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Chapitre 0 Introduction

Cette thèse est située dans le domaine de la combinatoire énumérative, une branche des mathématiques discrètes. L'étude des statistiques de permutations occupe une place importante dans ce domaine. Au cours des deux dernières décennies, des travaux actifs ont été menés pour étendre des résultats classiques connus pour le groupe symétrique à d'autres groupes de Coxeter, aux produits en couronne et plus généralement aux groupes de réflexions complexes. Cette tendance ouvre de nouveaux horizons dans les recherches contemporaines des mathématiques. Nos recherches se dirigent dans cette optique de généralisation.

Rappelons qu'une statistique est une application d'un ensemble vers l'ensemble des entiers naturels. Par exemple, considérons σ, une permutation du groupe symétrique d'ordre n. Une descente de σ est un entier i dans {1, 2, . . . , n-1} tel que σ(i) > σ(i+1). Une inversion de σ est un couple (i, j) tel que i < j et σ(i) > σ(j). Les applications " des " et " inv " qui comptent respectivement les nombres de descentes et d'inversions sont des statistiques sur le groupe symétrique. À noter que la statistique " inv " coïncide avec la traditionnelle fonction longueur " " qui est la longueur d'une expression réduite d'une permutation. Il y a deux importantes familles de statistiques de permutations : les statistiques eulériennes qui sont les statistiques équidistribuées avec " des " et les statistiques mahoniennes qui sont les statistiques équidistribuées avec " ". Par exemple l'indice majeur "maj", qui est la somme des descentes d'une permutation, est une statistique mahonienne.

Un des problèmes importants est de chercher des extensions convenables des statistiques définies sur le groupe symétrique, afin de généraliser des résultats classiques à d'autres familles de groupes. Un exemple remarquable est donné par la statistique flag-major notée " fmaj ", définie par Adin et Roichman en 2000, qui est une statistique sur le groupe hyperoctaèdral, qui étend l'indice majeur et permet de généraliser le célèbre théorème de Mac-1 Mahon sur l'équidistribution du nombre d'inversion et l'indice majeur pour les mots (Théorème 0.4). Pour le groupe de Coxeter de type D, la statistique qui joue le même rôle est " fmaj D ", comme nous le verrons plus tard dans le Théorème 0.6.

On peut également définir ces statistiques sur les produits en couronne du groupe cyclique d'ordre r par le groupe symétrique d'ordre n, noté C r S n . Ces groupes ont une jolie interprétation combinatoire en termes de permutations colorées. Pour définir ces statistiques, on est amené à considérer des relations d'ordre sur l'ensemble des entiers colorés. Il y a plusieurs possibilités pour définir ces ordres, et les statistiques obtenues donnent des résultats qui ne sont pas necessairement indépendants de l'ordre choisi. Dans la littérature, il y a plusieurs résultats sur ce sujet ; notamment, nous allons voir les travaux de Fire [START_REF] Fire | Statistics on wreath products[END_REF] d'une part, et Adin, Gessel, Roichman [START_REF] Adin | Signed mahonians[END_REF] d'autre part, à propos des extensions sur B n d'une identité de Gessel-Simion [55, corollaire 2 ] (voir aussi [START_REF] Fire | Statistics on wreath products[END_REF]), et les travaux récents de Biagioli et Zeng [START_REF] Biagioli | Enumerating wreath products via Garsia-Gessel bijections[END_REF] sur une extension aux permutations colorées de l'identité de Chow-Gessel (voir Théorème 0.12).

Dans cette thèse, nous étudions le tableau d'Euler, qui est une matrice liée au groupe symétrique. Elle est définie par (g m n ) 0≤m≤n , où les (g m n ) satisfont la relation g m n = g m+1 n g m n-1 et la condition initiale g n n = n!. Il y a un certain nombre de travaux concernant l'étude du tableau d'Euler, notament ceux de Dumont-Randrianarivony [START_REF] Dumont | Dérangements et nombres de Genocchi[END_REF] et Rakotondrajao [START_REF] Rakotondrajao | On Euler's difference table[END_REF]. Ils ont donné différentes interprétations combinatoires de ce tableau sur le groupe symétrique. Clarke, Han et Zeng [27] en ont construit un q-analogue, et ont donné une interprétation à l'aide d'une nouvelle statistique mahonienne "maf". Rakotondrajao [START_REF] Rakotondrajao | k-fixed-points-permutations[END_REF] a étudié le tableau dérivé en divisant les éléments de la m-ième colonne par m!. Tout récemment, Randrianarivony a étudié le tableau d'Euler dans [START_REF] Randrianarivony | Un q-tableau d'Euler[END_REF].

Le but de cette thèse est de définir cet objet pour les produits en couronne C r S n . Pour faire cela, nous étendons sa dimension, en créant un paramètre supplémentaire. Nos définitions nous permettent de généraliser les résultats cités ci-dessus concernant le tableau d'Euler sur le groupe symétrique aux produits en couronne.

Cette thèse se divise en cinq chapitres. Le premier est consacré aux études des aspects combinatoires du tableau d'Euler sur les produits en couronne. Dans le second, nous cherchons les fonctions génératrices et donnons quelques résultats supplémentaires. Ces deux premiers chapitres constituent notre article Derangement and Euler's difference table for C r S n [START_REF] Faliharimalala | Derangements and Euler's difference table for C S n[END_REF]. Nous étudions dans le chapitre 3 un q-analogue du tableau d'Euler sur les produits en couronne. Un des nos résultats est l'extension de la formule du q-nombre de dérangements. Récemment, Foata et Han [START_REF] Foata | Fix-Mahonian Calculus, I : two transformations[END_REF] ont construit deux importantes transformations et nous démontrons dans le chapitre 4, que ces deux trans-formations fournissent une factorisation de la bijection-clé de Clarke et al. [27]. Ces chapitres 3 et 4 font l'objet de notre article Fix-Euler-Mahonian statistics on wreath products [START_REF] Faliharimalala | Fix-Euler-Mahonian statistics on wreath products[END_REF]. Dans le dernier chapitre qui correspond à notre article Flag-major index and Flag-inversion number on colored words and wreath product [START_REF] Faliharimalala | Flag-major index and Flaginversion number on colored words and wreath product[END_REF], nous proposons une extension du nombre d'inversions afin de généraliser sur les mots colorés et sur les permutations colorées le théorème de MacMahon. Notre preuve combinatoire est basée sur l'extension de la seconde transformation fondamentale de Foata, qui échange l'indice majeur et le nombre d'inversions sur le groupe symétrique.

Définitions et notations 0.1.1 Groupe de Coxeter

Soit S un ensemble. On appelle matrice de Coxeter toute matrice carrée symétrique M = (m i,j ) (i,j)∈S 2 dont les éléments sont des entiers positifs ou +∞ vérifiant la relation :

∀(i, j) ∈ S × S, m i,j = 1 ⇐⇒ i = j.
(

La matrice M peut être représentée par un graphe (de Coxeter) dont les noeuds sont les éléments de S et les arêtes sont les couples non ordonnés (i, j) tels que m i,j ≥ 3. Chaque arête est étiquetée par la valeur m i,j si celleci est supérieure ou égale à 4. Nous travaillons particulièrement sur le groupe symétrique et le groupe hyperoctaèdral, qui sont respectivement des groupes de Coxeter de type A et B . Nous donnerons également quelques exemples d'extension des résultats du groupe symétrique au groupe des permutations signées paires D n , qui est un groupe de Coxeter de type D. Notons que le groupe des permutations colorées à r couleurs n'est pas un groupe de Coxeter si r > 2.

Pour ces groupes finis, l'ensemble des générateurs est noté {s i , i ∈ I} où I est une partie finie de N et nous notons m i,j le plus petit entier positif tel que (s i s j ) m i,j = e.

Le groupe symétrique

Soit n ∈ N. On note [n] l'ensemble {1, 2, . . . , n} si n > 0 et [0] = ∅. On rappelle qu'une permutation d'ordre n est une bijection de [n] vers [n]. Tra-ditionnellement, on présente une permutation σ sur deux lignes :

1 2 3 • • • n σ(1) σ(2) σ(3) • • • σ(n) .
Par convention, nous utilisons plutôt l'écriture en une seule ligne :

[σ(1), σ (2), σ [START_REF] Adin | Equi-distribution over descent classes of the hyperoctahedral group[END_REF],

• • • , σ(n)].
Par exemple, la permutation σ = 1 2 3 4 5 3 1 2 5 4 peut s'écrire [START_REF] Adin | Equi-distribution over descent classes of the hyperoctahedral group[END_REF][START_REF] Adin | The flag major index and group actions on polynomial rings[END_REF]2,[START_REF] Andreescu | A path to Combinatorics for Undergraduates[END_REF][START_REF] Adin | Signed mahonians[END_REF] ou tout simplement σ = 3 1 2 5 4. Une permutation peut aussi être factorisée en produit de cycles. Le cycle de σ contenant l'entier i est la suite (i, σ(i), σ 2 (i), • • • , σ o(i)-1 ) où o(i) est le plus petit entier positif tel que σ o(i) = i.

Pour l'exemple ci-dessus, la factorisation en produit de cycles est donc σ = (1 3 2)(4 5).

Le groupe symétrique d'ordre n noté S n est le groupe constitué des permutations d'ordre n muni de la composition usuelle :

∀σ 1 , σ 2 ∈ S n , i ∈ [n], σ 1 • σ 2 (i) = σ 1 (σ 2 (i)). (3) 
Pour chaque i ∈ [n -1] soit

s i = [1, 2, . . . , i -1, i + 1, i, i + 2, • • • , n]
la transposition qui échange i et i+1. Alors s 1 , s 2 , . . . , s n-1 sont des générateurs de S n . Ils sont liés par les relations :

⎧ ⎪ ⎨ ⎪ ⎩ m i,j = 1 ⇐⇒ i = j; m i,i+1 = 3 ∀i ∈ [n -1]; m i,j = 2 si i, j ∈ [n] tels que |i -j| ≥ 2. ( 4 
)
Le groupe symétrique est un groupe de Coxeter de type A comme nous l'avons signalé plus haut.

Le groupe hyperoctaèdral

Une permutation signée d'ordre n est une bijection f de {±1, ±2, . . . , ±n} vers lui-même vérifiant

f (-i) = -f (i) ∀i ∈ [n]. (5) 
Le groupe constitué des permutations signées d'ordre n s'appelle le groupe hyperoctaèdral d'ordre n noté B n . C'est donc un sous-groupe de S 2n . La propriété [START_REF] Andreescu | A path to Combinatorics for Undergraduates[END_REF] signifie qu'une permutation signée σ est complètement définie par la donnée de sa restriction [σ [START_REF] Adin | The flag major index and group actions on polynomial rings[END_REF], σ(2), • • • , σ(n)] sur [n]. Le cardinal de B n est donc 2 n n!. Le groupe hyperoctaèdral est engendré par les générateurs :

s 0 = [-1, 2, . . . , n]; s i = [1, 2, . . . , i -1, i + 1, i, i + 2, . . . , n] ∀i ∈ [n -1].
Nous avons les relations suivantes :

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ m 0,1 = 4; m i,j = 1 ⇐⇒ i = j; m i,i+1 = 3 ∀i ∈ [n -1]; m i,j = 2 si i, j ∈ [n] tels que |i -j| ≥ 2. (6) 
C'est donc un groupe de Coxeter de type B.

Par convention, pour les lettres négatives d'une permutation signée, on écrit x au lieu de -x. Par exemple σ = [-4, 1, -2, -3, 5] peut s'écrire 4 1 2 3 5.

Produit semi-direct

Soient H et K, deux groupes, et f un morphisme de K dans le groupe Aut(H) des automorphismes de H. A chaque k ∈ K, on associe f (k) = f k ∈ Aut(H). Le produit semi-direct (externe) de H et K suivant f que l'on note H f K ou tout simplement H K est le produit cartésien de H et K muni de la loi de groupe suivante :

(h 1 , k 1 ).(h 2 , k 2 ) = (h 1 .f k 1 (h 2 ), k 1 .k 2 ). (7) 
L'élément neutre e H f K de cette loi de composition est (e H , e K ), et l'inverse d'un élément (h, k) est défini par :

(h, k) -1 = (f k -1 (h -1 ), k -1 ). ( 8 
)
Si f est le morphisme trivial, i.e., f k (h) = h ∀k ∈ K, alors nous avons le produit direct.

Soit G un groupe et soient H et K des sous-groupes de G tels que H est distingué, H ∩ K = 1 et G = HK. Alors G est isomorphe au produit semi-direct de H et K suivant l'automorphisme de conjugaison :

f k (h) = khk -1 .
On dit dans ce cas que G est le produit semi-direct interne de H et K. Inversement, si G est un produit semi-direct externe de deux groupes 

H et K, on peut injecter H et K dans G par les applications ı 1 et ı 2 définies par h -→ ı 1 (h) = (h, 1) et k -→ ı 2 (k) = (1, k). On vérifie que G est le produit semi-direct interne de H = ı 1 (H) et K = ı 2 (K).
∀ , ∈ C n r , ( • )(i) = (i) • (i). (9) 
Considérons le morphisme f de S n vers Aut(C n r ) défini par :

∀σ ∈ S n , ∀ ∈ C n r , f(σ)( ) = • σ -1 . ( 10 
)
Le produit en couronne C r S n de C r et S n est le produit semi-direct de

C n r et S n suivant le morphisme f , C r S n = C n r f S n .
La loi de groupe sur C r S n est donc définie par :

( , σ) • ( , σ ) = (( 1 σ -1 (1) , 2 σ -1 (2) , . . . , n σ -1 (n) ), σ • σ ). (11) 
L'inverse d'un élément ( , σ) est défini par

( , σ) -1 = (( • σ -1 ) -1 , σ -1 ), où -1 (i) = 1 (i) est l'inverse de i dans C r .
Exemple 2. Prenons n = 4; r = 3 ; et soient :

= (1, ζ 2 , ζ, ζ), σ = 2 4 1 3 et = (ζ, 1, 1, ζ), σ = 1 3 4 2.
Alors nous avons :

(1, ζ 2 , ζ, ζ, 2 4 1 3) • (ζ, 1, 1, ζ, 1 3 4 2) = (1, 1, ζ 2 , ζ, 2 1 3 4).

Le Groupe des permutations colorées G(r, n)

On appelle permutation colorée (r-colorée) d'ordre n toute permutation π de l'alphabet :

Σ r,n := C r × [n] = {ξi | i ∈ [n], ξ ∈ C r }, ( 12 
)
vérifiant la propriété :

π(ξ i) = ξπ(i) ∀ ξ ∈ C r , i ∈ [n]. ( 13 
)
Notons G(r, n) le groupe des permutations r-colorées d'ordre n. Comme dans le cas du groupe hyperoctaèdral, une permutation colorée π est complètement définie par sa restriction sur [n] :

π = [π 1 , π 2 , • • • , π n ].
Ainsi, le cardinal de G(r, n) est égal à r n n!. Pour les petites valeurs de r on utilise j barres au-dessus de i au lieu de

ζ j i. Par exemple, la permutation ζ2 1 ζ 2 4 ζ3 s'écrit tout simplement 2 1 4 3 ∈ G(3, 4). Soit π ∈ G(r, n) et π(i) = ξx avec ξ ∈ C r et x ∈ [n] alors on note : x = |π(i)| et ξ = color π (x). (14) 
On note |π| la permutation définie par

|π|(i) = |π(i)| pour tout i ∈ [n]. Pour l'exemple ci-dessus, |π| = 2 1 4 3 et color π (2) = ζ ; color π (1) = 1; color π (4) = ζ 2 et color π (3) = ζ.
Comme dans le groupe symétrique, une permutation colorée π peut être représentée en produit de cycles. Les cycles de π se construisent à partir des cycles de |π|, ensuite on rétablit les couleurs de chaque entier.

Exemple 3.

2143 = (12)(34) =⇒ 2 1 4 3 = (1, 2)( 3, 4).

Isomorphisme entre C r S n et G(r, n)

Le groupe G(r, n) des permutations r-colorées et le produit en couronne C r S n sont isomorphes par l'application :

( , σ) -→ [ σ(1) σ 1 , σ(2) σ 2 , • • • , σ(n) σ n ].
Nous avons par exemple la correspondance suivante :

(1, ζ, ζ, ζ 2 , 2 1 4 3) ←→ 2 1 4 3. Convention : normalement la représentation de π = [ξ 1 σ 1 , • • • , ξ n σ n ] en tant qu'élémént du produit en couronne est ( , σ) avec i = ξ σ -1 (i)
, mais par convention, on écrit π = (ξ, σ). Par exemple, on écrit

2 1 4 3 = (ζ, 1, ζ 2 , ζ, 2 1 4 3) au lieu de (1, ζ, ζ, ζ 2 , 2 1 4 3).
Dans toute la suite, on utilisera la convention d'écriture :

[ξ 1 σ 1 , • • • , ξ n σ n ] ≡ (ξ 1 , ξ 2 , • • • , ξ n , σ). ( 15 
)
Par conséquent, si π = (ξ, |π|) alors ξ(i) est la couleur de la i-ième lettre de π et non pas la couleur de l'entier i. La couleur de l'entier i dans l'écriture de π est notée color π (i).

Le produit en couronne s'identifie ainsi avec le groupe des permutations colorées.

Soit ζ un générateur du groupe cyclique C r . Le groupe G(r, n), (r > 1) est engendré par les générateurs :

s 0 = [ζ, 2, . . . , n]; s i = [1, 2, . . . , i -1, i + 1, i, i + 2, . . . , n] ∀i ∈ [n -1].
Ces générateurs sont liés par les relations :

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ m 0,0 = r si r est impair et r 2 sinon; m 0,1 = 2r; m i,i = 1 ∀i ≥ 1; m i,i+1 = 3 ∀i ∈ [n -1]; m i,j = 2 si i, j ∈ [n] tels que |i -j| ≥ 2. ( 16 
)
On remarque que seuls G(1, n) et G(2, n) sont des groupes de Coxeter parmi les groupes de permutations colorées.

Le groupe de réflexions complexes G(r, p, n)

Pour π = ( , σ) ∈ G(r, n), on définit les statistiques " col " et " col i " :

col i π := 0≤j≤r-1 jχ( i = ζ j ) (1 ≤ i ≤ n); ( 17 
) col π := 1≤i≤n col i π, ( 18 
) où χ(A) = 1 si A est vraie et χ(A) = 0 sinon. Par exemple, si π = 2 1 4 3 alors col 1 (π) = col 4 (π) = 1 ; col 2 (π) = 0 et col 3 (π) = 2 donc col(π) = 4.
Soit p un entier tel que p|r. Le groupe de réflexions complexes G(r, p, n) est le sous-groupe de G(r, n) défini par :

G(r, p, n) = {π ∈ G(r, n)| col(π) ≡ 0 (mod p)}. ( 19 
) Pour p = 1, alors G(r, 1, n) n'est autre que G(r, n). Pour p = 2 et r = 2, G(2, 2, n) = D n , c
'est le groupe des permutations signées paires. Les générateurs de D n sont :

s 0 = [ 2, 1, 3, . . . , n] et ∀i ∈ [n -1], s i = [1, 2, . . . , i -1, i + 1, i, i + 2, . . . , n],
avec les relations :

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ m i,i = 1 ∀i ≥ 0; m 0,1 = 2; m 0,2 = 3; m i,i+1 = 3 ∀i ∈ [n -1]; m i,j = 2 si i, j ∈ [n] tels que |i -j| ≥ 2. (20) 
C'est donc un groupe de Coxeter de type D. 

Relations d'ordre sur l'alphabet coloré

ζ a < ζ b ⇐⇒ b < a, 0 ≤ a, b ≤ r -1, donc 1 > ζ > ζ 2 > • • • > ζ r-1 .
Voici maintenant quelques relations d'ordre sur l'alphabet r-colorée Σ r,n .

Définition 0.1 (ordre par valeur : OV ).

ξ 1 x 1 < ξ 2 x 2 ⇐⇒ [x 1 < x 2 ] ou [(x 1 = x 2 ) et (ξ 1 < ξ 2 )]. ( 21 
)
Dans Σ 3,4 par exemple

1 < 1 < 1 < 1 < 2 < 2 < 2 < 2 < 3 < 3 < 3 < 3 < 4 < 4 < 4 < 4.
Définition 0.2 (ordre par couleur : OC ).

ξ 1 x 1 < ξ 2 x 2 ⇐⇒ [ξ 1 < ξ 2 ] ou [(ξ 1 = ξ 2 ) et (x 1 < x 2 )]. ( 22 
)
Dans Σ 3,4 on a par exemple :

1 < 2 < 3 < 4 < 1 < 2 < 3 < 4 < 1 < 2 < 3 < 4 < 1 < 2 < 3 < 4.
Définition 0.3 (ordre mixte : OM ).

ξ 1 x 1 < ξ 2 x 2 ⇐⇒ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ξ 1 = ξ 2 = 1 et x 1 < x 2 , ou ξ 1 = 1 et ξ 2 = 1, ou ξ 1 = 1 et x 1 > x 2 , ou ξ 1 < ξ 2 et x 1 = x 2 . ( 23 
)
En particulier, pour (r, n) = (3, 4) on a :

4 < 4 < 4 < 3 < 3 < 3 < 2 < 2 < 2 < 1 < 1 < 1 < 1 < 2 < 3 < 4, et pour r = 2, OM est : n < n -1 < • • • < 2 < 1 < 1 < 2 < • • • < n.

Quelques statistiques

Statistiques classiques

Soit a = (a 1 , a 2 , . . . , a n ) où a i est une lettre de l'alphabet coloré Σ r,n [START_REF] Biagioli | Major and descent statistics for the even-signed permutation group[END_REF]. On définit les statistiques suivantes

des a = n i=1 χ(a i > a i+1 ); exc a = n i=1 χ(a i > i); fix a = n i=1 χ(a i = i); maj a = n-1 i=1 iχ(a i > a i+1 ); inv a = 1≤i≤n-1 i<j≤n χ(a i > a j ).

