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Abstract 

Magnetic Resonance Imaging (MRI) is widely applied to the examination 

and assistant diagnosis of brain tumors owing to its advantages of high 

resolution to soft tissues and none of radioactive damages to human bodies. 

Integrated with medical knowledge and clinical experience of themselves, the 

experienced doctors can obtain the sizes, locations, shapes and other 

pathological characteristics of brain tumors according to the information in MRI 

images to make scientific and reasonable therapeutic treatment. 

Because there are several MRI examinations for every patient in the whole 

therapeutic treatment, each of which can give 3-dimensional data in multiple 

sequences, it is a large amount of data to be dealt with for the doctors. Long 

time of hard work will inevitably lead to mistakes in the diagnosis of the tumor 

contours for the doctors. Moreover, it is subjective for the doctors to determine 

the state of the diseases according to their medical knowledge and clinical 

experiences. Therefore, developing an automatic or a semi-automatic 

computer-aided diagnosis system is meaningful in real medical treatments, 

which can release the workload of doctors and improve the accuracy by giving 

objective results. 

This problem is a hot point in the research field of biomedical engineering 

and a lot of algorithms have been proposed to try to solve it. But unfortunately it 

is still unsolved due to the limitations of low accuracy, efficiency, applicability 

and robustness of existing algorithms. In this thesis, a semi-automatic brain 

tumor detection and classification framework from tumor region segmentation 

to tissue classification is proposed with Support Vector Machine (SVM) as its 

classifier. Through fusion of input data, extraction of feature vectors, feature 

selection, primary classification of brain tumor and contour refinement, the final 

tumor detection and classification can be fulfilled. Multi-kernel SVM is also 

introduced in our proposed system to be fit to multiple MRI sequences and to 

improve segmentation accuracy. In addition to the multi-kernel SVM, adaptive 

training is designed to follow-up the changes of tumors during several MRI 
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examinations. By adaptive training, the system can obtain the properties of 

tumors after the first detection and classification and then separate the tumors in 

the subsequent MRI examinations automatically. 

The proposed system is evaluated on 13 patients with 24 examinations, 

including 72 MRI sequences and 1728 images. Compared with the manual traces 

of doctors as the ground truth, the average classification accuracy reaches 

98.9%. The system utilizes several novel feature selection methods to test the 

integration of feature selection and SVM classifiers. Also compared with the 

traditional SVM, the neural network and a level set method, the segmentation 

results and quantitative data analysis demonstrate the effectiveness of our 

proposed system. 

 

 

Key words: brain tumor detection; Support Vector Machine (SVM); feature 

selection; contour refinement; following-up
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CHAPTER 1  INTRODUCTION 

1.1 Background 

With the growing extent of aging population, cancer has become a global public 
health problem. According to the World Cancer Research Fund’s latest statistics, cancer 
is the world’s first cause of death. In the worldwide each year, 12.7 million people are 
diagnosed with cancer, and 7.6 million people died of cancer [1]. Meanwhile, the annual 
incidence of cancer continues to rise. By 2030, every year there will be 26 million new 
cases, and the death toll will reach to 1.7 million people. 

As a kind of cancer, brain tumor is a very malignant and harmful disease. It has a 
high incidence, and high mortality, which ranks the fifth in the whole tumors and is just 
below the stomach cancer, uterine cancer, breast cancer and esophageal cancer [2-3]. 
Diagnosis and treatment of brain tumor cost a longer period, usually one examination 
every a few months. The doctors need to check on the stage of the disease in last 
examination as referral, and to develop the treatment plan for the next therapy. Under 
the existing medical conditions, in addition to surgery and radiation therapeutic methods, 
there are no more effective treatments, and the patients’ condition can be alleviated and 
controlled, but extremely difficult to cure, which will cause great burdens in both 
mentality and economy for the patients [4-5]. In this sense, the treatment of cancer is a 
major social problem in both economic and financial aspects. A good solution to this 
problem will have important social and practical significance. 

For early detection and treatment of brain tumors, some medical image-based 
diagnosis methods are widely applied to clinical practice. Through a variety of medical 
imaging, the doctors can obtain and understand the patient’s condition more clearly and 
intuitively, and propose various types of scientific and rational treatment plannings for 
the patients.  

Commonly used medical imaging methods are Computed Tomography (CT), 
Positron Emission Tomography (PET), CT / PET, Magnetic Resonance Imaging (MRI), 
and so on [6]. 

CT uses the radioactive rays to penetrate the human body, and the imaging is based 
on the different characteristics reflecting to the rays of different tissues. PET needs to 
inject with radioactive drugs in the human body, and the drugs will flow to all the cells, 
tissues and organs with the blood in the whole body. The absorbed radiation will be 
metabolized and released by different tissues to form different rays which can be 
received for a specific imaging. CT/PET refers to the combination of CT and PET scans 
which are carried out on the same plane to form a fused image with the machine. Both 
CT and PET examination have radioactive hazards, and PET examinations are too 
expensive. Compared with all these imaging modalities above, MRI is the most 
cost-effective [7]. 
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The schematic diagram of MRI equipment and inspection is shown in Figure 1.1 
[8]. 

 

 
Figure 1.1 The schematic diagram of MRI equipment and inspection. 

In the MRI imaging process there will be not any instruments entering and any 
medication injected into the human body. There is not any radiation damage to the 
human body, and the whole process is quite safe. In addition, MRI imaging has 
high-resolution and accurate positioning of soft tissues, and is sensitive to the 
characteristics of diseases, thus it is especially suitable for the diagnosis of brain 
diseases [2, 9]. 

After obtaining the MRI images, in radiotherapy or surgery situations, the doctors 
need to clearly grasp the patient’s condition according to the relevant images and to 
fully prepare for the disease treatment based on the medical information. General 
speaking, according to the obtained MRI images and their clinic knowledges and 
experiences, physicians can fulfill the manual segmentation of images to reasonably 
grasp the size, shape, location, structure distribution and other lesions of the tumor 
regions [10]. 

However, under the existing medical conditions, all of the above work can only be 
done manually by the doctors themselves. On one hand, this is undoubtedly a great 
burden for the doctors to work on a large number of MRI examination data from many 
patients. Doctors’ hard work will inevitably make errors in the classification results. On 
the other hand, the manual segmentation results are very subjective, that is to say, 
different doctors may lead to significantly different segmentation results, and the 
segmentation results from the same doctor but at different moments may be also 
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different, which undoubtedly brings a certain degree of risk to the diagnosis of the 
patients. 

There are mainly two common types of brain tumors, meningiomas and gliomas. 
The characteristics of meningioma are relatively simple on the medical images, in 
which there is a clear distinction border between normal tissues and tumors. So 
meningiomas  is easy to be segmented and removed directly through the surgical 
operations. The characteristics of gliomas are invasive, that is, tumors and other 
abnormal tissues will be invasive and spread into normal tissues to some degree, and all 
the tissues are close mixed together, so it is very difficult to clearly distinguish them 
manually by the doctors. Common practice in real clinical surgery is to appropriately 
excise the determined tumor tissues through the operation, and then to extract the 
remaining tissues and cells near the cut boundary to accomplish the pathological 
analysis in order to test the components and the proportion of cancer cells, which 
determines the surgical excision extent of the abnormal tissues and the treatment 
program of the next step [8-10]. 

The detection and segmentation of brain tumors are of great significance, and also 
there are problems and risks in the process. In this paper will research on the detection 
and analysis of the complex glioma and present a semi-automatic segmentation and 
detection system on brain tumors as to the difficulties in the current computer-aided 
analysis means. The framework can decrease the degree of interaction from human 
bodies, reduce the workload of doctors, establish a sound mechanism for medical image 
processing using medical knowledge, and provide a relatively accurate results which 
can be accepted by most physicians as objective references to assist doctors to diagnose 
and treat disease. Meanwhile, the system can adaptively track the patient’s condition 
effectively to assess the scientificalness and rationality of the treatment. If a large 
number of clinical data can be used for statistical analysis and experimental validation, 
the system also has practical significance. 

1.2 Magnetic Resonance Imaging Theory 

Nucleus in the tissues of human body is composed of protons and neutrons. 
Protons have a positive charge, and neutrons are not charged, thus the whole nucleus is 
shown as positively charged. Charged nucleus rotates around its own axis rapidly, and 
from the law of electromagnetic induction, high-speed spin will produce a vertical 
magnetic moment. According to the different natures of spin, the nuclei can be divided 
into two different types: magnetic nuclei and nonmagnetic nuclei. The former denotes 
the nuclei which can generate a magnetic moment by the spin, and the latter denotes 
those which can not generate a magnetic moment. If the numbers of protons or neutrons 
in a nucleus is odd, then the nucleus belongs to the magnetic nuclei; otherwise the 
nucleus is non-magnetic nuclei if and only if the numbers of protons and neutrons inside 
an atomic nucleus are both even. Only the magnetic nuclei can be used for the magnetic 
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resonance imaging [11]. 
In theory, the magnetic neclei of all elements can be used for MRI imaging, but in 

the current imaging mode, only hydrogen nuclei just with one neutron proton (not the 
other isotope of hydrogen atoms) are mainly used. This is mainly due to [12]: 

1. in the body hydrogen atom has the highest molar concentration: the human 
body contains a lot of water and hydrocarbons (such as sugar, protein and fat, etc), 
so the amount of hydrogen nuclei in the human body is the highest, more than 2/3 
of  the total human nuclei. Sufficient hydrogen nuclei will be very beneficial in 
generating a strong magnetic resonance imaging signal, and the actual magnetic 
resonance imaging also mainly relies on hydrogen nuclei in the water and fat. 

2. hydrogen nuclei has the maximal susceptibility: compared with the nuclei 
of other elements in the human body, the susceptibility of the hydrogen nuclei is 
on the highest level. Higher degree of magnetization will generate higher signal 
intensity in the magnetic resonance imaging. 

3. the biological characteristics of hydrogen nuclei are obvious: because there 
are a lot of water and hydrocarbons in the body, hydrogen nuclei exist in the 
various tissues of the body. Using hydrogen nuclei for magnetic resonance 
imaging can describe the different characteristics of a variety of different tissues in 
the human body with images and thus hydrogen nuclei can lead to a strong 
biological representation. 
The typical MRI imaging system mainly consists of five parts: the main magnet, 

gradient systems, RF system, computer systems and other auxiliary equipment [11], as 
shown in Figure 1.2 [13].  

 

 
Figure 1.2 Structure of MRI imaging System 

The main magnet is a device to produce a magnetic field, and its performance will 
directly affect the imaging quality of MRI. Generally speaking, the main magnet can be 
divided into two defferent types: permanent magnet (made of permanent magnet 
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material) and electromagnetic magnet (twined by coils). Gradient system is used to 
generate the linear gradient magnetic field, to code the spatial orientation of MRI signal 
and the switch of gradient field will generate the MR echo. RF system mainly consists 
of Radio Frequency coils which are used to receive the generated MR echo. Computer 
system controls the entire operations of the MRI imaging system, including pulse 
excitation, signal acquisition, data operations and image display. Supplemented by some 
multi-function softwares, computer system can obtain other complex capabilities, such 
as data mining and analysis, three-dimensional modeling and so on. Auxiliary system 
mainly refers to the auxiliary equipments that ensure the normal operation of the MRI 
imaging system [11]. 

The detailed imaging process of MRI can be described as: 
After the human body enters the main magnetic field, it can produce magnetization 

phenomena: the magnetic moments from the spin of hydrogen nuclei themselves will 
deflect along the orientation of main magnetic field. Most magnetic moments will be 
forward the direction of the magnetic field and into a low-level energy state, and a small 
number of hydrogen nuclei will be against the direction of the magnetic field and 
remain high-level energy state. The total magnetic moment vector (called the 
longitudinal macro-magnetic moment) maintains the same direction with the main 
magnetic field.  

Macro-magnetic moments of different tissues are concerned with the number of 
hydrogen nuclei in tissues. The higher the content of hydrogen nuclei is, the stronger the 
longitudinal macro-magnetic moment will be produced. However, the level of 
macro-magnetic moment vector is still much smaller than that of the main magnetic 
field, and both of them are in the same direction. Superimposed with each other, the 
macro-magnetic moment vector will be completely submerged in the main magnetic 
field. The strength of the pulse signal released from the longitudinal magnetic moment 
is too weak to be received by the RF coil. Thus it is not feasible to distinguish different 
tissues according to different levels of macro vectors caused by differnet amount of 
hydrogen nuclei. 

In order to distinguish different tissues, RF pulses are applied by the imaging 
system to the human body in the main magnetic field. The energy of pulses will be 
delivered to the hydrogen nuclei in a low energy level to make them achieve the 
transition to the high energy level by energy absorption. This phenomenon is the so 
called magnetic resonance phenomenon. The macro-magnetic moment vector deflects 
under the input pulses. The stronger the energy of RF pulse is, the greater the angle of 
deflection is. After the absorption, the energy of hydrogen nuclei is in a high and 
unstable level. Once the RF pulse is removed, the energy will be released automatically 
and the hydrogen nuclei will return to the initial steady state. In the recovery process, 
electromagnetic pulses will be released and received by the RF coil for imaging. 

The recovery process of macro-magnetic moment vector after the disappearance of 
pulses is also called the relaxation process, which is divided into two types, namely, 
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lateral relaxation (transverse magnetization component decreases to disappearance) and 
longitudinal relaxation (longitudinal magnetization component increases gradually back 
to the initial value). Both of the relaxation correspond to T2 and T1 characteristics of 
the tissues respectively. Different tissues have a significant difference in characteristics 
of T2 and T1 [11-12]. 

Given different excitation pulse sequences, MRI can form different weighted 
sequences to reflect the different characteristics and biological properties of tissues. 
Commonly used MRI sequences are T1-weighted, T2-weighted, PD-weighted (Proton 
Density) and FLAIR (FLuid Attenuated Inversion Recovery) weighted sequences. 
T1-weighted images reflect the ability about the recovery speed of magnetic moment in 
the longitudinal relaxation, while T2-weighted images reflect the decay speed of 
magnetic moment in the transverse relaxation. PD-weighted images reflect the 
differences among protons (hydrogen nuclei) density (content per unit volume). After 
the suppression of free water in the T2 weighted images to get better display of the 
tumor characteristics, FLAIR-weighted images can be obtained [11-12].  

Examples of T1-weighted, T2 weighted and FLAIR-weighted images of the same 
patient in a same imaging process are shown in Figure 1.3 [2]. 

 

 
Figure 1.3 Examples of MRI weighted images  

(from left to right: T1-weighted, T2 weighted and FLAIR-weighted images) 

MRI imaging sequences are composed of multiple slices, of which the positions 
and thickness can be chosen randomly, as shown in Figure 1.4 [14]. The red, blue and 
green rectangles refer to commonly used imaging directions to the MRI slices. Different 
weighted image sequences contain a different number of slices. Generally speaking, 
T1-weighted sequence contains the most slices (usually 124 slices), while T2 weighted, 
PD-weighted and FLAIR-weighted sequences usually contain the same number of 
images as 24. 

Brain tissues in MRI images can always be divided into two main types: normal 
tissues, including gray matter, white matter and cerebrospinal fluid (CSF), and abnormal 
tissues, usually containing tumor, necrosis, cystic degeneration and edema. Necrosis is 
in the tumor region in general, while generally cystic change and edema are located near 
the tumor border. These two types of tissues often overlap with the normal tissues and 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0079/these.pdf 
© [N. Zhang], [2011], INSA de Lyon, tous droits réservés



 

 14 

they are not easily to be distinguished. The gray contrast of major tissues in different 
MRI sequences is shown in Table 1.1 [2]. 

 

Figure 1.4 The selection directions of MRI slices 

Table 1.1 The gray distribution of different tissues in multiple MRI sequences 

 Gray 
Matter 

White 
Matter 

CS
F 

Tu
mor 

Ede
ma 

T1-weig
hted －＋ ＋ ―

―― － ―
― 

T2-weig
hted ＋－ －－ ＋

＋＋ ＋ ＋

＋ 

FLAIR ＋－ ―― ―
―― 

＋

＋ 
―

― 

 
In Table 1.1, the negative sign denotes the low gray value, and the positive sign 

denotes the high gray value. The larger the number of negative signs is, the darker the 
relevant region is. The corresponding region is much lighter while the number of the 
positive sign is larger. It should be noted that Table 1.1 can just indicate the gray value 
contrast in the internal tissues of the same weighted sequence, and different MRI 
sequences can not be comparable due to the different imaging parameters, imaging 
environment, imaging equipment and the patient’s specific case. In addition, the tumor 
area typically includes a variety of abnormal tissues, so its intensity distribution will be 
uneven, which can also be used as one of the prerequisites for the classification of the 
internal tissues of the tumor region [2]. 
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1.3 Related Works 

MRI images can reflect details of different features to provide an important basis 
for the diagnosis and treatment of illness for patients. However, there are still some 
restrictions in computer-based analysis of MRI medical images, such as: the differences 
of imaging equipment, imaging environment and imaging parameters among patients; 
the redundancy, noise and other interference factors inevitably from the formation of the 
images; the large amount of image data from multiple sequences to be dealt with; the 
uniform patients’s conditions among large individuals; the lack of available priori 
knowledge; the complex structure of MRI images, including different tissues in the 
internal and external region of the tumors; and the lack of clarity aliasing of the tumor 
borders due to the the invasive characteristics of gliomas. 

The variety of restriction above limit the degree of automation in a MRI-based 
medical image processing systems, that is to say, to develop an accurate and efficient 
fully automatic system is almost impossible. The issue is also a hot and difficult 
problem in the international interdisciplinary fields of medicine and information, and it 
has been active in the forefront of research. A lot of work around this issue are carried 
out, and a variety of innovative or improved methods are conducted to try to solve this 
problem. 

At present a successful method is to develop a semi-automatic system with the 
combination of human interaction, which can improve the automatic level of the system 
on one hand, and reduce the excessive interaction involved on the other hand. Through 
the auxiliary means (pre-or post-processing steps) the system can take full advantages of 
multi-modality MRI sequence data and directly optimize the classifiers to improve 
classification accuracy and efficiency. 

1.3.1 Basic Image Processing Methods 

The traditional analysis on MRI images can ignore the medical information 
implied in the images, and deal with them directly as a general image processing 
problem to operate. Corresponding to each two-dimensional MRI slice, using some 
image processing methods to grasp regions with the same or similar characteristics to 
achieve the separation. Regions with coherent characteristics are not necessarily 
consecutive, and there may be the case where the region is composed of blocks. And 
other regions of different characteristics are distinguished from other parts to complete 
the preliminary analysis of the two-dimensional slice. It can be observed that, the 
traditional tumor detection in MRI images is a typical image analysis problem. 

A variety of traditional image processing algorithms can be applied to try to 
resolve this problem. The most common algorithm is the threshold-based method [15], 
which is always integrated with histogram analysis [16] to first obtain the overall 
histogram distribution of the image, then to select the appropriate threshold based on the 
distribution of the binary image, and finally to finish segmenting the image area 
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supplemented post-processing processings of morphological operations [16], such as 
hole filling, boundary improvement, and so on. However, this method is too simple. If 
the histogram of the image does not contain obvious peaks or valleys, it will be difficult 
to select the optimal threshold. A commonly automatic threshold selection method is 
called Otsu Threshold [17], but its accuracy can not still reach a higher level, that is 
because the algorithm itself is too simple and can not be adaptive to the complex 
situations of images. 

Considering the characteristics of the the whole tumor area, such as the similarity, 
uniformity or gradual change among the gray levels, region segmentation methods can 
be used to achieve the detection of tumors. Commonly used algorithms are region 
growing algorithm and regional separation and merger algorithm [18] . 

Region growing algorithm requires a certain amount of pre-selected seed points, 
then the growth area is expanded by determining the similarity of the gray values of the 
pixels within the scope of the seed points, and ultimately achieves the purpose of image 
segmentation. Algorithm is limited by the stopping criteria. In general, if the criterion 
does not meet the conditions of similarity, the algorithm will automatically stop. But in 
MRI images, the characteristics of the tumor borders and normal tissues are closely 
similar, which leads to the situation that the similarity condition of neighborhood and 
the seed points can always be satisfied. Therefore, it is generally necessary to manually 
set more stringent criteria to make the algorithm stop. 

