) fusion between unequal communities.

L AIDS-related complex was widely discontinued by the year 2000 in the United States after having
been replaced by modern laboratory criteria
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Fusion between equal communities. If communities share a lot of common mem-
bers or properties, i.e., interests, they may merge and are replaced by a new larger
community.

Fusion between unequal communities. If a community constitutes a specialized
sub-domain of a larger community it may willingly join in the broader community
or be absorbed.

In the event of community split or community disappearance, Gongla and Riz-
zuto [49] have identified three factors:

Organizational change. A community is usually sponsored by a particular interest
such as a topic, a function or a group of leaders. When these interests change,
the community is at risk of changing such as dying. For example, a change of the
group leaders may result in new priorities and redeployment of resources [49].

Knowledge domain change. A knowledge domain of a community is not necessarily
static. An interest may change, and the community evolves. For example, in
a co-citation network, the cooperation between communities can innovate a new
research topic.

Community leadership change. The leaders (or the core members) of a community
have a high influence on the evolution of the community. They can be more active
and attract more new members. They also can make the community less active
and finally disappear.

A disappearing community usually becomes gradually smaller or attracts less and less
new members: community members have less and less interactions until the community
vanishes.

As shown above, communities changes may caused by diverse factors. Their dynamic
behaviors make the problem of tracking community evolution more complex. However,
in analyzing networks, the properties of community persistence and community devel-
opment should not be ignored. These properties can be important as they reveal the
evolving tendencies of networks. The evolution of communities may be significant (Sec-
tion 1.2.2). For example, a unique new created community is enough to change the whole
community organization. Capturing when community dynamics occur and charactering
these dynamics is an important aspect when investigating communities over time.

3.1.1 Group persistence two-stage method

We describe a novel heuristic to track community evolution in dynamic network. Given
a dynamic graph G, its community structure is a set of communities {Cy,...,C,, } which
evolve over time. A given community C; can be observed at several time steps. Of
course, It also may change.

To resolve the problem of community detection in dynamic networks, we apply a two-
stage approach which is briefly described as: in the first step, we use the fuzzy detection
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algorithm described in the previous chapter to detect a partition with the maximum
modularity, robust clusters and modular overlaps at each time step (Section 2.4); in the
second step, we use a mapping method (Section 3.1.4) to connect partitions at different
time steps. Simultaneously, we track community evolution and identify community
dynamics. For tracking community evolution, we use an evolution path (Def. 1) to
describe how one community evolves over time. The length of the evolution path denotes
the duration time of the community. The variation of community members shows how
one community attracts new members or loses old members. The connection between
communities at different time steps is used to identify communities changes: creation,
continuation, fusion, split or disappearance.

Although as described in Section 1.3.2, diverse mapping methods [42, 58, 117] are
proposed and are used to identify communities at different time steps, the limit remains.
For example, in terms of matching metric, a problem is whether the similarity value is
based on min(|X |, |Y|) or | XUY|, where X, Y represent the temporal clusters at different
time steps. Moreover, definitions used for characterizing communities dynamics need
parameter value such as the parameter s in Def. 2.

To overcome the matching problem, we apply group persistence to match communi-
ties. Our method is motivated by [114] and connects communities depending on overlap
size, i.e., |C(t) N C(t + 1), for two temporal clusters at time steps t,t + 1 respectively.
Next, we describe our method in details.

3.1.2 Motivation

Let take an example illustrating the notion of group persistence [114]. A group of five
members {a, b, ¢, d, e}, is strongly related to a subsequent group with {m, b, ¢, d, e} mem-
bers. It is also clear that a group with {a, b, ¢, d, e} is not related to a subsequent group
of {f,g,h,i,7}. Through the knowledge of dynamic network analysis, one can infer
that the properties of a group are not a summary of the properties of individual mem-
bers. Instead, they emerge from the structure of interactions among members. There-
fore, given a group {a, b, c,d, e}, one supposes that the development takes the following
course: a,b,c,d,e — m,b,c,d,e — m,n,c,d,e — m,n,o,d,e — m,n,o,p,e —>
m,n,o,p,q. In this case, each stage is differentiated from the previous stage by only one
member, and at each moment it shares the same majority elements with its neighboring
moments. Consequently, the group with {a,b,c,d, e} is defined to be linked with its
subsequent group of {m,n,o0,p,q}.

Motivated by this simple toy example, we use group persistence to track community
evolution. First, we establish a relationship called community predecessor and successor
between temporal clusters for every pair of contiguous stages. For two temporal clusters
in predecessor/successor relationship, their overlap size must exceed a threshold ~*.
Then, we use this community predecessor and successor relationship to map temporal
clusters and identify community dynamics.

Definition 5 (Community predecessor and successor). Given a temporal cluster C;(t)
at time t, if the temporal cluster C;j(t — 1) has the mazimum overlap size among all
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temporal clusters at time t—1, we define that C;j(t —1) is the predecessor of C;(t). If the
temporal cluster Cy(t + 1) has the mazimum overlap size among all temporal clusters at
time t + 1, we define that Ci(t + 1) is the successor of C;(t).

In the following, given a pair of temporal clusters (X,Y), we use X — Y to denote
that Y is X'’s successor and X <Y to represent that X is Y ’s predecessor.

When a community changes, the predecessor/successor relationship may be obtained
by nodes which participate temporally in this community. It can be observed that some
nodes may easily change their memberships. The threshold ~* is used to handle this
problem by filtering relationships caused by member fluctuation. This ensures that
linked temporal clusters have high correlation when communities evolve over time, i.e.,
for one community, there are few changes in its community members over time.

Remark. The relationship between one community and its successor (or its predeces-
sor) may be asymmetrical. That is, for one community and its successor, this community
may be not the predecessor of its successor. Similarly, for one community and its pre-
decessor, it is possible that the community is not the successor of its predecessor. This
asymmetrical property allows us to characterize community dynamics.

3.1.3 Community dynamics

As listed above, there are six basic community dynamics: a community emerges (cre-
ation), a community may grow (growth), a community can shrink (shrunken), several
communities can merge together (fusion), a community can be split into several com-
munities (split) or a community may disappear (disappearance).

The above definition of community predecessor/successor relationship allows us to
characterize community dynamics.

Definition 6. Let G(t) and G(t + 1) be snapshots of G at two consecutive time steps
with the temporal partition P(t) and P(t+ 1) denoting the community structure of G at
time step t and t 4+ 1, respectively.

Survive. Cj(t + 1) is the continuation of C;i(t), if and only if Ci(t) is the predecessor
of Cj(t + 1) and Cj(t + 1) is the successor of C;i(t), such that:

Cz(t) — Cj(t + 1) VAN Cl(t) — Cj(t + 1)

This relationship is denoted by Ci(t) = Cj(t+1). We say that community C; whose
observation at time step t is C;(t), survives at time step t + 1. The relationship
between a temporal cluster and its continuation is symmetrical, such that, given a
continuation, it must be the successor of its predecessor. If a community survives
at the current time step, we identify whether it is a growing community or whether
it 15 a shrinking community through the variance in size between its observation at
previous time step and its current observation. We say that, a growing community
has an increasing number of community members and a shrinking community has
a decreasing number of community members.
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Emerge. Cj(t+1) is a creation if and only if Cj(t + 1) has no predecessor such that:
ACi(t) € P(1)] (Cilt) — Cj(t +1))

We say that a new community emerges if and only if its first observation has no
predecessor.

Merge. Cj(t+1) is a fusion if and only if C;(t+1) is the successors of several clusters
at time step t such that:

HGi(1), Cu(t)} € POI(Ci(t) = Cj(E + 1) A Cr(t) = Cj(t + 1))

where i # k. In case of Ci(t) — Cj(t+ 1) and Ci(t) + C;(t + 1), we say that,
community C; is merged into C; where Ci(t) is the observation of C; at time step t
and C;(t + 1) is the observation of C; at time step t + 1.

Split. Cj(t+1) is a split if and only if C;(t+1) is not the successor of its predecessor
such that:
Ci(t) « Cj(t+ 1) ACi(t) » C;(t+ 1)

We say that, a community is split from others if and only if its first observation
s a split;

Disappear. A community disappears at time t + 1 if and only if its observation C;(t)
at time step t has no successor such that:

BC;(t+1) € P(t+ 1) (Ci(t) » Cj(t + 1))

Diagrams in Fig 3.1 show several cases illustrating community dynamics which can
be featured by continuation, creation, disappearance, fusion and split. For better un-
derstanding community evolution, we show their evolution paths (Def. 1). For each
community C, its evolution path is Evol(C) := {C(1),...,C(A)}, where each element
C(i) (1 <1i < A) represents its observation at time step ¢t =i. .

In the example illustrated by the Fig 3.1, we observe four communities, whose evo-
lution paths are:

e Evol(Cy) := {C1(1),C1(2),C1(3),C1(4)}
e Evol(Ca) := {C5(2),Ca(3)},

e Evol(C3) := {C3(1), C5(2), C5(3)} ,

o Evol(Cy) := {C4(3),C4(4)}

We can observe nearly all types of community changes:

e Community Cs is created at ¢t = 2 as it has no predecessor at t = 1;
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Figure 3.1: Diagrams of four communities observed during four time steps, featuring
continuation, creation, disappearance, fusion and split.

e Community Cs disappears at ¢ = 4 as it has no successor at t = 4;

e Community C2 is merged into C; at t = 4 since its successor at t = 4 is C1(4)
whose predecessor is not Cy(3);

e Community Cy is split from Cy since t = 2 as its predecessor at t = 2 is C5(2)
whose successor is not Cy(3).

Community C; is observable during all the observation window (only four time steps
on this toy example). At time step ¢ = 4, community Cs joins it. This community fusion
event seems to be more an event related to Cy rather than to C.

A more complex diagram is displayed in Fig. 3.2. We observe the changes of com-
munities from time step t = 2 to ¢ = 3. At time step t = 3, community Cy partially
merges with C3 while its split C1(3) starts a new community C.

The definition of community predecessor/successor relationship allows for linking
communities at different time steps. It also makes the problem of characterizing com-
munity dynamics be captured easily.

3.1.4 Mapping method

Our framework uses fuzzy detection to detect community structure in each snapshot
graph. The results include the optimal partitions in terms of modularity, a set of robust
clusters, the community cores and the modular overlaps. Having a range of granularity
and resolution in the results is an opportunity. We use a mapping method to track
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Figure 3.2: Diagram of four clusters observed during over 4 time steps, featuring fusion
and split community events.
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Figure 3.3: Community evolution paths of two evolutionary communities over four time
points. During their evolution, they are unobserved at some time steps. For instance,
community C; is unobserved at ¢ = 2 while it reappears at ¢ = 3, and community Co
seems missing at t = 2 and ¢t = 3.

community evolution and identify community dynamics. We are also able to use the
same method to track robust cluster evolution. The results can help us to understand
leadership change (community core members change) and influences of community mem-
bers. Another advantage is to track the evolution of modular overlaps. In the context of
science whose community structure is captured by different research fields, it provides
insights in the evolution of interdisciplinary fields, which link several communities.