Fonction longueur

Soit G un groupe et S un ensemble de générateurs, on définit la fonction longueur (par rapport à S) par

(π) = min{k ∈ N : π = s 1 s 2 • • • s k ; s i ∈ S}, ∀π ∈ G.
La statistique "fonction longueur" coïncide avec le nombre d'inversions " inv " sur S n . Soit flag-inversion " finv " la statistique sur B n définie à l'aide de la relation d'ordre OM par :

finv(σ) = inv(σ) + 1≤i≤n-1 i<j≤n χ( āi > a j ), ∀σ ∈ B n .
Alors, la "fonction longueur" coïncide avec " finv " sur B n .

Le flag-major

Rappelons que le groupe des permutations colorées est engendré par

s 0 = [ζ, 2, 3, • • • , n] et les transpositions s i = (i, i + 1) pour tout i ∈ [n -1].
Considérons les générateurs t i suivants :

t i = i j=0 s i-j 0 ≤ i ≤ n -1. ( 24 
)
Chaque élément π de G(r, n) peut s'écrire de manière unique sous la forme

π = t k n-1 n-1 t k n-2 n-2 • • • t k 1 1 t k 0 0 , ( 25 
)
avec 0 ≤ k i < r(i + 1) pour tout i variant de 0 à n -1. Adin et Roichman [START_REF] Adin | The flag major index and group actions on polynomial rings[END_REF] ont défini l'extension flag-major " fmaj " sur G(r, n) de la statistique indice majeur par :

fmaj(π) = n-1 i=0 k i . ( 26 
)
Ils ont démontré que la statistique " fmaj " et "r maj + col " sont identiques si " maj " est calculée par rapport à la relation d'ordre OC sur Σ r,n :

ζ r-1 1 < • • • < ζ r-1 n < • • • < ζ1 < • • • < ζn < 1 < • • • < n.
Ainsi nous avons la définition équivalente du flag-major sur G(r, n) :

fmaj(π) = r maj(π) + col(π), (27) 
où col est la statistique définie dans [START_REF] Carlitz | A combinatorial property of q-Eulerian numbers[END_REF]. Cette définition s'étend aux groupes de reflexions complexes.

Quelques statistiques sur B n

Dans le groupe hyperoctaèdral particulièrement, on définit les ensembles, multi-ensembles et statistiques suivants pour chaque σ ∈ B n . 

Neg(σ) = {i ∈ [n] : σ(i) < 0}; Des A (σ) = {i ∈ [n -1] | σ i > σ i+1 }; Des B (σ) = {i ∈ [0, n -1] | σ i > σ i+1 } avec σ(0) = 0; NDes(σ) = Des A (σ) {-σ(i) : i ∈ Neg(σ)}; neg(σ) = # Neg(σ); ndes(σ) = # NDes(σ); des A (σ) = #Des A (σ); des B (σ) = #Des B (σ); nmaj(σ) = i∈NDes(σ) i; fdes(π) = 2des A (σ) + χ(σ(1) < 0).

Les k-successions

Nous allons généraliser sur G(r, n) les statistiques des valeurs de successions de saut k ou tout simplement k-succession. On distingue les successions linéaires et circulaires.

Soit π = (ε, |π|) ∈ G(r, n), k > 0 et 2 ≤ i ≤ n. On dit que π(i) est une k-succession linéaire (valeur de k-succession linéaire) de π si et seulement si |π(i)| = |π(i -1)| + k et ε(i) = ε(i -1). ( 28 
) Soit maintenant k ≥ 0 et i ∈ [n]. On dit que π(i) est une k-succession circulaire de π si et seulement si |π(i)| = i + k et ε(i) = 1. ( 29 
) On note respectivement L k (π) et C k (π) l'ensemble des valeurs de k-successions linéaires et circulaires, et l k (π) = #L k (π), c k (π) = #C k (π).
Exemple 5. Si π = 1 2 4 6 3 5 ∈ G [START_REF] Adin | Equi-distribution over descent classes of the hyperoctahedral group[END_REF][START_REF] Andrews | The theory of partitions[END_REF] alors nous avons :

L 2 (π) = {6, 5}; C 2 (π) = {6}; l 2 (π) = 2; c 2 (π) = 1.
On remarque qu'un point fixe n'est autre qu'une 0-succession circulaire.

Les classes m-fixées des permutations

Soit n > 0, m ∈ [n], et π = (ε, |π|) une permutation colorée. Notons FIX(π) l'ensemble des points fixes de π.

m-fixées-isolées

On dit que π est m-fixée-isolée si π vérifie les trois conditions suivantes :

i) ∀i ∈ [m], color π (i) = 1 ; ii) FIX(π) ⊆ [m] ;
iii) chaque cycle de |π| contient au plus un entier inférieur ou égal à m.

Exemple 6. σ = (1 68)(2)(3 9)(4)( 5 7) est 4-fixée isolée dans G(3, 9).

m-fixées-croissantes

On dit que π est m-fixée-croissante si π vérifie les trois conditions suivantes : 

i) ∀i ∈ [m], ε(i) = 1 ; ii) FIX(π) ⊆ [m] ; iii) π(1) < π(2) < • • • < π(m).

q-notations

Notons respectivement [n] q , [n] q ! et n k q les q-analogues de n, n! et du coefficient binomial :

[n] q := 1q n 1q ;

[n] q ! : =

1≤i≤n [i] q ; n k q := [n] q ! [k]! q [n -k]! q .
Pour tout n ≥ 0 on note

(x; q) n = (1 -x)(1 -xq) • • • (1 -xq n-1 ) si n > 0, 1 si n = 0.

Alors nous avons

[n] q ! = (q, q) n (1q) n . Enfin on définit le coefficient q-multinomial : m m 1 , m 2 , . . . , m s q = (q; q) m (q; q) m 1 (q; q) m 2 • • • (q; q) ms .

Préliminaires

Nous allons maintenant passer en revue quelques travaux prolongeant l'étude statistiques du groupe symétrique au groupe hyperoctaèdral, aux groupes des permutations colorées et plus généralement aux groupes de réflexions complexes.

Sur un Théorème de MacMahon

Il y a presque cent ans (1915), MacMahon a montré l'équidistribution des statistiques " maj " (indice majeur) et " inv " (nombre d'inversion) sur l'ensemble R m des réarrangements du mot 1

m 1 2 m 2 . . . s ms où m = m 1 + m 2 + • • • + m s . Si m 1 = m 2 = • • • = m s = 1 alors m = s et R m = S s le groupe symétrique d'ordre s.
Théorème 0.4 (MacMahon). On a :

π∈Rm q maj(π) = π∈Rm q inv(π) = m m 1 , m 2 , . . . , m s q . ( 30 
)
En particulier nous avons l'équidistribution sur S n :

π∈Sn q (π) = π∈Sn q maj(π) = [n] q !. ( 31 
)
En 1968, Foata [START_REF] Foata | On the Netto inversion number of a sequence[END_REF] a donné une preuve combinatoire du Théorème 0.4 par la seconde transformation fondamentale ϕ. Dix ans plus tard, Foata et Schützenberger [START_REF] Foata | Major Index and Inversion number of Permutations[END_REF] ont établi un raffinement sur les classes de descentes

T n (M ) = {π ∈ S n |Des(π -1 ) = M }, M ⊆ [n -1].
Théorème 0.5 (Foata-Schützenberger). Pour tout M ⊆ [n -1], on a :

π∈Tn(M ) q (π) = π∈Tn(M ) q maj(π) . ( 32 
)
En 2001, Adin et Roichman [START_REF] Adin | The flag major index and group actions on polynomial rings[END_REF] ont généralisé [START_REF] Faliharimalala | Derangements and Euler's difference table for C S n[END_REF] sur le groupe hyperoctaèdral en définissant l'extension flag-major " fmaj " de l'indice majeur [1, Theorème 2], puis en 2004, sur le groupe des permutations signées paires D n [3, corollaire 5.5] avec une autre extension " fmaj D " de l'indice majeur. Dans ce même article (Theorème 3.4), ils ont établi une extension sur B n du raffinement de Foata-Schützenberger. Théorème 0.6 (Adin-Roichman ). On a : 

π∈Bn q B (π) = π∈Bn q fmaj(π) ; ( 33 
) π∈Dn q D (σ) = π∈Dn q fmaj D (σ) , ( 34 
)
fmaj D (σ) = fmaj( σ), avec σ(i) = σ(i) si i < n, |σ(n)| si i = n.
Voici une extension sur le groupe hyperoctaèdral du théorème de Foata-Schützenberger. Soit M ⊆ [0, n -1] et

T B n (M ) = {π ∈ B n |Des B (π -1 ) = M } le B-analogue de T n (M ).
Théorème 0.7 (Adin-Roichman ). On a :

π∈T B n (M ) q B (π) = π∈T B n (M ) q fmaj(π) . ( 35 
)
Pour les théorèmes 0.6 et théorème 0.7, les calculs sont faits par rapport à la relation d'ordre OM (voir la définition 0.3). Notons que la relation [START_REF] Faliharimalala | Flag-major index and Flaginversion number on colored words and wreath product[END_REF] reste vraie si on remplace la relation d'ordre par OC . Récemment, Foata et Han [START_REF] Foata | Signed Words and permutations, I ; A fundamental transformation[END_REF] ont établi une extension de la seconde transformation fondamentale ϕ sur B n et sur les mots signés. Rappelons que ϕ transforme la statistique "maj" en "inv" sur S n et sur les mots ordinaires. Nous donnons dans cette thèse une extension de ϕ sur le produit en couronne G(r, n) et sur les mots r-colorés.

En 2004, Haglund et al. [START_REF] Haglund | Statistics on wreath products, perfect matchings, and signed words[END_REF] ont obtenu une expression pour le polynôme générateur de l'indice flag-majeur sur le produit en couronne G(r, n). Cette formule généralise la relation [START_REF] Faliharimalala | Derangements and Euler's difference table for C S n[END_REF]. Théorème 0.8 (Haglund-Loehr-Remmel). On a :

π∈G(r,n) q f maj(π) = (q r ; q r ) n (1 -q) n . ( 36 
)
Ce résultat ne dépend pas de la relation d'ordre choisie.

Sur une identité de Carlitz

En 1954, Carlitz [START_REF] Carlitz | q-Bernoulli and Eulerian numbers[END_REF] a établi la fameuse identité suivante :

k≥0 [k + 1] n q t k = A n (t, q) (t; q) n+1 , ( 37 
)
où A n (t, q) est le q-polynôme eulerien. C'est en 1975 [START_REF] Carlitz | A combinatorial property of q-Eulerian numbers[END_REF], qu'il a trouvé une interprétation combinatoire de A n (t, q) par le couple (des, maj).

A n (t, q) = σ∈Sn t des(σ) q maj(σ) .

Nous avons la fonction génératrice :

n≥0 A n (t, q) (t; q) n+1 u n n! = k≥0 t k exp([k + 1] q u). ( 38 
)
Suite à la question posée par Foata en Juillet 2000, à propos de l'extension sur B n de cette distribution conjointe, Adin Roichman [2], Chow et Gessel [START_REF] Chow | On the descent numbers and major indices for the hyperoctahedral group[END_REF], Bagno et Biagioli [START_REF] Bagno | Colored-descent representations of complex reflection groups G(r, p, n)[END_REF], Biagioli et Zeng [START_REF] Biagioli | Enumerating wreath products via Garsia-Gessel bijections[END_REF] ont généralisé l'identité de Carlitz sur le groupe hyperoctaèdral, sur les groupes de réflexions complexes G(r, p, n) et sur le produit en couronne G(r, n). Les extentions de Adin et al. sur B n sont faites en termes de statistiques négatives (ndes, nmaj) et en statistiques flag (fdes, fmaj) (voir sous-section 0.1.10). Théorème 0.9 (Adin-Roichman). Les couples (ndes, nmaj) et (fdes, fmaj) sont équidistribués sur B n . Soit B (fdes,fmaj) n (t, q) = π∈Bn t ndes(π) q nmaj(π) = π∈Bn t fdes(π) q fmaj(π) , [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF] leur polynôme générateur commun. Alors

k≥0 [k + 1] n q t k = B (fdes,fmaj) n (t, q) (1 -t)(t 2 q 2 ; q 2 ) n . ( 40 
)
Les calculs sont faits par rapport à la relation d'ordre OM . Mais pour (fdes, fmaj) le résultat reste vrai même si on remplace OM par OC .

En 2006, Bagno et Biagioli [START_REF] Bagno | Colored-descent representations of complex reflection groups G(r, p, n)[END_REF] ont trouvé une généralisation de l'identité (40) sur les groupes de réflexions complexes G(r, p, n) en utilisant la relation d'ordre OC .

On étend sur G(r, p, n) la statistique " fdes " par :

fdes(π) = r des(π) + col 1 (π).
On note G(r, p, n) (fdes,fmaj) (t, q) le polynôme générateur de (fdes, fmaj) sur G(r, p, n). Soit G(r, p, n) (fdes,fmaj) (t, q) = π∈G(r,p,n)

t fdes(π) q fmaj(π) . ( 41 
)
Théorème 0.10 (Bagno-Biagioli). on a :

k≥0 [k + 1] n q t k = G(r, p, n) (fdes,fmaj) (t, q) (1 -t)(t r q r ; q r ) n-1 (1 -t d q nd ) , ( 42 
)
où d = r p .
La spécialisation pour p = 1 donne l'extension de l'identité de Carlitz sur C r S n .

Parallèlement, un autre type d'extension sur B n en termes de (des B , fmaj) a été donné dans [START_REF] Chow | On the descent numbers and major indices for the hyperoctahedral group[END_REF]. Posons B (des B ,fmaj) n (t, q) = π∈Bn t des B π q fmaj(π) . Théorème 0.11 (Chow-Gessel). Avec la relation d'ordre OM , on a :

k≥0 [2k + 1] n q t k = B (des B ,fmaj) n (t, q) (t; q 2 ) n+1 , ( 43 
)
et n≥0 B (des B ,fmaj) n (t, q) (t; q 2 ) n+1 u n n! = k≥0 t k exp([2k + 1] q u). ( 44 
)
Ce dernier résultat a été généralisé dans [START_REF] Biagioli | Enumerating wreath products via Garsia-Gessel bijections[END_REF]. Soit des G l'extension sur G(r, n) de des B définie par des

G (π) = #Des G (π), où Des G (π) = {i ∈ [0, n -1] | π i > π i+1 } avec π(0) = 0 ∀π ∈ G(r, n).
On pose :

G(r, n) (des G ,fmaj) (t, q) = π∈G(r,n) t des G π q fmaj(π) .
Théorème 0.12 (Biagioli-Zeng). Avec la relation d'ordre OM , on a :

k≥0 [rk + 1] n q t k = G(r, n) (des G ,fmaj) (t, q) (t; q r ) n+1 . ( 45 
)
Ainsi l'identité de Carlitz définie sur le groupe symétrique peut s'étendre de différentes manières sur d'autres groupes plus généraux.

Autre raffinement du polynôme eulérien

Considerons maintenant le raffinement suivant du polynôme eulérien :

P n (t, x, y) = σ∈Sn t exc(σ) x fix(σ) y cyc(σ) . ( 46 
)
Rappelons que les statistiques " exc " et " des " sont équidistribuées sur le groupe symétrique. La première transformation fondamentale de Foata en fournit une preuve combinatoire. Soient fix(π) et cyc(π) les nombres de points fixes et de cycles d'une permutation π. Nous avons les formules pour les cas particuliers suivants (voir [START_REF] Bagno | On the excedance number of colored permutation groups[END_REF] et [START_REF] Ksavrelof | Two involutions for signed excedance numbers Sém[END_REF]) :

P n (t, 1, -1) = -(t -1) n-1 , ( 47 
) et P n (t, 0, -1) = -t[n -1] t . ( 48 
)
A noter que Ksavrelof et Zeng [START_REF] Ksavrelof | Two involutions for signed excedance numbers Sém[END_REF] ont donné un raffinement de la relation [START_REF] Rakotondrajao | On Euler's difference table[END_REF] sur les dérangements.

En 2006, Bagno et Garber [START_REF] Bagno | On the excedance number of colored permutation groups[END_REF] ont trouvé des extensions de ces relations sur G(r, n) et sur D n . Notons respectivement P r,n (q, s, t) et P D,n (q, s, t) les extensions sur G(r, n) et D n de P n (q, s, t). Ils ont utilisé les deux relations d'ordre OV et OC sur Σ r,n . Théorème 0.13 (Bagno-Garber). Pour tous n ≥ 1, r ≥ 1 on a :

P r,n (t, 1, -1) = - (t r -1) n t -1 , ( 49 
)
et P r,n (t, 0, -1) = -t[r] n t [n -1] t . ( 50 
)
A noter que ces identités sont vraies avec chacune des deux relations d'ordre citées ci-dessus. Mais pour l'extension de la relation [START_REF] Rakotondrajao | k-fixed-points-permutations[END_REF] Théorème 0.14 (Bagno-Garber). Pour n ≥ 1, on a 

P OC D,n (t, 1, -1) = (1 -t 2 ) n-1 , ( 51 
) et P OV D,n (t, 1, -1) = - 1 2 (t -1) n-1 ((1 + t) n + (1 -t) n ). ( 52 
d n+1 = n(d n + d n-1 ), ( 53 
)
d n = nd n-1 + (-1) n . ( 54 
)
Dans cette thèse, nous allons généraliser ces relations sur G(r, n). D'autre part, nous avons la relation suivante entre les nombres de dérangements et de dérangements relatifs :

q n = d n + d n-1 . ( 55 
)
Chen [START_REF] Chen | The skew, relative and classical derangments[END_REF] en 1996, Clarke et al. [27] en 1997 ont donné des preuves combinatoires de cette relation. Récemment, Chen et Zhang [START_REF] Chen | The skew and relative derangments of type B[END_REF] ont généralisé cette relation dans le groupe hyperoctaèdral par l'intermédiaire de la notion de Signed Skew Derangement. Dans le premier chapitre de cette thèse, nous généralisons cette relation en termes de succession dans G(r, n). Par ailleurs, en 1989, Wachs [START_REF] Wachs | On q-derangement numbers[END_REF], a considéré le q-analogue du nombre de dérangements :

d n (q) = σ∈D(1,n) q maj(σ) ,
et a démontré combinatoirement que :

d n (q) = [n] q ! n k=0 (-1) k q ( k 2 ) [k] q ! . ( 56 
)
En 2005, Chow [START_REF] Chow | On derangement polynomials of type B, Sém[END_REF] a défini une extension de ce q-dérangement sur B n

d B n (q) = σ∈D(2,n) q fmaj σ . ( 57 
)
et a démontré que

d B n (q) = [2] q [4] q • • • [2n] q n k=0 (-1) k q 2( k 2 ) [2] q [4] q • • • [2k] q . ( 58 
)

Sur une identité de Gessel-Simion

Considérons l'identité de Gessel et Simion suivante [START_REF] Wachs | An involution for signed Eulerian numbers[END_REF] (voir aussi [START_REF] Fire | Statistics on wreath products[END_REF]) :

σ∈Sn sign(σ)q maj(σ) = [n] ±q !, (59) 
où sign(σ) = (-1) (σ) ( la fonction longueur ) et

[n] ±q ! = n i=1 [i] (-1) i-1 q .
Adin, Gessel et Roichman [START_REF] Adin | Signed mahonians[END_REF] ont donné un B-analogue de cette identité avec l'extension " fmaj ", de la statistique " maj " et en utilisant la relation d'ordre OC , ils ont établi l'extension suivante :

σ∈Bn sign(σ)q fmaj(σ) = [2] -q [4] -q . . . [2n] (-1) n q . ( 60 
)
En utilisant la relation OM avec la même statistique " fmaj ", Fire [START_REF] Fire | Statistics on wreath products[END_REF] a trouvé le résultat suivant : 

σ∈Bn sign(σ)q fmaj(σ) = (q; -1) n [n] ±q 2 !. ( 61 

Résultats principaux

Le tableau d'Euler est une matrice triangulaire infinie (g m n ) n>1, 0≤m≤n définie par les relations suivantes : Dumont et Randrianarivony [START_REF] Dumont | Dérangements et nombres de Genocchi[END_REF] ont donné une interprétation du coefficient g m n en termes de points fixes. Théorème 0.15 (Dumont-Randrianarivony). L'entier g m n s'interprète comme le nombre de permutations de S n dont les points fixes sont majorés par m.

g n n = n! ( m = n) ; g m n = g m+1 n -g m n-1 (0 ≤ m ≤ n -1). (62) 
Tandis que Rakotondrajao a trouvé une interprétation en termes de statistique des successions circulaires. Théorème 0.16 (Rakotondrajao). L'entier g m n est le nombre de permutations de S n sans m-succession circulaire.

En particulier, les éléments de la première colonne correspondent aux nombres de dérangements dans S n :

g 0 n = d n .
Dans les deux premiers chapitres de cette thèse, nous construisons un r-analogue (g m r,n ) n, m≥0 du tableau d'Euler en substituant la condition initiale n! par r n n! pour que la matrice obtenue soit liée au produit en couronne

G(r, n) dont le cardinal est r n n!. g n r,n = r n n! ( m = n) ; g m r,n = g m+1 r,n -g m r,n-1 (0 ≤ m ≤ n -1). ( 63 
)
Nous généralisons sur G(r, n) les résultats sur le tableau d'Euler dans le groupe symétrique. Le théorème suivant nous donne une formule explicite.

Théorème 0.17. Pour tous entiers m ≥ 0, r > 0, n > 0, on a :

g m r,n+m = n i=0 (-1) n-i n i r m+i (m + i)!.
De plus, on peut calculer les fonctions génératrices exponentielles simple et double de g m r,n+m . Théorème 0.18. On a n≥0 g m r,n+m

u n n! = r m m! exp(-u) (1 -ru) m+1 , et m,n≥0 g m r,n+m x m m! u n n! = exp(-u) 1 -rx -ru .
Nous pouvons étendre sur G(r, n) les interprétations de Rakotondrajao et de Dumont-Randrianarivony. 

d r,n = g 0 r,n = n! n i=0 (-1) i r n-i i! . ( 64 
)
Plusieurs relations importantes sur le nombre de dérangements ont été établies sur le groupe symétrique. Rappelons la relation [START_REF] Wachs | An involution for signed Eulerian numbers[END_REF] :

q n = d n + d n-1 .