Regional separation and merger algorithm extends the seed points to the seed 
regions and the segmentation algorithm is just the opposite with the region growing 
processing. First, the initial image is randomly divided into a number of 
non-overlapping regions, then these areas will continue to be divided into much minor 
parts more detailedly, and finally these similar parts are merged together in accordance 
with the very close similarity criterion. Because the image has been precisely refined to 
the small extent, the characteristics of the adjacent pixels and regions are much closer to 
each other, and the merger operation will be more accurate and simple. But the 
algorithm does not limit the detailed extent of the image segmentation, and the merger 
guidelines are also required artificial selection, all of which will influence the 
algorithm’s performance to a certain extent. 

Altas-based segmentation methods, also called registration-based methods, utilize 
the same area characteristics of the images. The normal human brain tissue indicates a 
symmetric structure, therefore the algorithm pre-create multiple templates to construct a 
template library. The image needed segmenting will be registered to the templates one 
by one through different linear, non-linear or combination maps to establish the 
corresponding relationship between the segmented image and the templates, so as to 
achieve the purpose of segmentation and classification [19-22]. Registration-based 
method is more suitable for segmentation of normal brain tissues, but because of the 
need to establish templates in advance, the algorithm is sensitive to the initial templates, 
the accuracy of which will influence the segmentation accuracy to a great extent. That is 
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the limitation of this type of algorithms. 
Regional algorithms use the approximate characteristics (similarity) between 

adjacent pixels, and oppositely the corresponding boundary algorithms use the 
properties of huge differences around the boundary pixels, such as the jumping intensity, 
complex contour, gray gradient, the level of the frequency spectrum, and so on. 
Commonly used boundary detection algorithms are based on a variety of edge detection 
operators [16], such as the Canny operator, Sobel operator and so on. These operators 
are equal to discrete square templates with variable sizes of 3 3× , 5 5× , etc. The 
templates move pixel by pixel in the entire image, and the combination of the central 
pixels of the templates which correspond to the convolution result is the relevant border. 
Edge detection always obtains discrete contour points, and we must utilize a variety of 
connectivity techniques to get a complete outline of the border. Various edge detection 
operators have their advantages and disadvantages themselves, but all of them are 
generally sensitive to noise and slightly lack of accuracy. 

1.3.2 Basic Pattern Recognition Methods 

The basic elements of MRI images are the pixels, and each pixel contains a variety 
of features about image properties, including the basic gray-scale [23], a variety of 
features derived from the characteristics of the basic features, such as texture features 
(including mean value, standard deviation, and the commonly used Gray Level 
Concurrence Matrix (GLCM) to reflect statistical characteristics [24-25], and so on), 
mathematical transformation features (such as wavelet transform features [26-28]) and 
so on. Various features are related to the corresponding meaningful information in the 
relevant field, which can indicate a specific physical meaning through certain numerical 
values and its scope of change. Pattern recognition algorithms research on the pixels 
and include features as the study objectives. By analyzing and comparing different 
characteristics, the corresponding pixels are classified into different categories. 

Commonly used pattern recognition algorithms are clustering, Bayesian probability 
model, linear and nonlinear discriminant classification methods [29]. Clustering mainly 
uses the gray values of the image, and merges data points of different types according to 
the clustering criteria based on similarity. A typical unsupervised clustering algorithm is 
the nearest neighbor method, in which the data is clustered into the same category as 
that of the nearest point. The improved algorithms are K-nearest neighbor (KNN) 
method (the data is clustered into the same category as that of the K nearest points), 
edited nearest neighbor (nearest neighbor method becomes to a two-step process: the 
first step is the pre-classification of data to remove the misclassification data, and the 
next step is to classify using the KNN criterion to improve accuracy), and so on. Nearest 
neighbor method is relatively simple: one point is just compared with another data point 
in classification. The algorithm is not reliable enough and can not handle the situation of 
complex boundary, or of points very far from the center of the class when the 
distribution of the elements is long and narrow, the same as some types of its improved 
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algorithms. 
Another commonly used clustering algorithm is C-means clustering (C-means), in 

which all the centers of the classes are prefixed in advance. During classification, the 
distances between each data point and all the centers are computed, and the data is 
classified using the nearset distance criterion. Class centers will automatically be 
updated as the change of the classification of data sets and its containing elements. The 
limitations of C-means clustering is that the number of classes needs to be pre-set and 
can not be changed in the clustering process. This algorithm is relatively simple and can 
not handle the situation of the existence of outliers (data is very far from the center of 
this class and is wrong classified). The improved algorithms of C-means clustering, 
such as ISODATA, have also been widely applied [29]. 

Bayesian probability model-based classification is to cluster data points into the 
corresponding categories by calculating the posterior probability of data points, and 
decision criterion used is always the minimal risk criterion. This algorithm can be easily 
extended to the case of multi-dimensional data and multi-class classification, but the 
number of data sets and the probability distribution of all the elements are needed to be 
known in advance, otherwise it is impossible to calculate the probability. 

Linear discriminant algorithms mainly refer to that the classification surface is a 
plane or a hyperplane, which can be described using the linear equations. Given input 
data set, the algorithm can obtain the normal vector and offset intercept vector of the 
plane by optimizing the equation of the plane. Commonly used linear discriminant 
criterion is Fisher criterion, in which the linear plane equation is optimized based on the 
mean value, the between-scatter and within-scatter among various classes of samples. 
Linear discriminant function is simple, and the direct use of linear discriminant 
classification usually tends to cause great errors. Fisher criterion is carried out in the 
original input space, therefore, it is difficult to optimize the corresponding surface 
equation for linear inseparable data in the space. 

In complex situations, it is necessary to extend the linear discriminant method to a 
nonlinear discriminant one in order to adapt other linearly inseparable cases with 
overlapping elements. Nonlinear discriminant criterion is commonly piecewise linear 
discriminant method, the classification hyperplane of which is composed of several 
sub-planes, each of which corresponds to a linear separable subset. It is necessary to 
know the number of classes in piecewise linear function to better design the classifier. 
Directly using the high-order discriminant function can also solve the situation that the 
input data are not linear separable, but the calculation process and the classification 
surface are too complex. 

1.3.3 Fuzzy Theory-based Method 

By introdung membership function into the traditional set theory, we can obtain the 
Fuzzy Set Theory [30]. Membership function indicates the degree of the elements 
belonging to a particular class. The same element can belong to different categories in 
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different levels, and the sum of the corresponding values of all membership functions is 
1. Finally the element is determined that belongs to the category which has the largest 
value of the membership function. That is the classificaiton criterion in fuzzy set 
theory-based algorithms. 

Introduing the concept of fuzzy set theory into the field of traditional pattern 
recognition and integrating the traditional pattern classification methods and fuzzy 
theory, a new kind of classification method can be produced [24]. Commonly used 
methods are fuzzy C-means clustering (FCM), fuzzy K nearest neighbor method, fuzzy 
connectedness, and so on. 

FCM algorithm transforms the hard decisions in the traditional C-means clustering 
to fuzzy decisions, and the value of membership function and the center of each 
category need to optimize together, that is, the updating process combines the classified 
elements and membership function instead of the traditional operations which just rely 
on the data points [31]. Similar to C-means clustering, the number of classes needs to be 
pre-set, and the update process may be not necessarily able to converge, in which the 
stop criteria may need to be set manually. FCM can obtain fuzzy results, therefore it is 
necessary to add deblurring treatment to gain the final output. If a broader membership 
condition can be introduced (the sum of the values of the membership functions, which 
corresponds to different categories, of the same element is greater than 1 after the 
update process), it can improve the FCM clustering algorithm. Relaxing the conditions 
to a broader one will lead to the decrease of the sensitivity on the pre-set number of 
classes, but the algorithm is still sensitive to the initial cluster centers. 

Membership function used in Fuzzy K-nearest neighbor method is equivalent to 
the weights on the K nearest surrounding elements, and the weights depend on the 
distances between the elements. 

Fuzzy connectedness algorithm is often combined with the region growing 
algorithms [32-34], which is equivalent to use the membership function to weighting on 
the similarity of the pixels in region growing. The procedure of the algorithm is as 
follows: first, select the seed points, and calculate the fuzzy connectedness between 
each pixel and each seed point with membership function; then use the region growing 
algorithm for image segmentation. Although the measure of similarity among the 
elements is more reasonable after introducing the fuzzy theory, but the algorithm does 
not significantly improve the sensitivity to the initial values, and the initial choice of 
seeds still play a greater role on the algorithm’s performance. 

In addition to integrating with the clustering methods, fuzzy set theory can also be 
used in combination with the Markov Random Field theory (MRF), in which the image 
segmentation is based on the gray values of pixels of their own and the impact of 
neighborhood information of pixels simultaneously [35-37], that is so called fuzzy 
Markov Random Fields (fMRF). The algorithm is now used to solve the classification 
of normal tissues in T1-weighted MRI images [38]. As the preliminary work of 
distinguishing the tumor, the fuzzy Markov Random Field algorithm can divide the 
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T1-weighted images into several connected isotropic regions in order to achieve the 
purpose of distinguishing normal tissues. As to MRI images of multiple sequences and 
multi-band, we can apply different membership functions to different sequences, in 
order to improve the accuracy of MRI image segmentation [39-40]. Through the fusion 
methods, the best results of each band are synthesized to achieve the global optimum, 
and the fusion theory can also be used in multi-kernel SVM. 

1.3.4 Deformable Model-based Method 

In pattern classification problems, using the relevant constraints within the image, 
the size, location, shape of the object to be split as prior knowledge, combining with the 
overall and regional boundary properties of tissues in the image, and building the 
appropriate model to improve the classification accuracy is the basic idea of deformable 
model-based classification methods [41-42]. Deformable model approaches are more 
suitable to analyze the tissues with complex boundary, lower contour smoothness and 
various properties in different individuals which meanwhile vary significantly with time. 
Currently, the deformable model based method has received a wide range of 
applications in medical image analysis processing [41,43-50]. 

In accordance with its principles, the deformable model based method can be 
divided into two main categories, namely parametric deformation model (based on the 
parameters of image) and geometric deformation model (based on the geometric 
properties of the image) [51]. Parametric deformation model needs to be given the 
initial curve profile and be defined the energy function. The energy funtion is composed 
of two parts: the internal energy and external energy, the former is able to control the 
smoothness of the curve and and the latter facilitate the evolving of curve. Optimization 
process of the energy function curve is the evolving process, the final convergence of 
the curve is the boundary contour corresponding to the regions to be segmented. 
Commonly used Active Contour Model (ACM), such as the Snake algorithm, is a 
typical parametric deformable model, of which the limitations is its sensitivity to the 
initial curve and that the convergence process maybe need to manually set the stop 
criterion to control the speed of convergence, and that ultimately the convergence 
results may fall into the local optimum. Considering the limitations of the Snake 
algorithm, some scholars propose the improved Snake algorithm [52] and Global Active 
Contour Model algorithm (Global ACM) [53-55]. Both of them are not sensitive to the 
initial values, and the Global ACM algorithm converts the energy function to be 
optimized into a convex function, which means the function extreme values surely 
contain the global optimum value in the mathematical sense. 

Geometric features can be used as prior information in Geometric Deformable 
Models. Using the prerequisite that the normal tissues are symmetric in the brain, the 
corresponding geometric features and structural information can be extracted [56], 
which is a basis to complete and improve the segmentation accuracy. Commonly used 
Geometric Deformable Model algorithm is Level Set algorithm, which has been widely 
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used in medical image processing [57-64]. The principle of Level Set algorithm is to 
assume the region to be separated as the cross section of a high dimensional surface, 
which is described by analytic equations (mostly implicit partial differential equations). 
When the surface’s equation is 0, the solution of the equation will corresopond to the 
boundary curves of the region to be split. The solution set is also called the zero level 
set. In the whole process, the region to be segmented has always been maintained as the 
zero level set of a high -dimensional surface. Level Set algorithm transforms the curve 
evolution in a plane to surface evaluation in high-dimensional space, and the continuous 
deformation of the cross-section boundary curve will converge to the final optimal 
contour border. In Level Set Algorithm the surface equation is given by the implicit 
functions, therefore this non-parametric method is not sensitive to the initial values and 
more suitable for the case of topology change in tumor detection. Surface evolution is 
also an optimization process, the speed of which is controlled by the image information. 
Generally speaking, one surface can only be used for the evaluation of the boundary 
curve of one region. 

Deformable model-based method can be used in conjunction with each other to 
construct the hybrid model of better performance [64] or in integration with other 
theories to apply to different applications, such as face detection [65], three-dimensional 
reconstruction [66], etc.  

1.3.5 Tumor Detection in Multiple MRI sequences 

Using the different characteristics and information provided by the multi-spectral 
or multi-sequence MRI images, data can be effectively fused in the data layer [67-71] 
and decision-making layer [72-74] to extract features for tumor detection. Algorithms in 
the decision-making layer are also applied in face recognition and multi-modality data 
fusion [75-78]. Although the data fusion will introduce more redundancy, noise and 
increase the computation time, sufficient data can reduce the randomness and 
arbitrariness of classification in order to improve the quality of cancer detection [67, 
69-71,79-81]. 

In [67], according to the fuzzy set theory, tumor information in different sequences 
are modeled using the membership functions on each MRI sequence, and then all the 
obtained fuzzy sets are segmented together. The difficult point of this algorithm lies in 
the selection of membership function. A parametric smoothing model is proposed in 
[69], and the intensities of each category in T1-weighted images, T2-weighted images 
and PD-weighted images are handled by the Expectation Maximization (EM) algorithm. 
The final tumor segmentation results are synthesized by the fusion of models of each 
category. A hierarchical genetic clustering algorithm is exploited in [70], which 
integrates the fuzzy learning vector quantization algorithm, called Hierarchical Genetic 
Algorithm with a fuzzy Learning Vector Quantization network (HGALVQ), to deal with 
T1-weighted images, T2-weighted images and PD-weighted images. The algorithm is 
optimized by hierarchical genetic algorithm, and the optimization criterion is selected as 
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the minimization the weighted error value and the complexity of local competitive 
network, the former of which is defined as the mean distance between the feature vector 
and its corresponding original image, and the latter of which is number of active nodes 
in the network. But the converged number of categories in algorithm is very large. In 
[71], the PSPTA algorithm (Piecewise Triangular Prism Surface Area) is used to extract 
fractal features, the Self-Organizing Map (SOM) [79] is used to achieve the feature 
fusion. However, the accuracy of the system changes in a wide range so it is not very 
robust. In [80], a algorithm composed of a probabilistic model and active contour 
models for segmentation is applied to deal with T1-weighted images, T2-weighted 
images and T1-enhanced images. The algorithm relies on the extraction of the 
multi-dimensional features and the brief description of the natural information in the 
feature, but some of the assumptions used can not apply to all patients. In [81], two 
kinds of features, gray values of tissues and prior probability based on the alignment, 
are extracted by registration with the templates, and then data from manual separation 
are used as prior knowledge to train and learn a statistical classification model. The 
algorithm is very sensitive to the initial value of manual segmentation. 

In order to achieve better performance, the methods described above are often used 
in combination [64,82-84], for example, in [64], a hybrid deformation model combined 
with shape, texture, image models and learning algorithm is proposed to track the 
changes of heart and brain tumors. The paper [82] proposes a geometric probability 
model which is combined with registration and spatial prior knowledge to detect a 
variety of tumors and tissues. The paper [83] proposes a two-step algorithm for the 
detection and classification of different kinds of tumor in clinic practice. The initial 
segmentation region is obtained by the fuzzy set theory, and its contour is improved by a 
deformation model under some strict spatial constraints. In [84], a altas-based flexible 
transformation is proposed, which is the effective integration of registration-based 
method and model transformation method. 

In addition to the combination of methods and theories, some new algorithms are 
gradually began to use [85-86]. For example, in [85], the Fluid Vector Flow algorithm 
(FVF) is proposed as a kind of active contour models, which can be used to detect a 
large concave area and has been used for tumor tracking in 2D image. But the algorithm 
is time-consuming and unefficient. In [86], a method to transform the direct detection of 
tumors is proposed, in which the probability map of brain images is calculated first 
based on the pattern matching under the nearest neighbor criterion, and then the 
segmentation of original input gray image is transformed to the segmentation of the 
probability map . 

The methods described above require some prior knowledge or related 
assumptions, which can not work for the tumor detection of all the patients, such as the 
shape, size, intensity, texture and location of the tumor. Furthermore, all the information 
above can not be obtained in advance in the first examination of the patient, which will 
increase the difficulty of tracking the tumor. 
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The Support Vector Machine (SVM) is a successfully parametric method, which 
has been widely used to get accurate results in many multiple-class pattern recognition 
applications. As introduced in [87-88], SVM, which fits to classify data of high 
dimensions and from multiple sources particularly, extends the use of kernels which are 
crucial to incorporate priori knowledge into practical applications.  

A simplification is one-class SVM, which is derived from two-class situation SVM; 
in one-class SVM the training points just involve the class to be separated from others 
[89]. Other recent developments have shown the benefits of multi-kernel SVM [90-91]. 
Multi-kernel SVM has more potential for fusion of the data from heterogeneous sources 
at the expense of computation complexity. It has been proven in [92] that, when the 
kernel function can be decomposed into a large sum of individual and basic kernels 
which can be embedded in a directed acyclic graph, the penalty functions can be 
explored by sparsity-inducing norms such as the 1l -norm. 

1.4 Work of This Paper 

Currently, there are still many outstanding issues in the medical images-based, 
particularly MRI images-based brain tumor detection, such as the huge amount of data 
in MRI examination, heavy burden of the computation, data of high dimensionality, 
complex characteristics of tissues, the difficulty in classifier design, large differences 
among individual patients, the infeasibility of establishing a fully automated system, no 
prior knowledge of the patient’s condition to use, a variety of tissues in the tumor region, 
the overlapping of the boundaries between normal tissues and abnormal tissues which is 
difficult to be distinguished and so on. 

As to these problems and some limitations of existing methods, this paper proposes 
a semi-automatic SVM-based system to achieve the detection and track of the brain 
tumors, which can classifies the tumors and abnormal tissues gradually. The system 
consists of three subsystems, including three main abilities of classification, contour 
refinement and tracking. The input data of the system are the fusion of T2-weighted 
images, PD-weighted images and FLAIR-weighted images. The feature vectors are 
extracted using the characteristics of the weighted sequence of their own and that of 
correlation between several sequences. Feature selection can fuse and reduce the data 
effectively and multi-kernel SVM is applied for a variety of data input to improve the 
accuracy of tumor detection. At the same time the system can effectively track the 
condition of patients after the first detection of tumors and give reasonable diagnosis 
conclusion as a reference. 

This paper contains five sections, which is organized as follows: Chapter 1 is the 
introduction, which introduces the background and significance of the subject, the 
principle and theory of magnetic resonance imaging, and the summary of existing tumor 
detection algorithms. Chapter 2 proposes a method to integrate the feature selection and 
classifier’s design, and describes in detail all the feature selection methods used in the 
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experiments of this paper. Chapter 3 describes the proposed tumor detection system and 
the three subsystems of classification, contour refinement and trackingare also described 
in detail. Chapter 4 lists the results of this paper and discusses a variety of situations, 
including the validity of features, the selection of key parameters, the comparison 
among methods, and the evaluation of the system’s performance. Chapter 5 concludes 
the full text, proposes the improvement goals of the system and finally states the future 
development of this subject. 
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CHAPTER 2  FEATURE SELECTION 

2.1 Feature Selection Theory 

Feature selection is an important data processing step in pattern recognition and 
classification problems, and it has been successfully applied to many fields [93-97]. The 
procedure of feature selection is as follows: in accordance with pre-designed selection 
criteria, the most important features of the given input data are selected by the optimal 
operations under the prefixed criterion and the remaining features are removed from the 
input to reduce the data amount. 

Although the applied classification fields are different, the ultimately obtained 
signal is overlapped with a lot of interference and noise in the specific pattern 
recognition and classification problems, due to the inevitable signal loss and introduced 
interference in the process of equipment’s acquisition, imaging environment, data 
transmission and conversion. In addition to the traditional denoising algorithms, feature 
selection, as an important pre-processing operation, plays an important role in the data 
pre-processing: 

1. Feature selection can eliminate the redundancy, interference, noise 
and less important data in input. According to the definition of feature 
selection, this process can choose the data based on some certain criteria to 
eliminate all the factors which are not relative to the classification 
problems, and to effectively fuse the important data and therefore greatly 
reduce the data amount. 