Before our description of our framework in details, we illustrate some special cases
as depicted in Fig. 3.3 and introduce the definition of reappearing community. This
Figure illustrates the case where some communities become unobservable at a time step
but reappear after several time steps. For community C; in Fig. 3.3, we say that its
observation at time step ¢ = 2 is an wnvisibility, i.e., it occurs when one community is
unobserved but reappears lately.
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Our mapping method uses the definition of community predecessor and successor
to track community evolution. Additionally, it uses a backward method to identify
reappearing communities. The details of how we track community evolution is sketched
in Algorithm 6.

We use the definition of community predecessor and successor to track community
evolution: two temporal clusters are mapped if they share the relationship of commu-
nity predecessor and successor. If a community becomes unobservable, we hold its last
observation. Lately, we apply a backward method to identify it when it reappears.

For a community which is not the continuation, we use a possible predecessor and
successor relationship to connect it with a disappeared community:

Definition 7 (Possible predecessor and successor). Given a temporal cluster C;(t) at
time t which is not a continuation, it is a possible successor of a disappeared community
C;, if the last observation of Cj, i.e., C;(t—A), shares the mazimum overlap size among
all temporal clusters at time t and the overlap size exceeds the size threshold ~*. For a
disappeared community C; whose last observation is Cj(t—A), it is a possible predecessor
of Ci(t): if Ci(t) has a predecessor C(t—1), the overlap size between C;(t) and C;(t—A)
exceeds the overlap size between C;(t) and Cy(t — 1); otherwise, the overlap size between
Ci(t) and C;(t — A) exceeds the size threshold ~v*.

We connect a temporal cluster and a disappeared community if and only if the tem-
poral cluster is a possible successor of the disappeared community and the disappeared
community is the possible predecessor of this temporal cluster with the maximum over-
lap size among all disappeared communities. We use C;(t — A) e~ Cj(t) to denote this
relationship between a temporal cluster C;(¢) and a disappeared community whose last
observation is Cj(t — A). In this case, we say that a community reappears.

Our results are based on partitions. We do not consider overlapping communities for
tracking community evolution since they make the problem more complex. For instance,
when we establish the relationship between temporal clusters at different time steps, we
count the total community members or only non-overlapping parts? When overlaps
between a pair of communities become an independent community, this dynamic is
classified into merge event or split event? When a community shares a lot of nodes with
others, we may obtain a wrong successor for large overlapping nodes.

However, our fuzzy detection is able to provide modular overlaps. We can track
modular overlaps to study how overlapping parts evolve. Therefore, we also use the
same mapping method (Algo. 6) to track robust cluster evolution: two temporal robust
clusters are mapped if they share a relationship of predecessor and successor. When
tracking robust cluster evolution, we do not only study modular overlaps evolution but
also investigate community cores evolution. The later is helpful to understand how
leadership changes affect community evolution.

3.1.5 Visualizing community evolution

In this section we present our novel visualizing tool for revealing structural changes and
illustrating ” stories” in dynamic networks. We first review existing tools for visualizing
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Algorithm 6 Method for tracking community evolution

Input: An evolving graph G(V, E), which consists of a sequence of snapshot graphs
G={G(1),G(2),...,G(A)} over A time steps.
Output: Dynamic communities {C}.
D « 0,Evol(C) «+ 0
for all time stepst =1 — A do
Get a partition of communities P(t) = {C1(t),...,Ck(t)}
// STEP 1: Mapping communities
Map temporal clusters using Cy(t) = Ci(t + 1)
Hold all disappeared communities: D < DU {C;(t —1),...}
/] STEP 2: Feedback method for reappearing communities
for all temple clusters which are not continuation Ci(t) do
Find possible predecessors and successors
if Ci(t — A) e Ci(t) then
Update D <— D\ Ci(t — A)
end if
Update all evolution paths Evol(C) < Evol(C) U C(t)
end for
end for

community evolution in dynamic networks, and second describe our tool in details.

Visualizing dynamics in communities

In early work, several tools such as SoNIA [87] and TeCFlow visualize dynamic networks
by creating graph movies, where nodes move as a function of changes in relations.
However, these tools fail to indicate a changing behaviour of community memberships
and community dynamics. In [88], matrix is used (Similar as Fig. 1.10), whose element
represents the community membership of a node at a time step. Each node occupies a
column. Colours are used to depict communities. We can observe how a node changes
its community membership through the colour change in the corresponding column. The
drawback is that we do not directly observe how one community emerges, merges, splits
or disappears.

An example of a graph with dynamic communities is depicted in Fig. 3.4. The evo-
lution path of a dynamic community is depicted by a diagram occupying a column.
Fach diagram represents a community as a block and show relationships between pre-
ceding and succeeding clusters through horizontally connected stream fields. This result
is obtained by the algorithm of bootstrap [33] in [108]. It enables to show community
dynamics. For example, we observe the orange module merges with the red module in
Fig. 3.4. In addition, in this case, we are also able to observe the significance of clusters,
which is shown by dark colour.

The tool of alluvial diagram seems good in displaying structural change in science,
economics, and business. Next, we introduce our visualization tool which has the similar
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Figure 3.4: Example of mapping between communities. In the bottom networks,
the darker colors represent nodes that are clustered together in at least 95% of the 1000
bootstrap networks. The alluvial diagram highlights and summarizes the structural
changes between the time 1 and time 2 significance clusters. The height of each block
represents the volume of flow through the cluster. The clusters are ordered from bottom
to top by their size, with mutually nonsignificant clusters placed together and separated
by a third of the standard spacing. The orange module merges with the red module,
but the nodes are not clustered together in 95% of the bootstrap networks. The blue
module splits, but the significant nodes in the blue and purple modules are clustered
together in more than 5% of the bootstrap networks. The figure is obtained from [108].

good performance in depicting community evolution and showing community dynamics.

Visualizing community evolution through lineage diagrams

Our visualization tool illustrates ”stories” in dynamic networks through lineage dia-
grams (See Fig. 3.5). Each lineage represents a separate evolutionary path, and occu-
pies a column. The evolution of a community is shown from left to right. The temporal
clusters representing the observations of the same community are shown in the same
y-axis. Each cluster is shown by a circle whose size is proportional to its number of
nodes. A lineage tie is added between two clusters if they share a successor or pre-
decessor relationship. Therefore, if a circle has a link to another column, it indicates
a community change. For example, in Fig. 3.5, we observe a link connecting a violet
cluster and an orange cluster between ¢ = 2 and ¢t = 3. It represents a change event.
We can characterize community dynamics through the orientation of links:

e If this link is oriented from left to right, it indicates that a community merges into
another one;

e If this link is oriented from right to left, it indicates that a community is the result
of a split from another one.
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Figure 3.5: Applying our method to a sample dynamic network. Between ¢t = 2 to
t = 3, an orange cluster is split from the violet community. At ¢ = 3, a new green
cluster is emerged. Between t = 3 to t = 4, the orange cluster is merged into the violet
community. Between t = 4 to t = 5, a blue cluster is split from the violet cluster and it
is merged with the green community simultaneously.

The orientation of links is shown in colour such that the link colour is given by the link
parent. For example, in Fig. 3.5, we observe a violet cluster having a link with blue
colour which connects it and a blue cluster. In this case, we say that the blue cluster is
a split of the violet community. Moreover, the blue cluster has a link with green colour
which link it to a green cluster. We say that the green community merges into the blue
community.

In addition, we use colours to indicate community memberships. The observations
of a community at different time steps share the same colour.

In terms of robust clusters, we also use lineage diagrams to show structural changes.
Each lineage represents a separate evolutionary path of a robust cluster, and occupies
a column. The evolution of a cluster is shown from left to right. The temporal clusters
representing the observations of the same clusters are shown in the same y-axis. Each
cluster is shown by a circle whose size is proportional to its node number. Each lineage
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tie is added between two clusters if they have the successor or processor relationship.

As colors correspond to community memberships, we can study community member
shifts. For instance, some robust clusters may change their community memberships as
the graph evolves.

3.2 Experimental results

Through our method, community dynamics like merge or split become easy to be iden-
tified. In case of reappearing communities, we validate our method through a set of
synthetic networks. We also show performance of our method by applying it to a real
dataset.

3.2.1 Synthetic datasets

Greene and Doyle [51] proposed a set of benchmarks based on Lancichinetti and For-
tunato’s technique [72]. Lancichinetti and Fortunato assumed that the distributions of
degree and community size are power laws, with exponents 7 and 7o, respectively. Each
node shares a fraction 1 — u of its edges with the other nodes of its community and a
fraction p with the rest of the graph; u is a mixing parameter in range of [0,1]. After
predefining community structure, edges are randomly assigned corresponding to node
internal degrees and external degrees.

For the event of community reappearance, Green and Doyle has constructed a set of
synthetic datasets, which covers 15,000 nodes over 5 time steps. At each time step, 10%
of communities are unobserved by randomly permuting node memberships (and edges).

By applying our method to this dataset with [* = 1 over all time steps? and v* = 5
for matching communities® (Def. 5), we track community evolution and observe at least
40 reappearing communities at each time step.

To validate our method, we compare our results and the ground truth. We describe
our results by observed communities and the ground truth by expected communities.
The true positive nodes represent the nodes assigned in both observed reappeared com-
munities and expected reappeared communities. Table 3.1 show our results in views
of the number of observed reappeared communities (NOC) and number of expected
reappeared communities (NEC), the number of true positive and the number of the re-
ality (NPOCM/NECM), and the mean positive predictive value (mean PPV) with the
standard error (SE).

From Tab. 3.1, we observe the similar number of reappeared communities obtained
by our methods to the ground truth. For each observed reappeared community, it has
a positive predictive value. It is the ratio of the number of true positive nodes in the
observed community. Therefore, the high value of mean PPV represents that most nodes

2Studies have shown our method gives the partition with the highest NMI at I* = 1.

3In [77], best communities are defined to have the size scale of between 10 to 100 nodes. This is
also the size scale of communities in the synthetic networks. Setting v* = 5 is able to filter artificial
clusters caused by degree variation and guarantee the matched small communities maintaining their
most community members.
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| Time | NOC/NEC | Mean PPV |  SE [ NPOCM/NECM |

t=3 48/50 0.95826 | 0.199826 1152/1198
t=4 45/48 1 0 1244/1283
t=5 41747 1 0 1096/1155

Table 3.1: Results of our method on hide dataset where 10% of communities are un-
observed from time ¢ = 2 onwards. In views of reappeared community number, i.e.,
number of observed reappeared community (NOC) and number of expected reappeared
community (NEC), our results are similar to the real ground truth. For instance at time
t = 3, we observed 48 reappeared communities through our method, while the ground
truth is that 50 communities reappear. In views of the mean positive predictive value
(Mean PPV), our results gave a really high mean PPV value. Especially at ¢ = 4 and
t = 5, the mean PPV value is 1. It reveals that all nodes belonging to the observed reap-
peared communities totally match to the reality. The comparison between the number
of true positive nodes and the number of the reality (NPOCM/NECM) shows that how
many nodes belonging to the reappeared communities in the ground truth are found
by our methods. As we can see, our framework has good performance in detecting
reappeared communities.

in observed reappeared communities are positive truth nodes. Especially at ¢t = 4 and
t = 5, the mean PPV value is 1. It reveals that all nodes belonging to the observed
reappeared communities totally match to the reality. The number of the reality (NECM)
is the number of nodes belonging to the expected reappeared communities. Thus, the
similar number of true positive nodes to NECM represents that most nodes belonging
to the expected reappearing communities are found. As we can see, our framework has
good performance in detecting reappeared communities.