Dans le résultat suivant, nous généralisons cette relation en termes de ksuccession dans le produit en couronne G(r, n).

Théorème 0.20. Soient n, k et m des entiers tels que

n ≥ 1, k ≥ 0 et m ≥ 0. Alors l k+1 r,n+1,m = c k r,n+1,m + c k r,n,m -c k r,n,m-1 , où c k r,n,m (resp. l k r,n,m
) désigne le nombre des permutations dans G(r, n) ayant m k-successions circulaires (resp. linéaires). On convient de poser c k r,n,-1 = 0.

En particulier, on retrouve pour (k, r) = (0, 1) le résultat de Clarke et al. dans [27], et pour (k, r, m) = (0, 2, 0) le résultat principal de Chen et Zhang [START_REF] Chen | The skew and relative derangments of type B[END_REF].

Notre preuve repose sur l'extension d'une variante de la première transformation fondamentale de Foata qui transforme les successions circulaires en successions linéaires (voir Chapitre 1, Théorème 1.2.3).

Par ailleurs, les coefficients (g m r,n ) n,m sont divisibles par r n n!. Posons :

d m r,n = g m r,n r m m! . ( 65 
)
Pour tout entier positif r fixé, nous avons la nouvelle matrice de coefficients généraux (d m r,n ) n, m≥0 qui est définie par : Ces résultats montrent évidemment que l'ensemble des permutations mfixées-isolées et m-fixées croissantes ont le même cardinal. Nous donnons une preuve combinatoire de cette propriété.

d n r,n = 1 (m = n) ; d m r,n = r(m + 1) d m+1 r,n -d m r,n-1 (0 ≤ m ≤ n -1). ( 66 
Nous terminons le deuxième chapitre par des démonstrations combinatoires des relations suivantes :

d m r,n = r(m + 1) d m+1 r,n -d m r,n-1 , (0 ≤ m ≤ n -1; r > 0), d m r,n + d m-1 r,n-2 = rnd m r,n-1 , (m ≥ 1, n ≥ 2),
et la relation de récurrence de G(r, n)-analogue du nombre de dérangements

d 0 r,n = rnd 0 r,n-1 + (-1) n (n ≥ 1), où d 0 r,0 = 1, d 0 r,1 = r -1 et d 1 r,1 = 1.
Dans le chapitre 3, nous étudions un (r, q, x)-analogue du tableau d'Euler. Plus précisément, nous allons étendre sur G(r, n) le (q, x)-analogue étudié par Clarke, Han et Zeng [27] en 1997. Ainsi pour tous entiers positifs r et x, posons :

A r,n (q, x) = [r] q [2r] q • • • [nr] q n k=0 (x -1)(x -q r ) • • • (x -q r(k-1) ) [r] q [2r] q • • • [kr] q .
Définissons {g m r,n (q, x)} m≥n≥0 de la manière suivante :

⎧ ⎨ ⎩ g n r,n (q, x) = A r,n (q, x); g m r,n (q, x) = g m+1 r,n (q, x) -xq r(n-m-1) g m r,n-1 (q, x) (0 ≤ m ≤ n -1).
La spécialisation q = x = r = 1 nous donne le tableau d'Euler. Nous trouvons la forme explicite :

Théorème 0.23. Pour n ≥ m ≥ 0, on a :

g m r,n (q, x) = n-m k=0 (-x) k n -m k q r q r( k 2 ) (n -k)! q r [r] n-k q n-k i=0 i-1 j=0 (x -q rj ) i! q r [r] i q .
Clarke et al. ont construit la nouvelle statistique mahonienne " maf " sur S n et ils ont donné une interprétation combinatoire du polynôme g m 1,n (q, x) en termes de cette statistique " maf " et de la statistique " fix " des points fixes.

Pour pouvoir étendre sur G(r, n) cette interprétation combinatoire, nous avons besoin de définir un r-analogue de la statistique " maf " que nous appellerons flagmaf, notée tout simplement " fmaf " :

fmaf(π) = r ⎛ ⎝ i∈FIX(π) i - 1≤i≤fix(π) i ⎞ ⎠ + fmaj Der(π),
où Der(π) est la partie dérangée de π définie ci-dessous.

Soit π = x 1 x 2 • • • x n ∈ G(r, n). Supposons que π a n -m points fixes et que y 1 y 2 • • • y m est
le mot obtenu de π en supprimant les points fixes, avec Nous allons montrer que la bijection-clé de Clarke et al. dans [27] peut s'étendre facilement sur G(r, n), nous permettant aussi de prouver le résultat suivant. Théorème 0.24. Les triplets de distributions (fmaf, exc, fix) et (fmaj, exc, fix) sont équidistribués sur G(r, n). De plus σ∈G(r,n)

y i = i |y i |. Notons rank la bijection croissante de {|y 1 |, |y 2 |, • • • , |y m |} sur [m] et z i = i rank(|y i |), alors Der(π) = z 1 z 2 • • • z m .
q fmaf σ x fix σ = [r] q [2r] q • • • [nr] q n k=0 (x -1)(x -q r ) • • • (x -q r(k-1) ) [r] q [2r] q • • • [kr] q .
En ce qui concerne l'interprétation combinatoire de g m r,n (q, x) pour r quelconque, nous notons G m (r, n) l'ensemble des permutations r-colorées d'ordre n dont les points fixes sont minorés par

n -m + 1. En particulier, G n (r, n) = G(r, n) et D(r, n) := G 0 (r, n) est l'ensemble des dérangements r-colorés d'ordre n. Théorème 0.25. Pour tous entiers r > 0, x ≥ 0, n ≥ m ≥ 0, g m r,n (q, x) = σ∈Gm(r,n) q fmaf σ x fix σ .
Pour x = 1 et m = 0, on en déduit la formule explicite des (r, q)dérangements d r,n (q) := g 0 r,n (q, x) suivante.

Corollaire 0.26. On a :

d r,n (q) = σ∈Dr,n q fmaj σ = [r] q [2r] q • • • [nr] q n k=0 (-1) k q r( k 2 ) [r] q [2r] q • • • [kr] q .
Par les spécialisations r = 1 et r = 2 de cette identité, on retrouve les relations ( 56) et (58) qui sont obtenues respectivement par Wachs [START_REF] Wachs | On q-derangement numbers[END_REF] et Chow [START_REF] Chow | On derangement polynomials of type B, Sém[END_REF] .

Tout récemment, Foata et Han [START_REF] Foata | Fix-Mahonian Calculus, I : two transformations[END_REF] ont construit deux transformations F 3 et Φ telles que la composition F 3 • Φ -1 possède la même propriété que la bijection Ψ de Clarke et al. [27] qui transforme " maj " en " maf " sur S n . Mais leurs égalité reste un problème ouvert. Nous allons démontrer dans le chapitre quatre qu'effectivement les deux transformations de Foata et Han fournissent une factorisation de la bijection de Clarke et al. En d'autres termes, le diagramme de la figure 3 est commutatif.

Dans le dernier chapitre, nous donnons un r-analogue de la relation [START_REF] Dumont | Dérangements et nombres de Genocchi[END_REF]. Rappelons que les statistiques " inv " et fonction longueur sont identiques

S n S n S n E d d d d d F 3 Φ -1 Ψ Figure 3
-Factorisation de Ψ par les transformations de Foata-Han sur S n et suivant Brenti [START_REF] Brenti | q-Eulerian Polynomials Arising from Coxeter Groups[END_REF], la fonction longueur B sur B n peut s'exprimer par :

B (π) = inv(π) + i∈Neg(π) |π(i)|. ( 67 
)
et cette expression coïncide avec la restriction de flag inversion " finv " sur B n (voir [START_REF] Foata | Signed Words and permutations, I ; A fundamental transformation[END_REF]) où

finv(π) = inv(π) + inv(π) + neg(π), (68) et inv(π) 
= 1≤i≤n-1 i<j≤n χ π(i) > π(j) .
Le Théorème 0.4 de MacMahon s'etend sur B n .

π∈Bn q finv(π) = π∈Bn q fmaj(π) = (q 2 ; q 2 ) n (q; q) n [n] q !. ( 69 
)
Foata et Han [START_REF] Foata | Signed Words and permutations, I ; A fundamental transformation[END_REF] ont donné une preuve combinatoire de cette dernière formule au moyen d'une extension de la seconde transformation fondamentale de Foata qui échange les statistiques " inv " et " maj " sur S n et sur les mots [START_REF] Foata | On the Netto inversion number of a sequence[END_REF]. La relation d'ordre utilisée est l'OM . Dans le groupe des permutations colorées, avec la relation d'ordre OM , la statistique fonction longueur G est obtenue par la formule suivante (voir [START_REF] Biagioli | Enumerating wreath products via Garsia-Gessel bijections[END_REF][START_REF] Reiner | Signed permutation statistics[END_REF])

G (π) = inv(π) + col i (π) =0 (|π(i)| + col i (π) -1) . ( 70 
)
Adin et Roichman [START_REF] Adin | The flag major index and group actions on polynomial rings[END_REF] ont montré que les statistiques G et " fmaj " ne sont plus équidistribuées sur G(r, n) pour tout r ≥ 3 . Mais pour pouvoir donner un G(r, n)-analogue du Théorème de MacMahon, nous avons besoin d'étendre sur G(r, n) la statistique " inv ". Ainsi nous généralisons la statistique " finv " définie dans la relation (68) en :

finv(π) := 1≤i<j≤m ξ∈Cr χ(ξπ(i) > π(j)) + col(π), π ∈ G(r, n). ( 71 
)
Nous allons montrer que cette extension flag-inversion est équidistribuée avec " fmaj " sur G(r, n) et plus généralement sur les mots r-colorés.

Soit m 1 , m 2 , . . . , m s des entiers tels que

m 1 + m 2 + • • • + m s = m. Notons G r,m l'ensemble des réarrangements du mot 1 m 1 2 m 2 . . . s ms tels qu'une lettre i ∈ [s] peut être remplacée par ξi pour tout ξ ∈ C r .
Théorème 0.27. On a :

w∈Gr,m q fmaj w = w∈Gr,m q finv w = (q r ; q r ) m (q; q) m m m 1 , m 2 , . . . , m s q .

Remarque 10. Notre preuve repose sur l'extension Φ sur G(r, n) de la seconde transformation fondamentale Φ de Foata sur S n dans [START_REF] Foata | On the Netto inversion number of a sequence[END_REF]. Nous utilisons la relation d'ordre OC sur Σ r,n .

Chapitre 1 Euler's table for G(r, n)

This chapter is the first part of [START_REF] Faliharimalala | Derangements and Euler's difference table for C S n[END_REF]. Euler's difference table associated to the sequence {n!} leads naturally to the counting formula for the derangements.

In this paper, we study Euler's difference table associated to the sequence {r n n!} and the generalized derangement problem. For the coefficients appearing in the later table, we will give the combinatorial interpretations in terms of two kinds of k-successions of the group C r S n . In particular for r = 1, we recover the known results for the symmetric groups, while for r = 2 we obtain the corresponding results for the hyperoctahedral group.

Introduction

The problème de rencontres in classical combinatorics consists in counting permutations without fixed points (see [28, p. 9-12]). On the other hand, one finds in the works of Euler (see [START_REF] Dumont | Dérangements et nombres de Genocchi[END_REF]) the following table of differences:

g n n = n! and g m n = g m+1 n -g m n-1 (0 ≤ m ≤ n -1).
Clearly this table leads naturally to an explicit formula for g 0 n , which corresponds to the number of derangements of [n] = {1, . . . , n}. Since n! is the cardinality of the symmetric group of [n], Euler's difference table can be considered to be an array associated to the symmetric group.

In the last two decades, much effort has been made to extend various enumerative results on symmetric groups to other Coxeter groups, the wreath product of a cyclic group with a symmetric group, and more generally to complex reflection groups. The reader is referred to [START_REF] Adin | The flag major index and group actions on polynomial rings[END_REF][START_REF] Adin | Equi-distribution over descent classes of the hyperoctahedral group[END_REF][START_REF] Chow | On the descent numbers and major indices for the hyperoctahedral group[END_REF][START_REF] Chow | On derangement polynomials of type B, Sém[END_REF][START_REF] Foata | Signed words and permutations, IV ; fixed and pixed points[END_REF][START_REF] Haglund | Statistics on wreath products, perfect matchings, and signed words[END_REF][START_REF] Bagno | On the excedance number of colored permutation groups[END_REF][START_REF] Briggs | m-rook numbers and a generalization of a formula of Frobenius to C m S n[END_REF][START_REF] Bagno | Colored-descent representations of complex reflection groups G(r, p, n)[END_REF] and the references cited there for the recent works in this direction. In this chapter we shall consider the problème de rencontres in the group C r S n via Euler's difference table. For a fixed integer r ≥ 1, we define Euler's difference table for C r S n to be the array (g m r,n ) n, m≥0 defined by

g n r,n = r n n! ( m = n); g m r,n = g m+1 r,n -g m r,n-1 (0 ≤ m ≤ n -1). (1.1)
The first values of these numbers for r = 1 and r = 2 are given in Table 1.

The r = 1 case of ( is the cardinality of S n and g 0 1,n is the number of derangements, i.e., the fixed point free permutations in S n . The combinatorial interpretation for the general coefficients g m 1,n was first studied by Dumont and Randrianarivony [START_REF] Dumont | Dérangements et nombres de Genocchi[END_REF] and then by Clarke et al. [27]. More recently Rakotondrajao [START_REF] Rakotondrajao | k-fixed-points-permutations[END_REF][START_REF] Rakotondrajao | On Euler's difference table[END_REF] has given further combinatorial interpretations of these coefficients in terms of k-successions in symmetric groups. As g n 2,n = 2 n n! is the cardinality of the hyperoctahedral group B n , Chow [START_REF] Chow | On derangement polynomials of type B, Sém[END_REF] has given a similar interpretation for g 0 2,n in terms of derangements in the hyperoctahedral groups. It is not hard to see that the coefficient g m r,n is divisible by r m m!. This prompted us to introduce d m r,n = g m r,n /r m m!. We derive then from (1.1) the following allied array (d m r,n ) n, m≥0 :

d n r,n = 1 (m = n); d m r,n = r(m + 1) d m+1 r,n -d m r,n-1 (0 ≤ m ≤ n -1). (1.2)
The first terms of these coefficients for r = 1, 2 are given in 

Main results

We first generalize the notion of k-succession introduced by Rakotondrajao [START_REF] Rakotondrajao | On Euler's difference table[END_REF] in the symmetric group to G(r, n).

Defintion 11 (k-circular succession). Given a permutation π ∈ G(r, n) and a nonnegative integer k, the value π(i) is a k-circular succession at position

i ∈ [n] if π(i) = i + k.
In particular a 0-circular succession is also called fixed point.

Remark. Some words are in order about the requirement π(i) = i + k in this definition. The "wraparound" is not allowed, i.e., i + k is not to be interpreted mod n, also i + k needs to be uncolored, i.e., i + k ∈ [n], in order to count as a k-circular succession.

Denote by C k (π) the set of k-successions circulaires of π and let c k (π) = # C k (π). In particular F IX(π) denotes the set of fixed points of π. For example, for the permutation (ii) The entry g m r,n is the number of permutations in G(r, n) without mcircular succession.

For example, the permutations in G(2, 2) whose fixed points are included in [START_REF] Adin | The flag major index and group actions on polynomial rings[END_REF] Note that Dumont and Randrianarivony [START_REF] Dumont | Dérangements et nombres de Genocchi[END_REF] proved the r = 1 case of (i), while Rakotondrajao [START_REF] Rakotondrajao | On Euler's difference table[END_REF] proved the r = 1 case of (ii).

Let c k r,n,m be the number of colored permutations in G(r, n) with m kcircular successions.

Theorem 1.2.2. Let n, k and m be integers such that

n ≥ 1, k ≥ 0 and m ≥ 0. Then c k+1 r,n+1,m = c k r,n+1,m + c k r,n,m -c k r,n,m-1 , (1.3)
where c k r,n,-1 = 0.

Defintion 12 (k-linear succession)

.

For π = (ε, |π|) ∈ G(r, n), the value |π(i)| (2 ≤ i ≤ n) is a k-linear succession (k ≥ 1) of π at position i if |π(i)| = |π(i -1)| + k, ε(i) = ε(i -1). (1.4)
Denote by L k (π) the set of k-linear successions of π and let l k (π) = #L k (π). Let l k r,n,m be the number of colored permutations in G(r, n) with m k-linear successions. For example, 9 and 3 are the two 2-linear successions of the permutation π = 5 2 4 7 9 1 3 8 6 ∈ G(4, 9).

Defintion 13 (Skew k-linear succession). For

π = (ε, σ) ∈ G(r, n), the value σ(i) (1 ≤ i ≤ n) is a skew k-linear succession (k ≥ 1) of π at position i if π(i) = π(i -1) + k,
where, by convention, σ(0) = 0 and ε(0) = 1.

Denote by L * k (π) the set of skew k-linear successions of π and l * k (π) = #L * k (π). The number of permutations in G(r, n) with m skew k-linear successions is l * k r,n,m . Obviously we have the following relation:

L * k (π) = L k (π), if π(1) = k; L k (π) ∪ {k}, otherwise.
(1.5)

Let δ be the bijection from G(r, n) onto itself defined by:

π = π 1 π 2 • • • π n -→ δ(π) = π n π 1 π 2 • • • π n-1 . (1.6) Theorem 1.2.3. For any integer k ≥ 0 there is a bijection Φ from G(r, n) onto itself such that for π ∈ G(r, n), C k+1 (π) = L k+1 (Φ(π)), (1.7 
)

and C k (δ(π)) = L * (k+1) (Φ(π)). (1.8) 
Thanks to the transformation Φ the two statistics c k and l k are equidistributed on the group G(r, n) for k ≥ 1. So we can replace the left-hand sides of (2.1) by l k+1 r,n+1,m and derive the following interesting result.

Corollary 14.

Let n, k and m be integers such that n ≥ 1, k ≥ 0 and m ≥ 0. Then

l k+1 r,n+1,m = c k r,n+1,m + c k r,n,m -c k r,n,m-1 , (1.9)
where c k r,n,-1 = 0.

Our proof of the last two theorems is a generalization of that given by Clarke et al [27], where the (k, r) = (0, 1) case of Corollary 14 is proved. Note that the (k, r, m) = (0, 2, 0) case of (1.9) is the main result of a recent paper by Chen and Zhang [START_REF] Chen | The skew and relative derangments of type B[END_REF].

In order to interpret the entry d m r,n we need the following definition.

Defintion 15. For 0 ≤ m ≤ n, a permutation π = (ε, |π|) in G(r, n) is called m-increasing-fixed if it satisfies the following conditions: i) ∀i ∈ [m], ε(i) = 1; ii) FIX(π) ⊆ [m]; iii) π(1) < π(2) < • • • < π(m).
Let I m r,n be the set of m-increasing-fixed permutations in G(r, n). For example, Proof. Let F m r,n be the set of permutations with fixed points included in [m] in G(r, n). By Theorem 1.2.1 the cardinality of F m r,n equals g m r,n . We define a mapping f : (τ, π) → τ π from G(r, m) × F m r,n to F m r,n as follows:

I 2 2,3 = {1 2 3, 1 3 2, 1 3 2, 2 3 
τ π = π(τ -1 (1))π(τ -1 (2)) . . . π(τ -1 (m))π(m + 1) . . . π(n).
Clearly f defines a group action of G(r, m) on the set F m r,n . We can choose an element π in each orbit such that

∀i ∈ [m], ε(i) = 1 and π(1) < π(2) < • • • < π(m).
As the cardinality of the group G(r, m) is r m m!, we derive that the number of the orbits equals g m r,n /r m m!. Rakotondrajao [START_REF] Rakotondrajao | On Euler's difference table[END_REF] gave a different interpretation for d m r,n when r = 1. We can generalize her result as in the following theorem.

Defintion 16. For 0 ≤ m ≤ n, a permutation π in G(r, n) is called m- isolated-fixed if it satisfies the following conditions: i) ∀i ∈ [m], color π (i) = 1; ii) FIX(π) ⊆ [m];
iii) each cycle of π has at most one point in common with [m].

Let D m r,n be the set of m-isolated-fixed permutations in G(r, n). For example, The rest of this chapter is organized as follows: The proofs of Theorems 1.2.1, 1.2.2, 1.2.3 and 1.2.5 will be given in Sections 3, 4, 5 and 6, respectively.

D 2 2,3 = {(1)(2)( 3), (1, 3)(2), (1, 3)(2), (1)(2, 3), (1)(2, 3)}. Note that π = 3 1 2 / ∈ D 2 2,

Proof of Theorem 1.2.1

Let m and k be integers such that n ≥ m ≥ k ≥ 0. Denote by G(r, n, m, k) the set of permutations in G(r, n) whose k-circular successions are bounded by m and s m r,n = #G(r, n, m, k). We show that the sequence (s m r,n ) satisfies (1.1).