2. Feature selection can improve the accuracy of the classifier. After 
the feature selection operation, a large number of non-relevant data which 
contain many interferential components are removed. Only the most 
important features are remained for training, which makes the obtained 
classification model much better to improve the applicability of the model 
and its ability for solving the problem, and finally to achieve higher 
classification accuracy. 

3. Feature selection can improve the operational efficiency. After the 
feature selection, the training sample data greatly decrease and the 
computational complexity is reduced in a relatively lower degree (mainly 
determined by the algorithm, thus changes on the computational 
complexity by reducing the amount of data is just in a relative sense) to 
reduce the computation time. 

Because of the importance of feature selection in the pattern classification 
problems feature selection has been a hot point and difficult issues in this research area. 
How to determine an effective feature selection criterion, to extract the important 
features and to verify the validity, reliability, applicability, robustness and computational 
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efficiency of the criterion by experiments are the key problems to be solved [98-103]. 
Commonly used feature selection framework are shown in Figure 2.1 [95]. 
 

 
Figure 2.1 A typical framework of feature selection. 

A typical feature selection process is divided into 3 steps [95]: 
1. Subset Generation: this is the process to conditionally extract the 

feature subset from the training feature vector matrix prepared for being 
analyzed by the classifier or a single vector according to some certain 
criteria. The feature subset will be considered as the result of one step of the 
feature selection operation to evaluate its performance of feature selection. 

2. Subset Evaluation: feature selection can be fulfilled in two 
directions: one is to begin with a feature subset which contains just one 
element and to increase the capacity of the subset element by element; the 
other is to begin with a universal set which contains all the elements of the 
feature subset and to decrease the capacity of the subset element by element. 
No matter what kind of direction is used for the feature selection, the 
effectiveness of the current subset is needed to evaluate once the feature 
subset changes in a time. The evaluation process of feature selection is to be 
completed by the pre-set criterion. 

3. The determination of the stop criterion: each feature subset after 
assessing is needed to be compared with the stopping criterion to verify if 
the characteristics of the current subset have attained a pre-set standard. If 
so, feature selection will stop automatically and the current subset will be 
considered as the final output; otherwise this process will continue to repeat 
again and again until a feature subset which meets the stopping criterion 
appears. This is an optimization process, and the algorithm sometimes does 
not automatically converge due to the restrictions of the feature selection 
criteria and the stopping criteria. Therefore, the stopping criteria maybe 
need to be set manually (such as setting a limited number of iteration steps). 
This also indicates that the feature selection criteria and the stopping criteria 
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will significantly affect and restrict the efficiency, performance and 
accuracy of the feature selection operations. 

As a number of MRI sequences present a three-dimensional structure and each 
MRI sequence also contains multiple images, which leads to a large amount of data, 
dimensionality reduction of data by feature selection is particularly necessary. In this 
paper, a SVM-based tumor detection framework is designed to analysis and deal with 
the MRI sequences. The difficulties lie in the design of the SVM classifier, the selection 
of the kernel function and its parameters. Therefore, the algorithm to integrate the 
feature selection and classifier design is proposed in this paper as a pre-processing step, 
the key of which is trying to improve the accuracy and efficiency of the system while 
reducing the dependence of SVM to the kernel function parameter, the difficulty of 
classifier design and the influence of parameters on the classifier design by the feature 
selection process. 

For these purposes of the effective fusion of data and the verification of the 
proposed algorithm to reduce the difficulties of parameter selection in classifier design 
by the feature selection process, we selected 6 novel feature selection methods in the 
experimentations of tumor detection. The performances and effectivenessof the feature 
selection methods above is evaluated and compared by visual results and quantitative 
analysis. 

The feature selection methods will be introduces in detail in the next section. 

2.2 Feature Selection Algorithms 

2.2.1 Principal Component Analysis 

Principal Component Analysis ( PCA) is a classic feature selection method [104], 
which uses the projection transformation to project the input data from the original 
space into the new space. The axises in the new space correspond to the projection 
direction and all the axes maintain the orthogonal relationship. Projection direction can 
be obtained from the diagonalization transformation of the raw data, therefore the 
projectieddata will be all located in the axis in the new space. 

The value of each new axis can be considered as the energy of the data, then the 
sum of all the coordinates is all the included energy of the original input data. Align the 
coordinate values in a descending order to choose the first n  values, the sum of which 
reaches 95% of the total energy and discard the remaining coordinates, therefore, the 
axes the remained coordinates correspond to are the principal directions in the new 
space after the projection. 

The ratio of the energy can be manually set, which always changes in a range from 
85% to 99%. Reflected in the projected data, the larger eigenvalues are retained in the 
transformed diagonal matrix, the small ones are removed, and the sum of the retained 
eigenvalues reaches the proportion of the total values. Although the vast majority of 
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energy reserves, the new space just contains only a very few of axes, which are the 

corresponding principal components. PCA is significantly based on the principle of 

energy concentration to achieve the purpose of data reduction through the projection 

transformation. 

The implementation of PCA is often based on the SVD decomposition, the key of 

which is to obtain the spatial projection transformation matrix. Each row of the matrix 

above corresponds to the eigenvectors of the matrix after the projection. Set ix  as the 

input sample vector, μ  as the mean vector for all the input sample vectors, which is 

composed of the mean values of all the various components arranged in the order in 

accordance with the corresponding vector, see equation (2-1). 

 
1

1 M

j ij

i

x
M




   （2-1） 

Where j  and ijx  are the j -th element of ix  and μ  respectively and M  is 

total number of training samples. 

Define: 

 1 2[ ; ; ; ]M   X x μ x μ x μ  （2-2） 

The semicolon indicates the separation between the row vectors, which is the row 

vector i x μ  of the matrix X , respectively. 

The covariance matrix Σ  of X  is: 

 
T T

1

1 1
( )( )

M
M M

i i

iM M





    Σ x μ x μ XX  （2-3） 

Let the eigenvalues of Σ  be i , then the row vector of the projection 

transformation matrix is the eigenvector iu of Σ , which is orthonormalized and 

corresponds to i . iu  can be solved through matrix R  and its eigenvector iv . 

Define R  as:  

 
T1 M M

M

 R X X  （2-4） 

R  and Σ  contain the same eigenvalues of i , and there is a mathematical 

relationship between iu  and iv : 

 /i i iu Xv  （2-5） 

Therefore, the projection transformation matrix is: 

 1 2[ ; ; ; ; ; ]i nT u u u u  （2-6） 

In PCA-based data classification, the first step is to calculate the projection 

transformation matrix to project the original input data to the new space, and then to 
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train the classifier model by using the data after dimensionality reduction. Test data 
must be dealt with by the same dimension reduction transformation to obtain the same 
data format as the training samples and the classification model can be finally applied.  

PCA algorithm is quick, easy and simple (without high complexity). After the 
dimension reduction of PCA algorithm, only a very small part of the original input data 
is preserved, which correspond to a finite number of the largest eigenvalues of the 
matrix R  in the equation (2-4). Projection transformation just changes the form of 
data, but not the energy of data. Therefore, the eigenvalues after transformation contain 
most of the energy in the original image, that is to say, there is no energic loss of 
information in the original image, which will not influence the classification to a great 
degree.  

The disadvantage of PCA algorithm is its low accuracy. As the complexity of data 
increases, its accuracy can not be surely guaranteed. 

2.2.2 Kernel PCA 

Kernel Principal Component Analysis (Kernel PCA, or KPCA) is an effective 
extention of PCA algorithm [105], which is also widely used in various fields of pattern 
recognition and classification [106-108]. The main idea of Kernel PCA is to apply PCA 
directly to the kernel space or feature space. First define the kernel function as: 

 ( , ) ( ), ( ) ( ( ) ( ))i j i j i jk =< Φ Φ >= Φ ⋅Φx x x x x x  （2-7） 

Φ is to map transformation from the original input data to a higher-dimensional 
space (ie the kernel space or feature space), ix  and jx  are the original input data, 
< ⋅ >  denotes the inner product of two vectors. From Equation (2-7), the result of kernel 
function is a scalar value, which can be measured as the distance between two vectors to 
some extent. The closer the distance is, the higher the similarity between vectors is. The 
basic definition of the kernel function can be applied to all kernel function-based 
methods in the next sections of this paper. 

Refered to the SVD method on the implementation of PCA, the input vector 
becomes to ( )iΦ x  in high dimensional feature space, and the corresponding covariance 
matrix is: 

 T

1

1 ( )[ ( )]
M

i i
iM =

= Φ Φ∑C x x  （2-8） 

The projection transformation matrix of PCA in the feature space is composed of 
normalized eigenvectors of the matrix C . To solve the eigenvalues and eigenvectors, 
the equation as follows is needed to be solved: 

   λ =u Cu  （2-9） 
λ  and u  are the eigenvalues and eigenvectors of the matrix C  respectively. It 

is more distinguishable to use the superscript.  
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Since any vector in the linear space can be expressed as a linear combination of 
other vectors, the eigenvectors u  can be expressed by a linear combination of each 

( )iΦ x . Suppose iα  is the coefficients of the linear combination, then: 

 

1
( )

M

i i
i
α

=

= Φ∑u x  （2-10） 

Pre-multiply ( )kΦ x  at the both ends of the Equation (2-9), and substitute 
Equations (2-7), (2-8) and (2-10) into (2-9), then we can get: 

 

1 1 1

1( , ) ( , ) ( , )
M M M

i k i i k i i j
i i j

M k k k
M

λ α α
= = =

⋅ = ⋅ ⋅∑ ∑∑x x x x x x  （2-11） 

Construct the inner product matrix K  and the coefficient vector α . Each element 
of K  is an inner product of two input vectors, ie, ( , ) ( ), ( )ij i j i jk= =< Φ Φ >K x x x x  and 

1 2( , , , )Mα α α=α  , then Equation (2-11) can be rewritten as: 

 

2M λ =Kα K α  （2-12） 

Pre-multiply 1−K  at the both ends of Equation (2-12): 

 M λ =α Kα  （2-13） 

From (2-13), this equation is equal to solve the eigenvalues M λ  of the matrix K  
which corresponds to the eigenvectors α . All the eigenvectors corresponding to the 
non-zero eigenvalues can form the projection transformation matrix after normalization. 

In the realization of Kernel PCA algorithm, first calculate the inner product of the 
various samples according to the given input samples to construct the inner product 
matrix K ; and then calculate its eigenvalues and eigenvectors to obtain the projection 
transformation matrix; finally, obtain the principal component projection in the feature 
space for any input test sample. The whole procedure is very similar to PCA. 

Kernel PCA algorithm tries to solve the complex classification problem by 
mapping from the low-dimensional space into high-dimensional feature space. In 
general, the difficulty of classification will greatly decrease, and data which can not be 
separated in low-dimensional space can be linearly separable in high-dimensional space. 
Algorithm introduces an inner product function, which ensure the feature space must be 
a Hilbert space and the operations in this space can be completely achieved through the 
inner product instead of calculation and solution of the unknown mapping. The 
restriction of the algorithm is its need to pre-selected the kernel function and its 
corresponding parameters. The selection process will also greatly affect the 
effectiveness of the algorithm. 

2.2.3 Kernel Class Separability 

Kernel Class Separability (KCS) is the extention of commonly used traditional 
class separability in pattern recognition and classification into a kernel space or feature 
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space [109]. Given an input data set, first calculate of its Between-Scatter Matrix BS  
and the Within-Scatter Matrix WS . The optimization criterion of KCS is generally 
defined as the ratio of the traces or the determinants of the Between-Scatter Matrix BS  
and the Within-Scatter Matrix WS  ( | | / | |B WS S  or tr( ) / tr( )B WS S ). The higher the ratio is, 
the greater the distance between categories is. The classification is easier, and the 
features from the optimization are more important. 

Let Φ  be the map for transforming the data from the input space to the high 
dimensional feature space. Similar to Kernel PCA, KCS is also based on the principle 
that the inseparable data in original input space can surely be linearly separable in a 
high-dimensional feature space after a certain map projection. It is not necessary to 
calculate the map and directly introducing the kernel function can transform the KCS 
criterion into the Hilbert space criterion. 

Using the same definition of the kernel function as in Equation (2-7), the trace of 
the Between-Scatter Matrix can be expressed as: 

 
T

1

T
1

tr( ) tr[ ( )( ) ]

( ) ( )

l
B i i ii

l
i i ii

n

n

φ φ φ φ φ

φ φ φ φ

=

=

= − −

= − −

∑
∑

S m m m m

m m m m
 （2-14） 

In the Equation (2-14), the superscript Φ  is used to express the variables in the 
feature space and distinguish with the sample data in original input space. tr  denotes 
the trace of the matrix; i

φm  and φm  are the mean vectors in the feature space of 
samples of the i th−  class and of all the classes; in  is the number of total samples in 
the i th−  class; l  is the total number of classes. 

Expand the Equation (2-14) and define the inner product matrix K , the element of 
which represents the inner product of two vectors ( )iΦ x  and ( )jΦ x . The symbol ,A BK  
denotes the elements of the matrix K , which can meet the condition that i A∈x  and 

j B∈x , where A  and B  denote the sample set. Equation (2-14) can be transformed 
to: 

 , ,
1

Sum( ) Sum( )
tr( ) i il D D D D

B i
in n

φ
=

= −∑
K K

S  （2-15） 

Where, iD  and D  denote the dataset of the samples from the i th−  class and all 
the classes, and the relationship between them needs to meet 1

l
i iD D== ∪ ; function 

Sum( )⋅  is to sum all the elements of the matrix. 
Accordingly, the Within-Scatter Matrix can be expressed as: 

 

T
1 1

T
1 1

tr( ) tr[ ( ( ) )( ( ) ) ]

( ( ) ) ( ( ) )

i

i

l n
W ij iji j

l n
ij iji j

φ φ φ
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φ φ

= =

= =
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∑ ∑
∑ ∑

S x m x m

x m x m
 （2-16） 

where ijx  is the j th−  element of the i th−  class. 

Similarly, the Equation (2-16) can be expressed as:  
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 ,
, 1

Sum( )
tr( ) tr( ) i il D D

W D D i
in

φ
=

= −∑
K

S K  （2-17） 

Add the Equation （2-15）and（2-17）, the total scatter is:  

 
,

,

tr( ) tr( ) tr( )
Sum( )

tr( )

T B W

D D
D D n

φ φ φ= +

= −

S S S
K

K
 （2-18） 

Define the feature selection criterion is the ratio of the traces of the 

Between-Scatter Matrix BS  and the Within-Scatter Matrix WS :  

 
tr( )
tr( )

B

W

J
φ

φ
φ=

S
S

 （2-19） 

The function tr( ) / tr( )B W
φ φS S  and tr( ) / tr( )B T

φ φS S  has the same monotonicity, 
therefore, although the largest values of the two functions are different, the optimization 
procedure is exactly the same. To optimize the criterion （2-19）is equal to optimize the 
criterion （2-20），and finally the feature selector vector can be obtained.  

 
( )
( )

B

T

trJ
tr

φ
φ

φ=
S
S

 （2-20） 

Now we will appropriately simplify the feature selection criterion based on some 
restrictions.  

Obviously,  

 , ,Sum( ) tr( )D D D D≥K K  （2-21） 

Integrated with Eqution (2-21), and then 

     ,
,

tr( )
tr( ) tr( ) D D

T D D n
φ ≤ −

K
S K  （2-22） 

Suppose ( , )sk x x  is the radius of the classification hyperplane in the feature 
space, then  

 ,
,

tr( )
tr( ) ( 1) ( , )D D

D D sn k
n

− = −
K

K x x  （2-23） 

The radius of the separating hyperplane is a constant, Equation (2-23) denotes a 
fixed value. The denominator of the criterion is a constant value which can be removed 
without affecting the monotonicity and optimization process of the function. After the 
amplification in Equation (2-22) by inequality, the final feature selection criterion can 
be approximated to optimize: 
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 tr( )BJ   S  （2-24） 

From the mathematical analysis above, it can be observed that the feature selection 

criterion can be approximated by its lower bound tr( )B


S . This means that only 

optimizing the lower bound function of the feature selection criteria can achieve the 

feature selection performance to greatly reduce the computation. In pattern recognition 

theory, the greater the scatter is, the farther the distance between different classes is, and 

the more easily data between different categories can be distinguished, in which the 

simplification process is the same as the pattern classification theory. 

Using KCS criterion to achieve feature selection, the result of the optimization will 

be a feature selector. The elements of this vector have only two values: 0 and 1, the 

element 1 corresponds to the features on these positions are preserved, while the 

element 0 corresponds to the features of these locations are removed. The dimensions 

and structures of the feature vectores in feature selector and training vectors in matrix 

are identical, both of which are multiplied by the corresponding position (element to 

element), to complete the feature component selection. the feature vector after selection 

and the initial feature vector have the same dimension, but the number of non-zero 

components greatly reduces, the number of zero components greatly increases, and the 

sparsity of vectors is significantly enhanced. 

Choose the kernel function as the Gaussian Radial Basis Function (RBF):  

 

2

2
( , ) exp( )

2

i j

i jk



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x x
x x  （2-25） 

ix and jx  are the input vectors; || || denotes the norm of the vector (2-norm is 

commonly used);   is the only parameter can be tuned in the RBF kernel function, 

which can influence the performance to a great degeree. It has been proven theoretically 

that [109], the KCS-based feature selection can be effectively integrated with the SVM 

classifier design, both of which can share the same kernel functions and their parameters. 

Feature selection and classification process do not separately conducted, but similar 

performance can be achieved to the situation of separate parameters selection. 

Define   as the operation of multiplication element by element and α  as the 

feature selector. The vector after feature selection can be described as:  

 ( )  x α x α  （2-26） 

The inner product of vectors after the feature selection can be described as:  
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 （2-27） 

In Equation (2-27)， x  and z  are the input vectors, d  is dimension of the 

feature vector, where i , ix , iz  and i  are the i th  element of the vectors α , x , 
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z  and η  respectively, and also 2 2/ 2i iη α σ= .  
After the feature selection, the inner product calculation of feature vectors is 

discrete. once σ  is determined, iα and iη  will become proportional. The final feature 
selector needs to achieve the binaryzation opreation to 0 or 1, so the optimization of α  
is equivalent to the optimization of η . The larger the value of iη  is, the more 
important the i th−  feature element is. η  can be obtained by the traditional gradient 
descent algorithm, the initial value of which can be set as a random vector with the 
mean value of 0 and the magnitude varying in a small range at the level of 410− . The 
binaryzation operation needs to set the important threshold T . Only feanture elements 
which are greater than T  can be retained and the feature selection can be achieved. 

The KCS criterion integrates the feature selection with the design of SVM and both 
of them share the same kernel functions and parameters, which reduces the influence of 
the kernel functions and the parameters to the kernel-based methods and the difficulty 
of system to a certain extent. 

2.2.4 Kernel F-Score 

F-Score is a basic method and used to measure the discrimination between two sets 
which are entirely composed of samples of real values [110]. 

Traditional F-Score needs to be calculated based on samples. Given m  training 
feature vectors kx , 1, 2, ,k m=  , if the numbers of samples in the positive and negative  
categories are n+  and n−  respectively, the F-Score Corresponding to the i th−  
element is: 

 

( ) 2 ( ) 2
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n n
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− −∑ ∑

 

（2-28） 

In the Equation（2-28）， ix , ( )
ix +  and ( )

ix −  are the mean values of the i th−  
element in total samples, total positive samples and total negative samples respectively; 

( )
,k ix +  is the i th−  element in the k th−  positive sample and ( )

,k ix −  is the i th−  element 
in the k th−  negative sample.  

Using F-Score criterion for the feature selection, it is necessary to calculate the 
F-Score of each corresponding feature element, and then to calculate the mean value of 
all the F-Scores, finally to compare all the F-score with an important threshold of the 
mean value one by one to selection the elements. If greater than this threshold, the 
element is considered as important and retained, otherwise it will be removed directly. 

Kernel F-Score-based feature selection (KFFS) is an extension of traditional 
F-Score algorithm, and it has been successfully used in the field of medical detection, 
such as for heart disease and gene sequences [111]. The main difference of Kernel 
F-Score and F-Score algorithms is the introduction of kernel function in KFFS, which 
transforms the data processing and computing from the original input space to the 
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feature space. 
The kernel functions in kernel F-Score are mainly selected as the linear or 

Gaussian RBF kernel function. The processing of KFFS contains two steps: first to map 
the data or features from input space to the feature space through the kernel functions; 
second, to calculate the orresponding F-Scores of each element in the high-dimensional 
feature space according to the Equation. Using the mean value of all F-Scores as a 
threshold, the elements which are greater than the threshold are retained, the others will 
be removed. 