3.2.2 Blogs

Given a blogs network, approximately six thousand blogs were monitored to track the
various articles and comments posted or the citation links between them for four months.
We used the networks between blogs containing the aggregated data to the relevant day.
we begin at the 1st day and then add each new day blogs and links between them. So
we get a growing network consists 120 time steps.

By applying our method to blogs network, we show the results in Fig. 3.6. The
node is labelled by the highest frequency class. When one post is added, its blog source
and blog destination are classified into three levels. In the highest level, there are only
three different classes (iindividualite, ssociete, lloisirs). We compute the frequency of
classes by aggregating them. For example, once one blog is classified into the class of
iindividualite, we aggregate the frequency of iindividualite in the community in which
the blog is assigned. Finally, we select the class with the highest frequency to label the
community.
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Figure 3.6: Applying our method to a blogs network.

For the visualization and comparison, the color of nodes corresponds to the label. For
instance, the nodes at the bottom are coloured by green in Fig. 3.6 (b). It corresponds
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to their labels: all nodes are labelled by #individualite. Since there are 120 days, we set
a time window ¢ = 2 weeks (i.e., 14 days), such that when ¢ = 1, G(1) is the aggregation
of interactions between nodes during [0, 14] days; when ¢ = 2, G(2) is the aggregation
of interactions between nodes during [0, 28] days; and so on. We set a size threshold
n* = 100 such that all shown temporal clusters contain at least 100 nodes. In this
figure, the evolution is shown from left to right with x-axis denoting the time step and
y-axis representing community index. Circles represent the found communities, with
size proportional to community size. Links represent member continuity of at least 5
nodes, with size proportional to the continuity. The color of links corresponding to link
parents denotes their orientation.

We compare the results labelled by classes in the lowest level and the highest level.
We observe that nearly all communities hold their classes over all time steps. For
example, we observe the community (3-th line) labelled by ccuisine in Fig. 3.6 (a) (or
labelled by lloisirs in Fig. 3.6 (b)) survives from ¢ = 1 until ¢ = 8. In views of the
highest level shown in Fig. 3.6 (b), we observe that most changes occur within the same
classes. For example, the merge event at ¢ = 3 occurs within the class ssociete. In views
of the lowest level (See Fig. 3.6 (a)), more information is provided. For example, these
observed communities (whose duration is at least two time steps) show the evolution of
different classes. We observe a community labelled by mmode (in orange at the bottom)
emerges at t = 3 (nearly 42 days). We also observe the community labelled by mmode
has a split at £ = 3. This split community is labelled by ccarnet bd, which merges into
the community ttech revolution at t = 5. It may represent the close relation between
ccarnet bd and ttech revolution.

These results are used to show that our method provides a good visualization tool:
how communities change becomes easy to learn.

3.3 Application to a dynamic co-citation network

Finally, we apply our method to a dynamic co-citation network. It is called past history
of complex system science. This data set (See also Section 2.5), collects extracted articles
from the Institute for Scientific Information Web of knowledge?. All selected articles

contain topic keywords relevant to the field of complex systems such as ”complex*”,

7self organ*”, ”complex network*”, ”econophysics*”, and so on.

Complex systems is a new approach to science that mathematically models behav-
ior of systems, and builds relationship between system interacts and its environment.
As early as 19th century, complex systems theory was used to capture economic com-
putation problem. So far, it is used to model processes in computer science, biology,
economics, physics, chemistry, and many other fields. The key problems of complex
systems are modeling and simulating system behaviors. Various kinds of methods for
identifying, exploring, designing and interacting with complex systems are used. In our

early study of complex system science (Section 2.5), we obtain various claims to the

“http://www.webofknowledge . com
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universality. The identified community structure provides a broader view of disciplines
and methodologies using complex systems approach.

The past history of complex system science could be represented by a dynamic
network. In the network, entities (articles) associated to their published time evolve over
time. An intuitive way to capture the history of complex system science is to construct
a sequence of snapshot graphs, whose community structure changes correspond to the
science evolution. In the following, we first build a dynamic graph, and then detect,
visualize and analyze community evolution and their dynamics.

Why use dataset about bibliographic coupling Citation analysis is the study of
the frequency, patterns and graphs of citations in articles and books. It uses citations
in scholar works to establish links to other works or other researchers. Today, there
have various applications of citation analysis tools, which provide the understanding
and analysis of information retrieval and science evolution. In the context of com-
munity organization of graphs, a citation network is associated with citation patterns,
where each citation pattern corresponds to a scientific topic or research field.  The
evolution of community structure in a citation network reveals science history. For in-
stance, HELLSTEN et al. [57] have used OPM (Optimal Percolation Method) to study
the community structure of a citation network. The dataset is the ISI-indexed publi-
cation record of Werner Ebeling. The results showed that communities of this network
corresponded to the author (Werner Ebeling)’s general contribution (sequences, chaos,
self-organization, systems), a specific branch (plasma research) and collaboration con-
tributions (with other authors).

Hopcroft et al. [58] used a network extracted from the NEC CiteSeer database [47]
related to computer science, with a small collection covering other topics like physics,
mathematics, and economics. In the result of their application, they observed the change
of one community: the field of quantum algorithms and communication is emerged.

Applying a computational technique to a citation network becomes a popular method
to analyse science history. In the later, we apply our method to a dynamic co-citation
network. Before starting our dynamic studies, we review our investigation in a static
co-citation network (See Section 2.5). Through its community structure, we observe:

Communities refer to research topics or theoretical fields. By characterizing com-
munity structure, we observe molecular biology, ecosystems, complex networks,
dynamic turbulence these common research topics or theoretical fields in the sci-
ence of complex systems but obviously refer to diverse disciplines.

Robust clusters can be considered as sub-specialities. Robust clusters have close
relationship with their communities. That is, the relationship between robust
clusters and their communities can be expressed by the relationship between sub-
specialities and specialities in views of cluster characterization. It reveals that
robust clusters represent a possible hierarchical organization of communities.

Module overlaps link several topics and/or theoretical fields. Modular overlaps
represent clusters of overlapping nodes, which link several topics and/or theoreti-
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Figure 3.7: An example of sliding window with overlaps. The interval size is 2 with an
overlap of 1.

cal fields in views of cluster characterization. For example, visual cortex is used to
characterize the overlapping nodes shared by neural networks and neuroscience:
biological psychology.

In case of dynamic co-citation networks, analysis in community evolution may provide
us insights in understanding the past history of complex system science.

3.3.1 Building a dynamic graph

Articles in the past history of complex system science were published during 1985-2009.
An edge e = (7, ) connects two articles i and j if both articles share common references
and the weight w;; of the edge is given by the bibliographic coupling between 7 and
J [115]. We note R; the set of references cited by an article i. The bibliographic
|Ri N Rj‘
varei

We construct a dynamic graph according to each publishing year. Each snapshot
graph captures interactions between nodes during a given time interval. Motivated
by Palla et al. [97], we use a time overlapping window. It smooths out the gaps that
sometimes occur between two discrete time intervals. We set the time interval size to
10 years with an overlapping time of 5 years. Then, we construct a dynamic graph on
the obtained overlapping window (See Fig. 3.7). More details on the dynamic graph in
the sequence of snapshot graphs are given in Tab. 3.2.

coupling between two articles ¢ and j is w;j =

3.3.2 Detecting and visualizing community evolution

Let list the result factually. On the data set described above we obtained:

1985 — 1994: there are 14 communities®;

®One community is not shown in the figures as its frequency of topic key words is really too small
and does not allow us to characterize it.
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] Time period ‘ Number of nodes ‘ Number of edges ‘ Total weight ‘

1985-1994 20286 1004458 183594

1990-1999 62040 6179802 1.0569¢e+-06
1995-2004 109458 12662556 2.1206e+06
2000-2009 141163 19603888 3.6701e+06

Table 3.2: Properties of the past history of Complex System Sciences.

1990 — 1999: the snapshot graph is still organized into 13 communities;
1995 — 2004: the snapshot graph is described by 16 communities;
2000 — 2009: we only observed 12 communities.

In terms of community dynamics, we observe:
between 1985 — 1994 and 1990 — 1999: 4 communities split and 3 merge ;
between 1990 — 1999 and 1995 — 2004: 3 communities split and 1 merges ;
between 1995 — 2004 and 2000 — 2009: 1 community splits and 3 merge.

The lineage diagrams are shown in Fig. 3.8. The Figure illustrates structural changes
that occur in the past history of complex system science co-citation network over the
years 1985 to 2009. We see the evolution of the number of communities and observe
how important the split or merge events are to explain structural changes.

3.3.3 Evaluating the results

A key question remaining is how well our method is to track community evolution in
our dataset. We choose to study the stability of communities. The stability measures
the probability of community members to maintain their community memberships over
time. Given a community C whose observation at time ¢ is C(t), its stability is the
portion of active nodes at time t 4 1 that are assigned to its successor C(t + 1):

|C(t)NC(t+1)]
|IC(t) NG(t+1)]

stability (C)(t) = (3.1)
where C'(t) N G(t + 1) denotes the nodes belonging to C(¢) which are still active (or are
recorded) at time ¢ + 1 and C(t) N C(t 4+ 1) represents the nodes in common between
C(t) and C(t+1) .

Similarly, we also study the core stability, which is the portion of active core nodes
¢(t) which are assigned to the successor C'(t + 1):

stability(?) () = 1 g““) (3.2)
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Figure 3.8: Results of our framework on the past history of complex system science
network. Temporal clusters are marked by the most popular topic keywords. Their
colors correspond to the relevant communities as shown in Fig. 2.12.

where ¢(t)NG(t+1) denotes the core nodes of C(t) which are still active (or are recorded)
at time ¢ + 1.

As discussed in [58], the core nodes have high stability to hold their community
memberships. Here, we compare the stability of core nodes and the disjoint community
members to show how well our method is to track community evolution.

Table 3.3 gives the average stability value of clusters and core nodes between every
pair of consecutive snapshot graphs. We observe that our results have a high agreement
with the results of community identification through core nodes. Compared to general
community members, the core nodes have higher probability to maintain their commu-
nity memberships. For example, the first row in the table shows that for all communities
with the size threshold® n* = 100 during 1985-1994 (the total number of communities
is 14), their average stability value is 0.740646 with a standard deviation of 0.152708.
We also observe that most of core nodes during 1985-1994 appeared in their successor
communities.