By definition, we have immediately

G(r, n, n, k) = G(r, n) and then s n r,n = r n n!. Now, suppose m < n, then G(r, n, m + 1, k) \ G(r, n, m, k) is the set of permutations in G(r, n, m + 1, k) whose maximal k-circular succession is m + 1.
It remains to show that the cardinality of the latter set equals s m r,n-1 . To this end, we define a simple bijection ρ : r,n,m,k), we construct π by deleting π m+1-k = m + 1 and replacing each letter 

π → π from G(r, n, m + 1, k) \ G(r, n, m, k) to G(r, n -1, m, k) as follows. Starting from any π = π 1 π 2 . . . π n in G(r, n, m + 1, k) \ G(
π i by π i -1 if |π i | > m + 1. Conversely, starting from π = π 1 π 2 . . . π n-1 in G(r, n -1, m, k),
if j + 1 ≥ m + 2 is a k-circular succession of π.
Therefore, the maximal k-circular succession of π is m + 1 if and only if the k-circular successions of π are bounded by m. This completes the proof. Remark. The above argument does not explain why g m r,n is independent from k (0 ≤ k ≤ m). We can provide such an argument as follows. Consider the following simple bijection d which consists in transforming

π = π 1 π 2 π 3 • • • π n into d(π) = π = π 2 π 3 • • • π n π 1 .
Clearly the k-successions of π are bounded by m if and only if the (k + 1)-successions of π are bounded by m. Hence, denoting by d j the composition of j-times of d, the application of

d k 2 -k 1 permits to pass from k 1 -successions to k 2 -successions if k 1 < k 2 .
In particular if we apply m times the mapping d to a permutation whose fixed points are bounded by m then we obtain a permutation without m-succession and vice versa.

Proof of Theorem 1.2.2

Let S k n (x) be the counting polynomial of the statistic c k on the group G(r, n), i.e.,

S k n (x) = π∈G(r,n) x c k (π) = n m=0 c k r,n,m x m . (1.10)
Then (1.3) is equivalent to the following equation:

S k+1 n+1 (x) = S k n+1 (x) + (1 -x)S k n (x). (1.11)
By (1.6) it is readily seen that

C k+1 (π) = C k (δ(π)), if π n = k + 1; C k (δ(π)) \ {k + 1}, otherwise.
(1.12)

It follows that

S k+1 n+1 (x) = π∈G(r,n+1) π(1)=k+1 x c k (π)-1 + π∈G(r,n+1) π(1) =k+1 x c k (π) = π∈G(r,n+1) π(1)=k+1 x c k (π)-1 + π∈G(r,n+1) x c k (π) - π∈G(r,n+1) π(1)=k+1 x c k (π) . (1.13) For any π ∈ G(r, n + 1) such that π(1) = k + 1 we can associate bijectively a permutation π ∈ G(r, n) such that c k (π) = c k (π ) + 1 as follows: ∀i ∈ [n], π (i) = π(i + 1), if π(i + 1) ≤ k; π(i + 1) -1, if π(i + 1) > k.
Therefore we can rewrite (1.13) as (1.11).

We can also derive Theorem 1.2.2 from Theorem 1.2.1. First we prove a lemma. 

j | > i + k. It is readily seen that the map R i is a bijection and c k (π ) = c k (π) -1. Indeed it is easy to see that j + k is a k-circular succession of π different of i + k if and only if j + k is a k-circular succession of π . Hence, π 0 = R i 1 • R i 2 • • • • • R im (π) is a colored permutation without k-circular succession in G(r, n -m).
Conversely given a subset

I = {i 1 , i 2 , • • • , i m } of [n -k] and a colored permutation π 0 without k-circular succession in G(r, n -m) we can construct π = θ -1 (I, π 0 ) = R -1 im • R -1 i m-1 • • • • • R -1 i 1 (π 0 ),
where R -1 i (π ) is obtained from π = π 1 . . . π n-1 by inserting the integer (i + k) between π i-1 and π i and replacing each colored letter π j by π j + 1 if

|π j | ≥ i + k. Therefore c k r,n,m = n -k m c k r,n-m,0 . (1.15)
By Theorem 1.2.1 (ii) we have c k r,n,0 = g k r,n . Substituting this in (1.15) yields then (1.14).

By (1.14) we see that (1.3) is equivalent to n -k m g k+1 r,n+1-m = n + 1 -k m g k r,n+1-m + n -k m g k r,n-m - n -k m -1 g k r,n+1-m .
Since g k+1 r,n+1-mg k r,n-m = g k r,n-m+1 by (1.1), we can rewrite the last equation as

n -k m g k r,n+1-m = n + 1 -k m g k r,n+1-m - n -k m -1 g k r,n+1-m , which is obvious in view of the identity n-k m = n+1-k m -n-k m-1 .
This completes the proof of Theorem 1.2.1.

Proof of Theorem 1.2.3.

There is a well-known bijection on the symmetric groups transforming the cyclic structure into linear structure (see [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF] and [52, p. 17]). We need a variant of this transformation, say ϕ : S n → S n , as follows.

Given a permutation σ ∈ S n written as a product of cycles, arrange the cycles in the decreasing order of their maximum elements from left to right with the maximum element at the end of each cycle. We then obtain ϕ(σ) by erasing the parentheses. Conversely, starting from a permutation written in one-line form σ = a 1 a 2 . . . a n , find out the right-to-left maxima of σ from right to left and decompose the word σ into blocks by putting a bar at the right of each right-to-left maximum and construct a cycle of σ with each block.

For example, if σ = (3, 1, 4, 6, 9)(5, 7, 8)(2) ∈ S 9 then we have:

ϕ(σ) = 3 1 4 6 9 5 7 8 2.
Conversely, starting from σ = 3 1 4 6 9 5 7 8 2, so the right-to-left maxima are 9,8 and 2, then the decomposition into blocks is 3 1 4 6 9|5 7 8|2| and we recover σ by putting parentheses around each block.

Lemma 1.2. For k ≥ 1, the mapping ϕ transforms the k-successions circulaires to k-successions linéaires and vice versa.

Proof. Indeed, an integer p is a k-succession circulaire of σ if and only if there is an integer i ∈ [n] such that σ(i) = i + k, so i and i + k are two consecutive letters in the one-line form of ϕ(σ). Conversely if i and i + k are two consecutive letters in the one-line form of a permutation τ then i cannot be a right-to-left maximum, so i and i + k are in the same cycle of ϕ -1 (τ ), say σ, and then σ(i) = i + k.

We now construct a bijection Φ :

π → π from G(r, n) onto itself such that C k (π) = L k (π ) (k ≥ 1). (1.16) 
Let σ = |π| and σ = |π |. Bijection Φ: First define σ = ϕ(σ): Factorize σ as product of l disjoint cycles C 1 , . . . , C l . Suppose that h i and g i are, respectively, the length and greatest element of the cycle

C i (1 ≤ i ≤ l) such that g 1 > g 2 > • • • > g l . Then σ = σ(g 1 ) • • • σ h 1 -1 (g 1 ) g 1 σ(g 2 ) • • • σ h 2 -1 (g 2 ) g 2 • • • σ(g l ) • • • σ h l -1 (g l ) g l .
(1.17)

Let T σ = {σ(g i ), i ∈ [l]}.
It remains to define color π (σ j (g i )) for all i ∈ [l] and 1 ≤ j ≤ h i . We proceed by induction on j as follows:

For each i ∈ [l] let color π (σ(g i )) = color π (σ(g i )),
and for j = 2, . . . , h i define color π (σ j (g i )) = color π (σ j-1 (g i ))

• color π (σ j (g i )).

(1.18)

It is easy to establish the inverse of Φ. Bijection Φ -1 : Starting from π we can recover σ = |π| by applying ϕ -1 to σ . Suppose σ is given as in (1.17) and g 1 , . . . , g l are the left-to-rightmaxima. We then determine color π (σ j (g i )) for all i ∈ [l] and 1 ≤ j ≤ h i as follows:

For each i ∈ [l] let color π (σ(g i )) = color π (σ(g i )),
and for j = 2, . . . , h i define

color π (σ j (g i )) = color π (σ j (g i ))(color π (σ j-1 (g i ))) -1 , ( 1.19) 
where (color π (i)) -1 is the inverse of color π (i) in the cyclic group C r .

Lemma 1.3. For k ≥ 1, the mapping Φ transforms a k-circular succession of π to a k-linear succession of π and vice versa.

Proof. By Lemma 1.2 we have the equivalence:

σ(i) is a k-circular succession of σ if and only if σ(i) is a k-linear succession of σ . It remains to verify that if σ(i) is a k-circular succession of σ then color π (σ(i)) = 1 ⇔ color π (σ(i)) = color π (i).
(1.20)

Note that if σ(i) is a k-circular succession of σ then i and σ(i) must be in the same cycle and that σ(i) cannot be in T σ for, otherwise, i would be the greatest element of the cycle but this is impossible because

σ(i) = i + k (k ≥ 1). Now, assume that σ(i) is a k-circular succession of σ. (i) Suppose color π (σ(i)) = 1. As σ(i) ∈ T σ and σ -1 (σ(i)) = i, we have: color π (σ(i)) = color π (i) • color π (σ(i)) = color π (i).
(ii) Suppose that color π (σ(i)) = color π (i). As σ(i) ∈ T σ , we have

color π (σ(i)) = color π (σ(i))/color π (i) = 1.
Hence (1.20) is established.

Obviously the above lemma is equivalent to (1.7). We obtain (1.8) by combining (1.7), (1.5) and (1.12).

We conclude this section with an example. Consider The colors of σ (i) for i ∈ [START_REF] Biagioli | Enumerating wreath products via Garsia-Gessel bijections[END_REF] are computed as follows:

color π (1) = color π (1) = ζ 2 for 1 ∈ T σ ; color π (3) = color π (1) • color π (3) = ζ 2 .ζ = ζ 3 for 3 ∈ T σ ; color π (9) = color π (3) • color π (9) = ζ 3 .ζ = 1 for 9 ∈ T σ ; color π (2) = color π (2) = ζ 2 for 2 ∈ T σ ; color π (4) = color π (2) • color π (4) = ζ 2 • 1 = ζ 2 for 4 ∈ T σ ; color π (8) = color π (4) • color π (8) = ζ 2 • ζ = ζ 3 for 8 ∈ T σ ; color π (6) = color π (6) = 1 for 6 ∈ T σ ; color π (5) = color π (6) • color π (5) = 1 • ζ = ζ for 8 ∈ T σ ; color π (7) = color π (5) • color π (7) = ζ • 1 = ζ for 7 ∈ T σ .
Thus we have π → π = 1 3 9 2 4 8 6 5 7. We have C 2 (π) = {4, 7} = L * 2 (π ). Conversely, starting from π , we can recover σ by ϕ -1 and the colors of σ(i) (i ∈ [n]) by (1.19). As σ = (139)(248)(657) and T σ = {1, 2, 6}, we have, for example,

color π (9) = color π (9) • color -1 π (3) = 1 • ζ = ζ for 9 ∈ T σ .

Proofs of Theorem 1.2.5

We shall give two proofs by using Theorems 1.2.4 and 1.2.1, respectively.

First Proof

We shall define a mapping ϕ : π → π from D 

(|π | -s (i), . . . , |π | -2 (i), |π | -1 (i), i),
where s is the smallest non negative integer such that |π | -s (i) ∈ T , where 

T := {|π |(i), i ∈ [m]},

Second proof

Let G m r,n := G(r, n, m, 0) be the set of permutations in G(r, n) whose fixed points are included in [m].

Let π = ( , σ) be a permutation in G m r,n , written as a product of disjoint cycles. For each i ∈ [m], let s be the smallest integer ≥ 1 such that σ s (i) ∈ [m] and w π by

(i) = [ε σ(i) σ(i)] . . . [ε σ s-1 (i) σ s-1 (i)], where ε = • σ -1 . Clearly w π (i) = ∅ if s = 1. Let Ω π be
π 1 ∼ π 2 ⇔ T (π 1 ) = T (π 2 ).
Clearly this is an equivalence relation. To determine the equivalence class

C π of each permutation π ∈ G m r,n we consider the mapping θ : (τ, π) → θ(τ, π) from G(r, m) × G m r,n to G m r,n
, where the cyclic factorization of θ(τ, π) is obtained by inserting the word w π (i) after each letter iζ j appearing in a cycle of τ for each i ∈ [m] and some j : 0 ≤ j ≤ r -1, and then add the cycles in Ω π . For example, if π = ( 1 Clearly 

C π = {θ(τ, π)|τ ∈ G(r, m)}. Indeed, by definition θ(τ, π) ∼ π for each τ ∈ G(r, m) and π ∈ G m r,n and conversely, if π ∼ π then π = θ(π m , π) for T (π ) = T (π). Moreover, suppose θ(τ, π) = θ(τ , π) = π for τ, τ ∈ G(r, m), then τ = τ = π m .

Chapitre 2

Generating functions and further results

This chapter is the second part of [START_REF] Faliharimalala | Derangements and Euler's difference table for C S n[END_REF]. We give the generating function of the coefficients g m r,n 's and derive more recurrence relations for the coefficients g m r,n 's and d m r,n 's. In particular, we shall prove an explicit formula for the r-derangement numbers:

d 0 r,n = g 0 r,n = n! n i=0 (-1) i r n-i i! , ( 2.1) 
which implies immediately the following recurrence relation:

d 0 r,n = rnd 0 r,n-1 + (-1) n (n ≥ 1). (2.2)
Note that (2.2) is the r-version of a famous recurrence for derangements. Using the combinatorial interpretation for g m r,n and d m r,n it is possible to derive bijective proofs of these recurrence relations. However we will just give combinatorial proofs for (2.2) and two other recurrences by generalizing the combinatorial proofs of Rakotondrajao [START_REF] Rakotondrajao | On Euler's difference table[END_REF] for r = 1 case, and leave the others for the interested readers.

Generating functions

For any function f : Z → C introduce the difference operator:

Δf (n) = f (n) -f (n -1).
Then it is easy to see by induction on N ≥ 0 that

Δ N f (n) = N i=0 (-1) i N i f (n -i) = N i=0 (-1) N -i N i f (n -N + i). (2.3)
Proposition 17. For m ≥ 0 the following identities hold true:

g m r,n+m = n i=0 (-1) n-i n i r m+i (m + i)!, (2.4) n≥0 g m r,n+m u n n! = r m m! exp(-u) (1 -ru) m+1 , (2.5) m,n≥0 g m r,n+m x m m! u n n! = exp(-u) 1 -rx -ru . (2.6) Proof. Setting f (n) = g n r,n then g n+m-i r,n+m = Δ i f (n + m) for i ≥ 0. It follows from (2.3) that g m r,n+m = Δ n f (n + m) = n i=0 (-1) n-i n i r m+i (m + i)!. (2.7)
Multiplying the above identity by u n /n! and summing over n ≥ 0 we obtain n≥0 g m r,n+m

u n n! = r m m! n,i≥0 (-1) n-i m + i i r i u n (n -i)! . Shifting n to n + i yields n≥0 g m r,n+m u n n! = r m m! n≥0 (-1) n u n n! • i≥0 m + i i (ru) i ,
which is clearly equal to the right-hand side of (2.5). Finally multiplying (2.5) by x m /m! and summing over m ≥ 0 yields (2.6).

Setting m = 0 in (2.4) yields immediately formula (2.1).

Some recurrence relations 2.2.1 Relations concerning g m r,n

Proposition 18. For r ≥ 0 and 0 ≤ m ≤ n there hold

g m r,n = (rn -1)g m r,n-1 + r(n -m -1)g m r,n-2 (n ≥ 2); (2.8) g m r,n = r(n -m)g m r,n-1 + rmg m-1 r,n-1 (m ≥ 1, n ≥ 1); (2.9) g m r,n = rng m r,n-1 -rmg m-1 r,n-2 (m ≥ 1, n ≥ 2); (2.10)
where g 0 r,0 = 1, g 0 r,1 = r -1 and g 1 r,1 = r.

Proof. Let F (u) be the left-hand side of (2.5). Differentiating F (u) and using the right-hand side of (2.5) we get

(1 -ru)F (u) = [r(m + 1) -1 + ru]F (u). (2.11) 
Equating the coefficients of u n /n! in (2.11) yields g m r,n+m+1 = [r(m + n + 1) -1]g m r,n+m + rng m r,n+m-1 , which gives (2.8) by shifting n + m + 1 to n.

Next, multiplying the two sides of (2.5) by 1ru gives

(1 -ru) n≥0 g m r,n+m u n n! = r m m! exp(-u) (1 -ru) m = rm n≥0 g m-1 r,n+m-1 u n n! . (2.12)
Equating the coefficients of u n /n! yields

g m r,n+m -rng m r,n+m-1 = rmg m-1 r,n+m-1 , (2.13)
which is (2.9) by shifting n + m to n.

Finally, we derive (2.10) from (2.9) and (1.1):

g m r,n = rng m r,n-1 -rm(g m r,n-1 -g m-1 r,n-1 ) = rng m r,n-1 -rmg m-1 r,n-2 .
The proof is thus completed.

Relations concerning d m r,n

It is easy to convert the above relations for g m r,n to those for d m r,n .

Proposition 19. For r ≥ 0 and 0 ≤ m ≤ n we have

d m r,n = (rn -1)d m r,n-1 + r(n -m -1)d m r,n-2 (n ≥ 2); (2.14) d m r,n = r(n -m)d m r,n-1 + d m-1 r,n-1 (m ≥ 1, n ≥ 1); (2.15) d m r,n + d m-1 r,n-2 = rnd m r,n-1 (m ≥ 1, n ≥ 2), (2.16 
)

where d 0 r,0 = 1, d 0 r,1 = r -1 and d 1 r,1 = 1.
Proof. The equations (2.14), (2.15) and (2.16) follow directly from Proposition 18.

Using the combinatorial interpretation for d n r,n in Theorem 1.2.5 we now give combinatorial interpretations of (1.2), (2.2) and (2.16) by generalizing the proofs of Rakotondrajao [START_REF] Rakotondrajao | On Euler's difference table[END_REF], which correspond to the r = 1 case.

Combinatorial proof of (1.2), (2.2),(2.16)

Combinatorial proof of (1.2)

We shall prove that the cardinality of D m r,n satisfies the following recurrence:

d n r,n = 1 and d m-1 r,n + d m-1 r,n-1 = rm d m r,n (1 ≤ m ≤ n).
(2.17)

First, the identity permutation is the only n-isolated-fixed permutation in G(r, n), so d n r,n = 1. To prove (2.17) we construct a bijection ϑ :

π -→ ( , α, π ) from D m-1 r,n-1 ∪ D m-1 r,n to C r × [m] × D m r,n as follows:
Let σ = |π| and factorize π into disjoint cycles.

1. If π ∈ D m-1 r,n-1 , then = 1, α = m, the cycles of π are obtained from those of π by substituting ζ j i by ζ j i + 1 if i ≥ m and then adding the cycle (m).

If π ∈ D m-1

r,n , let C m be the cycle of σ containing m. Then = color π (m) and α is the smallest integer in C m ; let q be the smallest integer such that σ q (m) = α; then σ is obtained from σ by deleting the letters m, σ(m), . . . , σ q-1 (m) from C m and creating a new cycle (m σ(m) 4. If α < m; σ is obtained from σ by removing the cycle which contains m and then inserting the word mσ (m)σ 2 (m)...σ q-1 (m), where σ q (m) = m, in the cycle which contains the integer α just before the integer α. In other words, we define m = σ(σ -1 (α)), σ j (m) = σ j (m) for 1 ≤ j ≤ q -1 and σ q (m) = α. Finally define color π (i) = color π (i) for i = m and color π (m) = .

• • • σ q-1 (m)). Finally, define the color of i ∈ [n] in π by color π (i) = color π (i), if i = m; 1, if i = m.
To see that this is indeed the inverse of ϑ we just note the following simple facts:

• If π ∈ D m-1 r,n-1 then = 1, α = m and m ∈ F IX(π ). We have ϑ(π) ∈ E 1 = {(1, m, π ), m ∈ F IX(π ), π ∈ D m r,n }. • If π ∈ D m-1 r,n D m r,n then = 1, α = m and m ∈ F IX(π ). In this case π = π we have ϑ(π) ∈ E 2 = {(1, m, π ), m ∈ F IX(π ), π ∈ D m r,n }.
• If m ∈ cycle of σ containing i < m and color π (m) = 1 then α = m, = 1; and π is obtained from π by just replacing m by m. We have

ϑ(π) ∈ E 3 = {( , m, π ), = 1, π ∈ D m r,n }.
• If m ∈ cycle of σ containing i < m then α < m. In this case the image π is defined by the second case of the construction of ϑ. We have ϑ(π)

∈ E 4 = C r × [m -1] × D m r,n . Clearly {E 1 , E 2 , E 3 , E 4 } is a partition of D m r,n .

Combinatorial proof of (2.2)

We shall prove the following version of (2.2):

rnd 0 r,n-1 -1 = d 0 r,n if n is odd, rnd 0 r,n-1 = d 0 r,n -1 if n is even. Denote by D(r, n) the set of derangements in G(r, n). Let E n = ∅ if n is odd and E n = {(1 2)(3 4) • • • (n -1 n)} if n is even. Introduce also F n = ∅ if n is even and F n = {1} × {n} × E n-1 if n is odd. We are going to define a mapping τ r : (ε, k, π) -→ π from (C r × [n] × D(r, n -1))\F n to D(r, n)\E n , which implies the above identities.
Factorize π into disjoint cycles. We construct the cyclic factorization of π by distinguishing several cases and by giving an example in G(4, 9) for each case.

Let c(k) be the length of the cycle of π containing k and write k = color π (k) • k.

If k < n, we obtain π by inserting ε n just after k in a cycle of π.