Kernel F-Score feature selection method is always integrated with the SVM 
classifier to deal with the classification of medical data together [111], but the choice of 
the threshold will significantly affect the performance of the classifier. The traditional 
threshold selection method is too simple, which just uses the mean value of all the 
F-Scores and is not robust. Therefore, it is necessary to develop a more appropriate 
threshold selection method. 

2.2.5 Support Vector Machine Recursive Feature Elimination 

Support Vector Machine Recursive Feature Elimination (SVM-RFE) is a feature 
selection algorithm for backward elimination of elements based on the dichotomous 
SVM classification [112], which was first used in the cancer classification problem to 
select a series of relevant features [113]. 

The criterion of Optimal Brain Damage (OBD) is first proposed in the treatment 
from a specific medical problem, which uses the difference of the cost function of the 
classifier before and after the feature selection as the feature selection criterion [114]. 
The criterion can be approximated by the second order term of the Taylor expansion of 
the cost function, as shown in Equation (2-29). 
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2
2

1 ( )
2 ( )

f
f f

Lc Dω
ω
∂

= ⋅
∂

 （2-29） 

Where L  is the corresponding cost function of the used classifiers; fω  refers to 
the weight of the feature element f ; different feature elements correspond to different 
weights. Expand the given cost function of the classifier and the Taylor expansion of the 
cost function will change if removing one element of a feature. OBD feature selection 
criterion uses fc  as the criterion to approximate the difference of the Taylor expansion 
before and after the removal of the feature element. 

The feature selection criterion of SVM-RFE uses the improved OBD criterion and 
in theory it has proven that the improvement can achieve superior performance to the 
original OBD criterion [115]. For the binary SVM, the coefficients ω  of its normal 
vectors of the hyperplane determine the maximal distance between the hyperplane and 
the Support Vectors, so OBD criterion can be seen as the removal of those elements 
which have the least influence to the 2-norm of ω .  

According to previous analysis, the difference of the Taylor expansion before and 
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after the removal of the feature element can be approximated by fc  as:  
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 （2-30） 

Where the coefficient *
iα  is obtained from the training of SVM; K  is the same 

kernel function as defined in Equation (2-7); the symbol f−  denotes the removal of 
the feature element f  in the process of feature selection. Therefore, *( )f

iα
−  and 

( ) ( , )f
i jK − x x  are the coefficients and kernel function of SVM after the removal of the 

feature element f . 
When using the SVM-RFE feature selection criterion, the initial feature subset is 

the universal set of the feature vector. In each step of feature selection, the new weights 
ω  are needed to calculate by and comparing the training samples and the existing 
feature elements. Then remove the feature elements one by one to calculate the criterion 
function fc , and remove the element corresponding to a minimum of fc . The 
algorithm continues the iterative optimization process until the chosen feature vector 
meets the to the pre-set requirements or the algorithm reaches the manually-set stop 
conditions. 

From the calculation procedure of SVM-RFE algorithm, its calculation amount is 
very large. The corresponding weights must be updated every time, and the feature 
elements are needed to compare one by one. The alrorithm can achieve high accuracy. 
In the calculation, SVM-RFE uses the optimized coefficients from the training of the 
kernel functions and the classifier, therefore the algorithm can be effectively integrated 
with the SVM classifier, which is consistent with the proposed integration method of 
feature selection and classifier design. 

SVM-RFE-based feature selection algorithm is proposed from the binary 
classification problem of SVM and the commomly used kernel functions are linear or 
Gaussian RBF kernel function, which are used to accelerate the training process or be fit 
for the non-linear situation respectively. This algorithm can also be easily extended to 
the case of multi-class classification problem by the strategy of one-versus-one [116], 
but the strategy is too simple and not much applicable to the multi-class problem which 
will lead to a worse classification result. Because there are still not better strategies on 
the multi-class problems of SVM, this algorithm is also difficult to adapt to various 
fields of classification. 
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2.2.6 Correlation based Filter Selection 

Filter-based feature selection methods mainly obtain the optimal subset of feature 
vectors by using the search strategy. The selection process and the classification process 
are independent and the main consideration in the selection process is the relationship 
among variables to be predicted and that between the variables and all the classes [117]. 
The simplest filter-based method is described as follows: align the feature elements 
according to their importance and the variables ranked fronter in the sequence will be 
considered as important variables to be retained. The importance of the feature elements 
need to measure and quantify to the value by a variety of manually set criteria, and the 
the important threshold and the number of feature elements to be retained in the 
selection process required also need to pre-fixed. 

Correlation based Filter Selection (CFS) is a filter-based method, which can get a 
group of feature elements which are closely related to the corresponding categories by 
quantifying and comparing the correlation between the various features and the 
corresponding categories and that between the various feature elements. Meanwhile, the 
algorithm can remove the redundancy which has a weak correlation or is irrelevant with 
the various features. Using the information theory, the procedure to calculate the 
correlation is as follows: 

The correlation between two feature elements ux  and ix  is measured by the 
uncertainty factor ( | )u iU x x , which can be described as the ration of the mutual 
information ( ; )u iI x x  and the entropy ( )uH x  [118], that is: 

 
( ; ) ( ) ( | )( | )

( ) ( )
u i u u i

u i
u u

I x x H x H x xU x x
H x H x

−
= =  （2-31） 

In the Equation (2-31), ( | )u iH x x  is the conditional entropy. Suppose each feature 
element be the discrete random variables, and based on the information theory:  

 
1

( ) ( ) log ( )
u

m m

t

u uv uv
m

H x P x P x
=

= −∑  （2-32） 

 
1 1

( | ) ( ) ( | ) log ( | )
i u

n m n m n

t t

u i ij uv ij uv ij
n m

H x x P x P x x P x x
= =

= −∑ ∑  （2-33） 

Where ut  and it  are the number of values of feature elements ux  and ix , that 
is to say, ux  can get ut  values from 1v  to 

ut
v , and ix  can get it  values from 1j  

to 
it

j . The symbols ( )
muvP x  and ( | )

m nuv ijP x x  are expressed as follows in Equations 
(2-34) and (2-35):  

 ( ) ( )
muv u mP x P x v=  （2-34） 

 ( | ) ( | )
m nuv ij u m i nP x x P x v x j= =  （2-35） 
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Suppose the given sample set have the same dimensions, and the criterion (or the 
search strategy) of CFS for searching the optimal subset can be expressed as: 

 
'( 1)

ci
S

ii

krG
k k k r

=
+ −

 （2-36） 

Where k  is the number of feaure elements of the selected subset in this search 
process, cir  is the mean value of the correlation between each feature element in the 
subset and the classes, 'ii

r  is the mean value of the correlation between the feature 
elements in the feature subset. 

Uncorrelated or weakly correlated feature elements will lead to a small value of 
SG , therefore, the search will follow the direction of a larger SG  value. The advantages 

of CFS-based algorithm are that the feature selection process is completely independent 
with the classification and that it can conveniently entended to the situation of only one 
class of samples (positive samples) with a strong applicability. But the limitation of CFS 
is that the process of feature selection depends on the choice of the search strategy. If 
the strategy is not selected properly, the search time may be very long but it can not get 
the optimal solution. 

2.3 Summary  

This chapter introduces the general concept, significance and process of feature 
selection. For the proposed SVM-based tumor detection system, some feature selection 
algorithms related to the kernel functions are also introduced in detail to verify proposed 
integration of feature selection and classifier design. The next chapter will introduce the 
proposed brain tumor detection framework.
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CHAPTER 3 TUMOR DETECTION IN MRI IMAGES 

3.1 The Framework of the Proposed System 

As to the brain tumor detection problem in MRI images of multiple sequence, this 
paper proposes a two-step framework, from the total tumor detection to the tissue 
classification, that is, first to achieve the total detection of brain tumor region, and then 
to extract the abnormal tissues’ details in the obtained tumor region. The whole tumor 
region in the initial detection is the basis for the classification of tissues and its accuracy 
will greatly affect the accuracy of tumor classification. If the accuracy of the tumor 
detection is high, the tissue classification can also achieve high accuracy in general as 
long as the classification algorithm is mature, and vice versa, a bad algorithm will limit 
the performance of the system. 

A SVM-based semi-automatic framework on brain tumor detection is proposed in 
this paper, as shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 the framework of the proposed system. 
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According to Figure 3.1, the proposed framework for the detection of brain tumors 
is mainly composed of three parts, namely, the SVM-based tumor classification 
subsystem, the region-growing-based contour refinement subsystem and the adaptive 
training-based following-up subsystem. The classification subsystem is to complete the 
initial detection of the whole tumor based on SVM; the contour refinement subsystem is 
to improve the quality of the initial contour of the detected tumor region and the 
classification accuracy; the tracking subsystem is used for the following-up and 
automatic analysis of the patient’s data in the following MRI examinations and the 
evaluation to the treatment effect in last examination based on adaptive training.  

The processing flow of the system is as follows: 
After obtaining the MRI examination data of patients, it is necessary to register 

them in order to ensure that the pixels at the same positions (corresponding to the same 
coordinates in the MRI slice) in all the different MRI sequences corresponds to the same 
anatomical brain tissue. Multiple sequences of MRI images can be meaningful and the 
data fusion makes sense only after the registration to maintain the exact correspondence 
of data. 

The algorithm on classification used in this proposed system is a supervised 
learning classification method and the classifier used in the system is SVM. The design 
of the classifier needs a training the learning process, therefore the next task after 
registration is to construct the training matrix. This process is divided into two steps, the 
selection of sample points and the generation of feature vectors. 

The selection of sample points is randomly carried out on a random FLAIR slice 
by a team of doctors with rich experience and medical knowledge. The samples contain 
two classes inside and outside the tumor region respectively. This operation can not only 
ensure the correctness and reliability of the random sample points, but also reduce the 
subjectivity in the selection process. The selected results can be accepted by other 
doctors to make the following processes more persuasive . 

After the selection of the sample points, it is necessary to construct the training 
matrix of feature vectors for the classifier. The feature vectors are extracted in a square 
window W  with the sample point as its center. Suppose the length of a window’s side 
is a , thus, the window W  contains a total of 2a  pixels. All the gray values, the 
texture features of the mean value and standard deviation of the sampling window and 
derivative features based on a variety of transformation (such as low-frequency 
coefficients of two-dimensional wavelet transformation) are extracted to form a feature 
vector, the dimension of which is the sum of dimensions of all the features above. Set 
m  is the number of texture features, and b  is the number of derivative features, then 
the total dimension of a feature vectors is: 2a m b+ + . If the derivative feature is selected 
as the low frequency coefficients of the two-dimensional wavelet transformation, then 

2( 1)b a= + . Align all the extracted features above in the order of gray levels, texture 
features and derivative features, and we can get a feature subvector corresponding to 
some sample point in a weighted MRI image sequence. 
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Set ix  as the gray value of pixel in image, 2a  as the total number of pixels in the 
window W  for feature extraction and 

W∑ as the sum of a certain feature of all the 
points in the window. The commonly used texture features can be obtained according to 
the equations as follows: 

(1) Mean Value: 

 2
W iW

m x a=∑  （3-1） 

(2) Standard Deviation: 

 2 2( ) ( 1)WW iW
SD x m a= − −∑  （3-2） 

(3) Geometric Mean: 

 
21( ) a

W W iG x= Π  （3-3） 

(4) Harmonic Mean: 

 2 (1/ )W iW
H a x= ∑  （3-4） 

(5) Skewness: 

 3 2 3( ) ( 1)WW i WW
S x m a SD= − −∑  （3-5） 

(6) Kurtosis: 

 4 2 4( ) ( 1)WW i WW
K x m a SD= − −∑  （3-6） 

The feature vector at some sample point is a combination of three feaure 
subvectors which corresponds to T2-weighted images, PD-weighted images and FLAIR 
weighted images respectively. The three feature subvectors are aligned in a fixed order. 
Each feature vector occupies a single row in the initial training matrix prepared for the 
classifier, respectively. The total number of sample points selected in the first MRI 
examination is 2N  (a half in tumor region and and a half outside the tumor region), 
and then the total dimension of the training matrix is 22 [3 ( )]N a m b× × + + . 

If the value a  is larger, the dimensions of the feature vector and the training 
matrix are both very high, and the extracted features in the data are inevitably mixed 
with a lot of redundancy and interference to affect not only the accuracy, but also the 
efficiency of classification. Therefore, it is necessary to reduce the dimension of the 
training matrix before the classification, to select some of the most important features, 
to decrease the influence to the classification and to accelerate the classification process 
by eliminating the redundancy and noise in input data. 

In order to be applied to the SVM classifier and validate the proposed method on 
the integration of feature selection and SVM classifier design, this paper attempts to 
utilize a variety of feature selection algorithms, including the classic PCA, kernel 
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function-based methods, Information theory-based methods to verify the feasibility of 
the proposed system. 

The tidy matrix after the feature selection is the real training matrix, which is used 
to learn and obtain the optimal parameters of the relevant classifier, to construct the 
classification model and to be applied to all the images. Then we can detect the initial 
tumor region. All the description above is the main work of the SVM-based 
classification subsystem. 

The region-growing-based contour refinement subsystem is used to improve the 
contour of the initial tumor region, to reduce the error determination and missing points 
near the border, to decrease the effect on tumor detection from invasive glioma and 
finally to obtain the final results of tumor detection. 

The adaptive training-based following-up subsystem is mainly used to 
automatically analyze and evaluate the patient’s condition. The classifier can achieve 
the characteristics of the patients with cancer information through the analysis on the 
first examination data under the human intervention. The system can segment the tumor 
region in the data of next MRI examinations automatically by the classifier of the 
follow-up system, which can reflect the effectiveness of the medical treatments on one 
hand and evaluate to improve the treatment of the next examinations on the other hand 
by comparing the size changes of tumor volume between two adjacent examination 
periods. 

The entire treatment procedure of the systems is expressed as mentioned above. In 
the next section, the three subsystems will be described in detail one by one. 

3.2 SVM-based Classification Subsystem 

3.2.1 SVM theory 

SVM is a classification algorithm for high-dimensional data analysis which is 
proposed by Vapnik to solve the classification problems of two issues [88]. SVM has 
been widely used in the fields of medical image processing, text analysis, image 
retrieval and so on. 

SVM is based on the principle that the data in the original input space can be linear 
separable in a higher-dimensional feature space after a certain mapping. The feature 
space after mapping is a complete Hilbert space, in which the inner product of data can 
be calculated as the equivalent funcation value of the unput vectors by introducing the 
corresponding kernel function. The inner product is the measurement of the distance, 
which can be expressed as the degree of similarity between two vectors in a certain 
extent. In general, the closer the distance between two vectors is, the higher the 
similarity of them is. Due to the kernel function, the computation of distance in the 
feature space is transformed to the input space without the need to solve the mapping of 
spatial transformation, therefore, it reduces the computational difficulty to a certain 
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extent. 

Based on the Statistical Learning Theory, SVM can obtain the optimal performance 

by constructing the optimal classification surface with the largest classification margin.. 

The schematic diagram of SVM is shown in Figure 3.2 [29, 119]. 

 

 

Figure 3.2 The schematic diagram of SVM. 

In Figure 3.2, the black and white circles represent the samples of the two linearly 

separable classes. The symbol ( , )i iyx  ( 1,2, ,i n ) denotes the sample set consisting of 
n  samples. ix  is the sample vector and iy  denotes the corresponding class with its 

values of just 1  which corresponds to the positive and negative categories 

respectively. According to the theory of pattern classification, in high dimensional space 

the separating hyperplane can be expressed by a linear equation as 0b  ω x , where 

ω  is the normal vector of the hyperplane, x , generally corresponding to a given 

sample vector, is a vector as a independent variable of the linear separating hyperplane, 

and b  is the intercept. 

Normalize the distance between the samples and the separating hyperplane to make 

the nearest distance in both classes be 1, then the classification margin of the two 

classes is 2 / || ||ω . To maximize this classification margin is to minimize || ||ω  or 
2|| ||ω . 

Then,  

 
21 1

( ) || || ( )
2 2

   ω ω ω ω  （3-7） 

Construct the Lagrange function as: 

 
1

1
( , , ) ( ) { [( ) ] 1}

2

n
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

     ω α ω ω ω x  （3-8） 
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Where iα  is the Lagrange coefficient and 0iα > . 
According to the stationary points’ method in the function extremum solution, in 

Equation (3-8) the partial differential about ω  and b  are respectively computed to 
make the corresponding partial differential equations equal to 0, the original problem 
can be transformed to that of dual problem under the constraints 

 
1

0
n

i y
i

yα
=

=∑  （3-9） 

 0iα ≥ ， 1, 2, ,i n=   （3-10） 

To maximize the following function: 

 
1 , 1

1( ) ( )
2

n n

i i j i j i j
i i j

Q y yα α α
= =

= − ⋅∑ ∑α x x  （3-11） 

Based on the Kuhn-Tucker, the extreme value problem of the quadratic function 
under the inequality constraints exists the unique solution similar to the Equation 
(3-12): 

 { [( ) ] 1} 0i i iy bα ⋅ + − =ω x ， 1,2, ,i n=   （3-12） 

According to the Equation (3-12), the corresponding coefficients iα  for the 
solution of most samples are 0, and those nonzero coefficients is relevant to the Suppoet 
Vectors. Finally, the optimal classification function is: 

 * * * *

1
( ) sgn{( ) } sgn{ ( ) }

n

i i i
i

f x b y bα
=

= ⋅ + = ⋅ +∑ω x x x   （3-13） 

Where *ω , *b  and *
iα  are the coefficients from the optimization, and ix , iy  

are the input vector and its label. The symbol sgn( )⋅  is the sigh function.  
When the input samples are not linearly separable, it is necessary to introduce a 

relaxation term of 0iξ ≥  to reduce the requirements of the constraints, which can 
satisfy most situations: 

 [( ) ] 1 0i i iy b ξ⋅ + − + ≥ω x ， 1,2, ,i n=   （3-14） 

The problem need to be optimized is transformed to the following equation after 
the introduction of relaxation term: 

 
1

1( , ) ( ) ( )
2

n

i
i

Cφ ξ ξ
=

= ⋅ + ∑ω ω ω  （3-15） 

Where C  is a specified cost constant to control the extent of the punishment on 
the wrong classification samples and to achienve the compromise between the ratio of 
the wrong classification samples and the complexity of the algorithm [29, 88]. 

The optimization in this case can be understood as: after defining a mapping Φ  
for the tramsformation of the input samples into the linearly separable feature space, the 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0079/these.pdf 
© [N. Zhang], [2011], INSA de Lyon, tous droits réservés



 

 45 

linearly non-separable data will change into a linearly separable sample set. Comparing 
with the analysis in the linearly separable situation, the input samples here are required 
to replace as ( )iΦ x . Introducing the kernel function to calculate the inner product to 
simplify the Equations (3-11) and (3-13), the equation of the SVM classification 
hyperplane can be finally obtained as: 

 * *

1
( ) sgn{ ( , ) }

n

i i i
i

f x y K bα
=

= +∑ x x   （3-16） 

The Commonly used kernel functions in SVM are:  
(1) the linear kernel function: 

 ( , ) ( )i iK g h= ⋅ +x x x x   （3-17） 

(2) the polynomial kernel function: 

 ( , ) [( ) 1]q
i iK = ⋅ +x x x x   （3-18） 

(3) the Sigmond kernel function 

 ( , ) tanh[ ( ) ]i iK cυ= ⋅ +x x x x   （3-19） 

When using the Sigmond kernel function, SVM is equal to a two-layer neural 
network, but the weights of neural networks and the number of nodes in the hidden 
layer need to be calculated and determined by the algorithm itself. 

(4) Gaussion Radial Basis Function (RBF): 

 
2

2

|| ||( , ) exp{ }i
iK

σ
−

= −
x xx x   （3-20） 

The advantages of SVM is fully theoretical. Despite the theoretical calculation and 
optimization of SVM is related to a high-dimensional mapping, but in the actual 
calculations it is not necessary to solve the mapping. Optimization can be achieved just 
based on the transformation of the inner product function and the calculation in the 
high-dimensional space by the kernel function, which greatly simplies the complex 
solution process.  

It can be observed from the principle of SVM that, SVM is especially suitable for 
the high-dimensional input data, and not sensitive to the source of the data, which 
proves that it isconvenient to easily integrate the analysis of the data with SVM to 
improve the total classification accuracy. 