5For the visualization, we only show and analyse communities which have size above 100 nodes.
In [77], the community which has size roughly 100 nodes is good.
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Figure 3.9: Results of our framework on the past history of complex system science
network. Robust clusters are marked by the most popular topic keywords. Their colors
correspond to the relevant communities as shown in Fig. 2.12.

In the following, we show our results through the citation analysis.

3.3.4 Study of the community evolution

By using citation analysis to detected communities, we examine the topics or fields (see
Tab. B.6, Tab. B.7, Tab. B.8 and Tab. B.9), which are used to claim the universality of
complex systems, and explain the complex systems history evolution.
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| Time transition | Mean stability(¢) [ std(¢) [ Mean stability(C) [ std(C) |

From 1985-1994 0.916185 0.0830868 0.740646 0.152708
to 1990-1999
From 1990-1999 0.944751 0.0556874 0.812754 0.126775
to 1995-2004
From 1995-2004 0.825698 0.302496 0.778244 0.151847
to 2000-2009

Table 3.3: Stability values of clusters and core nodes between every pair of consecutive
snapshot graphs. Mean and standard deviation are given.

Stable communities. From our results, we can observe that some communities re-
main very stable and hold their community interests. For example, the community SOC
(Self-organized criticality) has not been involved into any fusion or split event. By ex-
amining its high frequent topic keywords, we can see that the highest frequent topic
keywords is ”Self-organized criticality” over all time steps, whereas other high frequent
topic keywords may change but are still very general in the studies referring to the topic
”Self-organized criticality”.

Fusion. We can examine fusion events, such as the evolution of the community in red
with the highest frequent topic keywords ”expression”:

e the community molecular biological:protein and molecular biological:gene merge
into the community molecular biology at t =1990 — 1999;

e the community molecular biology combines molecular biology: saccharomyces cere-
visiae and fission yeast at t =1995-2004;

e the community molecular biology joins the community immunology at t =2000-
20009.

By analyzing in details high frequent topic keywords, we observe the effects of merge
events. At t =1990 — 1999, the merging cluster molecular biology contains many high fre-
quent topic key workds like ”complex”, ”binding”, "messenger-RNA” and ”escherichia-
coli”. Remark that ”complex”, ”binding” have high frequency in the previous cluster
molecular biology: protein, and ”messenger-RNA” and ”escherichia-coli” also have high
frequency in the previous cluster molecular biology:gene. It means that the merging
cluster is similar to the original clusters. Furthermore, the new formed cluster reflects
the cooperation between the merged topics or fields. This kind of behavior is helpful to

capture history of complex systems, and other new science topics or disciplines.

Split. We analyse split events. For example, the community neural networks is split
into three distinct clusters neural networks, genetic algorithm and computation theory
in networks at t =1995 — 2004. This change reflects the link between the new clusters
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and original communities: the genetic algorithm and computation theory in networks
seem to be popular approaches to study neural networks.

Our observation over the structural changes have shown the benefits of the computa-
tional technique to analyze the history of science. First, it shows important information
about science evolution, such as topic evolution, new topic or field emergence. Secondly,
it is a good method to analyze cooperation between topics or fields, merge events enable
to capture the cooperation between a priori distinct topics or fields. Finally, it is helpful
to analyze how a new topic or filed emerges in views of community dynamics.

3.3.5 Robust cluster evolution and overlaps evolution

We use modular overlaps to discuss effects of overlapping nodes in structural changes in
dynamic networks. Our approach is different from current academic work on structural
properties. For instance, Balazs Vedres and David Stark [125] studied the contribution
of overlapping nodes to the structural changes and demonstrated that the overlapping
nodes are correlated with interwoven lineages, which are ongoing patterns of separation
and reunification. Our studies on overlapping nodes are from an evolution perspective
and the aim is to better understand how overlapping nodes may explain field evolution.

We study modular overlaps of each snapshot graph, whose results are shown in
Tab. B.10, Tab. B.11, Tab. B.12 and Tab. B.13. We observe several modular overlaps
over time. For example, the cluster malaria transmission and mosquito is shared by
ecosystems, molecular biology: serum and hormone and neuroscience at t =1990 — 1999.
The cluster cellular automata is shared by chaos theory and timeless (gene) at t =1995
— 2004. The cluster genetic association is shared by molecular biology and biological
psychology at t =2000 — 2009. These modular overlaps enable to link different fields,
such as cellular automata, it is a popular model used in chaos theory and gene studies.

The Fig. 3.9 shows the results of tracing robust cluster evolution when they contain
modular overlaps evolution. We see that modular overlaps may change their community
memberships in partitions, such as the modular overlaps visual corter, which emerges
and becomes one robust cluster of the community neural networks at t =1995 — 2004,
and changes its community membership in the partition at ¢ =2000 — 2009: it becomes
one robust cluster of neuroscience. This case reveals that network evolution may change
overlapping nodes performance. It also suggests us to consider overlapping nodes when
studying community evolution.

Robust cluster evolution provides an excellent method for examining evolution of
modular overlaps. By using robust cluster identification, we can follow their community
membership evolution, and analyze the effects of modular overlaps in structural changes.
In some cases, we can see that our method can provide reliable information for tracing
community cores. For example, at t =1995 — 2004, the community immunology joins
into the community neuroscience. At t =2000 — 2009, we can trace the evolution of the
community immunology through its core, which is marked by "DCs” in Fig. 3.9.
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3.3.6 Discussion and conclusion

Our empirical results show that structural changes can reveal the emergence of new
topics or fields. For example, we observe the community computation science appearing
at t =1995 — 2004. As the community computation science is the result of a split of
neural networks, it implies the intrinsic existence of a link between computation science
and neural networks. Through citation analysis in the cluster computation theory in
networks like ”algorithm”, ”stability”, "networks”, we learn that many computational
algorithms are used to analyse networks. Although this result fails to capture how re-
search topics or fields (computation science, ecosystems,...) are formed in the complex
system science, it sheds lights on how to understand complex system science and his-
tory. Many topics or fields are used to describe experimental work like neural networks,
self-organization criticality while new topics or fields come from modelling practices or
theoretical applications like computation science.

Our framework supports modular overlaps and enables to trace their evolution. In
the complex system science studies, modular overlaps refer to collaborations between
distinct topic of fields, such as visual cortex which is a topic relating to neuroscience and
neural networks. In other contexts of citation analysis such as the analysis on biology
and social systems [75], modular overlaps may refer to interdisciplinary collaborations,
which are essential scientific challenges. As our framework is able to trace modular over-
laps evolution, it provides new insights in understanding the history of interdisciplinary
evolution.

Many studies on co-citation networks endeavours to mine the evolution of science
construction and expect to give insights into field mobility or paradigm shift. The field
mobility describes how one author changes its topic over time [57]. The paradigm shift
is proposed by Thomas Kuhn [67]. The author describes a discipline change in views
of paradigm, where a paradigm is a scientific community. The results of field mobility
is measured through a function of publications over time. The field mobility is defined
as scientists moving into new research topics. Corresponding to the performance of
our method, it seems that both paradigm shift and field mobility can be captured by
analysing community dynamics.
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Conclusion

4.1 Summary

In this thesis, we have explored computational techniques to study community orga-
nization of complex networks with overlapping nodes. It is known that finding the
communities within a network is a powerful tool for understanding the structure and
the functioning of the network, and its dynamic mechanisms. In Section 1.1, we have
described the definition of communities. Lately, we focus on the current problem in
community detection. The two major problems concerning community detection are
overlapping community detection and dynamic community detection.

In Chapter 1, we have discussed current research on the problem of community
detection in dynamic networks, which have left us with a number of important open
issues such as benchmark graphs. From our exposition it appears that current methods
can be classified into three categories: two-stage methods, evolutionary clustering and
coupling graph clustering. Different problems are raised by them, respectively.

Communities may overlap in real networks. In Chapter 2, we proposed a quality
function for measuring the quality of covers and two definitions for overlapping nodes:
granular overlaps and modular overlaps. For both definitions, we proposed a method
called clique optimization to detect granular overlaps and also proposed a method named
fuzzy detection to capture modular overlaps. Both methods have been applied to syn-
thetic networks and real networks. The obtained results have shown that both methods
can be used for characterizing overlapping nodes but in distinct and complementary
views.

In Chapter 3, we have explored a mapping method and a visualization tool to study
community evolution in dynamic networks. We have applied the definition of prede-
cessor /successor relationship to track community evolution and identify community dy-
namics. The visualization tool of lineage diagrams has been introduced. It enables to
show and explore the evolution of dynamic communities. We have conducted exper-
iments with real data sets to assess the applicability of the proposed methods. The
experiments have shown that the algorithms achieve the goals they are designed for.

99
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4.2 Future works

This work is a first step in a more global research on dynamic networks. Next, we will
apply our methods to the visual tool, such as in Fig. 4.1. (Communities are identified
by colors. Among different communities, it is overlapping nodes that connect them such
as the overlapping node labelled by ”little”.) Of course, many effects will be made. It is
still a problem to visualize the evolution of overlapping communities, in particular the
evolution of overlapping nodes.

Moreover, our method for detecting community evolution needs additional improve-
ments and require further investigations. For example, our method is desirable to detect
and analyse the evolution of communities in large, noisy networks that exhibit a high
number of changes over time. But it fails to identify artificial community changes,
which are caused by the community detection algorithm itself. If we want to improve
the accuracy of our method, it is better to add more constraints to smooth the shifts of
community members.

We hope to mine more time-dependent structural properties, in particular the struc-
tural properties about overlapping nodes. For instance, Asur et al. [3] have measured
the sociability index, which gave high scores to nodes that were involved in interactions
with different groups. Their analysis showed that the sociability index could be used
to predict future co-occurrences of nodes in clusters. It is not difficult to measure the
sociability index of overlapping nodes. Then we can analyse the influence of overlapping
nodes to future community evolution. It is meaningful to take overlapping nodes into
account for studying structural properties.

Several problems remain in community detection such as benchmark graphs. We
have reviewed benchmarks [22, 31, 51] in Section 1.4. The current computer-generated
benchmark graphs for community detection in dynamic graphs, are constructed by ran-
domly changing interactions between nodes. In these benchmarks, most changes on
topology correspond to a predefined probability, that is, the nodes belonging to the
same community change their neighbours with the same probability. However, in real
networks, changes on topologies should be heterogeneous.

Therefore, it is better to validate the proposed algorithm by applying it to real
network benchmarks. In [88], some real networks are used as benchmark graphs. These
real networks do not have any topology change. They only change the resolution scale by
varying the resolution parameter. We need real network benchmarks whose community
evolution is analysed and known a priori.