Example: Here is the inverse algorithm of τ r : π → (ε, k, π). Denote by c(n) the length of the cycle of π containing n. In what follows we write ρ = color π (n) and

ε = ζ 3 , k = 3, π = ( 1 4 
k = color π (k) • k. • If c(n) ≥ 3 or c(n) = 1 or c(n) = 2 and color π (|π |(n)) = 1 then ε = color π (n) and k = |π | -1 (n)
and we obtain π by deleting the letter n. For example, the mapping

• If c(n) =
τ 2 : (C 2 × [3] × D(2, 2)) \ F 3 -→ D(2, 3) \ E 3 , where E 3 = ∅ and F 3 = (1, 3, (1 2)), is given in the following table. π \ (ε, k) (1, 1) (1, 2) (1, 3) (ζ, 1) (ζ, 2) (ζ, 3) (12) (132) (123) (1 32) (12 3) (12)( 3) ( 12) ( 132) ( 123) ( 1)(32) ( 13 2) ( 12 3) ( 12)( 3) (1 2) (13 2) (1 23) (13)( 2) (1 32 ) (1 23 ) (1 2)( 3) ( 12 ) ( 13 2) ( 12 3) ( 32)( 1) ( 132 ) ( 123 ) ( 12 )( 3) ( 1)( 2) ( 13 
)( 2) ( 1)( 23) ( 31)( 2) ( 13 )( 2) ( 1)( 23 ) ( 1)( 2)( 3)

Combinatorial proof of (2.16)

By Theorem 1.2.5 the coefficient d m r,n equals the cardinality of D m r,n . We are going to establish a bijection Φ :

(ρ, α, π) -→ π from C r × [n] × D m r,n-1 to D m r,n ∪ D m-1 r,n-2 . Let σ = |π| and σ = |π |.
The cyclic factorization of π is obtained from that of π as follows:

1. If α = n, ρ = 1 and 1 ∈ F IX(π), we get π ∈ D m-1
r,n-2 by deleting the cycle [START_REF] Adin | The flag major index and group actions on polynomial rings[END_REF] and decreasing all other letters by 1.

If α = n and ρ = 1 then we create the cycle (ρn). In this case π ∈ D m r,n

and the cycle containing n is of length 1 but n is not a fixed point of π .

3. If α = n, ρ = 1 and 1 ∈ F IX(π), then we delete π(1) from its cycle and create a new cycle (γn, σ( 1)) where γ = color π (σ(1)). In this case π (n) > m.

4. If α < n then we insert the letter ρn just before α.

To show that the mapping Φ is a bijection we construct its inverse as follows.

1. If π ∈ D m-1 r,n-2 then α = n, ρ = 1 and π is obtained from π by adding 1 to all letters and creating the cycle (1).

If π ∈ D m

r,n and the cycle containing n is of length 1, then let α = n, ρ = color π (n) and π is obtained from π by deleting the letter ρn. 

Chapitre 3

The q-Euler's table for G(r, n)

This is the first part of [START_REF] Faliharimalala | Fix-Euler-Mahonian statistics on wreath products[END_REF]. In 1997 Clarke et al. introduced a q-analogue of Euler's difference table for n! using a key bijection Ψ on symmetric groups.

In this chapter we extend their results to the wreath product of a cyclic group with the symmetric group. By generalizing their bijection Ψ we prove the equidistribution of the triple statistics (fix, exc, fmaj) and (fix, exc, fmaf) on wreath products, where fix, exc, fmaj and fmaf denote the number of fixed points, the number of excedances, the flag major index and the flag maf index, respectively. As a consequence we obtain a new mahonian statistic fmaf on wreath products.

Introduction

As said in chapter 0, many authors have being trying extending various enumerative results on symmetric groups to other classical reflection groups.

In particular Adin and Roichman [START_REF] Adin | The flag major index and group actions on polynomial rings[END_REF] introduced the flag major index fmaj on wreath products of a cyclic group with the symmetric group, and Haglund et al. [START_REF] Haglund | Statistics on wreath products, perfect matchings, and signed words[END_REF] proved that σ∈G(r,n)

q fmaj σ = [r] q [2r] q • • • [nr] q . (3.1)
In this chapter we shall consider some natural generallizations of (3.1) by studying a wreath product analogue of Euler's q-difference table {g m r,n (q)} m≥n≥0 defined by the following recurrence:

g n r,n (q) = [r] q [2r] q • • • [nr] q , g m r,n (q) = g m+1 r,n (q) -q r(n-m-1) g m r,n-1 (q) (0 ≤ m ≤ n -1). (3.2) 55
For example, when r = 1 and r = 2, the first values of g m r,n (q) are given as follows:

• r = 1 n\m 0 1 2 3 0 1 1 0 1 2 q q 1 + q 3 q[2] q q[3] q q 3 + 2q 2 + q (1 + q)(1 + q + q 2 ) • r = 2 n\m 0 1 2 3 0 1 1 q [2] q 2 q[4] q + q 2 q[4] q + q 2 [2] q [2] q [4] q 3 g 0 2,3 g 1 2,3 g 2 2,3 [2] q [4] q [6] q
where g 2 2,3 = q 9 + 3q 8 + 5q 7 + 7q 6 + 8q 5 + 7q 4 + 5q 3 + 3q 2 + q, g 1 2,3 = q 9 + 3q 8 + 5q 7 + 6q 6 + 6q 5 + 5q 4 + 4q 3 + 3q 2 + q, g 0 2,3 = q 9 + 2q 8 + 4q 7 + 4q 6 + 5q 5 + 5q 4 + 4q 3 + 3q 2 + q.

It is remarkable that g m r,n (q) are polynomials in q with non-negative integral coefficients. For r = 1, Clarke et al. [27] proved that the entry g m 1,n (q) is actually the generating function for a subset of S n by the Mahonian statistic maf. Their proof is based on a key bijection Ψ on S n transforming the statistic maf to the statistic major index. Our aim is to show that the results in [27] can be readily extended to wreath products. More precisely, we will find a combinatorial interpretation and an explicit formula for g m r,n (q) by introducing a new mahonian statistic fmaf on the wreath products and by extending Clarke et al.'s bijection Ψ to the colored permutations.

Definitions and main results

We use the linear order "OC " on the alphabet Σ r,n . Recall that i ∈

[n] is a fixed point of σ ∈ G(r, n) if σ(i) = i.
Let FIX(σ) be the set of fixed points of σ and fix σ the cardinality of FIX(σ). The colored permutation σ has a descent at i ∈ {1, 2, . . . , n -1} if σ(i) > σ(i + 1) and i is called a descent place of σ. Let DES(σ) be the set of descent places of σ. The major index of σ, denoted by maj σ, is the sum of all the descent places of σ. If y 1 y 2 • • • y m is the word obtained by deleting the fixed points of σ and

y i = ε i |y i | (1 ≤ i ≤ m), writing z i = ε i rank(|y i |) with 'rank" being the increasing bijection from {|y 1 |, |y 2 |, • • • , |y m |} to [m], then the derangement part of σ is defined to be Der(σ) = z 1 z 2 • • • z m . (3.3)
We now define the main eulerian and mahonian statistics on the wreath product G(r, n). If σ = x 1 . . . x n ∈ G(r, n) then the statistics des r , exc and col are defined by

des r σ = n-1 i=1 χ(x i > x i+1 ), exc σ = n i=1 χ(x i > i), col σ = r-1 j=0 j • |COL j (σ)|,
where Remark. Other notions of descents have also been considered previously, see [START_REF] Steingrímsson | Permutation Statistics of indexed and Poset Permutations[END_REF].

COL j (σ) = {i ∈ [n] : x i |x i | = ζ j } and χ(A) = 1 if A is
We first show that the statistics (fix, fmaf) and (fix, fmaj) are equidistributed on G(r, n) and their common distribution has an explicit formula. 

q fmaf σ x fix σ = σ∈G(r,n) q fmaj σ x fix σ (3.4)
has the explicit formula

g r,n (q, x) := [r] q [2r] q • • • [nr] q n k=0 (x -1)(x -q r ) • • • (x -q r(k-1) ) [r] q [2r] q • • • [kr] q . (3.5)
Remark. When r = 1 Gessel and Reutenauer [START_REF] Gessel | Counting permutations with given cycle structure and descent set[END_REF] first proved that the generating function of (fmaj, fix) on S n is given by (3.5). For general r and x = 1 we recover Haglund et al's formula (3.1) for the generating function of fmaj on G(r, n). For x = 0, we derive from (3.4) and (3.5) an explicit formula for the colored q-derangement number:

d r,n (q) := σ∈Dr,n q fmaj σ = [r] q [2r] q • • • [nr] q n k=0 (-1) k q r( k 2 ) [r] q [2r] q • • • [kr] q . (3.6)
The r = 1 and r = 2 cases of (3.6) were first obtained by Gessel (unpublished) and Wachs [START_REF] Wachs | On q-derangement numbers[END_REF], and Chow [START_REF] Chow | On derangement polynomials of type B, Sém[END_REF], respectively. Finally (3.6) yields immediately the following recurrence relation for the colored q-derangemnt numbers:

d r,n+1 (q) = [rn + r] q d r,n (q) + (-1) n+1 q r( n+1 2 ) . (3.7)
Introduce the q-shifted factorials

(a; q) 0 = 1, (a; q) n = n-1 k=0 (1 -aq k ), n = 1, 2, . . . , or ∞,
then the q-binomial coefficients are defined by n m q = (q; q) n (q; q) m (q; q) n-m

, n ≥ m ≥ 0.

Instead of the colored q-Euler table (3.2), as Clarke et al. [27], we can consider a more general triangle than (3.2) by taking g n r,n (q, x) := g r,n (q, x) as the diagonal coefficients and replace the recurrence relation in (3.2) by

g m r,n (q, x) = g m+1 r,n (q, x) -xq r(n-m-1) g m r,n-1 (q, x) (0 ≤ m ≤ n -1). (3.8) For n ≥ m ≥ 0, denote by G m (r, n) the set of permutations σ in G(r, n) such that FIX(σ) ⊂ {n -m + 1, . . . , n -1, n}, i.e., for all i ≤ n -m, σ(i) = i. In particular we have G n (r, n) = G(r, n) and D(r, n) := G 0 (r, n)
is the set of colored derangements of order n. The following theorem gives a full description of g m r,n (q, x), which generalizes the previous results in [27] for r = 1 and [START_REF] Faliharimalala | Derangements and Euler's difference table for C S n[END_REF] for q = 1, respectively. Theorem 3.2.2. For n ≥ m ≥ 0 we have the following explicit formula:

g m r,n (q, x) = n-m k=0 (-x) k n -m k q r q r( k 2 ) g r,n-k (q, x) (3.9)
and the combinatorial interpretation:

g m r,n (q, x) = σ∈Gm(r,n) q fmaf σ x fix σ . ( 3.10) 
Remark. The two statistics fmaf and fmaj are identical on D(r, n), equidistributed on G(r, n), but not equidistributed on G m (r, n) for 0 < m < n.

Proof of Theorem 3.2.1

We first recall Clarke et al.'s bijection Ψ, which will also be used in chapter 4, and then show that one can extend Ψ to G(r, n) with the following property:

(maf, exc, fix, col)Ψ(σ) = (maj, exc, fix, col)σ, ∀σ ∈ G(r, n).

(3.11)

Clarke et al.'s bijection

Ψ Let σ = x 1 x 2 . . . x n ∈ S n with x 0 = x n+1 = +∞. For 0 ≤ i ≤ n, a pair (i, i + 1)
of positions is the j-th slot of σ provided that x i = i and that σ has ij fixed points f such that f < i. Of course, the j-th slot is (j, j + 1) if σ is a derangement. Clearly we can insert a fixed point into the j-th slot and obtain the permutation

σ, j = x 1 x 2 . . . x i (i + 1) x i+1 . . . x n , (3.12) 
where

x = x if x ≤ i and x = x + 1 if x > i for all x ∈ [n]. Now, if σ is a derangement in S n and (i 1 , i 2 , . . . , i m ) a sequence of integers such that 0 ≤ i 1 ≤ i 2 ≤ • • • ≤ i m ≤ n,
we can insert successively m fixed points in σ and obtain a permutation τ in S n+m :

τ = σ, i 1 , . . . , i m = σ, i 1 , . . . , i m-1 , i m . ( 3.13) 
Note that Der(τ ) = σ and the fixed points of the last permutation are i 1 + 1, i 2 + 2, . . . , i m + m. Conversely, any permutation τ ∈ S m+n with m fixed points can be written as (3.13) in one and only one way. Thus, if S(σ, m) denotes the set of permutations in S n+m with derangement part σ ∈ D n , then

S(σ, m) = { σ, i 1 , . . . , i m | 0 ≤ i 1 ≤ i 2 ≤ • • • ≤ i m ≤ n}.
Let σ ∈ S n . The j-th slot (i, i+1) of σ is said to be green if des σ, j = des σ, red if des σ, j = des σ+1. We assign values from 0 to g to the green slots of σ from right to left, and values from g +1 to n to the red slots from left to right. Denote the value of the j-th slot by g j . The bijection Ψ : S(σ, m) -→ S(σ, m) is defined by induction on m ≥ 0 as follows:

1. Ψ is the identity mapping on S(σ, 0).

Define Ψ on S(σ, 1) by

Ψ σ, i = σ, g i . ( 3.14) 
3. Let m > 1 and suppose that Ψ has been defined on S(σ, k) for 0 ≤ k ≤ m -1. Consider τ = σ, i 1 , . . . , i m . Suppose that the i m -th slot of σ is green. Then, if Ψ σ, i 1 , . . . , i m-1 = σ, j 2 , . . . , j m , we define

Ψ(τ ) = σ, g im , j 2 , . . . , j m . ( 3.15) 
Suppose that the i m -th slot of σ is red. Let k be the smallest positive integer such that i

m-k < i m . Thus i m-k < i m-k+1 = • • • = i m . Then, • if k = m we define Ψ(τ ) = σ, g im -i m , . . . , g im -i m m-1 terms , g im . (3.16) • if k < m and Ψ σ, i 1 , . . . , i m-k = σ, j 1 , . . . , j m-k , we define Ψ(τ ) = σ, g im -i m , . . . , g im -i m k-1 terms , j 1 + 1, . . . , j m-k + 1, g im .
(3.17)

Generalization of Ψ to G(r, n)

To extend the insertion algorithm (3.13) to colored permutations we just need to modify equation (3.12) as follows:

σ, j = x 1 x 2 . . . x i (i + 1) x i+1 . . . x n , (3.18) 
where x = x if |x| ≤ i and

x = x + 1 := ε x (|x| + 1), (3.19) 
if |x| > i for all x ∈ Σ r,n . Thus each colored permutation τ ∈ G(r, n) can be written as (3.13). So τ = σ, 0,

Example

As in symmetric group we say that the i-th slot (0 r,n) is green if des r σ, i = des r σ and red if des r σ, i = des r σ + 1. In the same way, we can assign a value to each slot of σ. Now, let σ be a derangement and G(σ, m) := {τ ∈ G(r, n + m) | Der(τ ) = σ}. We can extend Ψ to a bijection on G(σ, m). It follows that Der(Ψ(τ )) = Der(τ ) for any τ ∈ G(σ, m). Since exc τ = exc(Der(τ )) and col τ = col(Der(τ )), we have immediately (exc, fix, col)Ψ(τ ) = (exc, fix, col)τ.

≤ i ≤ n) of σ ∈ G(
It remains to verify maj τ = maf(Ψ(τ )). On symmetric groups, the proof of the latter equality is based on the following result. Lemma 3.1 (Clarke et al.). Let σ be a derangement in symmetric group and g i the value of its i-th slot then maj σ, i = maj σ + g i .

(3.20)

Now, the substitution x → x in (3.18) is compatible with the linear order (see (5.3)) on the alphabet Σ r,n , namely

∀a, b ∈ Σ r,n a < b ⇐⇒ a < b , hence DES(x 1 x 2 . . . x i ) = DES(x 1 x 2 . . . x i ) and DES(x i+1 . . . x n ) = DES(x i+1 . . . x n ).
So the proof of Lemma 3.1 in [27] remains valid when we replace a derangement σ by a any colored derangement. Then we derive (3.11) as in [27].

Example.

Let τ = 1 9 3 10 5 6 7 4 2 8 ∈ G [START_REF] Adin | Equi-distribution over descent classes of the hyperoctahedral group[END_REF][START_REF] Biagioli | On some analogues of Carlitz's Identity for the hyperoctahedral Group[END_REF]. We have DESτ = {1, 4, 7, 8, 9} and maj τ = 29, Der(τ ) = σ = 4 5 2 1 3; maj σ = 9. By the previous example, we can write τ = σ , 0, 1, 2, 2, 2 . Note that slots 1,3,4,5 are green, while slots 0 and 2 are red. So the sequence of values of the slots is (g 0 , g 1 , g 2 , g 3 , g 4 , g 5 ) = (4, 3, 5, 2, 1, 0). The algorithm Ψ goes as follows:

• Ψ σ, 0 = σ, g 0 = σ, 4 ;
• Since 1 is green, Ψ σ, 0, 1 = σ, g 1 , 4 = σ, 3, 4 ;

• Since 2 is red, Ψ σ, 0, 1, 2, 2, 2 = σ, g 2 -2, g 2 -2, 3 + 1, 4 + 1, g 2 = σ, 3 , 3, 4, 5, 5 . 
Thus Ψ(τ ) = 6 8 2 4 5 1 7 3 9 10. Note that maf Ψ(τ ) = maj σ + 3 + 3 + 4 + 5 + 5 = 29 = maj(τ ), fmaf Ψ(τ ) = fmaj(τ ) = 3 × 29 + 3 = 90.

Proof of (3.5)

Recall Cauchy's q-binomial formula (cf. [6, p.26]):

n≥0 (a; q) n (q; q) n u n = (au; q) ∞ (u; q) ∞ .
In particular we have Euler's formula by taking a = 0:

e q (u) := n 0 u n (q; q) n = 1 (u; q) ∞ . ( 3.21) 
Let f r,n (q, x) = σ∈G(r,n) x fix σ q fmaf σ . By the insertion algorithm, we can write any permutation

σ ∈ G(r, n) with n -k (0 ≤ k ≤ n) fixed points as σ = π, i 1 , . . . , i n-k , where π ∈ D r,k and 0 ≤ i 1 ≤ • • • ≤ i n-k ≤ k. Since fmaf σ = fmaj π + r(i 1 + • • • + i n-k ), we have f r,n (q, x) = n k=0 x n-k π∈D(r,k) σ∈G(r,n) Der(σ)=π q fmaf σ = n k=0 x n-k π∈D(r,k) q fmaj π 0≤i 1 ≤•••≤i n-k ≤k q r(i 1 +•••+i n-k ) = n k=0 x n-k n k q r d r,k (q).
Therefore

n 0 f r,n (q, x) u n (q r ; q r ) n = e q r (xu) ∞ k=0 d r,k (q) u k (q r ; q r ) k . ( 3.22) 
Since f r,n (q, 1) = (1q) -n (q r ; q r ) n by (3.1) and (3.4), setting x = 1 in (3.22) yields then

n≥0 d r,n (q) u n (q r ; q r ) n = 1 1 -u/(1 -q) 1 e q r (u)
.

Substituting this back to (3.22) we obtain

n 0 f r,n (q, x) u n (q r ; q r ) n = 1 1 -u/(1 -q) e q r (xu) e q r (u) . ( 3.23) 
On the other hand, by (3.5) we have

n≥0 g r,n (q, x) u n (q r , q r ) n = n≥0 i≥0 (x -1)(x -q r ) • • • (x -q r(i-1) ) (q r ; q r ) i u n (1 -q) n-i = i≥0 (x -1 ; q r ) i (q r ; q r ) i (xu) i n≥0 u 1 -q n = 1 1 -u/(1 -q) (u; q r ) ∞ (xu; q r ) ∞ ,
which is equal to the right-hand side of (3.23) by Euler's formula (3.21). It follows that f r,n (q, x) = g r,n (q, x).

Remark. As (1u)e q (u) = e q (qu), we can also write (3.23) as n 0 f r,n (q, x) u n (q r ; q r ) n = (1q)e q r (xu) e q r (q r u)qe q r (u) .

Proof of Theorem 3.2.2

To derive an explicit formula for g m r,n (q) we give a more general formula, which is a variant of a result in [START_REF] Zeng | The Akiyama-Taniglawa algorithm for Carlitz's q-Bernoulli numbers[END_REF]Th. 3] and may be also interesting in its own right. Lemma 3.2. Let (a n,m ) 0≤m≤n be an array defined by

a 0,m = x m (m = n); a n,m = z m a n-1,m+1 + y n a n-1,m (0 ≤ m ≤ n -1). (3.24)
If e i (y 1 , y 2 , . . . , y n ) denotes the i-th elementary symmetric polynomial of y 1 , . . . , y n , then

a n,m = n k=0 x m+k (z m z m+1 . . . z m+k-1 )e n-k (y 1 , y 2 , . . . , y n ). (3.25) 
Proof. The formula is obviously true for n = 0 and n = 1. Suppose that it is true until n -1. Since (1 +

y 1 t)(1 + y 2 t) • • • (1 + y n t) = n i=0 e i (y 1 , . . . , y n )t i , we then have a n,m = y n a n-1,m + z m a n-1,m+1 = y n n-1 k=0 (z m z m+1 . . . z m+k-1 )e n-1-k (y 1 , y 2 , . . . , y n-1 )x m+k + z m n-1 k=0 (z m+1 z m+2 . . . z m+k )e n-1-k (y 1 , y 2 , . . . , y n-1 )x m+k+1 = y n e n-1 (y 1 , y 2 , . . . , y n-1 )x m + n-1 k=0 k j=0 z m+j (y n e n-2-k (y 1 , y 2 , . . . , y n-1 ) + e n-1-k (y 1 , y 2 , . . . , y n-1 )) x m+1+k = e n (y 1 , y 2 , . . . , y n )x m + n k=1 k-1 j=0 z m+j e n-k (y 1 , y 2 , . . . , y n )x m+k .
This completes the proof. Now, specializing the array (3.24) with x m = g m r,m (q, x), z m = 1 and y n = -xq r(n-1) , then the q-binomial formula (1

+ t)(1 + qt) • • • (1 + q n-1 t) = n k=0 n k q q ( k 2 ) t k implies that e k (1, q, q 2 , . . . , q n-1 ) = n k q q ( k 2 ) (0 ≤ k ≤ n).
Applying (3.25) we get

a n,m = g m r,n+m (q, x) = n k=0 (-x) n-k n k q r q r( n-k 2 ) g m+k r,m+k (q, x).
Shifting n by nm and then replacing k by nmk yields (3.9).