3.2.2 Multi-kernel SVM 

SVM has many extensions, such as one-classification SVM, in which all the 
interested data will be considered as one class and all the other data as the other class. In 
the classification, the training is only fulfilled on the data of the first class. This is a 
simple application of two-class SVM classification [89]. 
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Another important application of SVM is the multi-kernel SVM [90-91]. It is 
especially suitable for dealing with high-dimensional data of different sources and 
different types. The classification algorithm does not use a uniform kernel function in 
order to be able to dig the implicit information in the data and to take full use of the 
characteristics in the data. 

In general, the multi-kernel SVM has two typical forms : 
1. for different types of input data from different sources, use 

different kernel functions or different parameters with a same kernel 
function to design different classifiers for each input respectively, select 
the optimal parameters to classify each input one by one to obtain the 
optimal results. The final result is the integration of all the optimal results 
of the input data; 

2. First, some strategy is adopted to fuse all the input data, and then 
use different kernel functions or different parameters of a same kernel 
function to carry out the classification; finally using the selected fusion 
strategy to obain the integrated results.  

The two forms of multi-kernel SVM have very different characteristics. The former 
takes full use of the properties of their own in different types of data, which are 
independent. The use of different kernel functions can mine a variety of important and 
implied characteristics of data and the ultimate classification result is the integration of 
all the optimal results. The latter fuses the data first to use the implicit information, 
characteristics or relationship in various data, although different kernel functions are 
applied to all the parts of the data. The more important point in this processing mode is 
to use the correlation and mutual influence of data to achieve the classification. 

In addition to adapt to multiple types of input data, multi-kernel SVM can also 
extended to the multi-class classification problem. 

At present, the multi-class classification problems on brain tissues’ detection 
mainly depends on the fuzzy theory or the probability models, both of which are not 
very accurate in general. Some algorithms can just segment edema and normal tissues 
separately, which indicates the lack of ability to deal with brain tumors.  

There is no specific multi-class classification algorithm in traditional SVM. The 
existing multi-class classification strategies are the simple expansions of two-class 
classification algorithms, such as a commonly used one versus all strategy, in which it is 
necessary to construct a two-class classifier for each classification of different data. The 
interested data will be considered as one class and all of the other data as the other class. 
Each class has its special classifier to make the margin between this class of samples 
and the other samples the largest. Then the multi-class classfication can be achieved by 
determine each category one by one. 

The results of each two-class classification can be removed from the data set for 
the next classification. It is also acceptable not to remove these data. The removal of 
data from last classification may lead to the previous classification results can not be 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0079/these.pdf 
© [N. Zhang], [2011], INSA de Lyon, tous droits réservés



 

 47 

amended. If the previous classification is not accurate, the error will be gradually 
accumulated in the following process, which will lead to worse and more inaccurate 
results in future.  

However, if removing the data which has been previously classified, the same 
sample maybe classified into different categories, especially for the samples at the edge 
of the tissues, of which the characteristics are between the various tissues, the 
classification will be difficult. This kind of repeated classification will greatly influence 
the performance of the classifiers, since each sample needs to be compared with all 
other samples at each classification, which leads to a very heavy computational burden. 

It can be observed that directly apply SVM to multi-class classification problems 
will lead to poor results, no matter what situation above appears. That is to say, SVM 
can not solve the classification problems in the complex situation of multi-sequence 
MRI images. Some possible solutions are extending the existing classification 
algorithms to the kernel space or feature space by introducing the kernel functions in 
other classifiers or introducing other classification algorithms into SVM to improve the 
accuracy and effect of SVM on multi-class classification. 

As to the limitations of existing algorithms, multi-kernel SVM can be well applied 
to multi-class classification problem, whether the fusion is at the data layer or the 
decision-making layer. We can use different kernel functions or different parameters in a 
same kernel function to correspond to the characteristics of different tissues, different 
data, different treatments. Using the characteristics of each input samples of their own 
or the correlation between samples can achieve the desired classification. 

The training process of multi-kernel SVM is usually to train the parametric model 
with a single kernel function, and then the parametric model with multiple kernel 
function. the relevant parameters are continuously optimized in the SVM training 
process to apply to different input. 

3.2.3 Fusion Strategy 

Two types of multi-kernel SVM both require the use of some certain fusion 
strategies in order to take full advantages of multi-sequence MRI data. Corresponding to 
multi-kernel SVM, the fusion strategy is also applied in two levels, namely, data level 
fusion and decision-making level fusion, respectively. The former means the fusion of 
the input data or the extracted feature, while the latter refers to the fusion between 
different classification results. 

Dempter-shafer theory [120] can solve the fusion problems. The theory is the 
extension of Bayesian probability model, which can measure the accuracy of the 
uncertainty of the events by defining the setting the trust function and the likelihood 
function, besides the uncertainty description by the probability. The trust function is the 
lower bound of the uncertainty, while the likelihood function is the upper bound. They 
measure the minimal and maximal value of the uncertainty respectively.  

The implemention of the Dempter-shafer theory algorithm can be divided into two 
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steps, according to the general rules of human decision-making process [121]: 
1. First consider the available evidences and its impact to decisions 

at the trust level of trust, to obtain the initial judgement by the objective 
conditions; 

2. Second at the decision-making level, integrated with the existing 
evidences, add the subjective judgments and synthesize the two factors 
above to make a decision.  

Simple fusion strategy can be the direct use of logical functions, as long as 
different input data or the results of the different categories have different weights, the 
results can be fused under various conditions. 

Another expanded direction is the a fusion of multi-modality data, that is, the 
fusion of different types of medical images, such as fusion of MRI images and CT/PET 
images. This fusion strategy is theoretically feasible, but necessarily in practice may not 
easily be achieved. In general, patients will not repeat an MRI examination after the CT 
examination and PET examination is very expensive for the patients, so there are still 
certain difficulties to achieve in reality. 

A more feasible idea is to fuse MRI images and Magnetic Resonance Spectrum 
(MRS). Difference from MRI images, MRS is functional analysis of the spectrum, 
which can image “in advance”. In real medical diagnosis, the disease can be shown on 
the images when it develops to a certain stage or deteriorates to a certain extent. In fact, 
before the lesions can be shown on the images or in the early period of the disease, the 
content of some disease-related compounds in human body has changed obviously 
because of the metabolic abnormalities of tissues (normal compounds are inhibited and 
their contents reduce while the contents of pathogenic compounds significantly 
increase). MRS can predict the incidence of lesions in advance by examining the 
abnormal changes of the elements or compounds. In other words, if the contents of 
some key compounds corresponding to the cancer in a brain region significantly 
increase, then we can predict in advance this region is likely to become cancer incidence 
areas or lesions in the future. 

On the other hand, MRI images and MRS spectrum are homologous data and they 
correspond to each other. If the MRI images have clearly reflected the tumor area, 
which can be used as the prior knowledge of the tumor in the test, the contents’changes 
of key compounds are tested in the region by determining the approximate range of the 
tumor region. Then using the pathological analysis will help to determine the current 
state and future development trend of tumor disease and to clearly guide the evaluation 
and determination of the medical treatment; oppositely, the changes of compounds in 
the brain tumors detected by MRS spectra indicate the incidence area, which is the 
focus area and need to be imaging significantly for MRI images. 

3.2.4 Feature Selection 

The system uses the three sequences of T2-weighted images, PD-weighted images 
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and FLAIR-weighted images from the MRI examinations. We use feature selection 
method to choose the most important features from the three selected sequences and 
fuse them effectively (feature selection-based data fusion). Feature selection is an 
important part of SVM-based classification subsystem, which can not only extract 
critical information after data fusion, but also be integrated with the SVM classifier to 
reduce the difficulty of classifier design. The specific methods and their meaning have 
been discussed in the second chapter detailedly. 

3.3 Region Growing-based Contour Refinement Subsystem 

The training data for the classifier are selected by the feature selection. Not only 
the redundancy, interference and noise in the data, but also even some relatively minor 
information have been removed. The study in this paper is mainly on the gliomas in the 
brain, of which the properties are the invasion of the boundary tissues (such as cystic 
degeneration, edema) into the surrounding normal tissues to varying degrees and mixed 
with the normal tissues together, therefore, the contour of the tumor can not be clearly 
distinguished. Reflected in the MRI images, it can be observed that the data 
characteristics of a variety of tissues near the border are similar. With the limitation of 
the performance of classifiers, all the factors above determine that the initial results 
obtained from the tumor detection will inevitably include errors, especially in the border 
of the initial classification, where there are always the situations of errors or missings. 
Thus, it is necessary to improve the initial tumor contour by some contour refinement 
algorithms.  

In this paper, the region growing-based contour refinement algorithm is proposed. 
The algorithm uses the criterion of the the maximum likelihood combined with the 
distance between current boundary points and the initial tumor contour. The algorithm is 
simple and fast, which can well solve the problem of contour refinement in the tumor 
boundary. 

As to the initial results of tumor detection for a certain MRI sequence, first fit the 
total tumor region to satisfy the normal distribution. Since the tumor region is already 
known, the gray value of each pixel in the region is known. Calculate the mean value 
and standard deviation of the region and then the probability density function can be fit 
as the Equation (3-21) as follows: 
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Where the parameter γ  denotes different MRI sequences, and T2,PD,FLAIRγ = ; 
γµ  and γσ  correspond to the mean value and standard deviation of the initial tumor 

region in the MRI sequence γ ; pxγ  is the gray value of pixel (or border point) p  in 
the MRI sequence γ ; ( )pl xγ  is the density probability of pixel p . 

Dilate the initial tumor region outside for one pixel, and calculate the sum of the 
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the density probabilities of each sequence fot a new pixel p  on the boundary according 
to the Equation (3-21), as shown in Equation (3-22): 

 T2 PD FLAIR( ) ( ) ( ) tumorp p pl x l x l x th p+ + > ⇒ ∈   （3-22） 

The obtained total density probability is compared with the pre-set threshold. If 
superior to the threshold, then determine the corresponding pixel belongs to the tumor 
tissues and is retained, and vice versa, to determine that the point does not belong to the 
tumor area, and it will be removed. Determine the boundary points one by one 
according to the criterion above, and then we can obtain the new bourdary after the 
region growing. 

Repeat the above process and dilate outside the tumor region one pixel by one 
pixel. Each dilation is based on the latest contour. Determine the categories of the 
boundary point by point to update the contour. The whole process automatically and 
continuously runs, until the border no longer changes. 

The threshold th  need to be set manually. The initial threshold is selected as the 
average density probabilities of pixels in the initial tumor area of the entire sequences 
(each sequence separately). Considering the fact that the points which are farther from 
the initial tumor contour are less likely to be long to tumor regions, the threshold is set 
to increase gradually with the distance, so that the decisions will be more and more 
difficult to ensure that the algorithm can automatically stop and results are accurate and 
reasonable. 

 [1 0.1 ( 1)]th d t= + × − ×   （3-23） 

where t  is the original threshold, and d  is the distance between the latest 
contour and the initial border of tumor detection. 

After the contour improvement, the final tumor region can be obtained.  

3.4 Adaptive Training-based Tracking Subsystem 

The proposed brain tumor detection framework is a semi-automatic system, but 
there is only one human interaction in the system in the first treatment on the data 
analysis of the patient (random selection of the training sample points by a medical 
team). The following data analysis in the next MRI examinations will be automatically 
carried out by the system, and the tracking on the disease of the patients mainly relies 
on the adaptive training. 

The system obtains the characteristics of the patient’s tumor and the corresponding 
data information after the first analysis and processing of the patient’s data. As to the 
data in the next examinations, the system can not only use the existing prior knowledge 
to automatically detect the tumor, but also to evaluate the changes of tumor size, which 
can be used to assess the medical treatment to a certain extent and to provide reasonable 
reference for the treatment of the next period. 
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The process of the adaptive training-based following-up is as follows: 
1． Data Projection: after obtaining the already-registered MRI 

data of the latest inspection, it is necessary to project the final tumor 
detection results after contour improvement to the new data as a prior 
knowledge in this data analysis. However, there is no prior knowledge on 
the changes in tumor size between several examinations. In general the 
period for the patient’s examination is about 4 months, and the tumor does 
not change a lot during this period because of the radiation therapy or drug 
control from the doctor. In order to ensure a high accuracy of the 
projection (the deviation of tumor regions in two examinations will not be 
large), it is necessary to make a morphological erosion operation before 
the projection. 

2． Automatic selection of sample points: the sample points for 
adaptive training are automatically selected by the system. In general, the 
more the number of sample points is, the more classified information it 
can provide and the better the automatic classification is. However, too 
many sample points can also introduce much more redundancy and noise, 
while greatly increasing the computational burden. Compromise the two 
factors of the accuracy and efficiency, the system automatically selects 
twice the number of new sample points than that of the initial sample 
points for training, that is, to randomly select 2N  points both inside and 
outside the tumor. In order to ensure that the new sample points are 
absolutely correct in the case without human interaction, a series strict 
constraints are introduced, such as the spatial location restriction (based 
on the last tumor detection area as a reference), gray level restriction (to 
meet the consistence of the characteristics of tumors reflected the same in 
the MRI images) and texture restriction (to meet a uniform texture 
characteristics in the feature extraction window). 

3． Feature Extraction and Selection: repeat the analysis process 
on patient data in the first examination, extract the corresponding feature 
vectors and training matrix in a square window with the sample points as 
the center, and use the preset feature selection method for data 
dimensionality reduction and screening. 

4． Comparison of the feature’s consistency: although the two 
adjacent MRI examinations is only apart about 4 months, in general the 
tumor will not significant change, but the changes of the objective 
conditions, such as the imaging equipment models, different imaging 
parameters, the different examination environment, the inevitable changes 
of the patient’s posture in the examination, and so on, will lead to the 
differences in characteristics of tissues in the MRI images. Reflected at the 
data level, the retained important features may be different after the 
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feature selection under the same criteria. The feature set will directly 
affect the training of the classifier, which leads to that the classifier used 
in last tumor detection is not necessarily appropriate for the data in this 
examination. Therefore, in this paper, a t-test is used to compare the 
consistency of feature subsets in the training matrix after the two feature 
selection. If the differences of the feature subset is below 5%, it can be 
considered that data between the two examinations have the same 
characteristics and the tumor characteristics do not change obviously, 
which will not significantly affect the training of the classification model. 
Thus it is not necessary to re-train the new data and the system can 
directly use classification model in last period; otherwise we need to train 
a new model from use the new data to make the classification model be 
applicable to the new data, and then achieve the tumor detection. 

5． Evaluation of tumor volume: it is required to refine the tumor 
detection contour of the new tumor region to improve the classification 
accuracy. Define the tumor volume as the total number of pixels in the 
detected regions of all the slices. The development trend and speed can be 
obtained by comparing the tumor volume between two adjacent MRI 
examination periods, which can provide a supplementary reference for the 
doctor’s diagnosis and treatment. 

3.5 Summary  

This chapter proposes a SVM-based, semi-automatic tumor detection system. The 
classification framework is composed of the SVM-based classification subsystem, the 
region growing-based contour refinement subsystem and adaptive training-based 
follow-up subsystems. The system requires one manual interaction only in the first data 
analysis, and the other operations can be dealt with automatically. 

In addition to the detection of the entire tumor regions, the system can also track 
the patient’s condition and obtain quantitative information on changes in tumor to 
provide information for the diagnosis and treatment to the doctors. 
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CHAPTER 4 EXPERIMENTATION AND DISCUSSION 

4.1 Experimental Data 

All the experimental data of patients used are provided by the Caen Medical Center 
(France) and Beijing Tiantan Hospital, with a total of 13 patients, 23 examination 
periods, in which Patient 1 to Patient 3 has 5, 4 and 5 examinations respectively. The 
intervals between adjacent examinations are about 4 months or so, so these three 
patients have been supervised for more than one year in order to verify the automatic 
tracking algorithm proposed in this paper. Patient 4 to Patient 13 contains a period of 
examination data. 

Examination data of each patient contain four MRI sequences respectively: 
T1-weighted images, T2-weighted images, PD-weighted images and FLAIR images. All 
the image data are derived from 1.5T magnetic resonance imaging equipment of the 
General Electric (GE) Co. Ltd., with an axial FSE (fast spin echo) imaging sequence to 
obtain the MRI sequences, to reduce the sensitivity of the imaging system to the 
non-uniformity of the magnetic field and to increase the energy deposition of the echo 
sequence [11]. The obtained T1-weighted images contain 124 slices, while T2-weighted 
images, PD-weighted images and FLAIR images contain 24 slices, respectively. The 
image resolution in all slices is 512 × 512, however, the including number of slices in 
T1-weighted image sequence is quite different from that of T2-weighted images, 
PD-weighted images and FLAIR images, which leads to the imaging thickness of a slice, 
the tissue location in the brain and the contained information are not completely 
corresponding. Therefore, in the experiment, this paper uses the other three MRI 
sequences except the T1-weighted image sequence as the input data in the experimental 
test, and the slice thickness is 5.5 mm, the size of the corresponding voxel is 0.47 × 0.47 
× 5.5mm3. 

There are multiple examinations in the diagnosis and treatment of a patient, and the 
examples of the tracking data at the same brain position from different periods are 
shown in Figure 4.1. Compared with the other two MRI image sequences (T2-weighted 
images and PD-weighted images), FLAIR images have better visual effect, so Figure 
4.1 just indicates the FLAIR image, so does the rest of this chapter. If there are no 
special instructions, the figures just list the FLAIR-weighted images. 

The examples of the original input image sequences of patients are shown in 
Figure 4.2. In Figure 4.2, the listed three images are all from Patient 1, of which each 
row corresponds to the same position in the brain, and from left to right the images are 
the PD-weighted images, T2-weighted images and FLAIR images. 
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Figure 4.1 The examples of five MRI examinations of Patient 1 (FLAIR images)  
 (from top to bottom, from left to right corresponding to the first to the fifth period). 

 

 

 

 

Figure 4.2 examples of multi-sequence MRI images of Patient 1 
(from left to right corresponding to T2-weighted, PD-weighted and FLAIR images). 
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The MRI examples of Patient 2 to Patient 13 are as shown in Figure 4.3.  

 

 

  

   

  

   

Figure 4.3 The MRI examples of Patient 2 to Patient 13. 

4.2 Experimental Results 

After obtaining the T2-weighted images, PD-weighted images and 
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FLAIR-weighted image sequence of specific examinaiton period, the first work is the 
registration of all the image sequences. The purpose of registration is to make the 
coordinates of the same pixel correspond to the same anatomical tissues in different 
MRI sequences in the brain. As long as the location of tissues and the pixels correspond 
to each otner in the multiple sequence images, the information can achieve the 
correspondence to ensure that the information fusion makes sense. 

Registration is completed by the software SPM (Statistical Parameter Mapping) 
[122], which is specifically designed to achieve the analysis on brain imaging data 
sequences. These sequences can be not only from different imaging mechanisms, but 
also the same imaging sequences with the imaging objective changing over time. At 
present, the software has been used in the analysis of medical images, such as the 
functional MRI imaging (fMRI), Proton Emission Tomography (PET) and so on [123]. 

The Registration by SPM is based on the spatial voxel. First, all the images in the 
sequence are rearranged and normalized to a standard space to smooth; then build the  
parametric statistical model for each voxel, and the experimental data are described and 
the residual error of registration is estimated by using a General Linear Model (GLM) 
[124]. For different input images, GLM can be associated with the time-domain model 
or Bayesian probability estimation in order to achieve better registration results. 

After the registration is completed, the next work is the segmentation of the tumor 
region totally. Only to ensure the accuracy of the tumor segmentation can ensure the 
accuracy of tissue classification within the tumor. It is necessary to select training 
sample points prepared for the SVM classifier in the examination data of the patient in 
the first period.. This selection of training sample points is fulfilled manually by a team 
of experienced doctors relying on their medical knowledge and clinical experience to 
ensure the accuracy of this process. 

Because there are large individual differences among patients and the imaging 
condition is obviously different, such as the imaging equipment and the objective 
environment, the data to be dealt with from different patients are not relevant. There is 
also no priori knowledge which can be used, therefore it is very difficult to develop an 
automated analysis system with the universal applicability for any patient. In the 
proposed algorithm, it is the only step requiring manual interaction in the MRI image 
processing. The classifier can automatically obtain the data characteristics of tumor or 
the condition of the patients to track the state of disease in all the following 
examinations with the gained prior knowledge. In the actual experiments, the initial 
training is based on a total of 60 sample points (30 points within and outside the tumor 
respectively) which are randomly selected on a random FLAIR slice by the doctors. The 
system can automatically record the coordinate of their locations of sample points and 
their respective classes. 