Offering benchmark graphs is a crucial problem in the area of community detection
in dynamic networks.
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Figure 4.1: The community structure of adjacency network of common adjectives and
nouns in the novel David Copperfield by Charles Dickens [92]. The observed overlapping
communities are detected by our clique optimization. The community membership is
shown by color such that the nodes belonging to the same community are in the same
colour. For the visualisation, we only show internal edges. Between different commu-
nities, all observed connections are adjacent to overlapping nodes. Moreover, the color
of overlapping nodes correspond to the number of community memberships: if a node
is in green such as the node labelled by ”pretty”, it is shared by two communities; if
it is in rose, it is shared by 4 communities. We observe that the overlapping node in
rose labelled by ”little” combines several communities such as the community in red
describing manner ("manner”, "way”, "natural”, etc. ), the community in blue de-
scribing place ("place”,”room”,”door”, etec. ), the community in green describing people
(”child”,”boy” ,”mother”, etc. ) and the community in violet describing eye and hand
("eye”, "hand”, ”black”, ”strong”, etc. ). Therefore, "little” seems important for these
descriptions.
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shop on Dynamic Networks, Argentina, 2010

e Q.Wang and E.Fleury, Community detection with fuzzy community structure, The
First Workshop on Social Network Analysis in Applications, ASONAM 2011:Inter-
national Conference on Advances in Social Networks Analysis and Mining, Taiwan,
2011 (Best paper award)

e Q.Wang and E.Fleury, Understanding community evolution in Complex systems
science, 1st International Workshop on Dynamicity, December 12, Collocated with
OPODIS 2011, Toulouse, France

A.2 Poster

e Q.Wang and E.Fleury, Community detection with fuzzy community, Interdisci-
plinary Workshop on Information and Decision in Social Networks, MIT, 2011

A.3 Journals

e Q.Wang and E.Fleury, Fuzziness and overlapping community structure in complex
networks, J.UCS (Journal of Universal Computer Science) special issue (en review)
One chapter of the book
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o Q.Wang and E.Fleury, Fuzzy community structure and modular overlaps, SNS12012
(Studies in Mining Social Networks and Security Informatics by Springer Verlag)
(en review)

e Thomas Aynaud, Eric Fleury, Jean-Loup Guillaume, Qinna Wang, Communities
in evolving networks: definitions, detection and analysis techniques, en preparation

e Q.Wang and E.Fleury, Overlapping time-dependent community detection in dy-
namic networks, en preparation

A.4 Seminars

e Q.Wang and E.Fleury, Fuzziness and overlapping communities in large-scale net-
works Journées non thématique Octobre, Paris, 2011.

e Q.Wang and E.Fleury, Mining time-dependent communities Journées automnales
ResCom, Lyon, 2010
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Community Highest frequent topic | High frequent topic keywords
keywords

Biological Psychology Brain Brain, Neurons, Long-Term Potentiation, Association, Expression,
Performance, Disease, Model, Synaptic Plasticity, Activation, Com-
plex, Children, Central-Nervous-System, Rat

Chaos Theory Chaos Chaos, Dynamics, Systems, Model, Stability, Complexity, Synchro-
nization, Time-Series, Bifurcation, Self-Organization

Spectroscopy Complexes Complexes, Self-Organization, Crystal-Structure, Chemistry,

Derivatives, Behavior, Films, Polymers, Systems, Phase-Transition,
Spectroscopy, Dynamics, Thin-Films, Molecules, Nonlinear-Optical
Properties

Complex Networks

Complex Networks

Complex Networks, Dynamics, Small-World Networks, Model, In-
ternet, Evolution, Systems, Organization, Topology, Scale-Free Net-
works, Metabolic Networks, Web, Graphs

Ecosystems Ecology Ecology, Systems, Model, Complexity, Evolution, Dynamics, Man-
agement, Growth, Behavior, Self-Organization, Patterns, Simula-
tion, Biodiversity, Models

Molecular Biology Expression Expression, Complex, Gene-Expression, Protein, In-Vivo, Activa-
tion, Saccharomyces-Cerevisiae, Identification, Gene, Escherichia-
Coli, Cells, In-Vitro, Binding, Crystal-Structure, Messenger-Rna,
Phosphorylation, Proteins

Semiconductor Super- | Growth Growth, Gaas, Islands, Molecular-Beam Epitaxy, Self-Organization,

lattice Materials And Quantum Dots, Surfaces, Films, Photoluminescence, Silicon, Nanos-

Growth Technology tructures, Si(001)

Clinical Psychology Management Management, Therapy, Trauma, Experience, Hemorrhage, Surgery,
Inhibitors, Optimization, Recombinant Factor Viia, Damage Con-
trol, Mortality, Cancer

Systems Neuroscience Neuralnetwors Neural Networks, Model, Systems, Classification, Optimization, Al-

gorithm, Identification, Design, Prediction, Self-Organizing Maps

Soc

Self-Organized  Criti-
cality

Self-Organized Criticality, Model, Dynamics, Econophysics, Evolu-
tion, Systems, Fluctuations, Behavior, Growth, Turbulence, Noise,
Transport, Avalanches, Earthquakes, Patterns, Time-Series

Computer Science Systems Systems, Design, Performance, Channels, Algorithm, Networks, Ca-
pacity, Ofdm, Stability, Optimization, Fading Channels, Algorithms,
Model, Signals, Codes, Transmission

Dynamics Turbulence Turbulence Turbulence,Model, Flow, Simulation, Dynamics, Behavior, Large-

Eddy Simulation, Complex Terrain, Plasticity, Flows, Boundary-
Layer

Table B.1: Results of communities in the partition. The results shown in high frequent
keywords are sorted in descending order and each keywords are contained by at least 20

articles.
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Cluster

| High frequent topic keywords

[ Involving communities

Genetic association

Association, Susceptibility, Polymorphism, Linkage Disequilib-
rium, Disease, Major Histocompatibility Complex, Linkage, Com-
plex Traits, Risk, Population

Molecular Biology, Bi-
ological Psychology

Discrete-Event  Sys- | Systems, Supervisory Control, Petri Nets, Complexity, Discrete- | Computer Science,
tems Event Systems, Verification, Design, Automata, Synchronization, | Ecosystems
Discrete Event Systems
Computational Com- | Complexity, Algorithms, Computational Complexity, Algorithm, | Computer Science,
plexity Networks, Optimization, Time, Systems, Search, Computational- | Ecosystems
Complexity
Astronomy- Turbulence, Ism : Clouds, Star-Formation, Stars : Formation, | Dynamics Turbulence,
Ism(Interstellar Molecular Clouds, Ism : Structure, Ism : Kinematics And Dynamics, | Clinical Psychology
Medium) Evolution, Radio Lines : Ism, Intergalactic Medium

Multi-Agent Systems

Systems, Multi-Agent Systems, Multiagent Systems, Design,
Agents, Architecture, Multi-Agent System, Framework, Model, In-
telligent Agents

Computer Science,

Ecosystems

Visual Cortex

Complex Cells, Lateral Geniculate-Nucleus, Cat Striate Cor-
tex, Primary Visual-Cortex, Striate Cortex, Cortical-Neurons,
Receptive-Fields, Contrast, Orientation Selectivity, Simple Cells

Biological psychology,
Systems neuroscience

Table B.4: Results of fuzzy detection: ten high-frequent topic keywords
modular overlaps between pairs of communities. These high frequent topic keywords are
contained in at least 20 articles and are shown in order of descending frequency. The
highest frequent topic keywords are shown in bold font.

contained by
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Community

Cluster

High frequent topic keywords

Dynamics
Turbulence

Flow over
Complex Terrain

Turbulence, Model, Flow, Simulation,
Complex Terrain, Large-Eddy
Simulation, Flows, Behavior,
Boundary-Layer, Plasticity

Astronomy-ISM
( Interstellar
Medium )

Turbulence, Ism : Clouds,
Star-Formation, Stars : Formation,
Ism : Structure, Molecular Clouds,
Ism : Kinematics And Dynamics,
Evolution, Radio Lines : Ism,
Intergalactic Medium

Computer
Science:
Communication
Systems

Telecommunication
System

Systems, Performance, Channels,
Synchronization, Fading Channels,
Capacity, Ofdm, Equalization,
Networks, Multiuser Detection

Control Theory

Systems, Stability, Design,
Robust Control, Optimization,
Linear-Systems, Model-Predictive
Control, Stabilization, H-Infinity
Control, Model Predictive Control

Wireless Network

Ad Hoc Networks,

Sensor Networks,

Wireless Sensor Networks,
Self-Organization, Networks,
Wireless Networks, Clustering

Cryptography

Stream Ciphers, Cryptanalysis,
Linear Complexity,
Stream Cipher, Sequences

Molecular
Biology

Expression

Expression, Complex, Gene-Expression,
Protein, Saccharomyces-Cerevisiae,
Gene, Activation, In-Vivo,

Identification, In-Vitro

Dendritic Cells

Dendritic Cells, In-Vivo,
Expression, T-Cells, Infection,
Complex, Mice, Activation, Major
Histocompatibility Complex, Antigen

Crystal
Structure Of
Escherichia Coli

Crystal-Structure, Complex,
Escherichia-Coli, Binding,
Protein, Recognition,
Mechanism, Proteins,
Molecular-Dynamics, Complexes

Gene Expression
In Escherichia Coli

Escherichia-Coli,

Gene-Expression, Systems,
Expression, Model, Networks, Systems
Biology, Protein,

Transcription, Rhythms

Atherosclerosis

Atherosclerosis, Inflammation,
Expression, Disease, Myocardial-
Infarction, In-Vivo, C-Reactive
Protein, Smooth-Muscle-Cells,
Activation, Low-Density-Lipoprotein

Membrane Fusion
And Exocytosis

Membrane-Fusion,
Neurotransmitter Release, Exocytosis,
Syntaxin, Snare, Complex, Protein,
Snare Complex, Transmitter Release

Proteomics

Identification, Proteomics, Mass-
Spectrometry, Proteins, Peptides,
Protein Identification

Chaotic Dynamics

Chaos, Dynamics, Systems, Complexity,
Stability, Model, Time-Series,
Synchronization, Nonlinear Dynamics,




Chaos Theory
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Bifurcation

Quantum Chaos
And Universality

Universality, Quantum Chaos, Systems,
Chaos, States, Model, Random-

Matrix Theory, Complex Systems,
Fluctuations, Spectra

Chaos In
Population
Dynamics

Chaos, Stability, Dynamics, Population,
Permanence, Models, Systems,
Bifurcation, Predator-Prey System,
Birth Pulses

Neuroscience:
Biological
Psychology

Neuroplasticity

Rat, Neurons, Plasticity, Hippocampus,
Brain, Central-Nervous-System,
Synaptic Plasticity, Long-Term
Potentiation, Food-Intake, Memory

Long-Term
Potentiation

Long-Term Potentiation,

Synaptic Plasticity, Plasticity,
Hippocampus, Nmda Receptor,
Glutamate Receptors, Expression,
Neurons, In-Vivo, Hippocampal-Neurons

Genetic Association

Association, Susceptibility,
Polymorphism, Linkage Disequilibrium,
Disease, Major Histocompatibility
Complex, Linkage, Complex Traits,
Risk, Population