Let f m r,n (q, x) := q fmaf σ x fix σ (σ ∈ G m (r, n)) be the right-hand side of (3.10). Then f n r,n (q, x) = g n r,n (q, x) by Theorem 3.2.1. For each fixed n we will show that {f m r,n (q, x)} satisfies the recurrence relation (3.8). For 0 ≤ m ≤ n -1 define

E := G m+1 (r, n) \ G m (r, n) = {σ ∈ G m (r, n) : σ(n -m) = n -m}.
By (3.13), each permutation σ ∈ E can be written as

σ = Derσ, i 1 -1, i 2 -2, . . . i s -s ,
where i 1 , . . . , i s are the fixed points of σ arranged in increasing order (i

1 = n -m). Let σ = Derσ, i 2 -2, . . . i s -s . Then the mapping σ → σ is a bijection from E to G m (r, n -1) such that: fix σ = fix σ + 1, and fmaf σ = r((i 1 -1) + (i 2 -2) + • • • + (i s -s)) + fmaj Derσ.
It follows that fmaf σ = fmaf σ + r(nm -1). Hence

f m+1 r,n (q, x) = σ∈Gm(r,n) q fmaf σ x fix σ + σ ∈Gm(r,n-1) q fmaf σ +r(n-m-1) x fix σ = f m r,n (q, x) + xq r(n-m-1) f m r,n-1 (q, x).
This completes the proof of (3.10).

Chapitre 4 Factorization of Clarke et al.'s bijection

This chapter is the second part of [START_REF] Faliharimalala | Fix-Euler-Mahonian statistics on wreath products[END_REF]. Foata and Han [START_REF] Foata | Fix-Mahonian Calculus, I : two transformations[END_REF] have recently constructed two new transformations on symmetric groups and noticed that the composition of their two transformations has some common property as Clarke et al.'s bijection Ψ in [27]. A natural question is then to ask whether these two algorithms are identical. Our aim of this chapter is to settle this open question.

Introduction

Let 0 ≤ m ≤ n and v be a nonempty word of length m on the alphabet [n]. Denote by Sh(0 n-m v) the set of all shuffles of the words 0 n-m and v, that is, the set of all words it is possible to construct using (n-m) 0's and the letters in v by preserving the order of all the letters in v. For any word w = x 1 . . . 

Ψ = ZDer -1 • F • Φ -1 • ZDer. (4.1)
In other words, the diagram in Figure 1 is commutative.

Foata-Han's first transformation Φ

Let v be a derangement of order m and w

= x 1 x 2 • • • x n ∈ Sh(0 n-m v) (0 ≤ n ≤ m). Thus v = x j 1 x j 2 • • • x jm , where 1 ≤ j 1 < j 2 < • • • < j m ≤ n.
Recall that "rank" is the increasing bijection of {j 1 , j 2 , . . . , j m } onto the interval [ m ]. A positive letter x k of w is said to be excedent (resp. subexcedent) if x k > rank(k) (resp. x k < rank(k)). Accordingly, a letter is non-subexcedent if it is either equal to 0 or excedent. We define n bijections φ l (1 ≤ l ≤ n) from Sh(0 n-m v) (0 ≤ n ≤ m) onto itself in the following manner: for each l such that nm + 1 ≤ l ≤ n let φ l (w) := w. When 1 ≤ l ≤ nm, let x j denote the l-th letter of w, equal to 0, when w is read from left to right. Three cases are next considered (by convention, x 0 = x n+1 = +∞):

(1) x j-1 , x j+1 both non-subexcedent;

(2) x j-1 non-subexcedent, x j+1 subexcedent; or x j-1 , x j+1 both subexcedent with x j-1 > x j+1 ;

(3) x j-1 subexcedent, x j+1 non-subexcedent; or x j-1 , x j+1 both subexcedent with x j-1 < x j+1 .

Foata-Han's second transformation F

The bijection F maps each shuffle class Sh(0 n-m v) with v an arbitrary word of length m (0 ≤ m ≤ n) onto itself. When n = 1 the unique element of the shuffle class is sent onto itself. Also let F(w) = w when des(w) = 0.

Let n ≥ 2 and assume that F(w ) has been defined for all words w with nonnegative letters, of length n ≤ n -1. Let w be a word of length n such that des(w) ≥ 1. We may write In short, add one letter "0" to the left of F(w a0 r ), then delete the rightmost letter "0" and add b to the right. In case (3) remember that r = 0. Write

w = w a0 r b,
F(w a) = 0 m 1 x 1 v 1 0 m 2 x 2 v 2 • • • 0 m k x k v k ,
where m 1 ≥ 0, m 2 , . . . , m k are all positive, then x 1 , x 2 , . . . , x k are positive letters and v 1 , v 2 , . . . , v k are words with positive letters, possibly empty. Then define:

δ F(w a) := x 1 0 m 1 v 1 x 2 0 m 2 v 2 x 3 • • • x k 0 m k v k ; F(w) = F(w ab) := (δ F(w a))b.
In short, move each positive letter occurring just after a 0-factor of F(w a) to the beginning of that 0-factor and add b to the right.

Proof of Theorem 4.1.1

We show that the composition ZDer -1 • F • Φ -1 • ZDer satisfies the relations (3.14)-(3.17) characterizing the bijection Ψ. The proof is based on Lemmas 4.1, 4.3 and 4.4, which will be proved in Section 4.5. Let τ = σ, i 1 , i 2 , . . . , i m ∈ S n+m , where σ = x 1 . . . x n ∈ D n is the derangement part of τ . Since the positions of fixed points of τ are the same as that of zeros of ZDerτ , we write

ZDerτ = [σ, i 1 , i 2 , • • • , i m ] ∈ Sh(0 m σ).
Thus the k-th zero from left to right of ZDerτ is at the position i k + k for k ≤ m and i k is the number of pillars at the left of the k-th zeros in ZDerτ . Consequently, writing i := i m then

[x 1 x 2 • • • x n , i 1 , i 2 , • • • , i m ] = wx i 0 r x i+1 x i+2 • • • x n , (4.2)
where w is a word with i -1 pillars and r the largest integer satisfying i m+1-r = i. The integer r must be positive for the last zero is located just at the left of the (i + 1)-th pillar.

Example. Let Ω = [3 1 4 5 2, 0, 0, 0, 1, 1, 2, 2, 2, 2]. Then i = 2, r = 4, w = 0 0 0 3 0 0 and Ω = w 1 0 4 4 5 2 = 0 0 0 3 0 0 1 0 0 0 0 4 5 2.

For brevity we introduce the following notations: For any t ≥ 0 and

I = (i 1 , • • • , i m ) ∈ N m , let I +t = (i 1 +t, • • • , i m +t), t [m] = (t, • • • , t) ∈ N m . Moreover, for any ω ∈ Sh(0 n-m v), if F(ω) = [σ, i 1 , • • • , i m ],
then we write

F(ω) = [σ, I ω ] with I ω = (i 1 , • • • , i m ).
Besides, for any non empty finite word w we denote, respectively, by F (w) and L (w) the first and last letter of w when w is read from left to right. Lemma 4.1. Let w 1 , w 2 be two non empty words such that L (w 1 ) > 0 and zero(w 2 ) = 0. Assume that ( L (w 1 ), F (w 2 )) = (a, b) and pil(w 1 ) = ν, des(w 2 ) = t. Let μ = w 1 0 r w 2 with r ≥ 0. Then

zero(w 1 ) = 0 =⇒ I μ = ⎧ ⎪ ⎨ ⎪ ⎩ (t [r] , I w 1 + t + 1), if a > b, I w 1 + t, if a < b and r = 0, (t [r-1] , I w 1 + t + 1, ν + t), if a < b and r > 0; (4.3) and zero(w 1 ) = 0 =⇒ I μ = ⎧ ⎪ ⎨ ⎪ ⎩ ∅, if r = 0, (t [r] ),
if r > 0 and a > b, (t [r-1] , ν + t), if r > 0 and a < b. • The slot (i, i + 1) of σ is green if and only if one of the following conditions is satisfied:

(G 1 ) x i > x i+1 > i; (G 2 ) x i < i < x i+1 ; (G 3 ) i > x i > x i+1 . (4.5)
• The slot (i, i+1) of σ is red if and only if one of the following conditions is satisfied:

(R 1 ) i < x i < x i+1 ; (R 2 ) x i > i ≥ x i+1 ; (R 3 ) x i < x i+1 ≤ i. (4.6)
By convention x 0 = x n+1 = +∞. If we denote by d i the number of descents of σ, i at right of i (σ is a derangement) then Lemma 3.1 implies that g i = d i if the i-th slot is green, and

g i = d i + i if the slot is red. Lemma 4.2. Let σ = x 1 x 2 • • • x n ∈ S n , let (i, i + 1
) be the j-th slot of σ and

t i = des(x i+1 • • • x n ) (1 ≤ i ≤ n) then d j = t i in the cases G 1 , G 2 , or R 1 ; t i + 1 in the cases G 3 , R 2 , or R 3 .
Proof. Clearly, in the cases G 1 , G 2 , R 1 the value x i+1 is an exceedant of σ, so i + 1 is not a descent place of σ, j while in the cases G 3 , R 2 and R 3 the value x i+1 is a sub-exceedant, so i + 1 is a descent place of σ, j .

Let τ = σ, i 1 , i 2 , • • • , i m ∈ S n+m and Ω = ZDerτ = [σ, i 1 , • • • , i m ].
We distinguish two cases according to the color of the insertion slot.

The i m -th slot of σ is green

Define ω = [σ, i 1 , . . . , i m-1 ], ω = Φ -1 (ω) and Ω = Φ -1 (Ω).
We must check (3.14) and for m > 1, where v = w 1 w 2 and V = w 1 0w 2 . Let t 2 = des(w 2 ), t 3 = des(w 3 ) and t = des(w 2 0w 3 ) = g im , ν = pil(v) = pil(V ). If zero(w 1 ) = 0, as a > b, by (4.3) we have 

F • Φ -1 (ω) = [σ, j 2 , • • • , j m ] =⇒ F • Φ -1 (Ω) = [σ, g im , j 2 , • • • , j m ], (4.
I v = I w 1 + t 2 +

The i m -th slot of σ is red

Let k be the largest integer such that i

m-k+1 = i m . Define ω = [σ, i 1 , • • • , i m-k ], ω = Φ -1 (ω), Ω = Φ -1 (Ω) and Ω = ψ m-k • • • ψ 1 (Ω).
For k = m the relation (3.16) is equivalent to

I Ω = ((g im -i m ) [m-1] , g im ), (4.15) 
which corresponds to (3.14) when m = 1. For k < m the relation (3.17) is equivalent to Assume that x i+1 is excedent.

I Ω = ((g im -i m ) [k-1] , I ω + 1, g im ). ( 4 
This corresponds to the case (R 1 ), i.e., x i and x i+1 are both excedent and x i < x i+1 . Hence, all the zeros of ω are at the left of x i and all the zeros of ω remains at the left of x i . It follows that

ω = w 1 x i x i+1 • • • x n and Ω = w 1 x i 0 k x i+1 • • • x n (4.17)
Besides, as the map ψ j is identity for

m -k + 1 ≤ j ≤ m, we have Ω = Ω. Let t = des(x i+1 • • • x n ). By Lemma 4.2 we have t = g i -i.
If zero(w 1 ) = 0 then m = k. From (4.4) we derive

I Ω = (t [k-1] , i + t) = ((g i -i) [m-1] , g i ),
which is (4.15). If zero(w 1 ) = 0, by (4.3) we have

I ω = (I w 1 x i + t) and I Ω = (t [k-1] , I w 1 x i + t + 1, i + t),
which is precisely (4.16).

Assume that x i+1 is subexcedent.

We need the following result.

Lemma 4.4. Let h be the largest integer such that i + 1 > x i+1 > • • • > x h and l = i + 1 if x i is excedent or the last zero of w is located between x i and x i+1 otherwise l be the smallest integer such that x l < • • • < x i+1 < i + 1 and that ω does not contain zero at the right of

x l . Set T = des(x l • • • x n ); w 3 = x h+1 • • • x n ; t = des(w 3 ), then we have ω = w 1 x l-1 0 r x l • • • x h w 3 , (4.18) Ω = w 1 x l-1 0 r+k-1 x l • • • x h 0w 3 . (4.19)
Moreover, the following identities hold true:

i) (r = 0 and x l-1 > x l ) or (r = 1 and x l-1 < x l ), ii) T + 1 = g i -i, iii) h + t = g i . Let t = des(x l • • • x h ). As x h < x h+1 we have T = t + t . Write Ω = V 0w 3 with V = w 1 x l-1 0 r+k-1 x l • • • x h .
• Suppose that k = m. Then r = 0, zero(w 1 x l-1 ) = 0 and x l-1 > x l .

-If k = 1 then zero(V ) = 0. By (4.4) we have

I Ω = (h + t ) = (g i ),
which is equivalent to (3.14).

-If k > 1 then zero(V ) > 0. By (4.3) we have I Ω = (I V + t + 1, h + t ), while (4.4) yields I V = t [k-1] . Hence I Ω = ((T + 1) [k-1] , h + t ), which is equivalent to (4.15).

• Suppose that k < m. There are three cases:

(a) r = 0, we have zero(w 1 ) = 0, x l-1 > x l and, by (4.3),

I ω = (I w 1 x l-1 + T + 1) and I V = (t [k-1] , I w 1 x l-1 + t + 1).
(b) r = 1 and zero(w 1 ) = 0, we have x l-1 < x l . By (4.3)

I ω = (I w 1 x l-1 + T + 1, l -1 + T ) and I V = (t [k-1] , I w 1 x l-1 + t + 1, l -1 + t).
(c) r = 1 and zero(w 1 ) = 0, by (4.4) we have 

I ω = (l -1 + T ) and I V = (t [k-1] , l -1 + t).
. Let w = [α, i 1 , • • • , i z ] ∈ Sh(0 z α). Note that wb = [αb, i 1 , • • • , i z ], w0 = [α, i 1 , • • • i z , ν], 0w = [α, 0, i 1 , • • • , i z ]. Hence, if L (w) = 0, i.e., i z = ν, then Υ[α, i 1 , • • • , i z ] = [α, 0, i 1 , • • • , i z-1 ]. On the other hand, if x 1 , • • • x n are positive integers, then x 1 • • • x k 0 r x k+1 • • • x n = [x 1 • • • x n , k [r] ] It follows that δ(w) = [α, i 1 + 1, • • • , i z + 1]
. Now, consider the word μ = w 1 0 r w 2 , where Pil(μ) = σ, Pil(w 1 ) = α and |α| = ν. Since w 1 and w 2 are non empty we can write

w 1 = v 1 a and w 2 = bv 2 . Therefore μ = v 1 a0 r bv 2 . If zero(w 1 ) = z = 0 and a > b set I w 1 = (l 1 , • • • , l z ). Then, we have succesively F(v 1 a0) = δ(F(v 1 a))0 = [α, l 1 + 1, • • • , l z + 1, ν] =⇒ I v 1 a0 = (I v 1 a +1, ν), F(v 1 a00) = Υ(F(v 1 a0))0 = [α, 0, l 1 +1, • • • , l z +1, ν] =⇒ I v 1 a0 r = (0 [r-1] , I v 1 a +1, ν), and F(v 1 a0 r b) = Υ(F(v 1 a0 [r] ))b = [αb, 0 r , I w 1 +1]. Finally, as zero(v 2 ) = 0, we have F(μ) = [σ, t [r] , I w 1 + 1 + t],
which corresponds to the first case of (4.3). The other cases can be proved similarly.

Proof of Lemma 4.3

Recall

that Ω = [σ, i 1 , • • • , i m ], where σ = x 0 x 1 • • • x n x n+1 , ω = [σ, i 1 , • • • , i m-1 ], Ω = Φ -1 (Ω), ω = Φ -1 (ω). Set ω = ψ m-2 • • • • • ψ 1 (ω), Ω = ψ m-1 • • • • • ψ 1 (Ω) and i = i m .
The last zero of ω is at the left of x i+1 so is the last zero of ω by definition of Φ -1 . So all m -2 zeros of ω are on the left of x i+1 and only the last can be on the left or on the right of x i+1 . Hence ω is of the following form:

ω = v 1 x i 0 x i+1 x n+2 . . . x h 0 r x h+1 . . . x n x n+1 ,
where ≥ 0, and 0 ≤ r ≤ 1. Keeping in mind the definition of Φ -1 , if x i+1 is excedent (the case of G 1 or G 2 ) then we have necessarily r = 0 and If x i+1 is subexcedent (the case of G 3 ) then it is impossible for the last zero of ω to be between x i and x i+1 , otherwise when one applies to ω the map ψ -1 m-1 , it corresponds to the case (2) therefore the last zero of ω would be on the right of x i+1 , that is impossible. So in case of G 3 we have necessarily r = 1 or (r = 0 and = 0). We consider the following three cases:

• G 1 or (G 2 and > 0). Since r = 0, hence ω and ω are of the following forms:

ω = v 1 x i 0 x i+1 . . . x n+1 , Ω = v 1 x i 0 +1 x i+1 . . . x n+1 .
In this case ψ m is the identity therefore Ω = Ω and then we have

r = ; r = 0 w 1 = v 1 x i ; w 2 = x i+1 • • • x n x n+1 ; w 3 = ∅.
If r = 0 we have G 1 so a > b and by Lemma 4.2, des(w 2 ) = g i .

• (G 2 and = 0) or (G 3 and r = 0). In this case, let k be the smallest integer such that x k < • • • < x i < i and ω does not contain any zero on the right of x k . Thus ω and Ω are of the following forms:

ω = v 1 x k-1 0 r x k . . . x i x i+1 . . . x n+1 , Ω = v 1 x k-1 0 r x k . . . x i 0x i+1 . . . x n+1 .
Since Ω = ψ m ( Ω) and the map ψ m corresponds to the case (2'), we have

Ω = v 1 x k-1 0 r+1 x k • • • x i x i+1 • • • x n x n+1 . Moreover r = 0 w 1 = v 1 x k-1 and w 2 = x k • • • x n x n+1 ; w 3 = ∅. As des(x k • • • x i ) = 0, we have des(w 2 ) = g i by Lemma 4.2.
• (G 3 and r = 1). In this case, both x i and x i+1 must be subexcedances and x i > x i+1 and h must be the largest integer such that i

+ 1 > x i+1 > • • • > x h (by applying φ m-1 to ω). Let k be the smallest integer such that k > x k > • • • > x i+1
and ω contains only one zero on the right of x k . Thus we have

ω = v 1 x k-1 0 α x k • • • x i x i+1 • • • x h 0x h+1 • • • x n+1 .
On the other hand, the last zero of ω is at the left of x i+1 , more precisely just at the left of

x k because k > x k > x i > x i+1 > • • • > x h by the map φ m-1 . Hence ω = v 1 x k-1 0 α+1 x k • • • x i x i+1 • • • x h x h+1 • • • x n+1 . Set Ω = ψ m-2 • • • • • ψ 1 (Ω). Then Ω = [ ω, i] = v 1 x k-1 0 α+1 x k • • • x i 0x i+1 • • • x h x h+1 • • • x n+1 .
When we apply ψ m-1 to Ω, it corresponds to the case (3'), so

Ω = ψ m-1 ( Ω) = v 1 x k-1 0 α x k • • • x i 00x i+1 • • • x h x h+1 • • • x n+1 .
Similary we have

Ω = ψ m ( Ω) = vx k-1 0 α x k • • • x i 0x i+1 • • • x h 0x h+1 • • • x n+1 .
In this situation we take r = 0 (r = 1) and

w 1 = v 1 x k-1 0 α x k • • • x i ; w 2 = x i+1 • • • x h ; w 3 = x h+1 • • • x n+1 .
As x h < x h+1 we have des(w 2 0w 3 ) = des(w 2 w 3 ) + 1 = g i by Lemma 4.2.

Proof of Lemma 4.4

Since the i-th slot of σ is red and x i+1 is subexcedent, we are in the situation of R 2 or R 3 . Recall that all the zeros of ω are located at the left of

x i so are all of ω = ψ m-k-1 • • • • • ψ 1 (ω).
We show that the last zero of ω is at the left of x i+1 . In the R 2 case x i is excedent and all zeros of ω are on the left of x i . In the R 3 case, suppose that the last zero of ω is at the right of x i+1 , then, by applying the reverse mapping ψ -1 m-k = φ m-k , the last zero of ω cannot be at the left of x i because x i < x i+1 . This is absurd. In order to show (4.18) and (4.19) set Ω m-k = Ω and for all j such that mk < j ≤ m set Ω j = ψ j (Ω j-1 ). There are two cases:

• If l ≤ i then ω = w 1 x l-1 0 r x l • • • x i x i+1 • • • x h x h+1 w 3 , and Ω = w 1 x l-1 0 r x l • • • x i 0 k x i+1 • • • x h x h+1 w 3 .
Noticing that x i < x i+1 < i+1, so x i is subexcedent and the application of ψ j to Ω j-1 corresponds to case (2') for all mk < j < m and ψ m corresponds to case (3'). Therefore

Ω = w 1 x l-1 0 r+k-1 x l • • • x i x i+1 • • • x h 0x h+1 w 3 . • If l = i + 1, then ω = w 1 x i 0 r x i+1 • • • x h x h+1 w 3 and Ω = w 1 x i 0 r+k x i+1 • • • x h x h+1 w 3 .
In this case, ψ j corresponds to the case (1) for all mk < j < m, and ψ m coresponds to case (3'). So

Ω = w 1 x i 0 r+k-1 x i+1 • • • x h 0x h+1 w 3 .
It remains to verify the three conditions of Lemma 4.4 in the above two cases. It is clear that x l-1 > x l if r = 0. Moreover, neither r > 1 nor (r = 1 and x l-1 > x l ) is possible because, otherwise, when we apply φ m-k to ω , it corresponds to case (2), so the last zero of ω would be at the right of x i+1 , but this is absurd. So the condition (i) is verified. Besides, as des(x l • • • x i+1 ) = 0 we have T = des(x i+1 • • • x n ), and by Lemma 4.2, we derive the condition (ii). Finally, by definition of h we have des(

x i+1 • • • x h ) = h -i -1, and T = des(x i+1 • • • x n ) = h -i -1 + t . Thus h + t = g i .
act on the symmetric group S s . The purpose of this chapter is to extend the transformation Φ on r-colored words.