The extraction of feature vectors are based on the locations of sample points. 
Construct a square window with the sample points as the centers and variable side 
length and extract all the gray values, texture features and the derived features from 
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mathematical transformation for each window. All the obtained data are arranged into a 
row vector, which is the feature subvector of a certain weighted image sequence. Then 
connect the three corresponding feature subvectors in the order of T2-weighted images, 
PD-weighted images and FLAIR images, to form a final feature vector. Example of a 
feature vector is shown in Figure 4.4. 

 

 

Figure 4.4 Example of a feature vector. 

The dimension of the obtained feature vectors by the extraction method above is 
very high. Suppose the side length of the feature extraction window is N , then all the 
gray values have the total dimension of N N× ; texture features are selected as the mean 
value and standard deviation of all the gray values in the feature extraction window; the 
derivative feature is selected as the coefficients of two-dimensional wavelet 
transformation [125]. The dimension of the feature subvector, composed of the three 
parts above, is 22 ( 1)N N N× + + + , and the dimension of a total feature vector which is 
composed of the three feanture subvectors is 23 2 ( 1)N N N× × + + + . As the number of the 
selected sample points is 60, the entire dimension of the training feature vector matrix 
reaches 60× 23 2 ( 1)N N N× × + + + . If N  is equal to 11, then the dimension of the training 
matrix is 60 801× . 

Because of the limitations of imaging equipment, imaging environment and the 
position changes during the imaging process, the obtained MRI images will inevitably 
contain redundancy and noise. Meanwhile, it is impossible for all the features to play 
the same part in the classification, thus, according to the importance for the 
classification, the features are divided into two different parts: the important features 
and the second-important features. Besides the reasons above, large data amount will 
cause some excessive computational burden. Therefore, it is quite required to carry out 
the feature selection on the initial training matrix after the feature extraction.  

If the side length of the feature extraction window is 11, the texture features are 
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selected as the mean value and standard deviation of all the gray values in the feature 
extraction window and the derivative features are selected as the low-frequency 
coefficients of two-dimensional wavelet transformation, use the Kernel Class 
Separability as the feature selection criterion and the Gaussian RBF as the kernel 
function to choose the important features from the extracted feature vector matrix, and 
then the normailize feature selector with the same dimension as the initial feature vector 
can be obtained through the optimization and training. Significance threshold is selected 
as 0.85, and the features of which the optimized values are more than 0.85 will be 
considered as the important features to be retained, while other features will be 
considered second important features to be removed. To complete the process of 
thresholding, we can get the binary feature selection vector (with just two kinds of 
elements 1 or 0, the former means the elements are retained and the latter means the 
elements are removed.). The example of ultimate feature selector is shown in Figure 
4.5. 

 

 

Figure 4.5 The example of feature selector. 

Using the final feature vector matrix after the feature selection as the training 
matrix for the SVM classifier, we can obtain the appropriate classification model. The 
KCS feature selection method has integrated the training of kernel in both feature 
selection and SVM design to simplify the training process of SVM parameters and 
improve the training speed. The training of SVM is carried out by the popular Libsvm 
software [126], which has higher reliability and stability and is easy to operate. 

the obtained training model of the SVM classifier is used for the tumor 
classification on all the data of patients in this examination period. After obtaining the 
initial tumor region, the tumor contour is improved by the region growing-based 
contour refinement algorithm to obtain the final tumor segmentation results. All the 
segmentation results of all the tumor regions are shown in the FLAIR images in Figure 
4.6 and Figure 4.7. Examples shown in Figure 4.6 correspond to the Patient 1 of which 
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the images are listed in Figure 4.1 and images listed in Figure 4.7 corresponds to the 
images from Patient 2 to Patient 13 in Figure 4.3. 

 

 

 

Figure 4.6 Tumor segmentation results of Patient 1 

(from left to right are T2-weighted images, PD-weighted images and FLAIR images) 

From the above results the effectiveness of the proposed method can be intuitively 
observed. For the relatively simple cases of tumor segmentation, such as the second 
case of the patient 1 as shown in Figure 4.6 and the case of Patient 12 in Figure 4.7, in 
which the shape of the tumor boundary is relatively simple and smooth and there are no 
various tumor lesions (the distribution of gray values is relatively uniform), the 
proposed system can well solve them; for the cases that the tumor boundary is 
complicated, such as Patient 3 and 4 as shown in Figure 4.7 and the cases that there are 
for other lesions within the tumor region obviously, such as Patient 2 and Patient 13, 
and so on, the proposed system can also well solve them. 
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Figure 4.7 Tumor Segmentation results of Patient2 to Patient 13 (FLAIR images)  

If there is only one tumor in the brain, the tumor must present a three-dimensional, 
continuous tridimensional structure. However, reflected in the two-dimensional images, 
it may appear broken or division in some slices. The occurred separation in the brain 
images, such as Patient 8 and Patient 10 in Figure 4.7, will increase the difficulty of 
classification as the shown tumors are more than one. And as the development of the 
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disease, there may be more serious lesions in the abnormal tissues or even necrosis, 
which will lead to the holes in the tissues, such as the first case of Patient 1 in Figure 4.6, 
Patient 5 and Patient 7 in Figure 4.7. It is also possible for the patients to fulfill an 
surgical operation such as Patient 6 in Figure 4.7, which will also leave holes in the 
brain. All the sudden jump of the gray value above will affect the classification 
performance to a certain extent. However, from the above segmentation results it can be 
observed that the proposed algorithm can also be a good solution for these more 
complex situations. 

4.3 Comparison and Analysis of Feature Selection Methods 

In this paper, the integration of the SVM classifier design and the feature selection 
process is proposed, in which the feature selection criterion is used to optimize and 
reduce the difficulties of parameters design in SVM classifier by optimizing the feature 
selection process. SVM utilizes the kernel function to define and describe the distance 
or similarity between vectors in the high dimensional feature space after mapping. The 
closer the distance is, the higher degree of similarity between vectors is and the stronger 
correlation between the features is. Therefore, the key of the SVM classifier design is 
the selection and optimization of kernel functions and their parameters. This chapter 
applies all the feature selection methods listed in Chapter 2 to the brain tumor 
segmentation system proposed in Chapter 3 to carried out a complete MRI image 
analysis, and obtain the corresponding experimental results and quantitative comparison 
and evaluation. 

Figure 4.8 lists the exampls of Patient 2 with and without the feature selection 

(Kernel Class Separability).  
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Figure 4.8 Examples of Patient 2 with and without feature selection (FLAIR images)  

In Figure 4.8, (a) is the original image; (b) shows the classification results without 
feature selection; (c) shows the tumor classification results with the feature selection; (d) 
is the absolute defference between the two images (b) and (C). It can be observed from 
Figure 4.8 that, after the feature selection, besides the redundancy and noise, some 
useful information will be appropriately removed from the data. Therefore, the obtained 
tumor segmentation results reduces after the removal of some second-important 
information. This is the theoretical basis and preconditions for the proposed region 
growing-based contour refinement algorithm.  

In order to verify the effectiveness of the feature selection methods, a 
cross-validation experiment is designed in the paper. The initial training feature vectors 
from 60 sample points are artificially divided into two groups, and there are 30 
randomly selected feature vectors of each group. Then one group is directly used for 
training, or to first conduct the feature selection process and then training. After 
obtaining the SVM classifier model, the other group is used as test data to verify the 
validity of the model. As all the test data sets are from the same initial samples, the 
category labels of them are known. Therefore it is easy to get the classification accuracy 
of the model on the test samples. The cross-validation experiments are conducted 30 
times for each feature selection method, and the average accuracy of the results for 
various methods is shown in Figure 4.9. 

 

 

Figure 4.9 The cross-validation experiments of feature selection.  

In Figure 4.9, the blue solid line denotes the average accuracy of 30 
cross-validation after the the feature selection, while the red dashed line indicates the 
average accuracy of cross-validation without the feature selection. It can be intuitively 
observed from Figure 4.9 that, the classification accuracy of the cross-validation 
experiments is significantly improved after feature selection and its effectiveness is 
much higher than that in the case without feature selection. This has proven that feature 
selection can indeed remove the interference and noise in the data effectively, reduce the 
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influence to he classification performance of the system from the harmful information 
and to improve the accuracy of data classification. 

In order to analyze the effectiveness of feature selection methods quantitatively, we 
select True Positive (TP), False Positive (FP) and False Negative (FN) as the 
comparison and evaluation criteria for the tumor classification results. And define the 
intersection is of the tumor segmentation results and the Ground Truth: 

1． TP is the ratio of the number of pixels in the intersection and the 
total number of pixels in the Ground Truth; 

2． FP is the ratio of the number of pixels in the part after the removal 
of the intersection from the tumor segmentation results and the total 
number of pixels in the tumor segmentation results;  

3． FN is the ratio of the number of pixels in the part after the 
removal of the intersection from the Ground Truth and the total number of 
pixels in the Ground Truth; 

4． Total error is the sum of FP and FN. 
Finally, average all the data from all the slices of different patients in different 

examination periods and the quantitative comparison on the effectiveness of all the 
feature selection methods can be obtained. Because the factors that affect the accuracy 
of the final results are the contour refinement process in addition to the feature selection 
methods, the comparison and discussion on the effectiveness is divided into cases, with 
and without contour improvement respectively. The obtained quantitative results are 
shown in Table 4.1 and Table 4.2. 

Table 4.1 Quantitative comparison on the effectiveness of the feature selection methods 

(without contour improvement)  

Feature Selection 
Methods 

TP/% FP/% FN/% Total 
Error/% 

PCA 91.1 8.6 8.9 17.5 

Kernel PCA 91.5 9.4 8.5 17.9 

KCS 95.0 5.9 5.0 10.9 

Kernel F-score 90.7 6.7 9.3 16.0 

SVM-RFE 94.2 7.3 5.8 13.1 

CFS 88.6 4.7 11.5 16.2 

NFS 85.3 10.7 12.7 23.4 
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Table 4.2 Quantitative comparison on the effectiveness of the feature selection methods 

(withcontour improvement)  

Feature Selection 
Methods 

TP/% FP/% FN/% Total 
Error/% 

PCA 93.9 8.8 6.1 14.9 

Kernel PCA 94.3 11.6 5.7 17.3 

KCS 98.9 4.5 1.1 5.6 

Kernel F-score 91.7 3.6 8.3 11.9 

SVM-RFE 98.5 4.2 1.5 5.7 

CFS 90.1 2.3 9.9 12.2 

NFS 87.5 9.3 12.5 21.8 

 
In Table 4.1 and Table 4.2, NFS refers to the situation of the direct classification on 

the feature vector matrix after feature extraction without the use of feature selection. 
From Table 4.1 and Table 4.2 it can be observed that the process of feature selection can 
indeed significantly improve the accuracy of tumor classification. If there is not feature 
selection in the process, the feature vector matrix will contain a large number of 
redundancy, interference and noise, which leads to not only a great amount of 
computation and training, but also seriously reduction of tumor classification accuracy. 
In addition, the performances of Kernel PCA, Kernel F-Score, SVM-RFE and KCS are 
different. The performance of methods with kernel function is significantly higher than 
other types of algorithms. From the experimental results, it can also explain that feature 
selection based on Kernel functions can indeed better match the SVM classifier. 

In the experiment, just the Gaussian radial basis function is used in this paper. In 
Kernel PCA and Kernel F-score, the parameters of kernel functions are the experimental 
data selected by experience; in SVM-RFE and KCS, the parameters of kernel functions 
are selected based on cross-validation method, which is the the average of 10 better 
parameters. The introduction of cross-validation is only to prove that the performance of 
kernel-based methods is significantly relative to the parameters of kernel function. In 
fact, the parameters obtained from cross validation is not really the optimal parameters, 
but to some extent, it can improve the accuracy of results. 

Evaluation criteria for the effectiveness of the feature selection methods are 
efficienty in addition to the classification accuracy. Despite the different methods of 
feature selection, the initial feature vector has the same dimension of 801. After the 
feature selection only a few of the features elements are retained, of which the number 
accounts for the similar ratio fro the original feature vectors. It will not have a greater 
impact on the time performance of the classifier [126], so about the issue of efficiency 
the dimension of the retained feature elements and the run-time of feature selection 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0079/these.pdf 
© [N. Zhang], [2011], INSA de Lyon, tous droits réservés



 

 65 

processing are considered in this paper. The quantitative results of the criteria proposed 
above under the same hardware environment and software environment is shown in 
Table 4.3. 

Table 4.3 Efficiency comparison of feature selection methods 

Feature selection methods Retained 
dimension 

Time/min 

PCA 50 1 

Kernel PCA 39 2 

KCS 26 5 

Kernel F-score 55 4 

SVM-RFE 36 8 

CFS 45 25 

NFS 801 23 

 
In Table 4.3, the parameter “time” denotes the required time for one feature 

selection process on a slice and it is an average value. The time-consuming data after 
this section is also the same that they are the average time spent value for the relevant 
operations on one slice. Draw a curve based on the total data of Table 4.2 and Table 4.3, 
and we can obtain the performance curve of the feature selection methods. Because 
some data are close to each other, which will make serious overlap in the curve, the FP 
values are added 20, while FN 40 and total error 60 to improve the visual effects of the 
curve. The performance curve is shown in Figure 4.10. 

 

 

Figure 4.10 Performance curves of feature selection methods. 

In the above 6 feature selection methods, comprehensively compare of all the 
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performance indicators and it can be observed that, PCA is simple and fast, but its 
accuracy needs to be improved; Kernel PCA has higher accuracy and efficiency, but the 
results are affected by the parameters of kernel function to great extent; kernel F-score 
preserves the most feature elements, and its threshold restricts the classification a lot, of 
which the relevant selection method needs to be improved instead of using the mean 
value of all the F-Scores of the feature elements as the threshold; CFS has a higher 
accuracy than NFS, but the efficiency reduces in a large scale. Comprehensively  
considering the performance of the entire system, including the accuracy, efficiency and 
the final dimension of the retained feature elements, KCS and SVM-RFE are more 
suitable for the SVM classifier. The both have the similar effects and their parameters 
can also be available through cross-validation method, but KCS can ingegrate the 
parameters selection in both feature selection and SVM classifier design, which reduces 
a step of parameter selection and some difficulties to some extent. 

Because of the above-mentioned advantages of KCS, in the classification of brain 
tumors in this paper, we choose KCS as the feature selection criterion, and the following 
parameter selection, feature validity analysis and comparison with other methods are 
generally discussed with KCS. 

4.4 Selection of Some Key Parameters 

The key parameters in the experiments discussed here are the side length of the 
feature extraction window and the threshold in KCS criterion. These two parameters 
will directly affect the subsequent analysis and processing of other factors. 

The side length of the feature extraction window directly affects the dimension of 
the extracted feature vectors. The longer the side is, the higher the dimension of feature 
vectors is. Although more useful information is contained as the increasing of the side 
length, meanwhile the redundancy, interference and noise will inevitably increase to 
increase the calculation of feature selection and other following treatment. Moreover, it 
is less likely that all the pixels in the same feature extraction window belong to the same 
category. 

Similarly, if the threshold is chosen too small, the dimension of reatained feature 
elements is high, and the feature selection does not make any sense. Otherwise, if the 
threshold value is chosen too high, almost all the feature elements are removed, the 
classification process can not be properly conducted. 

In the experiment, as the threshold increases from 0.60 to 0.90 with a step size of 
0.05 and at the same time the size of the feature extraction window from 5 5× , 7 7×  to 
15 15×  (the side length of the feature extraction window is odd in order to make the 
sample points locate at the centers of the feature selection windows), the average 
dimensions of the retained feature elements from the feature matrix after the feature 
selection on all patients’ cases are shown in Table 4.4. 

In Table 4.4, the threshold value of 0 corresponds to the total dimension of all the 
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feature elements. It can be observed from Table 4.4 that, the dimension of retained 
feature elements becomes stable with slight differences but not any jump in general 
when the window size achieves 11 11× ; after the threshold is superior to 0.85, the 
remaining feature elements are insufficient to complete the classification process. From 
the above analysis derived from the table, the threshold of KCS is selected as 0.85, 
while the size of the feature extraction window is selected as 11 11× . 

 

Figure 4.4 Influence to KCS by the size of feature extraction window and threshold  

Threshold 0 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

5 5×  189 84 67 45 33 15 6 3 

7 7×  345 97 85 63 47 22 9 5 

9 9×  549 156 117 88 53 39 13 9 

11 11×  801 203 135 114 85 58 26 15 

13 13×  1101 376 233 145 93 67 28 18 

15 15×  1449 482 268 165 107 75 29 24 

 

 
In order to compare the above verification process, the same experiments are 

carried out again in the process with PCA as the feature selection method. Because PCA 
does not require threshold, this experiment just focuses on the selection of window size. 
The average experimental results in all patients are shown in Table 4.5. 
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Table 4.5 Influence to PCA by the size of feature extraction window 

Window 

Size 

5 5×
 

7 7×  9 9×
 

11 11×
 

13 13×
 

15 15×
 

Dimension 19 28 34 37 41 43 

 
From the Experimental Analysis of PCA, it can also be observed that, when the 

size of the feature extraction window reaches 11 11× , the remaining dimension of 
feature elements has no significant changes. Therefore, the final size of feature 
extraction window is selected as 11 11× . 

4.5 Effectiveness of Features 

In the feature classification, various features can be proposed and used. Different 
features will have great impact on the performance of classifiers. Feature selection will 
also directly affect the final classification results. In this article the effectiveness of 4 
kinds of features are discussed, namely two-dimensional wavelet transformation 
coefficients, DCT transformation coefficients, fractal features and three-dimensional 
features, respectively. The combination of features from multiple input or multiple 
sequence are effectively fused by the KCS feature selection criterion to improve the 
classification accuracy and reduce computation time and the computational complexity 
to a relative degree. 

4.5.1 Wavelet Transformation and DCT Transformation Coefficients 

In the previous experiments to obtain the results in Section 4.2, the gray values, the 
texture features and low frequency coefficients of two-dimensional wavelet 
transformation are extracted as the total feature elements. The intensities are the most 
essential features in MRI images, which are directly extracted from the image without 
any treatment. The texture features Reflect the global or regional statistical properties of 
a local area, which are from statistics data of the intensities. The low-frequency 
coefficients of two-dimensional wavelet transformation are derived features, which are 
obtained from the basic intensities and texture features through a number of 
mathematical transformation. Due to the mathematical transformation generally has 
clear physical meaning, so the derived features can also represent the corresponding 
data characteristics in the transformation domain.  

The intensity is the most basic features, thus, its effectiveness is naturally 
self-evident. This article will discuss here the validity of the derived features, such as 
the wavelet transformation coefficients and Discrete Cosine Transformation (DCT) 
coefficients.  DCT coefficients are also extracted in the feature extraction window with 
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the sample points as the centers. Using DCT coefficients as another derivative features, 
select the elements from low-frequency coefficients of two-dimensional wavelet 
transformation and DCT transformation coefficients by the feature selection process in 
the same experimental hardware environment (the same computer environment and the 
same softwares) and the same experimental conditions (the same input sequences and 
the same feature selection method KCS), and compare the effectiveness of them.  

KCS needs to set the threshold to select the most important features, and the 
threshold will directly determine the the dimension of the retained feature elements. If 
the threshold is selected too large, few feature elements are retained and almost all the 
features are removed, which lead to that the it will be unable to complete the 
classification process; if the threshold is selected too small, the dimension of the 
retained feature elements are high, which can not effectively remove the redundancy 
and noise and increase the computational burden to some extent. In the experiment, 0.60 
and 0.90 correspond to the two critical situations of the threshold selection. The 
discussion on the number of retained features is conducted based on the both critical 
situations. In actual, considering the compromise of the computational complexity, the 
dimensions of the retained features and the classification accuracy of the results, the 
final threshold is determined to be 0.85. 

Using the low-frequency coefficients of the two-dimensional wavelet 
transformation as the derived features, the results after feature selection and 
thresholding are shown in Figure 4.11. 
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Figure 4.11 Feature selection on 2D wavelet transformation coefficients  

In Figure 4.11, the thresholds of 0.60 and 0.90 correspond to the two critical 
conditions and the threshold value of 0.85 is used for normal classification. The 
horizontal axis indicates the corresponding position coordinates of the feature elements. 
The blue lines correspond to the locations of the preserved feature elements after feature 
selection, and the red line corresponds to the boundary of the T2-weighted, 
PD-weighted and FLAIR MRI sequences with the corresponding coordinates as 267 and 
534. 