Pre-Botzinger
Complex

Pre-Botzinger Complex, In-Vitro,
Prebotzinger Complex, Brain-Stem,
Respiratory Rhythm Generation,
Rhythm Generation, Rat, Control Of
Breathing, Neurons, Pacemaker Neurons

Prefrontal Cortex

Performance, Attention, Fmri,
Children, Prefrontal Cortex, Brain,
Working-Memory, Cortex, Memory,
Activation

Diabetes Mellitus

Mellitus, Glycemic Control,
Complications, Hypertension,
Randomized Controlled-Trial, Diabetes,
Therapy, Risk, Diabetes Mellitus,
Management

Chemistry:
Spectroscopy

Crystal Structure

Complexes, Self-Organization,
Crystal-Structure, Derivatives,
Chemistry, Polymers, Behavior, Films,
Nonlinear-Optical Properties,
Phase-Transition

Anodic Alumina

Fabrication, Arrays, Films, Anodic
Alumina, Anodization, Self-
Organization, Growth, Self-Organized
Formation, Hexagonal Pore Arrays,
Titanium

Soc

Soc

Self-Organized Criticality, Model,
Dynamics, Econophysics, Evolution,
Systems, Fluctuations, Models,
Behavior, Turbulence

Ecosystems

Innovation
Management

Management, Innovation, Economics,
Performance, Model, Complexity,
Systems, Technology, Firm, Knowledge

Discrete-Event

Systems, Supervisory Control,

Systems Petri Nets, Complexity, Discrete-Event
Systems, Verification, Design, Automata,
Discrete Event Systems,
Synchronization

Computational Complexity, Algorithms,

Complexity Computational Complexity, Algorithm,

Networks, Optimization, Time, Systems,
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Search, Computational-Complexity

Ecosystems Ecology, Dynamics, Evolution,
Biodiversity, Patterns, Diversity,
Growth, Model, Management,
Conservation

Absorption Adsorption, Sorption, Speciation,
Complexation, Humic Substances,
Water, Natural-Waters, Kinetics,
Ph, Copper

Cellular Automaton Cellular Automata, Systems,
Simulation, Self-Organization,
Model, Cellular-Automata, Flow,
Cellular-Automaton Model,
Traffic Flow, Dynamics

Multi-Agent Systems, Multi-Agent Systems,
Systems Multiagent Systems, Design, Agents,
Architecture, Multi-Agent System,
Framework, Model, Intelligent Agents

Division Of Labor In Self-Organization, Behavior,

Insect Societies Division-Of-Labor, Hymenoptera,
Ants, Colonies, Formicidae, Social
Insects, Swarm Intelligence, Evolution

Complex Adaptive Complexity, Self-Organization,

Systems Chaos, Emergence, Science, Complex
Adaptive Systems, Complexity Theory

Malaria Malaria, Culicidae, Identification,

Transmission, Complex, Diptera, Africa,
Mosquitos, Anopheles-Gambiae Complex, Gambiae Complex

Neural Networks Neural Networks, Classification,
Systems, Model, Self-Organizing Map,
Neural Network, Algorithm,
Identification, Artificial Neural
Networks, Prediction

Neural Networks Genetic Algorithm Optimization, Genetic Algorithms,
Genetic Algorithm, Design, Systems,
Neural Networks, Model, Algorithm,
Algorithms, Simulation

Simulated Optimization, Simulated Annealing,
Annealing Algorithm, Model

Gene Expression Patterns, Self-Organizing Maps,
Patterns Gene-Expression, Microarray,

Identification, Gene Expression,
Saccharomyces-Cerevisiae, Cancer,
Expression, Classification

Complex Complex Systems Complex Networks, Dynamics,
Systems Small-World Networks, Model,
Internet, Networks, Evolution,
Scale-Free Networks, Systems,
Organization

Table B.5: Results of fuzzy detection: ten high frequent topic keywords contained by
robust clusters. These high frequent topic keywords are contained in at least 20 articles
and are shown in order of descending frequency. The highest frequent topic keywords
are shown in bold font.

1Only 10-15 articles contain them




[ Cluster [ High frequent topic keywords
Self-Organized Criticality, Model, Systems, Earthquakes,
Soc 1/F Noise, Dynamics, Noise, Avalanches, Fluctuations, Criti-
cality
Complexes, Crystal-Structure, Chemistry, Model, Phase-
Chemistry Transition, Derivatives, Systems, Spectroscopy, Kinetics,

Molecular-Structure

Chaos Theory

Chaos, Dynamics, Systems, Model, Strange Attractors, Tur-
bulence, Stability, Time-Series, Behavior, Models

Ising-Model, Complex Zeros, Model, Systems, Dynam-

Ising Model ics, Phase-Transition, Partition-Function, Behavior, Phase-
Transitions
Neuroscience Rat, Neurons, Brain, Complex, Cat, Ecology, Rat-Brain, Re-

sponses, Growth, Horseradish-Peroxidase

Neural Networks

Neural Networks, Systems, Model, Algorithm, Design, Op-
timization, System, Artificial Intelligence, Neural Network,
Self-Organization

Major Histocompatibility Complex, Expression, Activa-

Mhc tion, Monoclonal-Antibodies, Complex, Mice, Cells, T-Cells,
Induction, Antigen
Aids-Related Complex, Aids, Performance, Human-
Arc Immunodeficiency-Virus, Aids Dementia Complex, Infection,

Children, Complex, Disease, Brain

Molecular Biology:

.. Fission Yeast, Cell-Cycle, Saccharomyces-Cerevisiae,
Fission Yeast And . . . . L
Expression, Phosphorylation, Protein-Kinase, Activation,
Saccharomyces o
.. Messenger-Rna, M-Phase, Mitosis
Cerevisiae
Dynamics  Turbu- | Flow, Turbulence, Model, Boundary-Layer, Equations, Ve-
lence locity, Simulation, Evolution, Diffusion

Molecular Biology:
Protein

Complex, Binding, Expression, Proteins, Purification, Cells,
Protein, Identification, Activation, Metabolism

Photosystems

Photosystem-Ii, Complex(, Chloroplasts, Photosynthesis,
Escherichia-Coli) *

Molecular Biology:
Gene

Messenger-Rna,  Gene-
Complex, Transcription,

Expression, Protein, Gene,
Expression,  Escherichia-Coli,
Sequence, Dna

Table B.6:

descending frequency. The highest frequent topic keywords are shown in bold font.
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Partition results in past history of complex system science during 1985-
1994: ten high-frequent topic keywords contained by disjoint communities. These high
frequent topic keywords are contained in at least 15 articles and are shown in order of



Cluster

High frequent topic keywords

Chaos Theory

Chaos, Systems, Dynamics, Model, Time-Series, Strange At-
tractors, Stability, Turbulence, Behavior, Self-Organization

Neural Networks

Neural Networks, Systems, Model, Algorithm, Optimiza-
tion, Design, Neural Network, Complexity, Networks, Recog-
nition

Molecular Biology:
Serum And Hor-

mone

Serum, Complex, Invitro, Factor-I, Igf-I, Cells, Granulosa-
Cells, Fertilization, Maturation, Hormone

Ecology, Growth, Evolution, Systems, Performance, Com-

Ecosystems plexity, Model, Behavior, Dynamics, Patterns
Expression, Major Histocompatibility Complex, Complex,
Immunology Mice, Activation, Disease, Monoclonal-Antibodies, T-Cells,

Cells, Tumor-Necrosis-Factor

Dynamics  Turbu-
lence

Model, Flow, Turbulence, Transport, Simulation, Evolution,
Adsorption, Behavior, Flows, Boundary-Layer

Molecular Biology:
Saccharomyces
Cerevisiae And
Fission Yeast

Saccharomyces-Cerevisiae, Cell-Cycle, Expression, Pro-
tein, S-Phase, Cell Cycle, Fission Yeast, Gene, Mitosis, Com-
plex

Metabolic  Control
Analysis

Control Coefficients,
Metabolism, Skeletal-Muscle

Metabolic  Control  Analysis,

Complexes, Crystal-Structure, Chemistry, Derivatives, Sys-

Chemistry tems, Model, Complex, Dynamics, Spectroscopy, Phase-
Transition

Neuroscience Rat, Brain, Neurons, Complex, Cat, Rat-Brain, Cells, Hip-
pocampus, Long-Term Potentiation, Central-Nervous-System
Self-Organized Criticality, Model, Dynamics, Systems,

Soc Earthquakes, Avalanches, 1/F Noise, Evolution, Noise,

Growth

Semiconductor Su-
perlattice Materials
And Growth Tech-
nology

Gaas, Growth, Molecular-Beam Epitaxy, Quantum Dots,
Photoluminescence, Islands, Self-Organized Growth, Self-
Organization, Surfaces, Ingaas

Molecular Biology

Expression, Complex, Protein, Binding, Gene, Cells,
Messenger-Rna, Escherichia-Coli, Identification, Gene-
Expression
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Table B.7: Partition results in the past history of complex system science during 1990-
1999: ten high-frequent topic keywords contained by disjoint communities. These high
frequent topic keywords are contained in at least 15 articles and are shown in order of
descending frequency. The highest frequent topic keywords are shown in bold font.



[ Cluster [ High frequent topic keywords
Complexes, Crystal-Structure, Self-Organization, Chem-
Chemistry istry, Derivatives, Complex, Behavior, Polymers, Dynamics,

Systems

Molecular Biology

Expression, Complex, Protein, Gene, Gene-Expression,
Activation, Saccharomyces-Cerevisiae, Cells, Identification,
Messenger-Rna

Neural Networks

Neural Networks, Model, Classification, Neural Network,
Systems, Algorithm, Recognition, Artificial Neural Networks,
Networks, Identification

Genetic Algorithm

Systems, Optimization, Design, Model, Complexity, Genetic
Algorithms, Simulation, Cellular Automata, Algorithm, Mod-
els

Chaos Theory

Chaos, Dynamics, Systems, Model, Stability, Time-Series,
Complexity, Nonlinear Dynamics, Synchronization, Behavior

Quantum Chaos

Systems, Model, Ising-Model, Localization, Chaos, Quantum
Chaos, States, Fluctuations, Universality, Density

Neuroscience

Brain, Rat, Neurons, Long-Term Potentiation, Plasticity,
Hippocampus, Memory, Central-Nervous-System, Synaptic
Plasticity, Cortex

Complex Networks

Complex Networks, Internet, Small-World Networks, Dy-
namics, Model, Networks, Evolution, Systems, Escherichia-
Coli, Organization

Computation The-
ory In Networks

Systems, Design, Performance, Algorithm, Stability, Opti-
mization, Identification, Networks, Simulation, Model

Self-Organized Criticality, Model, Dynamics, Systems,

Soc Evolution, Avalanches, Econophysics, Earthquakes, Noise,
Growth
Db Dfb Lasers, Distributed Feedback Lasers, Semiconductor-

Lasers

Timeless (Gene)

Transcription, Light, Rhythms, Suprachiasmatic Nucleus,
Protein, Clock, Timeless, Expression, Drosophila, Circadian
Clock

Dynamics  Turbu-

lence

Model, Turbulence, Flow, Simulation, Evolution, Transport,
Behavior, Dynamics, Flows, Adsorption

Semiconductor Su-
perlattice Materials
And Growth Tech-
nology

Growth, Gaas, Molecular-Beam Epitaxy, Quantum Dots, Is-
lands, Self-Organization, Photoluminescence, Self-Organized
Growth, Surfaces, Films

Ecology, Evolution, Model, Management, Dynamics, Com-

Ecosystems plexity, Growth, Behavior, Patterns, Systems
Expression, Major Histocompatibility Complex, Complex,
Immunology Disease, Mice, Association, Identification, T-Cells, Infection,

Activation

125

Table B.8: Partition results in the past history of complex system science during 1995-
2004: ten high-frequent topic keywords contained by disjoint communities. These high
frequent topic keywords are contained in at least 15 articles and are shown in order of
descending frequency. The highest frequent topic keywords are shown in bold font.