Let C r be the r-cyclic group generated by ζ = e 2iπ/r . By r-colored word, we understand a pair (ε, x) where ε ∈ (C r ) m and x is a word of length m whose the letters are nonnegative integers. For reasons which will appear, if w := (ε, x) is a r-colored word where ε Any r-colored word can be considered as a finite word of the alphabet Σ r :=

= (ζ k 1 , ζ k 2 , . . . , ζ km ) and x = x 1 x 2 • • • x m , we write w := w 1 w 2 • • • w m where w j = ζ k j x j (1 ≤ j ≤ m). For any 1 ≤ j ≤ m, ε j = ζ k j is
{ξj; ξ ∈ C r , j ≥ 1}. Let w := w 1 w 2 • • • w m := ε 1 x 1 ε 2 x 2 • • • ε m x m be a r-colored word, we note |w i | := x i (1 ≤ i ≤ m); |w| := |w 1 ||w 2 | • • • |w m |; (5.1)
and define the statistic power-color col by

col i w := 0≤j≤r-1 jχ(ε i = ζ j ) (1 ≤ i ≤ m); col w := 1≤i≤m col i w. (5.2) If m = (m 1 , • • • , m s ) is a sequence of nonnegative integers such that m 1 + • • • + m s = m, let G r,m be the set of all r-colored words w = w 1 w 2 • • • w m such that |w| ∈ R m . The class G r,m contains r m m m 1 ,m 2 ,...,ms r-colored words. When m 1 = m 2 = • • • = m s = 1, the class G r,
m is the wreath product C r S s denoted by G r,s . We define the order relation on Σ r as follows:

ζ j i > ζ j i ⇐⇒ [j < j ] or [(j = j ) and (i > i )].
(5.

3)

The restriction of this order to the class of ordinary words (with nonnegative letters) is the usual order.

As in [START_REF] Foata | Signed Words and permutations, I ; A fundamental transformation[END_REF], the statistics "inv" and "maj" must be adapted to r-colored words and correspond to classical statistics when applied to ordinary words. Let

(ω; q) n := 1 i f n = 0; (1 -ω)(1 -ωq) • • • (1 -ωq n-1 ) if n ≥ 1;
denote the usual q-ascending factorial of ω and

m 1 + m 2 + • • • + m s m 1 , m 2 , .
. . , m s q := (q; q) m 1 +m 2 +•••+ms (q; q) m 1 (q; q) m 2 • • • (q; q) ms be the q-multinomial coefficient. With the order relation defined in (5.3), the natural extensions of the flagmajor index "fmaj" and the flag-inversion number "finv" introduced by Foata and Han [START_REF] Foata | Signed Words and permutations, I ; A fundamental transformation[END_REF] on r-colored words are defined as follows: for all r-colored word w

:= w 1 w 2 • • • w m , fmaj w := r m-1 i=1 iχ(w i > w i+1 ) + col w; finv w := 1≤i<j≤m ξ∈Cr χ(ξw i > w j ) + col w.
Foata and Han defined (-q; q) m m m 1 , m 2 , . . . , m s q as a q-analog of 2 m m m 1 , m 2 , . . . , m s .

By analogy, (q r ; q r ) m (q; q) m m m 1 , m 2 , . . . , m s q is a natural q-analog of r m m m 1 , m 2 , . . . , m s .

By induction on the length of w, we have the following identity:

(q r ; q r ) m (q; q) m m m 1 , m 2 , . . . , m s q = w∈Gr,m q finv w .

Proof. we consider the bijective transformation where des w := m-1 i=1 χ(w i > w i+1 ). The main purpose of this chapter is to prove the following theorem. Example. Let's take the hyperoctahedral group of order 2. 

φ : G r,m -→ {0, 1, . . . , r -1} × s k=1 G r,m-1 k , w := w 1 w 2 • • • w m -→ (α, w ) := (col m w, w 1 w 2 • • • w m-1 )
-n < -(n -1) < • • • < -1 < 1 < • • • < (n -1) < n, ( 5.5) 
Brenti [START_REF] Brenti | q-Eulerian Polynomials Arising from Coxeter Groups[END_REF] derive that finv coincide with traditional length function and Adin and Roichman [START_REF] Adin | The flag major index and group actions on polynomial rings[END_REF] proved that Rfinv and fmaj are equidistribued on hyperoctahedral group. Back to order relation (5.3) on [-n, n], ie

-1 < • • • < -(n -1) < -n < 1 < • • • < (n -1) < n,
one has = Rfinv and finv = Rfinv .

but we observe that Rfinv remain equidistributed with fmaj and we prove that its extension on wreath product is also mahonian. We have the following theorem. q Rfinv σ = σ∈G(r,n) q finv σ = (q r ; q r ) n (1q) n .

(5.7)

The construction of Φ

Let us recall the second fundamental transformation Φ [START_REF] Foata | On the Netto inversion number of a sequence[END_REF]. First, for each integer x, we recall the transformation γ x . Let w = x 1 x 2 • • • x m be a word with positive letters. The first (resp. last) letter x 1 (resp. x m ) is denoted by F (w) (resp. L(w)). If L(w) ≤ x (resp. L(w) > x), w admits the unique factorisation :

(u 1 y 1 , u 2 y 2 , • • • , u p y p ) called its x-right-to-left factorisation having the following properties:

1. each y i (1 ≤ i ≤ p) is a letter verifying y i ≤ x (resp. y i > x);

2. each u i (1 ≤ i ≤ p) is a factor which is either empty or has all its letters greater than (resp. smaller than or equal to) x.

Then, the bijective transformation γ x maps w = u 1 y 1 u 2 y 2 . . . u p y p onto the word γ x (w) = y 1 u 1 y 2 u 2 • • • y p u p .

Foata defined Φ(w) by induction on the length of w. If w has length one, then Φ(w) = w. If it has more than one letter, write the word as vx where x is the last letter and define Φ(vx) to be the juxtaposition product Φ(vx) := γ x (Φ(v))x.

(5.8)

We now define Φ as follows.

For each word u = x 1 x 2 • • • x m with nonnegative letters and each element Proof. For all integers i, j, k such that 1 ≤ i < j ≤ m and 0 ≤ k ≤ r -1, one has:

χ(ζ k |w i | > w j ) = χ(k < col j w) + χ(k = col j w)χ(|w i | > |w j |).
Thus, finv w = m j=1 (j-1) col j w+inv |w|+ m j=1 col j w = inv |w|+ m j=1 j col j w. For each i such that 1 

≤ i ≤ m -1, -if |w i | ≤ |w i+1 |, then i = i i+1 = ζ col i w-col i+1 w ; -if |w i | > |w i+1 |, then i = i i+1 ζ -1 = ζ col i w-col i+1 w-1 .

Chapitre 6

Conclusion et perspectives

Nous avons étudié dans le chapitre 3 le polynôme g r,n (q, x) = π∈G(r,n)

q fmaj π x fix π .
Ici la notion de point fixe est limitée à la couleur neutre, c'est à dire que l'entier i est un point fixe de π si et seulement si π(i) = i. Mais on peut considérer également les points fixes colorés. Pour chaque i ∈ {0, 1, . . . , r -1}, définissons la statistique fix i suivante. i coul i π. (6.4) Notre perspective est d'étudier le raffinement de g r,n (q, x) suivant : g r,n (q, (x i ), (y i )) = π∈G(r,n) q fmaj π r i=0

x fix i π i y coul i π i . (6.5)

Le cas particulier pour r = 2 est étudié par Foata Han dans [START_REF] Foata | Signed words and permutations, IV ; fixed and pixed points[END_REF] avec la relation d'ordre OM . Si on note B n (q, x 0 , x 1 , z) le polynôme défini par l'identité : n≥0 B n (q, x 0 , x 1 , z) u n (q 2 , q 2 ) n = (1u 1 + qz 1q 2 ) -1 × (u; q 2 ) ∞ (ux 0 ; q 2 ) ∞ (-uqx 1 z; q 2 ) ∞ (-uqz; q 2 ) ∞ , q fmaj π x fix 0 π 0 x fix 1 π 1 z coul 1 (π) .

Cette perspective a pour but de voir si ce theorème est extensible pour r quelconque.

Notre deuxième perspective repose sur les problèmes de motifs. Ce domaine prend une place importante en combinatoire énumérative. Des résultats classiques peuvent être interprétés en terme de motifs. Par exemple, les nombres de partitions de [n], de chemins de Dyck, de " non-overlapping partitions" de [n], d'involutions, de chemins de Motzkin, peuvent être interprétés en terme de motifs (voir les résultats principaux de Anders Claesson [START_REF] Claesson | Generalized pattern avoidance[END_REF]).

Le problème d'extension des motifs sur les permutations colorées n'est pas évident. Mansour [START_REF] Mansour | Pattern avoidance in colored permutations[END_REF] a donné des résultats sur les motifs colorés de longueur 2 et sur quelques cas particuliers pour les longueurs quelconques. Rappelons que si π ∈ S n et τ ∈ S k (k ≤ n), une occurrence de τ dans π est une suite On dit que π evite le motif τ (τ -avoiding) si π ne contient pas τ . On note G(r, n)(τ ) l'ensemble des τ -avoiding dans G(r, n). Plus généralement, si T est un ensemble de motifs, soit G(r, n)(T ) l'ensemble des permutations colorées de G(r, n) qui ne contient aucun motif dans T .

1 ≤ i 1 < i 2 < • • • i k ≤ n,
Il a été démontré dans [START_REF] Mansour | Pattern avoidance in colored permutations[END_REF] que : Il a également donné deux autres cas particuliers. Notre perspective est de renforcer les résltats sur l'énumération des permutations colorées relative aux motifs colorés de longueur supérieure ou égale à 3. 

∀τ ∈ G(r,
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 2 Figure 2 -Graphe de Coxeter pour les types A, B, D
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 15 Le produit en couronne C r S n Soit r un entier positif. Posons ζ = e 2iπ/r . Le groupe cyclique d'ordre r noté C r est le groupe engendré par ζ . Notons C n r le produit direct n-fois de C r . On peut considérer C n r comme l'ensemble des applications de [n] vers C r qui à i associe (i) = i . L'opération sur C n r est donc définie par :

Exemple 4 .

 4 Si σ = 3 1 6 2 4 5 ∈ B 6 , alors avec la relation d'ordre OM nous avons : Des A (σ) = {2, 4, 5}; Des B (σ) = {0, 2, 4, 5}; Neg(σ) = {1, 3, 5, 6}; NDes(σ) = {2, 3, 4 2 , 5 2 , 6}; neg(σ) = 4; ndes(σ) = 7; nmaj(σ) = 29; fdes(σ) = 7.
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 76 est 4-fixée croissante dans G[START_REF] Adin | Equi-distribution over descent classes of the hyperoctahedral group[END_REF][START_REF] Biagioli | Enumerating wreath products via Garsia-Gessel bijections[END_REF].

Théorème 0. 19 .

 19 Soient les entiers r > 0, n ≥ 0 et n ≥ m ≥ 0. Alors, pour tout entier k tel que 0 ≤ k ≤ m, l'entier g m r,n est le nombre de permutations dans G(r, n) dont les k-successions circulaires sont incluses dans [m]. Les spécialisations pour (r = 1, k = 0) et (r = 1, k = m) de ce théorème correspondent respectivement aux résultats des Théorème 0.15 et 0.16. Le cas particulier m = 0 et k = 0 nous donne quand à lui le r-analogue de la formule du nombre de dérangements suivant :

)

  Dans son récent article[START_REF] Rakotondrajao | k-fixed-points-permutations[END_REF], Rakotondrajao a étudié le cas r = 1de cette matrice. Elle a démontré que le nombre d m 1,n s'interprète comme le nombre des m-fixed point-permutations. C'est la classe des permutations de S n telles que les points fixes sont majorés par m et chaque cycle contient au plus un élément de [m]. Nous généralisons cette interprétation pour r quelconque. Nous avons trouvé deux classes de permutations colorées pour notre interprétation. La classe des m-fixées-isolées qui est une extension de m-fixed-permutation de Rakotondrajao et la classe des m-fixées-croissantes (voir sous section 0.1.11). Théorème 0.21. Pour tout entier r > 0 et 0 ≤ m ≤ n, d m r,n est le nombre des m-fixées-isolées dans G(r, n). Théorème 0.22. Pour tout entier r > 0 et 0 ≤ m ≤ n, d m r,n est le nombre des m-fixées-croissantes dans G(r, n).

Remarque 8 .Exemple 9 .

 89 Dans toute la suite, les statistiques sont calculées par rapport à la relation d'ordre OC . Si π = 1 7 3 6 5 9 2 8 4 ∈ G(3, 9), alors les points fixes de π sont 1,3, 5, 8 et y 1 y 2 • • • y 5 = 7 6 9 2 4 donc Der(π) = 4 3 5 1 2.

  ∈ G[START_REF] Adin | Signed mahonians[END_REF][START_REF] Biagioli | Enumerating wreath products via Garsia-Gessel bijections[END_REF], the values 5 and 8 are the two 3-circular successions at positions 2 and 5.Thus C 3 (π) = {5, 8}.The following is our main result on the combinatorial interpretation of the coefficients g m r,n in terms of k-circular successions. Theorem 1.2.1. For any integer k such that 0 ≤ k ≤ m, the entry g m r,n equals the number of permutations in G(r, n) whose k-circular successions are included in[m]. In particular, by taking k = 0 and k = m, respectively, either of the following holds.

  (i) The entry g m r,n is the number of permutations in G(r, n) whose fixed points are included in [m].

Theorem 1 . 2 . 4 .

 124 1, 2 3 1}. For 0 ≤ m ≤ n, the entry d m r,n equals the cardinality of I m r,n .

Theorem 1 . 2 . 5 .

 125 3 because 1 and 2 are in the same cycle. For 0 ≤ m ≤ n, the entry d m r,n equals the cardinality of D m r,n .

  one can recover π by inserting m + 1 between π m-k and π m-k+1 and then replacing each letter π i by π i + 1 if |π i | > m. For example, if π = 3 9 5 8 7 6 2 1 4 ∈ G(3, 9, 5, 2), then π = 3 8 7 6 5 2 1 4 ∈ G(3, 8, 4, 2). Note that π has a k-circular succession j ≥ m + 1 if and only

Lemma 1 . 1 .

 11 For 0 ≤ k ≤ nm there holds c k r,n,m = nk m g k r,n-m . (1.14) Proof. To construct a permutation π in G(r, n) with m k-circular successions we can first choose m positions i 1 , . . . , i m of k-circular successions among the first nk ones and then construct a permutation π 0 of order nm without k-circular successions on the remaining nm positions, where and in what follows we shall assume that i 1 < i 2 < • • • < i m . More precisely, there is a bijection θ : π → (I, π 0 ), where I = {i 1 , . . . , i m }, from the set of the colored permutations of order n with m k-successions to the product of the set of all m-subsets of [nk] and the set of colored permutations of order nm without k-circular successions. Denote by G r,n,k,i the set of all permutations in G(r, n) whose maximal position of k-circular successions equals i. Define the mapping R i : π → π from G r,n,k,i to G(r, n -1) such that the linear form of π is obtained from π = π 1 . . . π n by removing the letter (i + k) and replacing each colored letter π j by π j -1 if |π

  σ = |π| into cycles we get σ = (1, 3, 9)(2, 4, 8)(6, 5, 7), then σ = 1 3 9 2 4 8 6 5 7 and T σ = {1, 2, 6}.

  m r,n to I m r,n in two steps. First we establish the correspondence |π| → |π | and then determine the color transformation. Define the permutation |π | = |π |(1) . . . |π |(n) such that |π |(1) . . . |π |(m) is the increasing rearrangement of |π|(1), . . . , |π|(i m ) and |π |(m + 1) . . . |π |(n) = |π|(m + 1) . . . |π|(n). Conversely, starting from π ∈ I m r,n , for each i ∈ [m] we construct the cycle of |π| containing i by

  and by convention |π | 0 (i) = i. In particular if i ∈ [m] ∩ T , then s = 0 and i is a fixed point of |π|. The other cycles remain unaltered. For example, for π = (1)(2, 7, 6)(3, 5, 9)(4)( 8) ∈ D 4 3,9 (i.e., n = 9, r = 3, m = 4), we have |π| = (1)(2, 7, 6)(3, 5, 9)(4)(8) and |π | = 145792683 = (1)(2476)(359)(8), so T = {1, 4, 5, 7}. Now, we describe the color transformation. For each i ∈ [m], since the letter i of π (m-isolated-fixed) as well as the letter π(i) of π (m-increasing-fixed) are uncolored, the transformation of the colors is obtained by exchanging the color of |π|(i) and that of i, namely color π (i) = color π (|π|(i)), and color π (i) = color π (|π|(i)) = 1 ∀i ∈ [m]; the colors of other letters reamain unaltered, i.e., color π (i) = color π (i) ∀i ∈ [n] \ (T ∪ [m]). Continuing the above example, we have: color π (2) = color π (π(2)) = color π (7) = ζ 1 ; color π (3) = color π (π(3)) = color π (5) = ζ 2 , hence π = 1 4 5 7 9 2 6 8 3.

  the product of cycles of π which have no common point with {iζ j |i ∈ [m], 0 ≤ j ≤ r -1} and π m be the permutation in G(r, m) obtained from π by deleting the cycles in Ω π and letters in w π (i) for i ∈ [m]. For example, if π = ( 1 4 7 3 2 6 5)( 8)( 9) ∈ G 3 3,9 then π 3 = (1 3 2), w π (1) = 4 7, w π (2) = 6 5, w π (3) = ∅ and Ω π = ( 8) ( 9). Let T (π) = (w π (1), w π (2), • • • , w π (m), Ω π ) and define the relation ∼ on G m r,n

  4 7 3 2 6 5)( 8)( 9) ∈ G 3 3,9 and τ = ( 1 2)(3) ∈ G(3, 3) then θ(τ, π) = ( 1 4 7 2 6 5)(3)( 8)( 9).

  Hence the cardinality of each equivalence class is r m m! and, by Theorem 1.2.1 the number of equivalence classes equals d m r,n = g m r,n /r m m!. Choosing θ(ι, π) as the representative of the class C π , where ι is the identity of G(r, m), yields the desired result.

For example, let r = 3 , 2 . 3 .

 323 n = 9 and m = 6. If π = (1 6)(2)(3)(4)(5)( 78 ) ∈ D 5 3,8 , then = 1; α = 6 and π = (1 7)(2)(3)(4)(5)(6)( 89 ); if π = (1)(2 96 8)(3)(4)(5)( 7) ∈ D 5 3,9 then α = 2, = ζ and π = (1)(2 9)(3)(4)(5)( 7)(6 8). It remains to show that ϑ is a bijection. Given ( , α, π ) let σ = |π |. We define the inverse ϑ -1 : ( , m, π ) → π as follows: 1. If α = m; = 1 and π (m) = m then the cycles of π are obtained by deleting the cycle (m) and replacing ζ j i by ζ j i -1 if i ≥ m in π . If α = m; = 1 and π (m) = m then π = π . If α = m; = 1 then we get π from π by replacing m by m.

2 .

 2 If k = n and ε = 1, we obtain π by creating the cycle (εn). Example: ε = ζ 3 , k = 9, π = ( 1

3 . 3 . 1

 331 Suppose k = n and ε = 1. Let p ≥ 0 be the smallest integer such that the transposition (2p +1, 2p + 2) is not a cycle of π. In all the examples of this part we take p = 2. If color π (2p + 1) = 1 then 3.1.1 If 2p + 2 is a 1-circular succession of |π| then π is obtained by deleting 2p + 1 and creating the cycle (n, 2p + 1). Example: π = (1 2)(3 4)(5 6)( 7 8) then π = (1 2)(3 4)( 6)( 7 8)(9 5). 3.1.2 If 2p + 2 is not a 1-circular succession of |π| then: a) If c(2p + 1) = 2 then π is obtained by deleting the cycle (2p + 1, π(2p + 1)) and inserting 2p + 1 just before the letter 2p + 2 and creating the cycle (λn, |π|(2p + 1)) where λ = color π (|π|(2p + 1)). Example: π = (12)(34)(5 8)( 67 ) then π = (12)(34)(5 67 )( 9 8). b) If c(2p + 1) > 2. Let a = |π| -1 (2p + 1) and ξ = color π (a) then π is obtained by deleting the letter ξ • a and creating the cycle (ξn, a). Example: π = (12)(34)(5 86 7 ) then π = (12)(34)(5 86 )( 9 7). 3.2 If color π (2p + 1) = γ = 1 then 3.2.1 If c(2p + 1) = 1 then π is obtained by deleting the letter γ • (2p + 1) and creating the cycle (γn, 2p + 1). Example: π = (12)(34)( 5)( 6 8 7) then π = (12)(34)( 9 5)( 6 8 7). 3.2.2 If c(2p + 1) = 1. Let a = |π| -1 (2p + 1) and γ = color π (a) then π is obtained by deleting the letter γ • a and creating the cycle (γn, a). Example: π = (12)(34)( 5 8 7 6) then π = (12)(34)( 5 8 7 )( 9 6).

  2 and color π (|π |(n)) = 1 then ε = 1 and k = n. Let p be the smallest integer such that the transposition (2p + 1, 2p + 2) is not a cycle of π . a. If π (n) = 2p + 1 and ρ = 1 then we delete the cycle containing n and insert the letter 2p + 1 just before the letter 2p + 2. b. If π (n) = 2p + 1 and color π (2p + 1) = 1 and |π |(2p + 1) = 2p + 2, we first delete 2p + 1 and the cycle containing n, then create the cycle (ρ • π (n), 2p + 1). c. If |π |(2p + 1) = 2p + 2 and π (n) = 2p + 1 then we delete the cycle containing n and then insert the letter ρ • π (n) before the letter 2p + 1. d. If π (n) = 2p + 1 and ρ = 1 then we delete the cycle containing n and create the cycle containing the single letter 2p + 1 with the color ρ.