Using the DCT transformation coefficients as the derived features, the results after 
the feature selection and thresholding in the experiment are shown in Figure 4.12. The 
threshold value of 0.60 and 0.90 correspond to the two boundary conditions, while the 
threshold of 0.85 is used to compare with the situation of low frequency coefficients of 
the two-dimensional wavelet transformation. 
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Figure 4.12 Feature selection on DCT coefficients.  

Similar to Figure 4.11, the blue lines in Figure 4.12 correspond to the locations of 
the preserved feature elements after feature selection, while the red line corresponds to 
the boundary of the T2-weighted, PD-weighted and FLAIR MRI sequences. Different 
from the situation of using wavelet transformation, the corresponding coordinates are 
244 and 488. 

From the comparison of Figure 4.11 and Figure 4.12, it can be observed that, when 
using KCS as the feature selection method, the DCT transformation coefficients will be 
considered as the second important features and removed no matter how small the 
threshold is selected in the effective threshold range. On the contrary, low-frequency 
coefficients of the two-dimensional wavelet transformation are still retained even 
though the threshold increases to higher values. From the physical sense, the 
two-dimensional wavelet transformation reflects the multi-scale resolution capabilities 
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and frequency characteristics of the image. Therefore, compared with a single DCT 
transformation, it becomes more important. 

4.5.2 Effectiveness of Fractal-based Features 

Fractal-based features [71], which are used to describe the complex geometric 
properties of the natural objects, are also discussed in this paper. The fractal 
characteristics of objects is measured by the Fractal Dimension (FD) [127]. Different 
from the traditional dimensions in Euler geometry, fractal dimension is not a positive 
integer, but a real number, and different fractal dimensions represent different texture 
structures in the images. Generally, the more complex the structure of the object is, the 
the higher the corresponding value of the fractal dimension is. Fractal-based features 
has been used in many medical areas, such as the complexity evaluation of the cerebral 
cortex [128] and the detection of small lung tumors [129]. 

The traditional methods for calculating the fractal dimension are box-counting, the 
improved box-counting, piecewise triangle prism surface area (PTPSA), etc. These 
methods have been successfully applied to two-class tumor classification problem in 
single-modality medical image [130-131]. the improved PTPSA algorithm is used in 
this paper to calculate the fractal dimension in order to apply to the analysis of 
multiple-input or multi-modality image. 

Based on the improved PSPTA algorithm, the FD is calculated as follows: 
1、 The input image is divided into a number of square sub-image 

areas with the same size and the side length as r . For each sub-image 
area, the gray values of the four boundary vertices can be directly obtained 
from the images. These four gray values are recorded as 1 2 3 4, , ,p p p p ; 

2、 Consider the 4 gray values above as the heights in the third 
dimension and Project the four points into the third direction based on the 
four heights. Corresponding to the four vertices 1 2 3 4, , ,p p p p , the four 
projectors are recorded as , , ,A B C D ; 

3、 The mean value of 1 2 3 4, , ,p p p p  is considered as the gray 
value of the center in the sun-image area, which is also the height in the 
third dimension. Repeat the projection process, and the corresponding 
projection points of the center pixel can be obtained as cp ; 

4、 The above five vertices , , ,A B C D  and cp  form four 
triangles in the 3-dimensional space, which are recorded as 

, , ,ABE BCE CDE ADE . Calculate the areas of the four triangles; 
5、 Calculate the FD value of the small area by Equation (4-1). 

S  refers to the areas of the small triangles. 

 
log( )

log
ABE BCE CDE ADES S S SFD

r
+ + +

=  （4-1） 

The above procedure can refer to Figure 4.13 [71]. 
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Figure 4.13 Schematic diagram for the calculation of fractal-based features 

According to the above process, all the fractal dimensions corresponding to the 
sub-image regions are calculated and arranged into a vector to complete the extraction 
and description of fractal-based features. 

In the experiments of this paper, the fractal-based features are completely extracted 
in the windows centered at the sample points, therefore, in one MRI sequence, the 
fractal–based features just have one dimension for each point. The dimension of total 
fractal features is the same as the number of the initial sample points. The computation 
of the fractal-based features involves the acquisition of spatial projection, spatial 
distance and spatial area, which increases the considerable complexity in the 
calculation.  

Using the same intensities and texture features as the DCT coefficients and 
two-dimensional wavelet transformation coefficients, add the fractal-based features and 
select the features by the same KCS criterion. The obtained feature selector is shown in 
Figure 4.14. 

The red and blue lines in Figure 4.14 have the same meaning as those in Figure 
4.11 and Figure 4.12. Here the separate coordinates are 124 and 248. It can be observed 
from Figure 4.14 that, fractal-based features are also removed after the feature selection, 
which is equal to no contributions for the fractal-based features to the classification. 
Thus, if the number of extracted fractal-based features is small or these features are just 
relevant to a limited part of the image, it is unable to extract the data reflecting the 
geometric characteristics of the object; Similarly, if the selection of the sub-image areas 
are very random, it is possible to completely cover the areas with complex geometric 
characteristics. Therefore, the division or selection of the sub-image areas will have a 
great impact on the validity of the fractal-based features.  
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Figure 4.14 The selection of fractal-based features  

4.5.3 Effectiveness of 3D Features  

MRI images appear to be the three-dimensional structure. As to a single MRI 
image, the classification is based on the data between the pixels, and to the entire MRI 
sequence, the classification is based on the relationship between the voxels. Thus, a 
sequence of MRI images certainly contains the corresponding three-dimensional 
information implicitly, and it is likely to have some relevance between adjacent slices. 
In order to explore the relationship between the adjacent slices, a number of researchers 
have conducted depth analysis of the positive discussion on how to use the 
three-dimensional features for the classification of tumor and a lot of processing 
algorithms have been proposed. 

In [132], the extraction method in six neighborhood is proposed, that is, to extract 
the gray values of the points located at the top, bottom, left, right, front and back of 
sample points as the three-dimensional features. In the classification, use the histogram 
analysis, morphological operations and symmetry analysis theory to obtain the results of 
the initial tumor classification; re-use parametric deformation model to optimize and 
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improve the initial results under the constraints of fuzzy spatial relationships (such as 
topology relationship and approximate location of the tumor). 

In [133], first select the region of interest (ROI) containing the tumor rather than 
the sample points to extract the relevant information in the region for the calculation of 
the membership function; and then use a series of pre-defined fuzzy criteria to obtain 
the certain output for each pixel after the removal of the fuzzyness. This method can 
track the tumor area. In the tracking process, the previous tumor segmentation results 
are considered as the ROI for the data in the next examinations. In the whole algorithm, 
ROI is the only prior knowledge, which the algorithm is highly dependent on. Therefore, 
ROI are in general described manually before the segmentation and its accuracy will be 
important for the tumor segmentation. 

In [134], a global threshold is used to construct the speed function in the level set 
algorithm and the threshold is used as the control parameters of convergence. The 
limitations of this method are the need to pre-set the reference slice which is required to 
contain the tumor area as large as possible in order to get the intensities of the tumor 
points as priori knowledge to update the threshold. In addition, the method is appliable 
to the tumor with convex shapes, thus, the applicability and scalability of the 
methodology is not strong. 

With the great development of computer-aided analysis, there is still no effective 
three-dimensional features. The six neighborhood extraction method proposed in [132] 
is extended here, that is to fuse the feature vectors extracted from the same position of 
the two adjacent slices with the feature vector in the slice to be segmented to increase 
the amount of information. Specifically, the two feature vectors are extracted based on 
the same method, thus, each feature vector contains the information of three MRI 
sequences-T2-weighted, PD-weighted and FLAIR. Finally, the three feature vectors are 
connected together to form a total feature vector, which contains the three-dimensional 
information to use. 

The dimension of the feature vector constructed in the way above is three times as 
the dimension of the original feature vector. Set the side length of the feature extraction 
window is 11 and use the mean value and standard deviation as the texture features 
while the low frequency coefficients of the two-dimensional wavelet transformation as 
the derived features, thus, the total dimension of a feature vector from a sample point is 
3 × 3 × 267 = 2403. 

Using the same feature selection criterion KCS, the retained feature elements is 
similar to the feature selection carried out on a single slice, therefore, the results are not 
repeated here. It should be noted that although the dimensions of the original feature 
vectors increase to three times as that in a single slice, the number of retained feature 
elements after feature selection is not necessarily three times as that in a single slice, 
which is determined by the nature of different slices and the implied relationship 
between the slices. 

The above four features are used respectively to complete the tumor detection on 
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all the patients’ data. Compared with the Ground Truth from the manual delineation of 
the doctors based on medical knowledge and clinical experience, the tumor 
segmentation results after the contour refinement are quantitatively evaluated. Choosing 
TP, FP and FN as the criteria, the average values on the entire slices of all the patients 
are shown in Table 4.6. Similarly, in order to exclude the effects of contour 
improvement to the final results, the comparison which just takes the effect of selected 
features into account is also conducted without the contour refinement. The results in 
this situation are shown in Table 4.7. 

Table 4.6 Quantitative evaluation of the effectiveness of features with contour refinment 

Feature TP/% FP/% FN/% Total 
Error/% 

Wavelet 
Coefficients 

98.9 4.5 1.1 5.6 

DCT Coefficients 93.1 7.8 6.9 14.7 

Fractal Features 94.7 6.6 5.3 11.9 

3D Features 98.7 4.9 2.3 7.2 
 

Table 4.6 Quantitative evaluation of the effectiveness of features without contour refinment 

Feature TP/% FP/% FN/% Total Error 
/% 

Wavelet 
Coefficients 

95.0 5.9 5.0 10.9 

DCT Coefficients 91.3 8.9 8.7 17.6 

Fractal Features 91.1 10.5 8.9 19.4 

3D Features 95.3 6.1 4.7 10.8 

 
From the data analysis of Table 4.6 and Table 4.7, it can be observed that, the basic 

features play an important part in the tumor classification: although the DCT 
coefficients and fractal characteristics are removed after the feature selection, but the 
both situations can still achieve a high segmentation accuracy; and the effect of contour 
refinement in the two cases is not very large (1.8% and 3.6%); synthesize the analysis 
above, contour refinement step can indeed increase the accuracy of the results to some 
extent, but the accuracy is mainly determined by the basic features of the intensities and 
texture features. This also illustrates the important role of the basic features in the 
classification problems.  

Without the contour refinement process, the classification accuracy with the 
three-dimensional features is slightly higher than that of a single slice, which means that 
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feature selection can be effective in the removal of the redundancy, interference and 
noise and the increase of tumor classification accuracy by increasing the amount of 
information. However, increasing the amount of information will also increase the 
computational burden to influence the system performance at the same time, which is 
the efficiency problem to be solved in real applications. 

4.6 Discussion and Evaluation of Contour Refinement  

4.6.1 Effectiveness of Contour Refinement 

For the initial tumor classification results, due to lack of prior knowledge, the 
differences among individual patients and the impact of feature selection process, there 
will inevitably be wrong decisions and missing of points near the border. Feature 
selection can eliminate most of the secondary features, which leads to a smaller the 
results of the initial tumorclassification, therefore, a region growing-based contour 
refinement algorithm is designed in this paper to improve the boundary accuracy. The 
specific details of the algorithm can be found in Chapter 3.3. 

Considering the multiple sequence input data of Patient 1 in Figure 4.2 as 
examples, the effect of the contour refinement is shown in Figure 4.15. 

 

 

 

Figure 4.15 Examples of contour refinement on Patient 1 (FLAIR images)  

In Figure 4.15, the top row of the images are the final results of tumor 
segmentation, and the following row is the enlargement of the local areas of the 
segmented tumor region. The gray parts in the images represnt the initial separated 
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tumor region, and the white parts are the supplementary region after the region 
growing-based contour refinement. It can be observed from the above figures, even if 
the tumor contains necrosis and holes, the proposed conrour refinement algorithm can 
still further improve the tumor contour. 

Using the low-frequency coefficients of the two-dimensional wavelet 
transformation as the derived features and KCS as the feature selection criterion, the 
contour refinement experiments are carried out on the MRI image sequences. The 
evaluation criteria are also selected as TP, FP and FN, and the average evaluation values 
are shown in Table 4.8. 

Table 4.8 Quantitative evaluation of contour refinement 

Criteria TP/% FP/% FN/% Total 
Error/% 

Without contour 
refinement 

95.0 5.9 5.0 10.9 

With contour 
refinement 

98.9 4.5 1.1 5.6 

 
It can be seen from Table 4.8 that, after the feature selection-based data fusion and 

classification, the selection and removal of the secondary information leads to the 
decrease of the initial region of tumor classification; however, the region growing-based 
contour refinement algorithm can well improve the missing tumor region to increase the 
classification precision and accuracy of the system.  

4.6.2 Comparison of Contour Refinement Methods 

Active Contour Model (ACM), also known as the Snake method, is an important 
component of deformation models, which has been well applied to medical image 
segmentation [43-46]. 

ACM algorithm first defines an initial curve, then define the corresponding energy 
function of the curve. By optimizing the energy function, the curve evolves, and finally 
converges to the optimal value which is consedered as the result of the final curve 
evolution.  

The energy defined in ACM algorithm includes the internal energy and the external 
energy. The former mainly depends on tension and rigidity (corresponding to the first 
and second derivative of the curve function) in the evolutionary process to ensure the 
smoothness of the curve profile; the latter is the driving force of the curve evolution, 
which facilitates the curve to keep evolving in the direction of smaller potential energy. 
Commonly used the external energy driving force is the negative gradient. The more 
closer to the edge the area is, the greater the gradient is and the smaller the external 
energy and the driving force is. It will be more difficult for the curve to evolve. 
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ACM algorithm just relies on the edge information, thus it is easy to fall into the 
local optimal value in the evolution; furthermore, the results often require interpolation 
and internal padding to get a complete segmentation region. ACM is not useful to the 
area without drastic changes near the edge, because the gradient of the curve in this 
region are relatively small, resulting in the limited driving force and the external energy, 
thus it is unable to facilitate the curve to evolve toward the direction of smaller potential 
energy. These reasons also limit the accuracy and applicability of ACM algorithm. 

 
In the experiment, the primary tumor segmentation contour is considered as the 

initial curve because the system has obtained the initial contour of the tumor after the 
SVM classification. Approximately fit the curve function, define the internal energy and 
external energy function, and improve the curve boundary through the optimization. As 
to the examples of Patient 1 in Figure 4.2, the visual results about the effect of ACM are 
shown in Figure 4.16. 

 

 

Figure 4.16 Examples of ACM effect on Patient 1 (FLAIR images)  

Using TP, FP and FN as the evaluation criteria, compare the final tumor 
classification results after the contour refinement by ACM and the Ground Truth 
munally delineated by the doctors, the quantitative evaluation results of the 
corresponding parameters are shown in Table 4.9. 

Table 4.9 Quantitative evaluation of contour refinement by ACM 

Criteria TP/% FP/% FN/% Total Error/% 

Without 
ACM 

95.0 5.9 5.0 10.9 

With ACM 99.1 7.2 0.9 8.1 

 
It can be seen from Table 4.9 that, using precise tumor region from the initial 

segmentation as the initial curve of ACM can increase the segmentation accuracy of the 
tumor boundary contour and reduce FN to a high extent; on the contrary, if the energy 
function is badly designed and controlled, there are too drastic changes in the boundary 
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curves of the tumor and FP will increase to a certain extent; and ACM algorithm is not 
suitable for the aliasing border or boundary contour area with a gentle gradient. 
Meanwhile, ACM algorithm is influenced by the initial valularge to large degree and the 
corresponding complexity and computational burden is much higher than the region 
growing-based contour improvement algorithm. The increase of computing time will 
greatly decrease the convergence speed, resulting in a decline in efficiency. 

4.7 Effectiveness of Adaptive Training 

Adaptive training is mainly used to automatatically follow up the disease 
progresses and changes in the tumor region of the patients. Through the evaluation on 
changes in tumor volume between different examination periods of patients, the system 
can provide a diagnostic advice for the improvement and completement of the medical 
treatment in time. 

Through the training in the first examination, the data characteristics of the 
patient’s tumor have been obtained by the trained classifier. Adaptive training is used to 
improve and update necessarily the obtained classifier available on last or even earlier 
stage based on the new MRI data to be completely apply the data changes. Through 
adaptive training, the disease of the patient is fully capable of tracking automatically, 
which greatly reduces the workload of doctors, subjective factors in processing, and the 
difficulties in manual processing. 

In accordance with the treatment of adaptive training algorithm described in 
Section 3.4 of Chapter III, the conditions of Patient 1~Patient 3 who contain 
multi-period MRI examination data are followed up. The effectiveness of adaptive 
training method is verified through the comparison of the use of adaptive training on the 
data from a new examination and the direct classification by the model of last 
examination without the adaptive training.  

Figure 4.17 lists the examples of classification results of Patient 1~Patient 3 with 
and without adaptive training on the new examination data respectively. 

In Figure 4.17, each line corresponds to Patient 1 to Patient 3 respectively. The first 
colume is the original input images, the second colume is the classification results by 
the model for last examination, and the third colume is the classification results by the 
new obtained after the adaptive training on the new iuput data in this examination 
period.  

As shown in Figure 4.17, after the adaptive training, the data characteristics of 
brain tumors in the new examination period are effectively obtained by the classifier, 
which leads to a greatly improved tumor classification accuracy. For the case of Patient 
1 with a relatively simple tumor, although relatively accurate results can also be 
obtained without the adaptive training, there are a lot of glitches near the edge and the 
smoothness decreases greatly. For two more complex tumor cases as Ptient 2 and 
Patient 3, it is not completely capable to handle them without the adaptive training. In 
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the case of Patient 2, cerebral spinal fluid is wrong segmented into the tumor, which 
means the two tissues with a clear distinction between the properties are merged into the 
same category. Patient 3 has complex contours of the tumor, the same as the new data in 
the new examination. Using traditional methods to achieve accurate segmentation is 
difficult, and using the training model in last examination can also not obtain the 
optimized performance to generate a lot of piecemeal partition areas with obvious errors. 
The adaptive training can well solve all the above difficulties: the boundary contours of 
the tumor are smoothed; different tissues with different characteristics are also clearly 
distinguished from the tumor region to ensure that the region does not contain other 
normal tissues; complex contours of the tumor can also be clearly and accurately 
dilineated. 

 

 

 

 

Figure 4.17 Examples of adaptive training for Patient 1 to Patient 3 (FLAIR images)  

Comparing all the experimental data of Patient 1 to Patient 3 with the Ground 
Truth manually dilineated by a team of doctors, the evaluation criteria is selected as TP, 
FP and FN. The average of all data can be obtained to quantitatively evaluate the 
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effectiveness of the adaptive training and results are shown in Table 4.10. 
By the tracking of patient’s tumor based on the adaptive training, the system can 

automatically separate the tumor area and get the entire tumor volume. Table 4.11 
shows the percentages of tumor volume changes of Patient 1 to Patient 3 in the adjacent 
examination period. 

Table 4.10 Effectiveness of adaptive training 

Criteria TP/% FP/% FN/% Total 
Error/% 

Without Adaptive 
Training 

88.1 25.2 11.9 37.1 

With Adaptive 
Training 

98.9 4.5 1.1 5.6 

 

Table 4.11 percentages of tumor volume changes of Patient 1 to Patient 3 in multi-examination 

Period 1 2~P P /% 2 3~P P /% 3 4~P P
 

4 5~P P /% 

Patient 1 -13.445 -6.417 -3.267 -6.473 

Patient 2 17.763 -2.912 9.537 —— 

Patient 3 -7.831 -6.596 2.335 -3.762 
 
Where nP  refers to the n th−  examination period; the negative percentages 

denote a downward trend of tumor volume; “——” means no data in this examination 
period. A new MRI examination is usually conducted for the patients at a interval of 4 
months, thus all the patients’ conditions have been supervised for more than one year. 