Cluster

[ High frequent topic keywords

Dynamics  Turbu-

lence

Turbulence, Model, Flow, Simulation, Dynamics, Behavior,
Large-Eddy Simulation, Complex Terrain, Plasticity, Flows

Network Systems

Systems, Design, Performance, Algorithm, Channels, Syn-
chronization, Optimization, Networks, Stability, Fading Chan-
nels

Molecular Biology

Expression, Complex, Gene-Expression, Protein, In-Vivo,
Activation, Saccharomyces-Cerevisiae, Identification, Gene,
Escherichia-Coli

Chaos Theory

Chaos, Dynamics, Systems, Model, Stability, Complexity,
Synchronization, Time-Series, Nonlinear Dynamics, System

Biological Psy- | Brain, Long-Term Potentiation, Association, Rat, Synaptic
chology(Behavioral Plasticity, Neurons, Plasticity, Expression, Performance, Chil-
Neuroscience) dren
Complexes, Self-Organization, Crystal-Structure, Chem-
Spectroscopy istry, Derivatives, Behavior, Polymers, Films, Systems, Spec-
troscopy
Self-Organized Criticality, Model, Dynamics, Econo-
Soc physics, Evolution, Systems, Fluctuations, Models, Behavior,
Turbulence
Ecosystems Ecology, Systems, Model, Complexity, Evolution, Dynamics,

Management, Growth, Behavior, Self-Organization

Semiconductor Su-
perlattice Materials
And Growth Tech-
nology

Growth, Self-Organization, Gaas, Quantum Dots, Islands,
Molecular-Beam Epitaxy, Nanostructures, Surfaces, Films,
Self-Organized Growth

Neural Networks

Neural Networks, Model, Systems, Classification, Algo-
rithm, Optimization, Identification, Design, Neural Network,
Models

Complex Networks

Complex Networks, Dynamics, Small-World Networks,
Model, Internet, Networks, Evolution, Scale-Free Networks,
Systems, Organization

Clinical Psychology

Management, Therapy, Radiation-Therapy, Radiotherapy,
Trauma, Experience, Hemorrhage

Table B.9: Partition results in the past history of complex system science during 2000-
2009: ten high-frequent topic keywords contained by disjoint communities. These high
frequent topic keywords are contained in at least 20 articles and are shown in order of
descending frequency. The highest frequent topic keywords are shown in bold font.

Cluster High frequent topic keywords flril:i(e)lsvmg commu-
Patholplz.ys“’l"gy: 4 PLASMA, COAGULATION, FIBRINOLYSIS, MIHC. ARC
g‘,’;‘f;o?y;’; and | ACTIVATION, ASSAY, FIBRINOPEPTIDE-A, COMPLEX ,

Table B.10: Results of fuzzy detection during 1985-1994: ten high-frequent topic key-
words contained by modular overlaps between pairs of communities. These high frequent
topic keywords are contained in at least 15 articles and are shown in order of descending
frequency. The highest frequent topic keywords are shown in bold font.
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Involving commu-

Cluster High frequent topic keywords nities
Ecosystems,
. . . c . . Molecular Biol-
Chemical: Adsorp- Adsorption, Complexation, Speciation, Sorption,
- . . ogy: Serum And
tion Cadmium, Copper, Ph, Natural-Waters, Transport, Zinc
Hormone, Dynam-
ics Turbulence
Ecosystems,
Industrial And Management, Organizations, Model, Performance, Molecular Bi-
Organizational Economics, Organization, Innovation, United-States, ology: Serum
Psychology Industry, Complexity And Hormone,
Neuroscience
Ecosystems,
. . . .. L. . Molecular Biol-
Malaria Transmis- Malaria, Culicidae, Transmission, Diptera, Complex,
ogy: Serum And

sion And Mosquito

Identification, Anopheles-Gambiae Complex, West-Africa

Hormone, Dynam-
ics Turbulence

Protein Expression:
Binding

Binding, Expression, Complex, Protein, Cells, Rat,
Messenger-Rna, Escherichia-Coli, Purification,
Phosphorylation

Metabolic Control
Analysis, Genetics

Structural And
Molecular Biology

Escherichia-Coli, Crystal-Structure, Resolution, Binding,
Mechanism, Complex, 3-Dimensional Structure

Molecular Biology:

Saccharomyces
Cerevisiae And
Fission Yeast,
Genetics

Protein Expression:
Protein

Proteins, Expression, Complex, Purification, Protein,
Identification, Binding, Cells, Escherichia-Coli, Gene

Metabolic Control
Analysis, Genetics

Cell Physiology:
Cell Signaling

Signal Transduction, Map Kinase, Phosphorylation,
Signal-Transduction, Activation, Ras, Tyrosine
Phosphorylation, Activated Protein-Kinase, Epidermal
Growth-Factor, Cells

Molecular Biology:

Saccharomyces
Cerevisiae And
Fission Yeast,
Genetics

Molecular Biology:

Metabolism, Mitochondria, Complex, Brain, Binding, Rat,

Metabolic Control

ﬁfﬁjﬁﬂféﬁia And Cells, Expression, Inhibition, Liver Analysis, Genetics
Table B.11: Results of fuzzy detection during 1990-1999: ten high-frequent topic key-

words contained by modular overlaps between pairs of communities. These high frequent
topic keywords are contained in at least 15 articles and are shown in order of descending
frequency. The highest frequent topic keywords are shown in bold font.



128

Involving commu-

Cluster High frequent topic keywords nities
Porous-Media, Solute Transport, Flow, Dvnamic  Turbu-
Hydrogeology Stochastic-Analysis, Hydraulic Conductivity, Dispersion, Y

Transport, Groundwater-Flow, Groundwater, Simulation

lence, Ecosystems

Chemistry: Adsorp-
tion

Adsorption, Sorption, Complexation, Speciation,
Natural-Waters, Copper, Water, Seawater, Humic
Substances, Cadmium

Dynamic  Turbu-
lence, Ecosystems

Cellular Automata

Cellular Automata, Self-Organization, Simulation,
Cellular-Automata, Systems, Traffic Flow,
Cellular-Automaton Model, Model, Jams, Jamming
Transition

Chaos Theory,
Timeless (Gene)

Self-Oreanization Model, Self-Organization, Dynamics, Systems, Patterns, Chaos Theory,
& Oscillations, System, Chaos, Pattern-Formation, Evolution Timeless (Gene)
Dynamics, Systems, Pattern-Formation, Turbulence, Chaos Theory,

Dynamics

Stability, Ginzburg-Landau Equation, Instability, Chaos,
Waves, Transition

Timeless (Gene)

Self-Organization
In Chemistry

Self-Organization, Particles, Nanoparticles, Superlattices,
Clusters, Size, Monolayers, Films, Optical-Properties,
Growth

Semiconductor Su-
perlattice Materi-
als And Growth
Technology, Chem-
istry

Nitric Oxide Syn-
thase

Nitric Oxide, Nitric-Oxide, L-Arginine, Relaxing Factor,
Synthase, Inhibition, Cells, Nitric-Oxide Synthase,
Endothelial-Cells, Endothelium

Molecular Biology,
Neuroscience

Celluar Neural Net-
works

Cellular Neural Networks, Cnn, Cellular Neural
Network, Chaos, Neural Networks

Chaos Theory,
Timeless (Gene)

Table B.12: Results of fuzzy detection during 1995-2004: ten high-frequent topic key-
words contained by modular overlaps between pairs of communities. These high frequent
topic keywords are contained in at least 15 articles and are shown in order of descending
frequency. The highest frequent topic keywords are shown in bold font.
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Cluster

| High frequent topic keywords

[ Involving communities

Genetic Association

Association, Susceptibility, Polymorphism, Linkage Disequilib-
rium, Disease, Major Histocompatibility Complex, Linkage, Com-
plex Traits, Risk, Population

Molecular Biology, Bi-
ological Psychology

Discrete-Event  Sys- | Systems, Supervisory Control, Petri Nets, Complexity, Discrete- | Computer Science,
tems Event Systems, Verification, Design, Automata, Synchronization, | Ecosystems
Discrete Event Systems
Computational Com- | Complexity, Algorithms, Computational Complexity, Algorithm, | Computer Science,
plexity Networks, Optimization, Time, Systems, Search, Computational- | Ecosystems
Complexity
Astronomy- Turbulence, Ism : Clouds, Star-Formation, Stars : Formation, | Dynamics Turbulence,
Ism(Interstellar Molecular Clouds, Ism : Structure, Ism : Kinematics And Dynamics, | Clinical Psychology
Medium) Evolution, Radio Lines : Ism, Intergalactic Medium

Multi-Agent Systems

Systems, Multi-Agent Systems, Multiagent Systems, Design,
Agents, Architecture, Multi-Agent System, Framework, Model, In-
telligent Agents

Computer Science,

Ecosystems

Visual Cortex

Complex Cells, Lateral Geniculate-Nucleus, Cat Striate Cor-
tex, Primary Visual-Cortex, Striate Cortex, Cortical-Neurons,
Receptive-Fields, Contrast, Orientation Selectivity, Simple Cells

Biological Psychology,
Systems Neuroscience

Table B.13: Results of fuzzy detection during 2000-2009: ten high-frequent topic key-
words contained by modular overlaps between pairs of communities. These high frequent
topic keywords are contained in at least 15 articles and are shown in order of descending
frequency. The highest frequent topic keywords are shown in bold font.




Résumé substantiel

L’organisation modulaire de réseaux complexes

Les réseaux complexes sont obtenus par la modélisation de systémes réels avec des
graphes. Ce paradigme est utilisé pour représenter une grande variété de systémes dans
des domaines différents, tels que Internet, World Wide Web, les réseaux de co-citations,
les réseaux de collaborations, les réseaux métaboliques. Chaque citoyen, tel qu’une per-
sonne, peut construire un réseau social dont les nceuds sont reliés par les interactions
sociales(professionnelles, amicales).