3 .

 3 If π ∈ D m r,n and the cycle containing n is of length 2 with π (n) > m then let α = n, ρ = 1 and π is obtained from π by deleting the letter n and inserting the letter γσ (n) just after 1 where γ = color π (n).

4 .

 4 In all other cases, let α = σ (n), ρ = color π (n) and π is obtained from π by just deleting the letter ρn. For n = 9; m = 4; r = 3 we give some examples to illustrate the above bijection. π = (1 5)(2)(3 6)(4 7) ∈ D m-1 r,n-2 then α = 9, ρ = 1 and π = (1)(2 6)(3)(4 7)(5 8). π = (1 5)(2 8)(3 6)(4 7)( 9) ∈ D m r,n then α = 9, ρ = ζ 2 and π = (1 5)(2 8)(3 6)(4 7). π = (15)(2 8)(3)(4 7)( 96) ∈ D m r,n then α = 9, ρ = 1 and π = (1 65)(2 8)(3)(4 7). π = (1 5)(2 8)( 6)(4)( 97 3) ∈ D m r,n then α = 7, ρ = ζ 2 and π = (1 5)(2 8)( 6)(4)( 73).

  true and 0 otherwise. When r = 1 we shall write des = des r . The maj and maf statistics are defined by maj σ = n-1 i=1 i • χ(x i > x i+1 ), and maf σ = maj Der(σ) + k j=1 (i jj), where FIX(σ) = {i 1 , i 2 , . . . , i k }. The flag-maj fmaj and flag-maf fmaf statistic are defined by fmaj σ = r • maj σ + col(σ), and fmaf σ = r • maf σ + col(σ). Remark. While the statistic fmaj was first introduced by Adin and Roichman [1], the statistic fmaf is new and reduces to maf of Clarke et al. [27] for r = 1. Example. If σ = 1 8 3 4 6 2 7 5 9 ∈ G(4, 9), then maj σ = 1 + 5 + 7 = 13, FIX σ = {1, 3, 4, 7, 9} and Der(σ) = 4 3 1 2. Therefore maj Der(σ) = 2 and maf σ = 2 + ((1 -1) + (3 -2) + (4 -3) + (7 -4) + (9 -5)) = 11. Since COL 0 (σ) = {1, 3, 4, 5, 7, 9}, COL 1 (σ) = {2, 8}, COL 2 (σ) = {6}, COL 3 (σ) = ∅, we have col(σ) = 0 × 6 + 1 × 2 + 2 × 1 = 4. Finally, fmaj σ = 4 × 13 + 4 = 56, and fmaf σ = 4 × 11 + 4 = 48.

Theorem 3 . 2 . 1 .

 321 The triple statistics (fmaf, exc, fix) and (fmaj, exc, fix) are equidistributed on G(r, n). Moreover the common generating function σ∈G(r,n) 

.

  Let τ = 1 9 3 10 5 6 7 4 2 8 ∈ G[START_REF] Adin | Equi-distribution over descent classes of the hyperoctahedral group[END_REF][START_REF] Biagioli | On some analogues of Carlitz's Identity for the hyperoctahedral Group[END_REF]. Then σ := Der(τ ) = 4 5 2 1 3 ∈ D[START_REF] Adin | Equi-distribution over descent classes of the hyperoctahedral group[END_REF][START_REF] Andreescu | A path to Combinatorics for Undergraduates[END_REF] and τ = σ, 0, 1, 2, 2, 2 . Indeed,

8 3 4 62 7 5 9 ∈ S 9 - 1 F Φ - 1 ΨFigure 4 . 1 :

 991141 Figure 4.1: The Foata-Han factorization of Clarke et al.'s bijection Ψ

Theorem 4 . 1 . 1 .

 411 We have

where a ≥ 1 ,

 1 b ≥ 0 and r ≥ 0. Three cases are considered: (1) a ≤ b; (2) a > b, r ≥ 1; (3) a > b, r = 0. In case (1) define F(w) = F(w a0 r b) := (F(w a0 r ))b. In case (2) we may write F(w a0 r ) = w 0 and then define γ F(w a0 r ) := 0w ; F(w) = F(w a0 r b) := (γ F(w a0 r ))b = 0w b.

7 ) 8 ) 4 . 3 . 1 ) 2 )

 784312 which is equivalent to I Ω = (g im , I ω ). (4.LemmaWe have the following factorizations: ω = w 1 0 r w 2 0 r w 3 and Ω = w 1 0 r+1 w 2 0 r w 3 (r, r ≥ 0),where w 1 = ∅, w 2 = ∅ and w 3 are words on non negative integers. Moreover, if (a, b, a , b ) = ( L (w 1 ), F (w 2 ), L (w 2 ), F (w 3 )), then the following properties hold true: i) zero(w 2 w 3 ) = 0, and L (w1 ) > 0, ii) if r = 0, then a > b, iii) if r > 0, then r = 1, a < b and r = 0, iv) des(w 2 0 r w 3 ) = g im .Notice that if r = 1 then w 3 = ∅ by iii). Let w 2 = w 2 w 3 . If m = 1 then ω = ω = σ and Ω = [σ, i 1 ]. Hence zero(ω) = 0 and r = r = 0. Thus ω = w 1 w 2 and Ω = w 1 0w 2 , where a > b = F (w 2 ) and des(w 2 ) = g i 1 . It follows then from (4.4) that I Ω 1 = (g i 1 ). (4.9) We now prove (4.8) for m > 1. If r = 0 then ω = w 1 0 r w 2 and Ω = w 1 0 r+1 w 2 , (4.10) where des(w 2 ) = t = g im and zero(w 2 ) = 0. As m > 1 we cannot have zero(w 1 ) = 0 and r = 0 simultaneously. It remains to verify the following two cases: i) zero(w 1 ) = 0, a > b or r > 0 and a < b, ii) zero(w 1 ) = 0, r > 0 and a = b. Applying Lemma 4.1 to either case yields I Ω = (t, I ω ) = (g im , I ω ). (4.11) If r = 1, then a < b , r = 0 and a > b. Hence ω = v0w 3 and Ω = V 0w 3 ,

. 16 )

 16 We now verify (4.15) and(4.16). Recall that σ = x 1 . . . x n . For convenience, we use write i := i m in what follows.

4. 5 Proofs of the three lemmas 4 . 5 . 1 1

 54511 Proof of Lemma 4.Recall that δ and Υ are the transformations used in the cases (b) and (c) of the algorithm F. Let α a word of length ν on the alphabet of positive integers and b > 0

  called the color of w j and k j is the power of this color. For small value of r, we shall use k j bars overx j instead of ζ k j x j . For example, if w = ζ 2 3 ζ 2 1 ζ 0 4 ζ1 ζ2 3, then we write w = 314 13 . 

, where m- 1 k

 1 = (m 1 , m 2 , . . . , m k-1 , m k -1, m k+1 , . . . , m s ). We have, k = |w m |, and finv w = finv w + α + 1≤i≤m-1 0≤j≤r-1 χ(ζ j |w i | > w m ) = finv w + mα + (m k+1 + • • • + m s )χ(k < s).

Theorem 5 . 1 . 1 .Corollary 20 .

 51120 The transformation Φ constructed in the section 5.2 has the following properties 1. For every r-colored word w, (fmaj, des * ) w = (finv, col) Φ(w); 2. The restriction of Φ to each class G r,m is a bijection of G r,m onto itself. For each m = (m 1 , m 2 , . . . , m s ) the bistatistics (fmaj, des * ) and (finv, col) are equidistributed on G r,m .

  Now consider the statistic Rfinv defined on hyperoctahedral group as follows:Rfinv w = inv w + n i=1 |w i |χ(w i < 0).If on use the natural order relation on[-n, n] 

Theorem 5 . 1 . 2 .Corollary 21 .

 51221 The statistic Rfinv defined on wreath product C r S n byRfinv w = inv w + n i=1 |w i | col i w (5.6)is mahonian.By Haglund, Loehr and Remmel[START_REF] Haglund | Statistics on wreath products, perfect matchings, and signed words[END_REF] we have the following corollary We have:σ∈G(r,n)

  Now, let w = ( , |w|) be a r-colored word of length m and w := ( , |w |) := Φ(w).

1 j 5 . 4 Proof of Theorem 5 . 1 . 2

 154512 So, coli w = [col i wcol i+1 w + rχ(col i w < col i+1 w)]χ(|w i | ≤ |w i+1 |) + [col i wcol i+1 w -1 + rχ(col i w ≤ col i+1 w)]χ(|w i | > |w i+1 |) = col i wcol i+1 w + rχ(col i w < col i+1 w) + rχ(col i w = col i+1 w)χ(|w i | > |w i+1 |)χ(|w i | > |w i+1 |). col i w < col i+1 w) + χ(col i w = col i+1 w)χ(|w i | > |w i+1 |)]i | > |w i+1 |) = col 1 w + r des wdes |w| = des * w, (col i w < col i+1 w) + χ(col i w = col i+1 w)χ(|w i | > |w i+1 |)] -m-1 i=1 iχ(|w i | > |w i+1 |) = maj |w| + m i=1 col i w + r m-1 i=1 iχ(w i > w i+1 )maj |w| = r m-1 i=1 iχ(w i > w i+1 ) + col w = fmaj w.Finally, Φ is a bijection of G r,m onto itself. Indeed, let w := ( , u ) be an element of G r,m . By the relation (5.9), if w := ( , u) is an element of G r,m such that Φ(w) = w , then u = Φ -1 (u ), m = m and, for i < m, i = m i≤j≤m-ζ χ(x j >x j+1 ) , where u := x 1 x 2 • • • x m . Consider the following transformations Tranformation ρ ρ : G(r, n) -→ G(r, n), w = ( , |w|) -→ ρ(w) = w = ( , |w |), where |w | = |w| -1 and i = |w| -1 (i) . So τ • ρ(w) = w = 51 34 2 and Rfinv w = 18.

Définition 6 . 1 .. 1 )

 611 Soit π ∈ G(r, n). On dit que l'entier j ∈ [n] est un point fixe de couleur i si et seulement siπ(j) = ζ i j. (6On note FIX i (π) l'ensemble des points fixes de couleur i de π et fix i (π) le cardinal de FIX i (π).D'autre part, nous avons défini la statistique col comme somme des col i , (1≤ i ≤ n) avec col i π := 0≤j≤r-1 jχ(ε i = ζ j ) (1 ≤ i ≤ n); (6.2) où π = ( , |π|).Si nous considérons la statistique coul i définie pour tout i ∈ [0, r -1] par coul i π :=

  Foata et Han ont démontré [35, Théorème 1.3] queB n (q, x 0 , x 1 , z) = π∈G(2,n) 

  telle que τ = ρ(π i 1 )ρ(π i 2 ) • • • ρ(π i k ), où ρ est la bijection croissante de [k] sur {π i 1 , π i 2 , • • • , π i k }. Soit maintenant π = ( , |π|) ∈ G(r, n) et τ = (ε, |τ |) ∈ G(r, k). On dit que π contient le motif τ (pattern) s'il existe une suite 1 ≤ i 1 < i 2 < • • • i k ≤ n vérifiantles deux conditions suivantes : (i) Il existe une occurrence de |τ | dans |π|, (ii) i j = ε j , ∀j ∈ [k].

2 ,

 2 2), |G(r, n)(τ )| = n j=0 j!(r -1) j n j et que |G(r, n)(T )| = n!(n + r -1)(r -1) n-1 ,pour les ensembles T suivants :* T = {(1, 2), (2, 1)} pour r ≥ 1, * T = {(1, 2), (1, 2)} pour r ≥ 2, * T = {(1, 2), (2, 1)} pour r ≥ 2, * T = {(1, 2), ( 2, 1)} pour r ≥ 2, * T = {(1, 2), (1, 2)} pour r ≥ 3. De plus, si 2 ≤ a ≤ b et r ≥ b alors pour tout n ≥ 1, |G(r, n)(T )| = i+j≤n n i, j, nij 2 (nij)!(r -2) n-i-j ,pour les ensembles T suivants :* T = {(1, 2), (1ζ a-1 , 2ζ b-1 )}, * T = {(1, 2), (2ζ a-1 , 1ζ b-1 )}, * T = {(1, 2), ( 1, 2)}, * T = {(1, 2), ( 2, 1)}. Le motif τ = (ε, |τ |) ∈ G r,k est dit homogène si et seulement s'il existe un entier u ∈ [0, r -1] tel que ε 1 = ε 2 = • • • = ε k = ζ u . Dans ce cas, on note τ = [|τ |] (u) . Plus généralement, si T ⊂ S k , on écrit T (u) = {[α] (u) : α ∈ T }. Alors Mansour a montré que pour tout u , 0 ≤ u ≤ r -1, T ⊂ S k , n ≥ 0,on a : |G(r, n)(T (u) )| = n j=0 j!(r -1) j n j 2 |S n-j (T )|.

  où B et D sont les fonctions longueurs sur B n et D n . Et la statistique " fmaj D " est définie par :

) 0.2.4 Sur le nombre de dérangements

  

	Rappelons qu'un dérangement d'ordre n est une permutation π de S n qui
	n'a pas de point fixe i.e. π(i) = i ∀i ∈ [n]. On note d n le nombre de
	dérangements d'ordre n. Un dérangement relatif d'ordre n est une permuta-
	tion de S n qui n'a pas de 1-succession circulaire i.e. π(i) = i+1 ∀i ∈ [n-1].
	On note q n le nombre de dérangements relatifs d'ordre n. La notion de
	dérangement peut être étendue à G(r, n). Un dérangement r-coloré d'ordre
	n est une permutation π ∈ G(r, n) telle que π(i) = i ∀i ∈ [n]. On note
	D(r, n) l'ensemble des dérangements r-colorés. Des relations sur d n sont bien
	connues, comme par exemple :

Table 1 -

 1 

	n\m 0 1 2 3 4 5
	0	1
	1	0 1!
	2	1 1 2!
	3	2 3 4 3!
	4	9 11 14 18 4!
	5	44 53 64 78 96 5!

Comme n! est le cardinal du groupe symétrique d'ordre n, le tableau d'Euler peut être considéré comme une matrice associée au groupe symétrique. La table 1 nous donne les premières valeurs des g m n . Valeurs de g m n pour 0 ≤ m ≤ n ≤ 5 .

Table 1 .

 1 1.1) corresponds to Euler's difference table, where g n

	1,n

1: Values of g m r,n for 0 ≤ m ≤ n ≤ 5 and r = 1 or 2.

Table 1

 1 

	.2.

Table 1 . 2

 12 

: Values of d m r,n for 0 ≤ m ≤ n ≤ 5 and r = 1 or 2.

  [START_REF] Adin | The flag major index and group actions on polynomial rings[END_REF] and I V = (t 2 , I w 1 + t 2 + 1) = (t 2 , I v ). (4.12) Since zero(v) > 0, zero(V ) > 0 and a < b , by (4.3) we haveI ω = (I v + t 3 + 1, ν + t 3 ) and I Ω = (I V + t 3 + 1, ν + t 3 ). (4.13)It follows that I Ω = (t 2 + t 3 + 1, I ω ) and (as a < b ) t = t 2 + t 3 + 1.

	Now, if zero(w 1 ) = 0 then, by (4.4),		
	I ω = (ν + t 3 )	and	I V = (t 2 ).	(4.14)
	As zero(V ) > 0, it follows from (4.13) and (4.14) that I Ω = (t, ν +t 3 ) =
	(t, I ω ).			

  , G 2 , G 3 , R 1 , R 2 , R 3 , 72

	OV , 11
	Pil, 67
	pil, 67 q-notations, 15 Index des notations
	rank, 57
	Rfinv, 85
	Excedent, subexcedent, 68 Factorisation d'une permutation en produit de cycle, 5 Flag-major, 12 Fonction longueur, 1, 12 Graphe de Coxeter, 3 Groupe de Coxeter, 3 Groupe de réflexions complexes, 9 Groupe des permutations colorées, 8 Groupe des permutations signées paires, 10 Groupe hyperoctaèdral, 6 Groupe symétrique, 4 Indice majeur, 1 Inversion, 1 k-successions, 13 m-fixe croissantes , 14 m-fixe isolée, 14 Nombres de descentes, d'inversions, 1 pillar, 67 Produit en couronne, 7 Produit semi-direct, 6 q-notations, 14 Relations d'ordre sur l'alphabet co-loré, 10 B n , 6 C r S n , 7 C k (π), 14 c k (π), 14 χ, 10 col, 9 color π (x), 8 col i , 9 COL j , 57 c k r,n,m , 24 Der, 26, 57 D(r, n), 21 des, 1 DES, 56 des * , 85 Des A , 13 des A , 13 Des B , 13 des B , 13 Des G , 19 des G , 19 D n , 10 D m r,n , 36 d m r,n , 32 fdes, 13 finv, 12, 29 FIX, 14 fmaf, 26 fmaj D , 17 [σ, j], 71 Sh(0 n v), 67 Σ r,n , 8 σ, j , 60 t [m] , 71 T σ , 40 ZDer, 67 G 1 G(r, n), 8 slot, red slot, green slot, 59 Statistique, 1 Statistiques eulériennes, 1 Statistiques mahoniennes, 1 Tableau d'Euler, 2 Transposition, 5 g m n , 2, 23 G r,m , 29 g m r,n , 24 G(r, n, m, k), 37 g m r,n (q), 56 G(r, p, n), 9 H K, 6 I m r,n , 36 I ω , 71 (π), 12 L k (π), 14 l k (π)), 14 B , 17 D , 17 G , 29 l k r,n,m , 24 m-1 k , 83 maj, 1 [n], 4 NDes, 13 ndes, 13 Neg, 13 neg, 13 nmaj, 13 OC, 11 OM , 11 inv, 1 Zero, 67

When case (1) holds, let φ l (w) := w. When case (2) holds, determine the greatest integer k ≥ j+1 such that [START_REF] Adin | Equi-distribution over descent classes of the hyperoctahedral group[END_REF] holds, determine the smallest integer i ≤ j -1 such that rank(i)

It is important to note that φ l has no action on the 0's other than the l-th one. The mapping Φ is defined to be the composition product

To verify that Φ is bijective, Foata and Han introduce a class of bijections ψ l , whose definitions are parallel to the definitions of the

denote the l-th letter of w, equal to 0, when w is read from left to right. Consider the following three cases (remember x 0 = x n+1 = +∞ by convention):

(1') x j-1 , x j+1 both non-subexcedent;

(2') x j-1 subexcedent, x j+1 non-subexcedent or x j-1 , x j+1 both subexcedent with x j-1 > x j+1 ;

(3') x j-1 non-subexcedent , x j+1 subexcedent or x j-1 , x j+1 both subexcedent with x j-1 < x j+1 .

When case (1') holds, let ψ l (w) := w. When case (2') holds, determine the smallest integer k ≤ j -1 such that

and define:

When case (3') holds, determine the greatest integer k ≥ j + 1 such that rank(j + 1)

As shown in [START_REF] Foata | Fix-Mahonian Calculus, I : two transformations[END_REF], the product

On the other hand, in any case, we have zero(V ) > 0. By (4.3),

which is equivalent to (4.16). ; hence the slots 0, 2, 4 are green, while the slots 1 and 3 are red. Therefore (g 0 , . . . , g 4 ) = (2, 3, 1, 4, 0), and

Example. Let

Thus Ψ(τ ) = σ, 0, 2, 3, 3 = 1 3 2 4 8 6 7 5.

On the other hand, applying Φ -1 to w := ZDerτ = 02001430 ∈ Sh(0 4 σ), as 2 and 4 are excedent, we get Chapitre 5

Flag-inv and Flag-maj on colored words

This chapter is our article [START_REF] Faliharimalala | Flag-major index and Flaginversion number on colored words and wreath product[END_REF]. In [START_REF] Foata | On the Netto inversion number of a sequence[END_REF], Dominique Foata constructed a map Φ, called second fundamental transformation, exchanging the integer-valued statistics Inversion number "inv" and Major Index "maj" on words whose letters are integers. Later, Foata and Han introduced the flag-inversion number "finv" and extended Φ on signed words and permutations, showing that the flag major index "fmaj" and "finv" were equidistributed. In this chapter we give a extension of Φ on r-colored words. By this extension, we show that the bistatistics (fmaj, des * ) and (finv, col) are equidistributed, where "col" is the sum of color and "des * "a new statistic derived from "des".

Introduction

The second fundamental transformation, denoted by Φ and described in the proceedings [START_REF] Foata | On the Netto inversion number of a sequence[END_REF] by Foata, is defined on finite words whose letters are integers.

The transformation Φ maps each word w on another word Φ(w) and has the following properties: So, w∈Gr,m q finv w = 0≤s≤r-1

where

By induction, for each 1 ≤ k ≤ s,

q finv w = (q r ; q r ) m-1 (q; q) m-1

Thus,

1≤k≤s-1

and w∈Gr,m ,m s q .

We construct the extension Φ of the second fundamental transformation Φ on r-colored words in the next section. Define des * w = r des wdes |w| + col 1 w, (

(5.9)

Let w := ( , u) be a r-colored word (u = |w|). Define Φ(w) = (Ψ u ( ), Φ(u)).

(5.10)

Example. Let's take r = 4 and w = 31 4 13 . We have

By construction of Φ (relation (5.8)), we successively have In the other hand,

Therefore w = Φ( 31 4 13 ) = 3 14 13 .

We have (fmaj, des * )w = (finv, col)w = (34, 8). 

Proof of

Note that #G α = n!. We denote by I α the increasing bijection from [n] onto Σ α and we define τ for each class G α by τ (w) = w 1 w 2 . . . w n where