Figure 4.18 corresponds to Figure 4.1, which lists the examples of the 
segmentation results automatically tracked by the proposed system in five examination 
periods. It can be intuitionally observed that the size of the tumor shows a decreasing 
trend. 
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Figure 4.18 Examples of tracking results of Patient 1 in five examination periods (FLAIR 

images)  

Comparing the tumor volume changes in the two adjacent examination periods can 
describe the patient’s condition changes to some extent. Combined with clinical 
pathology analysis, the doctors can evaluate the the validity and accuracy of the early 
diagnosis and treatment based on all the experimental data. Then according to their 
medical knowledge and clinical experience, they will make a new grasp on the 
development of the disease, conduct the necessary changes and improvement to the 
treatment plan in next examination and provide more scientific and reasonable treatment 
recommendations. 

For exmmple, the tumor of Patient 1 shows a significantly decreasing trend after 
the treatment for nearly 2 years. Combined with medical pathology analysis, it proves 
that  the doctor’s treatment for this patient is very correct and the condition of the 
patient can be effectively controlled. The following treatment can be improved based on 
the therapeutic treatment of the previous period. Although the tumor volume of Patient 
2 in the second period decreases slightly, the volume in other periods shows a rapid 
increasing trend, which means that the doctor is unable to control the rapid development 
of the disease and the patient’s condition has a state of rapid deterioration. Therefore, 
the doctor can use these reference data to make necessary changes in the next treatment 
plan. And this is the significance of the proposed system in this paper. 
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4.8 Comparison with Other Methods 

In this paper, the method from tumor classification to tissue classification is 
proposed, and we hope high accuracy of tumor segmentation can lead to high accuracy 
of tissue classification. In order to verify the feasibility of this idea, in this section some 
successful algorithms to get the final tumor regions will be compared and discussed in 
performance with the proposed method. The comparison is conducted under the same 
hardware environment and the same software environment with the same input data 
sequence, in order to ensure that the results are comparable. 

4.8.1 Traditional SVM 

The traditional SVM method [135] in the comparison directly uses the traditional 
SVM theory without any feature selection operation. Input data are the fusion of feature 
sub-vectors directly extracted from the corresponding sample points of T2-weighted 
images, PD-weighted images and FLAIR images. The dimension of feature vector 
matrix retains all of the feature dimension. The rest of the operation process is exactly 
the same as the proposed method. 

It has been pointed out in section 4.3 that the feature vector matrix obtained in this 
case will obviously contain a large amount of interference and noise, not only to 
increase the computing time considerably, but also to reduce the accuracy. The 
parameters selection process in traditional SVM will also limit the performance of the 
entire system. If the parameters is not selected well, it will greatly affect the system 
performance. 

In the experiment, the cross-validation method is used to obtain relatively better 
classification parameters. The examples of the segmentation results are shown in Figure 
4.19. 

 

 

Figure 4.19 Examples of traditional SVM (FLAIR images)  

Compared the the Ground Truth, the evaluated performance of the algorithm is 
shown in Table 4.12. 
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Table 4.12 Performance evaluation of traditional SVM 

Criteria TP/% FP/% FN/% Total 
Error/% 

Time/Min 

With contour 
refinement 

87.5 9.3 12.5 21.8 23 

Without contour 
refinement 

85.3 10.7 14.7 25.4 23 

 
 
It can be observed from the data in Table 4.12 that, the accuracy of the final results 

in the traditional SVM indeed influenced because of the absence of feature selection and 
the computing time greatly increases. 

 

4.8.2 Fuzzy C-means 

Fuzzy C-means clustering is non-supervised classification algorithm [31]. It 
combines the traditional C-means clustering algorithm with the fuzzy theory to achieve 
the classification by dynamic clustering method. In the classification process, all the 
samples among different categories are constantly revised, until the classification meets 
the stopping conditions to converge automatically. 

In the traditional C-means clustering, through the constant iterations the center of 
each category is constantly updated and the data to be classified will directly determined 
to some category. FCM also need to pre-set the number and the initial centers of 
categories. Different from the hard decision in the traditional C-means clustering,  
FCM does not directly determine the category the data belongs to, but gives its 
membership functions relative to the center of each category for a unspecified sample, 
that is, to indicate the degree of membership to each category for the data. Membership 
function is introduced to the updating process of the class centers in the traditional C 
means clustering, and the centers and membership functions are iteratively updated at 
the same time, which is the iterative update rule of FCM. 

In this paper, FCM approach is applied to all the patients’ MRI image data. 
Different from the SVM algorithm, FCM only need to use the basic intensity features 
and texture features to achieve the pre-set classification. As to the input of multiple 
sequence data, the results of each sequence can be determined according to the 
“majority decision” criterion pixel by pixel, to obtain the corresponding final results. 

On the other hand, the feature vectors extracted from the fusion of the multiple 
input sequences can also be used as the data in high-dimensional space in the FCM 
treatment. However, data is directly classified by FCM without the learning and training 
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process, therefore, the classification results are worse in general compared with those 
from supervised learning classification algorithms; and the classification is mainly 
relied on the intensities, thus the FCM algorithm can not be carried out to effectively 
achieve more accurate segmentation for data of multiple sources, quite different 
characteristics and the physical meanings. For these reasons, we use the result fusion 
method in FCM to deal with the multiple data sequences, that is to say, to cluster each 
image of each input sequence first based on the intensities, and then the results of each 
sequence are fused toget the obtain the final classification results of tumors . 

Considering the images in Figure 4.2 as examples, use FCM algorithm to deal with 
the three sequential images. It is obvious that in the actual processing using only two 
categories can not achieve high precision, so the initial categories are selected as four 
classes (adding cystic degeneration and edema near the tumor border as categories). 
After the finish of the clustering, make the appropriate merger of the categories. As 
edema and cystic are also abnormal tissues, the accuracy of FCM can be effectively 
improved by the process of first division and the merging on the classification 
categories. Examples of classification results obtained are shown in Figure 4.20. In 
order to contrast, data of Patient 2 with the complex boundary contour are also listed, as 
shown in Figure 4.20. 

It is easy to see from Figure 4.20 that, FCM algorithm is quite suitable for the data 
with obviously different gray values, such as the FLAIR images, to achieve a relatively 
accurate segmentation; but for the tissues of the images with very similar intensities, 
such as the PD-weighted sequence, FCM can nearly not conduct the classification. In 
the easily-confused areas with similar intensities, it is difficult to determine the initial 
number and the centers of classes, which will seriously affect the clustering results. 
Therefore, the mechanisms of a majority decision is designed in this paper, that is, for a 
particular pixel, only when the three sequences all identify it as tumor points, then 
determine it as the tumor tissues, which can significantly indicate the role of the FLAIR 
images in the clustering; otherwise T2-weighted images and PD-weighted images will 
generate a large clustering area because of the similar intensities, leading to obvious 
mistakes when using the majority decision mechanism. 
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Figure 4.20 Examples of FCM classification results of the three sequences  

（the first three rows correspond to data of Patient 1 shown in Figure 4.2, the fourth row 

corresponds to data of Patient 2. The columes are T2-weighted, PD-weighted and FLAIR images 

respectively.） 

The results are compared with the Ground Truth under the evaluation system of  
TP, FP and FN. The average values are shown in Table 4.13. 
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Table 4.13 Performance evaluation of FCM 

Criteria TP/% FP/% FN/% Total 
Error/% 

Time/Min 

With Contour 
Refinement 

80.2 17.7 19.8 37.5 3 

Without Contour 
Refinement 

75.8 21.9 24.2 46.1 3 

 
From Table 4.13, it can be observed that FCM treatment does not require prior 

knowledge and training process and does not extract complex features. The algorithm is 
fast and simple to operate. But its accuracy is limited for the gliomas with overlapping 
boundaries and complex properties compared to the normal tissues in MRI images. If 
the tumor appeared to be separeted in the same slice or there are indeed multiple tumors 
in the patients themselves at the same time, FCM can not achieve the correct clustering. 
Although the contour refinement can improve the accuracy to some extent and reduce 
the occurrence of boundary errors in the classification, but FCM can still not reach a 
high accuracy. 

4.8.3 Neural Networks 

Tneural network is a widely used pattern classification method [136], also in 
medical image processing [137]. Generally speaking, the complexity of neural network 
is proportional to the complexity of the problem. The more the number of neurons is, 
the number of hidden layers is, the higher accuracy the classification algorithm can be 
and the more correctly the algorithm converges. However, the corresponding 
computational complexity and time-consuming of the process will dramatically increase, 
while the algorithm is not easy to convergence, which leads to a manually set stopping 
condition or falling into the local optimum. 

The neural network used in our experiments is based on the BP algorithm to 
complete selection a two-category classification. The initial values of weights are 
randomly generated by the smaller data; the neural network contains three neurons and 
three layers network using back propagation algorithm. The propagation errors are 
calculated from the output layer backwardthe front layer to revise and update the 
weights of neuron in different layers and obtain the trained classification model. 

Similar to SVM classifiers, the neural network also requires that the input sample 
data have the same format with the data to be classified. That is to say, training data and 
test data needs to have the same composition. From this point of view, neural networks, 
like support vector machines, can be conveniently extended to other applications from 
the essential image processing of pixels, such as the field of image retrieval with the 
whole images as input (the same as matrix elements) and so on. 
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Also the same as SVM, the feature vectors matrix extracted from the selected 
sample points is selected as the training data. KCS criterion  is also used for the feature 
selection to train and obtain the classification model. Test data must also be made of the 
same feature extraction method to obtain a feature vector composed of the same feature 
elements. Re-use classifier to make a classification pixel by pixel. After the contour 
refinement , the final classification is completed. 

The data of all patients are tested using the above method and the examples are 
shown in Figure 4.21. 

 

 

Figure 4.21 Classification results of Patient 2 by neural networks (FLAIR images)  

Compared with the Ground Truth and using the same evaluation criteria, the results 
are shown in Table 4.14. 

Table 4.14 Performance evaluation of neural networks  

Criteria TP/% FP/% FN/% Total 
Error/% 

Time/min 

With Contour 
Refinement 

96.0 5.1 4.0 9.1 8 

Without 
Contour Refinement 

91.8 4.9 8.2 13.1 8 

 
From Figure 4.21 and Table 4.14 it can be seen that, if the numbers of the hidden 

layers and neurons are well set, the neural networks can also achieve optimum 
classification results by iteratively updating the weights. Meanwhile, the KCS feature 
selection algorithm and region growing-based contour refinement algorithms are also be 
effective for neural networks. One disadvantage of neural network is its obvious 
increase of time-consumption in the training rather than SVM, which leads to a slight 
lack of efficiency; the other is that the convergence is generally need to be controlled 
and the obtained results are not the global optimal solution. 

4.8.4 Improved Level Set 

Level set algorithm is the classification algorithm based on the geometric 
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deformable model [47-50]. Assuming that the tumor image to be segmented 
corresponds to a section of a high-dimensional surface, the spatial analytic functions 
corresponding to the high-dimensional surface are generally the partial differential 
equations, to which the curve of the implicit solution is the corresponding boundaries of 
the tumor when the equations are equal to 0. The solution set is also called the zero level 
set. Level set method transforms the evolution of the curve into the surface evolution 
and the surface deformation is conducted based on the theory of surface evolution. The 
surface evolution is controlled by the information in the images to be segmented, of 
which the speed function determines the evolution speed of each point on the curve. 

Different from active contour model, the surface equation given by level set 
method is not a parametric equation dependent on some variables, but expressed as the 
implicit function equation. Therefore, the algorithm is not sensitive to the initial values 
of the curve and especially suitable for the evolution and iteration of the topology 
structures. Also based on this difference with ACM, level set method can be better used 
for the segmentation of medical images with the tumor, not just for the contour 
improvements after obtaining the initial segmentation results. 

The performance limitations of level set method are mainly the selection of the 
speed control function. The evolution of surfaces need to optimize the corresponding 
function, which is quite time-consuming. Thus, the experiments are just carried out on 
only 2 patients with complex properties (Patient 2 and Patient 3). The examples of the 
obtained tumor segmentation results are shown in Figure 4.22, and the evaluation 
results compared with the Ground truth are shown in Table 4.15. 

 
 

 

  

Figure 4.22 Examples of classification results on Patient 2 by level set method (FLAIR images)  
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Table 4.15 Performance evaluation of level set method 

Criteria  TP/% FP/% FN/% Total 
Error/% 

Time/min 

With Contour 
Refinement 

96.7 7.4 3.3 10.7 38 

Without Contour 
Refinement 

92.6 5.3 7.4 12.7 38 

 
From Figure 4.22 and Table 4.15, it can be observed that, level set algorithm is 

more applicable to the situation with only one curve need to evolute. If the tumor in the 
image is divided into several parts, the level set algorithm will connect them together 
although the topology structure changes to form a complete area. For the segmentation 
of a single tumor, level set algorithm can achieve high precision, but it is quite 
time-consuming, which is not only relative to the selection of the speed control function, 
but also due to the reason that the core of the algorithm is to evalute the surface 
corresponding to the entire image. Therefore, the calculation amount is very large and 
the efficiency is relatively low. 

4.9 Tissure Classification 
Tissue classification is a multi-class decision problem. A novel and successful 

framework for the solution to this problem is the optimal decision rule with 
class-selective rejection and performance constraints. It contains three kinds of criteria: 
the first is the average expected loss, which is to cost to be minimized; the second is the 
label sets, which is the decision options, determined by the admissible assignment 
classes or subsets of classes; and the last is the constrains, which define the performance 
the classifier can achieve [138]. 
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Figure 4.23 Tissue classification in Patient 2 (FLAIR images)  

In our problem, based on the segmentation above and considering the initial 
separated tumor region as the image to be segmented, the abnormal tissues in the tumor 
region are further classified by the clustering methods. Although it can not reach the 
same high accuracy as the algorithm in [138], as a sub-problem in tumor segmentation, 
its efficiency and simplicity can be acceptable. 

The procedure of clustering method in tissue classification is as follows: 
First determine the number of sample categories to be classified, and then use the 

unsupervised FCM clustering algorithm as mentioned before. The examples of the 
results are shown in Figure 4.23. 

In Figure 4.23, the top image is the original input image; the middle image is the 
tumor segmentation results; the bottom image is the amplified tissue classification 
results. The tumor region is divided into 3 different parts by the proposed algorithm. 
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The area with the highest intensities in the middle is the nidus of the tumor, that is the 
source of tumor, thus its state of disease is the most serious region with the highest stage 
of development. And the red part outside near the contour is the cystic and edema, both 
of which are often around the tumor, although they do not contain any tumor cells. As 
the development of the disease and the continuous erosion and expansion of the tumor, 
cystic degeneration and edema may deteriorate rapidly as the tumor. Other green and 
white parts of the image are different tumor lesions at the development stages. 

The results in Figure 4.23 can assist the doctors for the evaluation of patients’ 
conditions (tumor development periods). After the surgical operations, the doctors can 
get some cell samples with the probes in the area of the brain given by the computer and 
analyze the amount and proportion of cancer cells in the sample to determine whether 
the operation has completely removed the tumor and the following treatment program. 

4.10 Summary 

This chapter outlines in detail the data used in this experiment, the experimental 
results and related quantitative comparison of the algorithm. The key operations 
involved in the data processing is analyzed, and the advantages and disadvantages of the 
algorithm as well as possible problems are described by the comparison with other 
algorithms. 

Through the actual comparison, it can be seen that the proposed algorithm has high 
precision and efficiency, and it can achieve the tracking of the patients’ conditions at the 
same time. The proposed algorithm has strong reliability and applicability. 
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CHAPTER 5  CONCLUSION 

5.1 Conclusion of Contributions 

Magnetic Resonance Imaging (MRI) is an important examination and diagnosis 
method for brain tumors in medical imaging. With a sound mechanism and clear 
imaging of soft tissues, the doctor on the patient’s diagnosis can be scientific and 
rational, to grasp the exact progression of the disease state, which would set out the 
appropriate treatment, surgery and following-up to a series of disease control measures. 
Computer-aided analysis is to reduce the workload of doctors, to improve the diagnostic 
accuracy of the para-medical analysis, and meanwhile to improve the automatic degree 
in practice.  

This paper presents a semi-automatic and Support Vector Machine (SVM) based 
tumor detection system, which can deal with multiple input MRI sequences and track on 
the patient’s condition in the whole therapeutic treatment. The system only requires 
interactive participation once the sample points in the analysis of data of the first 
examination are randomly selected, and all the processings in next examinations can be 
carried out automatically by the system itself.  

The segmentation algorithm works in an ordered manner, from tumor to tissues. 
That is, a first classification consists of segmenting the area of the entire tumor, and then 
separating the abnormal tissues based on the obtained tumor area. The classification 
algorithm uses multi-kernel SVM as its classifier and fusion of T2 weighted, 
PD-weighted and FLAIR images as its input data to extract the corresponding feature 
vector matrix. This matrix is dealt with by a feature selection method to choose the most 
important features using some criterion. Then the obtained matrix is utilized to train the 
optimal classifier and accomplish the initial tumor classification. 

In addition to the SVM-based classification subsystem, the system proposed in this 
thesis also contains other two important components: the region growing-based contour 
refinement subsystem and the adaptive training-based following-up subsystem. The 
former aims to improve the border quality of the initial tumor segmentation, to reduce 
incorrect and missing points in the contour and to improve the classification accuracy; 
the latter is to grasp the characteristics of tumors in the patients, then to automatically 
segment and track tumor changes in a series of examiantions and finally to estimate the 
volume variation between successive treatments to assist the doctors in assessing the 
effects of treatment with clinical pathology analysis and improving the therapeutic 
treatment in the next pathological periods. 

The proposed system is tested on 13 patients with 24 examinations, 72 image 
sequences and totally 1728 MRI images. Compared with some traditional methods, the 
proposed method reaches the average accuracy rate of 98.9%. In the experiments, the 
gray values, texture features and other mathematical transformation-based derivative 
features, such as DCT transformation coefficients, wavelet transformation coefficients, 
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fractal features and so on, are also applied and compared in the system.  
Integrated with the fusion strategies, the system achieves a multi-kernel SVM to 

realize the data-level fusion and decision-level fusion respectively. Meanwhile, the 
system also puts forward the method to integrate the feature selection and the SVM 
classifier design, and some relatively novel feature selection methods are applied to the 
system. In practical experimentations, the feature selection methods above are tested to 
verify the validities and their applicabilities to the SVM classifier. Compared with some 
traditional feature selection methods, the system can be more effective to simplify the 
process of parameter selection in the feature selection in SVM design, which can 
integrate the two parameter selection processes together to reduce the complexity and 
improve the robustness and adaptability of the system. 

The innovations of this thesis are as follows: 
1. we propose a segmentation and estimation system which allows 

classifying the tumor region first and then abnormal tissues. The accuracy in 
tumor segmentation maintains the accuracy in tissue classification.  

2. the system tries to apply some common and derivative features, and 
the effectiveness of these features are quantitatively analyzed and compared. 

3. the system achieves some feature selection and verifies the validity 
and applicability of the latter to the SVM classifier. A method, with which the 
feature selection criteria are integrated with the design of the SVM classifier, is 
proposed to overcome the difficulty of parameter selection in the design and 
improve the applicability of the system. 

4. combined with feature selection-based data fusion and decision fusion 
strategies, our system constructs the multi-kernel SVM to accomplish the 
multi-class classification of different tissues, the accuracy of which is 
influenced by the accuracy of tumor segmentation. 

5. We propose simple and effective algorithms about contour refinement 
and tumor tracking to improve the accuracy, robustness and applicability of the 
proposed system. 

5.2 Future Work 
Since SVM is very suitable for high dimensional data, especially for processing the 

data from different inputs, the proposed method in this thesis would allow a better 
analysis of three-dimensional medical images corresponding to multiple sequences. 
With the proposed method, new MRI imaging sequences can also be readily added as 
input data. Futhermore, the developped algorithm can be easily extended to the analysis 
of other medical images, such as CT, PET images, and so on. 

As present there is not a public test database of high capacity of MRI sequences 
internationally, and common evaluation criteria are still relatively simple, so in the 
future work, we will attempt to contact other laboratories carrying out similar research 
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to share MRI data and work together in order to establish a large-capacity, open test 
database, and continue to test the proposed method with the aid of the new database to 
validate its effectiveness and further improvement.  

Combined with the homologous MRS spectral analysis, our research will be 
expanded to the fusion of two-dimensional images and one-dimensional signal, in 
which the accuracy of the algorithm can be further improved through the two types of 
signals matching each other.  

Finally we hope that in the entire study, existing computer-aided analysis and 
evaluation systems on medical images can be improved and new evaluation criteria can 
be proposed and applied in the future works.
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