Les études dans les réseaux complexes deviennent un intérét populaire pour la recherche.
Ces études ont été déclenchées par deux articles sur les réseaux petits mondes et les
réseaux scale-free. Ces articles ont présenté des propriétés non-triviales, qui ne se pro-
duisent pas dans les réseaux simples tels que de graphes de treillis ou des graphes aléa-
toires. Cela a provoqué un grand développement des études sur les propriétés des réseaux
réels.

L’analyse comparative et massive des réseaux de plusieurs domaines a produit une
série de résultats inattendus et impressionnants. Une question importante qui a émergé
est la compréhension des structures en communautés. Les études empiriques sur des
réseaux différents tels que World Wide Web, les réseaux protéines complexes, les réseaux
de messageries, efc. , mettent en évidence que leurs distributions de degrés ont des
caractéristiques particuliéres. Des études ont également constaté que la distribution des
degrés des nceuds n’est pas seulement qu’hétérogéne sur ’ensemble du graphes globale,
mais aussi ’est aussi localement. En d’autres mots, les réseaux peuvent étre décrire par
des communautés, avec des connexions denses en leur sein et des connexions éparses
entre eux.

La structure de la communauté d’un réseau réel n’est pas seulement le résultat de la
topologie, mais aussi se référe aux fonctions du systéme : dans les réseaux de protéines
complexes, les communautés correspondent & des fonctions spécifiques; dans le World
Wide Web, ils lient des pages par des thémes ; dans les réseaux trophiques, ils correspon-
dent & des compartiments, etc. . Les études sur la structure de communautés devraient
conduire & une meilleure compréhension des systémes complexes.

Détection de communautés

Afin de détecter des structures communautaires, diverses techniques sont proposées
et sont appliquées & des réseaux réels. Dés 1955, Weiss et Jacobson ont réalisé la premiére
analyse de structures communautaires, qui était a la base des algorithmes de partition-
nement de graphe. Ces algorithmes de partitionnement de graphe divisent les noeuds
en communautés prédéfinies, telles que le nombre d’arétes entre les groupes est faible.



Dans un article fondateur paru en 2001, Girvan et Newman ont proposé un nouvel algo-
rithme, qui a identifié les arétes située entre les communautés pour ’élimination succes-
sive jusqu’a l'isolement des communautés. Ce document a déclenché une grande activité
dans le domaine, et de nombreuses nouvelles méthodes modernes ont été proposées. Par
exemple, optimisation de la modularité est la méthode la plus populaire pour la détec-
tion de communautés dans les grands graphes, les algorithmes dynamiques sont basés
sur des techniques physiques : spin models, les marches aléatoires et la synchronisation,
et d’autres, comme les méthodes basées sur I'inférence statistique : inférence bayésienne,
blockmodeling, la sélection du modéle et la théorie de 'information.

Ces méthodes fournissent de bonnes performances dans la détection de communautés,
et ont été appliquées & de réseaux réels pour leur analyse. La détection de communautés
mérite-t-elle encore d’autres études plus approfondies 7 Au moins deux raisons ont motivé
notre travail en profondeur.

La premiére des raisons est que les réseaux réels complexes deviennent de plus en plus
complexes. A partir de ’analyse de petits réseaux statiques nous pouvons nous attacher
a ’étude de systémes avec des milliers ou des millions de nceuds, en portant particuliére-
ment notre attention sur les propriétés des réseaux dynamiques. Par exemple, le réseau
des communications de millions d’utilisateurs change ses interactions au fil du temps.
La structure d’un réseau réel est le résultat de I’évolution continue des interactions qui
correspondent aux fonctions du systéme. De sorte que la recherche sur les communautés
dans les réseaux dynamiques conduirait a une meilleure connaissance des mécanismes de
I’évolution du systéme, et & une meilleure cottoning sur les comportements dynamiques
et fonctionnels. La plupart des méthodes de détection de communautés sont proposées
pour les réseaux statiques. Il y a un besoin crucial d’algorithmes qui détectent les com-
munautés dans les réseaux dynamiques.

La seconde raison est que la structure de communautés recouvrantes est toujours un
probléme. La plupart des méthodes de la détection de communautés sont proposées pour
détecter les communautés disjointes sans nceuds recouvrants. Les nceuds recouvrants
sont partagés par plusieurs communautés qui se recouvrent dans la structure commu-
nautaire. Ils sont intéressants & étudier, car ils jouent un réle clé en tant qu’intermédiaire
entre les communautés, avec un effet spécial dans la prédiction de comportements dy-
namiques des individuals dans les réseaux. Des études dans les histoires d’interactions
sociales entreprises en Hongrie ont montré qu’il est possible de recombiner les adhésions
aux groupes communautaires des nceuds recouvrants. Au cours du temps, une commu-
nauté peut survivre a ses membres. Certaines communautés ont été construites par le
fractionnement d’une communauté mére et d’autres par le regroupement de plusieurs
communautés meéres. Ce phénomeéne, en effet, représente une caractéristique essentielle
de nceuds recouvrants dans la compréhension de 'organisation structurelle des systemes
complexes. Des études de communautés recouvrantes seront utiles pour comprendre les
mécanismes des systémes dynamiques et prévoir les tendances futures. Nous explorons
cette thése pour faire face & I'analyse de la structure de communautés recouvrantes dans
des réseaux différents ou/et dans des réseaux dynamiques.

Pour ce faire, deux méthodes différentes de la détection de communautés recouvrantes
sont proposées. Nous présentons aussi des approches pour suivre ’évolution de structures



au fil du temps. Pour vérifier nos méthodes, nous les avons appliquées & données réelles
différentes. Les résultats obtenus sont évalués.

Les contributions

Les contributions principales de cette thése sont briévement résumées ci-dessous :

— Deux points de vue différents sur la détection de nceuds recouvrants : Pour dé-
tecter les communautés recouvrantes et caractériser les nceuds recouvrants, nous
avons proposé deux définitions de nceuds recouvrants : les nceuds recouvrants gran-
ulaires et les groupes recouvrants. Chaque noeud recouvrant granulaire se connecte
a plusieurs communautés avec une forte cohésion. Chaque groupe recouvrant est
un ensemble de nceuds ayant un haut degré d’appartenance & une communauté
(la force du groupe de noeuds appartient a la communauté) avec au moins deux
communauteés.

Pour la détection de nceuds recouvrants granulaires, nous avons proposé I'optimi-
sation de cliques, ce qui détecte les cliques k-adjacentes aux communautés (Une
clique qui n’appartient pas & la communauté, mais partage au moins k - 1 nceuds
communs). Un neeud recouvrant granulaire dans un sens faible est le membre d’une
clique, qui est adjacent & d’autres communautés auxquelles il n’appartient pas dans
la partition. Un nceud recouvrant granulaire dans un sens fort est 1’élément d’une
clique, qui est adjacente & au moins deux communautés en méme temps.

Notre étude a pour but d’identifier les groupes recouvrants. Nous proposons la
méthode nommée détection floue (fuzzy detection). En exécutant de 'algorithme
de Louvain & plusieurs reprises, nous pouvons calculer la probabilité qu’une paire de
noeuds apparaissent dans une méme communauté. Il nous permet de détecter des
groupes robustes, qui ont une grande stabilité contre les chocs aléatoires. Chaque
paire de noeuds connectés d'un groupe robuste a une haute probabilité de co-
comparution. En outre, nous sommes en mesure de détecter les noyaux de la com-
munauté et les groupes recouvrants. Le noyau de la communauté est le groupe
robuste maximum dans une communauté. Le groupe recouvrant est un groupe ro-
buste ayant une haute probabilité de co-comparution avec plusieurs communautés.
Les applications de ces deux méthodes & des graphes de référence sont accord
avec les communautés connues. Nous les appliquons également & un réseau réel.
Dans les expériences, nous observons que les deux méthodes donnent les résultats
significatives mais différentes pour caractériser des noeuds recouvrants.

— Suivi de I’évolution des communautés et identification de la dynamique des com-
munautés : Pour suivre I’évolution des communautés et identifier la dynamique des
communautés, nous avons proposé une méthode en deux étapes : tout d’abord, nous
appliquons notre détection floue & la détection de la structure communautaire &
chaque pas de temps, et ensuite nous établissons la relation entre les communautés
a des pas de temps différents. Comme la définition de la persistance de groupe est
utilisée, nous sommes en mesure de caractériser la dynamique des communautés,
méme si certaines parties de la composition fluctue.



Afin de mieux analyser et d’explorer la dynamique des communautés, nous avons
introduit une technique de visualisation appelées diagrammes de lignage. Les di-
agrammes de la lignée nous permettent d’observer le degré de stabilité des com-
munautés définies par leurs membres au fil du temps et comment les changements
de structure évoluent dans les communautés. Cette approche a été appliquée a
un réseau dynamique. Un avantage important de notre méthode est son efficacité
dans la détection de la dynamique des communautés dans des réseaux évoluant au
court du temps. Par conséquent, notre méthode est permet de détecter et d’anal-
yser ’évolution des communautés dans les grands réseaux, en particulier, ceux qui
présentent un nombre élevé de changements au fil du temps.

Apercu de cette thése

La thése est organisée comme suit. Le chapitre 1 est 'enquéte de la détection com-
munautaire dans des réseaux dynamiques. Nous décrivons la définition de la structure
communautaire et les changements des communautés au fil du temps. La détection de
communautés dans des réseaux dynamiques devient une question populaire. Ce prob-
léme est trés difficile & résoudre. Nous passons en revue les algorithmes congus pour les
réseaux dynamiques, qui sont basés sur les techniques de la détection de communautés
dans les réseaux statiques. Nous discutons également des questions cruciales comme la
facon dont les méthodes doivent étre testées et comparées entre elles.

Le chapitre 2 concerne la détection de communautés recouvrantes. Nous discutons
I'importance de la structure de communautés recouvrantes dans ’analyse des réseaux et
les limites des algorithmes existants. Ensuite, nous transformons le probléme de la détec-
tion de communautés recouvrantes au probléme de la détection de nceuds recouvrants,
avec la définition de nceuds recouvrants granulaires et la définition de groupes recou-
vrants. Par conséquent, nous avons proposé deux méthodes distinctes : I’optimisation de
clique et la détection floue. La premiére consiste a détecter les neeuds recouvrants gran-
ulaires et la seconde vise & détecter des groupes recouvrants. Les applications de deux
méthodes dans les réseaux synthétiques et les réseaux réels ont de bonnes performances.
En particulier, des applications dans le réseau de I’histoire des systémes complexes four-
nissent un résultat impressionnant : les deux méthodes fournissent des informations sur
les relations entre les communautés, mais quelque peu différentes.

Dans le chapitre 3 nous considérons la structure des communautés recouvrantes
dans les réseaux dynamiques et proposons une méthode basée sur nos travaux décrits
précédemment. Les applications dans les réseaux dynamiques telles que I’histoire de la
science des systémes complexes, révélent que les noeuds recouvrants sont importants pour
les fonctions et les interactions structurelles entre les communautés.

Enfin, nous terminons dans le chapitre 4 en concluant notre travail en matiére de
détection communautés et la discussion sur les perspectives que souléve ce travail.



